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CHAPTER I 

 

RECONSTRUCTION OF SAXS PROFILES FROM PROTEIN STRUCTURES 

Overview 

The objective of my dissertation is to use small angle X-ray (SAXS) and Neutron 

scattering experimental data in conjunction with in silico structure prediction methods to 

produce protein models in agreement with the experimental restraints.  To achieve this, I 

developed an algorithm, BCL::SAS to generate a replica of what an experimental SAS profile 

would look like from a rigid protein model.  This algorithm can operate on complete protein 

models and models comprised of the backbone atoms of secondary structure elements (SSEs).  

This provides a method to compare models produced by BCL::Fold with experimental SAXS / 

SANS profiles.  

Significance 

I wrote a review article on how other groups have tackled the problem of SAXS profile 

reconstruction.  This review article was praised as one of the best reviews on SAXS profile 

reconstruction by John Tainer and Robert Rambo. The reason this article was significant was 

because it was the first review in the field to explore multiple methods of SAXS profile 

construction and provide a history and rationale behind the methods.    It succinctly explained 

the necessary theory and limitations of the proposed methods.  This chapter is a reproduction of 

Reconstruction of SAXS Profiles written in 2013.[4].   

Innovation 

 At the time of this writing, no other methods in the world were using the Debye method 

with GPU acceleration to reconstruction SAXS profiles from protein models.   
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Introduction 

Small angle X-ray scattering (SAXS) is an experimental structural characterization 

method for rapid analysis of biological macromolecules in solution.[2, 3, 5-8]  SAXS is inherently 

a low resolution method because samples move freely in solution during data acquisition 

resulting in spherically averaged scattering intensity curves.  Because the samples do not need 

to be crystallized, they can be studied in different pH environments and concentrations leading 

to insightful structure-function relationships.  The overall SAXS scattering profile is calculated by 

subtracting the scattering profile of the blank buffer solution from the profile of the sample 

dispersed in solution.  SAXS data has been used to filter a set of protein models by comparing 

the SAXS profile of each model with the experimental SAXS profiles [9, 10].  The SAXS profile has 

been incorporated as a term in the scoring function to obtain a protein model consistent with 

the experimental SAXS data [11].  An exciting feature in modern SAXS is identifying and 

modeling protein flexibility from an ensemble set of different conformers to fit experimental 

SAXS data [12, 13].  This requires a large library of starting conformers as input to the algorithm 

[14].  After a suitable library of conformers has been generated or found, the experimental SAXS 

data are used as a constraint in an algorithm to determine which combination of conformers 

optimally fit the data.  The scattering intensity (I) is represented by a linear combination of the 

selected conformers.  In this process the algorithm must decide 1) Which conformers to use and 

2) How many conformers are required to accurately recreate the experimental SAXS profile.  

Critical to the success of this task are the underlying algorithms used to compute a SAXS profile 

from a proposed protein model.  In this review we highlight different methods to accomplish 

this task.  We recognize that these methods are not exhaustive of all methods, but represent a 

sampling of different approaches that provide insight to the process of computing SAXS profiles 
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from atomic coordinates.  For a more comprehensive review of small angle X-ray scattering 

theory we recommend several reviews [2, 3, 5, 15].   

X-Ray Scattering Review 

X-Ray scattering is observed when differences in electron density exist in a given sample 

and X-Rays generated from a source device pass through the sample.  Although both coherent 

and incoherent scattering is possible, we will confine our considerations to coherent scattering 

because incoherent scattering is negligible weak at very small angles[2].  Elastic (without energy 

change) electron scattering is influenced by all atomic orbitals.  Because atomic orbitals have 

different shapes according to their atomic group, the X-ray scattering provides information on 

the structure of the target sample.   

The scattering process occurs as electrons resonate with the frequency of the X-rays 

passing through the object.  As the electrons resonate, they emit coherent secondary waves 

which undergo both constructive and destructive interference.  Because of destructive 

interference, the superposition of waves with all possible phases will lead to zero scattering at a 

scattering angle of 2θ [2].  The scattering maximum I(0) will be theoretically observed at a 

scattering angle of zero where all waves are in phase.  Because of the high intensity of the 

incident X-Ray beam, a beam stop is placed between the detector and the beam to prevent it 

from distorting the scattering profile. I(0) must therefore be computed rather than 

experimentally observed.  
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To illustrate the scattering process, consider a linearly polarized monochromatic X-Ray 

beam incident on a single electron with charge e and mass m.  The periodic electric field of the 

incident X-ray produces a force on the electron (F=qeE) where F is the overall force the electron 

experiences, qe is the charge of the electron and E is the electric field of the incident X-Ray.  This 

force causes the electron to oscillate with the same frequency as the X-Ray.  The equations 

governing this behavior are shown below beginning with the electric field equation: 

      
        1.1 

where E is the electric field, E0 is the maximum value of the electric field, ω is the frequency of 

oscillation of the wave-field, t is time, and δ is the phase constant.  By Newton’s second law of 

motion we equate the two equation of force: 

               
        1.2 

 

Where m is the mass and a is the acceleration.  The acceleration the electron experiences due to 

the periodic electric field is computed by dividing by the mass: 

 

Figure 1: SAXS Experimental Setup.  X-Rays with a constant wavelength λ are first focused by the collimator and then 
pass through the purified sample in solution.  A small fraction of the X-Rays scatter as they encounter electrons in the 
sample.  The detector captures these scattered X-Rays as intensity values.  The final scattering profile is the difference 
between the profile of a blank buffer solution and a solution containing the purified sample. 
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        1.3 

Where the amplitude A0 is: 

    
  

 
   1.4 

The electromagnetic radiation at a given distance with magnitude r from the charge q that 

experiences acceleration a  has an electric field component: 

 
   

       

   
 

1.5 

Where c is the speed of light, r is the magnitude of the position vector, qe is the charge, a is the 

acceleration, and α is the angle between a and r.  If the position of r is perpendicular to the 

incident beam (which is true for SAXS experiments) then α=90° and sinα = 1.  Combining this 

simplification with the electric field component and substituting A0 for a: 

 
   

    

   
  

  

   

  

 
    (

  
 

   )
  

 
 

1.6 

Now imagine instead of a single electron, we have an electron cloud.  As incident X-rays 

pass through an electron cloud with the origin at the center, most of them travel through the 

cloud without scattering, while a small fraction (<1%) of the incident X-rays are scattered.  This 

can be seen from the scattered to incident amplitude ratio: 

  

  
  (

  

   )
 

 
  

  
 

 
1.7 

where e is the charge of an electron, re is the constant Thomson scattering length and r is the 

distance from the object to the detector. 
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1.8 

Because re is small, the scattered-to-incident amplitude ration reveals that a single electron 

scatters a very small fraction of the incident X-Rays.  For example, at a sample to detector 

distance of three meters (typical for SAXs experiments), the amplitude ration is: 

   
 

 
              

  
       

1.9 

 

Table 1. Numerical values of critical constants in Thompson Scattering 

Name Value 

qe      Electron charge 1.602 x 10-19 C 

me     Electron rest mass 9.107 x 10-31 kg 

c        Speed of light  2.998 x 108 m/s 

ε0        Permittivity of free space 8.854 x 10-12 C2/N·m2 

 

For a fuller description of the physics of X-ray scattering and the mathematics of waves we refer 

to the notes of Dr. Robert Blessing[16]. 

 Because the scattered waves are coherent, the resulting amplitudes are added and the 

intensity is given by the absolute square of the amplitude[2].   

 
  ∑   

 

   
   |  | 

1.10 

where An is the resulting amplitudes of all scattered waves and I is the scattering intensity.  In 

Thompson elastic scattering all secondary waves have the same intensity and is given by: 
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         (

  

   )  
 

  
 
        

 
 

1.11 

Where Ip is the primary intensity and Is is the intensity of the secondary waves.  The term e2/mc2 

is the classical electron radius and r is the distance from the object to the detector.  For small 

angles the polarization factor (1 _ cos22θ)/2 is approximately one leaving: 

 
         (

  

   )  
 

  
 

1.12 

The Momentum Transfer Vector 

 We will assume the amplitude and intensity of all secondary waves to be one for this 

discussion.   With this framework, each secondary wave is represented by the complex function 

eiφ where φ is the phase.  Because the amplitude and intensity are one, all waves differ only by 

their phase.  The phase of the scattered wave depends on the position of the oscillating 

electrons in space. 

 

 

 

 

 

 

 

 

Figure 2. X-Ray Scattering: Adapted from Small Angle X-ray Scattering [2]. Incident (s0) and Scattered –
Rays (s) with the derivation of the momentum transfer vector q 
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The phase of the secondary waves is 2π/λ multiplied by the path difference between the 

scattered and incident waves.  In the diagram, we let s0 represent the direction of the incident 

beam and we let s represent the direction of the scattered beam.  The path difference of a point 

P, specified by r, against the origin O is: -r·(s-s0). The phase is given by: 

 
   

  

 
                

1.13 

The term (s-so) is symmetric to the incident and scattered beam with magnitude of 

2sinθ.  In this representation θ represents half the scattering angle.  The momentum transfer 

vector q is independent of the distance to the detector and the wavelength (�) and defines the 

scattering curve in reciprocal space with units of Å-1. The momentum transfer vector has the 

same direction as (s-so) and the magnitude is given by substituting 2sinθ for (s-so): 

 
| |  

          

 
 

1.14 

where 2θ is the scattering angle. We refer to q as the magnitude of the momentum 

transfer vector q. In the literature, this term has been defined multiple ways and one must be 

aware of the convention used.  For example the symbols h and s have been used in place of q.  

Sometime s is defined as s = (2sinθ)/λ with q = 2πS. Others define θ rather than 2θ as the 

scattering angle.  In this review we use the convention for q shown above with 2θ as the 

scattering angle.  Large interatomic distances contribute primarily to the scattered X-ray 

intensity at small scattering angles, whereas short interatomic distances primarily contribute to 

X-ray intensity at large scattering angles. The information content of a SAXS profile is small 

compared to other high resolution experimental techniques because the overall scattering 

profile represents the orientationally averaged contribution of all atoms in all orientations. The 
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SAXS scattering curve contains information related to the overall shape of the molecule and is 

routinely used for the validation of structural models [17, 18]. 

The Scattering Intensity Curve can be derived from the Electron Density Function 

The term electron density is frequently used in the literature in the place of electron 

density difference or contrast.  The electron density ρ is the number of electrons per unit 

volume.  In SAXS experiments only the electron density difference ρ2 – ρ1 (ρ2 is the electron 

density of the sample, ρ1 is the electron density of the solvent) is measurable.  If ρ2 = ρ1, then 

scattering is not observed because the waves scattered in any direction will cancel out.  During a 

SAXS experiment the electron density of the buffer solution is subtracted from the density of 

the combined sample and buffer solution leaving the electron density of the sample without 

background solution. The electron density function ρ(r) is defined in real space for non-negative 

values.  It is a histogram of equivalent pairwise atomic distances in a given sample.  Because of 

the solution subtraction, the electron density it is zero everywhere except for defined electron 

distances in the sample where identical distances add together.  
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If we have the distance distribution function then the scattering curve I(q) can be calculated by 

Fourier inversion[2]:  

 
       ∫     

        

  

 

 

    
1.15 

Likewise the distance distribution function ρ(r) can be calculated by Fourier inversion of the 

scattering curve[2]: 

 
     

 

   
∫                    

 

 

 
1.16 

Theoretical scattering curves can be computed for a model of a given shape and 

compared with experimental data using either the intensity calculation I(q) or the distance 

distribution function p(r).  The distance distribution function allows the deduction of the largest 

particle dimension dmax and is the distance at which the p(r) drops to zero. 

 

 

Figure 3: The pairwise distance distribution function adapted from X-ray solution scattering (SAXS) combined with 
crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in 
solution. Pair-wise distances between each atom are represented.  The distances are symmetric and are represented 
twice by the double arrows.  The P(r) function will be zero whenever a particular distance is not defined by the 
geometry of the sample. 
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Debye Formula for computing scattering profiles from Atomic Coordinates 

Proteins are built up from the arrangement of amino acids which are built up from the 

arrangement of atoms differing by side chain arrangement.  Imagine a protein sample in a fixed 

orientation.  The centers of mass of each atom may be designated by r1, r2, …, rn, and their 

amplitudes with respect to each mass center by f1, f2, …, fn.  The total amplitude is[2]: 

 

Figure 4: Originally from SAXS combined with crystallography and computation[3].  This figure depicts the 
experimental SAXS curves and parameters measured for Pyrococcus furiosis PF1282 rubredoxin (magenta), a 
‘designed’ scaffoldin protein S4 (red), a ‘designed’ minicellulosome containing three catalytic subunits (green), and 
the DNA-dependent protein kinase (blue).  (a) Dmax of the scattering particle is a simple function of molecular 
weight for perfect spheres, but not for proteins that adopt different shapes.  Envelopes correspond to ab-initio 
models calculated from experimental curves using GASBOR. (b) The experimental scattering curves for each 
protein show that the intensity of scattering falls more slowly for rebredoxin (RG 11 Å ; magenta) than the 
minicellulosome (RG 82 Å; green). (c) The linear region of the Guinier plot, from which RG and I(0) can be derived, 
is a function of the RG. (d) Each protein has both a substantially different Dmax as well as pair-distribution 
function, reflecting the different atomic arrangements.  
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1.17 

where the additional phase factor describes the position of the atom and fj(q) is the amplitude.  

The intensity is the absolute square of the amplitude, averaged over all orientations: 

 
         〈∑ ∑     

             

 

   

 

   

〉 
1.18 

When j=k the phase factor reduces to one.  This situation represents the contribution to the 

intensity diffracted by the atoms alone.  The situation j≠k represents the interference between 

the atoms, according to the relative distance (rj-rk).  Each amplitude f has a phase: 

    ‖  ‖       1.19 

Splitting the atomic diffraction (j=k) from the interference between atoms (j≠k) yields: 

 
     ∑        〈∑∑|  ||  |
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1.20 

 

In SAXS experiments there is no fixed origin because particles are sampled in all orientations.  

The phase is dependent on a fixed origin.  By averaging over all orientations and restricting 

atoms to be spherical, the phase vanishes, (φk - φj) = 0 and fj becomes independent of 

orientation.  Furthermore, spherical averaging of all orientations is given by: 

 
〈      〉  

          

     
 

1.21 
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This representation of the spherical averaging is known as the Debye factor[19].  The final Debye 

formula is: 

 
     ∑        ∑∑          

       

    

 

   

 

   

 
1.22 

In this format the amplitudes f are calculated by computing the atomic structure factors.  The 

atomic diffraction and interference between atom sums can be combined together to give the 

form of the Debye equation frequently cited in the literature: 

 
     ∑∑          
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1.23 

where rij = | ri –rj | are the x,y,z positions of atoms i and j.  The Debye formula given above 

takes the atomic x,y,z coordinates as input and returns the intensity as a function of momentum 

transfer q. This double sum of all atoms in a given system for each computed q value has a 

computational cost of O(N2). The quadratic cost is a prohibitive barrier for atomic level 

application of the Debye formula for large systems (N > 10,000).  In the case of structural 

refinement for SAXS, the scattering profile must be computed from all pairs of interactions with 

atoms in the molecule.  In high-throughput applications the profile must be computed 

thousands of times, while in an iterative ensemble analysis, the profile must be computed 

hundreds of thousands of times.  Because of the high computational cost, different methods 

have been developed to reduce the number of necessary calculations to compute intensity. 

Before we discuss the approximations to the Debye formula, we must first understand the 

structure factors fi(q) and fj(q).  
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Structure Factors and Form Factors 

 The atomic form factor is a fundamental physical quantity in solid state physics. It is the 

Fourier transform of an electron distribution around a nucleus of a given atom and carries 

information on the electron wave function. The X-ray scattering power of a given atom will 

depend on the number of electrons it contains. As the number of electrons contained in an 

atom increases (higher atomic number), the scattering power increases. As the scattering angle 

increases, the scattering power decreases. A scattering angle of zero results in the maximum 

scattering factor for a particular atom which is equal to Z – the atomic number. The form factor 

approximations are based on the combination of relativistic Dirac-Slater wave functions and 

numerical Hartree-Fock wave functions [20-23]. These Hartree-Fock structure factors were 

computed from q = 0 to q = 1.5 at intervals of 0.01Å-1. For convenience, they were fit to a 5-

gaussian (Cromer-Mann) analytic function: 

 
        ∑    

    
 
  

     

 

   

 
1.24 

where fv,i (q) is the structure factor of a particular atom at a given q-value in vacuo. The 

constants a1, a2, a3, a4, b1, b2, b3, b4, and c are the Cromer-Mann coefficients for a given 

atom, and q is the momentum transfer in inverse angstroms. Tables for the Cromer-Mann 

coefficients are found  in the International Tables for X-Ray Crystallography[24]. This 

approximation is valid in the q-ranges for SAXS scattering experiments from 0 to ≈ 0.33Å-1 [3, 5]. 

For larger q-ranges, a 6-gaussian approximation must be used which is valid from 0 to ≈ 6.0Å-1 

[23]. 

In addition to the vacuo contribution to the form factors, the solvent makes a critical 

contribution to the overall scattered intensity.  The solvent effect is considered by modeling the 
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solvent as an electron gas with density equal to the average electron density of the solvent[25]. 

Taking the solvent effect into account, the overall structure factor of the atom is the 

combination of the structure factor representing the excluded solvent subtracted from the form 

factor for a given atom: 

                        1.25 

where fs,i is the structure factor of the hypothetical atom that represents the displaced solvent. 

The displaced solvent scattering term fs,i is given by: 

 
            

 
    

   

   
1.26 

where ρ is the electron density of the solvent.  For pure water this is 0.334e Å-3. Vi is the solvent 

volume V displaced by atom i and is calculated from the van der Waals radius of the atom.[25, 

26]. The exponential term is the normalized Fourier transform of the Gaussian sphere.  This 

sphere corresponds to the excluded volume around the atom. 

The electron density surrounding the scattering body is calculated by computing the 

number of electrons per liter of solvent and then converting that to the number of electrons in a 

cubic angstrom.  This excess electron density is then added to the density of pure water.  

Proteins have an electron density around 0.44e Å-3[5].  The electron density of the solvent 

should maximize difference between itself and the electron density of the sample to maximize 

contrast in SAXS experiments.  The derivation for the electron density of pure water with a 

density of 1g/mL is shown below: 

[
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Now that we have reviewed the theory of X-ray scattering and have an idea of the 

Debye equation with a costly double sum over all atoms, we are ready to review methods using 

the Debye equation designed to maximize accuracy while minimizing computation time.   

Fast approximation of the Debye Formula by Pantos and Bordas 

In 1994, Pantos and Bordas used an approach to simulate SAXS patterns of large 

molecules by building models of closely packed spheres that are much larger than individual 

atoms thereby reducing N for the calculation. This was incorporated into the software package 

DALAI.  They used the Debye formula to compute an intensity profile of the proposed 

model[27]: 

 
     ∑       
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1.27 

The first sum gives the intensity for spheres in isolation, while the double sum give the 

contributions from density-density correlations. To reduce the computational task in the double 

summations of the Debye equation, all spheres were given the same radius and mass density. 

The structure factor product Fi(q)Fj(q) is now constant for each value of q and can be pulled out 

of the double sum. The Debye formula becomes: 

 
     ∑       

 

   

     ∑ ∑
   (     )

     

 

   

 

 

   

     
1.28 

At this point in the formulation, Pantos and Bordas have not compromised the accuracy 

of the calculation for the reduced sphere model. They moved the bulk of the computation to the 

initial state of the algorithm. The calculation of rij is still O(N2).  To model large structures 

requiring a large number of spheres, they approximated pairwise distances between atoms. In 
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this approach pair distances are grouped into a histogram of bin sizes based on the 

experimental data resolution. Without binning, the number of pairwise distance terms is equal 

to N(N-1)/2.  In this method the distances were quantized to multiples of dmax/100 where dmax 

is the maximum particle dimension.  The resolution increases with decreasing bin size and 

decreases with increasing bin size. The resolution adjustment blurs the sampling grid by an 

undetectable amount in the resolution range of the simulation. The pair distance matrix of rjk 

values are now a vector of distances weighted by the number of distances occurring in a given 

bin. The scattering formula becomes: 

 
     ∑       

 

   

     ∑      
          

    

     

   

 
1.29 

where m(rk) is the bin population at pair distance rk and the limits of the sum are the number of 

distance bins. 

This method is valid when protein structures are modeled with multiple spheres of 

constant radii and mass density. When this condition is met, the structure factor calculation can 

be brought out of the double sum. The Debye calculation can then be binned leading to change 

of an O(N2) calculation to O(N).  Prior to this calculation the pairwise distances must be pre-

computed and binned which is still an O(N2) calculation.  The speed increase by this algorithm is 

dependent on the number of spheres used to model the system.  An advantage of this method 

is that the pairwise distance matrix must only be computed once and can then be reused during 

the course of analysis. 
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Calculation of SAXS profiles with the Debye formula from coarse-grained protein models 

In 2010, Stovgaard et al, used the Debye formula for calculating the scattering curve 

combined with a coarse-grained representation of protein structure to address the high 

computational cost[28]. This approach led to a significant speed-up in computational time when 

compared with the all atom calculation. In this approximation, amino acids were represented by 

two scattering bodies or dummy atoms – one representing the backbone, and the other 

representing the side chain. These dummy atoms were placed at the respective center of mass 

of the atomic group they represented.  They had to estimate 21 form factor values for this 

approximation – one for alanine, one for glycine, one for the backbone, and 18 for the 

remaining side chains. They recreated these functions for each of the 21 form factors by binning 

the q-range into intervals of equal width (0.015 Å-1) and then computing a form factor estimate 

for each of the 21 form factor types in each of the q-bins. They sampled form factor values from 

a training set of 297 structures with lengths between 50 and 400 residues and calculated a form 

factor estimate from the centroid in each bin. The SAXS curves generated through the Debye 

formula with dummy atom form factors for 50 proteins were compared with SAXS curves 

generated for the same proteins through CRYSOL with high agreement.  

This method is contingent upon the accuracy of the form factor estimates for the 

dummy atoms and relies on a training set of 297 proteins to represent amino acids in nature. 

Amino acid residues behave differently in different environments, and caution must be used to 

ensure the training set accurately represents the environment of the protein of interest. The 

authors state that two additional developments with this method are needed: 1) a proper 

description of the hydration layer and 2) a probabilistic description of the experimental errors 
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associated with a SAXS experiment. This is currently under development in the PHAISTOS 

software package.  

The incorporation of the hydration layer into the Debye Formula via the form factor equations  

In the same year that PHAISTOS was published, the Sali Lab published their approach to 

the Debye formula and made their web server FoXs publically available[29]. To account for the 

displaced solvent and hydration shell, the structure factor contribution for a given atom is given 

by: 

                                        1.30 

where fv,i (q) is the form factor of a particular atom at a given q-value without the effects of 

excluded volume and a water shell, and fs,i is the structure factor for the excluded volume, and 

the last term is the structure factor of the hypothetical molecule that represents the displaced 

solvent. Si is the solvent accessible surface area for a given heavy atom and fw,i is the form 

factor of water.  This approach is novel because it models the hydration shell as a function of the 

solvent accessible surface area of a given atom. The parameter c1 is used to adjust the electron 

density contrast while the parameter c2 is used to adjust the hydration shell thickness. The form 

factor of water is given by the sum of all atomic form factors in water: 

                                          1.31 

The computed profile was fit to a given experimental SAXS profile by minimizing the chi function 

with respect to c, c1, and c2: 
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1.32 

where Iexp(q) and I(q) are the experimental and computed profiles, σ(q) is the experimental 

error of the measured profiles, M is the number of points in the profile, and c is the scale factor. 

The minimum value of chi was found by a computing c1 on the interval of [0.95, 1.12] and c2 on 

the interval of [0, 4.0] in steps of 0.005 and 0.1. Linear least squares minimization was 

performed to find the value of c that minimized chi for each c1 and c2 combination.  

Similar to DALAI, FoXs has the form factor calculation moved out of the double sum of 

the Debye formula. Instead of modeling uniform space filling spheres, they assumed an identical 

modulation of fi(q) for different atoms i: 

                  1.33 

where the modulation function E(q) is equal for all atoms. This approximation creates a system 

of different scattering masses but equal shape. The pairwise distance distribution function 

represents population at a given distance r and is given in this approximation as: 

      ∑                   

   

 1.34 

where �(r-dij) is the Dirac-Delta distribution and r is a given pairwise distance. In this 

representation, only the form factor with a constant q = 0 is considered, which reduces the 

value to the atomic number Z of the given value. The intensity is given by: 

 
            ∫     

        

  

 

 

   
1.35 

The modulation function E2(q) is parameterized as: 
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                 1.36 

The parameter b was determined by computing the SAXS profile with the original Debye formula 

using the non-approximated form factors and then computing the SAXS profile with the 

approximated form factors and initial guess of the b parameter. The parameter b=0.23±0.01 Å-1 

was chosen to minimize the difference between both profiles from 30 random protein 

structures from the Protein Data Bank. This approximation typically speeds to calculation of the 

Debye formula by two orders of magnitude. 

The explicit incorporation of the hydration layer into the Debye Formula  

In 2011, the Zhang lab at the University of Michigan introduced SAXSTER, an online tool 

to improve protein template recognition by using SAXS profiles[30]. In their approach they also 

simulate the SAXS intensity profile according to the Debye equation. Instead of summing over all 

atoms, they sum over all atoms plus the explicit water atoms. The equation is: 
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1.37 

where W is the number of “dummy” water molecules around the protein representing the 

hydration shell. The initial structure factor equations are identical to equations previously 

shown. To account for the explicit water molecules around the model, they started from a face-

centered cubic (FCC) lattice system with edge length Lcell. Each point in the lattice represents a 

water molecule. The overall structure factor is given by subtracting the excluded solvent from 

the atomic form factor and adding the explicit water contribution from the lattice.  The protein 

structure is projected onto the FCC system and only water molecules in the range of 3.5-6.5 Å to 

any Cα atoms are kept. The density of the water molecules in the lattice system is defined by: 
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1.38 

where N is the number of points in the FCC lattice system, V is the volume of the system, k is the 

number of unit cells in the x,y,z directions and L = k * Lcell. L represents the maximum length for 

each direction. In a FCC lattice system, the water contribution from each corner of the cubic cell 

is 1/8 and the contribution from each face is 1/2. There are eight corners and six sides yielding 

an effective water contribution of four (8(1/8) + 6(1/2)). Each water molecule consists of 10 

electrons yielding 40 (water contribution of four * 10 electrons) electrons per cubic cell. The 

number of excess electrons per volume in the hydration shell relative to the bulk water is: 

 
   

            

     
               

1.39 

The thickness of the hydration shell is thus controlled by the edge Length of the FCC system. The 

threading-based models are composed of α-carbons only and the SAXS computations are given 

by: 
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This form of the ρ(r) function is very similar to FoXs. The difference is that the water 

molecules are explicitly summed over. In the approximation, a new structure factor must be 

derived to represent the α-carbons: 
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1.42 

where 〈 〉 denotes the average over all residues of the same type calculated from 200 

randomly selected PDB structures. The term f(q) is computed by the initial structure factor 

equations previously shown. This procedure produces 20 effective structure factors for each 

amino acid type. In the case of water, its scattering factor is calculated by the modified Debye 

equation with n = 3, rij = 0 and Fi(q) being the vacuum form factors for either hydrogen or 

oxygen. 

