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OVERVIEW 
 

Age-related Macular Degeneration (AMD) is a highly heritable disease affecting 

millions of people worldwide. Because AMD — as its name implies — is an age-related 

disease and average life expectancies continue to increase, the prevalence of AMD also 

continues to increase, resulting in both decreased quality of life and financial burdens. 

Compared to many other diseases, the genetics of AMD has been well-studied, yet known 

risk variants only explain a portion of the heritability and risk for AMD. With much of the 

“low-hanging fruit” discovered, this work explores some of the many possible genetic 

factors that could contribute to the unexplained heritability. Specifically, I seek to better 

understand the genetics of AMD by answering the following question: 

 
How much of AMD’s heritability is explained by biologically-relevant pathways,  

by dominance effects, and by epistasis between plausible genomic regions? 
 
 

Existing literature have used linkage analyses to narrow down regions of 

cosegregation as well as genome-wide association studies (GWAS) in large case-control 

cohorts to uncover specific genome-wide significant SNPs contributing to risk for AMD. 

These GWAS have confirmed statistically significant associations between AMD risk and 

several genes, including CFH, C2, C3, CFB, and ARMS2/HTRA1. Known risk SNPs only 

explain a portion of AMD’s heritability, however. AMD-related pathways likely contain 

single nucleotide polymorphisms (SNPs) with small effects that individually do not reach 

genome-wide significance but still contribute to the unexplained heritability of AMD. 

Additionally, a portion of the unexplained heritability could potentially be explained by 



 2 

interactions between loci (epistasis), which is not taken into consideration in a typical 

GWAS. Within this work I will present studies that explore the impact that these AMD-

related pathways and epistasis have on AMD risk. 

Chapter 1 begins by giving an in-depth background on age-related macular 

degeneration (AMD). I focus on two primary components — known biological and 

genetic factors of AMD. First, I emphasize the global impact of AMD on health and 

financial burden. While not fully understood, much is known about the pathogenesis and 

progression of AMD, including the fact that there are two main subtypes — dry and wet. I 

also review related clinical trials and treatment options before reviewing the history and 

current state of knowledge regarding AMD genetic risk factors and heritability. 

For many years, the primary way to estimate heritability was through twin studies, 

which take advantage of the difference in trait variance between monozygotic and 

dizygotic twins to determine the extent to which a trait has a genetic component. In 

Chapter 2 I review mixed linear model (MLM) methods and software that estimate 

heritability by comparing genetic variance, generated from unrelated individuals, to 

phenotypic variance. Focusing on MLM software, particularly Genome-wide Complex 

Trait Analysis (GCTA), I describe advantages, disadvantages, and alternatives. 

In Chapter 3, using a case-control dataset, I perform a unique pathway analysis of 

AMD by leveraging known biological information to test specific pathways for their 

contribution to risk for AMD. First, I estimate the amount of AMD risk explained by 

known, published risk SNPs. Then I analyze multiple pathways, taking into consideration 

possible gene-environment interactions due to smoking, differences in risk explained by 
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AMD subtype, linkage disequilibrium, and potential overestimates of heritability due to 

genes shared between pathways. For each pathway I carefully dissect the contribution to 

AMD risk for genic SNPs, nearby flanking, potentially regulatory SNPs, and more distant 

SNPs in open chromatin regions in ocular tissue, leveraging data from the Encyclopedia 

of DNA Elements (ENCODE) project. I show that the complement and inflammatory 

pathways harbor statistically significant genetic variation that contributes to AMD risk. I 

also show that genetic variation in the complement pathway, separate from known risk 

SNPs, contributes cumulatively to risk for AMD. This chapter is adapted from my peer-

reviewed article “Estimating cumulative pathway effects on risk for age-related macular 

degeneration using mixed linear models” in BMC Bioinformatics [1]. 

Thus far, published studies of genetic interactions have focused primarily on 

finding individual significant SNP-SNP pairs. In Chapter 4 I describe two novel methods 

(iSim and iGRM) that I developed to explore genetic interaction effects. Advances in 

computing now allow us to test all pairwise genotyped SNPs and, while this can uncover 

meaningful, real interaction effects, such methods require the pair of SNPs to have a very 

large effect to reach statistical significance. For some traits, many interactions with small 

effect sizes may contribute cumulatively to trait variation or risk. The methods I describe 

in Chapter 4 allow this to be tested and quantified. First, I describe a method (iSim) to 

simulate datasets with specific effects — including additive, dominant, and epistatic 

genetic components. Second, I describe a method (iGRM) to estimate the impact that 

those genetic effects — within specified genomic regions — have on trait variation, using 

simulations from the first method as validation. I conclude each method section by 
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describing the current efficiency of the software, as well as provide suggestions for future 

potential changes to optimize the software. 

In Chapter 3 I explored pathways contributing to risk for AMD, which helps 

uncover and localize some of the unexplained heritability for AMD due to additive effects, 

yet more research is needed to explore potential genetic interaction effects influencing 

AMD risk. In Chapter 5 I apply the methods developed in Chapter 4 to a large 

International AMD Genetics Consortium (IAMDGC) dataset. In many studies of AMD 

ARMS2 contains a statistically significant risk SNP, yet its biological mechanism and 

relation to disease progression and pathogenesis is not understood. For this analysis I test 

for cumulative interaction effects between ARMS2 and multiple AMD-related pathways to 

search for a potential biological mechanism linking ARMS2 and risk for AMD. I show that 

ARMS2 does not contribute to AMD risk through cumulative interaction effects with the 

antioxidant, complement, oxidative phosphorylation, nicotine, or TCA pathways. 

Additionally, I show that a previously discovered interaction between AMD risk SNPs 

(rs10737680 - CFH and rs42908 - C2/CFB) replicate using our iGRM method, with small 

but statistically significant amounts of risk explained cumulatively by epistatic effects. 

Finally, in Chapter 6 I review the extent to which this work has contributed to our 

understanding of AMD and to novel statistical genetic analysis methods. I summarize and 

make final conclusions of my findings as well as discuss promising areas for future related 

research. 
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CHAPTER 1 — AGE-RELATED MACULAR DEGENERATION: WHAT IS KNOWN 
 

 BIOLOGY OF AMD  

Age-related macular degeneration (AMD) is a progressive, neurodegenerative 

disease affecting the central portion of the retina, called the macula, leading to a loss of 

central vision (Figures 1 and 2). Although the macula only makes up a small portion of the 

retina, it contains the 2 millimeter-wide fovea (Figure 3), which has the highest density of 

cone photoreceptors and is responsible for clear central vision.  

Prevalence and burden 

AMD is the leading cause of irreversible blindness in elderly individuals in 

developed countries, with thirty to fifty million people, world-wide, estimated to be 

affected [2]. The prevalence of AMD differs by age, gender, ethnicity, and type of AMD 

[3]. Overall prevalence rates are higher in females compared to males and are roughly 

seven times higher in European-descent individuals compared to African-descent 

individuals [3]. In individuals of European-descent, by age 80 the prevalence of early 

AMD is approximately 25% and prevalence of late/advanced AMD (geographic atrophy or 

neovascular AMD) is approximately 12% [3]. Prevalence worldwide is predicted to 

increase over time due to increased lifespans [3, 4]. AMD Alliance International (AMDAI) 

estimated the worldwide direct healthcare cost of AMD to be $255 billion in 2010 and 

predicted it to increase to $294 billion by 2020 [5]. While AMD was responsible for 9.5% 

of the prevalence of visual impairment, globally, in 2010, it accounted for 24.1% of direct 

healthcare costs because lifetime treatment is required after diagnosis [5].  
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Figure 1. Example of normal vision. 
Image created by the National Eye Institute and listed as public domain [6]. 

 
 

 
Figure 2. Example of vision with AMD. 
Image created by the National Eye Institute and listed as public domain [6]. 
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Figure 3. General anatomy of the eye. 
Diagram from Blausen gallery 2014 [7]. Open access use permitted under the Creative 
Commons License. 
 
 

Living with AMD can severely reduce quality of life in patients. Critical tasks such 

as driving can become dangerous due to difficulty seeing; once symptoms become severe 

patients often have to rely on others for transportation. Other important tasks such as 

walking, cooking, and reading may become difficult. Frustration from a loss of 

independence due to visual impairment can further lead to depression [8]. Patients still 

working may lose the ability to perform their job, leading to job loss and increased 

financial burden. These factors, combined with the current lack effective prevention 

methods or treatment options, justify the great need for further AMD research. 

Pathogenesis and risk factors 

Accumulation of drusen — tiny yellow or white lipid deposits in the Bruch's 

membrane layer of the retina — can be an early sign of AMD. Large, soft drusen are 

associated with a higher risk of developing AMD, while small, hard drusen are common in 
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individuals over the age of 50 and not necessarily indicative of risk for AMD [9]. AMD can 

be classified as dry or wet. Geographic atrophy, the advanced form of dry AMD, results 

when the drusen affect the retinal pigment epithelial (RPE) layer, leading to a loss of 

photoreceptors [10]. Wet AMD, or neovascular (exudative) AMD, is caused by leakage of 

blood and protein below the macula due to abnormal blood vessel growth [10]. 

Neovascular AMD is roughly 2.5 times more prevalent than geographic atrophy in people 

over 75 years of age [11]. 

 

   
Figure 4. Fundus photographs of geographic atrophy and neovascular AMD. 
Left – normal eye; Middle – intermediate AMD; Right - neovascular/exudative AMD. All 
images from the National Institutes of Health [12] and listed as public domain. 
 
 

Figure 4 shows fundus photos with and without AMD. The left frame shows a 

healthy eye with no signs of AMD. The middle frame shows numerous drusen, indicative 

of dry AMD (geographic atrophy). The right frame shows sub-retinal hemorrhaging 

indicative of neovascular, exudative (wet) AMD. Hallmarks of early/intermediate AMD 

additionally include a thickened Bruch’s membrane and appearance macrophages in the 

choroid. For geographic atrophy, photoreceptor degeneration is typically due to drusen 

accumulation and altered blood flow in the choroid, limiting the supply of nutrients to 

the RPE and ultimately leading to visual loss. For neovascular (exudative) AMD, major 
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changes to the RPE and surrounding areas typically occur, primarily due to abnormal 

blood vessel growth through the Bruch’s membrane and subsequent leakage of blood or 

fluid, leading to photoreceptor cell degeneration and vision loss. Occurrence of dry and 

wet AMD is not mutually exclusive.  

Because disease progression is painless, early signs and symptoms often go 

unnoticed until vision is affected. However, in some cases, drusen can affect the layers of 

the retina so that the retinal pigment epithelium (RPE) becomes detached [10].  

Risk factors for AMD include age, use of tobacco products, family history, 

hypertension, cholesterol levels, obesity, ethnicity, oxidative stress, and exposure to 

sunlight [3, 10, 13, 14]. Familial risk is a particularly important factor; having just one first-

degree relative with AMD increases the risk of developing AMD three fold [13]. Clinically, 

AMD is typically diagnosed using either fundoscopy with pupil dilation, fluorescein 

angiography, or optical coherence tomography (OCT) [15]. Visual loss and progression 

due to AMD can be tracked using the Amsler grid test (Figure 5). 

 
Figure 5. Amsler grid test. 
The depiction here shows what an Amsler grid could look like to someone with AMD. 
The image is listed as public domain by the National Eye Institute, National Institutes of 
Health [16].  



 10 

Treatment options 

Treatment options are different for wet and dry AMD. Nutritional supplements 

from the Age-Related Eye Disease Study (AREDS) slow the progression of AMD and are 

recommended for people at high risk of developing advanced AMD [17]. The initial study, 

which included participants with no, early, intermediate, and advanced (in at most one 

eye, including wet and dry) AMD, assessed the effect of vitamin C (500 mg), vitamin E 

(400 IU), beta-carotene (15 mg), zinc oxide (80 mg), and copper (2 mg), none of which are 

naturally produced by the human body.  The AREDS2 study [18] only included 

intermediate and advanced AMD patients (since no benefit was observed in the original 

AREDS study for people with no AMD or early AMD) and tested the effect of including 

additional dietary supplements for various combinations of lutein (10 mg), zeaxanthin (2 

mg), and omega-3 fatty acids (docosahexaenoic acid [DHA] - 350 mg and eicosapentanoic 

acid [EPA] - 650 mg), as well as the effect of not including beta-carotene and/or reducing 

supplement zinc levels [18]. Results suggested that the omega-3 fatty acids (DHA and 

EPA) did not provide a significant benefit and that lutein and zeaxanthin could be used as 

substitutes for beta-carotene. Additionally, prophylactic laser treatment of drusen has 

been tested as a potential treatment for dry AMD but results showed that it was not 

beneficial [19].  

Wet AMD is caused primarily by neovascularization through the Bruch's 

membrane, causing blood and protein to leak below the macula. Vascular endothelial 

growth factor inhibitor (anti-VEGF) treatments work by inhibiting angiogenesis — the 

formation of new blood vessels from preexisting vessels [20]. Two anti-VEGF drugs are 
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Avastin and Lucentis; both require monthly intraocular injections, although often 

treatment is only given upon signs of AMD progression. An older treatment option for 

wet AMD that is no longer used, photodynamic therapy (PDT), involves injecting a light 

sensitive drug (verteporfin) into the blood stream where it is picked up by lipoproteins, 

leading to accumulation specifically within abnormal vessels under the macula. A low 

power laser is then used to initiate a reaction that seals off leaky vessels [21].  

While supplements may slow progression and treatment options exist for 

neovascular AMD, no treatment options exist for geographic atrophy and prevalence rates 

continue to increase, making it more important than ever to conduct research of AMD. In 

addition to better (for wet) or any (for dry) treatment options, better preventative 

measures are also needed — unlike in some species, once human photoreceptor cells die 

they cannot be regenerated [22].  

GENETICS OF AMD 

Early genetic associations  

Familial aggregation of a trait is evidence that that trait is likely heritable. For 

AMD, the sibling recurrence risk is 2.95, indicating that AMD risk has a genetic 

component [23]. At-risk individuals can receive regular eye exams to help detect AMD 

before visual loss occurs. While a family history of AMD indicates potential risk, specific 

genetic variants can also be used to predict AMD risk. Many ocular diseases, including 

AMD, have had risk loci identified [24]. AMD was first reported to have a genetic 

component in 1966 [25]. The next major genetic finding occurred in 2005 with the 

simultaneous release of three Science papers, reporting the association between 
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complement factor H (CFH) and risk for AMD [26–29]. Later in 2005, ARMS2 (then 

referred to as LOC387715) was associated with risk for AMD [30]. In 2006, a haplotype in 

which two complement factor H-related genes were deleted (CFTR1 and CFTR2) was 

associated with decreased risk for AMD [31]. By 2007, complement factor B (CFB), 

complement factor 2 (C2), and complement factor 3 (C3) were also associated with AMD 

[32–34]. Not all associated variants necessarily increase risk for AMD, however. Variants 

in C2 (rs547154: GT; Odds Ratio (OR): 0.57) and ARMS2/HTRA1 (rs3750847: CC; OR: 0.47) 

can indicate reduced risk for AMD [35] and variants in CFH (rs1061147: AA; OR: 2.76), C3 

(rs2230199: CC; OR: 2.38), and TIMP3 (rs96215532: AA; OR: 1.02) can indicate increased 

risk for AMD [35].  

Recent genome-wide studies 

Since 2007, additional variants have been associated with AMD and explain some 

of the heritability of AMD. Heritability of AMD has been estimated to be between 45% 

and 70% [36], with the most recent estimate from a large-scale AMD study being 46.7% 

for advanced AMD in European-ancestry individuals [37]. 

In one study, twelve known risk loci were found to explain approximately 39% of 

the total risk for advanced AMD (55% of the heritability) [38]. More recently, a meta-

analysis confirmed association with seven new loci, bringing the total number of loci 

replicating at a genome-wide significant level to nineteen [36]. The nineteen loci (Table 1) 

explain 30% of the risk for AMD (65% of the heritability), based on an AMD prevalence of 

10% [36]. While much progress has been made, genetic effects discovered thus far do not 

explain all of the genetic risk for AMD and more research is warranted to uncover 
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additional genetic effects, with the ultimate goal of elucidating molecular mechanisms to 

aid in the develop of better treatment and prevention options.  

 
Table 1. Nineteen known risk SNPs and nearby gene information. 
 

RS Number Chr. Position Nearby Genes 
Distance to index 

SNP (kb)* 
Location** 

rs10490924 10 124214448 
ARMS2 0 Coding 
HTRA1 6.6 Upstream 

rs10737680 1 194946078 CFH 0 Intronic 

rs429608 6 32038441 
C2 17 Downstream 

CFB 10.6 Downstream 
SKIV2L 0 Intronic 

rs2230199 19 6718387 C3 0 Coding 

rs5749482 22 31389665 
TIMP3 137.1 Upstream 

SYN3 0 Intronic 

rs4420638 19 45422946 
APOE 10.3 Downstream 
APOC1 5 Downstream 

rs1864163 16 55554734 CETP 0 Intronic 

rs943080 6 43934605 VEGFA 72.4 Downstream 

rs13278062 8 23082971 TNFRSF10A 0.3 Upstream 

rs920915 15 58688467 LIPC 35.7 Upstream 

rs4698775 4 110590479 
CFI 71.4 Downstream 

CCDC109B 0 Intronic 

rs3812111 6 116443735 COL10A1 0 Intronic 

rs13081855 3 99481539 COL8A1 0 Intronic 

rs3130783 6 30774357 
IER3 62 Upstream 
DDR1 77.5 Upstream 

rs8135665 22 38476276 SLC16A8 0 Intronic 

rs334353 9 100948186 TGFBR1 0 Intronic 

rs8017304 14 68785077 RAD51B 0 Intronic 

rs6795735 3 64705365 
ADAMTS9 32 Upstream 

ADAMTS9-AS2 0 Intronic 
MIR548A2 0.3 Upstream 

rs9542236 13 30717325 B3GALTL 0 Intronic 

Adapted from Fritsche 2013 [36]. Information on allele frequencies for each SNP is given 
in Appendix A. * Distance from SNP to nearest (or resident) gene. ** Location in regards 
to nearest (or resident) gene. 
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CONCLUSIONS 

Much research has been dedicated to understanding the biology and genetics of 

AMD. More effective treatment options are needed for wet AMD, and essentially no 

treatment options exist for dry AMD. As the average age of the human population 

worldwide continues to increase the prevalence of AMD will also continue to increase 

unless better treatment and/or preventative measures are developed.  

AMD is highly heritable and many genetic variants have been statistically 

associated. Cellular processes, such as complement activation, have been associated with 

AMD through genome-wide association studies, but how these processes contribute to 

pathogenesis is not fully understood. It may be the case that, while there are many 

genome-wide significant SNPs associated with risk for AMD, other genetic effects might 

be due to genetic variation with lower effect sizes localized to particular pathways. In 

particular, we focus on the gene ARMS2, which harbors a statistically significant SNP, but 

it’s biological relevance and contribution to pathogenesis is unknown.  

In the following chapters I seek to better elucidate the genetic factors of AMD to 

try to uncover plausible mechanisms of pathogenesis and better link genetics of AMD 

with the biology of AMD. First, I will describe how mixed linear models can be used to 

estimate heritability genome-wide or by assessing specific genomic regions (genomic 

partitioning). Second, I will use such modeling methods to partition heritability of AMD 

into potentially-relevant genetic pathways. This should confirm known mechanisms (e.g. 

complement system) as well as estimate the overall contribution to AMD risk from other 

plausible pathways, some of which harbor no independent genome-wide significant risk 
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SNPs. Third, with the goal of exploring epistasis in AMD, I will first describe new 

methods (iGRM and iSim) I developed to estimate cumulative effects on risk from 

dominance and epistatic genetic effects. Fourth, and lastly, I will use those developed 

methods to explore the possibility that ARMS2 modulates risk for AMD through 

interactions with biologically relevant genetic pathways.  
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CHAPTER 2 — MIXED MODEL APPROACHES TO HERITABILITY ESTIMATION  
AND GENETIC ASSOCIATION 

 

BACKGROUND 

Before DNA was discovered or the study of genetics had begun investigators 

observed that some traits were heritable and seemed to be passed from parent to 

offspring. Height is a clear example that it is possible to observe heritability without the 

need for genetic information; a person’s height is highly correlated with the height of 

their parents, implying high heritability. Similarly, diseases that tend to cluster within 

families (i.e. familial aggregation) likely have a genetic component, barring potential 

environmental effects. 

The concepts of how traits were inherited began with Gregor Mendel, the father of 

genetics, who used experiments in pea plant hybridization to show that additive and 

dominant characters (now referred to as alleles) allowed for physical pea plant 

characteristics to be predicted based on characteristics from previous generations [39]. 

Fast forward to today and we have a much more detailed understanding of genes, DNA, 

and how they are inherited.  

Heritability can be defined quantitatively as the proportion of phenotypic variation 

due to genotypic variation; so if a trait is 100% heritable, that trait can be perfectly 

predicted using genetic information alone. Twins provide a special case for allowing 

heritability to be estimated. Because twins are exposed to nearly the same environmental 

factors (including shared intrauterine environment, parenting style, wealth, culture, and 

time period), genetic factors can be better interpreted and quantified.  Monozygotic (MZ, 



 17 

identical) twins are essentially genetically identical, so if a trait is heritable the twins 

should have similar trait characteristics. Dizygotic (DZ, fraternal) twins, however, only 

share about half of their genes, on average. Using Falconer’s formula [40] (Equation 1) 

heritability can be calculated as twice the difference between monozygotic and dizygotic 

twin correlation (rmz and rdz, respectively).  

 ℎ2 = 2(𝑟𝑚𝑧 − 𝑟𝑑𝑧) (1) 

Heritability, can be further broken down into two types — broad-sense (H2) and 

narrow-sense (h2) heritability. Whereas broad-sense heritability is defined as the amount 

of heritability due to all genetic effects, narrow-sense heritability is the amount of 

heritability due to additive genetic effects only. Whether twin studies estimate broad or 

narrow-sense heritability is debatable because only monozygotic twins share dominant 

and epistatic (gene-gene) effects in addition to additive effects. Due to crossing over 

during meiosis, dizygotic twins are expected to share less than half of possible epistatic 

effects.  However, some have proposed a simple weight that could account for some of 

this discrepancy and better estimate broad-sense heritability [41] from twin studies. 

Twins are not the only level of familial relation that can be used to estimate 

heritability, though. Sibling recurrence risk is one way to gauge whether a trait has a 

genetic component. Another method is to use trios (mother, father, and child) to regress 

the difference, for a quantitative trait, between the child’s phenotype and the mid-parent 

phenotype (average between mother and father) (Figure 6). 
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Figure 6. Estimating heritability from parent-offspring relationships. 
Example figure from [42]. In this example, an arbitrary phenotype is used, with values 
ranging from negative to positive three. Frame a shows lower heritability (20%) due to 
less correlation between the mid-parent value and the offspring value, while frame b 
shows more correlation and correspondingly higher heritability (80%), both calculated 
using linear regression. Each point represents one trio. 
 

 With the advent of DNA genotyping and sequencing and newer statistical 

methods, such as Genome-wide Complex Trait Analysis (GCTA) [43], it is now possible to 

estimate heritability for a trait using genotyped single nucleotide polymorphisms (SNPs) 

from groups of unrelated individuals. However, it is important to note that such methods 

can only provide heritability estimates, often referred to as “chip heritability” since 

estimates are derived from SNPs genotyped on a “SNP chip”. Heritability, this way, is 

estimated as the proportion of trait variation due to measured genetic variation. 

Essentially, the more heritable a trait is the more correlated phenotypic similarity should 

be with genotypic similarity when comparing all pairs of individuals in a group. GCTA is 

often included as a component of genetic studies (Table 2) as an efficient and relatively 

easy way to determine the extent to which a trait has a genetic component. In addition, 

several similar, alternative methods exist, such as ACTA [44], EMMAX [45], FaST-LMM 

[46], GEMMA [47], and GRAMMAR-Gamma [48]. Below, we present scenarios where 
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GCTA can be used to solve certain questions. Then, we describe advantages and 

disadvantages of GCTA and briefly discuss alternatives. 

 
Table 2. Example findings from studies that used GCTA. 
 

Trait Studied PVE* PMID 

Childhood Adiposity 30% 23528754 

Drug Dependence 36% 25424661 

Height 45% 20562875 

Intelligence (From age 11) 62% 22258510 

Multiple Myeloma 15.2% 26208354 

Multiple System Atrophy 4.37% 23874384 

Psoriasis (in Han Chinese) 45.7% 26172869 

Pulmonary Function Measures 41.6 – 71.2% 25745850 

Schizophrenia 39% 26198764 

*Proportion of Variance Explained 
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ESTIMATING HERITABILITY WITH GENOME-WIDE COMPLEX TRAIT ANALYSIS 

Overview 

Genome-wide Complex Trait Analysis (GCTA) is a computer program that uses a 

mixed model approach to estimate heritability as the proportion phenotypic variance due 

to cumulative additive genetic variance [43]. The method was first applied to a study of 

human height where 45% of the variance was explained by the additive effect of ~300k 

common SNPs in 4,259 individuals [49]. A key feature of GCTA is its use of a genetic 

relationship matrix (GRM; Equation 2) to estimate the relatedness of all individuals by 

considering the additive effect of all SNPs simultaneously. Genetic effects can be 

partitioned multiple ways, such as by chromosome, by gene, or by pathway, by creating 

GRMs specific to certain genomic regions.  

