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Chapter 1

The Standard Model and the Fine Tuning Problem

The Standard Model (SM)[1, 2, 3] as currently formulated describes (in some cases)
with incredible accuracy the properties and behavior of the building blocks of matter. De-
spite the precision with which the SM describes parts of the known universe, there is ex-
perimental evidence suggesting the SM is incomplete. For example, the SM as currently
constructed does not provide a viable dark matter candidate which is compatible with mea-
surements from astronomy/cosmology.

The SM states that matter is made up of 12 fermions. The distinguishing characteris-
tic of the SM fermions is their 1

2 spin. Due to their intrinsic half-integer spin, fermions
obey Fermi-Dirac Spin statistics. As a consequence, fermions obey the Pauli Exclusion
Principle, restricting their ability to share coordinates in space-time.

The twelve fermions can be divided first into two groups of six quarks and six leptons.
The distinguishing characteristic of the quarks is that they have color charge, which means
they participate in the strong force. The six leptons are colorless. As a consequence, they
don’t interact with the strong force. The quarks and three of the six leptons have electric
charge and interact with both the electromagnetic force and the weak force. The remaining
three leptons, known as neutrinos, have neither color charge nor electric charge. They only
interact with the weak force 1, making them incredibly difficult to detect.

These twelve fermions interact by exchanging information mediated by four types of
spin-1 bosons. Bosons all have integer spin and therefore obey Einstein-Bose statistics. At
the quantum-mechanical level, the properties of the exchange of information via bosons
explains the fundamental forces. The spin-1 bosons responsible for force mediation are
the photon, the Z boson, the W± bosons and the gluon. The gluons mediate the strong
force, while the remaining three spin-1 bosons are responsible for the electroweak force. In
addition to the four spin-1 bosons, there is an additional spin-0 boson, the Higgs boson[4].
The Higgs boson is predicted by the addition of the Higgs mechanism to the SM. The Higgs
mechanism gives rise to the masses of the W and Z bosons and is described in more detail
later.

The twelve fermions and five bosons described above form the basis of the SM. The
SM describes the universe in terms of the gauge groups SU(3)C×SU(2)L×U(1)Y, which
dictate the intrinsic symmetries of the model such that any physical state must be invariant
under a space-time dependent phase transformation. Within this formulation, the gauge
group SU(3)C represents the interaction of colored particles via the strong force. The
remainder of the SM gauge groups, SU(2)L×U(1)Y, represents the electroweak force.

As mentioned previously, there are unresolved inconsistencies between SM predictions
and experimental observations at the microscopic scale (where the gravitational force has

1An astute reader will note neutrinos also interact gravitationally. The SM does not explain gravity and
the effects of gravity at the microscopic scale are small enough to be negligible. For these reasons, this paper
neglects gravity.

1
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Figure 1.1: Example Higgs self-energy correction due to t quarks

negligible effect). These inconsistencies have led to a number of proposed extensions to
the SM. Supersymmetry (SUSY) is one of these extensions and the subject of this analysis

A particularly illustrative issue with the SM that SUSY attempts to address is known as
the “Fine-Tuning Problem.” This is closely related to another problem named the “Hierar-
chy Problem.” In the sections that follow, the fine-tuning problem is outlined in the context
of the Higgs boson. To motivate a possible solution, this paper first describes a similar but
analogous example. After examining this example and its solution, we will then introduce
SUSY and motivate why it could fix the fine-tuning problem in the context of the Higgs
boson.

1.1 The Mass of the Higgs Boson, Attempt 1

The observed mass of a particle is a combination of the true or ‘bare’ mass and ad-
ditional contributions from self-energy effects. Each particle creates a field around itself
based on its charges; this field then interacts back with the particle that created it. This
self-interaction between the particle and the field it generates has the effect of changing the
effective mass of the particle, which is what we observe. Since the observed mass is a com-
bination of the bare mass and the self-energy from its fields, the bare mass can’t be directly
measured. Consider first the bare mass of the newly-discovered Higgs boson. The ob-
served mass of the Higgs (mH) is known via experimental observation to be mH ≈ 125GeV.
This observed mass is a combination of the bare Higgs mass (m0) and contributions from
self-energy effects. These self-energy (Esel f ) effects can be described via Quantum Field
Theory (QFT). Without loss of generality, we consider only the dominant term, which is
the contribution from loops of virtual t quarks (δmt). An example of this contribution is
shown in Figure 1.1. The sum of these contributions results in the following expressions
for the value of mH

m2
H = m2

0 +E2
sel f (1.1)

m2
H ≈ m2

0 +δm2
t (1.2)

The value of mH is known experimentally, δmt is known via QFT and m0 is an unknown
parameter. To find m0, we compute δmt via QFT and solve Equation 1.2. The contribution
from loops of t quarks depends on the cutoff scale Λ and the quark mass mt . Λ is a theo-
retical tool to prevent our model from blowing up when modeling very large momenta (or,
equivalently, very small lengths). Since it is assumed this theory breaks down at the Planck
scale, we set Λ ≈ 1019 GeV. Finally, gt ∝ ht and ht ≈ 1 is the t quark Yukawa coupling
constant.

2
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Figure 1.2: Example electron self-energy correction due to the Coloumbic field

δm2
t ≈+g2

t

∫
Λ

Λ0

d4k
k2 ≈+g2

t (Λ
2 +m2

t ) (1.3)

With these values, the contribution from δm2
t and ends up being around 1036 GeV2. Sub-

stituting known values, Equation 1.2 becomes:

104 GeV2 = m2
0 +1036 GeV2 (1.4)

To produce the observed 125GeV Higgs mass mH , m2
0 is approximately −1036 GeV2. Ne-

glecting the fact that m2
0 is negative (requiring m0 to be imaginary), this heretofore unknown

constant has to be tuned to an incredible precision. Though there is nothing physically re-
stricting such a precise value of m2

0, this seems unnatural. This unnaturalness is known as
the ‘Fine-Tuning Problem’.

The electron mass also suffered from fine-tuning, the solution to that problem instructs
our efforts with the Higgs mass. The next section describes this case further.

1.2 The Mass of the Electron

The electron mass suffers from a similar fine-tuning problem. Like the Higgs, the
observed mass (me) of the electron consists of a contribution from both the bare mass (m0)
and its self-energy (Esel f ). Similar to the Higgs case, we consider only the dominant term
of the self-energy: the energy resulting from the Coloumbic field produced by the electron’s
electrical charge. Following the same prescription as Equation 1.2, the relationship which
determines the electron mass is:

m2
e ≈ m2

0 +δm2
Coloumb (1.5)

This Coloumbic field consists entirely of the emission and reabsorption of virtual pho-
tons, such as Figure 1.2. This Coloumbic field is analogous to a Higgs field generated only
from the emission and reabsorption of virtual t quarks.

Like before, to find the bare mass of the electron requires the observed mass and the
contribution from self-energy corrections. The observed electron mass is m2

e = 10−1 GeV2

while the self-energy correction is δm2
Coloumb = 1010 GeV2. This yields a bare mass of

m2
0 = −1010 GeV2. This m2

0 is also unnatural, requiring a value 11 orders of magnitude
larger than m2

e , tuned to a precision of 1011.
In both cases, there appears to be a missing contribution to the self-energy correction

which drives its value to an unnaturally large range. In a more ”natural” scenario, the miss-
ing contribution(s) would be roughly the same magnitude as the existing correction(s) but
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Figure 1.3: Selected electron self-energy correction terms due to the augmented Coloumbic
field. The e+ in the second diagram are produced elsewhere via quantum vacuum fluctua-
tions.

with the opposite sign. The dominant term of our corrections results from loops of a virtual
boson. One solution supplements the dominant term by including loops of a new, distinct,
possibly fermionic, particle. If an appropriate particle could be found, its contribution(s)
might nearly cancel the existing correction. With the dominant term suppressed, the bare
mass could then settle to a more natural value.

For electrons, there is an elegant solution. First theorized as a consequence of the Dirac
equation, the positron provides the necessary cancellations to δmColoumb. The positron is
the anti-partner of the electron; it shares all of its properties except the sign of its electric
charge is flipped. The first Coloumbic field consisted only of electrons emitting and reab-
sorbing virtual photons. Adding positrons and the quantum mechanical effect of vacuum
fluctuations gives more possibilities. A nearby vacuum fluctuation could produce a virtual
electron-positron pair and the positron could interact with our real electron to annihilate
and produce a photon. A selection of diagrams for this modified Coloumbic field can be
found in Figure 1.3.

Adding the effects of virtual positrons to the Coloumbic field has the desired effect.
These positrons interact with electrons and photons which contribute additional terms to
δmColoumb. These new terms have the effect of canceling the contribution from our old
terms. These additional terms cause the fine-tuning problem to vanish, leaving a bare mass
consistent with the observed mass.

In effect, the simple existence of a heretofore unknown particle influences the behavior
of previously known particles.

1.3 The Mass of the Higgs Boson - A Motivation for SUSY

The treatment of the electron case is instructive to the Higgs case. The bare mass of
the Higgs boson is dominated by the seemingly unnatural δmt . If another particle existed
whose contributions cancelled δmt , the self-energy and bare mass terms of the Higgs mass
equation would settle towards more natural values.

At this point, the SM falls short. For the electron mass, the chiral degree of freedom
(e.g. left-chiral, right-chiral) produced the positron. Due to the symmetry between the elec-
tron and positron, their combined contributions to the electron self-energy nearly exactly
cancel out. Within the SM, there are no degrees of freedom which produce particles with
the necessary properties to correct the Higgs self-energy. This motivates extensions to the
SM like SUSY.

In general terms, SUSY proposes an additional degree of freedom in the form of a new
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Figure 1.4: Augmented Higgs self-energy loops due to t quarks and hypothesized t̃ squarks.
The t̃ squarks are bosonic superpartners of t quarks.

symmetry. SUSY isn’t a single theory. It could be more accurately described as a collection
of theories that all share this common new symmetry, but differ on their mathematical for-
mulations and predicted effects. Being the latest proposed symmetry, this new symmetry is
known as a supersymmetry and is the source of the name SUSY2. These supersymmetries
produce new superpartners of the already-known SM particles. High-energy physicists
search for SUSY by either detecting superpartners directly or by indirectly searching for
the effects of superpartners which are not included in the SM.

A difficulty with searching for SUSY is the sheer number of possible forms it could
take. Within the SUSY umbrella are several different mathematical formulations, each with
different predictions and signatures. Worse, even if it were known that a specific SUSY
theory is correct, SUSY theories typically contain many free parameters, making it difficult
to obtain enough independent experimental measurements to discriminate amongst various
scenarios. In practice, searching for new SUSY hypothetical particles can be simplified
with the knowledge of other similar new particles. However, to date none of these supposed
superpartners have been detected3.

SUSY describes a symmetry between fermions and bosons. If such a symmetry exists,
each SM spin-1 boson would gain a spin-1

2 fermionic superpartner and each SM spin-1
2

fermion would gain a spin-1 bosonic superpartner. A key difference between fermions and
bosons is that the loop self-energy corrections to the Higgs mass from fermions and bosons
contribute with opposite signs.

Revisiting the Higgs mass fine-tuning problem, adding superpartners to the model adds
a new set of self-energy correction terms. These new self-energy correction terms would
resemble Figure 1.4. Since superpartners behave like their SM counterparts with their
boson/fermion identity flipped, their contributions to the self-energy term of the Higgs
mass will resemble the positron’s contribution to the electron self energy.

Returning to Equation 1.2, we originally calculated the Higgs mass using the bare mass
and contribution to the self-energy from t quark loops. Adding the correction from the
proposed t superpartner (known as the top squark, ‘stop’, or t̃) leads to:

m2
H = m2

0 +δm2
t +δm2

t̃ (1.6)

2See also: wordplay.
3Unless the Higgs boson detected in 2012 is itself supersymmetric. At this time, it is unclear whether or

not that is the case. For simplicity, this paper presumes the Higgs boson discovered in 2012 is the SM Higgs
and not a SUSY Higgs.
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and mt̃ is the t̃ mass, gt̃ ∝ ht̃ , and ht̃ ≈ 1 is the t̃ squark Yukawa coupling constant.
The difference in sign between δm2

t̃ and δm2
t is important. The sign change results

from the top being a fermion and top squark being a boson. The sum of these self-energy
contributions yields their combined cancellation

δm2
t +δm2

t̃ ≈ Λ
2(g2

t −g2
t̃ )+g2

t m2
t −g2

t̃ m2
t̃ (1.9)

If the t and t̃ have similar properties (g2
t ∼ g2

t̃ and m2
t ∼m2

t̃ ), their combined contribution
δm2

t +δm2
t̃ will nearly exactly cancel out. Many SUSY theories predict g2

t ∼ g2
t̃ , while m2

t
is very loosely bounded. If, for instance, this cancellation is nearly complete,

m2
H ∼ m2

0 (1.10)

demonstrating the naturalness of our new bare Higgs mass. This naturalness argument is
based on the assumption m2

t ∼ m2
t̃ , which motivates a ‘light’ t̃ scenario. This scenario is

attractive since lighter superpartners are predicted to have larger cross-sections than super-
partners with greater mass. Conversely, if m2

t �m2
t̃ , the cancellation of δm2

t +δm2
t̃ remains

incomplete and m2
0 remains somewhat unnnatural. This residual unnaturalness is known as

the little fine-tuning problem, and is the subject of intense theoretical research. Due to its
relative simplicity, this analysis focuses on the light t̃ scenario.

For simplicity’s sake, this example only considered the corrections due to t quarks.
Extending this example to the complete self-energy correction shows similar cancellations
between SUSY superpartners and their SM counterparts. These additional terms to the
Higgs field cause the total self-energy correction to nearly cancel itself out, leaving the
bare mass at a more natural value. This elegant solution to the Higgs mass fine-tuning
problem is one of the motivations behind light top-like partners in Beyond the Standard
Model (BSM) scenarios.
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Chapter 2

Searching for SUSY

Before delving into the details of this analysis, two points need to be made with regards
to SUSY:

1. SUSY predicts the existence of many superpartners.

2. No superpartners have been observed.1.

The fact that no superpartners have been observed after several decades of searches
implies that if SUSY were true, these superpartners must be difficult to find. They could
be rarely produced at previously studied energies, they could be difficult to detect within
the background of SM processes or, more likely, a combination of the two. Producing
more superpartners is infeasible, the LHC is built. Increasing the production rate through
an increase of the energy or luminosity of the accelerator will have to wait until either
the LHC is upgraded or a new accelerator is built. What remains is to increase the signal
detection efficiency and to understand and reject the backgrounds so statistically significant
signals can be observed.

A common problem with all hadron colliders is the amount and complexity of back-
grounds they produce. At a lepton-lepton collider, the energy of the colliding particles can
be known reasonably well and the initial hard scattering processes are colorless, leading to
less complex events. Compared with lepton colliders, hadron colliders like the LHC have
three main problems: the initial state of the collisions aren’t well-defined, many gluons
are produced via initial and final state radiation, and the collisions themselves are a QCD
process.

Though the energy of the protons are known, the collisions occur between the quarks
and gluons (collectively referred to as partons) within the protons. The energy of the col-
liding partons is known only probabilistically – an 8TeV proton could contribute a 1TeV
quark to the collision, or it could contribute a 1MeV quark. In practice, the true rate of a
process involves the probability of the process itself convoluted with the probability dis-
tribution function (PDF) of the parton momenta. Compared with lepton colliders, whose
collision energy is very close to the nominal energy of the accelerated particles, hadron
colliders have a wide distribution of collision energies for a given energy of accelerated
particles.

Along with the ambiguity of the energy of the initial state, hadron collisions produce a
lot of hadronic jets, which are difficult to reconstruct and filter out. Both before and after
the collision, relativistic particles emit radiation. This radiation is known as Initial State
Radiation (ISR) and Final State Radiation (FSR). In a lepton-lepton collider, the predomi-
nant ISR/FSR is in the form of photons emitted by the relativistically colliding leptons. The
relatively simple signature of photons makes their reconstruction straightforward. During

1Excluding the possibility the Higgs boson in 2012 is the Higgs superpartner and not the SM Higgs itself
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hadron collisions, the incoming and outgoing partons radiate gluons. These gluons then
hadronize into jets which travel to the detector. Compared with photon reconstruction, jet
reconstruction has large uncertainties. Worse, many interesting processes have jets in their
final states. Accurately reconstructing these processes necessarily involves identifying and
suppressing contributions from ISR and FSR. This is a profoundly difficult process.

Finally, after accounting for the difficult conditions leading up to the hard-scattering
process, the actual collision of hadrons is a QCD process involving interacting partons. The
partons interact overwhelmingly via QCD and only very rarely via the electroweak force.
This creates an enormous QCD spectrum which must be understood and suppressed to
study processes involving electroweak interactions. For example, at 8TeV, the production
rate of purely QCD hard interactions is three orders of magnitude larger than the W + jets
production rate or six orders of magnitude larger than the Higgs production rate.

Despite these difficulties, hadron colliders are still built. The data produced with a
hadron collider is more difficult to analyze, but there is a tradeoff. It is much more
cost-effective to build a hadron collider at very high energies compared with a similarly
equipped lepton collider. Along with the higher energies accessible to hadron colliders,
they tend to be more luminous, causing more collisions per unit time than their lepton
counterparts.

The Large Electron Positron (LEP) collider at CERN was the most energetic lepton
collider before its decommissioning in 2001. Through a series of upgrades from 1989-
2001, LEP had a maximum energy of 209GeV. Even at its peak energy, LEP was unable to
produce pairs of Higgs bosons (125GeV) or top quarks (173GeV), much less any heavier
particles that may exist beyond the SM. By comparison, the LHC’s design 14TeV center-
of-mass energy could theoretically produce pairs of 7TeV particles, extending the reach for
new physics far beyond what was previously possible. At the same time, the collisions will
be far more complex than a lepton collider. To take advantage of the additional reach of
the LHC, a method to accurately classify events in spite of their complexity must be used.
This analysis leverages data from the 2012 run of the Compact Muon Solenoid (CMS)
detector at CERN and an innovative technique known as Simultaneous Heavy Flavor and
Top (SHYFT). SHYFT improves upon previous searches by using as much of the infor-
mation available. Along with the precision provided by performing a simultaneous fit of
all events from all processes, SHYFT’s performance has produced the lowest-uncertainty
measurements of the top quark cross section at both the CDF experiment at the Tevatron[5]
and later with the 2011 7TeV data from CMS[6]. The use of SHYFT in this analysis is
summarized in Section 2.1. SHYFT itself is further described in detail in Chapter 7.

