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Chapter 1

INTRODUCTION

Recent advances in laser technology have allowed for the development of pulses with

sub-femtosecond (10−15 s) pulse durations [1–3]. The advent of such pulses opens the door

to the probing of nonstationary electron states and laser-induced electron dynamics which

evolve on the timescale of hundreds or even tens of attoseconds (10−18 s) [4–7]. It is ex-

pected that this ability will lead to the control of electron dynamics in nanoscale systems

which play a role in numerous fields of physics [8–10], optics [11, 12], biology [13, 14],

material engineering [15], chemistry [16, 17], and the development of next generation com-

puting devices [18, 19]. With such an intense focus on attosecond-scale phenomena and

growing experimental capabilities, the need for similarly sophisticated theoretical and com-

putational analysis becomes ever more prevalent in order to interpret experimental findings,

as well as to guide new studies.

The original breakthrough of Erwin Schrödinger’s equation describing the wavelike

property of particles in 1926 [20] provided the backbone of the theoretical treatment of

electronic structure and dynamics. However, it was soon realized that for the description of

many electrons, where the N -particle wave function is to be defined as an 3N -dimensional

quantity, Ψ(r1, r2, ..., rN), an analytical solution to this equation was not available and fur-

ther work was required in order to achieve a theoretical description of many desirable sys-

tems. This complication was soon to be addressed in 1927 by Llewellyn Thomas [21] and

Enrico Fermi [22], who proposed a semiclassical approach, circumventing the discussion

of a many-particle wave function in favor of the relatively simple three-dimensional elec-

tron density, ρ(r) = N
∫
|Ψ(r, r2, ..., rN)|2dr2, ..., drN , in order to describe the electronic

structure of atoms. While this representation, known today as the Thomas–Fermi model,

was limited due to an approximate expression for the kinetic energy and the exclusion of
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the exchange interaction resulting from Pauli’s principle, it served as an important early

step towards realizing a theoretical description of electronic configuration while avoiding

the use of the many-particle wave function.

Simultaneous to the invention of the Thomas–Fermi model, Douglas Hartree intro-

duced the self-consistent field approach to determining approximate many-particle wave

functions as the product of single-particle wave functions [23]. In what would be known

as the Hartree method, no potentials incorporating semiemperical parameters were used,

thus leading to a method described as ab initio, meaning “from first principles”. The self-

consistent field approach meant that the equations would be solved via a method such as it-

eration, in which a solution is found and then fed back into the original equation repeatedly

until satisfactory convergence is achieved. This method was capable of well representing

atomic orbitals, but the resulting energies were found to be too inaccurate. This property

was addressed soon thereafter as a product of a wave function which was not antisymmetric

and, thus, lacking the exchange interaction. In 1929, John C. Slater introduced the form

of the antisymmetric many-particle wave function [24], and one year later, Vladimir Fock

[25] and Slater [26] both simultaneously incorporated this concept into the Hartree method,

from then on known as the Hartree–Fock method.

While descriptions of atomic structures continued to grow more sophisticated through

advances such as the descriptions of Felix Bloch [27] and Eugene Wigner and Frederick

Seitz [28, 29] for the conduction of electrons in crystalline solids, as well as Hans Hell-

man’s replacement of core electrons and nuclei with effective pseudopotentials [30], the

full solutions for systems larger than medium-sized atoms remained elusive due to the

computational demand. It was not until the advent of electronic computers in the 1950s

that small molecules could begin to be described using the Hartree–Fock method.

The early 1960s brought a return to the concept of representing electronic structures

only by the density rather than the many-particle wave function. This concept had ex-

isted, as stated above, since Thomas and Fermi’s early attempts at constructing single atom
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structures. In fact, Paul Dirac made the following note in 1930 [31]:

“Each three-dimensional wave function will give rise to a certain electric den-

sity. This electric density is really a matrix, like all dynamical variables in

the quantum theory. By adding the electric densities from all the wave func-

tions, we can obtain the total electric density for the atom. If we adopt the

equations of the self-consistent field as amended for exchange, then this total

electric density (the matrix) has one important property, namely, if the value of

the total electric density at any time is given, then its value at any later time is

determined by the equations of motion. This means that the whole state of the

atom is completely determined by this electric density; it is not necessary to

specify the individual three-dimensional wave functions that make up the total

electric density. Thus one can deal with any number of electrons by working

with just one matrix density function.”

It was the years of 1964 and 1965 that saw the landmark work of Pierre Hohenberg, Walter

Kohn, and Lu Jeu Sham [32, 33], in which it was proven that the many-particle electron

density did, indeed, uniquely describe the entirety of any given ground state structure,

i.e., that there was a one-to-one mapping of the potential and ground state density and

that, given an adequate representation of the exchange interaction, one could formulate

a self-consistent field method to solve for an electronic ground state while avoiding ever

representing the many-particle wave function.

The proposed method consisted of solving a set of single-particle, time-independent

Schrödinger equations for fictitious particles in a local effective potential. The employed

representation for each of the energy terms in the formalism, including approximations for

the exchange interaction and the dynamic correlation interactions resulting from the in-

stantaneous Coulomb repulsion between electrons (together called exchange-correlation),

would need to be functionals of the density; i.e., expressions with the density as an in-

put which would produce a scalar value. This feature led to the resulting name of density
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functional theory (DFT). While this formalism presented a far more straightforward alter-

native to the Hartree–Fock method with no limitation to small systems, such wave func-

tion theories still remained popular until the 1990s, in which better approximations to the

exchange-correlation functional were produced.

DFT has now become the prominent tool of choice for describing the ground state

electronic structure of atoms, molecules, and bulk materials, with numerous choices of

representations for the exchange-correlation functional which can be chosen to best suit a

given application. Applications are numerous in fields of physics [34] as well as chemistry

[35, 36], geosciences [37], biology [38], and material science [39]. Walter Kohn shared a

Nobel Prize in Chemestry in 1998 [40] for inventing the theory.

While DFT is a theory for the ground state of an electronic system, its development

played a fundamental role in the formation of a theory describing nonadiabatic electron

dynamics. In 1984, Erich Runge and Eberhard K. U. Gross presented an extension to

DFT which showed that there was a similar one-to-one mapping between a time-dependent

potential and the time-dependent many-particle electron density [41]. Thus, using similarly

approximate expressions for the time-dependent exchange and correlation functionals, one

may solve the set of single-particle, time-dependent Schrödinger equations corresponding

to the fictitious noninteracting particles of DFT in order to achieve a time propagation of

the electron density and recover ab intio results for excited state phenomena like optical

spectra, scattering, and ionization.

This so-called time-dependent density functional theory (TDDFT) first emerged as

a prominent tool in theoretical modeling with the introduction of an efficiently imple-

mentable formalism in the late 1990s [42, 43] and has seen increasingly prevalent use since

then [44–47]. This rise in popularity has been driven by the fact that, in this same span

of time, rapid breakthroughs in laser technology have yielded the advent of femtosecond-

width pulses [48–51] as well as extreme ultraviolet pulses generated by means of above

threshold ionization [52] or high harmonic generation [53–55] with widths of less than one
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femtosecond [56–58]. Such intense, few-cycle pulses allow for the metrology of ultrafast

light signals and the real-time observation and influence of electron dynamics which take

place on the attosecond timescale [59]. In the following discussion, examples of such pro-

cesses are explained as motivation for the further sophistication of TDDFT as a means of

theoretical investigation.

The optical spectra of materials is a property commonly referred to in order to charac-

terize potential functionality via quantities such as absorption, reflectivity, and photolumi-

nescence. Optical excitations, furthermore, provide means of technical applications such

as light-emitting devices and laser technology. It is thus important to accurately describe

such spectra via reliable ab initio methods in order to address these excitations.

Since the 1970s, ab initio Green’s function based methods, not entirely unlike TDDFT,

such as solving the Bethe–Salpeter equation [60, 61] or using the GW approximation [62–

64], have been employed in order to assess the optical spectra of materials. However, the

advent of TDDFT allows for the important practical advantage of incorporating a depen-

dence on the electron density rather than on multivariable Green’s functions [45]. The

application of TDDFT to the calculation of optical spectra represents one of the earliest

means of the theory’s benchmarking and is still commonly used to study new materials of

interest [65–70].

High harmonic generation (HHG) is another important, fundamentally attosecond-scale

process in which laser light of frequency ω can be used to generate new integer multiples

of that frequency, nω, via interaction with matter. This phenomenon was first observed in

1977 when up to 11 harmonics of nanosecond CO2 pulses were generated by interaction

with a electron plasma generated from solid targets [71]. A similar study was conducted

in 1981 in which harmonics up to the 46th order were reported [72]. Later, in 1987, the

first example of high harmonic generation in gases was observed [73]. The three step semi-

classical explanation of HHG was first suggested by Paul Corkum in 1993 [74]. In this

simplified picture, an initially bound electron undergoes three stages of motion: (1) ioniza-
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tion, (2) acceleration in the laser field, and (3) recombination with the ion core, resulting

in the emission of a HHG photon. This laser-matter interaction has been widely used in

order to generate single attosecond pulses, as mentioned above, as well as to characterize

systems of interest and monitor electron dynamics [75–78]. Today there is much interest

in the recently realized generation of high harmonics in solids [79–82] which has become

a popular subject of TDDFT studies [83–85].

The field of plasmonics represents an intersection between optics and electronics in

which electromagnetic waves are converted into collective excitations of free electrons

[86]. The creation of these collective excitations, often described as quasiparticles named

plasmons, is a phenomenon theorized to find applications within the fields of nanophoton-

ics [87–89], biology [90, 91], sensing [92], single molecule detection [93], nanophotonic

lasers [94], photovoltaic devices [95, 96], spectroscopy [97, 98], and solar energy harvest-

ing [99, 100]. As components exhibiting plasmonic behavior continue to shrink due to

the emphasis on smaller electronic devices, the study of this behavior must be conducted

within a truly quantum framework, rather than by classical models [101–105]. This calls

for the computational modeling of methods such as TDDFT, which has become a popular

method of analyzing such field-induced, attosecond-scale electron dynamics [106–108].

Finally, the focus of much research as of late, within the field of information technology,

has been the development of faster signal processing devices. Presently, high-speed devices

employ radiofrequency electric fields in order to control the electronic motion within semi-

conductors, which provides operating speeds at the terahertz (1012 Hz) range [109]. The

next breakthrough, therefore, is slated to be the development of signal processing devices

operating within the petahertz (1015 Hz) regime. Suggested means of achieving transistors

of these speeds include optically driven semiconductors [110], dielectrics [111, 112], or

even nano-scale vacuum-tube diodes [113–116]. TDDFT may be used in order to further

assess the functionality of these proposed devices as well as to investigate new potential

mechanisms [117].
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As demonstrated above, the modeling of attosecond electron dynamics as facilitated

by TDDFT stands to shed light on various processes of much interest. Therefore, the

increased optimization of computational methods within TDDFT are of great importance,

as the furthering of speed and accuracy of such codes stands to provide enhanced reliability,

applicability, and accessibility. Herein such improvements are developed, discussed, and

tested. The thesis is divided as follows.

Chapter 2 contains a succinct review of the relevant formalism. This includes a brief

introduction to many-body quantum theory, comprehensive reviews of DFT and TDDFT,

remarks on the inclusion of external, dynamic electromagnetic fields, the psuedopotential

representation for ionic cores, and the Bloch theory of describing periodic systems.

Chapter 3 provides an examination of various choices of basis—the discrete represen-

tation for the computational space. Conventional choices are presented, such as the atomic

orbital, plane wave, and real space grid representations.

Chapter 4 presents the pseudospectral basis which exhibits enhanced accuracy. Tech-

niques of sum-acceleration are discussed, which allow the kinetic energy matrix in this

basis to be of the same sparsity as that used in the related real space grid approach. The

sum-accelerated pseudospectral basis is then introduced to density functional calculations

as a proposed means of enhanced scalability with respect to computational domain and

matrix bandwidth, providing better computational efficiency.

Chapter 5 describes selected options for solving the single-particle time-dependent

Schrödinger equation via time propagation of the wave function. Again, conventional

techniques are presented, including the Taylor expansion, Crank–Nicolson, and split op-

erator approaches. An introduction of exponential integrator methods to time-dependent

density functional theory follows, accompanied by a comparison to a wide variety of al-

ternative, popular propagation techniques as applied to the one-dimensional helium atom.

It is shown that such exponential integrator methods appear to allow for improvements by

orders of magnitude in accuracy when describing dynamics driven by the nonlinear part of
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the Hamiltonian.

Chapter 6 discusses the simulation of laser-induced electron dynamics in crystalline

solids. The time-dependent Volkov state basis is introduced and related to the plane wave

basis representation. The Volkov state basis is compared to the plane wave basis and real

space grid approaches within calculations for both one- and three-dimensional test cases in

which the Volkov state basis is shown to speed up calculations by an order of magnitude.

This basis is then applied to the investigation of a nano-scale vacuum tube diode device.

Chapter 7 finally concludes the thesis and provides an outlook on potential further im-

provements to the computational schemes discussed herein as well as possible applications.
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Chapter 2

BACKGROUND AND THEORY

2.1 Many-Body Quantum Theory

The central landmark of the quantum revolution was Schrödinger’s equation, widely

known as the time-dependent Schrödinger equation (TDSE), for the evolution of nonrel-

ativistic wave functions, which provides a probabilistic interpretation to the location and

momentum of massive particles. For a collection of such particles, a time-dependent, N -

body wave function, Ψ(r1, r2, . . . , rN ; t), may be described using this differential form,

i~
∂

∂t
Ψ(r1, r2, . . . , rN ; t) = HΨ(r1, r2, . . . , rN ; t). (2.1)

Here, ~ is the reduced Planck constant and H is the Hamiltonian. This latter ingredient

fully identifies the physics of the system in question, including all relevant interactions felt

by the particles described. For example, the Hamiltonian used to describe N electrons in

an atom would take the form

H =
N∑
i=1

Ti +
N∑
i=1

V nuc(ri) +
N∑
i<j

V ee(ri, rj) (2.2)

where the first term represents the total kinetic energy,

Ti = − ~2

2m
∇2
i , (2.3)

the second term describes the external Coulomb interaction with a nucleus of ZA protons

and location RA,

V nuc(ri) =
1

4πε0

−ZAe2

|ri −RA|
, (2.4)
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and the third term describes the interaction of Coulomb repulsion between electrons

V ee(ri, rj) =
1

4πε0

e2

|ri − rj|
. (2.5)

In the case of the atom described above, however, the TDSE may be simplified to

its time-independent form, known as the time-independent Schrödinger equation (TISE),

which describes wave functions at equilibrium within static potentials. The TISE takes the

form of an eigenvalue problem,

HΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN), (2.6)

where the eigenvalue, E, represents the energy of the wave function. This form suggests

that multiple eigensolutions are possible, giving rise to the description of individual states,

typically ordered by their energy value. The state with the lowest energy is known as the

ground state, while that with the next highest value is the first excited state and so on.

While the TDSE and TISE are simple to formulate for physical systems such as the

atom, an analytic solution is usually impossible for N > 1, due to the two-body, electron-

electron interaction potential. Therefore, in order to describe such systems, it is necessary

to develop accurate numerical approximations. Paul Dirac made note of this in 1929 [118],

“The underlying physical laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known, and the

difficulty is only that the exact application of these laws leads to equations

much too complicated to be soluble. It therefore becomes desirable that ap-

proximate practical methods of applying quantum mechanics should be devel-

oped, which can lead to an explanation of the main features of complex atomic

systems without too much computation.”

As mentioned in Chapter 1, this desire for accurate numerical approximations led to the
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development of ab initio theories such as the Hartree-Fock method, and eventually DFT.

This chapter focuses on the latter and its extension to time-dependent phenomena, TDDFT.

The inclusion of relevant interaction potentials, such as that with external electromagnetic

fields and core electrons, are also discussed. Lastly, modifications necessary when describ-

ing periodic Hamiltonians are presented.

2.2 Density Functional Theory Formalism

As introduced above, DFT is a widely employed ab initio theory which makes use

of the many-electron probability density in order to fully describe the system of interest,

rather than attempting to approximate the many-electron wave function. This density may

be defined as

ρ(r) = N

∫
|Ψ(r, r2, ..., rN)|2dr2, ..., drN , (2.7)

where
∫
V
ρ(r)dr represents the probability of finding an electron within volume V . The

use of this simplified metric is made possible by the two Hohenberg–Kohn theorems of

Ref. [32] which describe interacting particles within an external potential, V ext(r). The

first theorem is as follows:

Theorem 2.2.1 The external potential (and, thus, the total energy) is a functional of the

density, apart from a trivial additive constant.

This statement establishes the one-to-one mapping of the external potential and electronic

density and allows one to conclude that the many-particle ground state, as a whole, is a

unique functional of ρ(r), including the many-particle wave function and all observables.

Thus, via theorem 2.2.1, if the ground state electron density is given, one has enough infor-

mation to construct the external potential, the total energy, and all desirable observables.

The mathematical mapping of any test density, ρ′, to a total energy is given in functional

notation as

E[ρ′] =

∫
V ext(r)ρ′(r)dr + F [ρ′]. (2.8)
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The second theorem provides instructions on how to arrive at the correct density via use

of the variational principle:

Theorem 2.2.2 E[ρ′] assumes its minimum value when the electron density is its correct

value; i.e., ρ′(r) = ρ(r).

The importance of this statement is in allowing one to search for the correct density by use

of the total energy as an indicative metric—once this value is at its global minimum, the

density used is known to be the true ground state density of the system. The remaining

task, then, is to determine what functional to use as F [ρ], a point best summarized by the

original statement of Hohenberg and Kohn,

“If F [ρ] were a known and sufficiently simple functional of ρ, the problem of

determining the ground state energy and density in a given external potential

would be rather easy since it requires merely the minimization of a functional

of the three-dimensional density function. The major part of the complexities

of the many-electron problems are associated with the determination of the

universal functional F [ρ].”

This problem was to be addressed one year later with the work of Kohn and Sham [33].

The proposed form for F [ρ] was separated into three partitions,

F [ρ] = T [ρ] +
1

4πε0

e2

2

∫
ρ(r)ρ(r′)

|r− r′| dr
′ + Exc[ρ]. (2.9)

Each term was to represent a physical energy contribution. The first term in the above

equation is the total kinetic energy. The second term is known as the Hartree energy which

describes the simple electrostatic energy between electrons. The third term is the exchange-

correlation energy, a combination of two problematic quantities: the exchange energy, a

consequence of the electrons being indistinguishable particles subject to exchange sym-

metry, and the energy related to the dynamic correlation interaction resulting from the

instantaneous Coulomb repulsion between electrons lacking from the Hartree term.