GRMs are calculated using a variance-covariance matrix, with the denominator 

being the SNP population variance and the numerator being the covariance between two 

individuals. 𝐴𝑗𝑘 is the calculated genetic relationship value for individuals 𝑗 and 𝑘; 𝑁 is 

the number of non-missing SNPs shared between two individuals; 𝑥𝑖𝑗 is the number of 

copies of the reference allele for the ith SNP of the jth individual; 𝑝𝑖 is the frequency of the 

reference allele. The effects from each SNP are then summed (Σ) and weighted equally 

(1/N). The equal weighting assumes SNPs are independent, which is generally true for 

genome-wide SNP chips which typically have a wide, representative coverage of the 

genome. Unlike typical genome-wide association studies (GWAS), in which the effects of 

single SNPs are calculated independently, GCTA accounts for relative levels of genomic 

sharing between individuals. 
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 𝐴𝑗𝑘 =
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2𝑝𝑖(1−𝑝𝑖)

𝑁
𝑖=1   (2) 

Using GCTA 

Availability and versioning 

To date, GCTA is still being improved and updated; download links and 

documentation are currently hosted by The University of Queensland’s Centre for 

Neurogenetics and Statistical Genomics (http://cnsgenomics.com/software/gcta). As of 

November 2015, the latest version of GCTA is 1.25.0. In addition, the online GCTA forum 

can be used as a valuable resource when errors are encountered or questions arise 

(http://gcta.freeforums.net). GCTA options are often similar to PLINK [50], a widely used 

genetic data manipulation and analysis software. In the following sections we review 

various analyses that can be performed using GCTA, along with examples of 

corresponding options and commands.  

Data management and manipulation 

The two types of genetic data files that GCTA can use as input are PLINK binary 

files (bfile) and MACH output files (dosage-mach and dosage-mach-gz for uncompressed 

and compressed MACH files, respectively). Non-binary PLINK files (*.ped/*.map) should 

be converted to binary format using PLINK [50]. Genetic data loaded into GCTA can then 

be filtered in various ways, such as filtering in/out individuals (keep/remove), filtering by 

specific chromosome or all autosomes (chr/autosome), filtering in/out SNPs 

(extract/exclude), filtering by minor allele frequency (maf/max-maf), and filtering for 

imputed data (imput-rsq). Output file names are specified the same way for every 

http://cnsgenomics.com/software/gcta
http://gcta.freeforums.net/
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command (out). Any missing data points should be coded as “-9” or “NA”. More detailed 

specifics on formatting input data can be found in GCTA’s online documentation 

(http://cnsgenomics.com/software/gcta). 

Estimating genetic relationships via GRMs 

Above, we described the calculations involved in generating genetic relationship 

matrices (GRMs). In combination with any SNP/individual inclusion/exclusion options, 

GRMs can be calculated and output in binary compressed format (make-grm). Binary 

compressed format is the default GRM option — the older compressed text file version 

can also be created using a slightly different option (make-grm-gz). Importantly, GRMs 

are intended for autosomal SNPs only, due to the statistics involved; however, GCTA has 

an option which uses slightly modified calculations (different for male-male, male-female, 

and female-female pairs) [43] to make a separate GRM for SNPs on the X-chromosome 

(make-grm-xchr). At this time, GCTA does not explicitly support creating GRMs for 

mitochondrial SNPs, however mitochondrial SNPs can be dummy coded as X-

chromosome SNPs to generate a mitochondrial GRM, but it is important to remove actual 

X-chromosome SNPs so they are not included. Importantly, GCTA can utilize multiple 

processors simultaneously to greatly speed up GRM (thread-num). An example command 

to generate a GRM is:  

 

Finally, an inbreeding coefficient (F) can be calculated for each individual as the average 

across all SNPs (ibc - inbreeding coefficient) using three different calculation methods 

gcta64 --bfile inputfile --make-grm --autosome --out outname --thread-num 10 

http://cnsgenomics.com/software/gcta/
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based on (1) variance of additive genotype values, (2) excess homozygosity, and (3) the 

correlation between uniting gametes [43]. 

Estimating trait heritability and genetic effect significance 

GCTA uses restricted maximum likelihood (REML; also called GREML) analysis to 

estimate heritability — or more precisely, the proportion of trait variance explained (PVE; 

for quantitative traits) or proportion of trait risk explained (PRE; for binary, case-control 

traits). REML is an iterative method that finds the best fit for a mixed linear model 

(Equation 3), where Y is the phenotype, X is any fixed variable, β is the fixed variable 

effect size, Z is the GRM, γ is the vector of random effects from the GRM, and ε is the 

residual random effect (representing environmental, non-genetic effects). 

 𝑌 = 𝑋𝛽 + 𝑍𝛾 +  𝜀 (3) 

PLINK files (which usually contain the phenotype values) are not used directly for 

REML, instead, the phenotypes must be specified as a separate file (pheno). The disease 

prevalence for case-control datasets can be specified to provide a better estimate of PRE 

(prevalence). Both discrete and continuous covariates can be included in the analysis for 

adjustment (covar and/or qcovar, respectively). A newer bivariate REML analysis method 

[51] allows two traits to be simultaneously fit to detect potential pleiotropy between the 

two traits. To determine significance of any genetic components (i.e. GRM) GCTA 

performs a likelihood ratio test (LRT), comparing full and reduced models, where the 

reduced model is created by dropping the genetic variance component (GRM) of interest 

from the full model. If only one GRM is used, that component will be dropped by default 

to create the reduced model. If multiple GRMs are used, any components the user wishes 
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to test for significance can be specified (reml-lrt). To perform REML for a case-control 

dataset with a disease prevalence of 5%, two GRMs, covariates, and a likelihood ratio test 

for the second GRM, the following example command could be used: 

 
 

 
Principal components analysis 

Sometimes it is useful to adjust for genetic ancestry to avoid confounding due to 

population stratification. GCTA performs principal component analysis (pca) in the same 

way as EIGENSTRAT [52], another popular tool for calculating principal components. The 

output is an *.eigenvec file, which includes principal component values that can be 

included as covariates in any analyses.  

Estimating LD structure 

GCTA can be sensitive to linkage disequilibrium (LD) and heritability can be 

underestimated or overestimated in influential regions with high or low LD. Lee et al. [53] 

and Purcell et al. [54] suggest that LD has a relatively minimal effect and propose a minor 

allele frequency (MAF) stratification approach. Speed et al. [55, 56] shows, through 

simulations, that GCTA-type analyses are robust as long as LD is similar for causal and 

non-causal regions. In regions where there is high LD near causal variants, heritability is 

overestimated — the opposite is true in areas of low LD. A modified method, linkage 

disequilibrium adjusted kinships (LDAK; www.ldak.org), can be used as an alternative 

method of generating a GRM, which generates a modified kinship matrix by weighting 

SNPs based on local LD patterns [55]. Alternatively, PLINK's built-in LD pruning option 

gcta64 --reml --reml-lrt 2 --mgrm grmlistfile --pheno phenotypefile 
--prevalence 0.05 --qcovar covariatefile --out outname 

 

http://www.ldak.org/
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can be used to filter SNPs based on LD, keeping only representative SNPs using a given 

LD threshold [50], lessening the potential for confounding due to LD. 

Estimating individual SNP effects 

 GCTA has two primary ways to assess individual-level SNP effects — mixed linear 

model based association analysis (MLMA) and calculation of best linear unbiased 

predictions (BLUPs). MLMA provides an advantage over typical linear regression by 

conditioning the effect of a given SNP on other genotyped SNPs, simultaneously, using a 

GRM. MLMA provides the estimated effect size, standard error, and p-value for each SNP. 

An example command to perform MLM association analysis is:  

 

Similarly, SNP effects can be estimated by first calculating BLUPs for individuals (reml-

pred-rand), then transforming those BLUP solutions to estimate BLUPs for SNPs (blup-

snp). The final output is a list of all SNPs, with the reference allele, residual effect, and 

one SNP effect for each GRM used. 

Estimating power 

A study by Visscher et al. [57] uses complex theory and simulations to compare 

genetic and phenotypic sampling variance for different population sizes to model / 

predict power based on dataset characteristics. The power calculator tool is hosted online 

(http://cnsgenomics.com/shiny/gctaPower). Assuming the use of the default type 1 error 

rate of 0.05, the two pieces of information needed to estimate power are sample size and 

the variance of SNP-derived genetic relationships, the latter of which can be found in 

gcta64 --mlma --bfile plinkfile --grm grmfile --pheno phenotypefile  
--out outname --thread-num 10 

http://cnsgenomics.com/shiny/gctaPower
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output after generating a GRM. The variance is calculated as the variance of the off-

diagonal genetic relationship values in the GRM (the diagonal values, which represent 

genetic relationship values for self-pairs, similar to inbreeding values, are excluded). 

Those factors are then used to calculate power. For example, with a sample size of 7,777 

individuals and an off-diagonal variance (ODV) of 0.00321, there is 87.6% power to detect 

heritability as low as 1%.  

Advantages and disadvantages 

Overall, GCTA is a powerful tool that is relatively easy to use and provides several 

advantages over typical single SNP analyses. Genome-wide association studies (GWAS) 

can have false-positive results due to geographic population structure, family relatedness, 

or cryptic relatedness [58]. In addition, when thousands or millions of variants are 

individually tested for trait association false-positive results will inherently be introduced. 

GCTA avoids this by utilizing the genetic structure within a dataset and performing a 

single model test. In addition, mixed model analyses in GCTA condition on non-

candidate loci, increasing power for datasets regardless of whether or not population 

structure is present [58]. 

One disadvantage, however, is that power is reduced when conducting mixed 

linear model association analysis (MLMA) when the candidate SNP is included in the 

GRM. Sometimes referred to as “proximal contamination” [59], the loss of power is due to 

the marker being fit both as a fixed and random effect, simultaneously. Analysis with the 

candidate marker included in the GRM is referred to as “MLMi”, while analysis excluding 

the candidate marker (the marker(s) of interest that is included as fixed effects) is 
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referred to as “MLMe”. FaST-LMM [46] serves as an alternative, enabling MLMe, however 

GCTA now can perform MLMA-LOCO (leave one chromosome out), where the 

chromosome that the candidate marker is on is not included in the model, helping to 

avoid potential proximal contamination. While MLMe is more powerful, MLMi is usually 

used due to greater computational efficiency. 

Selection of which SNPs to include in GRMs is important. Above, we described the 

risk in including candidate loci in GRMs. Several studies [46, 59, 60] have also suggested 

that MLMA can gain power by carefully choosing subsets of SNPs to include in GRMs. 

However, a more recent study [58] used simulations to show that limiting GRMs to a 

subset of SNPs can compromise correction for population stratification, negating one of 

the benefits of mixed model analysis. In the case where a subset of SNPs are used, it is 

important to include principal components as fixed effects to account for potential 

population stratification. 

Finally, case-control studies can suffer from decreased power due to unintentional 

correlation between case status and collected, relevant covariates, due to the 

ascertainment process, especially when disease prevalence is low [61]. A recent study [62] 

proposed methods for liability-threshold mixed linear model (LTMLM) association 

analyses for case-control datasets in which χ2 statistics are calculated from posterior mean 

liabilities (PMLs), conditioned on each individual’s case status, dataset case-control status 

information, and genetic relationship matrices (GRMs). Heritability is then estimated 

using Haseman-Elston regression and transformed using the adjusted liability scale. 

  



 28 

SUMMARY  

The abundant availability of genetic analysis software has helped progress the 

study of genetics for many diseases and traits, but such a wide range of options can be 

overwhelming when trying to decide what is best for a given study. Advancements in 

statistical genetics have made it possible to estimate heritability using genotype data from 

unrelated individuals, making study participant recruitment easier than for twin studies. 

GCTA is a valuable and increasingly used tool that can be extremely powerful, but careful 

study design and a sufficient understanding of the concepts behind a given analysis is 

needed to make appropriate conclusions and avoid misinterpretation of results. In the 

following chapters I use GCTA and new methods related to GCTA to explore genetic 

effects of age-related macular degeneration (AMD).  
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CHAPTER 3 — GENETIC PATHWAY ANALYSIS OF 
AGE-RELATED MACULAR DEGENERATION 1 

 

INTRODUCTION 

Multiple mechanisms have been proposed as having a role in AMD pathogenesis. 

A recent review of AMD by Fritsche et al. describes many risk factors and mechanisms 

[63]. The discovery of the association between the Complement Factor H gene and AMD 

led to further associations between other genes related to complement activation [64]. 

Inflammation is highly related to complement activation and can lead to apoptosis of 

retinal pigment epithelial (RPE) cells and photoreceptors [65].  Using terminal 

deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL), Dunaief et al. found that 

RPE cells, photoreceptors, and inner nuclear layer cells can die through apoptosis during 

AMD progression [66]. The Age-Related Eye Disease Study (AREDS) showed that 

antioxidant and zinc vitamin supplements were able to slow AMD progression [18], 

implicating antioxidant mechanisms as candidates in disease progression.  These include 

intermediates of the tricarboxylic acid cycle (TCA cycle), which can alter the effectiveness 

of zeaxanthin (a component of AREDS2 supplements) [67].  Zhao and Vollrath showed 

that when mitochondria in RPE were ablated in mice, the lack of oxidative 

                                                 

1 This chapter is adapted from my peer-reviewed articled titled “Estimating cumulative 

pathway effects on risk for age-related macular degeneration using mixed linear models”, 

published in BMC Bioinformatics [1]. 
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phosphorylation (OxPhos) in the RPE led to photoreceptor degeneration [68]. 

Angiogenesis plays a significant role in choroidal neovascularization (CNV), and anti-

VEGF treatments, which aim to inhibit angiogenesis, are used as treatment for wet AMD 

[18]. Finally, smoking is a well-known risk factor for AMD [69], and thus nicotine 

metabolism may plausibly play a role in AMD pathogenesis.  While there is substantial 

evidence that complement activation plays a major role in AMD, the correlation between 

genetic and biological mechanisms for the others are less stablished.   

Genetic variants with large effect sizes, several of which are localized to 

complement system genes, have been repeatedly associated with AMD [27, 28, 32, 36, 64]. 

However, AMD-associated SNPs that reach genome-wide significance only account for a 

portion of the known heritability [36]. SNPs with smaller effects likely contribute 

cumulatively to an additional portion of the heritability. While overall heritability 

estimates of AMD are known, the estimated contribution to heritability, separately, for 

many AMD-related pathways is unknown. Existing genetic pathway analysis methods 

typically annotate SNP associations using databases such as the Gene Ontology (GO) [70], 

Ingenuity Pathway Analysis (IPA) [71], the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) [72], or Reactome [73].  These methods then utilize analytical approaches, such as 

Gene Relationships Across Implicated Loci (GRAIL) [74] or Pathway Analysis by 

Randomization Incorporating Structure (PARIS) [75], to determine the significance of 

pathways, usually using gene or SNP p-values or genotype data to calculate a rank-based 

pathway statistic [76]. These methods, however, do not provide a scaled measure of the 

effect and thus do not offer estimates of heritability or the proportion of overall disease 
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risk explained by an entire pathway. In this study, using a case-control AMD cohort we 

estimate the significance and proportion of risk explained by additive genetic effects 

within specific AMD-related pathways to prioritize them for future molecular and 

epidemiological studies. 

 
METHODS 

Dataset summary 

Subjects in this study (Table 3) were recruited from the Duke University Eye 

Center (DUEC), the Vanderbilt Eye Institute (VEI), and the Bascom Palmer Eye Institute 

(BPEI) at the University of Miami Miller School of Medicine starting in 1995, 1999, and 

2007, respectively. Individuals were recruited through retinal clinics, mostly via referrals 

for possible AMD; recruitment was performed under research protocols approved by the 

appropriate institutional review boards at each institution, and written informed consent 

was obtained from all participants. Original recruitment was performed for a previous 

study of AMD [77] and permission to use the dataset for this study was obtained. Controls 

were recruited either as friends or spouses of cases or through regular eye exams. 

Examination, imaging, and grading were performed prior to the start of this analysis. All 

subjects were examined by a retina specialist using slit-lamp biomicroscopy and dilated 

fundus examination, including indirect ophthalmoscopy. Additionally, fundus imaging 

was analyzed to confirm case status. For consistency between sites, images were scored by 

a retina specialist using a modified grading system based on the Age-Related Eye Disease 

Study (AREDS) [78]. The grading system was used to score individuals on a scale between 

1 and 5. Subjects with grades 1 and 2 were considered controls and subjects with grades 3 
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through 5 were considered cases, with grade 3 representing early AMD (non-neovascular) 

and grades 4 and 5 representing late AMD (GA and CNV, respectively). Both eyes were 

scored and an individual’s overall grade was determined using the eye with the higher 

grade. 

Table 3. Study population characteristics. 
 

Cohort Age* (SD) Males (%) Smokers (%) 

Primary subset - 1,813 (100%) 75.1 (8.4) 713 (39.3) — 
     Cases - 1,145 (63.2%) 77.6 (7.9) 415 (36.2) — 
     Controls - 668 (36.8%) 70.9 (7.7) 298 (44.6) — 

Smoking subset - 1,358 (100%) 75.0 (8.2) 560 (41.2) 790 (58.2) 
     Cases - 850 (62.6%) 77.3 (7.7) 323 (38.0) 516 (60.7) 
     Controls - 508 (37.4%) 71.2 (7.6) 237 (46.7) 274 (53.9) 

*Mean age in years 
Primary cohort contains all individuals after QC measures were applied. The proportion 
of smokers in the primary subset is not shown since smoking status was not available for 
everyone. The smoking subset excludes individuals with unknown smoking status. 

 

Genotyping and quality control 

Three genotyping platforms were used: the Affymetrix 1M array (906,600 SNPs), a 

custom Sequenom array (84 SNPs), and custom TaqMan assays (4 SNPs). The Sequenom 

array was designed to interrogate potential AMD-related SNPs, while the TaqMan assays 

were used later to validate SNPs that performed poorly on the Sequenom array.  SNP 

quality control (QC) was performed separately for Affymetrix SNPs and for merged 

Sequenom/TaqMan SNPs and was applied simultaneously to cases and controls. For the 

Affymetrix genotyping chip, 38,443 non-autosomal SNPs were removed, 102,735 SNPs 

with genotyping efficiency less than 95% were removed, 104,695 SNPs with a minor allele 

frequency (MAF) less than 1% were removed, 1,475 SNPs with Hardy-Weinberg 
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Equilibrium (HWE) p-values less than 1×10-6 were removed, 121 SNPs not able to be 

converted from genome build 36 to 37 using liftOver [79] were removed, and 25 

Affymetrix SNPs that were present [46] in post-QC Sequenom/TaqMan SNPs were 

removed, resulting in 659,106 post-QC Affymetrix SNPs. QC procedures were applied to 

88 merged Sequenom/TaqMan SNPs for 1,911 individuals that also had Affymetrix data. 

Forty-five individuals were removed that had genotyping efficiency less than 90%, leaving 

1,866 individuals. For the merged data, 4 non-autosomal SNPs were removed, no SNPs 

had a genotyping efficiency less than 95%, 7 SNPs with a MAF less than 1% were removed, 

and 2 SNPs with a HWE p-value less than 1×10-6 were removed, leaving 75 SNPs for 

analysis. All merged genotype platforms resulted in a total of 659,181 SNPs for analysis.  

All 1,967 individuals in our dataset were observer-reported to be white (European 

American), however we performed principal components analysis using 71 ancestry 

informative markers, seeding with six distinct HapMap phase 3, release 3 populations 

[80], to confirm genetic ancestry (Figure 7; Appendix B). Twelve individuals with non-

European American genetic ancestry were removed to avoid potential confounding by 

population stratification, including eleven with African genetic ancestry and one with 

Asian genetic ancestry (Figure 7). Additionally, five individuals were removed that had 

genotyping efficiency less than 90%, based on Affymetrix genotype data, 84 individuals 

were removed that did not have available Sequenom/TaqMan genotype data, and 53 

individuals were removed that did not have age recorded at time of examination, leaving 

1,813 individuals for analysis (1,145 cases and 668 controls). Finally, some of our analyses 

required individuals to have known smoking status, with individuals considered to be 
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smokers if they had smoked 100 or more cigarettes in their life; 455 individuals did not 

have available smoking status information, leaving 1,358 individuals for smoking status 

adjusted analyses (Table 3). The distribution of age (Figure 8) was significantly different 

between cases and controls, based on a Kolmogorov-Smirnov 2-sample test of equal 

distributions (K-S Statistic: 0.364; P-value: 1.15 E-49). Due to this difference we adjusted 

for age (in years) for all analyses. 

 
Table 4. Gene Ontology terms used to define pathways. 
 

GO Term GO ID # Genes PMID 

Angiogenesis GO:0001525 379 23642783 
Antioxidant Activity GO:0016209 69 23645227 

Apoptotic Signaling GO:0097190 1,635 12427055 

Complement Activation GO:0006956 187 20711704 

Inflammatory Response GO:0006954 534 17021323 

Response to Nicotine GO:0035094 31 8827967 

Oxidative Phosphorylation GO:0006119 78 21483039 

Tricarboxylic Acid Cycle GO:0006099 33 14962143 

Number of overlapping SNP between pathways is presented in Figure 12. 
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Figure 7. Genetic ancestry from principal component analysis.  
AMD samples plotted with HapMap samples to confirm genetic ancestry. Ethnic group 
clusters circled in teal. Outliers circled in red. 
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Figure 8. Histogram of age, by case status.  
Age in years recorded at time of examination. Histogram for 668 controls and 1,145 cases. 
Individuals with no smoking status not excluded. 
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Figure 9. Details of subsets of gene regions analyzed.  
Open chromatin regions determined using narrow peak windows from ENCODE DNaseI 
hypersensitivity analyses in human RPE cells. 
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Pathway selection and curation 

For this study our goal was to determine the overall contribution of several 

pathways on AMD risk, to both confirm the importance of known mechanisms (e.g. 

complement activation) and to determine if some biological mechanisms contribute to 

cumulative AMD risk without harboring individual genome-wide significant, large-effect 

genetic variants. Based on an extensive literature search and advice from AMD experts, 

we chose eight mechanisms ranging from having plausible to extremely well-known AMD 

relation to test as pathways (Table 4) in our analysis. 

The Gene Ontology (GO) [70] is a database of hierarchical gene relationships. To 

objectively determine genes related to each of the eight selected pathways we selected 

appropriate GO terms corresponding to each pathway (Table 4) and extracted all 

associated genes (Appendix C) falling under the hierarchy of that GO term using the 

November 2013 release of the GO database. Because GO is hierarchical, containing 

parent-child-type relationships, we included all descendants of the selected GO terms as 

to not omit directly related genes. For each assigned gene we tested three partitioned 

regions to represent the effect of that gene (Figure 9), including (1) SNPs within Ensembl-

defined gene boundaries, (2) SNPs within 50 kb flanking each gene boundary (to capture 

cis-regulatory SNPs), and (3) SNPs within 50 kb and 250 kb flanking each gene that also 

lie within open chromatin regions based on ENCODE DNaseI hypersensitivity analyses of 

human retinal pigment epithelial cells (hRPEpiC) [81]. 
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Mixed linear model analysis 

To estimate the proportion of AMD risk explained by each pathway, we used 

Genome-wide Complex Trait Analysis (GCTA) [43], described in Chapter 2, to fit genetic 

relationship matrices (GRMs) using mixed linear models (MLMs) via the restricted 

maximum likelihood (REML) method. For many analyses we tested three different REML 

algorithms — average information (AI), Fisher-scoring, and expectation maximization 

(EM); here, we will only show results using the EM algorithm, which was computationally 

slower but, for our analyses, yielded models that converged more consistently than the 

other two algorithms. For all analyses we included age, sex, and the first two principal 

components as covariates. For case-control analyses, GCTA by default uses disease 

prevalence rates observed within a dataset; however, it is recommended to use prevalence 

rates from general populations based on literature.  We used a prevalence rate (Table 5) 

of 5.07%, calculated by weighting all individuals in our dataset with U.S. prevalence rates, 

stratified by age [3]. The proportion of risk explained is then transformed from the 

observed scale to the specified prevalence scale. Linkage disequilibrium (LD) has a 

minimal effect on estimates from GCTA, with studies showing that cumulative estimates 

are stable and not necessarily over-inflated because both influential and non-influential 

SNPs in LD are considered and therefore possible confounding effects are neutralized [54, 

82]. To explore potential LD effects within our study, we perform additional analyses on 

SNP sets pruned using LD. 

We estimated the overall proportion of risk for AMD explained, as well as the 

proportion of risk explained by each pathway for various gene regions and exclusion 
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criteria (Figure 9). We explored effects of LD, SNP overlap between pathways, smoking 

status, and stratification by AMD subtype on the proportion of AMD risk explained, 

either cumulatively or by pathway. The following are more detailed methods for each 

specific analysis. 

 
Table 5. Weighted-by-age, expected population prevalence calculation. 
 

Age Range U.S. Prev. Count Count × Prev. 

40-49 0.05 4 0.2 
50-54 0.34 3 1.0 
55-59 0.39 62 24.2 
60-64 0.56 140 78.4 
65-69 0.91 262 238.4 
70-74 1.66 352 584.3 
75-49 3.24 398 1289.5 
80+ 11.77 592 6967.8 

Total  1813 9183.9 

United States prevalence rates (percent of population for given age range) from [3]. 
[9183.9 / 1813] = 5.07% weighted, expected AMD prevalence rate. 
 