The signal probed in this analysis is a hard-scattering event producing a pair of stop
squarks, (̃t t̃∗) which decay into a pair of b-quarks, neutrinos (ν), τ-leptons, and neutralinos
(χ̃0). SUSYs free parameters allow the masses of the superpartners to also be freely chosen.
The following decay chain is then simulated

t̃ t̃∗→ bb+ χ̃
+

χ̃
−→ bb+νν + τ̃ τ̃

∗→ bb+νν + ττ + χ̃
0
χ̃

0 (2.1)

where ∗ denotes antiparticles of SUSY particles (ex τ̃∗ is the antiparticle of τ̃). This decay
is represented in Feynman diagram form in Figure 2.1

The bb in the final state hadronizes into jets whose decay products are detected re-
constructed. The νν and χ̃0χ̃0 pass through the detector undetected, resulting in missing
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Figure 2.1: Our chosen t̃ t̃∗ decays. Events with exactly one muon and no electrons are
selected by this analysis. The τ-leptons are metastable during the hard interaction and can
produce these additional leptons when they decay later.
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transverse energy (ET/ ). The τ leptons themselves are semi-stable. They travel a short dis-
tance then decay either hadronically (approximately 64% of the time) or leptonically. Taus
that decay leptonically are unable to be reconstructed as taus (since the final state is an
electron or muon and two neutrinos), however we accept events with exactly one muon
and no electrons to allow for the case where one of the taus decays leptonically. A pro-
cess known as ‘b-tagging’ identifies the jets as being produced from the hadronization of
b-quarks, distinguishing them from jets produced from the hadronization of other quarks
or gluons.

ET/ is the transverse component of the energy misbalance in the detector. If all particles
passing through the detector had their energy perfectly measured, the total ET/ of the event
would be zero. Any particles which pass through the detector undetected or any energy
mis-measurement will show up as a change in ET/ . The signal final state has two ν and
two χ̃0 which causes events to have a very large ET/ . Several of the predominant SM
backgrounds have no ‘true’ ET/ , meaning any measured ET/ is from detector effects and
not from particles escaping the detector undetected. This analysis removes a large fraction
of background events with minimal loss of signal events by selecting only events with a lot
of ET/ . Importantly, this ET/ cut rejects nearly all QCD events, which would otherwise pose
significant difficulties.

With this analysis’ event selection, the predominant backgrounds of this analysis are tt,
W + jets, Z + jets, single top, diboson (WW , WZ, ZZ) and multijet QCD production. In
bulk, the kinematic distributions for many of these backgrounds are both similar to each
other and the signal. Attempting to assign a portion of the overall contribution to two
different processes whose kinematic effects are similar leads to degeneracies which are
difficult to resolve. SHYFT exploits the distributions of the number of jets, the number of
jets determined to be from the decay of a b-quark, and the number of τ leptons (N jet ,Nb,Nτ )
to remove these degeneracies, leading to a more precise estimate of the numbers of events
of each process.

2.1 Overview of this Analysis

This paper describes a SHYFT-based search for t̃ in 8TeV proton-proton collisions
produced in 2012 by the LHC and recorded by the CMS detector. The approach used in
this analysis, called Simultaneous Heavy Flavor and Top (SHYFT) is an evolution of a
technique pioneered at the Tevatron and later refined at CMS for the measurement of the
tt cross section[6]. SHYFT performs a simultaneous global fit of all relevant simulations
to data. The result of this fit is an estimate of the number of events contributed by each
simulated process to the data.

Key to the power of SHYFT is the method used to match simulation to the data. The
final SHYFT fit is four dimensional. Three of the dimensions encode information about
the final states: the number of jets, the number of b-tagged jets, and the number of τ

leptons which decay hadronically. These three dimensions form a grid of what are called
jet/tag/τ buckets. For example, the (4-jet, 1-tag, 1-tau) bucket contains all of the events
with four jets, one b-tagged jet, and one hadronically-decaying τ lepton. Note that ‘4-jet’
is an inclusive count, it includes the number of b-jets as well as jets resulting from the
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hadronic decays of τ leptons. Finally, each bucket is a one-dimensional histogram of a
kinematic quantity of the events in the data and simulated samples.

The events produced by the LHC are both complex and numerous. Identifying sig-
nal is difficult, extracting a statistically-significant signal from the numerous backgrounds
is daunting. For example, the cross-section of W + jets at 8TeV is six orders of magni-
tude greater than the predicted cross-section of t̃ t̃∗-pairs at the same energy. One common
technique is to select signal and control regions designed to extract a very pure sample of
different processes, then fit each region in sequence to eventually extract the rates of the
different processes.

There are a few difficulties with this method. Unless event selection alone can produce
a single region with all of the signal, the presumably scant number of signal events will be
diluted into the control regions. Those signal events in the control regions are effectively
missed sensitivity.

Additionally, propagating rates between the various regions can be problematic. If
an event yield is estimated in region A, there’s an uncertainty involved with propagating
that event yield to region B. There are problems with estimating correlated rates as well.
If two similar backgrounds have significant contributions in multiple regions, examining
each region in sequence can lead to different results depending on the order in which the
regions are examined.

The SHYFT method instead uses as much information as posible about the events’
final states to discriminate between the signal and various backgrounds. It does this by
separating the events into many non-overlapping buckets based on their final states, and
not excluding impure buckets. Separating events this way, then fitting all regions simul-
taneously allows what would normally be considered contamination to contribute usefully
to the measurement of all of the rates. This global simultaneous fit also abrogates the
difficulties seen with producing distinct regions and fitting them in sequence.

The final state of the t̃ t̃∗-pairs proposed in the model used by this analysis consists of
two b-jets, two τ leptons and ET/ resulting from the two ντ and two χ̃0 passing through the
detector. This somewhat unique final state is distinct from the predominant backgrounds
and directs this analysis. Some backgrounds (W + jets, tt, etc) produce the same basic
signature, but there are several characteristics which distinguish t̃ t̃∗ events from these
backgrounds. W + jets events can produce the required muon, jets, and ET/ , but produce
few energetic jets. Every tt event has two b-jets, but they produce comparatively fewer τ

leptons and have different kinematic characteristics.
The signal and backgrounds therefore have different distributions in jet/tag/τ-space.

Fitting all of the data simultaneously not only informs the fit of the kinematic distributions
of each event, but of their relative contributions to different final states. It is this additional
information that allows SHYFT to produce measurements with such low statistical uncer-
tainties. In addition, some systematic uncertainties themselves can be modeled by a shift
in event content in jet/tag/τ-space. This process helps SHYFT produce very competitive
measurements compared with its peers.

SHYFT is described in more detail in Chapter 7.
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Chapter 3

b-Tagging

The presence of b-quarks in the final state of the hard-scattering process enables bet-
ter discrimination between the signals and backgrounds. A vast number of backgrounds
produce jets that arise from the hadronization of light-flavored (non-b) quarks, but compar-
atively fewer have b-jets. Distinguishing between jets produced from the hadronization of
b-quarks and jets produced from the hadronization of light quarks is critical to reducing the
otherwise overwhelming amount of background.

The decays of b-quarks are characterized primarily by the large masses, long lifetimes,
and daughter particles with hard momentum spectra. These properties, combined with the
performance of the CMS detector led to the creation of a number of algorithms which ex-
ploit these differences to distinguish between b-jets and light-jets . Due to the prevalence
of b-jets in CMS analyses, these algorithms have been refined extensively to provide not
only high efficiency (meaning there are comparatively few b-jets that are un-tagged) but a
low misidentification probability (meaning comparatively few light-flavor jets are tagged
as b-jets). The Combined Secondary Vertex (CSV) algorithm uses secondary vertex infor-
mation combined with additional information from tracking and calorimetry to determine
the flavor of jets.

This analysis uses the CSV b-tagging algorithm to tag b-jets. This algorithm was chosen
for its high b-tagging efficiency and low mistagging performance over the ranged of jet
momenta. The algorithm is described in full below.

3.1 Combined Secondary Vertex b-tagging Algorithm

3.1.1 Introduction

The CMS collaboration developed a number of b tagging algorithms each designed to
exploit a particular trait of b quarks to aid in their identification. For data recorded in the
2011 run, a menu of different taggers based on the presence of secondary vertices, soft lep-
tons, or energetic tracks were each maintained. The state of the art has continued to evolve
and newer taggers that combine multiple of these discriminating traits were developed for
the 2012 run and beyond.

The combined secondary vertex (CSV)[7] algorithm is one of these next-generation
taggers, exploiting both secondary vertex and track kinematic variables combined with a
multivariate analysis (MVA) technique. An offline process run by the btag Physics Object
Group (POG) trains the MVA using representative samples to generate calibrations which
are stored in the CMS Conditions Database (CondDB). Once this is complete, the b tagger
calibrations can be loaded in future jobs by loading the calibrations along with the rest of
the detector alignment and calibration conditions from CondDB. The online portion of the
tagger uses this calibration to generate a discriminator for each jet, corresponding to the
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confidence that a particular jet is from the decay of a b quark or not.

Figure 3.1: Schematic overview of the b tagging framework.

3.1.1.1 Training object selection and vertex type

The training step uses Particle Flow (PF)[8] jets as reconstructed by the AK5 jet algo-
rithm, meaning the jets pass the anti-kT [9] clustering algorithm with a cone size of R = 0.5.
Corrections for pile up, electronic noise, η and pT are applied to the jets. Finally, quality
cuts are applied to limit the number of jets that don’t originate from the hadronization of
quarks. We require:

• neutralHadronEnergyFraction < 0.99

• neutralEmEnergyFraction < 0.99

• nConstituents > 1

• chargedHadronEnergyFraction > 0

• chargedMultiplicity > 0

• chargedEmEnergyFraction < 0.99

The neutral (charged) energy fractions are the proportion of energies deposited in the
hadronic (electromagnetic) calorimetry. Requiring a mixture of neutral and charged energy
deposits decreases contributions from mesons, who otherwise resemble b-quarks.

One key feature that is used to categorize jets is the vertex category. If there are three
of more tracks and a secondary vertex is reconstructed, the jet belongs to the ‘RecoVertex’
categroy. if there are three or more tracks reconstructed, but there no secondary vertex can
be reconstructed, an attempt is made to reconstruct a ‘PseudoVertex’ consisting of tracks
with a signed 2D impact parameter significance of at least 2. If the jet fits into neither of
the two previous classifications, it will end up in the ‘NoVertex’ category.
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A key feature of the CMS detector is its very finely segmented silicon tracking subde-
tector. Particles which interact electromagnetically with the active detector material deposit
hits. These hits are reconstructed as tracks and possibly secondary vertices. The MVA has
input variables pertaining to the secondary vertex (if any) and impact parameter informa-
tion. The impact parameter information is stored for tracks fulfilling the requirements:

• pT > 1 GeV

• ≥ 8 valid hits in the tracker

• ≥ 2 valid hits in the pixel detector

• norm. χ2 < 5

• distance between the track and the primary vertex in the transverse plane is required
to be less than 0.2 cm

• distance between the primary vertex and the z-position of the track should be less
than 17 cm

Requiring several hits in the tracker and pixel detector ensures the tracks are of good
quality. Additional requirements are imposed on the tracks used for secondary vertex re-
construction. Only high purity tracks are used fulfilling the following requirements in
addition to the previous requirements:

• ∆R(~p jet ,~ptrack)< 0.3

• distance between track and jet axis < 0.2

Secondary Vertices (SV) are reconstructed using the Adaptive Vertex Reconstruction
algorithm. During the hard interaction, b-quarks can be produced. These quarks pro-
duce intermediate mesons which then travel several microns before the b-quarks decay and
hadronize. The distance between the primary and secondary vertex is characteristic of the
decay of b-quarks. The CSV algorithm uses the SV information if it exists to enhance the
detection of b-quarks.

The reconstructed secondary vertices are filtered according to the following require-
ments:

• |mvertex(tracki,trackj)−mK0|> 0.05 GeV

• # tracks ≥ 2

• mass of the weighted vector sum of all tracks < 6.5 GeV

• ∆R(vertex, jetaxis)< 0.5

• fraction of tracks shared with Primary Vertex (PV) < 0.65

• 2D vertex flight distance > 0.01 cm

• 2D vertex flight distance < 2.5 cm
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• 2D vertex flight significance > 3.0

The training trees that contain the track and vertex variables are only filled for jets with
at least 3 tracks for which the impact parameters’ information was stored. Afterwards,
additional track selection cuts are applied, which might result in jets having less than 3
tracks and even jets without tracks, later referred to as ‘trackless’. The additional criteria
are:

• ∆R(~pjet,~ptrack)< 0.3

• distance between track and jet < 0.07 cm

• distance between Principle Component Analysis (PCA) of track and PV < 5 cm. The
PCA is roughly the transverse distance between the track and the PV at its closest
approach.

• |mtracki,trackj−mK0|> 0.03 GeV

These additional track selection cuts only affect the variables constructed from tracks.
Hence, the variables that are retrieved from the secondary vertex information are not af-
fected.

From this menu of available variables for different vertex classes, the CSV training uses
only a subset of these variables which are chosen. Care is taken to keep from using variables
that are known a priori to be correlated to each other, since these correlations can bias the fit
by providing the same information twice. Table 3.1 provides a list of the available and used
variables for each vertex class while Figure 3.2 shows the correlations between selected
variables for two different vertex classes. Note the large correlation between the vertex
mass and the signed impact parameter significance of the track that raises the total mass of
the vertex above the charm quark mass and the pseudo vertex mass. This could indicate
that the reconstructed pseudovertex is the vertex of a D-meson decay. Future studies will
reevaluate the choice of variables and see if further optimization can be achieved.

3.1.1.2 Jet (pT ,η) reweighting

By design, we don’t want the training to explicitly learn anything from the jet pT and
η . On the other hand, we have to calculate a weight for each jet depending on its pT and η .
This prevents, for instance, high pT jets being tagged more often as b jets simply because
jets that originate from b quarks have on average a higher pT than other jets (b quarks are
more massive than lighter quarks by about 4 GeV/c2). The other track and secondary vertex
variables might themselves be correlated to the jet kinematics, but this is taken into account
by performing the training in a number of (pT,η) bins.

To produce these weights, data is broken into a number of histograms for each vertex
class (‘RecoVertex’,‘PseudoVertex’ and ‘NoVertex’) and jet flavor (b, c and light). These 9
histograms are then divided into 50 bins of η and 40 bins of pT. The weight of each jet is
defined as the inverse of the bin content of the bin described by (vertex class, jet flavor, pT,
η).
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Table 3.1: The input variables available for the CSV training for the different vertex cate-
gories. A variable that is labeled as available could be used in the training, but is not used
at the moment. Some variables do not exist for the NoVertex or PseudoVertex categories.
These variables are labeled with n/a.

Variable name RecoVertex PseudoVertex NoVertex
jetPt used used used
jetEta used used used
trackSip2dSig available available available
trackSip3dSig used used used
trackSip2dVal available available available
trackSip3dVal available available available
trackSip2dSigAboveCharm used used available
trackSip3dSigAboveCharm available available available
trackMomentum available available available
trackEta available available available
trackPtRel available available available
trackPPar available available available
trackEtaRel used used available
trackDeltaR available available available
trackPtRatio available available available
trackPParRatio available available available
trackJetDistVal available available available
trackDecayLenVal available available available
trackSumJetEtRatio available available available
trackSumJetDeltaR available available available
vertexMass used used n/a
vertexNTracks used used n/a
vertexEnergyRatio used used n/a
vertexJetDeltaR available available n/a
flightDistance2dSig used n/a n/a
flightDistance3dSig available n/a n/a
flightDistance2dVal available n/a n/a
flightDistance3dVal available n/a n/a
jetNSecondaryVertices available n/a n/a

16



Figure 3.2: Correlation between the variables that are used for the RecoVertex (upper) and
PseudoVertex (lower) categories.[7]
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Table 3.2: The pT and η bins used in the training.

Bin number pT range (GeV) |η | range
0 15 - 40 0 - 1.2
1 15 - 40 1.2 - 2.1
2 15 - 40 2.1 - 2.4
3 40 - 60 0 - 1.2
4 40 - 60 1.2 - 2.1
5 40 - 60 2.1 - 2.4
6 60 - 90 0 - 1.2
7 60 - 90 1.2 - 2.1
8 60 - 90 2.1 - 2.4
9 90 - 150 0 - 1.2

10 90 - 150 1.2 - 2.1
11 90 - 150 2.1 - 2.4
12 150 - 400 0 - 1.2
13 150 - 400 1.2 - 2.1
14 150 - 400 2.1 - 2.4
15 400 - 600 0 - 1.2
16 400 - 600 1.2 - 2.4
17 600 - ∞ 0 - 1.2
18 600 - ∞ 1.2 - 2.4

3.1.1.3 The different training steps

The CSV tagger trains twice, once for b vs c jets and once for b vs d, u, s, and g jets
(b vs dusg). The c jets can form D mesons which have long lifetimes, but their lifetimes
are still shorter than the B mesons from b jets. On the other hand, dusg jets don’t produce
long-lived intermediate mesons. The two trainings are thus optimized for these two cases
individually and then are combined to produce a single discriminator.

3.1.1.4 Training in bins of pT and η

As mentioned, the training is performed in different bins of pT and η . The bins in η

are defined by the detector geometry. |η | < 1.2 for jets in the barrel, 1.2 < |η | < 2.1 for
an intermediate region, and finally 2.1 < |η | < 2.4 for jets in the region with diminished
tracker efficiency. The pT ranges are then defined in a way that each bin has sufficient
statistics. For pT > 400, the forward two η regions are combined since few high pT jets
are produced in the forward region.

3.1.1.5 Likelihood ratio discriminator to combine the variables

Once the variables are translated into float values between 0.0 and 1.0, they are com-
bined with a likelihood ratio:
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LR = S/(S+B),

with

S =
n

∏
i=1

pd fsig,i(x
j
i ),

and

B =
n

∏
i=1

pd fbkg,i(x
j
i ),

where
pd fsig,i(x

j
i ),

and
pd fbkg,i(x

j
i )

are respectively the probability density functions for the signal and background distri-
butions of variable i for jet j. Figure 3.3 shows an example of the likelihood ratio of b
and dusg jets in the RecoVertex category. This likelihood ratio has sharp peaks at 0 and 1,
which decrease sensitivity. A normalization step transforms this likelihood ratio into a more
widely distributed ratio. The distribution after the transformation is shown in Figure 3.4.
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Figure 3.3: The likelihood ratio of b (red) and dusg (blue) jets in the RecoVertex category.

3.1.1.6 Combining the b versus c and b versus dusg trainings

Finally, the two neural networks which each discriminate between b vs c and b vs dusg
jets need to be combined. The separate discriminators are simply added with a fraction of
0.25 for b vs c and a fraction of 0.75 for b vs dusg jets. This relative contribution is based
on the fraction of c and dusg jets in the decay of W bosons into quarks. This combination
(and specific fractions) have been found to be applicable for a wide range of analyses[10].
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Figure 3.4: The normalized likelihood ratio of b (red) and dusg (blue) jets in the RecoVertex
category.
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Chapter 4

CMS Detector

This analysis uses data recorded in 2012 by CMS, which is one of two general-purpose
detectors for the LHC1. The central feature of the CMS apparatus is a superconduct-
ing solenoid [11] of 6 m internal diameter, providing a magnetic field of 3.8 T. Within
the superconducting solenoid volume are a silicon pixel and strip tracker[12, 13, 14], a
lead tungstate crystal electromagnetic calorimeter (ECAL)[15], and a brass and scintilla-
tor hadron calorimeter (HCAL)[16], each composed of a barrel and two endcap sections.
Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke out-
side the solenoid[17]. Extensive forward calorimetry complements the coverage provided
by the barrel and endcap detectors.

