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CHAPTER I

INTRODUCTION

Traditional animation can be described as creating the illusion of a moving scene using a sequence

of hand drawn images. A typical animation is composed of twenty-four frames per one second

of animation. Other forms of animation have become increasingly prevalent, such as computer

generated animation, dynamic simulation, and motion capture. This dissertation is concerned with

traditional animation, specifically how to re-use existing cartoons.

Even with many other forms of animation available, traditional animation is still a popular art

form. However, hand drawn animation remains a very tedious and time-consuming task despite

many advances in technology that have improved the speed of producing atraditional animation.

For a typical animated television series, artists bring life to familiar cartoon characters for every

episode, yet no method exists that would allow them to re-use their drawings innovel situations.

Clearly a character running away could be used again for future episodes. Software packages such

as Toon Boom Technologies, [Fekete et al. 1995], can create simple inbetweens based on vector

animation. Although an animator could re-use the original models of the characters, the basic

animation still has to be created, and these animations tend to lack the expressiveness of familiar

styles, such as the distinctive style of animations by Chuck Jones (creator of Wile E. Coyote).

The same issues arise when creating three-dimensional models for cartooncharacters and “’toon-

rendering” them. “’Toon-rendering” is a technique that can render three-dimensional scenes in

styles that approximate the look of a traditionally animated film; it is often called “’toon shading.”

Aside from some of the issues already mentioned, ’toon-rendering presents many of its own chal-

lenges in creating a three-dimensional character that looks hand drawn.When the three-dimensional

character moves, issues such as where to draw edge lines, how thick the lines should be, how they

appear and disappear, etc., if not handled properly, are tell-tale signs that the character does not have

the same style as if it was hand drawn.

I.1 Research Goals and Contribution

The goal of this research is to create novel animations from a library or database of existing cartoon

data. Many of the tools and techniques developed in computer animation are designed to allow

animators to obtain the expressiveness of traditional animation more easily, e.g., [Lasseter 1987;

Fekete et al. 1995; Rademacher 1999; Kowalski et al. 1999]. Separately, a body of work exists to

allow animators to re-use motion capture data to create new animations, e.g., [Gleicher 1998; Rose

et al. 1998; Kovar et al. 2002; Lee et al. 2002; Arikan and Forsyth 2002]. In contrast, there has not

been much study of the problem of re-using traditional animation to create newanimation [Bregler

et al. 2002; de Juan and Bodenheimer 2004]. Part of the difficulty in studying this problem is that the

forms in which traditional animation are available make it difficult to devise methodsto capture and

manipulate it. This dissertation presents several methods that allow the incorporation of traditional
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(a) Original Image (b) Image Mask (c) Segmented Image

Figure I.1: On the left is the original image, the center shows the desired imagemask, on the right is
the segmented image. The final segmented image has the character on a constant blue background,
a neutral color that does not appear in the character itself, and is easily identifiable for processing
only the character.Wile E. Coyoteis TM& c©Warner Bros. Entertainment Inc.

animation into a motion library for re-use.

A primary challenge in building large libraries of cartoon character data is to put the charac-

ters into a form in which the character is nicely separated from the background. Segmentation is

necessary if the character is to be placed into a new environment or with a new background. Much

older cartoon data suffers from noise due to changes in lighting as the celanimations were trans-

ferred to film, contamination of the cel from one use to another as it was filmed,and degradation of

the animation before being transferred to an archival format. These factors make the segmentation

problem quite challenging, as we discuss in Chapters II, III, and IV.

One goal is to develop a method for semi-automatically segmenting the charactersby creating

an image mask. The masks are then applied to the original images to place the cartoon character

on a neutral, or known, background. Figure I.1 shows an example of anoriginal image, an ideal

image mask, and the final segmented cartoon character on a neutral background. Three approaches

will be presented, along with the benefits and drawbacks of each method: an ad hoc method using

the probability of a pixel color being the character, level sets defining a speed function based on

intensity and color information, and applying machine learning using SupportVector Machines

[Chang and Lin 2001] to train and classify color pixels as being part of a character or part of the

background.

Once the segmentation problem is solved, we can begin to address the challenge of re-using

the animation. A true re-usable library of animation is closest in spirit to the system discussed in

Chapter V. Drawing inspiration from the idea of video textures [Schödl et al. 2000], sequences

of similar-looking cartoon data are combined into a user directed sequence.The primary goal of

re-using the cartoons is to re-sequence cartoon data to create new motion from the original data that

retains the same characteristics and exposes similar or new behaviors. Thenumber of new behav-

iors that can be re-sequenced is restricted by the amount of data in our library for each character.

Starting with a small amount of segmented cartoon data, we use an unsupervised learning method

for manifold learning to discover a lower-dimensional structure of the data.The user selects a de-
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sired start and end frame and the system traverses this lower-dimensionalmanifold to re-sequence

the data into a new animation. Our method is model-free, i.e., no a priori knowledge of the drawing

or character is required. The user does not need the ability to animate, or know what an acceptable

inbetweenis (defined below), since the data is already provided. The system can detect when a

transition is abrupt, allowing the user to inspect the new animation and determine ifany additional

source material is needed. Minimal user input is required to generate new animations, and the sys-

tem requires much less data than the video textures method for re-sequencing. Also, because the

new animation is created from re-sequencing existing hand drawn animation,the new sequence will

retain some of theprinciples of animation(discussed in Chapter II) since the images were already

drawn with those principles in mind.

However, one of the limitations of the system described in Chapter V is the inabilityto generate

new images when a visual discontinuity is detected in a re-sequenced animation. Theoretically, a

visual discontinuity occurs because the manifold is not sampled densely enough by the data for its

structure to be parameterized. Hand-drawn cartoon art is always going tobe sparse, thus represent-

ing a fundamental obstacle for manifold learning techniques. Therefore we need to explore other

techniques to overcome this limitation.

When a visual discontinuity is encountered in re-sequencing and it is determined that more

source material is needed, the problem becomes one ofinbetweening. Inbetweening is the process

of drawing intermediate images that fill in the space between a pair of keyframes. An introduction to

the principles of animation and definitions of terminology used in traditional animation is given in

Chapter II. Addressing this issue of discontinuity returns one to the two-dimensional inbetweening

problem presented in [Catmull 1978] and discussed in Chapters II.1.2 andIII, although the problem

we address in this dissertation is more limited in that it suffices to generate inbetweens between two

images that are somewhat similar, not two keyframes. Our work on this problem is presented in

Chapter VI.

The inbetweening research goal is a model-free, image-based method forgenerating an inbe-

tween frame semi-automatically. By using radial basis functions (RBFs), contour information can

be interpolated between two keyframes. To deal with occlusion, the character will be partitioned

into layers (such as head, arm, body, etc.) manually, and each layer interpolated separately. The

layers are reassembled automatically. Using RBF interpolation of keyframe contours, the goal of

inbetweening is to employ a method for filling in the inbetween contour with the appropriate tex-

ture and color information taken from the two keyframes. Using a parameter-free, non-rigid elastic

registration algorithm [Wirtz et al. 2004; Li et al. 2006] on the two keyframes, the resulting regis-

tration provides the texture information for an intermediate image. Image registration provides an

improvement for texture filling over current methods that require the contours to be parameterized

as polygons with their interiors then triangulated compatibly to preserve the texture information

(Chapter III.1.4).

The most desirable qualities of traditional animation are the nuances an artist adds to each char-

acter, giving that character personality and style. The high-level goalof this work is to enable these
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abilities in an artist, so our techniques use an animator as a guide in both building alibrary and using

it. A fully automatic method for inbetweening would alleviate some of the tedium associated with

creating a traditionally animated film. However, semi-automatic methods for inbetweening provide

a more interactive environment for the artist, allowing for modifications duringthe creation of the

inbetweens, while still improving and speeding up the process. Ensuring that the artist remains in-

volved in the inbetweening process, albeit minimally, should provide a higher level of quality in the

resulting animations.

I.2 Overview

The remainder of this dissertation is organized as follows. Chapter II introduces the main concepts

in traditional animation and applications to animation. Chapter III discusses related research in

two-dimensional animation, re-sequencing motion, and dimension reduction and its application to

animation. Chapter IV describes how existing cartoon data is segmented to be prepared for use in re-

sequencing. The contribution of this chapter is a robust and semi-automatic method for segmenting

cartoon images. Chapter V presents the methods used in re-sequencing cartoon animation. Two

main contributions of this chapter are the successful use of manifold learning applied to cartoon data

for re-use and in identifying an appropriate distance metric for computing the similarity of cartoon

images. Chapter VI describes generating new images, or inbetweens, forcreating more visually

compelling re-sequenced animations. Some of the challenges of inbetweeningare overcome, and

the contribution of this chapter is providing a semi-automatic method for inbetweening a pair of

cartoon images. Chapter VII summarizes this work and the research contributions to the field of

computer animation, and discusses future directions.
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CHAPTER II

ANIMATION BACKGROUND

In addition to traditional hand drawn animation, several other forms of animation exist, and have

become more prevalent in film and television. Unlike traditional hand drawn animation, computer

generated animation can be either two-dimensional or three-dimensional, with the latter being most

common. A three-dimensional model of a character is created using computersoftware and an

animation is created by playing a sequence of still images the computer rendersfrom the three-

dimensional models. Procedural animation methods such as dynamic simulation create animation

from carefully specified physics-based control systems that specify how objects or articulated char-

acters should move in and interact with a virtual environment. Dynamic simulation isuseful for

modeling mechanical events or complex fluid flow, but also requires a level of expertise in the do-

main to accurately model the internal physics, and typically lacks the creativeand expressive nature

of hand drawn animation. Motion capture involves sensing, digitizing, and recording a subject’s

motion from markers placed on the subject. The recorded motion is processed to be applied to a

three-dimensional model of an articulated character, thus driving its movements from the actor’s

motion. Motion capture is used extensively in film and video games, and examples of dynamic

simulation can be seen in film special effects like smoke, fluids and fire, particularly in animated

films. Stop-motion animation, like traditional animation, is extremely time consuming. To produce

a stop-motion animation, the characters are static objects, typically modelled out of clay, and made

to have the illusion of motion. A camera films one frame, stops to move the characters by a small

amount, then the camera proceeds to film the next frame. This continues at a rate of 24 frames per

second. When the film is run, the static objects appear to have fluid motion. Stop-motion is almost

as old as film-making itself, dating back to 1898 with a film calledThe Humpty Dumpty Circus

by Albert E. Smith and James Stuart Blackton. Stop-motion animation has a quality unlike any

other form of animation, and spans a variety of films like the 1933King KongandJason and the

Argonautsin 1964, to more the more recentWallace and Gromitfilms andTim Burton’s The Night-

mare Before Christmas. Traditional animation dates back to the early 1900’s. Historically, the first

short animated film wasHumorous Phases of Funny Facesreleased in April of 1906, once again by

newspaper cartoonist J. Stuart Blackton, who pioneered “stop frame”or stop-motion animation. In

Funny Faces, Blackton uses both stop-motion and hand drawn faces on a chalkboard.Winsor Mc-

Cay is considered by many as the first animator to produce popular drawn animations such asLittle

Nemoin 1911 andGertie the Dinosaurin 1914. ForLittle Nemo, Mr. McCay drew and colored all

4,000 frames himself. In 1928, Walt Disney was the first to incorporate synchronized sound with the

animation inSteamboat Willie. These are only three of many contributors to the early developments

and technological advancements made in traditional animation.

Creating a traditional animation involves a great deal of time while skilled artists draw every

frame. The traditional animation pipeline begins with a lead animator, or artist, creating each char-
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Figure II.1: Example model sheets and character sheets showingDino in various poses and expres-
sions.Dino is TM& c©Warner Bros. Entertainment Inc.

acter that will appear in the animation. The lead animator will drawmodel sheetsfor each character

that shows what the character should look like in a neutral pose from various viewpoints.Character

sheetsare also drawn for each character, which show the character in extremeposes. The model

and character sheets are used by theclean-up artistsand inbetween animators, acting as a recipe

for how that character should be drawn. Figure II.1 shows examples ofmodel and character sheets.

After the director approves the model sheets, the lead animator will begin drawing the keyframes

for a particular shot or scene. Depending on the level of detail neededfor a particular scene, the lead

animator may draw all of the frames or only certain keyframes. These keyframes then go on to the

clean-up artists to clean the lines of the keyframes. After, the frames go to theinbetween artists who

draw the missing frames. At this stage in the pipeline, the animation consists of line drawings for

each scene. Then, the line art must be colored frame by frame. Finally, thecolored art is composited

with a background plate and any additional effects are added. This entireprocess is repeated for

each film or cartoon television series episode. Figure II.2 shows an example of a character as line

art, colored art, and finally composited into the background.

The idea of re-using existing cartoon animation to speed up the process of creating a new two-
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(a) Line Art (b) Colored Art (c) Final Composite

Figure II.2: Here is an example cartoon character at various stages of the traditional animation
process. On the left is the line art, in the center is the character after coloring (ink and paint), and
on the right is the final scene with the character composited with the background image. Woody
Woodpeckeris TM& c©Universal Studios.

dimensional animation is novel. A number of issues must be addressed to re-use cartoon animations,

such as how to compare the images to determine similarity, which frames can be used in succession,

and how to preserve the characteristics defining the character that the animator has drawn into each

image. Thus far, a general overview of the process of creating a traditional animation has been

described. In Chapter II.1, the animation pipeline is broken down further and comparisons are made

between traditional and computer-generated animation, highlighting the difficulties that arise with

two-dimensional animation. The importance ofprinciples of animationare discussed, and the two-

dimensional inbetweening problem is defined. In Chapter II.2, several methods for interpolation are

introduced.

II.1 Animation Pipeline

Examining the traditional animation pipeline in more detail, we describe the aspects of the pipeline

that have changed over the years, and the differences between two-dimensional and three-dimensional

animation. The classic two-dimensional animation process is a sequential pipeline with painting of

the background images going on in parallel. The steps are:

1. Story is written

2. Visual development and Character development – the look of the film is decided; artists design

the characters producing model sheets and character sheets.

3. Layout a storyboard – the pace of the film is set, the script is divided intoscenes with dialog

and music, timing of all the scenes are set up, and emotional ups and downs are tracked.

4. Record a sound track

5. Animate the keyframes

6. Assistant animator draws some inbetweens

7. Inbetweener draws remaining frames

8. Film the drawings from paper for a video pencil test
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9. Xerox copy or ink trace the drawings onto acetate cels

10. Ink and paint – fill in the color and final ink lines for the characters onacetate cels

11. Check for errors

12. Final film from acetate cels and backgrounds

13. Edit film

A modern animation pipeline changes only after step seven. Most studios either draw the keyframes

and inbetweens digitally, or the pencil drawings (line art) are scanned to make a digital pencil test.

Real acetate cels are no longer used, and the “ink and paint” is also done digitally, with many studios

using software to fill the line art semi-automatically. The film is composited and edited digitally.

The background images are sometimes painted and scanned to make digital copies, although it is

also possible to generate the background images using imaging software.

For a three-dimensional computer animated film, the pipeline differs by step four, in that the

keyframes are not drawn by an animator. Rather, the animator positions a three-dimensional model

of the character at key times using three-dimensional animation software. The movement of the

character is generated by interpolating in three-dimensions, usually using splines, and inbetweens

are generated by sampling and rendering at appropriate intervals. The equivalent of a “pencil test” is

a quick rendering of the animation without any effects such as texture and lighting. The equivalent

of “ink and paint” can be viewed as the final rendering with all textures, lighting, and special effects

in place.

The introduction of computers in the traditional animation pipeline has improved orautomated

several aspects of the pipeline. These improvements have focused on such tasks as texture mapping

the cels (or frames) [Corrêa et al. 1998], creating shadows [Petrovic et al. 2000], or retargeting the

motion of one character onto another character [Bregler et al. 2002]. Yet, many other aspects of

the pipeline remain challenging problems. The most difficult problem is still how toinbetween a

two-dimensional hand drawn character.

II.1.1 Principles of Animation

Despite the differences between traditional hand drawn animation and three-dimensional computer

generated animation, the art of animation consists of principles that should beincorporated into

both art forms that help create the illusion of life. Frank Thomas and Ollie Johnston [Thomas and

Johnston 1981], two of the original Disney animators from the 1940’s, described these fundamental

principles of traditional animation as:

1. SQUASH AND STRETCH – The most important principle was the discovery that objects com-

posed of flesh or soft tissue distort their shape during an action, while maintaining the same

volume whether crouched or elongated.

2. ANTICIPATION – Preparing the audience for the next action before it occurs by preceding a

major action with a specific motion that anticipates what is about to happen, suchas winding

up before running.
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3. STAGING – Dating back to classical theater, staging is presenting an idea so that it is com-

pletely and unmistakably clear. For animation, examples of staging are recognizable per-

sonalities, clearly visible expressions, and presenting a mood that affectsthe viewer, thereby

communicating completely with the audience.

4. STRAIGHT AHEAD ACTION AND POSE-TO-POSE– Two different approaches to creating the

animation: in the first, the animator works from the first frame straight throughto the last in

the scene; in the second, the animator creates each keyframe, planning theaction throughout

the scene and refining each key pose. Both have advantages, with the former spontaneity, the

latter clarity and strength.

5. FOLLOW THROUGH AND OVERLAPPING ACTION – The completion of one action and es-

tablishing its relationship to the next action by extending the end of the first action with some

parts of the character coming to rest at different times.

6. SLOW IN AND OUT – Spacing the inbetween frames close to each extreme keyframe with

only one or two half way between the keys, to achieve subtlety of timing and staging.

7. ARCS – The path of motion to create natural looking movement. This principle is one of

the most difficult to apply accurately, since drawing an inbetween halfway between the two

keyframes linearly is easier than on an arc.

8. SECONDARY ACTION – Any action that results from the main action (e.g., clothing moving

as a result of the character moving), and that should support the main action.

9. TIMING – Spacing actions to distinguish the personality of characters, and the speed, weight,

and size of objects.

10. EXAGGERATION – Accentuating the essence of an idea, emotion, or movement by distorting

the drawing to the point of extreme realism (like a caricature of reality).

11. SOLID DRAWING – Important for two-dimensional animation, describes the shape of the

object being animated such that it has volume and flexibility, strength without rigidity, and is

pliable.

12. APPEAL – Anything that makes the viewer enjoy looking at the drawing, a cute animal with

large eyes, a dramatic villain, etc.

Lasseter [Lasseter 1987] discusses in detail eleven of these principlesand their importance for

producing high quality three-dimensional animation. Regardless of the mediumof animation used,

applying these principles has the same meaning for the motion or action. Creatingmotion for

traditional hand drawn animation is achieved by drawing a sequence of two-dimensional images.