 
Genome-wide AMD risk explained 

The first analysis we performed was to assess the overall proportion of AMD risk 

explained by all available genotyped SNPs in our dataset (often referred to as “chip 

heritability”). One GRM was created for all 659,181 SNPs and was included in a mixed 

linear model analysis using GCTA, adjusting for the covariates described previously. 

Known Risk SNPs 

A recent meta-analysis [36] of AMD, as described in Chapter 1, found 19 genome-

wide significant AMD risk SNPs (Table 1). To determine the effect that those 19 known 

SNPs have in our dataset we created a GRM consisting of just those 19 SNPs, referred to as 
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the risk GRM, and a GRM for all other SNPs (659,162), referred to here as the remainder 

GRM. Additionally, we created risk GRMs that included 5 kb and 50 kb flanking (and 

including) the 19 known risk SNPs, to capture effects of SNPs in LD with those known risk 

SNPs, resulting in a total of 83 and 566 risk SNPs, respectively, with the remainder GRM 

being all SNPs minus the given risk subset. 

Risk explained by pathways 

To estimate the effect of the eight selected AMD-related pathways, two GRMs 

were generated, unless otherwise specified, for each analysis of each pathway.  Pathway 

GRMs consist of SNPs being assessed for a respective pathway and remainder GRMs 

contain all other SNPs being considered that are not in the respective pathway GRM and 

that are not excluded. Many pathways have overlapping genes and thus effects from all 

pathways, separately, could not be estimated in a single mixed linear model. We assessed 

the effect for several gene regions (Figure 9), starting with just genic SNPs, then 

subsequently adding SNPs within 50 kb flanking each gene, and then SNPs in open 

chromatin regions within 50 kb to 250 kb flanking each gene, based on the ENCODE 

DNaseI hypersensitivity data from human retinal pigment epithelial cells (hRPEpiC). 

Additionally, for each pathway we performed analyses excluding 5 kb risk regions around 

and encompassing each of the 19 known risk SNPs from the regions including genic SNPs, 

SNPs within 50 kb flanking, and more distant SNPs in open chromatin regions. When 

known risk regions were excluded from a pathway GRM, they were not included in the 

remainder GRM but were rather excluded entirely, so as to determine cumulative, 

additional risk explained by pathways. Finally, we calculated the risk explained for each 
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pathway adjusting for the number of SNPs in each pathway to ensure that the amount of 

risk explained was not simply due to the number of SNPs included in a given pathway. 

Gene overlap 

For this study it was not feasible to allow all pathways to have unique, non-

overlapping gene sets. Thus, we tested the overlap between all pairs of pathways to 

determine whether risk explained was unique to certain pathways or shared between 

pathways due to sharing of common genes. For each overlapping pathway we created a 

GRM using overlapping SNPs and a GRM using non-overlapping SNPs, based on genic 

SNPs and 50 kb flanking. 

Linkage disequilibrium near known risk SNPs 

While we assessed excluding risk SNPs and 5 kb flanking those risk SNPs from 

each pathway, SNPs in more distant LD with those risk SNPs could influence the 

calculation of pathway GRMs and inflate estimates of the proportion of risk explained. 

Thus, we used LD information from CEPH individuals in HapMap phase II to exclude all 

SNPs in LD with the 19 known risk SNPs. We used exclusion criteria of R2 ≥ 0.10, 0.05, and 

0.01 (based on LD from HapMap Phase II and III, using CEU samples only), much more 

strict than the typically used R2 cutoff of ≥ 0.80, therefore removing SNPs with even 

minimal LD to known risk SNPs. Each SNP had LD information for other SNPs within a 

500 kb flanking region. To be even more conservative we also excluded 1MB regions 

flanking each risk SNP. For each threshold we created a remainder GRM for all SNPs 

minus any matching the exclusion criteria. Results were compared to previous estimates 

of AMD risk explained by known risk SNPs and all other genotyped SNPs to estimate risk 
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explained due to LD near risk SNPs. Each analysis included a risk GRM and a remainder 

GRM. 

Effect of smoking status 

Smoking is a major risk factor for the development of AMD [69], so we also ran 

additional analyses for each pathway, including smoking status as a covariate, to detect 

any differences in significance or amount of risk explained per pathway, when adjusting 

for smoking. Genic SNPs plus 50 kb flanking were used to compare effects. Of the 1,813 

individuals used in this study 455 did not have available smoking status. 

Stratification by AMD subtype 

We ran analyses stratifying by AMD subtype to confirm that our dataset exhibits 

no AMD-subtype effect, especially considering that some pathways analyzed are by 

definition more related to a particular AMD subtype (e.g. angiogenesis is highly related to 

neovascular AMD). For these analyses we excluded individuals with early AMD (grade 3) 

and considered only controls versus grade 4 (CNV) and controls versus grade 5 (CNV in at 

least one eye). We tested genic SNPs plus 50 kb flanking plus open chromatin for both 

subtypes of AMD for each pathway. 
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RESULTS AND DISCUSSION 

Genome-wide AMD risk explained 

In our first analysis we used all 659,181 genotyped SNPs that passed QC to estimate 

the heritability of AMD in our dataset. We found that 61.5% (p-value = 3.4×10-5;  

S.E. = 16.9%) of the risk for AMD in our dataset was explained by those SNPs, in range of 

known AMD heritability estimates. This confirmatory step helps validate subsequent 

pathway analyses in this study, showing that there is substantial variation in our dataset 

that impacts AMD risk. When assessed separately, the 19 previously associated AMD risk 

SNPs explained 13.30% of the risk for AMD in our dataset (p = 1.35×10-61) while all other 

genotyped SNPs explained 36.72% of the risk.  Regions flanking the risk SNPs were also 

considered in separate analyses and explained a total of 15.37% (p = 1.59×10-53) when 5 kb 

flanking the risk SNPs were included, and 16.33% (p = 8.24×10-44) when 50 kb flanking 

regions were included.  

The difference between the heritability estimates using a single GRM (61.5%) and 

two GRMs (13.30% + 36.72% = 50.02%) is non-intuitive but not unexpected and is due to 

sample size and differences in how genetic variance happens to be partitioned in the 

GRMs and subsequently fit by GCTA. Theoretically, as sample size (number of 

individuals) approached infinity the two estimates would converge. 

From this we see that known risk SNPs explain only a portion of the overall risk 

estimate, indicating that additional lower-effect SNPs may influence disease risk. 

Additionally, the increase in risk explained (from 13.3% to 16.33%) shows that the estimate 
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of the risk explained by the remaining SNPs (36.72%) could be a slight overestimate, but 

only by about 3.0%. 

Risk explained by pathways 

We first assessed the effect of each pathway for three different gene region 

inclusion criteria without excluding any known risk SNPs (Figure 10). The complement 

and inflammatory pathways explained between approximately 10% (p < 1×10-25) and 17%  

(p < 1×10-7), respectively, of the risk for AMD, while the angiogenesis and apoptotic 

signaling pathways explained nearly 5% of the risk (non-significant), and the antioxidant, 

nicotine, oxidative phosphorylation, and tricarboxylic acid cycle pathways explained 

approximately 2% of the risk or less (non-significant). In general, we observed that 

inclusion of SNPs within 50 kb flanking pathway genes typically increased the amount of 

risk explained, while additional inclusion of more distant SNPs in open chromatin regions 

did not explain a great deal more risk (Figure 10), suggesting that local regulatory SNPs 

indeed modulate risk.  

We also assessed each pathway, excluding known risk SNPs and 5 kb flanking 

(referred to as risk regions) from regions including genic SNPs plus 50 kb flanking plus 

open chromatin SNPs, to better estimate novel risk explained by each pathway (Figure 10, 

green bars). We observed little reduction in the amount of risk explained by each 

pathway when the risk regions (and SNPs in LD) were removed. This is likely due to the 

fact that each pathway, separately, contains only a subset of the known risk SNPs. The 

response to nicotine, oxidative phosphorylation, and tricarboxylic acid cycle pathways 

contained no SNPs within risk regions, while other pathways contained at most 10 SNPs 
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within risk regions to be removed, indicating that risk explained by each pathway is in 

addition to the amount of risk explained by the 19 known risk SNPs. 

Notably, the number of genes and SNPs differs significantly over the pathways we 

targeted. When we adjusted the proportion of risk explained from each pathway by the 

number of SNPs contained within each pathway, we observed results consistent with 

known genetic contributors to AMD (Figure 11). Unsurprisingly, after adjusting for the 

number of SNPs in each pathway, the complement pathway explains the highest amount 

of risk per SNP. The antioxidant, nicotine, and oxidative phosphorylation pathways, 

which each explain less 2% of the risk for AMD, have similar levels of per-SNP effects 

(about 0.02%), on the same order of magnitude as the complement pathway (0.05%) and 

inflammatory pathway (0.03%). Overall, we see little cumulative effect of SNPs outside 

the complement and inflammatory pathways, but identify additional risk from 

complement and inflammatory mechanisms, due in part to variation within the flanking 

regions of these genes that is likely to be regulatory. 
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Figure 10. Risk explained by each pathway, by partitioning strategy.  
Each bar represents the proportion of risk explained from a fitted mixed linear model 
using SNPs selected for each pathway for four different partitioning strategies. Error bars 
represent standard error (SE). 
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Figure 11. Average risk explained per SNP by pathway.  
Each bar represents the proportion of risk explained divided by the number of SNPs per 
pathway. In this analysis, risk SNPs plus 5 kb regions were excluded. 
 
 
Gene overlap 

The pathways we selected to study for association to AMD risk were not all 

completely unrelated. For example, inflammation, apoptotic signaling, and angiogenesis 

are all biologically related and also have SNP overlap between pathways (Figure 12). We 

estimated the proportion of risk explained due to SNPs overlapping between pathways for 

each pathway pair where overlap was present and found that the overlap between most 

pathway pairs accounted for between 0.07% and 2.21% of the risk for AMD explained 

(Figure 13). The SNPs overlapping between the complement and inflammatory pathways, 

however, explained 9.59% of the risk for AMD; taking a closer look at SNPs shared 
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provides a better understanding of the risk explained by the two pathways (Figure 15). Of 

the 1,343 SNPs in the complement pathway, 955 were also in the inflammatory pathway. 

The 15,038 SNPs unique to the inflammatory pathway, however, only explained 2.9% of 

the risk for AMD — a non-statistically significant amount. From this we observe that 

while the inflammatory pathway, at first glance, appears to explain more risk than the 

complement pathway, in reality, a large amount of the risk, but not all, is due to genes 

shared between the complement activation pathway. 
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Color Scale: 

 
Figure 12. Number of overlapping SNPs between pathway pairs.  
Pathway pairs with little or no overlapping SNPs shown as green, fading to red for 
pathway pairs with the most overlapping SNPs. The same color scale will be used 
throughout the rest of this work, with red typically representing larger counts or more 
significant values. 
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Figure 13. Risk explained by overlapping SNPs between pathway pairs.  
Values represent the proportion of risk explained for SNPs contained in each pathway 
overlap. Pathway pairs with no overlapping SNPs shown as white boxes. Pathway pairs 
with less risk explained by overlap shown as green, fading to red for pathway pairs with 
more risk explained by overlap. Overlap was calculated using gene plus 50 kb regions. 
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Figure 14. P-value for overlapping SNPs between pathway pairs.  
Pathway pairs with overlapping SNPs contributing to smaller p-values shown as red, 
fading to green for pathway pairs with overlapping SNPs resulting large, non-significant 
p-values. Three pathway pairs shown have significant (< 0.05) p-values. 
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Figure 15. Overlap between complement and inflammatory pathways.  
(A) Venn diagram of SNP and gene overlap between the complement and inflammatory pathways. (B) P-values and the 
proportion of risk explained (PRE) by complement and inflammatory pathways, separately and for overlapping regions. 
Overlapping SNPs were determined using regions including genic SNPs plus 50 kb flanking regions.
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Linkage disequilibrium near known risk SNPs 

To ensure that SNPs near the 19 known risk SNPs (Table 1) were not overinflating 

estimates of risk explained, we used LD information around the risk SNPs to exclude 

SNPs in LD and measure any changes in overall, genome-wide estimates of AMD risk 

explained (Table 6). As mentioned previously, the 19 risk SNPs alone explained 13.3% of 

risk for AMD while all other SNPs (included in a remainder GRM) explained 36.7% of the 

risk for AMD. Exclusion of SNPs using the threshold of R2 ≥ 0.01 only reduced this latter 

risk explained by 1.6%, to 35.1%. In an even more conservative case, we excluded 1MB 

flanking each side of the risk SNPs, regardless of LD, resulting in a reduction in risk 

explained of 5.4%, to 31.3% — unsurprising given the number of total SNPs excluded. 

Based on this we can assume that LD between risk SNPs and pathways SNPs would not 

confound estimates of AMD risk explained. 

 
Table 6. Risk explained excluding known risk SNPs and SNPs in LD. 
 

Exclusion Criteria 
Number of SNPs 

Excluded 
PVE (%) SE (%) p-val. 

None 0 36.72 16.13 0.0042 
R2 ≥ 10% 1,183 35.25 14.75 0.0063 
R2 ≥ 5% 1,684 35.19 14.75 0.0064 
R2 ≥ 1% 1,925 35.12 14.75 0.0064 

1MB flanking 9,938 31.33 14.70 0.0145 

19 known risk SNPs:  PVE ~13.3%, SE ~3.92%, p-val. < 1.35×10-61 for all. 
Remainder SNPs with none excluded: 659,162. 
PVE, SE, and p-values shown for non-known risk SNPs, excluding specified SNPs. 
R2: 0 = linkage equilibrium; 1 = perfect linkage disequilibrium. 
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Effect of smoking status 

Smoking is a major risk factor for AMD; therefore, we assessed the impact of 

smoking status as a covariate in a sub-analysis of these data in samples where smoking 

status was available. After adjusting for smoking, the proportion of risk explained by each 

pathway did not change considerably (Figure 16). In fact, after adjustment, the 

angiogenesis, complement, and inflammatory pathways actually explained slightly more 

risk for AMD. All pathways exhibited little change and we conclude that adjusting for 

smoking status does not modulate the cumulative effect of SNPs within any of the 

targeted pathways. 

Stratification by AMD subtype 

Finally, we compared the effects on AMD risk, stratified by AMD subtype, for all 

pathways (Figure 17). There were 668 controls, 1,145 total AMD cases, 113 cases with GA 

(grade 4; advanced dry AMD), 667 cases with CNV (grade 5 in at least one eye; wet AMD), 

and 365 cases with grade 3 or an undocumented grade. We hypothesized that, because of 

the strong biological correlation between wet AMD and the angiogenesis pathway, a 

significant proportion of risk explained by the angiogenesis pathway would be observed 

when comparing CNV cases to controls. However, that was not the case; we observe 

slightly more risk explained by the angiogenesis pathway (and most other pathways) 

when comparing cases with GA to controls. We observe an unusual peak of risk explained 

by the apoptosis pathway when comparing GA versus controls, which is intriguing given 

possible associations with GA and cell death in literature [66, 83]. However, this signal 

may be an artifact of the more limited power within our GA subset. 
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Figure 16. Effect of smoking adjustment on pathway risk explained. 
Gene plus 5 kb flanking, minus risk plus 5 kb flanking regions excluded. 
 
 

 
Figure 17. Risk explained per pathway by AMD subtype. 
Genic SNPs plus 50 kb plus open chromatin SNPs included in analyses. Standard error is 
large for geographic atrophy (GA) cases versus controls because of the low sample size of 
cases with GA in our dataset.  



 57 

 
 
 
 
Table 7. SNP counts, proportion of risk explained, and p-values for  
partitioned regions.  
 

 
GO Term Pathway G G+50 G+50+OC 

G+50+OC 
minus R+5 

N
u

m
b

e
r 

o
f 

S
N

P
 

Angiogenesis 8,853 16,907 17,465 17,455 

 Antioxidant Activity 616 2,014 2,115 2,114 

 Apoptotic Signaling 26,682 54,417 56,136 56,130 

 Complement Activation 478 1,343 1,374 1,370 

 Inflammatory Response 5,883 15,993 16,635 16,630 

 Response to Nicotine 426 1,101 1,150 1,150 

 Oxidative Phosphorylation 350 1,451 1,548 1,548 

 Tricarboxylic Acid Cycle 342 981 1,019 1,019 

P
ro

p
o

rt
io

n
 o

f 
R

is
k

 

E
x

p
la

in
e

d
 

 Angiogenesis 0.0427 0.0356 0.0337 0.0309 

 Antioxidant Activity 0.0059 0.0205 0.0189 0.0178 

 Apoptotic Signaling 0.0405 0.0454 0.0454 0.0438 

 Complement Activation 0.0715 0.1006 0.1020 0.0976 

 Inflammatory Response 0.1346 0.1799 0.1839 0.1786 

 Response to Nicotine 0.0020 0.0063 0.0060 0.0060 

 Oxidative Phosphorylation 0.0093 0.0154 0.0179 0.0179 

 Tricarboxylic Acid Cycle 0.0057 0.0024 0.0026 0.0026 

P
-v

a
lu

e
 

 Angiogenesis 0.0797 0.3017 0.3592 0.4410 

 Antioxidant Activity 0.5000 0.1081 0.1439 0.1631 

 Apoptotic Signaling 0.2828 0.5000 0.5000 0.5000 

 Complement Activation 1.2E-28 7.1E-27 6.3E-27 6.8E-26 

 Inflammatory Response 6.3E-11 3.1E-08 4.4E-08 9.5E-08 

 Response to Nicotine 0.5000 0.5000 0.5000 0.5000 

 Oxidative Phosphorylation 0.2232 0.1103 0.0802 0.0804 

 Tricarboxylic Acid Cycle 0.4602 0.5000 0.5000 0.5000 

G=Gene; 50=50 kb flanking gene; OC=SNPs in open chromatin 50 kb to 250 kb flanking; 
R+5=Risk SNPs plus 5 kb flanking. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

In our analyses, we both confirm existing knowledge of AMD genetics and provide 

new, additional information on putative disease-associated pathways influencing risk for 

AMD. Our results show that SNPs in genes (and within 50 kb flanking) associated with 

complement activation and inflammation significantly contribute to AMD risk, separately 

from the risk explained by 19 known risk SNPs. We note, however, that the complement 

and inflammatory pathways are not discrete; we found that a large proportion of risk 

explained by the inflammatory and complement activation pathways are due to overlap of 

genes between the two. Other mechanisms thought to be involved in AMD pathogenesis 

do not appear to greatly influence disease risk through the cumulative action of common 

genetic variants. We also observe that while smoking is a known risk factor for AMD, 

inclusion as a model covariate does not significantly affect risk estimates from pathways. 

Overall, we show genes that interplay between the complement and inflammatory 

pathways explain additional risk, apart from the known, large-effect AMD risk SNPs, and 

that some portion of these are localized to the 50 kb flanking regions, indicating a 

regulatory role. As such, further targeted genomic or molecular studies should consider 

additional loci within the complement pathway in addition to the established risk SNPs. 

In this study we found additional risk from the complement pathway not 

explained by known risk SNPs. Future studies could further partition complement genes 

into multiple components to allow for more specific localization of the effects 

contributing to AMD risk. Additionally, future analyses could expand the methods 

presented here to include additional pathways using either more exhaustive pathway 
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catalogs or custom curated pathways of interest. Lastly, in this study we only assessed 

common SNPs (minor allele frequency greater than 5%); however, future studies could 

assess contributions to cumulative AMD risk, stratified by allele frequency, to estimate 

the importance of rare variation on risk for AMD. 

This chapter, and most studies to date, only test for additive genetic effects on 

AMD. A better understanding of non-additive effects, if any, on AMD is needed. In the 

following chapters I describe methods we developed to estimate cumulative dominance 

and epistatic effects on traits and then I apply those methods to specific interactions 

(gene-gene and gene-pathway) to further explore the genetic architecture of AMD. 
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CHAPTER 4 — DETECTING AND SIMULATING CUMULATIVE EPISTATIC EFFECTS 
 

CHAPTER BACKGROUND AND INTRODUCTION 

Epistasis 

Thus far we have primarily discussed genetic analyses involving methods that test 

for additive genetic effects, yet epistasis — the interaction between two or more loci 

resulting in a different phenotype than if the loci acted independently — is a known 

genetic phenomenon that is studied much less frequently than additive genetics. 

Statistically, epistasis refers to the deviation from additivity that results from the effects 

of alleles at different loci [84].  Epistasis is believed to play a role in many complex human 

diseases but the degree of impact is unknown [85–87]. Much of the genome was once 

referred to as junk DNA but evidence suggests that a large portion of what was once 

thought to serve little purpose is actually regulatory, some of which may be mediated 

through interactions [88]. Most studies focus on additive genetic effects and are not able 

to explain all of a trait’s heritability. Heritability estimates may often include a small 

portion of effects from non-additive SNP interactions [89]. Methods used to detect SNP-

SNP interactions include regression models, exhaustive two-locus interaction searches, 

recursive partitioning, multifactor dimensionality reduction (MDR), ReliefF, Tuned 

ReliefF, evaporative cooling, and Bayesian epistasis association mapping [87]. Most of the 

methods test for interactions between specific SNPs, often two-locus interactions 

requiring at least one locus to have a main effect.  

Genome-wide complex trait analysis (GCTA) [43], discussed in depth in Chapter 2, 

can be used to estimate the cumulative, genome-wide, additive effect that genetic 
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variance has on phenotypic variance, but no similar method currently exists for assessing 

the cumulative impact of SNP-SNP interactions on a trait. As our broader understanding 

of genetics increases, epistasis may prove to be a key component in more accurately 

predicting disease risk. Knowledge of the degree to which epistasis plays a role for a given 

trait would help direct resources and guide future studies. 

Genetic encoding for additive, dominant, and epistatic effects  

In 1954 C. Clark Cockerham published an article [90] in Genetics titled “An 

extension of the concept of partitioning hereditary variance for analysis of covariances 

among relatives when epistasis is present”. It extended the concepts of additive and 

dominant genetic variance, introduced by Fisher [84], to epistatic (genetic interaction) 

genetic variance. Some of the statistical derivations in his paper account for inbreeding by 

including adjustments involving Wright’s inbreeding coefficient F [91] — particularly 

necessary when considering livestock — but for the methods described here we assume a 

randomly mating population and do not account for inbreeding. 

Similar to how genetic relationship values are calculated by GCTA using variance-

covariance matrices, as described in Chapter 2, Cockerham describes orthogonal variance 

components that can be derived using genotype-specific variance and covariance 

calculations. In the tables below we describe these components and notations. Later in 

the methods we describe in more detail how these calculations are used to simulate 

specific genetic effects. The calculations and concepts described throughout this chapter 

depend on dividing SNPs into two groups for the sake of assessing genetic interactions 

(epistasis). Each group will typically be called group A and group B and can contain a 
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varying number of SNPs. The total number of SNP pairs being assessed can be calculated 

by multiplying the number of SNPs in group A by the number of SNPs in group B. For 

notation purposes, when describing interactions between the two groups of SNPs, the 

SNP in group A being tested for potential interaction with a SNP in group B will be called 

SNP A (or SNP 1) and SNP B (or SNP 2), respectively. Table 8 shows the notation used for 

alleles and allele frequencies for each allele of two SNPs. Table 9 shows the notations for 

genotype and SNP pair frequencies, as described in the table legend. Table 10 and Table 11 

list the variance and covariance calculations for each of the eight orthogonal variance 

components — we often refer to these as “Cockerham calculations”. The first four 

components are for additive and dominant effects from each group of SNPs. The last four 

components are for epistatic effects, derived as shown in Table 12. For the two 

components for group A, W1 and W2 (Table 11), the covariance values depend only on SNP 

1 genotypes, so that for W1 we see that 2v, v-u, and -2u correspond to AA, Aa, and aa, 

respectively, regardless of the genotype for SNP 2. The two components for group B, W3 

and W4, exhibit similar patterns corresponding to the genotype for SNP 2, regardless of 

the genotype for SNP 1.  
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Table 8. SNP allele frequency notations. 
 

Allele Meaning 
Frequency  
Notation 

A SNP 1 (Group A) Major Allele u 

a SNP 1 (Group A) Minor Allele v 

B SNP 2 (Group B) Major Allele x 

b SNP 2 (Group B) Minor Allele y 

 

 
Table 9. Genotype and marginal frequency notations. 
 

 BB Bb bb  

AA f22 f21 f20 f2∗ 

Aa f12 f11 f10 f1∗ 

aa f02 f01 f00 f0∗ 

 f∗2 f∗1 f∗0 f∗∗ 

Adapted from [90]. 

 

The f values (Table 9) represent SNP pair (in the box) and marginal (outside the 

box) frequencies. The first subscripted number represents the number of major alleles of 

SNP 1 and the second subscripted number represents the number of major alleles of SNP 

2. Stars (*) are used to represent the marginal genotype frequency, where the number 

shown corresponds to the frequency of a particular genotype (e.g. f21 is the frequency of 

AABb and f*0 is the frequency of bb). f** should equal 1. 
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Table 10. Cockerham variance calculations. 
 

W* Component Equation 

W1 Additive A 2uv 

W2 Dominant A 1/(uv)2 

W3 Additive B 2xy 

W4 Dominant B 1/(xy)2 

W5 A × A Interaction 4uvxy 

W6 A × D Interaction 2uv/(xy)2 

W7 D × A Interaction 2xy/(uv)2 

W8 D × D Interaction 1/(uvxy)2 

Adapted from [90]. *Cockerham notation. For W5 - W8, A = additive and D = dominant. 

Table 11. Cockerham covariance calculations. 
 

