
Age distribution formulas for budding yeast

Hyunju Ban Erik M. Boczko∗

Department of Biomedical Informatics,
Vanderbilt University,

Nashville, TN 37232

August 5, 2008

∗Correspondence to erik.boczko@vanderbilt.edu, Ph: 615 936–6668, Fax: 615 936–1427

1



Abstract

Yeast are an important eukaryotic model system in the study of aging. Replicative

age in budding yeast can be quantitatively determined by visualizing chitanous bud

scars. The dynamics of the process of growth and division effects the distribution of

replicative age. How much physiological information is encoded in experimental age

distributions is not fully understood. Formulas relating the stationary age distribution

to the spectrum of generational and culture doubling times have been proposed by

several authors over the past four decades. We discuss the assumptions upon which

they rest and some natural extensions. We describe the replicative age distribution

of a population growing exponentially in terms of generational flux residence times.

We demonstrate the utility of this description and show that it produces excellent

agreement with experimental data, and describe how it compares with previous work.

We demonstrate that the age distribution in a variety of strains can be predicted by

a realistic population model, and we indicate how the age distribution is altered by

perturbations and control.

Keywords: Population Dynamics, Cell Cycle, Bioreactor
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1 Introduction

Aging is perhaps the most compelling biological mystery to occupy human interest. Aging

is currently a vigorous research area with several lines of converging evidence and enormous

progress [1, 2, 12, ?, 19]. Yeast are an ideal model organism central to this research effort.

This is true in part because replicative age in budding yeast is straightforward to determine

from the number of chitanuous bud scars apparent on the cell wall. Because age distribution

data are easily accumulated it is of interest to understand the full extent of the information

they carry about the process of growth and division, the eukaryotic cell cycle and its con-

trol. Quantitative information regarding the growth and division of older cells is especially

valuable since many of the finer details are technically challenging to measure. What is to

be gained from quantitative knowledge of the minute details of yeast growth and division?

Beyond simple curiosity, profit currently lies in the ability to deconvolve population mea-

surements. Measurements such as gene or protein expression routinely involve the isolation

of biomolecules from a sample of 108 cells. We, and others [5, 20], have shown that experi-

mentally annotated models of yeast growth and division can accurately stratify a population

by age, by volume, by mass, by cell cycle progression, and through this attribution vastly

expand the power and scope of a single measurement.

Replicative aging must in general be differentiated from chronological aging, lifespan and

senescence. When yeast are growing exponentially in continuous culture it is likely that

these notions agree. However, there is evidence that this is not the case for logistic growth in

batch or in colonies grown on solid substrates [18]. The term age has been used with slightly

different semantics in different contexts. For instance, in population balance models age is

often used as a continuous variable of position to represent cell cycle progression [10, 13].

In the context of this work, age, is a discrete quantity that is determined from the number

of bud scars and as such is in correspondence with the number of replicative divisions. We

shall use the terms, age, replicative age, age class, generation, and Pk, interchangeably. We

use the term age distribution to mean the fractional population density resident within each

age class. For instance, if we remove a single yeast cell, uniformly at random, from a culture

or community, what is the probability that the cell has exactly k bud scars? We denote this
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quantity by ak, and call the set of numbers {ak}
∞
k=0, for all k, an age distribution. It deserves

mention that the in case k = 0, the cells contain no bud scars and are often refered to as

daughters in the literature. Parents with k > 0 are often refered to as mothers.

Within an culture or community of yeast, the population density within each age class

is not expected to be uniform, or stationary. From general considerations the only property

expected of the distribution is that it monotonically decrease with increasing age. In the

special case of synchronous and symmetric divisions the distribution of age is expected to

follow the simple geometric series {( 1
2
)k+1}∞k=0, where k denotes age class. Several authors

have proposed formulas to describe the stationary age distribution of a population of yeast

growing exponentially [8, 9, 17]. The interest has been to describe the age distribution in

terms of the doubling times of the different age classes and the total population doubling

time. It has been observed and appreciated for four decades that these doubling times can

vary with age and often by considerable amounts. It has been perhaps less well appreciated

that the rate at which cells traverse the cell cycle is not homogeneous [7].

Population models of yeast growth have been studied extensively in chemical engineering

and biology. Excellent reviews can be found in []. We have been studying a discrete popula-

tion model of yeast growth and division for the purpose of investigating phenomena related

to cell cycle synchrony [4, 3, 5], quorum sensing [?] autonomous oscillations and model

adaptive control [?]. The age distribution is computable and our interest in this subject

began as we compared the the model predictions with the formulas described in [8, 9, 17].

The discrepancies aroused our curiosity and our attempts to understand them comprise this

paper.

Our results can be summarized as follows: In general, there exist well defined flux res-

idence times, τk, for each age class, k, that describe the length of time that it takes for

influxing population density to efflux that age class. This notion will be made precise below.