12



With the above description and use of the variational principle, Kohn and Sham showed

that one could obtain the density which minimizes the total energy functional by solving

the one-particle TISE for a set of fictitious non-interacting particles, Φn,

HKSΦn(r) = εnΦn(r) (2.10)

and setting

ρ(r) =

Noccupied∑
n=1

|Φn(r)|2. (2.11)

The latter is the result of assigning the occupied, so-called, Kohn–Sham orbitals as the

single-particle wave functions comprising a Slater determinant. Importantly, the Kohn-

Sham Hamiltonian used in (2.10) is defined using the functional derivative of F [ρ] with

respect to the density,

HKS = − ~2

2m
∇2 + V H[ρ](r) + V xc[ρ](r) + V ext(r). (2.12)

Here, V H is the Hartree potential,

V H[ρ](r) =
e2

4πε0

∫
ρ(r′)

|r− r′|dr
′, (2.13)

V xc is the exchange-correlation potential,

V xc[ρ](r) =
δExc[ρ]

δ[ρ(r)]
, (2.14)

and the term − ~2
2m
∇2 is related to the kinetic energy of the Kohn-Sham system of non-

interacting electrons. Corrections to the kinetic energy are included in the definition of the

correlation part of Exc[ρ]. Equation (2.10) may be used to simplify the expression for the
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total energy, making use of the Kohn–Sham eigenvalues, εn,

E =

Noccupied∑
n=1

εn +

∫ (
1

2
V H(r)− V xc(r)

)
ρ(r)dr + Exc[ρ]. (2.15)

This is the scheme used today to solve for the electronic density. In practice, this search

for the electron density is done self-consistently. One begins by initializing the density

using some guess, this density is used to calculate the form of the Kohn–Sham Hamiltonian,

and the orbitals are obtained by solving what is now known as the Kohn–Sham equations.

If the density defined by these orbitals is equal to that which was input originally, then the

solution is said to be self-consistent and one has arrived at the exact ground state density.

If not, then this density is used as a new input and the above steps are repeated.

Up until this point, all treatment of the many-particle system has been exact; however,

remaining to be addressed is the form of the exchange-correlation functional, Exc[ρ]. The

exact form of this functional is not known and, thus, approximations are necessary in order

to provide reasonable solutions using the above described method. Many such approxima-

tions have been suggested since DFT’s inception.

The most simplistic choice is that of the local density approximation (LDA). Here, the

exchange-correlation functional is only dependent on the density at each point in space.

The functional may be expressed as

Exc
LDA =

∫
ρ(r)εxc(ρ)dr, (2.16)

where εxc is described as the exchange-correlation energy per particle of a homogeneous

electron gas of charge density ρ. The associated potential may be separated into two terms,

V xc
LDA[ρ](r) = V x

HEG[ρ] + V c
HEG[ρ]. (2.17)
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The exchange term, V x, is known exactly for the homogeneous electron gas,

V x
HEG = −

(
3ρ

π

)1/3

. (2.18)

The correlation term, however, must be treated by approximation, even for this simplified

case. Accurate Monte Carlo simulations were performed by Ceperley and Alder [119]

on the homogeneous electron gas in 1980. This data was then parametrized by Perdew

and Zunger [120] the next year in order to provide the following popular form for this

functional:

V c
HEG[ρ](r) ≈

γU
1+ 7

6
β1U
√
rs+ 4

3
β2Urs

(1+β1U
√
rs+β2Urs)2

, rs ≥ 1

AU lnrs + (BU − 1
3
AU) + 2

3
CUrslnrs + 1

3
(2DU − CU)rs, rs < 1

, (2.19)

where rs = (3/4πρ)1/3 and the numeric constants are γU = −0.1423, β1U = 1.0529,

β2U = 0.3334, AU = 0.0311, BU = −0.048, CU = 0.002, and DU = −0.0116, each in

atomic units.

Increasingly sophisticated approximations for the exchange-correlation functional have

been introduced throughout DFT’s lifetime. This progression is, today, commonly referred

to as the Jacob’s ladder of density functional approximations [121]. LDA is positioned at

the bottom rung. The next highest is considered to be the generalized gradient approxima-

tion [122], which accounts for inhomogeneities by including a dependence on the density’s

gradient; a very popular implementation of this form is the Perdew-Burke-Ernzerhof (PBE)

functional [123]. Higher still are the meta-generalized gradient approximation [124], which

takes into account the kinetic energy density, and orbital-dependent functionals. Despite

the ever-growing library of functionals, there is no all-inclusive solution. Oftentimes, the

functional used is that with the simplest form which is expected to perform adequately for
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the system in question.

2.3 Time-Dependent Density Functional Theory Formalism

The theorems of Hohenberg and Kohn proved that the ground state density uniquely

determined the encompassing external potential and, thus, the entirety of the system in

question. This development allowed for the study of complex electronic systems in equi-

librium. However, it was later shown that the simulation of time-dependent phenomenon,

specifically molecular dynamics, could also benefit from this description via an improved

representation of the electron-nuclei interaction. In 1885, Car and Parrinello introduced

their groundbreaking scheme for incorporating a density functional ground state calcula-

tion within molecular dynamics [125], and later, in 1995, the now more common Born–

Openheimer molecular dynamics scheme was introduced [126]. While these methods al-

lowed for the enhanced study of nuclear vibrations and femtosecond scale dynamics, the

electronic description was kept purely adiabatic or described using fictitious dynamical

variables.

In 1984, the theorems of Hohenberg and Kohn were extended to time-dependent densi-

ties and external potentials by that of Runge and Gross [41]:

Theorem 2.3.1 The exact time-dependent density of the system can be computed from

ρ(r, t) =

Noccupied∑
n=1

|Φn(r, t)|2, (2.20)

where the single-particle (Kohn–Sham) orbitals, Φn(r, t), fulfill the time-dependent Schrödinger

equation

i~
∂

∂t
Φn(r, t) =

[
− ~2

2m
∇2 + V eff [ρ](r, t)

]
Φn(r, t) (2.21)
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with an effective one-particle potential given by

V eff [ρ](r, t) = V ext(r, t) +
e2

4πε0

∫
ρ(r′, t)

|r− r′|dr
′ + V xc[ρ](r, t). (2.22)

This theorem was built from the assertion that, analogous to theorem 2.2.1, the time-

dependent external potential is also uniquely determined by the time-dependent density.

This extension of the density functional formalism allows for the straightforward deter-

mination of the time-dependent density and resulting observables via propagation of the

Kohn-Sham orbitals using well established techniques of solving the single-particle TDSE.

This new set of equations describing the orbitals is known as the time-dependent Kohn–

Sham (TDKS) equations. The probability current density may be constructed from the

orbitals as

j(r, t) =
~

2mi

Noccupied∑
n=1

(Φ∗n∇Φn − Φn∇Φ∗n) . (2.23)

As in the case of the ground state theory, approximate forms are necessary for describ-

ing the now time-dependent exchange-correlation functional. It is well known that an exact

form of this functional must include memory effects; that is, the functional at time t should

take into account the history of the density, ρ(r, t < tfinal), the initial interacting many-body

state, Ψ(r1...rN, t = 0), and the initial Kohn–Sham state, Φn(r, t = 0) [127, 128]. Never-

theless, adiabatic approximations, in which memory effects are ignored and the functional

is entirely evaluated at each point in time according to the associated instantaneous den-

sity, work well in describing many time-dependent electronic phenomenon. It is common

practice to prepare the initial Kohn–Sham state ahead of time via a DFT calculation and

to describe the time-dependent exchange correlation potential with such an adiabatic ap-

proximation. One such popular choice is that of the adiabatic local density approximation

(ALDA) in which the exchange-correlation potential at any given point in time, t, is equal

to the above described LDA exchange-correlation potential used in DFT, with the density
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at that same time used as the input:

V xc
ALDA[ρ](r, t) = V xc

LDA[ρ(t)](r). (2.24)

An overwhelming amount of TDDFT studies use this functional due to its simplicity and

effectiveness. It is worth noting that, in the same manner, any of the above described

exchange-correlation functionals from DFT may be used in TDDFT as adiabatic analogues.

While the adiabatic choice has been shown to cause the absence double-excitations [129,

130], progress has been made in establishing theories related to TDDFT which are capable

of producing such states [131].

For the effects of small perturbations, such as in the case of spectroscopy studies which

make use of weak probes to study the spectral response of a system, one may simplify the

description of a time-dependent observable using linear response TDDFT (LR-TDDFT)

[132]. This popular method makes use of the first-order perturbation theory instead of

solving for the entirety of the solution to the TDKS equations. Such calculations can be

very advantageous as they directly determine the change of a certain variable of interest

rather than describing the change in the wave function and are, therefore, computationally

inexpensive. In this work, the effects of strong laser fields are studied; therefore, LR-

TDDFT cannot be used to describe the induced dynamics. Instead, real-time TDDFT (RT-

TDDFT) [133] is employed throughout this thesis, in which the TDKS equations are solved

via real-time propagation of the Kohn–Sham orbitals. Methods for this propagation are

discussed in detail in Chapter 5.

2.4 Quantum Dynamics in External Fields

In order to describe laser-driven phenomenon using TDDFT, one must introduce ex-

ternal electromagnetic fields within the Kohn-Sham Hamiltonian. One begins by listing

Maxwell’s microscopic equations which govern such fields in vacuum. Given in SI units,
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these equations are the following:

∇ · E =
ρcharge

ε0

(2.25)

∇ ·B = 0 (2.26)

∇× E = −∂B
∂t

(2.27)

∇×B = µ0

(
Jcharge + ε0

∂E

∂t

)
. (2.28)

Here, E and B are the time-dependent electric and magnetic fields, respectively, ρcharge is

the total charge density, and Jcharge is the total charge current density. It is important to

note that these densities are not that of the above described probability densities, ρ and j,

in the TDDFT formalism. Instead, they are related in that, on average, one would expect

that 〈ρcharge〉 = −eρ + e
∑

a δ(r − Ra) and 〈Jcharge〉 = −ej, where the coordinates Ra

represent the semiclassical locations of the nuclei which are assumed to exhibit negligible

velocities. While these expressions illustrate how moving charged particles give rise to

electromagnetic fields, the complimentary inverted effect is made clear by the Lorentz force

law,

F = qE + qv ×B, (2.29)

which describes the force felt on a moving particle of charge q and velocity v.

One may reformulate Maxwell’s equations using descriptions of the electric scalar po-

tential, ϕ, and the magnetic vector potential, A using the following relationships with E

and B:

B = ∇×A (2.30)

E = −∇ϕ− ∂A

∂t
. (2.31)
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Plugging this transformation into eqs. (2.25)–(2.28) results in

−∇2ϕ− ∂

∂t
(∇ ·A) =

ρcharge

ε0

(2.32)

ε0µ0
∂2A

∂t2
−∇2A = µ0Jcharge −∇

(
∇ ·A + ε0µ0

∂ϕ

∂t

)
. (2.33)

In order to simplify these expressions, one may take advantage of the gauge freedom of the

potential description of electromagnetic fields. It can be shown that the physical fields, E

and B, remain unchanged under the transformations A → A +∇λ and ϕ → ϕ − ∂λ/∂t,

where λ(r, t) is an arbitrary function of space and time. A common choice is to apply what

is known as the Coulomb gauge, which asserts that

∇ ·A(r, t) = 0. (2.34)

Furthermore, if one assumes that there are no sources of the external field, ρcharge, present

in the region of interest, such as when dealing with an external laser field, then ϕ = 0. This

leads to a simplified set of equations,

B = ∇×A (2.35)

E = −∂A
∂t
. (2.36)

ε0
∂2A

∂t2
= Jcharge. (2.37)

In order to incorporate electromagnetic fields within the TDDFT formalism, one needs

to arrive at a Hamiltonian addressing their interaction with charged particles. This may be

accomplished by deriving a Lagrangian which results in the force described in (2.29) and a

subsequent Hamiltonian. The following Lagrangian, making use of eqs. (2.30) and (2.31),

can be shown via the Euler-Lagrange equations to be consistent with the Lorentz force law
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regardless of the choice of gauge:

L =
1

2
m|v|2 − qϕ(r, t) + qv ·A(r, t). (2.38)

A Legendre transformation is then used in order to obtain the Hamiltonian

H =
1

2m
(p− qA)2 + qϕ, (2.39)

where p is the conjugate variable to position. Using the above simplifications, the scalar

potential is dropped, ϕ = 0, and the final electromagnetic Hamiltonian of interest is

H =
1

2m
(p− qA)2 . (2.40)

When studying light-matter interactions on the nano-scale, one often takes advantage

of the dipole approximation. The employed assumption is that the length scales associated

with the target system are significantly smaller than the wavelength of the electric field.

This leads to the simplification of considering only homogeneous fields; i.e., the vector po-

tential is no longer a function of the spatial coordinate. Thus, the magnetic field component

of the incident laser is zero, since B = ∇ × A = 0. Expansion terms such as the mag-

netic dipole moment, electric quadrupole moment, etc., are ignored. This approximation is

well-suited for many studies on the molecular scale and is employed throughout this thesis.

One may transform the classical Hamiltonian of Eq. (2.40) into one suitable for describ-

ing wave functions by the introduction of the quantum mechanical momentum operator in

real space, p → p̂ − i~∇. Furthermore, when describing electronic dynamics, one may

set q = −e. Using these changes, one arrives at a Hamiltonian which describes the free

motion of an electron subject to an external electromagnetic field,

Hvel =
1

2m
(−i~∇+ eA)2 . (2.41)
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The subsequent TDSE, then, is often called the velocity gauge representation for the field-

influenced wave function,

i~
∂

∂t
ψ(r, t) =

1

2m
(−i~∇+ eA)2 ψ(r, t), (2.42)

and Eq. (2.41), the velocity gauge Hamiltonian. This may also be thought of as the regular

TDSE with an external potential of

V EM(r, t) =
e2

2m
|A|2 − i~e

m
A · ∇. (2.43)

A popular alternative representation to the velocity gauge is that of the length gauge

representation. Here, one factors the wave function into

ψ(r, t) = φ(r, t)e−iA(t)·r/~. (2.44)

By plugging this form into Eq. (2.42) and making use of Eq. (2.36), one arrives at

i~
∂

∂t
φ(r, t) =

[
− ~2

2m
∇2 + E(t) · r

]
φ(r, t). (2.45)

The length gauge Hamiltonian, then, is given as

H len = − ~2

2m
∇2 + E(t) · r (2.46)

In this way, the time-dependent φ functions may be solved for as easily as the velocity

gauge wave functions, ψ. This form is often preferred due to its straightforward depiction

of the electromagnetic potential which, in this gauge, takes the form

V EM(r, t) = E(t) · r. (2.47)
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By adding the Kohn–Sham effective potential, Eq. (2.22), either of these representa-

tions may be used within TDDFT in order to describe the evolution of the Kohn–Sham

orbitals subject to an external field. The construction of the current density is modified due

to the new representation of the Hamiltonian:

j(r, t) =
~

2mi

Noccupied∑
n=1

(Φ∗n∇Φn − Φn∇Φ∗n) +
e

m
ρA. (2.48)

It must be noted, however, that outside of the dipole approximation, corrections are

necessary for formally exact representations of the time-dependent electron density when

describing periodic systems. Ghosh and Dhara [134] were the first to provide a formal

proof of time-dependent current-DFT (TDCDFT) which considers current the basic vari-

able, rather than density. This theory asserts that the Runge–Gross theorem, theorem 2.3.1,

only holds true for cases in which the electron density reaches zero at some boundary.

For finite systems such as atoms or molecules, this requirement poses no difficulty. It

also holds true for periodic systems, given that the external potential is similarly periodic.

However, in the case of homogeneous fields applied to a periodic system, this condition is

not met, and TDCDFT shows that an additional exchange-correlation contribution to the

vector potential must be included [135]. As most uses of TDDFT take advantage of the

dipole approximation, this correction is rarely needed and is neglected throughout this the-

sis. Nevertheless, the methods introduced in the following chapters may be applied within

a TDCDFT formalism.

2.5 Pseudopotentials

The pseudopotential approximation is meant to simplify the representation of atomic

systems by replacing the complicated interactions with nuclei and core electrons described

by the exact Hamiltonian with a pseudopotential operator. The purpose of this operator is to

effectively represent the presence of these interactions in a phenomenological manner. The
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motivation for this simplification is in avoiding the computationally costly and complex

all-electron Hamiltonian in favor of an approximate representation for the valence electron

wave function, which is expected to remain accurate in regions of interest. This concept is

made possible due to the principle that only the valence electrons are considered chemically

active, that is, only these electrons participate in determining the properties and reactions

of any given atom within a greater system.

One begins by describing the Hamiltonian for the valence electrons, which resembles

that of Eq. (2.2):

H =
N∑
i=1

Ti +
N∑
i=1

V ion(ri) +
Nv∑
i<j

V ee(ri, rj). (2.49)

Here, V nuc has been replaced with V ion which describes the interaction of the valence elec-

trons with the combination of nuclei and core electrons, or ions. The two-body Coulomb

potential, V ee is now only used to manage the interaction of valence electrons and can be

approached using the DFT formalism described above.

The simplest and most popular application of pseudopotentials is to represent V ion using

the Kleinmann and Bylander separable form [136]:

V ion = V pp,local(r) + V pp,nonlocal(r, r′) (2.50)

which describes a local and a nonlocal contribution. The local part,

V pp,local(r) =
Natoms∑
a=1

V pp,local
a (|ρa|), (2.51)

is only dependent upon the magnitude of the displacement from the ion location, ρa =

r − Ra, and extends beyond the core regions with a long range part of the form −Za/r,

where Za is the charge of the ion. The nonlocal part is defined as

V pp,nonlocal(r, r′) =
Natoms∑
a=1

∑
l

l∑
m=−l

〈r|∆V nl
a,l|ψps

a,l,m〉 〈ψps
a,l,m|∆V nl

a,l|r′〉
〈ψps

a,l,m|∆V nl
a,l|ψps

a,l,m〉
, (2.52)
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where ∆V nl
a,l(ρa) = Va,l(|ρa|) − V pp,local

a (|ρa|). The functions Va,l are the l angular mo-

mentum components of the nonlocal part of the pseudopotential and ψps
a,l,m are the so-called

node-free atomic pseudo wave functions, represented as the product of a radial part and

spherical harmonics as ψps
a,l,m(r) = Rps

a,l(|ρa|)Ylm(ρ̂a). The nonlocal term of the pseudopo-

tential is often only considered within a cutoff radius, rac , near the core region of each atom

in order to limit computational expenses.

The functions V pp,local, Va,l, and Rps
a,l may be determined by performing an all-electron

DFT calculation, projecting out the core electron states, and fitting a potential for the va-

lence states. After they are determined once, these functions may be used to represent

ionic core potentials as pseudopotentials in a wide variety of static or time-dependent sim-

ulations. Many schemes exist for the description of these functions. One of the most

popular methods is that of Troullier and Martins [137] which produces norm-conserving

pseduopotentials. This means that the radial part of the atomic pseudo wave function is

identical to that of the all-electron wave function for any particular atom, Rps
a,l(r), outside

of the cutoff radius,

Rps
a,l(r) = Rae

a (r) for r ≥ rac (2.53)

and that the norm of the radial part is conserved within the cutoff region, that is,

∫ rc

0

|Rps
a,l(r)|2r2dr =

∫ rac

0

|Rae
a (r)|2r2dr. (2.54)

These conditions allow for proper numerical convergence with reasonable computational

efficiency. This choice of pseudopotential is used throughout this thesis.

