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I. INTRODUCTION 

I.1 Salivary gland structure and function  

Salivary glands are simple exocrine glands of the oral cavity that assist in 

digestion through production of saliva, which is a mixture of electrolyte fluid, mucous, 

glycoproteins, and enzymes.  Although the major function is to lubricate food and begin 

digestion, saliva also functions as a first line of organismal protection from microbes 

since it contains antibacterial compounds and secretory immunoglobulins.  The three 

pairs of major salivary glands (the parotid, submandibular, and sublingual glands) are 

symmetrically oriented in the oral cavity (Figure 1).  Although, the major salivary glands 

account for the vast majority (>95%) of saliva production, between 800 and 1,000 minor 

salivary glands are dispersed throughout the oral cavity.1  

 

 

Figure 1: Anatomical locations of 

salivary glands. 

Figure adapted with permission.2 
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I.2 Malignancies of the salivary glands 

 The World Health Organization recognizes 22 types of salivary cancer, and 

regardless of histological type, standard treatment is currently limited to surgery with or 

without post-operative radiation therapy.3  Molecular defects in several tumor types are 

beginning to emerge, and there are early reports targeting some of these defects such 

as expression of androgen receptor, amplified HER2, or fused TrkC.  Summarized 

below are the most common forms of salivary cancer. 

 The most prevalent cancer of the salivary glands is mucoepidermoid carcinoma 

(MEC), which occurs primarily in the parotid.3  Mucoepidermoid tumors are graded 

based on the cystic component, presence of neural invasion, necrosis, mitotic cells per 

high power field, and anaplasia.4-6  High grade tumors have an increased risk of 

metastasis and lower survival rates than low-grade tumors.4-6  The most frequently, and 

sometimes only, molecular abnormality in MEC is a translocation of chromosomes 

11q21 and 19p13, which results in activation of Notch target genes by fusing the 

mastermind-like 2 (MAML2) gene, a cofactor for NOTCH transcription, with a gene of 

unknown function.7, 8  Ras pathway activation has also been implicated in MEC; 

mutations in H-ras correlate with high grade tumors and are observed in 18% of MECs.9  

Despite efforts to characterize molecular defects in MEC, neither the t(11:19)(q21;p13) 

gene fusion nor H-ras mutations are currently targetable, and treatment remains 

surgical resection followed by radiation for high grade tumors.  

 Acinic cell carcinomas are salivary tumors whose neoplastic cells have features 

of serous acinar cells.  These tumors are thought to arise directly from serous acinar 

cells or from terminal duct cells with subsequent acinar differentiation.3  Women are 
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slightly more likely to develop acinic cell carcinoma than men, but tumor incidence does 

not seem to relate to age or ethnicity.10  While the majority of acinic cell carcinomas 

present as slow-growing, painless lesions, some patients present with pain or partial 

facial paralysis.10-12  Molecularly, the majority (84% in one study) of acinic cell 

carcinomas exhibit loss of heterozygosity (LOH) in chromosomes 1, 4, 5, 6, or 17, but 

the loci affected vary between tumors.13  Prognostically, ~35% of patients recur 

following surgical excision, with ~16% of patients ultimately succumbing to the 

disease.11, 12, 14  For acinic cell carcinoma, tumor stage is a better predictor of outcome 

than histological grading, and regional and distal metastases associate with increasingly 

poor prognosis.3 

 Mammary analogue secretory carcinoma (MASC) was categorized as a subtype 

of acinic cell carcinoma until 2010.15  Unlike acinic cell carcinoma, MASCs lack serous 

acinar differentiation and the microcystic and tubular spaces within the tumors are filled 

with a bubbly secretion reminiscent of breast secretory carcinoma.15  Testing for the 

t(12;15)(p13;q25) translocation characteristic of breast secretory carcinoma revealed 

that >90% of MASC contain this translocation that is absent in acinic cell carcinomas 

with typical histology.15  In MASC, this translocation fuses the ETV6 and NTRK3 genes 

creating a chimeric tyrosine kinase with transformative potential.16, 17  

 Salivary ductal carcinoma (SDC) represents ~9% of salivary malignancies that 

occurs nearly four-fold more frequently in men.18, 19  SDC arises in each of the major 

and minor salivary glands, but is most frequently found in the parotid.18-21  When 

compared to other salivary neoplasms, SDC presents at later stages due to its 

particularly aggressive growth and high rates of metastasis.18  Histologically, SDC is 
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characterized by an infiltrative cribriform pattern, although patterns of pleomorphic 

adenoma may also be present.3  Genetic alterations in SDC include frequent p53 

mutations,22, 23 amplification and overexpression of HER2/neu,22, 24 and inactivation of 

CDKN2A/p16.25  Androgen receptor is expressed in ~90% of SDCs, and these tumors 

can respond to androgen deprivation therapy.26, 27  Despite molecular characterization 

of SDC, prognosis remains poor with ~65% of patients succumbing to disease, usually 

within four years of diagnosis.3   

 Adenoid cystic carcinoma (ACC) is the second most common salivary cancer, 

characterized by a slow-growing mass prone to perineural invasion and metastasis.  

While local disease is frequently controlled by surgical removal and post-operative 

radiation, this tumor is relentless resulting in very high rates of distant metastases.3  

This tumor subtype is the focus of this dissertation and will be discussed in detail below.   

I.3 Adenoid cystic carcinoma (ACC) 

I.3.1 Discovery of ACC 

Cribiform morphology with characteristic tissue invasion and perineural spread of 

ACC was first described in 1853.28  The tumor was originally described as “cylindroma” 

in 1856 and was not differentiated from the similarly-appearing benign cylindroma until 

1930 when the name “adenoid cystic carcinoma” was coined by J. W. Spies.29  The 

malignant nature of ACC wasn’t established until 1942.30 

Today, ACC has a yearly incidence of between 3 and 4.5 cases per million 

population, making it the second most common form of salivary cancer.31  Outside of 

the parotid gland, ACC is the most frequent salivary gland malignancy.32-34   
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I.3.2 Demographic and risk factors 

Relative to many epithelial cancers, adenoid cystic carcinoma presents at a 

younger age, with the majority of cases occurring in the 5th to 6th decades of life.31, 35-37  

However, ACC can occur in all age groups and is more prevalent in women (55% to 

60% of cases).  To date, female gender remains the only known risk factor, as ACC 

incidence has not been associated with behaviors such as use of alcohol, tobacco, or 

illicit drugs.31-34   

I.3.3 Diagnosis 

ACC normally presents as a slow-growing mass in the oral cavity, salivary gland, 

or other sites of the upper aerodigestive tract, but more advanced tumors can cause 

hoarseness, difficulty swallowing, numbness (of the palate, face, or tongue), pain, and 

facial nerve paralysis.  After identification of a mass in the salivary gland, computed 

tomography (CT) scan and/or magnetic resonance imaging (MRI) is used to better 

define the extent of the tumor involvement including bone and nerve invasion.38  

Fine needle aspiration (FNA) of salivary masses is a quick, inexpensive 

procedure that uses a hollow thin needle to sample masses.  Cytologically, ACC is 

characterized by large globules of extracellular matrix, partially surrounded by basaloid 

cells.39  Cytology of salivary cancers can be challenging with a high rate of false 

negative evaluations previously reported.40  At experienced centers, malignant and 

benign tumors can be distinguished with a sensitivity and specificity of 92.8% and 

93.9%, respectively;41 however, given the known uncertainty of cytology, histopathologic 

evaluation of excised tissue is the gold standard for diagnosis. 
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While histological analysis can easily differentiate ACC from the more frequent 

MEC, polymorphous low-grade adenocarcinoma (PLGA) is more difficult to differentiate 

based on morphology.  Prognostically, ACC is much worse than PLGA, making 

differentiation of these tumor types important.42  PLGA is extremely rare in the major 

salivary glands, so this distinction is mostly relevant to tumors of the minor salivary 

glands where small biopsies further complicate diagnostic difficulties.43  Clinically, 

expression of genes characteristic of these tumors is assessed by measuring protein 

levels with immunohistochemistry (IHC).42, 44-61  As summarized by Darling and 

colleagues, few proteins have been identified which can differentiate ACC from PLGA.62  

Although some markers have preferential expression patterns favoring either ACC or 

PLGA, the only marker with a clear diagnostic difference is vimentin, which is expressed 

in PLGA specimens, but not in ACC.62   

I.3.4 Pathology and histology 

Histologically, ACC consists of small non-luminal, basaloid cells with small to 

moderate amounts of cytoplasm and inconspicuous nuclei.  Cells with myoepithelial 

differentiation predominate with the remaining tumor cells exhibiting luminal epithelial 

differentiation.60, 63  The predominance of these cell types is not particularly surprising, 

since ACC originates from the intercalated duct where luminal epithelial and 

myoepithelial cells are prevalent.  

Three distinct growth patterns are associated with ACC.  The classic and most 

common is a cribriform pattern where cells are arranged into nests surrounding cell-free 

pseudocysts.  ACC tumors that infiltrate into separate gland-like structures containing 

individual central lumens are described as tubular.  This growth pattern is rarely seen 
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alone; tumors with tubular growth often demonstrate cribriform patterning as well.64, 65  

Finally, some ACC tumors demonstrate a solid growth pattern where the cells grow in 

tightly-packed sheets without apparent lumen formation.  This pattern is more frequently 

associated with high tumor grade, poor prognosis, and distant metastases.64-66   

One hallmark of ACC is perineural invasion, which is frequently observed in 

early-stage tumors and has long been considered a marker of poor prognosis and 

distant metastasis.35, 67  However, a recent study found no impact of perineural invasion 

on survival or formation of distal metastases.  Rather, this study identified intraneural 

invasion as an independent predictor of poor prognosis.68  Signaling pathways activated 

in ACC and in neural or neural-supporting cells may explain ACC neurotropism; 

however, mechanisms have not been well established.  

I.3.5 Treatment and prognosis 

Although ACC tumors are typically slow-growing, all grades of ACC are 

considered aggressive given high rates of recurrence.  Standard treatment including 

radical resection, and postoperative radiotherapy provides a high rate of short-term local 

control; however, late recurrence at both local and distant sites frequently occur despite 

this aggressive treatment.69-71  One cause of local recurrences is perineural invasion 

and associated skip lesions, which complicate the ability for surgeons and pathologists 

to ensure tumor-free margins.  Nodal disease is not a cause of recurrence, because 

ACC rarely metastasizes to regional cervical nodal basins.72  Unfortunately, distal 

metastases occur in 40% of cases, spreading primarily to the lungs, but also to the liver, 

kidney, bones, and brain.72 
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Although survival at five years post diagnosis is high (70-90%), survival rates 

dramatically decrease to only 35-40% and 10% at 15 and 20 years, respectively.73-75  

Diminished long-term survival is primarily associated with inability to control distant 

disease, and once distant metastases of ACC are identified, 5-year survival rate is 

approximately 20%.76  Doubling time of pulmonary metastases in ACC have been 

estimated to average 393 days, suggesting that metastasis may have already occurred 

by the time the primary tumor presents clinically and that early detection and local 

therapy may not prevent distant disease.77  The clinical course of ACC suggest that new 

therapies targeting widespread systemic metastases will be needed.   

I.4 ACC research & clinical applications 

I.4.1 Molecular profiling 

I.4.1.1 Exome and genome sequencing 

As with many tumor types, deep sequencing technology has been used to 

investigate ACC.  Studies using exome and whole genome sequencing from a 

combined 84 ACC tumors show that the ACC genome is generally stable with a low 

level of somatic mutations per genome (range 1-36).78, 79  Genetic changes identified in 

ACC were highly diverse, with mutations seen in chromatin regulators, genes 

associated with DNA damage, protein kinase A (PKA) signaling, MYB signaling, and 

PI3K signaling.78, 79  Notably, the most recurrent aberrations identified in ACC are MYB-

NFIB gene fusions detected in approximately 50% of ACC specimens.80  These fusions 

result from the recurrent translocation t(6;9)(q22-23;p23-24) causing a pro-oncogenic 

MYB-NFIB fusion protein.81  Transcriptional activation the MYB-NFIB fusion is induced 
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by super-enhancers (regulatory DNA regions enriched with binding sites for 

transcriptional co-activators) brought to the MYB gene through the fusion.82 

Although MYB-NFIB fusions occur in approximately 50% of tumors, MYB is 

highly expressed in up to 70% of ACC, suggesting alternative mechanisms of MYB 

activation in ACC.  In addition, a MYB gene expression signature occurs in almost all 

ACCs, even those without detectable MYB expression.80  Recently, whole genome 

sequencing identified a novel gene fusion between the MYB family member, MYBL1, 

and the terminal exons of NFIB in approximately one-third of ACC tumors that lack 

MYB-NFIB fusion.  Structurally, MYBL1 is similar to MYB with a nearly identical DNA 

binding domain. Both MYB-NFIB and MYBL1-NFIB fusions produce C-terminal 

truncations of MYB or MYBL1; however, both fusions uniformly retain DNA binding and 

transcription activation domains.  These findings strongly suggest that MYBL1 fusions 

serve a similar role as MYB fusions in ACC.83 

I.4.1.2 Expression array 

To identify genes that stimulate ACC tumorigenesis or behavior, microarray gene 

expression analyses was performed on15 ACCs and five normal salivary tissue 

specimens.65  Consistent with myoepithelial differentiation of ACC, components of the 

extracellular matrix and basement membrane are among the most differentially 

expressed genes when comparing ACC and normal salivary gland.  Sox 4, the highest 

scoring gene, is a transcription factor that functions in the heart, brain, reproductive 

system, and B-cell development; however, the function of SOX4 in cancer is relatively 

unknown.  Additional transcription factors including AP-2α and AP-2γ, which regulate 

genes involved in the development of the neural crest and skin are also differentially 
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expressed.  AP-2 targets include c-Kit, whose expression was previously associated 

with ACC.  Other notable differentially expressed genes are genes associated with the 

Notch signaling pathways (ex: Notch3 and JAG1) and the WNT/β-catenin (ex: casein 

kinase 1, ε and Frizzled-7).  Comparison of the top ranking genes in ACC to 175 non-

ACC carcinomas from 10 biologic sites identified increased expression of versican; 

AP2-γ; casein kinase 1ε; and Frizzled-7 in ACC specimens.65 

Adenoid cystic carcinoma also forms outside the salivary glands, including in the 

breast, lungs, skin, nasopharynx, trachea, and prostate.  ACC of the breast is a rare 

form of triple-negative cancer accounting for <1% of breast cancers.  Unlike most other 

breast cancer subtypes, breast ACC is primarily indolent, contains relatively quiescent 

genomes, and is largely resistant to radiation therapy.  Comparison of ACC of different 

sites of origin reveals notably similar histological and genetic characteristics.  Most 

notably, the recurrent MYB-NFIB fusion seen in salivary ACC is shared with ACC of the 

breast.  Salivary and breast ACC tumors both harbor heterogeneous somatic mutations, 

including genes associated with chromatin remodeling or canonical signaling pathways 

such as FGFR2.  There are, however, some key differences between these diseases, 

including breast ACC lacking the Notch pathway mutations seen in salivary ACC.84     

I.4.1.3 MicroRNA profiling 

A comparative study of 30 ACC specimens with four matched normal salivary 

tissues identified 55 microRNAs whose expression is higher (n = 19) or lower (n = 36) in 

ACC.85  Among those whose expression is elevated in ACC, eight (~42%) represent the 

miR-17-92 cluster and its paralogs.  Even within ACC specimens, this microRNA cluster 

is significantly associated with the clinically aggressive solid pattern of tumor growth and 
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reduced patient survival.  There are no differences seen in microRNA expression 

patterns between tumors with and without the MYB-NFIB fusion,85 possibly because 

most ACCs have expression patterns suggesting activation of MYB.80, 83 

An alternative study on microRNA profiles of ACC screened microRNA profiles of 

ACC compared to the most common otolaryngologic malignancy-head and neck 

squamous cell carcinoma (HNSCC).86   Surprisingly, the resulting expression patterns 

differed by only a handful of microRNAs.  Expression level of five microRNAs (miR-214, 

miR-125a-5p, miR-574-3p, miR-199a-3p/199b-3p and miR-199a-5p) being statistically 

higher in ACC, while only one (miR-452) is significantly increased in HNSCC.  Although 

these miRNAs have been implicated in promoting metastatic niches, regulating tumor 

suppressor genes, TGF-β signaling, oncogenesis, stemness, and tumorigenicity in other 

cancers (including hepatocellular carcinoma, gastric cancer, colorectal cancer, and 

glioma), their function in ACC remains elusive.86   

I.4.1.4 Epigenetic profiling 

Epigenetic changes altering gene expression can relieve pressure for mutagenic 

activation of oncogenes or inactivation of tumor suppressors.87  Rather, these chromatin 

changes modulate the ability of transcription factors, polymerases, and enhancer-

binding elements to interact with DNA.  Cytosine methylation of DNA within CpG islands 

(>200 bp regions with >60% G/C content) of gene promoters results in suppressed 

gene expression.  A methylated CpG island amplification and microarray analysis 

identified seven hypomethylated CpG islands in ACC compared to normal salivary 

tissue, specifically located near the FBXO17, PHKG1, LOXL1, DOCK1, and PARVG 

genes.  Hypermethylation in ACC was found in 32 CpG islands mapped primarily to 
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transcription factors (n = 19).  The remaining 13 hypermethylated genes served a 

variety of functions including, but not limited to, stress response, detoxification, protein 

catabolism, and apoptosis.  Deeper analysis of the hypermethylated transcription factor 

EN1 found that its expression correlates with histological grade, tumor location, and 

patient outcomes.87 

I.4.2 Gene expression in primary tumors 

I.4.2.1 MYB-NFIB fusions and signaling 

As previously mentioned, the most frequent gene aberration in ACC is the 

translocation between MYB (6q22-q23) and NFIB (9p23-24) genes.  Reported 

prevalence of this gene fusion in ACC ranges from 28-100%, but among tumors of the 

head and neck, it is exclusively seen in ACC.15, 88, 89  While the location of the fusion in 

both MYB and NFIB varies between tumors, MYB sequences dominate the fusion 

product, with the most common breakpoint fusing exon 14 of MYB to the last coding 

exon of NFIB.  The resulting fusion protein lacks exon 15 of MYB, as well as the 3’-

untranslated region, containing several negative regulatory regions.  Tumors harboring 

MYB-NFIB fusions demonstrate increased MYB expression compared to normal tissue 

controls.90  The high frequency of MYB fusions and known MYB targets involved in 

apoptosis, cell cycle control, cell growth, and cell adhesion, suggest that MYB-NFIB 

fusions are the most prominent oncogenic driver in ACC.  Recent identification of the 

MYBL1-NFIB gene fusions (8q13;9p23) further suggests that downstream signaling 

through these related transcription factors contribute to tumorigenesis in ACC.83  While 

the exact function of MYB in ACC remains unclear, the predominance of activation of 
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this proto-oncogene and its family member suggests that it will be useful as a diagnostic 

marker, prognostic marker, and/or therapeutic target. 

I.4.2.2 c-Kit 

The receptor tyrosine kinase c-Kit (CD117) is a driver of several human 

tumors,91-93 and it is expressed in 80-94% of ACC.94-96  The ligand for c-Kit is stem cell 

factor (SCF), and c-Kit activation induces pathways involved in hematopoiesis, 

spermatogenesis, growth and migration of melanocytes, and maintenance of progenitor 

cells.97, 98  c-Kit expression has previously been used to isolate progenitor cells from the 

submandibular gland, suggesting that c-Kit may be involved in maintaining cancer stem 

cells in ACC. 

Somatic mutations of c-Kit have been described in gastrointestinal stromal 

tumors, mast cell neoplasms, and seminomas;91-93 however, c-Kit mutations are rarely 

seen in ACC, suggesting an alternative method for activation.  In ACC, c-Kit was initially 

correlated with tumor grade, but further analyses negated these conclusions.95, 99-101  

Disappointingly, c-Kit inhibitors have little-to-no effect against ACC in clinical trials.102, 103     

I.4.2.3 Wnt/β-Catenin 

Activation of the WNT/β-catenin pathway is implicated in many human diseases.  

Mutations of this pathway are found in ~35% of ACC, and expression array studies have 

identified aberrant expression of additional components of the pathway, including genes 

associated with malignancies: Wnt inhibitory factor (WIF1), Galectin-3, and cyclin D1.104, 

105  WIF1 functions as a Wnt receptor antagonist, physically preventing receptor-ligand 

interaction57 and has been associated with a subset of salivary gland tumors, wherein a 
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chromosomal fusion between WIF1 and HMGA2 causes loss of function of the WIF1 

gene.106  Expression of galectin-3, a key regulator of the Wnt/β-catenin pathway, has 

been associated with increased aggressiveness in a variety of malignancies.107, 108  In 

ACC, galectin-3 is linked to increased regional and distal metastases as well as poor 

prognosis.109, 110  Cyclin D1, a critical cell cycle regulator, is the major downstream 

target of β-catenin signaling.  While neither mutated nor amplified in ACC, cyclin D1 is 

overexpressed in ACC specimens, possibly signifying WNT/β-catenin pathway 

activation.109, 111, 112   

Although studies have aimed to elucidate the connection between WIF1 loss 

and/or galectin-3 gain with induction of cyclin D1 expression in ACC, the mechanism 

appears to be more complicated, and understanding this pathway’s role in ACC will 

require additional research.109, 113  

I.4.2.4 FABP7 

Fatty acid binding protein 7 (FABP7) is one of the five most differentially 

expressed genes between ACC and normal salivary gland, and expression of EN1, 

MYB, VCAN, and FABP7 distinguish ACC tumors from normal salivary tissue and 

benign salivary neoplasms.  Amongst differentially expressed genes, FABP7 expression 

alone correlates with poor prognosis.114 

FABP7 functions by binding fatty acids and other lipids and acts as a cytoplasmic 

chaperone for lipid metabolism.  A member of a larger family of hydrophobic proteins, 

FABP7 is normally expressed in the brain, heart, testis, and adipose tissues.115-117  

Nuclear FABP7 is found in glioblastoma and melanoma, where it correlates with 

reduced survival.118-121  In cribriform and tubular ACC histologies, FABP7 localizes 
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predominantly to the nucleus of myoepithelial cells.114  A much lower level of staining 

also occurs in duct-like epithelial cells lining pseudocysts.  In solid ACCs, nuclear 

FABP7 marks all malignant cells, consistent with the idea that nuclear FABP7 may 

identify aggressive tumor subtypes that demonstrate worse prognosis.114 

The functional consequences of FABP7 expression in general, and especially 

nuclear localization of FABP7, have not been particularly well studied.  However, 

FABP7 has been identified as a Notch target gene,122, 123 and Notch signaling has been 

identified in ACC.  Together, these data suggest that Notch may contribute to FABP7 

expression, and raise the possibility that suppressing FABP7 within these tumors may 

have therapeutic benefit. 