Spherical Harmonics - A second widely used approach to address the computational cost of 

SAXS profile reconstruction 

In the methods previously described, the orientational averaging of the scattered waves 

was computed analytically using the Debye relation[19]: 

 
〈    〉  

        

   
 

1.43 

Instead of analytically computing the orientational averaging, another method is to use 

a mathematical representation of the scattering body (or protein) that uses the rotational 

properties of spherical tensors.  In this formulation the scattering body is expanded in terms of 

an infinite series of spherical harmonics.  The orthogonality properties of the basis functions 

simplify the averaging of the harmonic series from which an overall scattering intensity can be 

computed.  These basis functions are built from spherical Bessel functions, and normalized 

spherical harmonics of degree m and order L.  This approach reduces the computational 

complexity from O(N2) to O(N). 
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The scattering amplitude in vacuo of a particle with N atoms is: 

 
          ∑          

 

   

 
1.44 

where rj = (rj,ωj) = (rj,θj,φj) and fj is the corresponding atomic form factors.  Spherical averaging 

is simplified by multipole expansion[31]: 
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1.45 

where jL(qr) are the spherical Bessel functions of order L and YLm(Ω) are the spherical 

harmonics of order (L,m).  The angular symmetry of YLm is related to the symmetry of the 

multipoles: L=0 (monopole) L=1 (dipole), L=2(quadrupole), etc.  Substituting the multipole 

expansion with spherical harmonics for the exponential term yields: 
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1.46 

where  (rj,ωj) are the polar coordinates of the jth atom. The partial amplitudes can be separated 

from the proceeding equation: 
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1.47 

where ALm(q) are the partial amplitudes and are given by: 
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Because of the orthogonality properties of spherical harmonics, the cross terms cancel and the 

intensity calculation is reduced to[32]: 

 

          ∫|      |       ∑ ∑ |      | 
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The huge advantage of spherical harmonics is that the complexity is reduced from O(N2) 

to O(N).  The integrand for averaging over the sphere in the proceeding equation is 

approximated by an L = O(qD) band limited function in a  spherical harmonic basis where q is the 

momentum transfer vector and D is the maximum dimension of the sample.   It is insufficient to 

use L smaller than qD/2 because any value less than this violate Nyquist Shannon sampling[33] 

for periodic functions.  At least L2 = O(q2D2) sampling points are needed to provide an accurate 

 

Figure 5: Originally from Models, structures, interactions and scattering. 
Accuracy shape representations using spherical harmonics. Top row: surface 
representations of truncated envelope functions of lysozyme.  Second row: 
high-resolution envelope functions and Cα trace of the protein.  The shape 
scattering intensity from lysozyme is shown along with the contributions from 
different multipoles.  
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integration of bandwidth L.  Any index above L does not improve the fit for a given qmax, while 

any index below L will result in systematic errors in the calculation[34]. 

CRYSOL – The incorporation of the hydration shell using spherical harmonics with multipole 

expansion to compute SAXS profiles from atomic coordinates 

 By the early 1990s many there were many studies showing the importance of modeling 

the water molecules surrounding a given macromolecule when recreating SAXS profiles from 

atomic coordinates.  For example, Grossman et. al compared experimental SAXS profiles with 

SAXS profiles computed from different configurations of dimers, trimers, and tetramers.  They 

optimized the agreement between experimental and simulated scattering profiles by placing 

solvent molecules on a diamond-shaped grid surrounding the structure[35].  In their results, the 

computed SAXS profile with the best fit to the experimental SAXS profile consisted of a solvent 

shell of 716 water oxygens up to a maximum distance of 3.15 Å from the protein surface. Their 

results suggested that the water shell very close to the surface of a protein differs in electron 

density from the remaining bulk water and thus contributes to x-ray scattering.   

 In 1995 Svergun et. al released CRYSOL – a program to compute SAXS intensity profiles 

from atomic coordinates while considering the hydration shell surrounding the target 

sample[26].  There were lingering questions concerning the true cause of the electron density 

contrast conditions surrounding a sample in solution.  Was the density contrast caused by a 

water layer or could the contrast be explained by side chains moving freely on the protein 

surface? Three years later in 1998 Svergun et al. confirmed in a combined X-ray and neutron 

scattering study that the differing electron contrast conditions were more likely caused by a 

denser hydration shell rather than a higher mobility of the side-chains on the protein 

surface[36].  Water modeling is critical to the correct interpretation of SAXS profiles and 
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computational methods are under development today to improve chemistry constraints, 

improve geometric constraints (surface curvature), and incorporate experimental data from 

high-angle SAXS[37].  

Currently, popular approaches for modeling the hydration shell are to: 1) place water 

molecules on the surface of the protein, 2) simulate the solvation shell by surrounding the 

protein with a continuous outer envelope, 3) simulate the solvation shell and excluded volume 

by computing a modified scattering factor. 

CRYSOL employed the second approach to model the hydration shell and extended the 

multipole expansion and spherical harmonics formulation to handle not only the vacuo 

scattering, but the excluded volume and hydration shell.[11] 

In this formulation the intensity is given by: 

      〈|                     | 〉  1.50 

where Aa(q) is the in vacuo scattering, Ac(q) is the excluded volume scattering and Ab(q) is the 

border layer scattering, δρ = ρb – ρ0, where ρ0 is the average scattering density of the solvent 

surrounding the particle and �b is the average scattering density of the border layer around the 

particle with thickness Δ. 〈 〉  stands for the average over all particle orientations and Ω is the 

solid angle in reciprocal space, q = (q, Ω). Each of the three amplitudes is represented via its 

multipole components. Because of the orthogonal properties of the spherical harmonics, all 

cross terms cancel in the average over Ω, leading to: 
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The value L defines the resolution of the particle. This approach works best with shapes 

that can be described using spherical harmonics which include most globular and extended 

proteins.  Spherical harmonics is less adept at handling shapes that contain internal cavities such 

as shells and donuts.[26]   Additionally this method uses by default a harmonic order of 15, with 

a maximum value of 50.  This gives the method a complexity of O(MN) with M=q2D2.  This can 

lead to errors when a harmonic order greater than 50 is necessary based on the size of the 

protein and desired qmax. 

In CRYSOL there are several adjustable parameters used when calculating predicted data 

that best match the experimental curve. These parameters are: the effective atomic radii 

multiplier which scales the solvent volume displaced by each atom (vi), the electron density 

contrast of the surface solvent layer (c2) and the total displaced solvent volume (c1), 

approximately equal to the variation of the electron density of the displaced solvent relative to 

bulk water. The need for adjustable parameters in CRYSOL becomes clear when studying SAXS 

profile reproducibility for distinct samples of the same protein on different instruments.  The 

characteristic features of the experimental scattering profiles are conserved between 

experiments, but the experimental variation of the scattered intensity at higher q-values 

depends on the extrapolated intensity at I(0)[38].   Because of the beamstop in a SAXS 

experiment, I(0) cannot be directly observed.  One method to extrapolate this value is to 

compute the slope of the intensity profile in the initial linear region of the scattering profile (the 

Guinier region) and extrapolate to the y-intercept.   The adjustable parameters in CRYSOL 

absorb this variability by changing the level of the higher-q features of the predicted data 

relative to the low-q intensities. 
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Extension of CRYSOL to improve accuracy 

Fifteen years after the introduction of the original CRYSOL program, Alexander Grishaev, 

Liang Guo, Thomas Irving and Ad Bax introduced AXES in 2010 – a program for fitting SAXS data 

to macromolecular structure and ensembles of structures[38]. The program AXES was designed 

to be more discriminating than CRYSOL when evaluating poorly or incorrectly modeled protein 

structures.  On a set of small well-studied proteins that had X-ray crystallography and solution 

NMR data they reported an improvement in fit by 10-50% by χ score.  This set was comprised of 

four proteins – hen egg white lysozyme, cytochrome c, the B3 domain of protein G (GB3) and 

ubiquitin.   

They reformulated the approach to fitting SAXS data by explicitly taking into account the 

sources of experimental data variability: 

                                1.52 

where α accounts for the uncertainty in the measurements and c accounts for the variability of 

the detector and X-ray fluorescence. These uncertainties appear responsible for the systematic 

difference between repeated experimental data sets. Taking these uncertainties into account, 

the computed scattering intensity is: 

      〈〈〈|                     | 〉 〉    〉    1.53 

where Ω is the average taken over a discrete set of molecular orientations relative to the 

incident beam, solv is the average taken over the displaced and surface water sets, and ens is 

the average over the ensemble of macromolecular structures. The program AXES models the 

hydration shell directly by using explicit water molecules from a pre-equilibrated water box. 
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Using this approach they tested how well they could discriminate different models of 

the same protein.  They generated 2000 models of GB3 using Rosetta and fit the experimental 

SAXS data to all of the models using both CRYSOL and AXES.  The CRYSOL fits yielded χ values 

that were much lower for poor models (models with a high RMSD relative to the native 

structure) than the native structure.  This behavior is indicative of overfitting.  Using AXES, they 

did not observe significantly better fits for the poor Rosetta models.  Furthermore, when 

provided chemical shift guided Rosetta models with the correct fold, AXES correctly assigned 

higher χ values to non-native structures.    

The cost of this higher precision comes at the price of computation time.  AXES is more 

than an order of magnitude slower than CRYSOL due to the averaging of the scattering 

amplitudes of the displaced and surface solvent sets over 20 different configurations.  Among 

these configurations are: 6 elementary scattering functions averaged over angular orientations, 

macromolecular conformers, and molecular solvent configurations for a given electron density 

contrast of the surface solvent layer. Currently several avenues for computation speedup are 

under development. 

The use of Zernike polynomials to compute SAXS scattering profiles 

We previously mentioned three popular approaches for treating the hydration shell and 

excluded solvent. They were: 1) to place water molecules on the surface of the protein and 

compute scattering profiles with explicit water molecules, 2) simulate the solvation shell by 

surrounding the protein with a continuous outer envelope, 3) simulate the solvation shell and 

excluded volume by computing a modified scattering factor.  The drawback to the first approach 

is the computational cost to construct the explicit solvent model.  The drawback of the second 

approach occurs for proteins containing cavities. Assuming a uniform layer around a cavity or 
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hole will introduce artificial areas without any electron density.  The drawback of the third 

approach is the appearance of non-uniformities in the electron density by overlapping dummy 

atoms.  

In 2012, Liu et al proposed a new method to address the limitations of excluded solvent 

and hydration shell modeling[32].  In their approach they parameterized the Fourier transform 

of the electron density distribution function p(r) by a Zernike polynomial expansion with 

spherical harmonics.  Zernike polynomials are orthogonal functions on the unit ball.  They 

reformulated the SAXS intensity calculation as:   
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where jn is the spherical Bessel function of order n. 
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where cnlm is the Zernike moments from three-dimensional objects and knn’l is either a positive 

or negative coefficient given by: 
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The Zernike moments are computed by a linear combination of the geometric moments of the 

object: 
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where Mrst is the geometric moment and     
   are the coefficients.  The procedure to compute 

the coefficients are given by the Novotni and Klein algorithm[39]. 

 

     ∫             

| |  
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The geometric moments are computed from a scattering object that has been 

segmented into a series of small volume cubes called voxels.  Voxels are used in 3D graphics for 

the visualization and analysis of medical and scientific data.  In this case the voxelization process 

maps electron density from the scatterer (or protein) into voxels from which the geometric 

moments can be computed.  From this process, multiple sets of voxels are created: 1) P – the set 

of non-zero electron density voxels, 2) S+B – the set of voxels representing the excluded solvent 

and surface bound solvent, and 3) S – the set of voxels representing the excluded solvent.  

The Zernike moments of all three voxelized objects are combined by a weighted sum to 

produce one set of Zernike moments from which the scattering intensity is computed.  The 

computational complexity of this algorithm is O(N), but prior to computation, the voxelized 

object must be created in a preprocessing step.   

The advantage of the Zernike expansion method is that it can model holes or cavities of 

structures that spherical harmonics traditionally has difficulty with.  This approach also 

incorporates all solvent-accessible surfaces into the overall scattering profile.  When compared 

on a set of ten experimental proteins with high resolution crystal structures, this method had 
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similar results with the spherical harmonic expansion method.  This method offers an extension 

to spherical harmonic expansion methods that may improve the fit to experimental data by 

improved hydration shell and excluded volume treatment of structures with cavities or holes. It 

is included in the SASTBX software package. 

Table 2: Summary of Techniques to reconstruct SAXS profiles from Atomic Coordinates 

Year Method Complexity 

  Big O M 

1994 DALAI ( Debye with binned pairwise distance) 

     ∑       

 

   

     ∑      
          

    

     

   

 

O(N2) - 

1995 CRYSOL (Multipole expansion and spherical 

harmonics) 

∑ ∑ |    ∑     

 

   

          
     |

 
 

    

    

   

 

O(MN)[37] (q2D2)[34] 

2010 PHAISTOS  (Debye with Bayesian modeling of 

form factor) 

     ∑∑          
   (     )
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)[40] 

M: number of 
atoms in the 
structure 
K: number of 
atoms described 
by a dummy 
body.  Kave = 
4.24 

2010 FOXS (Debye with approximated structure factor) 

     ∑∑          
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O(N2)[37] - 
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2010 AXES (multiple averaging with spherical 

harmonics and explicit water molecules) 

〈〈〈|                     | 〉 〉    〉    

 

O(MN)[37] M: number of 
spherical grid 

points 

2011 SAXSTER (Debye with explicit water molecules) 

     ∑ ∑           
   (     )

     

   

   

 

   

   

 

O([N+W]2) - 

2012 SASTBX (3D Zernicke polynomials) 

| ∑ ∑ ∑                     
          

 

    

 

   

    

   

|

 

 

 

O(MN)[37] (Nmax + 1)2 

 

Recent developments for SAXS profile reconstruction using GPU acceleration  

In 2012, the SAXS algorithm in PHAISTOS was accelerated using general purpose 

graphical processing units (GPGPUs)[40].  This method utilizes Bayesian probability statistics to 

compute the form factors in the Debye equation for protein models built from either one or two 

scattering bodies. The speed up using GPU’s was measured from protein sizes ranging from 64 

to 8192 scattering bodies.  They reported a 16x speed up for proteins with 64 scattering bodies.  

As the proteins increased in size the speed up increased to a maximum speed up of 394x for 

proteins with 8192 scattering bodies. 

Because of the uncertainty introduced into the accuracy of the Debye equation by 

approximation methods, we devised a method to compute the intensity directly without 

approximating structure factor calculations[41]. Furthermore, we model the hydration shell as a 



35 
 

function of the solvent accessible surface area of a given atom analogous to FoXs. Our method 

BCL::SAXS offsets the high computational cost of the Debye formula by simultaneously 

computing multiple pieces of the equation using the parallel architecture of graphical processing 

units (GPUs).  The Debye formula can be framed as an NxN square matrix of N-atom rows by N-

atom columns where N is the number of atoms in a given protein.  The pairwise Euclidean 

distances (rij) are calculated from the upper triangle of the matrix.  The diagonal is set to zero 

and the lower triangle is a symmetric mirror of the upper triangle.  Each GPU thread computes a 

partial Debye sum. 

 
            ∑          
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This results into a matrix of q rows by N-atom columns where q is the momentum transfer and N 

is the total number of atoms.  These partial values are summed across each column to complete 

the intensity computation: 

 
          ∑           
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This approach removes the uncertainty introduced by form factor approximation while 

maintaining the efficiency of methods with form factor approximations. The speed up using 

GPU’s was measured from protein sizes ranging from 1832 atoms (PDB ID: 1O26) atoms to 

91,846 (PDB ID: 1VSZ).  Using a GTX680 GPU card, we observed a 5x speed up for the smaller 

protein (1O26).  For the largest protein in our set (1VSZ) we observed a speed up of 1707x for 

protein 1VSZ using the same graphics card. By leveraging GPU’s, we absorb the O(N2) cost  while 

achieving substantial reduction in computation time without sacrificing accuracy by introducing 

approximations to the Debye formula.  
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Conclusion 

In this review we focused on proteins as a scattering body, but RNA and DNA can be 

studied as well using SAXS. These algorithms represent a sampling of methods for SAXS profile 

reconstruction and are not representative of all the approaches that exist.  Another approach 

that expands these ideas was published in 2012.  In this work, Gumerov et. al proposed a 

Hierarchal algorithm based on a fast multipole method (FMM) to compute SAXS profiles[34]. For 

a review of timing and accuracy for protein of varying sizes and shapes with either spherical 

harmonic or Debye implementations we refer to their work.  In each of the algorithms 

presented, there was a trade-off between speed and accuracy.   In order to use the Debye 

formula for protein structure analysis, approximations were made to the equation to move 

terms out of the double sum. The uncertainty introduced by this approach is a subject for 

further study.   In order to model with spherical harmonics, the correct harmonic order must be 

set and the shape complexity of the scattering body must be considered. We expect that more 

algorithms in the near future will take advantage of the parallelizable form of the Debye 

equation and use GPU acceleration to obtain the necessary computational speed without the 

uncertainty introduced by structure factor approximation and momentum transfer binning.   

Furthermore, to standardize testing of SAXS algorithms we echo the suggestion of 

Rambo and Tainer and believe a reference dataset should be created with experimental SAXS 

profiles and PDB models[37].  This dataset would be comprised of proteins of varying sizes and 

shapes and folds.  All new and existing methods should be benchmarked against this set to 

identify strengths and weakness of any given algorithm.   
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CHAPTER II 

 

BCL::SAXS: GPU ACCELERATED DEBYE METHOD FOR COMPUTATION OF SAXS PROFILES 

Overview 

This chapter is a reproduction of BCL::SAXS: GPU accelerated Debye method for 

computation of small angle X Ray scattering profiles [41].  Brian Weiner and I wrote the CPU 

implementation, Edward W. Lowe Jr. wrote the GPU implementation and performed the timing 

of the GPU algorithm, Nils Woetzel and Jens Meiler provided insight and guidance during 

algorithm development and manuscript production.   

Significance  

Small angle X-ray scattering (SAXS) is an experimental technique used for structural 

characterization of macromolecules in solution. Here, we introduce BCL::SAXS – an algorithm 

designed to replicate SAXS profiles from rigid protein models at different levels of detail. We 

first show our derivation of BCL::SAXS and compare our results with the experimental scattering 

profile of Hen Egg White Lysozyme. Using this protein we show how to generate SAXS profiles 

representing: 1) complete models, 2) models with approximated side chain coordinates, and 3) 

models with approximated side chain and loop region coordinates. We evaluated the ability of 

SAXS profiles to identify a correct protein topology from a non-redundant benchmark set of 

proteins. We find that complete SAXS profiles can be used to identify the correct protein by 

receiver operating characteristic (ROC) analysis with an area under the curve (AUC) > 99%. We 

show how our approximation of loop coordinates between secondary structure elements 

improves protein recognition by SAXS for protein models without loop regions and side chains. 

Agreement with SAXS data is a necessary but not sufficient condition for structure 
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determination.  We conclude that experimental SAXS data can be used as a filter to exclude 

protein models with large structural differences from the native. 

Innovation 

This is the only algorithm in the world to Reconstruct SAXS profiles for models 

comprised of the backbone atoms of SSEs.  To perform this comparison we developed a novel 

method to rapidly approximate the loop regions between secondary structure elements.  We 

developed a novel scoring method that used the derivative of the SAXS profiles for ranking the 

agreement of two given SAXS profiles. 

Introduction 

Protein structure determination remains a major challenge in the field of structural 

biology[42]. While X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy 

can provide high resolution structures, these techniques can be limited by size[43], high 

flexibility[44], and membrane environment[44]. Computational de novo protein structure 

prediction methods have been developed, but are limited by the vast conformational search 

space that needs to be searched when no template structure is available[45]. To overcome 

these experimental and computational limitations, hybrid methods – i.e. the combination of 

multiple techniques – can be utilized to gain structural insights of proteins[9, 46, 47]. 

SAXS offers an alternative to traditional structure determination techniques 

 Small angle X-ray scattering (SAXS) is an experimental structural characterization 

method for rapid analysis of biological macromolecules in solution[3, 5-8].  During data 

acquisition in SAXS, macromolecules move freely in solution while a beam of X-Rays with 

constant wavelength λ irradiate the sample. At the point of interaction between X-Rays and 

electrons in the sample, both elastic and inelastic scattering occur. This work considers the case 
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of elastic scattering by electrons. The intensity of the scattered X-Rays captured on the detector 

is proportional to the Fourier Transform of a pairwise distance function ρ(r) that gives the 

probability of finding two atoms a certain distance apart. This distance function is weighted by 

the excess scattering density of the respective scattering volume compared to the solvent. 

 For a more comprehensive review of SAXS theory we recommend several reviews[2-5, 15, 48]. 

SAXS profiles are reported by intensity (I) as a function of momentum transfer vector (q). Large 

interatomic distances contribute to the intensity profile at small q, while short interatomic 

distances contribute to the intensity at large q. Several parameters can be extracted directly 

from the scattering profile including: the molecular mass (MM), radius of gyration (Rg), hydrated 

particle volume (Vp) and maximum particle diameter (Dmax). The state of the protein (folded vs. 

unfolded) can be observed from the Kratky representation of the scattering data plotting q vs. 

q2I(q). The scattering profile can be transformed into the pairwise distance density function 

which is a histogram of distances between pairs of points in a particle. This shape information 

has been used for the validation of structural models[17, 18]. 

Use of SAXS experimental data in computation 

The experimental SAXS profile has been used to filter a set of proposed models by 

comparing the computed SAXS profile of each model with the experimental data[9, 10]. 

Furthermore, the experimental profile has been incorporated into an energy function for 

protein folding to obtain a model consistent with experimental data[11]. More recently SAXS 

has been used to identify and model protein flexibility from an ensemble set of conformers [12]. 

In this approach a large library of initial conformers are given as input. After a sufficient library 

of conformers has been found, the experimental SAXS data are used to ascertain which 

combination of conformers optimally fit the data. In this case, the scattering intensity (I) is 
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represented by a linear combination of the selected conformers. The crucial step in this analysis 

is computation of a SAXS profile from a proposed protein model. 

Protein Structure Prediction 

 De novo protein structure prediction methods have two major components – a sampling 

algorithm and a scoring function. During the sampling phase, the protein model is perturbed. 

The protein is then scored, using a scoring function designed to identify native-like topologies. 

This process is iterated in order to minimize the scoring function. The challenge in this process is 

sampling the large conformational space of a protein densely enough so that one model 

approaches the native conformation. To be time-efficient, the protein model is often simplified 

to remove conformational degrees of freedom (coarse grained sampling) and the scoring 

function is therefore rapid but inaccurate. Sampling for larger proteins is further complicated by 

non-local contacts, amino acids in contact in Euclidean space (< 8Å), that are far apart in 

sequence (> 12 residues). As the number of non-local contacts increase, the accuracy of de novo 

protein structure prediction methods drastically decreases [49].  Atomic detail is added in a later 

stage of the protocol and the model is rescored / optimized with a higher accuracy scoring 

function. The accuracy necessary to identify the correct topology by its superior energy at this 

stage is a RMSD value of approximately 2Å when compared with the native structure.  

BCL::Fold is designed to address the sampling bottleneck  

BCL::Fold is a protein structure prediction method that rapidly assembles secondary 

structure elements (SSEs) into topologies.[50, 51]  This approach provides a means to focus 

sampling on long range contacts between amino acid pairs. To begin, a pool of predicted SSEs is 

generated from an input FASTA sequence of amino acids. SSEs are randomly selected from the 

pool and assembled using a Monte Carlo Metropolis (MCM) assembly protocol to produce a 



41 
 

coarse grained representation of the protein without side chain atoms and loop region residues. 

During assembly the model is evaluated using a consensus knowledge-based scoring function. 

This process is repeated 10,000 to 100,000 times.  The underlying hypothesis of BCL::Fold is that 

the interactions between SSEs determine the majority of the protein core and give rise to its 

thermodynamic stability. Once the models have been generated, they are clustered by 

RMSD100 into N cluster centers. The medoid from each cluster center is selected for loop 

construction and side chain addition using Rosetta[52] to produce a set of proposed 

conformations for a given protein sequence in the absence of experimental data.  

BCL::SAXS is a GPU accelerated Debye implementation for profile reconstruction 

 The use of experimental SAXS profiles during the construction of protein models with 

BCL::Fold would provide additional constraints on the sampling space of a given protein 

sequence. To incorporate experimental SAXS restraints into BCL::Fold, we must first develop a 

method to compare experimental SAXS profiles with profiles generated from protein models 

produced by BCL::Fold, i.e. missing loop region and side chain residues. 

Here we describe our newly developed algorithm BCL::SAXS. It computes complete SAXS 

scattering profiles for complete protein models and an approximate scattering profile for 

protein models that consist of secondary structure elements only as used in BCL::Fold[50, 51, 

53-55]. The main methods to calculate a SAXS scattering profile from atomic coordinates are 

spherical harmonics with multipole expansion, Monte Carlo methods, and the Debye formula 

[26, 28, 29, 53, 56]. Multipole expansion methods have been shown to be highly accurate, but 

difficult to modify for incomplete protein models. The Debye formula is easy to modify, but 

comes with a high computational cost. Ultimately we want to compare SAXS Profiles generated 

from BCL::Fold models [50, 51] – i.e. protein structure that lack loops and side chains – with 
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experimental SAXS profiles. To facilitate this, we chose to use the Debye formula, implement 

approximations for missing loops and side chain atoms, and address the computational cost 

with graphical processing unit (GPU) acceleration. 

Overall approach 

In BCL::SAXS inter-atomic pairwise distances are computed explicitly for each heavy 

atom using the Debye formula for atomic scatterers[19]. It models the hydration layer based on 

the solvent accessible surface area of each atom. To maximize the fit to experimental data 

BCL::SAXS optimizes the hydration layer density and the excluded volume of the protein. We 

accelerated the algorithm performance by using graphical processing unit (GPU) parallel 

threads. We demonstrate the discriminatory power of SAXS at three different abstraction levels 

consistent with the BCL::Fold folding protocol[50]: 1) complete protein models, 2) protein 

models with approximated side chain coordinates, 3) protein models with approximated side 

chain coordinates and approximated loop regions. We quantify the performance of the protocol 

from a set of 455 proteins with SAXS profiles computed in silico and experimental data from Hen 

Egg White Lysozyme. Furthermore, our work introduces a new approximation of the coordinates 

of residues in loop regions for crude protein models missing these residues. BCL::SAXS is 

available to the scientific community via the BCL::Commons user interface (www.meilerb.org). It 

is free for academic use. 

Materials and Methods 

 To accurately determine the SAXS profile from the atomic coordinates of full atom 

protein models we utilized several key equations – the Debye formula for atomic scatterers and 

three equations to calculate the form factors[19-21, 25, 28, 29]. The form factors are continuous 

functions of the magnitude of the momentum transfer vector  ⃗ . Using the Euclidean atomic 

http://www.meilerb.org/
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coordinates from structures stored in the protein data bank (PDB)[57], scattering profiles are 

reconstructed. The following equations, starting with the Debye formula, depict the method:  

 
     ∑∑          

   (    )

    

 

   

 

 

   

 2.1 

where the intensity, I(q) is a function of the magnitude of the momentum transfer vector  ⃗ .  It is 

given by | ⃗ | = (4πsinθ) / λ, where θ is given by a scattering angle of 2θ, and λ is the wavelength 

of the incident beam. Fi(q) and Fj(q) are the atomic form factors and rij is the pairwise Euclidean 

distance between atom i and atom j. M is the number of atoms in the protein and the 

summations run over all atoms. To calculate the form factors, we subtracted the displaced 

solvent contribution from the form factor in vacuo and added the contribution of the hydration 

layer:  

                                      2.2 

where fv,i(q) is the atomic form factor in vacuo, fs,i(q) is the form factor of the hypothetical atom 

that represents the displaced solvent[26] , and fw,i(q) is the contribution from the hydration 

layer. Si is the solvent accessible surface area of the given atom. C1 is used to modify the total 

excluded volume of the atoms and C2 is used to modify the water density in the hydration shell. 

