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Chapter I

Introduction

1.1 Computer Science Education

Software has become a ubiquitous part of everyday life and its presence only continues to

grow. Smartphones, wearables, and the Internet of Things have been increasing the preva-

lence of electronic devices, providing new platforms for software innovation and reinforcing

the importance of software development. Occupations in information technology have drasti-

cally increased over the past 50 years. In 1970, there were approximately 450,000 individuals

working in information technology in the United States; in 2014, this number reached 4.6

million [13]. This growth has also been projected to continue through 2022, increasing the

number of jobs by 18% [108].

This rise in technology employment and use in everyday life has emphasized the impor-

tance of computer science and STEM education [68]. There have been a number of efforts

worldwide to introduce children to computer programming such as Computing At School and

CSForAll. Additionally, there are many organizations supporting this same goal including

Khan Academy, Code.org, Girls Who Code, and the Raspberry PI Foundation. Visual pro-

gramming languages have played a very prominent role in this effort and have been used to

teach programming [83, 139, 114] as well as science and computational modeling [135, 124].

1.2 Educational Visual Programming Languages

The educational literature on learning computing is filled with observations about chal-

lenges faced by beginner programmers. When first learning to program, students must learn

both the syntax and semantics of the given language. As languages consist of a limited

number of elements which can be composed in many ways, students must learn the seman-

tic results of combining the given language elements in a variety of ways. Furthermore,

the students also need to learn how they can compose the given language elements in a

way in which the semantic result performs the desired function. As students are learning

to solve these semantic challenges, they often get confused with syntactic intricacies of the

language [125, 102]. Reducing the syntactic complexities of a language allows the students

to focus on the semantic challenges [54].

Many visual programming languages, like Scratch, simplify the syntactic complexity of

the language by providing blocks representing the language elements which can be composed
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using a simple drag-and-drop interface. The shape determines how the blocks can be com-

posed; incompatible blocks cannot be connected together resulting in the inability for users

to create syntactically invalid code. As a beginner programming language, it allows novices

to simply focus on the semantic challenges of learning the language rather than struggling

with syntactic intricacies.

1.3 Networking and Distributed Computing

Existing educational visual programming tools focus only on the computer and disregard

the network, an equally important concept. Networking is a key component to many com-

monly used software applications. Examples of networking are everywhere and include the

web, Amazon, Google, Twitter, Facebook, YouTube, autonomous vehicles, mobile phones,

and online gaming. Networking enables the development of distributed applications where

multiple applications communicate over the network to coordinate and perform some de-

sired function. Distributed computing is another important concept and is present in all the

previously mentioned networking examples.

The ubiquity of networking, especially among common daily activities, makes it a nec-

essary part of computer literacy. Many common applications not only use networking but

require it to function. Without introducing networking concepts to young learners, the key

elements of these types of applications cannot be effectively understood. If they cannot

understand the key elements of this fundamental technology, computer literacy will be a

challenge.

Introducing networking concepts to young learners provides a pedagogical opportunity.

The pervasiveness of networking, especially in many popular social applications, makes pro-

gramming these types of network enabled applications particularly relevant to students and

provides excellent motivation. Incorporating networking capabilities into early educational

programming tools could enable users to access network resources and build their own dis-

tributed applications. This can enable users to incorporate relevant, real-world data making

programming more relevant as well as engaging to a variety of different student interests.

Building distributed applications provides an opportunity to make programming a more

social activity as students can develop distributed applications together.

Networking and distributed computing are important computer science concepts and

should be introduced in the K12 curriculum. Concepts such as asynchronous and syn-

chronous communication, reliable and unreliable protocols, and the need for concurrency in

operating systems are advocated by the ACM/IEEE computer science curriculum starting

at the college level. The premise of this work is that through a carefully designed interface
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and the use of natural, intuitive abstractions, distributed concepts could be introduced as

part of the high school computer science curriculum.

1.4 Problem Statement

The primary focus of our work is to make distributed computing accessible to high

school students with little programming experience. By building on the success of visual

programming languages for making programming accessible to novice programmers, we be-

lieve that developing abstractions within the blocks-based programming paradigm can make

distributed computing accessible even to users with little programming experience. En-

abling students to develop distributed applications would provide concrete examples and

experiences from which they can learn distributed computing concepts. However, providing

capabilities for developing distributed applications also adds complexity to student projects.

As the complexity of user applications grows, it is important to provide additional sup-

portive capabilities to enable the users to manage increasingly complex applications. We

have identified a number of challenges in making distributed computing accessible to high

school students. The first two problems pertain to enabling novices to develop distributed

applications; the remaining problems are related to the management of complex applications.

• Distributed Programming Abstractions. Designing the appropriate abstrac-

tions supporting the development of distributed applications is important for enabling

novices to work with them effectively. The abstractions must hide unnecessary com-

plexities and have a low threshold to developing basic distributed applications. At the

same time, they must also have a high ceiling to support the creation of more sophisti-

cated distributed applications demonstrating concepts like messaging patterns or data

processing paradigms. Access to the network, a fundamental component of distributed

applications, provides an opportunity for accessing internet resources as well.

• Remote Block Execution. Developing distributed applications introduces addi-

tional design considerations such as network latency and data locality. That is, under-

standing the strengths and limitations of specific execution environments can be used

to inform design decisions when developing a distributed application. To expose stu-

dents to these concepts, we propose allowing them to execute custom block functions

on remote computing resources outside of the blocks-based programming environment.

The execution of custom block functions outside of the blocks-based programming en-

vironment is a non-trivial task. Different execution environments may have different

capabilities from the original programming environment. Consequently, the behavior

3



of the individual blocks may require modification to perform as expected when exe-

cuting in the new environment. Although the behavior of the individual blocks may

change, it is important that the semantics of the code remains unchanged and behaves

as expected. This includes conforming the concurrency model used by the original

environment as well as supporting closures and functional capabilities of the original

language. Additionally, security concerns resulting from executing arbitrary code on

shared, distributed resources are also an important design consideration.

• Collaborative Editing. Collaboration is an essential part of solving challenging

problems and developing complex applications. Collaborative editing in lively, blocks-

based programming environments introduces a number of unique challenges. “Lively”

programming environments do not provide distinct development and execution stages;

the program is always responsive and automatically updates according to user mod-

ifications. Although this promotes student exploration and feedback, it introduces

challenges when considering collaboration in these types of environments. Specifically,

what should be synchronized in these environments? Subsequently, exactly which

actions or behaviors should be synchronized and how should we support this synchro-

nization?

• Novice-Friendly Version Control. Version control is commonly used in large soft-

ware projects and provides a powerful way to recover from mistakes as well as gather

insight into the history of a given project. Perhaps as a result of the powerful capa-

bilities of version control, they are often very complex and not accessible to novice

programmers. Most version control tools operate on text files and cannot provide

meaningful information about changes made in other types of files.

Regardless, version control capabilities could be very effective in assisting novice pro-

grammers in managing more complex applications. This introduces unique challenges.

The version control capabilities should be intuitive and understandable to students

with little or no direct instruction. Project modifications should also be represented

meaningfully to the students. Standard approaches to displaying differences in version

control tools are designed for text data and are inadequate in the given setting.

1.5 Contributions of this Dissertation

In this work, We present abstractions designed to make distributed computing accessi-

ble to novice programmers. These abstractions have a low threshold while simultaneously

supporting the development of even sophisticated distributed applications. Additionally,
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We demonstrate the capabilities of these abstractions through examples that contain both

simple and complex distributed applications to illustrate the low threshold and advanced

capabilities of the provided abstractions.

We also present a technique for executing blocks in alternative execution environments

with different capabilities. This includes designing a cross-compiler from the source block

language supporting the configuration of the underlying primitive block implementations.

The compiler design also addresses adherence to the original concurrency model and safety

concerns when compiling arbitrary code for execution on potentially shared resources. Fur-

thermore, we present supportive capabilities including collaborative editing in a lively, blocks-

based environment and novice-friendly version control support.

Finally, we have designed a sophisticated environment supporting these abstractions (in-

cluding the collaboration and version control capabilities) called NetsBlox. We provide three

case studies using NetsBlox to evaluate the following hypotheses about the provided contri-

butions:

• The networking abstractions enable novices to develop distributed applications.

• Building distributed applications with these abstractions enables users to develop a

better understanding of important distributed computing concepts.

• Providing access to additional resources and making programming more social improve

student interest and engagement.

1.6 Organization

This dissertation is structured as follows. Chapter 2 presents the distributed program-

ming abstractions. This includes an overview of the related work and a presentation of the

proposed approach in Section 2.1 and Section 2.2, respectively. Section 2.3 presents con-

cepts and interfaces for debugging distributed applications. Examples demonstrating the

simplicity and expressiveness of the abstractions are outlined in Section 2.4.

Chapter 3 discusses the approach for execution blocks in alternative environments. Sec-

tion 3.1 presents related work for generating code from block-based programs as well as

hybrid visual and textual programming environments. The design of the block compiler is

specified in Section 3.2. In Section 3.3, the use of the compiler to execute blocks in a server

environment is described.

Collaborative editing capabilities are discussed in Chapter 4 including an overview of re-

lated work. Conceptual and technical challenges are examined in Section 4.1 and Section 4.2,

respectively. Our approach is then presented in Section 4.3.
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Similarly, novice-friendly version control is discussed in Chapter 5. Background and re-

lated work is provided in Section 5.1 including both teaching version control in the classroom

and approaches to simplify version control. Finally, we present my approach in Section 5.2.

Chapter 6 investigates empirical support for the presented abstractions and designs.

Related work evaluating educational programming environments is shown in Section 6.1.

NetsBlox, a prototype environment of the presented work is described in Section 6.2 and

three case studies using NetsBlox to evaluate the presented concepts and abstractions are

discussed in Section 6.3. Finally, we conclude the dissertation with a discussion of the

advantages, limitations and areas for future work in Chapter 7.
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Chapter II

Distributed Programming Abstractions

2.1 Background and Related Work

2.1.1 Educational Programming Languages

Logo

One of the earliest educational programming environments is LOGO. This is a pro-

gramming language designed to teach students computer programming by enabling them to

control a “turtle” which moves and draws to create graphical effects. By simplifying the lan-

guage syntax, LOGO made programming more accessible to novices and made it an effective

tool in the classroom [93, 63, 99, 24]. Although LOGO generates a graphical output, it is

a powerful list-processing language which supports a number of advanced features including

subprocedures and recursion [82].

LOGO proved an effective resource in the classroom. As a result, it provided inspiration

for many subsequent educational programming languages. These new languages build upon

LOGO to make it applicable for various other applications including modeling complex

systems [107, 135, 97, 130], learning object-oriented programming [36, 91], and even audio

programming [53]. LOGO also provided the inspiration for a number of other languages and

environments which may have a less obvious resemblance but still extend the principles and

vision of LOGO [59, 78, 87, 75].

NetLogo and StarLogo

Two notable LOGO derivatives are NetLogo [130] and StarLogo [107]. These environ-

ments are both targeted toward modeling complex systems and require the user to program

in a “decentralized manner.” Users program the behavior of individual agents and then ex-

plore the outcomes of the entire system. This enables users to view complex systems as the

result of many individual, independent behaviors rather than a simple centralized mindset.

One example of such a simulation can be found in mold aggregation behavior (provided

in [107]) and is shown in Figure 1. In this example, mold cells are represented by white

pixels on a black background. The user programs the behavior of the mold cells to emit a

chemical pheromone and follow the gradient of the surrounding pheromone. The background

“patches” can be programmed to allow the current pheromone on the given patch to slowly

evaporate. When the behaviors of the mold cells and the background are combined, the
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Figure 1: Modeling Mold Aggregation in StarLogo [107]

mold cells will begin to form clusters shortly after running the simulation. Although this is

a simple example, it captures the essence of the emergent behavior in decentralized systems

and their ability to be modeled in environments such as StarLogo and NetLogo.

2.1.2 Educational Visual Programming Languages

LogoBlocks

LogoBlocks was the first blocks-based programming language. It was designed for pro-

gramming on the Programmable Brick [14]. Building on top of Brick Logo, LogoBlocks

merged the visual programming techniques of the time with the syntax and functionality

of Brick Logo [82]. Although LogoBlocks was limited in its functionality (it did not have

support for functions or branching [14]), its user interface introduced some concepts and

visual cues still used in popular blocks-based languages today. These include the rounded

rectangles used for statements and input slots for input arguments. The sample program is

shown in Figure 2 [14].

Scratch

The most well-known blocks-based programming environment is Scratch [78]. Scratch

enables users to build interactive applications ranging from greeting cards to simulations.

Drawing inspiration from Etoys, StarLOGO, and LOGO, Scratch provides a simple respon-

sive environment to make programming accessible to novices [59, 107]. It also runs in the web

browser and requires no additional software to be installed on the computer, contributing

to its ease of adoption. Unlike many other educational programming environments, such as

Alice, Greenfoot, and Snap! [27, 64, 87], it targets younger users (the most common starting

age for a “Scratcher” is 12 [116]).

Scratch provides a carefully designed interface and simple abstractions to enable novices

to begin programming. Users are given a “stage” where the output of the program can be

viewed along with multiple “sprites” or entities interacting on the stage. Both the stage and
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Figure 2: Sample Program in LogoBlocks

the sprites are programmable and can also easily incorporate their own media by adding

either “costumes” (images) or “sounds” to the given entity. This environment is shown in

Figure 3.

Lego-like blocks are connected to create programs and the shape of the blocks provides

the user information about how it can be used. The color and text provide insight into

what the block might do. For example, statements (or “command blocks”) are represented

using rounded rectangles with indents on the top and bottom which imply that they can

be connected in sequence. Blocks that only have a connection indent on the bottom listen

for events and are used to start scripts. Expressions (or “reporters”) are rounded and have

no top and bottom indents and cannot be connected in sequence but rather can be placed

inside of other blocks that contain a similarly shaped input slot.

The script in Figure 4 is executed when the green flag is clicked (as the top block states).

It results in the corresponding sprite to bounce around the screen and say “You got me!”

if the mouse touches it. In this script we can see that the blocks are designed to be simple

and user-friendly. Block shapes restrict them from being used in invalid contexts; “forever”

and “if” blocks can only be connected after another statement and could not be used in an

input slot of another block. The “touching” block’s diamond shape indicates that it returns

a boolean value. The empty “if” block’s input field is also a diamond shape indicating

that it expects a boolean input as opposed to other input slots like in the “move” or the

“say” blocks. By carefully designing the shapes and colors of each of the blocks, Scratch is
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Figure 3: The Scratch Environment

Figure 4: A Simple Script in Scratch

able to prevent the user from creating syntactically erroneous scripts and visualize implicit

constraints between blocks to promote creating meaningful scripts and programs.

The Scratch team provides support for experimental extensions to Scratch on their

ScratchX website. These extensions allow users to add extra functionality to Scratch in-

cluding access to temperature data, Twitter, Spotify, and arduino support [32]. However,
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these extensions are not managed or endorsed by the Scratch team. Projects created on the

ScratchX website are not able to be shared on the Scratch website.

Snap!

Snap! is a conceptual extension of Scratch developed at UC Berkeley. It was designed

to raise the ceiling of Scratch by providing more advanced functionality including first class

functions and lists [87]. Drawing heavily from Scratch, Snap! provides a seamless transition

for Scratchers. Snap! and Scratch both provide open-ended, exploratory spaces in which

the users can develop their programs.

Figure 5: An Anonymous Function for Drawing a Square in Snap!

Figure 5 provides an example of an anonymous function in Snap!. As Snap! also supports

first class lists, these functions can be placed in lists and dynamically selected and run at

runtime. This high degree of flexibility makes Snap! a powerful tool for teaching advanced

programming concepts and has lead to its success as part of the Beauty and Joy of Com-

puting [12] curriculum. An example using both first class lists and first class functions to

introduce recursion is provided as a sample project in Snap! called “vee” shown in Figure 6.

In this program, a sprite has a list variable called “shapes” which is filled with functions

for drawing squares, hexagons, and stars as well as a function called “vee.” “Vee” selects two

functions out of the list to call randomly. When the application starts, the “vee” function

executes and results in the sprite drawing two shapes from the ones in the list. This is a

simple example but can become even more interesting as pressing the “up arrow” will result

in adding the “vee” function itself to the list. This results in the program becoming non-

deterministic as the function now may recurse and select two more shapes to draw from the

list. A screenshot of this application (including the implementation of the “vee” function)

is given in Figure 6.

Along with raising the ceiling of Scratch, Snap! is implemented in JavaScript (as opposed

to ActionScript as in Scratch v2.0) and made its source code openly available under the

AGPL license. These subtle technical decisions allowed it to become the starting point for a

number of extensions which pushed the boundaries of block-based programming and applied

it to a number of different domains.
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Figure 6: An Introduction to Recursion using Anonymous Functions and Lists

One such extension is BeetleBlocks which replaces the iconic LOGO turtle with a beetle

which can not only “walk” around a two-dimensional plane but also fly in a three-dimensional

environment. In this environment, users can construct three-dimensional objects and explore

three-dimensional geometry [66] (which can later be exported and printed on a 3D printer).

Figure 7 shows an example project in BeetleBlocks constructing a three-dimensional

staircase with the code displayed on the left and the output of the execution on the right. In

this example, the program is creating two sides of a step in the nested loop where the depth

of the stair is −50 and the length is given by the variable a. The inner loop is executed

twice which results in the construction of all 4 sides of the three-dimensional stair. The code

following the nested loop decreases the size of a (shortening the width of the subsequent

stairs), draws the vertical section between stairs, and updates the hue. This outer loop is

performed 10 times resulting in the creation of a staircase with 10 stairs of different colors.

The example in Figure 7 demonstrates the complexity of thinking in 3 dimensions and

how relatively simple code can result in complex and intriguing structures. BeetleBlocks

also supports exporting projects to a 3D printer which enables code to become even more

tangible and relevant for users as their projects are no longer simply an abstract entity on the

screen. There are also many other Snap! derivatives targeting a number of other domains

including robotics, APIs, database queries, graph algorithms, and parallel computing [120,

4, 47, 40, 29].
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Figure 7: Creating a 3D Staircase in BeetleBlocks [112]

Three-Dimensional Environments

Although BeetleBlocks provides a very powerful platform for creating programs with a

three-dimensional output, there have been a number of other projects providing different

approaches [27, 60, 31, 135, 75, 95]. Some noteworthy alternatives include Alice [27], and

Kodu [75].

Alice3 is an educational programming environment which provides users with a three-

dimensional world in which they can see their projects come to life. Although early versions

(Alice and Alice2), provided a textual programming interface [27], Alice3 provides users with

a visual blocks-based language [60, 31]. This environment provides three interfaces: a scene

editor, a code editor, and a runtime display.

Figure 8 shows an example project in Alice3 [31]. In this example, the user has created

a scene with a number of different entities shown in the interface on the top left. These

entities include obvious ones, such as people and objects, to the less apparent ones such as

the ground and the camera. The code for the scene is shown in the code editor given in the

top right panel. In this scene, the code defines the behavior of the scene when it runs; in

this case, Joe will run “callEveryoneOver” and Susan will run the method “lookAroundPara-

noically” simultaneously. The output of this scene is currently visible in the runtime display

shown at the bottom of the window. This display shows the “Joe” avatar is raising his

hands and looking around (“calling everyone over”) and the “Susan” avatar looking around

“paranoically.”
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Figure 8: An Example Project in Alice3

Alice3 provides a number of other valuable pedagogical improvements upon its prede-

cessors. These include providing both block and text interfaces in the code editor enabling

users to switch between them during development as well as facilitate the “graduation”

from blocks-based to text-based programming. They also include more motion methods to

simplify the development of three-dimensional actions and “lower the barrier to entry” for

creating three-dimensional projects. Finally, they facilitate the transition to textual lan-

guages by not only letting users write textual code in their code editor, but also supporting

opening their project as a Java project in the NetBeans IDE [31].

Another interesting programming environment for developing three-dimensional applica-

tions is Kodu from Microsoft Research [75]. Kodu runs on the Xbox 360 and is targeting

young children. Whereas Alice provided a number of tools for bridging the gap between

block based and textual environments, Kodu provides a much more simplified language for

developing the applications.

The language contains five basic elements: sensors, filters, selectors, actuators, and modi-

fiers. A “sensor” specifies a virtual sensor used to detect elements in the game. The elements

detected by the sensor are then reduced with a “filter.” The “selector” selects an element

from the filtered set, such as nearest. An “actuator” makes the given actor do some action

toward the selected element or itself and the “modifier” is an optional parameter for the

“actuator.”
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Figure 9: Programming in Kodu

Figure 9 shows an example script created in Kodu [75]. The top script defines a behavior

for the given entity in which the sprite will move toward a red apple if it sees one. In the

“when” block, three blocks are used to specify that the action will occur when a red apple

is seen: “see,” “red,” and “apple.” The “see” block is a sensor block which detects elements

in the environment. These elements are then filtered by the “red” and “apple” filters.

After the “when” block detects that the robot can see red apples, the “do” block defines

the behavior of the actor in this event. In this case, the “do” block contains one actuator,

“move,” and one modifier, “toward.” Together these scripts define a behavior for the actor

in which it will move toward a red apple when it sees one. One noteworthy visual cue is

the subtle size difference between the first square in each section and the subsequent squares

which modify the behavior of the leading square. This helps reinforce the prominence of the

leading squares and the sort of complementary, secondary nature of the latter squares.

State management is particularly interesting in Kodu. Unlike most other languages,

Kodu does not provide typical support for variables such as strings or integers. Rather,

Kodu programs rely on storing the information about the state of the application in the

environment. One example of such a method is given by encoding the information into

the color of an object. According to MacLaurin, they have seen projects use the character

color as a lightweight form of synchronization between characters [75]. Therefore, characters

change their color to notify each other about their own internal state.