I.4.2.5 Other 

Although MYB/NFIB fusion, c-Kit activation, and WNT/β-catenin have received 

the most attention, many other genes and pathways have been studied in ACC.   

Epidermal growth factor receptor (EGFR) and EGFR family members are 

overexpressed in a variety of cancers.  Expression of these genes assists cancer 

development by inhibiting apoptosis while stimulating angiogenesis.  EGFR is 

overexpressed in ACC where its expression correlates with histological grade, but not 

prognosis.124, 125  Although EGFR is expressed strongly in tumor myoepithelial cells with 

much weaker expression in ductal cells, tyrosine kinase inhibitors (TKIs), including 

those targeting EGFR, show little effect in clinical trials of ACC.102, 103 

Vascular endothelial growth factor (VEGF), a signaling protein that induces 

angiogenesis, may play an important role in ACC.  Tumors harboring increased VEGF 

unsurprisingly also demonstrated enhanced microvessel density.126, 127  Although 
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inhibition of EGFR and c-Kit with TKIs failed to demonstrate significant effects, dual 

inhibition of EGFR and VEGF slowed tumor growth and lung metastases in mice.128  

While these data were initially very encouraging, a study published in 2009 revealed  

that six purported ACC cell lines, including the line used in this study, were misidentified 

and not derived from adenoid cystic carcinoma.129 

Although the implications of perineural invasion in ACC are debated, it is a 

common characteristic of many ACC tumors.  In addition to potential anti-apoptotic 

effects, perineural invasion complicates surgical resection by limiting the ability to 

ensure clear margins.130  A potential mechanism underlying perineural invasion in ACC 

relates to shared neurotrophic signaling.  Brain-derived neurotrophic factor (BDNF) and 

nerve growth factor (NGF), both members of the neurotrophin family, are expressed in 

ACC.  TrkA, the receptor for both of these proteins, is expressed in a subset of ACC 

tumors.131, 132  While BDNF and NGF have been suggested to facilitate perineural 

invasion in ACC, more research is required to confirm this association. 

Neuropilin-2 (Nrp2), a protein co-receptor, is overexpressed in greater than 90% 

of ACC specimens.76  Nrp2 expression correlates with microvessel density, clinical 

stage, vascular invasion, and metastasis, consistent with its role seen in other 

cancers.76  Given the use of contaminated cell lines for behavioral studies, the role of 

Nrp2 in ACC is unknown. 

E-cadherin has long been associated with tumor progression and metastasis.  A 

calcium-dependent transmembrane protein, E-cadherin assists with adherens junctions 

which bind cells together in tissues.  In ACC, like other tumors, E-cadherin expression 

inversely correlates with tumor grade, size, infiltration, and metastasis.133  Unfortunately, 
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E-cadherin is unlikely to be a driver of this cancer, as loss of E-cadherin seems to occur 

later in the progression of the tumor.  Regardless, E-cadherin expression does appear 

to be a prognostic marker in ACC. 

I.4.3 Tools for in vitro and in vivo studies 

I.4.3.1 ACC cell lines 

Research to advance molecular understanding of ACC has been hamstrung by 

the relative rarity of the disease and a complicated history resulting from difficulty 

establishing cell lines.  Before 2009, studies examining behavior and therapeutic 

response of ACC extensively utilized six cell lines (ACC2, ACC3, ACCM, ACCS, 

ACCNS, and CAC2).134-138  After being used for ACC research for more than three 

decades, short tandem repeat (STR) analyses in 2009 found that none of the ACC cell 

lines contained human ACC cells.129  These unfortunate findings negate the validity of 

any research using these cell lines.  

In the wake of this setback, many labs have attempted to create ACC cell lines.  

In 2013, a group from China produced a cell line, SACC-83, from an ACC of the minor 

salivary gland.  Through a five-round selection of intravenous injections and lung 

collections, they derived a daughter cell line with increased metastatic potential (SACC-

LM).135, 139  Although these cell lines have not been confirmed to be from the original 

patient or the primary tumor, the group has done STR analysis which confirmed that 

these two cell lines have the same derivation and are distinct from HeLa cells.  

However, deeper comparison with publically available databases of a broad range of 

cell lines has not been performed.140  While SACC-83 and its derivative line may 

represent true ACC cell lines, distribution of them outside of China has been limited. 



18 
 

Another cell line (MDA-ACC-01) was developed in 2014,141 and while early 

passages grew well, population doubling times (PDT) increased at higher passage 

numbers making a long-term cell line impossible to establish.  This cell line was 

immortalized with human telomerase reverse transcriptase (hTERT), which stabilized 

the PDT and allowed the culture to grow to 100 passages without senescence.  Of 

concern, G-banding and Spectral Karyotyping (SKY) analyses identified a 

t(6q25;14q13) translocation in the primary tumor and early passages of the primary 

culture, which began to be lost as early as passage 5 and disappeared entirely by 

passage 10.141  Chromosomal changes in cultured cells could be a sign of 

contamination, or indicate that this culture has lost some characteristics of the original 

tumor. 

I.4.3.2 ACC xenografts 

While creation of in vitro ACC models has been very challenging, efforts to create 

in vivo mouse xenograft models of ACC have been more successful with a reported 

74% success rate for establishing subcutaneous xenografts from primary ACCs.142  

Passage into subsequent mice also succeeded for 15 of the 17 xenografts.  

Unsupervised analyses of expression array data revealed that xenografted tumors 

clustered most closely to their parental tumors with the only exception being a primary 

tumor that clustered more closely to a metastatic tumor, which formed later in the same 

patient.  The resulting xenografts from these specimens formed an independent cluster 

closest to the tumors from which they were derived.  Fluorescent in situ hybridization 

(FISH) analysis of the tumors identified 11 of 12 tested samples to have rearrangement 
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of the MYB locus with 10 of these 11 showing presence of a fusion with the NFIB gene 

that is commonly found in ACC (described above).142   

While xenografts provide a powerful tool for ACC research, they are expensive to 

maintain, greatly amplifying the cost of experimentation.  Distribution of xenografts also 

presents challenges since exchange of xenograft-bearing animals between institutions 

can be difficult.  As an alternative, viable xenograft tissue can be shared, but viability 

can be decreased based on shipping time and conditions.  Finally, xenografts do not 

allow the freedom to manipulate gene expression that exists with cell lines, limiting 

experimental options primarily to testing effects of established drugs.   

I.4.4 Studies in vitro and in vivo 

Many studies have been completed using presumed ACC cell lines ACC2, 

ACC3, ACCM, ACCS, ACCNS, and CAC2, both before and after their misidentification 

was reported.  Since findings in these cell lines do not apply to ACC, these results will 

not be discussed.  While SACC-83 and SACC-LM have not been extensively vetted, 

there is no data to disprove their validity at this time. 

I.4.4.1 Genes contributing to migration, invasion, and perineural invasion 

Using SACC-83 cells, depletion of microtubule-associated tumor suppressor 

gene (MTUS1), a tumor suppressor associated with many cancer types, alters ACC 

behavior.143   Lower MTUS1 expression in ACC tumors correlates with increased distant 

metastases and reduced survival,143 and MTUS1 expression is lower in the more 

aggressive, SACC-LM cells compared to the isogenic line SACC-83.  Reintroduction of 

MTUS1 inhibits migration and invasion of SACC-LM cells and correlates with reduced 
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levels of Slug, vimentin, and activated extracellular-regulated kinase 1/2 (Erk1/2), while 

depletion of MTUS1 in SACC-83 cells has the opposite effects.143  As vimentin 

expression is not characteristic of ACC, how these results translate to patient tumors 

remains to be seen. 

Expression of PRL-3, a phosphatase correlating with poor prognosis in several 

tumor types,144 is found in ACC tumors where it associated with tumor stage 

(p = 0.009), clinical stage, distant metastasis, tumor site, recurrence, and survival.144  

Comparison of the metastatic cell line, SACC-LM, to its parental line, SACC-83, 

revealed up-regulated PRL-3.144  Reminiscent of MTUS1 depletion, overexpression of 

PRL-3 in SACC-83, demonstrated the same migratory and molecular changes.  

Bmi-1 expression is associated with stem cell self-renewal and tumorigenesis in 

various malignancies.145  Bmi-1 expression in ACC correlates with higher tumor stage, 

increased distal metastases, and reduced progression-free and overall survival.  Bmi-1 

inhibition reduced the migratory and invasive potential of SACC-LM cells while 

suppressing expression of cancer stem cell-associated genes.145   

The chemokine CCL5 and its receptor CCR5 are implicated with tumor invasion 

and metastasis.146, 147  In ACC tumors, expression of both genes is enhanced (CCL5: 

35.9%; CCR5: 70.3%),148 and expression of CCR5 is associated with perineural 

invasion.  SACC-83 cells express CCR5, but not CCL5.  Exogenous introduction of 

CCL5 in SACC-83 cells stimulated migration, invasion, and perineural invasion, and 

these effects were reversed by the CCR5 inhibitor, maraviroc.148 

The most well-known and well-studied tumor suppressor, p53, is not mutated in 

ACC, but its inactivation by other mechanisms affects ACC behavior.  Down-regulation 
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of p53 in SACC-83 cells inhibited apoptosis, increased proliferation, and induced 

expression of genes associated with epithelial-mesenchymal transition (EMT).149  These 

molecular changes following depletion of p53 were accompanied by increased 

perinerual invasion of these cells, suggesting that p53 may function in perineural 

invasion of ACC by facilitating EMT.149 

I.4.4.2 mTOR signaling 

mTOR signaling is a characteristic of several human malignancies.150  A 

downstream target of mTOR, phosphorylated-S6 (p-S6, S235/236), is significantly 

increased in ACC compared to pleomorphic adenoma or normal salivary gland.151  

Targeting of mTOR by rapamycin in SACC-83 cells reduces xenograft growth and 

suppresses expression of p-S6, p-Stat3 (T705), PAI, EGFR, and HIF-1α.151 

PTEN loss, as a potential mechanism of mTOR activation, is associated with 

increased phosphorylation of S6 in ACC tumors,152 and the more aggressive SACC-LM 

cells demonstrate reduced PTEN expression compared to parental SACC-83 cells.  

Inhibition of PTEN expression in SACC-83 cells increases proliferation, migration, and 

invasion in vitro, and stimulates tumor growth in vivo.  Conversely, inhibition of 

PI3K/mTOR signaling with NVP-BEZ235 suppresses tumor growth and metastasis, cell 

proliferation, migration, and invasion in both cell lines.152 

Together, these studies indicate that mTOR signaling may contribute to ACC 

proliferation, angiogenesis, and metastasis and may have therapeutic relevance in 

ACC.  
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I.4.5 Clinical trials  

Despite years of research efforts identifying potential drivers and markers of ACC 

and many clinical trials, recommended treatment is limited to surgical resection and 

radiation.  At the time of writing, efficacy of chemotherapy is not proven, and no targeted 

therapies are approved for treatment.153 

I.4.3.1 Chemotherapy 

Chemotherapy is reserved as a palliative measure for patients with metastatic 

and incurable ACC.  A study combining cisplatin with 5-fluorouracil (5-FU) found the 

toxicity of this pairing to be manageable,154 with only three of 11 (~27%) patients having 

any response (all partial responses), but with 64% of patients reporting symptom 

relief.154  The median times to disease progression and survival was nine months and 

12 months, respectively.   

Similar results were shown in ACC patients treated with epirubicin, gemcitabine, 

and mitoxantrone.  Of 20 patients treated with a low-dose regiment of epirubicin for 

eight weeks, two (10%) partial responses were observed, and another 10 (50%) 

demonstrated disease stabilization.155  Despite this modest objective response rate, 

improvement of symptoms was seen in ~30% of patients within the 8-week treatment 

period.155  No responses were seen in ACC patients treated with gemcitabine, but 6 

month stable disease was reported in 48% of treated patients.156  Mitoxantrone 

treatment resulted in a complete response rate in one patient, but no partial 

responses.157  A subsequent phase II study examined effectiveness of mitoxantrone on 

32 chemotherapy-naïve ACC patients revealing a partial response rate of 12%.158  
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Combined, these studies suggest that epirubicin gemcitabine, and mitoxantrone have 

little activity in treating recurrent or metastatic ACC. 

I.4.3.2 Targeted therapy 

The receptor tyrosine kinase c-Kit is expressed in normal salivary tissue and is 

upregulated in ACC compared to other head and neck tumors.  Because of its 

expression in ACC, c-Kit was trialed in patients with recurrent or metastatic ACC.  

Imatinib (Gleevec) was used to treat 14 patients, including 10 patients whose tumors 

expressed c-Kit.  No objective responses were seen.  Rather, all but two tumors 

progressed on therapy.103  Likewise, in a trial of Imatinib in c-Kit-positive ACC 

metastatic to the lungs found that imatinib may have accelerated disease progression 

with three of five patients having disease progression within 2-3 weeks of treatment and 

succumbing to disease within six months.102  Despite dismal results of trials using 

imatinib as a single agent, combination of imatinib and cisplatin was trialed in patients 

with ACC.159  c-Kit overexpression was required for enrollment, and treatment consisted 

of a two month run of imatinib followed by concomitant imatinib and cisplatin for six 

cycles, then a maintenance regiment of single agent imatinib until disease progression.  

A partial response, as measured by decreased fluorodeoxyglucose positron emission 

tomography (FDG-PET) was seen in 11%, while 68% of patients had stable disease.  

However, median progression-free and overall survival times were only 15 months and 

35 months, respectively.159  Taken together, these data suggest that as a single agent 

or in combination, imatinib is not effective in ACC.  

EGFR is expressed in ACC125 prompting a trial of lapatinib, a dual inhibitor of 

EGFR and ErbB2 (HER2) tyrosine kinase activity, that enrolled patients with ACC and 
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other malignant salivary gland tumors.160  Amongst 19 ACC patients enrolled, there 

were no objective responses despite expression of EGFR and/or ErbB2 in 88% of these 

patients.  Although lapatinib was well tolerated it is not useful for treatment of ACC.160  

Likewise, a trial of the EGFR targeting antibody, Cetuximab revealed no responses; 161    

however, 47% (12/23) had stable disease for at least six months.  In these small 

studies, the time to progression with cetuximab treatment was nearly double that 

observed with single agent lapatinib therapy.161  

The less specific tyrosine kinase inhibitor, sunitinib (Sutent), which inhibits 

vascular endothelial growth factor receptor (VRGFR), c-Kit, platelet-derived growth 

factor receptor (PDGFR), ret proto-oncogene (RET), and FMS-like tyrosine kinase 3 

(FLT3), was studied in patients with progressive, recurrent, or metastatic ACC.162  No 

responses were observed, and while 62% had stable disease for at least six months, 

median time to progression and overall survival were 7.2 months and 18.7 months, 

respectively.162  

Bortezomib (Velcade), as an inhibitor of 26S proteasome and NF-κB, also failed 

in a trial of ACC patients inducing no responses, but reporting stable disease in 71% of 

patients.163  Combination of bortezomib and doxorubicin, produced a single partial 

response (10%) and a stable disease rate of 60%.163   

A response in an ACC patient treated in a phase 1 trial of the mTOR inhibitor, 

everolimus, prompted a phase II trial of patients with unresectable ACC.164  

Disappointingly, no responses were observed, but 6 month stable disease was reported 

in 38% of patients.164  
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Many other studies are underway attempting to identify an effective target in 

ACC.  Ongoing clinical trials include dovitinib (FGFR3 inhibitor which may affect other 

RTKs), axitinib (TKI), pazopanib (TKI), vorinostat (HDAC inhibitor), nelfinavir (protease 

inhibitor with anti-retroviral capacity), HPPH (photosensitizer for photodynamic therapy), 

erlotinib (EGFR inhibitor), Trastuzumab (antibody inhibiting HER2/neu), pemetrexed 

(folate antimetabolite), and docetaxel (anti-mitotic chemotherapeutic).  Results of these 

studies are pending. 

The rate of failure for these clinical trials is remarkable and indicates that 

therapies were chosen without adequate preclinical data.  The absence of cell lines or 

short-term cultures to evaluate drug efficacy likely contributed to the universal failure of 

these studies. 

I.5 Cancer stem cells 

I.5.1 Cancer stem cell hypothesis 

The cancer stem cell (CSC) hypothesis professes that a subpopulation of 

tumorigenic cells with stem cell properties, including self-renewal and differentiation, are 

required for tumor maintenance.  Cancer stem cells can regenerate to create all cellular 

subpopulations that may exist in a mixed tumor.  As a mechanism of tumor resistance to 

therapy, CSC remain quiescent, allowing them to evade cell death induced by chemo- 

and radio-therapies.  The first evidence supporting this hypothesis was published in 

1994, when Lapidot et al. identified a population of stem-like cells within myeloid 

leukemia that effectively recapitulated patient tumors as well as demonstrated increased 

tumorigenic potential in non-obese diabetic severe combined immune-deficient 

(NOD/SCID) mice.165  Conversely, the population of non-stem cells from the same 
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tumor were unable to form xenografted tumors.  Cancer stem cells have since been 

identified in a wide variety of tumors (e.g. brain, pancreatic, ovarian, colorectal, head 

and neck, and liver cancers)166-169 that are distinguished by a variety of markers 

including: CD44+/CD24- cells in breast cancer,169 CD44+ in head and neck cancer,170, 

171 and aldehyde dehydrogenase 1 (ALDH1) in breast and gastric cancers.172, 173   

I.5.2 Cancer stem cells in ACC 

 Conflicting evidence regarding the presence of cancer stem cells in ACC has 

been reported.  Isolation of cells with high and low ALDH1 activity from ACC primary 

tumors and xenografts revealed increased spheroid formation in culture, and xenograft 

tumorigenicity and metastatic potential in cells with high ALDH1 activity.174  On the other 

hand, immunohistochemical analysis of ALDH1 expression in primary ACC revealed no 

expression in epithelial cells in 89% of ACCs.175  Further, ALDH1 expression in ACC did 

not correlate with tumor size, perineural invasion, or overall survival.175  Although it is 

hard to reconcile these findings related to ALDH1 as a marker for ACC stem cells, 

tumorigenicity assays are convincing that stem cells likely exist in ACC.176  

I.6 Other tumors with neural crest origin 

Expression profiling of salivary ACC reinforced histological interpretation that 

ACC tumors include cells of a myoepithelial lineage.  During development, progenitors 

of myoepithelial cells migrate from the neural crest into tissues, and in adult life these 

cells differentiate into myoepithelial cells, but maintain expression of neural crest stem 

cell markers such as SOX10.  Other tumors derived from the neural crest lineages 

include melanoma, glioblastoma, and neuroblastoma.  Additionally, the basal-like 
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subtype of breast cancer develops from the basal/myoepithelial cells from a gland that 

is very similar structurally to the salivary gland. 

I.6.1 Melanoma 

Melanoma is a highly aggressive malignancy that arises from pigment-producing 

melanocytes of the skin. Unfortunately, incidence of this disease, which accounts for 

~60% of deaths from skin malignancies, is on the rise.177  Risk factors for melanoma 

include family history, nevi formation, age, fair skin, and exposure to UV radiation.178  

Common drivers of melanoma include B-Raf (mutated in >60%), N-Ras (mutated in 

18%), c-Kit (copy number increase in 36-39% of acral or mucosal melanomas), and 

PI3K/Akt/mTOR pathway members (mutated in 43-60%).177   

The majority of melanomas contain cells with neural crest stem cell (NCSC)-like 

characteristics, including expression of SOX10.  Cancer stem cells from melanomas 

establish xenograft tumors from very few cells, and these tumors support distant 

metastases mimicking behavior of the parent tumor.179-181  Suppression of SOX10 

expression in mice prevented giant congenital naevi and melanoma even when 

melanoma formation was driven by forced expression of mutant N-Ras in melanocytes.  

The critical role of SOX10 in melanoma extends to melanoma cell lines where SOX10 

suppression reduced proliferation, increased apoptosis, and demonstrated aberrant 

differentiation.182  

I.6.2 Neuroblastoma 

In children, the most common extracranial tumor is neuroblastoma.183  The origin 

of these tumors is believed to be NCSCs from which sympathetic neural ganglia and the 
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adrenal medulla are derived.  Although neuroblastoma is a non-glandular solid tumor, 

molecular profiles of this tumor demonstrate similarities to ACC.  This may relate to a 

common neural crest cellular origin.  In addition to SOX10, which is expressed in neural 

crest stem cells, neurotrophin signaling is required for normal neuronal cell lineage 

distinction and is active in both neuroblastoma and ACC.131, 132, 184, 185  In 

neuroblastoma,186 expression of neurotrophin receptors TrkA and TrkC are associated 

with favorable prognosis possibly related to their role as death receptors in the absence 

of ligand.187  Conversely, TrkB expression is involved in increased proliferation, 

stimulated migratory potential, chemoresistance, and is associated with the unfavorable 

MYCN amplification.188  ACCs also express neurotrophin receptors, but the role of 

neurotrophin signaling in ACC remains to be fully explored. 

I.6.3 Glioblastoma 

Glioblastoma (GBM) is the most prevalent tumor of the central nervous system.  

Despite rarely metastasizing to distal organs, GBM is characterized by extensive 

invasion of surrounding brain tissue.  Although targeted therapies are beginning to 

emerge, primary treatment remains maximal surgical resection followed by 

chemoradiotherapy and subsequent chemotherapy.  While this has proven to extend 

survival with generally moderate side effects, cure remains elusive, and patients 

ultimately succumb to the disease.189   

Cancer stem cell populations in glioblastoma have been well characterized and 

studied.  The most common marker of CSCs within GBM is CD133 (Prominin-1), a cell 

surface glycoprotein that is characteristic of neural crest stem cells.190  CD133-positive 

glioblstoma cells have increased self-renewal capabilities, proliferation, xenograft 
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tumorigenesis, and neurosphere formation.  Compared to control NCSCs, neurospheres 

formed from CD133+ GBM cells proliferate more rapidly and form more secondary 

spheroids.  CD133+ cells injected into mice recreate all aspects of the original tumor by 

forming oligodendrocytes, astrocytes, and neurons. 

I.6.4 Basal-like breast cancer 

Breast cancer remains the most common malignancy in women worldwide, 

causing approximately half a million deaths each year.  Microarray gene expression 

analysis identified several subtypes of breast cancer including: luminal A, luminal B, 

basal-like, and Her2/Neu.191  The luminal subtypes were generally ER+ and/or PR+, 

Her2/neu+ (luminal A, ~40%), or ER+ and/or PR+, Her2/neu- (luminal B, ~20%),  and 

the Her2/neu subtype is distinguished by expression of Her2/neu in the absence of ER 

or PR expression.191-194  

Gene expression in the basal-like subtype (~15-20% of all tumors) suggests that 

the basal epithelial layer which, like in ACC, is made up of myoepithelial cells (Figure 2), 

is the cell of origin.191  Basal-like tumors usually lack expression of ER, PR and 

Her2/neu (triple negative) explaining their resistance to hormone therapies and 

contributing to their notoriety as having the poorest survival of any breast cancer cluster.      

