
AN EXTENSIBLE VISUAL CONSTRAINT LANGUAGE

By

Brian Broll

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May 11, 2018

Nashville, Tennessee

Approved:

Ákos Lédeczi, Ph.D.

Gabor, Karsai, Ph.D.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Ákos Lédeczi, for all his support, guidance and invalu-

able feedback. I would also like to thank Róbert Kereskényi, Tamás Kecskés, Lászlo Jurácz and the rest of

the WebGME team for their feedback and assistance. Lastly, I would like to thank my wife, Cassie, for her

continued support, love, and patience for the many hours spent listening about WebGME.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . iv

I Introduction . 1

I.1 Programming Languages . 1
I.2 Model-Integrated Computing . 3

I.2.1 Background . 3
I.2.2 WebGME . 4

I.3 Visual Constraint Languages . 4
I.4 Overview . 7

II Abstract Syntax . 8

II.0.1 Core Concepts . 8
II.0.2 Data Types and Coercion . 10
II.0.3 Functions . 13

II.0.3.1 Boolean Functions . 13
II.0.3.2 Numerical Functions . 15
II.0.3.3 Collection Functions . 15
II.0.3.4 String Functions . 16
II.0.3.5 Generic Functions . 16
II.0.3.6 Constraint Functions . 17

II.0.4 Control Flow . 18
II.0.5 Commands . 20

III Architecture . 23

IV Language Visualization . 27

IV.1 Inter-Block Design . 27
IV.2 Individual Block Design . 31

V Constraint Generation . 33

V.1 Asynchronous Code Generation . 33
V.2 Additional Features . 35
V.3 Algorithm . 36

VI Examples and Discussion . 42

VI.1 Unique Name Constraint . 42
VI.2 One Start Block Constraint . 43
VI.3 Equal Incoming and Outgoing Connections Constraint . 44

VII Conclusion & Future Work . 46

BIBLIOGRAPHY . 47

iii

LIST OF FIGURES

Figure Page

I.1 Dataflow Programming Example . 1

I.2 Instruction Flow Programming Example . 2

I.3 Visual OCL Example . 5

I.4 Constraint Diagrams Example . 6

II.1 Core Concepts . 8

II.2 Block Type Examples . 9

II.3 Base Data Types . 11

II.4 attribute of Block . 12

II.5 filterByNodeType Block . 12

II.6 Logical Boolean Functions . 13

II.7 Numerical Boolean Functions . 14

II.8 Collections Boolean Functions . 14

II.9 Numerical Functions . 15

II.10 Collection Numerical Functions . 15

II.11 Collection Functions . 15

II.12 String Functions . 16

II.13 Generic Functions . 16

II.14 Node Functions . 17

II.15 Node set Functions . 17

II.16 Collection Functions . 18

II.17 Constraint Generic Function . 18

II.18 Control Flow . 19

II.19 Custom Loops . 20

II.20 Commands . 21

iv

II.21 Casting . 21

II.22 Map Commands . 22

II.23 Constraint Commands . 22

III.1 Visual Constraint Language Components . 23

III.2 Basic Block Relationships . 24

III.3 Hierarchical Structure of Figure III.2 . 24

IV.1 Block Ordering Example . 29

V.1 Placeholder Block Example . 37

V.2 Block Attribute Example . 39

V.3 Block Pointer Example . 39

VI.1 Block Pointer Example . 42

VI.2 One Start Block Example . 43

VI.3 Equal Connections Constraint . 44

VI.4 Metamodel modification . 45

v

CHAPTER I

Introduction

I.1 Programming Languages

Decreasing the complexity of programming has been the goal of many programming languages since the

early 1960’s [12]. These efforts were often motivated by making programming more accessible to a larger

number of people. Additionally, reducing the complexity of programming can be useful for the more broad

goal of simply improving human performance when programming [25].

Various programming languages have taken a number of different approaches to simplifying the task of

programming. These include simplifying the language, creating new programming models and allowing the

user to create the programs using physical or graphical objects [12]. Visual programming languages (VPLs)

belong to the last category as they provide the user with graphical objects to use to develop their program.

There are two fundamentally different approaches to visual programming: dataflow and instruction flow

programming.

Dataflow programming models a program as a directed graph in which the nodes represent instructions

and edges represent the data “flowing” between these instructions [10]. Unlike most imperative programming

languages, this programming paradigm focuses on the movement of the data through the program rather than

the sequence of instructions being run. There are a number of visual programming languages using this

paradigm. [14, 5, 23]

Figure I.1: Dataflow Programming Example

One example of a dataflow programming model can be found in the signal flow diagram in Figure I.1. In

this example, the data is represented by the blue lines and operations are represented by the light blue and

yellow boxes. As each edge in the graph is directed (from left to right), it is easy to see that the model rep-

resents the data as it visits a number of instructional nodes (including “MIXER” and “LOWPASS FILTER”)

where instructions are run which potentially modify the data.

Unlike dataflow programming, instruction flow programming models the sequence of instructions to be

1

executed. For users familiar with imperative programming, this is often more intuitive and familiar. While

dataflow programming models the program with respect to the data, instruction flow programming structures

the program with respect to the instructions being executed. Many textual languages fit into this model as,

often times, each line of code represents an instruction to be run.

Figure I.2: Instruction Flow Programming Example

Figure I.2 provides an example of instruction flow programming. In this example, the program starts at the

top block and executes the instructions of each connected block sequentially. Unlike the dataflow example,

the model is not organized with respect to any data used at each step. That is, the parameters of any of the

instructions could change in Figure I.2 without causing any significant changes to the model. Although some

visual programming languages model data flow, this paper will focus predominantly on VPLs which model

the instruction flow of the program.

The use of graphical objects to create programs provides additional benefits to improve development time.

Using graphical objects removes the potential for creating subtle syntactic errors such as line terminators

(such as semicolons) or misspellings in variable and method names. When reviewing textual source code,

it is relatively easy for the user to overlook a misspelled word in a method name or variable name, but a

misplaced block is certainly more apparent at a glance.

Graphical objects allow for more visual cues to provide intuition about the functionality and usage of the

given block. Many languages will create links between objects with distinct shapes to imply the compatibility

between two blocks [19, 17]. This allows any user to quickly understand how the blocks can be arranged

(although he/she may not understand why any given blocks are incompatible). This also enables the user to

better understand not only the inputs to a function but also understand the types of the inputs without reading

any documentation.

2

Although visual programming languages provide a number of benefits, they also can introduce some

challenges to programming. One such challenge is the Deutsch limit which states that the maximum number

of objects that can be displayed on a page is approximately 50; this would significantly restrict the practicality

of using a visual programming language for any nontrivial project. Another common challenge to visual

programming is the limited extensibility of the languages [1]. However, this challenge has been addressed by

some modern visual programming languages which allow the creation of custom blocks [17, 19, 2]. Visual

programming languages also have the potential to be messy and difficult to read as code can be placed in a

number of locations on the page and still produce the desired output.

Visual programming languages currently lack many development tools used with textual programming

languages [4]. One such example is version control, virtually a necessity of any significant project. As

changes in text can be easily captured using “diff” and applied using “patch”, it is easy to see that version

control is easily applied to any textual programming language. However, as visual programming languages

are represented with a different underlying data structure, capturing and applying changes in a project is a

nontrivial task. Another required feature is library generation; however, unlike version control, this feature

has been added to some modern visual programming languages [19, 2].

I.2 Model-Integrated Computing

I.2.1 Background

Model-Integrated Computing (MIC) is the use of models to define a system which then can be interpreted

to create the desired output with respect to the models representing the system and environment [20]. The

use of model-integrated computing allows domain engineers to model their problem and then automate the

solution of the problem for their given scenario. Model-Integrated Computing has been used in a variety of

applications from development of embedded software to fault detection in space vehicles [8, 15, 20, 11].

Constraints are a set of rules used to validate a model in MIC. For example, a simple constraint in a model

may simply verify that all nodes in a project have a unique name. Although this example was very simple,

constraints can become rather complex as the complexity of the domain and model increase. Especially

in large models, constraints can be invaluable in verifying that the project conforms to the set of rules as

manually checking the rules can be impractical.

Currently, constraint rules can be written in a variety of ways. Some current constraint languages include

Object Constraint Language (OCL) and Microsoft FORMULA [16, 9]. Although these languages provide a

concise and unambiguous representation of the constraint, they may not be the most approachable for domain

engineers. For example, suppose we have a model of a finite state machine and want to ensure that no state

has a transition to itself. The OCL expression can be represented as follows

3

self.transTo->forAll(s | <> self)

where “self” and “forAll” are OCL keywords and “transTo” is a domain specific keyword for the finite state

machine1. However, as these models and constraints may need to be created by domain engineers who may

not have prior exposure to a constraint language, the unnatural syntax can provide additional complexity to

writing constraints which can provide barriers to learning to create models and constraints as well as increase

the likelihood for introducing errors in the model validation.

I.2.2 WebGME

WebGME is a modeling toolkit for Model-Integrated Computing supporting the definition of custom domain

specific modeling languages (DSML) [18]. After defining a DSML, users can then create custom plugins to

interpret models and create the desired output [7]. Unlike many other MIC tools, WebGME is designed for

the creation of large, collaborative projects in a distributed environment.

One novel feature of WebGME is its distributed nature; however, this distributed nature has significant

implications for creating and running constraints. As the client application is run in a web browser, the

constraints are written in JavaScript to allow evaluation on the client application. Also, as the project is in a

distributed environment in which the browser only loads the immediately required nodes from the server, not

all nodes required for evaluating a given constraint may be accessible. Therefore, the client application may

need to request nodes from the server during the evaluation of a constraint. To accomodate this, the constraint

code often must make asynchronous calls to the server to request nodes.