In the barrel section of the ECAL, an energy resolution of about 1% is achieved for
unconverted or late-converting photons in the tens of GeV energy range. The remaining
barrel photons have a resolution of about 1.3% up to a pseudorapidity of |η |= 1, rising to
about 2.5% at |η | = 1.4. In the endcaps, the resolution of unconverted or late-converting
photons is about 2.5%, while the remaining endcap photons have a resolution between 3
and 4% [18]. The HCAL, when combined with the ECAL, measures jets with a resolution
∆E/E ≈ 100%/

√
E [GeV]⊕5%.

In the region |η | < 1.74, the HCAL cells have widths of 0.087 in pseudorapidity and
0.087 in azimuth (φ ). In the η-φ plane, and for |η |< 1.48, the HCAL cells map on to 5×5
ECAL crystals arrays to form calorimeter towers projecting radially outwards from close
to the nominal interaction point. At larger values of |η |, the size of the towers increases and
the matching ECAL arrays contain fewer crystals. Within each tower, the energy deposits in
ECAL and HCAL cells are summed to define the calorimeter tower energies, subsequently
used to provide the energies and directions of hadronic jets.

Jets are reconstructed offline from the energy deposits in the calorimeter towers, clus-
tered by the anti-kt algorithm [19, 20] with a size parameter of 0.5. In this process, the
contribution from each calorimeter tower is assigned a momentum, the absolute value and
the direction of which are given by the energy measured in the tower, and the coordinates
of the tower. The raw jet energy is obtained from the sum of the tower energies, and the
raw jet momentum by the vectorial sum of the tower momenta, which results in a nonzero
jet mass. The raw jet energies are then corrected to establish a relative uniform response of
the calorimeter in η and a calibrated absolute response in transverse momentum pT.

The particle-flow event algorithm reconstructs and identifies each individual particle
with an optimized combination of information from the various elements of the CMS de-
tector. The energy of photons is directly obtained from the ECAL measurement, corrected
for zero-suppression effects. The energy of electrons is determined from a combination of
the electron momentum at the primary interaction vertex as determined by the tracker, the

1The author was not involved with the design, construction, or maintenance of the detector. This brief
description is the suggested description produced by the experiment and is here for completeness.
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energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung pho-
tons spatially compatible with originating from the electron track. The energy of muons is
obtained from the curvature of the corresponding track. The energy of charged hadrons is
determined from a combination of their momentum measured in the tracker and the match-
ing ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the
response function of the calorimeters to hadronic showers. Finally, the energy of neutral
hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

Jet momentum is determined as the vectorial sum of all particle momenta in the jet, and
is found from simulation to be within 5% to 10% of the true momentum over the whole
pT spectrum and detector acceptance. An offset correction is applied to jet energies to take
into account the contribution from additional proton-proton interactions within the same
bunch crossing. Jet energy corrections are derived from simulation, and are confirmed
with in situ measurements of the energy balance in dijet and photon+jet events. Additional
selection criteria are applied to each event to remove spurious jet-like features originating
from isolated noise patterns in certain HCAL regions.

The global event reconstruction (also called particle-flow event reconstruction [21, 22])
consists in reconstructing and identifying each single particle with an optimized combina-
tion of all subdetector information. In this process, the identification of the particle type
(photon, electron, muon, charged hadron, neutral hadron) plays an important rôle in the
determination of the particle direction and energy. Photons (e.g. coming from π0 decays
or from electron bremsstrahlung) are identified as ECAL energy clusters not linked to the
extrapolation of any charged particle trajectory to the ECAL. Electrons (e.g. coming from
photon conversions in the tracker material or from b-hadron semileptonic decays) are iden-
tified as a primary charged particle track and potentially many ECAL energy clusters cor-
responding to this track extrapolation to the ECAL and to possible bremsstrahlung photons
emitted along the way through the tracker material. Muons (e.g. from b-hadron semilep-
tonic decays) are identified as a track in the central tracker consistent with either a track
or several hits in the muon system, associated with an energy deficit in the calorimeters.
Charged hadrons are identified as charged particle tracks neither identified as electrons, nor
as muons. Finally, neutral hadrons are identified as HCAL energy clusters not linked to
any charged hadron trajectory, or as ECAL and HCAL energy excesses with respect to the
expected charged hadron energy deposit.

For each event, hadronic jets are clustered from these reconstructed particles with the
infrared and collinear safe anti-kt[9] algorithm, operated with a size parameter R of 0.5.
The jet momentum is determined as the vectorial sum of all particle momenta in this jet,
and is found in the simulation to be within 5% to 10% of the true momentum over the
whole pT spectrum and detector acceptance. Jet energy corrections are derived from the
simulation, and are confirmed with in situ measurements with the energy balance of dijet
and photon+jet events [23]. The jet energy resolution amounts typically to 15% at 10 GeV,
8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40%, 12%, and 5% obtained
when the calorimeters alone are used for jet clustering [21].

Muons are measured in the pseudorapidity range |η |< 2.4, with detection planes made
using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers.
Matching muons to tracks measured in the silicon tracker results in a relative transverse
momentum resolution for muons with 20 < pT < 100GeV of 1.3–2.0% in the barrel and
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better than 6% in the endcaps, The pT resolution in the barrel is better than 10% for muons
with pT up to 1TeV [24].

A more detailed description of the CMS detector, together with a definition of the co-
ordinate system used and the relevant kinematic variables, can be found in Ref. [25].
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Chapter 5

CMS Computing Model

The luminosity, center of mass energy, and resolution of CMS give access to new un-
explored realms in our understanding of the world around us. The actual collisions last
for a few tens of nanoseconds; to make this data usable in perpetuity requires a robust and
scalable computing infrastructure.

Computing is an integral part of CMS. This infrastructure ushers event candidates from
the detector frontend electronics eventually to the end user’s analysis. The computing
effort is broken into two portions: online and offline. The online portion directly interacts
with the detector, recording its data and handling data quality and calibration tasks. These
online tasks execute in near-realtime and store the raw data from the detector on permanent
storage. Once the data is produced and stored by online, the offline system asynchronously
processes and tracks the data for production and analysis tasks.

5.1 Organization of CMS resources

CMS operates a considerable amount of storage and computing resources at CERN,
but many other sites including universities and national laboratories provide additional re-
sources. These sites are organized into a number of tiers, which roughly delineate the sites
according to their size and responsibilities.

The Tier-0 at CERN is directly attached to the detector, with some resources phys-
ically co-located at the interaction point known as Point (P5). The Tier-0 includes the
detectors frontend electronics, L1 triggering system[26], High Level Trigger (HLT) farm,
tape libraries and sufficient computing resources to perform various prompt workflows like
ALignment and CAlibration (ALCA), Data Quality Monitoring (DQM), and prompt Re-
construction (prompt RECO). Additionally, the Tier-0 stores a custodial copy of the raw
data to tape as a backup.

Data from the Tier-0 is then divided into a number of event streams based on event
content. For example, one stream contains all events where the single muon triggers fired
(SingleMu). Several of these streams or Primary Datasets (PDs) are transmitted to each of
the Tier-1s, which are large processing facilities usually affiliated with a national laboratory.
For safekeeping, the Tier-1s make another copy of the data, ensuring that all raw data from
the detector is stored on tape in two locations.

The Tier-1s are dedicated to central CMS use, meaning they only run production work-
flows and see very little use by end-analyzers. These workflows convert data from inter-
mediate formats into a format that’s directly usable by a majority of analyses. This format,
the Analysis Object Description (AOD), takes a holistic view of the entire detector and at-
tempts to reconstruct a set of objects which describe the physical objects (muons, electrons,
etc..) seen by the detector.

The resulting AOD is divided amongst at least one of the Tier-2s. The Tier-2s are run

24



by the universities and provide the resources most often used by physicists. It would be
unwieldy to require each analyzer to manually figure out where the data was stored and
how to run their analysis code at the site, so CMS provides the CMS Remote Analysis
Builder (CRAB). CRAB gives users a simple command-line interface to access all of the
available CMS computing resources. The user merely needs to provide an executable and
a dataset to analyze, and CRAB handles data discovery, job submission, job monitoring
and returns the results to the location of the user’s choosing. 50% of the Tier-2s capacity is
dedicated to running user analysis jobs via tools like CRAB, while the other 50% is used
centrally to produce Monte Carlo (MC) simulations.

Finally, sites which don’t fit in the other three tiers are in the final tier, the Tier-3.
Tier-3s are dedicated entirely to user analysis, but provide resources on a best-effort basis.
CMS has little manpower to dedicate to supporting the Tier-3s, so the quality of service
is determined almost entirely by the local admins. Despite the lack of support, the Tier-3s
provide an impressive amount of resources to the experiment and are the home to a number
of important physics groups. When the architecture for CMS computing was designed in
the early 2000s, it was assumed that network capacity would be the most limiting factor in
how data could be distributed amongst the different sites. CMS implemented the Monarch
model, which dictated that all of the sites were organized into a tree where each level was a
different Tier, and the parent of each site was somewhere geographically close. This meant
that if the SingleMu dataset was transferred to the Tier-1 in the US (Fermilab), its products
would be transferred down to one of the US Tier-2s and then possibly down to one of the
US Tier-3s.

Since then, the availability of high-speed networks has caused a shift in the previous
paradigm. Instead of a rigid top-down transfer of data through this tree, sites are increas-
ingly connecting across branches and continents to form a global data transfer mesh, al-
lowing a site in Pakistan to receive data from the University of Nebraska or a site in China
to send data to a site in Germany. This allows more choices in data-placement policy, en-
abling datasets to be replicated to a wider number of sites and in turn being more readily
accessible by more people.

Another recent advancement has come out of the Any data, Anytime, Anywhere (AAA)
project. Previously to run a job over a dataset meant the data needed to be physically
co-located at the same site as where the job was running. AAA deployed an additional
interface to each site allowing remote users to performantly access the data stored at the
site over the WAN. Each site is then connected to a number of global redirectors, which lets
these redirectors know which sites have what files. With AAA, nearly every file in CMS
is globally accessible. CMS exploits this to provide fallback functionality for jobs. If a
job requests to open a file and it doesn’t exist at the site, it can ask the redirector for the
location of another replica elsewhere in CMS and transparently open it with only a minor
performance hit. Users can even access files directly from their laptop, which is useful for
quick studies.
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5.2 Subsystems within CMS Computing

Overall, CMS computing has three mildly-separate classes of services and resources it
operates:

1. Central bookkeeping, management and workflow services.

2. Resources which provide CPUs.

3. Resources which provide storage.

The central resources are managed centrally by the experiment and coordinate the CPU
and storage resources to execute workflows over the data. These services include

1. Dataset Bookkeeping Service (DBS) - Records information about each file and dataset
known to CMS, as well as important metadata.

2. Physics Experiment Data Export - Transfers data between sites based on subscrip-
tions to datasets.

3. WMAgent/Workqueue/Request Manager (ReqMgr) - The production operators inject
workflows into ReqMgr, which are picked up by workqueues, which are divided and
acquired by a number of WMAgents.

4. GlideinWMS - CMS’ global job scheduler and resource acquisition system, based on
HTCondor.

5. Xrootd redirectors - Implements AAAs goal of making any data accessible anywhere
at any time.

6. CRAB servers - The server portion of the CRAB client-server architecture. Receives
analysis tasks from users and manages their lifecycle.

7. Asynchronous StageOut (ASO) - Used by CRAB to move user outputs back to the
user’s home site.

8. SiteDB - A registry of sites and users known to CMS.

9. Virtual Organization Membership Service (VOMS) - Provides CMS authentication
services.

10. Web Frontends - Proxies, authenticates and load balances public-facing web services.

Where possible, the online and offline systems use the same infrastructure. Certain
critical services are duplicated for online to ensure availability during data-taking. This
way, failures in global resources will not affect CMS’ ability to record data when the LHC
provides collisions.
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5.3 CMS Online

When CMS is recording data, the online system interfaces with the detector and han-
dles the products for the first several hundred milliseconds of their existence. The LHC
nominally produces collisions every fifty nanoseconds, which corresponds to an event rate
of 20 MHz (in 2015, this will be reduced to every 25 nanoseconds or 40 MHz). The CMS
detector has approximately 300 million channels. Even in the most optimistic case of one
bit per channel, saving all of the data from each event would require accepting and storing
1016 bits

second of data.
Fortunately, both the event rate and event size can be trimmed by several orders of

magnitude. In a typical proton-proton collision, there is a low occupancy of the detector
channels, meaning most channels don’t have any particles traversing them. With no energy
deposition from a particle, the values returned from a segment of the detector are effec-
tively noise above the zero level. A method known as zero suppression drops the channels
representing noise from the event output, which reduces the per-event size to a mere tens
of kilobytes.

The second optimization necessary to make the data rate from the detector more man-
ageable is to only save interesting events to disk. This process is known as triggering.
Conceptually, one would like to output all output channels to some sort of buffer, decide
if the event is interesting, then transmit that information onwards to a permanent storage
location. The naive approach is unworkable, unfortunately. If the entire contents of the de-
tector need to be stored for each bunch crossing, the problem reverts to what was originally
described, 300 million channels triggering at 20 MHz need to be transmitted over a set of
links to a buffer, then that buffer needs to be analyzed quickly enough to make a decision
before the next bunch crossing arrives (in theory, multiple events could be buffered, but
this makes the required buffer size increase as well). There’s simply too many bytes being
shipped around in too short a time to have a single layer trigger.

A technique adapted by CMS is to have multiple layers of triggers, each both winnow-
ing down the event rate while increasing the amount of data stored at each step. In previous
experiments, these layers were implemented using a combination of custom ASICs and
FPGAs since existing general purpose CPUs weren’t fast enough to provide the necessary
operations per second needed to trigger on time. CMS has two levels of triggering, the
Level 1 (L1) trigger and the High Level Trigger (HLT). The combined trigger reduces the
data rate from 20 MHz to approximately 1,000-200 Hz which is stored, processed, and
analyzed downstream.

The L1 trigger is comprised of custom electronics deeply integrated with the muon and
calorimetry readout systems. Its goal is to reduce the event rate to under 100 kHz by read-
ing a reduced precision version of these detectors to search for interesting characteristics
in the events (e.g. an energetic electron). These characteristics are known as ‘L1 seeds’
and are the first line of triggering, designed to be broad enough to encompass all possible
interesting events while still reducing the event rate by three orders of magnitude. All of
this functionality has a deadline of 3.2 µs to make a decision on whether or not to pass the
event to the HLT. In the meantime, the full resolution event data is stored in the memories
of the frontend readout electronics of each detector subsystem. An example of some L1
seeds from the 2012 LHC run can be seen in Table 5.1.

27



Trigger Threshold (GeV) Rate (kHz)
Single µ (η < 2.1) 14 7
Double µ (η < 2.4) 10,0 6

Single e/γ 20 13
Double e/γ 13,7 8

e/γ + µ 12,3.5 3
µ + e/γ 12,7 1.5

Single jet 128 1.5
Quad jet 36 5

HT 150 5
ET/ 40 8

Table 5.1: Rates of selected trigger algorithms at L = 6.66 x 1033cm2s−1

If the decision is made at the L1 to keep the event, all of the information from the
various detector subsystems has to be read out from the frontends, converted into a common
representation, and combined into single events. These streams of events, each representing
different L1 seeds are then sent to a farm of several thousand general purpose CPUs known
as the HLT farm. Each CPU runs a slimmed down and optimized version of the CMS event
reconstruction software which more accurately attempts to reconstruct different physical
quantities in the events. The configuration of the HLT, which is known as the ‘HLT menu’,
includes possibly hundreds of different trigger paths, each of which can fire to accept the
event. These triggers each map to one or several CPUs in the HLT farm and are the final
gatekeeper of what data is stored permanently and what is dropped. In order to keep the
HLT trigger rate within the predefined budget, some of the paths can be prescaled, which
means one out of every N events is stored and the others are dropped. Without prescaling,
the triggering thresholds would have to be increased, losing key physics content such as
low energy muons. Finally, the luminosity of the machine varies during each fill of the
LHC, so some paths can have their prescales vary during the fill to keep a constant rate of
events throughout the fill.

Once all the triggering is complete, the HLT writes out approximately 1 kHz of events,
which corresponds to ∼ 3 Gigabytes/second of data. These data are transferred from the
HLT farm at Point 5 to the Tier-0 at the CERN Computing Centre and the offline system is
notified, moving these data into offline’s purview.

5.4 CMS Offline

CMS’ compute resources are spread amongst different sites organized in a roughly
hierarchical structure based on their logical distance to the detector. There are roughly
O(100PB) of disk and O(100k) CPU cores spread globally across different member insti-
tutions. The hierarchical structure roughly organizes fewer and larger sites at the lower
tiers with the usage patterns becoming more chaotic from the Tier-0 all the way up to
the Tier-3s. CMS offline is responsible for enabling access to these resources, generat-
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ing centrally-produced datasets, providing tools for subsequent analysis, and handling the
ancillary computing needs of the experiment.

The Tier-0 is responsible for producing and archiving the raw incoming collision data
and performing an initial reconstruction of the data. This reconstruction pass takes the
RAW data from the detector, calibrates the values and reconstructs basic traits of the event
like the tracks of charged particles or calorimeter depositions. These reconstructed datasets
make up the RECO data tier. These RAW and RECO datasets are then each transferred to
Tier-1 sites who are responsible for performing a second tape archive and further processing
the reconstructed datasets to produce new datasets known as Analysis Object Data (AOD)
datasets. The AOD contains calibrated physics objects like muons, photons and jets and
is compatible with a large toolkit of user analysis tools known as the Physics Analysis
Toolkit. The AOD is then transferred to the ∼ 25 Tier-2 sites where users can process and
analyze the data for their particular topic.

In parallel to the flow of data from the Tier-0 outwards to higher tiers, CMS also pro-
duces and manages several billion simulated events. The CMS event reconstruction soft-
ware has interfaces to a number of event generators such as Madgraph[27], Pythia[28] or
Herwig[29] which allow a wide range of physics processes to be simulated. These inter-
faces are leveraged to produce GEN datasets with events that describe the ‘stable’ particles
resulting from a particular physical process. The CMS detector is then simulated using the
GEANT4 toolkit, which models the magnetic field of the detector as well as the interaction
between the generated particles with the detector material. The subsequent readout elec-
tronics are also emulated to provide a reasonable facsimile of the actual detector. The sim-
ulated detector is then interfaced with the reconstruction software to produce RECOSIM
and then AODSIM outputs for eventual use by users.

The AOD and AODSIM datasets, which represent the analysis-level objects of data and
simulation are then distributed amongst the Tier-2 sites or, if a user requests it, to a Tier-3
site. To facilitate the access of these datasets by users who might not be members of the
institutions where their data is stored, CMS maintains the Cms Remote Analysis Builder
(CRAB) tool. CRAB allows a user to take analysis code from their local workstation,
transmit it to sites hosting their data, execute the code, and then return the outputs back to
their local institution.
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Chapter 6

Event Selection

This analysis uses 8TeV data from the 2012 LHC run and a substantial amount of
simulated Monte Carlo events. Within these data, we search for a t̃ t̃∗-pair which decays via
the following decay chain

t̃ t̃∗→ bb+ χ̃
+

χ̃
−→ bb+νν + τ̃ τ̃

∗→ bb+νν + ττ + χ̃
0
χ̃

0 (6.1)

where the ττ decays into exactly one muon and no electrons.
The input datasets and this analysis’ subsequent event and object selections are de-

scribed in detail beginning in Section 6.1.