Lastly, in the case of time-dependent studies, an additional term must be included in

the definition of the current resulting from the nonlocal pseudopotential [138, 139]. Here,

the corrected expression is

j(r, t) =
~

2mi

Noccupied∑
n=1

(Φ∗n∇Φn − Φn∇Φ∗n) +
e

m
ρA + jNL(r, t), (2.55)
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where

jNL(r, t) =

1

i~

Noccupied∑
n=1

∫
Φ∗n(r, t)

[
rV pp,nonlocal(r, r′)− V pp,nonlocal(r, r′)r′

]
Φn(r′, t)dr′. (2.56)

2.6 Bloch Theory

In the case of zero-temperature bulk solids, ions are arranged within repeating Wigner–

Seitz cells defined by the the associated Bravais lattice [140]. In the following discussion,

these periodically repeating unit cells are assumed to extend infinitely; i.e., surface effects

are ignored. The translational symmetry of the resulting potential is defined using the

crystal lattice vectors, Rc
n,

V ion(r + Rc
n) = V ion(r). (2.57)

This relationship shows that the potential, and, subsequently, all aspects of the system,

remain invariant for a translation by Rc
n. These vectors are constructed as integer com-

binations of the three primitive vectors, (a1, a2, a3), defining the volume of a single unit

cell:

Rc
n = n1a1 + n2a2 + n3a3, (2.58)

where n indicates a unique combination of n1, n2, and n3.

Electrons subject to such a potential are known as Bloch electrons, named for Felix

Bloch who provided the mathematical description of the periodic Hamiltonian eigenstate

[27]. Bloch’s theorem may be stated as the following [141]:

Theorem 2.6.1 The eigenstates of the Hamiltonian describing a perfect crystal lattice may

be described as

ψnk(r) = eik·runk(r), (2.59)

where unk(r) are complex functions of the same translational symmetric as the lattice; that
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is,

unk(r + Rc
n) = unk(r). (2.60)

Here, the reciprocal lattice vectors, k, are not to be considered indicative of momentum

eigenstates, since p̂ψnk(r) 6= ~kψnk as might be intuitive. Instead, ~k is called the crystal

momentum. For any value of crystal momentum, the single particle TISE has multiple

solutions indicated by subscript n. The associated eigenvalues Enk vary continuously for

fixed values of integer n and are described as bands.

The Bloch wave functions similarly exhibit symmetry by translation in the reciprocal

space,

ei(k+Km)·run(k+Km)(r) = eik·runk(r). (2.61)

Here, Km represents reciprocal lattice vectors which may be defined by reciprocal primitive

vectors, (b1,b2,b3), as

Km = m1b1 +m2b2 +m3b3. (2.62)

These reciprocal primitive vectors may be related to the direct primitive vectors in the

following manner:

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a2 · (a3 × a1)

b3 = 2π
a1 × a2

a3 · (a1 × a2)
.

(2.63)

By defining a matrix with column vectors as the direct primitive vectors, [a1a2a3], one may

recast Eq. (2.63) as

[b1b2b3] = 2π[a1a2a3]−1 (2.64)

In this way, any choice of Bravais lattice defining the arrangement of ions in a crystal may

be used to also define an equivalently representative reciprocal Bravais lattice.
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Due to the above described reciprocal lattice symmetry of the Bloch wave functions,

one may fully describe the electronic system by considering values of k which lie within the

first Brillouin zone. In order to define this volume in reciprocal space, one must first choose

a reference origin, which is set as Km = 0 for simplicity. The first Brillouin zone is then

a Wigner–Seitz primitive cell of the reciprocal lattice and is defined as the volume which

encompasses this origin, with boundaries defined by the planes perpendicularly bisecting

the lines connecting the origin to surrounding reciprocal lattice points. In other words, the

first Brillouin zone contains values of k which are closer to the reference point, Km = 0,

than any other values for Km. One may similarly define higher order Brillouin zones of

equal volume which consist of k values increasingly distant from the designated origin.

Furthermore, one may use intrinsic symmetries of the lattice being represented to define

an irreducible Brillouin zone, which is the smallest subset of k values which uniquely

represent the full electronic solution.

The Bloch theory of electron wave functions may be readily described by DFT. The

Kohn–Sham orbitals are now distinguished by the same two quantum numbers as above

and are of the same form as the Bloch wave function; that is,

Φnk(r) = eik·runk(r) (2.65)

and the Kohn–Sham single particle eigenvalues are εnk. In this modification of DFT, one

defines the particle density by integrating over the first Brillouin zone,

ρ(r) =

∫
BZ

Noccupied∑
n=1

|Φnk(r)|2dk, (2.66)

and similarly defines the sum over single particle eigenvalues found in Eq. (2.15) as

∫
BZ

Noccupied∑
n=1

εnkdk. (2.67)
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In practice, the same problem that arises when attempting to numerically represent integrals

over continuous variable r occurs in this case of representing integrals over the continuous

variable k. Therefore, one must, again, discretize this domain. The most common practice

is to transform integrals over the first Brillouin zone into weighted sums,
∫

BZ
dk→∑

kwk,

over discrete values of k arranged on a grid. These discrete values are known in the litera-

ture as k-points.

In the case of TDDFT simulations of laser-matter interactions within solids, the velocity

gauge representation for the orbitals is necessary in order to preserve the translational sym-

metry of the Hamiltonian. Thus, the electric field is included as a time-dependent vector

potential according to the time-dependent Hamiltonian

H(t) = Hvel(t) + V eff(t), (2.68)

where the velocity gauge Hamiltonian is defined in Eq. (2.41) and the effective potential

is that of Eq. (2.22). For the case of A(t = 0) = 0, it is common to consider the crystal

momentum as time-dependent and defined as ~k(t) = ~k0 + eA(t), where ~k0 is the

crystal momentum at t = 0. This leads to a simple computational form since the initial

crystal momentum and time-dependent vector potential appear together in this way in many

calculations.
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Chapter 3

BASIS REPRESENTATIONS

3.1 Ritz Method

Because computers are unable to represent continuous functions, discretization is nec-

essary when a numerical representation of the wave function is desirable, such as in the

case of most DFT and RT-TDDFT approaches. This is often addressed by means of repre-

senting the wave function, as well as any other functions, as linear combinations of basis

functions, φi,

ψ(r) =

NBF∑
i=1

ciφi(r). (3.1)

This is possible due to the fact that in the equations relevant to quantum mechanics, one

is solving equations involving linear operators such as in the case of differentiation or

integration. In this way, the expansion coefficients, ci fully represent the wave function in

a discrete way that can be stored on a computer and used to recreate the complete wave

function with knowledge of the predefined basis set. The basis size, NBF, indicates the

amount of memory needed to store a function as well as the processing time needed to

apply a numerical method. As such, this number dictates the computational expense of a

simulation program.

While Eq. (3.1) is only exact for basis sets which comprise a complete Hilbert space,

truncating the basis is necessary for reasonable computational implementation and can

still provide satisfactory numerical accuracy. The balance of basis size and accuracy is

a common topic of simulation improvement. By choosing basis functions which reflect the

symmetries of Hamiltonian of interest, one may decrease the basis size needed to reach a

desired level of accuracy. Investigation of novel bases which decrease the required basis

size is a common topic of research which allows for the improvement of computational
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efficiency and, therefore, the accessibility of simulation programs. In the interest of time-

dependent simulations, one usually must first test candidate bases via their ability to repre-

sent the static ground state case.

In order to solve the TDSE or Kohn–Sham equations using such a basis expansion, one

typically employs the Ritz method [142, 143]. This method uses Eq. (3.1) as the form of a

trial wave function to be used alongside the variational principle. The variational principle

asserts that the ground state energy, E0, associated with a wave function, ψ, by the TISE,

Hψ = E0ψ, will exhibit the following behavior:

E0 ≤ ε, (3.2)

where

ε =
〈ψtrial|H|ψtrial〉
〈ψtrial|ψtrial〉 (3.3)

represents the trial energy and ψtrial is a trial wave function. The equality of Eq. (3.2)

holds if and only if ψtrial = ψ. In this way, a common activity is to use a trial wave

function which contains variational parameters such that one may minimize ε by adjusting

these parameters. The trial wave function which minimizes this expression best reflects the

true wave function.

By inserting Eq. (3.1) into the right-hand side of Eq. (3.3), one arrives at the following

expression for the trial energy:

ε =
〈∑NBF

i=1 ciφi|H|
∑NBF

j=1 cjφj〉
〈∑NBF

i=1 ciφi|
∑NBF

j=1 cjφj〉
=

∑NBF

i=1

∑NBF

j=1 c
∗
i cjHij∑NBF

i=1

∑NBF

j=1 c
∗
i cjSij

. (3.4)

Here, the Hamiltonian matrix elements have been defined as

Hij =

∫
φi(r)Hφj(r)dr, (3.5)
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and the overlap matrix elements have been similarly defined as

Sij =

∫
φi(r)φj(r)dr. (3.6)

Minimizing this expression with respect to the complex conjugate of each expansion coef-

ficient, i.e., over the set {c∗k}, amounts to setting the following derivative as zero:

∂ε

∂c∗k
=

∑NBF

j=1 cj (Hkj − εSkj)∑NBF

i=1

∑NBF

j=1 c
∗
i cjSij

= 0. (3.7)

This leads to a set of linear equations defining the expansion coefficients within the context

of a generalized eigenvalue problem,

NBF∑
j=1

Hkjcj = ε

NBF∑
j=1

Skjcj. (3.8)

In linear algebra notation, this is equivalent to

Hc = εSc, (3.9)

where H and S are matrices with elements defined in Eq. (3.5) and Eq. (3.6), respectively,

and c is the column vector containing all expansion coefficients, ci.

In the limit of a complete basis set, Eq. (3.9) is exactly equivalent to the TISE, as

expressed in Eq. (2.6), for the one-particle case, and ε = E, the difference only being in

the choice of basis—{φi} rather than all real space. Similar to the TISE, Eq. (3.9) permits a

number of eigensolutions, equal to the basis dimension; Eq. (3.9) is thus rewritten in terms

of eigensolution k as

Hcn = εnScn. (3.10)

The min-max theorem [144] then allows one to draw the conclusion that these eigenvalues,

εn, serve as upper bounds to the true eigenvalues, En, of the TISE; i.e., En ≤ εn. Using
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this method, then, one may simply solve the generalized eigenvalue problem of Eq. (3.10)

using any popular solution technique and, given a basis set which well spans the Hilbert

space of interest, determine close approximations to the true energy eigenvalues and wave

function eigenvectors. It is worth noting that the proximity of the Ritz method eigenvalues

to the true energy values worsens for higher order eigensolutions; thus, if a large number

of eigensolutions are necessary, an appropriately large basis dimension must be used.

In the following two sections, the atomic orbital and plane wave bases are presented.

These bases first saw application within density functional calculations by representing the

ground state system via DFT. Recently, however, both have seen use in TDDFT simula-

tions, with the plane wave basis being very popular. Next, the real space grid approach

is introduced as another popular choice for representing wave functions in both DFT and

TDDFT codes. Lastly, the pseudospectral basis is introduced as an alternative choice which

is associated with advantages in accuracy and simplicity. In order to enhance the com-

putational efficiency of this approach, sum acceleration techniques are introduced to the

calculation of the kinetic energy matrix which allow for fewer needed matrix elements in

order to achieve the same degree of accuracy as a full matrix calculation. This method is

tested for small hydrocarbon molecules and compared to results using the real space grid

approach.

3.2 Conventional Basis Sets

3.2.1 Atomic Orbitals

Of the most obvious candidate basis functions are those that resemble single-atom

atomic orbitals, which are naturally well suited for describing molecular and bulk solid

wave functions. By assuming the form of any given Kohn–Sham orbital in DFT as a linear

combination of atomic orbitals (LCAO), one may efficiently describe the many-electron

density in terms of required basis size. Furthermore, as a result of this efficiency, it is
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more common to be able to represent the all-electron system using this choice of basis,

as opposed to relying on pseudopotentials. This choice of basis was first used in 1929 by

Sir John Lennard-Jones [145] to describe diatomic molecules of the first main row of the

periodic table. Today, this type of basis sees extensive use in popular DFT codes such as

SIESTA [146], CP2K [147], NWChem [148], GPAW [149] and Q-Chem [150], as well as

some limited use in RT-TDDFT codes [108, 151, 152].

The LCAO approach defines the wave function, Φ, or Kohn–Sham orbitals in the case

of DFT, as

Φ(r) =
Natom∑
a=1

na∑
ka=1

lmax
a∑
la=0

la∑
ma=−la

cakalamaφkalama(r−Ra), (3.11)

where Natom is the number of atoms represented in the system, na is the number of orbitals

for the ath atom, lmax
a is the maximum orbital momentum used for a given atom, and Ra

is the location of any given atom. The challenge of describing any given molecular system

with DFT now rests in determining the matrix elements

Hij =

∫
φ∗i (r−Ri)Hφj(r−Rj)dr (3.12)

and

Sij =

∫
φ∗i (r−Ri)φj(r−Rj)dr, (3.13)

where i and j have been chosen to represent unique combinations of the indices a, ka, la,

and ma used above. Once determined, these matrices can be used in Eq. (3.10) in order

to return the linear combination coefficients defining each eigenstate and the associated

energy values.

The basis functions, φi, are most commonly represented by Gaussian type orbitals

(GTO). In the literature, a single Gaussian function is called a primitive GTO. Two popular

options exist for this representation: spherical primitive GTOs,

gζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r2n−2−le−ζr
2

, (3.14)
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and Cartesian primitive GTOs,

gζ,lx,ly ,lz(x, y, z) = Nxlxylyzlze−ζr
2

. (3.15)

Here, N serves as a normalization factor and the indices used in the latter definition may

be related to that of the former, such as lx+ ly + lz = l. In practice, the final basis functions

are often linear combinations of these primitive GTOs which attempt to approximate Slater-

type orbitals.

Many well-documented sets of atomic orbitals functions exist and are incorporated

within the codes listed above. While this class of basis is widely used, some disadvan-

tages exist when describing ground state systems. First, the basis functions can become

overcomplete, meaning linear dependence can occur between functions in close proximity,

resulting in the degradation of accuracy. Second, it can often be difficult to design compu-

tationally efficient evaluations of the matrix elements. Lastly, it is difficult to demonstrate

absolute convergence due to the large number of adjustable parameters used to define the

basis functions. The LCAO approach is not as popular as the following representations for

use within TDDFT calculations since its primary advantage of optimally representing static

molecular wave functions does not translate to the representation of electron distributions

that are extended far from the ions without the use of many additional functions. However,

some extensions of this basis such as the inclusion of diffuse functions have been shown to

better facilitate this purpose [152–155].

3.2.2 Plane Waves

Plane waves serve as another very popular choice of basis in DFT codes. These func-

tions are often preferred due to the simple form of their matrix elements, their orthogonality,

and the ability to efficiently facilitate ab initio molecular dynamics calculations. Further-

more, this basis, being spatially periodic in nature, is well equipped to efficiently describe
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systems of the same symmetry such as bulk solids. Examples of popular plane wave DFT

codes include VASP [156], QUANTUM ESPRESSO [157], and ABINIT [158], each of

which also support TDDFT in either real time or frequency space forms.

In the plane wave basis, the Kohn–Sham orbitals are represented as

Φ(r) =
∑
g

cgφg(r) =
∑
g

cg 〈r|g〉 =
∑
g

cg
1√
Ω

eig·r, (3.16)

where Ω is the normalizing volume of the computational space. This notation indicates a

sum over choices of three-dimensional reciprocal lattice vector, g. This representation is

used in many fields of study due to the simplicity of determining matrix elements resulting

from operators containing spatial derivatives. For instance, the kinetic energy operator

becomes diagonal

− ~2

2m
∇2φg(r) = − ~2

2m
∇2 1√

Ω
eig·r =

~2

2m
|g|2 1√

Ω
eig·r =

~2

2m
|g|2φg(r). (3.17)

In most applications, the basis size is defined using what is known as the energy cutoff,

Ecut. In this scheme, only plane waves exhibiting a kinetic energy eigenvalue less than this

cutoff,
~2

2m
|g|2 < Ecut, (3.18)

are kept within the basis set. In this way, one may readily balance accuracy and computa-

tional expense by adjusting the value forEcut. In addition to the wave function, the electron

density and potentials are also represented as a linear combination of plane waves in this

choice of basis. The density, being quadratic in the wave function, requires a larger set of
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plane waves with an energy cutoff of 4Ecut. The density, Eq. (2.11), can be calculated as

ρ(r) =

Noccupied∑
n=1

|Φn(r)|2 =
1

Ω

Noccupied∑
n=1

(∑
g

c∗n,ge−ig·r
)(∑

g′

cn,g′e
ig′·r
)

=
1

Ω

Noccupied∑
n=1

∑
g,g′

(
c∗n,gcn,g′e

i(g′−g)·r
)
.

(3.19)

This form clearly exhibits a dependence on all plane waves of reciprocal lattice vectors

g′ − g which span the reciprocal lattice within the energy cutoff of 4Ecut. Local potentials

are also represented by plane waves as

V (r) =
1√
Ω

∑
g

Ṽ (g)eig·r, (3.20)

where Ṽ (g) is the Fourier transform of V (r). As in this case, recovering the real space

representation of any function in the plane wave basis is straightforward as one need only

apply an inverse fast Fourier transform to the expansion coefficients.

The overlap matrix elements are simply Sgg′ = δgg′ since the basis functions are or-

thonormal. The matrix elements associated with the sum of all local potentials, V , are

given as

〈g|V |g′〉 =
1

Ω

∫
e−ig·rV (r)eig

′·rdr =
1√
Ω
Ṽ (g − g′), (3.21)

where Ṽ is the Fourier transform of V . The matrix elements for the nonlocal potential,

W (r, r′), which is of the form found in Eq. (2.52), are defined as

〈g|W |g′〉 =
1

Ω

∫ ∫
e−ig·rW (r, r′)eig

′·rdrdr′ = W̃ (g,g′). (3.22)

The Kohn–Sham Hamiltonian matrix elements are, then,

Hgg′ = 〈g|HKS|g′〉 =
~2

2m
|g|2δgg′ +

1√
Ω
Ṽ (g − g′) + W̃ (g,g′). (3.23)
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In practice, for a small basis size, one may use these matrix elements in order to directly

diagonalize the Hamiltonian matrix and solve Eq. (3.10). More commonly, however, the

basis size is too large for this approach, and iterative methods such as the conjugate gradient

method must be used. However, it is often useful to form the guess for the initial density by

directly diagonalizing a plane wave basis Hamiltonian matrix defined using a small cutoff

energy.