Generating motion for a three-dimensional computer animation is achieved by using a computer

model in three-dimensional space and positioning the model in key poses (orkeyframes), allowing

the computer to generate the inbetween frames. Lasseter describes how theprinciples of timing,

anticipation, staging, follow-through, overlap, exaggeration, and secondary action can be applied

in the same way for both two-dimensional and three-dimensional animation. However, applying

the remaining principles changes because of the differences in the animationmedium used. For
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example, for three-dimensional animation, squash and stretch must be applied by deforming the

model of the character. If the model is articulated with rigid limbs, distorting its shape is not trivial

and can cause self intersection or pinching problems in the mesh. However,squash and stretch

in hand drawn animation is applied by drawing the character accordingly. Tworecent examples

of applying extreme deformation to a three-dimensional model can be seen onScrat in Blue Sky

Studio’sIce Ageand onElastigirl from Pixar’sThe Incredibles. Both of these films showcase some

of the most challenging aspects of animation and the time and complexity involved in creating these

expressive characters.

The principles of animation became the foundation of how to create lifelike and compelling

animated characters, which was important for training new animators in the techniques that distin-

guished the animations produced at the Disney studios in the early 1940’s [Thomas and Johnston

1981]. While an artist can understand and learn these principles and howto apply them to their

drawings, expressing these principles in a form that a computer can recognize is not trivial. By

automating many of the processes of creating an animation using computer software, an interesting

research question becomes how can these principles that act as constraints for how the artist can

draw the character be formulated as mathematical constraints to be used by thecomputer. One chal-

lenge in our work of re-using existing cartoons is to preserve these principles that were drawn by the

animator. Being able to represent these concepts as mathematical constraintsis an important step in

preserving the style of the existing cartoons when they are re-used to produce new animations.

II.1.2 2D Inbetweening Problem

The most challenging aspect of automating the traditional animation pipeline is inbetweening. This

problem arises because each two-dimensional drawing is really an artist’srepresentation of a three-

dimensional character. Thus, trying to create an inbetween from a pair oftwo-dimensional drawings

automatically is difficult. The motion depicted by the drawings can be classified intotwo categories:

(1) transformations in the image plane or drawing canvas (the x-y plane), and (2) transformations

outside the image or drawing plane. In the first category, typical transformations are rotations

around the z-axis and translations within a plane parallel to the x-y plane. These transformations

are usually easy to deal with, and the success of inbetweening them depends on the representation

of the image and the interpolation method used. In the second category, the transformations are

typically rotations around the x- or y-axis. These transformations are the key difficulty for automat-

ing the two-dimensional inbetweening process because these are the transformations that indicate

that the drawing is really a three-dimensional object that is represented in two-dimensions. Two

aspects of these transformations that cause the most problems in two-dimensional inbetweening are

self-occlusion, for example if the character’s arm crosses over his body; and silhouette changes or

correspondence information being lost, for example when the character’s head rotates from facing

the camera to a profile view. The silhouette changes such that the internal features of the face are

now part of the exterior contour. In a profile view of a character, the artist may draw the face anatom-

ically incorrectly, for example with both eyes visible, emphasizing some expression or action that
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Figure II.3: The pair of images on the left shows an example of the self-occlusion problem for
two-dimensional inbetweening. The character’s arm covers part of theface in the first frame, but
uncovers the face in the second frame. The pair of images on the right shows an example of a
silhouette change. In the first frame, the character’s face is towards thecamera and the nose is in
the center of the face, while in the second frame, the character’s face has turned to be in profile and
the nose is now part of the silhouette. Images from [Blair, 1994].

is to follow. Figure II.3 shows typical examples of self-occlusion and silhouette changes.

Inbetweening for three-dimensional animation is not a problem because these issues of self-

occlusion and silhouette changes are “defined” away. It is inherent in the definition of a three-

dimensional model that all frame to frame correspondence is known. As aforementioned, creating

the motion for a three-dimensional animation begins with an artist positioning a computer model

at key poses (keyframes). The model is represented in three-dimensional space, so there is no loss

of information by losing one dimension. A typical model for a three-dimensional character has

a skeletal structure made up of limbs and joints, and usually has inverse kinematics chains that

define and restrict the motion of the model. The limbs are usually a fixed length, though allowing

for the incorporation of the principles of animation such as squash and stretch would indicate that

some of the limbs do not have to remain of a fixed length. Depending on the complexity of the

model, the limbs and joints may have a muscle layer followed by several skin layers. The external

representation of the model is typically a polygonal mesh. The movement of thelimbs and joints

will drive the muscles and cause deformations to appear on the skin layer, which deform the external

mesh. All of the three-dimensional information, from the position and orientation of the joints to the

position and orientation of each vertex on the external mesh, are known for every keyframe the artist

positions. Computer modeling and animation software allows the artist to simply key the position

of the model at specific time intervals, and the software will interpolate betweenthe key poses to

generate the inbetweens automatically. The method of interpolation, which partsof the model get

interpolated, and the timing of the interpolation are all tunable parameters of the software generating

the inbetween frames. For example, creating the slow-in/slow-out timing is doneby adjusting timing

curves for each key pose. There is no literature on three-dimensional inbetweening because it is just

interpolation between identical shapes with all information known about the shapes.

With so much control over the three-dimensional model, and the fact that inbetweening is done

for free, one may ask why not create the animation with the three-dimensionalmodel then ’toon-

render it as a two-dimensional scene. Adding a great deal of deformation, like squash and stretch
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or incorporating other principles of animation to a three-dimensional model ofa character is often

challenging, requiring the skills of a talented artist. Even when ’toon-rendering a three-dimensional

character, one cannot expect it to look like the traditionally hand drawnWile E. Coyotegetting

flattened or stretched in a visually extreme manner. Another problem with ’toon-rendering is the

aforementioned silhouette changes, since the renderer can only produce accurate images from the

geometry of the model. Take the head turning example again, as previously mentioned, an artist may

draw a character in profile anatomically incorrectly, and in the case of a three-dimensional model

it would be geometrically incorrect. The ’toon-rendered version of the model will be geometrically

correct, therefore lacking the expressiveness of a hand drawn character.

II.2 Interpolation

In this section, we give an introduction to the many uses of interpolation for computer animation

and the terminology of the field. Many of the methods discussed here are basic concepts taught in

computer graphics and animation courses, and more details can be found in texts such as [Foley

et al. 1990]. This section provides the reader with a short primer on interpolation methods typically

used in computer animation.

A variety of algorithms have been applied to the inbetweening problem, specifically methods of

interpolation. Interpolation is a key issue for computer generated animations.For example, in three-

dimensional keyframe animation, where an animator positions a character in three-dimensional

space at key times, the remaining frames are automatically generated by interpolating the positions

and orientations of the character’s joints. Interpolation determines the path that the character will

take based on a curve that passes through a given set of control points, in this case the character’s

joints as positioned by the animator. The control points do not always have tobe joint positions

and orientations, they can be any list of values associated with a given parameter at the specific

keyframe. The method of interpolation used depends on the properties thatthe desired path should

have, such as an arc (one of the principles of animation), whether the points should be interpolated

exactly or approximated, and global or local control of the method. While there are many methods

for interpolation, this section discusses those that are most applicable to the inbetweening problem.

That is, the interpolation methods described here have been applied to imagesor line drawings, as

opposed to a set of joint positions and orientations of a three-dimensional character.

II.2.1 Contour-Based

Interpolation of contours can be accomplished using linear interpolation or spline interpolation.

Linear interpolation is the simplest, most popular and widely used. Linear interpolation in one

dimension is simply connecting a pair of points with a straight line. Specifically, lett be a number

(or time interval) between 0 and 1, then the linearly interpolated value for the inbetween pointp(t)

is:

p(t) = (1− t) · p1 + t · p2 (II.1)

12



Figure II.4: Creating inbetweens for a pendulum swinging causes it to appear to shrink as it ap-
proaches the middle, then grow as it continues to the last keyframe (left). The correct motion is
illustrated on the right. Images modified from Tony White’s internet animation tutorial.

where p1 and p2 are the two keyframe points. To apply this to a pair of contours, the contours

can be sampled as sets of data points, and each corresponding point from the first contour will be

linearly interpolated to the second contour. The inbetween contour is then a set of data points at

any intermediate value between the two input contours. However, calculatinginbetweens using a

linear interpolation of Cartesian coordinates does not preserve shapesor proportions; for example,

if a pendulum rotates in the plane by 90◦, the path that the end of the pendulum would take if it

were linearly interpolated would be a straight line. The pendulum appears toshrink, then grow as it

reaches the second keyframe. The desired path of the end is an arc, which requires other methods

for interpolation other than linear. Figure II.4 illustrates the problem with linearinterpolation of

inbetweens.

Splines are a mathematical means of representing a curve, by specifying a series of points at

intervals along the curve and defining a function that allows additional pointswithin an interval to

be calculated [Foley et al. 1990]. The function to approximate a curve is accomplished by means of

a series of polynomials over the adjacent intervals along the curve and have high order continuity.

Continuity is a mathematical measure of smoothness, i.e., the number of continuousderivatives of

the curve equation. Zero-order continuity (C0) ensures a positional continuity at a point along the

curve. First-order continuity (C1) ensures positional and tangential continuity at some point along

the curve. Second-order continuity (C2) ensures positional, tangential, and curvature continuity

(the instantaneous rate of change of the tangent vector) at some point onthe curve. Continuity

is of concern for interpolation when a series of piecewise curves are joined together to define the

path of animation. There are three major types of curves:Hermite, which are defined by a pair

of endpoints and the tangent vectors for those endpoints;Bézier, which are defined by a pair of

endpoints and two other points that control the tangent vectors at the endpoints; and several other

splinesdefined by four control points, where the splines have eitherC1 or C2 continuity, but do not

interpolate the control points. We describe three commonly used spline functions for approximating

a curve: Catmull-Rom splines, Bézier curves, and B-splines. For all three, we use a parametric

representation to mathematically define each spline such that the curve segment Q is given by three

cubic polynomial functionsx, y, andz, over the parametert, with the curve segment equation being
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Q(t) =
[

x(t) y(t) z(t)
]

. Each of the polynomial functions have the form:

x(t) = axt3 +bxt2 +cxt +dx,

y(t) = ayt3 +byt2 +cyt +dy,

z(t) = azt3 +bzt2 +czt +dz,

(II.2)

and the parametert is restricted to an interval from 0 to 1 for each curve segment. The coefficients

of Q(t) in equation II.2 can depend on four constraints, allowing for a compact way to express the

polynomial functions. First, write the parametert asT =
[

t3 t2 t1 1
]

and the coefficients of

the three polynomial functions in a 4 x 4 matrix. We will define the matrix of coefficients for each

type of spline below. We can then re-write the parametric curveQ(t) as the product of:

Q(t) =
[

x(t) y(t) z(t) 1
]

= T ·M ·G (II.3)

whereM is the 4 x 4 basis matrix of polynomial coefficients, defined for each specifictype of

spline, andGT =
[

G1 G2 G3 G4

]

, is traditionally called thegeometry matrix. G specifies the

geometric constraints that define the curve. It is a matrix of point vectors, with each row inG being

either an end point, tangent vector, or other control point, depending onthe type of curve being

modelled.G is also a 4 x 4 matrix.

Catmull-Rom splines are cubic polynomials defined by four control points, allof which are

interpolated by the curve. Tangents at interior control points are automatically generated, but the

tangents at the endpoints must be specified. Some features of the Catmull-Romspline are that the

spline isC1 continuous, so there are no discontinuities in the tangents, and it has local control (if a

control point is moved, it only affects the curve locally). Each point interpolated by the spline will

have a tangent direction parallel to the line between the two adjacent points. ACatmull-Rom spline

has the basis matrix:

MCR =













−1 3 −3 1

2 −5 4 −1

−1 0 1 0

0 2 0 0













(II.4)

The geometric constraints inG are the endpoints and tangent vectors that define the curve.

Bézier curves are defined by four control points, two endpoints that areinterpolated and two

points that determine the tangent vectors at the endpoints but are not on thecurve. Those four

control points are the constraints represented in the geometry matrixGT
B =

[

P1 P2 P3 P4

]

. A

Bézier curve has the basis matrix:

MB =













−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0













(II.5)
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Figure II.5: On the left is an example of a Bézier curve with the endpoints indicated asP1 andP4,
and the control points for the tangents at the endpoints indicated asP2 andP3. On the right are the
Bernsteinpolynomials, which are the blending functions for Bézier curves. Notice that att = 0.0
only theB1 polynomial is nonzero, meaning that the curve interpolates only one point,P1. The same
is true for theB4 polynomial att = 1.0, which interpolates pointP4.

The productQ(t) = T ·MB ·GB has the following form:

Q(t) = (1− t)3P1 +3t(1− t)2P2 +3t2(1− t)P3 + t3P4, (II.6)

which are known as theBernstein polynomials. Figure II.5 shows an example of a Bézier curve and

theBernsteinpolynomials defining the blending functions. Some of the features of the Bézier curve

are the convex hull property (all of the control points define a convex hull containing the resulting

curve), that it is very easy to subdivide, isC0 continuous, can be madeC1 continuous. Subdividing

a curve into smaller segments may be required for some applications, in essenceadding to the

number of control points on the curve to provide more local control and deformability in smaller

areas. B́ezier curves are very easy to subdivide, where one Bézier segment with four control points

becomes two B́ezier segments with seven control points (sharing one control point at theseam), and

the resulting curve will be identical in shape to the original segment until any of the control points

are moved. The de Casteljau subdivision method is typically used [Foley et al.1990].

B-splines are defined by four control points, but the curve in generaldoes not interpolate any

of the points. These splines areC2 continuous everywhere. Cubic B-Splines approximate series of

m+1 control points, but the curve consists of onlym−2 segments. A B-spline has the basis matrix:

MBS =
1
6













−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0













(II.7)

The blending functions for this basis are shown in Figure II.6. There areseveral versions of B-
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Figure II.6: The B-Spline blending functions. Notice that att = 0.0 and t = 1.0, three of the
polynomial functions are nonzero, unlike the Bézier blending functions, therefore no control points
will be interpolated.

splines: uniform (equal spacing between knots) versus nonuniform; and rational (meaning each of

the polynomial functions are defined as a ratio of two cubic polynomials) versus nonrational. The

“B” refers to curve being represented by weighted sums of polynomial basis functions. Some of the

features of the B-spline representation are that they satisfy the convex hull property and they areC2

continuous. However, subdividing becomes more challenging.

One of the advantages of using splines to interpolate is that a spline can approximate the desir-

able arc for the path of the animation. However, compared to linear interpolation, splines are more

difficult and expensive to implement. Splines can be used to represent the contours of a line draw-

ing of a character, and used for interpolation given corresponding spline representations of a pair

of keyframes. However, converting the artwork into a spline representation that has corresponding

features is not a trivial problem. Defining a spline that captures subtle details and sharp edges or

tufts of hair or fur can be challenging. Assuming one does choose a splinerepresentation, once the

line drawing is converted into a spline (or several splines to include interior features), the path of

interpolation should also be defined to achieve desirable inbetweens. We chose to avoid having to

define corresponding splines for line drawings, and instead work with image based representations

of our images. One advantage is that we can analyze colored drawings anduse this information for

coloring any automatically generated inbetweens, which would not be possible with a strict spline

representation of cartoon characters.

II.2.2 Image-Based

Interpolation can also be performed on images, and is referred to as blending, warping, or morph-

ing. The simplest form of blending is called a cross-dissolve. Two images are blended by linearly

interpolating between pixel colors in first image to pixel colors in second imageover time. Fig-

ure II.7 illustrates a cross-dissolve between a pair of images. This method is simple and flexible

but often appears unrealistic. For example, because the two ovals in Figure II.7 are identical but

perpendicular to each other, the intermediate shape is no longer oval. Also,cross-dissolve is most

16



Figure II.7: Example of a cross-dissolve between two images. The left andright show the source and
destination images. The middle is the blend at exactly half way between the source and destination.

often used for linking two shots in a film, so we are used to seeing the effect, but not for creating

intermediate frames that resemble what we expect an inbetween to look like.

Image warping is a method for mapping one image onto a second image in an interesting way.

Once a mapping is known, the source image can be transformed to match the destination image.

Figure II.8 illustrates a warp between two simple ovals, with the intermediate shapebeing a circle.

The mapping can be created as a forward map or an inverse map, which defines a geometric trans-

formation that determines the relationship between pixels in the two images. With a forward map,

each pixel in the source image is mapped to an appropriate location in the destination image. The

forward transformation uses the centers of the pixels in the source image and maps them to loca-

tions in the destination image. However, the mapping may not fall at pixel centers in the destination

image. To correctly distribute the value of a source pixel to one or severaldestination pixels, some

method of filtering must be used, which essentially computes a weighted average to compute the

destination pixel’s intensity. For example, if the pixels are regarded as squares, and the fraction

of the area of the source pixel that covers the destination pixel will be used as a weighting factor

for filling the destination pixel. In this way, no holes will exist in the destination image. With an

inverse map, every pixel in the destination is mapped to an appropriate locationin the source image,

leaving no holes in the destination image since the image is scanned pixel by pixel.Like the forward

mapping, the inverse transformation uses the centers of the pixels in the destination image mapped

to locations in the source image that may not be pixel centers. Again, some method of interpolation

is used, but in this case pixels in the source image are interpolated. In either case, how the pixels

should be mapped must be specified, which determines how the pixels move between the two im-

ages. For example, specifying a set of important pixels in the two images (as control points, lines,

or curves), then extrapolating information about the control pixels to determine the motion of the

rest of the pixels. Or, we can map the images onto a regular shape such as aplane or sphere. Then

we know how to warp the images from source to destination by using the mappingfrom the source

to the regular shape, followed by the inverse mapping from the regular shape to the destination.

Image morphing is a technique that combines warping with cross-dissolve [Wolberg 1990]. The

images are first warped to each other or some regular shape using forward or inverse mapping.

During the morph, the intermediate shapes created from the warp are cross-dissolved with each

other produce the final intermediate shapes. Figure II.9 illustrates the concept of a morph.

Analyzing a series of images to determine the difference between the images caused by a char-
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Figure II.8: Example of a warp between two images. The left and right showthe source and des-
tination images. The middle is the warped image produced by either warping the source to the
destination or vice versa.

Figure II.9: Example of a morph between two images. The top left and bottom right show the
source and destination images. The middle is the morph, which is the warped images that are
cross-dissolved for the final result.

acter’s or object’s motion can be useful for producing an intermediate frame. Optical flow is a

method of computing the velocity field from the motion of an object in an image sequence. The

velocity of every pixel in the image is calculated, which indicates how quickly something crossed

that pixel and which direction it moved. The velocity field can be used to warpone image onto

another, assuming the two images are very similar. However, estimating optical flow is typically not

a robust procedure, will fail with fast moving objects, and is sensitive to noise. Many assumptions

are made when calculating optical flow, for example, for most pixels in an image, the neighboring

pixels will have approximately the same brightness. Another problem is the assumption that only

a single motion is present in the image sequence. There is extensive literatureabout optical flow

and many extensions for improving robustness, which is beyond the scopeof this dissertation. As

an example of applying the optical flow to a pair of cartoon images, we use the algorithm of [Lucas

and Kanade 1981] to compute the velocity field. The result is shown in FigureII.10. Even though

the images are fairly similar, the flow vectors do not capture all of the motion exhibited by the char-

acter. In particular, the character’s left hand is occluded in the first image, then extends out and is

visible in the second image. Also, small details of the mouth opening are lost amongthe general

flow vectors.
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Figure II.10: An example of optical flow computed from a pair of cartoon images. Daffy Duckis
TM& c©Warner Bros. Entertainment Inc.