There is one method in which users are able to store information: the concept of the

“score.” Kodu provides characters with integer valued scores which can be modified and

used to maintain program state. The Kodu team has found that users have been able to

utilize the character scores for many other tasks such as resource counts, iteration counts

and semaphores [75].

Another unconventional platform for visual programming environments for novices can

be found in Minecraft, an online open-world computer game composed of bricks with which

users can build their own worlds [86]. Although Minecraft itself is not designed specifically
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for programming, it supports modifications which can enable it to be extended into a pro-

gramming platform. When this is combined with the popularity and simplicity of the game

itself, Minecraft can be used as an effective vehicle for engaging students and introducing

programming.

“CodeBlocks” is a block-based programming environment enabling users to write pro-

grams within the Minecraft environment using custom three-dimensional blocks and placing

them in sequence to define functions [144]. After creating functions, the user is able to create

robots which can then be controlled with the user’s defined functions. This enables users to

create and program bots entirely within the Minecraft environment.

CodeBlocks provides support for commands, branching, and functions (without return

values). Some blocks can be parameterized by placing a sign above them. Like Kodu, the

robots exist in an interactive world which can contain the state of the program. For example,

in [144], users were asked to implement a variation of bubble sort in CodeBlocks in which

the robot was sorting three-dimensional blocks in the virtual world.

Figure 10: Programming in CodeBlocks [144]

Figure 10 provides a simple example in which the robot is programmed to simply move

forward, turn right and then pick up the block in front of it [144]. The beginning of the

program is given by the “program example” sign and is executed by running the blocks

following the sign. An example of branching and block parameterization can be found in

Figure 11.

In this example, the function contains a sensing block which checks for “dirt” as given

by the sign on the top of the block. As the sense block may or may not detect dirt, the code

branches. Visual feedback for these paths is given around the sensing block. The green tiles

(in line with the sensing block) represent the blocks to be executed if dirt is sensed by the

robot; if not, the code will continue along the path of the red tiles.

Mobile Development

A number of educational visual programming languages have been created for mobile

development including App Inventor, Sketchware, and PocketCode [103, 123, 122]. App
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Figure 11: Branching in CodeBlocks

Inventor provides users with a “Designer” and a “Blocks Editor.” The Designer enables

users to design the components of the app including sensors and visual elements. After

designing these components, the Blocks Editor can be used to program the behavior of the

application such as responding to shaking the device. An example app created in MIT App

Inventor is given in [103] and is shown Figure 12 and Figure 13.

Figure 12: Designing Components of a Mobile App using the Designer [103]

Figure 13: Programming App Behavior using the Blocks Editor [103]
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In this example, the user is creating a simple “Magic 8 Ball” app which provides an

answer when the mobile device is shaken. The Designer interface is shown in Figure 12 and

shows the components of the given app. We can see that there are five different components

in the app: Button1, Label1, TextToSpeech1, and an accelerometer sensor. The first two

elements are clearly visible on the “Viewer” panel in the center as they make up the Magic

8 Ball image and the text beneath it.

In Figure 13, we can see the behavior of the app defined in the Blocks Editor. These

blocks use the accelerometer and text-to-speech components from the Designer and specify

that when the accelerometer detects shaking, the text-to-speech component will say a random

response from the list of responses given.

Unlike App Inventor, Sketchware and PocketCode have been designed for developing the

mobile app on a mobile device. Similar to App Inventor, Sketchware decomposes the appli-

cation into two categories: “View” and “Logic”. The View section provides the user with an

editor for creating the visual elements of the screen and the Logic section contains the code

for event handlers and other programmatic components using a block-based programming

language. PocketCode provides an environment in which users can create sprites and pro-

grammatically add behavior (like in many of these environments) and allows them to draw or

use images to visually represent these sprites on the screen. In this way, PocketCode provides

an experience more closely related to the approaches used in environments like Scratch [78].

2.1.3 Networking

There are a number of platforms used for teaching distributed algorithms including both

generic simulation environments and custom tools designed for education. One common

platform is Omnet++ [133, 132] but there are also a number of others [11, 136, 17, 128, 55].

Although simulation environments are very powerful and feature-rich tools, their complexity

can sometimes provide a barrier to understanding and education. Consequently, there have

been a number of other environments designed specifically for teaching distributed algorithms

including PADS, SPLAY, and a Java Toolkit for Teaching Distributed Algorithms [8, 109,

115].

Omnet++ is a discrete event simulator often used for teaching networking [133, 132]. In

Omnet++, users can program the behavior of nodes in the network including code for ini-

tialization (simulation start), finalization (simulation end), and an event-processing function

executed when messages are received. Behavior is programmed using C++ and the network

topology is defined in a declarative textual language called NED. As Omnet++ is a powerful

simulation library, it can also simulate a variety of network topologies and programmable
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nodes to enable users to implement and simulate distributed algorithms on their own com-

puter. An example of the Omnet++ development environment is provided in Figure 14 and

shows the network topology of the given example.

Figure 14: The Omnet++ Development Environment [133]

Omnet++ provides a very powerful environment for network simulation. Hence, educa-

tional use of Omnet++ would need to be targeting more advanced networking curriculum

for users with programming experience rather than novice developers.

Another educational environment for teaching networking is the Playground of Algo-

rithms for Distributed Systems (PADS) [8]. PADS provides a visual environment to create

a distributed algorithm, define a topology, select a target deployment environment, and

execute the given distributed application. Deployment environments in PADS includes sim-

ulation environments such as Omnet++. An example using PADS to define a topology for

a BitTorrent network is shown in Figure 15.

In this example, the user has defined a network topology for a BitTorrent application

with five peers, five routers, and a tracker. The network connections between the nodes are

designated using visual connections in the PADS editor. The lower left contains a palette of

valid nodes which can be added to the active network. At the time of this writing, PADS

supports user-defined behavior by providing templates which can then be modified to add

the desired behavior to the given node.
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Figure 15: Defining a BitTorrent Network in PADS [8]

PADS is designed to target undergraduate students learning about distributed algorithms.

As these students are expected to have some programming experience, they are currently

able to implement the node behavior in a textual programming language then use the vi-

sual editor to define the network topology. After defining the desired network topology, this

environment allows them to easily configure the network and deploy it across a number of

different environments. In the classroom, PADS was found to be simpler for students when

learning about distributed algorithms [8]. When developing behavior for the nodes in the

network, PADS still targets a more advanced audience than most of the other education pro-

gramming environments and assumes that users have experience in a textual programming

language.

SPLAY is another environment for teaching distributed algorithms and systems [109]. In

this environment, users are able to define distributed algorithms in Lua, test the algorithm

locally, deploy the algorithm in a real world setting, then collect the logs and results of

the execution. SPLAY also supports more advanced features natively such as RPCs and

provides a sandboxed testbed for the deployment environments. An overview is provided in

Figure 16.

In [115], a Java toolkit is presented for teaching distributed algorithms. This toolkit is a

Java Applet which runs in the browser and enables users to create network topologies and
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Figure 16: Overview of SPLAY [109]

define behaviors for the given nodes in Java and then execute the distributed system within

the browser. After execution, the browser is able to provide a simple visualization of the

network topology including color coded nodes and channels representing the state of the

given entities. This includes indicating if the node is ready for execution (green), waiting

for a message (red) or terminated (blue). Channel states are color coded to show if they are

empty (gray), holding one or more messages (green) or empty with a waiting node (red).

Also, a channel has a bulge at its connection point with the destination node providing a

subtle visual cue about its direction.

Figure 17 shows a visualization of a simple three node network [115]. In this network,

node 0 and node 1 are both running or ready for execution and node 2 is waiting for a

message. The green channel from node 2 to node 0 signifies that the channel contains at

least one message. In the top right, the visualization provides some basic debugging tools

to control the execution of the given distributed algorithm and the bottom of the window

contains status information during the execution of the system as well.
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Figure 17: Visualization of the Java Toolkit [115]

Overall, this environment provides a very simple, yet informative, visualization of the

network and is much simpler to understand during the execution than the more sophisticated

tools mentioned earlier. Like some of the previous educational tools for learning distributed

algorithms, this environment targets more advanced users and was used in graduate courses

on distributed systems. As the target audience is older, users are still expected to implement

the behavior of the nodes in the system in a textual programming language (in this case,

Java).

2.1.4 Networking and Visual Programming

There has been limited work in providing networking capabilities to current educational

visual programming environments. This work includes providing support for making requests

from a visual programming environment to a REST endpoint [87, 52, 51], providing limited

shared data storage in the cloud for use from visual programming environments[78], and

limited messaging capabilities between clients [32].

Web APIs

Snap! provides support for interacting with external REST APIs through the use of an

http block which provides basic support for accessing the many online resources. This is

certainly a powerful capability; however, it has some limitations for adoption among novice

programmers. Using this block, users are required to manually construct the URL with the

expected query string parameters (including any required API keys) as well as manually
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parse the response. Although this may not be too challenging for a more experienced user,

this can be a serious hurdle for a novice programmer.

Figure 18: Requesting a weather forecast using the OpenWeatherMap API

In Figure 18, the http block is requesting the weather forecast using the OpenWeatherMap

API [94] and storing the response in the “response” variable. After making this HTTP re-

quest, the “response” variable will be set to the raw JSON response of the OpenWeatherMap

API. Next, the user will need to parse this nested JSON structure into something that is

parseable by Snap!1, retrieve the relevant information from the response and then incorporate

it into the application.

The transparency of this process provides a good learning opportunity for Snap! users;

it will introduce marshalling and unmarshalling data, JavaScript Object Notation, and the

basics of REST communication. Also, this API requires the user to provide a secret “app ID”

to prevent abuse of the API which can motivate discussions about denial of service attacks

and safeguards to prevent API abuse. Unfortunately, as the app ID required for this API is

supposed to be secret, this project cannot be shared with other users without prompting the

end user for an app ID on application start. Leaving the app ID in the source could result

in other users stealing this secret ID and would also be teaching the students bad practices

by ignoring privacy and security in a networking application.

Overall, the http block is very powerful and useful for introducing some topics of network-

ing. This block enables experienced Snap! users to access third party APIs and incorporate

them into their own applications. However, there is a relatively high barrier to entry when

using this block with non-trivial APIs and also presents some challenges if users want to

share their own projects if a secret ID is required for the given API.

Shared Variables

One of Scratch’s many features includes support for storing variables in the cloud, i.e.,

“Cloud Data.” Cloud variables can be shared among all copies of the project that are open

at a given time. This enables students to build more interactive games as the games can

store persistent information among all shared running versions. It has been shown to be

quite powerful as it has been used to provide simple features like high score lists as well as

more advanced functionality including multiplayer pong [104, 1].

1This could be provided by the teacher as a custom block so the students would not need to implement
the JSON parsing
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In these types of applications, all communication happens by polling the shared variables

and responding as soon as they see a change. An example of this can be found in the given

implementation of multiplayer Pong and is shown in Figure 19.

Figure 19: Multiplayer Movement with Cloud Data

This application first detects if it is the first or the second player. Then it starts the

appropriate movement script which determines the shared variable it will update: the vari-

able for the first or second player’s x position. Both paddles then update their x position

by polling their respective variables and updating their position. Figure 19 shows how the

first player’s paddle updates its position by rapidly polling the shared variable for the first

player’s x position and then updating its own position accordingly. This example demon-

strates the power of shared variables in Scratch and how they have been used to develop

non-trivial multiplayer applications.

Although cloud variables can enable users to build multiplayer applications, they are

not a replacement for other valuable networking concepts, such as messaging. With only

shared data, users are unable to develop any application using messaging and must emulate

this by polling shared data. Polling is only one of many methods of communication and

coordination. Combined with the limitations of Scratch’s cloud data, cloud variables are

insufficient for enabling users to develop sophisticated networking applications and teach

computer networking concepts.

Network Messages

Previous versions of Scratch and Snap! supported creating a “mesh” using the IP address

of another Scratch client. In this mesh, clients were able to share variables as well as share

“broadcast” events. This enabled the clients to not only share data but also to trigger actions

on another network machine. However, using the mesh to send and receive data could be

somewhat complex and not the most accessible for novice programmers as it required the
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user to manually serialize and deserialize the list. Figure 20 contains an example of how to

send a list using the mesh provided on the Scratch Wiki.

Figure 20: Sending a List using the Mesh

In this example, the program is serializing the list by joining all the elements with a

delimiter. When it is complete, it broadcasts “list is ready” which is then received by all

programs in the mesh. The recipient then has an event handler for the “list is ready” event

and accesses the serialized list using the “sensor value” block which provides access to the

other programs’ variables in the mesh. Using this serialized list, the program then manually

deserializes it as shown in Figure 21 and can now use the list that was sent from the first

client.

Figure 21: Receiving a List using the Mesh

The ability to broadcast events to other clients and share data between programs is very

powerful. This facilitates developing applications which do not depend solely upon polling

shared data but can actually be responsive and event-driven. Messages containing a data

payload can be emulated by sending an event and then querying a shared variable. This

enables users to build much more sophisticated applications than shared data alone.

This method has some weaknesses. The inability to send peer-to-peer messages makes

some applications more complicated. Peer-to-peer messaging would need to be emulated by

using an additional shared variable for storing the recipient’s ID. When all the peers receive
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the broadcast, they can then check this shared variable to see if they are the intended

recipient. This introduces additional complexity as well as provides a bottleneck on the

user’s application by requiring only a single message to be sent at a time. Requiring manual

synchronization by the user makes the use of lists and networking complex and presents a

barrier for novice users.

Although the mesh functionality is not supported in the current versions of Scratch and

Snap!, some similar functionality is provided in ScratchX, a version of Scratch supporting

third party extensions [32]. ScratchX enables users to develop third party extensions to

Scratch and then share them with other users but these projects cannot be run or shared on

the main Scratch website. Scratch mesh-like functionality is available using the “Firebase

Mesh” extension. However, unlike mesh functionality available in previous versions of Scratch

and Snap!, this extension provides custom blocks for broadcasting to the mesh and receiving

broadcasts sent over the mesh. Firebase Mesh provides only the broadcast functionality of

the previous mesh functionality of Scratch.

Extensions have also been created for accessing some real world data including weather

data and tracking information for the international space station [52, 51]. This data is

accessible to students using custom blocks providing access to the given data sources. The

following figures provide specific examples of extensions accessing real world data.

Figure 22: Accessing Weather Data with the Scratch Extension

Figure 22 shows the blocks provided by the weather extension for Scratch. These blocks

allow a user to get weather information using the OpenWeatherMap API [94] for a given

area as well as set the unit format and trigger events on certain weather conditions. The

dropdown for the “temperature in” block allows the user to request other types of weather

information for a region including wind speed, cloudiness and humidity. By making weather

data available, this application enables users to add more interactivity into their applications

and access a third-party API.

The blocks provided by the International Space Station tracking extension is provided

in Figure 23. This enables users to develop applications which utilize the location of the

International Space Station and is demonstrated in the example app for the extension [51].

These blocks allow users to get the current latitude, longitude, altitude and velocity of the
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Figure 23: Accessing International Space Station Data with the Scratch Extension

ISS, compute the distance between the ISS and a location on Earth as well as invoke a set

of scripts when the ISS is passing over a location. Like the weather extension, this extension

enables users to leverage some network functionality by interacting with another third-party

API and utilize the resultant information in their application. Unfortunately, both of these

Scratch extensions are only allowed in ScratchX and cannot directly benefit from the large

community on the Scratch website.

2.2 Approach

Making distributed programming accessible to novices requires the careful selection of

programming abstractions, including visual representation, to enable the users to build dis-

tributed applications. The level of abstraction is very important for promoting user learning.

Selecting too high of an abstraction will hide the underlying distributed concepts from the

users whereas designing too primitive of abstractions can hinder easy usage by novices. We

present the following abstractions to novices for developing distributed applications: mes-

sages, Remote Procedure Calls (RPC), and the Room.

2.2.1 Messages

Peer-to-peer communication capabilities are provided using messages. Messages are sim-

ilar to the concept of an Event already present in other blocks-based programming environ-

ments such as Snap!. Users can broadcast custom events to execute all scripts listening for

the given event. An example of an event in Snap! is given in Figure 24.

Figure 24: Event Example in Snap!
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Similar to events, messages initiate the execution of corresponding scripts starting with

the respective handler. Unlike events, messages enable users to communicate across devices

and not solely within a single user project. Messages also can contain a structured data

payload. This significantly increases their flexibility and capability as they can be used to

share information rather than solely triggering execution.

We define four different ways of interacting with messages. Messages can be sent and

received; sending can be performed either synchronously or asynchronously. Furthermore,

users can send response messages after receiving a message. The corresponding visual rep-

resentations for receiving messages and asynchronous sending are shown in Figure 25.

Figure 25: Receiving and Asynchronous Sending of Messages

In this example, the when I receive block is triggered when the given project receives

an “update position” message. This message is expected to contain two fields, “x” and “y.”

The block exposes the contents of these fields by providing a variable for each of the expected

fields. When a message is received, this block will automatically retrieve the contents of each

field and assign it to the corresponding local variable to be used in the subsequent connected

blocks.

Messages can be sent asynchronously using the send msg block. Like the when I

receive block, this block contains a drop-down specifying the type of the message that

will be received. After specifying the type of message, input fields are created for each of

the expected fields following the drop-down. In the example from Figure 25, two inputs are

created – one for each field in the “update position” message type. Each input is labeled

with light gray text displaying the field name for the given input.

The last field in the send msg block is the target of the message. Unlike events, mes-

sages support peer-to-peer communication along with broadcasting. In this example, we are

broadcasting the message to all users in the project.

Figure 26 shows the blocks for synchronous messaging. As the name suggests, send msg

and wait block is used to send a message and wait for a response. The rest of the block is

very similar to the asynchronous messaging block; both specify the message type, content

and recipient. However, this command will send the message and block execution until the

recipient responds to the message rather than simply sending the message and resuming
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Figure 26: Synchronous Messaging

execution. The send response block is used to reply to messages sent synchronously. As

this block is used to respond to a message, it can only be used in a message handler script.

As the messages contain structured data payload, it is important that messages are typed.

A message type is composed of a name and a list of expected fields. For example, the blocks

in Figure 25 are sending and receiving messages which are of type “update position.” The

“update position” message type defines two fields, “x” and “y.” The message type allows

the blocks to dynamically update according to the expected fields and provide a simple way

to enforce the structure of the data payload. Message types also simplify the project code as

the message handler specifies the message type for which it is listening. This enables the user

to easily separate the concerns for each dedicated type of message used in the distributed

application rather than manually handling each message in a single message handler.

Figure 27: Message Type Creation

An example of how a message type can be created is given in Figure 27. In this example,

a message type called “Tic-Tac-Toe” is being created. This message type has two fields:

“row” and “column.” Fields can be added or removed using the small arrows following the

fields.

Figure 28: Tic-Tac-Toe Message Handler Block

Figure 28 shows a message handler for the newly created message type. Once the “Tic-

Tac-Toe” message type has been defined, it will be available in the messaging blocks as one of

the options in the drop-down menus. After selecting the message type, the message handler
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block dynamically updates to provide variables for each of the expected fields. Both the

asynchronous and synchronous messaging blocks also contain a message type input which

will include this new message type. Selecting the message type will dynamically update the

given block to provide inputs for the respective fields of the message type as well.

2.2.2 Rooms

Another important distributed programming abstraction is the Room. The Room is

a virtual network abstraction and consists of Roles. A Role is a named client in the given

distributed application and is analogous to a project in most other blocks-based programming

environments. The content of each Role is independent of one another; each has its own stage,

sprite, scripts, and other project artifacts. A Room is created automatically for each user

project. Grouping sub-projects into Rooms enables the environment to provide more support

and feedback to the programmer. The environment is able to monitor the state of the other

Roles in the room and configure the environment accordingly. One such example is the send

msg and send msg and wait blocks. The recipient field of these blocks is populated with

the names of the Roles in the user’s Room. This prevents simple typographical errors and

should help avoid mistakes when entering the address of the intended recipient.

Introducing the Room enables the environment to provide an easy interface for viewing

and modifying the Roles in the room. This includes visualizing the Roles in the project,

checking the occupants of each Role as well as providing a natural interface for providing

debugging capabilities for the networking aspects of the application. From the Room editor,

users can also create, duplicate, rename, and remove Roles. Additionally, users can also

invite other users to specific Roles from this interface.

Figure 29 shows the room editor while viewing a project with four Roles. These Roles

are “alice,” “bob,” “eve,” and “super eve.” Currently, “bob” is the only occupied Role and

is occupied by “brian.” The project name, “Caesar Shift,” is displayed in the center of the

editor. Clicking the + button will allow the user to create a new Role in the project; clicking

on a Role will allow the user to rename, duplicate, remove, or invite another user to it.

Users can also move between different Roles by clicking on the desired Role. Although this

example contains four Roles, the names and number of Roles contained within a project’s

Room is configurable and can be modified to fit the goals of the desired application. For

example, a Tic-Tac-Toe application may only have two Roles, “X” and “O,” in its associated

Room.

Introducing the concept of a Room also facilitates the simplification of network address-

ing. When sending messages within a single Room, the recipient can be specified by using
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Figure 29: Viewing and Editing the Room

the Role name. When sending a message between Rooms, the recipient must be specified

using the Role’s fully qualified name, the “Public Role ID.” The Public Role ID for a Role

is the Role name, Room name and owner name joined by the @ symbol and was created to

be human-readable while still uniquely identifying a single Role. For example, in Figure 29,

the “alice” Role could be addressed using “alice” when messaging from within the Room or

as “alice@Caesar Shift@brian” globally.