The unique environment and the versatility of WebGME made it an ideal option for supporting a visual

constraint language. As the constraints are currently specified using asynchronous JavaScript, simplification

of the process of creating constraints would be beneficial. The distributed environment of WebGME provides

a unique opportunity for creating a more intuitive and understandable constraint language as the visual lan-

guage must not only provide an inuitive constraint syntax but also must be able to generate asynchronous

JavaScript code to allow the constraint evaluation to be completed on the client application.

I.3 Visual Constraint Languages

As visual programming languages have been used to reduce the complexity of programming and constraint

creation can be rather complex and unintuitive (especially to a domain engineer), it seems natural to simplify

the constraint creation by creating a visual constraint language. This should allow us to consider the tech-

niques used in simplifying general programming and apply them within the context of constraint languages.

1This example can be found in “Composing Domain-Specific Design Environments.” [16]

4

In recent years, there have been two similar approaches to visualizing constraints in object oriented models:

Visual OCL and Constraint Diagrams [13, 21, 6].

Visual OCL is a logical, typed, object oriented language which provides an graphical representation of

the Object Constraint Language to make OCL easier to use and integrate into diagrams [3]. As UML is a

standard in modeling, Visual OCL is designed to adhere to the UML standard to minimize the requirements

of learning a new language [22, 21].

Figure I.3: Visual OCL Example

Figure I.3 provides an example constraint that validates the size of a person’s car given his employment2.

This constraint uses a “let-in” box to first define the “carSize” variable as the maximum power of the engine

associated to “self” through the “car” and “engine” associations. Then, in the “in” portion of the “let-in”

box, Figure I.3 uses an “if-then-else” block to represent that if the person is unemployed, then the “carSize”

variable should be less than 1. Otherwise, the “carSize” variable should be at least 1.

Constraint Diagrams is another visual represention of constraints in object oriented models [13]. Like

Visual OCL, Constraint Diagrams is also a logical, object oriented language. Constraint Diagrams uses a

syntax similar to Euler diagrams and maintains a natural conversion to predicate logic. Constraints can also

be expressed in a very compact manner using Constraint Diagrams. However, the Euler diagram style syntax

can become cumbersome if an element is a member of more than three sets [13, 6].
2This example can be found in “Two Visualizations of OCL: A Comparison” [6]

5

Figure I.4: Constraint Diagrams Example

Figure I.43 first defines “carSize” by creating the “carSize” link from the “Person” to the “Real” box at

the end of the associations through “Car” and “Engine”. Then, using this new association, Figure I.4 follows

the “carSize” association from a person who is an element of the “Unemployed” set to a “Real” element and

verifies that this element is less than 1. Using an analogous approach, it also verifies that any person in the

“Employed” set has a “carSize” value of at least 1.

These visualizations of constraints share some significant differences from our visual constraint language

developed within WebGME. Unlike both Visual OCL and Constraint Diagrams, the visual constraint language

uses an imperative, instruction flow programming paradigm. This provides the user a significant amount of

flexibility over the constraints and allows the user a more natural way to perform any necessary operations on

data prior to evaluating any given value. That is, in a case where the value to be evaluated must be calculated

through the traversal of a large model, an imperative language may be more natural. However, as the visual

constraint language is imperative, this requires the user to not only consider the constraint to be enforced for

the given model but also how to check if the constraint is violated. This can provide unnecessary complexity

to creating the constraints and a less natural way to considering model validation.

Our visual constraint language is also created with the ability to be easily extended and customized for

specialized domains. Rather than simply creating a robust, generic visual constraint language, this allows

users the ability to create domain specific visual constraint languages for their respective domain by simply

extending or restricting the generic language. As the language is defined using a metamodel within WebGME,

the modification of the generic visual constraint language to a domain specific visual constraint language can

be performed without requiring the user to learn new languages or tools. An example of an extension of the

base language is provided in Chapter VI.

3This example can be found in “Two Visualizations of OCL: A Comparison” [6]

6

I.4 Overview

I will present a visual constraint language created for generating JavaScript constraint code for use in the

distributed environment of WebGME. The visual constraint language not only supports asynchronous code

generation from synchronous visual programming blocks but also provides scalability features not present in

other modern visual programming languages such as version control and real-time collaboration. The visual

constraint language also supports library functionality as well as easy extensibility using a visual interface.

The extensibility not only allows the user to easily add new blocks to the language but also to easily modify

the base language. That is, if desired, the user can simply import the structural patterns of the base language

and, using the modeling interface of the WebGME, he/she can customize the language to even support an

alternative paradigm.

In this paper, I will discuss the language semantics of the visual programming language, the architecture

and the details of both the visualization of the language as well as the robust code generation. This paper is

organized as follows: Chapter II provides the core concepts and syntax of the language. Chapter III describes

an overview of the architecture of the visual constraint language. The design choices made for visualizing

the language are explained in Chapter IV. Compilation and constraint generation are described in Chapter V.

Finally, examples are provided in Chapter VI and future work is discussed in Chapter VII.

7

CHAPTER II

Abstract Syntax

II.0.1 Core Concepts

At the most fundamental level, the visual constraint language contains the following abstract concepts: base,

hat, command, and predicate 1. As the name suggests, the base concept is the most fundamental element of

the language and simply represents a syntactic element of the language. The hat is an element that can only

have subsequent elements and the command can have both predecessors and successors in a code block.

In the metamodel, relationships between blocks are represented with pointers and user specified values

(such as text entered into a block) are represented as an attribute of the node in the metamodel. If the block

accepts either a block or user specified values, the block will contain both a pointer and an attribute of the

same name. This will be discussed further in Chapter III.

Figure II.1: Core Concepts

Figure II.1 shows the abstract syntax of these core concepts. The constraint block represents an element

containing constraint code and the blue arrow represents a pointer, named “next”, from the hat block defi-

nition to the command block definition. The “next” pointer represents the next block to be executed in the

interpretation of the code.

As the command block inherits from the hat block, the command also can have a “next” pointer to other

command blocks (as can the hat block). The predicate represents a code element that is dependent on either

a hat or command block; that is, a predicate can be used only to supplement the meaning of another block.

This is shown in Figure II.1 as the “next” pointer points only from a hat block to a command block and a

predicate can be neither the source or destination of this pointer.

1This is similar to the abstract syntax of Snap! [19]

8

As shown in Figure II.1, all elements of the code blocks are descendents of base. This allows for the easy

inclusion of these language blocks in future projects as well as easy extensibility of the language. That is, if

the base language is exported to be used in another context, the visual programming blocks can be added to

an object by simply specifying containment of the base in the project metamodel. An example of this is given

in Figure II.1 as it defines every constraint type to contain base and, as a result, any visual programming

block.

The predicate concept contains both the data types and functions of the language where a function is any

block with a return value. The predicate also serves as the base type for our data types. These data types

are first organized by plurality, then by any coercive relationships between the data types. This is discussed

in more detail in Section II.0.2. Functions are children of their respective return data type. As children

in the metamodel inherit the relationships from their parents and our data types are always “recipients”

of relationships with other elements2, creating the functions as children of their return data type allows a

function to be used in place of its return type. The orange children block in Figure II.2 provides an example

of a predicate.

Figure II.2: Block Type Examples

Examples of the block types can be found in Figure II.2. In this example, the Begin block is a type of hat

block and can only have subsequent elements. This behavior is also implied by the shape of the Begin block

as it can only connect to the top of other blocks. The let block provides an example of the command type

as it can both follow blocks in the execution sequence and have other blocks connected below it (and, thus,

occurring later in the code execution). The children block provides an example of a predicate block type.

Unlike the Begin or let blocks, the children block shape does not contain any indents implying a connection

to prior or subsequent blocks. As this shape suggests, the children block is not an independent code statement

but is used to complement the meaning of the let block by providing the variable to be set. As base is the

abstract base type of every block, all three blocks in Figure II.2 are descendents of the base type.

In our metamodel definition of the language, base types are generously used to promote extensibility and

understandability of the language. For example, if one was to extend the base language (that is, the language

not including the constraint data types and functions) to a custom domain or application, one could simply

export the base language components as a library from within WebGME and then create children of the

2In this context, a “recipient” of a relationship is represented by an object being the destination of a pointer in the metamodel

9

command object in the metamodel. The user could also add custom data types by simply creating children

of predicate (or a more specific data type) resulting in a language tailored to the desired application. That is,

the generous use of base types creates a base language which can be easily extended for a variety of different

applications.

In the following sections, the individual elements of the visual constraint language are discussed. These

sections are organized as follows: Data Types and Coercion, Functions, Control Flow, and Commands.

II.0.2 Data Types and Coercion

The base language has 5 default data types: boolean, string, number, map, collection.

Adding this structure to the language provides multiple benefits to the visual language. As one major

benefit of visual languages is the absence of syntax issues, these types allow us to further prevent seman-

tic issues as it restricts the user from creating meaningless or unintelligible code (such as adding a string

and a boolean). This also allows the user interface to be more intelligent when the user is connecting two

blocks. That is, when the user is connecting boxes, the data types allow us to remove incompatible possible

connections between two blocks and better predict the action intended by the user.

These specific data types were chosen as they provide intuitive, natural data types that can be easily un-

derstood without the user needing to learn the idiosyncrasies of specific types and their interactions. Boolean,

string, number, and collection types are natural concepts to a person without a programming background.

Although the map data type is less natural than the previous data types by itself, it should allow the user to

write more natural and concise code.

The creation of the language as a model allows us to imply data coercion from the structure of the meta-

model; data coercion can be represented with inheritance in the metamodel. As a prototypical child in the

metamodel will inherit its parent’s relationships, it follows that any child of a data type allows the child to be

used in place of the given data type in any block connection. In the context of the visual constraint language,

this results in an implicit casting of any child data type to the parent data type. Given this relationship be-

tween metamodel inheritance between data types and data coercion, we will now look at the specific implicit

casting allowed by the metamodel of the base language in Figure II.3.