II.2.3 Model-based

In addition to the methods already described for blending between shapes using contours (splines)

and images, there are several methods for transforming shapes definedby a model representation.

The simplest way to transform one object into another is when both objects have the same vertex-

edge topology. The correspondence between the objects is established and shape transformation

proceeds by interpolating the vertex positions using any interpolation method desired. Suppose we

wish to represent a pair of cartoon images (either line art or full color) aspolygonal models, then

generate the inbetweens by transforming one polygonal representation intothe second. Assuming

two-dimensional models, the geometry could be defined as the triangulation of the contours (poly-

gons) of each cartoon character. Triangulation is the division of a surface or plane polygon into a

set of triangles, usually with the restriction that each triangle side is entirely shared by two adjacent

triangles. One of the most common methods of triangulating a polygon is called Delaunay triangu-

lation [O’Rourke 1994]. Delaunay triangulation is the dual of the Voronoidiagram. The Voronoi

diagram is a subdivision of the plane containing a number of points into convex polygons such that

each polygon contains exactly one point, and every point of a polygon is closer to its generating

point than to any other on the Voronoi diagram. Figure II.11 illustrates the subdivision of a plane of

points into the Voronoi diagram. If one draws a line between any two points whose Voronoi domains

touch, a set of triangles is obtained, these triangles are the Delaunay triangulation. Generally, this

triangulation is unique. Figure II.12 shows the Delaunay triangulation and its dual Voronoi diagram.

Once we have the two-dimensional polygonal models of a pair of cartoon characters created

with a Delaunay triangulation, we would like to continue with the shape transformation. However,

in general the models will not have the same topology. Ensuring the same topology for both polyg-

onal models is the problem of generating compatible triangulations from a pair of polygons. One

would begin with a pair of polygons that already have corresponding vertices, then a compatible

triangulation can be created. Compatible triangulation for both two- and three-dimensional models

is an active area of research in computational geometry [Etzion and Rappoport 1997], and there is

extensive literature describing the many techniques, which is beyond the scope of this dissertation.
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Figure II.11: On the left is the input plane with a number of points. On the rightis the resulting
Voronoi diagram.

Figure II.12: An example of Delaunay triangulation. The thick lines are the Delaunay triangles, the
dashed lines represent the Voronoi diagram.

Therefore, representing cartoon images as two-dimensional polygonalmodels for shape transfor-

mation requires a great deal of manual effort that we wish to avoid. In Chapter III.1.4, we show

an application of the interpolation method described by [Alexa et al. 2000] using two-dimensional

polygonal models of a pair of cartoon characters and the limitations of such amethod.

Shape transformation can also be accomplished using implicit functions. Representing a model

as an implicit surface eliminates the need for a compatible triangulation. Correspondence does

not need to be specified to generate a transformation between a pair of implicitsurfaces. Given

two implicit surfaces specified byf (x,y) = 0 andg(x,y) = 0 that are defined with a common sign

convention (i.e., positive on the inside, negative on the outside), then the shape transformation to

define a blend of the two shapes is simplyf + g = 0, which represents the intersection of the two

surfaces. A good reference book for implicit surfaces is [Bloomenthal1997]. As with representing

a cartoon image with a polygonal model, defining the cartoon image as an implicit model still

requires some effort. We can create an implicit function that represents a cartoon image by defining

the function to be equal to 0 at the cartoon character’s contour, then anypoint inside the character

has a positive value while any point outside the character has a negative value. These definitions

are illustrated in Figure II.13. Given a pair of cartoon keyframes represented as implicit models,

shape transformation is then accomplished by interpolating between the two implicitfunctions.

We will discuss further details regarding shape transformation using implicit functions further in

Chapter III.1.4.
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Figure II.13: An example of defining an implicit function to represent a cartoon character from an
image. The blue points (densely sampled) are the zero set, the green points are interior points, the
red are exterior points. To facilitate viewing these points, the cartoon character’s silhouette is shown
instead of the full color frame.

II.2.4 Model-based vs Model-free Representation

Using an underlying model to represent the characters in the images can provide a great deal of

control over the interpolation between keyframes. One can create a three-dimensional computer

model of a character based on the model sheet and character sheet, and deform the computer model

to match a set of keyframes. Then generating any number of inbetweens from the computer models

of the keyframes is straightforward. However, the task of creating thesemodels requires a great deal

of manual effort, whether they are two-dimensional polygonal representations or three-dimensional

computer representations matching the images. Therefore, simply hand drawing the inbetweens

would be faster. Also, there are issues in how to transform two-dimensional polygonal models in that

they must have compatible triangulations and the paths that the vertices take during transformation

must be constrained such that no triangles flip, causing a degenerate polygon.

The methods presented in this dissertation for re-using existing cartoon animation are model-

free. As such, semi-automatic and automatic methods are used to analyze the images without a

priori knowledge of the character. Once a data set for a particular character has been processed,

the system can create new animations very quickly. A user who wishes to create a new animation

by re-sequencing existing data needs only to select sets of keyframes (start and end poses) for an

initial animation to be created by the system. However, by not including an underlying model,

some limitations exist. For example, a model of the character may be useful in determining image

similarity for designing a distance metric. We believe that the advantages of a model-free method, in

particular only requiring a small amount of user input, outweigh the more time consuming methods

of developing model-based representations. By requiring a small amount of user input, refinements

can be made where the model-free representation reaches its limits.
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CHAPTER III

RELATED WORK

In this chapter, we break the literature related to work in this dissertation into several topics and

sub-topics: work on 2D animation, including spline-based, template-based,vision-based, and shape

transformation methods for inbetweening; work on re-sequencing animationdata represented as

video and motion data; and work on dimension reduction.

III.1 Inbetweening for 2D Animation

Inbetweening is a studied but unsolved problem in two-dimensional animation.An inbetween is a

figure drawn by a person or computer program based on two extreme poses of a character. Catmull

[Catmull 1978] describes the main issues in dealing with the inbetweening problem, and discusses

the principal difficulty being that the drawings are really two-dimensional projections of three-

dimensional characters as visualized by a skilled artist. Because of this, a great deal of information

is lost, and problems of self-occlusion and correspondence arise. To deal with self-occlusion, [Cat-

mull 1978] suggests breaking the character into separate layers beforeprocessing with a computer

program. For the correspondence problem, he suggests the program operator specify the correspon-

dence of the lines and hidden lines. Even with human intervention, the problemsof occlusion and

correspondence are still difficult to overcome.

III.1.1 Spline-Based

Reeves [Reeves 1981] presents a method for creating inbetweens by using moving-point constraints.

A moving-point is a curve in space and time that provides a constraint on the path and speed of a

specific point on the keyframe for a character. The moving points paradigm is at the center of this

method for inbetweening. Other points on keyframes that are not directly constrained by a moving

point are constrained by a “smooth blending” of their neighboring moving points. Correspondence

is established “automatically,” in that the intersection of two curves in different keyframes with the

same moving point determines the correspondence. Multiple moving points can control the inter-

polation, therefore it is not linear interpolation on a path. The user must define a pair of keyframes

for the start and end poses, manually select the moving points, and those moving points must be

defined to constrain the motion of the ends of all the curves in the keyframes.A patch network is

defined as a data structure of sets of keyframes and moving points. Each completed patch network

is subdivided. To generate an inbetween, the patches are evaluated at an intermediate time step

using one of three interpolation methods described by the author. Miura interpolation (defined by

the author) is similar to linear interpolation, but causes a lot of contortions anddiscontinuities along

patch boundaries. Coons patch interpolation (defined by the author) controls the normal derivatives

at patch boundaries and uses two blending functions. Contortions interiorto the patch rarely occur,

and can be remedied with adding constraints. Finally, the cubic metric space interpolation method,
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as described by the author, is a method of interpolation defined by cubic equations. Contortions

occur when there are regions of high curvature in its cubic basis curves. While this method provides

control in creating a new animated sequence by generating the inbetweens “automatically,” a great

deal of manual effort is involved.

Di Fiore et al. [Di Fiore et al. 2001] present a multi-level method for inbetweening computer-

assisted 2D animation by including 3D information as a high-level deformation tool, and 2.5D

information as modeling structures. They address the inbetweening issues of self-occlusion and

silhouette changes. The multi-level method is “2.5D” for modeling and animating, with four levels

described: (1) the basic building primitives such as sets of 2D subdivisioncurves in level 0, (2)

all 2.5D modeling information is in level 1, (3) 3D skeletons are used to convey3D information in

level 2, and (4) high-level deformation tools are in level 3. The key to this method is in the 2.5D

modeling level, where the animator defines sets of depth ordered primitives (subdivision curves)

with respect to both x-axis and y-axis rotations of the character at extremeposes or camera angles,

while drawing order for each of the primitives is also stored. Correspondence information stored in

level 0 is defined manually, and those curves are interpolated linearly. Thenotion of 3D skeletons

incorporated in level 2 simply define a local coordinate system that provides a region of the charac-

ter (represented as sets of control points on 2D curves) that will be influenced by a particular bone

and any transformation it may cause. The high-level deformation tools of level 3 are applied to the

control points of the 2D curves or the position of the 3D skeleton. While this method addresses the

difficulties of 2D inbetweening, the user or animator still has to manipulate non-intuitive control

points for the underlying spline representation of the curves, and specify the correspondence infor-

mation manually. The skeleton information included in level 2 also requires specification of the

region of influence over the underlying curves, and is only a marginal improvement over the 2.5D

information for the extreme poses from level 1, which the animator must specify as well.

[Kort 2002] introduced a method for integrating vector-based inbetweening into an animation

system that requires the user to draw the keyframes and identify the layersof each key image. The

layers are included to overcome the occlusion problem in 2D animation. Each drawing is analyzed

and classified into components called strokes, chains of strokes and relations between them. A set

of rules is used to match parts of different drawings and specify allowablechanges between the

relations associated with each drawing. Their method assumes: (1) a vectorized stroke is defined

as the path specified by the movement of the input pen, (2) stroke chains are structures consisting

of one or more strokes, (3) a stroke chain may or may not have a corresponding stroke chain in

another key drawing, (4) animation paths that specify the correspondences between stroke chains

and the interpolation between them. Each vectorized stroke is represented as a B́ezier curve. The

inbetweens are generated by interpolating the strokes using a Coons patchtransformation. Although

the results are promising, the method still requires the animator to draw the full keyframes directly

into their system. The system is also restricted in the type of animation that can be inbetweened in

this fashion, such as those animations in which the layering order of the cels isinvariant.
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Figure III.1: A hand drawn image with the reference skeleton and relativecoordinate system. Image
from [Burtnyk and Wein, 1976].

III.1.2 Template-Based

Burtnyk and Wein [Burtnyk and Wein 1976] describe an inbetweening method for keyframe ani-

mation in which the animator traces key drawings into a computer program and uses an underlying

skeleton to drive the motion for the interpolation phase. By drawing the keyframes into the com-

puter, the system keeps track of the order of the strokes for stroke to stroke matching. The order of

the strokes in each image determines how the interpolation will generate an inbetween image, also

keeping track of separate layers for later determination of hidden lines. Theskeleton used to rep-

resent the image data defines a coordinate space within each image. Each skeleton defines an axis

and a boundary of influence over a region of the image, which is essentiallya mesh. Figure III.1

shows an example of a drawn image, the reference skeleton for the image, and the coordinate system

derived. Each region of influence from the skeleton will cause a distortionin the image that is used

for interpolation, and any image region that is not covered by a skeleton willremain unaffected by

the distortion. The interpolation method used is linear interpolation of the skeletons. To smooth

any discontinuities that result from linear interpolation, a parametric method ofcurve fitting is used,

producing a smooth path for each interpolated point. One limitation of this system isthat defining a

skeleton to control the interpolation of every part of an animation sequencewould be extremely time

consuming. The authors note that they envision their system being used selectively over previously

created sequences of animation to improve the motion dynamics.

III.1.3 Vision-Based

Seah et al. [Seah and Lu 2001] discuss using a modified hierarchical feature-based matching method

for motion estimation to generate inbetween line drawings from a pair of input linedrawings. The

authors modify the hierarchical feature-based matching algorithm from [Weng et al. 1993]. Some

of the features are intensity, edgeness (magnitude of gradient), cornerness (instantaneous rate of

change in the gradient direction along an edge), displacement orientation,and magnitude smooth-

ness. These features are used to compute motion vectors between a pair ofimages, and is structured

as an optimization problem solved by using the least squared error. The method is hierarchical to

overcome the initial value problem, so the feature-based matching is applied to an image pyramid
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for each image pair from a low resolution to a high resolution, and passes each set of matched

features to the next resolution level. The authors modified the algorithm of [Weng et al. 1993] to

normalize all of the features and apply different weights to each feature.Their modified feature-

based matching is applied to the pair of keyframes; however, the inbetween image generated is just a

linear interpolation of the matched features, and some artifacts are introduced during interpolation.

Also, this method will fail in the case of silhouette changes when new featuresappear and have no

corresponding features to match to, while other matched features will disappear.

Wang et al. [Wang et al. 2004] developed a technique for applying non-photorealistic effects to

video, giving the video a cartoon-like look. Their method applies a modified mean-shift segmenta-

tion to the video to construct volumes of contiguous pixels with similar color. The mean-shift seg-

mentation uses an anisotropic kernel to account for spatio-temporal information in the video. Once

the segmentation volume is generated, the user outlines semantic regions in certain keyframes in

the video, indicating which low-level segments should be merged, which is propagated to all frames

thereby maintaining interframe correspondence. The video is then represented as three-dimensional

polyhedral regions. Two-dimensional style effects are applied along thesurface of regions and

within regions by taking slices of the volume along the time axis. The slices yield solidareas and

curves along edges that may be rendered according to the desired style effects. Their method of

building a three-dimensional volume from video may be applied to the inbetweening problem, and

might work for contour data. However, there is a fair amount of user input required to define the

semantic regions and the method is fairly complex to be used on a single pair of keyframes that

require an inbetween.

III.1.4 Shape Interpolation

Beier and Neely [Beier and Neely 1992] discuss how to create a morph of apair of images that is

a combination of a cross dissolve and an image warp. A warp is calculated from the source to the

destination image, and likewise for the destination to the source. The warping method used is a

reverse mapping, where the destination image is scanned pixel by pixel andthe correct pixel from

the source image is sampled. Their morphing method is based on fields of influence surrounding

two-dimensional control primitives. To deform the images, sets of features(directed line segments)

are defined for both source and destination images. A coordinate system isbuilt based on the line

segments and a distortion field. Figure III.2 shows a source and destinationimage with sets of

features and the resulting morph. Once the warping function is defined foreach image, the morph

proceeds as a cross dissolve with the start image being the unwarped source image, the image half

way between is a combination of the source image half way warped and the destination image half

way warped, and the final image is the destination image unwarped. Any transformation based on

a single pair of lines is affine. Any transformation with multiple pairs of lines has weights assigned

to each line, and is usually non-affine. While this method produces nice intermediate images during

the morph, it suffers from two disadvantages, speed and control. Because the features are globally

defined the line segments need to be referenced for every pixel. Also, some artifacts can appear as
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Figure III.2: The left and right images are the source and destination images with sets of features
indicated as directed line segments. The center image the resulting morph, with warped grid lines
from the source and destination. Images are from [Beier and Neely, 1992].

unexpected interpolations of pixels that are far away from the line segments.

Sederberg and Greenwood [Sederberg and Greenwood 1992] studied how to smoothly blend

between a pair of two-dimensional polygonal shapes. By modeling the inputshapes as being com-

posed of thin wires, the shape transformation is achieved by minimizing equations of work for

deforming the wire from one shape to another. The user can specify physical attributes of the wire,

thereby controlling the ease or difficulty of bending or stretching it to conform from one shape to

another. To prevent the shape from self-intersecting, a penalty is added for any deformation that

crosses a zero degree angle, which implies the shape has intersected itself. The deformation work

equations are separated into stretching work and bending work, the firstis applied to adjacent vertex

pairs, the second is applied to sets of three adjacent vertices. They address the problem of vertex

correspondences by specifying a small number of initial corresponding point pairs on the input

shapes, and can add vertices based on some heuristics. The polygonalized shapes do not have to

have the same number of vertices, but every vertex in each shape must have a correspondence to the

other shape. While their results show nice shape blending, the shapes mustbe polygonal, therefore

using existing animations would require polygonalizing every image. Their results also depend on

the initial manual placement of the corresponding vertex pairs. All of the transformations, while

constrained by the work equations for bending wires, still suffer undesirable effects, such as an arm

shortening, because the corresponding vertices are linearly interpolated.

Turk and O’Brien [Turk and O’Brien 1999] present a method for shape transformation using im-

plicit functions for both representing and interpolating the shapes. Their method relies on scattered

data interpolation, produces smooth intermediate shapes, and will work for shape transformation

in any number of dimensions. Each shape is defined implicitly in a higher dimension, thereby

combining the representation and interpolation of the shapes into one step. Figure III.3 shows a

visualization of a transformation between a pair of two-dimensional shapes.Using implicit func-

tions to interpolate between a pair of shapes is similar to the technique we discussusing radial basis

functions (RBFs) for interpolation. However, their method requires specifying interior and exterior

points for the shapes being transformed, and assume a specific gray-scale image from which to de-
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Figure III.3: A visualization of two-dimensional shape transformation between an X shape and an O
shape. The translucent surface indicates the isosurface of the three-dimensional variational implicit
function created from the two-dimensional shapes represented by the topand bottom planes. Image
from [Turk and O’Brien, 1999].

fine the interior, exterior, and boundary points. White regions represent the interior of the shape,

black regions represent the exterior of the shape, and intermediate grayvalues define the boundary of

the shape. This gray-scale image representation allows for creating a smooth shape from the image,

while defining the boundary and normal constraints by looking at the pixel neighbors and the gradi-

ent, respectively. Figure III.4 shows an example of the implicit function created from a gray-scale

image with boundary and normal constraints. While the variational implicit shapetransformation

method would work with cartoon images, the user would have to prepare eachimage to work with

this representation by either manually specifying the interior, exterior, and boundary points with

normal constraints, or by modifying each image to be in the same gray-scale image as described.

We experimented with the variational implicit shape transformation on a pair of two-dimensional

cartoon contours. Figure III.5 shows the result. Interior and exterior points were specified manually

for each contour (48 interior and exterior for the first contour, 44 interior and 53 exterior for the

second contour), and all points along the contour were used. No correspondence information was

specified. While the result is able to generate a surface between the two cartoon contours, the sur-

face between the contours loses a great deal of small detail, smoothes outsome of the larger details

around the feet, and extrapolates out beyond both contours. As we will see in Chapter VI.4.2, our

method of using radial basis functions (RBFs) for generating an implicit surface between a pair of

contours performs better, smoothing still occurs on fine details, but largerdetails around the head

and feet are preserved.