Along with providing a natural way of message addressing for novices, this approach also

can serve as a simple introduction to concepts like the need for fully qualified names and

private vs public IP addresses. The Room also enables the blocks to automatically configure

themselves to assist the user when entering the recipient address for the message. When

using the send msg block, the “target” field is a drop-down menu which contains the names

for every available Role in the given project’s Room. Figure 30 shows an example using

the send msg block from the “super-eve” Role within the project from Figure 29. In this

example, the drop-down for the message recipient is populated with the names of all the

other Roles in the Room, “alice,” “bob,” and “eve,” as well as the two different broadcasting

options: “others in room” and “everyone in room.”
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Figure 30: Sending a message within a Room

2.2.3 Remote Procedure Calls

Remote Procedure Calls (RPCs) are the highest level of abstraction among the provided

networking abstractions. RPCs enable users to invoke functionality defined on the host

server and can be used to provide access to external data sources and provide scaffolding

for developing more complex applications such as Battleship or arbitrarily large Tic-Tac-

Toe variants. Easy access to real-world data should make programming more relevant and

engaging for a wider audience of students. Furthermore, leveraging server-side logic to

provide scaffolding can be used to promote early successes among novices.

2.2.4 Services

Similar RPCs are grouped into categories called Services. Examples of such Services are

“GoogleMaps,” “Battleship,” and “Weather.” RPCs can be stateful in which their state can

be shared amongst the other RPCs for the given Service. Additionally, state can be global

or unique to each request’s originating Room. For example, a Service providing scaffolding

for developing a multiplayer Battleship game will likely want to maintain a unique state for

each originating Room as each Room is a different instance of the game. Services providing

access to an external resource will likely benefit from maintaining a cache in their global

state to reduce the number of requests to the given external resource.

Maintaining state also enables some Services to be simplified significantly and accessible

to younger users. One such example can be found in a Service providing access to map

images. Maps can be valuable for visualizing real-world data and can be understood by

very young users. However, utilizing maps can become rather complex as users will need

to perform a coordinate transformation from the screen coordinates to the corresponding

latitude and longitude on the map. This is not a trivial task for novice programmers as this

transformation requires the user to understand the type of projection used by the underlying

map (such as the Mercator projection) and implement the given projection so the user can

transform the desired points. Allowing the Services to maintain state enables the given
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mapping Service to record the user’s current map region and expose RPCs to perform the

transformation from screen coordinates to a geographic coordinate system.

Figure 31: RPCs for Coordinate Transformation

An example of RPCs for performing the given map projections is provided in Figure 31.

Both blocks are invoking RPCs from the “GoogleMaps” Service. These blocks provide

functionality for conversion between the image coordinates and geographic coordinates.

2.2.5 Invoking Remote Procedure Calls

As the name suggests, Remote Procedure Calls enable the users to invoke functionality in

a remote location. Individual Remote Procedure Calls may be predefined or user defined and

invoking RPCs is performed using the call RPC block. The block has zero or more named

input arguments (passed by value) and an optional return value. To promote accessibility to

novices, the block evaluates synchronously and is used similarly to blocks executing locally.

The call RPC block is designed to promote “tinkerability” and minimize user error when

using RPCs. The first input for each block specifies the name of the Service used by the

given block. After specifying this input, the second input is populated by all the valid RPC

names for the given Service. Specifying the RPC will update the rest of the block according

to the method signature for the given RPC. That is, the block will dynamically add an input

field for each expected input and each input is labeled with light gray text like the send msg

block.

Figure 32: Dynamic Blocks for invoking RPCs

Figure 32 shows an example of using the call RPC block to invoke various RPCs. The

first block is invoking the getPublicRoleId RPC from the “PublicRoles” Service. As this

RPC does not accept any inputs (it simply returns the fully qualified name for the given
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Role), there are no inputs following the RPC field. The second block is using the “Weather”

Service to request the temperature at a given latitude and longitude. This is reflected in the

block inputs as it has two additional inputs with “hint text” for the latitude and longitude

inputs. The final block is using the nearbySearch function from the “Geolocation” Service.

This RPC expects four inputs: “latitude,” “longitude,” “keyword,” and “radius.”

Along with providing immediate results to the user, RPCs can leverage the message

abstraction to stream data back to the user. That is, invoking the RPC can simply notify

the server to start sending messages to the address of the request origin. This enables RPCs

to return large amounts of data as well as introduces another approach to programming to

the user.

Sending messages also simplifies any transformation or manipulation required to use the

data. When returning structured data in a block environment, one of the best ways to

represent the data is by creating a two-dimensional list in which the nested lists are key-

value pairs. For example, if the data contained a field named “age” with a value of 21, the

nested list would have two items, “age” and 21 (in that order). Representing each field and

value as a list allows us to then create an entire data structure by creating a list of these

field and value pairs. If we want to return a list of these structured data elements, then

our list gains another dimension as it will be a list of these lists of name and value pairs.

Sending messages, instead of returning a 3-dimensional list, allows us to avoid explaining

the necessary complexities to novice programmers by simply sending messages which are

received one at a time. Each field is available as a script variable on the message handler

block. This enables users to process each of the data elements without even using a single

list.

Figure 33: Initiating the Sending of Earthquake Messages

Figure 33 and Figure 34 provide an example of an RPC in which the results are returned

to the user using messages. Figure 33 shows the block invoking the RPC requesting the

earthquakes for a given region (which optional inputs for additional constraints such as

“startTime” and “endTime”). After invoking the RPC, the server will retrieve the given

earthquakes matching the user’s request and begin sending one message per earthquake to

the origin of the request.

The user then can handle each earthquake as received as shown in Figure 34. Each mes-

sage contains information about a single earthquake and the fields of the message represent

the individual fields about the matching earthquake. In this case, the message handler is
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Figure 34: Receiving Earthquake Messages

performing a couple steps to visualize the given earthquakes. First, it is moving to the x

and y coordinates corresponding to the latitude and longitude of the given point. Then it

will draw a circle proportional to the magnitude of the earthquake. Streaming data from

an RPC enables novices to develop applications using large, real-world data-sets without

manipulating multi-dimensional lists.

2.2.6 Error Handling

When invoking an RPC, errors can be handled using the error block. This block is

automatically set to the error value of the last RPC invocation. If the last RPC invocation

resulted in no error, then this block will be empty. An example using the error block is

shown in Figure 35.

Figure 35: RPC Error Handling

In this example, an actor name is being retrieved for a given actor ID using the

personName RPC from the “MovieDB” service. After invoking the RPC, the error block is

used to check that the RPC completed successfully. If so, the given sprite will say the name

of the requested actor. Otherwise, the sprite will say that the name could not be retrieved

along with the specific error message.

It is worth noting that this is a different approach to error handling than the current

standard in blocks-based programming. Errors usually result in current script terminating
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and highlighting itself in red. When programming on a single machine, this is understand-

able as the cause of the error is on the single machine and should be corrected. When relying

on other devices, such as with invoking RPCs, errors may occur on the remote device inde-

pendent of the local code. This emphasizes the importance of resiliency and error handling

in distributed applications as errors cannot be guaranteed to be avoided – even if all the

local code is correct.

2.2.7 User-Defined Procedures

Although predefined procedures can be valuable for interacting with external data sources,

it is important that users are able to create and execute custom remote procedures. Not

only does this allow the users access to the concept of RPCs, but it also enables them to

gain concrete experience with network latency and batching network requests. Supporting

user-defined RPCs enables users to evaluate the performance differences between executing

RPCs serially or batching usage of predefined RPCs into a function which is then executing

in a single network request on the server.

Invoking custom procedures are supported through the use of the call RPC in the

“Execute” Service. This RPC accepts an anonymous function (“ringified” blocks) as an

input and then executes it on the server. A simple example is given in Figure 36. In this

example, the user is executing a very simple function which simply returns the text: “hello

from the cloud!”

Figure 36: Simple User-Defined Procedure

One strength of the provided abstractions for distributed programming lies in their flex-

ibility and robustness. Although this is a very simple example of user-defined procedures,

it demonstrates the flexibility of the Remote Procedure Call abstraction. Additionally, this

allows users to start thinking about not only what the program should do but the environ-

ment in which it should be executed. User-defined procedures are discussed in more detail

in Chapter 3.

2.3 Debugging Distributed Applications

It is important that novice programmers are supported during the entire development cy-

cle of a distributed application. This includes providing scaffolding during the troubleshoot-

ing and the debugging process. When developing distributed applications, debugging can
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become challenging as users need to consider the coordination of all the distributed clients

within the given application rather than just the local execution of the program. This addi-

tional complexity should be alleviated through auxiliary concepts and interfaces accessible

to the novice programmer.

These concepts must be powerful enough to provide insight to the overall behavior of the

distributed application. The concepts must also be accessible through the design of natural,

intuitive interfaces. As the target users are novice programmers, it is important that the

abstractions have a low threshold and can be used with minimal direct instruction. To this

end, we have designed capabilities for gathering insight into the distributed behavior of the

given distributed application.

2.3.1 Room Debugger

Introducing the Room concept enabled the development environment to provide addi-

tional capabilities to the user which simplified various networking challenges. These included

addressing and discovery over the network. The Room Debugger extends this scaffolding to

include the runtime behavior between the given applications. It introduces the concept of a

network trace and enables the users to capture and replay these traces. This enables users

to first record a network trace during the execution of a distributed application and then

replay the messages captured during the recording.

When using the Room Debugger, users must first capture a network trace. As one of the

main design goals is to assist in debugging a faulty application, it is beneficial to ensure that

the code does not change while trying to understand unexpected behavior. To prevent code

changes during a captured trace, the user’s Role is placed into a read-only state temporarily

suspending any lively features of the environment. When recording the network trace, all

messages sent within the Room are collected along with additional useful metadata. The

message data includes the message type, data payload, and intended recipient. Additional

metadata includes the actual recipients and the timestamp.

After capturing a network trace, users are able to replay the captured messages. During

replay, users are presented with natural controls designed for accessibility and minimal di-

rected instruction. To promote accessibility, we have designed an interface reminiscient of a

media player for controlling the network trace replay. A slider representing the timeline of

the network trace is presented with buttons for playing the replay at normal speed, single

stepping, and jumping to the beginning or end of the replay. Messages are marked on the

slider and color-coded to match the color of the sender.

The Room editor is overlaid with the last captured messages with respect to the current
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time of the replay. Messages are displayed using a connection from the sender to the recipient

and an icon color-coded to match the sender. To reduce cognitive load, the messages display

the message type but none of the contents; the contents can be investigated by clicking

the message icon. To simplify viewing sequences of messages, the Room Debugger can be

configured to display multiple messages simultaneously. When viewing multiple messages

simultaneously, the messages are labeled according to their relative ordering.

As understanding the application execution during the trace is the primary goal, the

project is also read-only during the replay. Understanding the relationship between the

network interactions and the local execution is important when debugging a distributed

application. When the latest replayed message was received by the current Role, message

handlers for the given block are highlighted. Highlighting the message handlers augments

the network visualization by indicating the scripts executed as a result of the given message.

To prevent confusing behavior when debugging during a network trace, messages received

during the replay are ignored.

An example network trace replay is given in Figure 37. This project contains four Roles:

“brian,” “alice,” “bob,” and “eve.” The replay controls inspired by the slider commonly used

in media player applications are shown in the bottom of the figure. Messages are marked on

the slider using lines colored after the corresponding sender’s Role.

This example demonstrates a simple application based on the mesh networking project

described in the next section. In this project, the “brian” Role is sending a message to the

“eve” Role through the “alice” and “bob” Roles. The message is sent clockwise around the

Roles in the Room until the “eve” Role receives the message. This behavior is apparent from

the replay of the network trace shown in Figure 37. As this example is displaying multiple

messages simultaneously, the messages are numbered according to the order in which they

were sent.

2.4 Illustrative Examples

The expressiveness of the provided networking abstractions can be easily demonstrated

through examples of distributed programs. These abstractions provide a low threshold for

building simple projects yet still support the development of complex ones. In this section,

we present examples demonstrating the simplicity to build basic distributed programs as

well as the potential of the abstractions to develop more sophisticated applications.
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Figure 37: Replaying Messages in a Room

2.4.1 Basic Distributed Applications

One of the strengths of the provided networking abstractions lies in their low threshold.

With just a few blocks, novices can develop an application demonstrating interesting con-

cepts such as mesh networking or basic client-server architecture. These simple applications

can make programming more social and provide more opportunities for discussions about

distributed concepts such as resilience, security, and encryption.

Chat Application

Chat applications provide an easy introduction to distributed programming. They re-

quire virtually no coordination between clients and can be achieved with a very simple pro-

tocol. Using the provided programming abstractions, there are a number of different ways

to implement a chat application. The entire application can be implemented within a single

Room with a fixed set of Roles or the individual client applications can be implemented as

individual applications which use the Public Role IDs for inter-room communication. Us-

ing inter-room communication is more flexible and allows the chat application to support

a dynamic number of clients. However, supporting these clients introduces some additional

complexity as it requires the logic for managing client connectivity including the connection
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and disconnection of clients. As this example is highlighting the basic distributed applica-

tions, we will present a chat application supporting a fixed number of clients defined as the

Roles in a single Room.

In this chat application, each Role can chat with the other Roles in the Room. A chat

message contains both the message and the username of the person sending the message.

That is, the applications define a custom message type called “chat” which contains two

fields: “name” and “message.” After defining this message type, the Role can easily send a

chat message to the Room using the send msg block as shown in Figure 38. In this example,

the message is broadcasted to “everyone in the room.” This ensures the user’s chat message

will be sent to every Role, including that of the sender.

Figure 38: Sending Chat Message

In addition to sending messages, each Role will need to listen for the given message type

and display the content of the chat message. Although each Role can certainly display the

messages in a multitude of interesting and creative ways (such as printing each message in

a scrolling window on the stage), a basic technique is shown in Figure 39. In this figure,

the given sprite simply displays the most recently received chat message. The message is

formatted with the sender’s name preceding the message contents and separated with a

colon.

Figure 39: Receiving Chat Message

This is an example of a relatively minimal distributed application. Messaging in this

application is simple as there is only a single message type, “chat,” and messages are al-

ways broadcasted to all Roles in the given Room. Each Role displays the last chat message

and every Role shares the same identical code. Although this example is simple, it demon-

strates how a basic distributed application can be created using only four command blocks.

This simplicity highlights the low threshold for developing distributed applications using the

provided abstractions.
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Mesh Networking

Our second basic example is a mesh networking application. Like the chat project, this

example demonstrates the low threshold for developing distributed programs. Both exam-

ples provide an accessible, working example demonstrating some basic distributed concepts.

These examples are also a foundation for motivated students to explore more complex dis-

tributed computing concepts such as resiliency and security.

In this example, users can form small mesh networks and send messages to other users

in the network. First, users will define the physical layer of the mesh network by setting

the fully qualified address of the application to which it can send messages. We expect the

applications to form a ring in which one has a connection in the physical layer only to the

subsequent node in the ring. After defining the physical layer, each application can send

a message to another node in the circle using a logical address, such as the username of

the intended recipient. Each individual application then contains the logic for routing each

message with respect to the logical address of the intended recipient.

In this example, “next node” is the fully qualified address of the connected node of the

given application. This represents the connected node in the physical layer of the mesh

network. Every “mesh” message contains three fields: “sender,” “receiver,” and “msg.”

The “receiver” field defines the logical address of the intended recipient. The “sender” field

defines the originating sender and “msg” defines the contents of the message.

Figure 40: Sending Mesh Message

Figure 40 shows an example of sending a message in the mesh network. When sending a

message, the user must provide the logical address of the intended recipient. In this example,

the logical address corresponds to the occupant’s username. The user also needs to provide

the actual content to send, “msg”. After constructing the message, the application sends

the message to “next node” as this represents the only connection in the physical layer of

the network.

Figure 41 shows an example demonstrating the routing logic in the mesh network. When

the application receives a message from the mesh network, it will first check if the current
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user’s username matches the intended recipient. If so, then the message will be displayed to

the user. Otherwise, the message will simply be forwarded to the next node in the mesh.

Figure 41: Receiving Mesh Message

2.4.2 Advanced Distributed Applications

In this section, we demonstrate the potential of the provided distributed programming

abstractions for developing sophisticated distributed applications. This includes a demon-

stration of developing higher level messaging patterns, such as Publish-Subscribe. Addi-

tionally, the combination of first class functions, lists and message passing enables users to

develop more sophisticated applications including MapReduce.

Publish-Subscribe

Publish-subscribe is a messaging pattern which decouples the producers of messages from

the consumers of the given content. The consumers of content will “subscribe” to various

types of messages and producers will “publish” messages. When the producers of content

publish messages, these messages are sent to all consumers which have subscribed to the given

type of message. There are generally two different approaches to specifying messages to be

received: topic-based and content-based. The topic-based approach requires each message

to contain not only content but also to specify a topic. Subscribers then can subscribe to

specific topics, and they will then receive all messages with the given topic. Content-based

filtering of messages enables the consumers to subscribe to messages based on the contents

of the given message.

In this example, we will be presenting an example of topic-based publish-subscribe using

the presented distributed programming abstractions. There are two different message types

in this example: “publish” and “subscribe.” As we are using topic-based message selection,

the “publish” message has two fields, “topic” and “content.” The “subscribe” messages have
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a “topic” and “id” field. The “topic” field specifies the topic to which to subscribe and the

“id” field contains a Role’s fully qualified address.

We will be using a broker to orchestrate the selection of messages to be sent to the

consumers. The broker maintains a dictionary of subscriptions for each topic stored as key-

value pairs. That is, each item in the “subscriptions” list variable (shown in Figure 42)

contains the topic and a list of all subscribers for the given topic. When a “subscribe”

message is received, the broker searches for the list of subscribers for the given topic and

adds the new subscriber. If it finds that the given topic has no subscribers, it will create a

new entry in the subscriptions list for the given topic.

Figure 42: Publish-Subscribe Broker

When the broker receives a “publish” message, the broker searches for the list of sub-

scribers for the topic of the given message. If it finds a list of subscribers for the given topic,

the message is forwarded to each of the subscribers. The complete code for the publish-

subscribe broker is shown in Figure 42.

An example application using this publish-subscribe broker is shown in Figure 43. In this

example, the application is a message consumer. Pressing the “s” key prompts the user for

a topic to which to subscribe. The provided topic is then sent in a “subscribe” message to

the publish-subscribe broker along with the user’s fully qualified address (Public Role ID).

Messages matching the given topic will then be received by the “publish” message handler.

This will result in the received message topic and content being printed by the current sprite.
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Figure 43: Example Publish-Subscribe Client

MapReduce

MapReduce is a common distributed computing framework used for data processing on

large datasets [33]. In this model, computation is structured as map and reduce tasks which

enable the entire computation to be easily parallelized and distributed to the nodes which

contain the data. At a high level, data is stored in a distributed environment and then the

map and reduce tasks are sent to the nodes containing the relevant data and performed on

the local data. The map operation results in key-value pairs which are then grouped by key.

The reduce operation is performed on the data collected for each given key.

In our basic blocks-based implementation of MapReduce, there is a master node which

a number of connected worker nodes. Data can be stored on the worker nodes in the cluster

and MapReduce jobs can be submitted which process data stored in the cluster and store the

results back to the cluster. For brevity, we will focus predominantly on the client interactions

with the cluster, the storage of data in the cluster and evaluation of the map step on the

worker nodes.

Figure 44: Storing Data in MapReduce

Data can be stored on the cluster using a “store” message as shown in Figure 44 and

submit jobs to process the data using the “job” message type. This message type contains

the job name, inputs, outputs and, of course, the actual map and reduce tasks. An example

of submitting the canonical “word-count” MapReduce job is shown in Figure 45. This job

is run on the “books” data (already stored on the cluster) and writes the results back to

the cluster as “word-count-results”. The map step takes text and splits it into words and
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returns key-value pairs where the key is the word and the value is “1”. The reduce step

takes a key-value pair where the key is a word and the value is a list of counts and returns

a key-value pair where the key is the input word and the value is the sum of all the counts.

Figure 45: Submitting MapReduce Job

When data is stored on the cluster, the master node distributes the data across all the

data nodes for storage as shown in Figure 46. The data is first partitioned into groups where

each group corresponds to the data to be stored on a single worker node. Then a partition

is sent to each connected worker node starting from a random index in the node list; this

prevents the overloading of a single node when receiving lots of small data storage requests.

After storing data on the cluster, data can be processed by submitting client jobs con-

sisting of a map and reduce task as shown in Figure 45. There are a number of steps in

running a job in our implementation; for brevity, we will only present the evaluation of the

map step on the connected worker machines. When the master node receives a job message,

it first sends the map step to the connected worker nodes as shown in Figure 47.

Executing the map step on the workers is relatively straight-forward. First, the worker

looks up the data stored under the name of the designated input. If the worker has any of
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Figure 46: Distributing Data To Worker Nodes

Figure 47: Executing Map Step on Worker Nodes

the given data, it will invoke the provided map function over the list of all the local input

data. As each map step returns a list of key-value pairs, these individual lists are merged

into a single list of all the resulting key-value pairs. This list is then sent to the master node

to redistribute (shuffle) the data over the cluster. The master node will then shuffle all the

data across the worker nodes and then, once all the map steps have completed, execute the

reduce step of the given job.

Although this example is certainly far from a production ready implementation of MapRe-

duce, it demonstrates the flexibility and capability of the provided abstractions for teaching

advanced distributed programming concepts within an educational visual programming en-

vironment. Providing easy access to advanced networking applications in a familiar blocks-

based environment facilitates incrementally introducing novice programmers to concepts of

distributed computing including distributed storage, execution, coordination and parallel

computation.
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Chapter III

Remote Block Execution

Data locality and network latency are important considerations when developing dis-

tributed applications. Executing block functions on remote computing resources enables

users to gain concrete experience with the implications of data locality and network latency.