Due to its naturally periodic form, the plane wave basis is a common choice when

describing bulk solids [156, 159]. For such cases, the form of the Kohn–Sham orbitals is

that of Eq. (2.65). Here, the periodic functions, unk(r), occurring in the definition of the

Kohn–Sham orbitals, are the functions which are expanded, resulting in

Φnk(r) =
∑
g

cnk,gei(g+k)·r. (3.24)

The inclusion of k-points in the definition of the Kohn–Sham orbitals does not alter

most of the above results; however, some modifications are necessary. For instance, the

kinetic energy matrix elements must be calculated as

〈g + k|T |g′ + k〉 =
~2

2m
|g + k|2δgg′ , (3.25)

which implies a new cutoff energy procedure according to

~2

2m
|g + k|2 < Ecut. (3.26)

Furthermore, while the local potential matrix elements remain the same, the nonlocal pseu-

dopotential matrix elements, Eq. (3.22), now become

〈g + k|W |g′ + k〉 = W̃ (g + k,g′ + k). (3.27)
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The Hartree potential matrix elements may be determined by solving the Poisson equa-

tion

∇2V H(r) = −e
2

ε0

ρ(r). (3.28)

By Fourier transforming the density, one can readily obtain

Ṽ H(g) = −e
2

ε0

ρ̃(g)

|g|2 . (3.29)

The g = 0 component of Ṽ H(g) will be divergent if ρ̃(g = 0) is nonzero. However, a

compensatory Gaussian charge may be added at each atomic position in order to avoid this

divergence [160].

For TDDFT calculations involving an external vector potential, A(t), the matrix ele-

ments of the velocity gauge Hamiltonian are given as

〈g + k|Hvel(t)|g′ + k〉 =
~2

2m
|g + k +

e

~
A(t)|2δgg′ . (3.30)

The time-dependent plane wave basis Hamiltonian matrix elements for a particular k-point

are then

HPW
gg′ (t) =

~2

2m
|g + k +

e

~
A(t)|2δgg′ + V PW

g,g′ (t), (3.31)

where

V PW
gg′ (t) =

1√
Ω
Ṽ (g − g′) + W̃ (g + k,g′ + k). (3.32)

The time-dependent plane wave basis coefficients, here designated in vectorized notation

cPW
nk , where each element represents the value of cnk,g at a particular discretized choice of

g, may then be described by the equation

i~ċPW
nk (t) = HPW(t)cPW

nk (t). (3.33)

There are three major drawbacks of the plane wave basis representation within DFT.
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First, it can be relatively difficult to work with spatially localized wave functions, an impor-

tant task when building order-N methods, due to the extended nature of the basis functions.

Second, forward and inverse Fourier transforms between real and reciprocal spaces make

parallelization difficult. Third, periodic boundary conditions are a natural condition of the

plane wave basis, which is not always desirable. While these issues may be addressed in-

dividually, the following discussion of the real space grid representation presents a simple

answer to these issues.

3.3 Real Space Grid Approach

The real space grid approach is distinguished from the previous two choices of repre-

sentation by the fact that no Ritz variational principle is available in this case and no matrix

elements are to be calculated. Instead, values are assigned to grid points in real space in

order to best approximate continuous functions. Like in the case of the plane wave basis,

the balance between accuracy and computational expense may be tuned by adjusting the

grid spacing. In lieu of defining matrix elements, this method relies on the use of itera-

tive schemes, such as the conjugate gradient method, which only require the action of the

Hamiltonian operator on a grid-defined wave function, to solve the Kohn–Sham equations.

The simplicity and versatility of the real space grid approach has led to the rapid develop-

ment of such calculations [161–165] as an alternative to plane wave-based schemes. This

representation has also seen much use with TDDFT [166, 167], as extended electron den-

sity may be well represented anywhere within the computational space of equidistant grid

points. Today, codes such as GPAW [168] and RMG [169] support grid-based DFT cal-

culations, with GPAW [170] and the popular program OCTOPUS [171] providing TDDFT

simulations using this approach.

The Kohn–Sham orbitals, density, and potentials are directly represented on a grid of

Ngrid points with equal spacing h. Any given coordinate, r, on this discretized grid may be
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assigned as

ri,j,k = (ih, jh, kh), (3.34)

such that any wave function may be represented as

ψ(r) ≈ ψ(ri,j,k). (3.35)

Here, i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz, and Ngrid = NxNyNz. Integrals may

be performed using the three-dimensional trapezoidal rule,

∫
Ω

f(r)dr ≈ h3

Ngrid∑
i,j,k=1

f(ri,j,k). (3.36)

In order for this form to provide accurate values, the integrand, f(r), must be band-limited,

meaning that the Fourier transform of the integrand must not contain significant values in

the frequency range above the maximum defined on the real space grid,

g > gmax = π/h. (3.37)

This can present a problem when integrating over pseudopotential contributions to the total

energy, in which small shifts of the ion positions with respect to the grid points may cause

nonphysical fluctuations in the total energy due to the oscillatory nature of the potentials.

Such dependencies on the ion locations is known as an eggbox effect. Fourier filtering

techniques have been developed which limit these issues [172]. Alternatively, these con-

siderations may be avoided by using a grid which is fine enough to allow for a sufficiently

large gmax.

Derivatives may be evaluated using the finite difference method. In the case of the

kinetic energy operator, the action of the Laplacian acting on a wave function may be
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determined as

− ~2

2m
∇2ψ(ri,j,k) ≈ −

~2

2m

[
NFD∑

n=−NFD

∆(2)
n ψ(ri+n,j,k) +

NFD∑
n=−NFD

∆(2)
n ψ(ri,j+n,k)+

NFD∑
n=−NFD

∆(2)
n ψ(ri,j,k+n)

]
, (3.38)

where ∆
(2)
n are the second derivative finite difference coefficients, and NFD is the finite dif-

ference order. This is often referred to as a (2NFD + 1)-point finite difference representa-

tion. Unless otherwise specified, NFD = 4 throughout this thesis when using the real space

grid approach. The action of local potentials on a wave function may be straightforwardly

determined as the product of each function represented on the grid, V local(rijk)ψ(rijk).

The action of the nonlocal pseudopotential, Eq. (2.52), may also be described using a

real space grid. Because the nonlocal term is only nonzero within the core region centered

upon any ion location, integrals involved in this evaluation must only be represented by

sums over grid points within these regions, saving computational effort. The result of the

action of the nonlocal pseudopotential on a real space grid may be descried as

∫
Ω

V pp,nonlocal(r, r′)ψ(r′)dr′ ≈
Natoms∑
a=1

∑
l,m

∆V nl
a,l(|rijk −Ra|)ψps

a,l,m(rijk) 〈ψps
a,l,m|∆V nl

a,l|ψ〉
〈ψps

a,l,m|∆V nl
a,l|ψps

a,l,m〉
, (3.39)

where the integral 〈ψps
a,l,m|∆V nl

a,l|ψ〉 must only be carried out over the core region,

〈ψps
a,l,m|∆V nl

a,l|ψ〉 ≈ h3
∑
i,j,k

∀|rijk−Ra|≤rac

ψps
a,l,m

∗(ri,j,k)∆V
nl
a,l(|ri,j,k −Ra|)ψ(ri,j,k). (3.40)

With the action of the Hamiltonian defined, one may apply the conjugate gradient

method to solve the Kohn–Sham equations. In practice, an initial guess for the Kohn–

Sham orbitals is provided, and only a few conjugate gradient steps are necessary in order to
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find an approximate electron density before updating the functionals at each self-consistent

iteration. This process is carried out until the change in energy and density are sufficiently

small.
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Chapter 4

ACCELERATED PSEUDOSPECTRAL BASES

4.1 Pseudospectral Bases

In the real space grid approach, all grid points are evenly distributed throughout the

computational space and are all weighted equally. In general, however, one can choose a

means of weighting each grid point in a way which enhances numerical accuracy and/or

efficiency. A pseudospectral basis, or discrete variable representation, is a means of doing

just that. Here, one chooses a set of interpolant basis functions, which are defined by real

space grid points. The wave function and action of local potentials on the wave function

are represented as linear combinations of these basis functions, and the scalar product of

these basis functions are calculated as a weighted sum over the grid points. This technique

has grown in popularity within DFT calculations over the last decade [173–175]. In this

section, sinc functions, belonging to a special class of of pseudospectral basis functions

known as Lagrange functions [176, 177], are discussed. This class of basis exhibit low

computational complexity and are well suited for order-N calculations. Methods of sum-

acceleration are introduced as a means of improving the scaling with respect to the grid

step size and matrix bandwidth while maintaining a computational speed equivalent with

that of the finite difference description.

Here, basis functions are built from the cardinal sine functions, otherwise known as sinc

functions,

sinc(x) =

{ sin(πx)
πx

if x 6= 0

1 if x = 0
. (4.1)

The associated one-dimensional orthonormal basis functions are centered on the associated
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grid points, xi, and are defined as

φi(x) =
1√
h

sinc
(
x− xi
h

)
, (4.2)

where h is the grid step size. In this case, the kinetic energy matrix elements may be

calculated as [160]

tij =

〈
φi

∣∣∣∣− ~2

2m

d2

dx2

∣∣∣∣φj〉 =

{ ~2π2

6h2m
if i = j

~2(−1)i−j

h2(i−j)2m if i 6= j
. (4.3)

These matrix elements depend only on (i − j). Therefore, the matrix, t, is constant along

diagonals and is an example of a Toeplitz matrix as described in Ref. [178]. This matrix is

N ×N in size, where N is the number of grid points used to define unique sinc functions.

The three-dimensional pseudospectral basis functions may be defined in the straight-

forward manner,

Φi(r) = φi1(x)φi2(y)φi3(z), (4.4)

where index i indicates a unique combination of i1, i2, and i3. The three-dimensional

kinetic energy matrix elements may be constructed in a similarly simple way,

Tij =

〈
Φi

∣∣∣∣− ~2

2m

d2

dx2

∣∣∣∣Φj

〉
= ti1,j1δi2,j2δi3,j3 + δi1,j1ti2,j2δi3,j3 + δi1,j1δi2,j2ti3,j3. (4.5)

For pseudospectral bases, matrix elements related to local potentials may be conveniently

evaluated from the potential represented on the real space grid,

Vij = 〈Φi|V |Φj〉 = V (ri1,i2,i3)δi1,j1δi2,j2δi3,j3. (4.6)
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The nonlocal pseudopotential matrix elements may be calculated as

V NL
ij =

∑
a

∑
l,m

gal,m,i
∗gal,m,j

〈ψps
a,l,m|∆V nl

a,l|ψps
a,l,m〉

, (4.7)

where

gal,m,i =

∫
|r−Ra|≤rac

ψps
a,l,m(r)∆V nl

a,l(|r−Ra|)Φi(r)dr. (4.8)

If the product ψps
a,l,m(r)∆V nl

a,l may be described by a form such as a linear combination of

Gaussians,

ψps
a,l,m(r)∆V nl

a,l(r) =
∑
i

cal,ie
−νir2rlYlm(r̂), (4.9)

then gal,m,i may be calculated analytically, leading to a more accurate representation than

in the real spacegrid approach. On the other hand, in the real space grid approach, gal,m,i

is only nonzero for grid points within the small core regions centered on the ion sites,

whereas for the sinc basis, this integrand is nonzero for the entirety of the computational

space. This would imply a significantly greater computational expense for the sinc basis

representation. However, it will be shown in Sec. 4.3 that a large fraction of the matrix

elements are negligible and that one may truncate gal,m,i to effectively the same region as

the real space grid representation.

While, compared to the real space grid approach, pseudospectral representations allow

for more accurate representations of the kinetic energy contribution due to the weighted

sum of values, the matrices are more dense. On the otherhand, due to the enhanced accu-

racy, less grid points are necessary, resulting in smaller matrix dimensions. The grid step

size can be limited by other factors, however, such as the oscillatory pseudopotentials and

density. The large bandwidth of the kinetic energy matrix eventually becomes a bottleneck

for computational efficiency considerations.

In order to make pseudospectral approaches more computationally efficient, one must

decrease the kinetic energy matrix bandwidth while maintaining accuracy. The direct trun-
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cation of the matrix is not a satisfactory solution as the derivative series is alternating and

converges slowly, thus resulting in significantly inaccurate values when only a few terms are

present. John Boyd has developed [179, 180] a sum-acceleration method for pseudospec-

tral bases and finite difference approaches which allows for exponential series convergence

using sparse matrices via application of acceleration weights within the definition of the

kinetic energy matrices.

4.2 Sum-Acceleration Weights

As mentioned in Sec. 3.3, derivatives in methods such as the real space grid approach

are calculated as weighted sums over the wave function evaluated at grid point neighboring

that of interest. This is exemplified by the important case of the one-dimensional second

derivative,

d2

dx2
ψ(xi) ≈ ∆

(2)
0 ψ(xi) +

m∑
n=1

[
∆(2)
n ψ(xi+n) + ∆

(2)
−nψ(xi−n)

]
. (4.10)

In the real space grid approach, the second derivative weights, ∆
(2)
n , are the relevant finite

difference coefficients which are symmetric, meaning ∆
(2)
−n = ∆

(2)
n . The description of Eq.

(4.10) is similarly well-suited to the pseudospectral approach in which basis functions are

assigned at the same sites, xi, and the second derivative weights are the matrix elements tin,

defined in Eq. (4.3), without the factor of − ~2
2m

. While in the case of the finite difference

method, the sum on the right-hand side is truncated to a small number of terms, such as

m = 4, in the pseudospectral case, the second derivative sum is defined using all points in

the grid. The inclusion of all points results in high accuracy; however, since the speed of

calculating the action of the kinetic energy matrix on the wave function vector is determined

by the number of terms necessary to compute, the pseudospectral basis representation can

be significantly more computationally costly than the real space grid approach.

One may truncate the sum in the case of the pseudospectral basis to the same number of
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terms as in the finite difference approach in order to achieve the same computational cost.

However, because this sum is alternating and slowly converging, many terms are necessary

in order to produce accurate results, and, thus, such a truncation undermines the advantage

of the pseudospectral representation. John Boyd showed in Ref. [179] that Euler sum-

acceleration may be applied in this case in order to significantly improve the convergence

of this sum and thus make truncation viable. In this case, the second derivative weights are

modified as

∆̃(2)
n = wn∆(2)

n , (4.11)

where the Euler acceleration weights are defined as

wn =
m∑
k=n

m!

2mk!(m− k)!
, n = 1, 2, . . . ,m (4.12)

and

w0 =
−12

π2

m∑
k=1

(−1)kwk
k2

. (4.13)

Other choices for acceleration weights, distinguished by their sampling of frequency space,

have also been investigated which similarly allow for faster convergence of derivative sums

[180, 181].

4.3 Computational Details and Results for Small Hydrocarbons

Despite advantages of the pseudospectral basis, this choice is still not as popular as

the previously discussed representations, atomic orbitals, plane waves, and the real space

grid. In this section, results are presented using the acceleration weights of Boyd in order

to provide a step towards optimizing this basis for density functional calculations. These

calculations are presented in atomic units (a.u.) in which ~ = e = me = 1/4πε0 = 1; in

familiar units, this corresponds to length units of 0.52918 Å, known as a Bohr, and energy

units of 27.211 eV, known as a Hartree. Small hydrocarbons such as C2H2, C3H6, and
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C3H8 are tested within a computational box of 18× 18× 18 (a.u.)3. All data and figures in

this section are reproduced from Ref. [182] with the permission of Wiley Periodicals, Inc.

The accelerated pseudospectral matrices used are defined as

tacc
ij =

{
tijw|i−j| if |i− j| ≤ m

0 otherwise
. (4.14)

Here, the matrices are truncated to a bandwidth of 2m+ 1. In the following results, m = 8

has been used. The options for the acceleration weights, wk (k = 0, . . .,m), are taken from

Table I. of Ref [181] which include the Euler weights of Boyd [180] as well as others. The

comparative finite difference kinetic energy matrix is defined as

tFD
ij =

{ − ~2
2m

∆
(2)
|i−j| if |i− j| ≤ m

0 otherwise
, (4.15)

where m indicates the finite difference order, m = NFD, and ∆
(2)
k are the finite difference

coefficients.

The convergence of the total energy calculated by a full sinc basis for the molecule

C2H2 is compared to that of the truncated sinc basis, that is wk = 1 for all k, and the

m = 8, that is 17-point, finite difference method in Fig. 4.1. The reference energy is the

total energy calculated using N = 80. Here, N indicates the number of basis functions

used along any particular direction of the three-dimensional computational box; therefore,

the full basis size is N3. In this comparison, fully converged Kohn–Sham orbitals were

calculated for different grid sizes. This figure shows that the energy accuracy significantly

decreases when crudely truncating the sinc basis. The truncation to m = 8 allows for the

same computational efficiency as the m = 8 finite difference, real space grid approach,

but the energy results are wildly inaccurate. A truncation to m = N/3, which maintains

a substantial matrix bandwidth, is still less accurate than the m = 8 finite difference rep-

resentation. The oscillations with respect to number of grid points is a result of shifts in
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Figure 4.1: Comparison of the total energy accuracy of truncated sinc calculations for grid
sizes raging between N = 40 to N = 72, corresponding to changing h from 0.45 a.u. to
0.25 a.u.; m = 8 finite difference (solid, black line), full sinc (dashed, light green line),
sinc truncated to m = N/3 (dash-dotted, red line), and sinc truncated to m = 8 (dashed,
dark blue line). The C2H2 molecule was used in these calculations.

the relative position of the atomic sites relative to the grid point locations. The lower error

for the m = 8 truncated sinc matrix for small basis size is an artifact of the loss of the

variational property. It is by accident that the energy calculated in that region happens to

be closer to the converged value.

The results of applying various choices of acceleration weights to the m = 8 truncated

sinc kinetic energy matrix are shown in Fig. 4.2 for the C3H8 molecule. In this figure, the

accuracy of the kinetic energy is compared by reference to that calculated by use of the full

N = 80 sinc basis matrix. The kinetic energies of the m = 4 and m = 8 finite difference

calculations converge slowly compared to those of the m = 8 accelerated sinc representa-

tions, which are nearly identical to that the full sinc matrix. The latter result indicates that

the acceleration succeeds extremely well in providing pseudospectral accuracy while ex-

hibiting computational efficiency equivalent to that of the finite difference method. For the

smallest grid spacing used, the difference between the full sinc representation and the best
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Figure 4.2: Comparison of the accuracy of the kinetic energy for grid sizes raging between
N = 40 to N = 72, corresponding to changing h from 0.45 a.u. to 0.25 a.u.; m = 4 finite
difference (dashed, red line), m = 8 finite difference (solid, black line), full sinc (dashed,
light green line), m = 8 Gegenbauer-accelerated sinc (dash-dotted, cyan line), and m = 8
Euler-accelerated sinc (dash-dotted, dark blue line). Note that the Gegenbauer- and Euler-
accelerated sinc representations yield nearly overlapping results. The C3H8 molecule was
used in the calculations.

truncated, accelerated sinc representation is less than 10−6 a.u. Here, the Euler acceleration

weights [179, 180] provide slightly less accurate results than the others listed in Table I. of

Ref. [181]. The Gegenbauer, step, and sech weights (see Table I of Ref. [181]) give nearly

identical results. Therefore, the latter two options are not shown.