Alexa et al. [Alexa et al. 2000] describe a method for generating nonlinear shape transforma-

tions from a pair of two- or three-dimensional input shapes, while maintaininginternal textures

and features during the morph. Unlike [Beier and Neely 1992], this transformation is performed

in object-space, that is, the representation of the two- or three-dimensional shapes are polygons or

polyhedra respectively. In dealing with objects rather than images, the morphing process requires

generating a correspondence between the geometric features (vertex correspondence) and interpo-

lating the boundaries of the shapes (vertex path). The authors presenta morphing technique that

blends the interior of the shapes rather than their boundaries to achieve intermediate shapes that are
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Figure III.4: An example of the boundary and normal constraints indicatedby circles and plus
marks on the left, an intensity image showing the implicit function on the right. Image from [Turk
and O’Brien, 1999].

Figure III.5: A visualization of two-dimensional shape transformation between a pair of cartoon
contours. On the left and middle are the two cartoon input shapes shown in perspective and over-
layed on the mesh. On the right, the two input cartoon shapes are overlayedtogether, and the
translucent surface indicates the isosurface of the three-dimensional variational implicit function
created from the two-dimensional shapes. Notice on the isosurface that details around the head and
feet are smoothed and lost because the isosurface balloons out too farfrom the input shapes.Daffy
is TM& c©Warner Bros. Entertainment Inc.
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locally least-distorting. Their method assumes that correspondence has already been determined

for the boundary vertices before applying their algorithm for generatinga compatible triangulation

into triangles or tetrahedra (in two- and three-dimensions respectively). For the two-dimensional

case, the compatible triangulations are generated with a Delaunay triangulation, then vertex posi-

tions are optimized based on maximizing the minimum interior angle to help eliminate long skinny

triangles. This mesh smoothing step must be done on both triangulations to ensure that they remain

compatible. The general overview of their morphing algorithm is to first determine an optimal least-

distorting transformation between source and target, which is locally as similar as possible between

each pair of corresponding triangulations. An affine transformation is determined for every pair of

source-target triangles in the triangulation. The transformation is decomposed into a rotational com-

ponent (rigid) and a scale-skew component (non-rigid), both of whichare interpolated separately.

Each transformation is decomposed using singular value decomposition (SVD) to separate into a

rotation matrix and a scale-shear matrix. The rotation is represented as a quaternion and interpo-

lated using spherical-linear interpolation. The scale-shear component is interpolated linearly. Now

an optimal transformation is known for each pair of source-target triangles, however, these cannot

simply be applied as the shape will come apart because shared vertices will have different optimal

paths to follow. The paths the vertices take are expressed as a vertex configuration that minimizes

the quadratic error between the actual transformation matrices and the desired transformation matri-

ces. Their method produces nice shape interpolation for a single pair of input shapes, and preserves

interior details very well for all of their examples. However, this method has several limitations.

Corresponding vertices on the pair of input polygons must be manually specified. We implemented

this method and found that it cannot be easily applied to the two-dimensional inbetweening prob-

lem. It cannot handle occlusions or out-of-plane rotations, which are thetwo main problems for

two-dimensional inbetweening. Generating good compatible triangulations is difficult, and while

Delaunay triangulation tends to create long, skinny triangles, the optimization step does not always

remove all defective triangles, resulting in numerical problems. Most importantly, there is no con-

straint in the method that prevents triangles from flipping during shape transformation. The authors

state “In all our examples no simplex changed orientation (i.e. flipped), however, we have not been

able to prove this to be a property of our approach.” Figure III.6 showsthe result of applying [Alexa

et al. 2000] to a pair of cartoon keyframes. The character was manually segmented into layers to

overcome the self-occlusion problem, and each pair of shapes had manually specified boundary ver-

tex correspondence. Compatible triangulations were generated, though ascan be seen in the figure,

some could not be optimized to remove the defective triangles. Even with a goodtriangulation

of the right arm, the shape transformation produced undesirable results for the inbetween shapes.

Examining the arm closer reveals that the triangles changed orientation during the transformation.

Figure III.7 shows a close up view of only three triangles extracted from the arm, and the paths

that the vertices followed during the transformation. Yet, other parts of the character produced very

reasonable inbetween shapes. Due to the unpredictable nature of triangles flipping during shape

transformation, we abandoned this method for generating inbetweens.
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(a) Keyframe 1 (b) Inbetween (c) Inbetween (d) Inbetween (e) Keyframe 2

(f) Keyframe 1 (g) Inbetween (h) Inbetween (i) Inbetween (j) Keyframe 2

Figure III.6: We tested the method of [Alexa et al., 2000] on a pair of cartoon keyframes. The char-
acter was segmented into layers, then the shape transformation was applied toeach layer separately.
The top row shows the result of the transformation. The bottom row is the sametransformation with
the triangulation visible at each step.

Figure III.7: A close up view of three triangles from the right arm of the character in Figure III.6.
Clearly, the vertex paths indicate that the triangles flipped during shape transformation.
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III.1.5 Other Techniques for 2D Animation

Fekete et al. [Fekete et al. 1995] present a complete 2D animation system for vector-based sketch-

ing and painting. Their software is designed to support a paperless 2D animation pipeline. In doing

so, several technical issues are addressed. To draw the keyframesdirectly into the system, strokes

are captured and vectorized from a pen-tablet input device. The vector-based strokes are internally

represented as B́ezier curves, which are created by a quick curve fitting algorithm to the drawn

brush stroke. Painting the keyframes requires gap filling (making sure the strokes are closed) and

a planar map applied to the planar topology that is defined by a set of Bézier paths. Rendering

breaks down the strokes into shaded polygons and scan-converts them.While their method presents

an approach to the entire animation process as vector-based sketching, they also discuss the ad-

vantages and disadvantages of automatic inbetweening. The advantages include a reduction of the

number of hand-drawn inbetweens and the possibility for procedural rendering or texture mapping.

One disadvantage mentioned is that automation changes the nature of inbetweening and limits its

complexity. Both template based systems [Burtnyk and Wein 1976] and explicit correspondence

systems [Sederberg and Greenwood 1992] would be restricted to fairly standard drawings. One of

the features described as future work when this paper was published was incorporating automatic in-

betweening of simple objects such as a bouncing ball or falling snow. Their current software system

(by Toon Boom Technologies) can create simple inbetweens from the vector animation. However,

this technique requires the basic animation from which to produce the inbetweens, and an artist is

still required to draw the keyframes.

Corr̂ea et al. [Corr̂ea et al. 1998] developed a method for applying complex textures to hand-

drawn animation. For every shot in the animation, the camera parameters are known and fixed per

shot, their system uses a silhouette detection scheme and a warping algorithm tomodify a three-

dimensional model of the character to match to the hand-drawn line art. From the warped model,

the texture is rendered and composited with the line art for the final result. The user must create a

three-dimensional model that approximates the shape of the hand-drawn character, and help guide

the correspondence of edges and curves in the line art that correspond to those features in the three-

dimensional model. Each curve is represented as a uniform cubic B-spline. To calculate the control

points of the spline, an overdetermined linear system is solved using least squares data fitting to

minimize the root mean squared error. The system is overdetermined because the curves to be

fitted are hundreds of pixels in the curve of the line art. The warping algorithm uses a forward

mapping, in contrast to the inverse mapping of [Beier and Neely 1992]. Markers are specified on

both the model and drawing, and used to define a coordinate system for both model space and

drawing space. Each marker has a slightly different coordinate system, so a weighted average is

used for each marker pair. Two parameters control the smoothness and precision of the warp, and

how much influence a certain marker contributes to its neighbors. The authors discuss several ways

of tweaking the results by adding more markers, adjusting the ordinate direction of the coordinate

system for the warp, and reparameterizing the texture, allowing even more low level control of

the process. While their results achieve the goal of applying a complex texture to a hand-drawn
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character, the entire process is still quite labor intensive. Also, there areseveral types of line art

for which their system will not work. The authors describe four classesof line art that their system

would fail to texture: (1) a character with tufts of fur that are suggested by sharp wiggles, (2)

characters that would be difficult to approximate with a three-dimensional model, such as clothing,

(3) characters that have no reasonable three-dimensional representation, and (4)complex shapes that

could not be represented with a single B-spline patch. Because of the labor intensive process of this

system and its limitations, this method would not be well suited for transferring texture information

from a keyframe to an inbetween generated by our proposed system.

Petrovic et al. [Petrovic et al. 2000] inflate a 3D figure based on hand-drawn art to produce

shadows for cel animation. Their method is not fully automatic, the user must specify camera

position, ground plane, background objects, depth for character, and lights. To create shadows, they

use three types of shadow mattes: (1) tone mattes, these are self shadowing, cause other shadows on

the character; (2) contact shadow mattes, these are shadows cast by the character onto the ground,

and in contact with the character at all times; (3) cast shadow mattes, shadows that the character casts

onto the background. Constructing the background requires the assumption of a fixed field of view

and aspect ratio for the camera and an upright camera roll and ground plane pitch. Next, the user

defines several parameters: (1) the pitch of the camera, obtained by the user drawing two parallel

lines in the ground plane; (2) a coordinate system, defined such that the origin is the center of the

image plane; (3) a ground intersection line, specified by the user so that walls must be perpendicular

to the ground. More complex objects like stairs require more user input, suchas polylines on the

object starting with the contact points with the ground plane. The inflation methodis a three step

process. First, the line art is converted into character mattes. These are divided into multiple layers

to give depth information. The inflation method is based on “teddy” by finding the chordal axis of a

closed curve, lifting it out of the plane, and lofting a surface between the curve and axis. Next, the

shape is adjusted for a perspective camera. Although this method produces nice results for casting

shadows in cel animation, this technique can be considered a post-process or special effect in the

traditional animation pipeline, and does not help in the actual creation of the animation itself.

Bregler et al. [Bregler et al. 2002] proposed a method for re-using cartoon motion data by

capturing the motion of one character and retargeting it onto a new cartoon character. Their system

can be broken down into two steps: capturing and retargeting. In the capture phase, a set of key-

shapes are identified in the source cartoon. Each key-shape is parameterized to capture the motion.

An affine transformation describes the coarse motion (the general translation, rotation, and scale) of

the character. To capture the nonlinear motion, such as the extreme distortions cartoon characters

typically undergo, key-shape deformations are defined by selecting the set of key-shapes that include

all possible extreme deformations. To reduce the number of key-shapes the user must select, the

cartoon shape space defined by the key-shapes is extended by linearlyinterpolating the key-shapes.

Since linear interpolation cannot accurately produce good inbetween shapes, the linear key-shape

set is first preprocessed and extended using [Alexa et al. 2000], then PCA is applied to the extended

shape space that has been biased by seeding with the inbetweened key-shapes. Biasing the extended
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Figure III.8: An example of the shape space with the additional inbetweenedkey-shapes that would
fall along the green line, thereby biasing the extended shape space to moveaway from invalid shapes
shown in red. Image from [Bregler et al., 2002].

shape space before applying PCA helps to constrain the number of invalid shapes that occur with just

extending the shape space by linear interpolation. Figure III.8 shows an example of the shape space

with the additional inbetweened key-shapes that would fall along the greenline, thereby biasing the

extended shape space to move away from invalid shapes shown in red. Withthe key-shapes selected

and the cartoon shape space defined, a warp from one key-shape to another is calculated. The

retargeting step requires the user to define a set of corresponding key-shapes on the target cartoon

character. The warping functions calculated from the source key-shapes are applied to the target

key-shapes to create the animation for a new character from the motion fromthe source character.

Figure III.9 shows an overview of the capture and retargeting steps described. While this approach

produces interesting results for applying the motion of one character onto another character, this

approach does not generate a new cartoon motion. Their system requires a great deal of expert user

intervention to train the system and a talented artist to draw all the key-shapes. Each of the key-

shapes must be manually specified for the source and target character,and parameterized by hand to

find the affine deformations that the source key-shapes undergo before applying them to the target

key-shapes. Their work provides a method for re-using the overall motionof the cartoon data, but it

does not look at the structure of the data itself and therefore cannot re-sequence the data to expose

meaningful new behaviors.

III.2 Re-sequencing Animation Data

III.2.1 Video

We are motivated by the work of Schödl et al. [Scḧodl et al. 2000] on video textures to retain

the original images in motion sequences but play them back in non-repetitive streams of arbitrary

length. A video texture is derived from video by changing the order in which the original frames of

the video are played. The video frames are played out of the original order only at specific places that

are most unnoticeable to the viewer. This re-sequencing then produces asmoothly playing infinite

video from the finite duration input clip. Video textures is most similar to our goalof re-sequencing

cartoon images. To determine when to transition from one frame to another, theL2 distance is
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Figure III.9: A general overview of the capture and retargeting process. The source and target key-
shapes are selected by the user, the key weights are determined by findingthe warping function
required to move from one key-shape to another in the source shape space. These are applied to the
target key-shapes in the retargeting step. Image from [Bregler et al., 2002].

used to compute the differences between frames for building the video structure. These distances

are used to produce a matrix of probabilities, where each entry in the matrix is the probability of

transitioning from one frame to the next. If the L2 distance between a pair of images is small,

then the probability of transitioning between those images is high. The probabilitymatrix is further

refined to take into account the dynamics of the motion. A filter is used over the distance matrix by

using a weighted diagonal matrix to take into account the similarity of temporally adjacent frames.

In other words, the similarity computation can be said to match subsequences offrames instead of

individual frames. Figure III.10 shows examples of the distance and probability matrices before and

after filtering. To further improve the transition points to make them more unnoticeable, morphing

and blending techniques are used. We want to compare the differences between frames in a similar

fashion to analyze the traditional animation data for re-sequencing. [Schödl et al. 2000] assume

a large data set with incremental changes between frames. Their methods donot extend well to

cartoon data, which is inherently sparse and contains exaggerated deformations between temporally

adjacent frames.

In their follow-up work [Scḧodl and Essa 2002], they create new character animations with user-

directed video sprites. The authors describe video sprites as “animations created by rearranging

recorded video frames of a moving object.” As has been described, there are a number of ways

of generating motion for animation. Video textures rearranges recorded video frames, but to direct

the video sprites, the authors developed a cost function to define the desired motion of the sprites.

The sprites are captured from video footage of the desired character on a constant background. The

video is processed to extract the sprite from the background, and correct for perspective effects of

the character moving closer and farther from the camera. Unlike the L2 distance that was used to

compute the similarity of images in [Schödl et al. 2000], transition costs are defined by training a

linear classifier, learning from 1000 pairs of good or bad transitions thatare manually classified.

The cost function used sums the costs of all constraints and time steps, examples of some of the

constraints are location, path, and anti-collision. The cost function is optimized using a hill-climbing
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Figure III.10: The distance and transition probability matrices before (left)and after (right) filtering.
These matrices are generated from analyzing video of a clock pendulum. Notice the probability
matrix after filtering matches only forward swings of the pendulum. Image from[Scḧodl et al.,
2000].

method over the entire sequence as a whole, and determines transitions in no particular order. The

results are generated by specifying constraints for the desired animation,for example, to make

a character walk around in a circle, a path constraint is used. However,not all motions can be

animated, and there is no guarantee that there will be useful motions and good transitions captured.

The examples shown require a vast amount of video data: 30 minutes of video footage for a hamster

yielding 15,000 sprite frames (30,000 after mirroring). In our work, the largest cartoon data set we

use has 2,000 frames, yet we still achieve good results with sparser data of 560 frames.

III.2.2 Motion

Recently, other researchers have found inspiration from video textures and have applied it to motion

capture data. Sidenbladh et al. [Sidenbladh et al. 2002] employ a probabilistic search method to find

the next pose in a motion stream and obtain it from a motion database. Arikan and Forsyth [Arikan

and Forsyth 2002] construct a hierarchy of graphs connecting a motiondatabase and use randomized

search to extract motion satisfying specified constraints. Lee et al. [Lee et al. 2002] model motion

as a first-order Markov process and also construct a graph of motion.They demonstrate three

interfaces for controlling the traversal of their graph. Kovar et al. [Kovar et al. 2002] use a similar

idea to construct a directed graph of motion that can be traversed to generate different styles of

motion. In our work, once the structure of the data is learned, the manifold that represents the data

can be traversed to re-sequence the data.

With the recent research efforts in re-using video data [Schödl et al. 2000; Scḧodl and Essa

2002] and motion data [Sidenbladh et al. 2002; Arikan and Forsyth 2002;Lee et al. 2002; Kovar

et al. 2002; Kovar and Gleicher 2004], research questions arise about how to re-use the data in novel
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ways. Given a corpus of video or motion data, how can the data be re-used to create new motions

not previously seen in the database? The goal of our work is to re-use existing traditional animation

to create new motions, representing the data in a lower-dimensional graph structure (manifold) and

re-sequencing the images by traversing the graph from a given start and end pose. Using a graph

structure to represent the motion data is not a new idea. [Schödl et al. 2000] also use image-based

motion for creating infinitely long smoothly playing video from short video clips.[Kovar et al.

2002] use motion capture data for synthesizing new motion paths.

Looking specifically at Motion Graphs, [Kovar et al. 2002] present a method for creating di-

rectable motion given a database of motion capture data. Motion Graphs is a framework for gener-

ating different styles of locomotion along arbitrary paths through the motion capture database. The

system automatically constructs a directed graph (the motion graph) of connections in the database

of motion capture data. The idea is to automatically add the transitions between clipsof motion

within the motion database. The transitions are segments of two motion clips that areblended (in-

terpolated). The completed motion graph then has original motion capture data as well as the syn-

thesized transitions. Each edge in the graph represents the motion clip, and consists of the position

of the root joint and quaternions representing the orientation of each of the joints in the character.

Nodes in the graph represent the transition points. A “walk” of the graph isthe new synthesized

motion. By representing clips of motion capture data as a motion graph a user can direct a new mo-

tion by defining several functions specifying the goal of the motion, allowingthe system to search

through the motion graph to build a “walk” (i.e. traverse the graph). The user can also specify a

path that the character should follow, and using an error function and halting criteria, the system can

find the pieces of motion that best represents the path supplied by the user.

To build a motion graph, each clip of motion capture data is annotated with constraint informa-

tion (e.g. foot plant constraints) and a descriptive label (e.g. sneaking). Then the goal is to find the

best transition points for each motion clip. Transition points are found for every pair of motions in

the database. To find the transitions, a distance metric is defined; the one used here is the sum of

squared distances of point clouds. The distance between two frames from motion A and motion B is

calculated by using a window of 10 frames around each frame in motions A andB. The window of

frames for each motion is converted into point clouds around the joints. The point clouds are aligned

using a linear transformation applied to one of the motion window s, and finally thesum of squared

distances is calculated using the point clouds. This calculation is done for every pair of frames in

motions A and B, and for every pair of motions in the database, resulting in a distance matrix for

each pair of motions in the database. Once a distance matrix is computed, the local minima points

are extracted using a pre-defined threshold. The threshold is defined by the user on a per-motion

basis, since the motions being compared will vary and have different thresholds for different types

of motions. The next step is to create the synthesized transitions between the motions; these transi-

tions are added to the motion graph as edges. The final graph is pruned to remove any dead ends by

saving only the strongly connected components of the graph.