6.1 Data Samples

The data are from the January 2013 reprocessing of the 2012 8TeV data. To limit back-
ground contamination, each event is required to have exactly one muon in the final state to
be considered. We chose the SingleMu Primary Dataset (PD), whose lowest unprescaled
muon pT trigger in the is HLT IsoMu24 eta2p1. Choosing the lowest unprescaled
muon pT trigger maximizes the acceptance of data events. The luminosities in Table 6.1 are
the luminosities used in this analysis. The total luminosity analyzed (19.684 fb−1) differs
slightly from the total amount of data recorded (19.712± 0.513 fb−1) due to computing
issues. Some files in an intermediate dataset were lost, leading to missing luminosity.

Dataset Luminosity (fb−1)
/SingleMu/Run2012A-22Jan2013-v1/AOD 0.876
/SingleMu/Run2012B-22Jan2013-v1/AOD 4.400
/SingleMu/Run2012C-22Jan2013-v1/AOD 7.046
/SingleMu/Run2012D-22Jan2013-v1/AOD 7.362
Total 19.684

Table 6.1: Data samples and luminosities

6.2 Signal and Background Monte Carlo Simulation Samples

The backgrounds for this analysis consist of the W + jets, Z + jets, tt, SingleTop, Di-
Boson (WW, WZ, ZZ), and QCD multijet production. These backgrounds all contribute
to the analysis due to their hadronic activity and real/fake muons/ET/ . Other minor back-
grounds are considered to have negligible effects, due to their low cross-sections selection
efficiencies. Each of these processes are simulated to Leading Order (LO) with either the
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MADGRAPH[27] or PYTHIA[28] event generators. Once these generators complete the
simulation of the hard interaction, ‘stable’ τ leptons can remain. Though τ leptons are
themselves unstable, their decay lengths are long enough to be effectively stable at the
scales simulated by MADGRAPH and PYTHIA. To simulate the decay of these ‘stable’ τ

leptons at larger scales, the event is modified using the TAUOLA[30] package. The stan-
dalone TAUOLA package is designed to ensure the τs decay as realistically as possible.

Next, the interactions between the resulting particles and the CMS detector are simu-
lated using GEANT4[31]. These detector-particle interactions include the interactions of
the particles with both active sensor material and inert support material. These effects are
important to correctly model certain types of particle mis-identification.

Finally, these LO simulations were then scaled to the best-available Next to Leading Or-
der (NLO) or Next to Next to Leading Order (NNLO) cross-sections. These initial scalings
become the initial values of the fit, which are later extracted using a data-driven method
described below.

The Monte Carlo samples used are listed in Table 6.2. They are from CMS’ Summer12
MC production campaign. They were then reconstructed using CMSSW 5 3 2 patch4,
which was the official production software version during the Summer12 MC campaign.
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Dataset process
/DY1JetsToLL M-50 TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM Z+1Jet (m >50)
/DY2JetsToLL M-50 TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM Z+2Jet (m >50)
/DY3JetsToLL M-50 TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM Z+3Jet (m >50)
/DY4JetsToLL M-50 TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM Z+4Jet (m >50)
/DYJetsToLL M-50 TuneZ2Star 8TeV-madgraph-tarball/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM Z+0Jet (m >50)
/DYJetsToLL M-10To50 TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM Z+Jets (10 <m <50)
/QCD Pt 20 MuEnrichedPt 15 TuneZ2star 8TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM MuEnriched QCD
/QCD Pt 20 MuEnrichedPt 15 TuneZ2star 8TeV pythia6/Summer12 DR53X-PU S10 START53 V7A-v3/AODSIM MuEnriched QCD
/TTJets MassiveBinDECAY TuneZ2star 8TeV-madgraph-tauola/Summer12 DR53X-PU S10 START53 V7C-v1/AODSIM TTBarJets
/T s-channel TuneZ2star 8TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM SingleTop t sChannel
/T t-channel TuneZ2star 8TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM SingleTop t tChannel
/T tW-channel-DR TuneZ2star 8TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM SingleTop t tWChannel
/Tbar s-channel TuneZ2star 8TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM SingleTop tbar sChannel
/Tbar t-channel TuneZ2star 8TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM SingleTop tbar tChannel
/Tbar tW-channel-DR TuneZ2star 8TeV-powheg-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM SingleTop tbar tWChannel
/W1JetsToLNu TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM W+1Jet
/W2JetsToLNu TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM W+2Jet
/W3JetsToLNu TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM W+3Jet
/W4JetsToLNu TuneZ2Star 8TeV-madgraph/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM W+4Jet
/WJetsToLNu TuneZ2Star 8TeV-madgraph-tarball/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM W+0Jet
/WWJetsTo2L2Nu TuneZ2star 8TeV-madgraph-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM WWJetsTo2L2Nu
/WW DoubleScattering 8TeV-pythia8/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM WW DoubleScattering
/WW TuneZ2star 8TeV pythia6 tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM WW
/WZJetsTo2L2Q TuneZ2star 8TeV-madgraph-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM WZJetsto2L2Q
/WZJetsTo2Q2Nu TuneZ2star 8TeV-madgraph-tauloa/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM WZJetsTo2Q2Nu
/WZJetsTo3LNu TuneZ2 8TeV-madgraph-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM WZJetsTo3LNu
/ZZJetsTo2L2Nu TuneZ2star 8TeV-madgraph-tauola/Summer12 DR53X-PU S10 START53 V7A-v3/AODSIM ZZJetsTo2L2Nu
/ZZJetsTo2L2Q TuneZ2star 8TeV-madgraph-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM ZZJetsTo2L2Q
/ZZJetsTo2Q2Nu TuneZ2star 8TeV-madgraph-tauloa/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM ZZJetsTo2Q2Nu
/ZZJetsTo4L TuneZ2star 8TeV-madgraph-tauola/Summer12 DR53X-PU S10 START53 V7A-v1/AODSIM ZZJetsTo4L

Table 6.2: Monte Carlo samples and processes



σt̃ t̃∗(pb) σt̃ t̃∗ ·L(events) t̃ (GeV) χ̃± (GeV) τ̃(GeV) χ̃0 (GeV)
12.97 2.55 ·105 250 175 165 100
4.885 9.61 ·104 300 200 190 100
2.050 4.03 ·104 350 225 215 100
0.936 1.84 ·104 400 250 240 100

0.4571 8.99 ·104 450 275 265 100
0.2291 4.50 ·104 500 300 290 100

0.06515 1.28 ·104 600 350 340 100

Table 6.3: The SUSY mass points and associated cross-sections investigated in this anal-
ysis. The integrated luminosity recorded by CMS and used by this analysis is L =
19.684fb−1

In addition to centrally-produced background samples, this analysis uses seven privately-
produced signal samples which model the targeted SUSY process. First, each sample used
MADGRAPH to generate one million events. These generated events were then simulated us-
ing CMS’ standard FastSim[32] framework to produce AODSIM files. For the processes
and kinematic regions examined by this analysis, FastSim produces nearly identical re-
sults as the FullSim framework, but with significantly reduced resource requirements
(e.g. ∼ 1 second versus ∼ 2 minutes per event).

These signal samples simulate the cascade decay chain of t̃ t̃∗-pairs via Equation 6.1.
We’ve investigated seven different scenarios which differ in the masses of the superpartners.
By virtue of the different masses, each scenario has a different predicted cross-section and
event kinematics. If the SHYFT fit finds no significant excess compared with the SM,
measuring the observed and expected yields for each scenario allows one to extract limits
on the existence of this SUSY scenario with respect to the mass of the superpartners. This
process is described in detail in Section 9.5.

Each collision between two protons at the LHC has a small chance of being interesting
physically. To produce a statistically significant number of interesting collisions, the LHC
produces and aligns its bunches in a way that involves many proton-proton collisions per
bunch crossing. The number of collisions during a particular bunch crossing is known
as the ‘pile-up’ of the event. During the 2012 run, the typical pile-up was ∼ 15. This
means that an event selected for an interesting collision will, on average, have another
∼ 14 low-energy collisions at the same time. Along with the collisions that occur during
the same bunch crossing, collisions from previous and subsequent bunch crossings can also
noticeably affect the detector. This additional effect is known as ‘out-of-time pile-up’.

When simulating events, Simulating the effect of pile-up is performed by first recording
a sample of MinimumBias events. These events are recorded by CMS with event selection-
s/triggering removed, effectively producing a sample of background collisions. The Min-
imumBias sample is then superimposed on top of the simulated events. This effectively
models the effect of multiple collisions per bunch crossing. The MC is produced with a
simulated pileup distribution that is different than the observed distribution in data. This
discrepancy is corrected by weighing each MC event by the ratio of the simulated and ob
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6.3 Object Selection

This analysis applies object-level selection criteria to determine what objects recon-
structed by CMS reconstruction algorithms are used. These criteria are designed to both
maximize the acceptance of this analysis while minimizing the backgrounds and recon-
struction errors. The selection criteria for each object (jet, muons, etc) are described below.

6.3.1 Jets

Partons emitted from the collisions travel and hadronize via the strong force, depositing
a distinctive jet of decay products in the detector. The Particle Flow Jets (PFJets)[21]
algorithm is used to reconstruct these partons from their daughter particles. The particle
flow algorithm uses information from all subdetectors to produce a set of track candidates
which are then used as inputs to the anti-kt[9] algorithm with a reconstruction cone size
of R = 0.5. The anti-kt algorithm takes a list of track candidates and attempts to cluster
them into cone-shaped groups to produce a list of PFJets in the event. Next, these PFJets’
properties are corrected using the L1 FastJet, L2 Relative, and L3 Absolute
corrections. L1 FastJet corrects jet energies by removing contributions from pileup
events. L2 Relative and L3 Absolute modify the jet energy response as a function
of pT and η . After these corrections, jets are required to satisfy:

1. pT > 30GeV

2. |η |< 2.4

6.3.2 b-tagged Jets

This analysis uses the Combined Secondary Vertex (CSV)[7] b-tagging algorithm (de-
scribed in Section 3.1.1) to discriminate between b- and light-flavored jets (light flavored
jets are jets that result from the hadronization of anything but a b-quark). Each algorithm
has a number of ‘working points’, which make a tradeoff between efficiency and purity.
This analysis uses the medium working point, which is a compromise to accept more b-
tagged jets (efficiency) at the expense of allowing more mistagged b-tag jets (purity). In
this analysis, no jets are rejected based on their flavor. The number of reconstructed b-
tagged jets in the final state determines if the event will be placed in a = 0, = 1, or ≥ 2
b-tag bucket.

6.3.3 Muons (µ)

Muon reconstruction takes advantage of both the silicon tracker and muon stations,
which are the innermost and outermost detectors. The design of the CMS detector makes
it exceptionally efficient at the detection and reconstruction of muons. First, hits in the
muon stations are combined using a Kalman fitting technique to produce a probable muon
trajectory. This trajectory is then extrapolated backwards to find potentially matching tracks
in the silicon detectors. Finally, a global fit is performed to find candidate muon trajectories
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compatible with both the muon and silicon detectors. The results of this fit are known as
‘global’ muons.

The main source of fake background muons are charged hadrons which leave a signal in
the tracker, penetrate the hadronic calorimeter and produce tracks in the muon subdetectors.
These fake muons leave significant deposits in the calorimetry. A fake-reduction algorithm
exploits these deposits to reduce the rate of these muon fakes. In addition, muons are
required to be isolated from jets, further reducing the rate of reconstructed jets resulting
from either the decay of long-lived hadrons or the hadronization of quarks resulting from
the hard scattering process.

This analysis uses the loose muon identification requirement with additional kine-
matic cuts applied on top. These additional cuts restrict muon candidates to regions of high
detector and trigger efficiency. In total, we require the following for a muon candidate to
be considered:

1. pT > 35GeV

2. |η |< 2.1

3. Relative Isolation < 0.125

4. Is PF Muon

5. Is either a tracker or global muon. Muons are required to be detected by the silicon
tracker. Muons which only are detected by the muon subdetector are rejected.

6. The HLT IsoMu24 2p1 trigger requirement itself adds the requirement that the
muon is both isolated and satisfies |η | ≤ 2.1.

6.3.4 Taus (τ)

Along with jets produced from the hadronization of quarks, this analysis attempts to
identify jets resulting from the hadronic decay of τ leptons. Jets which pass the jet selection
criteria and are not tagged as b-jets are examined to see if they satisfy the τ identification
requirement. We use the byLooseCombinedIsolationDeltaBetaCorr3Hits τ identification
working point and additionally require that the reconstructed τ pT is greater than 20GeV
and |η | is less than 2.4. The number of τs identified in each event determines if the event
is assigned to a = 0 τ or ≥ 1 τ bucket.

6.3.5 Missing Transverse Energy (ET/ )

The targeted signal is expected to have very large ET/ due to the presence of multiple νs
and χ̃0s in the final state. Many predicted background events have little-to-no true ET/ , so
we use ET/ in both the selection criteria and kinematic distributions to increase the signal
purity and separate signal from backgrounds. The ET/ content in each event is determined
using the PFMET algorithm with additional type-0 and type-1 corrections, as suggested by
the MET POG .
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6.3.6 Electrons

This analysis targets the semileptonic muon channel and rejects events if they contain
any electrons. If any potential electron candidates pass the eidTight electron selection
requirements and have a pT > 20GeV, the event is vetoed. The total electron selection
criteria, including the eidTight requirements are

1. pT > 20GeV

2. |ηsupercluster|< 1.4442 and |ηsupercluster|> 1.5660. This veto eliminates electron can-
didates which traverse through the transition region in the ECAL subdetector.

3. |ηelectron|< 2.5

4. Passes MVA identification

5. Relative Isolation < 0.1. The isolation requirement rejects electrons who are spa-
tially close to hadronic jets. This significantly decreases the amount of fake electrons
which are mis-reconstructed due to nearby hadronic activity.

6. Et > 30GeV

7. Passes conversion veto. This veto is designed to reject electron candidates which
result from decay products interacting with the detector and producing additional
electrons.

8. dB < 0.02

9. Number of inner tracker hits ≤ 0

6.4 Event Selection

After selecting objects from an event, the entire event must pass a number of selection
criteria to be accepted.

1. Pass the HLT IsoMu24 eta2p1 trigger. This trigger requires one muon with pT ≥
24GeV and |η | ≤ 2.1. In addition, this muon is required to be isolated spatially from
additional hadronic activity.

2. Have exactly one muon with pT ≥ 30GeV.

3. Have zero electrons with pT ≥ 20GeV.

4. Have at least one jet with pT ≥ 35GeV.

5. Have at least 20GeV of ET/ .

6. Have a mT (l,ET/ ) of at least 50GeV (where mT (l,ET/ ) is defined as the norm of the
vector sum of the transverse components of the lepton energy 4-vector and MET)
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In addition to the analysis-level selections described above, additional cleanup selec-
tions are done to the sample as recommended by the Physics Validation Team (PVT) pre-
scription:

• Require events with at least 10 tracks to have at least 25% of them to be high purity
to remove backgrounds (the “PKAM” filter).

• Require at least one good primary vertex which

– Passes the fake veto

– Has at least 4 degrees of freedom (approximately equal to the number of tracks,
plus one)

– Impact parameter with respect to the xy plane of the beamspot < 2cm

– Impact parameter with respect to the z coordinate of the beamspot < 24cm

• Reject events with significant noise in the hadronic calorimeter barrel or endcap
(HBHE).

Finally, data samples are selected to only contain events corresponding to ‘good’ pe-
riods of data taking, determined by the PVT-produced ‘Golden JSON’ luminosity mask.
These golden luminosity periods correspond to periods of stable beam where all detector
subsystems were operational.

6.5 Kinematic Distributions or ‘Templates’

The SHYFT fit combines several hundred shapes into templates. Shapes are kinematic
distributions of groups of events. There is a group for each combination of jet/tag bin,
kinematic distribution, and process. For example, there is a shape for the ET/ distribution
of W + jets events with one jet, one b-jet, and zero τ jets in the final state. Templates are a
hierarchical grouping of all events considered by this analysis. The hierarchy is as follows:
kinematic variable, jet/tag/τ bin, then process (data, signal, or one of the six background
processes). CMS simulates different sub-processes separately. To simplify the fit, similar
sub-processes are grouped together. For example, the individual ZZ, WZ and WW shapes
are all combined into a single DiBoson shape. Figure 6.1 provides a visual representation
of this hierarchy.

SHYFT models systematic effects by producing additional templates. Each of these
templates are produced by shifting1 a theoretical parameter away from the nominal value,
then reprocessing the MC with this effect. For example, to produce the +5% Jet Energy
Scale (JES) template, the JES parameter in the MC is shifted up by five percent and re-
processed. The template produced with this new MC is then a reasonable facsimile of the
effect of a ten percent larger JES. Fit-based systematics are described in detail in Chapter 7.

The contributions from simulation are scaled via the following Scale Factor (SF) to
match their predicted yields:

SFMC =
L×σMC× ε

Npassing
(6.2)

1Wordplay.
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event final states
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Figure 6.1: Relationship between shapes and templates.
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where L =
∫

L dt is the integrated luminosity of the processed data (19.684 fb−1), L is
the instantaneous luminosity, σMC is the theoretical cross-section of the particular sample
(either NLO or NNLO), ε is the event selection efficiency, and Npassing is the number of
MC events which pass all event selections.

After scaling, the sum of the contributions from each all simulated shapes should match
the shape seen in data. (ex ∑MC ShapeMC = ShapeData). These scaled MC shapes are the
‘starting point’ of the fit, though the fit is free (within constraints) to further scale these
contributions. The fit represents this scaling as a multiple of the theoretical expectation.
A fitted value of 1.5 represents a contribution of 1.5 times as many events as theoretically
predicted.

6.6 Event Counts

The results of this scaling are shown in Table 6.4 along with the observed data rates.

6.7 QCD Prescription

QCD is handled differently than other processes. Current theoretical simulations of
multijet QCD suffer with increased jet multiplicity and heavy flavor fraction. Not only is
QCD poorly modeled in our signal region, few QCD events pass our event selection. This
analysis’ ET/ > 20GeV and mT (l,ET/ )> 50GeV cuts remove nearly all the QCD contribution
from the final event selection. Out of 28 million generated events, less than one thousand
pass all event selections.

After event selection, each raw MC event represents many expected events in the data.
Re-using Equation 6.2,

SFQCD =
L×σQCD× ε

Npassing
= 186 (6.3)

where σQCD is 364µb, L is 19635pb−1, and Npassing is 756. Two separate efficiencies con-
tribute to ε . The first is the filtering efficiency at the theoretical level, ε f iltering = 3.70 ·10−4.
Most of the possible QCD diagrams are considered unimportant and are excluded as early
as possible to minimize the computation required. The second efficiency we consider is the
event selection efficiency – the percentage of events which pass our analysis’ event selec-
tion. The event selection very efficiently rejects QCD events; the efficiency is εselection =
7.02 ·10−8. We can then directly calculate ε:

ε = ε f iltering× εselection = 3.70 ·10−4×7.02 ·10−8 = 2.60 ·10−11 (6.4)

The combination of a large σQCD and a small Npassing produces a large value of SFQCD =
186. This means every simulated QCD event must represent 186 events in our data sample.
This scale factor is several orders of magnitude larger than the SFs from Table 6.4.