The atomic form factor in vacuo approximation is based on the combination of relativistic Dirac-

Slater wave functions and numerical Hartree-Fock wave function [20-23, 53].  These Hartree-

Fock scattering factors were previously computed from q = 0 to q = 1.5 at intervals of 0.01Å-1 

[24].  For convenience, these scattering factors were previously fit to the 5-gaussian (Cromer-

Mann) analytic function: 
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where a, b, and c are the constants for each atom, and q is the momentum transfer vector. This 

approximation is only valid with a q range from 0 to 2.0Å[20-22] which is sufficient for SAXS 

scattering experiments where the valid scattering angle range is from 0 to ~0.33Å [3, 5]. For 

larger scattering angles, a 6-gaussian approximation must be used which is valid from 0 to ≈ 6.0 

Å[23].  The displaced solvent scattering fs,i(q) was approximated by Vi [26],  the excluded 

solvent volume V displaced by atom i:  

 
             

     
   

   
2.4 

where qs is the solvent density of 0.334e Å-3 [25]. The combination of these equations yields a 

SAXS scattering profile from rigid body data stored in a pdb file. 

GPU Parallel processing to accelerate algorithm 

The pairwise nature of the Debye formula has a computational cost of O(N2) for each 

value of q evaluated, where N represents the number of atoms contained in the protein. This 

high computational cost and time requirement has precluded the use of the direct calculation of 

SAXS profiles using the Debye formula during folding simulations. To circumvent this 

computational limitation, alternative approaches for this calculation including multipole 

expansion methods for spherical harmonics[26] and approximation of the individual form 

factors have been developed[28]. In contrast, to directly compute the SAXS profile using the 

Debye formula we leverage here the parallel architecture of graphical processing unit (GPU) 

threads using OpenCL and computed SAXS profiles directly.  

GPU Implementations of the Debye Formula for SAXS Profile Reconstruction 

In 2013, Antonov et al. showed how to use GPU acceleration to evaluate SAXS profiles in 

a Markov Chain Monte Carlo framework [58].  From a protein structure created in silico, they 
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reconstructed the SAXS profile using the Debye formula and GPU Acceleration. To address the 

O(N2) complexity of the Debye formula they created a coarse grain representation of the protein 

model with a one or two-body “dummy atom” approximation for each residue. The two body 

representation required the development of 21 form factors to represent each new atom type – 

one for Alanine, one for Glycine, one for the Backbone, and 18 for the remaining side chains. 

These form factors were derived using a Monte Carlo simulation of a set of 297 high resolution 

crystal structures from the Protein Data Bank (PDB)[57, 59, 60] This algorithm was benchmarked 

on problem sizes ranging from 64 to 8192 scattering bodies. The speed up ranges from 16x to 

394x. A protein represented by 1888 bodies with 51 discrete q values took 2408 ms on a central 

processing unit (CPU) and 9 ms with GPU acceleration. 

BCL::SAXS GPU Implementations of the Debye Formula for SAXS Profile Reconstruction 

To build upon the previous work we parameterize the excluded volume and hydration 

shell in the form factor calculation and operate on individual atoms. For full atom 

representations of proteins we can account for deviations in electron density and hydration 

shell thickness.  The Debye formula can be visualized as an NxN square matrix of N-atom rows 

by N-atom columns where N is the number of atoms in the protein. The pairwise Euclidean 

distances are calculated for each entry in the matrix with the diagonal represented by zeros. 

Pairwise distance calculations in a matrix form are an ideal calculation type for GPU acceleration 

because each GPU thread can calculate a single Euclidean distance with the only limitation being 

memory. To address memory requirements, the algorithm was restructured to have each thread 

calculate a Debye partial sum for a current atom i: 
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This technique enables the application of this accelerated algorithm to very large 

multimeric systems in excess of 90,000 atoms with the current GPU memory constraints while 

leveraging device shared memory in a tiling technique. The result of this partial sum is a matrix 

of q rows by N-atom columns where q is the momentum transfer vector and N is the total 

number of atoms. These partial sums are then summed across each column to completion for 

each q using a GPU reduction sum kernel to arrive at the desired q number of sums. 

Generation of SAXS scattering profile from atomic coordinates with CRYSOL 

To measure the time the algorithm takes on different types of GPUs, experimental 

scattering curves were approximated from high resolution protein structures in the PDB using 

the program CRYSOL[26].  This program computes the scattering profile using spherical 

harmonics and multipole expansion for fast calculation of the spherically averaged scattering 

profile. 

Approximate SAXS scattering profiles for protein models without side chain and loop regions 

 To approximate the side chain regions of a given amino acid, the form factors for the 

atoms with missing side chain coordinates were added to the Cβ position of the respective 

amino acid. This approach is analogous to how the form factors for hydrogen are folded into 

their respective heavy atom in CRYSOL[26].  The loop regions were approximated by removing 

atomic coordinate data between secondary structure elements (SSEs) and computing a path 

from the c-terminus of the first SSE to the n-terminus of the second SSE. The amino acid 

residues in the loop regions were placed at points along the path (Figure 6). While crude, this 

approach is much more rapid than actual construction of loops. 
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Vector calculations to approximate the loop path between two secondary structure elements 

P1 represents the Cβ position vector of the last residue in the N-terminal SSE, while P2 

represents the Cβ position vector of the first residue in the C-terminal SSE.  

     
⃗⃗ ⃗⃗ ⃗⃗              2.6 

     
⃗⃗ ⃗⃗ ⃗⃗             2.7 

CP1 represents the center position vector of the last residue in the N-terminal SSE, while 

CP2 represents the center position vector of the first residue on the C-terminal SSE. 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗             2.8 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗             2.9 

We computed a vector pointing in the same orientation of the SSE by subtracting the Cβ 

position of the center of the SSE from P1 and P2.  

   
⃗⃗⃗⃗    

⃗⃗  ⃗     
⃗⃗ ⃗⃗ ⃗⃗   2.10 

where n is the index of the point. The direction of the vectors V1 and V2 were computed by 

dividing them by their magnitude. 

 

Figure 6: Construction of curvilinear path and placement of residues in region between two SSEs (A) Protein model 

with two α-helical structures, p1 and p2. (B) Approximated path with unit vectors v1 and v2 pointing in the helical 

direction of SSE1 and the helical direction of SSE2 (C) Residues placed equidistant along the curvilinear path between 

SSEs.  
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⃗⃗⃗⃗  ⃗  

  
⃗⃗⃗⃗ 

√   
     

     
 

 2.11 

The scalar distance (Dsse) between two SSEs was computed by subtracting P2 from P1 and 

then taking the norm of the resulting vector. The percentage to move from P1 toward P2 at each 

step (L) along path (S) was computed by dividing one by one more than the number of amino 

acids in the loop region.  

 
   

 

     
 2.12 

The predicted Euclidean loop length (P) was computed by multiplying the number of 

amino acids by the Cα – Cα spacing of 3.2 Å. The 3.2 Å term is the average distance between 

amino acids in the coil region of a protein. It was computed by averaging the Cα distance 

between residues in the engrailed homeodomain (pdb id: 1ENH)[61].  

             2.13 

Pathway Calculations for Loop approximation 

The path length (S) between two SSEs was approximated as a curve starting in the 

direction of SSE1 and ending in the direction of SSE2. The curve calculation consists of a linear, 

parabolic, and a directional component. The linear component is given by: 

     ⃗⃗ ⃗⃗ ⃗⃗  ⃗        ⃗⃗     ⃗⃗   2.14 

where L is the percentage between [0, 1]. When L=0, the equation reduces to the Euclidean 

vector coordinates of the starting point. When L=1, the equation reduces to the Euclidean 

vector coordinates of the end point. The parabolic component is given by: 

               2.15 
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where N is a normalization factor to size the height of the parabola and control parabolic path 

length. The directional component is given by: 

     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗           
⃗⃗⃗⃗     

⃗⃗⃗⃗    2.16 

where d1 and d2 are unit directional vectors pointing in the direction of SSE1 and SSE2 

respectively. The complete parabolic approximation function is:  

     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          
⃗⃗  ⃗     

⃗⃗  ⃗                   
⃗⃗⃗⃗     

⃗⃗⃗⃗    2.17 

Normalization Factor and Path Length Calculations 

The normalization factor (N) controls the height of the curve and corresponding path 

length. To calculate N for a given loop region we divided the curve in half and approximated the 

arc to be the hypotenuse of a right triangle. The base of the triangle was the Euclidean distance 

between the SSEs divided by two (Figure 7). With these approximations, the normalization 

factor (N) is given by the Pythagorean Theorem: 

 
   

 

 
√       

  2.18 

Where N is the normalization factor, P is the predicted loop length, and Dsse is the Euclidean 

distance between P1 and P2. 

 

 

 

 

 

 

Figure 7:  Depiction of the parabolic height approximation 
method.  Dsse is the Euclidean distance between SSEs, Papx is 
the estimated length of the hypotenuse side of a right 
triangle.  N is the normalization factor and controls the 
height of the parabola. 
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Model quality was assessed by the χ agreement between the calculated and experimental 

SAXS curves 

To compare the scattering profiles, we first normalized the experimental and calculated 

scattering intensities to be between (0, 1]. To magnify the effects of small distances, (higher q 

values), the scattering intensities (I) for both data sets were converted to a log10 scale. To 

account for concentration differences in experimental data, the calculated curve was multiplied 

by a scaling weight (c) that minimizes the χ score[26, 29].  

 

c= [∑
                 

    
     

 

k=1

] [∑
  
     

    
     

 

   

]

  

 2.19 

where Ical is the intensity of the calculated curve, Iexp is the intensity of the experimental curve, σ 

is the experimental error and q is the momentum transfer vector. Using cubic splines, the 

derivative of the intensities for both data sets were computed. Similar to other approaches to 

modeling proteins from a SAXS scattering profile[8, 53, 62, 63], we score a model based on the χ 

score between the experimental profile and the profile computed by our algorithm BCL::SAXS.  

 

χ=√
 

 
∑(

                  

     
)

  

   

 2.20 

where   is the number of entries in the data set and σ is the experimental error of the 

measured profile. In cases where no experimental error is provided it is simulated.  We compute 

the χ score from different states of the experimental and calculated scattering profiles.  The first 

state on the absolute scale is to compute the χ score right after the initial profile reconstruction 

with the Debye formula and scaling.  The second state is to compute the χ score after converting 

the both experimental and computed data to the log10 scale.  The third state is to compute the 
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χ score after taking the derivative of the log10 representation of the experimental and 

calculated curves. 

For complete models, we identify the optimal χ values by optimizing combinations of 

the excluded volume parameter, C1 and the hydration layer parameter, C2 inside a boundary (0.8 

≤ C1 ≤ 1.2 and 0 ≤ C2 ≤ 4.0). Using these parameters we compute the scaling parameter c that 

minimizes χ for each C1, C2 combination.  

Results 

To illustrate the use of BCL::SAXS, we show the results using hen egg white lysozyme 

(PDB ID: 6LYZ, molecular weight 14 kDa). The X-Ray scattering results for this protein were 

obtained from an open access database, BIOISIS, containing experimental SAXS data for hen egg 

white lysozyme (BIOSIS ID: LYSOZP). The SAXS profile for this protein was collected at the SIBYLS 

Beamline ASL BL12.3.1 and the experimental setup has been previously described [64].  To 

account for uncertainty in the PDB definitions of secondary structure of 6LYZ, we added 

additional SSEs by taking the consensus prediction of the secondary structure server 2Struc[65].  

This meta server runs secondary structure prediction using the Dictionary of Secondary 

Structure of Proteins (DSSP)[66], DSSPcont[67], Stride[68], P-SEA[69], PALSSE[70], STICK[71], 

KAKSI[72]and TM-Align[73]. The final SSE definitions used for analysis are shown in Table 3.  The 

final model with loop approximations is shown in figure 8. 
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Table 3 SSE Definitions for Hen Egg White Lysozyme  

Type SSE 
Number 

Start 
 Residue 

Sequence 
Location 

End 
Residue 

Sequence 
Location 

Helix 
Helix 
Helix 
Helix 
Helix 
Helix 

1 ARG 5 HIS 15 
2 LEU 25 SER 36 
3 CYS 80 LEU 84 
4 ILE 88 ASP 101 
5 VAL 109 CYS 115 
6 ASP 119 ARG 125 

Strand 
Strand 
Strand 
Strand 
Strand 

1 LYS 1 PHE 3 
2 PHE 38 THR 40 
3 ALA 42 ASN 46 
4 SER 50 GLY 54 
5 GLN 57 SER 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Depiction of Hen Egg White Lysozyme PDBid: 6lyz (A) The crystal structure of Lysozyme with the n-terminal 

region colored blue and the c terminal region colored red.  (B) Depiction of the native structure with the loop regions 

removed and approximated by pseudo atoms along the curvilinear path between SSEs. (C) Overlay of the native and 

approximated version of Hen Egg White Lysozyme.   
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Table 4: Chi Scores comparing experimental SAXS data for Hen Egg White Lysozyme with profiles generated from 
the crystal structure (6LYZ) for CRYSOL and BCL::SAXS. 

Type Log10 χ Derivative χ 

Crysol  2.81 0.96 
BCL::SAXS Full Model 2.32 1.01 
BCL::SAXS Apx Side Chains 9.16 1.17 
BCL::SAXS Apx Side Chains and Loops 19.83 1.25 

 

The SAXS comparison derivative χ score 

When comparing SAXS profiles between two distinct proteins, the common method is to 

use the χ formula previously shown [26, 29, 30]. However, when computing a SAXS profile for 

models with approximate the side chain atoms and loop regions, we observe a systematic 

upward shift from the original I(q) profile (Figure 9A). This shift between the experimental and 

approximated profiles increases the rate of false positive identification by SAXS scores (Figure 

8). We observe also that minima and maxima of the I(q) profile are less affected. Therefore, by 

 

Figure 9: Depiction of the Experimental SAXS profile for Hen Egg White Lysozyme and SAXS profiles computed with 

BCL::SAXS for different protein states Panel A (left) represents the fit on a log10 scale with Experimental data being 

the SAXS profile or Hen Egg White lysozyme, Crysol is the curve generated through Crysol from 6lyz and fit to the 

experimental data. Full Model is the curve generated through BCL::SAXS from 6lyz. Apx Side Chains is the curve 

generated through BCL::SAXS using Backbone atoms only and summing the form factors for all side chain atoms at the 

Cβ coordinate of the residue. Apx Side Chains Apx Loops is the curve generated through BCL::SAXS using loop 

approximation and side chain approximation.  Panel B (middle) shows the locally weighted scatterplot smoothing 

(LOESS) of the experimental SAXS data points. Panel C (right) shows the fit of previous data types from panel A using 

the derivative of the log10 profiles. 
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comparing the derivative of the profiles, we take the shape of the SAXS profile into account 

which decreases the rate of false positive identification by SAXS score. 

For this derivative comparison, a curve was fit through the experimental data points 

using locally weighted scatterplot smoothing (LOESS)[74, 75] using a span of 0.2 and a 

polynomial degree of 1 in R.  The span variable determines how much of the data is used to fit 

each local polynomial. A large span produces the smoothest function while the smaller the span, 

the closer the regression will conform to the data. Splines were used to numerically differentiate 

the fit profile. The derivative results and scores are shown in figure 9 and table 4.  To measure 

the similarity between an experimental SAXS profile and complete protein models, we use the 

standard χ score. By using this score, we can easily compare our method with other established 

methods in the field such as CRYSOL. The user can specify what metric to use during analysis. 

Non-redundant dataset for protein discrimination benchmark  

To determine how well the SAXS score can distinguish protein folds from each other, we 

evaluated a representative subset of 455 proteins with a 20% identify cutoff, 1.6 Å resolution 

cutoff, and 0.25 R-factor cutoff from the PISCES databank[76, 77].  These proteins can be 

formed into a 455 x 455 matrix (207,025 pairings) where the diagonal represents a protein 

paired with itself (a true positive) and the off diagonal elements represents a protein paired with 

a different protein. Using scattering profiles generated through CRYSOL, we computed the 

difference between the native protein and the test protein for each pairing. If the minimum 

SAXS score for a given protein was on the diagonal for the ith row and jth column, then we 

correctly identified the protein from all other candidate proteins and classified that as a true 

positive. If the minimum SAXS score was not on the diagonal, we classified it as a false positive. 
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Using receiver operating characteristic (ROC) curves, we plotted the false positive rate on the x-

axis and the true positive rate on the y-axis. 

 

 

 

 

 

Structural Similarity of proteins with similar SAXS scores 

To determine if protein models with similar SAXS scores were similar in protein 

structure, MAMMOTH[78] was used to rank structural similarity between two proteins.  See  

 

 

 

 

 

 

 

 

 

Figure 10:  ROC Analysis of 455 proteins from Pisces dataset in different states. The area under the curve (AUC) is 

shown with BCL::SAXS profiles generated for complete protein models (orange), models with approximated side 

chains (purple), approximated side chains and with loop approximation method (blue), approximated side chains 

without loop approximation method (red), and the derivative of the approximated side chains with the loop 

approximation method (green).  The standard χ score was used to compare the profiles for all plots except for green, 

where the derivative χ score was used. 
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The area under the curve (AUC) for complete protein models is > 99%. When side chains 

are removed, the AUC remains > 99%. The AUC for proteins without side chains and loop regions 

is 76%. When loop regions are approximated, the AUC is 84%. The derivative score improves the 

AUC to 88%. See figure 5. There were 207,025 total pairing evaluated in this experiment. In all 

but three cases the lowest SAXS score was the native protein when using complete protein 

models for analysis. For proteins 1YOZA and 3I31A the native was ranked second, while for 

protein 3L42A the native was ranked third. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Structural MAMMOTH Z-score vs. SAXS profile similarity score of 455 proteins from Pisces dataset: All 

455 proteins were scored by structural similarity to each other with self-pairing receiving the highest z-score (x-axis).  

SAXS profiles for all 455 proteins were generated and the χ  score between all scores was computed (y-axis). Panels A, 

B, and C correlate with their respective red dot. Panel A depicts 3H5LA paired with itself. Panel B depicts 1N1FA 

paired with 2GPEA. Panel C depicts 1G9GA paired with 1A53A.  The derivative χ score was used to compare the 455 

SAXS profiles.   
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 The 455 x 455 matrix was used to score the structural similarity of a pair of proteins. 

The diagonal represents self-paired proteins. The higher the Z-score, the more similar the two 

structures are. A Z-score below four indicates that two proteins are structurally different.  In the 

SAXS analysis, a lower SAXS score indicates the scattering profiles of two proteins are very 

similar. In this analysis, a high Z-Score and a low SAXS score indicate that proteins identified by 

SAXS as similar are structurally similar.   Figure 11 panel A depicts 3H5L chain A (molecular 

weight 44.92 kDA) paired with a copy of itself.  As expected the SAXS similarity score is very low 

and the Z-score is high.  Interestingly, panel B depicts 1N1F chain A (molecular weight 18.35 

kDA) paired with 2GPE chain A (molecular weight 5.95 kDA).  Although there is a difference of 

12.4 kDA, the SAXS score indicates that the proteins are similar.     Figure 11 shows that 

structurally similar proteins (high Mammoth Z-score) always have a low SAXS score (bottom left 

corner). However, while structurally dissimilar proteins (low Mammoth Z-score) tend to have 

increased SAXS scores, the observed range of SAXS scores widens. As expected, structurally 

different proteins can appear similar in a SAXS experiment if their overall shape is similar.   

SAXS Degeneracy in the scattering profile 

During elastic scattering, energy is conserved between incident X-Rays that scatter by 

interactions with electrons in the target sample. The magnitude of the wave vector  ⃗  for both 

the incident and scattered wave is given by 2π / λ. The change in wave-vector is only in direction 

and the difference between   
⃗⃗  ⃗ and   

⃗⃗  ⃗ is given by  ⃗  – the momentum transfer vector. The X-ray 

scattering amplitude at  ⃗  by a particle at position   ⃗⃗  is given by: 

     ⃗        (  ⃗⃗   ⃗  ) 2.21 

where f is the form factor for the atom j at a magnitude for q given by 4πsinθ / λ.  The form 

factor decreases from a maximum at q = 0.  At this q value, the form factor is equivalent to the 
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atomic number Z of the atom.  Hence, atoms with higher Z are stronger scatterers. The 

amplitude for an ensemble of particles is a summation of the amplitudes of all particles: 

 
   ⃗   ∑    

 

   

 (  ⃗⃗   ⃗  ) 2.22 

The scattering intensity is given by the amplitude multiplied by its complex conjugate A( ⃗ )*: 

    ⃗      ⃗     ⃗    2.23 

The observed scattering pattern is not the complex amplitude function. It is the modulus 

squared of the amplitude function. Most of the structural information obtained from X-ray 

scattering experiments reside in the phase of the wave-function. This phase information is 

stored in the imaginary part of the amplitude function and is lost when multiplied by the 

complex conjugate. This loss of phase information results in a loss of structural uniqueness. 

Furthermore the effect is compounded because during a SAXS experiment samples are free to 

rotate. The observed I(q) function is therefore also an average over possible orientations. The 

loss of orientation and phase information results in the degeneracy in the scatting profile 

(multiple structures yielding similar SAXS profiles) as observed in figure 11.  

 

 

 

 

 

 

 

Figure 12: The SAXS similarity scores χ in 

relation to molecular weight difference:  

Molecular weights for all 455 proteins from the 

PISCES data set were calculated. The absolute 

value of the difference in weight between two 

proteins was computed for all pairs. The density 

plot depicts the difference in molecular weight 

on the x-axis and the derivative SAXS similarity 

score χ on the y-axis.  

n 
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To show the relation between the molecular weight of the compared proteins and the 

similarity of the SAXS profiles, we calculated molecular weights for all 455 proteins in the PISCES 

data set used in the MAMMTOH analysis. We then combined the molecular weight difference 

with the derivative SAXS score to generate a density plot (Figure 12). As expected, we observe 

that for proteins of similar molecular weight a range of SAXS similarity scores χ are possible from 

very similar to dissimilar determined solely by the similarity in overall shape. As the difference in 

molecular weight increases, the minimum SAXS similarity scores χ increases also, i.e. structures 

with large molecular weight differences do not have similar SAXS profiles, even if the overall 

shape is similar. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13:  BCL::SAXS was used to score 10,000 protein confirmations of 3FRRA generated by BCL::Fold. In each 

case the surface of the native confirmations is shown in gray. Each black dot represents one model.  The red dots 

labeled with A,B,C,D,E show examples of different conformations sampled by BLC::Fold and their respective scores.   

The derivative χ score was used to compare the 10,000 BCL models with the native structure. 
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Scoring BCL::Models with SAXS 

BCL::Fold was run to generate 10,000 protein models of 3FRR.  These models were only 

comprised of secondary structure elements.  Using the side chain and loop region 

approximations, BCL::SAXS was used to construct SAXS profiles for all 10,000 models generated 

by BCL::Fold.  (Figure 13)  From this figure, we observe that the correct topology has a very low 

SAXS score.   We note that model C has a lower SAXS score (1.43) than model B (1.71) although 

model B has a much lower RMSD100 score (7.72) than model C (16.29).  This behavior is 

expected because SAXS cannot distinguish topologies that fit inside the overall SAXS envelope.  

Agreement with by SAXS score is a necessary condition for correct protein identification, but not 

sufficient to uniquely identify the correct model.  However, because of this, the SAXS score can 

be used as a filter to remove models that score above a threshold. 

GPU Algorithm Yields Orders of Magnitude Speed Improvements 

The GPU accelerated Debye calculation was benchmarked on several protein systems 

from the PDB with sizes ranging from 1,800 atoms to 92,000 atoms.  The benchmark was 

performed on several devices ranging from low-end workstation class GPUs (Quadro 600) to 

high-end consumer grade GPUs (GTX680). See Table 5.  The speed was determined by 

measuring the time in seconds from the start of the Debye formula to the SAXS profile return 

from the Debye formula.  The Maximum Speed up is the maximum of the ratio of the CPU time 

in seconds divided by the GPU time in seconds. 

Discussion 

We have demonstrated how to compute SAXS profiles from atomic coordinates. In our 

approach for complete protein models we did not make approximations to the Debye formula, 
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rather we used GPU acceleration to handle the double summation of all atoms and used the 

Hartree-Fock scattering factors directly.  For proteins of sizes ranging from 1832 atoms to 

91,846 atoms we find, as expected, that without GPU acceleration, the O(N2) computational cost 

of the Debye formula results in a significant slow-down when compared to the O(q2D2N) 

algorithm implemented in CRYSOL (Table 5). The magnitude of the momentum transfer vector is 

given by q and D is the max dimension of the macromolecule. With GPU acceleration 

computation times are comparable. The GPU card that gave the best performance was GTX680.  

Table 5 Timing results of GPU vs. CPU benchmarks. All timings are reported in seconds.  Crysol reported timings to 
the nearest second.  The first two measurements were not accurate and have been omitted. 

PDB Atoms BCL::SAS Crysol Quadro 

600 

$225 

GTX470 

$325 
GTX480 

$325 
GTX580 

$550 
GTX6

80 

$1000 

C1060 

$1300 
Max 

Speedup 

 
CPU $1300 

1O26A 1832 3.6 - 0.1 0.07 0.07 0.07 0.07 0.09 51x 

1WA5C 7543 65 - 1 0.31 0.28 0.27 0.20 0.37 325x 

1NR1 23217 624 2 9.3 2 1.9 1.8 1.2 2.7 520x 

1ZUM 43243 2300 5 30 4.9 4.1 3.9 2.4 6.5 958x 

1VSZ 91846 15365 10 132 19.8 16.9 15.8 9.0 26.3 1707x 

 

In order to compare experimental scattering profiles with approximated profiles we 

computed the first derivative of the profiles and then computed the similarity score ( ̇), 

between the derivatives of the SAXS profiles. This enabled us to reduce the amount of false 

positives obtained during our analysis and improve the accuracy in structure identification using 

SAXS profiles from 84% to 88%.   BCL::SAXS was >99% accurate in picking the native protein 

from a set of other proteins when using complete proteins from the PDB and using the standard 

χ comparison score. With the side chains approximated, BCL::SAXS remained >99% accurate in 

picking the native protein from a set of other proteins.  With the loop regions removed, the 

accuracy dropped from >99% to 76%. This result shows that loop regions play an important role 

in defining overall protein shape. Using our loop approximation algorithm and the derivative of 

the χ score, the accuracy increased to 88%. This result shows that having an approximate 
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estimate of a protein location can have significant impact on the accuracy of SAXS scattering 

profiles generated from rigid bodies.  

The MAMMOTH analysis shows that proteins with very similar z-scores (structurally 

similar proteins) also have a low SAXS  ̇ score. Importantly, the analysis shows that very similar 

structures do not have high SAXS scores. In the middle range of the analysis, we observe that 

SAXS scores are degenerate. Different structures can have similar SAXS scores. This degeneracy 

is inherently due to the spherical averaging of atoms in the SAXS data collection process. 