Synthesizing new motions requires a traversal of the motion graph. The authors call this a
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“walk,” which is cast as an optimization problem to search the motion graph. The user defines a

cost function for adding edges to the synthesized motion, a legality function for determining which

clips are legal to add to the synthesized motion based on constraints and such, and a halting function.

An incremental search then builds the “walk.” Path synthesis requires supplying a desired path, an

error function a nd halting function. The system measures the actual path travelled by the character

during a graph walk and measures the difference to the user-supplied path.

One of the difficulties with the motion graphs approach is that the user must specify a cost

function that does not over specify the goal of the new motion. That is, if the user simply restricts

the beginning and ending constraints of the motion, the out come will most likely not be a desirable

motion. The cost function should guide the entire motion. Another issue is that using just the

transition points from the distance matrices alone is not sufficient for synthesizing new motion. The

transition points are used for determining which sections of motions need to be blended to then be

able to use the transition from one motion to another.

Our work for re-sequencing cartoon images to create new motions is similar in that a suitable

distance metric must be identified for the results of the re-sequencing to yield appropriate new mo-

tions. A question that can be asked is, once a suitable distance metric is identified, isn’t the distance

matrix that is calculated enough to generate new motions, like with the motion graphsparadigm?

A distance matrix alone is not sufficient to produce new motions; the distance matrix will help in

determining the transition points only, but will not solve our problem of re-sequencing to create new

animations. Comparing images is not a trivial problem, and the quality of the re-sequenced motions

depends on the quality of the distance metric. Using nonlinear dimension reduction, we create a

manifold structure of the data then use this lower-dimensional graph structure for re-sequencing.

The graph does not need to be pruned, rather, the entire graph is a strongly connected component,

the nodes represent the images and the edges represent the transitions that can be taken. The user

only needs to specify a start and end pose to create the new motion; the new motion is then created

by traversing the graph and playing back the frames in the sequence determined by the traversal.

By representing the image-based motion data in a lower-dimensional structure,we can also use

the structure of the manifold to generate new images. A distance metric alone could not provide

enough information to generate inbetweens. In this respect, the paradigm of motion graphs is not

appropriate for re-using cartoon motion. If image-based cartoon data were used to create a motion

graph, the distance metric would provide the transition points, but there is no way to synthesize

blended transitions that are intelligible from blending the images. Also, we are re-sequencing the

order of the motion clips so to speak (re-sequencing the order of the frames from the cartoon data)

for creating new motions, not just playing back segments of motion pieced together by blended

segments. Another issue is temporal coherence. In creating a lower-dimensional structure, temporal

information from the original motion can be easily preserved.
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III.3 Dimension reduction

An alternate way of thinking about the problem of re-using and inbetweening animation data and

how to represent the data mathematically is by using dimension reduction. Cartoon animation data

can be viewed as requiring a high-dimensional space to represent all possible variations or degrees

of freedom. Methods for learning low-dimensional models from this high-dimensional data have

been recently used in animation systems [Kovar et al. 2002; Jenkins and Matarić 2003]. Using a low-

dimensional representation of the data may provide insights into the structure of the data and how

best to re-use it. The goal of dimension reduction is to represent the data ina lower-dimensional

space in such a way as to preserve certain properties of the data as faithfully as possible. The

measure of how well the data are approximated by the lower-dimensional space is referred to as the

residual error. There are linear and nonlinear methods of dimension reduction, and we discuss the

most common and relevant methods here.

Principle Component Analysis (PCA) [Jolliffe 1986] is a linear projection ona subspace of the

original data that best preserves the variance in the data. PCA uses eigenvalue decomposition on the

covariance matrix of the data to produce a subset of eigenvectors that represent the principle varia-

tions in the data. These eigenvectors form a linear subspace for representing the data, generating a

mean image and eigenvectors that span the principle shape variations in the image space. However,

PCA assumes that the structure of the data are linear, and that the input dataare independent. We

know that animation data are temporally correlated, with a specific sequential order. Thus, PCA is

probably not be the best choice for cartoon data.

Independent Component Analysis (ICA) is a statistical method that separates the independent

components in a multivariate signal by maximizing the statistical independence of the estimated

components. For example, ICA of a random vectorx consists of finding a linear transformation

s = Wx such that the componentssi are as independent as possible, in the sense of maximizing

some functionF that measures independence. There are both linear and nonlinear formsof ICA.

However, we do not expect statistically independent components to give us any advantage over the

nonlinear method we chose (Isomap).

Multidimensional Scaling (MDS) [Kruskal and Wish 1978] is a nonlinear approach to dimen-

sion reduction that preserves pairwise distances to uncover the structure of the data. MDS allows

for the visualization of how near data points are to each other for many kindsof distance or dissim-

ilarity measures and produces a representation of the data in a lower dimension. MDS is a generic

term that includes many different types, which can be classified according to whether the data are

quantitative (metric MDS) or qualitative (nonmetric MDS). The variants of metricversus nonmetric

MDS differ in their cost functions and optimization algorithms. With metric MDS, the cost function

measures the distance between pairwise data. With nonmetric MDS, the cost function ranks the

dissimilarity of the data.

There are several methods of unsupervised learning that use eigendecomposition to obtain a

lower-dimensional embedding of data lying on a nonlinear manifold. The two weare most interested

in are Local Linear Embedding (LLE) [Roweis and Saul 2000] and Isomap [Tenenbaum et al. 2000].
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We briefly discuss the two methods, and defer a more detailed look at Isomap until Chapter V.

LLE looks for a lower-dimensional embedding that preserves the local geometry of a small

neighborhood for each data point. It is assumed that the data lies on a manifold and that each

data point and its local neighborhood are approximately a linear subspace. Briefly, the algorithm

approximates the data with many linear patches. The patches are assembled together on a low-

dimensional subspace such that the relationships between patches are preserved. The assembly of

the patches is achieved by global optimization.

Isomap generalizes MDS to nonlinear manifolds. Instead of using Euclideandistances between

pairwise data, Isomap approximates the geodesic distances on the manifold. Isomap works well for

nonlinear data, it preserves the global data structure, and it optimizes globally. The basic algorithm

begins by constructing a neighborhood graph for each data point, pairwise distances are computed,

then MDS is used to reduce the dimensionality.

However, neither LLE nor Isomap account for temporal structure in cartoon data. A modi-

fied version of Isomap, called Spatio-Temporal Isomap (ST-Isomap) [Jenkins and Mataríc 2003;

Jenkins and Matarić 2004], can account for the temporal dependencies between sequentially ad-

jacent frames. We borrow the idea of extending Isomap using temporal neighborhoods, and use

ST-Isomap for dimension reduction of cartoon data to maintain the temporal structure in the em-

bedding. [Jenkins and Matarić 2003] focuses on synthesizing humanoid motions from a motion

database by automatically learning motion vocabularies. Starting with manually segmented motion

capture data, ST-Isomap is applied to the motion segments in two passes, along with clustering

techniques for each of the resulting sets of embeddings. Motion primitives and behaviors are then

extracted and used for motion synthesis. This type of analysis and synthesis also requires more data

than is typically available for cartoon synthesis. Thus, we adapt the methodsof [Jenkins and Matarić

2003] to use images as input, and use only one pass of ST-Isomap for creating the embedding used

for re-sequencing.

Pless [Pless 2003] has investigated using Isomap for exploring and analyzing video sequences

as a trajectory through large image spaces. The idea is to have automatic tools for analyzing video

by representing the video as a trajectory through the image space in a lower dimension. The au-

thor defines a video trajectory as a representation of changes in a video sequence based upon the

nonlinear dimension reduction method of Isomap. The analysis of the video trajectories through

the lower-dimensional spaces reveals five categories describing the shapes of the trajectories: (1)

cyclic, which are repetitive video sequences, (2) helical, a periodic action viewed by a moving cam-

era, (3) knotted, non-periodic or dynamic motions such as fountains, smoke, and flames, (4) linear,

smoothly changing but not repetitive motions such as a slow pan across a scene, and (5) combina-

tions of the four categories with distinct transitions between each type. One application of these

video trajectories is to segment video based on which category the trajectoryfalls into, such as a

transition from a bird in flight to a bird gliding. While this method is similar to our work increating

a lower-dimensional image space for video using Isomap, their work is focused on using the embed-

ding space to analyze the video for such purposes as segmentation or classification of the motion
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portrayed in the video. Our work is concerned with re-using the video by re-sequencing based on

traversing the embedding space.

Recent work in dimension reduction/manifold learning include Manifold Charting [Brand 2003],

Maximum Variance Unfolding (MVU) [Weinberger and Saul 2004], and hessian locally linear em-

bedding (hLLE) [Donoho and Grimes 2003]. [Brand 2003] recoversa Cartesian coordinate system

for a manifold of sampled data by constructing a nonlinear mapping from a high-dimensional sample

space to a low-dimensional vector space. [Weinberger and Saul 2004]use semidefinite program-

ming to do unsupervised learning of image manifolds and formulate the manifold learning problem

by defining a set of constraints that are optimized to “unfold” a manifold. hLLE is a modification

of the LLE method designed to produce linear embedding functions that exactly recover a hidden

parametrization for data lying on a manifold that is locally isometric to an open connected subset of

Euclidean space. All are more computationally expensive and account for structure in the data set

that we do not expect, for example, non-convexity.
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CHAPTER IV

PREPARING TRADITIONAL ANIMATION FOR RE-SEQUENCING

As mentioned in Chapter I, a primary challenge in building large libraries of cartoon character data

is to put the characters into a form in which the character is nicely separatedfrom the background.

Segmentation is necessary if the character is to be placed into a new environment or with a new

background. Much older cartoon data suffers from noise due to changes in lighting as the cel

animations were transferred to film, contamination of the cel from one use to another as it was

filmed, and degradation of the animation before being transferred to an archival format. These

factors make the segmentation problem quite challenging. Segmentation is necessary to facilitate the

image comparison method, discussed in the next chapter, and to create new animations that can be

taken from various episodes with differing backgrounds. This chapterexamines three methods for

semi-automatic segmentation of cartoon images in preparation for use in the re-sequencing method.

IV.1 Pre-Processing Cartoon Data

All data used in this dissertation comes from two-dimensional animated video or ’toon-rendered

motion capture. As such, the video must be pre-processed to remove the background and align

the character relative to a fixed location throughout the sequence, allowing for easy calculation of

image similarity later. There are a number of video-based tracking techniquesthat can be used for

background subtraction or segmentation. Three segmentation methods have been applied to the

cartoon data and are described in this chapter. When the methods do not completely segment the

character, a small amount of manual clean up of the images is required. Since the representation of

the data is model-free, identification of specific regions of the character, i.e., limbs or joints, is not

necessary, so it does not matter that the characters may undergo deformation. The alignment of the

character in image space is done using the centroid of the character in eachframe and repositioning

it to the center of the image, facilitating the computation of a distance matrix, which is described in

Chapter V.2.

Six cartoon sequences with different characters are used throughoutthis work, agremlin, Bugs

Bunny, Wile E. Coyote, Daffy Duck, Michigan J. Frog, and theGrinch. Table IV.1 shows the num-

ber of images used in each data set, the size of the original images and the cropped or scaled image

size used for re-sequencing. The only synthetic data set is thegremlin, which is created using three

clips of motion capture of free-style dancing performed by the same subject,and is played through

a gremlin model that is ’toon-rendered on a constant white background. ’Toon-rendering motion

capture data onto thegremlin allows for creating a large data set of images that are already seg-

mented and aligned, providing the proof of concept for re-sequencingcartoon-like images to create

new animations. Of the hand drawn cartoon examples, theCoyotedata set is composed of frames

from three different cartoons, called Coyote-1, Coyote-2, and Coyote-3. The others are composed

of frames from only one cartoon, but have breaks where the scenes change. TheBugs Bunnyimages
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Table IV.1: Details of traditional animation data sets. * Indicates that the data set was reduced in
size by removal of duplicate frames.

Data Set Number of Images Original Image Size Modified Image Size
Bugs Bunny 553* 720 x 480 360 x 240
Wile E. Coyote 527* 720 x 480 360 x 240
Daffy Duck 560 720 x 480 310 x 238
Michigan J. Frog 146 640 x 480 320 x 240
Grinch 295 640 x 480 320 x 240
Gremlin 2000 320 x 240 150 x 180

are from the 1946 short “Slick Hare” directed by Isadore “Friz” Freeleng. The Coyote-1 images are

from the 1953 short “Stop! Look! Hasten!,” the Coyote-2 images are from the 1954 short “Ready..

Set.. Zoom!,” and the Coyote-3 images are from the 1955 short “Guided Muscle.” TheDaffy Duck

images are from the 1953 short “Duck Amuck,” theMichigan J. Frogimages are from the 1955

short “One Froggy Evening,” and theGrinch images are from the 1966 film “How the Grinch Stole

Christmas.” All of these cartoons were directed by Chuck Jones. FigureIV.1 shows examples of

the frames from the original data along with the corresponding segmented images. This chapter

focuses on theBugs BunnyandWile E. Coyotedata sets for segmentation, as the other data sets

were processed manually at an earlier time.

IV.2 Segmentation of Color Images

In analyzing objects in images, it is essential that we distinguish between the objects of interest

and “the rest” of the image. The objects of interest are referred to as the foreground, while “the

rest” is referred to as the background. Techniques used to find objectsof interest are referred to as

segmentation techniques, i.e., segmenting the foreground from background. Segmentation involves

understanding that objects of interest, in this case cartoon characters, follow some specific form or

have some known properties. For instance, we know cartoon characters are usually easily identi-

fiable, and often made up of a few solid colors (Daffy Duck is mostly black with some orange).

Creating a library of animation data that includes a variety of cartoon characters requires extensive

pre-processing time, particularly if it is done manually. To generate good re-sequenced animations,

there must be a way to compute the similarity of the character in the images. As such, segmenting

and aligning the character is a vital step in our process, particularly with the distance metrics we

describe in Chapter V.2. Segmentation is the most time consuming aspect of preparing existing

cartoon data for discovering the structure of the data via manifold learning methods.

Image segmentation is fundamental to image processing [Gonzalez and Woods2001; Shapiro

and Stockman 2001]. We examined three techniques for potential use in oursystem: ad hoc method

using simple probability of color distribution, level sets [Osher 2003], and support vector ma-

chines [Vapnik 1998] (SVMs). Some of the more common techniques such asthresholding or
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Figure IV.1: The top row shows a frame from the syntheticgremlindata set before and after pro-
cessing (the images are cropped). The second row shows an original and cleaned up frame from the
Bugs Bunnydata. An example frame from theWile E. Coyotedata in the third row,Daffy Duckin the
fourth row,Michigan J. Frogin the fifth row, and finallyGrinch in the last row. The segmentation
results forBugsandCoyoteare generated using methods described in this chapter.Bugs, Coyote,
Daffy, andM.J. FrogTM& c©Warner Bros. Entertainment Inc., Grinch c©Turner Entertainment Co.
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Figure IV.2: The deviation from the mean color value for each color channel from a single back-
ground pixel is shown as data points around a mean value line. The color ofthe data corresponds to
the color channel.

edge detection work well for certain types of images. With thresholding, onecan segment based

on intensity of a grayscale image, or use a histogram to find the region to segment. However, in

color cartoon images, using only the intensity of the images loses a great dealof information, and

often more than one threshold level is required to define the object of interest. With edge detection,

gradient methods can find edges of objects, but are sensitive to noise. As mentioned previously,

the problem of segmenting traditional animation is difficult. Because the sourceof the cartoon data

used throughout this dissertation comes from DVDs, there is noise in the animations from both im-

age compression artifacts and color variations in the 50 year-old cartoons. Even without MPEG-2

compression artifacts on a DVD, the original cels also have noise and artifacts due to changes in

lighting as the cels were transferred to film and other degradation issues before being archived.

Simple thresholding is not robust enough to deal with the noisy images. As an example, Figure IV.2

shows deviations from the mean of a pixel in the background from aBugs Bunnyanimation, a frame

of which is shown in Figure IV.1. This pixel is not atypical, and any segmentation technique will

have to deal with noisy pixels in both the foreground and background of the target images.

IV.3 Ad Hoc Method

The first method we describe for segmenting color cartoon images is an ad hoc method that uses

the probability of color values and some thresholding for cleaning up the imagemasks. For each

character data set, the user selects several example pixels (colors) thatrepresent the character to be

segmented stored inRn
r,g,b, along with one pixel (for every frame) containing the(x,y) coordinates
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in image space where a part of the character is located, stored inPm
x,y. Rn

r,g,b is an n x 3 vector

of RGB values representingn reference colors of a character, andPm
x,y is anm x 2 vector of(x,y)

pixel coordinates form frames in the sequence. Selecting theRn
r,g,b andPm

x,y points is a small task

for the user, taking less than 10 minutes for both theBugsandCoyotedata sets. Basically, this ad

hoc method finds regions of connected pixels whose colors are within a defined tolerance,tol, of

reference colorsRn
r,g,b. The tolerance is a scalar value set by the user. A mask for each image in the

sequence,maskm, is initialized to be the same size as the input image to be segmented with all pixels

set to a value ofmaskm = f alse. The value at each element ofmaskm is compared to the sum of

squared color differences, i.e., if the differences are within thetol2, thenmaskm(i, j)∨1 otherwise

maskm(i, j)∨0. The logical∨ operator is equal to 1 unless both elements are 0. Becausemaskm is

initialized to f alse, or all zeros, only the sum of squared differences between the current pixel color

and the reference pixel colorRn
r,g,b that fall within thetol2 are included in the mask. The first step

in the image mask calculation can be summarized in the following equation:

maskm = maskm∨ ((Cr −Rr)
2 +(Cg−Rg)

2 +(Cb−Rb)
2) ≤ tol2 (IV.1)

whereCr ,Cg,Cb are the current RGB colors for imagem, andRr ,Rg,Rb are the RGB colors from

Rn
r,g,b for each color samplen.

Next, the number of regions inmaskm with a value of 1 that have 8-neighbor connected compo-

nents are labelled as potential character objects. If one of those objects overlaps with the reference

pixel Pm
x,y for imagem, that object is included in the output mask, otherwise it is removed. Finally,

morphological close is used to clean up the resulting image mask. Figure IV.3 shows an example

of a successful segmentation ofCoyote. Notice that in the middle image there is a region in the

center ofCoyote’shead that has a hole. Any similar areas in the resulting masks are either filled

semi-automatically by the user selecting one point in the region to be flood filled, or by using mor-

phological operators. However, there are some problems with this ad hoc method of segmentation.

Figure IV.4 shows that part of the background was included withBugs. Because the flower in the

background is a similar color toBugs, it is included as part of the foreground. Adjusting the only

parameter, thetol, to exclude the background flower results in losing parts of the character. When

dealing with similarly colored foreground and background elements, the ad hoc method reaches its

limit and fails to segment the character from the background.