W* Component AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb 

W1 Additive A 2v 2v 2v v-u v-u v-u -2u -2u -2u 

W2 Dominant A 1/f2∗ 1/f2∗ 1/f2∗ -2/f1∗ -2/f1∗ -2/f1∗ 1/f0∗ 1/f0∗ 1/f0∗ 

W3 Additive B 2y y-x -2x 2y y-x -2x 2y y-x -2x 

W4 Dominant B 1/f∗2 -2/f∗1 1/f∗0 1/f∗2 -2/f∗1 1/f∗0 1/f∗2 -2/f∗1 1/f∗0 

W5 A  A  Interaction 4vy 2v(y-x) -4vx 2y(v-u) (v-u)(y-x) -2x(v-u) -4uy -2u(y-x) -4ux 

W6 A  D Interaction 2v/f∗2 -4v/f∗1 2v/f∗0 (v-u)/f∗2 -2(v-u)/f∗1 (v-u)/f∗0 2u/f∗2 -4u/f∗1 2u/f∗0 

W7 D  A Interaction 2y/f∗2 (y-x)/f∗2 2x/f∗2 -4y/f∗1 -2(y-x)/f∗1 4x/f∗1 2y/f∗0 (y-x)/f∗0 -2x/f∗0 

W8 D  D Interaction 1/f22 -2/f21 1/f20 -2/f12 4/f11 -2/f10 1/f02 -2/f01 1/f00 

Each column represents one of nine possible genotype pair combinations for two bi-allelic SNPs. Unlike variance 
calculations, covariance calculations are dependent on an individual’s genotype combination at a particular SNP pair. 
Adapted from [90]. *Cockerham notation. Interaction component notations described in Table 12.
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Table 12. Variance and covariance interaction derivations. 
 

W* Shorthand Component Derivation 

W5 AA Additive  Additive W1  W3 

W6 AD Additive  Dominant W1  W4 

W7 DA Dominant  Additive W2  W3 

W8 DD Dominant  Dominant W2  W4 
*Cockerham notation. 

 
Methods overview 

This chapter consists of two related but distinct methods (Figure 18). The first 

method, which we refer to as iGRM, uses statistics derived by C. Clark Cockerham [90] to 

estimate the contribution of additive, dominant, and epistatic genetic effects from 

genomic regions. This is done by generating orthogonal genetic relationship matrices 

(GRMs); GCTA can currently only compute for additive genetic effects. The GRMs are 

then fit in a mixed linear model (MLM) using restricted maximum likelihood (REML) 

fitting procedures to estimate the heritability or proportion of phenotypic variance 

explained by each genetic component. 

The second method, which we refer to as iSim, involves simulating datasets with 

cumulative additive, dominant, and epistatic effects, using the same variance components 

calculations, to partition genetic effects into orthogonal components. iSim is adapted 

using components from genome-wide complex trait analysis (GCTA), which currently 

only allows datasets to be simulated with user-specified levels of heritability due to 

additive genetic effects [43]. Simulations generated using iSim are also used to validate 

iGRM using varying levels of heritability and SNP minor allele frequencies.
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Figure 18. Software overview. 
iGRM involves Cockerham calculations, pre-matrix calculations, and matrix calculations, along with various intermediate 
and final output files. iSim involves Cockerham calculations and simulations, along with intermediate files and final 
simulated phenotype files. Both methods require two sets of PLINK PED/MAP files as input. 
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iGRM — ESTIMATING CUMULATIVE ADDITIVE, DOMINANT, AND EPISTATIC EFFECTS 

Introduction 

Most genetic studies focus mainly or solely on additive genetic effects of traits. 

Dominance effects, if present for a given trait, are often detected through additive-

encoded statistical tests — another reason for the usual preference of only testing for 

additive effects. As was mentioned in the background to this chapter, methods are 

available to estimate cumulative, genome-wide effects from additive genetic effects, but 

no equivalent method exists for dominant or epistatic (interaction) effects. We present 

methods to simultaneously test for additive, dominant, and epistatic effects for a given 

trait to address this problem.  

The statistics presented in the Cockerham article [90] (Tables 10 and 11), described 

in the background and introduction to this chapter, and the statistics used to calculate 

genetic relationship matrices (GRMs) [43], described in Chapter 2, follow the same 

ideology; GCTA notation and Cockerham notation are shown to be parallel through basic 

algebra, as is shown in Figure 19. The generalized form of the implementation of GCTA 

involves the covariance normalized by the variance for the additive (W1) component. 

The dominant and epistatic components are similarly derived in the Cockerham 

article; as such, we sought to modify the GRM equation to incorporate additive, 

dominant, and epistatic (interaction) components by substituting the additive variance 

and covariance calculations with the variances and covariances representing dominant 

and epistatic components. The existing method for calculating GRMs subsequently allows 

for the estimation of trait variance due to cumulative additive effects; we hypothesized 
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that calculation of additional GRMs using the orthogonal variance components described 

by Cockerham would subsequently enable dominant and epistatic effects to be estimated 

by fitting those GRMs simultaneously in a mixed linear model (e.g. GCTA’s restricted 

maximum likelihood estimation model fitting) to estimate the overall contribution of 

each component on trait variance or risk. 

 
Figure 19. Cockerham-GCTA equivalency. 
Letters u and v represent the major and minor allele (A and a, respectively) for a given 
SNP, where the sum of the two allele frequencies is equal to 1. Covariance and variance 
calculations are from the Additive A (W1) portion of Cockerham statistics [90] and the 
GRM equation from the GCTA software publication [43]. 

 
Methods 

Software design 

After uncovering the parallel between Cockerham calculations and GCTA’s GRM 

equation we formulated a plan to calculate and generate the new, additional GRMs, and 

ultimately implemented the software as a C++ package. First, SNP and SNP pair 

population variance and covariance values are calculated, as described in Tables 10 and 11. 

These calculations are derived from SNP allele frequencies and multi-locus genotype 

frequencies (Tables 8 and 9, respectively). As a note, it is important that multi-locus 
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genotype frequencies be calculated directly from the population and not inferred using 

genotype frequencies, due to potential missingness issues. If a multi-locus genotype 

contains any missing alleles, that SNP pair is skipped and not used in frequency or GRM 

calculations. Also of note is that all SNPs should be bi-allelic. After frequency information 

is calculated that data is used to calculate GRMs based on modifying Equation 2 (Chapter 

2) to incorporate additional variance and covariance components, instead of only additive 

components. Equations 4 and 5 show the modified GRM equations for single SNP effect 

GRM and interaction effect GRM calculations, respectively. The original GRM equations 

with additive-specific components are replaced with more generally applicable 

variance/covariance terms, where j and k refer to person 1 and 2, respectively. In Equation 

4, N represents the number of SNPs in the genetic component being assessed. In 

Equation 5, “N” is replaced with “N1 × N2” to reflect that calculations are for each SNP 

pair, rather than only for each SNP. For a given pair of individuals (j and k), their genetic 

relationship value (Ajk) is calculated as the weighted sum of each SNP or SNP pair effect, 

determined by the respective variance and covariance calculations for one of the eight 

genetic components.  

  (4) 

  (5) 

 

𝐴𝑗𝑘 =
1

𝑁
∑

(𝑐𝑜𝑣𝑎𝑟. 𝑗)(𝑐𝑜𝑣𝑎𝑟. 𝑘)

(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

𝑁

𝑖=1

 

𝐴𝑗𝑘 =
1

𝑁1 × 𝑁2
∑

(𝑐𝑜𝑣𝑎𝑟. 𝑗)(𝑐𝑜𝑣𝑎𝑟. 𝑘)

(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

𝑁1×𝑁2

𝑖=1
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After a general pipeline was established for calculating additional GRMs, we 

developed software to load data, perform calculations, and generate GRMs as quickly and 

efficiently as possible. The overall program for iGRM was divided into three steps. All 

steps require at least three processors, with one processor assigned as the “manager”, one 

processor assigned as the “accumulator”, and the remaining processors assigned as the 

“workers”. Essentially, the workers are the middle-men, receiving computational tasks 

from the manager then passing results to the accumulator. The accumulator then 

aggregates data from multiple workers and subsequently writes either intermediate or 

final data to files. 

(1) The first step performs initial frequency calculations (Figure 20) derived from 

Cockerham statistics previously described. These statistics are population-based and are 

calculated for every SNP pair. (2) The second step performs pre-matrix calculations 

(Figure 21). Covariance values (calculated and stored in step 1) are looked up for every 

person for every SNP pair and are dependent on a given person’s multi-locus genotype for 

each SNP pair; one file containing matched covariance values is written per person. 

Additionally, variance calculations are performed, per SNP pair, which are then written to 

a separate file. (3) The third step uses the pre-matrix values to calculate the genetic 

relationship value for every pair of individuals, using the corresponding GRM equation for 

each of the eight genetic components (Figure 22). The resulting 8 GRM files (one per 

genetic component) each contain a single genetic relationship value for every pair of 

individuals in the dataset. 
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Initially, variance and covariance values were performed “on the fly” for each 

genotype and genotype pair lookup. One improvement was to store pre-calculated 

variance and covariance values that could be matched, rather than matched and 

computed. Another improvement was in regard to how frequency calculations are stored. 

Initially, all frequency calculations were stored in a single file; however, when the size of 

the frequency file becomes greater than any single worker can load into memory, the 

program dies. Thus, the current version divides the frequency information in to separate 

files based on the number of workers being used, enabling workers the ability to load and 

perform calculations on smaller assigned groups of SNPs or SNP pairs. Before this change, 

each worker calculated a genetic relationship value (Ajk) for a single pair of individuals. 

Now, all workers simultaneously perform calculations for a pair of individuals until that 

genetic relationship value is complete. 

Two more recent additions are functional but not optimized. First, a cache system 

was implemented to decrease the turnover rate of workers loading frequency files; the 

amount of memory available for each processor must be specified. Essentially, if a worker 

is calculating Ajk and the next pair is Ajl, there is no need to re-load the variance and 

covariance information for person j since it is already in memory. Currently, once the 

cache becomes full it is completely emptied and new data is loaded and re-used when 

needed. We have attempted making changes to enable a “smart cache” but initial tests 

showed no improvement. Second, a “resume mode” was implemented. In instances where 

the compute cluster kills the software after hours or days of runtime, resume mode can be 



 72 

used to recover partially-completed GRMs. Debugging is not complete, however; in some 

scenarios, such as partial line writes, resume mode is not able to recover data. 
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Figure 20. Frequency calculation processing flowchart. 
All Cockerham values are calculated, including SNP frequencies, SNP pair (multi-locus genotype) frequencies, as well as 
variance and covariance values for each of the eight genetic components. 
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Figure 21. Pre-matrix calculation processing flowchart. 
For each individual, an intermediate file is written, containing covariance values corresponding with their genotypes. 
Additionally, a single file variance file is written (since variance values are based on population, not individual-level data). 
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Figure 22. Matrix calculation processing flowchart. 
For each pair of individuals, pre-matrix values are loaded, then the genetic relationship value is calculated for each genetic 
component, using the weighted averages of variance-covariance calculates for respective genetic components. 
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Implementation 

In previous sections we described the theory behind our additive, dominant, and 

interaction GRM calculation method and the details and steps involved in the software 

used to perform the calculations. An example of the runtime and changes in progress rate 

as the cache system fills is shown in Appendix H. Once the GRMs are created, minor 

processing is needed, including compressing the files using Gzip and creation of GRM ID 

files containing a list of all pairs of individuals, corresponding to the order in the GRM 

files. Finally, the orthogonal GRMs can be included in a mixed linear model REML 

analysis (described in Chapter 2), using GCTA, to estimate the contribution of each 

genetic component on trait variance or risk for a study phenotype. 

Discussion and conclusions 

In the previous sections of this chapter we describe the basis behind the need to 

develop a method to estimate additive, dominant, and interaction effects via calculation 

of GRMs. We then showed the concepts and math involved in calculating orthogonal 

GRMs representing each of the different genetic effects and described the details of how 

the method was implemented as software.  

Describing the methods and implementation as software, alone, does not prove 

that results obtained using the method would be valid. In the next section we use 

simulations to validate iGRM and show that power to accurately detect effects from all 

eight genetic components is dependent on sample size, along with other factors.  

To date, we have made substantial improvements to iGRM, compared to initial 

versions. Optimizations have been made along the way that now allow the software to be 
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used for thousands of individuals at the gene or small pathway level. The current software 

is sufficient for validation using simulated data (see iSim in the next section) and 

application to study potential interactions in an AMD dataset with over 36,000 

individuals and over 52,000 SNP pairs (see Chapter 5). 

Future directions 

Although some improvements to iGRM are logical and warranted, none are 

necessary for applying iGRM to the AMD interaction study presented in Chapter 5. 

Currently, a small amount of processing is needed to prepare the GRM files to be 

compatible with GCTA. Software modification to automatically compress (Gzip) GRM 

files and create GRM ID files would be useful for future updates. Additionally, an option 

to import binary PLINK files (either natively or through conversion) would be useful, as 

well as the option to output binary GRM files (the newer GCTA format) rather than 

compressed text files (the older GCTA format). Other improvements that are needed for 

future development include more user-friendly command line options for running iGRM, 

better GRM calculation progress tracking (e.g. estimated time to completion), better 

cache utilization, and possible implementation using graphics processing units (GPU’s).  
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iSim — SIMULATING WIDE-SPREAD CUMULATIVE GENETIC INTERACTION EFFECTS 

Introduction 

A key component of validating new genetic analysis methods is testing them on 

datasets containing appropriate effects — either effects from real or simulated data. 

Depending on the study question and method goal, simulated data may or may not be 

appropriate. To date, much is unknown about the true genetic architecture and effects of 

epistasis on traits. Current methods for simulating genetic interaction effects, including 

EpiSIM [92], GAMETES [93], and GenomeSIMLA [94], embed effects by specifying 

penetrance functions modeling epistasis; however, they only simulate interactions 

between a limited number loci. Such methods are in line with current approaches of 

testing for interactions, which test individual SNP pairs for statistically significant effects.  

However, if epistatic effects are exhibited through many small-effect interactions 

that contribute cumulatively to trait variance, as iGRM tests for, existing simulation 

strategies are not sufficient for embedding similar effects. Our iSim method seeks to 

address this gap and enable simulation of wide-spread, small-effect interactions that 

cumulatively contribute to user-specified levels of heritability resulting from many 

“causal” SNP pairs. In addition, simulations generated with iSim allow us to test iGRM 

with appropriately embedded additive, dominant, and interaction effects. We develop 

iSim software and compare accuracy and precision of simulating specific genetic effects 

for various levels of heritability. In addition, we perform tests of association for individual 

pairs of SNPs to better understand the architecture of epistatic effects generated by iSim. 

  



 79 

Methods 

Adaptation and software design 

Just as we extended the way GCTA calculates GRMs for additive genetic effects to 

also calculate dominant and epistatic components, here we use a simulation framework 

provided by GCTA to develop iSim (also written as a C++ package). Simulation strategies 

often take the approach of embedding certain effects by simulating genotypes from 

scratch;  GCTA, however, takes the reverse approach by using existing genotype data to 

simulate phenotype values that match the genotypes in a way that yields a particular 

genetic effect [43]. 

Here, we describe the statistics behind GCTA’s simulation approach and explain 

how we modified it to allow for simulation of dominant and epistatic effects, in addition 

to additive effects. Equation 6 shows the general equation used by GCTA to simulate 

effects, where Y represents the simulated quantitative phenotype value. W is a 

standardized genotype matrix and  is a vector of causal SNP effects. (GCTA’s notation 

for the vector of causal SNP effects is u, however we use .) The residual effect is 

represented by ε, which we will describe more below. 

 𝑌 = 𝑊𝛽 + 𝜀 (6) 

 𝑌𝑗 = ∑(𝑤𝑖𝑗 × 𝛽𝑖) + 𝜀𝑗  (7) 

The “simple” notation shown in Equation 6, and presented in GCTA’s software 

publication [43], can be expanded to be more descriptive (Equation 7). Here, i represents 

a given SNP and j represents a given person. The genotype matrix, W, is calculated where 

each SNP value for an individual is equal to wij, as is shown in Equation 8, where xij is the 
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number of copies of the reference allele (pi) for the ith SNP of the jth individual. Each wij is 

weighted by a corresponding  value, which is drawn from a normal distribution. 

Notably, GCTA has conflicting documentation — while the original GCTA article [43] 

states that  effects are generated from a standard normal distribution (mean zero, 

variance one), newer documentation on its website reflects that  effects are generated 

from a normal distribution with a mean of zero and a variance equal to the variance of all 

calculated w’s for the respective SNP across all individuals in a dataset. We use the newer 

method for iSim. 

 𝑤𝑖𝑗 =
(𝑥𝑖𝑗−2𝑝𝑖)

√(2𝑝𝑖(1−𝑝𝑖))
 (8) 

The residual effect (sometimes referred to as the error term) is what allows a 

specific level of heritability to be embedded. With zero error, genetic variation will 

perfectly predict phenotypic variation, resulting in 100% heritability. To simulate less 

than 100% heritability residual error is added, lessening the correlation between genetic 

and phenotypic variation. The residual effect ɛj is calculated as shown in Equation 9, 

where h2 is the desired level of heritability to be simulated and σ2
g is the variance of the W 

matrix (Equation 10). 

 𝜀𝑗 = 𝜎2
𝑔 (

1

ℎ2−1
)  (9)  

 𝜎2
𝑔 = 𝑣𝑎𝑟(∑ 𝑤𝑖𝑗 × 𝛽

𝑖
) (10) 

In summary, the previous equations take existing genotype data, assign random 

effect sizes based on SNP allele frequencies, then scale variation of phenotype 

assignments to simulate a specific level of trait heritability. The equations shown thus far, 
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however, only allow for the simulation of heritability due to additive genetic effects. We 

modify these calculations to allow heritability to be simulated additionally for dominant 

and epistatic effects by taking advantage of the equivalency (described in Equation 11) 

between the W matrix formula (Equation 8) and the Cockerham encodings for variance 

and covariance components described in the introduction to this chapter (Tables 10 and 

11).  

 𝑤𝑖𝑗 =
(𝑥𝑖𝑗−2𝑝𝑖)

√(2𝑝𝑖(1−𝑝𝑖))
=

𝐶𝑜𝑣𝑎𝑟.

√𝑉𝑎𝑟.
=

√𝐶𝑜𝑣𝑎𝑟.× 𝐶𝑜𝑣𝑎𝑟.

√𝑉𝑎𝑟.
=

𝐶𝑜𝑣𝑎𝑟.× 𝐶𝑜𝑣𝑎𝑟.

𝑉𝑎𝑟.
 (11) 

 
For iSim we use the same frequency calculation step as iGRM (Figure 18). The 

variance and covariance values are then used in a new step which implements the 

formulas and calculations described above. Processing is not computationally intensive 

because calculations are at the SNP pair level and not for all pairs of individuals (as with 

iGRM) — thus only one worker (processor) is needed and used per replicate. Figure 24 

shows a general outline for iSim and a more detailed overview of how the data is 

structured for each step of iSim is shown in Appendix D.
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Figure 23. iSim processing workflow. 
(A) Frequency, variance, and covariance calculations. (B) Phenotypes are specified for every individual to match a user-
specified level heritability for a given genetic component. (C) Step B is repeated for additional replicates, using the same 
calculations from Step A each time. Supplementary data (e.g. Beta effect sizes and residual values) are currently only output 
for the first replicate. 
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Simulation analyses 

After developing iSim we simulated heritability using various parameters, 

estimated power based on GRM variance, tested for individual-level SNP-SNP 

interactions, and performed REML analysis to estimate the genetic effects observed from 

each simulation (Figure 24). Our strategy for simulating genetic effects and subsequently 

testing the ability of GRMs to capture those effects is modeled based on previously 

described methods [49]. 

 

  
Figure 24. Simulation analysis and method validation workflow.  
iSim is used to simulate heritability for genetic effects. iGRM is used to generate GRMs. 
GCTA’s GREML power calculator is used to estimate power based on genetic variance. 
Interaction regression tests are used to test individual SNP pairs for significance. REML 
analysis is used to fit GRMs to estimate genetic effects embedded in each and calculate 
significance via likelihood ratio tests. 
 
 

Dataset: Using the AMD dataset described in Chapter 5 we randomly selected 

10,000 individuals and 200 bi-allelic SNPs with minor allele frequencies greater than 5%. 

We further divided the SNPs into two groups of 100 SNPs and flagged the first 50 SNPs in 

each group to be assigned as causal for simulating genetic effects.  
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iGRM and power: We then used the dataset of 10,000 individuals to generate 

GRMs for all 200 SNPs, using iGRM, and used the off-diagonal variances of each GRM to 

estimated power (as described in Chapter 2). 

iSim: Next, we used iSim to embed multiple levels (1%, 5%, 10%, and 20%) of 

additive, dominant, and interaction genetic effects from the SNPs flagged as causal, as 

described above, for six replicates (4 heritability levels × 8 genetic components × 6 

replicates = 192 simulations). Each SNP group (A and B) contains 50 SNPs assigned to be 

causal for simulation of genetic effects, thus there are 50 SNPs used for each respective 

additive and dominant simulation and 2,500 (50 × 50) total SNP pairs used for interaction 

simulations. For each simulation we only embed a genetic effect for one of the eight 

genetic components — subsequent analyses (i.e. ordinary least squares (OLS) regression 

or REML) estimate potential contributions from each of the eight effects, regardless of 

which effect was simulated. This approach allows us to better estimate the accuracy of 

embedding specific effects via simulations for different genetic effects and different levels 

of heritability. 

SNP-SNP interaction tests: We hypothesized that simulated SNP pair effect sizes 

would be correlated with regression-determined (observed) effect size and thus that 

SNPs/SNP pairs assigned to be causal for a specific genetic effect would exhibit increased 

significance for tests of the corresponding genetic effect, compared to non-causal 

SNPs/SNP pairs. To calculate the effect size and significance of each individual SNP pair 

for all simulations we created a script to perform OLS regression using genotype 

encodings described by Cordell [87]. Additive encodings for AA, Aa, and aa are 1, 0, and -1, 
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respectively. Dominant encodings for AA, Aa, and aa are -0.5, 0.5, and -0.5, respectively. 

Multi-locus genotype encodings are then calculated as products of combinations of 

respective genotype encodings, such that the multi-locus interaction encoding for Add. A 

× Dom. B, given the genotype pair AA/Bb, would be 0.5 (1 × 0.5). These genotype and 

multi-locus genotype encoding were determined for every SNP pair in our dataset (200 × 

199 / 2 = 19,900). Association tests could have been limited to between-group interactions 

(100 × 100 = 10,000), but we tested all possible pairs to check for possible effects from SNP 

pairs in the same group, not assigned as causal for simulations. We performed OLS 

regression using the general linear regression equation (Y = a + bX), where Y is the 

phenotype and X is the respective genotypic encoding, with output from regression being 

the slope (b) and the y-intercept (a). The effect size of the SNP or SNP pair is then 

calculated as the Pearson’s correlation coefficient (Pxy), where Pxy = [covariance(X,Y)]/[σX 

× σY]. The significance of the SNP or SNP pair is then calculated as a p-value calculated 

from a Student’s t-distribution using a t-statistic (t), where t is equal to the slope divided 

by the standard error of the slope (t = b / SE). From these results we calculated summary 

statistics to compare average p-values between causal and non-causal SNP pairs, for each 

genetic component, stratified by the level of simulated heritability. Additionally, we 

calculated sensitivity of the individual SNP-SNP tests of association as the proportion of 

times SNP pairs assigned to be causal for a given genetic effect had significant p-values 

for tests of each genetic effect.  

PVE: Finally, we used the eight generated GRMs to fit each simulated dataset 

(N=192) using REML analysis. Average information (AI) and Fisher’s scoring REML 
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algorithms would not allow for analysis due to matrix inversion issues. We performed 

REML analysis using the expectation maximization (EM) algorithm, however the 

likelihood of the models did not converge for any of the simulations — we assume this is 

due to the difficulty of model fitting using eight large GRMs. GCTA only performs a 

likelihood ratio test (LRT), fitting a reduced model, after the full model converges. Since 

the models never converged we used the final estimations to calculate the best estimates 

of the proportion of variance explained (PVE) for each genetic component. The PVE 

explained by each genetic component was calculated as V(#)/V(p), where V(#) is the 

genetic variance estimate for a given GRM (1-8) and V(p) is the phenotypic variance 

estimate [V(p) = V(1) + … + V(8) + V(e)], where V(e) is the residual variance. Finally, we 

performed likelihood ratio tests (LRTs) for select simulations (described in the results) by 

first manually calculating reduced models (e.g. to test the effect of Additive A for a 

simulation, run REML with 7 GRMs, excluding the Additive A GRM). GCTA calculates the 

likelihood of a model for every iteration — we manually calculated LRT test statistics as 

twice the difference between the full and the reduced model likelihoods. P-values then 

were calculated from chi-squared distributions using the LRT test statistics. For summary 

information and results interpretation we calculated PVE for each simulation, averaged 

across replicates, and formatted the data so that — separately for each level of simulated 

heritability — rows corresponded to simulated genetic components and columns 

corresponded to the average observed PVE for each genetic component. Within the 

aggregated data, table diagonals represent observed PVE for the same component which 
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was simulated to have an effect while off-diagonals represent observed PVE for the 

components not simulated to exhibit a genetic effect. 