As these computing resources may not be blocks-based programming environments, this

presents a number of different research challenges. One such challenge is cross-compiling

code from a flexible, lively block environment to a textual programming language. There are

also semantic challenges about the appropriate block behavior in non-native environments,

conforming to the concurrency model of the original environment and security considerations

when compiling blocks to a textual language for execution in a new environment.

3.1 Background and Related Work

Execution of blocks in other environments is closely related to the compilation of blocks

to text code as well as combined textual and visual environments. Compilation of blocks to

textual code is one approach to supporting the fundamental mechanics of executing blocks

in non-native environments. However, converting between blocks and textual code often

presents a number of unique challenges.

3.1.1 Converting Blocks to Text

There have been a few different projects providing support for compiling blocks into text

code. Two noteworthy examples can be found in Snap4Arduino and Snap!. Additionally,

Blockly [43] provides a blocks-based interface for manipulating underlying textual programs.

Unlike Scratch, Snap!, and GP [77], Blockly does not provide a virtual machine for executing

underlying block primitives. Instead, Blockly provides a visual interface which then generates

textual code. As Blockly does not include a virtual machine for the visual language, textual

code is generated from the visual representation and then must be executed in an environment

supporting the given textual language.

Snap! [87] provides support for generating code from block scripts using a feature called

“codification.” This features exposes blocks for defining templates for mapping blocks to

text. Each block can consist of two types of code mappings, “code” and “header” mappings.

The “code” mapping is the mapping for the individual block; the “header” mapping defines

a dependency (such as a function definition) for the block which needs to be added before
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the given block’s “code” template. After defining these mappings, the user can use a block

for converting a single set of scripts to code given these templates.

Figure 48: Defining a Code Mapping from Snap! to C

An example code mapping is provided in Figure 48. In this example, the user is defining

the code mapping for the given for loop. The template defines the overall structure of the

generated code and uses “<#N>” as a placeholder for the inputs where “N” is the index of

the block’s input. In the given example, “<#1>” corresponds to the i variable, “<#2>”

corresponds to 1, “<#3>” corresponds to the max of the loop (5), and “<#4>” corresponds

to the body of the for loop (currently empty). Unlike many other programming languages,

for is not a primitive construct in Snap! but is a custom block. Despite being a custom

block, this particular code mapping does not use the block definition at all in the generated

code.

After defining the code mapping, users can use these mappings to convert individual

scripts using the code of block. The code of block uses the defined code mappings to

generated textual representations of the given block script. An example is shown in Figure 49

demonstrating the use of the code of block to generate code for a given script. In this

example, we are generating C code for a for loop which prints the iteration number on each

iteration.

Figure 49: Generating Code From Blocks in Snap!

This approach to code generation certainly has its strengths and limitations. As the user

can provide arbitrary code templates for any block (including custom blocks), the generated

code can be quite simple and legible. Generating simple code should make the textual
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1#include <stdio.h>

2int main()

3{

4int i; for (i = 1; i <= 5; i++)

5{

6printf ("%d", i);

7printf ("\n");

8}

9return (0);

10}

Figure 50: Generated Code From Figure 49

representation appear more accessible as opposed to generation techniques which generate

more complex textual code. Furthermore, as the user can define arbitrary code mappings,

the target language can be very easily changed to provide users examples of how the given

script may be written in a variety of different languages.

There are also a number of limitations with this approach. Users can only generate code

for a single script and not an entire sprite or project. This allows the code generation to be

much simpler as the generated code does not need to make any considerations with respect to

concurrency. Without code generation support for multiple scripts, this approach cannot be

effectively used for executing arbitrary scripts. Consequently, the execution of the generated

code will likely behave differently than the original block functions (examples of such scripts

are provided in Section 3.2).

Another limitation of this approach is the requirement of the user to define the custom

mappings for each of the blocks that will be compiled. This significantly limits the use of

this feature by novice users as custom blocks require defining a new code mapping for the

given block. Requiring the user to define a new code mapping for every new custom block

definition requires the user to already understand how to write the analogous behavior in the

target programming language. Although this is often the case for instructors, this cannot

be expected of the actual novice users. Therefore, this feature can be useful for creating

examples and demos but not for actual use by novices without restricting the supported

blocks they can use in their projects.

Snap4Arduino extends Snap! to support developing code to run on the Arduino [4].

Unlike the codification feature of Snap!, Snap4Arduino generates code for the entire user

project without requiring the user to define templates for mapping the block to text. As

Snap4Arduino is targeting the Arduino platform, it also generates the appropriate initial-

ization and helper functions as well as ensures that the program contains the main loop.

The Snap4Arduino environment does not support all the features of Snap!. These include
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asynchronous broadcasting, custom blocks, multi-dimensional lists and lambda expressions.

The stage, sprites, and sounds are also unsupported elements of the project when executing

on Arduino.

The code generation also does not conform to the semantics of the concurrency model

and will exhibit slightly different behavior during execution than Snap!. One example can

be found in the approach for broadcasting events. In Snap!, the broadcast block will

run a script concurrently. Specifically, the scripts responding to the event will be queued

and executed after the current script completes. However, when running the same block

on the Arduino, the broadcast blocks are converted into function invocations which are

then evaluated synchronously. Although this is a subtle distinction, changing the execution

semantics when running the code on Arduino can result in unexpected behavior and bugs

that can be very difficult to troubleshoot.

3.1.2 Combined Visual and Textual Environments

After learning to program in a visual programming environment designed for educational

purposes, users often want to “graduate” to a textual programming language such as Python

or Java. There have been a number of studies investigating this transition as well as simply

providing both options to users [137, 65, 19, 50] or providing textual language syntax on

blocks [39, 70]. There are a number of visual programming environments designed to address

this transition [6, 41, 57, 131, 10, 9, 88]. These environments facilitate the transition from

block programming to textual programming by enabling users to view the generated code

from the given blocks. An example of this is provided in Figure 51.

In this example, the program will create a turtle named “Tina” and draw ten filled circles

of random colors at random locations on the screen. This program is available in the block

environment on the left and also shown as code in the right pane. Selecting a block will also

highlight the corresponding code that has been generated for it on the right. In Figure 51, the

block which sets the turtle’s speed is currently selected and the corresponding python code

(“turtle.speed(10)”) is highlighted on the right. This makes the transition easier by allowing

users to view their projects in python as well as easily determine the relationship between the

individual blocks in their program and the individual lines of code in the generated python

program.
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Figure 51: Editing Blocks and Text Together in Trinket

3.2 Compiler Design

3.2.1 Configurable Block Behavior

One of the most important design considerations is supporting block execution in a new

environment which may have different capabilities or may require different implementations

to achieve analogous behavior. One simple example is the movement blocks. In a server

environment, these blocks may not have any associated behavior as the environment has no

graphical output and, thus, sprites cannot move. Consequently, the movement blocks should

effectively be ignored when a program is evaluated in this environment. In a robotics envi-

ronment, the movement blocks could still have defined behavior as they may be used to move

some given robot. Although this behavior is defined and natural, it is drastically different

from the initial implementation and would require replacing the underlying implementations

of the supported movement blocks.

To promote portability, we have decoupled the environment from the generated code

allowing it to be provided at runtime. The generated code treats the implementation for the

primitive blocks analogously to system calls in the underlying execution environment and

similar to the design of the Java Native Interface [73]. An overview of this architecture is

shown in Figure 52.

Although these techniques can be applied across target languages, the compiler currently

outputs JavaScript code. Its ubiquity enables the generated code to be run across many
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Figure 52: Environment-Independent Block Compiler Design

platforms and further promotes portability. As many blocks-based programming environ-

ments are web-based and run in the browser, the prominence of JavaScript in the browser

also makes it an appropriate target language.

Compiling user-provided blocks generates a JavaScript function which accepts a single

argument, ENV, as its input. The ENV input is the contextual block implementations for

all the primitive block types supported by the originating block programming environment.

When blocks are invoked in the generated JavaScript, these blocks are simply invoking the

associated primitive block implementation from this ENV input.

Figure 53: Simple Example Script

1function(__ENV) {

2// Initialization code instantiating the Sprite

3// (assigned to the "sprite" variable)

4__ENV.forward.call(

5sprite ,

6__ENV.reportSum.call(

7sprite ,

8__ENV.variable.call(sprite , "speed"),

95

10)

11);

12}

Figure 54: Generated Code for Figure 53

A simplified1 example of the generated code for the script in Figure 53 is provided in

Figure 54. In this example, the user is using three blocks which correspond to the forward,

reportSum, and variable functions in the generated code. In the generated code, each block

invocation retrieves the corresponding function from the contextual block implementations

1This example has been simplified to demonstrate the decoupling of the user code and the underlying
block implementations and how this affects the generated code. Additional complexities resulting from
addressing later concerns, such as concurrency, have been removed from the example for clarity.
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for the given environment, ENV. The function is then invoked with a reference to the

corresponding sprite used as the caller of the function (denoted by sprite in this example).

3.2.2 Concurrency Model

Blocks-based programming environments have been shown to enable novices to develop

highly concurrent applications naturally even without directed instruction [76, 84]. This

is largely due to the underlying concurrency model used by many blocks based environ-

ments like Snap! and Scratch. However, this custom concurrency model adds an additional

constraint as the generated code must adhere to it, too.

These concurrent blocks-based programming environments provide a simple, intuitive

concurrency model. All threads (or scripts) share a single process and use passive scheduling.

Yielding control of the process is determined by the use of a set of specific blocks. Generally,

blocks which execute for a specified duration or perform repetitive tasks will result in yielding

control of the process. Loops relinquish control at the end of each iteration. Blocks which

include a duration, such as wait and doSayFor2 blocks, will yield control until the duration

has been completed. Performing network requests or other asynchronous requests also yield

until the operation has been completed. Additionally, some languages have provided custom

blocks, such as the warp or all at once blocks [2], to enable the users to prevent yielding

after each iteration in loops and speed up complex computations or graphic effects.

One important consideration in trans-compiling the user’s blocks into JavaScript was

maintaining this model of concurrency. The browser environment, use of passive schedul-

ing, and the ubiquity of JavaScript made it a powerful candidate for the target language.

Generating code which can be executed in the browser, although not necessarily a formal

requirement for executing blocks on the server, provides flexibility in future work such as

optimizing local block functions when applying blocks-based programming to more compu-

tationally intensive domains. Also, the use of passive scheduling in JavaScript (the event

loop) and dynamic typing reduces the amount of necessary overhead in the compiled code

and simplifies the generated output code.

To conform to the same concurrency model, the generated JavaScript uses the underlying

event loop (and promises) to allow scripts to yield control to the next script. Specifically,

threads yield in the generated JavaScript by creating functions to resume the thread and

placing them on the JavaScript event queue. As loops yield control after every iteration,

they are converted into asynchronous, recursive functions. Blocks which prevent yielding,

such as the warp block, are compiled into two invocations: one invocation upon entering

2The doSayFor block displays a dialog box with a provided message by the sprite and then waits until
the given duration has been exceeded.
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the block and another invocation on exiting the given block. When invoked, the compiled

function corresponding to this block will increment and decrement a counter (local to the

current script) on block entry and exit, respectively.

An additional challenge lies in the use of yielding blocks which return a value. More

advanced blocks-based programming languages, such as Snap! and GP, support lambda

expressions. As lambda expressions may contain loops and be the input to another block,

all inputs may need to be resolved asynchronously before executing the given function.

Figure 55: Lambda Expressions

Figure 55 shows an example of a more complex example of a short block script using

an anonymous function. In this example, the anonymous function will initialize a counter

to 0 then increment it 5 times in a loop and return the value. This returned value is then

compared to 5 in the conditional of an if statement. If they are equal (which they should

be), the script will return “true.” As the anonymous function contains a loop, it will yield

control of the process during the evaluation of the conditional.

The generated JavaScript code will need to support asynchronous inputs to arbitrary

blocks and structures such as if statements. To support the evaluation of arbitrary asyn-

chronous function inputs, the generated code provides its own function, callMaybeAsync,

for calling the underlying functions given the desired caller and inputs. This function first

resolves all the inputs, as needed, and then invokes the function as the caller. Function-

ally, this behaves very similarly to promises in JavaScript as promises allow the user to use

the results from asynchronous functions and synchronous functions uniformly. However, it is

worth noting that the standard promise behavior is to always resolve their inputs (which may

or may not be asynchronous) asynchronously whereas in our case, the generated code needs
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to resolve the inputs asynchronously if and only if at least one of the inputs is asynchronous.

Otherwise, the inputs should be evaluated synchronously to ensure that the thread does not

yield control of the process.

1function () {

2// SPromise is a promise which evaluates synchronously if possible

3return new SPromise ((resolveFn , rejectFn) => {

4callMaybeAsync(

5sprite ,

6__ENV.doDeclareVariables ,

7’i’

8).then (() => callMaybeAsync(

9sprite ,

10__ENV.doSetVar ,

11’i’,

12’0’

13).then (() => new SPromise (( resolveLoop , rejectLoop) => {

14function doLoop_item_14 (item_14) {

15return callMaybeAsync(

16sprite ,

17__ENV.doIfElse ,

18item_14 -- > 0,

19() => {

20callMaybeAsync(

21sprite ,

22__ENV.doChangeVar ,

23’i’,

24’1’

25).then (() => callMaybeAsync(

26sprite ,

27__ENV.doYield ,

28doLoop_item_14 ,

29item_14

30)). catch(rejectLoop)

31},

32() => {

33callMaybeAsync(

34sprite ,

35resolveFn ,

36callMaybeAsync(

37sprite ,

38__ENV.variable ,

39’i’

40)

41)

42.then (() => resolveLoop ())

43.then(rejectLoop );

44}

45).catch(rejectLoop );

46}

47callMaybeAsync(

48sprite ,

49doLoop_item_14 ,

50’5’

51)

52})))

53.catch(rejectFn)

54});

55}

Figure 56: Generated Code for Lambda Expression in Figure 55
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1function(__ENV) {

2// Initialization code instantiating the Sprite

3// (assigned to the "sprite" variable)

4callMaybeAsync(

5sprite ,

6__ENV.doIf ,

7callMaybeAsync(

8sprite ,

9__ENV.reportEquals ,

10’5’,

11callMaybeAsync(

12sprite ,

13__ENV.evaluate ,

14// fn for the anonymous function

15)

16),

17function () {

18callMaybeAsync(

19sprite ,

20__ENV.doReport ,

21true

22)

23}

24).then (() => callMaybeAsync(sprite , __ENV.doReport , false))

25}

Figure 57: Generated Code for Figure 55

A simplified example of the code generated from the lambda expression in Figure 55 is

provided in Figure 56. The generated code consists of a single function which returns a

promise (specifically, a promise which resolves synchronously when possible). When compil-

ing the doReport block inside of a lambda expression, it is compiled to the resolve function

for the promise corresponding to the parent lambda expression. In Figure 56, this can be

seen on line 34 as the doReport block has been compiled to the function resolveFn. This

is an exception to the standard approach of compiling blocks to invoke functions from the

provided primitive block implementations. As the doReport block is not compiled to invoke

the associated function from the environment, it is unable to be overridden when used in

lambda expressions.

Figure 57 shows an example of the code generated for the remainder of the code given

in Figure 55. Overall, this example behaves as expected; the callMaybeAsync function is

used to invoke all functions to allow it to wait to resolve any inputs which are asynchronous

and yielding the control of the process. On line 11, the ENV.evaluate function is used to

invoke the generated function from Figure 56 (omitted on line 13 for brevity).
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3.2.3 Closures and Function Portability

Executing blocks on the server requires the compilation of individual lambda expres-

sions. As these expressions may reference variables in an outer scope, it is important that

the compiler supports the compilation of closures and not solely lambda expressions. Addi-

tionally, as closures may also broadcast messages invoking other scripts – which may mutate

global variables – the block functions may have more dependencies than simply referencing

variables in a closure.

A simple example of a lambda expression is provided in Figure 58. This lambda expression

takes a single input, #1, and returns the sum of the input argument and 5. It is worth noting

that this is the simplest type of function that we might want to compile; it has no references

to any variables in an outer scope and has no dependencies on the behavior of the enclosing

environment.

Figure 58: Basic Lambda Expression

Closures provide some additional complexity as the function now has references to vari-

ables in an outer scope. An example closure is shown in Figure 59. This example is a natural

extension of the example provided in Figure 59. Rather than adding simply adding five to

the input, the closure adds the value of variable x (defined in an outer scope) to the input

argument.

Figure 59: Basic Closure

Functions defined in blocks-based programming environments can also have more de-

pendencies on the original environment. This includes closures that trigger other scripts

mutating a shared variable. An example of this can be found in Figure 60. In this example,

the function (on the right) is the target function to compile and execute in a different envi-

ronment. However, the original environment contains an event handler (shown on the left)

which modifies a variable from an outer scope named enclosed var. In the user’s func-

tion, the variable is first set to zero, then the “change var!” event is broadcasted and the

script waits until enclosed var has been changed to a non-zero value. Finally, the script

reports the value to which enclosed var has been changed. In the context of the function’s

environment, the broadcast function will result in the execution of the script on the left.
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This script will set enclosed var to fifteen resulting in the main function completing and

returning fifteen.

Figure 60: Closure with Other Script Dependencies

Functions may also include custom blocks and depend on the block definitions from the

original environment. This results in the user’s functions potentially having a number of

different dependencies from various aspects of the originating project including referenced

variables, custom block definitions and even other scripts. One primary expectation when

compiling blocks to execute in alternative environments is the analogous behavior when exe-

cuting the blocks. It is important that we provide a flexible compilation of the project which

supports compiling portable functions and closures with the aforementioned dependencies.

We guarantee that the dependencies for the block are included and available in the

JavaScript output by generating code for all input elements to the compiler. When serializing

a block function, we also serialize the dependencies of the given blocks. This ensures that we

will generate code for all dependencies included in the serialized block function. However,

if the block has no external dependencies, it may not include any additional elements in its

serialized form. To support this form of serialization, the compiler maintains an internal state

representation of the input and updates this representation as it parses the serialized block

function. After parsing all the provided input, the compiler then generates the corresponding

JavaScript code for its accumulated internal state.

As discussed in Section 3.2, compiling a serialized project generates a function which

accepts the block implementations for the given environment at run time, ENV from Sec-

tion 3.2.1. After generating the code for all the dependencies for the block function (which

may include the entire project), the code for the provided block function can be generated.

As the compiler outputs a JavaScript function, the generated code for the input blocks can

be added as a return value of this function. Generating the JavaScript code for an en-

tire project enables the generated function to reference any necessary dependencies in the

generated JavaScript closure. The resulting code represents a higher-order function which

generates the desired user provided closure.
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Generating a higher-order function to construct the user provided closure or block func-

tion provides additional interesting characteristics such as supporting the creation of genera-

tors. An example of a generator for Fibonacci numbers is given in Figure 61. In this example,

the provided function references two variables from an outer scope: prev and current. These

variables are both initialized to a value of 1 and are updated on each invocation of the given

function. As described above, compiling this function outputs a JavaScript function which

creates this given generator. The resulting higher-order function can then be used to instan-

tiate generators which each will output numbers from their corresponding locations in the

Fibonacci sequence.

Figure 61: Fibonacci Generator

3.2.4 Security Concerns

Security is an important consideration for any shared, publicly accessible resource. As

we are allowing users to provide custom block functions to be executed, there is a larger

attack surface which must be carefully secured. In this section, we will discuss potential

attack vectors and how they can be mitigated.

One obvious attack vector is the reportJSFunction block provided by Snap!. The

reportJSFunction block allows the user to embed arbitrary, custom JavaScript code in

a block and execute it like any other block in the user’s program. This can be problematic

and provides a compelling reason not to open questionable applications created in Snap!

(or any extension). Executing arbitrary blocks on the server exacerbates this security risk

created by allowing users to embed arbitrary JavaScript in blocks.

The decoupling of the environment implementations of primitive blocks provides an easy

and effective solution to the first of these security concerns. Although the primary focus

has previously been on supporting the capabilities of the underlying execution environment,

the contextual block implementations can be used to carefully restrict capabilities and func-

tionality. Despite being supported by the underlying environment, some capabilities pose

a security risk and should be disabled when executing on a shared resource such as the
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reportJSFunction block. This vulnerability can be mitigated by defining a contextual

block implementation which simply throws an exception on execution. This will ensure that

any user code will compile but will fail if the user tries to execute any unsafe blocks.

Another similar attack vector can be found in the user’s ability to provide arbitrary

text input in a number of different locations in the project. As block-based programming

languages do not need to parse textual concrete syntax to construct the abstract syntax,

they can be more flexible with respect to the valid characters for text input (including

variable names) and can include spaces, quotes, and escape characters. This flexibility

increases the risk of code injection attacks and can occur in sprite names, stage names,

variable values, block input fields, and variable names. Although this security vector has

unique characteristics in a blocks-based environment due to fewer restrictions on user input,

it can be addressed by carefully sanitizing user inputs similar to conventional approaches for

preventing cross-site scripting attacks.

Finally, the execution of blocks on the server also introduces risk of denial of service

attacks (both intentional and unintentional) as users can easily create infinite loops or error-

prone code which consumes excessive resources. As the intended users are novice program-

mers, inefficient or error-prone code is not only a possibility but an expectation. To address

this issue, we have extended the scope of the configurable functionality of the execution envi-

ronment of our compiled JavaScript code. Specifically, we provide capabilities for providing

a custom implementation for callMaybeAsync, the function used for resolving inputs and

evaluating functions with the given inputs. Using a custom callMaybeAsync function, we

can provide our own preconditions before evaluating each function. This allows us to easily

add a timeout precondition in which the script terminates after the execution duration has

exceeded the given threshold.