10

Figure II.3: Base Data Types

The two most important coercion relationships in the metamodel can be seen between the collections and

maps data types and the string, boolean, and number data types. As the map data type inherits from the

collection data type, it follows that the hashmap can be used in place of a collection data type. This implies

that a map is treated as simply a specific type of collection. The implications of this with respect to code

generation will be discussed in “Constraint Generation”.

The coercive relationship between the string, boolean, and number data types can also be derived from

the Figure II.3. As is convention in most modern programming languages, boolean and number data types

can be implicity casted to a string. However, as an implicit casting from a number to a boolean can add

unnecessary complexity to the language (as these implicit casting rules are not always intuitive), we do not

allow any implicit casting between number and boolean data types.

In creating a visual constraint language, we extended the base language with two more data types: node

and node set. These data types represent WebGME node elements that compose the projects and will need to

be validated by our constraints. The creation of this node data type allows us to create custom functions for

the retrieval of node attributes and project traversal. The node set data type represents a collection of nodes

and inherits from collection in the metamodel. This allows any node set to be used in place of any collection

data type such as in For each and length of blocks.

An example of a block specific to the node data type can be found in Figure II.4. In this example, the

attribute of block retrieves the “name” of the given node block using the WebGME API for constraints.

Just as this easy extensibility of the language allows for the addition of node data types with custom node

commands, this flexibility of the language also allows for the easy creation of domain specific constraint

11

blocks.

Figure II.4: attribute of Block

The creation of the node set data type allows us to create functions specific to sets of nodes, such as

filterByNodeType. As the name suggests, filterByNodeType is a function that allows the user to filter a set

of nodes given a node type. That is, the function will return the set of nodes from the collection that are the

given type. This abstraction certainly reduces the complexity of the constraint code and can be seen in Figure

II.5.

Figure II.5: filterByNodeType Block

In Figure II.5, the currentNode block (of type node) is an argument to the descendents of block, a block

which returns the containment subtree of the given WebGME project. This subtree is returned as a node set

data type and is passed to the filterByNodeType block. The filterByNodeType block then returns a node

set containing all command nodes in the subtree of currentNode. Finally, the length of block returns the

number of nodes in the node set.

Figure II.5 provides a strong example of how the extension of the language can simplify the writing of the

constraint code. Consider the descendents of block. As the project may be distributed over the network (that

is, nodes may be stored on the browser, server and the database), node retrieval is asynchronous. The de-

scendents of block entails asynchronously traversing the entire containment subtree from the currentNode.

For a domain engineer, this is certainly an unnecessary complexity which may very easily introduce bugs

in their constraint code. The filterByNodeType block then allows the user to consider the nodes in a very

natural way as it allows the user to consider the desired blocks rather than thinking of the programmatic way

to retrieve these blocks. When combined with the length of block, we have a rather natural way to express

the code fragment:

“(the) length of (the) descendents of (the) currentNode of type Command”

Therefore, this extension of the base language abstracts the meaning of the constraint further from the eval-

uation of the constraint; this should better allow domain engineers to focus on the complex constraints and

models that they are creating rather than the challenges of representing the given constraint in JavaScript,

OCL or any other complex constraint language.

12

The ability of this language to be extended to support custom data types and custom functions for these

data types allows this constraint language to be easily customized for different domains. The domain engineer

can create not only a domain specific modeling language but also a domain specific constraint language which

allows them to more intuitively describe constraints in their given domain.

II.0.3 Functions

Functions in this section are organized by their return type (as they are in the metamodel) with the additional

constraint specific functions grouped in their own subsection. That is, a function with a boolean return value

will be labeled a “boolean function”. This section is organized as follows: The first two sections explain the

boolean functions and numerical functions. Then Section II.0.3.3 discusses the functions with a collection

block return type. Section II.0.3.4 provides the string functions supported by the language. Finally, Section

II.0.3.5 and II.0.3.6 present the generic functions and constraint functions of the language, respectively.

II.0.3.1 Boolean Functions

The basic boolean functions can be divided into 3 groups: logical operators, numerical comparisons, and

collection containment.

Figure II.6: Logical Boolean Functions

The base language contains not, and, or, and xor logical operators. As shown in Figure II.6, these logical

operators are divided into two groups: unary boolean predicates and binary boolean predicates. These groups

are created by the similarities in the input of these blocks. That is, the functions are already classified by their

return type (as they are descendents of their return data type) and these further classifications are created with

respect to the input arguments for the function blocks. In general, this simplifies the metamodel as it allows

13

for a reduction of the number of pointer connections. It also simplifies extending the language as it reduces

the number of connections to make in the metamodel; that is, if the user can find an abstract descriptor block

(such as binary bool pred) which is a descendent of the appropriate data type, then the user can simply add

the block as a child of the given descriptor block without adding any extra pointers. This technique is utilized

frequently in the function definitions.

Figure II.7: Numerical Boolean Functions

Numerical boolean functions are also included in the base language. These blocks represent basic rela-

tionships between two numbers. Currently, the base language contains less than, greater than, and equals

relations between numbers. As before, these blocks share a parent that characterizes their input, comparator.

Figure II.8: Collections Boolean Functions

The last group of boolean functions in the base language is a very small group; it simply is a function

which checks if a collection contains an item. As the map data type inherits from the collection data type,

this method supports both checking either data type if it contains the given element. Of course, if the function

is checking a map, it will check to see if the given element is contained as a value of the hashmap (as opposed

to a key). The element that is checked is stored as the destination of a “first” pointer from the function. This

element is a predicate type; this allows the element to be of any data type. That is, predicate serves as a

generic data type in the metamodel as the data types contained in the collection is unknown.

14

II.0.3.2 Numerical Functions

Figure II.9: Numerical Functions

Currently, the base language supports elementary math functions. As shown in Figure II.9, these include

addition, subtraction, multiplication, division and the modulo operator. These are all children of a block

representing numerical functions with two numeric inputs. This parent block is especially useful as adding

additional math functions on two numbers can be done by simply adding an instance of binary prim pred

to the metamodel and creating respective entries in the output language specification (for compilation) and

an SVG (for visualization). These will be discussed in further detail in Chapter V and IV, respectively.

Figure II.10: Collection Numerical Functions

Another numerical function supported in the base language is the getLength function. This function will

return the number of elements in a collection or map.

II.0.3.3 Collection Functions

Figure II.11: Collection Functions

15

The only function returning a collection type in the base language is getKeysFromMap. This function

returns all the keys from a hash map and returns it as a collection type.

II.0.3.4 String Functions

Figure II.12: String Functions

The concat block is currently the only function in the base language which returns a string type. As shown

in the picture, the concat block accepts two string blocks as input, “first” and “second”.

II.0.3.5 Generic Functions

Figure II.13: Generic Functions

There are two generic functions in the base language. These are getItemFromMap and the getItemFrom-

Collection blocks. As shown in the Figure II.13, getItemFromMap accepts a map and a string type as input

and returns a generic. Similarly, the getItemFromCollection block accepts a collection and number block

specifying the collection and the index. As these functions return generics, they will need to be casted to the

appropriate data type before they can be used in a way specific to their given data type using a let block. This

will be discussed further in the Section II.0.5.

16

II.0.3.6 Constraint Functions

Figure II.14: Node Functions

Currently, there are two functions that return node blocks. These include getPointer which gets the target

of a given node given an id (“first” as shown in Figure II.14) and getParent which returns the hierarchical

parent of the node with respect to the containment tree of the project.

Figure II.15: Node set Functions

There are currently three functions which have node set return data types. These functions are getChil-

dren, getDescendents, and filterByNodeType. The getChildren block returns the contained children of a

given node allowing for traversal of the project. The getDescendents block retrieves all nodes in the con-

tainment subtree. The third function, filterByNodeType, allows the user to specify which nodes he/she is

referring to within a given node set. As shown in Section II.0.2, these blocks can allow the user to simply

refer to the nodes that he/she wants to use without worrying about the programmatic process to retrieve and

filter the given nodes.

17

Figure II.16: Collection Functions

The constraint language also contains functions for retrieving information about a node in the form of

a collection. These functions are getAttributeNames and getPointerNames. These functions, as given by

their names, return a collection containing either the names of their pointers or a collection of their attribute

names.

Figure II.17: Constraint Generic Function

As shown in Figure II.17, there is a function, getAttribute, which retrieves the value of a node. As neither

the value (nor the type) of the node is known, this function returns a generic data type (predicate).

II.0.4 Control Flow

There are also a number of blocks for controlling the flow of the program. These have been divided into two

parts: Control Flow and Custom Loops.

18

Figure II.18: Control Flow

As shown in Figure II.18, the base language contains the standard elements for control flow of the pro-

gram: if, ifElse, and while. However, similar to Snap!, the visual constraint language contains a ring block

[19]. The ring block is a generalization of “if” statements and loops as it contains command blocks and con-

tains a “true next” pointer to one of these commands. The if block then inherits from the ring type (allowing

it to contain commands and have a “true next” pointer to one of them) but also contains a boolean type

which can be the destination of a “cond” pointer. This allows the if statement to contain a conditional to be

evaluated; this conditional can then determine if the “true next” pointer will be executed (with all subsequent

blocks).

The while block has the same components as the if block. That is, they both contain a boolean condition

and command blocks to be executed if their conditional is true. Therefore, the while block inherits from

the if statement without adding any additional functionality; the differences between if and while are only in

their concrete syntax and compilation.

19

Figure II.19: Custom Loops

As shown in Figure II.19, the base language also contains two custom loops, repeat and forEach. These

loops inherit from the ring block as they all contain a set of command blocks to be executed and a pointer,

“true next”, to the first command block. As opposed to having a “cond” pointer like the if and while blocks,

the repeat block contains a “count” pointer to a number type and a “count” attribute to specify the number

of times to execute the contained code blocks. The forEach block has two pointers, “iter” and “collection”,

which specify the collection block to be iterated over and the iterator to be used.