Because of this degeneracy SAXS cannot be used exclusively to predict protein structure.  

Conclusion 

 We explored the idea of approximating the SAXS score for protein models without side 

chain and loop coordinates by placing dummy atoms along a path between secondary structure 

elements. The SAXS profile can be used to distinguish different proteins from each other, but 

cannot be used exclusively to distinguish different permutations of the same topology. 

However, the SAXS profile can be used as a filter to exclude protein models that are very 

different from the native from further analysis as a filter.   

Acknowledgements 

 We would like to thank Mariusz Butkiewicz, and Jeff Mendenhall for their insight and 

assistance throughout the development of BCL::SAXS. We acknowledge Oak Ridge National 

Laboratory supercomputing resources on TITAN. DKP is supported through a NLM training grant 

5T15LM007450-09. Work in the Meiler laboratory is supported through NIH (R01 GM080403, 

R01 MH090192, R01 GM099842) and NSF (Career 0742762, OIA 0959454). 

 



63 
 

CHAPTER III 

 

CASP10-BCL::FOLD EFFICIENTLY SAMPLE TOPOLOGIES OF LARGE PROTEINS 

Overview 

This chapter is a reproduction of CASP10-BCL::Fold efficiently samples topologies of 

large proteins [54].  In this paper I was responsible for writing and referencing all sections except 

the topology score description, beta sheet alignment, and conclusion section.  I created figures: 

11, 12, 13,  16, 17, 18, 21A, 21C, 22, and table 8.  Jens Meiler, Sten Heinze, and Axel Fischer 

provided insight during the writing process.  Tim Kohlman and Sten Heinze generated data for 

the tables. 

Significance 

 In relation to my thesis this manuscript details the limitations of BCL::Fold within the 

folding pipeline and process (Table 9).  SAS data can be used to improve the attrition depicted in 

Table 8.  De Novo protein structure prediction remains a challenging prospect.  The average 

CASP10 free modeling (n=20) GDT_TS score for the top scoring methods was 33%.  For 3 models 

in this category, BCL::Fold was able to sample models with 34% accuracy by GDT_TS score.  The 

sampling of BCL::Fold is as accurate as other methods final model selection.   

 Innovation 

This work shows that BCL::Fold samples native-like topologies for some proteins, but the 

scoring function does not identify these topologies as favorable and are not selected for further 

analysis.  This paper forms the basis for my claim that Small Angle X-Ray Scattering could be 

used to improve model selection in the BCL::fold pipeline: 1) Filter SSE arrangements produced 
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by BCL::Fold by SAXS score agreement, 2) Incorporate SAXS restraint in the scoring function of 

BCL::Fold to penalize models during folding if they violate the restraint.   

Experimental structures in the protein data bank (PDB) are biased toward small soluble 

proteins 

 The tertiary structure of a protein provides essential insights to its biological function in 

living organisms.  Accordingly, experimental methods are applied to ascertain protein structure 

including X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy  Currently, 

the PCB contains more than 89,258 proteins (December 2013) of which 79,585 (89%) were 

elucidated by X-ray crystallography, 8971 (10%) by NRM, and the remainder by other 

technologies.[59]  Despite these efforts, the structures represented in the PDB are biased;  

87,004 of the proteins in the PDB are soluble while only 2254 (2.5%) of the proteins represent 

membrane proteins.[59]  Further, the size distribution of proteins in the PDB is biased toward 

small proteins omitting many large macromolecular assemblies greater than 500,000 Da (2.0%). 

[59, 60, 79]  This bias is due to the limitations of experimental methods for structure 

determination.  Membrane proteins are underrepresented in the PDB because they are too 

large for NMR and their embedding in the two-dimensional membrane complicates formation of 

three-dimensional crystals required in X-ray crystallography.[44]  For membrane proteins up to 

~1000 folds remain to be determined. [55, 80]  Large macromolecular assemblies are also 

underrepresented in the PDB because its protomers do not fold in isolation, they are difficult to 

crystallize, and they are too large for NMR spectroscopic methods. [81]  Thus, for many 

biologically relevant proteins only limited experimental data can be collected with a 

combination of experimental techniques such as solid state NMR, cryo-electron microscopy, 

electron paramagnetic resonance, mass spectrometry, and small angle X-Ray scattering.  On 

their own, these datasets are insufficient for atomic-detail structure determination.  One major 
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justification to develop de novo protein structure prediction algorithms is to complement such 

limited experimental datasets. 

De novo protein structure prediction needs a reduced search space 

 The cornerstone of de novo protein structure prediction methods is based on the 

assumption that (most) folded proteins exist in their lowest energy conformations. [82]  Protein 

folding becomes an energy minimization process that depends on interaction of amino acids 

with the environment and other amino acids in the sequence.  Finding the global minimum of 

the energy function on the energy landscape is challenging for several reasons including that the 

energy landscape contains many local minima.  Currently, no universal method of identifying the 

global minimum of the energy function exists. [83]  In practice, the conformational space of a 

protein is also far too large to be comprehensively searched with a highly accurate and 

therefore slow to compute energy function.  Therefore, the conformational space is reduced by 

working with simplified protein representations, at least in the initial folding simulation.  In 

effect, this reduces the resolution of the energy function which allows a more rapid calculation 

but decreases its accuracy to the point where the global energy minimum cannot be 

unambiguously detected and several local energy minima need to be considered. 

 Competing de novo structure prediction software reduces the search space similarly.  

Rosetta addresses the sampling challenge by assembling protein models from three and nine 

residue peptide fragments.  [52, 84, 85]  These fragments are determined from peptides of 

similar sequence and secondary structure extracted from other proteins in the PDB.  For 

proteins smaller than 80 residues Rosetta was able to predict atomic detail models in the 

absence of any experimental restraints for about 30% of the test cases.  [86]  For larger proteins 

up to around 150-180 residues Rosetta samples the correct topology about 50% of the time.  
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[86-88]  Generally, Rosetta tends to perform better for α-helical proteins which are related to 

their reduced fold complexity.  The complexity of a fold   can be measured by contact order (CO) 

which is defined as the average sequence separation of residues in contact, that is, residues 

whose Cβ atoms are < 8 Å apart. [89, 90]  As the complexity of protein topology increases (high 

CO) the accuracy of the Rosetta prediction decreases.  [49, 89, 90] 

 I-Tasser threads the target sequences through a library of PDB structures with a pair-

wise sequence identity cut-off of 70% to search for plausible protein folds.  Rather than using a 

fixed set of three and nine residue peptide fragments, I-Tasser uses fragments of variable size 

that are identified by threading.  [91-93]  The fragments are used to reassemble full-length 

models while the loop regions between fragments being constructed de novo.  Critical to the 

success of I-Tasser is the identification of suitable templates to create the peptide fragments – a 

Pearson correlation coefficient of 0.89 for RMSD and 0.95 for TM-score.  [93]  Generally, I-Tasser 

samples the correct topology about a third of the time for proteins up to 155 residues long with 

RMSD < 6.5 Å. [93]  I-Tasser shares the most critical limitation with Rosetta, the ready formation 

of long-range interactions between residues. 

BCL::Fold was designed to overcome size and complexity limitations in de novo protein 

structure prediction methods 

 BCL::Fold is a de novo protein structure prediction algorithm based on the placement of 

disconnected secondary structure elements (SSEs) in three-dimensional space as previously 

published.  [50, 51, 55]  This algorithm was developed to test the hypothesis that for many 

proteins the core responsible for thermodynamic stability is largely formed by SSEs.  In this case, 

likely protein topologies could be detected from SSE-only models.  Thereby, the size and CO 

restrictions in protein structure prediction can be overcome by assembling disconnected, rather 



67 
 

rigid SSEs, reducing the search space substantially and allowing the ready formation of nonlocal 

contacts.  [50]  A coarse grained knowledge based energy function identifies native-like SSE 

arrangements using a Monte Carlo simulated annealing sampling algorithm with metropolis 

criterion.  [50, 51, 55]  In contrast to I-Tasser or Rosetta, this algorithm is truly de novo as no 

fragments from the PDB are used.  Loop regions between SSEs and side chains atoms are added 

to the model in subsequent steps using for example Rosetta.  [94-96] 

BCL::Fold uses a consensus of secondary structure prediction technologies to identify SSEs 

 Critical to the success of the BCL::Fold algorithm is the correct prediction of SSEs: α-

helices, β-strands, coil regions, and trans-membrane spans from sequence.  These predictions 

are obtained from a consensus prediction from PHD [97, 98], PsiPred [99, 100], and Jufo9D [53, 

101-103] for soluble proteins.  In addition to these methods we used Octopus [104, 105] and 

Jufo9D [101] for the trans-membrane span region of membrane proteins.  The consensus 

prediction is used to build a pool of SSEs, which is input for protein folding. 

A Monte Carlo Metropolis sampling algorithm positions SSEs in space 

 Protein models are assembled using a Monte Carlo sampling algorithm.  Each iteration 

of the algorithm consists of a randomly selected modification to the current model.  

Modifications include the addition of an SSE from the SSE pool to the model; the removal of an 

SSE from the model; translational and rotational transformations of SSEs in the model; swapping 

of two SSEs; modifications of groups of SSEs (domains) consist of translating the domain; 

flipping; and shuffling the different SSEs. 

 After each modification, the model is evaluated by a knowledge based scoring function. 

[51].  This coarse grained scoring function is designed to evaluate the arrangement of SSEs in 

Euclidean space.  It is a weighted sum of scoring terms that represent different aspects of SSEs 
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of protein structures as observed in experimental structures like the preferred environment of 

amino acid types (buried or solvent exposed); the radius of gyration; an SSE packing and a strand 

pairing potential; a loop length potential; clash terms for amino acids and SSes; and a loop 

closure penalty.  The loop closure penalty limits the Euclidean distance between two 

consecutive SSEs to the maximum length a stretched out amino acid chain can bridge and 

applies a steep penalty for longer loop distances.    

 The evaluation with the Metropolis criterion results in one of four possible outcomes: 1) 

improved and accepted, if the calculated energy score is lower than the energy of the previous 

model; (2) accepted by the Metropolis criterion with a function taking the energy difference and 

the simulated temperature into account; (3) rejected if the score is higher than the previous 

model and rejected by the Metropolis criterion; (4) skipped, if the modification is not applicable 

to the model, for example swapping SSEs if the model contains only a single SSE.  The probability 

of a step being accepted with higher energy is based on the temperature used by the Metropolis 

criterion.  BCL::Fold adjusts the temperature to achieve a ratio of accepted steps that reduces 

from 50 to 20% in the course of the simulation. 

 All scoring terms (except for the clash terms and the loop closure penalty) are 

statistically derived using Bayes’ theorem from a divergent high resolution subset of the PDB 

generated by the PISCES server with a maximum sequence identity of 25% [76, 77] and then 

energies were approximated using the inverse Boltzmann relation. 

 The algorithm will continue generating modified models and evaluating them until a 

maximum number of 2000 steps was completed or no improvement in the score was found to 

400 consecutive steps; this constitutes one folding stage.  The folding process of one model has 

five assembly stages and one refinement stage, which employ a decreasing number of 
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modifications for large scale perturbations (for example, swapping SSEs) and an increasing 

amount of small scale perturbations (for example, bending an SSE).  The lowers energy models 

within the trajectory will be saved as resulting model for this run. 

The CASP10 experiment: a critical tool for development of techniques for protein structure 

prediction 

 To evaluate the accuracy of BCL::Fold in de novo protein structure prediction, we 

participated in the Critical Assessment of protein Structure Prediction (CASP10) experiment, 

which is held every two years.  [106, 107]  The double-blind experiment tests protein structure 

prediction methods objectively because the experimentally determined structure is withheld 

from predictors, organizers and the assessors until the experiment is finished.  After protein 

predictions have been made, the experimentally determined structures are revealed and the 

results are assessed.  CASP10 contained the following categories: (1) Tertiary structure 

prediction, which can be classified as: (a) Template Based Modeling (TBM): starting from a 

homologous protein template in the PDB.  (b) Free modeling (FM): no homologous template 

exists in the PDB; (2) Tertiary structure prediction with limited experimental information, for 

example, amino acids in contact [108]; (3) Residue-residue contact prediction [109] (4) Model 

refinement [110]; (5) Identification of disordered regions; (6) Function prediction; (7) Quality 

assessment. [111] 

To maximally leverage CASP10 for testing BCL::Fold we assume all CASP10 targets to be FM 

targets 

 For some targets, templates can be found, that is, proteins with similar sequence and 

known structure that can guide the prediction.   Based on if templates can be found and how 

similar the template structure is to the target structure, measured by the Global Distance 
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Test/Total Score (GDT_TS) [112], prediction for CASP10 gargets is categorized as easy or hard 

TBM ( easy if the maximal GDT_TS ≥ 50, hard if the maximal GDT_TS < 50), FM or a combination 

of both (TBM/FM).  The GDT_TS could obviously only be employed after the target structures 

were available; in the prediction process other measures like sequence similarity to proteins in 

the PDB were used to classify targets.  To maximize the assessment of the BCL::Fold de novo 

protein structure prediction algorithm in CASP10 we treated all targets as FM targets, that is no 

homologous template from the PDB was used at any point as input into the BCL::Fold prediction 

algorithm. 

Table 6: Clustering Statistics of CASP10 Targets folded by BCL::Fold 

Target Folded 
models 

After filtering Top 
cluster 

Top 
scoring 

Top 
homology 

T0644 9980 4485 2 0 0 
T0649 10,000 5135 3 5 0 
T0655 9980 4335 1 3 2 
T0663 12,000 6495 3 2 3 
T0666 12,000 5979 3 3 0 
T0676 12,000 6341 3 0 1 
T0678 12,000 6271 5 1 2 
T0682 12,000 5554 0 3 4 
T0684 12,000 5884 16 0 1 
T0686 12,000 6230 2 1 0 
T0691 12,000 6083 4 1 2 
T0700 12,000 6605 1 2 3 
T0704 12,000 5932 1 3 1 
T0720 12,000 6345 2 2 1 
T0722 12,000 8747 1 2 1 
T0724 11,999 5886 3 1 0 
T0743 12,000 6374 2 2 4 
T0745 12,000 6108 2 2 0 
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Materials and Methods 

Secondary structure and transmembrane span prediction 

 In the first step, the secondary structure is predicted for soluble proteins using Jufo9D 

[101-103], PsiPred [99, 100] and ProfPHD [97, 98].   For membrane proteins Jufo9D [101] and 

Octopus [104, 105] are used to detect secondary structure and transmembrane spans.  From the 

predicted secondary structures, a pool is created for use by BCL::Fold as described before [50].   

The pool is manually examined to ensure a complete as possible set of SSEs. 

Fold recognition and domain identification 

 Fold recognition methods combined in bioinfo.pl were used to see if the target 

sequence contains multiple domains [113], and if proteins of those folds have been 

experimentally determined.  If the fold recognition result indicated that the target has multiple 

domains, the SSE pool is split up into sub pool according to the domain boundaries. 

BCL::Fold folding simulation 

 BCL::fold is run next to produce 12,000 models for each domain of one target.  

Depending on the target, the soluble or membrane protocol is employed.  For each model, a 

completeness estimate is calculated as a fraction of the sum of the sequence lengths of all SSEs 

in the models to the total sequence length of the target.  Models that are 2% less complete than 

the average model produced are removed.   

Clustering to identify topologies that reside in wide energy funnels 

 After filtering the 12,000 models per target by completeness score, models were 

selected by three criteria for further refinement.  The first method for selection was clustering 
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by average RMSD linkage between models where the clusters ideally only contain models with 

the same fold.  Cluster sizes varied with the largest clusters having a few hundred models and 

the smallest clusters contains a few or even a single model.  Cluster radii leafs were between 0 

and 18 Å with the most at 10 Å.  The RMSD cutoff was manually adjusted based on protein size 

and model similarity.  Up to five models from each cluster were selected for further refinement.  

The second method for selection was ranking by the BCL scoring function.  All filtered models 

were sorted by BCL sum score and the lowest scoring models were selected.  The third method 

was only used if we successfully identified a template model of the target protein and models 

were pooled into a separate set.  In this case, the RMSD between the template and BCL 

generated models were computed.  The models with the highest similarity (lowest RMSD) were 

selected for further refinement. Furthermore, in some cases the selected models were visually 

inspected in PyMOL to evaluate sequence length and Euclidean distances for later loop 

reconstruction.  In this step, some models were removed from further processing if loops went 

through the center of the protein core. 

Combining domains into complete models 

 If the target consisted of multiple domains, models of all possible combinations of 

domains are created either by arranging the domains in space close to each other or, if possible, 

by aligning the domain models to a template.  The domains do not have to be connected by 

creating a loop at this point, because all models consist of only SSEs and loops will be built in the 

next step. 

Loop construction using cyclic coordinate descent 

 Adding loops is a two-step process of inserting the missing amino acids in a model and 

creating coordinates for them by CCD.  Once SSEs have been placed, loop regions between SSEs 
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must be built.  Creating loops is a two-step process of inserting the missing amino acids in a 

model and creating coordinates for them.  This is accomplished by adding loop residues using (1) 

knowledge based potentials, (2) likely phi and psi backbone angle, and (3) cyclic coordinate 

descent (CCD).  The first step is to dynamically add missing residues in the loop region.  Residues 

are added with initial phi and psi angles derived from a probability distribution of experimentally 

observed angles.   They are then perturbed and scored using a knowledge based potential for 

native like angles.  This potential has scoring terms that penalize clashes between atoms using 

van der Waals radii, compare the sequence length with the Euclidean distance, measure the gap 

between adjacent SSEs, incorporate angles derived from Ramachandran plots, and score the 

likelihood that the distance between the SSEs can be closed by a loop.  Once the initial residue 

coordinates of the loop region have been placed, CCD [114] is used to minimize the distance 

between a freely moving and fixed set of coordinates to close a loop.  In this second step, an 

additional penalty term is added to the scoring function that scores how close the residue at the 

loop end is to the pseudo residue at the N terminus of the target SSE.  Between 200 and 8400 

loop models were built depending on model size and complexity to achieve a sufficiently low 

BCL sum score that is, in a similar score range than the non-loop start model.  Models with loops 

difficult to close were either modified to allow an easier lop closure by shortening the SSEs 

adjacent to the loop or they were removed from further modeling.  The best scoring loop 

models according to the BCL sum score were further processed. 

Addition of side chains and model relaxation 

 One of two methods was used: either side chains were added with a relax step in which 

the relative position of the amino aces were restrained, or if the first method fails because of 
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misaligned β-strands, by adding and repacking side chains.  Between 10 and 200 side-chain 

models were built to obtain an optimal overall Rosetta score. 

Model selection for submission 

 From the lowest scoring side chain models for each loop models, the ones deemed most 

native-like by visual inspection were selected for CASP10 submission.  If a template model and a 

similar BCL model were found before, it was selected as the fifth submitted model. 

Topology score to evaluate protein models 

 To evaluate if BCL::Fold can sample the folding space required for our target proteins, 

we introduce a new measure that focuses on SSE contacts instead of comparing atom positions 

like RMSD100 [115] or GDT [112].  This new measure computes the similarity of a model to a 

native protein by calculating the fraction of SSE contacts of the native that are present in a given 

model and the total number of SSE contacts of the native (true positive rate, sensitivity).  An SSE 

contact is assumed if the distance of the central axis of two SSEs is less than a certain threshold.  

An SSE can be represented by its central axis for the purpose of the distance calculation, 

because all SSEs in a BCL model are idealized.  The threshold below which two SSEs are assumed 

in contact depends on the type of SSE contact (helix-helix: 16 Å; helix-sheet: 16 Å; strand-strand: 

5.5 Å; sheet-sheet 14 Å) and was derived from native protein structure from the PDB.  These 

thresholds were chosen to be large to be as inclusive as possible.  The strength of the 

interaction is represented by line thickness of the connecting lines. 
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Results 

Eighteen targets included in this analysis 

 During CASP10 a total of 53 targets were released for human predictors.  Eighteen of 

these had a least one domain in the FM category.  To focus our efforts we excluded proteins 

that were very small (<50 residues) or very large (> 400 residues).  Further, for some targets 

calculations did not finish in time for submission.  For 21 targets models were submitted, five of 

them in the FM category.  For two targets files were corrupted on our server, for one target no 

experimental structure has been released.  This leaves 18 targets, three in the FM category, for 

analyses.  Accordingly, treatment of the TBM targets as FM targets substantially increased the 

number of proteins that could be included in the study beyond the small number of FM targets.  

One consequence of this procedure is that BCL::fold will not rank among top methods from the 

TBM section, as we do not expect BCL::fold to predict protein structure more accurately than 

comparative modeling. 

An automated pipeline with minimal human intervention was setup 

 Here we give an overview of the overall protocol.  A detailed description of the 

individual steps is given in the methods section.  The folding pipeline starts with the 

downloaded target sequence from CASP10 Prediction center.  In the first step, secondary 

structure and transmembrane spanning regions are predicted and stored in a “pool” using the 

consensus SSE prediction results.  The SSE pool is manually examined to ensure that weakly 

predicted SSEs are available.  Domain boundaries were identified with bioinfo.pl – a consensus 

fold recognition Meta server.  [113]  At this stage of folding, templates were identified from 

TBM targets and comparative models were constructed using the Modeler[53, 94-96] link of the 

bioinfo.pl server.  The homology model was saved for later analysis or prioritization of the de 
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novo folded models.  It was not used to bias the folding simulation.  If the fold recognition result 

from bioinfo.pl indicated that the target consisted of multiple domains, the SSE pool was split 

into subpools according to the domain boundaries.  Next, each domain was folded 12,000 times 

with BCL::fold.  Resulting models were filtered for completeness before entering the clustering 

protocol.  The completeness estimate is the total number of residues in SSEs divided by the total 

number of residues in the protein model. 

Table 7: Statistics on 18 CASP 10 Targets Predicted with BCL::Fold 

Target PDB ID Length NCO Category Oligomeric 
state 

Domains α-
helices 

TM α-
helices 

β-
strands 

T0644 4FR9 166 22.1 TBM-easy Monomer 1 2 0 8 
T0649 4F54 210 58.9 TBM-hard Monomer 1 4 0 9 
T0655 2LUZ 182 44.2 TBM-easy Monomer 3 4 0 8 
T0663 4EXR 205 28.4 FM Monomer 2 2 0 8 
T0666 3UX4 195 64.9 FM Trimer 1 6 6 0 
T0676 4E6F 204 45.2 TBM-hard Dimer 1 4 0 7 
T0678 4EPZ 161 30.5 TM-hard Monomer 1 7 0 0 
T0682 4JQ6 235 63.5 TMB-easy Trimer 1 7 7 0 
T0684 4GL6 270 36.9 FM Dimer 2 8 0 8 
T0686 4HQO 259 55.7 TBM-easy Dimer 3 4 0 5 
T0691 4GZV 163 25.7 TBM-easy Monomer 3 0 0 8 
T0700 4HFX 86 18.0 TMB-easy Tetramer 2 3 0 0 
T0704 4HG2 254 55.4 TMB-easy Dimer 3 9 0 8 
T0720 4LC1 202 47.5 TMB-easy Monomer 1 7 0 6 
T0722 4FLA 152 44.1 Cancelled Tetramer Cancelled 4 0 0 
T0724 4FMR 265 42.6 TMB-easy Tetramer 2 4,5 0 16 
T0743 4HYZ 149 36.9 TMB-easy Monomer 1 4 0 5 
T0745 4FMW 185 49.4 Cancelled Dimer Cancelled 6 0 6 
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Figure 14 CASP10 Pipeline.  Obtain target sequence from CASP10 prediction center (A); Perform SSE prediction 
(B); Split multimeric proteins into individual domains (C); Assemble SSEs in Folding algorithm, analyze fold 
models, compare generated models with native secondary structure, evaluate loop closure potential and bet 
sheet register shift (D); Filter erroneous models from further analysis €; Cluster predicted folds and analyze 
cluster centers (F); Combine domains if previously split (G); Reconstruct loop regions an analyze models (H); 
Build side chains with Rosetta( I); Select final models and analyze final model selection (J). 

 

Table 8: Secondary Structure Pool Statistics for CASP10 Targets 
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The filtering cutoff is the average of all the completeness estimates reduced by 0.01.  After 

filtering, cluster centers of the 10 to 20 largest clusters were selected for further processing.  In 

addition, we included the five best scoring models measured by the BCL sum score.  If templates 

were identified, best-scoring models that were similar to the template by Mammoth z-score [78] 

were retained in a separate pool of models.  If the garget was split into multiple domains, these 

were recombined at this stage.  The backbone of the resulting models was completed using a 

Cyclic Coordinate Decent (CCD) [114] loop closure algorithm within the BCL.  Afterwards, side 

chain coordinates were constructed and the model was relaxed using Rosetta.  From the 

resulting set of up to 200 models, five were chosen for submission by Rosetta energy.  If a 

template has been identified, the fifth model submitted was chosen from the second pool as the 

one most similar to the template, to assess BCL::Fold’s sampling capability independent from 

scoring. 

Accuracy of secondary structure and transmembrane span prediction 

 Table 8 depicts Q3 accuracies (a measure of the accuracy for prediction per residue 

secondary structure), the percentage of native secondary structures correctly predicted and the 

average shifts for the SSE pool of the 18 CASP10 protein targets.  The shift values are the sum of 

the deviation in the first and last residues of the predicted SSEs when compared with native 

SSEs.  The overall average percentage of native secondary structures correctly predicted (% 

found) using PHD, [97, 98] PSIPRED, [99, 100] and JUFO9D [101-103] was 91.8%.  In the original 

benchmark of BCL, the overall average % found was 96.6%. [50]  We achieve the highest overall 

accuracy by combining multiple secondary structure prediction methods to create the SSE pool, 

rather than relying on a single secondary structure prediction method.  For example, the % 

found values for PHD, PSIPRED, and JUFO9D are 78.9, 91.0, and 91.4%, respectively.  In the 
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original BCL benchmark, these values for PSIPRED and JUFO are 96.1 and 90.3% respectively.  

This indicates that the secondary structure prediction is more challenging for the CASP10 targets 

than the original BCL benchmark.  IN addition, during a folding run, BCL::fold can merge, grow, 

or shrink SSEs based on the predicted probabilities. 

Quality of CASP10 FM models submitted by other research groups 

 There were 20 FM targets in CASP10.  For all participating methods the average GDT_TS 

score ranged from 7.0 to 36.0% with a mean GDT_TS score of 21.7% and a standard deviation of 

7.2%.  The maximum GDT_TS score ranged from 16.5 to 44.0% with a mean GDT_TS score for 

32.8% and a standard deviation of 8.2%.  For the three targets attempted with BCL::Fold (T0663, 

T0666, and T0684) the average GDT_TS score submitted by CASP10 participants was 24.5% with 

a standard deviation of 10.2%.  The mean of the maximum GDT_TS scores for these targets was 

34% with a standard deviation of 9.5% (Figure 15) 

Quality of BCL::fold models and sampling of the topology space  

 We assess the quality of BCL::Fold models in two ways.  The GDT_TS score allows for 

comparison with other results; the topology score focuses its evaluation criteria specifically on 

SSE contacts which tests BCL::Fold’s method of assembly. 
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 GDT_TS scores for the best model generated by BCL::fold ranted in from 23.3 to 64.5% 

with a mean GDT_TS score of 36.8% and a standard deviation of 10.4%.  Using the mean GDT_TS 

score of 33% as a comparative measure between other methods, BCL::Fold was able to sample 

models above this threshold in 12 out of 18 cases.  Comparisons of the BCL models with the 

experimentally determined structure by measuring RMSD100 [116] and GDT_TS show efficient 

sampling of the correct topology ( Table 9, Figure 15). 