3.3 Execution RPC

3.3.1 Execution Semantics

Remote block execution is supported using one of the existing networking abstractions,

Remote Procedure Calls. This provides users the capabilities of executing the blocks on a

remote machine while making it clear that the input function is being executed remotely.

Transparency about the location of the execution allows the students to experience the

impact of network latency when accessing network resources and, more importantly, how

this latency can be mitigated using techniques such as batching.

An example of a block function executed on the server is provided in Figure 62. In this

example, the provided function is converting the movie ids variable (referenced in an outer

60



scope) into the corresponding movie title using the map block. After executing the map block,

the result is then returned by the given closure and returned to the user as the result of the

call RPC. For large lists of movie ids, this approach can easily demonstrate the benefits of

batching network requests as opposed to simply calling them in serial.

Figure 62: Batching RPC Requests

The remote execution of the RPC is a concept that is exposed to the user and this is

reflected in the semantics of the execution RPC. When referencing dependencies from an

outer scope, such as variables or other scripts, the function is evaluated with a copy of the

given dependencies. Changes to local copies of variables are not reflected in the execution of

functions that are executing on the server. Similarly, changes to other dependencies, such as

custom block definitions or dependent scripts, are also not reflected in the remote execution

of functions.

Modifications to remote copies of variables and project state behave similarly. Although

the executed function may have modified dependencies from an outer scope, such as changing

the values of variables in the outer scope, these changes are not synchronized with edits on

the client. After executing the blocks on the server, the user is only provided with the output

of the function. Any modifications to any of the copied dependencies of the block function

are discarded.

Figure 63: Setting Variable During Remote Block Execution

A clarifying example is provided in Figure 63. Here, the function is simply setting an

enclosed variable and then returning that the given variable has been updated. When this

function is evaluated on the server, a copy of the variable, enclosed var, is serialized and

submitted with the function to the server. The function is then compiled and executed on

the server and the result is returned to the user. As the value of enclosed var is never used

in the function, the update to enclosed var has no impact on the execution of the function

nor the user’s environment.
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3.3.2 Modified Block Implementations

When executing blocks remotely, a number of the blocks require modifications to ensure

the desired behavior during execution. This includes both removing unsupported function-

ality and updating block implementations.

One obvious example of block implementation modification are blocks pertaining to the

visual appearance of sprites and the stage. This includes blocks modifying the graphic effects,

using the “pen” and changing the costume. These and blocks relating to audio or user input

also perform no operation when executed remotely. Surprisingly, the motion blocks need

to be functional on the server as these blocks could be used to provide an alternative way

to perform various simple mathematical operations. For example, the motion blocks could

be used to perform conversions between polar and Cartesian coordinate systems as shown

in Figure 64. Although this would be an unorthodox use of the remote block execution

functionality, the function is certainly well-defined and should be supported.

Figure 64: Converting Point from Polar to Cartesian

As the blocks are no longer executing in a Role, the networking blocks also require

modifications to their underlying implementations. However, as the blocks are not executing

on the actual client, some block behavior must be precisely defined and could be ambiguous.

One such ambiguity lies in the address of the executing code when performing network

operations. Both RPCs and message passing can involve sending a response or result to the

originating client. When executing blocks on the server (on the behalf of the given user), it

is not immediately clear if the executing function should simply use the same address as the

originating client or if it should have its own unique address.

One simple case is the use of the callRPC block which invokes a remote function and

returns the result. These blocks should certainly recognize the executing function as the

recipient and the result of the RPC request should be the returned by the given callRPC

block. This is also consistent with the expected usage as this supports the batching of RPC

invocations and returning a list of the results for each individual invocation.

A more complex case arises when considering invoking RPCs which send messages to

the sender as with the “Earthquakes” Service. As the results of these RPCs are returned

indirectly as a stream of messages rather than as a simple response, the resultant data should
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be sent to the user when batching these RPC requests. Although sending the resulting

streams of data back to the function could still be captured by dependent functions and

returned to the user, this approach would be significantly more complex and likely too

difficult for even more advanced programmers. Sending the resulting streams of messages

back to the user suggests that the functions executed remotely should be evaluated in a

context which shares the same address as the originating client. That is, the blocks should

be executed as if the originating client executed them.
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Chapter IV

Collaborative Editing

4.1 Background and Related Work

Collaboration is important both in education and software development. There have been

many efforts for improving collaboration in these areas. These include platforms such as

Github, Bitbucket, and Gitlab as well as management tools such as SVN, git, and mercurial.

Examples also include tools that support concurrent, online collaborative editing such as

Google Docs, Cloud9, Drawp for School, and Screenhero [44, 16, 45, 46, 26, 35, 117]. However,

providing concurrent, online collaborative editing can be quite challenging and can require

fundamental decisions regarding the synchronized content, supported operations, and the

strength of the consistency model.

One ubiquitous online collaborative tool is Google Docs. Google Docs is a word pro-

cessing tool enabling users to collaborate by synchronizing the state of the content, i.e. the

document, without sharing the actual state of the editors of each user. This allows users

to work together on different parts of a paper without synchronizing the users’ screens (like

screensharing software). User efficiency is promoted by allowing users to easily work simul-

taneously on different parts of a given document and only see the output of the other user

along with the location of the user’s cursor.

To enable concurrent editing, Google Docs uses a technique called Operational Trans-

formations [37]. Operational Transformations is an edit-based approach to collaboration in

which concurrent edits are modified to perform the same operation when applied after one

another. An example of this is provided in Figure 65.

In this example, two users are editing the same text, “abc”, simultaneously. One user

adds a “z” to the beginning of the text (creating “zabc”) while the other user removes the

“b” from the text (creating “ac”). That is, the first user performs an “INSERT” edit event

with the arguments 0 (the position at which the character should be added) and “z” (the

character to add). The second user’s action results in the creation of a “DELETE” edit

event with the argument 1 (the position of the character). At this point, if both events were

simply broadcasted to the other user, the second user’s text would behave as expected and

would be “zac” but the first user’s text would be “zbc” as the “INSERT” event changed the

index of the “b” character that the second user intended to remove. Operational transfor-

mations overcomes this issue by transforming the concurrent operations based on the other

simultaneous edits. In this example, this results in the “DELETE” event being transformed
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Figure 65: Simplified Example of Operational Transformations

for the first user with respect to the first users’ concurrent edit so that the index is now 2

(corresponding to “b” in the first user’s text).

Although the idea behind operational transformations is relatively simple, defining a

correct transformation function can be rather challenging. There have been a number of dif-

ferent specific algorithms for implementing operational transformations [69]. Unfortunately,

these transformation algorithms for operations can get complex making them difficult to

prove convergence as well as implement.

Alternative approaches to collaborative editing include Conflict-Free Replicated Data

Types (CRDT) and differential synchronization [118, 42]. Conflict-Free Replicated Data

Types include both an edit-based technique, Commutative Replicated Data Types (Cm-

RDT), and a state-based approach, Convergent Replicated Data Types (CvRDT). The main

idea behind CRDTs is defining a data type without any conflicts for the supported opera-

tions. In the edit-based approach, CmRDT, the operations can be applied in any order as

they are all commutative. This greatly simplifies concurrency control as the collaborating

clients can simply broadcast their edits to all other clients. As CRDTs ensure there will not

be any conflicts, a client can simply apply all received edits and be certain that its state will

converge to the correct state. CRDTs provide a strong form of eventual consistency [118, 72].

CRDTs have qualities that make them quite appealing as a method of collaboration.

These include the ability to prove convergence more simply than in operational transforma-

tions as well as the simplicity providing by guaranteeing commutativity in the data type.

CRDTs have been created for a number of existing data structures including registers, sets,

and graphs [119, 138, 3, 143]. However, there have been some data structures which have

been shown not to be able to be represented using a CRDT, specifically structures which
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require a globally consistent state as a precondition for an operation being performed. Some

structures, such as directed acyclic graphs, will constrain actions that can be performed to

ensure that a global property is not violated (such as having no cycles in a graph). As

this precondition for an operation depends upon global information and cannot ensure that

the global state is consistent (as a concurrent operation may have changed the given global

property), it cannot guarantee that the current operation will not result in a structure which

violates the given property of the data structure (such as having a cycle in a graph).

Figure 66: Concurrent Directed Acyclic Graph Edits Require Global State Information

In Figure 66, users are collaboratively editing a directed acyclic graph with edges ~ab and
~cd. As the current graph structure is a directed acyclic graph, users cannot add any edges

which could create any cycles; that is, users cannot add any edges from a node to one of the

node’s ancestors. Both users simultaneously add an edge to the graph; the first user adds

the edge ~bc and the second user adds edge ~da. These actions individually do not create any

cycles and are both reasonable actions on this graph. However, applying both actions results

in a cycle and the data structure is no longer a directed acyclic graph because each action

violates the precondition required for the other user.

The example in Figure 66 demonstrates some limitations of CRDTs with respect to data

structures with global state constraints. A precondition with directed acyclic graphs for

adding an edge requires that the destination node is not an ancestor of the source. As any

other client could be adding an edge which could affect this precondition, the client would

need to be able to ensure that no concurrent edits were going to change the state of the

data to violate this given precondition. It cannot be ensured that concurrent edits will

not change the state to violate this precondition, as such directed acyclic graphs supporting

adding edges cannot be implemented as a CRDT [119]. However, this issue is directly related
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to the actions supported on the data structure and there have been CRDTs designed for some

more restricted forms of these graph structures such as the Monotonic DAG [119].

Differential synchronization takes a significantly different approach than CRDTs to pro-

vide simultaneous collaborative editing support and builds upon three-way merging. It is

a simple method of collaboration designed to be easily incorporated into existing applica-

tions [42]. By requiring the clients to store a “shadow” copy of the project (without the

user’s edits), the clients can compute a difference (diff) and send the edits as patch opera-

tions to the server to merge into the current version. When a client receives changes from

other users, the changes are applied to both the client’s shadow and text following which

the client can then diff his/her code against the updated shadow and send updates to the

other client. It is worth noting that the application of the edits to the shadow copies should

always be able to result in the current version of the text from the server whereas applying

the edits to the client text is only a best-effort, fuzzy patch. An overview of this technique

is given in Figure 67.

Figure 67: Overview of Differential Synchronization [42]

Collaboration in Visual Programming Environments

As previous versions of Scratch and Snap! were written in Squeak, a dialect of Smalltalk,

they were able to utilize Nebraska, a collaboration toolkit for Squeak projects [92]. Nebraska

enables a project to share its “world” with others by creating a server which allows clients

to connect to it and render the current state of the shared project. Clients can then interact

with their view of this shared world. Their events will be sent to the server and these

interactions (such as mouse clicks or key presses) will be applied to the shared world on the

server. This form of collaboration provided by Nebraska behaves similarly to collaboration
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using screensharing. The entire environment is synchronized and no distinction is made

between the project content and the individual user editors.

This approach circumvents many of the challenges with collaborative editing. Edits

by collaborators are sent as primitive interactions with the world (such as mouse clicks,

drags, and keyboards events). Managing collaboration by sending these primitive interac-

tions avoids the complexities of conflicting concurrent edits as the edits are always indepen-

dent and cannot conflict. When two users try to make conflicting edits simultaneously, both

sets of actions will be applied on the project serially. This results in the first action being

applied successfully and the second interaction interacting on a different project state. As

the project has changed, the second interaction will result in unexpected and unintended

behavior because the clicking and typing locations are now interacting with changed parts

of the project.

EmfCollab is a tool enabling simultaneous, collaborative editing of Eclipse Modeling

Framework (EMF) models [38]. Collaborative editing is supported using a client-server

architecture in which a master copy of the model is saved on the server and slave copies

are stored on each of the clients. When a user interacts with the local model, emfCollab

intercepts the command and first applies it to the master copy of the model and then on the

local copy. If the command fails on the master copy, emfCollab cancels the operation locally

as the operation conflicts with another simultaneous action. An example of the emfCollab

architecture is shown in Figure 68.

Figure 68: Architecture of emfCollab [38]

EmfCollab is able to bring collaborative editing to EMF models and support multiple

users editing the same model simultaneously. As it requires the user command to be accepted

by a central server first, it can ensure that the master and slave model copies will be identical.

However, this requirement of each command being synchronously accepted by a single server

68



and applied to a single, master copy creates a bottleneck on collaborative editing, especially

if the network has high latency.

AtoMPM is a framework for generating custom visual design environments in the

cloud [127]. One interesting thing about AtoMPM lies in its ability to support two dif-

ferent types of collaboration: Screenshare and Modelshare. Screenshare behaves as expected

and shares the content of the user’s screen with the given collaborators (as is done in Ne-

braska). Alternatively, modelshare provides a collaboration experience like that of Google

Docs where the content of the project is shared but the user’s editor and current view of the

project is not.

When multiple users are collaborating in AtoMPM, each client maintains a log of op-

erations for the given client. In the case of conflicting edits, the later conflicting edit may

be rejected and the given user action will be lost. If the action is rejected, the user will

be notified of the failed action. When both users are online, this issue is not as significant

because the number of actions affected should be relatively minimal. The feedback should

be given to the user shortly following the given edit. In an offline model, the client may have

to trace back a series of operations that are no longer valid to the original failing opera-

tion [28]. Unlike emfCollab, AtoMPM allows users to continue working on their project and

will revert conflicting actions rather than canceling them on the client immediately. This no

longer requires the action to have to wait until it is accepted or rejected before being applied

locally and allows clients to work offline (even if those actions could potentially be canceled

on reconnect).

WebGME, a web-based generic modeling environment, enables users to build custom

visual design environments which support simultaneous collaborative editing as well as au-

tomatic version control [81]. In this environment, users are able to first design the syntax

of their custom visual language using a meta-model. They are able to immediately use this

newly created visual language. Users can further customize WebGME by developing custom

methods of visualization, code generation, and many other components to create a powerful,

domain-specific design environment.

WebGME provides another approach to collaboration in the context of visual program-

ming environments. Projects in WebGME are automatically version controlled and support

collaboration where only the content of the user’s project is synchronized (as in Google Docs).

Automatic version control provides a natural way to resolve concurrent edits (consistent with

the approach used by git). Concurrent edits result in one of the commits being placed on its

own branch. If these edits are not conflicting, they can be automatically merged to the same

branch. If they are conflicting edits, they are not automatically merged and the two users

will now be working on different branches which can be merged manually (at which point
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the user can resolve the conflicts). As WebGME supports multiple custom visual editors

for nodes in the model, collaboration in this environment can have the unique property of

occurring between different editors operating on the same data. Collaborating users can

be working on a project in which the content may actually appear differently within their

respective editors (although the underlying project data is the same).

SLIM provides an alternative, simple approach to collaborative modeling [129, 5]. Un-

like the previous approaches, SLIM avoids resolving conflicts by ensuring that they cannot

happen by locking parts of the model that are already being edited by another user. This

simple technique guarantees that there will not be any conflicting actions. It cannot be used

when collaborating with offline models (as in [38]). Unlike the other approaches, this enables

users to collaborate on separate parts of large models but ensures no conflicts by prohibiting

collaboration on the same parts of models. This approach certainly will be effective when

the models are large and there are fewer users (and the users are working on disjoint parts

of the model). This will not allow users to collaborate on the same parts of any models as

allowed by the other approaches to collaboration in visual programming environments.

4.2 Challenges

4.2.1 Conceptual Challenges

Before addressing the technical challenges of collaborative editing, it is important to

determine an appropriate, consistent, and feasible conceptual model for collaborative editing.

Specifically, it is important to clearly define the expected behavior including exactly which

elements should be synchronized during collaboration. One possibility is to synchronize the

entire editor as in Nebraska [92]. This would result in the users sharing not only the project

content but also the editor state including the currently selected block category and sprite.

Alternatively, it may be more appropriate to simply synchronize the content of the current

project like in Google Docs, WebGME, emfCollab, and SLIM [46, 81, 38, 129]. This would

allow the users to work on different parts of a project simultaneously by only synchronizing

the underlying project data and not the actual states of their individual editors. Synchroniz-

ing only the project content should promote the user productivity as they can edit different

parts of a project simultaneously, unlike when sharing the entire editor state. However, a

shared editor state may be more useful pedagogically as users could easily demonstrate the

entire process of performing various tasks.

Lively programming environments, such as Scratch and Snap! [80, 76], introduce addi-

tional conceptual challenges when considering collaborative editing. There are no execution

and editing modes; blocks are always responding to events and can always execute. Users
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can easily discover the behavior of blocks; clicking on a block will execute it. Running scripts

can also be edited and modified during execution. Although the liveness of this environment

is unconventional, it provides immediate feedback for novice programmers and promotes the

potential for exploratory learning.

Although a lively programming environment can promote learning, it introduces com-

plexities when synchronizing the project content. As it is always running, there is not a

clear distinction between the project content and output as is present in many other en-

vironments. Specifically, the program output is constantly evolving due to both program

execution and user interaction. Consequently, synchronizing only the project code will not

guarantee that both users will have the same program behavior or output, which may be

somewhat counterintuitive.

Figure 69: Block Execution in Lively Environment

Figure 69 shows a script which moves a sprite in a circle indefinitely. The faint highlight

around the blocks indicates that the script is currently executing. In a lively environment,

these blocks are still editable during execution. This allows the user to make modifications

such as increasing the input to the turn block and immediately he/she will see the effects of

the given modification. The user could also modify the execution by dragging the given sprite

to another location during execution (although this may be difficult if the sprite is moving

quickly). Stopping the execution will stop all executing scripts but there is no concept of

an initial state to which the project execution state can be restored. Furthermore, stopping

the execution does not prevent scripts from responding to future events or user actions; it

simply terminates all currently executing scripts.

Networking support in a lively environment introduces another dimension of complexity

with respect to collaboration. When the entire program execution is restricted to a sin-

gle device, the program execution has virtually no side effects on external applications nor

dependencies on other applications. This is not the case when building a distributed ap-

plication. As the program may be sending and receiving messages from other clients, the

execution of a single program can impact the behavior of other executing programs.
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As lively environments are always in a state of execution, collaboration results in multiple

instances of the given project being executed simultaneously. When collaboratively editing

a Role in a distributed application, this can be particularly problematic as it will result in

the execution of multiple instances of the same Role. As the distributed application was

likely not designed to support multiple instances of the given Role, this will likely lead to

unexpected behavior.

Figure 70: Collaboration in a Distributed Application

An example of unexpected side effects when executing multiple instances of the same

Role is provided in Figure 70. In this example, the users are developing a Tic-Tac-Toe game

with two Roles: “X” and “O.” Suppose that each Role alternates in waiting for the given

user to make a move and then the Role sends the “move” message to the other Role. When

a Role receives the “move” message, it will record the move and update the game board

accordingly.

Although this approach will be effective generally, it will not behave as expected if there

are duplicates of at least one of the Roles. Currently, “X” is occupied by a user named

“brian.” Two users, “steve” and “john,” are collaboratively working on the second Role,

“O.” As the environment is lively, this means that there are actually three running Roles

in this distributed application (one Role is running for each user). The application will no

longer behave as expected. Suppose the “X” Role moves first. “X” will play locally and send

the “move” message to the “O” Role. As “john” and “steve” are both occupying the “O”
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Role, they will both receive the “move” message and each will individually play in response.

However, this will result in two (potentially conflicting) “move” messages being sent back to

the “X” Role.

Under these circumstances, the other Roles in the Room no longer behave as expected.

Multiple Role instances only exist when users are collaborating. Programming a distributed

application to be robust to the side effects of collaboration should not be a design consider-

ation for the novice programmers developing these applications.

4.2.2 Technical Challenges

Visual programming also presents its own technical challenges as it is fundamentally

different from textual programming. These environments have a different underlying data

structure. Whereas text can be represented as a “growable array” [74], each script in a blocks-

based programming environment is a tree. This provides a unique challenge for collaboration

as this data structure is more complex and some more recent approaches to collaborative

editing have been shown not to be applicable for this type of structure [72].

Supporting collaborative editing in a tree data structure is quite complex as the elements

in the data structure are not independent of one another. The data structure is a directed

acyclic graph with the global constraint that each node can only have one parent. Addi-

tionally, in a block environment, the blocks can only be placed in an input slot of another.

This corresponds to an underlying tree data structure where the input blocks are the child

nodes of the containing block. Unlike most tree data structures, the nodes in the tree have

a fixed number of uniquely named edges to their children as a block’s inputs are unique and

can only be occupied by a single block at any given time. These uniquely named edges can

only be occupied by a single block at a time and introduces yet another constraint on the

underlying data structure and further complicating concurrent editing.

4.3 Approach

To address these conceptual challenges to collaboration within lively, blocks-based pro-

gramming environments, we present a model of collaboration designed to promote produc-

tivity within potentially distributed applications. As lively environments are always running,

we propose synchronizing only the project content. Specifically, we synchronize the scripts,

custom blocks, sprites, costumes, and sounds of the project. This will promote user produc-

tivity as collaborating users can edit different parts of the project simultaneously (unlike in

models of collaboration like Nebraska). Aspects of the project which can be modified by the

execution of the project, such as variable values and sprite positions, are not synchronized.
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When executing a program, it is expected that there is only a single user per Role. As it

is best to closely emulate the execution circumstances while debugging, it is recommended

to only have a single user per Role while testing an application’s distributed aspects as well.

Regardless, it is important that collaboration in a distributed program results in minimal

unexpected side-effects for the rest of the project.