Arising from a similar environment and possibly similar cell of origin as ACC 

(Figure 2), basal-like breast cancer remains one of the most insidious subtypes of 

breast cancer.195  As with ACC, the primary treatment modality for basal-like breast 

cancer is surgery and radiation.  Systemic chemotherapy is also used, but results are 

disappointing.196  Basal-like breast tumors remain a therapeutic challenge, and patients 
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with basal-like tumors have a high risk for early relapse, visceral and brain metastases, 

and eventual death.197 

 
Figure 2: Comparative structures of (A) salivary and (B) mammary glands. 

Images adapted with permission.198, 199 

I.7 Introduction conclusions 

ACC is an insidious malignancy with poor patient prognosis.  Efforts to identify 

new options for therapy have been hampered by the low number of tumors, the paucity 

of funding, and the inability to establish cell cultures to accelerate preclinical studies.  

Clinical trials with chemotherapeutic or targeted agents against molecular markers of 

ACC have had disappointing results.  To date, surgical resection with or without 

radiation remains the standard of care despite frequent failure at preventing recurrent 

disease.  However, recent studies suggesting cancer stem cells in ACC may present a 

new direction for treatment of this disease. 
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II. RESULTS 

II.1 TrkC Signaling is activated in adenoid cystic carcinoma and requires NT-3 to 

stimulate invasive behavior 

Adapted from manuscript published in Oncogene.200 

II.1.1 Abstract 

Treatment options for adenoid cystic carcinoma (ACC) of the salivary gland, are 

limited to surgery and radiotherapy.  Based on expression analysis performed on clinical 

specimens of salivary cancers, expression of the neurotrophin-3 receptor TrkC/NTRK3, 

neural crest marker SOX10, and other neurologic genes were identified in ACC.  TrkC 

was highly expressed in 17 out of 18 ACC primary-tumor specimens, but not in 

mucoepidermoid salivary carcinomas or head and neck squamous cell carcinoma.  

Expression of the TrkC ligand, NT-3, and Tyr-phosphorylation of TrkC detected in this 

study suggested the existence of an autocrine signaling loop in ACC with potential 

therapeutic significance.  NT-3 stimulation of U2OS cells with ectopic TrkC expression 

triggered TrkC phosphorylation and resulted in Ras, Erk1/2 and Akt activation, as well 

as VEGFR1 phosphorylation.  Without NT-3, TrkC remained unphosphorylated, 

stimulated accumulation of phospho-p53, and decreased p-Akt and p-Erk1/2.  NT-3 

promoted motility, migration, invasion, soft-agar colony growth and cytoskeleton 

restructuring in TrkC-expressing U2OS cells.  Immunohistochemical analysis 

demonstrated that TrkC-positive ACC specimens also expressed Bcl2, a Trk target 

regulated by Erk1/2.  In normal salivary gland tissue, both TrkC and Bcl2 were 

expressed in myoepithelial cells, suggesting a principle role for this cell lineage in the 

ACC origin and progression.  Sub-micromolar concentrations of a novel potent Trk 

inhibitor AZD7451 completely blocked TrkC activation and associated tumorigenic 
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behaviors in U2OS cells with ectopic expression of TrkC.  Pre-clinical studies on ACC 

mice xenografts revealed growth inhibition and low toxicity of AZD7451. In summary, 

this study identified a previously unrecognized pro-survival autocrine neurotrophin 

signaling pathway in ACC and linked it with cancer progression. 

II.1.2 Introduction 

ACC is one of the most frequent (22%) types of salivary gland cancers,201 and is 

among the most unpredictable and devastating tumors of the head and neck. ACC is 

characterized by insidious local spread and propensity for perineural invasion and distal 

metastases to lungs and bone.202  Most ACCs are treated surgically with or without 

postoperative radiotherapy.  Insufficient molecular insights into signaling that drives 

tumorigenesis and neural tropism in ACC combined with lack of reliable cell lines129 are 

major impediments to the development of better treatment for this insidious cancer.  

With the goal to characterize signaling pathways involved in tumor growth and invasion 

and to enhance therapeutic insight, expression analysis of macro-dissected primary 

ACC specimens was performed.  From this study, TrkC/NTRK3, a receptor tyrosine 

kinase that binds neurotrophin-3 (NT-3), was identified in ACC.  Interest in TrkC was 

further stimulated by its overexpression in other cancer types (e.g., neuroblastoma,203 

melanoma,204 and breast cancer205), trophic stimulation by NT-3, and by the availability 

of small-molecule Trk inhibitors.206  Trk receptors and neurotrophins are involved in 

almost all stages of neural development,207-210 where TrkC conveys NT-3-dependent 

pro-survival effects but triggers apoptosis in the absence of ligand.211  Inactivating 

mutations in TrkC/NTRK3 have been recently associated with Hirschsprung disease, a 

developmental disorder characterized by the absence of ganglion cells in the 
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mysenteric and submucosal plexi likely attributable to defects in neural crest migration, 

differentiation, or survival.212, 213  In cancers, where TrkC activities are not fully 

understood, TrkC pro-survival signaling was found to prevail over apoptotic signaling in 

the presence of NT-3,214, 215 or when ligand requirement is bypassed by activating 

mutations216 or fusions.217  Potentially activating somatic mutations in the TrkC kinase 

domain have been reported in breast, lung, colon, and pancreatic cancers.216, 218-220  

Rearrangements of NTRK3 and ETV6 genes (an ETV6–NTRK3 fusion) have been 

detected in congenital fibrosarcomas, secretory breast carcinomas, and mammary 

analog of secretory carcinoma of salivary glands.15, 17, 221  Overexpression of wild-type 

TrkC and/or other neurotrophin receptors (TrkA, TrkB and p75/NGFR) has been 

detected in cancers, including medulloblastoma, neuroblastoma, and melanoma.  The 

developmental cell of origin for all of these tumors is derived from the neural crest.222 

Recent evidence suggests that TrkC/NT-3 signaling is linked with invasion in 

medulloblastoma,223, 224 melanoma,204 and breast cancer.205, 225  In addition, TrkC 

expression has been correlated with the invasion into venous and nervous tissues in 

pancreatic ductal carcinoma;226 however, the molecular and cellular mechanisms of 

such activity remain unclear.  To explore the cellular and molecular consequences of 

TrkC signaling, TrkC was ectopically expressed in cancer cells lacking expression of 

any neurotrophin receptors or their ligands.  Herein, TrkC signaling was shown to be 

activated in human ACC and a model of TrkC in U2OS cells revealed that activated 

TrkC stimulated cell motility, chemotaxis, invasion and colony formation in soft agar, as 

well as fillopodia formation.  It was further shown that NT-3-induced TrkC 
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phosphorylation and pro-invasive cell behavior was effectively blocked by sub-

micromolar concentrations of AZD7451, a small molecule pan-Trk inhibitor.227 

II.1.3 Materials and methods 

II.1.3.1 Head and neck cancer patients and tumor specimens.  This study included 

three independent cohorts of head and neck cancer patients treated at Vanderbilt 

Ingram Cancer Center (VICC), the University of Virginia (UVA) Hospital, and MD 

Anderson Cancer Center.  Primary salivary cancer and HNSCC specimens were 

obtained from 36 patients: adenoid cystic carcinoma (n=28), mucoepidermoid 

carcinoma (n=6), adenocarcinoma (n=2), HNSCC (n=10).  Patients who were treated 

between 2003 and 2008 provided written consent to have tissue collected for research 

purposes from the Institutional Review Board (IRB#030062, WGY).  The UVA ACC 

specimens used in the study (n=11) were grown as murine xenografts, as previously 

described.228  

II.1.3.2 RNA isolation and expression array analyses.  Total RNA was either isolated 

from snap-frozen clinical macro-dissected specimens, as described before,229 or from 

cell lines using miRNeasy or RNeasy kits (Qiagen, Valencia, CA, USA).  RNA quality 

and quantity were determined using Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA, USA) and Nanodrop ND-1000 (NanoDrop Products, Wilmington, DE, 

USA).  Complementary RNA was prepared from 100 ng of total RNA following the 

Affymetrix 3′IVT Express kit labeling protocol and standardized array processing 

procedures recommended by Affymetrix, including hybridization, fluidics processing, 

and scanning of the Affymetrix HG-U133 Plus 2.0 arrays.  The raw data (Affymetrix CEL 
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files) were normalized using RMA (Robust Multi-array Analysis).  Gene Ontology (GO) 

analyses of differentially expressed genes were performed using 

WebGestalt,230 GSEA,231 and g:Profiler232 portals. 

II.1.3.3 RT-PCR and sequencing.  To produce NTRK3 cDNA for sequencing from 

clinical RNA specimens, the following primers were designed and used: NTRK3F1 (pos. 

357-376 on NM_002530): 5′-GCTGGGAAGCGTCTGGCTGG-3′; NTRK3R1 (pos. 1269-

1250): 5′-GATGCAGTGCTCCAGGCGCA-3′; NTRK3F2 (pos. 1249-1268 on 

NM_002530): 5′-CTGCGCCTGGAGCACTGCAT-3′; NTRK3R2 (pos. 2811-2786): 5′-

GTATGAATTCATGACCACCAGCCACC-3′.  To specifically amplify isoform d, the 

following primers were used: TrkCFdel (pos. 1497-1515): 5′-

GGAGCCCTTTCCAGTTGAC-3′; TrkCRdel (pos. 1523-1501): 5′-

CTCACTTCGTCAACTGGAAAGGG-3′.  To amplify both isoforms for gel-separation, the 

following primers were used: TrkCisoF (pos. 1426-1446 onNM_002530): 5′-

GGCAACTATACCCTCATTGCC-3′ and TrkCisoR (pos. 1559-1540): 5′-

GGAGGTGTGGGACTCACTTC-3′.  To amplify NTRK3 and NTF3 cDNAs for validation 

by RT–PCR and sequencing, NTRK3 primers (5′-CTGCGCCTGGAGCACTGCAT-3′; 5′-

GAGCAGCTCGGCCTCCCTCT-3′, pos. 1249-1268 and 2082-2063 on NM_002530, 

respectively) and NTF3F primers (5′-GGGCCCGCCAAGTCAGCATT-3′; 5′-

TATCCACCGCCAGCCCACG-3′; pos. 309-328 and 803-785 on NM_002527, 

respectively) were used. 

II.1.3.4 Cell lines and transgenic expression.  The human osteosarcoma cell line 

U2OS was transfected with NTRK3 expression construct (Myc-DDK-tagged ORF clone, 
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NM_002530) purchased from OriGene (Rockville, MD, USA) and validated by 

sequencing.  U2OS clones with constitutive expression of TrkC were produced via 

G418 selection. 

II.1.3.5 Antibodies for western analysis, TrkC phosphorylation assay, and 

immunohistochemical staining.  TrkC/NTRK3, TrkB/NTRK2, p75/NGFR, TGFBR3, 

phospho-Akt(Ser473), and phospho-Erk1/2 rabbit monoclonal antibodies were from Cell 

Signaling (Danvers, MA, USA).  Phospho-Tyr antibody was from BD Transduction 

Laboratories (San Jose, CA, USA).  Polyclonal Ephrin B3 antibody was from Novus 

Biologicals (Littleton, CO, USA), and DO1 p53 antibody was purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA, USA).  For IHC, Cell Signaling TrkC antibody 

(1:100 dilution), NT-3 antibody from Santa Cruz Biotechnology (N-20, 1:300), and Bcl2 

antibody from Leica Microsystems (PA0117, Buffalo Grove, IL, USA) were used with 

Novocasra Bond Polymer Refine Detection system, as recommended by the 

manufacturer. 

II.1.3.6 Ras activation and protein phosphorylation assays.  To measure Ras 

activity, Ras Activation Assay kit produced by Cytoskeleton (Denver, CO, USA) was 

used.  Protein phosphorylation was detected using the Human Phospho-Kinase and 

Phospho-RTK Antibody Arrays (R&D, Minneapolis, MN, USA). 

II.1.3.7 AZD7451.  AZD7451 is a potent small-molecule inhibitor of Trk kinases with a 

high degree of specificity and selectivity demonstrated as compared with other 

kinases.227  AZD7451 was found to inhibit the in vitro activity of all three Trk isoforms, 

with an IC50=0.2 nM for TrkA in cells and inhibition of phosphorylation of TrkB and TrkC 
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at 3 nM. AZD7451 also exhibited slow-off rate kinetics for Trk kinases, suggesting for 

increased residence time on the target.  In vitro kinase selectivity assays involving 83 

kinases tested, demonstrated that only 15 (18%) showed <100-fold window versus 

TrkA.  Of these, only FGFR1 and CaMKII showed <10-fold window for AZD7451 as 

compared with TrkA. AZD7451 has also shown potent cellular activity against all three 

TrkA, B, and C receptor isoforms in established cell-based systems overexpressing 

wild-type, full-length forms of human TrkA, TrkB or TrkC at concentrations of <5 nM. 

II.1.3.8 Cell motility, migration, invasion and colony formation in soft agar.  

Scratch (wound healing) assay was performed as described,233 following the inhibition 

of proliferation using mitomycin C at 5 μg/ml.  Migration and invasion assays used 

8.0 μm polycarbonate membrane inserts for 24-well plates (BD Biosciences, Franklin 

Lakes, NJ, USA).  Briefly, 2 × 104 of serum-starved cells were loaded into each insert in 

serum-free DMEM media and incubated in a CO2 incubator for 22 h with or without NT-3 

(PeproTech, Rocky Hill, NJ, USA) added at 100 ng/ml to bottom media supplemented 

with serum.  Colony formation was determined with or without NT-3 (100 ng/ml) in 

0.3% agar/complete DMEM.  In all these experiments, Trk inhibitor AZ7451 was used at 

100 nM. 

II.1.3.9 Immunoprecipitation and mass spectrometry.  Proteins that bind TrkC were 

determined following immunoprecipitation with Cell Signaling TrkC antibodies and 

Dynabeads (Carlsbad, CA, USA).  Protein bands were separated using polyacrylamide 

gel electrophoresis (PAGE) and bands isolated after staining with coomassie blue.  
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Protein identification was determined via mass spectrometry by ProtTech (Norristown, 

PA, USA). 

II.1.3.10 Cytoskeleton visualization.  Mouse monoclonal anti-TUBB2B (Abnova, 

Walnut, CA, USA) with anti-mouse Alexa 555 (Invitrogen, Carlsbad, CA, USA) and 

FITC-phalloidin (Sigma, St Louis, MO, USA) were used to stain cells according to 

manufacturer’s instructions.  Nuclei were counterstained with DAPI. 

II.1.3.11 AZD7451 studies on ACC xenografts.  The in vivo efficacy on AZD7451 was 

evaluated in a series of primary ACC tumor xenograft models228 through the South 

Texas Accelerated Research Therapeutics (San Antonio, TX, USA) program.  Animals 

were maintained in accordance with the Institutional Animal Care and Use Committee 

guidelines.  Female athymic nu/nu mice (Harlan Sprague–Dawley) between 4–6 weeks 

of age were housed on irradiated corncob bedding (Teklad bedding) in individually 

ventilated cages (Sealsafe Plus, Tecniplast, Exton, PA, USA) on a 12-h light–dark cycle 

at 70–74 °F (21–23 °C) and 40–60% humidity.  Mice were fed water ad libitum (reverse 

osmosis, 2 ppm Cl2) and an irradiated standard rodent diet (Teklad 2919) consisting of 

18% protein, 5% fat and 4% fiber.  Fragments of human ACC tumor specimens, ACCX6 

and ACCX9 were subcutaneously implanted and grown to produce cohorts 

averaging n=8 per group.  Tumor-bearing mice were randomized into control and 

treatment groups when tumors reached ~0.2 cm3 in size.  AZD7451 treatment was 

given by oral administration at 50 mg/kg, following a daily schedule for 35 days total 

dosing alongside vehicle (0.5 HPMC/0.1% Tween 80) controls.  To assess AZD7451 

toxicity, animals were observed daily and weighed twice weekly using a digital scale; 
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data including individual and mean gram weights (mean We±s.d.), mean percent weight 

change versus Day 0 (%vD0), and mean percent weight change versus prior 

measurement (%vD−x) were recorded for each group and plotted at study completion.  

To assess AZD7451 efficacy, tumor dimensions were measured twice weekly by a 

digital caliper, and data including individual and mean estimated tumor volumes (Mean 

TV±s.e.m.) were recorded for each group; tumor volume was calculated using the 

formula TV=width2 × length × 0.52.  At the end point, percent (%TGI) values were 

calculated and reported for each treatment group (T) versus control (C) using initial (i) 

and final (f) tumor measurements by the formula: %TGI=1−Tf−Ti/Cf−C; single agent or 

combination therapies resulting in a TGI >58% at study completion were considered 

active in the tested model at the evaluated treatment regimen according to NCI 

guidelines.  Statistical differences in tumor volume were determined using a one-tailed t-

test.  BrdU incorporation studies were performed upon intraperitoneal injection with 

1 mg of BrdU (BD Biosciences, San Jose, CA, USA) in 200 mkl PBS 2 h before killing 

the mice.  Tumor cells positively stained with BrdU-antibody (Cell Signaling) were 

counted from 10 high-power fields (× 40) (>300 cells per field) and proliferative index 

determined as BrdU-positive cells divided by total cell count. 

II.1.4 Results 

II.1.4.1 ACC gene expression signature identifies expression of neurologic stem 

cell markers and elements of the Wnt and Notch pathways  

Microarray expression analyses comparing global expression patterns of human 

salivary ACC (n =7) to normal tissue and other cancers of the head and neck revealed 

that the ACC expression profile differed from salivary mucoepidermoid carcinoma 
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(MEC, n = 6), and head and neck squamous cell carcinoma (HNSCC, n = 10).  

Specimens in this study were collected at the time of biopsy or resection at the 

Vanderbilt Ingram Cancer Center (Table 1).  ACC and MEC were more similar, with 

3345 differentially expressed genes (p < 0.01), compared to HNSCC and the salivary 

tumors, with 7127 (ACC, p < 0.01) and 8137 (MEC, p < 0.01) differentially expressed 

genes. 

Unsupervised clustering of all specimens using the 3345 genes that 

discriminated ACC from MEC identified a hierarchical association that specifically 

segregated all but one of the ACC specimens from all other tumor types (Figure 3A).  

Likewise, MEC and HNSCC clustered together in distinct branches from ACC.  

 Cluster analyses revealed that ACC expressed 210 genes at markedly higher 

levels compared to either MEC or HNSCC.  One of the most immediately notable 

characteristics of this gene set was a large number of probes identifying TRKC as 

expressed only in ACC, which prompted reference to these genes as the TrkC-centered 

signature (TCCS).  GO analyses of the TCCS demonstrated significant enrichment in 

genes associated with the Notch and Wnt pathways (Table 2) that have previously been 

associated with neural differentiation and cancer.234-236  Other genes associated with the 

TCCS included: neural crest stem cell markers SOX10,237 MAP2,238 SALL2,239 and 

SLITRK6;240 melanoma markers SHC438 and MUM139; and surface receptors FGFR1 

and EFNB3. 

To further validate the ability of the TCCS to identify ACC specimens, expression 

patterns of murine xenografts derived from primary ACC specimens (n = 11) were 

analyzed.228  When expression data from the xenografted ACCs were combined with 
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data from primary tumors and re-normalized, unsupervised clustering using the 

previously identified differentially expressed genes clustered 10 xenografts with all but 

two of the primary ACC specimens (Figure 3B).  Consistent with clustering of primary 

ACC (Figure 3A), genes highly expressed in ACC centered on TrkC and confirmed that 

this gene cluster was relatively overexpressed in xenografted and primary ACCs.  

TCCS components, such as EFNB3, GPM6B, SOX10, and TCF7L2 were again 

identified as highly expressed in ACC from the combined analysis.  The TGF-β receptor 

TGFBR3 was also found adjacent to the NTRK3 cluster; however, its expression was 

not limited to ACC, but seen also in MEC, and to a lesser extent in HNSCC. 
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ID Gender Age Site Diagnosis Stage 

ACC-1 F 42 Oral cavity/buccal ACC T1N0M0 
ACC-2 F 86 Oral cavity/hard palate ACC T4N0M0 
ACC-3 F 65 Parotid ACC T2N0M0 
ACC-4 F 75 Submandibular ACC T3N0M0 
ACC-5 M 78 Nasal cavity ACC T2N0M0 
ACC-6 F 61 Nasopharynx ACC T3N0M0 
ACC-7 F 75 Nasopharynx ACC T2N0M0 
AD-1 M 57 Nasopharynx AD T4N0M0 
AD-2 M 60 Nasal cavity AD rT4bN0M0 
MEC-1 M 56 Parotid MEC T1N0M0 
MEC-2 M 65 Parotid MEC T4N0M0 
MEC-3 F 55 Oropharynx MEC T1N0M0 
MEC-4A F 63 Oropharynx MEC T1N0M0 
MEC-4B F 63 Oropharynx MEC T1N0M0 
MEC-5 F 75 Oral cavity/tongue MEC T2N0M0 
MEC-6 F 31 Parotid MEC T1N0M0 
HNSCC-1 M 60 Oropharynx HNSCC T2N1M0 
HNSCC-2 M 74 Oropharynx HNSCC T2N2cM0 
HNSCC-3 M 53 Oropharynx HNSCC T4N2cM0 
HNSCC-4 M 44 Oropharynx HNSCC T1N2cM0 
HNSCC-5 M 49 Oropharynx HNSCC T2N2bM0 
HNSCC-6 M 42 Oropharynx HNSCC T1N2aM0 
HNSCC-7 F 44 Oropharynx HNSCC T1N1M0 
HNSCC-8 M 57 Oropharynx HNSCC T2N2cM0 
HNSCC-9 M 53 Oropharynx HNSCC T3N2bM0 
HNSCC-10 F 79 Oropharynx HNSCC T1N1M0 
 

Table 1: Primary tumor specimens of ACC, MEC, AD and HNSCC used in the study.   

Abbreviations: ACC, adenoid cystic carcinoma; MEC, mucoepidermoid carcinoma. 
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Figure 3: TrkC-centered gene signature (TCCS) distinguishes ACC from MEC and HNSCC.   