Figure II.19 also shows the benefits of the abstraction of the if and loop block types into a ring block

type. This allows not only for the easy creation of the repeat and forEach loops, but also allows the user to

easily extend the language to contain other specialized loops such as a “do-while” or standard “for” loop.

II.0.5 Commands

The base language is rather lightweight and the commands included are predominantly for manipulating and

managing the base data types. Creating a large number of blocks in the base package would add potentially

inappropriate blocks for the language. Unlike textual languages, where the unknown features are virtually

invisible to the end user, extra unused functionality in a visual programming language creates visual clutter

that can hinder development through requiring excess searching by the user to find the desired block. As the

language was designed to promote extensibility, any necessary functionality can be easily added as needed to

guarantee the language does not contain excess blocks or visual clutter.

The commands have been organized into three parts. The collection commands and let command can be

found in Figure II.20. Commands for the map data type are in Figure II.22 and constraint commands can be

found in Figure II.23.

20

Figure II.20: Commands

The most fundamental command in Figure II.20 is the let block. This block allows the assignment of

variables. As the let block accepts generic data types (as the recipient of “first” and “second” are both

predicate blocks), this also allows for the casting of variables. That is, Figure II.17 shows that the block

getAttribute gets an attribute from a node data type and returns a generic data type (as the type of the

attribute is not known). This makes using the attribute directly often impossible as the type is unknown and

the block will not have the required relationship in the metamodel. An example of this can be seen in Figure

II.21.

Figure II.21: Casting

In Figure II.21, the “count” attribute is retrieved from a node. As the attribute of a node could be virtually

any data type of the base language, this block returns a generic. However, in this example, the “count” is

likely a number block and, thus, should be able to be used as a number block. In order to do this, the

generic is assigned to a variable of the type that it is expected to be. This allows for the generic variable to

be casted to the given type and used accordingly. In Figure II.21, this is shown by the “count” block being

then incremented by one as the add block only accepts number blocks as input. Unfortunately, if the cast is

invalid, such as the “count” attribute being a string block type, this may result in a runtime error or undesired

21

behavior in the constraint evaluation.

Figure II.22: Map Commands

In Figure II.22, there are two main map commands: removeFromMap and addToMap. The remove-

FromMap block contains a pointer to the key to be removed “first” and to the map block from which the

given key will be removed. The addToMap block requires the same functionality as well as a pointer to the

element to be added, “second”. The removeFromMap block also contains an attribute called “first” which

allows the user to specify the key to be used manually. The addToMap block inherits this text attribute as

well as allows the user to specify the element to be added with a string attribute as well.

Figure II.23: Constraint Commands

The extension of the base language for constraints added only a single command: markViolation. This

command records a violation of a constraint and allows the user to specify the message to the user as well as

any node(s) causing the violation. As shown in Figure II.23, the message can be provided by either user input

or given by a string block. This block also illustrates an example of how a single block can accept multiple

types of input when the block cannot simply select a parent block. The markViolation block accepts either a

node or node set data type as input to it’s “node” field; this can be seen in Figure II.23 as the markViolation

block has two pointers of the same name to the node and node set blocks.

22

CHAPTER III

Architecture

Our visual constraint language is developed within WebGME as it provides a number of advantages includ-

ing a generic data model and a framework for custom data visualization. Also, using WebGME provides

additional features such as version control and import/export functionality to the visual constraint language.

These advantages stem from both the flexibility of the component-based nature of WebGME as well as the

advanced functionality provided natively by WebGME.

The visual constraint language is composed of four main components: metamodel, model, visualizer and

the compiler (implemented as a plugin to WebGME). The metamodel defines the syntax of the programming

language as shown in Chapter II. The model represents constraints created using the visual programming

language. The visualizer provides the concrete syntax for the data by visualizing the model in an intuitive

way for the user. The visualizer also allows for editing the model with respect to the rules defined in the

metamodel. Finally, the compiler (using the provided language specification for the constraints) will parse the

model and generate the constraint code with respect to the provided specified language. These relationships

are given in Figure III.1.

Figure III.1: Visual Constraint Language Components

We use visual blocks to represent the syntactic code elements of the visual constraint language. Blocks

can have two different types of relationships between one another: either one precedes another or one block

supplements the meaning of the other. If we consider the example given by Figure III.2, we can see that

the Begin and Let blocks are visually connected, representing the relative ordering of the two blocks. If we

consider the orange children block and the Let block, we can see that the children block provides meaning

to what is being assigned by the Let block. It is apparent that the children block supplements the meaning

of the Let block.

23

Figure III.2: Basic Block Relationships

Using the WebGME data model, we can utilize two concepts to represent the relationship between our

language blocks: hierachical containment and pointers from one node to another. That is, when a block in

the language precedes another, we will simply create a pointer from the former to the latter (eg, from Begin

to Let in Figure III.2), creating a singly linked list of block ordering. When a block supplements another,

like children and Let in Figure III.2, the supplementing block will be contained by the other in the WebGME

data model and there will be a pointer from the given block to the supplementary block.

Pointers in the WebGME data model are named with respect to the relationship between the given blocks.

As pointers designating a supplementary relationship between blocks result in the supplementing block be-

coming a child of the other (with respect to the containment tree), these pointers are called “children point-

ers”. As the precedence relationship between blocks is the only relationship which does not imply one block

supplementing the other, this pointer (called the “next” pointer) is considered a “sibling pointer”.

This representation of our language in the data model can be easily illustrated. If we consider Figure

III.2, our resulting model will have two nodes at the current level, the Begin and Let nodes. The Let node

will then contain two children: children and children of nodes. The Begin node will also have a pointer to

Let as it is connected into Let. Intuitively, this is understandable as each contained element can be viewed as

supplementing the meaning of the parent object. Finally, the children of block contains the currentNode

block. This hierarchical structure can be seen in Figure III.3.

Figure III.3: Hierarchical Structure of Figure III.2

Using this representation provides not only an intuitive mapping from the language elements to the

WebGME data model but also provides us with a structure that is intuitive to traverse and manipulate. That is,

each node’s child blocks can be viewed as supplementing the meaning of the given block. This can be seen

in Figure III.2; although we can infer the general meaning from the design of the “Let” block, the details of

24

the block are contained in its children blocks (“children” and “children of”). Therefore, this representation of

the language in the data model also provides an encapsulation of the meaning provided by certain syntactic

elements as each node will contain all other nodes needed to complete the meaning of the given node. This

allows operations on a given language element, such as hierarchical move or deletion, to also affect any other

language elements relevant to the affected node. That is, deleting the “Let” node from Figure III.2 would

automatically result in a deletion of “children” and “children of” (consequently, “currentNode”).

Along with relationships between blocks, a block may need to also allow a user specified value in the

block. In the model, these fields are by represented simply adding an attribute to the given block. However,

if the block contains a value that can be specified with either another block or a user specified value, then the

block will contain both an attribute and pointer with the same name.

Although the default WebGME data visualizer (using boxes and lines) is not appropriate for the visual-

ization of a visual programming language, the component-based nature of WebGME allows for the creation

of a custom visualizer to fit the needs of the visual programming language. This visualizer must be able to

intuitively represent both the precedence and supplementary relationships as described above. The prece-

dence relationship will be represented by visually connecting the subsequent block to its predecessor. As in

the data model, the supplementary relationship will be represented with containment. Both relationships can

be illustrated in Figure III.2.

In order to show these relationships, the visual blocks must contain basic information about how to be

modified when containing or connecting to other blocks. Therefore, our blocks will contain information about

where they can be connected to preceding or subsequent visual blocks and information about how to stretch

appropriately to contain any supplementary blocks. In order to allow for programmatic manipulation of our

blocks while still maintaining a modular and extensible data visualization paradigm, we use Scalable Vector

Graphics (SVG) with custom data attributes. That is, each language block is represented with a custom SVG

which informs the visualizer how the block should be manipulated given another block is contained within

it or another block is connected to it. As any pointer will result in the recipient being connected to the base

block, these relationships are called “connections” within the visualizer.

As WebGME allows for the creation of custom plugins to interpret models, the compiler can be imple-

mented as a JavaScript plugin. This plugin will then have access to the model and will be able to traverse it

as needed to generate the JavaScript constraint code. The WebGME plugin also contains an output language

specification which provides the necessary information about the relationship between the blocks and the

desired output language. Using this output language specification and the access to the WebGME model, the

compiler can then generate the necessary asynchronous JavaScript constraint code.

Using WebGME not only provides a flexible, extensible platform on which to develop our language but

25

also provides additional features to the language. As WebGME projects are automatically version controlled,

the visual constraint language built within WebGME is also version controlled. Also, WebGME supports

exporting projects and parts of projects as libraries. This enables the visual programming language to be

easily extended or restricted to create a customized visual programming language.

26

CHAPTER IV

Language Visualization

As previously mentioned, the component-based design of WebGME allows for the creation of a custom

data visualizer for the visual constraint language. The visualizer has two main design choices: the design

choices for visualizing relationships between blocks (Inter-Block Design) and the design choices made for

visualizing a given block (Individual Block Design).

IV.1 Inter-Block Design

Using WebGME to design the language provides us with two useful predefined constructs that will function

as the backbone to the inter-block design of our language: “containment” and “pointers”. Pointers between

nodes are represented by allowing the blocks to visually “connect”. Naturally, containment in the data model

is represented by resizing the parent block so it visually contains the child block.