Results 

Using iGRM we generated eight orthogonal GRMs for each of the simulated 

datasets described in the methods.  From each GRM we calculated the off-diagonal 

variances (ODVs) and subsequently the estimated power for each GRM (Table 13). The 

GRMs and minimum detectable heritabilities are independent of simulated phenotypes, 

so this only had to be performed once. Power, here, is representative of the minimum 

heritability that can be detected with 80% power, at an alpha level of 0.05, determined 

using GCTA’s online GREML power calculator. 

 
Table 13. Estimated power for simulation dataset using off-diagonal GRM variance. 
 

Component ODV† Min. h2‡ 

Additive A 1.01 e-02 0.395% 

Dominant A 9.92 e-03 0.398% 

Additive B 1.01 e-02 0.394% 

Dominant B 9.88 e-03 0.399% 

A × A 1.03 e-04 3.913% 

A × D 1.00 e-04 3.962% 

D × A 9.21 e-05 4.129% 

D × D 9.97 e-05 3.969% 

† ODV = off-diagonal variance. ‡ Minimum heritability that can be detected with at least 
80% power. GRMs here were generated with a dataset of 10,000 individuals and 100 SNPs 
per group. For the interaction components, A = additive and D = dominant. 
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Using phenotypes simulated to contain heritability effects for each genetic 

component at 1%, 5%, 10%, and 20% heritability, as described in the methods section, we 

fit each simulation using REML to determine the proportion of simulated trait variance 

explained (PVE) by genetic variance from each genetic component. We then averaged the 

PVE’s across all replicates for visualization and comparison (Table 14). Table 14 is colored 

to highlight the diagonals, to compare estimates between different levels of simulated 

heritability, and to compare “background noise” between single SNP (additive/dominant) 

and interaction components. 
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Table 14. Observed average proportion of variance explained in simulated 
datasets. 
 

  Average PVE 

 Component Add A Dom A Add B Dom B A × A A × D D × A D × D 

1%
 S

im
u

la
te

d
 

Add A 0.0097 0.0013 0.0011 0.0008 0.0136 0.0091 0.0067 0.0069 

Dom A 0.0011 0.0095 0.0013 0.0011 0.0104 0.0102 0.0059 0.0060 

Add B 0.0014 0.0008 0.0104 0.0007 0.0080 0.0061 0.0069 0.0065 

Dom B 0.0011 0.0011 0.0012 0.0098 0.0092 0.0065 0.0083 0.0106 

A × A 0.0012 0.0011 0.0012 0.0013 0.0175 0.0109 0.0095 0.0095 

A × D 0.0010 0.0009 0.0010 0.0012 0.0054 0.0096 0.0056 0.0053 

D × A 0.0015 0.0008 0.0017 0.0013 0.0100 0.0078 0.0087 0.0064 

D × D 0.0011 0.0016 0.0012 0.0013 0.0089 0.0067 0.0060 0.0107 

5%
 S

im
u

la
te

d
 

Add A 0.0493 0.0010 0.0013 0.0012 0.0067 0.0103 0.0101 0.0074 

Dom A 0.0010 0.0503 0.0009 0.0008 0.0089 0.0099 0.0049 0.0086 

Add B 0.0009 0.0007 0.0490 0.0010 0.0098 0.0068 0.0042 0.0039 

Dom B 0.0019 0.0010 0.0008 0.0480 0.0091 0.0076 0.0096 0.0087 

A × A 0.0011 0.0014 0.0008 0.0012 0.0528 0.0079 0.0062 0.0042 

A × D 0.0010 0.0010 0.0010 0.0010 0.0081 0.0577 0.0071 0.0075 

D × A 0.0007 0.0009 0.0008 0.0009 0.0099 0.0123 0.0459 0.0069 

D × D 0.0008 0.0010 0.0012 0.0007 0.0131 0.0130 0.0065 0.0372 

10
%

 S
im

u
la

te
d

 

Add A 0.1026 0.0005 0.0007 0.0009 0.0122 0.0077 0.0056 0.0061 

Dom A 0.0013 0.1021 0.0009 0.0011 0.0079 0.0072 0.0061 0.0068 

Add B 0.0009 0.0009 0.1005 0.0009 0.0101 0.0054 0.0057 0.0045 

Dom B 0.0011 0.0012 0.0008 0.1014 0.0073 0.0060 0.0120 0.0082 

A × A 0.0007 0.0010 0.0010 0.0012 0.0931 0.0081 0.0125 0.0072 

A × D 0.0009 0.0008 0.0019 0.0012 0.0105 0.1044 0.0053 0.0127 

D × A 0.0010 0.0011 0.0008 0.0011 0.0132 0.0113 0.1000 0.0079 

D × D 0.0013 0.0012 0.0010 0.0018 0.0094 0.0146 0.0079 0.0905 

20
%

 S
im

u
la

te
d

 

Add A 0.1961 0.0007 0.0011 0.0010 0.0079 0.0100 0.0073 0.0052 

Dom A 0.0009 0.2014 0.0010 0.0008 0.0059 0.0054 0.0070 0.0063 

Add B 0.0007 0.0012 0.2053 0.0010 0.0080 0.0108 0.0065 0.0077 

Dom B 0.0010 0.0012 0.0007 0.2014 0.0077 0.0057 0.0063 0.0074 

A × A 0.0009 0.0008 0.0011 0.0014 0.2024 0.0063 0.0080 0.0074 

A × D 0.0009 0.0013 0.0010 0.0009 0.0092 0.1905 0.0054 0.0066 

D × A 0.0018 0.0013 0.0008 0.0006 0.0138 0.0097 0.2097 0.0071 

D × D 0.0012 0.0008 0.0011 0.0009 0.0059 0.0068 0.0055 0.1971 

Values colored from red to green, with bright green representing the smallest values and 
bright red representing the largest values. Values for the standard error of the means are 
in Appendix E. 3-D depictions of 1% and 20% simulations are in Appendix F. 
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In Table 14 there is a very consistent trend that (A) the diagonals exhibit observed 

effects (average PVE) very close to their simulated effects and (B) the off-diagonal 

observed values for single SNP components (additive/dominant) and interaction 

components are relatively consistent within those two groupings. With this in mind, we 

summarized the PVEs based on these groupings (Table 15). We manually tested reduced 

models for representative simulations then calculated LRT test statistics and p-values 

(Table 15 and Appendix G).  

As expected, we observed significant p-values (less than 0.05) for all simulated 

components (diagonal values), with the exception of the interaction component 

simulated to have a 1% effect size. Additionally, that interaction effect was the only one 

we tested that exhibited a significant value for an off-diagonal component (i.e. false-

positive). P-values were calculated for select simulations from one replicate (Appendix G), 

though, so exhaustive significance tests across all simulations would likely yield 

significant average p-values for all diagonals and non-significant averages for all off-

diagonals. At low simulated heritability effects, near 1%, we still would expect a higher 

number of false-positives and false-negatives than for simulations with higher levels of 

simulated effects.  

GCTA’s GREML power calculator, which calculates power using off-diagonal 

variances for each GRM, showed that, given our dataset, we would be powered to detect 

heritability greater than about 4% from any interaction component (Table 13). Notably, 

our results using simulations for the same dataset showed that ‘background noise’ could 

be distinguished from the true signal starting at around 5% for interaction components 
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(Table 14). These results show that power estimated from GCTA’s GREML power 

calculator are in agreement with the trends observed from our simulations using iSim. 

Thus, GCTA’s GREML power calculator can be used to most easily estimate basic 

statistical power for a dataset based on sample size.  

 
Table 15. Proportion of variance explained summary and statistical significance. 
 

 

Simulated 
Effect 

Single SNP 
Diagonal 

Single SNP 
Off-diagonal 

Interaction 
Diagonal 

Interaction 
Off-diagonal 

A
ve

ra
g

e 
 P

V
E

 

1% 0.99% 0.12% 1.16% 0.80% 
5% 4.92% 0.10% 4.84% 0.82% 
10% 10.17% 0.10% 9.70% 0.86% 
20% 20.10% 0.10% 19.99% 0.74% 

S
el

ec
t 

 
P

-v
a

lu
es

 1% 0.0014 0.4032 0.0521 0.0373 
5% 6.8 e-69 0.3274 0.0006 0.2919 
10% 1.3 e-173 0.1184 3.4 e-14 0.0756 
20% < 1 e-300 0.1563 3.4 e-40 0.2312 

Average PVE summarized from Table 14. Select representative p-values calculated 
manually as described in Appendix G.  
 
 

Next, we performed regression for each SNP pair for all simulations. Genotype 

pairs were encoded using the Cordell model described above and regressed to the 

simulated phenotypes. We summarize the results first by comparing average significance 

for each component, stratified by causal versus non-causal SNP pair tests (Table 16). We 

expected to see enrichment in significance (smaller p-values) for causal SNP pairs versus 

non-causal SNP pairs when the simulated genetic component was tested using the same 

corresponding genetic encoding (i.e. the diagonals, which are outlined separately in 

black). For the off-diagonal components, representing tests for genetic effects that were 

not simulated (i.e. null effects), we expected to see roughly the same average p-values for 
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causal and non-causal SNPs, for each separate component. We observed several expected 

trends. Generally, increased simulated heritability corresponded with greater differences 

in significance between causal and non-causal SNP pairs. Higher heritability corresponds 

with increased correlation between genotypic and phenotypic effects resulting in causal 

SNP pairs being more predictive of the phenotype and therefore more statistically 

significant. The simulation procedure introduces variability (error) to genotype-

phenotype correlation to scale heritability lower, so the observed trend is expected.  

We also observed a consistent trend of much larger differences in average 

significance between causal and non-causal SNP pairs for additive and dominant 

simulated effects compared to simulated interaction effects; we propose two potential 

explanations. First, additive and dominant simulations assign effect sizes per SNP (N), 

while interaction simulations are per SNP pair (N × N); thus, each causal SNP for additive 

and dominant effects contributes to a much greater proportion of the overall embedded 

level of heritability than any individual SNP pair does when interaction effects are 

simulated. Second, due to the nature of the regression and multi-locus genotype 

encoding used, when additive or dominant effects are simulated a given SNP assigned a 

specific effect size is tested multiple times — one test for every SNP pair that it is a 

member of. Due to this effect, in Table 16 we assigned colors for values separately for 

single SNP (additive/dominant) and interaction components (column-wise) to better 

distinguish the subtle enrichment in significance for the interaction effects simulated to 

be causal. 
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A final observation from Table 16 is that based on which additive or dominant 

effect is simulated, other effects see marginal enrichment in significance. For example, 

when 20% heritability was simulated for the additive B genetic component, we also see 

slight enrichment in significance from the additive A component but not from the 

dominant A or dominant B component. In general, when an additive effect is simulated 

for one group (A or B), additive effects from the other group are affected slightly, but 

dominant effects are not. On the other hand, when dominant effects are simulated, 

additive and dominant effects from both groups are affected. This is expected due to the 

nature of genotypic encoding for additive effects compared to dominant effects and is the 

reason most genetic analyses test only for additive effects — because additive tests are 

able to capture some existing dominant effects. 
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Table 16. Average interaction p-values for tests of simulated components. 
 

  Average Observed p-values 

  C NC C NC C NC C NC C NC C NC C NC C NC 

 Component Add A Dom A Add B Dom B A × A A × D D × A D × D 
1%

 S
im

u
la

ti
o

n
 

Additive A 0.402 0.480 0.491 0.499 0.470 0.469 0.503 0.499 0.494 0.495 0.497 0.496 0.497 0.496 0.496 0.495 

Dominant A 0.457 0.502 0.377 0.492 0.475 0.475 0.456 0.457 0.498 0.496 0.499 0.496 0.500 0.496 0.500 0.496 

Additive B 0.470 0.468 0.507 0.509 0.394 0.503 0.513 0.511 0.498 0.494 0.497 0.495 0.498 0.496 0.499 0.495 

Dominant B 0.486 0.484 0.471 0.467 0.440 0.502 0.380 0.499 0.500 0.495 0.495 0.496 0.497 0.495 0.495 0.495 

A × A 0.499 0.502 0.492 0.491 0.479 0.492 0.486 0.488 0.497 0.494 0.499 0.495 0.497 0.495 0.498 0.496 

A × D 0.497 0.502 0.495 0.503 0.524 0.509 0.508 0.498 0.494 0.495 0.493 0.497 0.496 0.495 0.496 0.496 

D × A 0.486 0.498 0.496 0.497 0.487 0.493 0.499 0.506 0.504 0.497 0.500 0.498 0.495 0.496 0.494 0.497 

D × D 0.478 0.483 0.470 0.477 0.502 0.495 0.470 0.485 0.496 0.494 0.494 0.496 0.492 0.495 0.489 0.496 

5%
 S

im
u

la
ti

o
n

 

Additive A 0.262 0.493 0.485 0.496 0.437 0.435 0.490 0.488 0.501 0.495 0.500 0.495 0.499 0.495 0.499 0.496 

Dominant A 0.360 0.500 0.210 0.493 0.462 0.461 0.432 0.429 0.497 0.497 0.497 0.495 0.496 0.496 0.498 0.495 

Additive B 0.437 0.435 0.491 0.491 0.293 0.497 0.498 0.503 0.498 0.496 0.501 0.498 0.499 0.497 0.502 0.496 

Dominant B 0.465 0.461 0.423 0.422 0.378 0.493 0.230 0.496 0.497 0.494 0.498 0.494 0.498 0.495 0.498 0.493 

A × A 0.490 0.491 0.482 0.482 0.500 0.498 0.493 0.493 0.479 0.495 0.496 0.496 0.495 0.495 0.499 0.496 

A × D 0.502 0.494 0.511 0.492 0.490 0.492 0.480 0.485 0.494 0.496 0.472 0.496 0.497 0.495 0.491 0.496 

D × A 0.491 0.491 0.493 0.495 0.482 0.489 0.486 0.489 0.496 0.493 0.495 0.493 0.472 0.495 0.496 0.495 

D × D 0.514 0.495 0.491 0.505 0.507 0.500 0.491 0.497 0.496 0.493 0.489 0.497 0.488 0.494 0.472 0.493 

10
%

 S
im

u
la

ti
o

n
 

Additive A 0.190 0.502 0.513 0.509 0.432 0.428 0.511 0.506 0.499 0.494 0.500 0.495 0.499 0.495 0.499 0.494 

Dominant A 0.333 0.490 0.164 0.498 0.447 0.449 0.402 0.403 0.494 0.496 0.498 0.495 0.497 0.495 0.499 0.493 

Additive B 0.417 0.414 0.495 0.492 0.237 0.499 0.491 0.492 0.500 0.495 0.500 0.496 0.499 0.495 0.496 0.497 

Dominant B 0.467 0.464 0.417 0.413 0.299 0.508 0.184 0.488 0.496 0.495 0.498 0.496 0.497 0.496 0.501 0.496 

A × A 0.488 0.493 0.492 0.499 0.467 0.492 0.478 0.487 0.464 0.492 0.491 0.495 0.502 0.494 0.500 0.496 

A × D 0.482 0.488 0.499 0.491 0.481 0.484 0.488 0.498 0.479 0.494 0.461 0.492 0.496 0.491 0.494 0.493 

D × A 0.459 0.481 0.467 0.481 0.496 0.478 0.488 0.472 0.485 0.491 0.495 0.491 0.456 0.493 0.495 0.495 

D × D 0.467 0.495 0.497 0.490 0.491 0.495 0.486 0.492 0.487 0.492 0.476 0.492 0.478 0.492 0.442 0.491 

20
%

 S
im

u
la

ti
o

n
 

Additive A 0.156 0.486 0.506 0.488 0.410 0.407 0.502 0.498 0.499 0.493 0.500 0.493 0.494 0.495 0.499 0.494 

Dominant A 0.293 0.488 0.133 0.500 0.440 0.439 0.419 0.413 0.497 0.496 0.496 0.495 0.500 0.497 0.499 0.496 

Additive B 0.409 0.406 0.494 0.493 0.155 0.501 0.493 0.496 0.496 0.495 0.498 0.495 0.496 0.496 0.497 0.495 

Dominant B 0.453 0.450 0.403 0.400 0.300 0.488 0.142 0.486 0.495 0.493 0.497 0.493 0.497 0.494 0.499 0.494 

A × A 0.475 0.505 0.494 0.491 0.457 0.498 0.474 0.496 0.443 0.489 0.493 0.495 0.501 0.492 0.495 0.496 

A × D 0.479 0.497 0.473 0.494 0.484 0.489 0.492 0.495 0.466 0.491 0.425 0.494 0.487 0.488 0.489 0.493 

D × A 0.417 0.470 0.445 0.488 0.498 0.474 0.514 0.486 0.466 0.486 0.487 0.487 0.424 0.492 0.489 0.493 

D × D 0.486 0.494 0.497 0.499 0.497 0.500 0.472 0.500 0.481 0.489 0.458 0.489 0.465 0.487 0.405 0.485 

C = Causal (includes effects drawn from a normal distribution centered around zero); NC = Non-causal effects; Red = most significant;  
Green = least significant. Values are averages over all assessed SNPs (additive and dominant) and SNP pairs (interaction components).
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Discussion and conclusions 

One of the goals of iSim was to validate our method for calculating additive, 

dominant, and epistatic GRMs (iGRM). To do this we sought to show that for datasets 

containing specific levels of varying genetic effects (additive, dominant, or interaction) 

those effects could be quantified and captured via calculation of orthogonal GRMs. By 

simulating multiple replicates for multiple genetic effects using different levels of 

embedded heritability we were able to show that specific levels of heritability can be 

accurately estimated for each of the eight genetic components (Table 14), with accuracy 

depending on the level of heritability, among other factors, such as sample size. 

Additionally, we sought to show that datasets with simulated overall heritability 

(cumulative effects) contain individual-level, detectable effects. We observed both an 

enrichment in significance for SNP pairs simulated to be causal versus non-causal as well 

as a positive correlation between sensitivity and the level of heritability, noting that 

estimates are slightly skewed due to all SNP pairs with non-zero simulated effect sized 

being assigned as causal. When large levels of heritability due to interaction effects are 

embedded, individual-level SNP tests of those interactions were enriched for significance, 

supporting the need for, and power of, tests of cumulative effects.  

Future directions 

The simulation method presented here is a major advancement over current 

epistasis simulation methods. Additional analyses and improvements are warranted to 

make iSim more powerful and useful. For our analyses we used a custom script to 

perform linear regression using Cordell model-encoded genotype values. Additional 
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comparisons of significance enrichment and sensitivity for simulated datasets using other 

association methods, such as INTERSNP and FastEpistasis, are also warranted.  

In particular, iSim would benefit from the addition of two options — (1) the ability 

to simulate weighted levels of heritability for multiple genetic effects simultaneously and 

(2) the ability to simulate heritability for case-control datasets. We have already started 

development of methods to enable simulation of heritability due to multiple genetic 

components (Figure 25), but the statistics developed thus far are not fully worked out. We 

were able to simultaneously embed weighted effects across the four single SNP 

components (additive/dominate A & B) and four interaction components, separately, but 

not any weighted combinations that included at least one single SNP component and one 

interaction component. We believe that the limitation may be due to differences in 

variance introduced when simulating phenotypes using SNP pair data compared to single 

SNP data. Lastly, our simulation method functions by specifying continuous quantitative 

phenotypes as output. Adaptation to simulate heritability for case-control datasets would 

require implementing a liability threshold model, which assigns case status depending on 

whether the generated phenotype value is greater or less than a calculated threshold. 

While this may be somewhat straightforward, the power to accurately embed specific 

effects would likely be reduced compared to using continuous phenotypes. 
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Figure 25. Proposed scheme for weighted simulations.  
Formulas here are similar to the formulas reviewed in the iSim methods section but here 
include the ability to specify different heritability values for multiple components, which 
are then used for weighting at multiple steps.  
 

CONCLUSIONS TO METHODS 

Previously, the primary way to search for potential epistatic effects for a trait was 

to perform many independent single SNP pair tests. This introduces an often inhibitory 

multiple-testing burden because of the large number of tests being performed. To reduce 

the number of tests and to make analyses more computationally feasible, studies often 

test interactions where at least one SNP in the SNP pair has a main effect, which may 

miss actual interactions, depending on the true effect. In this chapter, we introduced two 

interrelated methods — one method for estimating interaction effects (iGRM) as well as 

one method for simulating heritability due to interactions (iSim). 

The development of iGRM involved modifying methods from existing software 

(GCTA) to scale genetic relatedness based on orthogonal genetic variance components, 
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based on statistics proposed in 1954 by C. Clark Cockerham. We showed that the variance 

and covariance values used to calculate additive GRMs in GCTA are relatable to and 

substitutable with the variance and covariance value calculations described in 

Cockerham’s article. We then described details of the development of C++ software to 

calculate additive, dominant, and epistatic GRMs as well as the degree to which iGRM 

becomes computationally difficult/impossible based on sample size (number of 

individuals and number of SNPs). 

Finally, we developed a unique method (iSim) that allows heritability to be 

simulated due to either additive, dominant, or epistatic effects. In addition to being a 

useful tool for future studies of epistasis and future development of epistasis analysis 

methods, we used iSim to show that when epistasis is present (or simulated) those effects 

can be effectively captured using GRMs and subsequently estimated by fitting in a mixed 

linear model with GCTA. Lastly, we showed that simulations can be used to determine (a 

priori) the minimum level of heritability that can be accurately estimated given a 

particular dataset and that and that those estimates are in agreement with GCTA’s power 

calculator. Ultimately, the significance of a given component is determined through 

model fitting (via GCTA’s REML) and a likelihood ratio test. 
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CHAPTER 5 — EPISTASIS IN AGE-RELATED MACULAR DEGENERATION 
 

BACKGROUND 

For genetic studies of many diseases much of the “low-hanging fruit” has been 

discovered. Variants with large additive effects can often be uncovered relatively easily 

with modest sample sizes. Additional variants can then be associated by increasing 

sample size or by studying more diverse populations. In addition to additive effects, there 

are many other sources of potential genetic contributions to traits and diseases, such as 

dominant, recessive, and epistatic effects, epigenetic effects, and effects from rare variants 

and copy number variants (CNVs) [95]. 

Age-related macular degeneration (AMD) is an example of a disease that has little 

low-hanging fruit left, in respect to previously captured genetic variation; common 

variation, in particular, has been extensively studied. A recent well-powered meta-

analysis of AMD [36], as discussed in Chapters 1 and 3, uncovered seven additional risk 

loci, in addition to twelve already-known significant risk loci, by leveraging a large sample 

size to achieve statistical power. The seven additional loci, however, only improved risk 

modeling marginally (Figure 26; AUC 0.745 versus 0.753), due to the small but statistically 

significant effect sizes. In the same study, in addition to additive effects, an interaction 

analysis between all pairs of the 19 risk loci found that nine SNP pairs had a p-value less 

than 0.05 (Table 17) [36]. The most significant interaction, and the only interaction that 

was still significant after a Bonferroni correction, was an interaction between loci in CFH 

and C2/CFB (Table 17). 
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Figure 26. Risk score analysis comparing AMD risk SNP subsets. 
The red curve represents risk explained by the seven newly associated loci. The area 
under the curve (AUC) for the combination of the seven new SNPs with 12 previously 
significantly associated SNPs (blue curve) differs little from the AUC when using only the 
12 SNPs (green curve). Figure from supplemental material in [36]. 

 

Table 17. Interactions between known AMD risk SNPs. 
 

Index 
SNP 1 

Gene 
Index 
SNP 2 

Gene 
Interaction 

p-value 

rs10737680 CFH rs429608 C2/CFB 0.000052* 

rs10490924 ARMS2 rs5749482 TIMP3 0.0052 

rs5749482 TIMP3 rs920915 LIPC 0.011 

rs1864163 CETP rs6795735 ADAMTS9 0.021 

rs920915 CFI rs4698775 LIPC 0.022 

rs10490924 ARMS2 rs10737680 CFH 0.025 

rs5749482 TIMP3 rs3130783 IER3/DDR1 0.034 

rs920915 LIPC rs9542236 B3GALTL 0.038 

rs2230199 C3 rs5749482 TIMP3 0.041 

Gene is resident gene or nearby gene. For the top interaction, the direction of effect was 
positive for nine study sites and negative for three. *Statistically significant after 
Bonferroni correction for 171 tests. Adapted from Fritsche et al. [36].  
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In this chapter we use iGRM to search for potential cumulative epistatic effects of 

risk for AMD, given that few individual-level SNP-SNP interactions were statistically 

significant among the 19 risk SNPs in the referenced study. In particular, we conduct tests 

for interaction effects between ARMS2 and several pathways, as well as between regions 

flanking the top previously published interaction (rs10737680 x rs429608) to estimate its 

overall contribution to AMD risk, as well as to determine the specific nature of any 

observed interactions (e.g. additive × additive). 

 
METHODS 

Dataset and quality control 

The dataset used in this study was ascertained and curated by the International 

AMD Genetics Consortium (IAMDGC) and is composed of 26 studies in total [37]. After 

receiving approval from institutional review boards at each study site and informed 

consent from each participant, DNA was collected for cases (intermediate and advanced 

AMD) and controls (no intermediate or advanced AMD). A custom HumanCoreExome 

array by Illumina was used to genotype each participant; the array included GWAS-level 

data (tagging SNPs), exome-level data (from a catalog of protein-altering variants), and 

select additional SNPs based on previous AMD associations. In total, 55,720 individuals 

were genotyped for 569,645 SNPs. Individual quality control (QC) measures excluded 

technical controls, related individuals, all Beaver Dam Eye Study (BDES) participants (due 

to difficulty in obtaining study approval), participants with unclear phenotypes, and 

participants with an overall SNP call rate less than 95%. SNP QC excluded SNPs with a 

minor allele frequency (MAF) less than 5% as well as SNPs with a genotyping rate less 
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than 95%. After QC, 33,603 individuals remained with 252,727 SNPs and a genotyping rate 

of 99.924%. The reduction in number of SNPs due to QC is high but expected due the 

large number of rare and low-frequency variants captured by the custom exome chip. 