(A) Expression profiling of clinical specimens derived from 25 primary tumors (left) and close up of clusters 1, 2, and 3 (right). Colored boxes and 

arrows along heatmap indicate overexpression of TrkC/NTRK3 (green boxes), SOX10 (red box), NFIB (yellow box), TCF7L2 (blue box), and 

multiple genes associated with neurogenesis (blue arrows).  FGFR1 (black box) and EFNB3 (orange box) are clustered with NTRK3. Individual 

specimen codes are shown along heatmap bottom.  (B) Validation of TCCS on 11 subcutaneously grown ACC xenografts derived from an 

independent patient cohort.228   When added to the previous clinical set, 11 independently collected and xenografted ACC specimens (ACCX set) 

showed similar gene signature and clustered with 5 out of 7 primary ACC specimens. Core TCCS elements are shown with colored boxes as 

above. All ACCX specimens are labeled with letter X at the bottom of heatmap with XMA designating MADO4-385. 
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Wnt Notch 
Nervous system 

development 
Neurologic stem 

cell markers 

CTBP1 CTBP1 ATXN3 MAP2 
CTBP2 CTBP2 CRIM1 SALL2 
CXXC4 KAT2A EFNB3 SOX10 

FBXW11 NOTCH1 GPM6B SLITRK6 
LRP6  GPSM1  

SMAD4  NDRG2  
TBL1X  NTRK3  
TCF7L1  SEMA6D  
TCF7L2  SMARCC2  
WNT6  SMARCE1  

Table 2: Enrichment of TrkC-centered gene signature with genes involved 

in the Wnt and Notch pathways, neurologic development and with 

neurologic stem cell markers 

II.1.4.2 TrkC as a marker of ACC 

 TrkC was of particular interest as it had is overexpressed in select cancers (e.g., 

neuroblastoma,203 melanoma,204 and breast cancer205) and stimulated by a neural-

associated gene, NT-3, which could play a role in the characteristic perineural 

invasiveness of ACC, and potent small-molecule Trk inhibitors have been developed.  

However, detecting of TrkC might have been evidence of a broader network of 

neurotrophic signaling in ACC.  Indeed, expression array identified expression of 

neurotrophic receptors p75/NGFR and TrkB/NTRK2 in a subset of ACC.  Expression of 

p75/NGFR and TrkB/NTRK2 was not as ubiquitous as TrkC among ACC specimens, 

and TrkA/NTRK1 expression was not identified in ACC.  Thus, TrkC appeared to be the 

major effector of this family in ACC demonstrating 100-430-fold up-regulation in 17 of 

the 18 studied primary ACC specimens and xenografts compared to normal salivary 

tissue (Figure 4A).  To confirm the expression array data, TrkC protein expression was 

measured by immunoblot in clinical ACC, MEC, and normal salivary specimens, 

revealing markedly increased levels of TrkC in all primary ACC specimens and 
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xenografts studied, whereas expression was at the limit of detection in the remaining 

tissues (Figure 4B).  Expression of other neurotrophic (p75/NGFR and TrkB/NTRKB) 

and membrane (Efnb3 and Tgfbr3) receptors was consistent with microarray results 

(Figure 4B).  Examination of ACC xenografts confirmed high expression of TrkC was 

maintained in this model system (Figure 4C).
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Figure 4: TrkC is expressed in ACC.   

(A) Expression of neurotrophic receptors in clinical and subcutaneously grown ACC xenograft specimens. Expression values of TrkB/NTRK2, 

TrkC/NTRK3, and p75/NGFR were derived from combined microarray study and shown in arbitrary units. Expression of TrkA was not detected. 

(B) Immunoblot validation of TrkC, TrkB, NGFR, and other receptor expression in clinical ACC and MEC specimens compared to normal salivary 

gland tissue (NSG).  In agreement with microarray data, ACC specimens also expressed EfnB3 and Tgfbr3.  (C) Expression of total TrkC protein 

in subcutaneously grown ACC xenografts as compared with clinical specimen ACC-3. Numbers of passages for ACCX2 (either 3 or 8) are 

indicated. Loading control was assessed by Ponceau staining. 
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II.1.4.3 ACC tumors express full-length TrkC and its ligand NT-3 

As activating mutations and fusions of TrkC have been described in diverse 

tumor types, it was important to determine whether ACC specimens contained such 

mutations.  TrkC transcripts were amplified from primary ACC tumors and sequenced, 

revealing that the open reading frames (ORFs) of TrkC from all six TrkC-positive ACC 

tumors were full-length and wild-type.  Remarkably, all of these specimens (ACC1-6) 

expressed the canonical isoform b that encodes a fully active protein (NM_002530), but 

also contained splicoform d (NM_001243101) that lacks exon 10, producing an 8-

amino-acid (aa) in-frame deletion in the juxtamembrane TrkC domain.  This isoform, 

which was expressed in ACC at levels similar to isoform b (data not shown), was 

previously described as a polymorphism,241 but its biological significance remains 

unclear.  

Although TrkC was expressed in the majority of ACC specimens, biological 

effects of TrkC activity in these tumors were unknown.  In other tumor types such as 

neuroblastoma, TrkC expression is a positive prognosticator, likely related to the 

function of TrkC function as death receptor when its ligand is not present.  In order to 

determine if TrkC was active, as a surrogate for ligand presence, phosphorylation of the 

receptor was analyzed.  TrkC immunoprecipitation from lysates of ACC xenografts 

followed by immunoblotting for phosphotyrosine indicated that TrkC is activated in ACC 

(Figure 5A).  To determine if an autocrine loop between NT-3 and TrkC was possible in 

ACC, NT-3 expression was determined in primary (n = 7) and xenografted ACC 

specimens (n = 11).  NT-3 expression was detected and verified by sequencing in both 

primary and xenografted ACC specimens, suggesting that an autocrine survival 
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pathway may be active in ACC (Figure 5B&C).  Levels of NT-3 transcripts showed 

substantial variation from specimen to specimen with no obvious correlation with 

expression of TrkC (R = 0.43).  Taken together, these results demonstrate that ACC 

tumors contain high levels of TrkC, and that TrkC signaling is persistently active in these 

tumors, likely owing to autocrine NT-3 production. 
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Figure 5: Activation of TrkC in ACC.   

(A) Tyrosine phosphorylation of TrkC in ACC xenografts assessed via TrkC-immunoprecipitation.  Rabbit 

IgG was used as a negative control and 1/20th of the protein amount used in immunoprecipitation was 

loaded for Western analysis.  Semi-quantitative detection of NTF3 expression by end-point RT–PCR (B) 

and comparison between NTF3 and NTRK3 levels in clinical specimens of ACC (C). Equal amounts 

(50 ng) of total RNA isolated from clinical (ACC) and subcutaneous xenograft (ACC Xenograft), MEC 

and AD specimens, and normal salivary tissue (NSG) were subjected to 30 cycles of RT–PCR with 

primers for human NTF3, NTRK3, and PPIA (last used as a loading control). Graph shows PPIA-

normalized expression values in arbitrary units. 
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II.1.4.4 Creation and validation of a TrkC-expressing surrogate cell line  

Although a link between TrkC/NT-3 expression and aggressive cancer behavior 

has been established in some tumor types,205, 242 the molecular and cellular 

consequences of TrkC overexpression are not fully understood.  TrkC expression in 

primary and xenografted tumor specimens did not correlate with other neurotrophin 

receptors such as TrkA, TrkB or p75/NGFR (Figures 4A&B), suggesting a special role 

for TrkC in this tumor type.  In order to explore the consequences of TrkC expression 

and signaling, we wanted to disrupt TrkC signaling in vitro; however, due to a lack of 

reliable cell lines in ACC,129 a surrogate cell line with forced expression of TrkC was 

utilized.  For this purpose, human osteosarcoma cells (U2OS) were chosen as they lack 

endogenous expression of neurotrophic receptors or their ligands.  While this model 

may not perfectly replicate the activities of TrkC in ACC, this cell line enabled 

identification of potential molecular mediators and behavioral consequences of TrkC 

signaling.   

TrkC-expressing U2OS cells tolerated high levels of TrkC expression, enabling 

the study of TrkC signaling in the presence or absence of NT-3.  In the absence of NT-

3, TrkC remained unphosphorylated, but stimulation with its ligand induced rapid and 

marked TrkC phosphorylation at tyrosine residues (Figure 6A).  The pan-Trk inhibitor, 

AZD7451 (AstraZeneca) completely prevented/reverted TrkC phosphorylation when 

added at nanomolar concentrations regardless of the presence of NT-3 ligand (Figure 

6A).  As ligand-activated Trk signaling is associated with receptor clustering and 

internalization,243 cellular localization of TrkC with and without NT-3 was assessed by 

immunofluorescence.  Cellular localization was consistent with TrkC receptor 
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clustering/internalization following NT-3 stimulation, as diffuse membrane staining 

changed to a pattern of distinct bright puncta (Figure 6B).  
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Figure 6: TrkC activation in U2OS surrogate cell line.   

(A) NT-3-dependent TrkC tyrosine phosphorylation assessed in TrkC-expressing U2OS cells. (B) Immunofluorescence 

staining of TrkC in TrkC-expressing cells with (bottom row) and without (upper row) NT-3. 
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II.1.4.5 TrkC activation induces proliferative and anti-apoptotic pathways 

In the presence of its ligand, TrkC signaling in non-tumorigenic neural tissue 

promotes survival and proliferation, at least partially, through activation of Ras and Akt 

as its downstream mediators (http://www.genome.jp/kegg/pathway/hsa/hsa04722.html).  

To identify additional signaling pathways activated by TrkC expression in the presence 

or absence of the NT-3 ligand, stably transfected U2OS cells (vector control and TrkC) 

with and without addition of NT-3 were analyzed using phospho-protein antibody arrays 

(Figure 7A).  The most notable difference following TrkC expression was the activation 

of p53 indicated by increased phosphorylation at multiple sites, including the critical S15 

residue (Figure 7A).  Additionally, TrkC expression had a moderate suppressive effect 

on Akt phosphorylation and induced phosphorylation of β-catenin.  Stimulation of TrkC-

expressing cells with NT-3 resulted in a very different profile of pathway activation 

compared with cells expressing TrkC in the absence of ligand.  Upon NT-3 stimulation, 

Erk and Akt were markedly activated in cells expressing TrkC, whereas phosphorylation 

of β-catenin was reduced (Figure 7A).  Phosphorylation of p53 was decreased upon NT-

3 treatment in cells expressing TrkC (Figure 7A), consistent with TrkC acting as a death 

receptor in the absence of its ligand.  Despite TrkC being the only described receptor for 

NT-3, p53 phosphorylation increased in cells lacking TrkC (Figure 7A) when exposed to 

NT-3.  Immunoblot experiments confirmed the effects of TrkC and NT-3 on the 

expression of phosphorylated Akt, Erk1/2, and p53 seen in the arrays (Figure 7B).  

Interestingly, co-immunoprecipitation experiments indicated that TrkC exists in complex 

with p53, and that this association is not dependent upon the presence of NT-3 (Figure 

7C). 
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A similar phospho-receptor tyrosine kinase (RTK) antibody array was employed 

to assess changes in tyrosine phosphorylation following TrkC expression or NT-3 

stimulation.  As expected, TrkA and TrkB phosphorylation were not detected in these 

cells, and TrkC tyrosine phosphorylation was confirmed upon NT-3 stimulation only in 

cells expressing TrkC (Figure 7A).  In addition to stimulating TrkC phosphorylation, TrkC 

expression in the presence of NT-3 triggered VEGFR1 tyrosine phosphorylation, 

suggesting that NT-3 may promote angiogenesis in a TrkC-dependent manner.  

Although TrkC expression has been associated with Ras activation,205, 225 this 

was not assessed by the antibody arrays.  Activation of Erk and Akt downstream of 

TrkC could indicate Ras pathway activation, and to further explore this possibility 

control- (vector) and TrkC-expressing U20S cells were stimulated with NT-3 for 

increasing time periods before measuring activated Ras by determining the amount that 

bound to a peptide of the Ras binding domain (amino acids 51-149) of human Raf1.  

NT-3 stimulation resulted in rapid and sustained Ras activation only in TrkC-expressing 

cells (Figure 7D).  These effects were consistent with previous reports demonstrating 

that Ras is a mediator of TrkC signaling,205, 225 and further suggested that proliferative 

and survival pathways are activated in the absence of additional neurotrophin 

components such as TrkA, TrkB, NGFR, or their ligands. 
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Figure 7: NT-3 induces pro-survival signaling in TrkC-expressing U2OS cells.  

(A) TrkC- and NT-3-dependent phosphorylation of Erk1/2, Akt, β-catenin, and VEGFR1. Tyrosine phosphorylation of TrkC induced by NT-3 is 

shown.  PC, positive controls provided with membranes.  (B-C) Validation of TrkC and NT-3 effects on Akt, Erk1/2 (B), and association with p53 

(C).  (D) Rapid and sustained NT-3-induced Ras activation in cells expressing TrkC.  Loading control assessed by Ponceau staining. 
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II.1.4.6 Phenotypic effects of TrkC activation and signaling 

Ras activation is associated with cellular motility, migration, invasion, proliferation 

and survival.244  To determine the role of TrkC in cellular migration, a scratch assay was 

performed on U2OS cells with and without TrkC expression in the presence or absence 

of NT-3 or the pan-Trk inhibitor AZD7451.  Control cells had no change in migration 

following addition of NT-3, but the gap closure was greatly stimulated by NT-3 in cells 

expressing TrkC (Figure 8A, ~1.8 fold, p<10-5).  Addition of AZD7451 did not 

significantly alter migration of control U2OS cells (P = 0.17) but inhibited the migration of 

TrkC-expressing cells (Figure 8A, ~2.3-fold, p < 3.9 x 10-8).  

To further confirm the results of scratch analyses which suggested that activated 

TrkC stimulated migration, a Boyden transmembrane migration assay was performed 

with and without NT-3 addition.  Consistent with the scratch assay, NT-3 stimulated 

migration of TrkC-expressing U2OS cells (Figure 8B).  NT-3 induced migration of TrkC-

expressing cells was inhibited by addition of AZD7451 (Figure 8B).  Neither NT-3 or 

AZD7451 altered migration of control cells.  A modified Boyden chamber assay using 

matrigel coating as a basement membrane surrogate was used to determine if TrkC 

altered cellular invasion.  Similar to results of the migration assays, the addition of NT-3 

promoted invasion of TrkC-expressing cells (~2.5-fold), but not control cells (Figure 8C).  

Once again, the Trk inhibitor, AZD7451, blocked the increased invasion observed in the 

presence of NT-3.   

To further explore the tumorigenic potential of TrkC-expressing U2OS cells, 

anchorage-independent growth in soft agar was measured.  Although U2OS cells are 

transformed, they inefficiently grow in soft agar, forming very few and relatively small 



57 
 

colonies.  Addition of NT-3 to TrkC-negative cells or expression of TrkC in the absence 

of NT-3 did not enhance the ability of U2OS cells to grow in this assay.  Remarkably, 

stimulation of TrkC-expressing cells with NT-3 dramatically increased both number 

(~10-fold, p < 10-9) and size/calculated volume (~9-fold) of colonies that formed in soft 

agar (Figure 8D&E).  Treatment of cells with AZD7451 prevented the stimulatory effect 

of NT-3 on colony formation seen in TrkC-expressing cells.  Together, these data 

suggest that TrkC activation by NT-3 in the absence of additional neurotrophin 

stimulation or co-operation with other Trk receptors increases tumorigenic behavior and 

may drive tumor growth, migration, and invasion.   
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Figure 8: NT-3 promotes motility and chemotaxic migration/invasion in TrkC-expressing cells.  

(A) NT-3 promotes TrkC-dependent motility of U2OS cells in scratch assays with mitomycin C. Scratch 

closure is shown in arbitrary units. Asterisks indicate statistically significant differences.  NT-3 stimulates 

(B) migration through Boyden chamber membranes and (C) invasion through matrigel-covered 

membranes in TrkC expressing cells.  (D-E) NT-3 promotes colony formation and growth in soft agar in 

TrkC expressing cells.  (D) Examples of colony size in the presence or absence of ligand-stimulated 

TrkC.  (E) Average soft agar colony count per visual field in the presence or absence of TrkC, NT-3 or 

the Trk inhibitor, AZD7451.  
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II.1.4.7 Effects of TrkC and NT-3 on cytoskeleton components 

Migration and invasion require coordinated restructuring of the cytoskeleton, and 

Ras activation is involved in this process.245  To examine the extent of cytoskeletal 

rearrangement resulting from TrkC activation, F-actin was stained with phalloidin-FITC 

in U2OS cells.  Following NT-3 stimulation, TrkC-expressing cells had actin patterns 

indicative of cytoskeleton rearrangement including F-actin condensation (puncta) and F-

actin enriched protrusions (Figure 9A).  These effects were similar to the NT-3-triggered 

changes in the morphology of neuroblastoma cells described previously.246  

TUBB2B is a class II b-tubulin described as being exclusively expressed in 

neural tissue (http://biogps.org/) and critically involved in neuronal migration.247  

Expression array analyses revealed that this gene is expressed in the majority of ACC 

specimens (Figure 9B), and overexpression of TrkC in U2OS cells resulted in increased 

TUBB2B expression as assessed by immunofluorescence (Figure 9B).  These 

preliminary studies suggested that TrkC may affect restructuring of the cytoskeleton.  

Taken together, these observations suggested an important role for the TrkC/NT-3 

interaction in cytoskeleton regulation resulting in tumor migration and invasion. 
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Figure 9: Association of TrkC with cytoskeletal regulation.   

(A) NT-3 stimulates development of F-actin puncta (yellow arrow, 400x) and F-actin-rich fillopodia (red arrows, middle, 100x; right, 400x). (B) TrkC 

stimulates expression of class II β-tubulin TUBB2B. 
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II.1.4.8 Up-regulation of p-Erk1/2 and Bcl2 in TrkC-positive ACC cells 

Given that there were no ACC cultures for behavioral or biological study, ACC 

tissues were analyzed to determine if they expressed proteins observed in the U2OS 

model system or that had been previously reported.  In agreement with activation of 

Erk1/2 in TrkC-expressing U2OS cells (Figure 7A&B), TrkC has been associated with 

Erk1/2 and Bcl2 up-regulation in cylindromas,248 and up-regulation of Erk1/2 by 

neurotrophins has been linked with Bcl2 up-regulation (http://www.genome.jp/kegg-

bin/show_pathway? hsa04722).  In order to assess whether these finding are also seen 

in ACC, clinical ACC specimens were immunostained to determine expression of 

Erk1/2, Bcl2 and TrkC.  As seen in cylindroma, ACC specimens expressed TrkC, p-

Erk1/2 and Bcl2 in their neoplastic myoepithelial layer (Figure 10).  The patterns of 

expression of Erk and TrkC in ACC tumors varied amongst cells of the basal layer, 

while Bcl-2 was expressed more uniformly; however, expression of these genes 

overlapped at least partially.  Expression of these genes was not detected in MEC in 

agreement with lack of TrkC expression in this cancer.  Interestingly, normal salivary 

gland tissue displayed TrkC and Bcl2-positive signals in myoepithelial cells (data not 

shown).  This finding, however, was not entirely unexpected given the important roles 

that myoepithelial cells have in ACC development.249 
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Figure 10: Expression of TrkC, Bcl2, and phospho-Erk in ACC.   

High levels of TrkC. Bcl2 and Erk1/2 activation in ACC. 
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II.1.4.9 Inhibition of TrkC signaling suppresses ACC tumor growth in vivo 

The effect of TrkC inhibition on ACC xenograft growth was determined using two 

xenograft models of human ACC (1) ACCX6, a xenograft created from a metastatic 

tumor, and (2) ACCX9, a xenograft from a primary tumor.228  AZD7451 was 

administered orally at 50 mg/kg once daily.  In ACCX6, AZD7451 demonstrated a 

marked anti-tumor effect as a single agent (Figure 11A, tumor growth inhibition (TGI) = 

64%, p < 0.05).  However, ACCX9 did not see a significant effect at the 35-day 

experimental course (Figure 11B, TGI = 43%, p > 0.05).  Nevertheless, analysis of 

BrdU-incorporation performed on tumors generated from ACCX9 showed a robust 

reduction in the proliferation index (Figure 11C, PI = % BrdU-positive cells) from 17% to 

5% (p < 10-5), suggesting that AZD7451 inhibited cellular proliferation in ACCX9.  This 

observed difference between anti-tumor effects of AZD7451 in ACCX6 and ACCX9 

could, in part, be due to ACCX9 displaying a sluggish growth profile from days 1-21, 

thus leaving insufficient time in this experiment for drug effects to become significant.  

The observed changes in tumor growth are not likely due to toxicity, as AZD7451 

administration was not accompanied by weight loss of the animals.  These preclinical 

data support further investigation of single agent Trk kinase inhibitors as a potential 

therapeutic option in ACC.
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Figure 11: Assessment of AZD7451 efficacy in vivo.   

(A-B) ACC tumor growth in the ACCX models with or without Trk inhibitor. From day 3 for ACCX6 p<0.05. (C) Reduction in the 

proliferative index (PI) in the ACCX9 model as assessed by BrdU staining. 
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II.1.5 Discussion 

In this study, a novel ACC marker, receptor tyrosine kinase TrkC/NTRK3 was 

characterized as a potential therapeutic target.  Unusually high TrkC expression levels 

were found in ACC (up to ~100-fold as compared with the normal salivary tissue), 

raising an important question if this RTK may serve as a driver of ACC.  Lack of 

activating mutations suggested that malignant ACC cells may benefit from increased 

activity of wild-type TrkC signaling, possibly achieved either via spontaneous TrkC 

dimerization and activation due to overexpression250 or through interaction with its only 

known ligand NT-3.  Given that other neurotrophin receptors did not correlate with TrkC 

expression, TrkC signaling alone was explored for its ability to stimulate pro-invasive 

signaling and cell behavior.  TrkC-expressing U2OS cells in response to NT-3 

stimulated: (1) TrkC tyrosine phosphorylation, (2) Ras, Erk1/2, Akt, and VEGFR1 

activation, (3) cell motility and invasion, (4) chemotaxis toward NT-3, (5) adherence-

independent growth, and (6) outgrowth of F-actin-rich processes typical for migrating 

cells (Figures 7-9).  Without NT-3, TrkC remained unphosphorylated, did not stimulate 

pro-tumorigenic qualities, and had anti-tumorigenic signaling effects including increased 

phosphorylation of p53, in agreement with the dependence receptor paradigm.251  In 

agreement with previous studies, NT-3 was the only neurotrophin capable of activating 

TrkC, as NGF, BDNF and NT-4 failed to induce TrkC phosphorylation (data not shown).  

These observations suggest that highly overexpressed TrkC is oncogenic when NT-3 is 

available, stimulating further research into the autocrine TrkC/NT-3 signaling that was 

discovered in ACC. 
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Without NT-3, TrkC induces apoptosis and thus may suppress tumor 

progression.214  These studies revealed a potential novel molecular mechanism of this 

NT-3-independent mode of TrkC function.  In the absence of ligand, TrkC stimulated 

TUBB2 expression (Figure 9) while inhibiting Akt and Erk1/2 activation (Figure 7A&B).  