IV.4 Level Sets for Segmentation

The second method used for cartoon segmentation is a level set algorithm developed by [Cao and

Dawant 2005], adapted to both grayscale and color images. There is muchongoing research using

level sets from applications in medical image segmentation to fluid model animation ofsmoke and

fire. First, a brief introduction to level sets: this is a numerical method that models propagating sur-

faces with time-varying, curvature-dependent speeds, introduced byOsher and Sethian [Osher and

Sethian 1988; Osher 2003]. The surfaces are viewed as a specificlevel setof a higher-dimensional

function. In two dimensions, the level set method represents a closed curve Γ (the interface bound-
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Figure IV.3: On the left is the original image, the center shows the mask generated using the ad hoc
method, on the right is the cleaned up mask.Wile E. Coyoteis TM& c©Warner Bros. Entertainment
Inc.

Figure IV.4: On the left is the original image, on the right is the segmented image that shows when
the ad hoc method fails.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.
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Figure IV.5: On the left is the red curve representingΓ, on the right is the level set functionφ shown
as a cone in blue-green. The blue-green surface is called the level setfunction, because it accepts
as input any point in the plane and hands back its height as output. The redfront is called the zero
level set, because it is the collection of all points that are at height zero.

ary) as being embedded into a 3D functionφ . In other words, the curveΓ is defined as a function of

time as the zero level set, i.e., byΓ(t) = {(x,y)|φ(x,y, t) = 0}, whereφ (the embedding function) is

usually chosen as a signed distance function. For this type of function,φ is positive on the exterior

of the region bounded byΓ, and negative on the interior ofΓ. A useful property of this representa-

tion is that the level set functionφ remains a valid function while the embedded curveΓ can change

topology.

Figure IV.5 illustrates the relationship betweenΓ andφ . The level set approach takes the initial

position of the curveΓ (the red curve on the left in figure IV.5), and embeds it into a higher-

dimensional surface (the blue-green cone on the right in figure IV.5). That cone-shaped surface has

a great property in that it intersects thexy-plane exactly where the curve sits. OnceΓ is embedded

into a higher-dimension, the evolution of the embedding functionφ can be linked to the propagation

of the curve through a time-dependent initial value problem. The evolution ofthe level set function

is determined by a user-defined speed functionF . Then the evolution equation, an initial-value

partial differential equation (PDE), for the level set functionφ has the form:φt +F|∇φ | = 0, given

φ(x, t = 0). Here,φ is the embedding function andF is the speed function, i.e., the speed of a point

on the curve along its normal direction. With these equations, the method can besummarized as

follows: the curveΓ is in a plane propagating in a direction normal to itself with a certain speedF

so that at timet we can solve for the position of the curveΓ(t) using the initial-value PDE.

IV.4.1 Level Sets: Method and Results

Knowing the structures of interest can be used for evolving an initial curve towards the boundaries

of the structure, thereby helping understand what needs to be segmented. The interface between the

object of interest and other parts of the image is the zero level set. Tracking the interface using level
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Figure IV.6: Starting on the left and moving right: the synthetic test image, the segmentation mask
with color = RED, the segmentation mask withcolor = GRN, the segmentation mask withcolor =
BLU, and finally the segmentation mask with the color stopping criteria equal to[RED,GRN,BLU].
Images obtained courtesy of Dr. Zhujiang Cao.

sets allows the front to move in either a positive or negative direction from its initial placement.

Typical level set methods rely on careful placement of the initial curve for successful segmentation,

and use gradient-based speed functions. The level set method we use overcomes many of these

problems as it is a region-based algorithm that combines regional statistics withthe curve evolution.

The speed functionF is defined by the curve evolution derived to minimize the total energy. The

image is modelled as either a two-class or three-class case, and statistics (average intensities) for

each region are used to derive the energy function. In the two-class model, a single curve is evolved

for any number of features (grayscale or color images). In the three-class model, two curves are

used, and are coupled to each other to maintain a global segmentation.

As such, the level set method we use works with both grayscale and color images [Cao and

Dawant 2005]. An initial proof of concept test using the three-class model of the level set algorithm

was applied to a simple synthetic image of a gray background with three rectangles of pure red, pure

green, and pure blue. The simple image is size 200 x 200, and was used at this resolution for process-

ing. When given the stopping criteria ofcolor = RED, whereRED= [255,0,0], GRN= [0,255,0],

andBLU = [0,0,255], only the red square was segmented. Likewise for the green rectangle and blue

square. When all three colors were given as stopping criteria (color = [RED,GRN,BLU]), all three

colors were correctly segmented. The time to segment the test image was four minutes. Figure IV.6

shows the test image used along with the segmentation results.

We applied the two-class model to an image ofDaffy Duckto evaluate the segmentation, with the

assumption thatDaffy can be easily identified using features in only one color channel. Figure IV.7

shows the segmentation results on the red channel of theDaffy image. While this method works

fairly well on a simple character such asDaffy, who is mostly black with a little orange, and proved

easily identifiable in the red color channel, there are more challenges to segmenting theCoyote

andBugscharacters. Figure IV.8 shows the original coyote image and the segmentedimage mask

generated from applying the two-class model to the luminance of the image. Theremainder of this

section describes the results of the two-class and three-class models for segmentation applied to two

cartoon characters.

While the two-class model level set method worked fairly well onDaffy Duckby using either
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Figure IV.7: On the left is the original image, the center shows the mask generated using level sets,
on the right is the segmented image. Images obtained courtesy of Dr. ZhujiangCao. ThisDaffy
image is from the 1951 short “Rabbit Fire” directed by Chuck Jones.Daffy Duckis TM& c©Warner
Bros. Entertainment Inc.

Figure IV.8: On the left is the original image, the right shows the mask generated using only the
luminance. Images obtained courtesy of Dr. Zhujiang Cao.Wile E. Coyoteis TM& c©Warner Bros.
Entertainment Inc.

a single color channel or the luminance of the image, theCoyoteandBugs Bunnycharacters are

more complicated. In particular, some of the colors in both characters are also the same as some

background elements. Also, there is some color variation due to noise from the age of the cartoons

as well as DVD compression artifacts. Two of the threeCoyotesequences suffer from a fair amount

of compression artifacts, as shown in figure IV.9. When segmentingDaffy using all three color

channels and the three-model method, the character was either over-segmented or the segmentation

failed. The three-model method also failed on theCoyotecolor images. The resulting three-model

color segmentation forBugsonly picked up small parts of the character, with a few pixels in the

background on the flower that is the same color as the character. The over-segmented result of one

Bugs Bunnyimage at14 resolution took sixteen minutes. Even the segmentation results using one

color channel ofDaffywith the two-class model, using an image also at1
4 resolution, averaged about

five minutes per frame.

We believe that there is sufficient variation in the pixel values for the cartoon characters due

to compression artifacts as well as film degradation from digitization of 50+ year old cartoons, that

even with a small amount of tolerance for variation in the colors selected as thestopping criteria, the

character will either be over-segmented or the algorithm will produce empty regions and run into

numerical instability. The other issue with this method is the amount of computation time required

to segment one image at1
4 resolution. The time to segment one cartoon image is between five to

49



Figure IV.9: OriginalCoyoteimages from two different cartoons with compression artifacts, seen
as blocks in the background sky.Wile E. Coyoteis TM& c©Warner Bros. Entertainment Inc.

sixteen minutes. Assuming the worst case scenario of sixteen minutes per image, with a total of

1,080 images to be segmented (527Coyoteand 553Bugs), the time to segment all images would

take about 288 hours, or twelve days. In comparison with the simple ad hoc method, segmentation

on a full size image requires only twelve seconds per image.

IV.5 Support Vector Machines

The third method applied to segmenting color cartoon images is the use of Support Vector Ma-

chines (SVMs). A support vector machine is a supervised learning algorithm based on the concept

of a hyperplane that defines a boundary separating sets of objects thathave different class mem-

berships [Vapnik 1998]. It is a supervised algorithm because the examples in the training data are

input/output pairs, where each pair is an example input object with its associated class label. The

SVM algorithm operates by mapping the given training set into a high-dimensional feature space

and finding in that space a plane that separates the data into the appropriateclasses (two classes in

the case of a binary SVM). Any consistently labelled training data set can bemade separable. To

avoid over-fitting the data by finding trivial solutions, SVMs choose the maximum margin sepa-

rating hyperplane from among the many hyperplanes that can separate theexamples in the feature

space. For example, given training examples labelled either “yes” or “no,” a maximum-margin hy-

perplane is found that splits “yes” examples from the “no” examples in sucha way that the distance

between the hyperplane and the closest example (called the margin) is maximized.

Figure IV.10 presents an overview of the SVM algorithm, mapping the input space to a feature

space, finding the hyperplane separating clusters of data to fall on eitherside of the plane, and

the margin (distance between separating line and closest data points to the line). The points that

constrain the width of the margin are the support vectors. Using a soft margin allows some training

examples to fall on the wrong side of the hyperplane, therefore making the algorithm robust to

mislabelled examples. The feature space can be defined by vectors in the input space and dot

products in the feature space, so the SVM can find the separating hyperplane without the need for

representing the feature space explicitly by defining a kernel function (the so-called “kernel-trick”).
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Figure IV.10: An illustration of the SVM algorithm. Two classes of data are represented as red
and blue points, the input space is shown before and after processing,the hyperplane is the line
separating the red and blue points in the lower right. In the feature space, the margin is shown in
green, the vectors (data points) that constrain the width of the margin are thesupport vectors.

There are a number of reasonable kernel functions that can be used inSVM models, such as linear,

polynomial, radial basis function, and sigmoid. In fact, if given a way of computing the inner

product between a test point and training point in the feature space directly as a function of the

original input points, it can be used as a kernel function. The goal of the SVM model is to predict

labels of data instances in a testing set given only attributes. To construct an optimal hyperplane,

the SVM is an iterative algorithm used to minimize an error function. Depending on the form of the

error function, SVM models are classified into four groups:C-SVM classification (C-SVC),ν-SVM

classification (ν-SVC), ε-SVM regression (ε-SVR), andν-SVM regression (ν-SVR) [Chang and

Lin 2001]. For classification, the difference betweenC-SVC andν-SVC is in the penalty term of the

error function. WithC-SVC, the penalty parameter of the error function (equation IV.2 below), is

the constantC > 0, which determines the trade-off of allowing training errors.C provides an upper

bound on outliers and limits the influence of those potential outliers. Withν-SVC, theC parameter

in the error function is replaced by a parameterν ∈ [0,1] that determines the lower bound on the

number of examples that are support vectors, and the upper bound on the number of examples

that are allowed to lie on the wrong side of the hyperplane (outliers). For regression,ε-SVR is

analogous to theC-SVC for classification and has a similar error function. The model produced by

ε-SVR depends on a subset of the training examples and ignores any examples within a threshold

of ε to the model prediction, similar to the upper bound provided byC. Finally, ν-SVR is similar

to ν-SVC in that it uses the parameterν to control the number of support vectors, and replaces the

parameterε of ε-SVR.
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In this work, we are training a binary SVM with theC-SVM classification. Regression models

are not appropriate for our problem of segmentation. Given a training set of attribute-label pairs

(xi ,yi), wherei = 1. . . l , training vectorsxi ∈ RN and labelsyi ∈ {+1,−1}l , C-SVM minimizes the

following error function:

min
w,b,ξ

1
2

wTw+C
l

∑
i=1

ξi (IV.2)

subject to the constraint

yi(wTφ(xi)+b) ≥ 1−ξi . (IV.3)

The training vectorsxi are mapped to a higher dimension by the kernel functionφ . C is the penalty

parameter of the error function, which controls the tradeoff between allowing training errors and

forcing rigid margins. IncreasingC increases the cost of misclassifying points and forces the cre-

ation of a more accurate model that may not generalize well. The vectorw is a vector of coefficients,

b is a constant, andξi are variables for handling non-separable input data.ξi are called theslack

variables, and allow for the possibility of data examples violating the constraint given in IV.3,

should the inequality not have theξi on the right hand side. Essentially, theξi take into account any

noise in the data that would otherwise prevent the hyperplane in the featurespace from separating

the differently labelled examples. We chose to use an RBF kernel that has the formφ = e−γ‖xi−x j‖
2
,

whereγ > 0, and the indicesi and j run over the training set, i.e.,i, j = 1. . . l . We are trying to find

a separating hyperplane that will classify the data as having a label of 1 or−1. As such, the RBF

kernel can be viewed as a similarity measure that will divide the input data (xi , x j ) into one of those

two classes. Using the RBF kernel withC-SVM is the most popular mainly because it requires the

user to set only two parameters,C andγ. The other variables (w,b,ξi) are solved for when mini-

mizing the error function given in equation IV.2. In our work, we use the LIBSVM library [Chang

and Lin 2001] with the RBF kernel to train theC-SVM model.

Because the accuracy of the SVM model largely depends on the selection of the model param-

eters, a grid search is used to find the optimalC andγ parameters for the RBF kernel. Using cross-

validation, pairs ofC andγ are tried over a specified grid and the pair with the best cross-validation

accuracy is picked. For a specified value ofC andγ, the cross-validation accuracy is computed as

follows: train an SVM model using a subset of examples (l −1) of attribute-label pairs, one example

is left out, and the model predicts the label for the unseen example. The accuracy of that prediction

is calculated for all examples in turn leaving one out, and the average of accuracy on predicting the

sets is the cross-validation accuracy. We define a grid(m,n) using exponentially growing sequences

of C andγ, such thatC = 22m−1 andγ = 22n−1, m∈ [−2, . . . ,8], andn∈ [−7, . . .3]. We chose these

values for our grid search based on examples provided by [Chang andLin 2001]. Although other

methods exist to find the best accuracy for a pair of inputs, a grid searchis very simple and can be

easily sped up, if necessary, by parallel processing since each(C,γ) pair is independent. TheC and

γ with highest cross-validation accuracy, in our experience typically above 96%, is selected.
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IV.5.1 Training SVM Model on Cartoon Images

To segment cartoon images, we first train an SVM model by selecting the appropriate attribute-

label examples. Several features can be identified in the characters thatcan be used as samples for

training and classifying. The most natural choice of a feature is the color of the character, since for

example,Coyotewill always be two shades of brown with yellow eyes. Another choice of feature

is using the optical flow. Many times the character will be on a stationary background, and one

unique characteristic of hand-drawn cartoons is that there are not shading or lighting changes in the

images, so the optical flow may be useful in locating the character. We used four variations on the

color and optical flow features for setting up the data. One way is to have theuser select several

pixels from a reference image, label each point as part of the character (1) or part of the background

(−1). Here, only RGB values are used as the samples. A second way to set up the training data is

to have the user select one scanline from a reference image, have labelsfor each color value applied

automatically by looking up the appropriate label from a corresponding pre-segmented (manually)

mask, and once again, use only RGB values as the samples. A third variation isto have all RGB

values from one reference image as samples, and have labels applied automatically by looking

up the appropriate label from a corresponding pre-segmented (manually) mask. Finally, the user

can select several pixels from a reference image, as in the first approach, but RGB values and

optical flow vector magnitudes are used as the samples. The optical flow vector magnitudes are

pre-computed using [Lucas and Kanade 1981] from the temporally adjacent frames in the cartoon

image sequences. The main reason for using optical flow is to identify moving background pixels

in the Coyote-1 and Coyote-2 data sets. Using the location of the referencepixels selected by the

user, the corresponding optical flow vector magnitudes are included as samples and given the same

labels as the reference pixels. The method used to select the features fortraining an SVM model for

each particular character is noted in the results section. Also, with any of these variations for setting

up the data, multiple reference images can be used. One important note is that all RGB values are

scaled to be in[0,1] range.

IV.5.2 SVM Segmentation Results

Segmentation of cartoon images uses the classified SVM model (one for eachcharacter) on each

image in the data set. The SVM output of the predicted labels is the resulting segmented mask.

Figure IV.11 shows the result of using 81 RGB samples and optical flow magnitudes for training the

SVM model. The top row of figure IV.12 shows the result of using one scanline of a blurred image

for training the SVM model, and the bottom row uses 68 RGB samples for trainingthe SVM model.

The best segmentation result achieved on theBugs Bunnydata set is this last example where only

68 color samples from three images in the data set were used to train the SVM model. Any more

samples or additional information resulted in over-classification, seen as more background pixels

and noise in the segmentation masks (compare results in figures IV.11 and IV.12). For instance,

including the optical flow vector magnitudes in theBugs Bunnydata set essentially picks up more

of the background pixels, in particular the gray ones. The reason is because the gray pixels onBugs
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Figure IV.11: The top row shows the input image and the resulting segmentationmask, this was
generated using 81 RGB samples and the corresponding optical flow magnitudes at those pixel
locations. The samples came from three images in the Bugs Bunny sequence.The bottom row
shows the optical flow vectors and one of the images used for the RGB samples. The red circles
indicate the pixels selected for the samples.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.

Bunnytypically have small optical flow vectors, which is also true of the gray background pixels.

Figure IV.13 shows the results of an SVM trained on 108 RGB samples with optical flow vector

magnitudes, applied to the Coyote-1 data set. Figure IV.14 is the Coyote-2 dataset, using an SVM

trained on 179 RGB samples with optical flow vector magnitudes. The results for the Coyote-3 data

set can be seen in figure IV.15, using an SVM trained on 140 RGB samples with optical flow vector

magnitudes. Compare these results to the ad hoc segmentation method discussed inChapter IV.3.

One of the difficulties with these particular cartoon examples is that the character is walking across

a moving background in the Coyote-1 and Coyote-2 data sets. Because ofthis, there are new color

samples revealed throughout the sequences that may not be accounted for in the SVM model. It is

also easy to see some of the compression artifacts in the segmented images, those show up as small

regions of blocks in and around the background elements.

In all of the examples, there are some pixels that the SVM model erroneouslyclassifies as part

of the character. To further improve the segmentation masks, simple morphological operations are

performed. The segmentation mask is a binary image with regions either equal to0 or 1. First, each

8-connected region in the mask is labelled with a number. For each region found, the area (total

number of pixels) of that region is calculated and stored. The region with thelargest area, or larger

than a preset value (i.e., 10,000 pixels), is likely to be the character and is kept in the mask, all others
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Figure IV.12: Here is the same image from the Bugs Bunny sequence. In thetop row, the image
was first blurred using a gaussian filter and the model was trained using one horizontal scanline
from one image-mask pair. In the bottom row, the model was trained using only68 RGB samples
from three images. Of all of the segmentation results using SVMs, this last example shows the best
classification of the cartoon character.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.
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Figure IV.13: The top row shows the input image and the resulting segmentationmask, this was
generated using 108 RGB samples and the corresponding optical flow magnitudes at those pixel
locations. The samples came from three images in the Coyote-1 sequence. The bottom row shows
one of the images used for the samples and the optical flow vectors for that image. The blue circles
indicate the pixels selected for the samples.Wile E. Coyoteis TM& c©Warner Bros. Entertainment
Inc.
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Figure IV.14: The top row shows the input image and the resulting segmentationmask, this was
generated using 179 RGB samples and the corresponding optical flow magnitudes at those pixel
locations. The samples came from three images in the Coyote-2 sequence. The bottom row shows
one of the images used for the samples and the optical flow vectors for that image. The blue circles
indicate the pixels selected for the samples.Wile E. Coyoteis TM& c©Warner Bros. Entertainment
Inc.
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Figure IV.15: The top row shows the input image and the resulting segmentationmask, this was
generated using 140 RGB samples and the corresponding optical flow magnitudes at those pixel
locations. The samples came from three images in the Coyote-3 sequence. The bottom row shows
one of the images used for the samples and the optical flow vectors for that image. The blue circles
indicate the pixels selected for the samples.Wile E. Coyoteis TM& c©Warner Bros. Entertainment
Inc.
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Figure IV.16: On the left is the segmentation result onBugs Bunnyusing the 68 RGB sample SVM
model. On the right is the result of applying morphological operations to cleanup the segmentation
mask.

are discarded. Finally, any remaining small holes are automatically filled. Figure IV.16 shows the

results of applying this method to one of the SVM segmentation masks. Any remaining stray pixels

are easily cleaned up manually.