Under certain assumptions, the age distribution can be described in a simple way in terms

of these times. The equality of the τk accross all generations implies that the age distri-

bution is a simple geometric series. In general however, budding yeast of different age do

not traverse their cell cycles with same average rate and thus the τk differ with k. Grover

and Woldringh [8] correctly proposed that the flux residence times can be recovered from
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an age distribution. However, their precise formulation is flawed. In a seminal work Lord

and Wheals [17] presented a formula for the age distribution. Their work depends on the

modeling assumptions made by Hartwell and Unger [10] that rest on the assumptions that

parents and daughters are indistinguishable after a certain point in a common cell cycle,

and that parents of all ages have the same uniform doubling time. These assumptions are

violated in real yeast. These issues were addressed by Gyllenburg in [9] where the author

derives a general formula for the age distribution. We implement the formula of Gyllenburg

and show that it agrees with our population model predictions, our formula based on flux

residence times, and experimental data. We describe a simple procedure to uniquely extract

the flux residence times from age distribution data.
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Figure 1: Trellis model of budding yeast growth and division. A discrete series of age classes
are arranged vertically with daughter cells, P0, at the top, that senesce downward with each
division. The horizontal axes represents cell cycle progression within each age class. Newly
divided cells begin a mitotic cell cycle at the far left, and division ocurs at the far right. The
τk’s represent the flux residence times that are formally defined through the conservation
equations 2.

2 Notation and Models

Consider the diagram of Figure 1, to represent the process of yeast growth and division. At

a logical level our trellis is identical to those in [20, figure 5] and [11, figure 3]. As described

in the legend, each generation begins with the influx of newly divided cells entering at the

beginning of the cell cycle into the G1 phase on the left that eventually efflux at division

ending the M phase on the right. The process of influx and efflux occurs within the cell

cycles of each generation. The arrows in the trellis diagram indicate how the flux of cells

connects the generations. There is an essential asymmetry in the flux graph because each

division gives rise to a new daughter. Importantly, daughters born from parents of different

ages are often statistically distinguishable based on volume [20, ?], and are also thought

to be statistically distinguishable metabolically [?]. One of our goals is to understand how

these physiological details impact the dynamics and conversely how they can be recovered

from dynamical measurements.

Given a population of yeast growing in a culture or in a community we might imagine

using flow cytometry or an analagous experimental methodology to measure the population
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distribution stratified according to the variables implied in Figure 1. In experimental practice

this has been surprisingly hard to achieve because the chitin content of the cell wall remains

nearly constant. Harder still are measurements of flux. However, given a population of

yeast the notion of flux is well defined. By flux we mean the total number of cells entering

or leaving an age class within a prescribed interval of time. In mathematical models of

population growth this quantity is easily accessible.























































f i
in(t) = Total flux entering the ith generation at time t

f 0
i (t) = Daughter cells produced from a division in age class i at time t

f i
out(t) = f 0

i (t)

Ai(t) = Total number of cells of generation i at time t

ai(t) = Fractional number of cells of generation i at time t

(1)

2.1 Age and Flux

Because the number of cells in a population can only increase through division, according

to the routes depicted by the arrows in the trellis, the flux is related to the age distribution,

through the following differential equation.

Ȧk = f k
in − f k

out =















n
∑

i=0

f 0
i − f 0

0 , for k = 0

fk−1
out − f k

out = f 0
k−1 − f 0

k

Summing, we have the following.

n
∑

i=0

Ȧi(t) =

n−1
∑

i=0

f 0
i (t).

Since the total number of cells in the population is simply the sum over all the cells from all

the generations we have by linearity:

n
∑

i=0

Ȧi(t) =
d

dt

n
∑

i=0

Ai(t) =
d

dt
N(t)
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We will use the term stationary exponential growth to denote a culture that is doubling

at a rate that is invariant with respect to time. This hypothesis is satisfied by population

models [?] and observed to be true for growth in a biorector. During stationary exponential

growth, with growth rate α, the following conditions hold.

Ak(t) =
1

α
Ȧk(t) and N(t) =

1

α
Ṅ(t),

If we consider a finite number of age classes we have that the age distribution for n generations

is:

an
k =

Ak(t)

N(t)
=

1
α
Ȧk(t)

1
α

n−1
∑

i=0

f 0
i (t)

=



























n
P

i=0
f0

i −f0
0

n−1
P

i=0
f0

i (t)

, for k = 0

f0
k−1−f0

k

n−1
P

i=0
f0

i (t)

, for k > 0

And in the limit this becomes:

an
i → ai =























∞
P

i=0
f0

i −f0
0

∞
P

i=0
f0

i (t)
, for k = 0

f0
k−1−f0

k
∞
P

i=0
f0

i (t)
, for k > 0

as n→∞

This is simplified if we denote the total efflux by F(t), F(t) =
∞
∑

i=0

f i
out(t) =

∞
∑

i=0

f 0
i (t), then

ai =











F(t)−f0
0

F(t)
, for k = 0

f0
k−1−f0

k

F(t)
for k > 0

2.2 Flux Residence Time

Under appropriate nutrient conditions, between birth and division the yeast progress through

their cell cycle and grow in volume. Assuming that this process is reasonably uniform for

all yeast of a given age class the growth implies the following conservation equations for the
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flux.















f 0
0 (s + τ0) =

∑

j=0

f 0
j (s)

f 0
i (s + τi) = f 0

(i−1)(s) (i ≥ 1)

(2)

The flux residence times τk, reflect the average time that cells of a given generation spend

growing between successive rounds of replication. It has been well understood since the

earliest work on yeast physiology that the rate of cell cycle progression depends on environ-

mental variables. There has been enormous progress in modeling the interaction between

metabolism and growth [?, 13] that currently includes efforts to integrate gene regulation,

quorum sensing and control. These comments highlight the variable dependencies of the τk.