As executing multiple Roles (due to collaboration) in a distributed application can result

in unexpected behavior in the rest of the application, only one role is allowed to send mes-

sages when collaborating. However, all collaborating roles are able to receive messages and

share the same Public Role ID. This can still result in some unexpected behavior. A collab-

orating Role that cannot send messages will not be able to affect the rest of the distributed

application. As a result, the blocked Role will only see the effects of the Role which is allowed

to send messages. Although this may not be expected for the user occupying the blocked

collaborating Role, this approach minimizes the amount of unexpected behavior and limits

it to only the collaborating Roles. As side effects in this scenario cannot be avoided, limiting

the side effects of collaboration to only the collaborating Roles allows the consequences to

be understandable and explainable.

One driving design decision in developing this model of collaboration was not to restrict

the capabilities of the users when collaborating. To support collaboration in lively blocks-

based programming environments, we have developed an operation-based model of collabo-

ration composed of 45 different supported operations. These include operations for editing

blocks, custom blocks, sounds, costumes, sprites, and the environment such as variables and

the stage.

As there are many supported actions, a simple, strongly consistent model of collaboration

(similar to emfCollab [38]) is used to manage complexity. When collaborating, all operations

are submitted to a central server providing a total ordering of all user actions. The server

accepts any operation applied by a client working on an up-to-date version of the project;

operations submitted by clients on out-of-sync versions of the project are rejected. This

method of collaboration ensures strong consistency as the clients are required to be up-to-

date before any project modification will be allowed. Given the complex underlying data

structure and many supported operations, the strongly consistent model enables us to ensure

that the projects will not be malformed and replicas will never diverge.

Block Operations

Sixteen actions are defined for editing and manipulating blocks. These actions include the

expected actions for block programming such as addBlock, setBlockPosition, moveBlock
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and removeBlock. As first class lists require the use of blocks which can dynamically add

or remove inputs, we define two additional actions addListInput and removeListInput.

Block inputs can be either blocks or primitive values. Blocks can be provided as the

input to another block using a moveBlock action and block inputs can be replaced using

the replaceBlock action. Boolean inputs can be modified using toggleBoolean actions

and color fields are modified by the setColorField action. The value of text field inputs

can be modified using the setField action type and comment blocks can be updated using

setCommentText action.

There are also actions created for some lesser known features in block programming

languages. These include changing a block’s type using the setSelector action. An example

of this functionality is provided in Figure 71 in which an if statement is being changed to a

repeat until loop. Blocks can also be “ringified,” or converted into anonymous functions

by wrapping the block with a gray ring, using the ringify action type. The ring can be

removed using the unringify action type. It is worth noting that the unringify action is

different from the removeBlock action; removing a block results in the target block being

removed with all inputs whereas the unringify action will only remove the outermost ring

and leave the contained block unmodified.

Figure 71: Changing a Block’s Type

Custom Block Operations

Custom blocks are much simpler in terms of modification capabilities; this is reflected

in the number of action types pertaining to custom blocks. Six types of actions are used

for modifying custom blocks. Custom blocks are created using the addCustomBlock action

and removed using deleteCustomBlock. When custom blocks are created, they can be

added to a number of different categories including “motion,” “control,” “variables,” “op-

erators,” “looks,” “sound,” and “sensing.” The setCustomBlockType operation is used to
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change the block’s category and corresponding type (shape of the block). The custom block

method signature (block text and inputs) can be modified using updateBlockLabel and

deleteBlockLabel. There is also an additional action type, deleteCustomBlocks, which is

a convenience action for performing bulk deletions of custom block definitions.

Sprite Operations

Sprites can be edited and modified using nine different action types. Creation and deletion

of a sprite is performed using addSprite and removeSprite actions. Importing and dupli-

cating sprites is supported through the use of importSprites and duplicateSprite actions.

Sprites have additional properties including name, rotation, and dragging settings. These

properties can be modified using renameSprite, toggleDraggable, and setRotationStyle

actions. Finally, sprites can also be attached to one another to enforce shared properties

such as position and rotation. Sprite attachment and detachment is supported through the

attachParts and detachParts actions.

Resource Operations

Projects can also use audio and visual resources within their application called “Sounds”

and “Costumes.” Sounds can be modified using addSound, removeSound, and renameSound.

Costumes are modified with analogous action types, addCostume, removeCostume, and

renameCostume. Additionally, the actual image content can be modified using updateCostume

action.

Networking Operations

Supporting distributed programming abstractions requires the definition of additional

types of operations. Message types are a new concept which is independent of the concepts

or operations in existing blocks-based programming environments. Editing message types

is supported with two new operations: addMessageType and removeMessageType. These

operations enable users to define and remove message types, respectively. Interacting with

the new blocks for messaging and RPCs is enabled using the standard operations for manip-

ulating blocks.

Miscellaneous Operations

There are also a few actions which do not fit into any of the earlier categories. These

include actions for editing the stage dimensions, setStageSize, and editing variables. Vari-

ables are defined using addVariable and removed using deleteVariable. Specific variable

blocks can be renamed using setBlockSpec. There is also an operation for opening new
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projects, openProject. This action is slightly different from the other actions; it is not

shared during collaboration and it cannot be rejected.
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Chapter V

Novice-Friendly Version Control

Version control is a very powerful tool when developing complex applications promoting

collaboration and enabling users to easily move between different versions of the code for

a given software application. These types of features, particularly being able to revert

the code base to an earlier version of the project, can be especially useful when a project

has been broken and the user would like to go back to a working version. Currently these

features are provided in advanced tools designed for experienced software developers. Novice

programmers are certainly expected to make many mistakes yet the most powerful tools for

development and debugging are inaccessible to them until they become more experienced

(at which point, they are hopefully making fewer errors).

Although this is an ironic characteristic of these version control tools, it is an understand-

able one. The concept of version control can be relatively complex and could be challenging

to explain to novices. Providing tooling which presents even a subset of these concepts to

the user in a meaningful, simplified way is also challenging and could impose additional cog-

nitive load to the user and be detrimental to the learning of the core programming concepts.

Despite these challenges, the ability to provide a familiar, intuitive way to be able to interact

with the history of a user’s project would be beneficial to budding programmers.

5.1 Background and related work

Version control tools are ubiquitous in software development and large scale software

projects. They are often quite powerful and can help manage complex projects and collab-

oration. However, these powerful features often result in complex tools which are rather

challenging to learn [22, 56]. Consequently, there have been a number of efforts focusing

on bringing explicit instruction about version control into the classroom [111, 85, 106, 121],

simplifying version control tools [101, 67] as well as providing version control capabilities

into visual programming environments [81, 96, 46].

5.1.1 Version Control in the Classroom

There have been a number of different approaches to teaching version control in the

classroom. These include simply requiring the students to use a version control tool, like

Git, for working on engineering projects [121] as well as using version control as an assignment

submission system [71, 49, 106]. These approaches also targeted techniques for introducing
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distributed version control to students as well as techniques for promoting best practices

among students when using version control.

In [71], students were taught version control through creating an infrastructure for as-

signment submission and grading using Git. Using version control for all assignments and

grading feedback allowed students to become immersed in the tooling and gain hands-on

experience. This approach was used in a number of different classes including a software

engineering, compiler and even a CS1 course for non-CS engineering majors.

In class, the Thayer method of moving the work into the classroom was used. That is, the

professors actively programmed in front of the class while the students would follow along.

The Gutenberg method of teaching by answering questions about the reading was also used.

Even with the non-CS engineering majors, the version control submission system was used

for all the labs and students were able to gain enough of an understanding of Git to complete

even the early labs.

A study by Haaranen and Lehtinen provided a similar approach to teaching Git in the

classroom [49]. In this study, git was taught alongside the regular course material and used

as a platform to distribute class materials (similar to [71]). Unlike the previous study, this

study provided an explicit progression for incrementally introducing concepts in distributed

version control.

Harranen and Lehtinen found predominantly positive student feedback with respect to

incorporating Git into their course. Although over one-quarter of students reported having

no experience with Git before the course, 92% of students described their attitude towards

using Git in the course as positive. Students also provided a number of positive comments

toward learning Git including “Introduction to git was really useful for me!” and “Also using

git for course material reduced file management by a lot and made submitting solutions fast

and simple.” Negative student feedback commented on the difficulty of learning Git, desire

for more practice and use of Git as a course platform.

Singer and Schneider provided one particularly interesting approach to incorporating ver-

sion control in the classroom [121]. In this study, students formed teams and developed large

class projects. Students were provided tools for version control, issue tracking, and a web-

based commit newsfeed. The newsfeed also included a leaderboard presenting the commits

for each team member and supported student comments on commits presented in the news-

feed. Weekly updates were emailed to the team members containing summary of personal

commit activity, the milestones reached during the week and the current leaderboard.

Unlike the previous studies, this study focused on promoting best practices with version

control. By incorporating some gamification techniques highlighting the commit counts and

activity of other users, the platform rewarded smaller, frequent commits. Additionally, the
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incorporation of a leaderboard introduced competitive elements for comparing commit counts

between team members. Emailing weekly digests was also designed to provide motivation

by showing user progress and promote engagement through the use of emailed reminders.

Students provided a lot of positive feedback pertaining to the introduced gamification

techniques. Although the competitive nature of the leaderboard was not always comfortable

for students, Singer and Schneider found that it did promote more frequent, smaller commits.

The weekly digests also received positive feedback as they provided a quick overview and

could help show progress to the student.

The first two studies provide examples of incorporating distributed version control into

the classroom to help the students learn by making Git an essential part of class. Both

studies found that using a Git-based infrastructure for dissemination of class materials and

submission of class assignments was a reasonably effective way to teach version control with

college aged students. Furthermore, students also provided feedback to the lesson materials,

a pleasant side-effect to using a version controlled infrastructure. In [71], Git was able to be

effectively included in courses for non-CS engineering majors as well as CS majors. This is

particularly impressive as distributed version control tools can be known for their complexity

and may be more challenging for non-CS majors.

5.1.2 Simplified Version Control and Visual Programming

Existing distributed version control tools are often criticized for their complexity [56, 22].

Although these tools are providing rather abstract and sophisticated features and capa-

bilities, there have been some efforts to design more accessible, simple distributed version

control tools [101, 67]. Additionally, some visual programming and collaborative editing

environments provide their own approaches for version management [81, 96, 46]. These ver-

sion management tools are often designed to provide similar capabilities to common version

control tools without requiring the same cognitive load.

One approach to improving usability and accessibility of version control systems can be

found in Gitless [101, 113]. De Rosso and Jackson performed a redesign of Git, a common

version control system, addressing flaws in conceptual design. Specifically, they targeted

conceptually challenging aspects of Git including eliminating the concept of an “assumed

unchanged” file, the staging area, and stashing capabilities. Gitless also modifies the concept

of a branch. Unlike in Git, Gitless branches include the working versions of files. When

making a new branch, any uncommitted changes are not copied to the new branch and

remain on the original branch.

When evaluated with real users, Gitless showed promise as an effective, simplified version
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control tool [113]. Novices showed a statistically significant improvement in satisfaction and

decrease in frustration. However, no significant difference was found in efficiency, difficulty

or confusion. Some more advanced Git users expressed an appreciation for some missing

Git concepts, specifically the stash and staging area: “Gitless was easier to use for the tasks

these sessions asked me to perform, but I really like having a Git stash and staging area to

work with in Git.”

In [67], the applicability of version control to a non-technical audience is investigated. To

this end, a web-based tool is developed for authoring E-learning content. This included a

number of differences including renaming “branches” to “working copies,” customized views

for comparing differences and merge requests. One surprising challenge resulted from incom-

plete information when viewing differences. Unlike software development, where program-

ming abstractions can promote assessing changes in isolation, authoring E-learning content

presented challenges when viewing content changes in isolation.

This is an interesting approach to creating accessible version control support with sim-

ilarities to Gitless. Like Gitless, the developed software supported a subset of the usual

version control capabilities. Additionally, both made changes to the Git conceptual model

to provide more accessible and easily understandable version control tools. However, unlike

Gitless, Kreiser uses more commonplace terminology and an intuitive interface in an effort

to make the core version control concepts accessible to a specific, non-technical domain.

One example of version control integration in a visual environment can be found in

WebGME [81]. WebGME provides version control capabilities automatically. When a user

is working in WebGME, every action is implicitly committed to the current branch. This

guarantees that project edits will not be lost and that any state can be restored as the user

can simply revert to the given commit corresponding with the state of the project which the

user would like to revisit.

A similar approach is also used in other collaborative online tools. Although they are not

visual programming environments, ShareLatex and Google Docs provide similar functionality

with respect to implicit commits and allowing the user to “track changes” made to the

current document [96, 46]. These changes contain not only the change but metadata about

the change including author and creation time.

5.2 Approach

Providing distributed programming capabilities to novices can result in increasingly com-

plex applications. Especially when developing more advanced applications, novices can be

prone to making errors or mistakes while programming. Making some powerful features of
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version control accessible to novices can help them to recover from errors. Additionally, pro-

viding accessible version control concepts can introduce novice programmers to important

software engineering concepts implicitly.

In developing novice-friendly version control capabilities, the primary goal is to support

users in reviewing changes to a project and restoring their projects to previous states. The

version control capabilities should require minimal explicit instruction. As lively blocks-

based programming environments have been designed for use in exploratory, constructivist

settings [78, 79], it is important that these capabilities are accessible with minimal direct

instruction.

To enable users to easily interact with the history of their project, we have designed

another mode for the development environment called “Replay Mode”. In Replay Mode the

project becomes read-only and the user is presented with familiar controls similar to those

used in media players like YouTube. These controls include a slider with tick marks for each

action, a play button for moving through time normally (or at different rates depending upon

more advanced settings), single stepping buttons and buttons for jumping to the beginning

or the end of the current project’s timeline. Furthermore, there are buttons for toggling

subtitles which print the name of the currently occurring event and a settings button which

enables the user to configure settings such as the replay speed and the maximum inactive

duration between events. Figure 72 illustrates the updated user interface when viewing a

project in Replay Mode.

Figure 72: Viewing Project in Replay Mode

One fundamental capability of reverting to earlier versions of a project lies in the ability

to revert project changes. Reverting project changes builds upon the operation-based in-

frastructure described in Chapter 4. As each project is composed of the previously defined

operations, reverting an operation can be performed by computing the inverse of the given
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operation. These inverse operations are computed based upon the type of the action, and it

is computed based only on the contents of the given operation. If the operation requires ad-

ditional information for inversion, the required information must be added to the operation

during creation.

For example, consider the operation for resizing the stage, setStageSize. It certainly

needs the new “width” and “height” parameters for the new stage. As the operation needs

to be able to be inverted, it also needs to contain the current stage width and height. Con-

sequently, before applying the operation, it saves the current stage width and height. This

makes computing the inverse of the operation trivial; the inverse is simply a setStageSize

operation using the old width and height.

Some operations cannot be undone with only a single operation from the operations

defined in Section 4.3. One such example is the moveBlock operation which connects blocks

together. Suppose the turn block was dropped between two other movement blocks and

results in the script shown in Figure 73. As the turn block was placed between the move

and if on edge, bounce blocks, reverting this operation should remove the given turn

block and reconnect the remaining two motion blocks. This requires two different operations

to restore the project to the previous state: one to remove the turn block and another to

reconnect the remaining motion blocks.

Figure 73: Operation Requiring Multiple Inverse Operations

As an operation may require multiple operations to restore a project to the previous state,

we introduce the concept of a batch event. Batch events are an event which is composed

of other events. As the events are contained within a single parent event, all the events are

either accepted or rejected together. If accepted, the project is locked and batched events

are applied sequentially without interruption. Currently, batch events are used only when

inverting operations.

5.2.1 Fine-grained Reversion

Using invertible operations, the project content can be represented using a queue of the

operations. Every operation can be applied to this queue. The only exception is when the

project is in Replay Mode. As Replay Mode allows the users to view the history of the
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project, the application of operations and their inverses should not be recorded as edits

to the given project. Along with this project queue of all operations made on the project,

operations can also be added to other queues to enable more fine-grained reversion of various

aspects of the project. This provides the technical foundation for undo and redo capabilities.

Fine-grained reversion includes enabling the user to revert objects, such as sprites or the

stage, to previous versions. Along with the global queue of actions applied for the given

project, we can also define queues for specific aspects of each sprite or stage in a project.

These aspects include the scripts, costumes or sounds for a given sprite.

Different aspects of the sprite are independent of one another; operations affecting any

individual aspect of a sprite or the stage cannot affect any other aspect. For example, edits

to the costumes of a sprite have no effect on edits to the block scripts of the given sprite.

This independence ensures that each queue can be extended with operations (or inverses of

existing operations) without any implications on the actions in other aspects. Independence

of operations between queues enables operations from each queue to be constrained only by

the relative order with respect to the other actions in the same queue. This allows the user

to revert to past versions of each of these individual aspects easily.

One alternative approach would be to create operation queues based on the user authoring

the original operation. This certainly could be useful when collaborating and is similar to

the current behavior in applications such as Google Docs [46]. As discussed in Chapter 4,

blocks-based programming uses a more complex underlying data structure than those used

for many other tasks, such as text editing.

Blocks-based programming languages require the user to construct a forest of elements

rather than simply a growable array of characters. As blocks have a set number of unique

inputs, the nodes in these trees are constrained to only having a fixed number of named

branches. This complexity introduces a number of constraints upon the data structure that

result in non-trivial dependencies between operations. When organizing operations by au-

thor, there is no guarantee that different operation queues will have independent operations.

To the contrary, it is actually quite likely that operation queues will contain conflicting

actions.

One such example is shown in Figure 74. Two users, Alice and Bob, are collaborating

on a project containing a single turn block. Alice places a sum block in the turn block’s

input and then removes it. Then, Bob places a random block in the same block’s input and

removes it. Alice and Bob’s actions are represented with blue and red circles, respectively.

The state of the block is provided before and after each operation.

This scenario demonstrates a simple example of dependent operations. If the users both

had individual operation queues containing each of their operations, both should be able to
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Figure 74: Dependent Operations in User-Based Operation Queues

revert their own operations independent of the state of other queues. However, as reverting

the last action results in the input slot being occupied for each user, reverting the last

operation for both users would result in the input being occupied by two different blocks

simultaneously (which is impossible). As a result, they would be unable to both revert their

last action.

An attempt to remedy this could be made by disallowing reverting operations which

cannot currently be applied. Although this approach could be effective, it is certainly not

ideal. As the operation queues allow a linear progression through the applied operations,

disallowing a single operation can make all preceding changes inaccessible. The preceding

changes could be important changes which are independent of the blocked event; this creates

an unintuitive and seemingly arbitrary reason for losing any potentially important preceding

changes.
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Chapter VI

Empirical Support

6.1 Background and Related Work

6.1.1 Effectiveness of Educational Programming Environments

Educational programming languages have proven to be quite effective for introducing

computer programming to young learners [139, 20, 110, 83]. These include simplified textual

programming languages [21], blocks-based programming languages [110, 83] as well as other

visual programming languages [30, 134]. Programming has also been shown to be beneficial

for education and development beyond computer science in areas such as metacognitive

development, computational thinking and promoting student engagement [23, 25]. This

section provides an overview of the effectiveness of educational programming languages in

computer science, student development, and engagement.

Meerbaum-Salant, Armoni, and Ben-Ari found that students were able to learn some

fundamental computer concepts using Scratch. These concepts including loops, condition-

als and events although they struggled with some other concepts: initialization, variables,

and concurrency [83]. However, the authors conjecture that these shortcomings could be

overcome by modifications to the curriculum and teaching process.

Denner, Werner, and Ortiz introduced computer programming in an after school class

of 59 6th grade girls which met twice weekly for 14 months [34]. In this class, students

used a visual programming environment designed specifically for developing games. Student

games were then analyzed to detect use of various concepts including conditions, events and

parallelism. 82% of student projects used conditions or events, 36% used parallelism and

29% used character variables. Similarly, in [79], Maloney, et al. found that students were

able to learn basic computer programming concepts in a self-guided after school program

with Scratch.

Seymour Papert claimed in “Mindstorms: Children, computers and powerful ideas” that

“teaching the Turtle to act or to “think” can lead one to reflect on one’s own actions and

thinking” [98]. Many others also saw the potential for programming on education and student

development [100]. This impact of programming on cognitive and metacognitive development

has been supported empirically. In [23, 25], LOGO was found to improve student perfor-

mance on cognitive and metacognitive assessments. More recently, [62] found that robotics

programming improved student metacognitive development and geometric thinking.
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“Computational thinking” (CT) involves “solving problems, defining systems, and under-

standing human behavior by drawing on concepts fundamental to computer science” [141]

and has been defined as a fundamental skill for everyone. As defined by Wing, compu-

tational thinking is composed of six principles. The first principle is conceptualizing the

problem and thinking at multiple levels of abstraction. Secondly, computational thinking

is a fundamental skill for functioning in society. Thirdly, it consists of using cleverness to

solve problems rather than thinking like a computer. Computer science draws upon both

mathematics and engineering to build virtual worlds which exist with their own constraints

and not necessarily the constraints of the physical world. The fifth principle focuses on the

ideas and the approaches used to solve problems and not just the artifacts of the given task

or exercise. The final principle is that CT should be a central part of human endeavors [141].

CT has already impacted a number of educational programs ranging from primary school

through college [114, 105, 140]. Computational thinking has been incorporated into a num-

ber of curricula in general [18, 90, 7]. Educational programming environments are often used

as a tool to promote and teach computational thinking such as in [18, 90, 7]. One exam-

ple can be found in [15] where robotics programming was effectively used to teach aspects

of computational thinking to children as young as four years old. In [20], a Scratch-based

curriculum was shown to improve mathematics and problem solving skills (one aspect of com-

putational thinking). Additionally, [114] found blocks-based programming to be an effective

prerequisite for computational thinking among young students and [89] found App Inventor

for Android to be an effective platform for introducing programming and computational

thinking to K-12.