As previously described, the pointer concept is used to represent relationships between blocks in

WebGME. A pointer to the next block is only stored within the source WebGME object and, thus, the des-

tination WebGME object in the project has no information about it’s predecessor. After being loaded on the

screen, the rendered blocks corresponding to WebGME objects contain references to both their successor

and predecessor. Although this design choice added some complexity to the loading of WebGME objects,

it allowed for a reduction in complexity for the metamodel creation of the visual constraint language and

prevented storing redundant information in WebGME objects.

As described in Chapter III, pointers in the metamodel can be categorized as either “sibling” or “child”

pointers based on the relationship between the given nodes in the project containment tree. These pointers

are visualized as connections between the respective blocks where a connection is a physical linking of the

blocks directly to one another. Like pointers, connections between blocks are also considered to be either a

“sibling” or “child” connection. Sibling connections are links between nodes sharing a parent while children

connections are links between a node and one of its children in the containment tree. Each connection is

labeled with the pointer relationship it represents; this allows for a deterministic representation of the blocks

relationships to other blocks. In our visual constraint language, we have one sibling connection type, “next”,

and multiple children connection types. That is, “next” will connect the given block to the next block to

be executed while any children connections will connect the block to blocks that further complement the

functionality of the given block. When two blocks are connected, I will refer to the block with the pointer as

the source block and the block that is the recipient of the pointer in the metamodel as the destination block.

27

For example, an “if” statement will have a child pointer, “cond”, to the conditional statement to determine

whether to execute the code in the block. It also has a “true next” child connection which connects the “if”

statement to the hierarchical child to execute if the conditional statement is true. The “next” statement will

designate the subsequent block to be executed and will be visually connected to the “next” connection area of

the “if” visual block. In this example, the “if” statement will be the source block of the “cond”, “true next”,

and “next” relationships with other blocks. Similarly, a block connected to the “cond” connection area will

be a destination block of the “if” statement (with respect to the “cond” connection area) and the connected

block will have a source block of the “if” statement.

When two blocks are connected, the destination block is moved to be visually connected to the source

block. Consequently, the position of the destination block is dependent upon the location of the source

block. As all rendered blocks on the screen have information about any blocks that could be connected

to them1, any destination block’s position depends solely on the location of the respective source block (a

trivial calculation). I will call these destination blocks positionally dependent as the position of these blocks

depend on the location of their source block. To avoid unnecessary and excessive WebGME object updates

in the database, positionally dependent blocks do not update their positions in the data model; until they are

disconnected from their respective source blocks, their position is determined solely from the position of their

source block.

Every block can be the destination block in at most one relationship. As any block can have multiple

connections to other blocks and can have at most one source block, we can create a dependency tree where

a child node is a destination block and the parent is the source block for some connection between the two

nodes. As all destination blocks are positionally dependent, this tree also represents a dependency of blocks

in which the parent block’s position must be determined before the child block’s position can be determined.

As there may be multiple blocks on the screen without any source blocks (or blocks connected into them),

this will give us a forest of dependency trees where a block’s children are the union of the block’s child

connections and sibling connections to other blocks.

As child connections represent both a pointer and containment between blocks, the destination block of a

child connection is visually contained by the source block. This often requires that the source block is resized

to fit the destination block inside. This resizing of the source block can affect the connection areas of the

given block and, consequently, require a repositioning of any positionally dependent blocks. As each node

in the dependency tree may need to be resized to contain its children, the resizing of a node in the tree may

also force a recalculation of the sizes of all ancestors in the dependency tree as the ancestors may no longer

1There will only be one block connected into another as, if there were multiple blocks connected into a single block, the given
block would have a position depending on the location of two other blocks. As it may not be possible to have the given block visually
connected to the two arbitrary connection areas of the sources, this could result in impossible scenarios.

28

contain the given resized block. It follows that rendering visual blocks will require a careful ordering of the

nodes based on the dependency trees of the model to prevent excessive recalculations.

Figure IV.1: Block Ordering Example

For example, consider the blocks shown in Figure IV.1. In the corresponding dependency tree, the node,

queue and let blocks depend on the For each block for their position. However, the size of the For each

block depends on the size of the let block and it’s siblings as the For each block needs to be large enough to

encompass these blocks. As the For each block needs to encompass all contained blocks, the locations of the

contained blocks also is relevant for determining the combined size of all the children. That is, the For each

block cannot be sized until all it’s contained blocks are both sized and positioned correctly.

As each block’s sibling and child pointers are children of the given node in the dependency tree, creating

the dependency tree for Figure IV.1 gives us the following graph:

For each

let node queue

nameattribute of if

node contains addMark Violation

names name names name

This dependency tree illustrates a few unique characteristics of dependency trees created as described.

One such feature is that the sequence of execution of the blocks corresponds to a path in this directed depen-

dency tree. For example, the blocks let, if, add are performed sequentially2 and can certainly be found in the

tree. More importantly, a block, say b, contains all it’s child dependents, say ci, in it’s subtree. As sequential

blocks form a path in this directed tree, it follows that b’s subtree also contains all subsequent blocks of ci

2Although Mark Violation is contained in the if block and may be executed between if and add, it is connected to a child pointer of
if (“true next”) and is considered to be a part of the if block.

29

with respect to the execution ordering. It follows b can be resized once it’s entire subtree has been resized

and b can be positioned (with all it’s dependents) once it’s parent in the dependency tree has been resized.

Formally, this ordering is performed by taking a root node of the dependency forest (a block which does

not depend on any other block for its position) and adding it to a queue. The algorithm will then repeatedly

add dependents to the front of the queue to find a node with no dependents on the queue. This will be given

by the leading element on the queue that either has no dependents or has already been visited. Specifically,

the algorithm for updating blocks is as follows:

Algorithm 1 The updating blocks algorithm.
updateBlocks[updatedBlocks]

1: for each updated blocks, bi do
2: Let ti be the dependency tree containing bi
3: Let n = bi
4: while n has a parent in ti do
5: Let n = PARENT(bi)
6: end while
7: if roots doesn’t contain n then
8: Add n to roots
9: end if

10: end for
11: for each root, ri do
12: Add ri to queue, q
13: Let c,s be the child, sibling dependents of ri, respectively
14: while c is non-empty and ri is not marked as visited do
15: Mark ri as visited
16: Add s to the beginning of q
17: Add c to the beginning of q
18: Let ri be the first element of q
19: Let c,s be the child, sibling dependents of ri, respectively
20: end while
21: Update the size of ri given it’s child dependents
22: Update the position of the dependents of ri
23: end for

This algorithm first finds the highest root of ti as this will ensure that all potentially affected blocks will

be updated. Then the algorithm uses the ordering given by a depth first search in which a node is added to

the ordering once the DFS has backtracked from the given node. The algorithm then uses this ordering of

the tree to update the size of the blocks then update the positions of the given block’s dependents. That is, a

block will update its size when it is ri but will not be positioned until after its parent in the dependency tree is

resized. As the whole tree may need to be updated and all non-root blocks have a parent in the tree, it follows

that all positionally dependent blocks will be placed after their parent in the tree has been resized.

This organization of the connections allows us to store any features of a given block as subcomponents of

30

this block. This yields an organization that is not only more intuitive but also allows us to be more efficient

with rendering nodes and generating code of a given block.

IV.2 Individual Block Design

Scalable vector graphics (SVG) are used for the visual representation of the blocks. This allows us to decouple

the visual components from the language definition in the metamodel. This decoupling allows for easier

modification and creation of new visual aspects of the language. The decoupling of the language definition

and the visual aspects requires the creation of general rules for transforming a given SVG when another

block is connected or nested within the given SVG component. Therefore, every dynamic SVG in the visual

programming language must contain relevant information for the application of the appropriate stretching or

shifting allowed by the given SVG.

SVG transformations are composed of a series of stretches and shifts applied to the individual elements of

the SVG. That is, the placement of a block inside of another results in the stretching and shifting of individual

elements of the parent block to visually represent the containment of the new child element. As shown below,

these transformations can be rather significant.

These shifts and stretches must be specified in the svg file. Stretches are specified with respect to the name

of the connection that will cause the given element to stretch and the given axis to stretch. Shifts are specified

with respect to the id of the SVG element which will cause shifts to the location of the given element and the

given axis to shift. That is, the SVG element will designate an element which, when stretched or shifted, will

cause a stretch or shift in the given SVG element.

Each block on the screen has current stretch values organized by the connection name that is being

stretched. When another block is connected to a connection area, the parent block’s stretch values for the

given connection area (termed “stretch class”) are updated and will be updated on the next screen refresh.

Organizing the elements into stretch classes allows the SVG elements to be stretched to the maximum of the

stretches of the stretch classes to which the SVG elements belong. As the SVG element’s stretch classes’

stretches are all recorded, the size of the SVG element is easily updated on the event of a significant de-

crease in the largest stretch class value. That is, if an element has three stretch classes, say “first”, “second”

and “third”, with values 15, 17 and 20, respectively, the element will be stretched to 20. On the event that

“third” is changed to 10, the SVG element can easily update itself to depend upon the stretch value of the

new maximum, “second” (with a value of 17).