Though there are very few expected QCD events in our high jet multiplicity signal
region, accurately modeling its contribution is still important. There is a sizable contri-
bution in the lower jet multiplicity regions, and these contributions can influence other
backgrounds that, in turn, can influence the overall contribution in the high jet multiplic-
ity regions. Compounding the problem, the shape from the QCD contribution is similar
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Process Npassing σMC(pb) ε SFMC Nscaled
StopStopbar (450GeV) 52503 0.18 1.11e-06 3.98e-03 208.7
SingleTop t sChannel 5926 3.79 3.85e-06 2.87e-01 1699.2
SingleTop t tChannel 89438 56.10 2.66e-07 2.94e-01 26251.6
SingleTop t tWChannel 27753 11.10 2.01e-06 4.39e-01 12178.9
SingleTop tbar sChannel 3422 1.76 7.15e-06 2.47e-01 846.0
SingleTop tbar tChannel 49013 30.70 5.17e-07 3.12e-01 15286.6
SingleTop tbar tWChannel 27731 11.10 2.03e-06 4.43e-01 12271.3
TTbarJets 384658 234.00 1.44e-07 6.64e-01 255250.0
W+0Jets 19007 37509.00 5.66e-08 4.17e+01 791869.3
W+1Jets 450043 6662.78 4.79e-08 6.27e+00 2820982.6
W+2Jets 986427 2159.24 4.14e-08 1.76e+00 1732294.2
W+3Jets 730985 640.37 7.34e-08 9.23e-01 674402.0
W+4Jets 241456 264.04 2.60e-07 1.35e+00 325623.8
WW 194062 54.84 1.62e-07 1.74e-01 33821.9
WWJetsTo2L2Nu 104828 5.76 5.22e-07 5.90e-02 6184.5
WW DoubleScattering 4647 0.58 2.63e-06 2.99e-02 139.1
WZJetsTo2Q2Nu 78956 2.49 3.17e-07 1.55e-02 1224.4
WZJetsTo3LNu 78208 1.08 6.07e-07 1.29e-02 1005.9
WZJetsto2L2Q 1 4.49 1.06e-06 9.36e-02 0.1
Z+0Jets (m >50) 39834 3503.71 6.31e-08 4.34e+00 172814.8
Z+1Jets (m >50) 262374 666.30 2.44e-08 3.20e-01 83913.2
Z+2Jets (m >50) 52409 214.97 4.46e-07 1.88e+00 98765.4
Z+3Jets (m >50) 279448 60.69 1.14e-07 1.36e-01 38053.9
Z+4Jets (m >50) 207783 27.36 1.96e-07 1.05e-01 21872.7
Z+Jets (10 <m <50) 4193 13124.07 3.02e-08 7.79e+00 32649.2
ZZJetsTo2L2Nu 17974 0.71 1.96e-06 2.74e-02 492.1
ZZJetsTo2L2Q 10996 2.49 2.78e-06 1.36e-01 1497.2
ZZJetsTo2Q2Nu 1 4.93 1.25e-06 1.21e-01 0.1
ZZJetsTo4L 51236 0.18 4.44e-07 1.57e-03 80.5
QCD 756 3.64e+08 2.60e-11 1.86e+02 140602.0
Total Simulation 4456084 - - - 7302281.1
Data - - - - 7014854

Table 6.4: Input Event SF and Yields
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to other backgrounds. Without a separate, data-driven estimate of the QCD yield, these
correlated shapes strongly drive the other backgrounds into non-physical regions.

To extract a data-driven estimate of the QCD contribution, we perform a separate fit
in a QCD-enriched region using a suitable proxy for the QCD shape. As noted, there are
two difficulties to work around – insufficient statistics leading to poor shapes and imprecise
theoretical modeling of the underlying QCD hard scattering process. We make three sim-
plifying assumptions. Lower jet multiplicities are more accurately modeled by simulation,
the shapes of Z + jets and QCD are similar, and QCD kinematic distributions reasonably
similar both with and without b/τ tagging. These assumptions stem from the fact that less
jets in the final state involve less vertices and therefore are less sensitive to theoretical un-
certainties, while Z + jets and QCD contributions result from similar mismodeling effects.
Finally, comparing shapes showed that b/τ tagging requirements did not bias the QCD
shape.

6.7.1 QCD Shape

Since few QCD events pass event selection, it is difficult to extract a representative
shape from simulation. The QCD shapes are instead obtained using a combination of pre-
tagged2 QCD shapes and Z + jets shapes obtained from simulation. The N jet = 1 pre-tagged
QCD shape has enough statistics to make smooth shapes, so all N jet = 1 QCD buckets use
this shape. The higher jet multiplicity buckets suffer from poor statistics, even without b/τ
tagging. For these buckets, we use proxy shape derived from Z + jets, which reasonably
resembles the QCD shape. In all cases, the augmented QCD shapes are renormalized to
the simulated (default) QCD yields. The net effect is that the shapes are replaced, but the
overall event rate remains the same.

6.7.2 QCD Normalization

After modifying the QCD shapes, we then estimate the QCD event yield for each jet/tag
bucket. Since there are few QCD events in the signal region, we perform a fit to the data in
a QCD-enriched sideband and later propagate these values to the signal region. We can’t
simply use SHYFT for this background because the shapes are substituted with modified
shapes whose distribution in each bucket is quite different than the distribution we would
expect from using the simulated QCD shape directly.

This sideband uses the normal event selection, but with no ET/ or mT (l,ET/ ) cut. With
this modified event selection, a fit of the full ET/ , mT (l,ET/ ) distribution for each jet/tag
bucket is used to extract the QCD event yields. To simplify the fit, the Z + jets, DiBoson
and SingleTop samples are combined into one Electroweak (EWK) category. Then, QCD,
tt, W + jets and EWK are fit to data, yielding the QCD contribution for each jet/tag bucket.
To take into account measured cross-sections, a gaussian penalty term is applied to the tt/W
+ jets/EWK contributions. These gaussians have widths of 15%/10%/10% and are conser-
vatively chosen to be compatible with CMS’ measured values. The QCD contribution is
allowed to freely vary.

2Pre-tagged means before b/τ tagging requirements
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A subset of the output distributions are shown in Figure 6.2. The complete normaliza-
tion results and distributions are located in Appendix B.
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Figure 6.2: Fit results for QCD normalization, = 1 jet buckets, no ET/ cut.

6.7.3 QCD Prescription in Nominal Fit

The scale factors from the sideband region are then used to estimate the QCD rate in
the nominal region. For each jet/tag bucket j, we fix the QCD rate in the signal region using
the fit-extracted scale factors:

NSR′( j) = SFCR( j)×NSR( j) (6.5)

Where SFCR( j) is the fitted scale factor from bucket j and NSR′/NSR are the augmented/o-
riginal QCD rates in the signal region, respectively.

Due to the different event selection criteria, the predicted SFs from the sideband region
might not necessarily translate into the nominal region. Instead of fixing the signal region
QCD yield to the sideband-extracted yield, the yields of each QC jet multiplicity rates are
then allowed to vary in a band around the extracted value. Uncertainty penalties of 200%
are applied to the QCD contribution to account for shape and rate mismodeling effects.
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Chapter 7

SHYFT in Detail

This chapter describes in further detail the SHYFT method, which can extract faint
signals from large backgrounds and significantly reduce some systematic uncertainties.
Instead of defining separate signal and control region(s), SHYFT divides the entire data
sample into buckets based on N jets, Nb, and Nτ . Not only does this allow a better fit, many
of the largest uncertainties result in a relative scaling between the different buckets. This
scaling is used to constrain systematic uncertainties. Since this analysis uses N jets, Nb, and
Nτ to separate the events into different regions, systematic uncertainties which influence
these distributions have a large effect. For instance, the N jets classification of an event
depends on whether or not jets pass the pT cut. The Jet Energy Scale (JES) affects the
measured jet pT. Thus, higher or lower JES can influence the N jets classification of an
event. Because of this, correctly estimating the preferred value of JES is important to this
analysis.

The SHYFT fitter is able to use data-driven information about the N jets distribution to
constrain and make a data-driven estimate of the JES scale. Similarly, the Nb distribution
depends on the btagging efficiency (εb). Simulating the effect of different εb on the Nb
distribution lets the fitter extract a preferred εb. These uncertainties are simultaneously ap-
plied to the simulation to converge in a region of phase space containing the proper amount
of background normalization and uncertainty scale factors. Once the sample is divided into
different ‘(j,b,τ)’ buckets and the effects of those systematic effects are modeled, a global
likelihood fit is performed. This fit simultaneously extracts out rates of all the samples as
well as the modeled systematic effects, indirectly extracting shapes as well.

Accurately modeling backgrounds and uncertainties makes SHYFT an improvement
over simple counting and shape-based methods. The method is described in more detail
below.

7.1 Sample Discrimination with SHYFT

Without decreasing the acceptance too far, it is difficult to construct a sample contain-
ing a high-purity of our t̃ t̃∗ signal using event selection alone. Using tighter and tighter
event selection criteria reduces contamination from background events but simultaneously
reduces the acceptance of signal events. If t̃ exists, we predict very few t̃ t̃∗-pairs will be
produced at the LHC. Throwing away already-small signal statistics via event selection
is counter-productive. At the same time, trying to estimate the contribution of a rarely-
occurring process against much larger backgrounds leads to significant uncertainties. Bal-
ancing these two contrary needs via event selection alone is a challenging task.

It is, however, more feasible to produce several regions of the lepton+jets data sample,
where these regions are heavily enriched in different background processes. This seemingly
sidesteps the tradeoff inherent in choosing how narrowly to select events. Instead of tossing
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statistics to gain extra purity at the expense of acceptance, keep all of the statistics and
produce regions enriched in the signal or one of the backgrounds.

The most significant backgrounds in the lepton+jets sample guide the choices made
when dividing the sample. As stated in Chapter 6, W + jets, Z + jets, tt, SingleTop, DiBoson
(WW, ZZ, WZ), and multijet QCD are the backgrounds with the largest contributions. For
instance, the hard interaction from W + jets events produces less hadronic jets than tt events.
Because of this, low jet multiplicity buckets have a large contribution of W + jets events
and relatively few tt events. Higher jet multiplicity buckets have an increasing fraction of
tt events compared with W + jets events. Similarly, Z + jets and W + jets have different
jet flavor and τ-lepton composition. These backgrounds are then separated into different
buckets. These (j,b,τ) buckets let SHYFT pull apart contributions that would otherwise be
intertwined with each other. An example cartoon can be seen in Figure 7.1.

At this point, it is important to note that SHYFT isn’t entirely novel. It is common to
define a signal and one (or many) control region(s), extrapolate the background rates from
the control regions, and then propagate the background rates to the signal regions. With
SHYFT, the difference is two-fold – the different regions are fit simultaneously, and the
full statistics of both our ‘signal’ and ‘control’ regions are exploited.
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Flavor Separator versus N-Jet Distribution

W + Light Flavor
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Figure 7.1: Cartoon of jet flavor versus N jet for different samples. The size of each box
indicates the contribution of the sample to the bucket. Each variable on its own is not
enough to separate the three samples, but together it is easy to distinguish them.

To determine the heavy flavor content of an event, we attempt to b-tag each jet using
the Combined Secondary Vertex (CSV) algorithm, described in Section 3.1.1. Each N jet
category is subdivided into three Nbtag buckets, each containing events with (0,1,≥ 2) b-
tagged jets. Finally, each (N jet ,Nbtag) bucket is further subdivided into buckets that contain
(0,≥ 1) τh candidates in the final state. Separating events events by their τh multiplicity
improves discrimination of t̃ t̃∗ due to the two τh leptons produced by the decay of inter-
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mediate τ̃ sleptons and the lack of τh in the predominant backgrounds. The backgrounds
which have a significant τh contribution (tt, Z + jets) still benefit since the majority of their
contribution is in the τh = 0 buckets, which is constrained by the τh ≥ 1 buckets.

If each contribution to a region is estimated sequentially, any cross-contamination be-
tween regions are difficult to properly estimate. For instance, assume process X in control
region A is estimated, then process Y in control region B is estimated. If regions A and
B are very pure, the contributions extracted for X and Y should be uncorrelated with each
other, and the order in which the contributions are estimated won’t matter. On the other
hand, consider the case where both regions A and B have significant contributions from
both processes. As more events from each process bleed into both control regions, the mea-
surement of each contribution becomes more correlated with the other. Once correlated,
it becomes tricky to accurately perform two measurements one after another. Assuming
a contribution for Y, fitting X to the data, then fitting Y to the data using the measured X
contribution can yield a different result than fitting in the other order.

Combatting this leads to the second difference between SHYFT and a simple count-
ing experiment. Purifying the regions by excluding cross-contaminated events decreases
the acceptance of the analysis. Every event in the excluded region is an event that can’t
contribute to the statistics of the measurement.

In contrast, SHYFT separates the events into several adjacent regions and fits all of
the contributions simultaneously. During this simultaneous fit, regions of high purity help
to tightly constrain each process in regions of low purity. Since it’s no longer necessary
to exclude regions with mixed contributions, the event selection can be broadened to in-
clude as much information as possible. These two traits cause SHYFT to exploit as much
information as possible, leading to more accurate measurements.

7.2 SHYFT and Systematic Effects

While both the N jets, Nb, Nτ spectrum and kinematic distributions together distinguish
the different signal and background processes, they are not sufficient to accurately model
the observed data.

For example, the tt event yield in a particular bucket depends on the tt production cross
section. Allowing the fit to scale the cross section causes the tt yields in every bucket to
change proportionally in the same direction. Scaling whole processes doesn’t change the
relative normalization between buckets, which means any mismodeling in the simulated
(N jet, Nb, Nτ ) spectrum will remain uncorrected.

To take into account this possible mismodeling, we teach the fitter the effect of various
systematic parameters on the relative normalization between buckets. In the case of tt, the
number of events in each bucket depends not only on the tt production cross section, but
also on the b-tagging efficiency. Given a certain b-tagging SF, an event could be placed
into a Nb = 1 bucket. If we instead assume an increased value of the b-tagging SF, this
same event could end up in the Nb ≥ 2 bucket. Choosing different values of the b-tagging
SF effectively moves events between buckets, modifying the Nb spectrum, which could
possibly lead to better agreement between simulation and data. After this addition, the
tt yield in each bin is determined by both the production-cross section and the b-tagging
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efficiency. A graphical example can be seen in Figure 7.2.
We model the effect of b-tagging and Jet Energy Scale by first reprocessing our simu-

lation with different SFs and then allowing the fitter to vary these SFs during the fit. This
concept is expanded in Section 7.4, but we will first describe a simplified version of SHYFT
that doesn’t take into account systematic effects.

Nominal Templates Bigger Top Cross 
Section

More Efficient B-
Tagging

Top Template
3Jet, 1B-Tag

Top Template
3Jet, 2B-Tag

Top Template
3Jet, 1B-Tag

Top Template
3Jet, 2B-Tag

Top Template
3Jet, 1B-Tag

Top Template
3Jet, 2B-Tag

Figure 7.2: Cartoon illustrating how increasing the b-tag scale factor or the top cross section
affects single and double tags differently. As the top cross section is increased, both 1-tag
2-tag templates get larger. However, if the b-tagging becomes more efficient, some 1-tag
events become 2-tag events, leading to fewer events in the single-tag template and more
in the double-tag template. Thus, the relative numbers of 2-tag to 1-tag events are directly
proportional to εb, and because of this our fit can determine it from our own data.

7.3 SHyFT Fitter without Systematic Effects

Consider first a fit that neglects systematic effects. The SHyFT fitter is then quite sim-
ple. The sample is divided into buckets based on the number of jets, number of b-tagged
jets and number of τh candidates (which we call jet/tag buckets). We consider buckets for
(1,2,3,4,≥ 5) jets, (0,1,≥ 2) b-jets, and (0,≥ 1) τh candidates where Nb +Nτ ≤ N jets.
This splits the sample into 26 buckets of 1-dimensional kinematic distributions.

At this point, each (N jets,Nb,Nτ) bucket contains a 1-dimensional histogram for each
process. If we label each histogram’s bins as l, the fit becomes

∑
x

Sx(N jets,Nb,Nτ)l = SData(N jets,Nb,Nτ)l (7.1)

where x is each simulated process and Sx(N jets,Nb,Nτ)l is the event yield for a specific
bucket. Effectively, Equation 7.1 states the fit wants to make every bin in the simulation
have the same yield as the data.

Unless our simulation perfectly models the observed data, Equation 7.1 is false. The
only inputs are the theoretical simulations and the data. We will complicate things later
but, for now, assume the shapes of the kinematic distributions of the simulated events are
correct, but the overall normalization of those shapes can vary. Introduce a new parameter
Kx which represents the multiplicative scale factor between the theoretical cross-section
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and the fitted value for process x. The predicted event yield (Nx) for a single sample x then
becomes

Nx(N jets,Nb,Nτ)l = Kx ·SMC
x (N jets,Nb,Nτ)l (7.2)

Expanding to consider all of the constituent processes (and remembering that by construc-
tion SData = NData)

∑
x

Kx ·SMC
x (N jets,Nb,Nτ)l = Ndata(N jets,Nb,Nτ)l (7.3)

Equation 7.3 is the ideal relationship between our data histograms, simulation histograms
and cross-section scale factors. We assume the simulation for each process has the right
shape, meaning each histogram is accurate to within a single per-process Scale Factor (SF)
given by Kx. Extracting the contribution from each sample x then requires finding the values
of Kx that most closely causes Equation 7.3 to be true.

There are many ways to find the set of Kx that causes Equation 7.3 to most accurately
be true. This analysis begins by expressing the likelihood (L) that specific values of Kx
produce simulated shapes that statistically overlap with the data.

L = ∏
N jets,Nb,Nτ ,l

Poi(Ndata(N jets,Nb,Nτ)l,∑
x

NMC
x (N jets,Nb,Nτ)l) (7.4)

where Poi(x,y) is the poisson probability that x and y are statistically compatible. Finding
the best fit for our model means finding the values of Kx that maximize L.

Before performing the actual fit, two more transformations need to be applied to L.
Instead of maximizing L, we instead minimize − lnL. Symbolically, maximizing L and
minimizing − lnL are equivalent, but attempting to use L directly suffers from numerical
accuracy when executed on a computer. Expressed as L, the maximum likelihood for this
fit is on the order of e−20000 and even small changes of Kx cause gigantic fluctuations in L.
In order to search the parameter space for the maximum, the fitter must repeatedly compute
the derivative of L with respect to Kx and these derivatives can exhaust the precision of even
double-precision floating point arithmetic.