The total energy for these choices of representation are shown in Fig. 4.3 for the C2H2,

C3H6, and C3H8 molecules. The finite difference methods continue to exhibit slow conver-

gence with doubling the finite difference order making little difference. The total energies

truncated, accelerated sinc matrices, however, converge much quicker and often overlap

with the full matrix results. For large grid spacings, the finite difference and sinc total

energies are very close, indicating that the error in those cases arise from the coarse repre-

sentation of the Kohn–Sham orbitals rather than the kinetic energy. The most economical

choice for the grid spacing appears to be around h = 0.35 a.u., corresponding to N = 50,
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Figure 4.3: Comparison of the accuracy of the total energy for molecules C2H2 (top),
C3H6 (middle), and C3H8 (bottom) using grid sizes ranging between N = 40 to N = 72,
corresponding to changing h from 0.45 a.u. to 0.25 a.u.; m = 4 finite difference (dashed,
red line), m = 8 finite difference (solid, black line), full sinc (dashed, light green line),
m = 8 Gegenbauer-accelerated sinc (dash-dotted, cyan line), and m = 8 Euler-accelerated
sinc (dash-dotted, dark blue line). Note that the Gegenbauer- and Euler-accelerated sinc
representations yield nearly overlapping results.

at which point the sinc calculations are about one to two orders of magnitude more accurate

than the finite difference real space grid approach. Decreasing the grid spacing past this

point results in diminishing returns in accuracy.

Convergence of the Euler-accelerated sinc basis with respect to the kinetic energy ma-
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Figure 4.4: Dependence of the total (dash-dotted) and kinetic (solid) energy accuracy on the
matrix bandwidth, 2m + 1, for molecules C2H2 (top), C3H6 (middle), and C3H8 (bottom),
using the Euler-accelerated sinc basis. A grid size ofN = 60 was employed, corresponding
to a grid step size of h = 0.3 a.u. The reference value was the total energy calculated on
the same grid using the full sinc matrix.

trix bandwidth is presented in Fig. 4.4. For the larger molecules, once m is larger than

around 10, the kinetic energy is sufficiently accurate and is no longer the prominent source

of error as other detractors to the accuracy dominate. Results are summarized in Tab. 4.1

for the accuracy of the total energy using m = 4 or m = 8 for both finite difference

and Euler-accelerated sinc representations. The Euler-accelerated kinetic energy converges

much more quickly with respect to matrix bandwidth.
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C2H2 FD Euler
m = 4 3.0× 10−3 2.4× 10−3

m = 8 2.6× 10−3 4.7× 10−5

C3H6 FD Euler
m = 4 6.6× 10−3 8.5× 10−3

m = 8 4.8× 10−3 1.7× 10−4

C3H8 FD Euler
m = 4 8.3× 10−3 8.4× 10−3

m = 8 6.5× 10−3 1.5× 10−4

Table 4.1: Comparison of the bandwidth dependence of the total energy accuracy for finite
difference (FD) and Euler-accelerated sinc (Euler) representations, using molecules C2H2,
C3H6, and C3H8. A grid size of N = 60 was employed, corresponding to a grid step size
of h = 0.3 a.u. The reference value was the total energy calculated on the same grid using
the full sinc matrix.
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Figure 4.5: Comparison of the total energy dependence on the shift, s, of the grid points
along the axis of the C2H2 molecule using the m = 8 finite difference real space grid and
sinc basis representations. N = 60 and h = 0.3 a.u.

The accuracy in the total energy is also partially dictated by the ability to resolve the

oscillatory nonlocal pseudopotential, as has been discussed in Sec. 4.1. Fig. 4.5 shows

this energy contribution as a function of the relative positions of the grid points and the
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atomic centers. The eggbox effect is illustrated in the finite difference results where the

energy value fluctuates as the grid points shift. The sinc calculations, however, do not

exhibit this behavior and remain smooth in energy value. This is a result of the analytic

integration in Eq. (4.8). In principle, all grid points, i, contribute to gal,m,i, but the values

of gal,m,i for grid points far from the pseudopotential center, a, are small. In this example,

only values such that |gal,m,i| > 10−8 have been kept. This choice preserves the accuracy of

the calculation and the sparsity of V NL
ij . The results of using the full t and m = 8 Euler-

accelerated tacc kinetic energy matrix representations overlap. The grid dependence for the

sinc calculations in this case comes from the local part of the pseudopotential.

While only grid points within the pseudopotential core region must be considered in the

real space grid calculation of gal,m,i, in the sinc case, using the above described truncation,

points at a distance of up to twice the core radius yield non-negligible contribution. This

results in a computational cost of calculating gal,m,i which is about an order of magnitude

greater than in the real space grid case. This, however, is balanced by the better accuracy

when using the sinc basis and the need for less grid points in general.

4.4 Summary

It has been shown that by introducing Euler acceleration to the truncated sinc function

kinetic energy matrix, one is able to achieve results similar in accuracy to those obtained by

using the full sinc kinetic energy matrix. This allows for pseudospectral simplicity and ac-

curacy with computational efficiency on par with the widely used finite difference method

used in the real space grid approach. The accelerated sinc matrix descriptions scales prefer-

ably with the grid step size as well as the matrix bandwidth. These improvements should

prove invaluable towards the description of larger systems often described within DFT.

The sinc basis functions were also shown to eliminate the eggbox effect when repre-

senting pseudopotentials by analytical evaluation of the nonlocal matrix elements, possible

when the pseudopotential functions can be represented by linear combinations of Gaus-
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sians. This construction effectively removes the dependence of the energy on the relative

positions of the grid points and the ion centers.
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Chapter 5

PROPAGATION ALGORITHMS

5.1 Introduction

So far, techniques for discretely representing wave functions in r have been discussed

by means of a variety of bases. Such approaches are necessary for describing wave func-

tions computationally and solving the Kohn–Sham equations of DFT. Because the DFT

ground state description serves as the initial state of TDDFT simulations, these consider-

ations are directly pertinent to time-dependent studies. Oftentimes, the plane wave basis

or real space grid approach representations are used within TDDFT calculations due to

their ability to flexibly describe orbitals which extend from the ion sites. In the case of a

time-dependent wave function, the basis function representation, Eq. (3.1), is modified by

allowing the expansion coefficients to vary in time:

ψ(r, t) =

NBF∑
i=1

ci(t)φi(r). (5.1)

In this chapter, techniques of solving the TDKS equations of RT-TDDFT,

i~
∂

∂t
Φn(r, t) = HKS[ρ](r, t)Φn(r, t), (5.2)

are discussed. In practice, the Kohn–Sham Hamiltonian, HKS, is represented as a matrix,

HKS, in terms of the basis employed according to Eq. (3.5) and the Kohn–Sham orbitals,

Φn are replaced in Eq. (5.2) by vectors containing the expansion coefficients or, in the case

of the real space approach, the space-discretized orbitals. Furthermore, in the case of a

nonorthogonal basis set, the Kohn–Sham Hamiltonian is replaced with the matrix product

S−1HKS, where S−1 is the inverse of the overlap matrix. In this discussion, however, an

orthonormal basis will be assumed for the sake of simplicity, as this is often the case in
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time-dependent programs.

In the remainder of this chapter, methods of propagation by direct numerical integration

are introduced, followed by a popular class of solution techniques which makes use of a

time evolution operator. Next, a new class of solution techniques known as exponential

integrators are introduced to RT-TDDFT. These techniques allow for the separate evolution

of the linear and nonlinear parts of the TDKS equation, thereby allowing for an improve-

ment over the accuracy of conventional techniques of up to multiple orders of magnitude.

Results of the exponential integrator methods applied to the description of various excita-

tions of the one-dimensional Helium atom and compared to those of the conventional time

propagation techniques.

5.2 Propagation via Direct Numerical Integration

The simplest form of solving the single-particle TDSE,

i~
∂

∂t
ψ(r, t) = H(r, t)ψ(r, t), (5.3)

comes from approximating the time derivative of the wave function using the two-point,

forward finite difference representation,

∂ψ

∂t
≈ ψ(tm+1)− ψ(t)

∆t
, (5.4)

where tm = m∆t. This leads to an expression for prescribing ψ(tm+1) known as the

explicit forward Euler method,

ψ(tm+1) = ψ(tm)− i

~
∆tH(tm)ψ(tm). (5.5)
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Alternatively, one may define the implicit backwards Euler method as

ψ(tm+1) = ψ(tm)− i

~
∆tH(tm+1)ψ(tm+1). (5.6)

The latter is a more stable approach; however, it is clearly more computationally expen-

sive as one must determine the explicitly not known H(tm+1)ψ(tm+1). These methods are

O(∆t2) accurate in time.

Another, more accurate and widely used approach, is that of the Runge–Kuta method.

Here, one approximates the following step, ψ(tm+1) from the current step, ψ(tm), by taking

a weighted average of the estimated slopes evaluated at temporal increments between the

two steps. When choosing only one increment, one defines the above described Euler

method. For two increments, one arrives at the second-order Runge–Kutta (RK2) method,

ψ(tm+1) = ψ(tm) + k2

k1 = − i
~

∆tH[ρψ(tm)]ψ(tm)

k2 = − i
~

∆tH[ρψ(tm)+k1/2]

[
ψ(tm) +

1

2
k1

]
.

(5.7)

Here, H[ρψ(tm)] indicates that, in the case of RT-TDDFT, the Hamiltonian functional is

updated with a density, ρ, calculated using ψ(tm). This technique is O(∆t2) accurate in

time.

The fourth-order Runge–Kutta (RK4) method is more commonly used within RT-TDDFT
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simulations [85, 183] and takes the form

ψ(tm+1) = ψ(tm) +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

k1 = − i
~

∆tH[ρψ(tm)]ψ(tm)

k2 = − i
~

∆tH[ρψ(tm)+k1/2]

[
ψ(tm) +

1

2
k1

]
k3 = − i

~
∆tH[ρψ(tm)+k2/2]

[
ψ(tm) +

1

2
k2

]
k4 = − i

~
∆tH[ρψ(tm)+k3 ] [ψ(tm) + k3] .

(5.8)

This method exhibits high computational cost, as four evaluations of the Kohn–Sham

Hamiltonian are required. On the other hand, however, the allowed time step size is much

larger because the accuracy only scales as O(∆t4).

5.3 Propagation via the Time Evolution Operator

The time evolution operator approaches are derived from the exact solution to the

single-particle TDSE, Eq. (5.3), for a wave function at time t,

ψ(r, t) = U(t, 0)ψ(r, 0), (5.9)

where the time evolution operator is

U(t, 0) = T exp

[
− i
~

∫
H(r, t′)dt′

]
. (5.10)

Here, T indicates time-ordering. Two properties worth noting of the time evolution oper-

ator are the following: (1) it is unitary for Hermitian Hamiltonains, U(t′, t)† = U−1(t′, t),

and (2) it exhibits time reversal symmetry U(t, t′) = U−1(t′, t).

In practice, one splits the above, exact, representation of the time evolution operator

into a product of multiple approximate time evolution operators, corresponding to a short
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time step, ∆t,

U(t, 0) =
∏
m

U(tm, tm+1), (5.11)

U(tm, tm+1) ≈ exp

[
− i
~
H(tm)∆t

]
. (5.12)

The short time steps ensure that the Hamiltonian at time tm remains nearly commutative

with the Hamiltonian at tm+1 and that the integral in Eq. (5.10) may be well-approximated

with a left Riemann sum.

In the following sections, various popular choices for the approximation of the matrix

exponential in Eq. (5.12) are introduced. In any case, one must choose an appropriately

small time step size. One may determine the upper bound for this value by examining

the energy-time uncertainty principle, ∆E∆t ≤ ~. By this reasoning, time step sizes

satisfying ∆t ≤ ~/∆E are required in order to resolve dynamics of a system resulting in

changes of the total energy, ∆E. This illustrates that the required time step size can vary

with whatever dynamics are being studied. The following approximations for the discrete

time step time evolution operator will also provide limitations on the maximum size of the

time step allowed.

5.3.1 Taylor Expansion of the Time Evolution Operator

A straightforward means of approximating the discrete time step evolution operator is

by Taylor expansion. This approach breaks the exponential into a sum of polynomials.

Such expansions are not unique to the Taylor expansion; another example is that of the

Chebychev propagator [184, 185]. The popularity of the Taylor expansion is due to its

simplicity: only the repeated action of the Hamiltonian is needed. In this way, it is not

necessary to store the full Hamiltonian matrix, as, instead, one only requires the result of

its action on a wave function vector. This makes the Taylor expansion the prominent prop-

agation technique for the real space grid approach, which makes use of the same principle.

61



The form of the discrete time step time evolution operator becomes

exp

[
− i
~
H(tm)∆t

]
≈

NTaylor∑
n=0

1

n!

(
−i∆t

~
HKS(tm)

)n
. (5.13)

While NTaylor → ∞ would result in an exact expression, in practice, one must truncate

this expansion. This truncation breaks the unitarity of the exponential and the stability

of the propagation becomes dependent on the time step size used. The term “stability”

here is introduced to describe the preservation of the norm of the wave function, |ψ|2. A

truncation to NTaylor = 4 has been demonstrated to provide optimal stability and accuracy

[133, 184] and a time step size of 0.001 fs has been used in many TDDFT studies [186–

191]. The maximum time step size, however, is dependent on the system of study as well

as the potentials used; for instance, high intensity laser fields require smaller ∆t.

5.3.2 Crank–Nicolson Approximation

By averaging the forward and backward Euler methods, one obtains the Crank–Nicolson

(CN) propagation scheme,

ψ(tm+1) = ψ(tm)− i∆t

2~
[H(tm)ψ(tm) +H(tm+1)ψ(tm+1)] . (5.14)

Rearranging terms yields

[
1 +

i∆t

2~
H(tm+1)

]
ψ(tm+1) =

[
1− i∆t

2~
H(tm)

]
ψ(tm), (5.15)

and by approximating that H(tm+1) ≈ H(tm) in the limit of small ∆t, one may derive the

CN propagation technique,

ψ(tm+1) ≈
[
1 +

i∆t

2~
H(tm)

]−1 [
1− i∆t

2~
H(tm)

]
ψ(tm), (5.16)
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which is O(∆t4) accurate in time.

This method approximates the time evolution operator as

exp

[
− i
~
H(tm)∆t

]
≈
[
1 +

i∆t

2~
H(tm)

]−1 [
1− i∆t

2~
H(tm)

]
. (5.17)

The primary advantage of this representation of the time evolution operator is that it re-

mains unitary so that the norm remains conserved explicitly, apart from roundoff errors.

This allows for long propagations with many time steps which maintain reasonable ac-

curacy. The primary disadvantage is the required calculation of the matrix inverse. While

iterative methods for the calculation of matrix inverses make calculations possible for cases

involving the storage of full matrices, the application of the CN propagator is not viable in

real space grid approaches for large systems.

5.3.3 Split Operator Approach

The split operator (SPO) approach is of the earliest propagation techniques, dating back

to its first appearance in 1957 [192] and an independent emergence in 1968 as “Sprang

splitting” in Ref. [193]. This approach is simplistic in nature and consists of splitting the

Hamtiltonian into kinetic and potential energy parts and approximating the time evolution

operator as a product of exponentials of these constituents. This was first used in the field

of physics in Ref. [194] and later was incorporated in RT-TDDFT in Ref. [195] using

higher order decompositions.

As described, the discrete time evolution operator is approximated as

exp

[
− i
~
H(tm)∆t

]
≈ exp

[
− i

2~
T∆t

]
exp

[
− i
~
V (tm)∆t

]
exp

[
− i

2~
T∆t

]
, (5.18)
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or similarly,

exp

[
− i
~
H(tm)∆t

]
≈

exp

[
− i

2~
V (tm)∆t

]
exp

[
− i
~
T∆t

]
exp

[
− i

2~
V (tm)∆t

]
. (5.19)

The accuracy of these expressions scale as O(∆t4) [196]. This form is chosen such that

each matrix exponential is diagonal in either real space or reciprocal space, facilitated by

fast Fourier transforms. For example, if acting on a wave function given in real space, one

may first apply the rightmost exponential of Eq. (5.18) which is diagonal in real space.

Next, the result may be Fourier transformed into reciprocal space in which the subsequent

exponential related to the kinetic energy is diagonal. A final Fourier transform can then be

used to return the representation to real space in which the final remaining exponential is,

again, diagonal. Furthermore, the SPO approach has the advantage of maintaining unitarity

and being unconditionally stable [197].

5.4 Exponential Integrators

Many phenomenon of interest call for long simulations which, in turn, require long

time stability and accuracy; however, for RT-TDDFT propagation, the numerical solution

gradually deteriorates over the course of many time steps, often limiting the scope of what

can be studied. This problem is, in part, due to the fact that the TDKS equations represent a

set of differential equations which are nonlinear, due to the dependence of the Hamiltonian

on the density, and, thus, the Kohn–Sham orbitals. In conventional RT-TDDFT calcula-

tions, the nonlinear part of the TDKS equation is not distinguished from the linear part.

Instead, it is time propagated using the time evolution operator together with the rest of the

Hamiltonian. The only distinguishing feature is, then, the additional step in each iteration

which updates the nonlinear terms in order to satisfy self-consistency. The nonlinear terms

are only approximately known. Thus, their inclusion in the matrix exponential that is the
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time evolution operator magnifies inherent inaccuracies, leading to numerical errors.

Various mathematical approaches have been developed in order to solve such nonlinear

differential equations. In order to solve the initial value problem

dy

dt
= f(y, t), y(t = 0) = y0, (5.20)

one may separate the linear, Ly, and nonlinear, N(y, t), parts of f(y, t) as

dy

dt
= Ly +N(y, t). (5.21)

The relative influence of either part will vary, depending on the the type of operators in-

volved. An ideal method for the solution of this sort of problem would be to incorporate

separate approximations that are best suited to either part individually.

Here, two robust methods are introduced which have been developed for this purpose,

the integrating factor (IF) [198] and exponential time differencing (ETD) [198] methods.

These methods are collectively known as exponential integrators. The IF method introduces

a new variable by factoring out the stiff part of the equation, and only the nonlinear part of

the differential equation must be solved by time stepping procedures. In the ETD method,

the exact integration of the linear part is followed by an approximate integration of the

nonlinear part. Both approaches have been tested for cases of dissipative and dispersive

partial differential equations [198–202] with the ETD method appearing most accurate in

test calculations.

There are three important distinctions between the differential equations solved in RT-

TDDFT and the first-order nonlinear differential equations that are commonly examined in

the mathematical literature: (1) the coupled nature of the TDKS equations, (2) the time-

dependent external potential, and (3) the Hartree and exchange-correlation potentials. The

first is a result of the density, which is defined using a sum over all occupied Kohn–Sham

orbitals, coupling the TDKS equation through the nonlinear potential functionals. Second,

65



the external potential is a time-dependent linear part of the equation; no such term has been

incorporated in the above mentioned studies of nonlinear ordinary differential equations.

Lastly, the Hartree and exchange-correlation potentials cause the TDKS equation to be

an integro-differential equation, involving both integral and derivative operators. These

considerations make clear the need to test these techniques within RT-TDDFT calculations

in order to assess their potential enhancement of accuracy and functionality.