TrkC in the absence of ligand stimulated the expression of total and serine-

phosphorylated p53, and this effect was alleviated by NT-3.  Interestingly, 

immunoprecipitation suggested that TrkC is in a complex with p53 (Figure 7C).  Of note, 

TrkA, which is also considered a dependence receptor with a pro-apoptotic function 

similar to TrkC in the absence of ligand,211, 251 binds p53, which mediates TrkA 

activities.252-255  Tumor-suppressive TrkC activities suggest that association of TrkC 

overexpression with good prognosis observed in medulloblastoma4 may be explained 

by lack of NT-3 stimulation.  Indeed, autocrine TrkC/NT-3 loops detected recently in 

neuroblastomas were linked with poor prognosis.215  

Up-regulation of Bcl2 along with TrkC in ACC, which is also observed in CYLD-

deficient cylindromas that overexpress TrkC,248 is an intriguing discovery, given the 

important role that Bcl2 has in cell survival and, particularly, the resistance to radio- and 

chemotherapies.256  High Bcl2 levels detected in ACC tumors (Figure 10) are consistent 

with results reported on four ACC specimens257 and may contribute to the relative 

resistance of this cancer to cytotoxic therapies. 

Expression of TrkC in normal myoepithelial cells of the salivary gland provides an 

interesting insight into the potential cell origin of ACC.  ACC is thought to arise from the 

intercalated salivary duct where myoepithelial cells are abundant,258, 259 and is 

histologically and clinically distinct from MEC, whose origin is linked with the excretory 

http://www.nature.com.proxy.library.vanderbilt.edu/onc/journal/v32/n32/full/onc2012377a.html#bib4
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duct.259, 260  Accordingly, expression array data reliably discriminated between these two 

cancers and identified TrkC as one of the most distinguishing markers of ACC.  As 

myoepithelial cells have important roles in normal salivary gland functions and the 

pathogenesis of adenoid cystic carcinoma,261, 262 characterization of TrkC as a 

previously unknown marker of these cells sheds more light onto their function, origin, 

and role in ACC. 

Overall, these findings reveal a previously unknown autocrine NT-3/TrkC 

signaling pathway in ACC that can be targeted with small-molecule inhibitors.  A novel 

pan-Trk inhibitor AZD7451 was characterized in this study as a potent TrkC inhibitor, 

which blocks its tyrosine phosphorylation in a nanomolar range and suppresses 

TrkC/NT-3-mediated cell migration, motility, invasion, and growth in soft agar (Figure 8).  

It is reasonable, therefore, to suggest that this drug may be used to block ACC 

neuroinvasion and growth, and pre-clinical assessment of its activity on murine 

xenografts that models invasive ACC supports its tumor-suppressive properties 

(ACCX6, Figure 11).  In conclusion, distorted neurologic signaling detected in ACC 

advances understanding of its molecular etiology, suggests similarity of its molecular 

pathology with neural crest cancers, and stimulates development of multi-drug 

treatment modalities that target TrkC/NT-3, Ras, Erk 1/2, Akt and Bcl2. 
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II.2 Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast 

basal-like carcinomas 

Adapted from manuscript published in British Journal of Cancer.263 

II.2.1 Abstract 

Salivary adenoid cystic carcinoma (ACC) is an insidious slow-growing cancer 

with the propensity to recur and metastasize to distant sites.  Basal-like breast 

carcinoma (BBC) is a molecular subtype that constitutes 15–20% of breast cancers, 

shares histological similarities and basal cell markers with ACC, lacks expression of ER 

(estrogen receptor), PR (progesterone receptor), and HER2 (human epidermal growth 

factor receptor 2), and, similar to ACC, metastasizes predominantly to the lung and 

brain.  Both cancers lack targeted therapies and have incomplete understanding of their 

molecular drivers contributing to the absence of targetable defects.  Gene expression 

profiling, immunohistochemical staining, western blot, RT-PCR, and in silico analysis of 

cancer expression data sets were used to identify novel markers and potential 

therapeutic targets for ACC and BBC.  For detection and comparison of gene 

signatures, co-expression analysis was performed using a recently developed web-

based multi-experiment matrix tool for visualization and rank aggregation.  

Characteristic and overlapping SOX10 gene signatures that contained a large set of 

novel potential molecular markers were identified in ACC and BBC.  SOX10 was 

validated as a sensitive diagnostic marker for both cancers, and its expression was 

linked to normal and malignant myoepithelial/basal cells.  In ACC, BBC, and melanoma 

(MEL), SOX10 expression strongly co-segregated with the expression of ROPN1B, 

GPM6B, COL9A3, and MIA.  In ACC and breast cancers, SOX10 expression negatively 

correlated with FOXA1, a cell identity marker and major regulator of the luminal breast 
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subtype.  Diagnostic significance of conserved elements of the SOX10 signature (MIA, 

TRIM2, ROPN1, and ROPN1B) was confirmed in BBC cell lines.  SOX10 expression in 

ACC and BBC appears to be part of a highly coordinated transcriptional program 

characteristic of cancers with basal/myoepithelial features.  Comparison between 

ACC/BBC and other cancers, such as neuroblastoma and melanoma (MEL), reveals 

potential molecular markers specific for these cancers that are likely linked to their cell 

identity.  SOX10 as a novel diagnostic marker for ACC and BBC provides important 

molecular insight into their molecular etiology and cell origin.  Given that SOX10 was 

recently described as a principal driver of MEL, identification of conserved elements of 

the SOX10 signatures may help in better understanding of SOX10-related signaling and 

development of novel diagnostic and therapeutic tools. 

II.2.2 Introduction 

Adenoid cystic carcinoma (ACC) of the salivary gland, the second most frequent 

salivary cancer, is notorious for neural or perineural invasion and late recurrence.264  

When compared with salivary mucoepidermoid and head and neck squamous cell 

carcinomas, ACC overexpressed a large cluster of neuronal genes grouped around 

TrkC/NTRK3, a tyrosine kinase neurotrophic receptor associated with neurogenesis and 

cancer.200  This observation suggested, for the first time, that ACC aberrantly expresses 

genes involved in neural stem cell differentiation.  ACC was also found to express 

neurotrophin-3 (NT-3/NTF3), the TrkC ligand, suggesting that activation of TrkC through 

an autocrine signaling loop may contribute to tumor growth and dissemination. 

Ectopic expression of TrkC revealed that NT-3/TrkC signaling activates Ras, Akt, 

and Erk1/2 and promotes tumorigenic and aggressive behaviors, including increased 
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motility, chemotaxis, invasion, and growth in soft agar.200  To further characterize the 

activation of the gene expression program identified in ACC, focus was given to SOX10.  

SOX10 was of particular interest because of its roles as a marker of neural crest stem 

cells (NCSCs) and in the maintenance and migration of NCSCs.265-267  Remarkably, 

TrkC and SOX10 may be functionally linked, as inactivating mutations in NTRK3, NTF3, 

and SOX10 were identified as independent drivers of Hirschsprung disease,212, 213, 268, 

269 a genetic condition linked to the inability of NCSCs to migrate, differentiate, and 

develop into the enteric nervous system.270 

In addition to its role in neural crest development, SOX10 has also been 

identified as a driver of melanoma (MEL) progression, a cancer that develops from 

melanocytes that are neural crest derivatives.182  In this study, overexpression of 

SOX10 in ACC was identified and SOX10 was established as a sensitive ACC marker.  

Using available public data sets, a SOX10 gene signature was identified in basal-like 

breast carcinoma (BBC) and compared to the SOX10-centric signature in ACC.  BBC is 

perhaps the least understood breast cancer subtype that largely overlaps with triple-

negative breast cancers (TNBCs), lacks obvious molecular markers, and has no 

effective targeted therapeutic approach.271, 272  Together, these data suggest that a 

large portion of ACC and BBC may share neurologic signaling pathways associated 

with SOX10, which is also activated in MEL, and that these molecular similarities are of 

potential therapeutic importance. 

II.2.3 Materials and methods 

II.2.3.1 Head and neck cancer specimens.  Original expression array data were 

obtained on clinical specimens from 25 patients treated at Vanderbilt Ingram University 
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Medical Center: ACC (n=7), mucoepidermoid carcinoma (MEC, n=6), adenocarcinoma 

(n=2), and head and neck squamous carcinoma (n=10) (for clinical details, see 

(Ivanov et al, 2012)).  The validation set of ACC specimens (n=13) was obtained from 

the Salivary Gland Tumor Biorepository (MD Anderson Cancer Center, Houston, TX, 

USA). 

II.2.3.2 Cell lines.  A375, HCC38, HCC1569, MCF7, and T47D were obtained directly 

from ATCC (Manassas, VA, USA). MX-1 cells were purchased from the NCI tumor 

repository (Frederick, MD, USA). 

II.2.3.3 Expression array analyses.  Collection and processing of expression array 

data has been described previously.200  Analysis of data sets from public domains 

available from the ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/) was 

performed using MEM (http://biit.cs.ut.ee/mem/index.cgi). 

II.2.3.4 Western blot analysis and antibodies.  Anti-human SOX10 antibodies (NBP1-

68983; Novus Biologicals, Littleton, CO, USA) and cell lysates produced from snap-

frozen VUMC and UVA specimens were used, as well as 13 additional specimens from 

MD Anderson Cancer Center specimens as described.200 

II.2.3.5 Immunohistochemical studies.  The salivary cancer tissue microarray (TMA, 

45 cores, 1mm diameter, 14 cases in triplicates) was assembled in the laboratory of Dr. 

Yarbrough.  Additional salivary cancer specimens (myoepithelial carcinoma, 

epimyoepithelial carcinoma, and basal cell adenoma) were obtained from the 

Department of Pathology, Yale School of Medicine.  The breast cancer TMA that 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721393/#bib20
http://www.ebi.ac.uk/arrayexpress/
http://biit.cs.ut.ee/mem/index.cgi
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included triple-negative cases (YTMA-49-10, 0.6 mm core, n>300) was produced by the 

Yale Department of Pathology.  Mouse embryo slides (stage E15) were obtained from 

Zyagen (San Diego, CA, USA).  Staining with Sox10 antibodies (goat polyclonal, N-20; 

Santa Cruz Biotechnology, Santa Cruz, CA, USA) was performed as described.273 

II.2.4 Results 

II.2.4.1 SOX10 is a novel and sensitive biological marker for ACC and other 

salivary cancers that originate from the acinar and intercalated duct regions  

Analyses of expression array data of grossly dissected ACC, MEC, and HNSCC 

tumors, revealed that SOX10 was specifically expressed in 17 of the 18 ACCs 

(including 11 ACC xenografts).  When compared to normal salivary gland tissue, 

SOX10 expression in primary ACC specimens was markedly increased (Figure 12A, ~5-

fold, ACC1; ~25-fold, ACC3).  Xenografted ACC tumors expressed a higher median 

level of SOX10 and a maximum of ~46-fold increase of SOX10 expression compared to 

normal salivary tissue (Figure 12A).  This high level of SOX10 expression was 

confirmed in a subset of ACC specimens at the protein level by immunoblotting (Figure 

12B).  SOX10 expression was determined in an independent collection of 13 clinical 

ACC specimens (gift of Adel El-Naggar, MD, Anderson Cancer Center) wherein SOX10 

was detected in all but one ACC, but was below the limit of detection in normal salivary 

specimens (Figure 12C).  IHC performed on tumor tissues revealed SOX10 staining in 

the majority of ACC tumor cells (Figure 12D).  Of note, specimens that demonstrated 

the lowest level of SOX10 expression also contained the lowest percentage of tumor 

cells in the specimen.  By IHC, SOX10 demonstrated intense nuclear staining as well as 

detectable cytoplasmic staining in ACC.  Conversely, only one MEC contained 
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detectable SOX10 expression (MEC1, Figure 12C), but the staining pattern for this 

tumor was quite different than seen in the ACC specimens, with only moderate 

nuclear/cytoplasmic staining (Figure 12E&F).  In addition to SOX10 expression in 

MEC1, this specimen was characterized as an outlier from other MECs in previous 

expression array analyses, and re-evaluation of the pathology (Dr. Manju Prasad, Yale 

University) for MEC1 classified this specimen as a carcinoma not otherwise specified 

(NOS) rather than a MEC. 

 As SOX10 is expressed in other tumors, such as melanoma, the potential value 

of SOX10 as a diagnostic marker beyond ACC was assessed.  Two cases of 

myoepithelial carcinoma, three cases of epithelial-myoepithelial carcinoma, and one 

basal cell adenoma were immunostained for SOX10.  In all cases, SOX10 staining was 

observed in >80% of cancer cells.  This staining was limited to the myoepithelial cells as 

confirmed in epithelial-myoepithelial carcinomas by expression of p63, calponin, and 

CK7 (data not shown). 
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Figure 12: SOX10 expression in ACC.   

(A) Expression array data show high SOX10 levels in most primary and xenografted ACC specimens 

compared to MEC, AD, HNSCC, and NSG tissues.  (B) Validation of expression array data by western 

blot.  (C) Expression of the SOX10 protein in 13 additional primary ACC specimens.  (D) 

Immunohistochemical localization of SOX10 expression in ACC1-7.  MEC2 stains negatively for SOX10.  

(E) Nuclear expression of SOX10 in ACC cells.  (F) Nuclear-cytoplasmic SOX10 expression detected in 

one out of six MEC specimens studied. 
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II.2.4.2 SOX10 is expressed in embryonic and differentiated salivary tissues 

Outside of cancer, SOX10 is recognized as a marker and principal regulator of 

neural crest stem cells (NCSC).273-275  To determine if SOX10 is expressed in 

developing and mature salivary gland tissue, SOX10 immunostaining of mouse E15 

embryonic tissue and human adult salivary tissue was performed.  In mouse embryos, 

SOX10 was expressed in presumptive acinar cells, but not the ductal epithelium, 

suggesting that SOX10 may be involved in the development of differentiation of acinar 

structures (Figure 13A).  In line with this observation, SOX10 was observed staining the 

nuclei of acinar and myoepithelial cells of the human adult salivary tissue (Figure 13B).  

As expected, Sox10 antibodies similarly stained the nuclei of melanocytes of normal 

skin and cutaneous melanoma (Figure 13C).  Together, these data indicate that SOX10 

has a role in the development and maintenance of salivary tissues, particularly those 

derived from neural crest.   

 

Figure 13: Immunohistochemical analysis 

of SOX10 expression.   

SOX10 Expression in (A) mouse embryonic 

and (B) human adult salivary glands.  The red 

arrow points to the developing duct, whereas 

the black arrow shows the acinus.  (C) 

Validation of SOX10 on sections of normal 

skin (left) and cutaneous MEL (right). 
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II.2.4.3 SOX10 expression in basal-type breast carcinoma 

To better understand the significance of SOX10 expression in human cancer, its 

expression was examined in 1764 publicly available cancer datasets using the 

Affymetrix U133 Plus 2.0 platform (http:// biit.cs.ut.ee/mem/).  This database utilizes a 

novel, noise-resistant rank aggregation and visualization algorithm developed by Adler 

et al.276 and Kolde et al.277 allowing for simultaneous comparison of gene expression 

across massive data sets to identify genes co-expressed with SOX10 (Figure 14A).  

Notably, breast cancer (22 studies, 10-80 < p < 10-30), melanoma, neuroblastoma, and 

glioma, demonstrate strong patterns of SOX10 co-expressed genes, but SOX10 and the 

associated gene signature were not seen in other cancers.  Delving into studies in 

which breast cancers were identified by molecular subtype, SOX10 expression was 

restricted to the basal-like subtype (Figure 14B).  Analysis of SOX10 expression in the 

basal subtype from two studies (E-GEOD-21653 and E-GEOD- 20711, n = 163) 

demonstrated that SOX10 was expressed in 72% of basal-like specimens (Figure 14B 

and data not shown).  When compared with luminal subtypes, the basal subtype 

expressed at least 16-fold higher levels of SOX10 (Figure 14C, p < 10-10).  The results 

of expression array analyses were confirmed by immunostaining of a TMA containing 

normal and malignant breast tissue (Figure 14D).  As seen in salivary tissue, normal 

breast tissue showed SOX10 immunostaining in the nuclei of basal/myoepithelial cells, 

although some luminal breast cells showed low expression of SOX10.  In the triple 

negative breast cancer (TNBC) specimens, which largely overlap with BBC, nuclear 

SOX10 expression was seen in >60% of malignant cells.  Taken together, these data 
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suggest that SOX10 is expressed in normal breast tissue primarily in the 

basal/myoepithelial cells as well as in basal like breast cancers.   
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Figure 14: Characterization of SOX10 signature in BBC.  

(A) Rank aggregation analysis identifies genes whose activity co-segregates with that of SOX10 in basal-

like breast cancer (BBC), melanoma (MEL), and neuroblastoma (NB).  Two breast cancer studies that 

stratify specimens by molecular subtypes are marked in a red frame.  (B) SOX10 overexpression in BBC.  

(C) The heat map for the E-GEOD-21653 study shows SOX10 signature expression in a great majority 

of basal-like specimens but not in other breast cancer subtypes. (D) Validation of SOX10 expression in 

normal (Left and left-center) and malignant (YTMA-49-10 TNBC cases 1840 and 1843; right-center and 

right, respectively) breast tissues. 
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II.2.4.4 Genes commonly co-expressed with SOX10 in ACC, BBC, and MEL  

In order to identify genes co-expressed with SOX10 across multiple tumor types, 

comparative analysis of the SOX10 gene signatures of ACC, BBC, and melanoma was 

performed.  For each cancer, the 160 genes most strongly co-segregating with SOX10 

were selected (Figure 15).  Comparing these lists revealed substantial overlap with ACC 

and BBC having 24 common genes (15%), BBC and melanoma had 17 common genes 

(~11%), and ACC and melanoma had six common genes (~4%).  The lower overlap 

between SOX10 gene signatures in ACC and melanoma may, in part, be due to SOX10 

in melanoma functioning primarily through MITF, which is not associated with ACC.  

Some of the genes co-expressed with SOX10 are markers of poor prognosis in 

melanoma (MIA,278 S100A1,279, 280 S100B,278, 280 and SHC4/RaLP281), BBC (FABP7,282 

FZD7,283 and MFGE8284) and ACC (FABP7)114 suggesting that SOX10 may be driving 

gene expression that correlates with aggressive or resistant phenotypes; however, the 

mechanistic and clinical significance of many of the signature genes remains to be 

explored including ROPN1B, GPM6B, and COL9A3, which co-segregated with SOX10 

in all three tumor types.   
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Figure 15: Common elements of SOX10 signatures in ACC, BBC, and MEL.  

ROPN1B, COL9A3, GPM6B, and MIA are strongly co-expressed with SOX10 in all three cancers.  This and other overlaps 

contain prospective clinical targets, several of which have been identified as clinically significant (underlined). 
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II.2.4.5 SOX10 signature is recapitulated in BBC cell lines 

To validate in silico findings, expression of SOX10 signature elements was 

examined in A375 melanoma, luminal breast, (MCF, T47D) and basal-like (HCC38, 

HCC1569, and MX-1) breast cancer cell lines.  Melanoma and BBC cells expressed 

SOX10 and several of its previously identified co-expression partners (MIA, TRIM2, 

ROPN1, and ROPN1B), whereas estrogen receptor (ESR1)-positive luminal MCF7 and 

T47D cell lines expressed only limited amounts of TRIM2 and ROPN1B with little or no 

detectable expression of SOX10 and MIA (Figure 16).   

 

Figure 16: Expression of SOX10 
signature components in MEL and 
BBC cell lines. 
End-point RT-PCR shows that MEL 
and BBC cell lines recapitulate the 
expression of SOX10 and elements of 
its signature, whereas ESR1-positive 
luminal breast cancer cell lines are 
negative for these genes. 

II.2.4.6 Genes whose expression negatively correlates with SOX10 expression in 

breast and salivary cancers 

To further explore SOX10 in breast cancer, correlation analysis was performed 

on the TCGA Invasive Breast Carcinoma dataset (Agilent mRNA expression 

microarrays, n = 547).285  This analyses identified FOXA1, ESR1, GATA3, XBP1, and 

CA12 as top-rank genes whose expression negatively correlated with SOX10 (data not 
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shown).  Expression of FOXA1 had the strongest negative correlation with SOX10, 

which was confirmed through analysis of E-GEOD-21653 BBC data set (Figure 17A), as 

well as analyses of the ACC expression array200 data set (Figure 17B).  The opposing 

expression of FOXA1 and SOX10 was consistent with reports that FOXA1 supports 

luminal breast cancer morphology286 and suppresses the basal-like phenotype.287   

Additionally, FOXA1 cooperates with ESR1 as a pioneer factor that maintains luminal 

identity in breast cancer and is required for ~50% of ESR1's activity.288  Pioneer factors 

are chromatin remodelers with the capacity to modulate cellular identity by defining the 

genomic regions accessible for other transcription factors.289  In addition to FOXA1, 

three other genes identified as negatively correlating with SOX10: GATA3, XBP1, and 

CA12 are each linked to the ESR1 and FOXA1 activities.286, 290-292  Taken together, 

these data indicate that expression of SOX10 and FOXA1 are largely mutually exclusive 

in breast and salivary cancers and that their expression is linked with distinct molecular 

subtypes. 



83 
 

 
Figure 17: Mutually exclusive expression of SOX10 and FOXA1 in breast and salivary cancers.  

(A) Heat map for the E-GEOD-21653 study and (B) expression array data on head and neck cancers show inverse SOX10 and 

FOXA1 expression in ACC and breast cancer, respectively. 
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II.2.5 Discussion 

The transcriptional factor SOX10 appears to support stem-like properties in 

normal tissues and cancer cells.  In normal tissue, SOX10 maintains stem cells in their 

undifferentiated state by preventing differentiation,237, 293, 294 whereas in MEL it serves 

as a marker of the stem-like CD271-positive cells.180  In ACC, as was previously 

demonstrated,200 SOX10 expression correlates with the neural stem markers TrkC, 

MAP2, SALL2, and SLITRK6.  In this study, SOX10 was established as a novel and 

sensitive ACC marker, which is expressed normally during salivary gland differentiation 

and is markedly up-regulated in a great majority of ACC cells.  This is similar to the 

trend seen in differentiating melanocytes and melanoma suggesting that SOX10 may 

function similarly in development of these diseases.  These studies also characterize 

SOX10 as a marker of BBC, a molecular subtype of breast cancer that lacks expression 

of estrogen, progesterone, and HER2 receptors (human epidermal growth factor 

receptor 2).295  As with ACC, BBC express basal cytokeratins296 and other genes linked 

to myoepithelial cells.297  The diagnostic value of SOX10 in BBC was confirmed by 

others.298  Unlike TrkC, which is highly specific for the myoepithelial cells/cancers of 

salivary gland and myoepithelial cells of breast tissue, SOX10 expression in salivary 

tissue was not restricted to the myoepithelial cells and tumors that show myoepithelial 

differentiation, but was also expressed in acinar cells, acinic tumors, and, occasionally, 

in the basal cells of the intercalated duct (data not shown).  Thus, SOX10 has a broader 

specificity than TrkC and may be helpful for the diagnosis of salivary cancers that 

originate from the acinar and intercalated duct areas of the salivary gland. 
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Characterization of SOX10 as a marker of both ACC and BBC supported the 

hypothesis that cancer cells hijack the inherent plasticity of normal stem cells.299  These 

studies may stimulate examination of the therapeutic and biological importance of 

SOX10 expression.  These novel potential markers and targets within SOX10 co-

expressed genes, once validated, may significantly increase the accuracy of FNA 

diagnosis in ACC and BBC.  Importantly, some SOX10 co-expressed genes have been 

validated as diagnostic and prognostic markers in cancer. 