Although rare variation is useful for many study questions, in this study we restrict 

analyses to common variation. Of the individuals who passed QC, 20,561 were cases 

(8,269 males/12,292 females) and 16,042 were controls (6,992 males/9,050 females). 

CFH-C2/CFB interaction analysis 

As previously discussed, a statistically significant interaction between two loci in 

CFH (rs10737680) and near C2/CFB (rs42908) has been associated with risk for AMD [36]. 

In this study, we sought to apply our method to the corresponding regions near those loci 

to quantify the overall effect on risk for AMD of interactions between those regions.  

Using the dataset of 36,603 individuals (after quality control) we extracted SNPs 

within 30 kb of the risk loci (based on chromosomal position) that were part of the top 

significant interaction for each subset, resulting in 30 SNPs for the CFH region and 40 

SNPs for the C2/CFB region. We then used iGRM to calculate GRMs for additive, 

dominant, and epistatic effects for the CFH and C2/CFB regions and fit all eight GRMs in 

a mixed linear model using GCTA, adjusting for age and sex. All analyses were performed 

with the default REML algorithm (average information; AI). 

Importantly, the genotyping platforms used in the referenced study [36] are 

different than the one used for this study (HumanCoreExome custom chip). The 

referenced study performed imputation across study sites, given that the same 

genotyping platform was not used for each site. The interaction index SNP for CFH 
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(rs10737680) was not genotyped in our study; however, some SNPs in linkage 

disequilibrium with that SNP were genotyped. To confirm that the expected main 

(additive) effects from CFH were present, we performed basic logistic regression for the 

30 SNPs in the CFH region and found that 29 of the 30 SNPs had a p-value less than 5 e-8. 

From this we felt confident in proceeding with testing for potential interactions. 

ARMS2 interaction analysis 

Interaction selection 

With over 62 billion SNP pairs in our dataset it is currently computationally 

infeasible to calculate GRMs representative of all possible interactions, even given 

efficiently coded software and access to high performance computing clusters; runtime 

would be on the order of years, even with thousands of processors. Thus, we narrowed 

down specific interactions to test based on outstanding questions regarding the genetics 

of AMD. 

One of the least understood genetic associations in AMD is ARMS2 — its 

biological function and mechanism by which it contributes to AMD risk remains 

unknown. As described in Chapter 1, ARMS2 (age-related maculopathy susceptibility 2), 

also referred to as LOC387715, was the second locus found to be associated with AMD, 

after CFH [30]. It is located on the long arm of chromosome 10 and codes for a protein of 

unknown function [97]. Originally, it was thought that products from ARMS2 were found 

mostly in placental tissue and the retina; however, more recent studies have found that it 

is expressed in multiple human tissues [98], as well as the mitochondrial outer membrane 

[99]. Additionally, ARMS2 is near another gene — HTRA1 — that harbors a variant that 
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has also been associated with risk for AMD; however, one study explicitly refutes HTRA1’s 

association [99]. A recent book chapter titled “Gene Structure of the 10q26 Locus: A Clue 

to Cracking the ARMS2/HTRA1 Riddle?” [100] re-affirms that ARMS2’s association with 

AMD remains somewhat of a mystery. Thus, in this section we use epistasis analysis to 

search for possible clues about the biological mechanism underlying ARMS2’s association 

with AMD risk.  

ARMS2-pathway analysis details 

To explore potential interactions between ARMS2 and several AMD-related 

pathways (as described in Chapter 3) we used PLINK to extract SNPs from the ARMS2 

region and from each pathway using the dataset described in the methods above. First, 

we extracted SNPs in ARMS2 (Chr. 10 — 124,187,179 to 124,246,868, including 30 kb 

flanking; genome build GRCh37). Then, we extracted SNPs from pathways, using pathway 

gene lists described in Chapter 3, including 30 kb flanking genes in each respective 

pathway. To generate a rough comparison of differences in computational difficulty for 

estimating interactions between ARMS2 and each pathway we calculated the number of 

frequency and matrix calculations required for each (Table 18). Frequency calculations are 

based on SNPs and SNP pairs, while matrix calculations are based on SNP pairs and pairs 

of individuals. 

After SNP extraction we had a total of 50 ARMS2 SNPs and between 370 and 23,430 

SNPs for pathways (Table 18). Notably, based on frequency and matrix calculations, TCA, 

nicotine, oxidative damage, complement, and antioxidant pathways are on roughly the 
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same order of number of required calculations, while other pathways have much higher 

levels of computational difficulty based on required matrix calculations (Table 18).   

 
Table 18. Comparison of ARMS2-pathway interaction scales. 
 

Pathway 
# 

Genes 
Pathway 

SNPs 
SNP 
Pairs 

Frequency 
Calcs. 

Matrix 
Calcs. 

Tricarboxylic Acid Cycle 33 370 18,500 6.78 e+08 1.24 e+13 

Nicotine 47 560 28,000 1.03 e+09 1.88 e+13 

Oxidative Damage 353 743 37,150 1.36 e+09 2.49 e+13 

Complement 61 893 44,650 1.64 e+09 2.99 e+13 

Antioxidant 70 1,057 52,850 1.94 e+09 3.54 e+13 

Angiogenesis 186 7,217 360,850 1.32 e+10 2.42 e+14 

Inflammatory 591 7,314 365,700 1.34 e+10 2.45 e+14 

Apoptosis 588 23,430 1,171,500 4.29 e+10 7.85 e+14 

SNP pairs are calculated using 50 ARMS2 SNPs. All pathway SNPs exclude ARMS2 SNPs. 
Frequency calculations are the number of individuals multiplied by the number of SNP 
pairs. Matrix calculations are the number of pairs of individuals multiplied by the number 
of SNP pairs. Ordered by increasing computational difficulty. 
 
 

After SNP extraction we used iGRM to generate additive and dominant GRMs for 

ARMS2 and all pathways as well as interaction GRMs for five of the eight pathways 

(antioxidant, complement, nicotine, oxidative damage, and TCA). Last, we performed 

mixed linear model REML analysis using GCTA, adjusting for age and sex, to estimate the 

effect of each genetic component on risk for AMD. Importantly, for computational 

feasibility, each genetic component (GRM) was assessed in a separate mixed linear model 

to ensure model fitting and REML convergence. All analyses were performed with the 

default REML algorithm (average information; AI). 
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RESULTS 

CFH-C2/CFB interaction analysis results 

We used iGRM to test additive, dominant, and epistatic genetic effects for two 

regions known to harbor a single pair of interacting SNPs (rs10737680 and rs429608, on 

chromosomes 1 and 6, respectively). These regions contained 30 and 40 SNPs, 

respectively, resulting in 1,200 pairs of SNPs between the two groups. Though neither of 

the two SNPs were directly genotyped in our dataset, both have proxy genotyped SNPs 

with in high linkage disequilibrium (rs10737680 – at least 8 of 30 SNPs genotyped with D’ 

= 1; rs429608 – at least 12 of 40 SNPs genotyped with D’ = 1), based on data from HapMap 

3, release 2, so we have sufficient coverage of both regions. The additive component for 

the CFH region explained about 7.0% of the risk for AMD while the C2/CFB region 

explained about 3.7% (Figure 27; Table 19). Both additive components were very 

statistically significant (p = 2.2 e-159 and 3.7 e-22 for CFH and C2/CFB, respectively). 

Dominant effects of CFH and C2/CFB explained about 0.22% and 0.19%, respectively 

(Figure 27; Table 19) and neither components were statistically significant. The four 

interaction components together explained a total of 0.63% of risk for AMD (Figure 27; 

Table 19). Although the interaction effects were small, when a single LRT was performed 

to drop all interaction components, simultaneously, the interaction p-value was 0.01472 

— statistically replicating the previously reported interaction. 
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Figure 27. Risk for AMD explained by CFH and C2/CFB genetic components. 
CFH region = rs10737680 ± 30 kb; C2/CFB region = rs429608 (Chr. 6) ± 30 kb. 
 
 
Table 19. Observed effects and significance of CFH and C2/CFB regions. 
 

 CFH Add CFH Dom C2 Add C2 Dom A x A A x D D x A D x D 

PRE 0.0700 0.0022 0.0365 0.0019 0.0012 0.0031 0.0015 0.0005 

SE 0.0323 0.0018 0.0158 0.0015 0.0011 0.0019 0.0014 0.0011 

LRT 722.26 0.83 92.31 0.71 3.20 1.01 0.002 0.42 

P-val. 2.2 e-159 0.1811 3.7 e-22 0.1997 0.2478 0.0614 0.1869 0.4812 

Proportion of risk explained (PRE); Standard error (SE); Likelihood ratio test (LRT);  
P-value (P-val.). P-values less than 0.05 highlighted in red. C2 = C2/CFB. The sum of 
interaction effects was 0.63% of AMD risk explained. The overall interaction p-value 
when all four interaction components were dropped was 0.01472. 
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ARMS2 interaction results 

For five pathways (antioxidant, complement, nicotine, oxidative damage, and 

TCA) we used iGRM to calculate eight orthogonal (additive, dominant, and interaction) 

GRMs using the same dataset described in the CFH x C2/CFB interaction analysis. For 

each set of ARMS2-pathway interactions, we used GCTA to fit GRMs (separately) in mixed 

linear models to estimate the amount of risk in AMD explained by additive and dominant 

genetic components (Figure 28; all eight pathways, plus the ARMS2 region) as well as 

interaction components (Figure 29; five ARMS2-pathway interactions).  

Additive effects from ARMS2 explained roughly 2.5% of risk for AMD. Additive 

effects from the angiogenesis, apoptosis, complement, and inflammation pathways 

explained between 2.7% and 6.9% of the risk for AMD, while additive effects from the 

antioxidant, nicotine, oxidative phosphorylation, and TCA pathways, each, explained less 

than 1.0% of the risk for AMD (Figure 28). The additive effects on risk for each pathway 

(except for TCA) were statistically significant (Table 20). The results here are similar to 

the additive pathway results presented in Chapter 3, but here we use a larger multi-site 

cohort and are better powered to more accurately estimate effects from each pathway. 

Dominant effects from ARMS2 and each pathway contributed to between near zero and 

0.53%, with only the dominant effects from the antioxidant pathway being marginally 

significant (Table 20). 
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Figure 28. Heritability estimates for additive and dominant genetic effects of 
ARMS2 and pathways. 
 
 
Table 20. Significance of additive and dominant components. 
 

P-val. ARMS2 Angio. Antiox. Apop. Comp. Inflam. Nico. Ox.Phos. TCA 

Add. 3.0 e-102 9.0 e-60 4.0 e-46 4.5 e-147 < 1 e-300 < 1 e-300 1.8 e-20 9.7 e-05 0.1151 

Dom. 0.413 0.398 0.043 0.251 0.500 0.317 0.218 0.318 0.500 

P-values less than 0.05 are highlighted in red. 
 
 

Interaction effects were all between near zero and 0.33%, with relatively large 

standard errors mostly crossing or nearly crossing 0% (Figure 29).  The large (relative to 

the observed effect) standard errors are likely due in part to the fact that that each 

component was fit in a separate model using REML. Thus, if all eight genetic 

components, for each pathway, were fit in a single model, the effects from each 

component would be able to be estimated more precisely and lead to smaller standard 

errors. Due to limitations we were not able to use a single mixed linear model for each 

pathway interaction, thus significance (p-values from likelihood ratio tests) is determined 
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for each component, separately. Three of the tested interactions — antioxidant, nicotine, 

and oxidative phosphorylation — had marginally significant effects (p < 0.05; Table 21). 

 
Figure 29. Heritability estimates for ARMS2-pathway interaction effects. 
A = additive; D = dominant. The first interacting component listed is the effect from 
ARMS2 while the second interacting component is the effect from the respective pathway 
(ARMS2 x pathway). No interaction effect exceeded 0.4% risk explained. P-values for 
interaction components were between 0.0312 and 0.5000 (Table 21). Standard errors were 
generally large compared to the amount of risk explained, though it is important to note 
the overall scale. (Y-axis: Min. = 0.0% / Max = 1.0%). 
 
 
Table 21. Significance of interaction components. 
 

 Antiox. Comp. Nico. Ox.Phos. TCA 

A x A 0.0398 0.0447 0.5000 0.5000 0.0312 

A x D 0.5000 0.4430 0.0366 0.5000 0.3490 

D x A 0.3100 0.0780 0.2950 0.1510 0.4020 

D x D 0.3490 0.4180 0.4430 0.5000 0.1800 

P-values from likelihood ratio tests. P-values less than 0.05 highlighted in red. 
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DISCUSSION 

CFH-C2/CFB interaction 

For our first analysis of AMD interactions we tested regions near a previously-

associated individual-level SNP-SNP interaction that affect AMD risk. We observed 

additive effects from the CFH and C2/CFB region that reflect previous knowledge of 

effects from those genes. Dominant effects explained less than 0.22% of the risk for AMD 

(not statistically significant). Although no large amounts of risk for AMD were explained 

by the CFH x C2/CFB interaction, the total effect explained 0.63% of risk for AMD, a 

statistically significant amount (LRT p-value = 0.0147), which replicates the previously 

reported interaction.  

Although we observe small, but detectable, effects, there are multiple possible 

explanations as to why larger effects were not observed. First, the AMD interaction 

reported was from a meta-analysis and, importantly, not all cohorts had the same 

direction of effect (9 cohorts had positive directions of effect, while 3 cohorts had 

negative directions of effect) [36], which could confound results when assessing all 

cohorts simultaneously, as we did. Second, as we discussed in the methods and results 

sections, the primary index SNP (rs10737680) for CFH was not on our custom genotyping 

platform. Although we had multiple proxy SNPs in strong LD with that SNP, there could 

be subtle effects not captured without rs10737680 directly genotyped. Third, it is possible 

that only one moderate-effect interaction was present and that additional cumulative, 

additional interactions between those two regions do not exist, resulting in a small overall 

amount of risk for AMD explained by interactions.  
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ARMS2 interactions 

For our second analysis of AMD interactions we assessed effects from and between 

ARMS2 and other pathways. We observed significant results from additive genetic effects 

from ARMS2 and all pathways, except TCA, on risk for AMD, which was not unexpected. 

Interestingly, the results here for additive genetic components are similar to, but not 

identical to, the trends observed in pathway analyses in Chapter 3. In this analysis we see 

the strongest signal from additive effects in apoptosis, whereas in Chapter 3, the apoptosis 

pathway ranked third in terms of the amount of risk for AMD explained. 

 We observed marginally significant dominant effects from the antioxidant 

pathway (p = 0.043) but no significant dominant effects from other pathways. When we 

tested interaction components for effects between ARMS2 and five pathways, we observed 

marginally significant effects for three pathways (antioxidant, nicotine, and TCA). The 

largest total interaction effect for any pathway tested was 0.9% of total risk explained by 

the antioxidant pathway. However, because all GRMs were fit separately, this estimate is 

likely an overestimate. Future studies should find a way to fit all of the GRMs 

simultaneously to get a more precise estimate as well as a single test of interaction 

significance for each pathway. Future analyses could also assess the larger pathways 

(angiogenesis, apoptosis, and inflammation) once computational limits are lessened. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

In this chapter we used iGRM to test for potential cumulative interaction effects 

between regions near a previously reported AMD interaction as well as for interactions 

between the ARMS2 region and five pathways. We were able to significantly replicate the 

interaction between CFH and C2/CFB. Previous studies have reported statistical 

significance for specific CFH and C2/CFB variants, but here we quantify the overall 

additive effect (heritability estimate) from each region and show that they explain about 

4% (C2/CFB) and 7% (CFH) of the risk for AMD. These estimates may be slight 

overestimates; however, since each additive GRM contained between 30 and 40 SNPs. To 

confirm the estimates, a “remainder” GRM could be additionally included in an additive-

only mixed model so that genetic variation is more precisely partitioned.  

Although we did confirm that cumulative interaction effects between CFH and 

C2/CFB were statistically significant, it is currently unknown whether the effect is from a 

single SNP pair or more cumulative effects. Future analyses could try to remove SNPs in 

LD with the reported interacting SNPs to see if the cumulative interaction effect become 

non-significant when not included in the model.  

When we applied iGRM to assess interactions between ARMS2 and multiple 

pathways, we were able to confirm expected additive effects from each pathway as well as 

notable dominant and epistatic effects. Additive effects from angiogenesis, apoptosis, 

complement, and inflammation (PRE 2.74%, 6.93%, 5.15%, and 6.74%, respectively) 

should be further dissected to narrow down unique and shared genetic effects. Although 

the overall effects from dominant and epistatic components were relatively small 
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(individually all less than 0.54%), some components were statistically significant — a feat 

that would not have been possible without such a large sample size. Nonetheless, better 

estimates, and likely greater significance, would come from modeling all eight GRMs for 

each ARMS2-pathway analysis in single models, instead of separately for each GRM, as we 

had to do for now due to computational limitations.  

Ultimately, we leveraged having a large case-control AMD dataset to confirm a 

previously reported AMD interaction with a new method — iGRM. Future studies could 

extend the methods presented here to test for all possible pairwise regions around known 

AMD risk SNPs to potentially uncover additional epistatic effects contributing to risk for 

AMD. Lastly, we applied iGRM to assess potential interactions between ARMS2 and 

multiple pathways and found marginal evidence that non-additive effects exist and 

contribute in part to risk for AMD. The methods and results presented here provide a 

basis for a more detailed investigation of the detected interactions as well as further 

investigation of additional possible interactions. We can now say that non-additive effects 

for AMD are present and that future studies are warranted. 
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CHAPTER 6 — CONCLUSIONS AND FUTURE DIRECTIONS 
 

Vision loss is the third most feared medical condition — only behind cancer and 

cardiovascular disease [63]. Age-related macular degeneration (AMD) is a major 

contributor to visual loss and blindness worldwide and in developed countries is the 

leading cause of blindness. As the average age of populations increase worldwide, so will 

the prevalence of AMD, making it is increasingly critical to pursue genetic and molecular 

research of AMD. No effective method exists to prevent the development of AMD, but 

AREDS supplements, taken when determined to be at risk or following early signs of 

AMD, were found to delay or slow progression in some patients [18]. Dry AMD, the more 

slowly progressing form, has no treatment options. Some treatment options exist for wet 

AMD, the more quickly progressing form; treatment is often required for the life of the 

patient after diagnosis and may involve regular injections of vascular endothelial growth 

factor inhibitors directly into the eye [101]. 

Much progress has been made towards uncovering genetic effects influencing risk 

for AMD. However, even the most significantly associated variants do not have a well-

understood correlation between genetic and molecular processes affecting disease 

pathogenesis [63]. To gain a better understanding of the genetics of AMD, and to 

potentially uncover novel associations that could lead to a better molecular 

understanding, we performed novel pathway and interaction analyses of AMD. In 

addition to the work we presented here and the future directions we discussed, analyses 

of potential epigenetic and noncoding associations could yield additional insight. 
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With the knowledge that the complement system has been associated with risk for 

AMD, via several complement genes, we sought to better quantify the overall genetic 

effect of the complement pathway, as well as other potentially-related pathways. An 

advantage of our pathway analysis approach was that we were able to estimate 

cumulative effects, regardless of individual SNP-level significance, so that even non-

statistically significant genetic variation contributing cumulatively to risk for AMD effects 

would be detectable. The pathways we tested for association were angiogenesis, 

antioxidant activity, apoptotic signaling, complement activation, inflammatory response, 

response to nicotine, oxidative phosphorylation, and the tricarboxylic acid cycle. We only 

observed statistically significant additive genetic effects from the complement activation 

and inflammatory response pathways; however, the significance from the inflammatory 

response pathway was primarily due to the large number of genes it had in common with 

the complement activation pathway. Genes in the inflammatory response pathway but 

not the complement pathway did not have a statistically significant effect. While our 

results recapitulated the importance of the complement pathway, we interestingly found 

that additional variation in the complement pathway, separate from known risk variants 

(and variants in LD with those variants), contributes a statistically significant amount of 

additional risk for AMD (proportion of risk explained = 7%; p-value = 1 × 10-15). 

Next, we sought to test for potential epistatic effects contributing to risk for AMD, 

but no method existed that would let us assess cumulative genetic interaction effects in 

the way that GCTA does for additive effects via genetic relationship matrices (GRMs). 

Thus, we developed a method (iGRM) to allow GRMs reflective of additive, dominant, 
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and epistatic effects to be calculated by modifying the variance-covariance matrix to 

incorporate additional genetic effects based on variance calculations published by C. 

Clark Cockerham [90]. Software development included many modifications and 

optimizations to calculate GRMs for datasets of ~10,000 individuals and ~100,000 or less 

interacting SNP pairs. GRMs for datasets of similar sizes can be calculated in less than 

two days when using 100 processors.  

Additionally, we developed a method (iSim) to simulate variable levels of 

heritability due to either additive, dominant, or epistatic effects. Genetic effects are 

embedded by assigning phenotypes to individuals in an existing dataset in a way that 

phenotypic variation is modified to have a specific level of correlation with genetic 

variation, depending on the specified level of desired heritability. We performed multiple 

simulations using iSim and tested those simulations using iGRM to show that additive, 

dominant, and epistatic effects can not only be simulated but can be estimated by 

creating respective GRMs using iGRM. Both iGRM and iSim serve as useful tools for 

future genetic studies wishing to assess effects beyond additive effects. 

There are many possible pipelines that could be developed to study various traits, 

implementing iGRM and iSim as a backbone. Key components to the pipeline would be a 

knowledge-driven SNP selection process, using biological (or other) information to 

determine which SNPs are more likely to be interacting. For example, one could use 

chromatin accessibility to include only variants that are in open chromatin regions in a 

specific disease-related tissue or chromatin conformation data to select only variants 

potentially interacting due to physical proximity. 
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By applying iGRM to a large AMD dataset we were able to replicate a previously 

published interaction between CFH and C2/CFB; the sum of the four interaction 

components was small (0.63% PRE) but statistically significant (p = 0.0147). The gene 

ARMS2 has been significantly associated with AMD risk in many studies, however, its 

function remains uncharacterized [100]. With the hypothesis that ARMS2 could be 

impacting risk via epistatic effects between AMD-related pathways we applied iGRM to 

search for a potential missing link between ARMS2 and AMD. We observed additive 

effects from the ARMS2 region (2.5% PRE) and from each of the eight tested pathways 

(0.77% to 6.93%, excluding oxidative phosphorylation and TCA). Additionally, we 

observed one marginally significant dominant effect (from the antioxidant pathway) and 

three marginally significant epistatic effects between ARMS2 and antioxidant (A x A), 

nicotine (A x D), and TCA (A x A). 

Together, the novel analyses, methods, and results presented here help advance 

our understanding of the genetics of AMD and provide advancements in statistical 

genetics that are can be applied to essentially any trait/disease that might have a genetic 

component. Results shown here should guide future work. For example, the cumulative 

genetic effects from the complement pathway, that are separate from known risk SNPs, 

should be further partitioned and analyzed to localize contributing factors. Additionally, 

the pathway analysis described in Chapter 3 could be applied to a more exhaustive 

pathway list to potentially implicate a novel mechanism or to further prioritize subsets of 

genetic variation for additional analyses. 
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Future studies should investigate any differences in estimating power for additive 

genetic effects using GCTA’s GREML online power calculator (which was designed 

specifically for additive effects) compared to estimating power for dominant and 

interaction effects (which was first done in this study). It may be possible that inclusion 

of all combinations of SNP pair genotypes to calculate interaction GRMs may 

inadvertently lead to an unexpectedly low genetic variance and subsequently affect 

power. Whereas SNPs are often filtered out using a minor allele frequency, perhaps it 

would be beneficial to exclude multi-locus combinations that do not have a sufficient 

amount of variability to contribute to calculating genetic differences between pairs of 

individuals. On the other hand, rare variation may contribute to potential genetic 

interaction effects and removal would reduce power to detect such effects. 

In Chapter 4 we described several potential ways to improve iGRM, such as 

through the utilization of GPUs. Although currently sufficient for gene-level interaction 

analyses of relatively large sample sizes, further improvements are needed to 

accommodate larger datasets — a point that will become increasingly important as 

genetic data is shared and combined to create larger research cohorts. As computational 

limitations are lessened — likely through both software improvement and more advanced 

high performance computing clusters — more large-scale questions will be able to be 

investigated.  
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APPENDICES  
 

Appendix A. Risk SNP allele frequencies. 
 

SNP Chr. Pos. Risk Allele Alt. Allele EUR* AFR* 

rs10490924 10 124214448 T G 0.1948 0.2458 

rs10737680 1 194946078 C A 0.4235 0.4650 

rs429608 6 32038441 A G 0.1481 0.1929 

rs2230199 19 6718387 G C 0.2207 0.0333 

rs5749482** 22 31389665 C G 0.1083 0.6633 

rs4420638 19 45422946 G A 0.1978 0.2201 

rs1864163 16 55554734 A G 0.2704 0.2814 

rs943080 6 43934605 C T 0.4851 0.1672 

rs13278062 8 23082971 G T 0.4970 0.8654 

rs920915 15 58688467 C G 0.5030 0.3457 

rs4698775 4 110590479 G T 0.3052 0.0219 

rs3812111 6 116443735 A T 0.3956 0.7360 

rs13081855 3 99481539 T G 0.0964 0.0340 

rs3130783 6 30774357 G A 0.2008 0.4153 

rs8135665 22 38476276 T C 0.2187 0.3676 

rs334353 9 100948186 G T 0.2416 0.2337 

rs8017304 14 68785077 G A 0.4225 0.7027 

rs6795735 3 64705365 T C 0.4353 0.8661 

rs9542236 13 30717325 C T 0.4205 0.1815 

* Population risk allele frequency (data from 1000 Genomes Project).  
** Frequency data from HapMap (CEU/YRI), instead of 1000 genomes project (EUR/AFR). 
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Appendix B. Information for principal component analysis. 
 