These relationships were recognized by Grover and Woldringh [8], and it would be fair to

call the flux residence times generational doubling times. The correspondence is sharp in the

case of the parental generations. As noted above, in the case of daughters, the {f 0
i }i=0 do

not all enter at the same average place in the P0 cell cycle. Hence, τ0 is is an age weighted,

ensemble average of residence times.

It is usefull to observe that the Equations (2) define a map with a Leslie-like matrix A [15, 16]:























f 0
0 (s + τ0)

f 0
1 (s + τ1)

f 0
2 (s + τ2)

...

f 0
n(s + τn)























=























1 1 1 · · · 1 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0













































f 0
0 (s)

f 0
1 (s)

f 0
2 (s)
...

f 0
n(s)























= A ·























f 0
0 (s)

f 0
1 (s)

f 0
2 (s)
...

f 0
n(s)























(3)

There are two cases to consider:

• (Case 1 : τi = T for all i) In the absence of external forcing or feedback control to

influence the flux, the asymptotic population distribution is determined by iterating the

matrix A. The age distribution corresponds to the normalized eigenvector associated

with the largest eigenvalue of the Leslie matrix []. This provides a simple proof that

the age distribution converges to {( 1
2
)(k+1)}k=0.

• (Case 2 : τi 6= τj for some i 6= j) In [8, Equation ] the limits of integration were
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left unspecified, and assumed to be uniform. This error invalidates their formula.

It is possible to devise a numerical algorithm to solve the dynamics in this case. The

pseudocode for such an algorithm is presented in the appendix. It is far more interesting

to observe that the matrix A is in fact invertible.

Under typical growth conditions yeast populations become stationary very rapidly. There

are interesting and important exceptions related to autonomous oscillations []. Yeast that

are grown asynchronously in a bioreactor typically double with a stationary rate that equals

the dilution rate. Under the assumption of these conditions, we shall return to analyze the

consequences of Equation (3) to derive a general formula for the stationary age distribition

in terms of the flux residence times.

2.3 Recovery of flux residence times from age distribution data

Here we show that it is possible to recover the flux residence times uniquely from both

stationary and non-stationary age distribution data. The stationary age distribution can be

rewritten as the following matrix equation:























an
0

an
1

an
2

...

an
n























=























0 1 1 · · · 1 1

1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1













































f 0
0 (t)

f 0
1 (t)

f 0
2 (t)
...

f 0
n(t)























= B ·
1

Fn(t)























f 0
0 (t)

f 0
1 (t)

f 0
2 (t)
...

f 0
n(t)























,

The matrix B is invertible with inverse:

B−1 =























1
n

1 n−1
n
· · · 2

n
1
n

1
n

0 n−1
n
· · · 2

n
1
n

1
n

0 − 1
n
· · · 2

n
1
n

...
...

...
. . .

...
...

1
n

0 − 1
n
· · · −n−2

n
−n−1

n























.
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So we have






















f 0
0 (t)

f 0
1 (t)

f 0
2 (t)
...

f 0
n(t)























= Fn(t)B−1 ·























an
0

an
1

an
2

...

an
n























Let us denote B−1(an
i )∗0≤i≤n by (bn

i )∗0≤i≤n (∗ is the transpose). Then























f 0
0 (t)− bn

0F
n(t)

f 0
1 (t)− bn

1F
n(t)

f 0
2 (t)− bn

2F
n(t)

...

f 0
n(t)− bn

3F
n(t)























=























1− bn
0 −bn

0 −bn
0 · · · −bn

0 0

−bn
1 1− bn

1 −bn
1 · · · −bn

1 0

−bn
2 −bn

2 1− bn
2 · · · −bn

2 0
...

...
...

. . .
...

...

−bn
n −bn

n −bn
n · · · −bn

n 1























·























f 0
0 (t)

f 0
1 (t)

f 0
2 (t)
...

f 0
n(t)























=























0

0

0
...

0























Since the matrix in the middle term has zero determinent, there are infinitely many solu-

tions. This makes sense because once the system is stationary, we can multiply the efflux

vector by any constant and get the same age distribution. However, the flux constraints of

Equations (2)














f 0
0 (t) =

n
∑

i=0

f 0
i (t− τ0)

f 0
k (t) = f 0

k−1(t− τk) (k ≥ 1)

,

allow us to write the following equations to recover τi’s :















f 0
0 (t) = b0F(t) =

n
∑

i=0

biF(t− τ0) =
n
∑

i=0

f 0
i (t− τ0)

f 0
k (t) = bkF(t) = bk−1F(t− τk) = f 0

k−1(t− τk) (k ≥ 1)

, (4)

and with F(t) = αN(t)















f 0
0 (t) = b0N(t) =

n
∑

i=0

biN(t− τ0) =
n
∑

i=0

f 0
i (t− τ0)

f 0
k (t) = bkN(t) = bk−1N(t− τk) = f 0

k−1(t− τk) (k ≥ 1)

. (5)
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Since N(t)
N(t−T )

is monotonically increasing for T > 0, we have the existance of unique τi’s that

are the solution of the following equations :















N(t)
N(t−τ0)

=

n
P

i=0
bi

b0

N(t)
N(t−τk)

=
bk−1

bk
(k ≥ 1)

. (6)

It turns out that more is possible. We can recover the flux residence times from an arbitrary

age distribution that varies in time.

an
k(t) =

Ak(t)

N(t)
=

∫ t

0
(f k

in(s)− f k
out(s))ds

n
∑

i=1

∫ t

0
(f i

in(s)− f i
out(s))ds

=



























n
P

i=0

R t

0 f0
i (s)ds−

R t

0 f0
0 (s)ds

n−1
P

i=0

R t

0
f0

i (s)ds

, for k = 0

R t

0 f0
k−1(s)ds−

R t

0 f0
k
(s)ds

n−1
P

i=0

R t

0
f0

i (s)ds

, for k > 0

In fact, it can be expressed in a matrix form similar to the stationary case with the differences

being the integration of effluxes and the added time dependencies an
i (t) and (bn

i (t))∗0≤i≤n =

B−1(an
i (t))∗0≤i≤n.