IV.6 Summary

The segmentation methods presented in this chapter, in particular the supportvector machine method,

are robust and work well on all examples we have tried them on. This chapter presents the first nec-

essary component of a system for building re-usable motion libraries of traditional animation: a

method for semi-automatic segmentation of the images. Minimal user intervention is required, and

is essentially a guide for the animator in building the motion library. The SVM technique works

well for classifying cartoon characters, exploiting the strong color information that make up each

character, despite any noise or artifacts in the images. We rejected using level sets because the time

for segmentation of a14 resolution image was too slow, averaging ten minutes per image on a 1 GHz

pentium. Both the ad hoc and SVM methods were very fast, with the ad hoc methodsegmenting full

size images at a rate of ten seconds per image, and the SVM method segmenting full size images

at a rate of about three seconds per image. We believe the robustness ofclassifying cartoon images

using support vector machines provides a reliable and intuitive segmentationmethod.
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CHAPTER V

DIMENSION REDUCTION FOR RE-SEQUENCING ANIMATION

Once a library of character data has been assembled using the techniquesof the previous chapter, a

method such as that described in this chapter can be used to generate novel sequences. We describe

the re-sequencing process without generating new frames. The types of new motions that can be

re-sequenced are restricted by the amount of data in the library for eachcharacter. This method

is model-free, requiring no a priori knowledge of the cartoon character. First, the cartoon data is

pre-processed, as described in the previous chapter, creating the library of data for each character.

Next, nonlinear dimension reduction is used to learn the structure of the data,which requires a

metric for comparing the similarity of the images in the data sets. Sometimes these techniques and

others [Jenkins and Matarić 2004; Roweis and Saul 2000] are collectively called manifold learning

techniques. However, in this dissertation we apply the older terminology. Finally, by selecting a

start and end frame from an original data set, the data is re-sequenced tocreate a new motion.

V.1 Dimension Reduction

Nonlinear dimension reduction finds an embedding of the data into a lower-dimensional space. We

use a simplified version of ST-Isomap [Jenkins and Matarić 2004] to perform the manifold-based

nonlinear dimension reduction. Like standard Isomap, ST-Isomap preserves the intrinsic geometry

of the data as captured in the geodesic manifold distances between all pairs of data points. It also

retains the notion of temporal coherence, which is critical to the resulting output for cartoon data.

We are using segmented cartoon images to learn the lower-dimensional manifoldthat parameterizes

all of the images of a particular cartoon character. Each segmented image ofa cartoon character

represents one data point, and a manifold is learned for each character.ST-Isomap uses an algorithm

similar to Isomap; here we summarize a simplified version of ST-Isomap and refer the reader to

[Jenkins and Matarić 2004] for more details:

1. Compute the local neighborhoods based on the distancesDX(i, j) between all-pairs of points

i, j in the input spaceX based on a chosen distance metric (described below).

2. AdjustDX(i, j) to account for temporal neighbors.

3. Estimate the geodesic distances into a full distance matrixDIso(i, j) by computing all-pairs

shortest paths fromDX, which contains the pairwise distances.

4. Apply Multi-dimensional Scaling (MDS) [Kruskal and Wish 1978] to construct ad-dimensional

embedding of the data.

The difference between Isomap and ST-Isomap is in step 2, where the temporal dependencies are

accounted for. Here, we simply force the temporal neighbors to remain as part of the matrixDX
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whether or not those neighbors fall within thek spatial neighborhood that is specified.DIso are the

approximate geodesic distances based on calculating the shortest paths between all pairs of data

points, whileDX is simply the distances between all pairs of data points using some distance metric.

One issue with Isomap is determining the size of the spatial neighborhoods. Ifthe data is suffi-

ciently dense, Isomap can form a single connected component, which is important in representing

the data as a single manifold structure. The connected components of a graph represent the distinct

pieces of the graph. Two data points (nodes in the graph) are in the same connected component if

and only if there exists some path between them.

Our experimental results found that varying the size of the neighborhood(step 1) will ensure

that a single connected component is formed (one manifold) regardless ofthe sparseness of the

data. However, depending on the distance metric used and the sparseness of the data, the spatial

neighborhoods would need to be increased to a point such that no meaningful structure will be

found. This issue arises with Isomap since its main objective is in preserving the global structure

and preserving the geodesic distances of the manifold. ST-Isomap, by including adjacent temporal

neighbors, remedies this deficiency, allowing a smaller spatial neighborhood size while forming a

single connected component. Having all of the data points in the same embeddingis desirable for

re-sequencing. Using from one to three temporal neighbors and a small spatial neighborhood results

in a meaningful structure that is usable for re-sequencing.

V.2 Distance Metrics

The key to creating a good lower-dimensional embedding of our data is the distance metric used

to create the input to Isomap. When computing the local neighborhoods forDX(i, j), we examined

three different distance metrics: the L2 distance, the cross-correlation between pairs of images, and

an approximation to the Hausdorff distance [Huttenlocher et al. 1993]. Asmentioned previously,

video textures uses the L2 distance for computing the similarity between video frames. Although

this works well for densely sampled video, it is insufficient for dealing with sparse cartoon data.

V.2.1 L2 Distance

The first distance metric is the L2 distance between all-pairs of images. Given two input imagesIi
andI j :

dL2(Ii , I j) =
√

‖Ii‖2 +‖I j‖2−2∗ (Ii · I j) (V.1)

Only the luminance of the images is used for the L2 distance. The distance matrixDL2(i, j) is

created such that

DL2(i, j) = dL2(Ii , I j) (V.2)

This metric is simple and works well for large data sets with incremental changesbetween frames,

but is unable to handle cartoon data, which is inherently sparse and contains exaggerated deforma-

tions between frames.
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V.2.2 Cross-Correlation Distance

The second distance metric is based on the cross-correlation between a pair of images. This metric

also uses only the luminance of the images. Given two input imagesIi andI j :

ci, j =
∑m∑n(Iimn− Īi)(I jmn− Ī j)

√

(∑m∑n(Iimn− Īi)2)(∑m∑n(I jmn− Ī j)2)
(V.3)

whereĪi and Ī j are the mean values ofIi andI j respectively. This equation gives us a scalar value

ci, j for the correlation coefficient between imageIi and imageI j in the range[−1.0,1.0]. However,

we want the correlation-based distance metric to be 0.0 for highly correlated images and 1.0 for

anti-correlated images. Therefore the correlation-based distance matrix between imagesIi andI j is

Dcorr(i, j) = (1.0−ci, j)/2.0.

V.2.3 Hausdorff Distance

The third distance metric is an approximation to the Hausdorff distance. This metric uses an edge

map and a distance map of each image. The edge mapE is computed using a standard Canny

edge detector [Canny 1986]. The distance mapX is the distance transform calculated fromE, and

represents the pixel distance to the nearest edge inE for each pixel inX. Then, the Hausdorff

distance between a pair of imagesIi andI j is:

DHaus(i, j) =
∑(x,y)∈Ei≡1Xj(x,y)

∑(x,y)∈Ei≡1Ei(x,y)
(V.4)

whereEi is the edge map of imageIi , Xj is the distance map of imageI j , and(x,y) denote the

corresponding pixel coordinates for each image. Figure V.1 shows an example of the edge map and

distance map for a single image, note that the distance computation is between a pair of images and

is done for all pairs of images in the data set.

(a) Original image (b) Edge map (c) Distance map

Figure V.1: An edge map in the center, and distance map on the right, for one image from theDaffy
Duck data set. The edges on the edge map have been enhanced for easier viewing. These images
represent only a single image in the data set. The edge map and distance map are computed for
every image in the sequence.TM& c©Warner Bros. Entertainment Inc.
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Figure V.2 shows an example of the L2, correlation-based distance and the Hausdorff distance

matrices for theDaffydata set. Each distance matrix has been normalized to have values in the range

of zero to 255 for visual comparison, while the color map assigns blue to zero and red to 255. A

value of zero corresponds to similar images, while a value of 255 corresponds to dissimilar images.

Note that the diagonal is zero as expected, and the banding indicates structure in the data. It is that

structure that will become important when generating the lower-dimensional manifold for each data

set. Since the geodesic distances are estimated by computing the shortest cost paths between all

pairs of points, identifying the distance metric that best characterizes the similarity of the images

is important. By using the each of the different distance metrics, generating lower-dimensional

manifolds of each data set, and creating a few example re-sequenced animations, we found that the

Hausdorff distance metric works best for all data sets. Figure V.3 showsthe resulting Hausdorff

distance matrices for all data sets. The important thing to note from these figures is that while

there is much similarity in the structure of the motion when considered as a functionof the distance

metric, there are important differences too.

V.3 Embedding

Once the distance matrix for a data set is computed, we apply ST-Isomap to obtain the lower-

dimensional embedding of a manifold that parameterizes the cartoon data. Thedimensionality

of the manifold must be determined. Choosing a dimensionality too low or too high results in

incoherent re-sequencing.

Estimating the true dimension of the data using ST-Isomap is different than with PCA. In PCA,

picking the dimension of a reduced data set can be done automatically such that the proportion of

variance (shape variations) retained by mapping down ton-dimensions can be found as the normal-

ized sum of then-largest eigenvalues. This residual variance is typically chosen to be greater than

80% (usually 90%), while the remaining variance is assumed to be noise. PCA seeks to maximize

the principal shape variations in the data, while minimizing the error associated withreconstruct-

ing the data from the lower-dimensional representation. The intrinsic dimensionality of the data

estimates the lower-dimensional subspace where the high-dimensional data actually “lives.”

In ST-Isomap, the residual variance is computed using the intrinsic manifold differences, which

take into account possible nonlinear folding or twisting. Restated, the residual variance is the cor-

relation coefficient between the embedded distances (the distances between data points on the man-

ifold) and the estimated geodesic distances. We pre-select the number of dimensions in which to

embed the data, from one to ten dimensions, and the residual variance is calculated for each dimen-

sion. The true dimensionality of the data can be estimated from the decrease in residual variance

error as the dimension of the manifold is increased. We select the “knee” ofthe curve by simply

eye-balling the curve. There are statistical methods for selecting the knee of the curve similar to

ones used for PCA [Jolliffe 1986], but we believe that simply eye-balling the curve gives us an ap-

propriate lower-dimensional manifold with which to traverse for re-sequencing. Figures V.4 to V.9

show the residual variances and the two-dimensional or three-dimensional projections of the neigh-
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L2

Correlation-Based

Hausdorff

Figure V.2: L2, Correlation-based and Hausdorff distance matrices for theDaffy data set. Each
distance matrix has been normalized to the range of zero to 255 only for visual comparison. The
colormap is shown on the right.
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Bugs Bunny Wile E. Coyote

Daffy Duck Grinch

M.J. Frog Gremlin

Figure V.3: Hausdorff distance matrices for all cartoon data sets. Each distance matrix has been
normalized to the range of zero to 255 only for visual comparison. The colormap is shown on the
right.
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borhood graphs for all the data sets. The neighborhood graphs represent the manifold structure of

the data. Notice that thegremlin, Bugs, andDaffydata sets are reduced to about four or five dimen-

sions (figure V.9, figure V.4, figure V.5, and figure V.6 respectively),as indicated by the variance

plots. TheCoyoteandGrinch data sets can be reduced down to a three-dimensional manifold (fig-

ure V.8). TheFrog data set is very sparse, and can at best be reduced to a five-dimensional manifold.

It is difficult to see structure in the four- and five-dimensional manifolds that have been projected

down to a three-dimensional graph. However, the three-dimensional projection of theGrinch data

(figure V.8) gives a good representation of what the true three-dimensional manifold looks like.

Examining the data more closely, there are three scene cuts in theGrinch data. The large loop

structure on the left in figure V.8(b) depicts the first scene whereGrinch rotates his head around

360o, the small loop on the top and the branch to the right of the loops represent the next two scenes

where theGrinch is speaking and making exaggerated facial gestures. This kind of grouping based

on the scenes the images come from is not uncommon. In theCoyotemanifold, represented by a

three-dimensional projection of the three-dimensional manifold, the clustering of images from the

same scenes remains. The cluster on the lower right side of the manifold in figure V.5(b) are images

predominantly from the Coyote-1 segment where theCoyoteis crawling then sitting and eating a

fly. The lower cluster in the center is theCoyoteclimbing on a rock, the loop on the right represents

the cyclical motion of theCoyotewalking, and has images from both Coyote-1 and Coyote-2 data

sets. The upper cluster in the center represents images in the Coyote-3 dataset where the character

is standing scratching his head and making facial expressions. We expect to see these loops when

the motion is a cyclical motion such as walking or running. In figure V.4(b), although the four-

dimensional manifold is represented as a three-dimensional projection, we can still see similar loop

structures of cyclical motion. The large loop on the left represents the repetitive and cyclic motion

of Bugs Bunnyperforming a samba dance.

For all of the manifolds shown in figures V.4 to V.9, the number of temporal neighbors is noted

in the figures. Most of the data sets use a spatial neighborhood of seven, with the exception of the

Coyotedata set, which uses only three spatial neighbors. Varying the number of spatial neighbors

changes how many similar looking images are clustered together, but can alsoaffect the manifold

negatively if the number is too high. In that case, images that are not very similar could be grouped

into the same spatial neighborhood because of the fixed neighborhood size. Setting the spatial

neighborhood too small may cause more than one connected component to beembedded. This

means that the data is split among two or more manifolds, and re-sequencing between the different

manifolds becomes another problem. To simplify the re-sequencing, we require a single embedded

manifold from which to traverse and generate new animations.

V.4 Re-sequencing New Animations

To generate a new animation, the user selects a start frame and an end frame, and the system tra-

verses the manifold to find the shortest cost path. In traversing the manifold, some temporal in-

formation has been preserved, but cyclical data such as walking, groups similar images together.
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(a) ST-Isomap with two temporal neighbors, variance plot

(b) ST-Isomap with two temporal neighbors, 3D graph

Figure V.4: Results showing the residual variance and three-dimensionalprojection of the neigh-
borhood graph generated with ST-Isomap using the Hausdorff distancematrix on theBugs Bunny
data set.
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(a) ST-Isomap with two temporal neighbors, variance plot

(b) ST-Isomap with two temporal neighbors, 3D graph

Figure V.5: Results showing the residual variance and three-dimensionalprojection of the neighbor-
hood graph generated with ST-Isomap using the Hausdorff distance matrixon theWile E. Coyote
data set.
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(a) ST-Isomap with two temporal neighbors, variance plot

(b) ST-Isomap with two temporal neighbors, 2D graph

Figure V.6: Results showing the residual variance and three-dimensionalprojection of the neigh-
borhood graph generated with ST-Isomap using the Hausdorff distancematrix on theDaffy Duck
data set.
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(a) ST-Isomap with three temporal neighbors, variance plot

(b) ST-Isomap with three temporal neighbors, 2D graph

Figure V.7: Results showing the residual variance and three-dimensionalprojection of the neigh-
borhood graph generated with ST-Isomap using the Hausdorff distancematrix on theMichigan J.
Frog data set.

70



(a) ST-Isomap with two temporal neighbors, variance plot

(b) ST-Isomap with two temporal neighbors, 2D graph

Figure V.8: Results showing the residual variance and three-dimensionalprojection of the neigh-
borhood graph generated with ST-Isomap using the Hausdorff distancematrix on theGrinch data
set.
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(a) ST-Isomap with two temporal neighbors, variance plot

(b) ST-Isomap with two temporal neighbors, 2D graph

Figure V.9: Results showing the residual variance and two-dimensional projection of the neighbor-
hood graph generated ST-Isomap using the Hausdorff distance matrix onthegremlindata set.
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Also, similar images from different cartoon animations (like theCoyotedata set) tend to be near

each other on the manifold. The traversal path gives the indices of the images used for the new

animation, which is created by re-sequencing the original, unregistered images. No new images

are generated, only the order of the original images is changed, and images may come from differ-

ent cartoons. Dijkstra’s algorithm [Sedgewick 2002] is used to find the shortest cost path through

the manifold. The dimension of the manifold used for re-sequencing varies for each data set. The

Daffy data set and theFrog data set use a five-dimensional manifold, thegremlin data set uses a

four-dimensional manifold, and theGrinchdata set uses a three-dimensional manifold.

V.4.1 Post-Processing

To ensure the smoothest looking re-sequenced animations, we add a small amount of automatic

post-processing. Only the start and end keyframes for each re-sequenced segment are specified, but

currently there are no restrictions on the number of inbetweens that the pathshould have. As such,

the shortest cost path may not visit all temporally adjacent frames in the manifold. To improve the

re-sequenced animation, we process the frames specified from the path using the following auto-

matic techniques. First, any missing sequentially adjacent frames within eight frames are inserted,

helping to smooth some of the choppiness associated with skipping the missing frames. Sequen-

tially adjacent frames are those that are adjacent in the original sequence. For example, if the

re-sequenced path selected is [20 24 60 70] before inserting the sequentially adjacent frames, the

resulting path becomes [20 21 22 23 24 60 70]. Using up to eight sequentiallyadjacent frames

does not significantly change the overall re-sequenced path since the temporally adjacent frames are

usually near each other in the manifold.

After adding these frames, we further improve the smoothness of the re-sequenced animations

by matching the velocity of the centroid of each character from frame to framein the new path. The

new sequence was found based on the Hausdorff distance metric using character aligned images, as

described in Chapter IV.1. The aligned images thus no longer possess anyoffset of the character

within the frame. In post-processing, the original images are used. For each original image in

the data set, the character’s centroid is calculated and stored. Then a velocity vector is computed

based on each frame’s previous and next temporal neighbor in the original (not aligned) sequence.

When given a path for re-sequencing, the position and velocity of the centroid for the character

in every frame are known. The position of the character is adjusted from one frame to the next

in the new sequence based on the projected position indicated by the first frame’s velocity vector

from the original sequence. Figure V.10 illustrates the repositioning of the character in image space

using the pre-computed velocity vector. This adjustment is done whenever the path jumps from

one single frame or subsequence in the path to another. Subsequences inthe path are handled such

that the first frame in the subsequence has its character repositioned based on the previous frame’s

projected position, while the remaining frames in that subsequence are adjusted to the first frame’s

new position.