The exponential integrators may be introduced by first analyzing the TDKS equation in

terms of the Kohn–Sham Hamiltonian matrix, HKS and the vectorized Kohn–Sham orbitals,

Φn,

i~
∂

∂t
Φ(t) = HKS(t)Φ(t). (5.22)

Here, Φ indicates the set of all Kohn–Sham orbitals, Φ = {Φ1,Φ1, . . .}. The right-hand

side is separated as

HKS(t)Φ(t) = LΦ(t) + N(Φ, t), (5.23)

where the linear part is defined by the matrix,

L = T + V, (5.24)

comprised of the kinetic energy matrix, T, and linear time-independent potential V. The

nonlinear part is defined by the potential functionals in the Kohn–Sham Hamiltonian,

N(Φ, t) = VN(Φ, t)Φ(t). (5.25)

This nonlinear part depends on all orbitals, thereby coupling the differential equations. This

nonlinear potential, VN, is the sum of the Hartree and exchange-correlation potentials, plus

the time-dependent potential. The latter is a linear term, but in the following formalism it

is more convenient to absorb it into VN, preserving the time-independence of L.
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5.4.1 Integrating Factor Method

In the IF method, the differential equation is multiplied by an integrating factor, thereby

introducing new variables. Ideally, one may change the variables in order to solve the linear

part exactly and use some technique in order to address the remaining nonlinear part. In the

present context, one may define the integrating factor as eiLt/~ and define the new variables

Ψn = e−iLt/~Φn. (5.26)

By multiplying Eq. (5.22) by this integration factor, one obtains

i~
∂

∂t
Ψ = e−iLt/~N(eiLt/~Ψ, t), (5.27)

where, again, Ψ indicates the set {Ψ1,Ψ2, . . .}. This approach is similar to the interaction

picture in quantum mechanics.

The purpose of this transformation is to ameliorate the stiff linear part of the TDKS

equations. In the above form, one may use a time stepping method, such as the Runge–

Kutta method, to advance the equation in time. Stiffness is not well-defined in the math-

ematical literature [203, 204], but, in general, this term refers to cases when an implicit

Euler method would be more efficient than the explicit Euler method. In the present case

of the TDKS equations, or even the TDSE, the largest eigenvalues result from the kinetic

energy and laser field terms of the Hamiltonian. If the real space grid approach is applied,

and, thus, a finite difference representation is used for the kinetic energy matrix, then the

Laplacian operator eigenvalues can vary greatly, and the ratio of the largest to smallest

eigenvalue is then very large, leading to a stiff problem. The degree of stiffness would then

depend on the grid spacing used.

The disadvantage of the IF method is that it changes the fixed points of the original

differential equation, and the local truncation error is larger than in other methods such as
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ETD [198]. While in the following applications of the IF method for describing the TDKS

equations this consideration appears to be of little concern, it may play a role in determining

the method’s ability to perform long time propagation.

Integrating Factor Method with Explicit Multistep

Eq. (5.27) can be solved using the most popular integration schemes. Using the Adam-

Bashforth method [205], one may derive the following update scheme which is O(∆t3)

accurate in time (IFAB2):

Φ(tm+1) =

eiL∆t/~Φ(tm) +
3i∆t

2~
eiL∆t/~N(Φ(tm), tm)− i∆t

2~
e−2iL∆tN(Φ(tm−1), tm−1). (5.28)

Integrating Factor Method with Fourth-Order Runge–Kutta

By applying the RK4 method to Eq. (5.27) and transforming the new variables, Ψn,

back to Φn, one achieves a new time propagation scheme of accuracy O(∆t3) (IFRK4),

Φ(tm+1) = eiL∆t/~Φ(tm) +
1

6
eiL∆t/~Ψ(1) +

1

3
eiL∆t/2~ (Ψ(2) + Ψ(3)

)
+

1

6
Ψ(4)

Ψ(1) =
−i
~

∆tN (Φ(tm), tm)

Ψ(2) =
−i
~

∆tN

([
eiL∆t/2~

(
Φ(tm) +

1

2
Ψ(1)

)]
, tm+1/2

)
Ψ(3) =

−i
~

∆tN

([
eiL∆t/2~Φ(tm) +

1

2
Ψ(2)

]
, tm+1/2

)
Ψ(4) =

−i
~

∆tN
([

eiL∆t/~Φ(tm) + eiL∆t/2~Ψ(3)
]
, tm+1

)
.

(5.29)

The same scheme can be applied for the case of the second-order Runge–Kutta method

(IFRK2) [205].
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5.4.2 Exponential Time Differencing Method

The ETD method makes use of the identity

i~
∂

∂t

[
eiLt/~Φ(t)

]
= eiLt/~

[
−LΦ(t) + i~

∂

∂t
Φ(t)

]
, (5.30)

which allows Eq. (5.22) to be rewritten as

i~
∂

∂t

[
eiLt/~Φ(t)

]
= eiLt/~N(Φ, t). (5.31)

By integrating this equation from tm to tm+1 and rearranging terms, one may arrive at

Φ(tm+1) = e−iL∆t/~Φ(tm)− eiL(tm+1)/~ i

~

∫ tm+1

tm

eiLτ/~N(Φ, τ)dτ. (5.32)

This equation is exact. The simple difference of this form from the IF method is that one

maintains Φ as the variables.

In the above derivation, it has been assumed that L is time-independent and that all

time-dependent potential terms may be found within the definition of N(Φ, t). However,

one may instead include linear time-dependent terms, VL(t), within L and arrive at the

same conclusion as Eq. (5.32) if it can be assumed that VL(tm) ≈ VL(tm+1) [205].

In practice, the integral in Eq. (5.32) is evaluated via some approximation. In the

evaluation of this integral, matrix-valued functions arise such as f(L) = e−iL∆t/~ and

f(L) = L−1. These functions must be evaluated efficiently for applications [206, 207].

One may calculate the matrix exponentials by Taylor expansion and obtain other needed

matrix-valued functions by recurrence relations [208]. In the case of large basis sizes,

and thus large matrices, one may efficiently evaluate matrix-valued functions in a Krylov

subspace [207, 209]. For methods requiring the calculation of L−1, problems may arise due

to small eigenvalues. Following Ref. [198], one may simply eliminate these eigenvalues

from the calculation in order to define a pseudo-inverse which may serve in place of L−1.

69



Exponential Time Differencing with Constant Nonlinear Term

Assuming that the nonlinear term is constant during the time step tm → tm+1, that is

N(Φ, τ) = N(Φ(tm), tm) (tm < τ < tm+1), (5.33)

the time propagation update scheme becomes (ETD1)

Φ(tm+1) = eiL∆t/~Φ(tm) + M1N(Φ(tm), tm), (5.34)

where

M1 = L−1
(
eiL∆t/~ − I

)
. (5.35)

Here, I is the identity matrix.

Exponential Time Differencing with Linearly Raising Nonlinear Term

Instead of the assumption of a constant nonlinear term, a better approximation would

be

N(Φ, τ) = N(Φ(tm), tm) +
∆N

∆t
(τ − tm) (tm < τ < tm+1), (5.36)

where ∆N = [N(Φ(tm), tm)−N(Φ(tm−1), tm−1)]. With this assumption, the time propa-

gation update scheme becomes (ETD2)

Φ(tm+1) = eiL∆t/~Φ(tm) + M1N(Φ(tm), tm)− i~
∆t

M2∆N, (5.37)

where

M2 = L−1

(
M1 +

i∆t

~
I

)
. (5.38)

The accuracy of this scheme scales as O(∆t3).

Exponential Time Differencing with Constant Nonlinear Term, Separating the Wave

Function
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By assuming that the nonlinear potential is constant during the time step tm → tm+1,

that is

VN(Φ, τ) = V(Φ(tm), tm) (tm < τ < tm+1), (5.39)

one can integrate Eq. (5.32) using the trapezoidal rule. This leads to the following relation-

ship:

[
I +

i

~
V(Φ(tm), tm)∆t

]
Φ(tm+1) = eiL∆t/~

[
I− i

~
V(Φ(tm), tm)∆t

]
Φ(tm). (5.40)

This is similar to the Crank–Nicolson propagation technique, Sec. 5.3.2, but with an extra

factor of eiL∆t/~. By evaluating the inverse of the leftmost operator, one may arrive at

another time propagation update scheme which approximates the discrete time step time

evolution operator (ETDCN),

Φ(tm+1) =

[
I +

i

~
V(Φ(tm), tm)∆t

]−1

eiL∆t/~
[
I− i

~
V(Φ(tm), tm)∆t

]
Φ(tm). (5.41)

Exponential Time Differencing with Fourth-Order Runge–Kutta

In the application of the RK4 method to the ETD approach, one must define the follow-

ing set of vectors:

Ψ(a) = ϕ0

(
β

2
L

)
Φ(tm) +

β

2
ϕ1

(
β

2
L

)
N(Φ(tm), tm),

Ψ(b) = ϕ0

(
β

2
L

)
Φ(tm) +

β

2
ϕ1

(
β

2
L

)
N(Ψ(a), tm+1/2)

Ψ(c) = ϕ0

(
β

2
L

)
Ψ(a) +

β

2
ϕ1

(
β

2
L

)[
2N(Ψ(b), tm+1/2)−N(Φ(tm), tm)

]
,

(5.42)

where β = −i∆t/~ and the ϕ-functions are defined in Appendix C of Ref. [205]. One

may then define the update scheme (ETDRK4)

Φ(tm+1) = e−iL∆t/~Φ(tm) + β [ϕ1(βL)K1 + ϕ2(βL)K2 + ϕ3(βL)K3] , (5.43)
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where

K1 =N(Φ(tm), tm)

K2 =− 3N(Φ(tm), tm) + 2N(Ψ(a), tm+1/2) + 2N(Ψ(b), tm+1/2)−N(Ψ(c), tm+1)

K3 =4
[
N(Φ(tm), tm)−N(Ψ(a), tm+1/2)−N(Ψ(b), tm+1/2) + N(Ψ(c), tm+1)

]
.

(5.44)

A similar technique can be achieved based on the RK2 method (ETDR2) [205].

Krogstad Time Propagation

The ETDRK4 method was further developed in Ref. [210] using a truncated Taylor

expansion of the nonlinear part in order to increase the accuracy. It is only different from

the above described ETDRK4 method by the definition of the Ψ(a), Ψ(b), and Ψ(c) functions:

Ψ(a) =ϕ0

(
β

2
L

)
Φ(tm) +

β

2
ϕ1

(
β

2
L

)
N(Φ(tm), tm)

Ψ(b) =ϕ0

(
β

2
L

)
Φ(tm) +

β

2
ϕ1

(
β

2
L

)
N(Φ(tm), tm)

+ βϕ2

(
β

2
L

)[
N(Φ(a), tm+1/2)−N(Φ(tm), tm)

]
Ψ(c) =ϕ0 (βL) Φ(tm) + βϕ1 (βL)N(Φ(tm), tm)

+ 2βϕ2 (βL)
[
N(Φ(b), tm+1/2)−N(Φ(tm), tm)

]
.

(5.45)

5.5 Computational Details and Results for One-Dimensional Helium

In order to test these approaches, each propagation method has been employed to rep-

resent a simple one-dimensional helium atom model which has been often used in similar

test calculations [211]. The Hamiltonian in this case is

H = − ~2

2m

∂2

∂x2
+ V (x) + V laser(x, t) + V H[ρ](x, t) + V ex[ρ](x, t). (5.46)
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Here, V (x) is a sot Coulomb potential [212, 213] for Z = 2,

V (x) =
−2√
a2 + x2

, (5.47)

where, in the following calculations, the parameter a has been set to 1. Two models for the

two-electron density are used,

ρ(x, t) = 2|Φ1(x, t)|2 (model A) (5.48)

and

ρ(x, t) = |Φ1(x, t)|2 + |Φ2(x, t)|2 (model B), (5.49)

where Φ1 and Φ2 are initialized as the first two eigenstates of the ground state Kohn–Sham

Hamiltonian at t = 0. Model A is an uncoupled system, while, in model B, the two state

are coupled, leading to more complicated nonlinear effects.

The one-dimensional Hartree potential is calculated as

V H[ρ](x, t) =
e2

4πε0

∫
ρ(y, t)√

(x− y)2 + a2
dy, (5.50)

with the same value for a. The exchange-correlation potential used is given by the exact-

exchange approximation [213],

V ex[ρ](x, t) = −1

2
V H[ρ](x, t). (5.51)

The electric field, E(t) has been incorporated via the dipole approximation and use of the

length gauge representation for the orbitals leading to

V laser(x, t) = E(t)x. (5.52)
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This term may be incorporated within either the linear part, resulting in a time-dependent

L, or the nonlinear part, preserving the time-independence of L. In the latter case, the two

parts take the form

L = − ~2

2m

∂2

∂t2
+ V (x) (5.53)

N(Φ, t) =
(
V laser(x, t) + VH [ρ](x, t) + Vex[ρ](x, t)

)
Φ(t). (5.54)

Two types of TDDFT calculations were performed using this model. In the first, the

orbitals were chosen to be in an excited state at t = 0. Such an initial condition causes

immediate fluctuations in the electron density upon propagation which, in turn, cause rapid

changes in the nonlinear part, N. In these calculations, the electric field was kept at zero

so that only the nonlinear potentials were time-dependent. The computational box was of

width 160 Bohr, and a complex absorbing potential (CAP) [214] was added at the bound-

aries in order to allow some ionization which occurs early in the simulation.

In the second type of calculation, the orbitals were initialized in the natural ground state

by diagonalizing the ground state Kohn–Sham Equation, and a laser field was used to excite

the system. The form of this field was a variation of the smooth turn-on pulse [160],

E(t) =


E0 sin

(
πt

2Tr

)
sin(ωt), if 0 ≤ t ≤ Tr,

E0 sin(ωt), otherwise,

(5.55)

where the frequency, ω, and ramping time, Tr, were set to 0.148 a.u. and 6/ω, respectively.

Simulations were carried out for maximum electric fields, E0, of both 0.1 a.u. (5.14 V/Å)

and 1.0 a.u. (51.4 V/Å). The computational box in these cases was of width 400 Bohr.

In both types of calculations, the wave functions were represented using a sinc basis, Eq.

(4.2), with the Kinetic energy being represented by the full matrix of Eq. (4.3).

Benchmark calculations were performed using the Taylor time propagator, Eq. (5.13),

using a time step size of 10−5 a.u., where 1 atomic time unit equals 0.0241 femtoseconds.
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These time step sizes are 1000 times smaller than those needed for stability and ensure

dramatic accuracy. The wave functions resulting from the various methods are compared

to the benchmark calculations (B) by use of the Tanimoto index [215],

σi(t) =
IBi(t)

IBB(t) + Iii(t)− IBi(t)
, (5.56)

where

Iij(t) =

∫
|Φ∗i (x, t)Φi(x, t)|dx. (5.57)

This metric ranges in value between zero and one, with the latter indicating a perfect match.

This similarity measurement takes into account whether the two functions differ by a con-

stant; thus, the wave functions are not normalized at each time step. In practice, it is more

convenient to discuss the time averaged agreement,

σ(Ti→Tf ),i =
1

Tf − Ti

∫ Tf

Ti

σi(t)dt (5.58)

defined within the given temporal range, Ti to Tf . The time-averaged error may then be

determined as 1− σT .

A summary of the operation count, number of times the TDDFT functionals must be

updated per time step, and accuracy scaling for each propagation technique used below

is presented in Table 5.1. Each propagation technique is expected to scale linearly with

respect to the number of electrons, with the exception of the Runge–Kutta-type methods,

in which case the scaling is affected by the number of times that the TDDFT functionals

must be updated. Descriptions of the implicit-explicit (IMEX) methods may be found

in Ref. [205]. The following data and figures are reproduced from Ref. [205] with the

permission of the American Physical Society.
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Method Operations Hartree Accuracy
Taylor 4 1 O(∆t4)
SPO 1 1 O(∆t3)
CN 2 1 O(∆t2)
RK2 2 2 O(∆t2)
RK4 4 4 O(∆t4)

AB2AM2 2 1 O(∆t3)

IFAB2 3 1 O(∆t3)
IFRK2 3 2 O(∆t3)
IFRK4 3 4 O(∆t4)
ETD1 2 1 O(∆t2)
ETD2 3 1 O(∆t3)

ETDCN 3 1 O(∆t3)
ETDRK2 3 2 O(∆t3)
ETDRK4 8 4 O(∆t4)
Krogstad 9 4 O(∆t4)

Table 5.1: The main computational effort per time step is matrix vector multiplication
(Operations) and solution of the Poisson equation (Hartree). All matrices dependent upon
L are considered to be constant in time so that they must be calculated only once. The table
is separated into three sections: time evolution operator and direct numerical integration
methods (top), in which the complete Hamiltonian is used to propagate the wave function,
IMEX methods (middle), and exponential integrator methods (bottom). Both of the latter
two groups split the TDKS equations into linear and nonlinear parts.

5.5.1 Excited State Superposition

First, the single-orbital case is considered. This orbital is initialized as a superposition

in equal measure of the ground and first excited eigenstates of the ground state Hamiltonian.

Upon propagation, the orbital is free to develop without external perturbation. Thus, the

only time-dependent potentials are the nonlinear functionals of TDDFT.

Figure 5.1 shows the error associated with various techniques for propagating the TDKS

equations describing this system. Of the time evolution operator techniques—Taylor, CN,

and SPO—each appear to exhibit comparable error in these simulations when stable. Taylor

propagation yields values similar to the CN and SPO methods for time step sizes up to

∆t = 0.02 a.u., after which it becomes unstable. For these methods, the largest time step
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Figure 5.1: The time-averaged error of various methods for integrating the TDKS equations
when electrons are initialized in an excited state. The time interval considered was between
Ti = 10 a.u. and Tf = 100 a.u. Time evolution operator and direct numerical integration
approaches are shown above while IMEX, IF, and ETD approaches are shown below. CN
is shown in the latter for comparison.

size which allows for 99% accuracy in the orbital is around ∆t = 0.2 a.u. As for the direct

numerical integration methods, RK2 and RK4, these have less error than the time evolution

operator techniques but are limited by a maximum time step size.
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Figure 5.2: The time-dependent energy (above) and norm (below) of the IFRK4 integration
method using time step sizes of 0.5 and 0.7 a.u. as compared to a benchmark calculation.

The IF and ETD methods perform much better than the time evolution operator and

direct numerical integration techniques, indicated by smaller error for larger time step sizes.

Of methods scaling as O(∆t3), the IFRK2 and IFAB2 methods perform marginally better

than the ETDRK2 method. For each of these, the maximum time step size which maintains

99% accuracy is around 0.2 to 0.3 a.u. Of methods scaling as O(∆t4), IFRK4 does best,

with Krogstad outperforming ETDRK4 integration and a maximum time step size for each

near 1.0 a.u.

The energy oscillates with a period of 5 a.u. in these calculations, as shown in Fig. 5.2.
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Figure 5.3: The time-averaged error of various methods for integrating the TDKS equations
over a long time period. The time interval considered was between Ti = 10 a.u. and
Tf = 1000 a.u. Time evolution operator and direct numerical integration approaches are
shown above while IMEX, IF, and ETD approaches are shown below. CN is shown in the
latter for comparison.

The IFRK4 method is seen to be capable of accurately producing the proper energy curve

for even large choices of time step size near 0.7 a.u., while the norm deviates at a rate of

only about 5× 10−5 fs−1.
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For longer simulations, the nonlinear nature of the TDKS equations requires accurate

integration in time. As a rigorous test of the methods considered here, a long (Tf = 1000

a.u.) simulation was performed using each. The results are shown in Fig. 5.3. Here, the

time evolution operator and direct numerical integration methods fail to maintain accuracy

over the course of the simulation. This is because the error associated with assuming the

total Hamiltonian to be constant between steps accumulates throughout the simulation and

is exacerbated by the rapidly changing nonlinear potential in this case. These methods can

be improved by modification using predictor-corrector schemes. The maximum time step

sizes for the ETDRK4 and Krogstad methods are near 0.3 a.u., while the IFRK4 method

performs well up to time step sizes of around 0.5 a.u.