∫ t

0
f 0

0 (s)ds
∫ t

0
f 0

1 (s)ds
∫ t

0
f 0

2 (s)ds
...

∫ t

0
f 0

n(s)ds























=

[
∫ t

0

Fn(s)ds

]

B−1 ·























an
0 (t)

an
1 (t)

an
2 (t)
...(t)

an
n(t)























=























bn
0 (t)

∫ t

0
Fn(s)ds

bn
1 (t)

∫ t

0
Fn(s)ds

bn
2 (t)

∫ t

0
Fn(s)ds
...

bn
n(t)

∫ t

0
Fn(s)ds























=























bn
0 (t) N(t)

bn
1 (t) N(t)

bn
2 (t) N(t)

...

bn
n(t) N(t)























Differentiation of both sides gives us























f 0
0 (s)ds

f 0
1 (s)ds

f 0
2 (s)ds

...

f 0
n(s)ds























=























d
dt

[bn
0 (t) N(t)] + f 0

0 (0)

d
dt

[bn
1 (t) N(t)] + f 0

1 (0)

d
dt

[bn
2 (t) N(t)] + f 0

2 (0)
...

d
dt

[bn
n(t) N(t)] + f 0

n(0)























=























d
dt

[bn
0 (t) N(t)]

d
dt

[bn
1 (t) N(t)]

d
dt

[bn
2 (t) N(t)]

...

d
dt

[bn
n(t) N(t)]
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with the assumption of no efflux at t = 0.

Arguing as we did in the stationary case using the efflux equality we have















f 0
0 (t) = d

dt
[b0(t)N(t)] =

n
∑

i=0

d
dt

[bi(t− τ0)N(t− τ0)] =
n
∑

i=0

f 0
i (t− τ0)

f 0
k (t) = d

dt
[bk(t)N(t)] = d

dt
[bk−1(t− τk)N(t− τk)] = f 0

k−1(t− τk) (k ≥ 1)

,

and thus














d
dt

[b0(t)N(t)] =
n
∑

i=0

d
dt

[bi(t− τ0)N(t− τ0)]

d
dt

[bk(t)N(t)] = d
dt

[bk−1(t− τk)N(t− τk)] (k ≥ 1)

. (7)

Finally, the following generalized system of equations can be solved to recover the τ ’s.















d
dt

[b0(t)N(t)]
∣

∣

t=T
=

n
∑

i=0

d
dt

[bi(t− τ0)N(t− τ0)]

∣

∣

∣

∣

t=T

d
dt

[bk(t)N(t)]
∣

∣

t=T
= d

dt
[bk−1(t− τk)N(t− τk)]

∣

∣

t=T
(k ≥ 1)

. (8)

The equation for the stationary state is seen to be a special case when the age distribution

is constant. Figure 2 shows an example computation with Equation (7). It can be seen

from this figure that the right hand side of Equation (7) lies above the left hand side, and

that because both functions are increasing due to growth, there exists a unique value of τ

that is easily computed. We show now that this is true in general, that the values of τk are

either unique for each k, or that the efflux functions are periodic. In either case the analysis

provides usefull information.

The ai and the bi are related through the linear isomorphism given above by the matrix B

and its inverse. From this follow the relations:

n
∑

i=1

ai(t) =
n−1
∑

i=1

bi(t) and bi(t) = bi−1(t)− ai(t).

And from these:

n
∑

i=1

ai(t) = 1, it follows that
n

∑

i=1

bi(t) = 1 + bn(t).
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bn(t) = b0(t)−
n

∑

i=1

ai(t) = b0(t)− (1− a0(t)) = b0(t) + a0(t)− 1

Applying these relations we find

n
∑

i=0

d

dt
[bi(t)N(t)] =

d

dt
[N(t)

n
∑

i=0

bi(t)]

=
d

dt
[N(t)(1 + bn(t))]

=
d

dt
[N(t)(1 + b0(t) + a0(t)− 1)]

=
d

dt
[b0(t)N(t)] +

d

dt
[a0(t)N(t)]

=
d

dt
[b0(t)N(t)] +

d

dt
A0(t)

=
d

dt
[b0(t)N(t)] + [f 0

in(t)− f 0
out(t)]

=
d

dt
[b0(t)N(t)] + [

n
∑

i=0

f 0
i (t)− f 0

0 (t)]

=
d

dt
[b0(t)N(t)] + [

n
∑

i=0

f 0
i (t)−

n
∑

i=0

f 0
i (t− τ0)]

For k ≥ 1

d

dt
[bk−1(t)N(t)] =

d

dt
[(bk(t) + ak(t))N(t)]

=
d

dt
[bk(t)N(t)] +

d

dt
[ak(t)N(t)]

=
d

dt
[bk(t)N(t)] +

d

dt
Ak(t)

=
d

dt
[bk(t)N(t)] + [f k

in(t)− f k
out(t)]