 BCL::Fold’s sampling performance was evaluated previously with soluble and membrane 

proteins.  BCL::Fold was able to sample the correct topology in 61 of 66 soluble benchmark 

proteins [50]  and in 32 of 38 membrane benchmark proteins. [55]  The correct topology was 

defined as the ability to fold models with an RMSD100 of <8 Å to the native. 

 While RMSD100 is suitable to assess Rosetta models, it is not as helpful for BCL::Fold 

models that are focusing on sampling long-range contacts between SSEs.  Figure 16 shows how 

 

Figure 15: GDT_TS score analysis.  Twenty FM targets from CASP10 (left two pars, pattern).  Three targets folded 
also by BCL::fold from FM category in CASP10 (left two bars, gray). All 18 targets folded by BCL::Fold (black).  Three 
FM targets folded by BCL::Fold (right five bars, gray).  The y axis represents GDT_TS score. 
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well BCL::Fold samples the different protein topologies, measured the topology score.  Its 

applicability is limited foremost by the number of SSE contacts.  For targets with very few 

contacts (T0722 has a single contact) many models achieve a high score, and the discriminative 

value of the topology score is reduced.   While the topology score does currently not consider 

specific types of interactions between SSEs, it does include the secondary structure type; thus, 

an incorrectly predicted secondary structure type leads to all contacts of this incorrect SSE to be 

evaluated as false.  The thresholds to assume a contact between two SSEs are derived from 

idealized, native protein models and therefore fairly large; this can lead to detection of SSE 

contacts even for SSEs that are only indirectly in contact but still a very short Euclidean distance 

apart, like the first and third strand of a sheet.  Additionally, the value of the topology 

visualization is narrowed by the projection of three dimensional protein structures into two 

dimensions, which reaches its limits for complex topologies.  While the topology score has some 

caveats, overall it captures the protein topology quite well. 

 For the topology score, which measures the true positive contact ratio, we set the 

threshold to 0.8. At this level, two topologies share an overwhelming number of SSE contacts.  

Furthermore, we observe similarities when visually inspecting the topology plots of protein 

models (Fig 17). 

 BCL::Fold samples models above the threshold of 0.8 for 11 out of 18 targets (Fig 18).  

All targets with a native SSE contact count up to 20 have a topology score above the threshold.  

With increasing native SSE contact count and complexity, the topology score decreases 

expectedly. 
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Selection of models for loop and side chain construction 

 Difficult, however, proved the selection of models for the subsequent refinement steps.  

During CASP10 we attempted selecting the best models by BCL sum score, the centers of the 

largest clusters, and the best scoring models in each cluster.  However, no method enriched for 

high GDT_TS and consequently the models most similar to the native were consistently lost.  For 

model T0700, we sampled a topology with an overall GDT_TS score of 64.5.  We selected a 

model with a GDT_TS score of 57.6 for further refinement.  After loop and side chain 

reconstruction, our model drifted further from the true native structure with a GDT_TS score of 

38.6.  Our final submitted model for this target had a GDT_TS score of 31.3.  Most of the targets 

folded with BCL::Fold had this attrition pattern.  Interestingly, model T0682 improved 

 

Figure 16: Highest GDT_TS model sampled with BCL::Fold (rainbow) overlaid with experimental protein structure 
(gray) 
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substantially after loop reconstruction from a GDT_TS score of 28.8 to 37.1.  Our final submitted 

to CASP10 for this target had an RMSD100 score of 5.4 and GDT_TS Score of 33.0 (Fig 12 and 

16). 

Addition of loop and side chain coordinates 

 While adding loops to the cluster centers decreased the average GDT_TS scores from 

31.2 to 23.5, the GDT_TS average dropped again from 23.5 to 22.4 when the side chains were 

added with Rosetta version 3.3.  To rebuild side chains, the models were relaxed.  To limit 

movement of the backbone constraints for every Cα-Cα bond distance below a cutoff of 8 Å were 

applied using a harmonic function with a standard deviation of 0.5.  During side-chain 

reconstruction with Rosetta, 12 of the 18 CASP10 targets had a radius of gyration score >1100 

for approximately 30% of all models indicating unfolding despite the constraint used (T0644, T-

649, T0655, T0663, T0666, T0684, T0691, T0704, T0720, T0722, T0743, and T0745).  This 

unfolding-like event was triggered because the BCL models scored poorly in the Rosetta energy 

function (Fig 20).  Models that were unfolded were not considered further.  As a method of last 

resort, Rosetta was used to add side chains without relaxing the backbone but only repacking 

the side chains. 

Discussion 

BCL::fold fails to sample the correct topology in seven cases 

In 7 out of 18 cases, the best scoring BCL::fold model had a topology score of <0.8, 

which means the correct topology was not found.  Investigation the reasons for these failures, 

we found that the target with the lowest topology scores had SSEs missing in the secondary 
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structure prediction and subsequently in the SSE pool.  T0655 had a topology score of 0.44 and 

had two helices missing; T0649 had a score of 0.68 and had one helix missing. 

 

 

 

 

 

 

 

 

 

 

 

 

 Models for T0724 have an incorrect strand topology because BCL::Fold models were 

created as protomers while the native exists as dimer in which strands from both monomers for 

a sheet. 

 

  

 

Table 9: Comparison of the GDT_TS Score and RMSD100 Score with the native. The Best Model Produced During 
folding with BCL::Fold (A); The Selected Models from Clustering (B); The Models After Loop Reconstruction (C); The 
Models After Side chain Addition (D); The Final submitted Model (E) 
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 The remainder of four incorrect targets failed to sample the correct topology because of 

a combination of reasons, most notable for two reasons.  Long SSEs were split into two smaller 

ones, either by DSSP when assigning secondary structure to the natives, or by the secondary 

structure prediction methods that we employed.  The correct topology was simply not sampled 

and recognized as a best scoring model, often with the order of strand SSEs in sheets being 

incorrect. 

BCL::Fold models have loops that are impossible to close 

 BCL::Fold assembles tertiary structure from disconnected SSEs.  Because of this, we 

must ensure that the distance between the end of one SSE and the beginning of the next SSE 

can be bridged by a loop.  Two components of the BCL::fold scoring function control this 

requirement: First, there is a penalty if the Euclidean distance between two SSEs is longer than 

 

Figure 17: Visualization of the topology for the native and the best scoring model according to the topology score for 
T0663 with topology score of 0.81 
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the maximal Euclidean distance that can be bridged by the number of amino acids in the loop.  

Models that violate this rule are heavily penalized during Monte Carlo sampling and likely 

rejected.  The second component is deigned to place SSEs so that loops between them match a 

loop score potential that reflects native loop conformations from the PDB (PISCES dataset, see 

Methods).  This loop score potential evaluates the Euclidean distance probability in dependence 

of number of residues.  [51]  As this score is a function of only Euclidean distance and sequence 

distance, it neglects the spatial arrangement of SSEs.  Analysis of CASP10 models revealed that 

BCL::Fold constructs models where loops cannot be closed without passing through SSEs.  Figure 

18 depicts a model produced by BCL::fold for target T0663.  The Euclidean distance between 

residues ASN55 of helix 1 and TYR65 of helix 2 is 25.5 Å.  To bridge this distance with 9 amino 

acids, each amino acid has to be 2.8 Å on average, which is less than the average Cα-Cα distance 

of 3.3 Å.  However, with the placement of strand SSEs between the loop ends, all paths to close 

the loop between helices 1 and 2 pass through the strand SSEs.  Overall, 76% of BCL::Fold 

models produced during CASP10 folding simulations contains non-closable loops because of this 

behavior. 

  

 

 

 

 

 

  

Figure 18: Topology Score Threshold, True 
positive rate (precision, y axis) compared with 
the complexity of a protein (number of SSE 
contacts in the native, x axis).  The true positive 
rate of BCL::fold models decreases with 
increasing complexity. 
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The BCL::Fold loop potential is often violated for consecutive SSEs 

 Loops found in native proteins bridge preferable Euclidean distances de depending on 

the loop’s sequence length ds.  The current loop potential of BCL::fold mirrors this preference.  It 

is a sequence independent score, which contributes to the overall energy function.  The PISCES 

data set used to create this potential includes all possible loops, that is, loops between 

consecutive and nonconsecutive SSEs.  Because BCL::fold does not assemble SSEs in sequence 

order, the potential must evaluate incomplete protein models with unplaced SSEs.  Therefore, 

nonconsecutive SSEs were included in the loop scoring potential. 

 

 

 

 

 

 

 

 

 To test the loop potential accuracy, we compare the CASP10 models produced by 

BCL::Fold to structures from the PISCES pdb set.  Because the Euclidean distance that a loop 

spans depends on the sequence length of the loop, we normalize the Euclidean distance by the 

logarithm of the sequence length, de/logds; this results in homogeneous distributions 

 
Figure 19: Comparison of example BCL models with the native target structure for T0663 (top) and T0722 
(bottom). The experimental structures without loops are shown in gray (based on PDBIDs 4EXR and 4FLA, 
respectively). The predicted models (rainbow) show the highest scoring model produced by BCL (A, D, with a 
GDT_TS of 43.0 and 53.5, respectively); The best scoring model by BCL energy function (B,E with a GDT_TS of 28.9 
and 26.9); The best scoring model in largest cluster (C, F, with a GDT_TS of 22.1 and 32.6) 
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independent of loop length.  The all-loop distributions (that is, consecutive and nonconsecutive 

loops_ for de/logds for CASP10 models, CASP10 natives, and PISCES are alike (Fig 22(A)). The 

means of the distributions are 6.2, 6.6, and 6.5 Å, respectively, and confirm their similarity.  

Thus, we conclude that this weighted potential distinguishes native-like sequence and distance 

length of loops from non-native configurations in terms of sequence length and corresponding 

Euclidean distance. 

 

 

 

 

 

 

 

 

  

 However, when evaluating the CASP10 models with the consecutive-only loop 

distribution (that is, only loops between consecutive SSEs are included), we find a substantial 

bias between CASP10 models and both CASP10 natives and PISCES structures (Fig. 12(B)).  Their 

means are 8.1, 5.8, and 5.7 Å, respectively.  The sequence length ds of a loop is not changing as 

it is defined by the secondary structure (prediction) of the particular protein and only used for 

 

Figure 20: BCL model for target T0655 before (A) and after side 
chain addition and relaxation with Rosetta (B) 
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normalization.  Therefore, the difference between the distributions can only be caused by 

differences in the Euclidean distances de.  Creating models with loops of longer Euclidean 

distances de than found in native structure for a given sequence length causes BCL::Fold to 

produce non-native like loop arrangements.  Thus, the loop potential is not a sufficient metric to 

generate native-like models from disconnected SSEs.  Furthermore, the current loop potential 

does not consider the spatial positioning of other SSEs and does not account for potential 

clashes between these SSEs and a loop (Fig. 21). 

 

 

 

 

 

 

 

 

 

A small loop angle favors more native-like loops 

 To address the shortcoming we devised a loop measure that reflects this difference 

between consecutive and non-consecutive SSEs more drastically.  For native proteins, we 

observe that loops between consecutive SSEs are positioned locally on a protein structure, that 

 

Figure 21 A model for CASP10 target T0663 folded by BCL.  The 
Euclidean distance between residues ASN55 in helix 1 ( rainbow 
colored on the right) and TYR65 in helix 2 (rainbow colored on the 
left) is 25.5 Å.  Without the central sheet (pink) the loop could be 
closed; it is impossible to close the loop if the connecting amino acids 
have to be positioned around the sheet. 
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is, consecutive loops tend to begin and end on the same side of the structure and do not 

connect through the center.  Geometrically this can be measured as the angle between the end 

of one helix, the center of the protein, and the start of the next helix (Fig 23(A)).  In native 

protein structures, consecutive loops overwhelmingly favor small angles, as shown for the 

CASP10 native and PISCES pdb sets, of which 75% are smaller than 40° (Fig 23(B)) green and 

blue, respectively).  Models with loops that would clash with other parts of the protein 

frequently have large angles of close to 180° (Fig. 13(B) red).  We can use this information to 

discriminate native like arrangements from models with large angles. 

  

 

 

 

 

 

 

 

When including nonconsecutive loops, the distribution of loop anges is exhibiting two frequently 

occurring angles, small ones for loops connecting consecutive SSEs, and large ones for 

connecting nonconsecutive SSEs (Figures 20(c)).  To evaluate the loop angles of a protein model, 

we must differentiate between loops that connect consecutive and nonconsecutive SSEs.   

 

Figure 22 The density distribution of the BCL loop score displaying Euclidean distance over the 
logarithm of the sequence separation for loop regions between all SSEs (A) and consecutive SSEs 
only (B).  While the distributions of BCL models (red), CASP10 natives (green) and PISCES dataset 
(blue) match each other for lops between all SSEs (A), the distribution of BCL models shows a shift 
when only loops between consecutive SSEs are considered (B) 
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 To test whether filtering by the new loop angle measure would select for lower RMSD 

models compared to the existing loop score, we folded models for eight CASP10 targets (1000 

models for T0655, T0663, T0676, T0678, T0684, T0700, T0745; 700 models for T0722). The 

RMSD cutoff was set to 10th percentile.  Both, the existing loop score and the loop angle score 

were then used to select the best 50% of the models below the RMSD cutoff and in three cases 

decreased the number of models below the RMSD cutoff by more than the expected 50% 

(T0684, T0700, and T0722).  The loop angle score filtered on average 61% of the models below 

the RMSD cutoff and only in one case, T0722, it selected less than 50% of the models below the 

RMSD cutoff.  Thus, the loop angle score is selecting more native-like models and can improve 

the BCL scoring function moving forward. (Table 10) 

Table 10: The percentage of models below the RMSD cutoff kept when filtering models for each target with the 
existing loop score and the loop angle score, showing that the loop angle score keeps in all cases more low RMSD 
models. 

Target % Models kept by existing 
loop score 

% Models kept by loop 
angle score 

T0655 70 70 
T0663 67 76 
T0676 52 57 
T0678 52 63 
T0684 44 57 
T0700 37 57 
T0722 16 43 
T0745 59 62 
Average 50 61 

  

BCL::Fold misaligns β-strand registers 

 Carbonyl and amide groups in parallel and antiparallel strands of native proteins are 

aligned to allow the formation of stabilizing hydrogen bonds.  A hydrogen bond is formed 

between the carbonyl-oxygen (hydrogen-bond acceptor) of one amino acid with the amide 

hydrogen of another amino acid (donor).  In a sheet with the antiparallel strands i and j, the 
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following pairs of atoms form hydrogen-bonds, here denoted as (acceptor, donor): (Ci, Cj), (Cj, 

Ci), (Ci+2, Cj-2), (Cj-2, Ci+2), (Ci+4, Cj-4), (Cj-4, Ci+4), … (Figure 24(A)); the pattern for parallel strands i 

and j is (Ci, Cj+1), (Cj+1, Ci+2), (Ci+2, Cj+3), … (Figure 24(C)). 

  

 

 

 

 

 

 

 BCL::Fold does not control for this alignment in order to simplify the folding energy 

landscape.  It only controls for distance and relative orientation of β-strands within β-sheets.  

We hypothesized that misalignment of hydrogen bonds within β-sheets might cause clashes that 

are responsible for the large fraction of models that unfolds during Rosetta refinement. 

 To evaluate the strand register alignment of BCL models and compare them to natives, 

we measured the angle between carbonyl-carbon, the carbonyl-oxygen and the amide-

hydrogen, and the distance from the carbonyl-oxygen to the amide-hydrogen.  While in native 

proteins a hydrogen bond rarely has a Euclidean distance longer than 2.1 Å, we measured 

putative hydrogen bond atom pairs that were in paired β-strand SSEs and within a relaxed cutoff 

of 4.5 Å.  The hydrogen-bonds in aligned strands of elucidated proteins have characteristic 

angles close to 180° and distances of 1.9 to 2 Å.  Analysis of CASP10 BCL::Fold models, CASP10 

 
Figure 23: Visualization of loop angle metric, which measures the angle α between the end of one SSE (dark blue), the 
center of gravity, and the beginning of the next SSE (light blue; A).  The density distribution of the cos(α) metric for lop 
regions between consecutive SSEs only is concentrated to acute angles for PISCES and CASP10 natives (B, blue and red, 
respectively).  BCL models exhibit a higher number of large angles for consecutive loops (B, red).  The density 
distribution of the cos(α)  metric for lop regions between all possible SSEs shows two frequently found angles, small 
ones and large ones, for all sets, BCL models (red), CASP10 natives (green) and PISCES(blue; C). 
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experimental structure and the PISCES is summarized in Figure 24.  In BCL models, we find 

substantial deviations to smaller angles and larger distances up to 4 Å for more than half of the 

models for both antiparallel and parallel sheets.  The deviation in hydrogen bond angle and 

distance is correlated in BCL models.  Additionally, BCL models exhibit a slightly shorter 

hydrogen bond distance of 1.8 to 1.9 Å even for hydrogen bonds with a native-like angle.  This 

points to an incorrect placement of SSEs. 

 

 

 

 

 

 

 

Misaligned β-Strands cause clashes in Rosetta 

 The misaligned β-strands result in a high positive contribution from the repulsive score 

term (fa-rep) and no attractive contribution form the hydrogen bond score term (hbond_lr_bb), 

which leads to an unfavorable Rosetta score overall.  The ra_rep term is the repulsive 

component of the van der Waals force, for example originating from carbonyl-oxygen of two 

strands being positioned too close to each other.  The hbond-lr_bb term evaluates backbone-

backbone hydrogen bonds distant in the primary sequence as they appear in sheets.  Due to the 

 
Figure 24: Hydrogen-bond pattern and angles between the carbonyl-carbon, carbonyl-oxygen, and amide-hydrogen 
in antiparallel (A) and parallel strands (C).  Comparison of the hydrogen-bond angle for BCL models (red), CASP10 
natives (green), and PISCES (blue) for antiparallel (B) and parallel strands (D).  While the angles for CASP10 native and 
PISCES sets match, BCL models deviate.  The x-axis shows the cosine of the hydrogen-bond angle, the y axis the 
normalized density. 
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misalignment of strands, the hbond_lr_bb term is zero and does not contribute to the overall 

Rosetta score.  (Figure 25) 

 

 

 

 

 

 

 

 

 

 

 This causes Rosetta to unfold BCL models, despite constraints (Figure 20), in the last 

step of our CASP10 pipeline, which adds side chains and structurally refines the protein by 

cycling through repack and minimization steps. 

Β-Strand placement in BCL::fold models needs to be refined to align hydrogen bond donors 

and acceptors 

 The assembly of disconnected SSEs allows BCL::Fold to sample different sheet 

topologies and register positions without being restricted by the residues connecting the two 

 

Figure 25: The analysis of Rosetta energy scoring terms for the native and a BCL model of target T0655 (shown is only 
the sheet part of native and model).  The native shows no penalty from the repulsive score (A, fa_rep Rosetta score 
term) and a beneficial contribution from the hydrogen bonding score term (B, hbond_lr_bb Rosetta score term). 
Contrary, the BCL model exhibits a very high repulsive score (C, fa_rep) and little benefit from the hydrogen bonding 
term (D, hbond_lr_bb).  The color scale stretches from blue representing -1.5 Rosetta energy units (REU) through gray 
( 0 REU) to red (6 REU); the scale was chosen to red depict a value further from zero than blue to account for the 
bigger range of the repulsive score. 
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strands SSEs.  For this reason β-strand placement is controlled only be a mutate function that 

places one strand next to another in the preferred angle and distance. [51]  However, the 

placement of β-strands only be the distance and torsion angle within the β-sheet is insufficient 

to produce BCL::fold models that can be refined with other programs.  We plan to add a 

refinement stage into BCL::Fold that translates β-strands along their z-axis and evaluates a 

scoring term that controls the angle α introduced above.  This will result in an improved scoring 

function that selects for more native-like models.  We expect that improved alignment of β-

strands will reduce the unfolding events observed during Rosetta refinement. 

Conclusion 

 Despite inaccuracies in secondary structure prediction, BCL::Fold was able to sample the 

correct fold for most of 18 cases studies herein.  The best methods in CASP10 submitted models 

with an average GDT_TS of around 33% in the RM category.  BCL::Fold achieves this threshold in 

initial models after folding for 12 of 18 targets.  Similarly, BCL::Fold is able to produce models 

with a topology score of at least 0.8 for 11 of 18 targets.  However, the post folding filtering and 

refinement strategies removed correctly folded models from consideration in almost all cases, 

mostly for structural artifacts present in the BCL::Fold models.  This result shows that BCL::Fold 

has the potential to compete with the best de novo structure prediction algorithms if a) 

unrealistic geometries in loops and β-strands can be removed and thereby the attrition of 

accurate topologies during model refinement can be stooped and b) an approach can be found 

that recognizes the most accurate models within the BCL::fold ensemble.  However, with this 

analysis and planned work to address the recognized weaknesses, future versions of BCL::Fold 

produce more native-like models without incorporating templates or experimental data. 
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CHAPTER IV 

 

RECONSTRUCTION OF EXPERIMENTAL SANS PROFILE FROM PROTEIN MODELS 

Overview 

 A Small Angle Neutron scattering (SANS) measurement represents a molecule’s 

rotationally average intensity (I) as a function of scattering angle (q). As with SAXS, large 

pairwise atomic distances are represented by small scattering angles and small pair wise atomic 

distances are represented by large scattering angles. (See Figure 26) In the case of SANS, the 

overall scattering curve represents the radially averaged contribution of all Neutrons including 

hydrogen atoms in all orientations.  The same parameters from SAXS can be extracted directly 

from SANS.  These parameters include the molecular mass (MM), radius of gyration (Rg), 

hydrated particle volume (Vp) and maximum particle diameter (Dmax).  Furthermore, the SANS 

scattering curve contains information related to the overall shape of the molecule and is 

routinely used to validate structural models [1]. 

 

 

 

 

 

 

 

 
Figure 26: Envelopes of SAXS / SANS profiles.  Two proteins of distinct shape: globular (2LUZ and rod (4FLA) are 
shown.  On the left are the different scattering profiles, on the right are the proteins with the envelope surrounding 
the protein. 
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Significance 

The Guinier analysis is a method to compute protein size, particle interactions 

(aggregation), oligomeric state, and overall data quality in reciprocal space.  The radius of 

gyration and forward scattering I(0) are obtained from a plot of ln[I(q)] vs. q2. For monodisperse 

samples, this plot should be a linear line where the radius of gyration is the slope and the y 

intercept is I(0).  If the Guinier plot is nonlinear, then inter-particle interactions, polydispersity, 

or improper background subtraction has occurred in the sample.  The I(0) value normalized to 

solute concentration is proportional to the MM.  The MM can be used to distinguish different 

oligomeric states. 

 

 

 

 

 

 

 

 

 After Guinier analysis, the distance distribution function, p(r), is computed by a Fourier 

transformation of the SANS pattern.  The shape of the p(r) function is used to characterize the 

overall shape of the system.  A  Direct Fourier transformation of the SAXS profile to obtain the 

 

Figure 27: SANS analysis of AtCESA3CatD monomers.  SANS profile for AtCESA1CatD (black 
circles) overlaid with simulated scattering curve for GhCESA1CatD (white circles) Inset shows 
P(r) plot derived from experimental scattering data of ATCESA1CatD. www.plantcell.org. 
Copyright American Society of Plant Biologists [1] 

http://www.plantcell.org/


98 
 

distance distribution function is not possible and indirect Fourier methods must be used.  A 

common method used  is implemented in GNOM [117].  A spherical particle has a bell shaped 

p(r) curve and is shown in figure 27. 

Innovation 

This implementation of SANS uses the Debye equation with q-independent neutron 

scattering lengths used in the place of q-dependent from factors.  These quantities are a 

measure of the scattering power a particular electron or neutron contain.  The excluded volume 

is handled the same way it was for SAXS, with a parameter to account for varying neutron 

densities.  The solution and hydration layer is controlled by a thickness parameter and a 

percentage of deuterium in solution.  In the presence of deuterium, hydrogen exposed to the 

surface will be replaced with deuterium, which changes the neutron scattering profile. 

Reconstruction of SANS Profiles from atomic models 

 Neutrons and protons form the nucleus of an atom and both have a mass of 1.67 x 10-27 

kg.  Protons have a positive net charge of +1 while neutrons have a net charge of 0.  They have a 

spin state of +1/2.  Electrons have a much smaller mass of 9.109 x 10-31 kg.  Because the 

neutrons are uncharged, they are not affected by ionic interactions.  They are only scattered by 

nuclear forces.  This allows them to penetrate deeply into the target until they interact with 

other nuclei.  Hydrogen scatters neutrons strongly.  Although magnetic scattering occurs, I will 

focus on nuclear scattering.   

 Neutron scattering is governed by the four dimensional scattering law.  This law 

characterizes scattering as a function of the momentum transfer in three dimensions (Q) and 
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energy (E).  The scattering is recorded on a detector as a spot of intensity (I).  For this 

implementation I restrict analysis to elastic scattering (no energy loss or gain): ΔE=0 

                      4.1 

The scattering law dimensionality is reduced from four to three.  The modulus of the wavevector 

and hence the wavelength (λ) is unchanged. 

 
|  |  |  |  

  

 
 4.2 

Because the energy change is zero during elastic scattering, the kinetic energy is conserved.  The 

magnitude of the momentum transfer is linked with the scattering angle and the wavelength of 

the incident beam. 

 

 

 

 

 

 
  | |  

      

 
 4.3 

The differential cross section 

 Consider a steady stream of thermal neutrons (flux) all with the same energy incident on 

a target.  The cross section is obtained from measurements made on neutrons after they 

interact with the scattering system.  It represents the effective area presented by a nuclease to 

an incident neutron and is quantified as the fraction of incident particles that scatter.  The 

 

Figure 28: Physical basis of momentum transfer vector.  Because energy is conserved in 
elastic scattering the initial wavenumber Ki = the final wavenumber Kf.  Q is the difference 
vector between Ki and Kf.  Using basic trigonometry, Q is derived from the sin definition. 
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differential cross section is the number of scattered neutrons per second into a solid angle 

divided by the flux. 