5.5.2 Laser-Driven Dynamics of a Single Orbital

The collection of methods was also tested with application to describing laser-driven

dynamics. In these simulations, a single orbital was used, initialized in the ground state

of the t = 0 Hamiltonian, and the density was defined using model A. Tests including the

laser potential, V laser, in the linear part as well as the nonlinear part were both conducted.

For the latter, the matrix-valued functions containing L were updated at each time step.

Due to the wide computational box, no ionization was expected and, thus, no CAP was

implemented.

The accuracy of the time evolution operator and direct numerical integration methods

is shown in Fig. 5.4. The performance of these methods in this case is much better than

that of the excited state superposition. This is likely due to the fact that the orbitals develop

more slowly under the the driving influence of the ramped laser rather than that of the

previous rapidly changing nonlinear potentials. This allows for the approximation of a

constant Hamiltonian between time steps to better describe the dynamics.

Laser Potential in Nonlinear Part
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Figure 5.4: The time-averaged error of time evolution operator and direct numerical in-
tegration methods for integrating the TDKS equations when electrons are driven by an
external electric field of strength 0.1 a.u. The time-dependent potential from the electric
field was included in the linear part. The time interval considered was between Ti = 10
a.u. and Tf = 100 a.u.

The errors associated with the IMEX, IF, and ETD methods for a maximum electric

field value of 0.1 a.u. are presented in Fig. 5.5. Methods using RK4-type integration,

other than Krogstad, exhibit stability for time step sizes up to about 0.1 a.u. For stable time

step sizes, these methods’ accuracies are within an order of magnitude of the CN method.

However, it appears that the separate numerical integration of the time-dependent nonlinear

part hinders the IF and ETD methods such that they are outperformed by the CN method

for all choices of time step size. The ETDCN method is able to match the CN method up

to time step sizes of about 0.7 a.u. due to its time evolution form.

Laser Potential in Linear Part

By including the laser potential in the linear part, the stability of the IF and ETD meth-

ods is significantly enhanced, as shown in Fig. 5.6. There is a clear grouping of O(∆t3)

andO(∆t4) methods. The RK4-type methods now outperform CN for choices of time step

sizes up to about 0.8 a.u.

81



10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.01 0.10 1.00

1-
σ

T

Δt (a.u.)

CN
ETD2

ETDCN
IFAB2
IFRK2

ETDRK2
AB2AM2
ETDRK4

IFRK4
Krogstad

Figure 5.5: The time-averaged error of various methods for integrating the TDKS equa-
tions when electrons are driven by an external electric field of strength 0.1 a.u. The time-
dependent potential from the electric field was included in the nonlinear part. The time
interval considered was between Ti = 10 a.u. and Tf = 100 a.u. CN is shown for compar-
ison.
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Figure 5.6: The time-averaged error of various methods for integrating the TDKS equa-
tions when electrons are driven by an external electric field of strength 0.1 a.u. The time-
dependent potential from the electric field was included in the linear part. The time interval
considered was between Ti = 10 a.u. and Tf = 100 a.u. CN is shown for comparison.
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Figure 5.7: The time-averaged error of various methods for integrating the TDKS equations
when electrons are driven by a strong external electric field of strength 1.0 a.u. The time-
dependent potential from the electric field was included in the linear part. The time interval
considered was between Ti = 10 a.u. and Tf = 100 a.u. SPO is shown for comparison. The
second-order Runge–Kutta method is excluded from the top figure due to it being unstable
for each choice of time step size.

When a strong laser field is considered, all methods generally perform worse. This is

illustrated in Fig. 5.7. In the case of the time evolution operator and direct numerical inte-

gration methods, this increased error is due to the large magnitudes of the rapidly changing
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Hamiltonian. While the Taylor and CN approximations for the exponential time evolution

operator significantly degrade in this case, the SPO approach performs best by far due to

its analytical expression for the matrix-exponential form.

In the case of the IF and ETD methods, this degradation in accuracy is due to the break-

down of the approximation that the L matrix and its associated matrix-valued functions are

constant for the duration of each time step. While the SPO approach performs best out of

the time evolution operator methods, IFRK4 is able to match or exceed it for all choices

of time step size, while other RK4-type methods maintain similar accuracy. Notably, the

ETDRK2 and IFRK2 methods perform surprisingly well in this case, with the latter being

nearly indistinguishable from its RK4-type counterpart.

5.5.3 Laser with Two Orbitals

In order to provide a rigorous test of nonlinear contributions, a system comprised of two

electrons in separate orbitals, coupled via the Hartree and exchange-correlation potentials,

was time propagated under the influence of an external electric field using the collection of

methods. The density was determined using model B. The laser was included in the linear

part.

The error associated with the lower initial energy orbital is shown in Fig 5.8 and that

of the higher initial energy orbital is shown in Fig. 5.9. It appears that the second, higher

energy orbital dominates as the larger source of error for most methods. This is to be ex-

pected due to the spatial extension and more complicated nodal structure of this orbital.

The CN and SPO methods alternate in exhibiting the superior accuracy of the time evo-

lution operator and direct numerical integration methods as the time step size changes for

each orbital. Of the IF and ETD methods, IFRK4 and ETDRK4 share similar accuracy for

the second orbital, representing the lowest error of any tested method. However, in the case

of the first orbital, the IFRK4 method gains an advantage for time step sizes above 0.4 a.u.

The reason that the integration methods perform better, in general, for model B is that the
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Figure 5.8: The time-averaged error of orbital 1 for model B, using various methods for
integrating the TDKS equations when electrons are driven by an external electric field of
strength 0.1 a.u. The time interval considered was between Ti = 10 a.u. and Tf = 100
a.u. Time evolution operator and direct numerical integration approaches are shown above
while IMEX, IF, and ETD approaches are shown below. CN is shown in the latter for
comparison.

dynamics related to the nonlinear potential occur more slowly than for model A.
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Figure 5.9: The time-averaged error of orbital 2 for model B, using various methods for
integrating the TDKS equation when electrons are driven by an external electric field of
strength 0.1 a.u. The time interval considered was between Ti = 10 a.u. and Tf = 100
a.u. Time evolution operator and direct numerical integration approaches are shown above
while IMEX, IF, and ETD approaches are shown below. CN is shown in the latter for
comparison.

5.6 Summary

Various exponential integrator methods have been implemented within TDDFT and

tested against conventional propagation techniques. It has been determined that of the time
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evolution operator and direct numerical integration methods, the CN and SPO approaches

performed best for the test simulations. Typically these two choices yielded similar results;

however, in the cases of intense laser fields, SPO was clearly superior. Of the IF and ETD

methods, the IFRK4 and ETDRK4 approaches yielded the most accurate results for each

of the test cases.

For dynamics driven by a linear, time-dependent potential, the RK4-type exponential

integrator methods were able to match the front-runners of the joint time evolution opera-

tor and direct numerical integration group, CN or SPO, for both moderate and high laser

intensities. In cases where the dynamics were driven by the nonlinear part of the Hamilto-

nian, the RK4-type exponential integrator methods outperformed even the best suited time

evolution operator methods by orders of magnitude.

While the ETD method is typically seen as being the most accurate of the exponential

integrators in the mathematical literature, in these results the IF method performed uni-

formly better, though slightly so. This may be due to a more complicated structure of the

nonlinear part in Eq. (5.32) for TDDFT rather than in other equations investigated in the

literature where the nonlinear part is typically a yk term.

Beyond the success of the RK4-type exponential integrators shown in this study, one

may note that they may further benefit from the ability of Runge–Kutta approaches to

propagate the wave function using variable time step sizes. This implies the capability of

dynamically adjusting the time step size throughout simulations in order to best balance the

computational cost and accuracy.

In tests including a time-dependent, linear potential associated with a driving laser field,

the accuracy when including this term in the linear part far exceeded that of when it was

included in the nonlinear part. This implies that in order to achieve the best results, one

must update the matrix-valued functions containing the linear part at each time step—an

equivalent complication to that of the CN method. While this process may be possible in the

case of a compact basis representation, such calculations would be infeasible when dealing
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with large, sparse matrices related to representations such as the real space grid approach.

The inclusion of Krylov subspace expansions, or alternative approaches for the evaluation

of these matrix-valued functions in such a scenario remains a topic of future research. A

split operator approach, using fast Fourier transforms as explained in Sec. 5.3.3, was tested

as a means of approximating the matrix exponential needed for the IFRK4 method. The

results of this approach yielded the same improvement of accuracy as those presented above

using a diagonalization of the L matrix.
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Chapter 6

VOLKOV STATE BASIS FOR THE SIMULATION OF PERIODIC SYSTEMS IN

INTENSE LASER FIELDS

6.1 Volkov State Basis Set

As described in Chapter 1, field-induced dynamics within periodic systems is a topic

of common interest. These laser-matter interactions play a role in the investigation of

materials’ optical and electrical properties and are the subject of popular studies such as

that of recently demonstrated HHG in solids. Up until this point of the thesis, only static

basis functions, borrowed from popular DFT implementations, have been discussed for use

within TDDFT calculations. In this section, time-dependent basis functions are introduced,

which are meant to well-represent laser-induced electron dynamics. These time-dependent

functions are chosen as the Volkov states, φV
g (r, t), defined as the solution to the TDSE for

the velocity gauge Hamiltonian, Eq. (2.41),

i~φ̇V
g (r, t) = Hvel(t)φV

g (r, t), (6.1)

representing single particles that are free apart from the influence of a uniform external

vector potential. The form for these states may be analytically described as

φV
g (r, t) =

1√
Ω

eig·re−iϕ
g(t), (6.2)

which is that of a plane wave modified by a time-dependent phase factor with the Volkov

phase defined as

ϕg(t) =

∫ t

0

~2

2m

[
g +

e

~
A(τ)

]2

dτ. (6.3)
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A wave function described by such time-dependent basis functions takes the form

ψ(r, t) =
∑
g

cg(t)φg(r, t). (6.4)

Substitution of this into the TDSE yields

i~
∑
g

[
ċg(t)φg(r, t) + cg(t)φ̇g(r, t)

]
=
∑
g

cg(t)Hφg(r, t). (6.5)

Of present interest is the description of wave functions resulting from Hamiltonians of the

form H = Hvel + V (t). By this substitution and choosing the basis functions to be Volkov

states, Eq. (6.5) may be simplified due to the advantageous property i~φ̇V
g = HvelφV

g ,

∑
g

[i~ċg(t)− cg(t)V (t)]φV
g (r, t) = 0. (6.6)

By left-multiplying by φV
g′(r, t) and integrating over r, this equation may be rewritten in

the matrix form for a periodic TDDFT application as

i~ċV
nk(t) = VV(t)cV

nk(t). (6.7)

Equation (6.7) may be solved using the collection of techniques discussed in Chapter 5.

Here, VV(t) indicates the time-dependent Volkov matrix elements which are related to

the plane wave matrix elements as

V V
gg′(t) = 〈φV

g (t)|V (t)|φV
g′(t)〉 = V PW

gg′ (t)e
i
(
ϕg−ϕg′

)
. (6.8)

This form makes clear the simplicity of calculating the Volkov state basis matrix elements.

One may transform existing plane wave basis programs into Volkov state basis programs

in a straightforward manner by calculating the Volkov phase difference via on-the-fly inte-

gration of the vector potential and applying the associated phase factor to the plane wave
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Figure 6.1: One-dimensional, time-dependent phase factors at |g| = 3.9 a.u. (top) and
|g| = 0.8 a.u. (middle) included in the analytic solution of the TDSE using the velocity
gauge Hamiltonian with electric field amplitudes of E0 = 0.1 a.u. and E0 = 0.5 a.u,
respectively. The shape of the vector potential is presented for arbitrary units (bottom).

matrix elements, which are readily available and employed in many popular codes. Fur-

thermore, due to the fact that the Volkov phase equals zero at t = 0, the initial Volkov

state basis matrix elements are exactly the plane wave basis elements when describing the

field-free ground state. Thus, conventional plane wave basis techniques may be used to

initialize the system before propagation via the Volkov state basis.

In the Volkov state basis representation, the stiff 1
2m

[p̂ + A]2 operator is removed from

the acting Hamiltonian during propagation and is, instead, absorbed into the basis func-

tions as a phase factor. Without this mathematical relocation of the vector potential, this

phase factor would still be present in the time-dependence of the expansion coefficients for

a static basis. The time-dependence of this phase factor is illustrated in Fig. 6.1, which is

reproduced from Ref. [216] with permission of the American Physical Society. It is shown

that the dynamic behavior of the expansion coefficients for a static basis set are capable of

occurring on a time scale which is much shorter than the causal vector potential. The ad-

vantage of the Volkov state expansion, then, is clear as this phase factor may be analytically

included in the definition of the basis functions rather than numerically propagated.

91



In order to apply Volkov states to the representation of periodic systems, k-points must

be introduced. By modifying the definition of the Volkov states as

φV
k,g(r, t) =

1√
Ω

eig·re−iϕ
g+k(t), (6.9)

one maintains the necessary property of Eq. (6.1) when describing a Bloch wave function

of the form found in Eq. (2.59).

6.2 Computational Details and Results

In the following sections, the Volkov state basis is used within RT-TDDFT in order

to simulate laser-driven dynamics in a one-dimensional periodic potential and, then, for a

three-dimensional bulk diamond test case. In both scenarios, the results are compared to

those of conventional representation techniques such as the related plane wave basis and

the real space grid approach.

6.2.1 One-Dimensional Mathieu Potential

First, the Volkov state basis is tested for a simple one-dimensional, single-electron case

using only one k-point of k = 0. The periodic potential is that of the one-dimensional

Mathieu potential,

V (x) = −V0 [1 + cos(2πx/L)] , (6.10)

where the parameters V0 and L are the potential amplitude set as 0.37 a.u. and the length of

the unit cell set as 8 Bohr, respectively. The system is subject to a laser field as described by

Eq. (5.55) with parameters E0 = 0.1 a.u., ω = 0.148 a.u, and Tr = 6/ω. The figures and

results presented here are reproduced from Ref. [211] with the permission of the American

Physical Society.

A comparison of performance between the plane wave and Volkov state bases is pre-
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Figure 6.2: Calculations of the HHG spectra of one electron in a periodic Mathieu potential
using both plane wave and Volkov state bases. This calculation was performed using a
single k-point and propagated until tfinal = 500 a.u. Laser parameters E0 = 0.1 a.u. and
ω = 0.148 a.u. were used.

sented in Fig. 6.2 for the description of HHG. This spectrum has been obtained by taking

the Fourier transform of the cell-averaged probability current after propagation of the ex-

pansion coefficients via the Crank–Nicolson time evolution operator approach. In the case

of time step sizes equal to 0.005 a.u., both representations produce overlapping data, show-

ing high harmonics at each integer multiple of the input frequency. However, for the plane

wave basis, as ∆t increases to 0.5 a.u. the production of these high harmonics breaks down

since these large time steps are unable to resolve the rapidly changing expansion coeffi-

cients. The Volkov state basis, on the other hand, is able to nearly completely overlap with

the benchmark case, even for ∆t = 0.5 a.u.

The advantage of the Volkov state basis is readily noticeable in Fig. 6.3 which is re-

produced from Ref [216] with the permission of the American Physical Society. This

figure shows the density at the conclusion of the time step propagation. Again, both rep-

resentations provide overlapping densities for the small time step size of ∆t = 0.005 a.u.

However, for large time step sizes, the plane wave basis yields results which diverge signif-
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Figure 6.3: Electron density at tfinal = 500 a.u. for time step sizes of ∆t = 0.005 a.u. and
∆t = 0.5 a.u. The potential and laser parameters were the same as those used in Fig. 6.2.

icantly from the benchmark case while the Volkov state basis yields a density which closely

resembles it.

This comparison is further investigated in Figs. 6.4(a) and 6.4(b) which indicate the

oscillatory nature of the expansion coefficients by plotting the metric 〈ċ〉 =
∫
〈|Re{ċg}|〉tdg

for a range of field strengths and frequencies. This metric is related to the time-averaged

rate of change of these coefficients over time, which is indicative of the difficulty in using

the time evolution operator approach to numerically propagate the wave function. In these

simulations, the potential amplitude of the Mathieu potential was set as V0 = 0.37 a.u.

In this case, where the Hamiltonian is of the form HV + V , the Volkov state expansion

is expected to perform best when the frequency, and, thus, the energy, of the external field

is high enough so that the perturbation of the Mathieu potential becomes negligible. This

is due to the fact that, in this region, the solution approaches being analytically described

by this representation. Similarly, for the plane wave representation, higher frequency fields

are easier to describe as the additional complexity of including a perturbation is minimized.

For both cases, higher field strengths result in more oscillatory expansion coefficients, in-
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Figure 6.4: (a,b) Time-averaged, g-integrated expansion coefficients and (c,d) density dif-
ference for both plane wave and Volkov state representations over a range of laser frequen-
cies and amplitudes. The influence of the static Mathieu potential results in resonances
corresponding to the E0 → E1 and E1 → E2 transitions at 0.428 a.u. and 0.154 a.u.,
respectively, and the E0 → E2 double photon transition at 0.291 a.u.

dicating a heightened difficulty when attempting to propagate the wave function. Most im-

portantly, the Volkov state coefficients are seen to vary significantly more smoothly overall,

which speaks to that representation’s advantage.

Instead, via inductive reasoning, one may also assess the two representations by com-

paring the resulting final densities, ρ(x) = |ψ(x, tfinal)|2, of large time step simulations to

the small time step, converged solutions by the metric ∆ρ ≡
∫
|ρconverged(x) − ρ(x)|dx.
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These results are presented in Figs. 6.4(c) and 6.4(d) for the same range of field strengths

and frequencies and provide a more straightforward depiction of the Volkov state expan-

sion’s ability to better represent laser-induced dynamics. The trends match those found by

analyzing the average change in coefficients. It may be concluded that the advantage of

the Volkov state basis is best realized for field strengths above ∼0.3 a.u., corresponding to

∼1.5 V/Å or, equivalently, an intensity of ∼3.0× 1013 W/cm12.

6.2.2 Three-Dimensional Bulk Diamond

In this section, results, reproduced from Ref [216] with the permission of the American

Physical Society, are presented for the RT-TDDFT propagation of laser excited diamond

using the Volkov state basis for a laser of energy 6.05 eV. In each simulation, the vector

potential was simultaneously propagated via the Verlet algorithm as explained in Ref. [85].

The external electric field representing the laser was defined using a squared sine envelope

with pulse length T :

E(t) = E0 sin

(
πt

T

)2

sin (ωt) . (6.11)

These results are compared to benchmark calculations using the real space grid ap-

proach and a Taylor expansion of the time evolution operator, Eq. (5.13). In these simula-

tions, the upper limit of the time step sizes used within the Taylor expansion approach was

determined to be about ∆t = 0.005 a.u. Above this, simulations became unstable. The

Volkov state basis simulations were propagated using the split operator approach described

in Ref. [211]. The resulting potential exponential was split in order to treat the nonlocal

pseudopotential in the manner discussed in Ref. [195].