L in Equation 7.4 has one other undesirable characteristic. Each bin we would like to
examine is referenced by (N jets,Nb,Nτ , l). In effect, this is a four-dimensional histogram
which is cumbersome to manage computationally. Within the fitter, the (N jets,Nb,Nτ) in-
dices are unfolded, yielding a one-dimensional histogram whose bins are indexed via l. In-
stead of having 26 different 1-dimensional histograms, an equivalent ”long” 1-dimensional
histogram with each of the 26 different input histograms are placed side by side is used in-
ternally. To keep the notation clear when fit-based systematics are used, lnL will continue
to show Nx in terms of (N jets,Nb,Nτ , l)

Given our prior knowledge of the processes we are simulating, we would like to apply
constraints to some of our backgrounds - they are either constrained by other parts of this
analysis or by their CMS-measured 8TeV cross sections. To implement this, we apply a
gaussian penalty term which increases as the fit diverges from our chosen central value.
These constraints are represented by

e
−(z−z)2

σ2 (7.5)
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where z, z and σ are the fitted value, expected value, and width of the constraints, respec-
tively. We are minimizing the least log-likelihood, so the gaussian penalty to the likelihood
becomes the following log-gaussian penalty to the least log-likelihood

1
2
(z− z)2

σ2 (7.6)

With this additional penalty term, the total log-likelihood we wish to minimize is

− lnL =−1 ·

{
∑

N jets,Nb,Nτ ,l
lnPoi(Ndata(N jets,Nb,Nτ)l,∑

x
NMC

x (N jets,Nb,Nτ)l)

}
+{

1
2

constraints

∑
n

(zn− zn)
2

σ2
n

}
(7.7)

where the Poi(q, p) is the poisson probability that q and r are statistically compatible and
the sum over n is over each constraint applied to the fitter. Taking the natural logarithm of
Poi leads to

lnPoi(q, p) = q ln p− p− lnΓ(q+1) (7.8)

where Γ is the gamma function
Γ(n) = (n−1)! (7.9)

7.4 Fit-based Systematics

Letting the fitter modify the overall cross-section of each process isn’t enough to guar-
antee good agreement between simulation and data (see Section 7.2). Since each process is
broken into multiple jet/tag buckets, it’s possible that mismodeling of various systematics
could cause events to be distributed incorrectly among those buckets. The fitter only modi-
fies the overall cross section of each process, it has no way to fix an imbalance between the
jet/tag buckets within a process (Figure 7.2).

Modeling these imbalances is a tractable problem. In this analysis, we choose to di-
vide events into buckets based on the N jets/Nb/Nτ multiplicities, so effects that change the
rate these objects are both produced and detected are obvious targets for improvement. An
effect which changes the number of jets produced will cause a change in the N jets distribu-
tion, so we reprocess our simulation assuming different effects and extract templates whose
shapes have been modified from the nominal.

To model these effects for a single jet/tag bucket, the fitter needs a continuous, real-
valued function to vary for the fit, but it’s computationally infeasible to generate a set of
systematic histograms for each value of the systematic parameter. Instead, we generate
additional sets of templates for ±1σ or optionally two additional points at ±2σ and use
a polynomial to smoothly define the changes in normalization for each bucket. One such
polynomial might model the change in relative normalization for the contribution of tt in
the (1-jet, 0-btag, 0-τ) bucket as the systematic effect is shifted from 80% to 120% of the
nominal value. Importantly, the systematics considered in this analysis aren’t strongly cor-
related (e.g. b-tagging depends primarily on tracking performance, while JES is influenced
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primarily by calorimetry), so we can factorize the contribution from each systematic into
its own scalar value.

A single polynomial only describes the effect of a systematic on a single jet/tag bucket
of a single process. To model the effect for all processes and all buckets, we combine sev-
eral polynomials together to produce what we call “polynoids”. Polynoids are collections
of polynomials that describe an effect on all buckets where each individual polynomial
represents the effect of that systematic on a single bucket. Figure 7.3 is an example of
polynoid that shows the effect of Jet Energy Scale (JES) on the SingleTop process. In this
case, 1.0 represents the nominal, or ‘unshifted’, JES and 1.10 represents JES increased by
10% (to 110%). To produce the 110% sample, we scale the 4-momentum of each jet by
a factor of 1.1 and compensate the ET/ by the appropriate amount. Performing this scaling
pushes some jets from just below the jet pT threshold to just above the jet pT threshold
and simultaneously pulls some events from just above the ET/ threshold to just below the ET/
threshold. The net effect causes some events to jump from the 1-jet to 2-jet buckets while
other events who previously passed the ET/ cut then fail the ET/ cut.
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Figure 7.3: Polynoid representing the effect of JES on the SingleTop distribution. A value
of 1.0 represents the nominal effect of JES (e.g. 100% of the expected value), 1.05 repre-
sents shifting the JES up 5% (105%), etc. As the JES varies, the different jet multiplicities
gain and lose events at different relative rates.

Modeling these systematics in the fit provides a direct way to extract the uncertainty on
the fit due to the these effects. Before the inclusion of the systematics, the fit error con-
tained only the statistical error. Adding an additional parameter to the likelihood broadens
the log-likelihood at the minimum. The uncertainty of the measurement is proportional
to the width of this minimum, so any new parameters add additional uncertainty to the
measurement. At first glance, it seems counter-intuitive to voluntarily add uncertainties to
our measurement. It’s important to note that whether or not these systematic effects were
integrated within the fit, their effects and associated uncertainties would still need to be
quantified. When quantifying these effects out-of-band, their uncertainties are larger than
when they are applied to the fit directly. In effect, directly modeling these effects and their
uncertainties instead of applying them later results in a net gain of sensitivity.

For comparison with other measurements, it is helpful to divide the combined error on
our measurement into statistical and systematic errors. To do this, the fit is run twice. The
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first fit is done with all parameters floating. Then, the fit is performed again with all the
parameters except the one in question fixed to the values obtained in the first fit. Subtracting
the uncertainties of the two fits in quadrature yields an estimate of the contribution due
to the systematic in question. It is important to note that the statistical and systematic
uncertainties are convolved, so the uncertainty extracted from this procedure is just an
estimate.

To model the effect of systematic y on sample x, an additional term Rx,y(N jets,Nb,Nτ)
is added to the fit.

Nx(N jets,Nb,Nτ)l =

(
∏

y
Rx,y(N jets,Nb,Nτ)

)
·Kx ·SMC

x (N jets,Nb,Nτ)l (7.10)

where Rx,y(N jets,Nb,Nτ) is the multiplicative scale factor for sample x due to systematic y
on the bucket (N jets,Nb,Nτ). This yields our total log-likelihood

− lnL =−1 ·

{
∑

N jets,Nb,Nτ

lnPoi(Ndata(N jets,Nb,Nτ)l,∑
x

NMC
x (N jets,Nb,Nτ)l)

}
+{

1
2

constraints

∑
n

(zn− zn)
2

σ2
n

}
(7.11)

where NMC
x contains an implicit product of each systematic effect y from Equation 7.10. In

summary, the fit varies these parameters to attempt to minimize − lnL:

• Kx - The production cross section for each simulated process x

• Rx,y - Each systematic parameter y has an associated SF, which is translated via a
polynoid to give the relative normalization for each bucket of process x

Along with the fit parameters, the fit is given as inputs

• Sx(N jets,Nb,Nτ)l - The per-bucket shape of each simulated process or data x

• zn, σn - The mean zn and width σn of the gaussian constraint on parameter n

• The polynoids describing the normalization on each simulated process and bucket
due to each systematic effect
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Chapter 8

Method

This analysis first takes data recorded by CMS and simulated events and divides them
into buckets based on their jet, b-tag, and τ multiplicities. Then, the events in each bucket
are analyzed to produce kinematic distributions. To model systematic effects, the simulated
events are processed several times using different assumptions of different theoretical pa-
rameters. The distributions in each bucket and their associated systematic effects are then
simultaneously fit to extract the event yield of each process and the observed effect of their
systematic effects.

8.1 Workflow

This analysis is performed as a sequence of discrete steps, each consuming the output
of the previous stage to generate a new set of outputs. The main goal of these stages is
to produce kinematic distributions for each sample divided into jet, b-tag, and τ multiplic-
ities. The fitter uses a collection of these distributions (known as templates) along with
systematic constraints to estimate the cross sections of the signal and backgrounds.

CMS provides simulation and data in the Analysis Object Definition (AOD) format.
Since these data are intended to be used by the majority of analyses, they contain a lot
of information about each event. The generality AOD data provides makes them broadly
usable but the amount of data stored makes them both slow to read and occupy a lot of disk
space. Worse, the AOD-level objects aren’t directly usable by analyses. Since each group
treats different physics objects (e.g. muons) somewhat uniquely, the responsibility for these
differences are pushed down to the individual analyzers, meaning that a significant amount
of reprocessing has to be done on AOD level objects to produce the specific objects each
analysis needs.

Converting AOD to analysis-appropriate objects was performed by the Physics Analysis
Toolkit (PAT). PAT takes AOD, performs standard cleaning and reconstruction algorithms
and generates PAT-tuples with values that are usable by a group of analyses. This analysis
uses PAT-tuples created by the RA2Tau analysis group. To give a sense of scale involved
in generating these PAT-tuples, there are approximately one hundred million events and it
takes nearly two seconds to generate a single PAT event. Two hundred million seconds
is more than six years of CPU time. Even with massive parallelization, groups studying
similar processes share the PAT-tupleization steps to lower the total resources needed to
produce and store these PAT-tuples.

After the PAT level, more significant cuts are needed to both reduce the physics con-
tent of the events and remove extraneous data. This analysis has an EDM-tuple step which
takes the PAT-tuples, performs some selection criteria (defined in Chapter 6), and writes
out simple data structures that are merely a list of the important kinematic variables. These
EDM-tuples are both compact and fast to read. Packing all the final calibrations and selec-
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tions in the EDM-tuples makes it so that the subsequent steps can iterate quickly - they’re
mostly just lists of floating-point numbers at this point.

Next, a python script using CMS’ FWLite library performs a significant translation.
Until this point, all of the data is organized on a per-event basis, meaning there is a large
list of events where each row of the list is the characteristics of a single event. The analysis
doesn’t need information about each individual event, it observes the aggregate effects of
whole processes. The FWLite script handles that impedance mismatch. It iterates over
each event and outputs a number of histograms describing the kinematic distributions of
each bucket.

Finally, the few thousand FWLite files are combined and scaled according to the pro-
cesses modeled to generate one template per systematic variation. These histograms be-
come input to the fitter, parameters for the systematic calculator, and are used to extract the
QCD contribution.

8.2 Fit-based Systematics

The following subsections describe each fit-based systematic in turn.

8.2.1 b-tagging

The b-tagging algorithm chosen for this analysis is the Combined Secondary Vertex
(CSV)[7] tagger operating at the medium working point. In general, the efficiencies for
successfully tagging or mistagging a b-jet vary between data and simulation, so a data to
simulation SF has to be used to match the simulated performance with the actual perfor-
mance. Instead of directly computing the b-tagging efficiency for data (εdata

btag ), it is more

convenient to compute and use the b-tagging efficiency scale factor SFbtag =
εdata

btag

εMC
btag

since sim-

ulated events store the true quark composition of each jet. We can vary this εMC
btag and SFbtag

by selectively weighing events depending on the flavor determined by the CSV tagger and
the Monte Carlo truth.

CMS uses b-tagging for a wide variety of analyses, so a dedicated group both imple-
ments the algorithms and quantifies their performances. The b-tag Physics Object Group
(POG) measured SFbtag = 0.953± 0.012[10]. Since SFbtag was produced centrally with
different event topologies and selections than this analysis, this calculated scale factor may
not be appropriate. In particular, Instead of using the centrally produced SFbtag, the SHYFT
method extracts SFbtag directly from the same events used to fit the central value.

Along with SFbtag, the performance of b-tag algorithms are characterized the mistag
scale factor (SFl f tag), which represents how often light flavor jets are mistakenly tagged as
a heavy flavor jet.

To model the data to MC SF, this analysis weighs each jet in simulation according to

W =


SFbtag Heavy flavor jet tagged during simulation
0 Heavy flavor jet not tagged during simulation
SFl f tag Light flavor jet tagged during simulation
0 Light flavor jet not tagged during simulation

(8.1)
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The per-event weight is then the combinatoric probability of all of the jet weights in the
event. Two groups of four sets of distributions are made, each scaling either SFbtag or
SFl f tag up or down by ten or twenty percent to model the effect of these scale factors on
the overall fit. These additional templates allow the fitter to effectively move jets back and
forth between b-jet multiplicities and provide a data-driven estimate of these scale factors
using the exact same event topologies, reducing the systematic uncertainty associated with
the SFs. Effectively, making the MC templates match the data templates provides a data-
driven estimate of the SF.

The resulting polynoids for SFbtag for the 2-Jet buckets can be found in Figure 8.1. The
entire set of SFbtag and SFl f tag polynoids are in Appendix A.

8.2.2 Jet Energy Corrections (JEC)

This analysis depends heavily on accurate measurements of jet pT. A number of cali-
brations, collectively known as Jet Energy Corrections are used to compensate for various
non-linearities in both data and simulation. These corrections result in the scaling of each
jet 4-momentum by a scale factor depending on the η and pT of the jet. This scale factor is
known as the Jet Energy Scale (JES).

If the JES is increased, low pT jets which were previously under the selection threshold
may gain enough momentum to be selected. Conversely, a lower JES my cause low pT jets
which marginally passed the selection threshold to fail. As the JES SF is varied up and
down, the N jet distribution of the SHYFT fit varies as well. We generate MC templates by
varying JEC by ±5% and producing polynoids to characterize the effect of JES on the N jet
normalizations [23]. The resulting polynoids can be seen in Figure A.11

Along with the affecting the normalization, varying the JEC causes the shapes of the
MC templates to vary as well. To account for this effect, the SHYFT fitter additionally
interpolates the shapes between

8.3 Fit Constraints

The fitter extracts the process normalizations and systematic effect parameters that
cause the simulation to most closely match the data. Without any external information,
the fit could conceivably converge into a region of parameter space that is mathematically
consistent but physically nonsensical. As long as the output from the model matches the
data, the fitter is free to choose any values for the input parameters. For instance, nothing
prevents the fit from choosing negative event counts or efficiencies greater than 100%.

SHYFT attempts to make processes with similar effects distinct by dividing the total
event content into a number of buckets. This process isn’t complete, meaning some pro-
cesses still resemble one another. If two parameters X and Y can both cause simulation to
more accurately match the data, the fitter is in a difficult position.

At their cores, these problems stem from the model having too little information. Until
this point, the model treated its input parameters strictly as a set of floating-point numbers.
An outside observer, however has a priori knowledge of their allowed ranges and a pos-
teriori knowledge of their predicted values. Providing the model with this knowledge will
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Figure 8.1: Polynoids Characterizing Effect of b-tagging on 2-jet multiplicity events. Each
shift of 0.1 corresponds to a 10% change in SFbtag.
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Figure 8.2: Polynoids Characterizing Effect of JES. Each shift of 0.05 corresponds to a
5% change in JES.
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guide its results to physical realms of parameter space.
It would be tautological to simply fix all of the parameters to their initial values, then

extract those values back out from the fit. Instead, we augment the likelihood function
near the initial values. Without this modification, the likelihood depends only on how well
the model matched the data, causing both unphysical and physical regions to have similar
likelihoods. The augmented likelihood superimposes a peak in parameter space around
the initial values. This new likelihood nudges the fit towards the initial values, where the
central values and steepness of the peak are determined externally.

Using this new likelihood, fit parameters are allowed to vary around their initial values.
Per-process scale factors (Kx) of 1.0 represents the theoretical event yield of sample x, while
Rx,y of 0.0 represents no effect from systematic y on sample x (See Equation 7.7). For each
parameter Kx/Rx,y we wish to constrain (zl), we extract a data-driven estimate of the initial
value (zl) and that measurement’s uncertainty (σl). Using zl and σl , we add an additional
multiplicative term

e
−(zl−zl )

2

σ2
l (8.2)

This gaussian curve peaks at zl with a width of σl . This width, which is the uncertainty
of our measurement, influences how tightly the around the initial value the likelihood will
match. A more precise measurement results in a small uncertainty, which makes a smaller
value of σl , which causes this peak to be narrow. As the fit travels away from the initial
value, this term influences the likelihood to decrease.

This analysis applies constraints for each background and systematic parameter (Ta-
ble 8.1). These constraints use analysis-provided data-driven measurements where pos-
sible. Otherwise, existing published results are used. These constraints are described in
detail below.

Parameter zl σl
Ktt 1.0 0.20
KW+Jets 1.0 0.10
KZ+Jets 1.0488 0.046
KSingleTop 1.7608 0.20
KDiBoson 1.0 0.264
K1JetQCD 1.0 2.0
K2JetQCD 1.0 2.0
K3JetQCD 1.0 2.0
K4JetQCD 1.0 2.0
K5JetQCD 1.0 2.0
Rx,btag 100.0% 10.0%
Rx,mistag 100.0% 10.0%
Rx,JES 100.0% 5.0%

Table 8.1: Fit Constraints
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8.3.1 Z + jets and DiBoson (WW, ZZ, WZ) Constraints

Z + jets and DiBoson events which pass this analysis’ one muon event selection criteria
result from muon misidentification. Ten percent of the time, Z bosons decay into a pair of
muons. Similarly, many DiBoson events with muons in the final state produce more than
one muon. CMS reconstructs muons with a high efficiency, meaning most of these muons
are properly identified, causing many of these events to be rejected.

Errors in detectors or event reconstruction can cause events which would normally re-
jected to pass the event criteria. If a Z boson decays into two muons, it has no true ET/ . Both
the number of muons and the lack of ET/ cause the event to fail event selection. However, if
one of the muons isn’t reconstructed, the ET of that muon would be added to ET/ . The event
would then have exactly one muon and possibly enough ET/ to be accepted.

The similarities between Z + jets and DiBoson events cause their kinematic and N jet
distributions to resemble one another. As described before, these similarities cause KZ+Jets
and KDiBoson to be correlated, which poses difficulties for the fit. Z + jets events occur
approximately an order of magnitude more often than DiBoson events. Without any con-
straints, even small changes in KZ+Jets cause huge swings in KDiBoson. This is because Kx is
the scale factor between the theoretical and fitted event yields. Since Z + jets occurs much
more often, every unit change in KZ+Jets adds many more events than the same change to
KDiBoson.

We obtain zl and σl using samples with either two or three muons. The two muon
sample is comprised of roughly 99/1% Z + jets/DiBoson. The three muon sample is 40/60%
Z + jets/DiBoson. Then we extract the di-muon invariant mass kinematic distribution for
each sample, not separating into buckets based on final state. If there are more than two
muons, we select the pair whose invariant mass is closest to the Z boson mass.

Finally, we perform a simplified ‘mini-SHYFT’ fit of both distributions simultaneously
and extract KZ+Jets, KDiBoson and corresponding uncertainties. These values are then used
to constrain the contribution of Z + jets and DiBoson in the main fit.

8.3.2 QCD Constraints

Estimating the contribution from QCD processes poses difficulties. Section 6.7 de-
scribes the data-driven method used to estimate these contributions. We use this estimate
as the initial value in our constraint. The estimate is performed with wildly different event
selections and uses the shape of Z + jets as a proxy for the QCD shape. Instead of a single
constraint for the entire QCD contribution, we apply a constraint per jet-multiplicity. This
takes into account the effect of using pretagged shapes to model the QCD contribution.
To be conservative, we set the constraint width to 200% of the uncertainty of the QCD
measurement.