=
d

dt
[bk(t)N(t)] + [f 0

k−1(t)− f 0
k (t)]

=
d

dt
[bk(t)N(t)] + [f 0

k−1(t)− f 0
k−1(t− τk)]

If population growth outpaces death then d
dt

A0(t) = [
∑n

i=0 f 0
i (t)−

∑n

i=0 f 0
i (t− τ0)] ≥ 0
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and d
dt

Ak(t) = [f 0
k−1(t)− f 0

k−1(t− τk)] ≥ 0, are nonnegative for all k which implies

n
∑

i=0

d

dt
[bi(t)N(t)] ≥

d

dt
[b0(t)N(t)] (9)

d

dt
[bk−1(t)N(t)] ≥

d

dt
[bk(t)N(t)], (10)

Finally, suppose that the f(t) = g(t − τ) and also f(t) = g(t − σ). Then, the change of

variables s = t− τ reveals that g(s) = g(s− (σ− τ)), hence g is periodic and f aswell. This

implies that either the τk are unique or that the functions bk(t)N(t) are periodic.
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3 Previous Formulations

In 1980 Lord and Wheals [17] derived a formula for the stationary age distribution of a

population growing asynchronously.

alw
k =











e−αP k = 0

(e−αP )k−1(1− e−αP )2 k > 0

(11)

The analysis assumed that all of the parental generations, k > 0, have the same doubling

time, P , that is shorter than that of the daughters, D. Notice that Equation (11) depends

on only two parameters, the population growth rate α, and P . We began our investigation

into the representation of the age distribution after fitting Equation (11) to the output of

our population model using P as the free parameter. Our model of the strain X2180 [?]

contains at least 4 parental generations with independent growth parameters, see Table 5.8

and Appendix. The best fit value of P was uninformative. It did not correspond to any of

the parental doubling times, nor to any reasonable function of them. Using the same logic

employed to derive Equation (11), it is straightforward to extend this formula to take into

account the τk spectrum.

3.1 An Extension

Assuming a population is growing with a stationary rate of α and that the population density

function dg

dt
can be expressed by

dg

dt
= Ceαt, for some fixed constant C
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The arguments of Lord and Wheals [17] produce























































a0 =
∫ τ0

0
Ceαtdt

a1 = e−ατ1
∫ τ1

0
Ceαtdt

...

ak = e−
Pk

i=1 ατi
∫ τk

0
Ceαtdt

...

(12)

Since
∑

ak(t) = 1, we have

∫ τ0

0

Ceαtdt +
∑

k=1

e−
Pk

i=1 ατi

∫ τk

0

Ceαtdt = 1,

and this implies

C =
α

(eατ0 − 1) +
∑

k=1

e−
Pk

i=1 ατi(eατk − 1)
.

We observe that if the τk’s are the same, then formula (12) produces the degenerate case

ak = (1
2
)k+1.

Hartwell and Unger derived a simple relationship between the mother and daughter doubling

times and the stationary culture growth rate. That formula can also be extended to a

relationship between the τk and the stationary culture growth rate.

The matrix A defined in Equation (3) is invertible and that allows us to write:























f 0
0 (s)

f 0
1 (s)

f 0
2 (s)
...

f 0
n(s)























= A−1 ·























f 0
0 (s + τ0)

f 0
1 (s + τ1)

f 0
2 (s + τ2)

...

f 0
n(s + τn)























=























0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

1 −1 −1 · · · −1 −1













































f 0
0 (s + τ0)

f 0
1 (s + τ1)

f 0
2 (s + τ2)

...

f 0
n(s + τn)























.

Assuming the system is stationary the fluxes must grow at the same rate as the total popu-

lation. Since the daughter cells are growing at the same rate as all other age classes, we can

write:
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A(t) + A(t− τ1) + A(t− τ1 − τ2) + · · ·+ A(t−
n

∑

i=1

τi) = A(t + τ0).

Supposing that the growth rate is α, the relation implies:

eαt + eαte−ατ1 + eαte−α(τ1+τ2) + eαte
−α(

n
P

i=1
τi)

= eαteατ0

eατ0 − 1 =
∑

k=1

e
−α

k
P

i=1
τi

This formula properly generalizes the relationship between the flux residence times and

the culture growth rate. An analagous formula assuming only two independent times, a

daughter doubling time and a parent doubling time was derived by Hartwell and Unger and

has been extensively utilized in the literature. If we assume only two generations with flux

residence times D and P , the formula reduces to

eαD − e−αP = 1.

This differs from that of Hartwell and Unger in that we assume a finite number of generations,

and that the cells of the last generation die. This assumption is not essential, we enforce it

only because it seems natural and reflects the assumptions of our population model.