For each Volkov state basis calculation, the initial state was prepared using the conju-

gate gradient method and a plane wave basis representation, as opposed to using the real

space grid approach for the ground state and Fourier transforming the result. This detail

is important as the nonlinearity of the Kohn–Sham equations leads to enhanced sensitivity
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with respect to the choice of initial state, and by preparing the system in this manner, small

perturbations attributed to the sudden change of kinetic energy operator representation at

t = 0 were avoided.

In the example calculation, a high intensity is chosen for the laser, I > 3×1013 W/cm2,

because in this regime one expects the Volkov state basis propagation to display significant

accuracy improvement as compared to full Hamiltonian discrete time step propagation

methods. In the case of intense lasers applied to systems using pseudopotentials to de-

scribe frozen core electrons, the upper bound on the range of considered intensities should

be around 1015 W/cm2 [217]. In the following tests, the diamond unit cell is impacted by a

laser pulse of intensity 1× 1014 W/cm2.

The Volkov state propagated energy and current, shown in Fig. 6.5, behave well for

large time step sizes. The results for both 0.005 a.u. and 0.05 a.u. time step sizes nearly

overlap. While the overall features of these results are well represented by the Volkov prop-

agation, one notices the effect of nonlinear elements occurring in the Hamiltonian, namely

the Hartree and exchange-correlation potentials. These terms lead to unavoidable small

oscillations in the early energy. While these nonphysical features cannot be completely

eliminated, they are significantly diminished by choosing a smaller time step size; see the

energy inset of Fig. 6.5. These oscillations lead to growing noise in the resulting current,

shown in the current inset of Fig. 6.5.

Here, the increased magnitude of the current lessens the impact of the oscillations re-

lated to the Volkov state basis propagation. Figure 6.6 shows the spectral response in

which the first few harmonic resonance peaks are pronounced. Even when using a time

step size of 0.05 a.u., the Volkov state basis propagation is capable of distinguishing modes

related to the third and fifth harmonics. This example illustrates that for high intensities,

the Volkov state basis representation is capable of accurately describing complex electron

density dynamics using time step sizes roughly an order of magnitude greater than that of

the conventional real space Taylor propagation method.
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Figure 6.5: Energy and current results for real space grid and Volkov state bases corre-
sponding to laser energy 6.05 eV, intensity 1 × 1014 W/cm2, and width 30 fs. The real-
space grid representation has been propagated using the Taylor expansion of the discrete
time step propagator and a time step size of 0.005 a.u. (black). Volkov state basis results
are shown for time step sizes of 0.005 a.u. (blue) and 0.05 a.u. (cyan). Insets highlight
oscillation in early energies and later currents for Volkov propagations. These calculations
were performed using an 8× 8× 8 k-point mesh. Atomic units have been employed.

6.3 Application: Nano-Scale Vacuum Tube Diode

In the following section, an example application of Volkov state basis TDDFT is pre-

sented. Many simulations are conducted which propagate an electronic density associated

with 30 lithium atoms up to a final time of tfinal = 30 fs. These simulations take advantage

of the large time step sizes made available by the Volkov state basis. Results in this section
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Figure 6.6: High harmonic generation results for both real space grid and Volkov state bases
corresponding to the current results shown in Fig. 6.5. The employed window function is
the pulse envelope.

are reproduced from Ref. [218] with the permission of AIP Publshing.

The modern era of electronics was marked by the development of the integrated cir-

cuit, whose foundation was the semiconductor-based transistor. This technology allowed

for low power consumption, reliability, and intuitive circuit design, thereby outpacing and

replacing the earlier relied upon vacuum-tube-based implements. Such semiconductor-

based devices have been the backdrop of the advancing field of electronics for many years;

however, as the push for ultrafast operating speeds approaches the petahertz range [4], the

limited electron transport velocity of semiconductor transistors presents a formidable obsta-

cle. Recent interest in electron photo-emission from metal nanotips [219–222], motivated

by improved ultrafast laser-guidance of electrons [223–230], has inspired research pointing

back in the direction of vacuum transport as a path towards achieving such higher speeds,

with some prototype transistor devices being fabricated in the last few years [113–116].

This section focuses on the template of Higuchi et al.[116], who take advantage of

asymmetric near-field enhancement of two facing tungsten tips in order to achieve laser-
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D

Figure 6.7: Schematic of two neighboring cells within the model system, presented as a
two-dimensional slice through the middle. The jellium diode shape (dark blue) is centered
within a periodic computational box of width 27 Å in directions perpendicular to the axis
of symmetry. The length of the box is adjusted in order to vary the effective separation
distance, D, between the sharp and flat ends of the diode shape. The sharp cone tip experi-
ences enhanced field emission (light blue), resulting in a preferential current in the direction
of sharp end to flat end (left to right in this schematic). The flux is measured at the midpoint
between the two tips (red), which is essentially either the left or right boundary of the box.
The dashed line box indicates the similarity of this model to that of two facing nano-scale
tips.

driven rectification. It was found that by inducing electron emission from either tip using

a few-cycle laser pulse, a sharper tip may act as an anode and an opposite dull tip may act

as a cathode due to the relative emission rates which allow for an effective one-way total

current. Because of the short duration of the multi-photon photoemission process, the high

kinetic energy of the emitted electrons, and the sub-micron separation distance between the

opposing tips, it was asserted that this device was able to operate on the sub-picosecond

timescale. Furthermore, it was noted that faster electron transport may be possible for

smaller separation distances due to stronger field enhancement and, in the sub-nanometer

separation regime, prominent tunneling channels [101].

6.3.1 Model

This investigation of laser-driven nano-scale rectification was pursued by means of sim-

ulation via RT-TDDFT applied to a jellium model of a lithium cluster. Such models have
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been shown to well-resemble the description of electronic excitations in bulk metal coun-

terparts [107, 133, 231–233]. In this case, the external ion potential was represented by the

Coulomb attraction to the homogeneous positive background charge density of the jellium,

V ion(r) =
−e2

4πε0

∫
ρbg(r

′)

|r− r′|dr
′. (6.12)

The shape of the positive background charge density was chosen to be a cylinder with

one end capped by a cone—see Fig. 6.7—in order to model facing sharp and flat tips. The

system was excited by a homogeneous laser field in order to simulate an induced prefer-

ential net current direction. Periodic boundary conditions were enforced so that electron

density leaving from either end of the jellium model traveled between the two sites by

wrapping through the boundary of the computational box, a process analogous to the fac-

ing tips of Higuchi et al.. The system of study in this work, then, is truly an infinitely

repeating chain of pointed jellium diode devices. Only one k-point was employed in these

calculations, with value of k = 0.

In these simulations, the sharp tip of the jellium is expected to induce field enhancement

[234, 235] which, in turn, is expected to result in amplified electron emission at that site.

The directionally favored electron emission is expected to lead to a preferential net current

direction traveling in the direction of sharp tip to flat tip. The cylindrical portion of the

jellium was given a radius of 3.43 Å, with the angle of the cone-shape cap as 80◦. The total

length of the shape was then 20 Å, in order to yield a volume corresponding to a cluster

of 30 lithium atoms. The length of the box was adjusted in order to vary the separation

distance between the tips.

6.3.2 Results and Discussion

The jellium model system was subjected to a laser of wavelength 780 nm, polarized

parallel to the axis of symmetry, which induced an oscillating current in the computational
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Figure 6.8: Probability density transfered through the plane bisecting the two jellium model
edges (top) for the example case ofD = 30 Å, using a laser field of I = 1.33×1013 W/cm2

and Tr = 2.48 fs (bottom). A linear fit (blue) was fit by linear regression applied to the data
sampled between t = 3 and t = 10 fs (red).

box. The resulting flux, determined at the location of the plane bisecting the two edges of

the jellium model, z0, as

Φ(z0, t) =
~
mi

∫ ∫
j(x, y, z0; t)dxdy, (6.13)

was integrated over time in order to ascertain the probability density transfered, Ntr:

Ntr(t) =

∫ t

0

Φ(t′)dt′. (6.14)

Figure 6.8 shows this result for an example scenario of a separation distance, D, of 30

Å, a field intensity, I , of 1.33 × 1013 W/cm2, and a short field ramping time of Tr = 2.48

fs. Here, positive values for Ntr relate to a transfer of probability density from sharp to

flat edges of the jellium model, i.e. left to right with respect to the schematic in Fig.

6.7. In each simulation, the small time regime (t ≤ 15 fs) was well described by a linear

trending sine curve. This section was fit by means of linear regression and the probability
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Figure 6.9: Phase dependence of the probability density transfer rate for (a) a symmetric
jellium cylinder shape without a cone cap and with a ramping time of Tr = 2.48 fs, (b) the
diode jellium model with a ramping time of Tr = 2.48 fs, and (c) the diode jellium model
with a ramping time of Tr = 9.94 fs. For results using the shorter ramping time, a sinusoidal
fit (blue line) shifted by an offset along the y-axis (dashed red line) was determined via
linear regression. Each simulation employed parameters D = 30 Å and I = 1.33 × 1013

W/cm2.

density transfer rate, ktr, was determined as the slope of the resulting trend line. The rate

of transfer tended to level off soon after this region in each simulation. This is most likely

due to the increasing amount of high-energy orbitals being ionized from the jellium and

following the field as nearly free particles. In this way, the near-field enhancement becomes

more negligible to the physics described within the computational box as the simulation

progresses.

The laser phase dependence of the transfer rate is shown in Fig. 6.9 for parameters

D = 30 Å and I = 1.33 × 1013 W/cm2. A symmetrically shaped cylinder without a cone

cap was substituted in Fig. 6.9(a) in order to serve as a control test under geometrically

symmetric conditions. In this case, while the shape of the jellium is symmetric, the phase,
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Figure 6.10: Separation distance dependence of the probability density transfer rate for the
jellium diode shape using a ramping time of Tr = 9.94 fs and an intensity of I = 1.33×1013

W/cm2. Data points have been connected with a solid line in order to guide the eye.

in combination with the short ramp time, provides a source of asymmetry by significantly

lowering the effective potential barrier on one end of the jellium before the other. This

causes a preferred current direction in the early time steps of the simulation. The trend

observed is well described as a sine curve, whose vertical shift only varies from the zero

axis by 0.004 fs−1 (1 % of the amplitude). This insignificant offset indicates that no par-

ticular direction along the axis of symmetry is favored when the influence of the phase is

neglected. However, for the case of the diode shape, Fig. 6.9(b), the same trend may be

applied with an offset of 0.080 fs−1 (40 % of the amplitude), indicating a preferential cur-

rent in the direction of sharp to flat edges. A longer ramping time of Tr = 9.94 fs was also

employed using the diode shape, Fig. 6.9(c), in order to demonstrate positive transfer rates

for any choice of phase. In this case, no such discernible trend was determined.

The dependence of the transfer rate on the separation distance, D, is presented in Fig.

6.10. For each value of D, two simulations were performed using a phase of either 0 or

π. The two results for ktr were then averaged together in order to eliminate the phase

dependence. Even for the smallest separation distance of 20 Å, the potential barrier is
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wide enough as to not allow for significant tunneling. The enhanced net transfer rate for

shorter separation distances is due to the faster arrival of the emitted electron density to the

opposite edge of the jellium. This traveling density, then, interacts with the Kohn-Sham

effective potential well and, thus, is reintroduced to the near-field enhancement.
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Figure 6.11: Intensity dependence of the probability density transfer rate for the jellium
diode shape using a ramping time of Tr = 9.94 fs and a separation distance of D = 30 Å.
Data points have been connected with a solid line in order to guide the eye.

Figure 6.11 shows the dependence of the transfer rate on the intensity of the laser field.

These simulations were similarly performed twice each in order to average results for laser

phases of 0 and π. As the intensity rises, so too does the transfer rate. However, at large

enough intensities, as in this case of around I = 3× 1013 W/cm2, the emission from either

edge begins to become comparable and the trend in the net transfer rate, ktr, levels off.

6.4 Summary

In summary, the Volkov state basis was implemented and tested for representing peri-

odic structures in both one- and three-dimensional cases against the plane wave basis and

real-space grid representations, respectively. In either scenario, the Volkov state basis prop-

agation was capable of besting the conventional methods by allowing an increase in time
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step size by an order of magnitude when describing interactions with fields of intensity

greater than 3 × 1013 W/cm2. For the case of representing bulk diamond, the Volkov state

basis propagation successfully produced current oscillation modes related to the third and

fifth harmonics, even at large time step sizes. This approach may be easily implemented

within existing plane wave codes by the straightforward calculation of the time-dependent

Volkov phase factors. As popular RT-TDDFT codes currently employ static basis functions

borrowed from DFT implementations, the success of the Volkov state basis may be viewed

as motivation for the further investigation of other potential choices of time-dependent ba-

sis functions, explicitly chosen for RT-TDDFT. While the periodic nature of the Volkov

states allows for optimal application to the study periodic systems, this basis may just as

easily be employed for the describing non-periodic cases [216].

Furthermore, laser-induced rectification has been computationally demonstrated by sim-

ulating the effects of increased electron emission due to near-field enhancement within a

periodic jellium system with geometrical asymmetry. Such behavior opens the door for new

nano-scale “vacuum-tube-based” devices, which take advantage of the enhanced transport

rate of electrons in vacuum as compared to the relatively limited electron transport rates

in conventional semiconductor-based devices. These findings show a significant increase

in transport rate when the distance between facing anode and cathode tips becomes small.

Similarly, an increase in transport rate has been shown for higher laser intensities; however,

for high enough laser intensities, the local near-field enhancement becomes negligible and

rectification becomes less prominent.
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Chapter 7

CONCLUSION

In this thesis, bottlenecks on the computational implementation of real-time time-dependent

density functional theory have been addressed. Various improvements which allow for im-

proved accuracy or computational efficiency have been demonstrated. It is the goal of this

thesis to present and promote such computational methods so that time-dependent density

functional calculations may become further accessible and capable of describing a wider

range of electronic systems and attosecond-scale phenomenon.

In Chapter 2, density functional theory and time-dependent density functional theory

were reviewed as the predominant tool for describing non-relativistic many-electron elec-

tronic structure and dynamics, respectively, motivated by the difficulty in solving the many-

electron Schrödinger equation directly. The inclusion of external electromagnetic fields in

time-dependent density functional theory was discussed as a means of describing laser-

matter interactions. In order to represent core electrons in a computationally efficient man-

ner, the pseudopotential approach was presented which replaces the interaction between

the valence electrons and ions—that is, core electrons and nuclei—with numerically con-

structed effective potentials, consisting of local and nonlocal contributions. Finally, the

Bloch theory of solids was introduced which describes the electron wave function for spa-

tially periodic Hamiltonians.

In Chapter 3, conventional means of discretizing the real space description of the wave

functions were presented, along with implications for the application of density functional

theory. Such techniques are necessary in order to allow for the representation of continuous

functions within the discrete language of computer codes. Three popular approaches were

discussed: the atomic orbitals basis, the plane wave basis, and the real space grid approach.

Each of these are widely used today in density functional theory calculations.
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In Chapter 4, another means of representation, the pseudospectral basis, was presented.

This choice is related to the real space grid approach in its simplicity of implementation but

allows for significantly improved accuracy due to the use of continuous basis functions. On

the other hand, in its basic form, the pseudospectral basis demands kinetic energy matrices

which are significantly less sparse than in the real space grid approach, thus dramatically

lowering the computational efficiency. It was shown, however, that by employing accel-

eration weights to the description of these matrices, one could match the computational

efficiency of the real space approach while maintaining the improved accuracy. It is be-

lieved that this basis may allow for significantly improved accuracy in not only ground

state calculations, as shown in this chapter, but also in time-dependent simulations.

In Chapter 5, a collection of propagation techniques were presented which solve the

time-dependent Schrödinger equation for a wave function at some time of interest. First,

popular techniques for direct integration of the time-dependent Schrödinger equation were

introduced. Second, techniques making use of the time evolution operator form were in-

troduced, which propagate the wave function by small discrete time steps using a unitary

operator which depends on the full time-dependent Hamiltonian. Finally, a new class of

propagation techniques were introduced which are of particular interest for the solution

of the time-dependent Kohn–Sham equations of time-dependent density functional theory

due to their specialty for handling differential equations with nonlinear terms. These were

the integrating factor and exponential time differencing methods, collectively known as

exponential integrator methods.

A variety of techniques derived from these methods were tested against the conven-

tional choices for the following one-dimensional test cases of a helium atom: initialized

in an excited state without external perturbation and initialized in the ground state and

excited with a laser field. Throughout these tests, the fourth-order Runge–Kutta variants

of the exponential integrator methods either matched or bested the conventional propaga-

tion techniques. Similarly, the second-order Runge–Kutta variants and other exponential
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integrator methods of lower time step scaling accuracy exhibited enhanced performance,

given the cheaper computational cost. Beyond the success of the Runge–Kutta-type ex-

ponential integrator propagation techniques used here, they might further benefit from the

ability of the Runge–Kutta method to propagate the wave function using variable time step

sizes. This implies the capability od dynamically adjusting the time step size throughout a

simulation in order to optimally balance computational cost and accuracy. While the time

step size has been kept constant in this research, such an improvement is suggested as the

subject of future work.

Chapter 6 presented a new set of basis functions related to plane waves, the time-

dependent Volkov states, which well-resemble motion driven by external fields. The Volkov

state basis was shown to allow for significantly larger time step sizes when simulating the

effects of high intensity lasers, allowing for faster computational times, or, alternatively,

higher accuracy when using conventional time step sizes. The necessary matrix elements

were shown to be easily accessible, being those of the plane wave basis multiplied by an

analytically available phase factor. While the Volkov state basis approach shares the same

purpose as the exponential integrator methods, that is, both are meant to improve the accu-

racy of time-dependent simulations, each are best applied for particular applications. The

Volkov state basis is perfectly suited for periodic calculations, and the exponential integra-

tor methods well-describe dynamics driven by nonlinear effects. Furthermore, the two may

be combined, as the latter are independent of the basis representation. This combination

may provide a means of alleviating the nonphysical oscillations occurring in the large time

step Volkov state basis simulations which are due to the nonlinear potential functionals.

An example application taking advantage of the fast computational times of the Volkov

state basis was then presented in which a new device design, effectively consisting of a

nano-scale vacuum-tube diode, was investigated computationally. In this study, a clear rec-

tification effect resulting from geometrical asymmetry was demonstrated, and the depen-

dence of the electron transfer rate between cathode and anode on the separation distance
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and laser intensity were qualitatively described. As many simulations were required for the

collection of this data, the study benefited significantly from computational speeds about

ten times faster than those available using conventional representation techniques.

As laser technologies continue to advance, driving the further sophistication of exper-

imental techniques, such computational improvements as those introduced in this thesis

are undoubtedly to be proven invaluable towards the effort of theoretically investigating at-

tosecond scale phenomenon. Such simultaneous improvement is expected to lead towards

the ability to control electronic process on their natural time scale.
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