Unlike the stretching of the SVG elements, shifting is dependent upon other SVG elements rather than

connection names. Given the shifting specifications in the SVG, our visualization component of WebGME

will create a forest of shift trees for each of the elements of the SVG. Shifts are then applied by applying a

31

shift to the children of each stretched node and allowing the shifts to propogate down the tree. Connection

areas designated in the SVG support the same functionality and can be added as leaves to the shift tree for the

given SVG. For example, if we let ei designate elements and ci designate a connection area of a given SVG

such that e8,4,5 have a shift dependency on e6, e1,7,3 have a shift dependency on e8 and c1,e10 have a shift

dependency on e3, we will create the left shift tree in Figure IV.2. Letting e2 be an unshifting element with

dependents e11,e9 will give us the tree on the right.

e6

e8 e4 e5

e1 e7 e3

c1 e10

e2

e9 e11

Using this constructed forest of shift trees, we can then apply shifts by first shifting the children of

stretched elements by the given amount. As previously described, these shifts will then propogate down the

tree to update all dependent elements. Suppose, for our example, we have the following stretches in the SVG:

e6 = 12

e8 = 7

e1 = 11

This will update the left shift tree as follows:

e6(0)

e8(12) e4(12) e5(12)

e1(19) e7(19) e3(19)

c1(19) e10(19)e11(30)

It is worth noting that the stretching elements and shifting elements have significantly different require-

ments; this is both with respect to what the elements depend upon and how their values are calculated given

their dependents. The stretching elements depend upon the values of their given stretch classes (which are

determined from size of any block connected to a given connection area). Given these stretch class values,

the SVG element will stretch to the max stretch value dictated by the stretch classes. The shifting elements,

however, are dependent on their descendents in their given shift tree; the shift value is then given by the

summation of the stretch and shift values of the parent.

32

CHAPTER V

Constraint Generation

Constraint generation is done in 3 major steps. First, variables are hoisted to the top of the file and declared

with respect to their given data type. Next, the blocks are traversed and the code is generated from the

block code templates. Finally, any dependent functions required by the code templates are prepended to the

generated code.

As discussed in Chapter III, a block may have both an attribute and pointer with the same name to

represent a value that can be specified by either user specified text or a relationship with another block. During

compilation, any values from block relationships take precedence over any user specified text (attributes in

the data model). Constraint code for a given block is generated by first finding any values that would be

replaced by the attributes of the given block (such as input of text fields). Then, for any pointer name

required in the template, code is generated for the target block of that given pointer. This ordering allows the

information about any connected block to override any attribute value that may be inputted to the given block.

This approach effectively results in a creation of the code which generates the code of children and sibling

connections before the node’s code is generated. The constraint generation uses a robust, template based code

generation. The use of templates allows our constraint generator to be easily extendable with the addition of

new language concepts and with any future language or syntax changes. Like Scratch, the constraint code is

generated only from code accessible from the main entrypoint; disconnected blocks are ignored [17].

The most novel aspect of the code generation for the visual constraint language lies in it’s ability to

generate asynchronous code. Using this asynchronous code generation, the compiler enables the user to

create more manageable, synchronous code using the blocks and will compile the block source code into the

necessary asynchronous JavaScript code as necessary. The constraint generator also uses intelligent variable

name mapping to allow the user to ignore character restrictions or reserved words restrictions in naming

variables.

V.1 Asynchronous Code Generation

As WebGME allows the loading of only the relevant parts of a project, the nodes being accessed may not be

currently available to the client application. This requires the constraint code to be asynchronous as the client

application may need to request the node from the server.

The constraint generator supports asynchronous code creation from the synchronous block input. Sup-

porting asynchronous code function generation in the template requires support for moving subsequent code

33

into a callback while preserving and variable assignment or similar function that requires the return value of

the asynchronous function. Consider the following example of loading a node in JavaScript and assigning it

to the variable “myNode” (where “nodeId” is the id of the desired node).

Using naive template based code generation:

myNode = getNode(nodeId, function(node){

});

However, as getNode is an asynchronous function, the resulting node is actually the input to the callback

function (rather than the return value of the function). Therefore, in our asynchronous code generation, we

handle this by allowing the block’s code to move it’s parent’s code (the assignment block in our example)

inside of the given code’s callback.

To prevent undesirable behavior in the case of nested asynchronous functions, we only allow this move-

ment of the parent code inside of the callback to occur once. As the parent code snippet contains the place-

holder for the subsequent commands to be executed, this single movement will account for movement of all

following generated code. Using this code generator, the previous example correctly moves the parent code

inside of the child code as shown below.

getNode(nodeId, function(node){

myNode = node;

});

Nesting the parent code within the child block’s code effectively allows the parent block to use the result

of the asynchronous function. However, as subsequent code may also depend on the result of the the callback,

the subsequent code is also executed within the scope of the callback. Just as every visual block contains a

connection area to connect to subsequent code blocks, every block’s code snippet contains a placeholder for

the following block’s code snippet. Maintaining the location of the following block’s code snippet allows

the subsequent code to be lifted into the asynchronous callback with the appropriate parent block’s code

snippet. Allowing the current insertion point of subsequent code to be held with a placeholder facilitates the

generation of more complex asynchronous code.

This gives us a more robust template-based code generator as it allows our previously synchronous code

to be converted to asynchronous JavaScript code. This mapping of synchronous to asynchronous code allows

for a reduction in complexity of the constraint language required in our distributed modeling environment.

34

Supporting asynchronous functions also requires some modification to loops in the code blocks as they

cannot necessarily be mapped to a synchronous “for” or “while” loop. This mapping could cause unexpected

behavior as, if the loop contains asynchronous calls, the loop may enter subsequent iterations before the

asynchronous call returns. In order to ensure the appropriate behavior, we map loops to recursive function

calls where the recursive call is moved into the callback of the asynchronous function. As a loop with many

iterations could result in a stack overflow, the recursive call is made asynchronously. Performing the recursive

call asynchronously prevents the call stack from growing during subsequent iterations.

In JavaScript, this is implemented using the setTimeout function. JavaScript is implemented with an

event queue which contains functions to be executed by the global object. The setTimeout function allows

functions to be placed on this event queue. In the generated constraint code, loops are converted to recursive

calls where the subsequent iterations of the loop (recursive function) placed on the event queue using set-

Timeout. This utilization of the event queue effective shrinks the call stack as desired and prevents any stack

overflow errors as a result of any large loops in the constraint code.

V.2 Additional Features

Along with the support for asynchronous code generation, the visual constraint language code generation also

contains a framework for testing of new constraint code blocks, an intelligent variable name mapping, basic

name collision avoidance, lazy loading of nodes and a decoupled output language specification.

The visual constraint language also includes a framework for testing new constraint code blocks. The

framework allows the user to create a test case and then simulates the asynchronous network communication

used in WebGME to allow the user to run the compiled constraint code locally. To test the accuracy of the

output, the user can write a JavaScript function testing the same constraint to be compared with the compiled

code. As the testing is all performed locally, the user-provided JavaScript code is given direct access to

the test case and the code can be written synchronously (ignoring the added complexity from the network

communication). This allows the user-provided JavaScript to be written very simply while still performing

as desired. This testing framework also allows for the programmatic creation of large test cases to also test

the performance of the newly created code block in the context of the test constraint.

At compile time, variable names are mapped to a valid JavaScript variable name. Mapping the variable

names to valid JavaScript variable names allows the user to create more readable variable names (such as

“maximum nodes” as opposed to “maximumNodes” or “maximum nodes”). Although subtle, this should

promote the readability of code to non-programmers.

Also, the code generator allows the user to create boilerplate code for the template and specify variables

from the boilerplate code as private. That is, variables can be specified as unavailable to the constraint.

35

During compilation, any variables created by the user matching a private variable from the boilerplate code

will be renamed to avoid the name collision between the variable specified by the user and the variable from

the boilerplate.

Another feature of the constraint code generation is the lazy loading of nodes in the constraints. When a

node object is created in the constraint, it’s value is simply the id of the node (as assigned by WebGME). That

is, until the node is passed as input to a function, the node is simply the string id of the given node represented.

However, when the node is passed as input to a function, the node is then retrieved from the local node cache

of the constraint or requested from the browser cache (or, if it is not cached locally, requested from the remote

WebGME server). This allows the nodes to only be loaded when they are used and can limit the number of

nodes stored in the browser; this may be significant when running constraints on large projects. As the nodes

are stored as simply string ids which the node object is retrieved only when needed, the user can also use a

node block as an index to a hashmap.

To promote easy extension of compiler functionality, the output language specification is modular and de-

coupled from the functionality of the compiler. That is, the output language is defined using template snippets

in a separate JSON file which can be easily modified or customized for extensions of the visual constraint

language. This modularity also facilitates future extension of the compiler for general code generation rather

than simply constraint generation.

V.3 Algorithm

The algorithm consists of two main functions: createCode and generateBlockCode. As each code snippet

contains the placeholder for the subsequent code block’s snippet, generateBlockCode only needs to be called

for the first block.

Algorithm 2 The compilation algorithm.
createCode[language, blocks]

1: initializeLanguage(language)
2: vars be the blocks representing a variable
3: start be the starting block for the code
4: for each block, bi do
5: if isVariable(bi) then
6: Add bi to vars
7: else if isStartingBlock(bi) then
8: Set start = bi
9: end if

10: end for
11: Let code=declareVariables(language, vars)
12: Let f irst be the block at the “next” pointer of start
13: Add generateBlockCode(language, f irst) to code
14: Let code = mergeCodeSegments(language, code)
15: return code

36

Algorithm 2 starts by initializing the current language. This gives the compiler the code snippets for each

block as well as some other relevant information (such as variable declaration snippets and boilerplate). Then

the compiler finds all variables (and the starting block). Finally, the declareVariables method will declare

all boilerplate variables and then the user created variables. This results in a hoisting of all user created

variable blocks to the top of the generated code. Next generateCodeBlock will be called on the first of the

code blocks and generate the majority of the code. Finally, mergeCodeSegments will place the code in the

boilerplate provided in the language definition and add any utility functions used in the main code and defined

in the language definition.

In Algorithm 3, the code for a single block and all successors is generated. First, the snippet for the

given block is found from the language definition. Next, the snippet field values are recorded in a hashmap

(snippetTagContent) from the values of the placeholders in the snippet, attributes and pointers of the code

block. Finally, the snippet fields are populated given the current recorded values in snippetTagContent.

Placeholders are custom tags defined in the language definition and are optionally used in the code snippet

to specify temporary variables. This allows for multiple of the same code block to use temporary variables

that are not present in the code blocks without any collisions. For example, consider the code example given

in Figure V.1.