3.2 The Formula of Gyllenburg

In 1986, M. Gyllenburg [9] in an elegant work, introduced an age distribution formula by

reducing a population balance PDE problem to an integral equation through the Laplace

transform. While the formula (13) appears accessible, some unraveling is required. Since,

to the best of our knowledge, we have not seen this formula used in comparison to real data

we briefly describe our implementation and a Matlab script appears in the appendix.

amg
k =











β−β0

β−βn
, k = 0

βk−1−βk

β−βn
, k ≥ 1

(13)
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where x is a variable related to cell size and

βj = e−λd[r0+···+rj ]

∫ 1

x0

Kj(x)e−λd[G(x)−G(x0)]dx, and β =

n
∑

j=0

βj,

with

Kj(x) =
b(x)

g(x)
Hj(x, x0)e

−
R x

x0

b(ξ)
g(ξ)

dξ
,

and also rj, x0, b(x), g(x), Hj(x), G(x), and λd are defined by

jk = the constant duration of the budded phase in the jth scar class

x0 = a size which must be reached by a cell before it can enter the budded phase

b(x) =per capita rate at which cells of size x become budded

g(x) = individual growth rate of unbudded cells

H0(x, x0) = 1, Hj(x, x0) =
∫ x

x0

b(ξ)
g(ξ)

Hj−1(ξ, x0)dξ

G(x) =
∫ x

a

dξ

g(ξ)

λd = unique real root to

n
∑

j=0

e−λ[r0+···+rj ]

∫ 1

x0

Kj(x)e−λ[G(x)−G(yj (x))]dx = 1, (14)

where yj(x) is the size of the bud at time of bud separation.

To fit the formula to the data [6] we take the growth rate g(x) to be the stationary exponential

growth rate for each age class as described in Table 5.8. This choice implies that G(x) is

constant and e−λ[G(x)−G(yj(x))] = e−λd[G(x)−G(x0)] = 1. Moreover,
∫ 1

x0
Kj(x)dx = 1 for all j,

that reduces the βj and equation (14) to the following

βj = e−λd[r0+···+rj ] and
n

∑

j=0

e−λ[r0+···+rj ] = 1.

Identifying rk = τk we solve equation (14) for λ. Then calculate βk from λd. The entire

procedure is given as a Matlab script in the Appendix.
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3.3 Comparison of Results

Shown in Figure 3 is a comparison of the extended Lord and Wheals age distribution formula

with that of Gyllenburg versus the experimental data of Beran et al. [6] and the compuational

predictions of our population model [5]. The comparison is very favorable. The extended

formula of Lord and Wheals and the population model simulations are virtually identical

over the enire range of age classes. These former differ from the formula of Gyllenburg only

slightly in the daughter generation, where all the theory overestimate the experimental data.

The theories are in agreement for the first parental generation but slightly underestimate

the experimental data.

Two points require mention. All of the theoretical formulas utilize τk computed using the

X2180 milestones. The experimental data are for an unknown strain that is similar but

not identitcal to the X2180 strain. We do not know the milestones for this strain, only the

growth conditions and the dilution rate. The later is the sole variable we can adjust in theory

to normalize the comparison. Finally, there is not enough information in the experimental

data set to reasonably asses the errors and variation. Given these caveats the agreement is

deemed very good. The theories all reproduce the non geometric gap in probability between

the daughters and the P1’s, as well as the contraction of this gap between the P1 and P2’s.

The structure of these gaps are seen to be the salient features of the data.

In addition to the X2180 strain, we have measured milestones for the α-factor sensative

strain LHY3865. These data are shown in Table 2 in the Appendix. The age distribution

of LHY3865 was measured in our laboratory under controlled bioreactor conditions and

independently in batch. A comparison of these data versus the various theoretical formulas

is shown in Figure 4. This figure shows, as does the Beran data, that the logistic growth of a

batch culture alters the age distribution. The various theoretical age distribution formula’s

compute the value’s of τk, assuming continuous exponential growth. These formulas are able

to distinguish bioreactor age distributions from those of a batch culture. It is possible to

modify the population model to incorporate logistic or even power law growth. These results

will be presented elesewhere.

20



4 Conclusions

We have presented a simple extension of the classical Lord and Wheals formula that fits

real and simulated data. We have utilized a simple flux description to show that the flux

residence times can be uniquely extracted from age distribution data, regardless of whether

the state of the system is stationary or not. We assume only that the flux residence times,

τk, depend only on environmental variables such as nutrient conditions, temperature, etc,

and that for fixed conditions they are stationary in the sense that they do not depend on

time.

We have described how to impliment the age distribution formula of Gyllenburg. The

model of Gyllenburg allows for a growth rate that depends on cell cycle position, and can in

principle capture aspects of non-homogeneous behavior. However that model, as described,

only allows for a single cell cycle. That is, each age class cannot have its own cell cycle.

We have learned from the data of Woldringh et al. [?], that indeed each age class has the

possibility to traverse a very different cell cycle. Let us clarify. Typically, a continuous,

monotone increasing property like volume or mass is used to define, measure, or monitor cell

cycle progression. Each age class is observed to have very different minimal and maximal

volumes, minimal and maximal masses etc. Gyllenburg mentions that the addition of age

class dependent growth to the model is a simple extension and can be easily handled, at the

expense of very complicated formulas.

Within budding yeast there exists a large degree of strain variation. These are extremely

interesting and usefull for comparative studies, but also problematic for quantitative studies

and modeling. For instance, it is likely that several years worth of work were required to

produce the data that comprises the milestones table 5.8 in reference [?]. We, and many

other labs [?, ?] are interested in modeling the autonomous oxygen oscillations in the strain

Cen.Pk strain. However, we have never seen a carefull study of the growth characteristics

of this strain that could populate a table of parameters usefull for quantitative population

modeling. One of the goals of this work was to investigate how much milestone information

can be gleaned from the age distribution. While more work needs to be invested to fully

understand the non-homogeneous case we are currently persuing the following conjecture.
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Within the context of the population model whose equations are defined in the appendix,

given {V̄k, V̄k}, and time series of age and bud index oscillation from an initially synchronous

culture, there exists a contraction map that uniquely determines the remaining volume and

growth milestones, namely λk, BEk, MDVk, MEDVk. Such a mapping would allow us to

parameterize the population model for a given strain very effectively, as the imputs are all

relatively easily aquired, while the outputs are far harder to measure accurately.