1,983 AMD dataset individuals (pre-QC) 
805 HapMap individuals  

 165 CEU - Utah residents with Northern and Western European ancestry 

 137 CHB - Han Chinese in Beijing China 

 101 GIH - Gujarati Indians in Houston, Texas 

 113 JPT - Japanese in Tokyo, Japan 

 86 MXL - Mexican ancestry in Los Angeles, California 

 203 YRI - Yoruba in Ibadan, Nigeria 
 
To calculate principal components, we used 71 ancestry-informative markers (AIMs) that 
were present in both HapMap and AMD individuals. 1 Asian-descent and 11 African 
American individuals were excluded from analysis (circled in red). 
 
Reference SNP IDs (RS numbers) for 71 AIMs:  
rs3845596, rs2007350, rs1229133, rs1409778, rs2291409, rs6426327, rs520354, rs1868092, 
rs975612, rs972881, rs1521527, rs1435850, rs1320131, rs737516, rs1996818, rs1479371, rs1461131, 
rs1147696, rs2686085, rs225160, rs999634, rs736201, rs173686, rs1807912, rs1560550, rs31251, 
rs2296412, rs169125, rs942150, rs839556, rs369643, rs1080085, rs3294, rs901170, rs4107736, 
rs1440369, rs1868280, rs4246828, rs6474795, rs2151065, rs878400, rs7860423, rs11813505, 
rs722317, rs540819, rs236919, rs1630675, rs916041, rs1548837, rs903770, rs310935, rs1372177, 
rs981270, rs4904574, rs2873, rs1648282, rs1030588, rs936013, rs461785, rs168206, rs2164062, 
rs1019977, rs1426311, rs959419, rs1981431, rs186659, rs354731, rs816943, rs2837956, rs756658, 
rs739096 
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Appendix C. Pathway gene lists.  
Lists of all genes contained within each of the eight pathway assessed. 
 
Angiogenesis: AAMP, ACKR3, ACVR1, ACVR2B, ACVRL1, ADAM15, ADAM8, ADD1, ADM, ADM2, 

ADRA2B, AGGF1, AIMP1, ALOX12, AMOT, ANG, ANGPT1, ANGPT2, ANGPT4, ANGPTL3, ANGPTL4, 
ANGPTL6, ANPEP, ANXA2, ANXA3, APOD, APOH, APOLD1, AQP1, ARHGAP22, ARHGAP24, ATP5B, 
ATPIF1, B4GALT1, BAI1, BAI2, BAI3, BMP4, BMPER, BMPR2, BTG1, C1GALT1, C3, C3AR1, C5, C6, CALCRL, 
CASP8, CAV1, CCBE1, CCL11, CCL2, CCL24, CCR2, CCR3, CD34, CDC42, CDH13, CEACAM1, CHI3L1, 
CHRNA7, CLIC4, CMA1, COL15A1, COL18A1, COL4A1, COL4A2, COL4A3, COL8A1, COL8A2, CRHR2, 
CSPG4, CTGF, CTNNB1, CTSH, CX3CL1, CX3CR1, CXCL10, CXCL12, CXCL13, CXCL17, CXCR3, CXCR4, 
CYP1B1, CYR61, CYSLTR1, CYSLTR2, DAB2IP, DDAH1, DICER1, DLL4, E2F7, E2F8, ECM1, ECSCR, EDN1, 
EDNRA, EFNA1, EFNB2, EGF, EGFL7, EGLN1, EGR3, ELK3, ENG, ENPEP, EPAS1, EPGN, EPHA1, EPHA2, 
EPHB1, EPHB2, EPHB3, EPHB4, ERAP1, ERBB2, EREG, ESM1, ETS1, F3, FAM105B, FASLG, FGF1, FGF10, 
FGF18, FGF2, FGF6, FGF8, FGF9, FGFR1, FGFR2, FIGF, FLT1, FLT4, FN1, FOXC2, FOXO4, FOXS1, FZD5, 
FZD6, GATA2, GATA4, GATA6, GBX2, GDF2, GHRL, GJA5, GNA13, GPI, GPLD1, GPR124, GPR56, GPX1, 
GREM1, GTF2I, H3BM21, HAND1, HAND2, HDAC5, HDAC7, HDAC9, HEY1, HHEX, HIF1A, HIPK1, HIPK2, 
HMOX1, HOXA3, HOXA5, HOXA7, HOXB13, HOXB3, HPSE, HRG, HS6ST1, HSPB1, HSPG2, HTATIP2, 
HYAL1, ID1, IHH, IL17F, IL18, IL1A, IL1B, IL6, IL8, ISL1, ITGA5, ITGAV, ITGB1, ITGB1BP1, ITGB3, JAG1, JAM3, 
JMJD6, JUN, KDR, KLF4, KLF5, KLK3, KRIT1, KRT1, LAMA5, LECT1, LEF1, LOXL2, MAP2K5, MAP3K7, 
MAPK14, MAPK7, MCAM, MED1, MEG3, MEIS1, MEOX2, MFGE8, MMP14, MMP19, MMP2, MMRN2, 
MTDH, MYH9, NAA15, NCL, NF1, NFATC3, NFATC4, NODAL, NOS3, NOTCH1, NOTCH4, NOX1, NOX5, 
NPPB, NPR1, NR2E1, NR4A1, NRARP, NRCAM, NRP1, NRP2, NRXN1, NRXN3, NTRK1, NUS1, OVOL2, 
PARVA, PDCD10, PDCD6, PDE3B, PDGFA, PDGFRB, PDPN, PF4, PGF, PIK3CA, PIK3CG, PIK3R6, PITX2, 
PKNOX1, PLCD1, PLCD3, PLCG1, PLXDC1, PLXND1, PML, PNPLA6, POFUT1, PRKCA, PRKCB, PRKD1, 
PRKD2, PRKX, PROK1, PROK2, PROX1, PTEN, PTGIS, PTGS2, PTK2, PTK2B, PTPN14, PTPRB, PTPRM, 
RAMP1, RAMP2, RAPGEF3, RASIP1, RBM15, RBPJ, RGCC, RHOB, RNH1, ROBO1, ROBO4, ROCK1, ROCK2, 
RRAS, RTN4, RUNX1, S100A7, S1PR1, SAT1, SCG2, SEMA3E, SEMA4A, SEMA5A, SERPINE1, SERPINF1, 
SETD2, SFRP1, SFRP2, SH2D2A, SHB, SHC1, SHH, SIRT1, SLC12A6, SLIT2, SOX17, SOX18, SP100, SPHK1, 
SPINK5, SRF, SRPK2, SRPX2, STAB1, STAB2, STAT1, STK4, SULF1, SYK, TAL1, TBX1, TBX20, TBX4, TBXA2R, 
TDGF1, TEK, TGFA, TGFB2, TGFBI, TGFBR1, TGFBR2, THBS1, THBS2, THBS4, THSD7A, THY1, TIE1, 
TMEM100, TMPRSS6, TNFAIP2, TNFAIP3, TNFRSF12A, TNFRSF1A, TNFSF12, TNMD, TSPAN12, TWIST1, 
TYMP, UBP1, UTS2, UTS2R, VASH1, VASH2, VAV2, VAV3, VEGFA, VEGFB, VEGFC, VEZF1, VHLL, WARS, 
WASF2, WNT5A, ZC3H12A 
 
Antioxidant Activity: ALB, ALOX5AP, APOA4, APOE, APOM, CAT, CCS, CLIC2, COX-2, CYGB, 

DUOX1, DUOX2, EPX, FABP1, FAM213A, GPX1, GPX2, GPX3, GPX4, GPX5, GPX6, GPX7, GPX8, GSR, GSTK1, 
GSTO1, GSTO2, GSTT1, GSTZ1, HBA1, HBB, HP, IPCEF1, IYD, LPO, LTC4S, MGST1, MGST2, MGST3, MPO, 
MT3, NQO1, NXN, PARK7, PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, PRDX6, PTGS1, PTGS2, PXDN, 
PXDNL, S100A9, SEPW1, SOD1, SOD2, SOD3, SRXN1, TP53INP1, TPO, TXNDC17, TXNDC2, TXNRD1, 
TXNRD2, TXNRD3, UBIAD1, VIMP 
 
Apoptotic Signaling: AAMDC, AARS, AATF, AATK, ABL1, ABR, ACAA2, ACER2, ACIN1, ACKR3, 

ACSL5, ACTC1, ACTN1, ACTN2, ACTN3, ACTN4, ACVR1, ACVR1B, ACVR1C, ADA, ADAM17, ADAM8, 
ADAMTS20, ADAMTSL4, ADAR, ADCY10, ADD1, ADIPOQ, ADNP, ADORA1, ADORA2A, ADRA1A, ADRB1, 
AEN, AES, AGAP2, AGT, AGTR2, AHI1, AHR, AIFM1, AIFM2, AIFM3, AIM2, AIMP1, AIMP2, AIPL1, AKAP13, 
AKR1C3, AKT1, AKT1S1, AKT2, AKTIP, ALB, ALDH1A2, ALDH1A3, ALDOC, ALK, ALKBH1, ALOX12, ALOX15, 
ALOX15B, ALX3, ALX4, AMBRA1, AMIGO2, ANGPT1, ANGPT4, ANGPTL4, ANKRD1, ANKRD13C, ANXA1, 
ANXA4, ANXA5, APAF1, APBB1, APBB2, APC, APH1A, APH1B, API5, APIP, APLP1, APOE, APOH, APOPT1, 
APP, APPL1, AQP1, AQP2, AR, ARAF, AREL1, ARF6, ARHGAP10, ARHGAP4, ARHGDIA, ARHGEF11, 
ARHGEF12, ARHGEF16, ARHGEF17, ARHGEF18, ARHGEF2, ARHGEF3, ARHGEF4, ARHGEF6, ARHGEF7, 
ARHGEF9, ARNT2, ARRB1, ARRB2, ASAH2, ASCL1, ASIC2, ASNS, ATAD3A, ATF2, ATF4, ATF5, ATG3, 
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ATG4D, ATG5, ATG7, ATM, ATN1, ATOH1, ATP2A1, ATP7A, ATPIF1, AURKB, AVEN, AVP, AXIN1, AXL, 
AZU1, B4GALT1, BAD, BAG1, BAG3, BAG4, BAG6, BAK1, BARD1, BARHL1, BAX, BBC3, BCAP29, BCAP31, 
BCAR1, BCL10, BCL11B, BCL2, BCL2A1, BCL2L1, BCL2L10, BCL2L11, BCL2L12, BCL2L13, BCL2L14, BCL2L15, 
BCL2L2, BCL2L2-PABPN1, BCL3, BCL6, BCL7C, BCLAF1, BDKRB2, BDNF, BECN1, BEX2, BFAR, BID, BIK, 
BIRC2, BIRC3, BIRC5, BIRC6, BIRC7, BIRC8, BLCAP, BLID, BLOC1S2, BMF, BMP2, BMP4, BMP5, BMP7, 
BMX, BNIP1, BNIP2, BNIP3, BNIP3L, BNIPL, BOK, BOP, BRAF, BRCA1, BRCA2, BRE, BRMS1, BRSK2, BTC, 
BTG1, BTG2, BTK, BUB1, BUB1B, C11orf82, C1D, C1QBP, C3orf38, C5AR1, C6orf120, C8orf4, CAAP1, CACNA1A, 
CADM1, CALR, CAMK1D, CAMK2B, CAPN10, CAPN3, CARD10, CARD11, CARD14, CARD16, CARD17, 
CARD18, CARD6, CARD8, CARD9, CASP1, CASP10, CASP12, CASP14, CASP2, CASP3, CASP4, CASP5, CASP6, 
CASP7, CASP8, CASP8AP2, CASP9, CAST, CAT, CAV1, CBL, CBS, CBX4, CCAR1, CCAR2, CCK, CCL19, CCL2, 
CCL21, CCL3, CCL5, CCNB1IP1, CCNG1, CCR7, CD14, CD2, CD24, CD248, CD27, CD28, CD36, CD38, CD3E, 
CD3G, CD40, CD40LG, CD44, CD5, CD59, CD5L, CD70, CD74, CDC42, CDCA7, CDH1, CDIP1, CDK1, 
CDK11A, CDK11B, CDK4, CDK5, CDK5R1, CDKN1A, CDKN1B, CDKN2A, CDKN2D, CEBPB, CECR2, CERKL, 
CFDP1, CFL1, CFLAR, CGB, CHAC1, CHD8, CHEK2, CHIA, CHL1, CHMP3, CHST11, CIAPIN1, CIB1, CIDEA, 
CIDEB, CIDEC, CITED1, CITED2, CKAP2, CLC, CLCF1, CLEC5A, CLIP3, CLN3, CLN8, CLPTM1L, CLSPN, 
CLU, CNR1, CNTF, CNTFR, COL18A1, COL2A1, COL4A3, COMP, CPEB4, CRADD, CRH, CRIP1, CRLF1, 
CRYAA, CRYAB, CSE1L, CSF2, CSNK2A1, CSNK2A2, CSRNP1, CSRNP2, CSRNP3, CSTB, CTGF, CTH, CTLA4, 
CTNNA1, CTNNB1, CTNNBL1, CTSB, CTSH, CTSL, CUL1, CUL2, CUL3, CUL4A, CUL5, CX3CL1, CX3CR1, 
CXCL12, CXCR2, CXCR3, CXCR4, CYCS, CYFIP2, CYLD, CYR61, DAB2, DAB2IP, DAD1, DAP, DAP3, DAPK1, 
DAPK2, DAPK3, DAPL1, DAXX, DBH, DBNL, DCC, DCUN1D3, DDAH2, DDIT3, DDIT4, DDX20, DDX3X, 
DDX41, DDX47, DDX5, DEDD, DEDD2, DEPTOR, DFFA, DFFB, DFNA5, DHCR24, DHODH, DHRS2, 
DIABLO, DICER1, DIDO1, DKFZp686L0365, DKFZp781B1423, DLC1, DLG5, DLX1, DMPK, DNAJA3, DNAJB6, 
DNAJC10, DNAJC5, DNASE1, DNASE1L3, DNASE2, DNM1L, DNM2, DOCK1, DPEP1, DPF1, DPF2, DRAM1, 
DRAM2, DSG1, DSG2, DSG3, DSP, DUSP1, DUSP2, DUSP22, DUSP6, DYNAP, DYNLL1, DYNLL2, DYRK2, 
E2F1, E2F2, EAF2, EBAG9, ECT2, EDAR, EDN1, EDNRA, EDNRB, EEF1A2, EEF1E1, EFNA5, EGFR, EGLN2, 
EGLN3, EGR1, EGR2, EGR3, EGR4, EI24, EIF2AK3, EIF5A, EIF5AL1, ELL3, ELMO1, ELMO2, ELMO3, EMC4, 
ENDOG, EP300, EPB41L3, EPHA2, EPHA7, EPO, ERBB3, ERBB4, ERCC1, ERCC2, ERCC3, ERCC5, ERCC6, 
ERN1, ERN2, ERO1L, ESPL1, ESR1, ESR2, estrogen receptor, ETS1, ETV2, EVA1A, EYA1, EYA2, F2R, F3, FABP1, 
FADD, FAF1, FAIM, FAIM2, FAIM3, FAM129B, FAM162A, FAM188A, FAM215A, FAM32A, FAM3B, FAS, 
FASLG, FASTK, FCER1G, FEM1B, FGD1, FGD2, FGD3, FGD4, FGF10, FGF2, FGF4, FGF8, FGFR1, FGFR2, 
FGFR3, FHIT, FHL2, FIGNL1, FIS1, FKBP8, FKSG2, FLCN, FLT3, FLT4, FMN2, FNDC1, FNIP1, FNIP2, FNTA, 
FOSL1, FOXB1, FOXC1, FOXC2, FOXL2, FOXO1, FOXO3, FOXO4, FOXS1, FRZB, FXN, FXR1, FYN, FZD5, 
G0S2, G2E3, GABARAP, GADD45A, GADD45B, GADD45G, GAL, GAPDH, GAS1, GAS2, GAS6, GATA1, 
GATA3, GATA6, GCG, GCLC, GCLM, GCM2, GDF5, GDF6, GDNF, GFRAL, GGCT, GHITM, GHRL, GIMAP5, 
GJA1, GLI2, GLI3, GLO1, GLRX2, GLS2, GML, GNB1, GNB2L1, GNGT1, GNRH1, GPAM, GPER1, GPI, GPLD1, 
GPR65, GPX1, GRAMD4, GREM1, GRID2, GRIK2, GRIK5, GRIN1, GRIN2A, GRK1, GRK5, GRM4, GSDMA, 
GSK3A, GSK3B, GSN, GSTP1, GULP1, GZMA, GZMB, GZMH, GZMM, H1F0, H3BNH8, HAND2, HCAR2, 
HCK, HCLS1, HDAC1, HDAC2, HDAC3, HELLS, HERPUD1, HEY2, HGF, HIC1, HIF1A, HIGD1A, HIGD2A, 
HINT1, HINT2, HIP1, HIPK1, HIPK2, HIPK3, HK2, HMGA2, HMGB1, HMGB2, HMGCR, HMOX1, HNF1B, 
HNRNPK, HOXA13, HOXA5, HPN, HRAS, HRG, HRK, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA5, 
HSPA9, HSPB1, HSPD1, HSPE1, HTATIP2, HTR2B, HTRA2, HTT, HYAL2, IAPP, ID1, ID3, IDO1, IER3, 
IER3IP1, IFI16, IFI27, IFI6, IFIH1, IFIT2, IFIT3, IFNA2, IFNB1, IFNG, IFT57, IGBP1, IGF1, IGF1R, IGFBP3, 
IKBKB, IKBKE, IKBKG, IKZF3, IL10, IL12A, IL12B, IL17A, IL18, IL19, IL1A, IL1B, IL1RN, IL2, IL24, IL2RA, IL2RB, 
IL31RA, IL4, IL6, IL6R, IL6ST, IL7, ILK, INCA1, ING2, ING3, ING4, ING5, INHBA, INHBB, INPP5D, INS, 
INSL3, INSL6, INTS1, IP6K2, IRAK1, IRF1, IRF3, IRF5, IRF7, IRS2, ISL1, ITCH, ITGA1, ITGA5, ITGA6, ITGAV, 
ITGB1, ITGB2, ITGB3BP, ITM2B, ITM2C, ITPR1, ITPRIP, ITSN1, IVNS1ABP, JAG2, JAK2, JAK3, JMJD6, JMY, 
JTB, JUN, KALRN, KANK2, KAT2A, KCNIP3, KCNMA1, KDM1A, KDM2B, KDR, KIAA0141, KIAA1324, KIF1B, 
KITLG, KLF11, KLF4, KLHL20, KLLN, KMT2A, KNG1, KPNA1, KPNB1, KRAS, KRIT1, KRT18, KRT20, KRT8, 
LALBA, LAMTOR5, LCK, LCMT1, LCN2, LEF1, LEP, LGALS1, LGALS12, LGALS13, LGALS14, LGALS16, 
LGALS7, LGMN, LHX3, LHX4, LIG4, LILRB1, LITAF, LMNA, LMNB1, LPAR1, LRP1, LRP6, LTA, LTBR, LTK, 
LY86, LYN, MAD2L1, MADD, MAEA, MAEL, MAGED1, MAGEH1, MAGI3, MAL, MALT1, MAP1S, MAP2K4, 
MAP2K5, MAP2K6, MAP2K7, MAP3K1, MAP3K10, MAP3K11, MAP3K5, MAP3K7, MAP3K9, MAPK1, MAPK14, 
MAPK3, MAPK7, MAPK8, MAPK8IP1, MAPK9, MAPT, MARCO, MAX, MBD4, MCF2, MCF2L, MCL1, mdm2, 
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MDM4, MECOM, MECP2, MED1, MEF2A, MEF2C, MEF2D, MEGF10, MEIS3, MELK, MEN1, MERTK, MFF, 
MFGE8, MFSD10, MGMT, MICAL1, MIEN1, MIF, MITF, MKL1, MKNK2, MLH1, MLLT11, MLTK, MMP9, 
MNAT1, MNDA, MNT, MOAP1, MPO, MPV17L, MRPL41, MRPS30, MSH2, MSH6, MST4, MSX1, MSX2, MT-
RNR2, MT3, MTCH1, MTDH, MTFP1, MUC1, MUC2, MUL1, MUSK, MX1, MYBBP1A, MYC, MYD88, MYO18A, 
MYOCD, MZB1, NACA, NACC2, NAE1, NAIF1, NAIP, NANOS3, NBN, NCF2, NCKAP1, NCKAP1L, NCOA1, 
NCSTN, NDNF, NDUFA13, NDUFS1, NDUFS3, NEK6, NES, NET1, NEURL, NEUROD1, NF1, NFATC4, 
NFE2L2, NFKB1, NFKBIA, NFKBID, NGB, NGEF, NGF, NGFR, NGFRAP1, NISCH, NKX2-5, NKX2-6, NKX3-1, 
NKX3-2, NLRC4, NLRP1, NLRP12, NLRP2, NLRP3, NME1, NME2, NME3, NME5, NME6, NMT1, NOA1, 
NOC2L, NOD1, NOD2, NODAL, NOG, NOL3, NOS1AP, NOS3, NOTCH1, NOTCH2, NOX4, NOX5, NOXIN, 
NPM1, NQO1, NR1H3, NR2E1, NR3C1, NR4A1, NR4A2, NR4A3, NRAS, NRBP2, NRG1, NSMF, NTF3, NTN1, 
NTRK1, NTRK2, NUAK2, NUDT2, NUP62, NUPR1, OBSCN, OCLN, OGT, OPA1, OSM, OSR1, P2RX1, P2RX4, 
P2RX7, P4HB, PACS2, PAFAH2, PAK1, PAK2, PAK4, PAK6, PAK7, PALB2, PARK2, PARK7, PARL, PAWR, 
PAX2, PAX3, PAX7, PAX8, PCBP4, PCGF2, PCID2, PCNT, PCSK9, PDCD1, PDCD10, PDCD2, PDCD4, 
PDCD5, PDCD6, PDCD6IP, PDCD7, PDCL3, PDE1B, PDE3A, PDIA3, PDK1, PDK2, PDK4, PDPK1, PEA15, 
PEAR1, PEG10, PEG3, PERP, PF4, PGAP2, PHB, PHF17, PHIP, PHLDA1, PHLDA2, PHLDA3, PHLPP1, PIAS4, 
PIDD, PIGT, PIK3CA, PIK3CG, PIK3R1, PIM1, PIM2, PIM3, PINK1, PKN2, PKP1, PLA2G6, PLAC8, PLAGL1, 
PLEC, PLEKHF1, PLEKHG2, PLEKHG5, PLG, PLK1, PLK2, PLK3, PLK5, PLSCR1, PLSCR3, PMAIP1, PML, 
PNMA1, PNMA2, PNMA3, PNMA5, POLB, POLR2G, POR, POU3F3, POU3F4, POU4F1, POU4F3, PPARD, 
PPARG, PPARGC1A, PPID, PPIF, PPM1F, PPP1R13B, PPP1R13L, PPP1R15A, PPP2CA, PPP2CB, PPP2R1A, 
PPP2R1B, PPP2R2B, PPP2R4, PPP2R5C, PPP3CC, PPP3R1, PPT1, PRAME, PRAMEF1, PRAMEF10, PRAMEF11, 
PRAMEF12, PRAMEF13, PRAMEF14, PRAMEF15, PRAMEF16, PRAMEF17, PRAMEF18, PRAMEF19, PRAMEF2, 
PRAMEF20, PRAMEF22, PRAMEF23, PRAMEF24, PRAMEF25, PRAMEF3, PRAMEF4, PRAMEF5, PRAMEF6, 
PRAMEF7, PRAMEF8, PRDX2, PRDX3, PRDX5, PRELID1, PRF1, PRKAA1, PRKAA2, PRKCA, PRKCB, PRKCD, 
PRKCE, PRKCG, PRKCH, PRKCI, PRKCQ, PRKCZ, PRKD1, PRKDC, PRLR, PRMT2, PRNP, PROC, PRODH, 
PROK2, PROKR1, PROP1, PRUNE2, PSEN1, PSEN2, PSENEN, PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, 
PSMA6, PSMA7, PSMA8, PSMB1, PSMB10, PSMB11, PSMB2, PSMB3, PSMB4, PSMB5, PSMB6, PSMB7, 
PSMB8, PSMB9, PSMC1, PSMC2, PSMC3, PSMC4, PSMC5, PSMC6, PSMD1, PSMD10, PSMD11, PSMD12, 
PSMD13, PSMD14, PSMD2, PSMD3, PSMD4, PSMD5, PSMD6, PSMD7, PSMD8, PSMD9, PSME1, PSME2, 
PSME3, PSME4, PSMF1, PSMG2, PTCRA, PTEN, PTGFR, PTGIS, PTGS2, PTH, PTK2, PTK2B, PTPN6, PTPRC, 
PTPRH, PTRH2, PUF60, PYCARD, QRICH1, RABEP1, RAC1, RAD21, RAD9A, RAF1, RAG1, RALB, RALDH2, 
RAMP2, RAPGEF2, RAPSN, RARA, RARB, RARG, RASA1, RASGRF2, RASSF5, RASSF6, RASSF7, RB1, RB1CC1, 
RBCK1, RBM10, RBM25, RBM5, RELA, REST, RET, RFFL, RGCC, RHBDD1, RHOA, RHOB, RHOT1, RHOT2, 
RIPK1, RIPK2, RIPK3, RMDN3, RNF130, RNF144B, RNF152, RNF216, RNF34, RNF41, RNF7, RNPS1, ROBO1, 
ROBO2, ROCK1, RPS27A, RPS27L, RPS3, RPS3A, RPS6, RPS6KA1, RPS6KA2, RPS6KA3, RPS6KB1, RRAGA, 
RRAGC, RRM2B, RRN3, RRP8, RTKN, RTN3, RTN4, RXFP2, RYBP, RYR2, S100A14, S100A8, S100A9, S100B, 
SAP18, SAP30BP, SART1, SATB1, SAV1, SCARB1, SCG2, SCIN, SCN2A, SCRIB, SCRT2, SCT, SCXA, SDIM1, 
SEMA3A, SEMA4D, SEMA5A, SEMA6A, SENP1, SEPT4, SERPINB10, SERPINB2, SERPINB9, SERPINE1, SET, 
SFN, SFRP1, SFRP2, SFRP4, SFRP5, SGK1, SGMS1, SGPL1, SGPP1, SH3GLB1, SH3KBP1, SH3RF1, SHARPIN, 
SHB, SHF, SHH, SHISA5, SHQ1, SIAH1, SIAH2, SIGMAR1, SIK1, SIN3A, SIRT1, SIVA1, SIX1, SIX4, SKI, SKIL, 
SLC11A2, SLC25A27, SLC25A4, SLC25A5, SLC25A6, SLC35F6, SLC40A1, SLC46A2, SLC5A11, SLC5A8, 
SLC9A3R1, SLIT2, SLIT3, SLK, SLTM, SMAD3, SMAD6, SMNDC1, SMO, SMPD1, SMPD2, SNAI1, SNAI2, 
SNCA, SNCB, SNW1, SOCS2, SOCS3, SOD1, SOD2, SON, SORT1, SOS1, SOS2, SOX10, SOX2, SOX4, SOX7, 
SOX8, SOX9, SP100, SPATA5L1, SPDEF, SPHK1, SPHK2, SPIN2B, SPN, SPRY2, SPTAN1, SQSTM1, SRA1, SRC, 
SRGN, SRPK2, SRPX, SSBP3, SST, SSTR3, ST20, STAMBP, STAT1, STAT5A, STAT5B, STEAP3, STIL, STK11, 
STK17A, STK17B, STK24, STK25, STK3, STK4, STPG1, STRADB, STXBP1, SUDS3, SULF1, SUPV3L1, SYCE3, 
SYCP2, SYNGAP1, SYVN1, TAF9, TAF9B, TAOK1, TAOK2, TATDN1, TAX1BP1, TBX1, TBX3, TBX5, TCF7, 
TCF7L2, TCHP, TCTN3, TDGF1, TEK, TERF1, TERT, TEX11, TFAP2A, TFAP2B, TFAP2D, TFAP4, TFPT, TGFA, 
TGFB1, TGFB2, TGFB3, TGFBR1, TGFBR2, TGM2, THBS1, THEM4, THOC1, THOC6, THRA, TIA1, TIAF1, 
TIAL1, TIAM1, TIAM2, TICAM1, TIGAR, TIMM50, TIMP1, TJP1, TJP2, TLE1, TLR2, TLR3, TM2D1, TMBIM4, 
TMBIM6, TMEM102, TMEM109, TMEM161A, TMEM173, TMEM214, TMEM219, TMEM23, TNF, TNFAIP1, 
TNFAIP3, TNFAIP8, TNFRSF10A, TNFRSF10B, TNFRSF10C, TNFRSF10D, TNFRSF11B, TNFRSF12A, 
TNFRSF18, TNFRSF19, TNFRSF1A, TNFRSF1B, TNFRSF21, TNFRSF25, TNFRSF4, TNFRSF6B, TNFRSF8, 
TNFRSF9, TNFSF10, TNFSF12, TNFSF14, TNFSF15, TNFSF18, TNFSF8, TNFSF9, TNIP2, TNS4, TOP2A, 
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TOPORS, TOX3, TP53, TP53AIP1, TP53BP2, TP53I3, TP53INP1, TP63, TP73, TPD52L1, TPT1, TPX2, TRADD, 
TRAF1, TRAF2, TRAF3, TRAF3IP2, TRAF4, TRAF5, TRAF6, TRAF7, TRAIP, TRIAP1, TRIB3, TRIM2, TRIM24, 
TRIM32, TRIM35, TRIM39, TRIM69, TRIO, TSC22D1, TSC22D3, TSPO, TWIST1, TWIST2, TXNDC5, TXNIP, 
TYRO3, UACA, UBA52, UBB, UBC, UBD, UBE2B, UBE2D3, UBE2M, UBE2V2, UBE2Z, UBE4B, UBQLN1, 
UCN, UNC13B, UNC5A, UNC5B, UNC5C, UNC5D, URI1, USP17L1P, USP17L2, USP17L24, USP17L3, USP17L5, 
USP28, USP47, UTP11L, VAV1, VAV2, VAV3, VCP, VDAC1, VDAC2, VDR, VEGFA, VEGFB, VHL, VIL1, VIM, 
VIMP, VIP, VNN1, WDR92, WFS1, WNK3, WNT1, WNT10B, WNT11, WNT3A, WNT4, WNT5A, WNT7A, 
WNT9A, WRN, WT1, WWOX, XAF1, XDH, XIAP, XKR8, XPA, XRCC2, XRCC4, XRCC5, YAP1, YARS, YBX3, 
YWHAB, YWHAE, YWHAG, YWHAH, YWHAQ, YWHAZ, ZBTB16, ZC3H12A, ZC3H8, ZC3HC1, ZDHHC16, 
ZFAND6, ZGLP1, ZMAT3, ZMYND11, ZNF16, ZNF205, ZNF268, ZNF346, ZNF385A, ZNF385B, ZNF443, 
ZNF622, ZSWIM2 
 