Although SOX10 activity in MEL is essential for cell survival and growth,182 

targeting of transcription factors is challenging.  As SOX10 expression in each of three 

cancers appeared to be part of a highly coordinated expression profile containing 

hundreds of genes, a better understanding of molecular mechanisms, signaling 

pathways, and critical drivers that orchestrate such expression may provide a more 

efficient and broader means for tumor suppression.  As was shown, the overlaps 

between SOX10 gene signatures can identify common elements of the SOX10 network.  

Remarkably, two out of four genes that were consistently co-expressed with SOX10, 

GPM6B, and COL9A3 (Figure 15) have been previously reported to bind EGFR,300 a 

commonly recognized BBC marker and regulator.301  Thus, it would be interesting to 

explore the possible involvement of this receptor in SOX10 signaling.  Two of the 

closest SOX10 co-expression partners are ROPN1B and MIA.  Although little is known 

about ROPN1B, its function is most likely mediated through its R2D2 motif, which is 

implicated in cAMP-dependent PKA signaling,302 and PKA activity is implicated in 

melanocyte proliferation.303  It is essential to investigate the ROPN1B role in ACC and 

BBC.  Unlike ROPN1, the melanoma inhibitory activity protein (MIA) is a well-
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established diagnostic and prognostic serum marker and therapeutic target in 

melanoma;304-307  however, its link with SOX10 has not been previously established.  

Studies on serum derived from ACC and BBC patients are warranted in order to assess 

the clinical value of MIA in these cancers. 

Overall, these findings highlight previously unrecognized transcriptional networks 

and signaling pathways related to SOX10 expression in various cancers.  This work 

may stimulate further studies to identify common and cancer type-specific biomarkers 

and prospective therapeutic targets whose expression strongly co-segregated with 

SOX10. 
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II.3 Co-activation of NOTCH1 and SOX10 in Adenoid Cystic Carcinoma Stimulates 

CD133+ Cells with Neural Stem Properties  

Adapted from manuscript published in Cell Signaling.308  

II.3.1 Abstract 

  While existence of cancer stem cells (CSC) in adenoid cystic carcinoma (ACC) 

has been hypothesized, lack of assays for their propagation and uncertainty about 

molecular identify or markers prevented their characterization.  Previous studies 

supported expression of neural stem cell markers in ACC.309  Here, we identified a 

subpopulation of cells in ACC with properties of CSC, characterized their behavior and 

identified critical signaling pathways that support their propagation.  In order to isolate 

CSC from ACC and characterize them, ROCK inhibitor-supplemented cell culture 

techniques were optimized.  Immunomagnetic cell sorting and in vitro/in vivo assays 

were used to determine CSC viability and tumorigenicity.  CD133 was identified as a 

marker of a subpopulation of ACC cells that preferentially expressed NOTCH1 and 

SOX10, formed spheroids, and initiated tumors in nude mice.  NOTCH1 was activated 

only in CD133-positive (CD133+) cells, and these cells had the ability to generate 

CD133-negative (CD133-) cells.  On the other hand, CD133- cells preferentially 

expressed JAG1 and neural differentiation factors: NR2F1, NR2F2, and p27Kip1.  Single 

depletion of NOTCH1, SOX10, or their common effector FABP7, resulted in decreased 

expression of all three proteins.  Loss of NOTCH1, SOX10, or FABP7 inhibited 

spheroidogenesis and induced cell death in CD133+ cells, suggesting that they were 

essential for CSC maintenance.  Downstream effects of FABP7 knockdown included 

suppression of a broad spectrum of genes involved in proliferation, ribosome 

biogenesis, and metabolism.  Among proliferation-linked NOTCH1/FABP7 targets SKP2 
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and its substrate p27Kip1 were identified.  NOTCH inhibition using a -secretase inhibitor, 

DAPT, selectively depleted CD133+ cells, suppressed SKP2, induced p27Kip1, inhibited 

ACC growth in vivo, and sensitized CD133+ ACC cells to radiation.  These results 

established that ACC contains a previously uncharacterized population of CD133+ cells 

with neural stem properties that are dependent on SOX10, NOTCH1, and FABP7.  

Sensitivity of these cells to Notch inhibition and their dependence on SKP2 offer new 

opportunities for targeted ACC therapies. 

II.3.2 Introduction 

  Adenoid cystic carcinoma (ACC) accounts for nearly one quarter of malignant 

neoplasms of the salivary gland and is a slow-growing yet unpredictable tumor with a 

propensity for insidious growth, perineural invasion, and distant metastases.  Three 

major histological subtypes of ACC are distinguished in morphological features: tubular, 

cribriform, and solid.  Although variation in clinical presentation of these types has been 

reported, all three patterns are neuroinvasive and show extremely high rates of 

recurrence.  Treatment for ACC is currently limited to surgery with or without radiation, 

consistent with limited insight into its molecular drivers.33  ACC has a high recurrence 

rate and dismal survival in part because of its intrinsic resistance to radio- and 

chemotherapies.310  Existence of cancer stem cells (CSC) in ACC has been 

proposed,309 but their molecular identity has remained elusive due to difficulties with 

ACC culture and the inability to identify stemness markers in these tumors.  

Development of targeted therapies for ACC has been further complicated by lack of 

reliable in vitro models, as there are currently no ACC cell lines available from 

centralized resources.  Six previously created and shared cell lines were proven to be 
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grossly contaminated or misidentified, invalidating years of work and publications that 

used these lines.129 

 Recently, characterization of differentially expressed genes in primary salivary 

tumor specimens, ACC patient-derived mouse xenografts (PDX), head and neck 

squamous cell carcinoma, and normal salivary gland tissue228 revealed a gene profile in 

ACC indicating neural stem signaling was active.  ACC are rare tumors; therefore, 

subcutaneous PDX models that recapitulate basic ACC features, such as histologic 

appearance of the original tumor, characteristic t(6;9) translocations, and gene 

expression patterns were used as a reliable source of tumor tissue for study.200, 228  

While there are drawbacks of PDX models including relatively high maintenance costs 

and lack of interactions with the immune system, advantages of PDX models include 

preservation of tumor cell heterogeneity within a three-dimensional tumor.  Many stem 

cell-centric cancer studies heavily rely on PDX models to maintain CSC 

subpopulations.311-314  Analysis of clinical and PDX data revealed expression of 

neuronal genes and stem cell markers intrinsic to ACC, suggesting aberrant activation 

of a transcriptional program that controls neural stem cells (NSC).  This finding was 

supported by the association of ACC with high expression of SOX10, a major 

transcriptional regulator and molecular marker of normal and malignant cells that 

originate from the neural crest.182, 266  Expression profiles of many tumor types revealed 

that SOX10 gene signatures were present in basal-like breast carcinoma, melanoma, 

neuroblastoma, and glioma.263 

 Here, a ROCK inhibitor-based approach was optimized to support propagation of 

stem cells315, 316 and produce sustainable ACC cell cultures that maintained cell lineage 
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identity.  Using this new approach, a previously unknown population of tumorigenic 

CD133+ cells that expressed SOX10, NOTCH1, and activated intracellular NOTCH1 

domain (N1ICD) was identified and characterized.  NOTCH1 activity in CD133+ ACC 

cells was supported by expression of NOTCH1 targets including SKP2, an E3 ubiquitin 

ligase that targets p27Kip1 for degradation and stimulates proliferation of CSC.317, 318  On 

the other hand, CD133- cells expressed JAG1 (a Notch ligand), p27Kip1 (a cyclin-

dependent kinase inhibitor), and neural differentiation genes NR2F1 and NR2F2.  As 

Notch signaling is linked to cell proliferation and radiation resistance,319, 320 the effect of 

NOTCH1 inhibition on CD133+ cell survival and radiation sensitivity was investigated.321  

This work identified a population of stem-like cells and delineated principal signaling 

pathways in ACC that may be used in the near future for ACC treatment. 

II.3.3 Materials and Methods 

II.3.3.1 PDX and primary tumor specimen.  PDXs of ACC in nude mice have been 

previously described.200, 228  One clinical ACC specimen was collected from the Smilow 

Cancer Center at Yale New Haven Hospital (HIC# 1206010419). 

II.3.3.2 Tissue processing.  5-10 mg of fresh or cryopreserved (90% FBS and 10% 

DMSO) tumor tissue was rinsed once with PBS, 70% EtOH, 100X Anti-Anti (GIBCO), 

twice with PBS containing 1:500 ceftazidime, and minced.  Digestion was performed at 

37ºC for 1-2 h with occasional agitation in 3 mL of DMEM media (10% FBS, 1x 

Pen/Strep, 1x L-Glutamine) supplemented with 1 mL of Dispase (BD Biosciences, San 

Jose, CA), 30-150 µL hyaluronidase (Sigma, St. Louis, MO), and 30-150 µL 

collagenase (Roche, Indianapolis, IN).  Digested tissue was collected at 1,500 rpm for 3 
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min., rinsed with PBS, re-centrifuged, transferred into 3 mL of F+Y media (see below), 

and filtered using a 100 µm cell strainer.  Tumor cells were cultured in a CO2 incubator 

with irradiated 3T3-J2 cells or conditioned media derived from these cells (see below). 

II.3.3.3 Cell culture.  3T3-J2 feeder cells were grown as described.316  To create 

conditioned media, irradiated 3T3-J2 cells were incubated in a T-150 flask 

supplemented with 30 mL of DMEM media for 4 days.  Media was filter-sterilized and 

then mixed in a 1:4 ratio with F+Y media.  

II.3.3.4 Real-time RT-PCR.  RNA was isolated from frozen cell pellets of cells using 

RNeasy kit (Qiagen, Valencia, CA).  cDNA was generated using Bio-Rad iScript 

Reverse Transcriptase kit.  Real-time PCR was performed using iQ SYBR Green 

Supermix and CFX96 real-time detection system (Bio-Rad, Hercules, CA).  

II.3.3.5 Western blot analysis.  The following antibodies were used: SOX10 (Abcam, 

ab155279), NOTCH1 (Cell Signaling, #3608), FABP7 (Cell Signaling, #13347), cleaved 

NOTCH1 (Cell Signaling, #4147), p27Kip1 (Cell Signaling, #2552), SKP2 (Cell Signaling, 

#4313), β-actin (Santa Cruz, sc-47778), and GAPDH (Santa Cruz, sc-25778).  Pre-cast 

gels, Rapid Transfer Turbo-blot System, and gel imaging software were from Bio-Rad.  

II.3.3.6 Microsatellite analysis.  For cell line authentication, Short Tandem Repeat 

(STR) analysis as recommended by ATCC https://www.atcc.org/~/media/PDFs/ 

Technical%20Bulletins/tb08.ashx was performed using Promega GenePrint 10 STR 

analysis PCR kit with fluorescent tagging.  PCR products were analyzed on Applied 

Biosystems 3730xL DNA Analyzer at the Yale Keck Facility and data processed using 

https://www.atcc.org/~/media/PDFs/Technical%20Bulletins/tb08.ashx
https://www.atcc.org/~/media/PDFs/Technical%20Bulletins/tb08.ashx
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GeneMapper 3.7 (Applied Biosystems) software.  The results were compared to STR 

databases (http://www.cstl.nist.gov/strbase/, http://www.dsmz.de/services/services-

human-and-animal-cell-lines/online-str-analysis.html).  

II.3.3.7 Flow cytometry.  Cells were collected and incubated with CD133-PE antibody 

(Miltenyi) for 10 minutes.  Fluorescence-activated cell sorting (FACS) was performed to 

determine percentage of CD133+ cells using a FACS Caliber BD machine.  Data 

analysis performed using Flowing Software version 2.5.0. 

II.3.3.8 Cell sorting.  For separation of CD133+ and CD133- cells from cultured cells 

and grafted tissue, CD133 Tumor Tissue MicroBead Kit from Miltenyi (San Diego, CA) 

was used according to the manufacturer’s protocol.  

II.3.3.9 Tumorigenicity assays.  All mouse experiments were performed in accordance 

with NIH national guidelines and were approved by Yale University IACUC.  Athymic 

NCr-nu/nu mice purchased from NCI-Frederick (Frederick, MD) were used for 

subcutaneous injections in the flanks with a specified number of viable tumor cells.  

II.3.3.10 Spheroidogenesis and spheroid viability assays.  For spheroid studies, 

approaches as previously described were performed.322  Briefly, spheroid formation and 

disintegration were studied in six-well plates with or without DAPT (Eli Lilly, GSI-IX) from 

Selleckchem, Houston, TX, or DMSO control.  At 24 hour intervals, three separate 

representative digital images per well at 4X magnification were used to quantify 

spheroid number by direct visual counting. 

http://www.cstl.nist.gov/strbase/
http://www.dsmz.de/services/services-human-and-animal-cell-lines/online-str-analysis.html
http://www.dsmz.de/services/services-human-and-animal-cell-lines/online-str-analysis.html
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II.3.3.11 Immunofluorescence staining. Cells were plated onto glass slides at a 

density of 25,000-30,000, incubated for 24 h, washed twice with PBS, and fixed with 3-

4% paraformaldehyde at RT for 30 min.  Cells were permeabilized with 0.15% Triton X-

100 in PBS for five minutes, washed twice, and blocked with 3% BSA for 30 minutes.  

Incubation with primary antibodies diluted in 3% BSA was done at 40C overnight with 

subsequent washing once with PBS and once with 3% BSA.  The following antibodies 

were used: SOX10 (Abcam, ab155279), FABP7 (D8N3N), NOTCH1 (D1E11), and 

SKP2 (#4313) from Cell Signaling, JAG1 (C-20) and NR2F1 (sc-74561) from Santa 

Cruz, NR2F2 (H7147) from Parsons Proteomics, and AlexaFluor secondary antibodies 

from Life Tech. 

II.3.3.12 Immunohistochemical staining.  The following antibodies were used: 

cleaved NOTCH1 (Val1744) antibodies from Cell Signaling (Danvers, MA), SOX10 

antibodies from Cell Marque (Rocklin, CA), and FABP7 antibodies from Abcam 

(Ab32423, Cambridge, MA). 

II.3.3.13 Proliferation assays.  Cells were cultured in 96-well black clear bottom plates 

and treated with DAPT versus control (DMSO).  After cells were grown for 24-96 hours, 

viable cells were assayed using the Cell Titer Glo system (Promega).  

II.3.3.14 Cell cycle analysis.  Cells were fixed in 70% cold ethanol and stained with 

propidium iodide.  A FACS Caliber BD machine was used and data analysis performed 

using Flowing Software version 2.5.0. 
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II.3.3.15 Cell death assay.  Cells were incubated for 10 minutes with CD133-FITC 

antibody (Miltenyi) as well as Annexin V antibody and 7-AAD DNA stain (Annexin V:PE 

apoptosis detection kit I, BD Biosciences).  A FACS Caliber BD platform was used and 

data analysis was performed using Flowing Software version 2.5.0. 

II.3.3.16 Radiosensitivity assay.  Cells plated in T-25 flasks were irradiated using Mark 

I Cesium-137 irradiator, incubated for 48 hours in the presence or absence of DAPT, 

and stained with CD133-PE antibody.  FACS was performed to determine percentage of 

CD133+ cells.  Statistical differences in tumor volume were determined using a two-

tailed t-test.  

II.3.3.17 DAPT studies on ACC xenografts.  In vivo efficacy of DAPT was evaluated in 

an Accx11 xenograft model generated via subcutaneous injection of 106 cultured 

Accx11 cells.  Tumor cell-injected mice were randomized into control (vehicle-injected) 

and experimental (DAPT in corn oil) groups 15 days after cell injection.  DAPT was 

given via intraperitoneal (i.p.) injection at 50 mg/kg, following a 3/4 injection schedule 

(three days of treatment/four days rest) for 35 days.  To assess DAPT toxicity, animals 

were observed daily and weighed weekly using a digital scale.  To assess DAPT 

efficacy, tumor dimensions were measured weekly by a digital caliper and data 

including individual and mean estimated tumor volumes (mean TV ± s.e.m.) were 

recorded for each group.  Tumor volume was calculated using the formula TV = width2 × 

length × 0.52.  Statistical differences in tumor volume were determined using a two-

tailed t-test.  
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II.3.4 Results 

II.3.4.1 Generation and validation of primary cell cultures from ACC tissue 

 As indicated by the absence of available ACC cell lines, ACC cells are difficult to 

culture using standard techniques (our unpublished observations).  Validated PDX 

models were used as a source of ACC tissue to develop new culture techniques, since 

primary tumor tissue is scarce.200, 228  A recently described conditional reprogrammed 

cell culture (CRC) protocol316 was optimized to produce intermediate and long-term cell 

cultures from five ACC xenografts and one primary ACC tumor (Fig. 18A&B). Short-

tandem repeat DNA profiling as recommended by ATCC,323 was performed to 

determine provenance of newly created cell cultures (Table 3).  

 Previous expression analyses of ACC identified markers associated with neural 

stemness including TrkC/NTRK3, SOX10, NOTCH1, and FABP7.200, 263  Reassuringly, 

all ACC cell cultures expressed all four neural stem genes (Figure 18C), recapitulating 

expression of these genes in clinical ACC specimens and the parental PDXs (Figure 

19).  However, cultures of normal salivary gland cells did not express FABP7 and had 

levels of SOX10 and NTRK3 that were at the limit of detection.  Thus, the optimized 

ROCK inhibitor and cell feeder-based protocol proved to be an effective solution to the 

ACC cell culture problem.  Continued use and optimization of this technique may 

significantly advance translational ACC research. 
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Figure 18: Clinical, cytological, and molecular properties of ACC cell cultures.  

(A) Features of ACC cell cultures as well as PDXs (Accx) or tumor (Acc33) from which cultures were 

derived.  m, metastases.  (B) Low and high magnification brightfield images of cultured ACC cells at 

indicated passages for Accx5m1, Accx11, Accx19, and Acc33.  (C) Real-time PCR quantification (qRT-

PCR) of gene expression for SOX10, NOTCH1, FABP7, NTRK3/TrkC, and PROM1/CD133 in cultured 

ACC cells compared to cultured cells isolated from normal salivary gland (NSG).  In all qRT-PCR 

experiments, expression is normalized to β-actin and standard error bars representative of at least two 

independent experiments.  
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Figure 19: Expression of SOX10, NOTCH1, FABP7, and CD133 in ACC tumor specimens from patients (P) and PDX (X).  

Comparison is based on previously produced Affymetrix data.200   
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Sample 
Source of 

cells/tumors 
TH01 D21S11 D5S818 D13S317 D7S820 D16S539 CSF1PO Amelogenin 

ACCX2 Xenograft 10 28.3, 31, 32 10.1, 11.1 11, 12, 15 11 11, 12.1 11, 12 - 

Accx2 Culture 10 
27.3, 28.3, 
30.3, 31.2 

10.1, 11.1, 
12.3 

11, 13, 14 8, 11 10, 11, 12.1 
6.3, 11, 

12 
X 

ACCX5M1 Xenograft 9.1, 10 
28, 29.3, 32, 

32.1 
12.3 10, 14 7, 11 9, 11 9.3, 11 X, Y 

Accx5M1 Culture 9.1, 10 29.3, 32.1 12.3 11, 14 7, 11 9, 13.1 9.3, 10.3 X, Y 

ACCX11 Xenograft 6.1, 10 28.3, 31.1 11.1 13, 14, 8, 9.1 11, 12.1, 10, 12 X 

Accx11:9 Culture 6.1, 10 28.3, 31.1 11.1 13, 14, 8, 9.1 11, 12.1, 10, 12 X 

ACCX11:9p:0 
Xenograft 
from Cx 

6.1, 10 28.3, 31.1 - 13, 14, 8, 9.1 11, 12.1, 10, 12 X 

ACCX11 
CD133- 

Xenograft 
from Cx 

6.1, 10 28.3, 31.1 11.1 13, 14 8, 9 11, 13 10, 12 X 

ACCX11 
CD133+ 

Xenograft 
from Cx 

6.1, 10 
28.3, 30, 

31.1 
11.1 13, 14 8, 9 11, 13 10, 12 X 

ACCX14:9 Xenograft 8, 10, 13.3 28.3 10.1, 11 15 9, 10 12.1 11, 12 X 

Accx14:9 Culture 8.3, 10 28.3 10.1, 11.1 14 9.1, 10 11, 12.1 11, 12 X 

ACCX19 Xenograft 7.1, 8 27.3 12.3 13, 15 8, 11 10, 11 6.3, 12 - 

Accx19 Culture 7.1, 8 27.3 12.3 13, 15 8, 11 10, 11 6.3, 12 - 

ACCX29 Xenograft 6.1, 7.1 29.3, 31 10.1, 11 13, 14 10 9, 11 12 X 

Accx29 Culture 6.1, 7.1 29.3, 31.1 10.1, 11.1 13, 15 9.3, 9, 11 12, X 

ACC33 Patient tumor 9.1, 10 28.3, 29.3 9 11, 15 9.3, 11 11, 12.1 11, 14 X 

Acc33 Culture 9.1, 10 28.3, 29.3 9 10, 14 10, 11 11, 12.1 11, 14 X 

 
Table 3: Short-tandem repeat pattern of ACC cell cultures and parental xenografts. 
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II.3.4.2 Isolation and characterization of previously unrecognized CD133+/ 

SOX10+/NOTCH1+ ACC cells 

Expression of the key neural stem cell marker, SOX10, in ACC and other cancer 

types that originate from neural crest200, 263 suggested that either all ACC cells may 

express this stem cell marker, or that a subpopulation of ACC cells with neural stem 

properties may exist.  To begin distinguishing these possibilities, cell surface markers 

co-expressed with SOX10 in ACC were identified.  CD133/PROM1 (hereafter, CD133), 

a CSC cell surface marker used in neural cancer stem cell isolation,324 was expressed 

in nearly all clinical ACC specimens and PDXs (Figure 19).  While CD133 expression 

was recently reported in ACC,325 there have been no published attempts to isolate and 

characterize CD133+ ACC cells.  Interestingly, CD133 was expressed in all ACC cell 

cultures that were generated but not in cultured normal salivary epithelial cells (Figure 

18C), suggesting that it may be used as a tool for CSC isolation. 