 The differential cross section is linked to the elastic scattering law and scattering 

intensity.  All scattering interactions are assumed to be elastic.  This means the incident beam 

contains particles of the same energy as the scattered beam.  With energy fixed, the scattering 

of a neutron is characterized by a change in momentum P.  Changes in momentum vary 

depending on the atom type and are characterized by neutron scattering lengths.  Neutron 

scattering lengths are experimentally measured for different atoms.  They do not vary with the 

atomic number in a predicable way.  The magnitude of the scattering length (b) determines the 

strength of scattering.  The values of scattering length depend on: 1) particular isotope of the 

element, 2) The spin state of the nucleus-neutron system, 3) Every nucleus with non-zero spin 

has two values of the scattering length.  If the spin of the nucleus is zero, the system can only 

have spin ½ and there is only one value of the scattering length.  Furthermore, b is positive for 

repulsive potential.  Neutron scattering lengths are independent of the modulus of the 

momentum transfer vector.   The formula to compute a SANS profile from a rigid body is: 

 
     ∑∑          

          

    

 

   

 

   

 4.4 

where bi and bj are the neutron scattering lengths and the sinc function is the orientational 

averaging.  The neutron scattering lengths are computed as follows: 

                                  4.5 

The major differences between the Debye implementation in SANS from SAXS is: 1) the neutron 

scattering lengths of atoms and atomic groups are used to evaluate form factors. 2) In solutions 

with D2O fractions 0 < Y <1 all hydrogen atoms in hydrophilic (NH, NH2, NH3, OH, SH) groups are 
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replaced with probability Y.  The main chain NH groups are replaced with probability 0.9Y.  The 

scattering density for the excluded volume calculation was modified.  The Scattering results are 

showed in the appendices for protein 1ENH.   
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CHAPTER V 

 

SAS AS AN EXPERIMENTAL RESTRAINT FOR PROTEIN STRUCTURE PREDICTION 

Overview 

The combination of SAS experimental data with computational protein structure 

prediction algorithms provides an opportunity to predict structures closer to the native topology 

[118-120].  SAS profiles have been used to identify native-like protein models from a large set of 

alternative protein models [1, 10, 121].  Furthermore, SAS profiles have been used to filter 

models in protein structure prediction algorithms. [6, 8, 17, 18, 122] Because the SAS 

experimental technique represents proteins with spherically averaged election / neutron 

densities, multiple structures can be reconstructed from the same SAXS profile.  Mishraki et. al 

used SAXS experiments to monitor the hexagonal state of the HII mesophase lattice structure. 

They also used electron paramagnetic resonance (EPR) to measure insulin entrapment within 

the lattice structure [123].  Wang et. al combined residual dipolar coupling (RDCs) from nuclear 

magnetic resonance spectroscopy (NMR) with SAXS restraints to orient subunits and define the 

global shape of multi-component proteins and protein complexes [124].  Grishaev et al. used 

NMR and SAXS restraints to refine the solution structure of the 82-kDA enzyme malate synthase 

G [125]. 

 Significance 

 BCL::SAS is a module inside of our de novo protein structure prediction algorithm 

BCL::Fold.  The integration of BCL::SAS with BCL::Fold provides a means to utilize SAXS / SANS 

scattering profiles as an additional term in the potential energy function[51].  My algorithm 

computes complete SAS scattering profiles for complete protein models and an approximate 



103 
 

scattering profile for models missing side chains and loop regions that are produced after the 

initial folding stages.  I mentored Oanh Vu, a summer rotation student to compare the 

calculated scattering profile with the ‘experimental’ profile to identify likely protein structures.  

A lower SAXS score suggests a higher probability that the BCL::fold model has a similar topology 

to the native structure and vice versa.  To prepare positive controls for testing, side chains and 

loop regions of crystallographic structures of 13 monomeric protein samples were omitted and 

then simulated and recovered by BCL::fold.  These samples were obtained through the 

Northeast Structural Genomics (NESG) consortium[126]. 

Innovation: 

During a protein folding run with BCL::fold we penalized models that deviated from the 

overall SAXS score by incorporating it as a term in the linear weighted scoring function.  We 

compared our fold benchmark set with and without SAXS restraints and found that 

experimental SAXS improves sampling by a small margin.   

We used both ab initio and rigid body modeling techniques to investigate the variability 

of the SAXS χ agreement score. Ab initio methods search for three dimensional shapes 

represented by beads that fit the experimental SAXS profile and are used for SAXS envelope 

construction[8, 127].  This method provides an ensemble of configurations that correspond to a 

given scattering pattern.  In Rigid body modeling , a SAXS profile is computed from the atomic 

coordinates and compared with experimental data using the χ agreement score [122]. 

Compute SAXS scores 

The SAXS χ score compares the similarity between a reconstructed profile (from a model 

produced through BCL::Fold) with its corresponding experimental SAXS profile. Since we want to 
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include the overall shape of the SAXS profiles into the comparison, the χ score was computed 

based on the derivatives of the experimental and computed profiles.[41]  To create a 

differentiable function representing the experimental data, and to minimalize variability of 

intensities at high q values, a fitted line of the experimental SAXS profile was generated using 

locally weighted scatterplot smoothing (LOESS) in R (Appendix VI).  This fit line was used as a 

standard to evaluate each of the putative models generated by BCL::Fold.   

Missing residues in the X-Ray Crystal Structure affect agreement between SAXS profiles  

 The method of X-Ray Crystallography for structure determination can only be used upon 

successful formation of crystals around the desired protein target.  This crystallization process is 

unpredictable and in many cases unsuccessful.  One of the reasons for failure is caused by long 

flexible regions of amino acids preventing the formation of crystals.  To overcome this problem, 

crystallographers will cleave (when possible) the flexible region of the protein to enable 

crystallization and subsequent structure determination of the core.  These floppy regions are oft 

times found at the N or C terminal of an amino acid sequence.  

 To investigate the effect these missing residues have on experimental SAXS profiles, we 

obtained the experimental SAXS profile of 3HZ7.  This is a protein domain of unknown function.  

The domain is a monomer with 87 residues and a molecular weight of 9523 Da.  The PDB 

contains coordinate information of 74 residues.  The final 13 residues were missing.  Using the 

modeler program in Chimera, we modeled 500 structures of this protein with the missing 

residues added.   By modeling the missing residues on the C terminus of 3HZ7, we were 

able to improve the chi agreement from 5.24 to 1.33.  (Figure 29)  Modeling the missing residues 

caused the chi agreement score to vary between 1 and 6.  This indicates that long floppy regions 

at the termini of proteins have an effect on the SAXS chi agreement score. 
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SAXS experimental profiles and pdb files of crystallographic structures with missing 

residues from our benchmark set were used to explore loop modeling with Chimera. They were 

proteins 1_3HZ7, 6_3LYY, 9_3ICL, 10_3IGN, 12_3LJX, and 13_3HXL.  These proteins ranged in 

size from 9.5 KDa to 48.5 KDa.  (Table 11)  

Table 11: Summary of 13 monomeric proteins ranging in size from 9.5 KDa to 48.5 KDa 

Protein Name Molecular 
Weight Da 

Observed 
Residues 

Missing 
residues  

1_3HZ7 Domain of Unknown Function 9523 74 13 
6_3LYY MucBP domain of adhesion PEPE_0118 14300 102 5 
9_3ICL EAL/GGDEF domain protein 18738 162 9 
10_3IGN Diguanylate cyclase 20256 165 12 
12_3LJX MmoQ (Response regulator) 32032 252 36 
13_3HXL Putative uncharacterized protein 48519 416 30 
18_2KW9 MKL/myocardinlink protein 1 8276 75 0 
20_2KVZ Putative peptidoglycan bound protein 9712 85 0 
21_2LOB E3 ubiquitin-protein ligase Praja 1 10297 91 0 
22_2KZ5 Transcription factor NF-E2  10623 91 0 
24_2L0D Cell surface protein 12385 114 0 
26_2KW7 N-terminal PG_0361 from P. gingivalis 17485 157 0 
28_3LD7 Lin0431 protein 12747 87 13 

 

Figure 29: Modeling missing residues improves SAXS profile agreement. Shown in the left is the experimental 
SAXS profile (red dots) and error bars (gray lines) of 3HZ7.  The green line is the computed SAXS profile with 
missing residues; the blue line is the best fit profile after modeling.  The computed SAXS envelope from 
DAMMIN was computed and overlaid over the structure with the best chi agreement to experimental data 
(upper left corner).  The right panel depicts the chi agreement distribution of the 500 models created in 
modeler. 
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FASTA files of full protein sequences were attained from the protein data bank (PDB).  

Missing residues were added by to the crystal structures using Chimera.  (Table 12)  There was 

one case where the addition of missing residues caused an increase in χ agreement score.  This 

was protein 13_3HZL.  In this case the N-terminal residues protrude away from the protein 

instead of filling in the open space in the envelope. (Figure 30) Modeler is not a stochastic 

process, and may not have sufficiently sampled the conformational space. 

Table 12: Effect of modeling missing residues with modeler 

Protein Residues 
Observed 

Total 
Residues 

Residues 
Missing 

Missing 
residues χ 

Modeled 
residues χ 

1_3HZ7 74 87 13 4.2 1.3 
6_3LYY 107 131 24 6.1 5.4 
9_3ICL 162 171 9 3.7 1.6 
10_3IGN 165 177 12 4.2 2.5 
12_3LJX 252 288 36 2.9 2.3 
13_3HZL 416 446 30 1.4 2.5 

 

 

 

 

 

 

 

Rosetta models missing residues  

 To resolve the protruding loop (Figure 30).  The loop modeling application in Rosetta 

version 2014.35.57232 (Appendix VI) was used to relax the top scoring model from modeler.    

For each of the 500 structures relaxed, we used CRYSOL to compared experimental profile with 

 

Figure 30: Structure and SAXS Envelope of 13_3HXL. Five ab initio shape reconstructions were generated by 
DAMMIF and averaged with DAMAVER.  The best scoring model by chi agreement is superimposed in envelope 
using SUPCOMB. A) Modeled residues with Modeller B) Modeled residues with Rosetta 
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the simulated profile from the model.  (Table 13) In the case of 13_3HZL, Rosetta modeling did 

not improve the χ agreement.  In the remaining cases, modeling the missing residues with 

Rosetta improved the χ agreement between experimental data.   

Table 13: Effect of relaxing Chimera models with Rosetta 

Protein Residues 
Observed 

Total 
Residues 

Residues 
Missing 

Missing 
residues χ 

Modeled 
residues χ 

1_3HZ7 74 87 13 4.2 1.3 
6_3LYY 107 131 24 6.1 5.1 
9_3ICL 162 171 9 3.7 2.9 
10_3IGN 165 177 12 4.2 2.0 
12_3LJX 252 288 36 2.9 2.3 
13_3HZL 416 446 30 1.4 1.4 

 

We cut out the modeler step entirely and used Rosetta to model the missing residues for the 

entire benchmark of monomeric proteins and added one more protein 28_3LD7 to the set. 

(Table 14) 

Table 14: Effect of modeling missing residues with Rosetta only 

Protein Residues 
Observed 

Total 
Residues 

Residues 
Missing 

Missing 
residues χ 

Modeled 
residues χ 

1_3HZ7 74 87 13 4.2 1.3 
6_3LYY 107 131 24 6.1 5.0 
9_3ICL 162 171 9 3.7 1.6 
10_3IGN 165 177 12 4.2 2.4 
12_3LJX 252 288 36 2.9 2.2 
13_3HZL 416 446 30 1.4 1.7 
28_3LD7 87 100 13 7.4 2.4 

 

The χ range of correct secondary structure topology 

 To explore the behavior of the χ score, a set of 1000 folding models were generated for 

each of the 13 protein samples using BCL::Fold without using the SAXS score as a restraint.  For 

each of the 50 models, SAXS profiles were computed and compared with experimental data for 

three levels: 1) without approximation, 2) with side chain approximation and 3) with both side 
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chain and loop approximation. Table 15 depicts the effect of comparing models without loops or 

side chains with experimental SAXS data.  Figure 28 shows the folding results of model 1_3HZ7.  

The remaining models are shown in Appendix VIII.  

Table 15: Statistics of 1000 BCL::Folding models for each protein.   The minimum χ score obtained (min), maximum χ 
score obtained (max) mean chi score (ῡ), standard deviation (σ) and χ score of the native protein without side chains 
or loop regions (N) are reported for each level of approximation.   

 No Approximation Side Chain Approximation Loop Region and Side Chain 
Approximation 

Model min max ῡ σ N min max ῡ σ N min max ῡ σ N 
1_3HZ7 1.4 5.1 3.3 0.7 4.75 1.5 5.1 3.1 0.7 4.16 1.5 3.6 2.4 0.4 2.24 
6_3LYY 1.6 3.4 2.5 0.2 2.44 1.7 3.5 2.5 0.3 2.59 1.8 3.7 2.7 0.3 2.40 
9_3ICL 3.4 7.5 5.2 0.9 3.36 2.5 6.8 4.5 1.0 2.46 2.0 5.1 3.5 0.6 3.02 
10_3IGN 2.3 6.5 4.1 0.9 2.50 1.7 5.7 3.7 0.9 1.69 1.5 5.3 2.9 0.7 2.58 
12_2L0D 3.0 9.1 5.6 1.1 3.30 3.0 8.8 5.5 1.2 2.98 2.1 10 5.4 1.1 2.10 
13_2KW7 2.9 6.6 4.3 0.9 3.37 2.7 7.2 4.4 1.0 3.35 1.8 6.0 4.0 0.9 1.82 
18_2KW9 2.8 3.7 3.1 1.1 3.20 2.6 3.5 3.0 0.1 3.16 2.5 3.4 3.1 0.1 3.17 
20_2KVZ 1.5 3.6 2.5 0.5 2.80 1.5 3.4 2.4 0.4 2.90 1.3 3.4 2.1 0.3 2.81 
21_2LOB 1.2 3.8 2.3 0.6 2.37 1.2 3.5 2.2 0.6 2.66 1.4 3.6 2.1 0.3 3.56 
22_2KZ5 2.7 4.7 4.0 0.4 2.79 2.7 4.8 3.9 0.4 2.91 2.6 4.7 3.8 0.4 3.04 
24_2L0D 2.0 5.2 3.0 0.6 3.52 2.0 5.3 3.0 0.7 3.49 2.1 5.3 3.3 0.6 3.15 
26_2KW7 6.0 11.0 8.4 0.9 6.06 4.6 11.0 8.0 1.1 4.62 4.0 9.1 6.9 0.9 4.02 
28_3LD7 1.7 6.4 3.9 1.1 3.5 1.7 5.6 3.6 1.1 3.31 1.5 4.2 2.7 0.7 2.83 

 
 Without approximations the native topology of model 1 had a χ score of 4.75.  At each 

subsequent approximation, the χ score decreased to 4.16 (Side chain approximation) and 2.24 

(Loop region and side chain approximation).  This ideal behavior was not observed in all cases.  

Model 6, 9, 10 all deviated from this pattern.  For model 6, the side chain approximations 

caused SAXS χ agreement score to increase.  In this case the model has long disordered regions 

that are not captured in SSEs.  These disordered regions are present in the experimental SAXS 

data, but only approximated by BCL::SAXS.  In models 9 and 10, the loop region approximations 

caused the SAXS χ agreement score to increase. 
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 To explore how BCL::Fold assembles proteins, we captured the ending pose of a model 

during the Monte Carlo sampling process as well as the confirmations of the secondary structure 

elements (SSES) in the native state.  By doing this, one can quickly observe the difference 

between the native SSE arrangement and the SSE arrangement produced by BCL::Fold.  The 

SAXS score is degenerate, meaning that structures that are very different can have similar χ 

agreement score.  Because of this the SAXS χ agreement is a necessary, but not sufficient 

condition for protein identification by SAXS. 

 

 

 

 

   

Figure 31: Distribution of SAXS agreement χ score for 1_3HZ7 with three states of approximation, blue, orange, 
purple (Top panels).  The gray data point represents the score of the native structure.  The bottom plot depicts the 
SAXS score for each model in three approximation states sorted by purple 
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Figure 32: SSE orientation of different protein models at the end of each folding stage of BCL::Fold.  Different protein 
topologies have similar χ agreement scores. 
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BCL::Fold with SAXS Restraint Score  

 For each of the 13 proteins I generated 2000 models through BCL::Fold without using 

the SAXS restraint during the simulation.  The first 1000 models were created with the native 

SSE pool, while the second 1000 models were created using a predicted SSE pool.  After 

generating the models, I computed the SAXS agreement score and enrichment score for each 

model.  (Table 16) 

Table 16: Folding Results for 13 protein models without using the SAXS restraint during simulation.  Either predicted 
or native SSE pools were used during folding. The minimum rmsd100 and mean rmsd100 and standard deviation for 
the top 10% of the models by RMSD100 score are reported as well as SAXS score enrichment. 

Model Pool Min 
RMSD100 

Mean 
RMSD100  

SD 
RMSD100  

Enrichment 

1_3HZ7 
 

Native 3.59 7.54 1.58 0.4 
Predicted 2.40 5.10 0.90 0 

6_3LYY Native 10.46 20.14 3.33 1.9 
Predicted 20.79 27.28 1.84 1.0 

9_3ICL Native 8.59 11.12 0.65 1.4 
Predicted 8.45 11.85 0.78 0.9 

10_3IGN Native 8.53 10.94 0.79 0.9 
Predicted 8.16 10.95 0.76 1.4 

12_3LJX Native 9.82 11.60 0.49 1.2 
Predicted 11.69 13.03 0.46 1.2 

13_3HXL Native 15.76 17.02 0.42 1.3 
Predicted 14.50 16.33 0.53 0.9 

18_2KW9 Native 10.03 15.65 1.71 2.8 
Predicted 5.75 17.04 2.61 3.4 

20_2KVZ Native 12.49 19.43 2.25 0.4 
Predicted 12.45 22.48 2.54 0.7 

21_2LOB Native 9.94 12.42 0.98 1.6 
Predicted 10.29 13.38 0.91 1.3 

22_2KZ5 Native 7.99 10.52 0.83 1.2 
Predicted 7.29 10.72 0.86 3.0 

24_2L0D Native 8.50 11.62 1.01 1.0 
Predicted 8.18 12.14 1.03 0.4 

26_2KW7 Native 7.73 10.21 0.87 1.5 
Predicted 6.62 10.02 0.82 1.5 

28_3LD7 Native 6.74 11.11 1.25 0.8 
Predicted 9.11 12.23 1.02 1.1 

 

The enrichment score is a metric to determine how effective a scoring metric (in our 

case the SAXS score) is able to select the most accurate models from a set of protein models.  A 

given set of 1000 models from the above benchmark (S) was sorted by the RMSD100 score.  The 
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top 10% (100 models) with the lowest RMSD100 scores were classified as positive (P) and the 

rest of the models (900) were classified as negative (N).  The models of S were scored by SAXS 

score and the top 10% (100 models) with the lowest SAXS score were classified as (T), while the 

remaining models were classified as (Z).  The intersection of T and P (models correctly selected 

by the scoring function) were classified as true positive (TP).  The number of models that were in 

set P but not in T represents models that are not identified by SAXS as correct, yet are similar to 

the native structure by RMSD100.  This set is classified as FN (False Negative).  The enrichment is 

calculated as    

 
  

  

 
 
   

 
 5.1 

The positive models are the 10% of the models with the lowest RMSD100 values.  P+N/P is a 

constant value of 10.  The maximum enrichment score is 10.0.  No enrichment would be a value 

of 1.0 and a value between 0.0 and 1.0 indicates that the SAXS score selects against accurate 

models. 

Folding with the SAXS restraint 

1000 models were folded with BCL::Fold using experimental SAXS data as restraint in 

the scoring function.  These proteins were folded using the native secondary structure pool.  

During folding there were five assembly stages and one refinement stage.  The first assembly 

stage had the weight of the SAXS score set to zero to allow the initial placement of secondary 

structure elements.  All subsequent stages of folding with BCL::Fold had the weight of the SAXS 

score set to 100.  With this weight, the total contribution of the SAXS restraint to the overall BCL 

energy function was approximately 10%.  A perfect SAXS agreement score would be zero and 

would not impact the BCL energy score.  Any score above zero would impact the overall BCL 

energy score by adding a positive value to the score.     
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Using the SAXS score during folding caused a slight shift toward native like proteins from 

an average RMSD100 value of 7.53 Å (without SAXS restraint) to 5.74 Å (with SAXS restraint) for 

protein model 01_3HZ7 (Fig 33A) and 20.1 Å (without SAXS restraint) to 19.45 Å (with SAXS 

restraint) for protein model 06_3LYY (Fig 33B) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 17: Folding Results for 13 protein models using the SAXS restraint during simulation.  Either predicted or 
native SSE pools were used during folding. The minimum rmsd100 and mean rmsd100 and standard deviation for the 
top 10% of the models by RMSD100 score. N is the number of distinct models in the set.  

Model Pool Min 
RMSD100 

Mean 
RMSD100  

SD 
RMSD100  

Enrichment N 

1_3HZ7 
 

Native 3.18 5.74 1.71 0 1000 
Predicted 2.50 4.71 0.75 0 50 

6_3LYY Native 10.62 19.46 3.39 1.7 1000 
Predicted 20.00 26.57 2.14 0.9 50 

9_3ICL Native 8.04 11.26 0.75 1.4 50 
Predicted 9.73 11.91 0.60 1.1 50 

10_3IGN Native 8.57 11.09 0.72 0.6 50 
Predicted 7.35 10.9 0.73 1.9 50 

12_3LJX Native 9.36 11.59 0.51 1.2 50 
Predicted 11.64 13.04 0.56 1.2 50 

13_3HXL Native 14.51 16.93 0.61 1.4 50 
Predicted 14.81 16.35 0.55 0.1 50 

18_2KW9 Native 9.26 14.83 1.24 1.3 50 

 

Figure 33: Folding of 1000 models with and without SAXS restraint with BCL::Fold with native SSE Pool.  Panel A 
depicts protein 01_3HZ7.  Panel B depicts 06_3LYY.  Pink represents folding without the SAXS restraint, Blue 
represents folding with the SAXS restraint. 
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Predicted 12.88 16.72 1.25 3.3 50 
20_2KVZ Native 12.54 18.18 2.20 1.2 50 

Predicted 12.49 22.55 2.49 1.0 50 
21_2LOB Native 9.86 12.87 0.96 1.7 50 

Predicted 10.84 13.50 0.93 0.6 50 
22_2KZ5 Native 7.50 10.32 0.95 1.1 50 

Predicted 7.19 9.54 0.88 3.6 50 
24_2L0D Native 7.24 11.87 1.12 1.5 50 

Predicted 10.09 12.37 0.90 2.1 50 
26_2KW7 Native 6.21 9.58 1.06 1.9 50 

Predicted 7.17 9.62 0.88 2.0 50 
28_3LD7 Native 6.94 11.64 1.52 0.6 50 

Predicted 8.68 11.87 0.99 0.8 50 

 

Discussion 

This benchmark was designed to test two scenarios for both the native and predicted 

SSE pools: 1) The enrichment of the SAXS score on models folded without using the SAXS score 

as a restraint, and 2) The improvement in RMSD100 for models that use the SAXS restraint 

during folding. 

Table 16 shows the sampling without SAXS restraint with the native and predicted SSE 

pools.  Using the native SSEs, the top model by RMSD100 was above 8 Å for 9 of the 13 models.  

This indicates that BCL::Fold is not sampling the correct topology for these models.  This could 

be due to either, 1) insufficient sampling number, 2) bias in sampling algorithm.  I recommend 

increasing the sampling from 1000 to 10000 and observe the minimum, and mean RMSD100 

values observed.  If the values do not improve, then we should analyze the sampling algorithm 

to understand why we do not sample the native topology using the native SSE pool.        

We observed positive enrichments with the SAXS score for the native SSE Pool on 8 of 

13 models, neural enrichment of 1.0 for one model, and negative enrichments on 4 models.  For 

the predicted pool, we observed positive enrichments on 7 of 13 models, neutral enrichment of 

1.0 for one model, and negative enrichments on 5 models.     
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In this analysis, I discovered why the enrichment values do not behave as expected 

when folding with SAXS Restraints.  The folding setup had 50 jobs with 20 models in each job to 

produce a total of 1000 models.   I discovered that each batch received the same folding seed 

creating 1 model duplicated 20 times.  Work is currently underway to expand the protein 

simulations from 50 models to 1000 models in this benchmark.  For model 01_3HZ7, we observe 

a shift in RMSD100 from 7.54 to 5.74.   
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CHAPTER VI 

 

CELLULOSE SYNTHASE 

Overview 

Cellulose is composed of β-1,4 linked D-Glucose monomers (C6H10O5) and is the major 

structural component of the cell wall in plants. Arabidopsis Thaliana is a flowering plant native 

to Eurasia.  It is a popular organism in plant biology because of its small genome size (135 mega 

base pairs) and number of chromosomes (5).  It is to plant biology what mice and fruit files are 

to animal biology.  In Arabidopsis Thaliana, the individual cellulose synthase (CESA) protein has 

10 isoforms.  These isoforms are 64% to 98% similar by sequence identity comparison.  CESA1, 

CESA3, and CESA6 are involved in primary cell wall synthesis.  CESA4, CESA7, and CESA8 are 

involved in secondary cell wall synthesis.  CESA2, CESA5, and CESA9 are involved in tissue-

specific processes.  CESA10 has a minor role in plant development.  Each isoform of CESA 

contains approximately 1000 amino acids comprising 3 domains: 1) Zinc-finger n-terminal 

domain, 2) cytosolic catalytic domain, and 3) 8-helix transmembrane domain. (See Figure 34) 

Significance 

The department of energy (DOE) is interested in understanding how cellulose is 

produced, how it can be torn down, and how we can produce plants with weaker cell walls.  This 

would facilitate the production of biofuels.  Cellulose in plants is produced by the cellulose 

synthase complex (CSC) that is compromised by 6 lobes in hexagonal arrangements with a 

diameter between 24-40 nanometers (nm) forming a “Rosette”.   
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Innovation: 

I was awarded a graduate fellowship to work at Oak Ridge National labs to study the 

structure of cellulose synthase.  While there, I compiled BCL::Fold and Rosetta on the Titan 

Supercomputing cluster at ORNL.   I used Rosetta Fold and Dock to create 100,000 putative 

dimer models of the zinc-finger domain of atCESA1.  To cluster these models, I created a novel 

algorithm to identify the interface residues and cluster models that contain similar residues 

participating in the interface.  

I was part of a publication on the catalytic domain of atCESA1 that combined 

experimental SAXS / SANS data with putative Rosetta models to show evidence of trimer 

formation.  The combination of limited experimental data with computation provided a results 

 

Figure 34: Schematic of atCESA3.  Top depicts where domains occur in sequences 
space. There is a zinc-finger in the n-terminal intrinsically disordered domain, followed 
by 2 transmembrane helices.  The catalytic domain is on the cytosolic side of the 
membrane.  The C terminal domain contains the rest of the transmembrane helices.  
Bottom depicts a cartoon of how the domains may form the atCESA1 protein.  The 
formed cellulose is shown emerging from the transmembrane domain 
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superior to one that would be obtained by either method in isolation.  This publication was 

featured on the cover of Plant Physiology in January of 2016. 

N-terminal dimer domain 

Hugh O’Neill and his team at Oak Ridge National Laboratory were able to express and 

purify samples of the n-terminal Zinc-finger n-terminal domain of atCESA3.  The experimental 

data indicated that this domain formed dimers. 

To explore predicted dimer interfaces of the Zinc-finger N-terminal domain (ZFNTd), I 

generated 100,000 putative dimer models of the ZFNTd of atCESA3 using the Rosetta Fold and 

Dock algorithm on Titan.  This domain comprises 247 amino acid residues.   

The Rosetta Fold and dock algorithm consists of multiple folding stages beginning with 

two extended amino acid chains.  The backbone atoms of both chains are simultaneously moved 

and the energy is evaluated by considering hydrogen bonds and hydrophobic interactions.  

During each stage of folding Monte Carlo sampling is used to sample the conformational space 

and a final pose is selected for the next stage of folding.  In the latter stages of folding side 

chains are added using rotamer libraries and energy evaluations include Van der Waals 

interactions and hydrogen bonds. 

These models were filtered by agreement with circular dichroism (CD) experimental 

data, small angle neutron scattering (SANS) data, agreement with an homology model, and 

probable interface score.  After filtering by these means, 4 models remained for further analysis. 