Complement Activation: A2M, C1QA, C1QB, C1QBP, C1QC, C1R, C1RL, C1S, C2, C3, C3AR1, C4A, C4B, 

C4BPA, C4BPB, C4B_2, C5, C5AR1, C6, C7, C8A, C8B, C8G, C9, CALR, CD46, CD55, CD59, CD93, CFB, CFD, 
CFH, CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, CFI, CFP, CLU, CR1, CR2, CRP, FCN1, FCN2, FCN3, GPLD1, 
IGHG1, IGHG2, IGHG3, IGHG4, IGKC, IGKV1-5, IGKV4-1, IGLC1, IGLC2, IGLC3, IGLC6, IGLC7, KRT1, 
MASP1, MASP2, MBL2, P01593, P01594, P01595, P01596, P01597, P01598, P01599, P01600, P01601, P01603, 
P01604, P01605, P01606, P01607, P01608, P01609, P01610, P01611, P01612, P01613, P01614, P01615, P01616, 
P01617, P01619, P01620, P01621, P01622, P01623, P01624, P01625, P01699, P01700, P01701, P01702, P01703, 
P01704, P01705, P01706, P01707, P01708, P01709, P01710, P01711, P01712, P01713, P01714, P01715, P01716, P01717, 
P01718, P01719, P01720, P01721, P01722, P01742, P01743, P01744, P01760, P01761, P01762, P01763, P01764, 
P01765, P01766, P01767, P01768, P01769, P01770, P01771, P01772, P01773, P01774, P01775, P01776, P01777, 
P01778, P01779, P01780, P01781, P01782, P01814, P01815, P01816, P01817, P01818, P01824, P01825, P04206, 
P04207, P04208, P04209, P04211, P04430, P04431, P04432, P04433, P04434, P04438, P06309, P06310, P06311, 
P06313, P06314, P06315, P06316, P06317, P06318, P06319, P06326, P06331, P06887, P06888, P06889, P18135, 
P18136, P80362, P80748, P83593, PROS1, RGCC, SERPING1, VSIG4, VTN 
 
Inflammatory Response: A2M, ABCF1, ABR, ACE2, ACKR2, ACP5, ACVR1, ADA, ADAM8, ADCYAP1, 

ADIPOQ, ADORA1, ADORA2A, ADORA2B, ADORA3, ADRA2A, AFAP1L2, AGER, AGT, AGTR1, AGTR2, 
AHSG, AIF1, AIM2, AIMP1, AK7, AKT1, ALOX15, ALOX5, ALOX5AP, ANKRD42, ANO6, ANXA1, AOAH, 
AOC3, AOX1, APCS, APOA1, APOA2, APOC3, APOD, APOE, APOL2, APOL3, ATRN, AXL, AZU1, B4GALT1, 
BCL6, BCR, BDKRB1, BDKRB2, BDNF, BIRC2, BIRC3, BLNK, BMP2, BMP6, BMPR1B, BRD4, C1QBP, 
C1QTNF3, C2, C3, C3AR1, C4A, C4B, C4BPA, C4BPB, C4B_2, C5, C5AR1, C6, C7, C8A, C8B, C8G, C9, CALCA, 
CALCRL, CAMK1D, CAMK4, CARD18, CCL11, CCL13, CCL16, CCL17, CCL18, CCL19, CCL2, CCL20, CCL21, 
CCL22, CCL23, CCL24, CCL25, CCL26, CCL3, CCL3L1, CCL4, CCL4L1, CCL5, CCL7, CCL8, CCR1, CCR2, 
CCR3, CCR4, CCR5, CCR7, CCRL2, CD14, CD163, CD180, CD276, CD28, CD40, CD40LG, CD44, CD46, CD47, 
CD55, CD59, CD97, CDKN2A, CDO1, CEBPA, CEBPB, CELA1, CFB, CFH, CFI, CFP, CHI3L1, CHIA, CHST1, 
CHST2, CHST4, CHUK, CLEC7A, CMA1, CNR1, CNR2, CR1, CRH, CRHBP, CRP, CSF1, CSF1R, CTNNBIP1, 
CTSL, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL13, CXCL2, CXCL3, CXCL6, CXCL9, CXCR1, CXCR2, CXCR3, 
CXCR4, CXCR6, CYBA, CYBB, CYP4F11, CYSLTR1, DAB2IP, DARC, DEFB1, DUSP10, ECM1, EDNRA, ELANE, 
ELF3, EMR2, EPHX2, EVI1, F11R, F12, F2, F2R, F2RL1, F3, F8, FABP4, FAM105B, FAM132A, FAS, FASLG, 
FCER1A, FCER1G, FEM1A, FFAR4, FN1, FOS, FOXF1, FOXP3, FPR2, GAL, GATA3, GBA, GGT1, GGT5, GHRL, 
GHSR, GPER1, GPR68, GPX1, GPX2, GSTP1, H0Y858, HCAR2, HCK, HDAC4, HDAC5, HDAC9, HIF1A, 
HIST1H2BA, HLA-DRB1, HMGB1, HMOX1, HNRNPA0, HP, HRH1, HRH4, HYAL1, HYAL2, HYAL3, IDO1, 
IER3, IFI16, IFNA2, IFNG, IGFBP4, IKBKB, IKBKG, IL10, IL10RB, IL12B, IL13, IL15, IL17A, IL17B, IL17C, IL17D, 
IL17F, IL17RA, IL17RC, IL17RE, IL18, IL18RAP, IL1A, IL1B, IL1F10, IL1RAP, IL1RL1, IL1RN, IL2, IL20, IL20RB, 
IL21, IL22, IL23A, IL23R, IL25, IL27, IL2RA, IL33, IL34, IL36A, IL36B, IL36G, IL37, IL4, IL4R, IL5, IL5RA, IL6, 
IL6R, IL6ST, IL8, IL9, INS, IRAK2, IRF3, IRF7, IRG1, IRGM, ISL1, ITCH, ITGAL, ITGB2, ITGB6, ITIH4, JAK2, 
JAM3, KCNJ10, KDM6B, KIT, KL, KLF4, KLKB1, KLRG1, KNG1, LAT, LBP, LIAS, LIPA, LRRC32, LTA, LTA4H, 
LTB4R, LXN, LY75, LY86, LY96, LYN, LYZ, MAP2K3, MAPK13, MAPK7, MAPKAPK2, MAS1, MASP1, MBL2, 
MECOM, MEF2A, MEF2C, MEFV, MEP1B, MGLL, MIF, MMP25, MRGPRX1, MS4A2, MVK, MYD88, MYLK3, 
NAIP, NCF1, NCR3, NDFIP1, NDST1, NFAM1, NFATC3, NFATC4, NFE2L1, NFKB1, NFKBID, NFKBIZ, NFRKB, 
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NFX1, NGF, NLRC4, NLRP1, NLRP12, NLRP3, NLRP6, NMI, NOD1, NOD2, NOS2, NOTCH1, NOX1, NOX4, 
NPFF, NPY5R, NR1D2, NR1H3, NT5E, NUPR1, OGG1, OLR1, ORM1, ORM2, OSM, OSMR, P2RX1, P2RX7, 
PARK7, PARP4, PDE2A, PDPN, PIK3AP1, PIK3CD, PIK3CG, PLA2G2A, PLA2G2D, PLA2G2E, PLA2G4B, 
PLA2G4C, PLA2G7, PLAA, PLGRKT, PLSCR1, PNMA1, PPARG, PRDX5, PRKCA, PRKCD, PRKCQ, PRKCZ, 
PRKD1, PROK2, PROS1, PSMA1, PSMA6, PSMB4, PTAFR, PTGDR, PTGER3, PTGER4, PTGES, PTGIS, PTGS2, 
PTPN2, PTX3, PXK, PYCARD, RAC1, RASGRP1, RBPJ, REG3A, REG3G, RELA, RIPK2, RPS19, RPS6KA4, 
RPS6KA5, S100A12, S100A8, S100A9, S1PR3, SAA1, SAA2, SAA4, SAAL1, SBNO2, SCG2, SCGB1A1, SCN9A, 
SCUBE1, SELE, SELP, SEMA7A, SERPINA1, SERPINA3, SERPINC1, SERPINE1, SERPINF2, SERPING1, SETD6, 
SGMS1, SHARPIN, SHPK, SIGIRR, SIGLEC1, SIRT1, SLC11A1, SLC7A2, SMAD1, SMAD3, SPHK1, SPN, SPP1, 
STAB1, STAT3, STAT5A, STAT5B, STK39, SYK, TAC1, TACR1, TBC1D23, TBK1, TBXA2R, TEK, TFF2, TGFB1, 
TGM2, THBS1, THEMIS2, TICAM1, TICAM2, TIRAP, TLR1, TLR10, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, 
TLR8, TLR9, TMEM23, TNF, TNFAIP3, TNFAIP6, TNFAIP8L2, TNFRSF11A, TNFRSF1A, TNFRSF1B, 
TNFRSF4, TNFSF11, TNFSF4, TNIP1, TNIP2, TNIP3, TOLLIP, TP73, TPST1, TRIL, TSC2, TUSC2, TYRO3, 
UACA, UCN, UGT1A1, UNC13D, VCAM1, VIMP, VNN1, VTN, WNT5A, XCL1, XCR1, XIAP, YWHAZ, ZFP36, 
ZP3 
 
Response to Nicotine: ABAT, ATP1A2, AVP, BAD, BCL2, CHRNA3, CHRNA4, CHRNA5, CHRNA7, 

CHRNB1, CHRNB2, CHRNB4, CNR1, DRD2, EDN1, GNAT3, HMOX1, HOMER1, IL13, KCNK1, NGF, NKX6-1, 
NTRK1, PDX1, PPARA, SLC6A3, SLC7A11, STAR, TACR1, TH, TNF 
 
Oxidative Phosphorylation: AK2, ATP5C1, ATP5D, ATP7A, BDNF, CHCHD10, COQ7, COX10, 

COX15, DLD, FXN, GBAS, MECP2, MLXIPL, MSH2, MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND1, MT-
ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6, NDUFA1, NDUFA10, NDUFA2, NDUFA3, 
NDUFA4, NDUFA5, NDUFA6, NDUFA7, NDUFA8, NDUFA9, NDUFAB1, NDUFAF1, NDUFB1, NDUFB10, 
NDUFB2, NDUFB3, NDUFB4, NDUFB5, NDUFB6, NDUFB7, NDUFB8, NDUFB9, NDUFC1, NDUFC2, 
NDUFC2-KCTD14, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS5, NDUFS6, NDUFS7, NDUFS8, NDUFV1, 
NDUFV2, NDUFV3, PARK7, PPIF, SDHAF2, SNCA, SURF1, TAZ, TEFM, TWIST1, UCP1, UCP3, UQCC2, 
UQCR10, UQCRB, UQCRC1, UQCRC2, UQCRH 
 
Tricarboxylic Acid Cycle: ACO1, ACO2, BCKDHA, BCKDHB, BCKDK, CS, DBT, DHTKD1, DLAT, 

DLD, DLST, FH, IDH1, IDH2, IDH3A, IDH3B, IDH3G, MDH1, MDH1B, MDH2, NNT, OGDH, OGDHL, 
PDHA1, PDHA2, PDHB, SDHA, SDHB, SDHC, SDHD, SUCLA2, SUCLG1, SUCLG2 
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Appendix D. Simulation workflow data structuring. 
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Appendix E. Standard error of the mean for simulations. 
 

 Component Add A Dom A Add B Dom B A × A A × D D × A D × D 

1%
 S

im
u

la
te

d
 

Add A 0.0010 0.0003 0.0002 0.0001 0.0037 0.0014 0.0011 0.0015 

Dom A 0.0001 0.0007 0.0004 0.0002 0.0032 0.0029 0.0008 0.0007 

Add B 0.0003 0.0001 0.0010 0.0001 0.0013 0.0014 0.0016 0.0014 

Dom B 0.0003 0.0002 0.0002 0.0011 0.0015 0.0005 0.0010 0.0026 

A × A 0.0002 0.0003 0.0002 0.0003 0.0017 0.0033 0.0016 0.0035 

A × D 0.0001 0.0001 0.0002 0.0002 0.0005 0.0012 0.0008 0.0006 

D × A 0.0003 0.0001 0.0002 0.0003 0.0013 0.0012 0.0010 0.0014 

D × D 0.0002 0.0003 0.0002 0.0002 0.0009 0.0013 0.0008 0.0039 

5%
 S

im
u

la
te

d
 

Add A 0.0015 0.0001 0.0005 0.0003 0.0014 0.0023 0.0021 0.0035 

Dom A 0.0004 0.0018 0.0002 0.0002 0.0011 0.0039 0.0005 0.0018 

Add B 0.0002 0.0001 0.0029 0.0002 0.0021 0.0011 0.0008 0.0006 

Dom B 0.0005 0.0001 0.0003 0.0015 0.0030 0.0021 0.0023 0.0020 

A × A 0.0004 0.0003 0.0001 0.0003 0.0040 0.0017 0.0010 0.0002 

A × D 0.0002 0.0002 0.0002 0.0001 0.0016 0.0084 0.0020 0.0020 

D × A 0.0001 0.0001 0.0001 0.0001 0.0010 0.0035 0.0046 0.0015 

D × D 0.0002 0.0002 0.0003 0.0000 0.0046 0.0064 0.0010 0.0063 

10
%

 S
im

u
la

te
d

 

Add A 0.0014 0.0001 0.0002 0.0001 0.0048 0.0013 0.0008 0.0013 

Dom A 0.0003 0.0026 0.0002 0.0002 0.0021 0.0017 0.0007 0.0010 

Add B 0.0001 0.0002 0.0017 0.0002 0.0019 0.0011 0.0016 0.0007 

Dom B 0.0002 0.0002 0.0001 0.0027 0.0015 0.0017 0.0048 0.0015 

A × A 0.0001 0.0001 0.0001 0.0002 0.0035 0.0023 0.0034 0.0009 

A × D 0.0001 0.0001 0.0006 0.0003 0.0037 0.0074 0.0002 0.0034 

D × A 0.0002 0.0001 0.0001 0.0002 0.0044 0.0032 0.0077 0.0017 

D × D 0.0003 0.0004 0.0001 0.0004 0.0012 0.0044 0.0015 0.0071 

20
%

 S
im

u
la

te
d

 

Add A 0.0026 0.0002 0.0003 0.0002 0.0013 0.0021 0.0021 0.0005 

Dom A 0.0002 0.0032 0.0002 0.0001 0.0008 0.0012 0.0019 0.0016 

Add B 0.0001 0.0002 0.0017 0.0003 0.0021 0.0028 0.0012 0.0009 

Dom B 0.0001 0.0002 0.0001 0.0013 0.0013 0.0012 0.0009 0.0008 

A × A 0.0001 0.0002 0.0003 0.0006 0.0050 0.0008 0.0015 0.0023 

A × D 0.0001 0.0003 0.0002 0.0001 0.0026 0.0038 0.0006 0.0009 

D × A 0.0005 0.0005 0.0002 0.0000 0.0028 0.0015 0.0023 0.0020 

D × D 0.0002 0.0001 0.0003 0.0003 0.0015 0.0011 0.0004 0.0054 

Colored ranging from yellow to green, with bright green representing the smallest values 
and bright red representing the largest values. 
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Appendix F. Observed variance explained for 1% and 20% heritability. 
 

 
Observed variance explained for 1% simulated heritability. 

 
 

 
Observed variance explained for 20% simulated heritability. 
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Both 3-D bar charts are scaled to 20% on the Y-axis, for comparison.  The first 

figure shows ~1% PVE on the diagonal and the second figure shows ~20% — levels 

corresponding with the amount they were simulated to have. As the simulated effect size 

increases the “background noise” from null effects diminishes in comparison, making it 

easier to differentiate between real and spurious effects. As a note, results shown here are 

for a relatively small number of SNPs (1oo per group, with 50 per group used for 

simulating effects). Based on other analyses we have performed (not shown), as the 

number of SNPs increases the amount of background noise correspondingly decreases. 
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Appendix G. Significance calculations for simulated effects. 
 

Simulated 
Heritability 

Observed 
PVE 

Simulated 
Component 

Excluded 
Component 

Iteration 
Likelihood 

(Full) 
Likelihood 
(Reduced) 

LRT p-value 

1% 

0.51% Add A Add A 926 47,104.95 47,109.44 8.98 0.0014 

0.27% Add A Dom A 883 47,106.19 47,106.22 0.06 0.4032 

2.29% A × A A × A 1,404 67,150.15 67,151.47 2.64 0.0521 

0.44% A × A A × D 1,451 67,149.70 67,148.11 3.18 0.0373 

5% 

4.95% Add A Add A 890 37,792.53 37,945.71 306.36 6.8 e-69 

0.16% Add A Dom A 1,969 37,784.13 37,784.03 0.20 0.3274 

4.65% A × A A × A 1,737 58,607.59 58,612.81 10.44 0.0006 

0.93% A × A A × D 1,709 58,607.79 58,607.64 0.30 0.2919 

10% 

10.17% Add A Add A 1,923 35,074.42 35,468.25 787.66 1.3 e-173 

0.05% Add A Dom A 1,583 35,076.34 35,075.63 1.42 0.1184 

10.73% A × A A × A 1,679 55,458.43 55,486.49 56.12 3.4 e-14 

1.97% A × A A × D 1,673 55,458.47 55,459.50 2.06 0.0756 

20% 

20.42% Add A Add A 1,587 30,327.05 31,242.24 1830.38 < 1 e-300 

0.15% Add A Dom A 1,418 30,328.08 30,327.57 1.02 0.1563 

19.34% A × A A × A 1,873 52,211.18 52,298.55 174.74 3.4 e-40 

0.99% A × A A × D 1,680 52,212.35 52,212.08 0.54 0.2312 

Data shown here is from the last replicate performed for each level of heritability. Based on results shown in Table 15 we 
selected representative single SNP and interaction simulations to test for significance, including one on-diagonal and one 
off-diagonal component from each. On-diagonals represent the significance of the simulated component, while off-
diagonals represent the significance from a non-simulated component. After manually running REML for reduced models, 
excluding given components, we manually looked up likelihoods from the original (full) model and the reduced model, 
matching to use estimates from the same REML iteration. P-values were calculated using a Chi-square distribution from the 
calculated LRT test statistic. 
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Appendix H. Example iGRM calculation time and progress rate. 
 

 
The graph here depicts data for the ARMS2-complement GRM set, however both other 
tested pathway sets exhibited similar elapsed time and progress rates. 
 
 

Each of the three ARMS2-pathway GRM calculations required about the same 

amount of compute time and exhibited similar progress rate characteristics. Each of the 

three GRM set calculations required just over 24 hours, using 100 processors and had a 

decreased progress rate after about 75% progress. In this example, the decreased progress 

rate is not inhibitory but attempting the same analysis using the full dataset of 33,603 

individuals greatly increases the number of pairs of individuals being assessed (~62.7 

million pairs for 11,201 individuals versus ~564.6 million pairs for 33,603 individuals). Not 

only is compute time for GRM calculations increased, but REML analysis becomes 

increasingly difficult — so much so that it becomes the limiting step. 
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