To begin analyzing CD133-expressing ACC cells, a robustly proliferating and 

spheroid-forming culture, Accx11 (Figure 18A&B), was the initial focus.  Accx11 was 

derived from a xenograft of a grade 3 ACC that is distinguished by solid histology and 

poor prognosis.326  FACS analysis of Accx11 cells revealed high CD133 expression in a 

mean of 12% of cells (Figure 20).  CD133+ and CD133- fractions enriched by magnetic 

activated cell sorting (MACS) with CD133 antibody coupled beads produced more than 

50-fold enrichment of CD133 expression (Figure 21A).  Excitingly, CD133+ cells 

expressed at least 25-fold higher levels of SOX10, NOTCH1, and FABP7 as compared 

to CD133- cells, suggesting that expression of these genes co-segregated with cell 

surface expression of CD133 (Figure 21B).   
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Figure 20: FACS analysis of Accx11 cells 

stained with PE-conjugated CD133 antibody.  

CD133+ cells (red) comprise ~12.4% of the bulk 

population.  

 

 

After separation, CD133+ cell cultures generated both spheroid-forming and 

tightly adherent cells.  Cultured CD133- Accx11 cells, however, remained adherent and 

were not able to produce either CD133+ cells or spheroids (data not shown).  These 

data suggest that CD133+, but not CD133- cells, express key stem cell markers and are 

capable of asymmetric division recreating both CD133+ and CD133- cell populations.  

To further explore signaling in CD133+ cells, expression of SCRG1, PLP1, MIA, SHC4, 

and TTYH1 previously linked to the SOX10 neural gene signature in ACC263 was 

investigated.  Remarkably, without exception these genes were more highly expressed 

in CD133+ ACC cells compared to bulk or CD133- cells (Figure 21B).  In light of the 

association of these genes with cancers of neural stem cell origin,281, 327-329 their 

selective expression in CD133+ ACC supported the existence of a stem cell 

subpopulation in ACC.  

 Activation of Notch is a common feature of non-cancer neural stem cells and 

CSC of neural origin.330  Immunoblotting revealed high expression of NOTCH1 and 

cleaved/activated NOTCH (N1ICD) in CD133+, but not in CD133- or unsorted cells, and 
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confirmed high expression levels of SOX10 and FABP7 in CD133+ cells (Figure 21C).  

In line with Notch activation, its canonical targets HEY1, HEY2, and MYC were 

predominantly expressed in CD133+ cells (Figure 22D).  

In order to determine if other ACC cultures harbored similar cell populations, 

Accx19 cells (Figure 19A-C) were examined.  In agreement with lower expression levels 

of SOX10, NOTCH1, and FABP7, the percentage of CD133+ cells in Accx19 determined 

by FACS analysis was lower than in Accx11 comprising <8% of total cells (data not 

shown).  MACS separation of Accx19 cells produced 2.5-3-fold enrichment of CD133 

expression in CD133+ cells compared to CD133- cells.  In CD133+ Accx19 cells, 

expression of NOTCH1, SOX10, and FABP7 was similarly enriched (data not shown).  

Overall, these data supported the existence in ACC of a previously unknown population 

of SOX10-positive CD133+ cells with activated NOTCH1.  

II.3.4.3 CD133 ACC cells express neuronal differentiation genes NR2F1 and 

NR2F2, p27Kip1, and a Notch ligand, JAG1   

CD133-sorted cells were analyzed for expression of two orphan nuclear 

receptors whose expression is required for NSC differentiation, NR2F1 and NR2F2.331  

This comparison revealed markedly increased expression of both genes in CD133- cells 

(Figure 21E), suggesting that these cells may be more differentiated than CD133+ cells.  

Jagged-1 (JAG1), a canonical Notch ligand, is an essential component of Notch 

signaling, and in many cancers it is expressed not in stem cells but in supporting 

niches.332, 333  Interestingly, JAG1 expression was markedly higher (~11-fold) in CD133- 

Accx11 cells (Figure 21E).  Enhanced expression of NR2F2 and JAG1 was also 

observed in CD133- cells isolated from Accx19 cultures (data not shown). 
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p27Kip1 is a critical effector of neural differentiation, and in NSC NOTCH1 blocks 

p27Kip1 expression.334, 335  Given that NOTCH1 is preferentially activated in CD133+ cells 

and that CD133- cells express markers of neural differentiation, p27Kip1 expression in 

both fractions was analyzed.  Immunoblotting of unsorted and CD133- cells revealed 

significantly higher p27Kip1 levels compared to the CD133+ population (Figure 21F).   

Selective expression of NOTCH1 and its targets in CD133+ cells and JAG1 and 

NR2F1/2 in CD133- cells indicated that these ACC cell subpopulations may 

communicate via NOTCH1/JAG1 interaction (Figure 21G).  To begin dissecting 

differences and interaction between CD133+ and CD133- cells, cultures of mixed cell 

subpopulations, as indicated by loosely adherent cells/spheroids versus adherent 

Accx11 cells, were stained by immunofluorescence.  In agreement with RT-PCR and 

immunoblot data (Figure 21B&C), membrane CD133 and NOTCH1 staining was 

detected in cells associated with loosely adherent cells/spheroids, but not in the firmly 

adherent cell population (Figure 21H&I).  Similarly, SOX10 and FABP7 stained cells in 

loosely adherent cells/spheroids, while differentiation markers NR2F1 or NR2F2 were 

seen in adherent surrounding cells (Figure 21I-K).  Remarkably, NOTCH1-expressing 

cells within loosely adherent cells/spheroids were closely surrounded by adherent cells 

expressing membrane-localized Jagged-1 (Figure 21L).  Z stack images revealed that 

JAG1 and NOTCH1 were co-localized on the surface of these adjacent cells (Figure 

21L, see arrows) supporting NOTCH1/JAG1 communication and a signal-sending 

supportive role of JAG1-producing CD133- cells.  
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Figure 21: Isolation and characterization of CD133+ and CD133- cells in Accx11 culture.  

(A) qRT-PCR of CD133 expression in Accx11 cell fractions following magnetic-activated cell sorting (MACS).  (B) Expression analysis by qRT-

PCR of ACC-associated (SOX10 & FABP7) and NSC-associated (NOTCH1, SCRG1, PLP1, MIA, SHC4, & TTYH1) genes in MACS-sorted 

Accx11 cell fractions.  (C) Immunoblot analysis shows selective expression of SOX10, NOTCH1, activated intracellular domain of Notch-1 

(N1ICD), and FABP7 in CD133+ cells.  β-actin serves as a loading control.  (D) Expression analysis by qRT-PCR of Notch targets MYC, HEY1, 

and HEY2 in MACS-sorted Accx11 cell fractions.  (E) Expression analysis by qRT-PCR of JAG1 and neural differentiation markers NR2F1 and 

NR2F2 in MACS-sorted Accx11 cell fractions.  (F) Immunoblot analysis of CD133 fractions demonstrates CD133- cell-specific p27Kip1 expression.   

β-actin serves as a loading control.  (G) Molecular determinants of stem-like CD133+ cells and more differentiated CD133- cells.  (H-L) 

Immunofluorescence (IF) staining demonstrates great selectivity of CD133+ and CD133- cell markers and confirms spheroid-forming property of 

CD133+ cells. Z-stack images (L) show NOTCH1 and JAG1 co-localization at sites of spheroidal and non-spheroidal cell contacts (arrows). 
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II.3.4.4 CD133+ and CD133- populations identified in grafted ACC tissue 

In order to diminish the possibility that findings were the result of cell culture 

artifacts, the existence of CD133+ and CD133- cell populations was validated using PDX 

tissue derived from 5 ACC patients.  To this end, fresh PDX tumors were dissociated 

into cells, and CD133+ and CD133- populations immediately magnetically separated.  

CD133+ cells comprised from 21 to 65% of viable cells derived from xenografts (Figure 

22A) and real-time PCR revealed that these cells expressed higher levels of SOX10, 

NOTCH1, and FABP7, with a few exceptions (Figure 22B-E).  On the other hand, 

CD133- cells universally expressed higher levels of JAG1, while NR2F1 expression was 

more variable (Figure 22F&G).  These results mirrored the findings in cultured cells 

derived from ACCX11 and ACCX19 (Figure 21 and data not shown).  Collectively, these 

data confirmed the existence of two distinct cell populations in ACC marked by 

expression of either SOX10+/NOTCH1+/FABP7+/CD133+ or JAG1+/CD133- in ACC.  
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Figure 22: Isolation and characterization of CD133 fractions from ACC xenografts.  
(A) Variation in the percentage of CD133+ cells across ACC xenografts.  (B) qRT-PCR analysis of CD133 
expression confirms adequate separation of CD133+ and CD133- cells isolated from ACC xenografts.  
(C-E) Selectivity of SOX10, NOTCH1, and FABP7 to CD133+ cells isolated directly from ACC xenografts 
as confirmed by qRT-PCR.  (F-G) Selectivity of JAG1 and NR2F1 to CD133- cells isolated directly from 
ACC xenografts as confirmed by qRT-PCR. 
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II.3.4.5 Tumorigenicity of ACC cultures and dependency on CD133 status   

The ability of cultured ACC cells to initiate tumors was investigated via 

subcutaneous injections of 106 cells into flanks of nude mice.  Among ACC cultures 

tested to date, only Accx11 cells were tumorigenic in nude mice creating tumors with 

solid histology and an intervening stromal component similar to the parental patient 

tumor and PDX (Figure 23A).  Relative expression of CD133, SOX10, NOTCH1, and 

FABP7 was similar in the original PDX and in the tumor produced from injection of 

cultured cells (Figure 23B&C).   

In various cancers, CD133 expression defines populations of CSC with 

enhanced tumor-initiating properties.336  To investigate CSC properties of CD133-

expressing ACC cells, bulk Accx11 cells were magnetically sorted based on CD133 

expression and 104 cells injected subcutaneously into right (CD133+) and left (CD133-) 

flanks of three nude mice.  After 22 weeks, tumors were observed in three of three sites 

injected with CD133+ cells, but in none of three sites injected with CD133- cells.  At 32 

weeks, a single tumor formed at a site injected with CD133- cells.  Histologic evaluation 

of the parental ACCX11 tumor, tumors derived from CD133+ cell injections, and the 

single tumor from a CD133- cell injection revealed similar histologic appearance (data 

not shown).  Expression analyses of CD133, SOX10, NOTCH1, and FABP7 by qRT-

PCR and immunoblotting revealed expression of all markers in tumors derived from 

both CD133+ and CD133- cells (data not shown), suggesting that small amounts of 

CD133+ are trapped in the CD133- fraction or that injected CD133- cells can convert to 

CD133+ cells. 
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As experience with CD133 cell separation increased, it became apparent that a 

single round of separation using CD133 antibody conjugated to beads left detectable 

traces of CD133+ cells in the CD133- population reflecting technical limitations of this 

procedure.  Also, separation decreased viability of CD133+ cells more than CD133- 

cells, possibly due to the damage inflicted by elution of column-bound cells (data not 

shown).  To more adequately compare tumorigenicity of CD133+ and CD133- cells, a 

second round of magnetic separation was performed on the unbound cells to isolate a 

more pure CD133- population.  Following this double separation, 105 viable cells of each 

population were injected into the flanks of nude mice.  Tumors began to form at the 

sites of CD133+ injections as early as 6.5 weeks after injection.  By 13 weeks post-

injection, four of five CD133+ injection sites had distinct tumors while none of five 

CD133- injections showed signs of tumor formation (Figure 23D).  With a marked delay, 

two of five injection sites of CD133- cell injections formed small tumors with the earliest 

tumor developing at 19 weeks.  At 27.5 weeks, all of the five CD133+ injection sites 

formed tumors, while no additional tumors grew in CD133- injection sites.  Overall, these 

experiments demonstrated enhanced tumorigenicity of CD133+ cells compared to 

CD133- cells. 
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Figure 23: Tumorigenic properties of bulk and CD133-fractionated Accx11 cells.  

(A) Cultured bulk Accx11 subcutaneously injected in athymic nude mice produce tumors with histology similar to patient tumor and 

parental xenograft (H&E staining).  (B) CD133, SOX10, NOTCH1, and FABP7 expression by qRT-PCR confirms ACC identity of PDX 

and tumors generated from injection of bulk Accx11 cells.  (C) Immunoblot analysis confirms similar expression of SOX10, NOTCH1, 

and FABP7 in PDX and tumor formed from injected bulk Accx11 cells.  GAPDH serves as a loading control.  (D) Dot plot of tumor 

volumes 90 days after injection of 105 CD133- or CD133+ MACS-sorted Accx11 cells. 
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II.3.4.6 Interdependence between NOTCH1, SOX10, and their common effector 

FABP7 

Essential individual roles for SOX10 and NOTCH1 in neural stem cell 

maintenance are well established, and loss of Notch signaling decreases SOX10 

expression in neural progenitors.337, 338  FABP7 has recently been described as critical 

for proliferation and to prevent differentiation in neural progenitors.339  Given that 

SOX10, NOTCH1, and FABP7 are each implicated in neural stemness, their 

interdependence in ACC cells was explored.  Following individual depletions, 

expression of all three genes was measured by qRT-PCR and immunoblotting.  

Knockdown of SOX10 markedly decreased NOTCH1 expression, and similarly, 

depletion of NOTCH1 was associated with decreased SOX10 both at the mRNA and 

protein levels (Figure 24A&B), suggesting interdependence and functional cooperation.  

As expected, since FABP7 is a common NOTCH1/SOX10 target,122, 340 depletion of 

either NOTCH1 or SOX10 markedly suppressed FABP7 mRNA and protein levels.  

Depletion of FABP7 had less suppressive effects on NOTCH1 and SOX10 mRNA than 

did either NOTCH1 or SOX10 knockdowns.  At the protein level, FABP7 had no obvious 

effect on NOTCH1 expression while modestly decreasing SOX10 levels (Figure 

24A&B). 

 Individual roles of NOTCH1 and SOX10 in CSC and NSC survival are well 

established, but their co-operation via FABP7 has not yet been studied.  To begin 

exploring the role of FABP7 in adenoid cystic carcinoma signaling, it was depleted in 

Accx11 cells followed by gene expression profiling.  Analyses revealed that 1158 genes 

were downregulated (Table 4, 2-fold threshold), and KEGG pathway analysis 
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(http://bioinfo.vanderbilt.edu/webgestalt/) implicated these genes in cell cycle regulation, 

ribosome biogenesis, cell metabolism, and signaling pathways involved in these 

processes (Table 4 and data not shown).  Among these genes, 11 belonged to the 

Notch signaling network and 26 genes overlapped with the ACC SOX10 gene signature 

previously characterized.263  This observation further supported the feedback signaling 

from FABP7 to NOTCH1 and SOX10.  In addition, SKP2, a major NOTCH1 effector 

involved in the regulation of cell cycle and proliferation,341 was among 31 cell cycle 

progression and 11 NOTCH1-regulated genes downregulated by FABP7 knockdown 

(Table 4).  In summary, these data suggested that NOTCH1, SOX10, and FABP7 may 

be co-regulated in ACC, and that FABP7 may serve as a pro-survival NOTCH1 and 

SOX10 effector. 

  

http://bioinfo.vanderbilt.edu/webgestalt/
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Pathway/Gene 
Signature 

# 
Genes 

Gene Name 
Statistics, 

p value 

Cell cycle 

31 ANAPC7, BUB1, BUB1B, CCNA2, 
CCNB2, CCND1, CCNE2, CDC20, CDC6, 
CDK1, CDK4, CDK6, CDKN2C, CHEK1, 
DBF4, MAD2L1, MCM2, MCM3, MCM4, 
MCM6, MYC, ORC5, PRKDC, PTTG1, 
SKP2, TFDP1, TFDP2, TGFB2, TTK 

2.19E-22 

Ribosome 

27 RPL0, RPL3, RPL4, RPL5, RPL6, RPL7A, 
RPL10, RPL10A, RPL13, RPL13A, RPL14, 
RPL15, RPL22, RPL23, RPL27A, RPL31, 
RPL35A, RPL37, RPS2, RPS3, RPS6, 
RPS7, RPS8, RPS15A, RPS20, PS21, 
RPS23 

1.08E-21 

Metabolic 
pathways 

82 ACAT1, ACO1, ACOX1, ACY1, ADI1, 
ADSL, GPS, AHCY, ALDH5A1, ALDH6A1, 
ALDH7A1, ALG10B, ALG13, ALG9, ARG2, 
ATP5G2, ATP6V0E2, BCAT2, COX15, 
COX17, CPS1, CTH, DBT, DHFR, DPM3, 
DTYMK, DUT, ENO1, EPT1, ETNK1, 
FECH, FH, GFPT1, GLCE, GLS, GOT1, 
GPAM, GPAT2, HADH, HADHA, 
HSD17B1, HSD17B2, IDH2, IMPDH2, 
KDSR, LTA4H, MGAT4A, MTHFD1, 
MTHFD2, MTHFD2L, MTR, ODC1, PAICS, 
PFAS, PGM2, PHGDH, PIGK, PIGN, 
PLA2G12A, POLA1, POLD2, POLE3, 
POLE4, POLR2J, PRIM1, PRIM2, 
PTDSS1, PTGES, PTGIS, PYCR2, QARS, 
RRM1, RRM2, SEPHS1, TK1, TKT, 
TUSC3, TYMS, UQCRB, UQCRH, 
UQCRQ, ZNRD1 

8.47E-18 

NOTCH1 
11 CCND1, ENO1, HES6, HEY1, HEY2, 

JAG1, MIB1, MYC, NOTCH1, SKP2, YY1 
2.30E-05 

SOX10 ACC 
signature 

 

26 ABI2, ACTR3B, CADM1, CCNB1IP1, 
CHDH, DPY19L2, EPHA7, FGFR2, 
FRMD4A, GPM6B, ITGA9, LGR6, MTL5, 
MYEF2, NLN, NRCAM, NRTN, PPP1R1B, 
RAP2A, RPL3, SEPT4, SHANK2, 
SLC35F3, TEX261, TMEM63A, TTC3 

1.40E-12 

 
Table 4: Suppressive effects of FABP7 depletion on gene expression in Accx11 cells. 

 

 

  



112 
 

II.3.4.7 SOX10, NOTCH1, and FABP7 stimulate spheroidogenesis of Accx11 cells   

NSC and CSC have the propensity to form spheroids in culture.342  Using 

spheroid formation as a surrogate of stem cell survival and proliferation, functional 

consequences of SOX10, NOTCH1, and FABP7 knockdowns were determined.  

Individual depletion of these genes significantly suppressed spheroid formation in 

Accx11 cells (Figure 24C&D).  These data suggest that SOX10, NOTCH1, and FABP7 

are vital for spheroid formation, which could reflect an effect on CSC survival and 

growth.  Flow cytometry analyses of Accx11 were performed to assess the effects of 

SOX10, NOTCH1, and FABP7 depletion on cell cycle progression and cell survival.  A 

marked (~4-6-fold) increase in the subG1 populations, decrease in G1, and increase in 

S phases were observed following NOTCH1, SOX10, or FABP7 depletion (Figure 24E).  

Altogether, these results suggested that NOTCH1, SOX10, and FABP7 are important 

for survival of ACC cells, cell cycle progression, and maintenance of stem-like 

phenotype.  
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Figure 24: Interrelated stimulatory effects of SOX10, NOTCH1, and FABP7 on ACC cells.   

(A) qRT-PCR analysis of SOX10, NOTCH1, and FABP7 expression following siRNA knockdowns reveals their regulatory interdependence.  (B) 
Validation of SOX10, NOTCH1, and FABP7 interdependence by Western blot. β-actin serves as a loading control.  (C) Depletion of SOX10, 
NOTCH1, and FABP7 by siRNA suppresses spheroidogenesis of Accx11 cells at 72 h.  Arrows: brightfield images of spheroids.  (D) Quantification 
of suppressive SOX10, NOTCH1, and FABP7 knockdown effects on spheroids compared to untreated Accx11 cells.  Error bars represent standard 
errors and are representative of at least two independent experiments.  In each case, siRNA knockdown resulted in a significant decrease in 
spheroid formation (p<0.001, Student’s t-test).  (E) Depletion of SOX10, NOTCH1, and FABP7 by siRNA increases sub-G1 cell population 
indicative of cell death.  Histograms represent cell counts based on propidium iodide (PI) staining of Accx11 cells. Percentages of live cells in 
different cell cycle phases are shown. 
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II.3.4.8 NOTCH1 depletion and -secretase inhibition decrease the proportion of 

CD133+, suppress spheroidogenesis, inhibit tumor growth in nude mice, and 

sensitize CD133+ to radiation   

Inhibitors of SOX10 and FABP7 are not available for clinical use at this time, but 

Notch is targeted through -secretase inhibitors (GSI) that have advanced to clinical 

trials.343  The suppressive effects on spheroid formation and cell viability seen with 

NOTCH1 loss (Figure 24C-E) suggested that NOTCH1 is required for survival of 

CD133+ ACC cells.  To test this hypothesis, NOTCH1 was depleted in bulk Accx11 cells 

and the percentage of CD133+ cells was measured.  NOTCH1 depletion resulted in a 

~2.5-fold decrease in the proportion of CD133+ cells (Figure 26A).  Bulk Accx11 cells 

treated with DAPT (a GSI developed by Eli Lilly) showed suppression of spheroid 

formation in a concentration-dependent manner (Figure 26B&C).  To determine if -

secretase activity is also required for maintenance of pre-formed spheroids, Accx11 

cells were grown to confluency to allow spheroid formation as shown in Fig. 1B.  Over a 

9-day time course, a dose-dependent loss of pre-formed spheroids was observed in 

DAPT-treated Accx11 cells compared to controls (Figure 26D); however, the effect of -

secretase inhibition on maintenance of preformed spheroids was not as dramatic as its 

effect on spheroidogenesis and plateaued after six days of treatment.  

Effects of NOTCH1 inhibition on spheroids in Accx11 coupled with analyses 

showing that spheroids are enriched in CD133+ cells suggested that Notch may be 

critical for maintenance and survival of CSC.  To validate DAPT selectivity towards 

CD133+ cells, ACC cells were CD133-sorted and treated with DAPT for 72 hours.  