Figure V.1: Placeholder Block Example

These code blocks will generate the following JavaScript code:

getNode(myNode, function(node){

name = core.getAttribute(node, ’name’);

});

In the generated code, it is easy to see that the “myNode” value is from the node block, “name” is the

string block, and the “name” in the getAttribute function is provided as text input to the attribute of block

in Figure V.1. However, as this function is asynchronous, the let block is “lifted” into the callback and the

node represented by myNode is passed as an argument to the callback of getNode. As the nodes are lazily

loaded, myNode is actually the id of the given WebGME node. Consequently, we need another variable in

the snippet representing the actual value of the node object. This is done through the use of placeholders; as a

placeholder can be specified in the language definition then a new variable will be used in the generated code

37

Algorithm 3 Generating the code for a single block.
generateBlockCode[language, block, b]

1: Let snippet be the code snippet for b
2: Let snippetTagContent be a string hashmap
3: Let placeholders be all placeholders of the language
4: Let attributes be the attributes of b
5: Let pointers be the pointers of b
6: for each p in placeholders do
7: Let key = getPlaceholderValue(p)
8: if snippet has field key then
9: Let content = createVariableName(key)

10: Add content to snippetTagContent at key
11: end if
12: end for
13: for each a in attributes do
14: if snippet has field a then
15: Let content be attribute, a, of b
16: if a is “name” then
17: content = getVariableMapping(content)
18: else
19: content = getFormattedAttribute(content)
20: end if
21: Add content to snippetTagContent at a
22: end if
23: end for
24: for each p in pointers do
25: if snippet has field p then
26: Let b2 be the value of the pointer, p, of b
27: if b2 is not null then
28: content = generateBlockCode(language, b2)
29: else if isOptional(language, p) then
30: Set content to the empty string
31: else
32: Let content = getUndefinedValue(language)
33: end if
34: Add content to snippetTagContent at p
35: end if
36: end for
37: for each key in snippetTagContent do
38: Let content be the current value of key in snippetTagContent
39: if hasAsyncTags(content) then
40: Let snippet = swapSnippetAndContent(snippet, content)
41: else
42: Set field k of snippet to content
43: end if
44: end for
45: return snippet

38

that does not collide with any existing variables in the generated JavaScript code.

After the placeholder values are recorded, the attributes of the given code block are recorded followed

by the pointer values of the code block. As placing a code block in another block with text entered does

not remove the attributes of the code block, this ordering of populating snippetTagContent allows the block

values to overwrite the attribute values in the snippet. For example, suppose we have the code block given in

Figure V.2 and place a block in the left field (as given in Figure V.3).

Figure V.2: Block Attribute Example

Figure V.3: Block Pointer Example

Certainly, if we remove the count block, we should still see the original number (1000888). It follows that

the attributes clearly should not be cleared when a block is placed in the field but they should be overridden

by the pointer value. This characteristic must be reflected in the generated code; storing the values for the

fields given the attributes then overwriting them with the pointer values allows this overriding of the attribute

value.

In Algorithm 3, there are also a number of functions used which require explanation. One such function

is createVariableName. This function generates a variable name to be used in the source code that matches

the format of the variables in the language (specified with a regular expression) and does not collide with any

other variables from the boilerplate, placeholders, or already defined variables in the code blocks.

isOptional and getUndefinedValue are two more important functions used in code compilation. This

allows the generation of blocks with missing attributes or pointers. That is, if a block’s code snippet contains

a field that cannot be populated by the given block (as it does not have the appropriate attribute or pointer),

isOptional checks if the field is needed. If so, the field will be populated with the empty string. Otherwise,

the field will be populated with the “undefined value” of the language (retrieved from the language definition

with getUndefinedValue).

An easy example of the use of isOptional and getUndefinedValue can be found with the “next” pointer.

As the user’s code is not infinitely long (nor cyclical), there must be some code block that does not have a

“next” pointer. This pointer is considered optional and, thus, is replaced with the empty string. However, if

it was not optional, then it would be replaced with the undefined value of the language. In the example of the

code generated from Figure V.1, the generated code would actually look as follows:

39

getNode(myNode, function(node){

name = core.getAttribute(node, ’name’);

undefined

});

Given this code example, it may seem compelling to simply allow all fields to be optional as adding

“undefined” to a snippet field may not seem to be beneficial. There are two natural alternatives to this

approach: replace unknown values with the empty string or ignore unfilled field entries.

Suppose the compiler replaced all unknown fields with empty string. As demonstrated in the previous

code snippet, this is sometimes a satisfactory solution. However, this approach can cause problems as some

fields certainly may not be necessary or used but still must exist. This could be the case for functions with

multiple arguments or with setting optional parameters for an object; a value may need to be present though

leaving undefined may simply specify that the optional parameter is left unspecified. If the values are input

to a function, then inserting an empty string may cause a syntax error in the generated code. As it is possible

that the value is not needed by the function, this would cause an error in the compiled code which is not in

the code blocks.

Suppose the compiler simply ignored fields without values specified by the current block. As each code

block contains the subsequent code, a block leaving a field unfilled would allow the field to be filled by any

of it’s ancestor blocks (predecessors in the execution sequence). This could result in unexpected behavior

by the compiler. As this option could cause nondeterministic for the code of a given block (as the generated

code snippet could be modified by the given block’s predecessors) and the functionality of the first option is

included in the current design of the compiler, the current design of the compiler results in a more robust and

reliable compiler supporting more flexible code generation.

Finally, the function that facilitates generating asynchronous code is swapSnippetAndContent. As de-

scribed in Section V.2, this function will “lift” the current snippet into the callback of the block representing

an asynchronous function. This function will recognize asynchronous code snippets and insert the parent

block snippet code into the child block snippet. For example, consider the code generated from Figure V.1.

When this code is being created, the snippet will be

name = {{second}};

{{next}}

and the content for the “second” pointer will be

40

getNode(myNode, function(node){

{{_async_start_}} core.getAttribute(node, ’name’){{_async_end_}}

});

The swapSnippetAndContent function will recognize the asynchronous tags and place the content be-

tween the “start” and “end” tags in the “second” pointer of the snippet:

name = core.getAttribute(node, ’name’);

{{next}}

Then the snippet will be inserted into the content for the given pointer in place of the asynchronous section

to get the new snippet value:

getNode(myNode, function(node){

name = core.getAttribute(node, ’name’);

{{next}}

});

41

CHAPTER VI

Examples and Discussion

In this section, I will provide three constraint examples using the visual constraint language: Unique Name

Constraint, One Start Block Constraint, and Equal Incoming and Outgoing Connections Constraint.

The first two constraints provide constraints which would be applied to a project container (the root node in

the containment tree) and verify that all contained nodes conform to the constraint rule. The third constraint

provides an example of an extension of the visual constraint language for a domain using a visualization

paradigm with “connection” nodes1. The third example will also provide the small modifications to the

metamodel performed to make the given extension.

VI.1 Unique Name Constraint

Figure VI.1: Block Pointer Example

Figure VI.1 shows an example of validating that all containment descendents of a node have a unique name.

As with all constraints, this constraint starts with a “Begin” node which marks the entrypoint of the constraint.

The constraint then retrieves all descendents of the current node and assigns them to the “queue” variable.

The “queue” node set is then iterated through using the forEach loop using “node” as the iterator. For each

node, the name attribute is retrieved from the node and assigned to the “name” string variable. If the name

has already been visited (and added to the “names” collection variable), then the constraint marks the current

node as violating this constraint. Otherwise, the code will simply add “name” to the list of seen names

(recorded in the collection, “names”) and continue.
1In this context, a connection node is a node which is visually represented as a connection between two other nodes in the model.

42

VI.2 One Start Block Constraint

Figure VI.2: One Start Block Example

Figure VI.2 starts by setting the “TYPE” variable to “start” and the “MAX COUNT” variable to 12. Next, the

number of descendents of the current node of type “start” are retrieved and assigned to the variable “count”.

Finally, it simply checks if “count” is larger than “MAX COUNT” and marks a violation if appropriate.

This example illustrates the significant reduction of complexity provided by the visual constraint lan-

guage. Specifically, the retrieval of the number of descendents of a given type is performed by simply per-

forming three operations on “currentNode” in Figure VI.2 while these blocks encompass asynchronously

loading all containment descendents, filtering the results by the specified node type and returning the num-

ber of remaining nodes. As this requires a large amount of asynchronicity, representing it in a synchronous

manner provides the user with a significant reduction of code complexity.

The simplicity of this example is a result of more than simply providing useful functions for node retrieval

within WebGME. Providing a library for writing JavaScript functions could provide the functionality of

convenient blocks such as getDescendents in Figure VI.2. However, as the loading of nodes in WebGME

is an asynchronous call, this would require the getDescendents method to also be an asynchronous call and

would consequently affect how the method must be used. Using this visual programming language allows

the user to not only encapsulate the convenient functionality within a custom block but also to hide the

asynchronicity of the code to the end user.

2As the variable names are converted to valid variable names (if needed) within the compiler, the space within “MAX COUNT” is a
valid variable name.

43

VI.3 Equal Incoming and Outgoing Connections Constraint

Figure VI.3: Equal Connections Constraint

Figure VI.3 presents a constraint which will verify that the given node contains an equal number of incoming

and outgoing connections. The constraint first retrieves the incoming connections of the current node and

stores the count in the “incoming count” variable. Similarly, the number of outgoing connections is stored

in the “outgoing count” variable. Next, the two counts are compared and the node is marked as violating the

constraint if the two values are nonequal.

Unlike the previous two examples, this example provides an extension to the standard visual constraint

language for models which are using connections3. Unlike the filterByNodeType block, these blocks can be

used to filter by the type recognized by the visualizer; rather than filtering the nodes by a metamodel type,

they can be filtered by type recognized by the visualization paradigm.