Once the 100,000 models were generated on titan by Rosetta, I filtered the models 

output by agreement with any available experimental data.  I obtained circular dichroism (CD) 
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experimental data of atCESA3 from the experimental group at ORNL.  The CD data showed the 

alpha helical content the atCESA3 dimers to be less than 20%. (Figure 35)   

 

 

 

 

 

 

 

 

Using the Dictionary of Secondary Structure of Proteins, (DSSP) I computed the 

secondary structure content of all the 100,000 computational dimer models.  I then wrote a 

script to compute the alpha helical percentage content based on the DSSP assignments and 

merged this into the pdb model.  Based on CD data agreement, I filtered over 90% of the models 

generated.  There were 9314 models remaining. 

 I then filtered the 9314 models by agreement with a homology model of the Zinc Finger 

domain.  (Figure 36) The homology model was created for residues 1-91 of the nuclear magnetic 

resonance (NMR) structure 1WEO.    The core of this structure from the NMR ensemble was 

between residues 18-70.  Visual molecular dynamics (VMD), a molecular visualization program 

for analyzing large biomolecular systems was used to align the homology model and the Rosetta 

 

Figure 35: Circular dichroism (CD) data of atCESA3 using CDSSTR method.  Analysis 
indicates that the alpha helical content of the sample is not greater than 16% with 
minimal difference between experimental and reconstructed data. 
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models.  I computed the root mean squared distance (RMSD) between residues 18-70 of the 

homology model and all remaining 9314 models.  Only structures with an RMSD < 8 Å were kept 

for further analysis.  After this step, 200 models were remaining. 

  

 

 

 

 

 

 

 

SANS profiles for each of the models were computed using CRYSON and compared with 

the experimental SANS profiles obtained at ORNL.  The similarity between the experimental 

SANS profile and the computed SANS profile from each model was measured as a χ score.  

Models with a chi χ ≥ 1.4 were filtered from further analysis.  This leaves 13 models. 

To cluster the remaining 13 models by interface similarity, I developed an interface 

clustering algorithm.  This algorithm first creates a numerical descriptor vector based on a user 

defined interface distance for each model.  For this project we selected 6 Å as the cutoff 

distance to define an interface.  The interface of each model was represented as a vector of 

zeros and ones, with one indicating a particular residue is an interface residue.  The vectors 

 
Figure 36: Threaded homology model of AtCESA3.  Phyre identified the NMR structure 1WEO as a 
strong homology model for residues 1-90.  I threaded the n-terminal sequence of atCESA3 onto all 20 
poses from 1WEO.  Then I generated 100 homology models for each of the 210 poses using Rosetta.  
The final threaded homology model was selected based on the Rosetta energy score and the n-
terminal position. 
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were compared using confusion matrix classification and a Matthews’s correlation coefficient.  

The correlation coefficient had a range of [-1, 1] with -1 indicating a complete opposite 

correlation and 1 indicating a perfect match between two vectors.  The correlation ranges were 

ranked as follows: 1) +0.7 or higher, very strong correlation, 2) +0.4 Strong correlation, 3) +0.3 

Moderate correlation, 4) +0.2 Weak correlation.  Structures with zero residues identified as 

interface residues were filtered from further analysis.  One model was removed based on this 

criterion, leaving 12 structures. (Figure 37) 

 

 

 

 

 

 

 

 

For each of these 12 structures I used the protein interfaces structures and assembly 

(PISA) to quantify the interfaces.  This algorithm computes the interface area, the delta G in 

kcal/mol, which quantifies the solvation free energy gain upon formation of the interface.  It 

also computes the number of hydrogen bonds and salt bridges at the interface.  Each interface 

was assigned a probability value which is a measure of interface specificity, showing how 

surprising, in energy terms, the interface is.  Models with a favorable interface probability >0.5 

 

Figure 37:  Novel Clustering Algorithm.  Interface residues are identified by a pre-specified cutoff 
distance.  Residues participating in the interface are assigned a value of 1, while residues not part of the 
interface are assigned a value of 0.  The interface is described by a numerical descriptor vector with each 
position representing an individual amino acid.  The models are processed through a pair-wise 
comparison algorithm that compares each position of two models and classifies the agreement as a True 
positive, False positive, True negative, False negative, and sums the total for each category.  Using these 
numbers, the Matthew’s correlation coefficient is computed, and modes that have an overall score > 
user defined cutoff [-1, 1] are clustered together. 
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were selected.  This resulted in 4 different models selected from 100,000 putative models 

generated on Titan. 

Table 18: Summary statistics of filtered n-terminal atCESA3 dimer models, REU is the Rosetta energy unit 
representing the final energy function value during minimization.  Helix percentage represents the α helical content of 
the models.  Homology root mean squared distance (RMSD) is a measure of how similar the zinc finger domain is with 
the homology model found.  SANS χ is a measure of how similar the experimental SANS profile is with the computed 
SANS profile of the model.  The interface area measures how large the interface is between dimers.  Delta G indicates 
the solvation free energy gain upon interface formation.  The Delta G p-value indicates the probability of observing a 
lower than observed Delta G, when the interface atoms are pick randomly from the protein surface.  HB is the 
number of hydrogen bonds in the interface.  SB is the number of salt bridges in the interface. 

Model 
ID 

REU HELIX 
% 

Homology 
RMSD  

SANS 

χ 

Interface 
Area 

Delta G 
kcal/mol 

Delta G 
p-value 

HB SB 

2939 -360 0.150 7.6 1.24 2862 -36.0 0.164 16 12 
3767 -365 0.166 7.7 1.40 3251 -34.8 0.219 28 6 
1919 -336 0.138 7.1 1.29 3430 -31.6 0.310 36 2 
8817 -398 0.166 7.5 1.21 2341 -20.3 0.390 26 12 
3514 -330 0.166 8.0 0.94 2627 -19.0 0.504 40 16 
8625 -340 0.166 8.0 0.91 706 -5.0 0.541 12 2 
4108 -387 0.166 6.4 0.96 291 -1.2 0.572 2 0 
0533 -353 0.150 6.7 1.28 2622 -17.4 0.589 34 20 
6828 -348 0.150 6.5 1.28 1551 -9.9 0.589 10 4 
9348 -400 0.158 6.5 1.03 3735 -26.6 0.598 48 44 
9027 -353 0.166 7.4 0.93 2902 -17.9 0.599 40 12 
0428 -339 0.142 7.7 1.03 1362 -5.5 0.608 22 20 

 

The four models and their SANS agreement remaining are depicted in figures 38 and 39.  

The plateau in the low q region of the log-log plot indicates uniform scattering without 

aggregation.  In this low q region, model 1919 is the only model to directly interpolate the data 

points. Models 8817 and 3767 are below the points, while model 2939 is above the points.  This 

region represents large atomic pairwise distances.  It is critical to have tight agreement between 

model and experiment in this region. 
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Figure 38:   Agreement by SANS chi score between experimental data collected at ORNL and models on TITAN.  The 
plateau in the experimental data (black dots) indicates uniform scattering without aggregation in the log log plot on 
right.  The gray bars depict experimental error values. 
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N-terminal zinc finger domain discussion 

 This was a challenging domain to model because it is intrinsically disordered.  We had 

experimental evidence for dimer formation, but we do not know which residues form the dimer 

interface.  We generated 100,000 putative dimer models with Rosetta fold and dock and filtered 

 

 

 
Figure 39: Agreement by SANS chi score between experimental data collected at ORNL and models produced on TITAN.  
The plateau in the experimental data (black dots) indicates uniform scattering without aggregation in the log log plot on 
right.   The gray bars depict experimental error values. 
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these models by agreement with SANS, CD, and PISA interface scores.  I developed a method to 

cluster these models by interface similarity.  The next step for this project is to analyze the 

100,000 dimer models to quantify which residues are forming interfaces and how often they are 

involved in an interface.  This information would be useful to create a list of predicted interface 

residues to guide the experimental team.  Once the interface is experimentally verified, this 

information would provide a valuable filter on further modeling. 

Cytosolic domain 

This section is a reproduction of the computation modeling I did in the manuscript: A 

structural study of CESA1 catalytic domain of Arabidposis cellulose synthesis complex: evidence 

for CESA trimers[1].   The cellulose synthesis complex (CSC) is a large multi-subunit 

transmembrane protein complex responsible for synthesis of cellulose chains and their assembly 

into microfibrils in plants. This work reports a structural study of recombinant catalytic domain 

(residues 341 – 845) of Arabidopsis thaliana CESA1 (ATCESA1CatD) that was over-expressed and 

purified from Escherichia coli. Using a two-step procedure, it was possible to purify monomeric 

and trimeric forms of ATCESA1CatD, providing the first experimental evidence supporting the 

self-assembly of CESAs into stable trimeric complexes. The conformation of monomeric and 

homotrimeric ATCESA1CatD were studied using small-angle neutron scattering (SANS) and 

small-angle X-ray scattering (SAXS). A series of ATCESA1CatD trimer computational models were 

compared with the SAXS trimer profile to explore the possible arrangement of the monomers in 

the trimers. Four candidate trimers were identified with monomers oriented such that that 

newly synthesized cellulose chains project towards the cell membrane. In these models, the 

class specific region (CSR) is found at the periphery of the complex and the plant-conserved 

region (P-CR) forms the base of the trimer. This study strongly supports the hexamer of trimers 
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model for rosette CSC that synthesizes an 18-chain cellulose microfibril as the fundamental 

product of cellulose synthesis in plants.[1]   

Computational Modeling  

A homology model of ATCESA1CatD was generated with the program MODELLER [96] 

using the GHCESA1CatD computational model [128] as a template. The root mean squared 

deviation (RMSD) value between the two models was 0.30 Å. The Symmetric Docking tool 

(SymDock) in the ROSETTA modeling software [129] was used to generate multiple 

configurations of symmetric trimers of the ATCESA1CatD model that were ranked based on a 

ROSETTA generated energy score. Simulated SAXS profiles of 1000 ATCESA1CatD trimer models 

with the lowest energy score were calculated using CRYSOL [26] and were fit to the 

experimental ATCESA1CatD SAXS profile. Based on this analysis, 30 trimer models with χ values 

smaller than 9.1 were chosen for further study. The χ value measures the discrepancy between 

experimentally determined and theoretically predicted small angle scattering data. The X-ray 

crystal structure of cellulose synthase from Rhodobacter sphaeroides (PDB code, 4HG6) [130] 

was structurally superposed on each monomer in the 30 trimer models using the DALILITE 

pairwise alignment tool [131]. The program PISA [132] was used to calculate the surface area in 

the interfaces in the trimers. 
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 Modeling of ATCESA1CatD trimers  

To gain insight into possible arrangements of the ATCESA1CatD monomers, a series of 

ATCESA1CatD trimers was generated computationally and compared with the SAXS data (Figure 

40). For this, a homology model of the ATCESA1CatD monomer was used as input for generating 

1000 symmetric trimer configurations using the ROSETTA SymDock algorithm [129]. Theoretical 

SAXS curves were calculated using CRYSOL for each of the 1000 protein trimer configurations for 

comparison with the experimental SAXS data. The χ value was computed to quantify the fit of 

the theoretical SAXS curves to the experimental SAXS data. Comparison of the χ values with the 

ROSETTA energy score (E) in ROSETTA Energy Units (REU) of each trimeric model shows that, 

even for the trimer models with a low E value, there is large variation in the quality of the fit to 

 

Figure 40: Trimer models of atCESA1CatD on the cover of Plant 
Physiology. www.plantphysiol.org “Copyright American Society of Plant 
Biologists” [1] 

http://www.plantphysiol.org/
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the experimental SAXS data (Figure 41A).  Furthermore, structurally very different models can 

have similar χ scores. This is exemplified in Figure 41B that compares the RMSD of each trimer 

model to the model with the lowest χ value (ATCESA1CatD-m1; χ = 4.39). Based on this 

observation, it is clear that one cannot rule out any particular arrangement of monomers based 

on the fit to the SAXS data alone. 

 

 

 

 

 

 

Since it is not possible to rule out a particular trimer model using solely the χ value, an 

additional constraint was needed to identify the most likely configurations among the best 

fitting, low E trimer models. Of the initial 1000 models generated by ROSETTA SymDock, 30 

models were selected for detailed analysis based on the χ score (χ ≤ 9.1) obtained from the fits 

of the theoretical SAXS curves to the experimental SAXS data. In all cases, the theoretical 

scattering curves are similar in the low Q-region and fit the experimental data well, indicating 

that all trimer models capture the overall size of the scattering particle. However, theoretical 

curves deviate in the mid and high Q region (Q > ~0.08 Å-1 ) suggesting that differences in the 

arrangement of the monomers in the trimer are captured in that Q range. We can anticipate 

where the β-1,4-glucan chains will emerge from the monomers, given the structural similarity 

between the invariant DD, DCD, and QVLRW motifs that constitute the catalytic core in the 

 

Figure 41: Analysis of ROSETTA generated ATCESA1CatD trimer models. (A) Plot of χ score obtained from fit of 
ATCESA1CatD trimer theoretical SAXs curves to experimental SAXS data versus the energy score of ROSETTA 
models.  (B) A plot of χ versus RMSD of the ROSETTA models computed using ATCESA1CatD-m1 as a reference 
model.  The models below the red line ( χ < 9.10) were included in the analysis. www.plantphysiol.org 
“Copyright American Society of Plant Biologists” [1] 

http://www.plantphysiol.org/
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GHCESA1catD computational model and the crystal structure of R. sphaeroides bacterial 

cellulose synthase (BcsA) that also contains an emerging glucan chain [130]. Furthermore, class 

averaging of freeze-fracture TEM images of rosette CSCs indicate tightly associated TMH 

regions, which supports proximity of the glucan chains as they traverse the membrane. We thus 

evaluated the candidate trimer models according to where the glucan chains would be 

predicted to emerge from them. The fit to the experimental data for the best-fit trimer model 

(ATCESA1CatD-m1) is shown in Figure 42. 

 

 

 

 

 

 

 

 

 

Superimposition of this model with the GASBOR ab initio model indicates that the 

overall size and shape of the computational and experimental structure are similar (Figure 43). 

In this trimer model, the CSR regions are at the interfaces of the monomers and the PCR regions 

project outward into the cytoplasm (Figure 44A, B). Each monomer-monomer interface has 

 

Figure 42: Comparison of theoretical scattering curves of the ROSETTA models 
with experimental ATCESA1CaD SAXS profile.  The theoretical scattering profiles 
for the model, ATCESA1CatD-m1 and the model, ATCESA1CatD-m12 are shown in 
orange and magenta respectively.  The ATCESA1CaD SAXS curve is shown as open 
circles.  Inset shows the magnified fit for Q in the range of 0.06-0.1. 
www.plantphysiol.org. “Copyright American society of Plant Biologists” [1] 

http://www.plantphysiol.org/


130 
 

approximately 60 amino acids and a total of 964 Å2 of buried surface area, which is a reasonable 

value based on previously reported studies analyzing interfaces in protein complexes [132, 133].  

A similar arrangement of the CSR regions was reported for the OSCESA8catD dimer [134].  

 

 

 

 

 

 

 

 

 

 

 

 

However, structural alignment with BcsA shows that the catalytic cores are projected 

radially inward in ATCESA1CatD-m1 such that the emergent glucan chains are at an acute angle 

to the membrane (Figure 44C). This orientation is not optimal for translocation of the cellulose 

chains across the plasma membrane. Analysis of most other trimer models resulted in a similar 

 

Figure 43: Ab initio models of ATCESA1CatD trimers with ROSETTA models. The light and dark gray surface 
models represent an averaged and a filtered ab initio models, respectively. (A) ROSETTA model, ATCESA1CatD-
m1 superposed with the ab initio model, on right is rotated by 90°. (B) ROSETTA model, ATCESA1CatD-m12 
superposed with the ab initio model, on right is rotated by 90°. Three subunits in the trimer are represented 
cartoon models in orange.  www.plantphysiol.org. “Copyright American society of Plant Biologists” [1] 

http://www.plantphysiol.org/
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outcome, having the emergent cellulose chains from the catalytic domain projecting away from 

the membrane. However, notable exceptions are models ATCESA1CatD-m12, m-13, m-15 and 

m-28 for which χ scores resulting from the SAXS curve fitting are between 6.33 and 9.02. The fit 

of the theoretical SAXS curve for one of these models, ATCESA1CatD-m12 (χ = 6.33), is shown in  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 and the trimer model is shown in Figure 44. Structural alignment with BcsA shows that 

the catalytic residues are oriented such that the emergent glucan chains would be near to each 

 

 

 

Figure 44:  The ROSSETTA models of ATCESA1CatD trimers. Left and right panels represent ATCESA1CatD-m1 and 
ATCESA1CatD-m12 respectively. (A) P-CR regions are highlighted as spheres. (B) CSR regions are highlighted as 
spheres (C) The models are rotated 90° to provide side view of the emergent glucan chains based on structural 
superposition of the bacterial cellulose synthase (pdb code, 4hg6). www.plantphysiol.org “Copyright American 
Society of Platn Biologists” [1] 

http://www.plantphysiol.org/
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other and directed toward the membrane (Figure 44C). In this trimer model, the highly 

conserved P-CR regions form the base of the catalytic trimer pointing towards the cytosol and 

the CSR regions project radially outward and do not participate in any interfaces within the 

trimer (Figure 44A, B). Each monomer-monomer interface has approximately 32 amino acid 

residues and a total of 750 Å2 of buried surface area. This value is lower than that obtained for 

ATCESA1CatD-m1, but is a reasonable value for a stable protein-protein interface. The majority 

of the interfacial residues (26 residues) are from the highly conserved portions of the GT domain 

between the PCR and CSR regions. Superimposition of the ATCESA1CatD-m12 with the GASBOR 

ab initio model indicates that both structures overlay well, as was observed for the 

ATCESA1CatD-m1structure (Figure 43). 

Catalytic domain discussion  

To gain insight into arrangement of ATCESA1CatD monomers in the trimer, we 

constructed a series of computational ATCESA1CatD trimers from a homology model of the 

ATCESA1catD monomer. By examining the fit between 1000 symmetric trimers and the 

scattering data, it became clear that a very small subset of low energy models could be 

identified, but that it was not possible to rule out a particular arrangement of monomers based 

on the fit to the SAXS data alone. The close agreement at low Q and discrepancies in the mid-Q 

and high Q region revealed that these models largely differed in how the monomers were 

juxtaposed in the trimer geometry. We propose that it is possible to further select from among 

these low energy models by considering a priori structural information. In a companion paper to 

this one, Nixon et al. demonstrate that the CESA TMH region could be modeled in a relatively 

tight homomeric trimer. This TMH trimer showed good geometric correspondence with 

individual lobes of the rosette CSC and, when replicated six times, with the 6-lobed view of the 
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CSC where the TMH cross the plasma membrane. The predicted tight clustering of the TMH 

regions suggests that in each lobe up to three β-1,4-glucan chains traverse the membrane in 

close rather than distant proximity, which is reasonable given the need for cellulose chains to 

interact without folding during cellulose microfibril formation. Using this information and the 

alignment of our computational models with the atomic structure of R. sphaeroides cellulose 

synthase, inclusive of a glucan chain passing from catalytic core through its TMH region, we are 

able to suggest that four of the candidate models for ATCESACatD trimers were most likely to be 

correct. Of these, we chose ATCESACatD-m12 as the most reasonable model for cytosolic 

domain trimer based on its fit to the experimental data.  
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Transmembrane Domain of Cellulose Synthase 

 Multiple plant models have been proposed to explain the detailed molecular events of 

cellulose biosynthesis[128, 134].  Both of these models have been based on the comparison 

with the bacterial version of CesA (BcsA) that has been crystallized [130].  Although we have 

evidence for oligermization into trimer structures from the cystolic domain, we do not fully 

understand how the plant CesA subunits oligermize to form rosettes[1].  The transmembrane 

domain of CesA is made of 8 trans-membrane alpha helices (Fig 45).   

 

 

 

 

 

 

   

From this arrangement the relative orientation of transmembrane helices can be inferred (Table 

19).  We hypothesize that BCL::Fold is capable of sampling the topology space for the 

transmembrane domain of CesA.  We further expect that limited experimental data from 

SAXS/SANS and other studies will enable us to select the correct topology model for this 

domain.  Our model would then be integrated into a holistic structural model of CesA for further 

verification.   

 

Figure 45: Transmembrane domain topology.  The transmembrane domain of atCESA1 consists of 8 transmembrane 
helices and 300 amino acids.  The N-terminal zinc finger domain proceeds TM1.  The catalytic domain is in the 
intracellular region between TM2 and TM3.  
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Table 19: Inferred orientation of TM helices.  Side represents either the n-terminal (N) or the c-terminal (C) end of a 
given secondary structure element.  Orientation represents either the  intracellular side of the  lipid bilayer (I) or the  
extracellular side of the lipid bilayer (E). 

Helix Side Orientation  Helix Side Orientation 
TM1 N I  TM5 N I 
TM1 C E  TM5 C E 
TM2 N E  TM6 N E 
TM2 C I  TM6 C I 
TM3 N I  TM7 N I 
TM3 C E  TM7 C E 
TM4 N E  TM8 N E 
TM4 C I  TM8 C I 

 

Secondary Structure prediction of the TM regions of atCESA3 

To begin the prediction we obtained the FASTA sequence of atCESA3 (Q941L0.fasta).  

Using the secondary structure prediction methods of PSIPRED[99], MASP, Jufo9d[101], 

Octopus[104, 105] and ProfPHD[97], we built a secondary structure pool of the eight 

transmembrane helices based of the consensus predictions of these methods. 

Table 20: Consensus transmembrane secondary structure pool for atCESA3.  Start is the sequence location of the 
first residue of the transmembrane helix.  End is the sequence location of the last residue of the transmembrane 
helix.   Length is the number of residues in the helix.  

Helix Start End Length Helix Start End Length 
TM1 259 277 19 TM5 914 926 13 
TM2 287 307 21 TM6 966 981 16 
TM3 830 863 34 TM7 996 1014 19 
TM4 872 893 22 TM8 1028 1042 13 

 

Generate de Novo models of the transmembrane region of atCESA3 

 Using cyclic C3 and C6 trimer symmetry, BCL::Fold was used to generate 10,000 

different configurations of the eight transmembrane helices in both symmetries.  The SSE 

predictions were obtained through MASP, OCTOPUS, and JUFO9D.  The score weights and stage 

files were obtained from the protocols previously published[55].  The BCL::Fold software suite 

was compiled for Titan at Oak Ridge National Labs.  Folding was performed on Titan 
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Align the TM helices from atCESA3 with the RS_BcsA bacterial analog 

 Because there is a crystal structure of the bacterial version of CESA, we wanted to 

thread the coordinates of the TM helices from the bacterial version of RS_BcsA to their analog 

on the atCESA3 transmembrane helices.  To perform threading, we first must align the TM 

helices between atCESA3 and RS_BcsA.  The BCL was used to perform these alignments. (See 

Table 21) 

 

 

 

Figure 46: Representative Example of C3 (A) and C6 (B) symmetries of 8 
transmembrane helices using BCL::Fold on Titan 
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Table 21: Transmembrane alignments of atCESA3 with bacterial counterpart RS_BcsA.  An alignment was performed 
over the entire sequence with a gap extension penalty of -0.1 and an open gap penalty of 10 (left).  Each individual 
TM helix from atCESA3 was aligned to the sequence of RS_BcsA. (center) Proposed alignment based on the inferred 
topology of atCESA3 and the known topology of RS_BcsA. 

Entire alignment Single Helix Alignment Proposed Alignment 

atCESA3 TM RS_BcsA TM atCESA3 TM RS_BcsA TM atCESA3 TM RS_BcsA TM 
1 3 1 3 1 3 
2 4 2 8 2 4 
3 5 3 5 3 5 
4 6 4 5 4 6 
5 - 5 - 5 - 
6 7 6 7 6 - 
7 8 7 3 7 7 
8 - 8 8 8 8 

 

After the alignments were performed, we visually inspected the alignments and alpha helices to 

ensure the ends of the helices were correctly place on the extracellular or intracellular side of 

the lipid bilayer.  Our proposed alignment is shown in table 21 (right) and Figure 47 

 

 

 

 

 

 

 

 

 

 

C1/B3

C2/B4

C3/B5

C4/B6
C7/B7

C8/B8

C6/ Predict

C5 / Predict

Figure 47: Correspondence between TM helices of atCESA3 (C) and TM helices of RS_BcsA (B) 
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Transmembrane domain discussion 

Our experimental collaborators at Oak Ridge National Laboratories were unable to 

express and purify the transmembrane region of atCESA3.  Without experimental SAS data they 

did not want to pursue modeling the transmembrane domain.  Rather, we focused our attention 

on the previously described catalytic domain and n-terminal zinc finger domain.   

Once experimental data is obtained, the models should be filtered by their agreement 

with experimental data, leaving a small subset for further analysis. The loops and side chains 

should be added back to the model to create a complete protein model.  Because the cystolic 

catalytic domain is very large, it should be replaced by a small loop connecting TM2 with TM3.  

Completed models could then be explored using molecular dynamics to determine stability in 

both the lipid bilayer and solvent outside the bilayer. 
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CHAPTER VII 

 

Conclusion 

To understand this field, I wrote a review article that was praised by leading scientists in 

the field as: “Excellent review on SAXs, this should be required reading material for anyone 

wanting to learn SAXS”.  This review equipped me with understanding of how to reconstruct 

SAXS profiles from atomic coordinates.  Importantly it provided an understanding of how to use 

the Debye implementation.  In this innovative approach we did not make approximations to the 

Debye formula, rather we used GPU acceleration to handle the double summation of all atoms.   

To our knowledge this is the first time GPU acceleration has been used in the Debye formula to 

compute SAXS profiles.  We were able to consistently replicate the scattering profiles generated 

by CRYSOL and Experimental Data.  By using the Debye formula we obtained direct control of 

the scattering profile calculation.  This provided the opportunity to rapidly approximate the side-

chain and loop region positions of a given protein model and compute a scattering profile.   The 

deviation between this scattering profile and the experimental scattering profiles of 13 proteins 

were used as a restraint in BCL::Fold.   

Because of the low resolution of the SAXS / SANS, they cannot be used exclusively to 

identify the native protein configuration from a set of similar protein configurations.  We have 

shown however through our work with the cytosolic region of cellulose synthase, that this type 

of data can be used to filter erroneous protein models early in the prediction process thus 

focusing computation time on models that fit the experimental data.   

For this project to be successful, there were some key challenges that had to be solved.  

First, we had to find a method to compute SAXS profiles from atomic coordinates.  Second, we 
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had to have a scoring function to compare the similarity of two SAXS profiles.  Third, we had to 

develop a method to approximate models with missing side chains and missing loop regions.  

Forth, we had to benchmark our results.  Once we generated SAXS profiles from complete 

protein models, it was apparent that the shape of the SAXS profile is important when comparing 

two structures.  To account for this behavior, we computed the derivative of the profiles and 

then computed the χ similarity score between the derivatives of the SAXS profiles.  By using the 

derivative score, we reduced the amount of false positives obtained during our analysis with our 

benchmark protein set.  