DAPT treatment suppressed proliferation of CD133+ cells with differences noted at all 
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doses (1, 5, and 10um), while proliferation of CD133- cells was not affected (Figure 

26E).  FACS analysis confirmed selective DAPT effect demonstrating a ~2.5-fold 

increase in sub-G1 population in CD133+ cells without obvious effects on the G1, S, and 

G2/M ratios.  Neither sub-G1 nor cell cycle progression was altered in CD133- cells 

(Figure 26F).  Annexin and propidium iodide co-staining confirmed that DAPT treatment 

selectively killed CD133+ cells, but did not reveal a pattern typical of apoptosis (Figure 

25).  Finally, to perform pre-clinical assessment of DAPT as a single agent, nude mice 

were subcutaneously injected with Accx11 cells.  In this study, DAPT had a statistically 

significant tumor-suppressive effect starting at week 2 (Figure 26G) but exhibited no 

obvious toxicity.  Overall, these in vitro and in vivo data suggest that GSI effects as a 

monotherapy should be evaluated in clinical trials with ACC patients.  

 

Figure 25: DAPT selectively increases 

cell death in CD133+ Accx11 cells.  

PE-annexin and 7-AAD double staining of 

CD133- and CD133+ Accx11 cells treated 

with DAPT.  DMSO treatment serves as a 

control. 
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Figure 26: Inhibition of Notch signaling selectively depletes CD133+ cells.   

(A) Suppression of NOTCH1 signaling by siRNA decreases the CD133+ cell fraction (red) as demonstrated by FACS analysis using PE-

conjugated CD133 antibody.  (B) Inhibition of Notch signaling with γ-secretase inhibitor DAPT demonstrates dose-dependent suppressive 

effects on spheroid formation (arrows) in Accx11 culture at 48 h.   (C) Quantification of DAPT effects on spheroid formation compared to 

control (DMSO-treated) Accx11 cells, p<0.05 (*), p<0.01 (**), p<0.001 (***), Student’s t-test.  (D) Breakdown of pre-formed spheroids induced 

by DAPT as shown by quantification of remaining spheroids following DAPT treatment versus control (DMSO-treated) Accx11 cells,  p<0.05 

(*), p<0.01 (**).  (E) Inhibitory DAPT effect on cell proliferation is highly CD133+-selective and dose-dependent. At 72 h, there is a statistically 

significant decrease (p<0.01) in luminescence (Cell Titer Glo assay), p<0.01 (**).  (F) DAPT selectively induces cell death in the CD133+ 

population as demonstrated by increase in sub-G1 cell population. Histograms represent cell counts based on PI-staining of separated 

Accx11 cells.  (G) Suppressive effect of DAPT on tumor growth in a nude mouse model subcutaneously injected with Accx11. Starting at 

week2, p<0.01.   
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Because CSC have been implicated in radiation resistance in many tumor 

types,336 the effect of targeting CD133+ cells through Notch inhibition in combination 

with radiation was determined by treating with DAPT for 24 hours and then exposing 

cells to increasing doses of radiation.  Radiation alone had minimal effect on the amount 

of CD133+ cells: even 6 Gy of radiation decreased this fraction only moderately, from 

2.7 to 2.3 %, which translates into a ~15% depletion (Figure 27).  However, DAPT as a 

single agent showed a two-fold (~56%) decrease in the proportion of CD133+ cells.  

Remarkably, when a single 3 Gy or 6 Gy dose of radiation was added to DAPT 

treatment, the combined effect resulted in an almost 2-fold enhancement of CD133+ cell 

depletion as compared with DAPT alone (compare 0.7% with 1.2% in Fig. 5H, p<0.05).  

The enhanced loss of CD133+ ACC cells following radiation in the presence of DAPT 

suggested that combination of radiation with GSI therapy may be worth exploring in this 

radiation-resistant tumor. 

 

Figure 27: Combination of DAPT with 

radiation is more detrimental to 

CD133+ cells (red) than DAPT or 

radiation alone.  

Representatives of 3 replicates are shown 

(p<0.05 in all comparisons except 3 Gy vs 

6 Gy, radiation only).    
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II.3.4.9 NOTCH1 depletion down-regulates SKP2, an E3 ubiquitin ligase that 

targets p27Kip1   

Activated NOTCH1 reduces p27Kip1 levels by stimulating expression of the 

p27Kip1 E3 ubiquitin-ligase SKP2.344  Identification of SKP2 downstream from a 

NOTCH1 effector, FABP7 (Table 4), suggested that SKP2 and p27Kip1 are engaged in 

the pro-survival NOTCH1 signaling in stem-like ACC cells.  Indeed, decreased 

expression of p27Kip1 was noted in CD133+ Accx11 cells, where NOTCH1 was activated 

(Figure 22C&F).  Assessment of SKP2 expression by qRT-PCR and immunoblotting 

showed up-regulation of SKP2 in CD133+ compared to CD133- cells (Figure 28A&B).  

Immunofluorescent staining of Accx11 cultures revealed that SKP2 was detected 

primarily in NR2F1-negative spheroidal cells, and was localized to the cytoplasm, where 

it has been associated with oncogenic activity (Figure 28C).345  Since SKP2 is a 

transcriptional NOTCH1 target, inhibition of NOTCH1 activity is expected to suppress 

SKP2 expression and, in turn, increase p27Kip1 protein stability and levels.  In 

agreement with this expectation, siRNA-mediated NOTCH1 knockdown dramatically 

decreased SKP2 mRNA levels in Accx11 cells, as did DAPT treatment in a dose-

dependent manner (Figure 28D&E).  In order to determine if Notch effects on SKP2 and 

p27Kip1 are seen predominantly in CD133+ cells, bulk Accx11 cells, CD133+, and CD133- 

populations were treated with DAPT for 48 hours, and then cell lysates immunoblotted.  

As expected, CD133+ cells expressed higher levels of N1ICD than bulk or CD133- cells, 

and DAPT effectively inhibited NOTCH1 activation as marked by decreased N1ICD in 

these cells (Figure 28F).  SKP2 was detected at very low levels in bulk and in CD133- 

Accx11 cells (long exposure, data not shown), but was readily detected in CD133+ cells, 
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whereas p27Kip1 was detected in bulk cells and in CD133- cells at much higher levels 

than in CD133+ cells.  Treatment with DAPT did not markedly alter expression of p27Kip1 

in bulk or CD133- cells, but dramatically enhanced its expression in CD133+ cells 

(Figure 28F).  Together, these data suggested that NOTCH1 inhibition up-regulates 

p27Kip1 selectively in CD133+ cells.   

 

 

Figure 28: CD133+-cell-selective and 

NOTCH1-dependent SKP2 expression 

in ACC cells.  

(A-C) SKP2 is selectively expressed in 

CD133+ Accx11 cells as demonstrated by 

(A) qRT-PCR  and (B) immunoblot.  β-actin 

serves as a control.  (C) Spheroid-forming 

CD133+ cells show cytoplasmic localization 

as demonstrated by IF.  (D-E) Inhibition of 

Notch signaling by (D) siRNA and (E) 

DAPT decreases expression of SKP2 in 

bulk Accx11 cells (qRT-PCR).  (F) DAPT 

blocks expression of activated NOTCH1 

(N1ICD) and its target SKP2 in CD133+ 

ACC cells and up-regulates p27Kip1, a 

SKP2 substrate.  β-actin serves as a 

loading control. 
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II.3.5 Discussion 

  CSCs isolated from various malignancies possess many features of embryonic or 

tissue stem cells and can be targeted via highly conserved Notch, Hedgehog (HH), and 

Wnt pathways activated in these cells.346  While previous studies confirmed the 

existence of CSC in ACC using ALDH as a marker,309 difficulties with ACC culture and 

lack of reliable stem cell markers prevented their characterization.  Our recent studies 

provided a set of novel ACC markers (NOTCH1, SOX10, FABP7) and other genes 

whose expression is associated with propagation and prevention of differentiation of 

NSCs,200, 263 suggesting that isolation of CSC from ACC may be possible.  This study 

developed and implemented a novel technology and an additional set of stem cell 

markers for isolation, propagation, reliable validation, and characterization of these 

cells.  For the first time, ACC cells with CSC properties were isolated directly from tumor 

tissue or propagated and purified from primary ACC cultures.  Using these new 

approaches, a subpopulation of ACC cells expressing SOX10, NOTCH1, and FABP7 

was identified that also expressed CD133, a cell surface marker.  As demonstrated, 

ACC cells that express CD133 have basic characteristics of CSC including the ability to 

generate both CD133+ and CD133- populations, form spheroids in culture, and initiate 

tumors in nude mice.  

Gene knockdown studies highlighted the essential roles and potential functional 

cooperation between NOTCH1 and SOX10 in maintenance of CD133+ ACC cells.  An 

important insight into this cooperation, which has not been previously appreciated, was 

provided by the co-expression of FABP7 that relied on both NOTCH1 and SOX10, and 

the role of FABP7 in regulating expression of genes critical for cell survival.  FABP7 has 
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been recently described as a novel diagnostic and prognostic ACC marker114 and was 

also implicated in glioblastoma, melanoma, and basal-like breast cancer; however, its 

downstream targets and molecular mechanisms of activation have not been studied.  

The current data associate FABP7 with the expression of SKP2 and multiple other 

genes involved in survival, proliferation, and metabolic pathways pointing at a novel 

signaling pathway that stimulates CSC in ACC.  

In this study, SOX10 was one of the most consistent markers of CD133+ stem-

like ACC cells.  Expression of SOX10 is also seen in other cancers with neural crest 

lineage suggesting that they may contain similar stem-like cells.  SOX10 expression has 

been reported in basal-like breast carcinomas, a histologically and clinically distinct 

subtype of breast cancer that lacks targeted therapy and expresses NOTCH1 and 

FABP7.263, 298  It would be interesting to determine if basal-like breast carcinoma is 

SOX10- and NOTCH1-dependent similar to ACC and other neural crest-derived 

cancers such as melanoma, neuroblastoma, and glioblastoma. 

  ACC is a radioresistant tumor, and currently there are no curative treatment 

options for patients with unresectable disease.  Targeting CSC via Notch has been 

linked with sensitization of glioblastoma to radiation.319  Thus, Notch-targeting therapies 

offer a new opportunity for ACC, and while there are no available drugs to inhibit SOX10 

or FABP7, agents targeting Notch are currently in clinical trials.330  This study 

demonstrated that activated NOTCH1 stimulates proliferation and survival of ACC cells 

with neural stem properties.  In line with this scenario, NOTCH1 targeting selectively 

inhibited proliferation of CD133+ ACC cells and triggered cell death resulting in depletion 

of CD133+ cells.  Notch inhibitors have strong antineoplastic activity in numerous 
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preclinical models when combined with DNA damaging therapies,346 and here DAPT 

had single agent efficacy in pre-clinical ACC models and also sensitized CD133+ ACC 

cells to -irradiation.  Overall, these experiments provided preliminary data that stimulate 

interest in Notch inhibitors for ACC therapy either as a single agent or in combination 

with radiation.  

  Mutations in the NOTCH1 gene are detected in 5% of ACCs,78, 79, 347  The low 

incidence of these mutations, however, suggests the existence of other mechanisms 

that trigger Notch activation in ACC.  Intrinsically high NOTCH1 expression in ACC is an 

important pre-requisite for its activation, achieved via ligand-binding.  Hence, 

association of NOTCH1 with JAG1, a NOTCH1 ligand produced by CD133- cells, 

provides a potential mechanism for oncogenic NOTCH1 activation and aggressive 

tumor growth in these tumors.  Indeed, up-regulation of JAG1 has been previously 

linked to NOTCH1 activation and poor survival in breast, pancreatic, and ovarian 

cancers.332 

In search of additional actionable targets associated with NOTCH1 signaling in 

ACC, p27Kip1 and its ubiquitin ligase SKP2 were identified.  SKP2 and p27Kip1 were 

differentially expressed in CD133+ and CD133- cells, with CD133+ cells expressing 

SKP2 and CD133- cells expressing p27Kip1.  Inhibition of NOTCH1 markedly decreased 

SKP2 levels in CD133+ cells and increased protein levels of p27Kip1.  In addition to its 

central roles in the regulation of proliferation, apoptosis, and senescence, which are 

mediated at least partially through degradation of p27Kip1,348 SKP2 is a tumor survival 

factor during energy stress.349  Multifaceted SKP2 activities at a crossroad of many 
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oncogenic signaling axes suggest that SKP2 may be an additional therapeutic target in 

ACC.  

 Overall, characterization of neural stem-like cells in ACC and delineating 

signaling events essential for their maintenance provide a new concept for ACC 

research and treatment that focuses on cancer cells with neural stem properties.  Notch 

inhibitors that show promise in neuroblastoma and brain tumors330 may be used as 

therapy for ACC in combination with Trk inhibition that was previously tested on PDX200 

and cytotoxic modalities.  Future combination strategies for ACC may also include 

SKP2 inhibitors that are currently in development.317 
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III. SUMMARY AND FUTURE DIRECTIONS 

III.1 Summary of studies 

 Some objectives of this work were to: 1) identify molecular markers distinguishing 

ACC from normal salivary gland and other common malignancies of the head and neck; 

2) test the role of identified markers in ACC development and progression; 3) create 

and validate one or more sustainable ACC cell cultures, and; 4) identify potential targets 

for ACC therapy.  Presented here are data which support progress made toward 

accomplishment of these objectives.   

Using microarray datasets from ACC, MEC, HNSCC, AD, and NSG specimens, a 

signature of genes centered around a strong cluster of TrkC probes was identified.  This 

signature suggested characteristics of neural crest stem cells (NCSCs), as well as the 

Notch and Wnt/β-catenin pathways.  While at the time, cell lines were not available for 

ACC, an exogenous expression model of TrkC in U2OS cells devoid of endogenous 

expression of neurotrophin ligands or receptors allowed further investigation of how 

TrkC might be functioning in ACC.  Activation of TrkC signaling by addition of its ligand 

induced TrkC phosphorylation, stimulated proliferation and anti-apoptotic pathways, cell 

motility, migration, invasion, and anchorage independent cell growth.  All NT-3-induced 

effects were reversible by pan-TrkC inhibitor AZD7451.  Additionally, in vitro studies 

using ACC xenografts suggest that TrkC inhibition may be useful for inhibiting tumor 

growth.  While these results suggest a role of TrkC in ACC, further studies are needed 

in ACC cell lines to elucidate the role it is serving within this tumor. 

 Without cell lines available to extend the studies on TrkC, reanalysis of 

expression array data landed focus on SOX10, a gene well described as a marker of 
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NCSCs.  Additionally, SOX10 had been identified as a critical factor for melanoma 

(melanocytes are derived from neural crest) formation and progression.  

Immunostaining of a head and neck TMA confirmed strong staining within ACC 

specimens and clear absence of SOX10 in the vast majority of MEC and HNSCC.  

Analysis of publicly available datasets found strong SOX10 gene signatures within 

tumors of neurologic origin (melanoma, glioblastoma, and neuroblastoma), as well as 

the basal-like subtype of breast cancer.  Comparison of the identified gene signatures 

with the one generated from our own ACC datasets revealed substantial overlap, with 

the greatest similarity existing between ACC and basal-like breast cancer.  Interestingly, 

these tumors are both believed to arise from myoepithelial cell-containing areas of 

structurally similar glands.  In addition to being a sensitive biomarker of these tumors, 

basal-like breast cancer cell lines harboring SOX10 expression maintained 

characteristics of both positively- and negatively-associating SOX10 signature genes in 

culture, suggesting that this network may be important for maintenance of these cells.   

 In order to further analyze the role of SOX10 in ACC, tumor cells from ACC 

xenografts were successfully cultured by utilizing a new technique for cell culture.  A 

robust culture, Accx11, continued to grow in culture beyond 30 passages and 

maintained expression of ACC markers including SOX10.  In culture, Accx11 cells 

displayed characteristics of stem-like cells including spheroidogenesis.  Cell sorting 

based on expression of CD133 of Accx11 cells and dissociated xenografts generated a 

CD133+ cell population enriched with markers of ACC including SOX10, NOTCH1, and 

FABP7, as well as downstream targets of Notch signaling.  Conversely, CD133- cells 

expressed markers of neural differentiation and the Notch ligand JAG1, suggesting that 
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CD133- cells may differentiate from CD133+ cells and function to support the CD133+ 

cell population.  Mouse injections of sorted cells confirmed CD133+ cells as being more 

tumorigenic than their CD133- counterparts.  Knockdown experiments using siRNA 

demonstrated interrelated signaling between SOX10, NOTCH1, and FABP7, and that 

CD133+ cells were dependent upon each of these proteins.  Although pharmacological 

agents are not available for inhibition of SOX10 and FABP7, Notch pathway inhibition 

using the γ-secretase inhibitor, DAPT, reduced the CD133+ cell population, suppressed 

spheroidogenesis, and sensitized CD133+ cells to radiation.  These data open up new 

avenues to be explored in the treatment of ACC. 

III.2 Future directions  

 The findings in these studies have provided new insights into the molecular 

landscapes and signaling networks involved in ACC.  In particular, generation of the 

short- and long-term ACC cultures creates an experimental platform for testing new 

ideas.  In addition, isolation and characterization of CSC in ACC creates a new concept 

of CSC targeting in this tumor type. 

III.2.1 SOX10 in breast cancer 

While ACC remains an insidious tumor with poor patient outcomes, it is an 

orphan tumor affecting approximately 1200 people annually in the United States.  Some 

of the most exciting findings presented here are the conserved expression patterns 

seen in distinct tumor types that share their neural crest origin.  A conserved signaling 

pathway in neural crest-associated tumors suggests that targeting this pathway may 

have far-reaching effects on a myriad of tumors.  Amongst tumors examined, basal-like 

breast cancer demonstrated the highest similarity to the SOX10 co-expression gene 
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profile found in ACC.  Basal-like breast cancer is a common malignancy with severely 

limited treatment options.  Importantly, SOX10 is critical for melanoma tumorigenesis, 

maintenance, and progression, and data presented here suggests that SOX10 plays a 

critical role in the maintenance of stem-like cells within ACC. 

The most strongly negatively correlating gene to SOX10 in both ACC and basal-

like breast cancer is FOXA1.  While the implications of FOXA1 expression in ACC 

remain unknown, in breast cancer, it can have profound implications.  In luminal breast 

cancers, FOXA1 is required for ~50% of the function of ESR1, suggesting that the lack 

of FOXA1 in basal-like tumors may, in part, contribute to the lack of ESR1 expression in 

these tumors.  Moving forward, studies inhibiting SOX10 expression in basal-like breast 

cancer cell lines MX-1 and HCC1569 will help to identify how SOX10 is contributing to 

the behavior of these tumors.  Potentially, even if SOX10 inhibition alone is incapable of 

killing tumor cells, this may reverse FOXA1 suppression allowing for ESR1 function.  

While SOX10 is not currently targetable by clinically available therapeutics, SOX10 

targeting could allow for new avenues for pharmaceutical intervention. 

III.2.2 Generation of ACC cultures from primary tumors 

The history of cell culture in ACC is a sordid affair.  From contamination to 

unexplained losses of DNA mutations central to the parent tumor, ACC cultures have 

been notoriously unreliable.  Now that a reliable culture system for ACC cells 

dissociated from tissues has been optimized, it should be utilized to create additional 

cultures.  In addition to providing tools for ACC research, additional cultures will allow 

for validation of findings and avoid limitations and biases that limited numbers of 

specimens or cultures can produce.  While Accx11 displays markers characteristic of 
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ACC, it is derived from xenografted tissue, which will have changed due to the selection 

induced by growing in mice.  As experience culturing with the CRC system has 

increased, the ability to successfully generate cultures from small tissue specimens has 

improved.  This is important as, moving forward, the goal is to produce cultures from 

primary ACC tumors without the need for xenograft expansion.   

III.2.3 TrkC function in ACC cell culture 

 Accx11 maintains a large variety of ACC markers, which can be manipulated for 

in vitro and in vivo studies.  In particular, TrkC results, generated primarily in U2OS 

cells, will be reassessed.  Currently planned are proliferation, migration, invasion, and 

expression studies on Accx11 cells with or without stimulation of TrkC with its ligand, 

NT-3.  Additionally, having already identified CD133+ stem-like cells in this culture, 

future studies will focus on assessing TrkC expression in these cell subpopulations.  

Should TrkC expression be associated with any of the phenotypes seen previously in 

U2OS cells in vitro, injections of Accx11 cells for mouse xenograft experiments using 

AZD7451 or other Trk-family inhibitors will be performed to see how pharmacological 

intervention may affect these phenotypes in vivo.   

III.2.4 MYB-NFIB and MYBL1-NFIB gene fusions in ACC 

 Until now, studies have only been able to confirm the existence of the MYB-NFIB 

and MYBL1-NFIB gene fusions or analyze the expression of MYB in ACC tumors.  The 

ability to culture ACC cell from xenografts and primary tumors provides a unique 

opportunity for studying these fusions and their roles in ACC.  Break-apart FISH studies 

demonstrated MYB-NFIB gene fusions in seven of the nine PDX models described and 
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used in our lab, including ACCX11.  Preliminary studies on current ACC cultures 

suggest the presence of at least two distinct MYB-NFIB fusions which have been 

previously described.  Using si/shRNA and CRISPR targeting sequences within the 

MYB open reading frame, MYB expression will be suppressed in culture in order to 

determine expression and cell behavior changes in vitro.  Further studies are planned to 

determine the role MYB serves in tumorigenicity in vivo and to determine if MYB 

expression is limited to CSCs or alters CSC behavior.  Particular interest will be focused 

on inducible loss of MYB in order to determine if established tumors maintain 

dependence on MYB.  

III.2.5 NOTCH inhibitors in development 

 The presented studies demonstrate that inhibition of NOTCH selectively kills 

ACC cells with stem-like properties in vitro resulting in reduced tumorigenicity.  

However, clinically, GSIs have primarily performed poorly as a single agent, largely due 

to gastrointestinal side effects induced by even low doses.  Fortunately, efforts are 

being made to create small molecules and antibodies to inhibit NOTCH that do not 

function through γ-secretase.  These inhibitors intend to specifically target NOTCH 

isoforms, which in turn will reduce side effects in noncancerous cells.  As these drugs 

become available, their efficacy will be tested on ACC cultures. 

III.2.6 Combinatorial treatment of ACC 

 As with most tumors, it is unlikely that a single agent will be successful in treating 

ACC, due to the development of resistance.  Identification of additional pathways 

employed in ACC for tumorigenic purposes will hopefully allow a combination of 
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therapies for control, palliation, or cure of this disease.  These studies have 

demonstrated that TrkC, SOX10, and NOTCH1 all play important roles in the 

development and maintenance of ACC.  Moving forward, effects of combinatorial 

inhibition of NOTCH1 and TrkC on tumorigenesis of injected cells and xenografts will be 

studied.  Additionally, the presented in vitro studies suggest that NOTCH inhibition with 

GSI can sensitize ACC cells with stem-like properties to radiation, something important 

to confirm in vivo.  Other potential pathways for therapy include MYB (as discussed 

above) and WNT signaling, both of which are topics for further study using the tools and 

cultures that we have created. 
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