This constraint represents one basic extension that can be made to the visual constraint language given

knowledge about the model. In Figure VI.3, we created a new data type which node represents a type of

node in the WebGME model, namely connections, and functions to retrieve this new data type. However,

this abstraction can be used to create custom data types representing structures in the model. For example,

consider we are modeling a simple workflow with data and tasks to perform on the given data. As the

workflow should likely be acyclic, it may be useful to consider a cycle in the graph as a custom data type.

When considering the cycles as a unit, creating a constraint verifying the graph is acyclic is trivial. This

allows constraints to be created at a higher level of abstraction than simply considering the nodes in the graph

(and discovering the cycles in the constraint).

3These are connections which are nodes in the model and usually represented with a line connecting two boxes. The connections
described in the visualization of the visual programming language are simply the presence of a pointer from one node to another and not
actual objects in the data model.

44

Figure VI.4: Metamodel modification

Figure VI.4 shows the three boxes added to the metamodel to create the customizations to the visual con-

straint language used in Figure VI.3. As the connections are a type of node recognized by the visualizer, the

connection set block inherits from the node set block. GetIncomingConnections and getOutgoingCon-

nections both return a block of type connection set. As functions in our visual constraint language inherit

from their return data type, these blocks inherit from the connection set data type. As both functions also are

performed on a given node, they both have a pointer to a block of type node.

Although this provides a simple example of the extensibility of the language, it provides an example of

using new data types to refer to types of nodes which could be difficult to define otherwise. Given a domain

specific application, this concept can be further utilized to create very precise data types and functions that

are unique to the given domain. As the visual constraint language is easy to edit as well as extend, this

would allow the user to then remove unwanted generic types to create a smaller, more precise language to

define their constraints. As this new language is domain specific, this can also create constraints that are more

natural and familiar to a domain engineer.

45

CHAPTER VII

Conclusion & Future Work

This language provides a number of benefits to constraint creation. As domain engineers are not necessar-

ily software engineers, our visual constraint language provides an alternative to more complex constraint

languages such as Object Constraint Language [24] or programming languages (such as JavaScript as in

WebGME) [18]. In the context of WebGME, the visual programming language also reduces the additional

complexity as a resulting from the distributed environment of WebGME. The semantics of the visual con-

straint language also promote a reduction of complexity as it contains a number of blocks that entail common

functionality for WebGME project traversal and constraint generation.

The construction of the visual constraint language as a model allows the visual constraint language def-

inition to not only be extended for custom domains but also provides the language definition in a familiar

format for domain engineers. This will allow the domain engineers to not only extend the language to better

match the needs of their domain but also enable them to remove and modify the base language to create

custom fundamental syntactic structure as needed. That is, this allows subsets of the language to be forked

and modified to fit the needs of the domain; this feature of the language allows for easy creation of domain

specific constraint languages.

Creating the visual constraint language as a model within WebGME provided a number of additional

advantages over other visual programming languages [2]. Building our visual constraint language within

WebGME provided a version control system and a collaborative development environment. These enable our

visual constraint language, as well as any future versions or variations to be useful for large scale projects.

However, despite these benefits, the language is not always ideal for constraint creation. Complex con-

straints can be cumbersome in creation and creation with language blocks is not as flexible as creating the

constraint code by hand. Also, the language does not currently support first class functions that can be called

from within a constraint definition as in some other visual programming languages [19, 17]. Unfortunately,

this can result in cumbersome definition of complex constraints.

This constraint language not only provides a useful tool for constraint definition within the distributed

nature of WebGME, but provides the basis for future research. First class functions could allow for the

creation of more complex constraints without cumbersome creation. Also, modifying the base language to

a logic programming paradigm could potentially create a more concise constraint representation for some

domains.

46

BIBLIOGRAPHY

[1] Andrew Begel. Logoblocks: A graphical programming language for interacting with the world. Elec-
trical Engineering and Computer Science Department, MIT, Boston, MA, 1996.

[2] Blockly. https://developers.google.com/blockly/. Accessed: 2014-12-19.

[3] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer. A visualization of
ocl using collaborations. In ¡¡UML¿¿ 2001The Unified Modeling Language. Modeling Languages,
Concepts, and Tools, pages 257–271. Springer, 2001.

[4] Margaret M Burnett, Marla J Baker, Carisa Bohus, Paul Carlson, Sherry Yang, and Pieter Van Zee.
Scaling up visual programming languages. Computer, 28(3):45–54, 1995.

[5] Chance Elliott, Vipin Vijayakumar, Wesley Zink, and Richard Hansen. National instruments labview: a
programming environment for laboratory automation and measurement. Journal of the Association for
Laboratory Automation, 12(1):17–24, 2007.

[6] Andrew Fish, John Howse, Gabriele Taentzer, and Jessica Winkelmann. Two visualizations of ocl: A
comparison. 2005.

[7] Graham Hemingway, Himanshu Neema, Harmon Nine, Janos Sztipanovits, and Gabor Karsai. Rapid
synthesis of high-level architecture-based heterogeneous simulation: a model-based integration ap-
proach. Simulation, page 0037549711401950, 2011.

[8] Larry Howard. Cape: A visual language for courseware authoring. In Second Workshop on Domain-
Specific Visual Languages, 2002.

[9] Ethan K Jackson, Dirk Seifert, Markus Dahlweid, Thomas Santen, Nikolaj Bjørner, and Wolfram
Schulte. Specifying and composing non-functional requirements in model-based development. In Soft-
ware Composition, pages 72–89. Springer, 2009.

[10] Wesley M Johnston, JR Hanna, and Richard J Millar. Advances in dataflow programming languages.
ACM Computing Surveys (CSUR), 36(1):1–34, 2004.

[11] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-integrated development of
embedded software. Proceedings of the IEEE, 91(1):145–164, 2003.

[12] Caitlin Kelleher and Randy Pausch. Lowering the barriers to programming: A taxonomy of pro-
gramming environments and languages for novice programmers. ACM Computing Surveys (CSUR),
37(2):83–137, 2005.

[13] Stuart Kent. Constraint diagrams: visualizing invariants in object-oriented models. In ACM SIGPLAN
Notices, volume 32, pages 327–341. ACM, 1997.

[14] Jeffrey Kodosky, Jack MacCrisken, and Gary Rymar. Visual programming using structured data flow.
In Visual Languages, 1991., Proceedings. 1991 IEEE Workshop on, pages 34–39. IEEE, 1991.

[15] Zsolt Lattmann, Adam Nagel, Jason Scott, Kevin Smyth, Joseph Porter, Sandeep Neema, Ted Bapty,
Janos Sztipanovits, Johanna Ceisel, Dimitri Mavris, et al. Towards automated evaluation of vehicle
dynamics in system-level designs. In ASME 2012 International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, pages 1131–1141. American Society
of Mechanical Engineers, 2012.

[16] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan Sprinkle, and
Gábor Karsai. Composing domain-specific design environments. Computer, 34(11):44–51, 2001.

[17] J. Maloney, M.Resnick, N. Rusk, B.Silverman, and E.Eastmond. The scratch programming language
and environment. Trans. Comput. Educ., 2010.

[18] Miklos Maróti, Tamas Kecskés, Robert Kereskényi, Brian Broll, Peter Völgyesi, Laszlo Jurácz, Tihamer
Levendoszky, and Ákos Lédeczi. Next generation (meta)modeling: Web- and cloud-based collaborative
tool infrastructure. In Model-Driven Engineering Languages and Systems: 17th International Confer-
ence, MODELS 2014, Valencia, Spain, September 28-October 3, 2014. Proceedings, volume 8767 of
Lecture Notes in Computer Science, Valencia, Spain, 2014. Springer.

47

[19] J. Mönig and B. Harvey. Bringing “no ceiling” to scratch: Can one language serve kids and computer
scientists? Constructionism 2010, 2010.

[20] Janos Sztipanovits and Gabor Karsai. Model-integrated computing. Computer, 30(4):110–111, 1997.

[21] Visual OCL. http://www.user.tu-berlin.de/o.runge/tfs/projekte/vocl/. Accessed: 2014-12-19.

[22] Visual OCL: A visual notation of the object constraint language. http://www.user.tu-
berlin.de/o.runge/tfs/projekte/vocl/gKTW02.pdf. Accessed: 2015-1-19.

[23] William W Wadge and Edward A Ashcroft. Lucid, the dataflow programming langugage. 1985.

[24] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[25] Kirsten N. Whitley. Visual programming languages and the empirical evidence for and against. Journal
of Visual Languages & Computing, 8(1):109–142, 1997.

48

	-10ptACKNOWLEDGMENTS
	-5ptLIST OF FIGURES
	I Introduction
	I.1 Programming Languages
	I.2 Model-Integrated Computing
	I.2.1 Background
	I.2.2 WebGME

	I.3 Visual Constraint Languages
	I.4 Overview

	II Abstract Syntax
	II.0.1 Core Concepts
	II.0.2 Data Types and Coercion
	II.0.3 Functions
	II.0.3.1 Boolean Functions
	II.0.3.2 Numerical Functions
	II.0.3.3 Collection Functions
	II.0.3.4 String Functions
	II.0.3.5 Generic Functions
	II.0.3.6 Constraint Functions

	II.0.4 Control Flow
	II.0.5 Commands

	III Architecture
	IV Language Visualization
	IV.1 Inter-Block Design
	IV.2 Individual Block Design

	V Constraint Generation
	V.1 Asynchronous Code Generation
	V.2 Additional Features
	V.3 Algorithm

	VI Examples and Discussion
	VI.1 Unique Name Constraint
	VI.2 One Start Block Constraint
	VI.3 Equal Incoming and Outgoing Connections Constraint

	VII Conclusion & Future Work
	 BIBLIOGRAPHY