8.3.3 Other Constraints

The remaining background event yields are scaled to the most recent CMS-measured
8TeV cross sections as their initial values (zl = 1.0). The constraint widths are chosen to
be two times the total CMS-reported uncertainty on the measurement.
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8.4 Summary of Method

To estimate the event rates of our signal and backgrounds, the SHYFT fitter exploits a
finely-segmented, detailed description of as many properties of the events as possible. First,
a number of templates are produced, where each template breaks down a single systematic
situation into several hundred kinematic shapes. There is a shape for each (jet,b-tag,τ) final
state, kinematic distribution, and data/simulated process. Next, the QCD contribution is es-
timated using the low mT sideband. Then, each group of templates describing a systematic
effect is combined to produce a polynoid, which is used by the fitter to model these effects.
Finally, the contribution from Z + jets and DiBosons are constrained using a data-driven
multi-lepton sideband measurement.

With these inputs, the fit attempts to simultaneously find all the simulated event rates
and systematic parameters which make the modeled (N j,Nb,Nτ ,Kinematic) distribution
most closely resemble the data. The results of this fit and this analysis are described in the
following chapter.
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Chapter 9

Results and Analysis

This analysis searches for new physics in the muon+jets+ET/ +τ channel resulting from
the decay chain

t̃ t̃∗→ bb+ χ̃
+

χ̃
−→ bb+νν + τ̃ τ̃

∗→ bb+νν + ττ + χ̃
0
χ̃

0 (9.1)

where the ττ decay into exactly one muon and no electrons.
We explore seven different t̃ t̃∗ scenarios with different masses of the SUSY partners.

These different scenarios simulate the above cascade decay of t̃-pairs with a mass of 250,
300, 350, 400, 450, 500, or 600 GeV. A full description of the different mass points can
be found in Table 6.3. To investigate these seven scenarios, the SHYFT fit is performed
seven different times. Each mass point is fit independently, sharing only the input templates
extracted from data or MC. In the subsequent sections, simplified results are presented for
all seven points and detailed information for the 450GeV mass point are provided.

The data are divided into a number of buckets based on their reconstructed jet, b-jet, and
τ content. These buckets are simultaneously fit by a joint likelihood, which is described in
Chapter 7

The SHYFT fit finds no significant deviation from the SM, so the CMS-developed
Higgs combination tool is used to extract 95% Confidence Limits (CLs) on the signal
strength. We describe the systematic effects, results from the SHYFT fit, and our expected
limits below.

9.1 Systematic effects

This analysis uses three different methods to quantify systematic effects and their asso-
ciated uncertainties.

• Modeling effects within the fit

• Pseudoexperiments

• Fixed penalties

Effects which can be parameterized and modeled as a relative scaling of the kinematic
shapes are referred to as ‘fit-based‘ effects by this analysis. The b-tagging scale factor,
light flavor tagging scale factor and jet energy scale factor are handled in this manner.
These effects are exposed to the fitter as additional parameters it can vary to find a more
accurate match between simulation and data.

To do this, we first generate templates with these systematic parameters shifted up and
down. Using the these templates, we produce polynomials which relate the scaling of each
bucket to the shift of each parameter. Finally, the fitter is taught how to manipulate these

59



parameters to affect the relative normalizations of each bucket. This technique is described
in detail in Section 7.4

In a log-likelihood fit, the width of the likelihood curve at the minimum is used to
estimate the statistical uncertainty of the fit. Each fit-based systematic modeled in the fitter
contributes to a further broadening of the likelihood at the minimum. As a result, the
uncertainties estimated by the fitter are no longer simply the statistical uncertainty. These
uncertainties become a convolution of the statistical and systematic uncertainties.

This combined statistical and systematic uncertainty makes quantifying the systematic
uncertainties associated with each systematic effect difficult. To compare with previous
estimates, we perform the fit twice. The first time, we fit normally to get the preferred
scales. Then we perform the same fit again with the one systematic fixed to the values
found in the first step. To estimate the statistical uncertainty neglecting the effect of fit-
based systematics, we perform one last fit where all three fit-based parameters are fixed
to the values extracted from the first fit. These two statistical uncertainties subtracted in
quadrature provide an estimate of the contribution of each uncertainty. Since these effects
are intermingled within the likelihood function, each of their contributions can not rigor-
ously be extracted. However, the estimates are useful to for comparisons with existing
results.

Some systematic effects can be quantified using pseudo experiments. We again produce
templates with parameters shifted up and down, but instead of introducing an additional fit
parameter, we generate toy MC from these alternate templates and fit them to the data. The
difference between the measured and generated event rates are used to estimate the effect
of the systematic effect. We quote the largest of the up/down variation or their average as
the final systematic uncertainty.

Finally, the remaining systematic effects assess fixed penalties to the systematic uncer-
tainty. These uncertainties result from the lepton trigger, identification and isolation data to
MC scale factors, as well as the global uncertainty on the delivered LHC luminosity.

Each considered uncertainty is described in detail below.

9.1.1 B-Tag / Light Flavor-Tag Scale Factor

The performance of b-tagging algorithms with both MC and data are reasonably good.
The agreement between MC and data b-tagging is known as the b-tag Scale Factor (SFb).
The b-tag Physics Object Group (POG) produces SFb for several different scenarios, but
since this analysis extracts SFb directly from the fit, we choose not to use it. Instead, we
generate templates with SFb shifted ± 1/2σ . These templates are produced by examining
the Monte Carlo truth and b-tag status of each jet and weighing them by ±10% or ±20%.
The total event weight is the combinatorial probability to tag

In addition to the b-tag Scale Factor, we consider the rate of light flavor quarks being
mis-tagged as b-quarks (SFl f ). We consider this effect in a similar manner to SFb.
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9.1.2 Jet Energy Corrections/Jet Energy Scale

The high luminosity and center of mass energy of the LHC will provide incredible
opportunities for both furthering our understanding of the SM and probing the existence
of possible new physics beyond the standard model. To achieve this, however, the LHC
collides hadrons (protons) instead of leptons (e.g. electrons). The combined effects of high
luminosity and colliding colored particles results an incredibly large amount of hadronic
activity within the detector (Chapter 2 describes in more detail the consequences).

Consequently, much care has been taken in CMS’ ability to accurately detect and re-
construct jets which pass through the detector. On the hardware side, the finely-segmented
electromagnetic calorimeters (ECAL) and hadronic calorimeters (HCAL) accurately mea-
sure the energies deposited by particles in their detector media. The software then takes
these energy deposits and known detector performance and attempts to reconstruct the tra-
jectory and energy of the mother parton.

In order to faithfully reconstruct jets, a number of calibrations must be made in soft-
ware. The raw ECAL and HCAL measurements themselves are influenced by a number of
sources of error. For instance, during collisions the detector is subjected to an enormous
flux of radiation. This radiation induces defects in the lattice structure of the crystals within
the electromagnetic calorimeter. Over time, these defects cause the crystals to become pro-
gressively more opaque, causing less light to enter the photomultipliers, leading to less
detected energy for the same particles.

In addition to the corrections relating to the physical detector’s performance, known
differences between simulated and real detector responses must be factored out. The effect
of transiting particles on detector and readout hardware are modeled via GEANT4 [31].
Though the model is quite accurate, a small residual correction is applied to simulation to
compensate for known inconsistencies.

These corrections are collectively known as Jet Energy Corrections (JEC). These cor-
rections modify the energy of each jet and consequently the ET/ of each event, the resulting
scaling is known as the Jet Energy Scale (JES). Different amounts of JES will change the
jet multiplicity spectrum. For example, a jet previously just under the pT threshold could
to meet the pT requirement once its corresponding correction is scaled up. Alternately, the
same event reconstructed using different JES could cause the ET/ of the event to cross the
ET/ > 20GeV cut required by this analysis. Since the data is left unchanged while the sim-
ulated samples’ JES is allowed to vary, the fitter is effectively allowed to find the value of
JES which causes the jet multiplicity spectra for simulation and data to most closely agree.

The dependence on JES is modeled within the SHYFT fit by producing shapes with
JEC shifted by ±5%. Care is taken to offset the ET/ after each jet is rescaled with the new
JEC. Like the b-tagging SFs, the relative normalizations between buckets are input to the
fitter to allow it to simulate the effect of JES on the simulation. However, since the fit uses
the ∑ET and mT (l,ET/ ) distributions, modifying the JES also changes the shapes. The fitter
therefore additionally morphs the shapes as well.

61



9.1.3 W + jets and tt Q2 Energy Scale

The Q2 energy scale is the combination of two independent energy scales: the vertex
energy scale and the renormalization and factorization energy scale. These energy scales,
in turn, depend on either qfac or ktfac, which are scalar constants. The effect of Q2 is to
determine the ‘jettiness’ of an event. A decrease in Q2 will lead to an enhanced amount
of partons being radiated. To estimate the uncertainty due to Q2, we generate alternate
templates using the scaleup/scaledown samples, which generates events with qfac
and ktfac simultaneously set to 0.5 and 2.0, respectively. We generate toy MC from these
alternate templates and fit to the nominal templates to assess this uncertainty.

9.1.4 W + jets and tt Matrix Element to Particle Shower Matching

Samples generated with MADGRAPH [27] interfaced to PYTHIA [28] must perform
Matrix Element (ME) to Particle Shower (PS) matching, which incurs an associated un-
certainty. The matrix element and particle shower simulation techniques represent and
evolve the simulated event using vastly different methods. The MADGRAPH generator cal-
culates matrix elements of the hard interaction, while PYTHIA handles the showering of
outgoing partons. Partons stop being evolved in MADGRAPH once the momentum of the
parton drops below a threshold known as xqcut. Since MADGRAPH and PYTHIA model
the partons differently, modifying xqcut changes the hadronic composition of the final
state. To estimate the uncertainty due to Q2, we generate alternate templates using the
matchingup/matchingdown samples, which generate events with xqcut scaled up and
down. We generate toy MC from these alternate templates and fit to the nominal templates
to assess this uncertainty.

9.1.5 Muon Trigger/Identification/Isolation

Simulated events are corrected by a data to MC scale factor, which takes into account
the difference in muon triggering, identification and isolation performance in MC and data.
These SFs have a combined uncertainty of 2%[33]. These uncertainties are applied globally
to the measured yields.

9.1.6 Luminosity

The total integrated luminosity of the analyzed data was produced using the CMS-
provided pixelLumiCalc.py tool. This luminosity is used to scale MC to their theo-
retical event yields. The uncertainty associated with this value is 2.6%.

9.1.7 Complete Systematic Uncertainty

The statistical uncertainty quoted by the SHYFT fitter is a combination of the true
statistical uncertainty and the uncertainties resulting from the addition of fit-based uncer-
tainties to a fit. Performing multiple fits and subtracting the uncertainties in quadrature
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allows us to estimate their individual contributions to the overall fit. A summary of the
uncertainties in the SHYFT fit are in Table 9.1.

Relative uncertainty on t̃ t̃∗ yield
Source 250GeV t̃ 300GeV t̃ 350GeV t̃ 400GeV t̃ 450GeV t̃ 500GeV t̃ 600GeV t̃
SFb 6.2% 4.4% 2.6% 2.6% 2.0% 6.3% 8.1%
SFl f 1.0% 1.3% 3.4% 0.9% 0.9% 0.5% 0.4%
SF jes 6.2% 6.2% 6.0% 3.7% 2.4% 1.5% 1.7%
Statistical 11.7% 19.3% 17.7% 19.3% 21.5% 20.8% 21.2%
Total Unc. 13.3% 20.3% 18.7% 19.6% 21.7% 20.8% 21.3%

Table 9.1: Summary of SHYFT uncertainties. The individual uncertainties are estimated
by fixing each uncertainty and subtracting in quadrature the resulting uncertainty from the
uncertainty on a fit with all systematic parameters fixed. Correlations between the indi-
vidual uncertainties cause their sum to differ from the total uncertainty, which is extracted
directly from the fit.

9.2 Validation of SHYFT method

In order to validate the SHYFT method, I perform an additional fit in a region with
no signal contribution. This region is produced by inverting the ET/ requirement to require
ET/ < 20GeV. As expected (Table 9.2), this region both shows an insignificant contribution
from signal and good (∼ 99%) agreement between data and simulation.

Sample Event Yield
WJets 1.87E+06 ±0.25%
Top 3.89E+04 ±1.24%
ZJets 1.37E+06 ±0.31%
SingleTop 3.99E+04 ±2.58%
DiBoson 1.80E+04 (+1.09/−0.00)%
QCD 9.01E+04 ±3.83%
Total Bkg. 3.42E+06 (+0.52/–0.31)%
450GeV t̃ t̃∗ 2.63E+01 (+3.49/–2.10)%
Total Sim. 3.42E+06 (+0.52/–0.31)%
Data 3.38E+06
SFsim 0.988

Table 9.2: Results of SHYFT validation fit in the ET/ < 20GeV sideband, mt̃ = 450GeV
scenario. The quoted uncertainties include the contributions from statistics, SFb, SFl f , and
SF jes.
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9.3 Result of SHYFT fit

Using SHYFT, we perform a fit in our signal region which includes the effects of
systematic parameters on our model. The fit factors are listed in Table 9.3. The final event
yields, divided into individual jet/tag buckets are listed below in Table 9.4. Finally, the
correlation matrix for this fit is located at Table 9.5. The resulting kinematic distributions
are located at Figures 9.1, 9.2, and 9.3.

250GeV t̃ 300GeV t̃ 350GeV t̃ 400GeV t̃ 450GeV t̃ 500GeV t̃ 600GeV t̃
t̃ 1.28+0.17

−0.17 0.70+0.15
−0.14 0.85+0.16

−0.15 0.90+0.18
−0.17 1.03+0.23

−0.21 1.47+0.32
−0.29 3.09+0.68

−0.63
Top 0.98+0.01

−0.01 0.98+0.01
−0.01 0.98+0.01

−0.01 0.98+0.00
−0.00 0.99+0.00

−0.00 0.99+0.00
−0.00 1.01+0.01

−0.01
WJets 1.02+0.00

−0.00 1.01+0.00
−0.00 1.01+0.00

−0.00 1.02+0.00
−0.00 1.02+0.00

−0.00 1.01+0.00
−0.00 1.02+0.00

−0.00
ZJets 1.07+0.00

−0.00 1.08+0.00
−0.00 1.08+0.00

−0.00 1.08+0.00
−0.00 1.08+0.00

−0.00 1.08+0.00
−0.00 1.08+0.00

−0.00
SingleTop 2.61+0.03

−0.03 2.62+0.03
−0.03 2.62+0.03

−0.03 2.61+0.03
−0.03 2.61+0.03

−0.03 2.64+0.03
−0.03 2.57+0.03

−0.03
DiBoson 1.96+0.00

−0.00 1.96+0.00
−0.00 1.96+0.00

−0.00 1.96+0.00
−0.00 1.96+0.00

−0.00 1.96+0.00
−0.00 1.96+0.00

−0.00
btag 0.98+0.03

−0.03 1.04+0.04
−0.05 1.13+0.02

−0.03 1.06+0.03
−0.03 1.07+0.03

−0.03 0.94+0.03
−0.03 1.00+0.02

−0.02
lftag 1.60+0.02

−0.02 1.55+0.02
−0.03 1.45+0.05

−0.05 1.54+0.03
−0.03 1.54+0.03

−0.03 1.57+0.02
−0.02 1.66+0.01

−0.01
jes 0.96+0.00

−0.00 0.96+0.00
−0.00 0.96+0.00

−0.00 0.96+0.00
−0.00 0.96+0.00

−0.00 0.96+0.00
−0.00 0.96+0.00

−0.00
qcd 1j 1.70+0.04

−0.04 1.71+0.04
−0.04 1.70+0.04

−0.04 1.70+0.04
−0.04 1.70+0.04

−0.04 1.71+0.04
−0.04 1.71+0.04

−0.04
qcd 2j 0.63+0.02

−0.02 0.62+0.03
−0.03 0.65+0.02

−0.02 0.64+0.02
−0.02 0.64+0.02

−0.02 0.62+0.02
−0.02 0.64+0.02

−0.02
qcd 3j 1.33+0.05

−0.05 1.26+0.05
−0.05 1.29+0.05

−0.05 1.29+0.05
−0.05 1.28+0.05

−0.05 1.25+0.05
−0.05 1.35+0.05

−0.05
qcd 4j 1.45+0.08

−0.08 1.56+0.09
−0.09 1.63+0.08

−0.08 1.59+0.08
−0.08 1.59+0.08

−0.08 1.54+0.08
−0.08 1.52+0.08

−0.08
qcd 5j 1.31+0.09

−0.09 1.33+0.09
−0.09 1.35+0.09

−0.09 1.33+0.09
−0.09 1.34+0.09

−0.09 1.31+0.09
−0.09 1.32+0.09

−0.09

Table 9.3: Fit factors from the nominal SHYFT fit. The quoted uncertainties are a com-
bination of both the statistical and fit-based systematic uncertainties, described in Sec 9.1.
The btag, lftag, and jes parameters are defined as percent shift from the nominal, while the
other parameters are expressed as multiples of the theoretical yield. The QCD factors are
the multiplicative difference relative to the sideband-fitted QCD rates
.
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Data Total Pred Stop450 Top WJets ZJets QCD DiBoson SingleTop
1 Jet 0 B 0 T 4872103 4862819.2 3.1 12596.8 4437444.2 333104.4 0.0 44309.4 35361.4
1 Jet 0 B 1 T 283007 291574.2 0.3 662.8 145707.5 127738.7 10221.3 6222.1 1021.6
1 Jet 1 B 0 T 237451 225592.1 5.3 12665.3 148959.5 12025.4 10840.4 2510.3 38586.0
2 Jet 0 B 0 T 989927 997544.0 10.4 19495.5 871915.3 64174.7 4509.4 17448.0 19990.9
2 Jet 0 B 1 T 65936 64553.9 2.2 1417.2 38368.0 19493.9 1517.0 2491.7 1263.9
2 Jet 1 B 0 T 130721 134155.3 33.1 35936.7 55714.8 4796.2 1154.6 2002.2 34517.7
2 Jet 1 B 1 T 5404 5712.2 4.8 1969.9 1258.2 801.3 89.1 80.9 1507.9
2 Jet 2 B 0 T 18428 20933.2 17.1 11462.4 2527.2 227.4 114.4 44.7 6540.1
3 Jet 0 B 0 T 187590 186489.6 14.0 15313.8 143457.3 12903.0 4665.3 4136.5 5999.8
3 Jet 0 B 1 T 15810 15059.0 4.3 1306.0 7145.9 4438.7 961.7 687.2 515.2
3 Jet 1 B 0 T 66921 69633.1 81.0 39278.2 13558.6 1338.8 1814.6 681.0 12880.9
3 Jet 1 B 1 T 4857 4943.1 20.0 2956.3 511.2 305.0 277.7 49.2 823.8
3 Jet 2 B 0 T 28068 27969.4 20.1 21768.2 952.4 176.4 163.1 44.2 4845.0
3 Jet 2 B 1 T 1596 1727.5 14.4 1438.4 25.2 26.5 18.4 7.3 197.2
4 Jet 0 B 0 T 36834 35957.3 11.4 6676.0 23986.7 2719.5 376.7 803.0 1383.9
4 Jet 0 B 1 T 3604 3308.2 6.8 550.0 1297.8 912.7 256.4 154.3 130.1
4 Jet 1 B 0 T 27983 27782.8 85.5 20224.7 2971.5 374.6 405.2 182.2 3539.2
4 Jet 1 B 1 T 2390 2298.6 23.3 1669.4 106.9 84.0 146.9 12.3 255.8
4 Jet 2 B 0 T 18878 18147.3 15.8 15591.9 447.3 82.3 0.0 17.3 1992.7
4 Jet 2 B 1 T 1282 1221.3 21.6 1070.7 10.1 8.7 0.0 1.0 109.2
5 Jet 0 B 0 T 8461 7776.3 8.7 2622.3 4031.6 503.1 106.2 159.5 344.9
5 Jet 0 B 1 T 895 800.2 3.4 241.9 217.6 206.3 65.3 36.8 28.9
5 Jet 1 B 0 T 10707 10426.5 76.3 8660.1 676.0 128.2 0.0 40.1 846.0
5 Jet 1 B 1 T 988 906.8 21.4 704.0 26.5 23.8 55.5 4.5 71.1
5 Jet 2 B 0 T 9188 8732.1 11.0 7984.1 80.3 14.9 13.0 9.4 619.5
5 Jet 2 B 1 T 729 695.8 23.4 600.8 5.0 3.5 14.8 1.9 46.5
Total 7029758 7026759.5 538.6 244863.5 5901402.6 586612.1 37786.9 82136.7 173419.0