 Using this scoring metric, BCL::SAXS was 99.95% accurate in picking the native protein 

from a set of other proteins.  With the side chains approximated, BCL::SAXS was 99.62% 

accurate in picking the native protein from a set of other proteins.    With the loop regions 

removed, the accuracy dropped from 99.62% to 70.85%. This result shows that loop regions play 

an important role in protein topology.  Using our loop approximation algorithm, the accuracy 

increased to 88%.  This result shows that having an approximate estimate of a protein location 

can have significant impact on the accuracy of SAXS scattering profiles generated from atomic 

coordinates. 

The derivation of the loop approximation method was a learning process.  We first 

attempted the midpoint approximation, followed by the linear approximation, and then used 

the curvilinear approximation.  Using the curvilinear approximation we had to derive the 

normalization factor N.  Our first approach to calculate N was the regula falsi optimization 

protocol with parabolic arc length computations.  This was computationally expensive and 

mathematically complex.  Substituting the entire protocol with one line of code (the triangular 
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approximation)   increased the speed and accuracy of the calculation.  This experience reminded 

me of the words of Dr. Richard Hamming; “The purpose of computing is insight, not numbers.”   

  Computation of SAXS profiles can be used to validate high-resolution models in 

solution and to identify biologically active protein conformations.  This was used extensively in 

my work on the n-terminal and cytosolic domains of Cellulose Synthase 1 and 3 in Arabidopsis 

Thaliana.  SAXS was used to characterize trimer complexes whose components have known 

monomeric structure.  These components act as building blocks that can be arranged to form 

complexes where the scattering from the complex fits the experimental data.   

Investigators interested in protein docking studies can use BCL::SAXS to generate 

computed SAXS profiles of receptor-ligand complexes to identify likely receptor-ligand 

configurations and compare their proposed models with experimental data to identify the 

correct configuration of the system. 

Furthermore, SAXS is another experimental technique that can now be used by 

BCL::Fold to aid in protein structure prediction.  Although, SAXS cannot unambiguously identify 

the correct protein topology from a group of structures of similar shape, it can be used to filter 

away erroneous models, thus focusing further computation on more feasible backbone 

topologies.   Small globular proteins are not amenable to this approach in protein structure 

prediction.  Interestingly, the SAXS experimental technique seems to be suited best for large, 

highly variable protein topologies. - Opposite that of X-ray crystallography and NMR.  SAXS 

provides a means of studying assembly and large-scale conformational changes.  Further work 

must be done to benchmark SAXS with large variable proteins using ensemble optimization 

methods. 
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Future Work 

My work to incorporate small angle X-Ray and Neutron scattering into the BCL::Fold 

suite provides a strong foundation for further optimization and expansion in this field.  We can 

improve the speed of profile reconstruction, the SAS method for protein folding, loop modeling, 

ensemble modeling, and public use.  I will discuss each of these directions. 

Profile Reconstruction 

The initial benchmarks of BCL::SAS were performed using SAS profiles computed from 

CRYSOL / CRYSON in lieu of experimental profiles obtained in the lab.  The simulated 

experimental profiles were instrumental in validating my early attempts at SAXS profile 

reconstruction.  Once I obtained experimental data obtained in the lab, I had to carefully 

consider the excluded volume parameter (C1) and the hydration shell parameter (C2).  The only 

way I could replicate the results of CRYSOL and FOXS was to optimize these parameters by 

adjusting them and repeatedly computing the χ similarity score. 

The excluded volume and hydration shell parameters were optimized by minimization 

algorithms that do not use the derivative.  To compute the SAXS profile of a model and fit the 

model with experimental data, my algorithm requires 410 evaluations to find the optimal C1, C2 

combination that minimizes the χ agreement.  Future work should employ optimization routines 

that use the derivative of the minimization function to arrive at the optimal combination of 
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these parameters more rapidly.  Specifically I recommend a Levenberg-Marquardt optimization 

method. 

Folding with BCL::Fold 

In order to achieve the optimal fit between experimental SAXS profiles and SAXS profiles 

computed from a model, the excluded volume and hydration shell parameters must be 

optimized.  This optimization requires 410 χ evaluations and the solvent accessible surface area 

(SASA) value for each model.  This computational demand is not feasible during protein folding.  

Furthermore,   I have shown that I cannot match the SANS profile without proper C1 and C2 

optimization.   

To address these limitations, I propose an innovative approach to use SAS during protein 

folding simulations.  I suggest that we explore the fit between experimental and computed pair 

wise distance distribution functions.  The P(r) fit should be benchmarked against a protein set to 

determine if 1) It can be used exclusively during folding with BCL::Fold or 2) Used in combination 

with the previously published SAXS score during folding with BCL::Fold.  

The P(r) function is computed from the experimental SAXS profile I(q) through an 

indirect Fourier transformation. Theoretically the information content of both functions is 

identical.  This transformation is routinely computed using the software GNOM [117] from the 

ATSAS suite.    The advantages of using this form of the data are 1) SAXS and SANS input data 
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can be treated identically, 2) Profile reconstruction is not necessary, 3) GPU acceleration is not 

necessary, 4) C1 and C2 optimization is not necessary, 5) SASA computation is not necessary, 6) 

The P(R) can be computed directly from BCL Models by using actual Euclidean distances.   

In my view, the benefits of using the P(r) function during folding merit a study to 

determine the loss in accuracy due to the transformation of the I(q) into the P(r)  via GNOM.  A 

scoring metric must be developed to compare the experimental P(r) function with the P(r) 

function computed from BCL::Fold models.  These functions should be normalized, with an area 

under the curve set to 1.    The comparison metric should identify important features of the 

curve such as 1) Smoothness, 2) Dmax cutoff, 3) Area under the curve cutoff, 4) Area under the 

curve similarity, 5) morphology of curves.   

Loop modeling improvement 

In this work, I implemented a rapid method to approximate the residues of loop regions 

between SSEs.  I demonstrated that modeling these loop regions improves the SAXS χ 

agreement score with experimental data.  This loop modeling process can be vastly improved.  I 

recommend a loop hash method.  The idea is to create a repository of loops from the protein 

data bank of a given sequence length, angle between SSEs, and Euclidean distance between 

SSEs.  Once a model is produced with BCL::Fold, the loops would be would be built from the 

database of existing loops that are keyed by the sequence length, angle between SSEs, and 
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Euclidean distance.  This would enable the production of an ensemble of proteins with different 

native loop configurations.  I expect this approach to improve agreement by SAXS score. 

Ensemble modeling 

An exciting feature in modern SAXS is identifying and modeling protein flexibility from 

an ensemble set of different conformers to fit experimental SAXS data.  This requires a large 

library of starting conformers as input to the algorithm. After a suitable library of conformers 

has been generated or found, the experimental SAXS data are used as a constraint in an 

algorithm to determine which combination of conformers optimally fit the data.  The scattering 

intensity (I) is represented by a linear combination of the selected conformers.  In this process 

the algorithm must decide 1) Which conformers to use and 2) How many conformers are 

required to accurately recreate the experimental SAXS profile.  I propose that we develop a 

method to generate conformers of a given protein and then an algorithm to construct SAXS 

profiles from a weighted linear combination of conformers similar to the way the BCL::Scoring 

function is setup. 

Create online webserver 

BCL::SAXS is a tool that is of interest to the scientific community because of the direct 

use of the Debye formula.  I proposed that we explore the P(r) function metric during folding 

simulations.  For the web server I propose that we use C1 and C2 optimization and SASA values to 
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fit experimental SAXS data with rigid models.  There are no online methods using this approach 

and would be of interest to the SAXS community. 
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APPENDIX 

APPENDIX I: CHAPTER 2 COMMANDLINES 

Loop approximation  

/hd0/putnamdk/workspace/bcl-testing/build/linux64_release/bin/bcl-apps-

static.exe restraint:SaxsPrep -pdb_file 3hz7_bcl.pdb -output_model -

min_sse_size 5 3 999 

 

Visualize model in Pymol  

In the pdb file the temperature factor on the atom line is in column 61-

66.  This value will be 0.0 for approximated loop residues 

In pymol use this command: 
select loops, b < 0.0001 
show loops as spheres 

  
To alter the size of the spheres: 
alter loops, vdw=1 
rebuild 

  
To change transparency of cartoon: 
set cartoon_transparency, 0.5, 6lyz_bcl 

Generate clean BCL protein model  

/hd0/putnamdk/workspace/bcl-testing/build/linux64_release/bin/bcl-apps-

static.exe protein:PDBConvert input.pdb -bcl_pdb -output_prefix input_bcl 

  
The bcl file must be adjusted to remove any residues from the sequence lines 

that are not specified in the atom lines 
Once the missing residues have been removed from the pdbfile, rerun PDBConvert 

to renumber the file. 

  

  
For multimers, PDB Convert adds a TER line which uses one of the line id 

slots.  MSMS removes the TER and labels the atoms sequentially.  This results 

in an offset in numbering by the number of 
TER lines present.  Run a script to remove the TER lines and then renumber the 

atom lines consecutively to resolve this conflict 

  
label the cleaned pdb file: #_????_bcl.pdb 

  
The pdb filename must be put on the first line of a text file called pdbs.ls 

  
example: 
original input file: pdb_model.pdb 

  
Step 1: Run pdb convert to generate clean BCL file 

/hd0/putnamdk/workspace/bcl-testing/build/linux64_release/bin/bcl-apps-

static.exe protein:PDBConvert input.pdb -bcl_pdb -output_prefix 

input_bcl 

  
Step 2:  Run script to identify missing residues on original pdbfile perl 

../identify_missing_residues.pl pdb_model.pdb > missing_residues.txt 
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Step 3:  Remove identified missing residues by hand ( haven't written script 

yet) from the SEQRES lines of the output in Step 1 

  

  
Step 4:  Run pdb convert on the manipulated file from step 3 to renumber the 
atoms correctly 
/hd0/putnamdk/workspace/bcl-testing/build/linux64_release/bin/bcl-apps-

static.exe protein:PDBConvert input.pdb -bcl_pdb -output_prefix input_bcl 

  

  
Step 5:  For Multimer Processing, the BCL adds TER lines after each chain.  Run 

Script to removed TER lines and renumber atoms 
perl ../renumber_atom_lines.pl file.pdb ( the pdb file is the output from step 

4) 

Generate MSMS file for solvent accessible surface area 

convert pdb files to xyzr files: 
pdb_to_xyzr *.pdb > *.xyzr 

  
run msms on .xyzr file to get the .area file: 
msms -if *.xyzr -af *.area -probe_radius 1.399 

Generate SAXS Profile with c1 and c2 optimization and fit on Log10 scale  

/hd0/putnamdk/workspace/bcl-testing/build/linux64_release/bin/bcl-apps-

static.exe restraint:AnalyzeAgreement -analysis_prefix 6lyz -

analysis_type_enumerated "AnalyzeSas( c1=1, c2=0, 

experimental_profile=iofq_data_file.dat, sasa_profile=6lyz_bcl.area, 

optimize_hydration_parameters=true, default_search_grid=true, 

scoring_function=chi, use_errors=0, cpu=false, sans=false, 

approximate_side_chains=false, approximate_loops=false, transformations( 

Normalize, Log10, Scale ), print_transformations=true, y_max=1.0)" 

 

Loess ( locally weighted scatter plot smoothing) data regression in R 

Import data set into R 

data <- read.delim("1_SAXS.dat", header = T, sep="") 

  

  
plot the raw data: 

p <- qplot(Q, log10(Intensity), data=data)) 

  

  
Save an image of the data 

ggsave(filename="Samp1_a.png", plot=p) 

  
Add LOESS Regression line with a span of 0.3.  The span controls the jaggedness 

of the line. 

p1 <- p + geom_smooth( method = "loess", span = 0.3, size = 1.5)) 

  
Write the values of the data fit to a variable: 

fit = predict(loess(log10(Intensity)~Q, data, span=0.2, degree=1), data$Q) 

  
Compute and plot the derivative of the fit 
fx.spline <- splinefun(data$Q, data$fit) 
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plot(data$Q, fx.spline(data$Q, deriv=1), type='p') 

  

  
Write the fit values to the data frame 

data = cbind.data.frame( data, fit) 

  
Write the data to a file 

write.table( data, file="fit.out", sep =" ", quote=FALSE) 
 

Generate SAXS profile with c1 and c2 optimization and fit on derivative scale  

/hd0/putnamdk/workspace/bcl-testing/build/linux64_release/bin/bcl-apps-

static.exe restraint:AnalyzeAgreement -analysis_prefix 6lyz -

analysis_type_enumerated "AnalyzeSas( c1=1, c2=0, 

experimental_profile=iofq_data_file.dat, sasa_profile=6lyz_bcl.area, 

optimize_hydration_parameters=true, default_search_grid=true, 

scoring_function=chi, use_errors=0, cpu=false, sans=false, 

approximate_side_chains=false, approximate_loops=false, transformations( 

Normalize, Log10, Scale, Derivative ), print_transformations=true, y_max=1.0)" 
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APPENDIX II – CHAPTER 4 SANS BENCHMARK COMMANDLINES 

SANS profile reconstruction  

/home/putnamdk/Vanderbilt/Sans_Project/bcl/oanh/bcl-apps-static.exe 

restraint:AnalyzeAgreement -analysis_prefix 1ENH -analysis_type_enumerated 

"AnalyzeSas( c1=1, c2=0, 

experimental_profile=/home/putnamdk/Vanderbilt/Sans_Project/cryson/d20_30/1

ENH00.int, sasa_profile=1ENH_bcl.area, optimize_hydration_parameters=true, 

default_search_grid=true, scoring_function=chi, use_errors=0, cpu=true, 

approximate_side_chains=false, approximate_loops=false, use_sans=true, 

deuterium_percent=0.3, transformations( Normalize, Log10, Scale ), 

print_transformations=true, y_max=423.937) 
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APPENDIX III – SANS BENCHMARK DATA OF 1ENH, PRE-OPTIMIZATION, CONTINUUM MODEL 
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APPENDIX IV – SANS BENCHMARK DATA OF 1ENH, OPTIMIZED, CONTINUUM MODEL 
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APPENDIX V – SANS BENCHMARK DATA OF 1ENH, PRE-OPTIMIZATION, QUANTIZED MODEL 
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APPENDIX VI – SANS BENCHMARK DATA OF 1ENH, OPTIMIZED, QUANTIZED MODEL 
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APPENDIX VI – CHAPTER 5 SAXS FOLDING COMMANDLINES 

Rosetta loop modeling commands 

1. Download FASTA file from PDB page. 
2. Create fragment file: 

request a job at: http://robetta.bakerlab.org/fragmentsubmit.jsp => download    

3.bin and 9.bin  
3. Add a loop definition file: which residues to model,  

eg: 

LOOP   1     4 0   0.0  0 

LOOP  92 101 0  0.0  0 

  
4.Write an option file into the working directory  

The option (.options) file specified the set-up of the loop modeling such as 

location of the fragment files, fragment sizes, refinement, extension, and 

relaxation.  An example is provided below: 
eg: 
-loops:frag_sizes 9 3 1 
-loops:frag_files /basepath/9.bin /basepath/3.bin none 
-loops:build_initial true 
-loops:remodel quick_ccd 
-loops:refine refine_ccd 
-loops:extended true 
-loops:relax relax 

  
-ex1 
-ex2 

  
-out:output true 
-out:pdb true 
 

5. Rosetta Loop modeling command 
Eg: 
/dors/meilerlab/apps/rosetta/rosetta_2015.12.57698/main/source/bin/loopmodel.de

fault.linuxgccrelease @<option file> -nstruct <number of output models> -

loops:loop_file <loop definition file> -s <input crystallographic PDB file> -

out:prefix <prefix of output files> -out:path <directory storing output pdb 

files> 

6.  Use Rosetta to simulate missing loop regions in crystallographic structures 

Eg: 

/dors/meilerlab/apps/rosetta/rosetta_2014.35.57232/main/source/bin/relax.defaul

t.linuxgccrelease1 -relax:constrain_relax_to_native_coords -in:file:native <PDB 

file> -relax:coord_constrain_sidechains -relax:ramp_constraints false -s <PDB 

file> -out:prefix <prefix> -nstruct 500 
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APPENDIX VIII – SAXS SCORE DISTRIBUTION 
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APPENDIX IX –BCL::SAXS COMMAND LINES 

Comparing SAXS profiles 

The BCL application, “restraint:AnalyzeAgreement” is used to create SAXS profiles from given 

pdb file and compare the profile generated with the experimental SAXS profile.  There are three 

levels of approximation.  The first level is complete protein models without any missing regions. 

Add the name of the input pdb file into the file pdbs.ls 

Complete models 

bcl-apps-static.exe restraint:AnalyzeAgreement -analysis_prefix 3HZ7 -aaclass 

AAComplete -analysis_type_enumerated "AnalyzeSas( c1=1, c2=0, 

experimental_profile=01_SAXS.dat, optimize_hydration_parameters=false, 

default_search_grid=true, scoring_function=chi, use_errors=1, cpu=false, 

use_sans=false, approximate_side_chains=false, approximate_loops=false, 

transformations( Normalize, Log10, Scale ), print_transformations=false, 

y_max=1)" 

Approximating side chains 

bcl-apps-static.exe restraint:AnalyzeAgreement -analysis_prefix 3HZ7 -aaclass 

AABackBone -analysis_type_enumerated "AnalyzeSas( c1=1, c2=0, 

experimental_profile=01_SAXS.dat, optimize_hydration_parameters=false, 

default_search_grid=true, scoring_function=chi, use_errors=1, cpu=false, 

use_sans=false, approximate_side_chains=true, approximate_loops=false, 

transformations( Normalize, Log10, Scale ), print_transformations=false, 

y_max=1)" 

Approximating side chains and loop regions 

bcl-apps-static.exe restraint:AnalyzeAgreement -analysis_prefix 3HZ7 -aaclass 

AABackBone -analysis_type_enumerated "AnalyzeSas( c1=1, c2=0, 

experimental_profile=01_SAXS.dat, optimize_hydration_parameters=false, 

default_search_grid=true, scoring_function=chi, use_errors=1, cpu=false, 

use_sans=false, approximate_side_chains=true, approximate_loops=true, 

transformations( Normalize, Log10, Scale ), print_transformations=false, 

y_max=1)" 

BCL::Fold availability 

All components of BCL::Fold, including scoring, sampling, and clustering methods are 

implemented as part of the BioChemical Library (BCL) that is currently being developed in the 

Meiler laboratory (www.meilerlab.org). BCL::Fold is freely available for academic use along with 

several other components of the BCL library. 

 

 

http://www.meilerlab.org/
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APPENDIX X –TRANSMEMBRANE DOMAIN COMMANDLINES 

Secondary structure prediction with MASP 

run_command( "cd ".$blue_dir_sspred."; 

../../scripts/MembraneAssociationAndSecondaryStructurePredictor.py 

".$fasta_link_name." > ".$log_file."; cd - > /dev/null"); # run script 

  

Visualize secondary structure prediction 

run_command( "visualize_sspred.pl --target ".$target." --blue_dir ".$blue_dir);  

Fold cyclic trimer with BCL::Fold 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/bcl-apps-

static.exe protein:Fold -fasta 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/dat

a/Q941L0.fasta -sequence_data 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/ssp

red/ Q941L0 -sspred MASP PSIPRED OCTOPUS -pool 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/ssp

red/short.pool -pool_separate -stages_read 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/materials/

no_restraint/membrane_stages.txt -protein_storage 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/fol

d/no_restraint Overwrite -prefix test_ -nmodels 1 -opencl Disable -random_seed -
membrane -tm_helices 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/ssp

red/short.pool -symmetry C3 -fasta_chain_id A 

 

Fold monomer with BCL::Fold 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/bcl-apps-

static.exe protein:Fold -fasta 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/dat

a/Q941L0.fasta -sequence_data 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/ssp

red/ Q941L0 -sspred MASP PSIPRED OCTOPUS -pool 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/ssp

red/short.pool -pool_separate -stages_read 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/materials/

no_restraint/membrane_stages.txt -protein_storage 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/fol

d/no_restraint Overwrite -prefix test_ -nmodels 1 -opencl Disable -random_seed -
membrane -tm_helices 

/dors/meilerlab/home/putnamdk/Oakridge/transmembrane_modeling/denovo/Q941L0/ssp

red/short.pool -fasta_chain_id A 
 

Titan commandline for BCL::Fold 

#!/bin/bash 

  
seed=`cat /dev/urandom|od -N4 -An -t u` 

   
$MEMBERWORK/bip124/bcl-apps-compute-node.exe protein:Fold -fasta 

$MEMBERWORK/bip124/denovo/Q941L0/data/Q941L0.fasta -sequence_data 

$MEMBERWORK/bip124/denovo/Q941L0/sspred/ Q941L0 -sspred MASP PSIPRED OCTOPUS -
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pool $MEMBERWORK/bip124/denovo/Q941L0/sspred/short.pool -pool_separate -

stages_read 

$MEMBERWORK/bip124/denovo/materials/no_restraint/membrane_stages.txt -

protein_storage $MEMBERWORK/bip124/denovo/Q941L0/fold/no_restraint Overwrite -

prefix test_ -nmodels 1 -random_seed -membrane -tm_helices 
$MEMBERWORK/bip124/denovo/Q941L0/sspred/short.pool -symmetry C3 -fasta_chain_id 

A -histogram_path $MEMBERWORK/bip124/histogram/rev_4782/ 

 

 

Titan PBS Script 

PBS Script of Production Run 

  
#!/bin/bash 
#PBS -l walltime=4:00:00 
#PBS -o output/ 
#PBS -l nodes=126 
#PBS -A BIP124 
#PBS -j oe 

  
cd $MEMBERWORK/bip124/ 

  
aprun -n 2016 $MEMBERWORK/bip124/CESA_tm_trimer.sh 
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APPENDIX XI –ZINC FINGER N-TERMINAL DOMAIN COMMANDLINES 

Denovo folding with Rosetta 

#!/bin/bash 
#SBATCH --mem=2000mb 
#SBATCH --time=4:00:00 
#SBATCH --nodes=1 
#SBATCH -o 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/denovo_61_247/outp

ut/log.txt 

  
export 

LD_LIBRARY_PATH=/dors/meilerlab/apps/Linux2/x86_64/gcc/4.8.2/lib64/:/dors/meile

rlab/apps/rosetta/rosetta_2014.35.57232/main/source/build/external/release/linu

x/2.6/64/x86/gcc/4.8/default/:/dors/meilerlab/apps/Linux2/x86_64/lib64/:$LD_LIB

RARY_PATH 

  
seed=$SLURM_JOBID 

  
/dors/meilerlab/apps/rosetta/rosetta_2014.35.57232/main/source/bin/AbinitioRela

x.linuxgccrelease -in:file:fasta 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/denovo_61_247/CESA

.fasta -in:file:frag3 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/denovo_61_247/aat0

00_03_05.200_v1_3 -in:file:frag9 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/denovo_61_247/aat0

00_09_05.200_v1_3 -abinitio:relax -relax:fast -abinitio::increase_cycles 10 -
abinitio::rg_reweight 0.5 -abinitio::rsd_wt_helix 0.5 -abinitio::rsd_wt_loop 0.5 
-use_filters true -psipred_ss2 
/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/denovo_61_247/t000

_.psipred_ss2 -kill_hairpins 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/denovo_61_247/t000

_.psipred_ss2 -nstruct 10 -out:file:silent 
/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/denovo_61_247/mode

ls/${seed}_silent.out 

 

 

Extract PDBs from silent files 

cat binary.ls | awk '{system(" 

/dors/meilerlab/apps/rosetta/rosetta_2014.35.57232/main/source/bin/score.linuxg

ccrelease -in:file:silent "$1" -in:file:silent_struct_type binary -

in:file:fullatom -out:output -out:pdb -out:file:fullatom -out:prefix "$2" ")}' 

 

Add SEQRES lines to the PDB 

cat pdbs.ls | awk '{system("dssp2 -i "$1" -o "$2".dssp ")}' 

cat pdbs.ls | awk '{system("dssp2pdb "$2".dssp "$2".pdb > "$2".dssp.pdb ")}' 

cat pdbs.ls | awk '{system("/hd0/putnamdk/workspace/bcl-

testing/build/linux64_release/bin/bcl-apps-static.exe protein:PDBConvert 

"$2".dssp.pdb -bcl_pdb -output_prefix "$2"_")}' 

 

Score Models with Q3 metric 

cat bcl_models.ls | awk '{system("/dors/meilerlab/home/heinzes1/bin/ssstat -r 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/r61247/fold/denovo_61_24
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7/models/"$1" -s 
/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/r61247/fold/r61247A.SSPr

edHighest_CONSENSUS.pool &> "$1".out")}' 
 
 

Homology modeling with Rosetta 

#!/bin/bash 
#SBATCH --mem=2000mb 
#SBATCH --time=3:00:00 
#SBATCH --nodes=1 
#SBATCH -o 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/homology/output/lo

g.txt 

  
export 

LD_LIBRARY_PATH=/dors/meilerlab/apps/Linux2/x86_64/gcc/4.8.2/lib64/:/dors/meile

rlab/apps/rosetta/rosetta-

3.5/rosetta_source/build/src/release/linux/2.6/64/x86/gcc/4.7/default/:$LD_LIBR

ARY_PATH 

  
seed=$SLURM_JOBID 
model="8" 

  
/dors/meilerlab/apps/rosetta/rosetta-

3.5/rosetta_source/bin/loopmodel.default.linuxgccrelease -s 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/homology/model_0${

model}/threaded_1weo_mod${model}_A.pdb -loops:fa_input -loops:loop_file 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/homology/Cesa_.loo

ps -loops:frag_sizes 9 3 1 -loops:frag_files 
/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/homology/aat000_09

_05.200_v1_3 

/dors/meilerlab/home/putnamdk/Oakridge/zinc_finger_new/ZfvrA/homology/aat000_03

_05.200_v1_3 none -loops:remodel quick_ccd -loops:refine refine_kic -

loops:extended true -loops:idealize_after_loop_close -loops:relax fastrelax -
loops:fast -ex1 -ex2 -database /dors/meilerlab/apps/rosetta/rosetta-

3.5/rosetta_database -nstruct 100 

 

Rosetta on Titan 

#!/bin/bash 
#PBS -l walltime=2:00:00 
#PBS -o output/ 
#PBS -l nodes=5 
#PBS -A BIP124 
#PBS -j oe 

  
cd $MEMBERWORK/bip124/ 
seed=`cat /dev/urandom|od -N4 -An -t u` 

  
aprun -n 80 
$MEMBERWORK/bip124/rosetta_bin_linux_2015.39.58186_bundle/main/source/bin/minir

osetta.linuxgccrelease -run:protocol broker -broker:setup 

$MEMBERWORK/bip124/setup_init.tpb -nstruct 80 -out:file:scorefile score.fsc -
in:file:fasta $MEMBERWORK/bip124/ZfvrA.fasta -in:file:frag3 

$MEMBERWORK/bip124/aat000_03_05.200_v1_3.txt -in:file:frag9 

$MEMBERWORK/bip124/aat000_09_05.200_v1_3.txt -symmetry:symmetry_definition 

$MEMBERWORK/bip124/c2_denovo.sym -database 

$MEMBERWORK/bip124/rosetta_bin_linux_2015.39.58186_bundle/main/database/ -

out:pdb -out:prefix ${seed} -relax:fast -relax:jump_move -
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symmetry:initialize_rigid_body_dofs -fold_and_dock::rotate_anchor_to_x -

rg_reweight 0.001 -rigid_body_cycles 1 -abinitio::recover_low_in_stages 0 -
rigid_body_frequency 5 -rigid_body_disable_mc -
run:reinitialize_mover_for_each_job 
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