Educational programming environments have found empirical support for improving re-

tention and promoting engagement among students [110, 142, 79, 61, 76]. In [61], Kelleher,

et al., found that middle school girls using Storytelling Alice spent 42% more time program-

ming than girls using the original Alice. Maloney, et al., found sustained engagement among

Scratch users in an urban, after-school program without formal guidance [79]. Kaleliougl et

al. found that girls performed equally with their male counterparts using a Code.org based

curriculum which suggests equal engagement of both sexes [58]. Given this empirical support

for promoting student engagement and retention, it is important to be able to provide tools

which make computational thinking easily accessible [48].

Some educational programming environments have been able to make programming more

engaging by making it more relevant. One example of this can be found in [142] in which

App Inventor for Android was used to enable users to develop applications for their mobile

devices. One particularly impressive example from [142] involves one student who built an
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app which was used by a non-profit in Helsinki to organize a thousand-person event; this is

certainly uncharacteristic for an undergraduate general education course.

6.2 NetsBlox

To evaluate the presented distributed programming abstractions, we have implemented

the contributions in a blocks-based programming environment called “NetsBlox.” NetsBlox

is an extension of Snap!. Snap! is both open source and is one of the most advanced

blocks-based programming environments with support for anonymous lists and functional

programming concepts such as anonymous functions and custom blocks. As functional pro-

gramming support is also an important prerequisite for the remote block execution described

in Chapter 3, Snap! was a particularly useful foundation for NetsBlox.

6.3 Case Studies

We hypothesize that the presented networking abstractions will provide a number of

benefits to student learning and engagement. We believe that these abstractions will en-

able novices to develop distributed applications and hence will enable users to develop a

better understanding of important distributed computing concepts. Finally, we also believe

that providing access to additional resources and making programming more social will also

improve student interest and engagement. In this section, we present three case studies in

which we evaluate these hypotheses.

6.3.1 SSMV Summer Camp

This study was conducted with 24 high school students who attended the School for

Science and Math at Vanderbilt (SSMV) [126]. The program is a partnership between

Vanderbilt University and Metro Nashville Public Schools. It is designed to teach research

skills to high school students.

Students were taught for three hours per day for five days. As students may not have

prior programming experience, the students first were taught basic computer programming

concepts for the first two days. These concepts included control flow, events, lists, and

custom blocks. After the brief introduction to programming, one day was spent introducing

Remote Procedure Calls and another for message passing. On the final day, students were

allowed time to work on projects of their own choosing.

Students were given both a survey, a pre- and post-test, and then provided anonymous
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feedback at the end of each day. The survey collected demographic information and atti-

tudinal information about networking and computer programming in general. Additionally,

the survey contained questions about about the usage of networking functionality in their

final projects. This includes measuring the students’ level of agreement to questions such as

“I am interested in computer science” and “I know how to build a networked application.”

The pre- and post-tests1 contained 6 questions and were used to assess computational think-

ing, networking and concurrency competency. These included questions about the behavior

of connected devices in a mesh network and adaptations of the Two Generals Problem, a

classical problem in distributed computing.

Students showed significant improvements in both the computational thinking and net-

working sections (p <0.01). The effect sizes for the improvements in computational thinking

and networking competency were 0.69 and 0.76, respectively. Scores in computational think-

ing showed an average improvement of 16.3 percentage points (pp). The networking section

scores showed a slightly higher improvement of 19.3 pp. Although students showed improve-

ment in the concurrency section, they struggled more with these questions. This is likely

a result of the lack of alignment between the questions and the curriculum. Due to time

constraints, concurrency topics were not explicitly discussed.

Pre-Test Post-Test
M SD M SD

Comp. Thinking 78.0 30.0 93.4 14.5
Networking 59.0 26.2 78.1 24.3

Table 6.1: Student Scores in CT and Networking Sections

For the final project, students were allowed to create a project of their choosing. These

included a variety of projects such as an online, multiplayer “Tron” clone and an application

which enabled users to explore an interactive map of the world and learn statistics about

countries (such as population) by clicking on the country. Results showed 85% of students

reported using distributed features in their final projects. Of the students using distributed

features, 55% reported using Remote Procedure Calls in their final project and 77% reported

using messages.

Student feedback also provided promising, positive support for the experience particularly

with respect to the networking capabilities. Many responses reported interest and positive

experiences pertaining to the networking capabilities. Some examples of such responses are

given below.

• “We learned how to do this in chat rooms, as well as across servers. I thought this

1The complete pre- and post-tests can be found in the appendix.
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function was really neat, and was the most interesting part about coding to learn. I

really enjoyed being able to expand beyond just one computer and be able to work

through multiple places.”

• “I liked this because it was cool to see how you can communicate with people across

the globe using a few lines of code”

• “I really enjoyed getting into multi-computer messages and games because it is my first

experience making anything close to an online program.”

• “Even though this week is over, I’m still going to continue working on coding to improve

my skills.”

• “As we continue to learn more about the program, the easier and more natural the

coding seems. This has been true throughout our learning with NetsBlox”

6.3.2 Budapest Summer Camp

During July 2017, we conducted a week-long study with 16 students in Budapest, Hun-

gary. The students were self-selected by their interest in computer science and were between

the 6th and 11th grade. Students were taught for 6 hours per day for 5 days. As in the

SSMV study, prior programming experience could not be assumed.

The courses followed the curriculum from the SSMV study. Students were assessed using

a survey and pre- and post-tests. The assessment materials used in the SSMV study were

translated into Hungarian by a native speaker and were used to assess student understanding

and disposition towards programming.

Students showed statistically significant improvements in both computational thinking

and networking competency (p <0.05; p <0.01, respectively). The effect sizes for the im-

provements in computational thinking and networking competency were 0.72 and 1.01, re-

spectively. Computational thinking scores increased by an average of 21.4 percentage points

(pp) and scores in networking increased by an average of 20.3 pp. Similar to the SSMV

study, students struggled more in the concurrency section. This is likely due to the use of

the same curriculum and lack of explicit discussion of concurrency topics.

Pre-Test Post-Test
M SD M SD

Comp. Thinking 67.2 31.3 88.5 27.7
Networking 51.6 21.4 71.9 19.0

Table 6.2: Student Scores in CT and Networking Sections
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This study also concluded with the students developing final class projects of their choos-

ing. These programs were quite varied and included a number of interesting applications

such as an encrypted chat client and a hangman game. It was encouraging to see interest in

the networking capabilities by the younger students as well. One of the 6th graders made a

simple distributed program with two clients. When the game started, one Role would send a

“hello” message and the other Role would wave in response. Although this game was simple,

it provided positive support for the effects of networking capabilities on student engagement

and interest.

6.3.3 Fifth Grade Science Classroom

In the fall of 2017, we were invited to a 5th grade science classroom to teach a lesson

using NetsBlox. This lesson focused on integrating computer science concepts with concepts

from their science curriculum. The school was an all-female private school in Nashville,

Tennessee. We taught a 45-minute class with four total sections.

Like the previous case studies, we could not assume prior programming experience. The

lesson contained a driving problem which introduced many of the basics of computer pro-

gramming, including control flow, variables, and events. Additionally, the motivating ex-

ample included an introduction to one networking abstraction, Remote Procedure Calls.

Remote Procedure Calls were used to provide access to the scientific content. This consisted

of two real-world data sources, map images, and current weather data.

Interactive Weather Application

The lesson was focused on developing an interactive weather application using NetsBlox.

The completed application showed the user’s current location on a map and allowed her to

change the zoom levels using the +/- keys. Clicking on the map displayed the city name

of the given location with the current temperature. During the lesson, the instructor first

demonstrated a concept as the students followed along. Then the students were prompted to

complete a related task on their own. For example, the teacher may demonstrate the addition

of increasing the map zoom and the students will then be prompted to add capabilities for

decreasing the zoom level. The completed application is shown in Figure 75.

The interactive weather application was selected as the motivating example for multiple

reasons. First, it was a relatively simple application which easily incorporated scientific con-

cepts such as latitude and longitude during development. After development, the application

enabled students to explore temperature trends throughout the world (as many of them did).

This exploration enabled them to gain insight into weather variations using an application
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Figure 75: Interactive Weather Application

that the students wrote themselves. Using their own application to inspect current tempera-

tures throughout the world provided both relevance to the programming exercise while also

promoting scientific inquiry and curiosity.

This motivating project was decomposed into segments which motivated a number of

important computer programming concepts while still being practical for a 45-minute les-

son. First, the programming environment was explained to the students. This included an

overview of the concepts of the blocks, hat blocks (blocks which start a script), stage, sprites,

and green flag (usually used to start the application). The liveness of the environment was

also demonstrated. Secondly, costumes were explained including the related blocks.

After introducing costumes, the call RPC block was introduced with the “getMap” RPC

from the “GoogleMaps” Service. As this block returns the requested map as a costume, the

map was then set as the costume for the stage using the blocks presented previously. Next,

students were encouraged to modify the arguments to the “getMap” RPC. Specifically, we

focused on how changing the “zoom” argument affected the resultant map costume. This

lead us to an introduction of variables as a means to change the actual value for the “zoom”

argument without requiring the user to manually change a hard-coded value for the given

argument.

Using a variable for the current zoom level naturally lead to introducing key events as the

means for the user to increase or decrease the zoom level (and update the map). Increasing

the zoom level was completed together as a class. Students were then prompted to add

support for decreasing the zoom level. Adding the zoom capabilities completed the creation

of the interactive map.
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Displaying the weather was presented by first introducing the problem of notifying the

sprite when the stage has been clicked. This motivated the introduction of events as a

simple means of communication between different sprites (or the stage). Next, we had the

sprite move to the pointer when the stage was clicked. The differences between the screen

coordinates and the Earth’s coordinates (latitude and longitude) were discussed and the

coordinate conversion RPCs are introduced. Using the computed latitude and longitude,

the students then used the temperature RPC from the “Weather” Service to retrieve the

current temperature for the given location.

User Feedback and Results

After the lessons, anonymous feedback was collected via a short survey about the stu-

dent’s experience. The survey consisted of five questions focused on their interest in the

lesson and interest in learning more about programming.

Students responded positively to programming. This was reflected both in the responses

about the individual lesson and their interest on programming in the future. The majority

of students (89.8%) reported that they found the class interesting. When prompted if they

would like to know more about coding, 85.7% of students reported that they would like

to know more. Additionally, when asked if they would like to do a class “creative coding

project,” over 80% confirmed that they would like this class project in the future.

Students that found the lesson interesting were also asked what they found interesting

about the lesson. As this prompt was open-ended, the responses were varied. Nonetheless,

they showed some general trends particularly relating to the networking capabilities and

student perceived self-efficacy.

Responses were classified by their relationship to the provided networking capabilities.

These types of comments are based on specific mention of features provided by the networking

functionality. This included comments pertaining to the map and temperature functional-

ity of the application. As the maps were provided by Google Maps, one comment which

specifically mentioned “controlling Google” was also considered a reference to the resources

provided by the networking capabilities.

Using these criteria for classification, we labeled the student feedback pertaining to the

networking capabilities provided in NetsBlox. We found that 28% of student responses were

directly related to features provided by the networking capabilities. Some responses are

included below:

• “I found the fact that you could use network to figure out temperature in different

places”
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• “I liked where it showed us the maps and the temp”

• “The way we could get maps was very interesting”

• “We got to know the temperatures of different places.”

• “It was cool to make a weather app!”

These responses provide some interesting insight into the students understanding and

mental processes. A number of the responses, such as “We got to know the temperatures

of different places” and “I liked where it showed us the maps and the temp,” highlight the

students’ interest in the incorporated science content provided by the Remote Procedure

Call. One student responded that “I liked that we got to make something we can actually

use in everyday life.” Although this does not explicitly reference networking or weather

capabilities, it supports our hypothesis that the inclusion of real-world data should make

programming more relevant and meaningful for some students.

Comments were also classified by their relationship to students’ perceived self-efficacy.

These types of comments are characterized by the improved perceptions of the student’s

capabilities or the accessibility of the lesson material (such as expressing surprise that she

was “able to make an app that easily”). Student comments were considered to be related to

the students’ perceived self-efficacy if the comment referenced the students capabilities and

independence (often through the use of reflexive pronouns or stating capability such as “I

can make”) relative to the lesson material. We found that 17% of student responses were

related to feelings of self-efficacy and empowerment. Some responses are provided below:

• “Being able to do it myself. Plus it was super cool.”

• “Today I found it interesting that thats all it took to make that. I thought it would

take longer”

• “what I found interesting is that I can make a small app.”

There were a number of responses which were not considered related to networking capa-

bilities nor student self-efficacy. Despite not being a part of a broader theme, these responses

were still noteworthy and provided positive feedback about the overall lesson. These include

comments reflecting a deeper understanding (and possible appreciation) of programming

such as “how many coding things you really need to use to just do a little thing” and “You

really have to pay attention to do the right thing.”

These responses provide some interesting insight into the students understanding and

mental processes. The prominence of responses pertaining to features provided by the net-

working capabilities, without specific prompting, provides some qualitative support for our
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hypothesis that these features should make programming more interesting and engaging.

The empowering comments around perceived self-efficacy seem to suggest that there may be

additional benefits to student self-efficacy following the lesson. Although noteworthy, this

requires further investigation and could be an interesting opportunity for future work.

6.4 Discussion

We have presented three case studies investigating the following hypotheses:

• The networking abstractions will enable novices to develop distributed applications.

• Building distributed applications with these abstractions may enable users to develop

a better understanding of important distributed computing concepts.

• Providing access to additional resources and making programming more social will

improve student interest and engagement.

The first two case studies used NetsBlox to present the given abstractions to students in

two summer camps. In these studies, students were introduced to computer programming

and then distributed programming in an accelerated, one-week curriculum. During the study,

students developed a number of different distributed applications including chat and mesh

networking applications.

These two studies provided strong support for our first hypothesis. Using the present

distributed programming abstractions, students were able to develop distributed applications

as part of the curriculum. Furthermore, students were also able to use these abstractions in

their own final projects. These included various distributed applications such as turn-based

multi-player games, real-time multi-player games and chat clients.

The second hypothesis was supported by the first two studies. To assess student un-

derstanding of distributed abstractions, pre- and post-tests were developed to assess under-

standing of various distributed computing concepts. These included variations of the Two

General’s problem and the behavior of nodes in a mesh network. In both summer camps, the

students showed statistically significant improvements in questions pertaining to distributed

computing concepts. These improvements were large as both studies showed approximately

a 20% improvement from the pre-test to the post-test scores. The effect sizes for the studies

reflected this with values of 0.76 and 1.01.

The third hypothesis is also supported in these studies. As the students were able to

choose their final projects, the use of distributed programming abstractions suggests student

interest in these concepts. The significant use of the distributed programming capabilities
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(84.62% in the first study) suggests these concepts were interesting to the students. Al-

though this is a relatively informal metric, it provides promising support for the hypothesis

that making distributed programming accessible to novices will positively influence student

interest and engagement.

The last case study focused on using the Remote Procedure Call abstraction to integrate

computer science and science curriculum. Students in this study were younger than the

previous case studies. These students were not self-selected and were students in a regular

fifth grade science class. Despite not using many of the different networking concepts, this

study investigated the benefits of integrating real-world datasets (through Remote Procedure

Calls) to student interest and engagement.

This case study investigated the effects of the distributed programming abstractions on

student engagement, the final hypothesis. Most students (about 90%) found the lesson

interesting. Of these students, 28% of these students (25% of all students) explicitly stated

features provided by the distributed programming primitives as the interesting aspects of the

lesson. Over 25% of students cited the features provided by the distributed programming

abstractions as the parts of the lesson which they found interesting. This provides significant

support for promoting engagement and interest among novice programmers.

These case studies provide positive support for our hypotheses. However, there are still

a number of remaining questions and weaknesses. The first two studies consisted of self-

selected students and were not a representative sample of a general high school population.

Furthermore, these studies were all relatively short in duration. Future work could investigate

if these results will generalize to the high school classroom or to a course of extended duration,

such as a high school course.
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Chapter VII

Conclusion and Future Work

In this dissertation, we have presented abstractions for making distributed computing

accessible to novice programmers. This includes designing a compiler to enable the execution

of blocks in alternative execution environments, such as remote server environments. We have

also presented an approach to collaborative editing in a lively, blocks-based environment

and a technique to bring version control capabilities to novices designed to require minimal

direct instruction. Finally, we have conducted case studies investigated the effectiveness in

making distributed computing accessible to novices using an implementation of these prior

contributions called NetsBlox.

7.1 Contributions

Distributed Programming Abstractions

In this work, we presented novel abstractions for enabling novices to develop distributed

applications in a blocks-based programming environment. These abstractions provided sup-

port for using message passing between blocks-based applications and an abstraction for local

networks and clients, the Room and Roles. Rooms and Roles also provide a natural way

to generate understandable network addresses for each application. Additionally, Remote

Procedure Calls (RPCs) provide a standard way to interact with external resources, utilize

scaffolding for developing more challenging applications and execute custom block functions

on the hosting server.

Remote Block Execution

To support the execution of custom block functions in an RPC, we have developed a

technique for executing arbitrary block functions in alternative environments. This included

designing a cross-compiler from the original block language to JavaScript. The compiler sup-

ported configurable block behavior in which the actual block implementations are decoupled

from the compiled code and can be specified at runtime. Conforming to the concurrency

model of the origin blocks-based environment was also a driving goal in the design. Ad-

ditionally, considerations for supporting closures and ensuring safety in the generated code

was also addressed and discussed.
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Collaborative Editing

Collaboration in lively, blocks-based programming introduces a number of conceptual and

technical challenges. We presented a model of collaboration for use in a lively environment

which promotes productivity. This included a strongly-consistent, operation-based approach

to collaboration in these blocks-based environments. Moreover, we also addressed additional

complexities such as the mitigation of unexpected behavior as a result of collaboration in a

lively, distributed application.

Novice-Friendly Version Control

Version control can be very beneficial but difficult to understand for novices. Further-

more, modern version control tools predominantly operate on text content and present

changes accordingly. We presented version control capabilities in a blocks-based program-

ming environment. This version control is not only designed to be accessible for novices with

minimal direct instruction, but also presents a natural way to enable users to interact with

the history of their projects.

Empirical Support

We introduced NetsBlox, an implementation of the discussed abstractions and concepts.

Three case studies have been presented to evaluate the effectiveness of the prior contributions

using NetsBlox. These case studies investigated the effectiveness of teaching programming

to two summer camps and fifth graders at a private school in Nashville, Tennessee. In

the summer camps, we found that students were able to develop some basic distributed

applications over the course of a single week. Students also showed significant improvement in

computational thinking and understanding of networking concepts. When creating projects

of their choosing, we found the strong majority of students utilized distributed programming

capabilities.

We found similar positive results when investigating student engagement in the third

study. This study utilized Remote Procedure Calls to teach programming and science con-

cepts simultaneously to students in the fifth grade. About 90% of students reported finding

the class interesting and over 25% of students explicitly cited features provided by the net-

working capabilities as the interesting aspect(s) of the lesson.
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7.2 Future Work

Deploy Block Programs to Alternative Environments

We have currently designed and implemented a compiler for generating JavaScript with

configurable blocks implementations. This compiler has been utilized to enable users to

execute block functions on the hosting server. The configurable block implementations en-

ables the target execution environment to provide block implementations corresponding to

the capabilities of the given environment. This capability could support the deployment to

other types of execution environments as well.

Deploying user’s block programs to other platforms provides significant pedagogical op-

portunities. These include deploying projects “to the cloud” as a long-running application

and could be used to teach concepts such as deploying services to support client applications.

Currently, block programs only execute in the browser (with the exception of executing spe-

cific functions on the server) and this new feature could introduce the concept of creating a

web service which executes independent of any user.

Robotic platforms or the Internet of Things could provide more interesting deployment

targets. This could enable users to program their applications and deploy the generated

code on the given device. After deployment, the given device would not necessarily need

a physical or network connection to run but could still utilize the sophisticated features of

the original block environment. This includes concurrency (even if parallel execution is not

supported on the device) and the powerful functional programming features provided by

blocks-based programming environments such as Snap!.

Intelligent Learning Environments

The development of the operation-based infrastructure used for both the collaborative

editing and the version control support provides many opportunities for data collection

and mining. This provides opportunities for gaining insight into many difficult pedagogical

challenges. These include early detection of students who may need help and behaviors of

successful students. Additionally, it would be interesting to apply contemporary machine

learning techniques to these operations to provide intelligent scaffolding tools for the stu-

dents.

The use of these operations in collaborative environments also provides an opportunity

for providing for learning about student behavior while collaborating. This includes simple

things such as division of labor and potentially the effects of the actions of each student.

For example, it could be interesting to investigate collaboration scenarios in which student
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actions are not beneficial and actually cause problems with one another. These scenarios

could provide another opportunity for intervention by an intelligent system.

Classroom Studies

The provided case studies have shown promising results when using NetsBlox as a vehicle

for the provided abstractions and capabilities. However, these studies have been of short

duration. Additionally, two of the studies were performed with self-selected students with an

interest in computer science. It would be interesting to investigate effects in a longer study

in an environment like an after school program.

Although the core contributions have been evaluated, some of them were not implemented

at the time of the studies. Specifically, it would be interesting to investigate the effects

of introducing the remote block execution on student understanding of Remote Procedure

Calls and on student thinking with respect to distributed computing. Unlike some of the

previous abstractions and concepts, executing custom block functions can be used to easily

demonstrate the importance of considering network latency when developing a distributed

system.

The version control capabilities also provide interesting opportunities for future studies.

Could activities such as annotating the history of the student project have positive effects on

student metacognition? Enabling students to interact with the history of his or her project

should be beneficial to debugging a program with a recently introduced bug. This potential

benefit to productivity and student problem solving could also provide another interesting

aspect to explore.
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Appendix A

Sample Generated JavaScript Code

In this appendix, we present the advanced example block script from Chapter 3 and the

complete generated code output. This example invokes an anonymous function which yields

control of the process during execution and introduces some complexities of preserving the

implicit concurrency model in blocks programming languages such as Snap! and Scratch.