Table 9.4: Per-bin event yields SHYFT fit in the mt̃ = 450GeV scenario.
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Stop450 Top WJets ZJets DiBoson SingleTop btag jes lftag qcd 1j qcd 2j qcd 3j qcd 4j qcd 5j
Stop450 1.000 -0.181 0.004 0.006 0.000 0.060 0.052 -0.008 -0.098 0.023 0.013 0.030 -0.047 -0.090

Top -0.181 1.000 0.463 -0.214 0.000 -0.658 -0.147 -0.445 0.274 -0.195 0.240 -0.018 -0.073 -0.003
WJets 0.004 0.463 1.000 -0.389 0.000 -0.381 -0.024 -0.951 0.093 -0.015 0.398 0.346 0.102 0.077
ZJets 0.006 -0.214 -0.389 1.000 0.000 0.242 0.108 0.267 -0.098 0.384 -0.282 -0.164 -0.029 -0.014

DiBoson 0.000 0.000 0.000 0.000 1.000 0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000
SingleTop 0.060 -0.658 -0.381 0.242 0.000 1.000 -0.178 0.322 0.002 0.364 -0.452 -0.172 -0.036 -0.038

btag 0.052 -0.147 -0.024 0.108 -0.000 -0.178 1.000 0.017 -0.796 0.017 0.210 0.116 0.183 0.126
jes -0.008 -0.445 -0.951 0.267 0.000 0.322 0.017 1.000 -0.086 -0.036 -0.436 -0.378 -0.111 -0.084

lftag -0.098 0.274 0.093 -0.098 0.000 0.002 -0.796 -0.086 1.000 -0.038 -0.117 -0.128 -0.166 -0.088
qcd 1j 0.023 -0.195 -0.015 0.384 -0.000 0.364 0.017 -0.036 -0.038 1.000 -0.172 -0.040 0.008 0.007
qcd 2j 0.013 0.240 0.398 -0.282 0.000 -0.452 0.210 -0.436 -0.117 -0.172 1.000 0.270 0.101 0.066
qcd 3j 0.030 -0.018 0.346 -0.164 0.000 -0.172 0.116 -0.378 -0.128 -0.040 0.270 1.000 0.103 0.056
qcd 4j -0.047 -0.073 0.102 -0.029 0.000 -0.036 0.183 -0.111 -0.166 0.008 0.101 0.103 1.000 0.045
qcd 5j -0.090 -0.003 0.077 -0.014 -0.000 -0.038 0.126 -0.084 -0.088 0.007 0.066 0.056 0.045 1.000

Table 9.5: Correlation matrix from SHYFT fit in the mt̃ = 450GeV scenario
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Taking into account the fitted event yield and associated uncertainties, Table 9.6 lists
Nt̃ t̃∗ for each of our mass points. Even without considering the full gamut of systematic

t̃ Mass (GeV) Data Yield Signal Yield Background Yield
250 7029758 6709.66±869.53 7020209.27±10863.11
300 7029758 2210.53±440.14 7024551.53±10357.22
350 7029758 1460.88±278.14 7025240.23±10301.82
400 7029758 841.08±165.11 7025922.26±10277.80
450 7029758 538.63±116.67 7026220.83±10267.14
500 7029758 419.36±87.28 7026428.27±10286.74
600 7029758 271.03±57.59 7026579.24±10795.59

Table 9.6: Measured yields from SHYFT fit. The quoted uncertainties are a convolution of
stat, b-tagging, and JES.

effects, the measured signal is consistent with the backgrounds. In order to effectively
extract and quantify the significance of this measurement, I use a statistical packaged orig-
inally developed by CMS during the search for the Higgs boson.

9.4 The Higgs Combination Tool

Since its prediction in the 1960s, the Higgs boson eluded detection by generation after
generation of detectors and physicists. The mass of the Higgs was initially very weakly
constrained, so performing a search for the Higgs was made more difficult by not knowing
‘where’ to look. Hopes were raised when tantalizing glimpses of this mysterious particle
were observed, but for decades these glimpses were all determined to be false. Instead of
triumphant discoveries, search after search yielded exclusions on the Higgs. Towards the
end of the ’00s, however, the search for the Higgs reached a frenzied pitch.

The Tevatron, a proton-antiproton collider operating at
√

s = 1.96TeV at Fermi Na-
tional Accelerator Laboratory (FNAL) in Chicago, IL, was reaching the end of it’s lifespan.
Originally operational since 1984, the Tevatron was credited with several groundbreaking
discoveries including the discovery of the top quark. It’s collision energies were limited to
1.96TeV, but a series of upgrades to it’s instantaneous luminosity in the early ’00s helped
expand the reach of both the Tevatron and it’s two detectors - the Collider Detector at
Fermilab (CDF) and D-Zero (DØ). After nearly two decades of operation, the Tevatron
experiments had figured out how to wring out every last bit of sensitivity out of their ma-
chines. The accelerator itself was operating at one hundred times it’s design luminosity
and the detector groups had honed their reconstruction efficiency using their experience
of several hundred trillion events. Even more tantalizing, years of successive exclusions
had narrowed down the Higgs boson mass to a range that was just on the edge of what
was detectable at the Tevatron. Towards the late ’00s, there was growing optimism that the
Tevatron would be the one to make this discovery.

On the other side of the world at CERN, the LHC and the scientists affiliated with it’s
detectors were biding their time. A series of issues caused the startup date to push back
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Figure 9.1: Output distributions for 1/2/3 jet bins(log scale)
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Figure 9.2: Output distributions for 3 jet bins(log scale)

from 2005 to 2009. The relative advantages of the LHC over the Tevatron couldn’t be
exploited until the accelerator was running and producing usable data.

The LHC began operations at
√

s = 7TeV in the beginning of 2010 and the hunt be-
gan. The higher energies meant each collision had a higher probability of producing mas-
sive particles, but the initial periods of data taking were limited while the accelerator and
detectors were undergoing tuning during the commissioning runs. Back at the Tevatron,
momentum was building for a last-ditch extension to the project. Glimpses of the Higgs
were reportedly seen[34], and the hope was that another three years of running would al-
low the Tevatron to collect enough data to turn these glimpses into a statistically significant
discovery.

Even for an experiment as large and complex as CMS, the Higgs search was a mas-
sive undertaking[4]. Hundreds of scientists were directly involved with examining what
little data the detector had recorded. This workforce was divided up into many groups,
each tasked with examining a specific final state (e.g. Higgs decaying into two photons).
Individually, these results wouldn’t have enough statistics to distinguish the Higgs from
the backgrounds. Simply waiting for more data could’ve meant ceding the potential Higgs
discovery to the Tevatron. Instead, combined results which included the results from each
group were produced. These combined result, however, could be significant enough to
claim a discovery.

In order to combine these disparate results in a statistically rigorous way, the Higgs
combination tool was developed. Guided by statistics experts within the collaboration, this
tool quickly became a well-tested, fully-featured framework for calculating the significance
of the measurement. Results from ATLAS (another LHC detector) would later be combined
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Figure 9.3: Output distributions for 4/5 jet bins
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with CMS’ measurements using the combination tool as well.
The combination tool is still in use, but instead of being primarily a tool for the Higgs

search, many new users are using it to search for new physics like SUSY. Its roots as a
tool to compute the significance of a faint signal against a large background makes it apt
for these measurements. Having a highly functional and well-developed tool with many
experts within the collaboration has been a boon, lowering the barrier for new analyses to
be performed on ever-fainter signals.

9.5 Limits

Fitting simulation with the 2012 data using the SHYFT fitter results in a signal yield
which is completely within the uncertainty of the background yield (Table 9.6). This anal-
ysis seeks to compute the significance of the observed signal yield in order to set 95% C.L.
limits for these SUSY scenarios. I use the Higgs Combination Tool[35] to perform this
task.

The Higgs Combination Tool calculates the exclusion limit with the CLs[36, 37] method.
The CLs method constructs a joint likelihood for each bin in the signal, data, and back-
grounds. Systematic uncertainties are represented by nuisance parameters which contribute
to the joint likelihood. Parameters which affect normalization are modeled as log normals,
while parameters which affect shapes are modeled as gaussians. Nuisance parameters are
considered either 100% uncorrelated or 100% correlated across processes by default. Im-
plementing partially correlated nuisance parameters requires changing the basis of the un-
certainties to a coordinate system where each parameter is linearly independent from one
another. The 95% upper limit is then determined by locating the signal yield θ where the
integral of the likelihood from −∞ to θ is 95% of the total likelihood. In the case of a
gaussian likelihood function, this corresponds to an upward deviation of 1.96σ from the
mean.

The combination tool accepts as it’s input a datacard, which expresses the analysis in
terms of input shapes, uncertainties and the correlations between them. The datacard has
pointers to shapes within ROOT files. The combination tool takes the datacard and ROOT
files, and extracts the expected and observed significance of the signal. It begins by re-
peatedly generating pseudodata from simulation, fitting it to the simulation, then recording
the signal yield. After several iterations, the distribution of signal yields forms a gaussian
peak. The mean value of this gaussian is then the expected limit, and the width is used to
compute the 1/2/3σ bands around the expected limit. Once the expected limit is calculated,
the combination tool performs the fit one more time with real data instead of pseudo data.

To get an accurate measurement, the datacard needs to have a complete model of the
analysis’ shapes and uncertainties. To begin the process, I first start with the simplest dat-
acard possible. The background normalizations are extracted by performing a SHYFT fit
with no signal. Once the SHYFT fitter has converged on a solution, it outputs one shape for
each process. Instead of a shape per process per bucket, it places each bucket side by side
to produce a single long shape per process. Not only are the shapes normalized to the per-
process normalizations, but they are also morphed by the fit-based systematics (SFb, SFl f ,
SF jes). This is desirable because the SHYFT fit has ostensibly found the values of these
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SFs that make the simulation most closely agree with the data. Finally, the signal shapes
are morphed by the fit-based systematics, normalized to their theoretical cross-sections and
added to the input shapes.

Three different methods were used to implement systematic effects in the combination
tool, each corresponding to a category in Section 9.1.

To model systematic effects with pseudo-data, I provide shift up/down shapes for each
of these effects. So, in addition to the input shapes from the SHYFT fit, there is a pair of
additional shapes for each systematic effect . For example, to add the effect of tt Q2 energy
scale, I add two additional shapes: one with the tt Q2 energy scale shifted up one σ and
another with the tt Q2 energy scale shifted down one σ . Within the combination tool, these
shape nuisance parameters are modeled as gaussian priors.

Effects which scale entire processes up and down (like luminosity) are modeled by
log-normal nuisance parameters.

Finally, uncertainties from the SHYFT fit are propagated to the combination tool. This
task consists of two independent steps.

To teach the combination tool about how effects change the shapes, it needs the shapes
where each systematic effect is shifted up or down by one σ . However, since the combina-
tion tool is provided nominal templates whose SFs are scaled away from 1.0, the existing
shapes of 1.0±1σ don’t properly bracket the effect. Instead, the SHYFT fit is run again,
fixing every parameter to the fitted values then varying one systematic at a time ±1σ . For
example, if SFb = 0.96 I run the fit where I’ve fixed everything to the nominal values but
change SFb = 0.96±0.05.

Next, the remaining statistical uncertainties are added to the fit. To do this, the statistical
uncertainty is estimated by rerunning the fit normally except fixing the systematic SFs
to their fitted values. Removing the parameters from the fit removes their effects on the
likelihood curve, leaving only the uncertainty due to statistics. Each resulting uncertainty
on the processes could be added as a nuisance parameter to the combination tool. This isn’t
strictly accurate, though. Adding a nuisance parameter per-process implies that each of the
uncertainties are totally uncorrelated. The correlation matrix for the SHYFT fits show that
many processes are strongly correlated with each other. Unfortunately, the combination
tool only handles 0% or 100% correlations.

To accurately propagate the uncertainties from the SHYFT fit to the combination tool,
the covariance matrix of the SHYFT parameters is produced. The eigenvectors and eigen-
values of the covariance matrix represents the directions and magnitudes of uncertainties
in parameter-space. Since covariance matrices are symmetrical, and the eigenvectors of
symmetric matrices are orthogonal, each of these eigenvectors are linearly independent of
each other. Each eigenvector can then be interpreted as a nuisance parameter in a new basis
where each parameter is independent of each other, which allows them to be accepted by
the combination tool. As a result, the fitter understands both the SHYFT-provided uncer-
tainties on the normalizations and the correlations between them.

Once the input shapes and their uncertainties modeled within the combination tool, it
extracts the limits for each mass point which can be seen in Figure 9.4.

The range of mass points chosen at the beginning of this analysis was not wide enough
to bracket the theoretical values, which prevented the ability to set a limit. In order to
have enough breadth to set a limit, an additional point was added at 700GeV. Instead of
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reprocessing this point from scratch, the final point is an extrapolation from the previous
points.

As the stop mass increases, the production cross-section drops, but the shapes remain
nearly identical. The 700GeV limit was produced by taking the 600GeV shapes, rescaling
them to the 700GeV cross-section, and rerunning the combination tool with this shape
estimate.

The observed signal rate in Figure 9.4 deviates from the expected limit by approxi-
mately 1σ across the entire mass range. The expected limit and ±1,2σ bands represents
background-only hypothesis the 1 and 2 σ standard deviations the mean measurement. The
observed limit straddles the +1σ band, meaning there is roughly a 68% probability the
observed limit is due to statistical fluctuations alone. The leading order theoretical calcu-
lations of the cross section intersect the observed limit at m(̃t) = 525GeV, which excludes
m(̃t) less than 525GeV.
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Chapter 10

Conclusion

This analysis describes a search for t̃ t̃∗ in 8 TeV data recorded using the CMS detector
in 2012. To increase sensitivity, the technique known as “Simultaneous Heavy Flavor and
Top”, or SHYFT, was used. This approach involves dividing up a sample based on event
content then simultaneously fitting both the signal and all bckgrounds. Additionally, major
sources of systematic uncertainty are constrained by the data as well. By extracting all
values in situ, the overall measurement error is reduced.

This technique was first developed at the CDF experiment[5] to measure the tt cross-
section and was later used at CMS to measure the tt cross-section at 7 TeV. In both cases,
SHYFT was strongly competitive with other results.

For this analysis, additional discrimination is provided by further dividing the data
based on τ-lepton content since the targeted signal is expected to be rich in τs.

The SHYFT fit finds no significant excess compared to the standard model for any of
the the analyzed mass points. The Higgs combination tool was then used to obtain 95%
C.L. upper limits on the cross section for each mass point using a CLs method. The Higgs
combination tool performs a shape based analysis to determine the likelihood of observing
signal in the presence of the measured data and background. These significances exclude
masses of t̃ less than 525GeV.
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Appendix A

Input Polynoids

The following sections are the polynoids which describe the affect of each systematic
effect on each sample and jet/tag bin. Polynoids are described in Section 7.4.

A.1 B-Tag Efficiency Scale Factor Polynoids

A.2 B-Mistag Efficiency Scale Factor Polynoids

A.3 JES Scale Factor Polynoids
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Figure A.1: Polynoids Characterizing Effect of b-tagging on 1-jet multiplicity events. Each
shift of 0.1 corresponds to a 10% change in SFbtag.
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Figure A.2: Polynoids Characterizing Effect of b-tagging on 2-jet multiplicity events. Each
shift of 0.1 corresponds to a 10% change in SFbtag.
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Figure A.3: Polynoids Characterizing Effect of b-tagging on 3-jet multiplicity events. Each
shift of 0.1 corresponds to a 10% change in SFbtag.
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Figure A.4: Polynoids Characterizing Effect of b-tagging on 4-jet multiplicity events. Each
shift of 0.1 corresponds to a 10% change in SFbtag.
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Figure A.5: Polynoids Characterizing Effect of b-tagging on 5-jet multiplicity events. Each
shift of 0.05 corresponds to a 5% change in SFjes.
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Figure A.6: Polynoids Characterizing Effect of lf-mistagging on 1-jet multiplicity events.
Each shift of 0.1 corresponds to a 10% change in SFl f tag.
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Figure A.7: Polynoids Characterizing Effect of lf-mistagging on 2-jet multiplicity events.
Each shift of 0.1 corresponds to a 10% change in SFl f tag.
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Figure A.8: Polynoids Characterizing Effect of lf-mistagging on 3-jet multiplicity events.
Each shift of 0.1 corresponds to a 10% change in SFl f tag.
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Figure A.9: Polynoids Characterizing Effect of lf-mistagging on 4-jet multiplicity events.
Each shift of 0.1 corresponds to a 10% change in SFl f tag.
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Figure A.10: Polynoids Characterizing Effect of lf-mistagging on 5-jet multiplicity events.
Each shift of 0.1 corresponds to a 10% change in SFl f tag.
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Figure A.11: Polynoids Characterizing Effect of JES on 1-jet multiplicity events. Each
shift of 0.1 corresponds to a 10% change in SFjes.
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Appendix B

QCD Fit Output Distributions

This analysis performs a data-driven estimate of the QCD contribution The following
histograms correspond to the results of the QCD normalization procedure

GeV
0 20 40 60 80 100 120

0

100

200

300

400

500

600

700

800

900

310×
MET (1j, 0b, 0t) Data

WJets
EWK
Top
QCD

GeV
0 20 40 60 80 100 120

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

MET (1j, 1b, 0t) Data
WJets
EWK
QCD
Top

GeV
0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

310×
MET (1j, 0b, 1t) Data

EWK
WJets
QCD
Top

Figure B.1: Fit results for QCD normalization, = 1 jet bins
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Figure B.2: Fit results for QCD normalization, = 2 jet bins
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Figure B.3: Fit results for QCD normalization, = 3 jet bins
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Figure B.4: Fit results for QCD normalization, = 4 jet bins
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Figure B.5: Fit results for QCD normalization, ≥ 5 jet bins
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