Acknowledgment This work was partially supported through NSF-DMS 0443855, NSF-

ECS 0601528 and the short lived W.M. Keck Foundation Grant#062014.
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5 Appendix

Here we collect pseudocode to solve equation (3) described in the exposition, as well as a

script to implement the formula derived by Gyllenburg [9]. We present the details of Leslie

population model [5] of budding yeast growth and division that was used to predict the

age distribution data using the LHY3865 and X2180 milestones. A matlab program for the

population model is available from the authors upon request.

5.1 Homogeneous Flux Distribution

For computational purpose we assume that there are n+1 age classes, 0, 1, · · · , n, and parent

cell after n + 1 scars dies.

INPUT : budtime(budded time for each age class).
SET ’repeat’ as the total number of iterations.
SET the n× n matrix ADDk = (addk

ij), 1 ≤ i, j ≤ (n + 1) to check the influxes
at k-th iteration

SET the n× n identity matrix A = (aij) for the age distribution.
SET the (n + 1) age population vector Xk at k-th iteration with the initial X1

SET the initial ADD1 with (n + 1)× (n + 1) diagonal matrix with
ith diagonal entry ’1’ if X1(i) 6= 0, and othersie ’0’.

FOR time=2 to the time we want to repeat
ADDtime ← n× n zero matrix
FOR index of class j = n to 0

IF (time-budtime(j)> 0) THEN
GO BACK to (time-budtime(j))-th step

IF add
(time−budtime(j))
jk 6= 0(nonzero influx from kth class) THEN

AND IF (j 6= n) THEN

a0k ← a0k + add
(time−budtime(j))
jk

a(j+1)k ← a(j+1)k + add
(time−budtime(j))
jk .

addtime
0k ← add

(time−budtime(j))
jk

addtime
(j+1)k ← add

(time−budtime(j))
jk

ELSE IF (j 6= n) THEN

a0k ← a0k + add
(time−budtime(j))
jk

addtime
0k ← add

(time−budtime(j))
jk

END IF
END IF

END FOR
Xtime = A ·Xtime−1

END FOR
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5.2 Implementing the Formula of Gyllenburg [9]

Below is a Matlab script that produces the age distribution formula derived in Gyllenburg [9],

using the experimental milestones and derived quantities.
% V , V , λ, BE, MDV, and MEDV are given vector of size 14 from Table 1.
n=14 % the number of age classes
Begin=(BE+V )/2;
End=(MDV+V )/2;
for i=1:n

tau(i)=log(End(i)/Begin(i))/GR(i);
end
tauC=zeros(1,n); % tauC=cumulative tau
tauC(1)=tau(1);
for i=2:n

tauC(i)=tauC(i-1)+tau(i);
end
f=inline(’exp(−λ*tauC(1))+exp(−λ*tauC(2))+exp(−λ*tauC(3))+exp(−λ*tauC(4))

+exp(−λ*tauC(5))+exp(−λ*tauC(6))+exp(−λ*tauC(7))+exp(−λ*tauC(8))
+exp(−λ*tauC(9))+exp(−λ*tauC(10))+exp(−λ*tauC(11))+exp(−λ*tauC(12))
+exp(−λ*tauC(13))+exp(−λ*tauC(14))−1’);

λ=fzero(f,0.0001) % finding the root to the equation (14)
λd = λ;
beta=zeros(1,n);
for i=1:n

beta(i)=exp(−λd*tauC(i));
end
betaTOT=sum(beta);
AgeDist=zeros(1,n);
AgeDist(1)=(betaTOT-beta(1))/(betaTOT-beta(n));
for i=2:n

AgeDist(i)=(beta(i-1)-beta(i))/(betaTOT-beta(n));
end

5.3 Leslie Population Models

5.3.1 Variables

The population model is organized around two variables: Discrete replicative cell age and

total cell volume. Replicative age has been thoroughly described in the paper proper. Cell

volume has been observed to increases monotonically with time until division, within a given

age class, and thus is often used as a proxy for progression through the mitotic cell cycle.

The volume of a budded cell is taken as the total volume of both mother cell and the bud,

until division at which point they become distinct. Volume is consistently expressed in units

of cubic microns throughout.
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5.4 Volume Intervals and Time

Yeast cells of a given replicative age k, are observed to grow in volume between well defined

limits. The minimum and maximum volumes naturally delimit and define intervals, I(k) :=

[V k, V k]. We consider the temporal evolution of the system at a sequence of equally spaced

times, ts := to + s∆t. The volume intervals, I(k), are partitioned into subintervals I(i, k) :=

[V (i, k), V (i + 1, k)) ⊂ I(k), with I(k) = ∪iI(i, k), i = 0, 1, ...nk, where V (0, k) := V k, and

V (nk + 1, k) := V k. The partitions are chosen according to the growth law, within each

age class, such that any cell with volume in the interval I(i, k) now, would have a volume

in I(i + 1, k), precisely ∆t later. The unit of time is minutes and we have taken ∆t = 1

throughout. The state of the yeast population at time ts is described by a vector,

ρ(i, k)(ts) := number of cells of generation k with volume v ∈ I(i, k).