Although the compiler can optionally generate a JavaScript file including all dependencies,

such as the environment context, we will only provide the output of the compiler when

only generating the JavaScript code for the given block program (without bundling any

dependencies).

A.1 Sample Input Block Scripts
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A.2 Generated JavaScript output

1function anonymous(__ENV) {

2const SPromise = __ENV.SPromise;

3

4class Variable {

5constructor(name , value) {

6this.name = name;

7this.value = value;

8}

9}

10

11class VariableFrame {

12constructor(parent) {

13this.parent = parent;

14this.vars = {};

15}

16

17get(name , silent) {

18let result = null;

19if (this.vars[name]) {

20result = this.vars[name];

21} else if (this.parent) {

22result = this.parent.get(name , silent );

23}

24if (result === null && !silent)

25throw new Error(

26"a variable of name ’" + name + "’ does not exist in this context"

27);

28return result;

29}

30

31set(name , value) {

32this.vars[name] = new Variable(name , value);

33}

34}

35

36class Stage {

37constructor(name , variables , customBlocks) {

38this.name = name;

39this.variables = new VariableFrame(variables );

40this.customBlocks = new VariableFrame(project.customBlocks );

41this.isSprite = false;

42this.variables.set(" __SELF", this);

43this.project = project;

44}

45

46onFlagPressed () {}

47

48onUserEventReceived(event) {}

49

50emit(event , wait) {

51if (wait) {

52project.sprites

53.concat ([ project.stage])

54.forEach(obj => obj.onUserEventReceived(event ));

55} else {

56setTimeout (() => {

57project.sprites

58.concat ([ project.stage])

59.forEach(obj => obj.onUserEventReceived(event ));

60}, 0);

61}

62}

63

64getTimerStart () {

65return project.timerStart;
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66}

67

68resetTimer () {

69project.timerStart = Date.now ();

70}

71

72getTempo () {

73return project.tempo;

74}

75

76setTempo(bpm) {

77return (project.tempo = Math.max(20, +bpm || 0));

78}

79}

80

81class Sprite extends Stage {

82constructor(name , variables , customBlocks) {

83super(name , variables , customBlocks );

84this.clones = [];

85this.isSprite = true;

86this.xPosition = 0;

87this.yPosition = 0;

88this.direction = 90;

89this.costume = 0;

90this.size = 100;

91}

92

93clone() {

94let clone = Object.create(this);

95this.clones.push(clone );

96setTimeout (() => clone.onCloneStart (), 0);

97}

98}

99

100__ENV = __ENV || this;

101var project = {

102variables: new VariableFrame (),

103customBlocks: new VariableFrame (),

104timerStart: null ,

105tempo: 60,

106sprites: []

107};

108project.stage = new Stage(

109unescape ("Stage"),

110project.variables ,

111project.customBlocks

112);

113

114project.stage.onFlagPressed = function () {

115var self = this;

116};

117

118project.stage.onUserEventReceived = function(event) {

119var self = this;

120};

121

122project.stage.onKeyPressed = function(key) {

123var self = this;

124};

125

126// for each sprite ...

127var sprite;

128

129sprite = new Sprite(

130unescape (" Sprite"),

131project.variables ,

132project.customBlocks

133);
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134sprite.xPosition = 0;

135sprite.yPosition = 0;

136sprite.direction = 90;

137sprite.draggable = true;

138sprite.rotation = 1;

139sprite.size = 100;

140sprite.costumeIdx = 0;

141

142sprite.onFlagPressed = function () {

143var self = this;

144

145(function () {

146var __CONTEXT = new VariableFrame(self.variables );

147callMaybeAsync(

148self ,

149__ENV.doIf ,

150callMaybeAsync(

151self ,

152__ENV.reportEquals ,

153unescape ("5"),

154callMaybeAsync(

155self ,

156__ENV.evaluate ,

157function () {

158return new SPromise (( callbackitem_3 , rejectitem_3) => {

159var context = new VariableFrame(arguments [0] || __CONTEXT );

160var self = context.get(" __SELF "). value;

161__CONTEXT = context;

162callMaybeAsync(

163self ,

164__ENV.doDeclareVariables ,

165unescape ("i"),

166__CONTEXT

167)

168.then (() =>

169callMaybeAsync(

170self ,

171__ENV.doSetVar ,

172unescape ("i"),

173unescape ("0"),

174__CONTEXT

175).then(

176() =>

177new SPromise(

178(

179resolve_item_14_1518137777382 ,

180reject_item_14_1518137777382

181) => {

182function doLoop_item_14(item_14) {

183return callMaybeAsync(

184self ,

185__ENV.doIfElse ,

186item_14 -- > 0,

187() => {

188callMaybeAsync(

189self ,

190__ENV.doChangeVar ,

191unescape ("i"),

192unescape ("1"),

193__CONTEXT

194)

195.then (() =>

196callMaybeAsync(

197self ,

198__ENV.doYield ,

199doLoop_item_14 ,

200item_14 ,

201__CONTEXT
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202)

203)

204.catch(reject_item_14_1518137777382 );

205},

206() => {

207callMaybeAsync(

208self ,

209callbackitem_3 ,

210callMaybeAsync(

211self ,

212__ENV.variable ,

213unescape ("i"),

214__CONTEXT

215),

216__CONTEXT

217)

218.then (() => resolve_item_14_1518137777382 ())

219.then(reject_item_14_1518137777382 );

220},

221__CONTEXT

222).catch(reject_item_14_1518137777382 );

223}

224callMaybeAsync(

225self ,

226doLoop_item_14 ,

227unescape ("5"),

228__CONTEXT

229);

230}

231)

232)

233)

234.catch(rejectitem_3 );

235});

236},

237__CONTEXT

238),

239__CONTEXT

240),

241function () {

242callMaybeAsync(self , __ENV.doReport , true , __CONTEXT );

243},

244__CONTEXT

245).then (() => callMaybeAsync(self , __ENV.doReport , false , __CONTEXT ));

246})();

247};

248

249sprite.onKeyPressed = function(key) {

250var self = this;

251};

252

253sprite.onUserEventReceived = function(event) {

254var self = this;

255};

256

257sprite.onCloneStart = function(event) {

258var self = this;

259};

260

261project.sprites.push(sprite );

262

263project.timerStart = Date.now ();

264__ENV.__start(project , __ENV );

265

266function callMaybeAsync(self , fn) {

267let args = []. slice.call(arguments , 2);

268

269// Wait for any args to resolve
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270let result = __ENV.SPromise.all(args);

271

272result = result.then(args => fn.apply(self , args ));

273

274return result;

275}

276callMaybeAsync = __ENV.callMaybeAsync || callMaybeAsync;

277

278project.sprites.forEach(sprite => sprite.onFlagPressed ());

279project.stage.onFlagPressed ();

280}
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Appendix B

Case Study Assessment

This appendix contains the pre- and post-tests used to assess computational thinking,

networking and concurrency concepts.
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PI: Ledeczi, Vanderbilt University NetsBlox Pre-test Version: 2017-06-19 

 
Name:_________________________                                                                       Date:________________ 

Part I - Computational Thinking (CT) Questions 
Question 1: 
Emma writes code which says 

Repeat 2 
[Do a math problem] 
Write an essay 

 
while  

John writes code which says 
Repeat 2 
[Do a math problem 
Write an essay] 

 
Which of the following statements is correct? 

a. Both Emma’s and John’s code say: Do 2 Math problems and then write 2 essays. 
b. Emma’s code says: Do 2 Math problems and then write one essay, while John’s code says: Do                 

2 Math problems and then write 2 essays 
c. Emma’s code says: Do 2 Math problems and then write an essay, while John’s code says: Do                 

a Math problem, write an essay, then Do a 2nd Math problem and then write a 2nd essay 
d. Emma’s code says: Do a Math problem, then write an essay, and then Do a 2nd Math problem,                  

while John’s code says: Do a Math problem, then write an essay, then Do a 2nd Math problem                  
and then write a 2nd essay 
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PI: Ledeczi, Vanderbilt University NetsBlox Pre-test Version: 2017-06-19 

 
Question 2: 
Consider the following program (NOT nested) 

If (quiz-score is equal to 10) 
Then: Get the ‘You’re a pro’ sticker 
Else: _____ 

If (quiz-score is greater than 7) 
Then: Get the ‘Good job’ sticker 
Else: _____ 

 
Bill gets a score of 9 on the quiz while Janet scores 10 points on the quiz. What stickers should Bill                     

and Janet receive based on the above program? 
 

a. Bill: ‘Good job’ sticker; Janet: ‘You’re a pro’ sticker 
b. Bill: ‘Good job’ sticker; Janet: ‘Good job’ sticker 
c. Bill: ‘Good job’ and ‘You’re a pro’ stickers; Janet: Good job’ and ‘You’re a pro’ stickers 
d. Bill: ‘Good job’ sticker; Janet: Good job’ and ‘You’re a pro’ stickers  
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PI: Ledeczi, Vanderbilt University NetsBlox Pre-test Version: 2017-06-19 

Part II - Networking Questions 
Question 1: 
Suppose you have a network of devices as shown below where a device is represented by a circle 
and the other devices that it can directly message are connected to it. 
 

 
 
 
If you want to send a message from the bottom node to the top node through these connected 
devices, one technique is to first give each node a number representing the distance from the top 
node as shown below: 
 

 
 
Then, starting at the source (S) device, each device can send a message containing the original 
message and its own number to everyone connected to it when it receives a message from another 
device with a number higher than its number.  
 
For example, when the “3” device receives a message (“msg”), it will send it to the three nodes 
connected to it: 
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PI: Ledeczi, Vanderbilt University NetsBlox Pre-test Version: 2017-06-19 

 

 
This will result in the “2” nodes broadcasting “(msg, 2)” to all their connected nodes since 2 < 3 but 
node “4” will ignore the message and will NOT broadcast it to its neighbors as 3 (from the message) 
is less than its number, 4. 
 
This technique will result in the message being received by the “D” device in the fewest number of 
steps. In this example, it is important that each device sends the received message and its own 
number. Why?  
 
What would happen if each device sent only the message (“msg” in the above example) and not its 
own number? 
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PI: Ledeczi, Vanderbilt University NetsBlox Pre-test Version: 2017-06-19 

 
Question 2: 
Two armies are planning on attacking a city and are located on opposite sides of the city. Both armies 
would like to make sure that they attack at the same time; if they attack individually, they are sure to 
lose. As they are on opposing sides of the city, they must send a messenger through the city to 
communicate with the opposing camp and the messenger may be captured. 
 

 
These armies would like to agree on the time of their attack but are communicating unreliably as any 
messenger could be captured and may not deliver the message. For example, if A1 decides to attack 
at 0600, it may send the message “We should attack at 0600 on June 28” to A2 but if the messenger 
gets captured, A2 will not attack at that time and A1 will be defeated.0 
 
In order to solve this problem, suppose we require a single confirmation message. That is, A1 will 
send a time to attack and wait for a confirmation from A2. Upon receiving the confirmation, A1 will 
attack at the proposed time: 
 

 
 

That is, A1 will attack if it receives an agreement message about the proposed time and A2 will attack 
if it receives a proposed attack time from A1. 
 
Using this messaging technique, are the two armies guaranteed to attack at the same time? If not, 
which army might attack alone? 
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PI: Ledeczi, Vanderbilt University NetsBlox Pre-test Version: 2017-06-19 

 
Part III - Concurrency Questions 

 
Question 1: It’s a rat race (condition) out there… 
reverse reverses the order of the digits, and right rotates the digits to the right (the one furthest on the right 
moves over to the left). If NUMBER starts with a value of 123, what are the different, unique values of 
NUMBER at the end? (select all that apply) Note: “set” blocks run instantaneously and “atomically” (i.e., aren’t 
interrupted by any other script) 
 

 
 

  
 

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 
123 124 125 132 133 142 213 214 231 232 312 313 321 322 412 421 423 424 431 432 433 
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PI: Ledeczi, Vanderbilt University NetsBlox Pre-test Version: 2017-06-19 

Question 2: If 75% of a program’s code is parallel, what is the maximum speedup with ∞ helpers? (select ONE) 

○ ○ ○ ○ 
25x 75x  1.33333x 4x 
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PI: Ledeczi, Vanderbilt University NetsBlox Post-test Version: 2017-06-19 

 
Name:_________________________                                                                       Date:________________ 
 
Username(s): ____________________ 

Part I - Computational Thinking (CT) Questions 
Question 1: 
You are training a robot to avoid obstacles as it moves. To make things more interesting you tell the                   
robot to turn right to go around the obstacle if the color of the obstacle is taller than 5 inches.                    
Otherwise, the robot should turn left to go around the obstacle. How will you program your robot to                  
follow these instructions using an If-Then-Else structure? 

If: _____________________________________________________________ 
Then: ________________________________________________________ 

 ________________________________________________________ 
Else: _________________________________________________ 
 _______________________________________________________ 
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Question 2: 
Tommy writes code which says 

Repeat 4 
[Read a book] 
Say hello 

 
while  

Elizabeth writes code which says 
Repeat 4 
[Read a book 
Say hello] 

 
Which of the following statements is correct? 

a. Tommy’s code says: Read a book, then say hello, and then read 3 more books, while                
Elizabeth’s code says: Read a book, say hello, read 2nd book, say hello, read 3rd book, say                 
hello and read 4th book and say hello 

b. Tommy’s code says: Read 4 books and then say hello once, while Elizabeth’s code says:               
Read 4 books and then say hello 4 times 

c. Both Tommy’s and Elizabeth’s code say: Read 4 books and then say hello 4 times. 
d. Tommy’s code says: Read 4 books and then say hello once, while Elizabeth’s code says:               

Read a book, say hello, read 2nd book, say hello, read 3rd book, say hello and read 4th book                   
and say hello 
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Part II - Networking Questions 
 
Question 1: 
Suppose you have a network of devices as shown below where a device is represented by a circle 
and the other devices that it can directly message are connected to it. 
 

 
 
 
If you want to send a message from the bottom node to the top node through these connected 
devices, one technique is to first give each node a number representing the distance from the top 
node as shown below: 
 

 
 
Then, starting at the source (S) device, each device can send a message containing the original 
message and its own number to everyone connected to it when it receives a message from another 
device with a number higher than its number.  
 
For example, when the “3” device receives a message (“msg”), it will send it to the three nodes 
connected to it: 
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This will result in the “2” nodes broadcasting “(msg, 2)” to all their connected nodes since 2 < 3 but 
node “4” will ignore the message and will NOT broadcast it to its neighbors as 3 (from the message) 
is less than its number, 4. 
 
This technique will result in the message being received by the “D” device in the fewest number of 
steps. However, as each node broadcasts more than one copy of the message, there will be multiple 
copies of the message being sent through the network on the way to device “D”. 
 
How many times will “D” receive the message? 

a. 0 
b. 1 
c. 2 
d. more than 2 
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Question 2: 
Two armies are planning on attacking a city and are located on opposite sides of the city. Both armies 
would like to make sure that they attack at the same time; if they attack individually, they are sure to 
lose. As they are on opposing sides of the city, they must send a messenger through the city to 
communicate with the opposing camp and the messenger may be captured. 
 

 
These armies would like to agree on the time of their attack but are communicating unreliably as any 
messenger could be captured and may not deliver the message. For example, if A1 decides to attack 
at 0600, it may send the message “We should attack at 0600 on June 28” to A2 but if the messenger 
gets captured, A2 will not attack at that time and A1 will be defeated.0 
 
In order to solve this problem, suppose we require two confirmation messages. That is, A1 will send a 
time to attack and wait for a confirmation from A2. In order to make sure that A1 received the attack 
message, A2 will wait for a confirmation about its agreement to the given time: 
 

 
 

That is, A1 will attack if it receives a confirmation about the proposed time and A2 will attack if it 
receives a confirmation message about its agreement message. 
 
Using this messaging technique, are the two armies guaranteed to attack at the same time? If not, 
which army might attack alone? 
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Part III - Concurrency Questions 
 
Question 1: It’s a rat race (condition) out there… 
reverse reverses the order of the digits, and right rotates the digits to the right (the one furthest on the right 
moves over to the left). If NUMBER starts with a value of 456, what are the different, unique values of 
NUMBER at the end? (select all that apply) Note: “set” blocks run instantaneously and “atomically” (i.e., aren’t 
interrupted by any other script) 
 

 
 

  
 

 

Which of the following cannot be the final value of NUMBER? 
1. 475 
2. 547 
3. 647 
4. 466 
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Question 2: If 80% of a program’s code is parallel, what is the maximum speedup with ∞ helpers? (select ONE) 

○ ○ ○ ○ 
20x 80x  1.25x 5x 
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Appendix C

Fifth Grade Science Study Short Answer

In this appendix, the student responses for the open-ended survey questions in the Har-

peth Hall case study are presented. There were two different prompts. The first question

was “What did you find interesting about today?” and was only required for the students

that found the lesson interesting. The second question was “What would be an interesting

way to use coding?”

C.1 Categorized Student Responses

We have classified the student responses by responses related to the presented distributed

programming abstractions and responses emphasizing positive perceived student self-efficacy.

As responses may be related to both the distributed programming abstractions and student

self-efficacy, a single response may appear in both lists. Unrelated responses are provided

after the selected student responses.

C.1.1 Distributed Programming Abstractions

• “The way we could get maps was very interesting”

• “I liked where it showed us the maps and the temp.”

• “I thought it was cool how we could control Google.”

• “that to code to make a weather app it doesn’t need all the complex things.”

• “I found the fact that you could use network to figure out temperature in different

places.”

• “the way you can put codes together to make a weather app”

• “how to get the temperature in your area”

• “that you can actually find the tempature”

• “I found that you could program the sprite to different tasks like tell you the weather.”

• “We got to know the temperatures of different places.”
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• “I found it interesting because I thought it was cool that you could make a weather

app that easily.”*

• “It was cool to make a weather app!”

• “that we could find the exact temp and location”

C.1.2 Perceived Self-Efficacy

• “Being able to do it myself. Plus it was super cool.”

• “what I found interesting is that I can make a small app.”

• “Today I found it interesting that that’s all it took to make that. I thought it would

take longer.”

• “I thought it was way cool that this program simplified coding enough for me to

understand!”

• “I found interesting is that we got to make our own app.”

• “I found it interesting because I thought it was cool that you could make a weather

app that easily.”*

• “i found interesting on how you could make your own program”

• “I liked that we got to make something we can actually use in everyday life.”

C.1.3 Miscellaneous

• “Everything” (2)

• “that we got to code an app!!!”

• “I found it interesting because I would never thought that you could do that much

with just moving a few bars and typing in a few letters.”

• “I like all the different categories for all the different tools”

• “i liked learning how to do coding from scratch not just doing directions.”

• “that Brian was nice and he explained everything well and helped us”
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• “how much I didn’t know about how careful I had to be while programing so I didn’t

make a mistake.”

• “learning how all the coding works”

• “that it would read your code in seconds”

• “I liked it all and it was really fun. I thought it was cool and I learned a lot.”

• “Playing with the code/ messing with it.”

• “I thought it was interesting how the command blocks could be put together to make

new commands.”

• “how many coding things you really need to use to just do a little thing”

• “learning to code”

• “I have coded before but I liked the site we used and what we made.”

• “the sprite”

• “You really have to pay attention to do the right thing.”

• “Learning how to use it.”

• “I found interesting that you could have a block of codes and if you pressed a certain

button it would do the code you asked it to.”

• “All of the different blocks went together to form an app.”

• “i found today interesting because i have never done coding before and it was interesting

to learn something different.”

• “It was amazing that you can do that”

• “that you have to put the blocks in a specific spot”

• “I thought about how many things you can do.”

• “I liked that the coding website was so so so so so so organized in the right slots and

everything.”
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Jurácz, L., Levendovszky, T., and Lédeczi, Á. Next generation (meta) mod-
eling: Web-and cloud-based collaborative tool infrastructure. MPM@ MoDELS 1237
(2014), 41–60. 4.1, 4.2.1, 5.1, 5.1.2

130



[82] Martin, F., and Resnick, M. Lego/logo and electronic bricks: Creating a science-
land for children. In Advanced educational technologies for mathematics and science.
Springer, 1993, pp. 61–89. 2.1.1, 2.1.2

[83] Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M. Learning computer
science concepts with scratch. Computer Science Education 23, 3 (2013), 239–264. 1.1,
6.1.1

[84] Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M. Learning computer
science concepts with scratch. Computer Science Education 23, 3 (2013), 239–264.
3.2.2

[85] Milentijevic, I., Ciric, V., and Vojinovic, O. Version control in project-based
learning. Computers & Education 50, 4 (2008), 1331–1338. 5.1

[86] Minecraft. URL: http://minecraft.net/, accessed March (2018). 2.1.2

[87] Moenig, J., and Harvey, B. Snap! URL: http://snap.berkeley.edu/, accessed Aug
(2017). 2.1.1, 2.1.2, 2.1.2, 2.1.4, 3.1.1

[88] Monig, J., Ohshima, Y., and Maloney, J. Blocks at your fingertips: Blurring
the line between blocks and text in gp. In Blocks and Beyond Workshop (Blocks and
Beyond), 2015 IEEE (2015), IEEE, pp. 51–53. 3.1.2

[89] Morelli, R., De Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E., and
Uche, C. Can android app inventor bring computational thinking to k-12. In Proc.
42nd ACM technical symposium on Computer science education (SIGCSE’11) (2011),
pp. 1–6. 6.1.1

[90] Moreno-León, J., Robles, G., and Román-González, M. Dr. scratch: Auto-
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