Each of the ρ(i, k)(ts) cells living in I(i, k) at time ts are faced with the following possi-

bilities:

1. The cell dies

2. The volume of the cell increases

3. The cell divides

We describe the details of each of these possibilities in turn.

5.5 Cell Death

The probability that this happens is denoted by di,k. Mortality curves have been measured

for several strains of yeast under a variety of conditions [?, ?, ?](In particular see Table 1 of

the latter). These data can be used to determine an age class specific death rate. In [?] the

authors observe that the death rate on average amounts to 10−10/cell · generation.
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5.6 Volume Growth

The probability that this happens is denoted by gi,k, and the fraction of cells that survive and

grow is κi,k := gi,k(1− di,k). Volume growth has been measured and is generally considered

to increase exponentially with time. For all of the experiments and analysis in this paper

we have considered exponential volume growth. Let λk denote the age class specific growth

rate. Then, the volume intervals are conveniently described by

I(0, k) =
[

V k, V ke
λk∆t

)

...

I(i, k) =
[

V (i, k), V (i, k)eλk∆t
)

...

I(nk, k) =
[

V (nk, k), V k

)

5.7 Cell Division

All cells do not divide precisely at the same volume. The probability that division occurs is

denoted ci,k := 1− κi,k. The importance of including sloppy size control in models of growth

and division is discussed in [?]. We have implemented a variety of distributions. Two of

the most natural are a Poisson process [?] to model division as time to failure, and second

a Brownian process using a normal distribution. As will be described in the results section,

qualitatively this choice makes little or no difference. The mean of ci,k, for fixed k, is referred

to as the mean division volume and denoted as k–MDV.

We assume that the division of a cell of volume v in age class Pk results in a cell of age class

P0 with volume v′ and a cell of age class Pk+1 with volume v′′. Furthermore, v = v′ +v′′. We

sometimes denote the division process as Pk → Pk+1. It has been experimentally observed [?]

that after a cell has budded, the ensuing volume growth is concentrated almost entirely in

the bud. This implies that there is a conditional probability distribution for v ′ that depends

on the size and age of the mother. Let µi,j,k be the probability that after a cell division,

Pk → Pk+1, we get a cell of age class P0 with volume in I(i, 0) from a dividing cell in I(j, k).

The mean of µi,j,k, for fixed k, is referred to as the mean emergent daughter volume and

denoted k–MEDV. Let, νi,j,k, represent the probability of parent cell of volume I(j, k + 1)
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emerges from a division in I(i, k). The mean emergent parent volume is denoted k–MEPV.

Generally, the distribution of division volumes has been observed to be normal [?, ?].

Given these definitions we can present the projection formula that updates the population

in time.

ρ(l, 0)(ts+1) = κl−1,0ρ(l − 1, 0)(ts) +
∑

k,i

µl,i,kci,kρ(i, k)(ts) (15)

ρ(l, m)(ts+1) = κl−1,mρ(l − 1, m)(ts) +
∑

i

νl,i,m−1ci,m−1ρ(i, m− 1)(ts); m > 0 (16)

The first summand in each equation represents the volume growth contribution while the

second summation term represents the density coming from division. The term ci,kρ(i, k)(ts)

represents the fraction of dividing cells in volume interval I(i, k) and µl,i,kci,kρ(i, k)(ts) is the

fraction of those that end up in the volume interval I(l, 0). The first equation represents

daughters and is distinguished because every division results in a daughter. In the higher

age classes, m > 0, density from division arrives from only one source, namely the age class

Pm−1.

5.8 Milestones

Age(k) V k V k λk BEk MDVk MEDVk

0 14 75 0.0062 38.5 70.7 28.5
1 40 85 0.0061 46,8 75 24.4
2 48 87 0.0044 56.1 82.4 24.2
3 56 94 0.0047 63.9 88.9 22.3

4-13 64 125 0.0047 76.3 95 22.2

Table 1: Experimentally determined volume milestones and growth parameters for the strain
X2180 [?] used in parameterize the population model described in the appendix. The quan-
tities V , V , λ, BE, MDV, and MEDV denote for each generation a lower bound on the cell
volume, an upper bound of cell volume, volume growth rate, mean volume at bud emergence,
mean volume at division, and mean volume of the emergent daughter.
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Age(k) V k V k λk BEk MDVk MEDVk

0 30 105 0.0054 59.0 98 46.0
1 45 105 0.0049 69.5 97.5 43.0
2 53 104 0.0049 68.9 96.6 36.5
3 60 115 0.0049 78.8 110.4 36.5
4 73 140 0.0049 95.7 134.1 36.5
5 97 185 0.0049 123.0 179.1 36.5

6-13 129 190 0.0049 141.0 185.1 36.5

Table 2:
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Figure 2: Uniqueness and computation of τ . The inset figure shows the graphs of the the
left and right hand sides of Equation (7) from a simulation of the population model. It can
be seen that there exists a unique value of τ = 550.31 that shifts the upper function, the
rhs, into alignment with the left hand side. The central figure displays the alignment. In
practice, only a few oscillations worth of data are required to robustly calculate the value of
τ using least squares.
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Figure 3: Comparison of age distribution formulas, simulation and experimental data. The
theories are all parameterized using the X2180 strain milestones. The experimental data are
for an unknown strain grown in a bioreactor at a comparable growth rate.
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Figure 4: Comparison of age distribution formulas, simulation and experimental data for the
strain LHY3865.
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