Finally, if the character translates along the z-axis then the figure often changes in size within
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Figure V.10: Illustration of applying a pre-computed velocity vector from anoriginal sequence to
a re-sequenced frame. Top left shows a frame in a re-sequenced animation, bottom left shows the
next frame in the re-sequenced animation. Top right illustrates the velocity vector computed for
the frame in the top left. Bottom right shows the realignment of the character from the second
re-sequenced frame.Daffy is TM& c©Warner Bros. Entertainment Inc.
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Figure V.11: Illustration of applying a scale factors to a pair of re-sequenced frames. The top row
shows the original frames that appear in a re-sequenced animation. The difference in their scale is
apparent. The bottom row shows the same frames after the scale factor is applied. Daffy is TM&
c©Warner Bros. Entertainment Inc.

the frame. The final re-sequenced frames are adjusted using a scale factor based on the average pixel

area in the sequence. By pixel area, we mean the total number of pixels comprising the character.

The scale factors is defined as

s=

√

Aave

Aseq
(V.5)

whereAave is the average pixel area in the entire path, andAseq is the average pixel area of a subse-

quence (or just the pixel area of a single frame). Thens is applied to each frame of the subsequence

(or single frame) in the path. Figure V.11 illustrates the scale factors applied to a re-sequenced

frame.

V.5 Threshold Detection

In re-sequencing cartoon data, the transitions from the shortest cost path may result in visual dis-

continuities. A small cost (embedded distances on the manifold) indicates a good transition, while

a large cost indicates a bad transition. The system can automatically identify when the cost of a

transition is too large. A threshold is determined for each data set, and notifiesthe user of abrupt

transitions in the re-sequenced animation. The threshold is currently determined manually for each

data set by examining the manifold and all associated transition costs. Notification allows the user

to decide if additional source material is needed to produce a more visually compelling sequence.
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V.6 Re-sequencing Results

After testing all of the data sets by generating lower-dimensional manifolds for each and varying the

number of temporal neighbors, using two temporal neighbors yielded the best re-sequencing results.

Thegremlindata set is well populated with only a few large jumps at the transitions between motion

capture clips, but the Hausdorff distance metric is an improvement over the L2 distance. For the

Bugs, Daffy, andCoyotedata sets, there are also a few large jumps in the original data resulting from

scene cuts and images from different cartoons. The Hausdorff distance metric works significantly

better than the L2, and reasonable paths are found through the lower-dimensional manifoldfor each

data set.

We are able to re-sequence thegremlindata into a short motion clip that retains the same char-

acteristics of the original dance motion, but shows a new dance behavior.This result was achieved

by selecting six keyframes (sets of start and end frames) and applying ST-Isomap with two temporal

neighbors, and post processed as described in Chapter V.4.1. The result is a sequence with a total

of 57 frames.

We also re-sequence theDaffy data into two short motion clips, each retaining the original

characteristics of the gesturing motion, but showing a new gesturing behavior. The clips were

created by selecting six and seven keyframes and applying ST-Isomap withtwo temporal neighbors.

The first clip was minimally post-processed, only the missing temporally adjacent frames were

inserted, and resulted in a sequence with a total of 59 frames. The secondclip was post-processed

by including any missing temporally adjacent frames and velocity-matching the centroids, resulting

in a sequence with a total of 98 frames.

Table V.1: Examples of the distance values between pairs of frames using theHausdorff distance
metric on theDaffy data set. Adjacent frames in the original data set may not always have a low
distance value, as shown in the table. The transition from frame 98 to 99 is an abrupt transition
according to the distance metric.

Daffy 246→ 235 0.413511 good
Daffy 326→ 77 6.173898 bad
Daffy 99→ 243 3.010666 accept
Daffy 235→ 236 0.094055 good
Daffy 98→ 99 7.270829 bad

After generating several re-sequenced animations for a particular dataset, we inspect the cost

values associated with the transitions and determine a threshold value for abrupt transitions. Those

cost values come from the embedded distances in each lower-dimensional manifold, represented

here asDemb Once the threshold is determined, the system can use threshold detection to indicate

to the user when a large transition cost has occurred. As an example usingtheDaffy data set, our

findings indicate that a threshold value ofDemb< 2.2 represents a good transition whileDemb> 3.9

represents an abrupt transition. Table V.6 shows some of the distance values associated with the

transitions for a re-sequenced animation, while Figure V.12 shows the frames referred to in the

76



frame 246 frame 235

frame 326 frame 77

frame 99 frame 243

frame 235 frame 236

frame 98 frame 99

Figure V.12: An example of good, bad, and acceptable transitions for theDaffydata set from a path
generated using ST-Isomap with two temporal neighbors. The pairs of frames shown correspond
with the values shown in Table V.6.Daffy is TM& c©Warner Bros. Entertainment Inc.
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frame 326 frame 325 frame 324 frame 77 frame 51 frame 98

frame 326 frame 77 frame 51 frame 98

Figure V.13: A filmstrip of two paths without any post-processing. The bottomrow shows the path
generated from theDaffy data set with three frames removed. The top row shows the same path
with inbetweens inserted at the point of highest transition cost, in this case between frames 326 and
77. TM& c©Warner Bros. Entertainment Inc.

table. The transition from frame 99 to 243 has a value 2.2≤ Demb≤ 3.9, representing a region that

should be inspected by the animator before accepting or rejecting. In this case it is accepted.

To test the system’s ability to detect a large transition, an example is generated with three images

from theDaffy data set removed. ST-Isomap is applied using two temporal neighbors and seven

spatial neighbors. In the path generated from the data set with missing frames, the transition cost

exceeded the pre-set threshold and resulted in a sequence with visual discontinuities. Inserting

inbetween frames at the point of highest transition cost generates an improved sequence. Figure V.13

shows the two paths without any post-processing. The sequence generated from the data set with

missing images differs from the other sequence only in the transition from the first frame 326 to the

second frame 77, which is where the inbetweens were added.

The Michigan J. Frogdata set illustrates the challenges in re-sequencing cartoon data. This

data set has 146 frames, of which only 73 are unique. Although ST-Isomap can reduce the data to

approximately five dimensions, traversing the resulting five-dimensional manifold for re-sequencing

yields jumpy motion. A transition threshold can still be found even though the dataset is so sparse.

A threshold valueDemb≤ 0.58 represents a good transition. Figure V.14 shows examples of good

and bad transitions for theFrog, and the corresponding transition costs, for a path generated using

ST-Isomap with three temporal neighbors to create the manifold.

V.7 Summary

We foresee that this system of re-sequencing, and specifically the ability toidentify visual discon-

tinuities automatically, will be useful as an aid to artists charged with generating inbetweens in

traditional animation. If a sufficient body of prior animation is available, the inbetween artist could

use the system to match keyframes in a new animation and generate inbetweens from existing data.

Only if the keyframes were sufficiently novel or the transition cost too high would the inbetween

artist be required to generate new art. By providing a method for re-using cartoon images through
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frame 22 frame 27 frame 12 frame 109

Figure V.14: An example of good and bad transitions for theFrog data set. The first pair of images
demonstrates a good transition from frame 22 to 27 with a cost of 0.198132. The second pair of
images demonstrates a bad transition from frame 12 to 109 with a cost of 0.609729. TM& c©Warner
Bros. Entertainment Inc.

the use of manifold learning, this chapter presents the second necessaryand most important com-

ponent of a system for building re-usable motion libraries of traditional animation.

Thus far, we have implemented and discussed two research goals: semi-automatic segmentation

of existing cartoon images (in Chapter IV), and how to re-sequence cartoon data to create new an-

imations that retain the characteristics of the original motion. Our methods are model-free, i.e., no

a priori knowledge of the drawing or cartoon character is required. The keys to the re-sequencing

method are the identification of a suitable metric to characterize the differencesin cartoon images

and the use of a nonlinear dimension reduction and embedding technique, ST-Isomap. The system

can characterize when a novel re-sequencing requires additional source material to produce a visu-

ally compelling animation. The methods and results discussed in Chapter V have been published

[de Juan and Bodenheimer 2004]. In the next chapter, we address theissue of generating new im-

ages in the cases of high transition costs, extending the re-sequencing capabilities to go beyond just

the existing library of cartoon data.
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CHAPTER VI

INBETWEENING A MOTION LIBRARY OF RE-SEQUENCED ANIMATIONS

Several avenues exist for expanding and building upon the re-sequencing cartoon animation work

described thus far. One of the largest limitations of the re-sequencing system as described in Chap-

ter V is the inability to generate new images when a visual discontinuity is detected ina re-sequenced

animation. Addressing the issue of synthesizing new data leads us back to thetwo-dimensional in-

betweening problem introduced in Chapter II.1.2. In this case, the problemis restricted in that we

must generate transitions by blending or interpolating of a pair of images froma re-sequenced path,

not a series of keyframes. We refer to those pairs of images as “key images” in this chapter.

One of the most challenging aspects of automating the traditional animation pipelineis inbe-

tweening. In this chapter, we develop methods that allow for the semi-automatic generation of

inbetweens for re-sequenced traditional animations. Recall that the principal difficulty with two-

dimensional inbetweening is that the drawings are actually two-dimensional projections of three-

dimensional characters as visualized by skilled artists, discussed in Chapter III.1, which results

in problems of self-occlusion and lack of correspondences. To deal with self-occlusion, [Catmull

1978] suggests partitioning the character into separate layers before processing with a computer

program. For the correspondence problem, he suggests the program operator specify the correspon-

dence of the lines and hidden lines of the character from frame to frame. However, even with human

intervention, the problems of occlusion and correspondence are still difficult to overcome.

VI.1 Character Partitioning and Re-assembly

To overcome the self-occlusion problem, a pair of key images to be inbetweened are first partitioned

into separate character layers. Partitioning the character into layers is done manually, and a semi-

automatic inbetweening method (Chapter VI.4) is then applied to each layer. Thelocation and

scale of each layer is “lost” in the inbetweening process, so the layers arereassembled after the

intermediate images are generated. The layer reassembly is done automatically using the original

silhouettes and inbetweened results (contours) as references for calculating the translation and scale

factor for each layer. To determine the translation, we use the average of the centroid positions of

each character layer from the original key images. The scale factor is computed using the average

pixel area of the key images defined as

s=

√

Aave

Atween
(VI.1)

whereAave is the average pixel area from the key images andAtween is the pixel area of the inbe-

tweened result. By area, we mean the total number of pixels belonging to the character layer. We

are using the contour (Chapter VI.4.2) for computingAtween. As such, the contour is filled in to be

a silhouette. Figure VI.1 shows a character and the four layers used forinbetweening.
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Figure VI.1: Moving from left to right: the first image is an example key image that will be used for
inbetweening, the second image is the body layer, the third image is the head layer, the fourth image
is the left arm layer, and finally the last image is the right arm layer. The character was partitioned
into layers manually.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.

VI.2 Shape and Color Interpolation

There is a well known algorithm that would provide the best approximation to an inbetween, and is

a natural choice for shape and color deformation or interpolation. The method of image metamor-

phosis by [Beier and Neely 1992], discussed in Chapter III.1.4, requires a fair amount of user input

and tweaking to generate a reasonable looking inbetween. Figure VI.2 shows the two key images

of Bugs Bunny’shead layer with nine user selected feature lines. Figure VI.3 shows the result of

the morphing at intervals of 0.25, 0.5, and 0.75. The morphing algorithm generates these results

in minutes, but the selection of appropriate feature lines can be more time consuming, specifically

in determining how many are necessary and which features should be highlighted. In the examples

shown, determining the feature lines and selecting them for each image was aniterative process

that took approximately 25 minutes. Further tweaking results in improved intermediate images, as

shown in figure VI.4, but the time spent deciding on which features to selectand making small

refinements exceeds the time it would take to manually draw an inbetween image. Inaddition to

the time spent tweaking the results, the algorithm is not intuitive to use. However, it is important to

note that the results presented here serve as a baseline for the more automated methods we present

later in this chapter.

VI.3 Semi-Automatic Inbetweening

Our approach to the inbetweening problem is similar to the shape interpolation approaches of [Beier

and Neely 1992; Sederberg and Greenwood 1992; Alexa et al. 2000]. However, it employs radial

basis functions to generate implicit models as presented by Turk and O’Brien[Turk and O’Brien

1999] and refined by Carr et al. [Carr et al. 2003]. In our experience, using implicit surfaces presents
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Key image 1 Key image 2

Figure VI.2: Example of nine feature lines selected for image morphing betweena pair of key image
head layers.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.

Key image 1 Interval 0.25 Interval 0.5 Interval 0.75 Key image 2

Figure VI.3: Example of image morphing of the head layer between key image 1 on the left and key
image 2 on the right.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.
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Key image 1 Interval 0.25 Interval 0.5 Interval 0.75 Key image 2

Key image 1 Interval 0.25 Interval 0.5 Interval 0.75 Key image 2

Figure VI.4: Example of image morphing of the head layer between key image 1 on the left and key
image 2 on the right, with further refinement of the feature lines. The top row shows results using
24 feature lines, the bottom row shows results using 30 feature lines.Bugs Bunnyis TM& c©Warner
Bros. Entertainment Inc.

a superior technique than vertex-based approaches [Sederberg and Greenwood 1992; Alexa et al.

2000], since vertex interpolation often leads to unacceptable deformationsin the contours, such as

arm shortening. To alleviate the problem of self-occlusion, we employ the partitioning and layering

strategy mentioned above. Although the techniques presented here are not fully automatic, they do

not require the intervention of a skilled animator for quality results. We use themachinery of [Carr

et al. 2003] to generate an implicit model using radial basis functions (RBFs), as we have found

it produces better results and is faster than the related methods in [Turk andO’Brien 1999], which

provided the inspiration for our technique.

We describe a method that is a combination of two techniques, RBF interpolation and non-rigid

image deformation, for creating inbetween images from the existing key images inChapter VI.4.

The key images used for inbetweening are any pair of images that are identified as having a large

transition cost, or visual discontinuity, in the re-sequenced animation. The goal in generating new

images will be to maintain the model-free representation of the characters beinginbetweened, as

has been discussed throughout this dissertation. Also, the methods used should remain simple with

little to no user input required. Aside from partitioning the character into layers manually, very little

user input is necessary to achieve the inbetweening results presented here.

The system for re-using cartoon images described in Chapter V re-sequences animated images

by parameterizing the input images with a lower-dimensional manifold and then traversing that
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manifold to produce original animation, given start and end data. Examining the geodesic distance

determines if additional source material needs to be provided in the form of an inbetween. In this

chapter, we extend the re-sequencing method: given a geodesic distance, we compute an inbetween.

Once the re-sequenced animation is created and the visual discontinuities are identified, the inter-

polation to correct the discontinuities are restricted to a pair of images, insteadof the traditional

animation problem of having a series of keyframes that require a large number of inbetweens. In

practice, typically only one or two intermediate frames will be required for smoothing the visual

discontinuity in the re-sequenced animation.

VI.4 Shape Interpolation using RBFs

Before describing the details of our method of shape interpolation using radial basis functions

(RBFs), a brief overview of the algorithm is presented. RBFs are used tointerpolate the outer

contours of the character in the images. A mesh is created from the two contours, and slices of

that mesh are extracted and becomes the intermediate contours used to createthe inbetween. In

our experience, using implicit surfaces presents a superior technique than vertex-based approaches

[Sederberg and Greenwood 1992; Alexa et al. 2000], since vertex interpolation often leads to un-

acceptable deformations in the contours, such as arm shortening. Once we have an intermediate

contour, that contour must be filled in with color information. Using the two key images as ref-

erences for the intermediate contour, the images are registered and an intermediate color image is

generated. That intermediate image is used to fill in the contour, completing the inbetween. The

rest of this section describes the details of the inbetweening algorithm.

VI.4.1 Overview of Radial Basis Functions

We begin with a brief introduction to RBFs and the fast evaluation methods developed by [Carr et al.

2003]. Radial basis functions are techniques used for interpolation in a multidimensional space.

RBFs offer a compact functional representation of a set of data points used to define a surface. The

functions also have a distance criterion with respect to a center used for evaluation. That makes

RBFs useful for interpolation, extrapolation, and smoothing data. RBFs can be evaluated anywhere

on the surface to produce a mesh of any specified resolution. An object’ssurface is defined implicitly

as the zero set of RBFs fitted to the given surface data points. The main contribution of [Carr et al.

2003] is in the fast evaluation methods that are able to model large data sets consisting of millions

of points with a single function that is continuous and differentiable. Their method involves three

steps to fit RBFs to 3D data sets without restrictions on surface topology. The steps are (1) construct

a signed-distance function, (2) fit RBFs to the distance function, and (3)iso-surface the fitted RBFs.

Essentially, given a set of zero-valued surface points and non-zerooff-surface points, fitting the

RBFs is a scattered data interpolation problem. These methods are commercially available as a

toolbox for Matlab, known as FastRBF.

The general functional form of the RBFs over a set ofN data points is given bys(x) = p(x)+

∑N
i=1 λiφ(|x−xi |) wherep is a polynomial of low degree,φ is a basis function (a radially symmetric
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real valued function on[0,∞), andxi are the centers of the RBFs. There are several functions that

can be used as the basis functionφ , such as the thin-plate spline, a Gaussian, biharmonic, and

triharmonic splines. [Carr et al. 2003] chose the biharmonic spline functionφ(r) = r, which can be

rewritten ass∗(x) = p(x)+ ∑N
i=1 λi |x−xi | for the RBFs, wherep is a linear polynomial,λi are real

numbers, and|| is the Euclidean norm onR3. The biharmonic spline requires that data points be

not co-planar, and there are constraints on the coefficientsλ ensuring that the function is second-

order differentiable. We also chose the biharmonic spline as the basis functions in our interpolation

work described below. The authors claim that non-compactly supported basis functions are better

for extrapolation and interpolation of non-uniformly sampled data. Becausethe biharmonic spline

is not compactly supported, direct evaluation of the RBFs using a biharmonicbasis function is

unreliable and extremely time consuming. Their fast evaluation method allows forthe use of the

biharmonic spline on data sets consisting of tens of thousands of data points.They use the Fast

Multipole Method (FMM), originally developed for the fast evaluation of polyharmonic splines in

two and three dimensions. The idea behind the FMM is best described by citing[Carr et al. 2003]:

“The FMM makes use of the simple fact that when computations are performed, infinite precision is

neither required nor expected. Once this is realized, the use of approximations are allowed.” In the

evaluation of RBFs, theapproximationsare defined as two parameters, one for fitting accuracy and

one for evaluation accuracy. Basically, this provides a boundary for where to evaluate the RBFs, and

if the RBF centers are far from an evaluation point then an approximate evaluation is satisfactory.

Typically all the input data points are used as RBF centers, and as nodes of interpolation. The fitting

accuracy specifies the amount of deviation from a data point to the fitted RBFvalue, and can be

specified for each data point. The evaluation accuracy determines the precision for evaluating the

fitted RBFs, and acts as a boundary to the actual evaluated function. Another improvement to speed

the evaluation is to reduce the number of RBF centers. Basically, a subset of the interpolation nodes

are selected, the residual error of the approximation is computed, and if theresidual error is smaller

than the fitting accuracy, the RBFs are fitted. By using this method iteratively, although not essential

for the fast evaluation method, the surfaces are approximated to within the specified accuracy. The

more centers used in the fitting of the RBF, the more closely the zero set surface approximates the

entire set of input data points. Once the RBFs are fitted to a set of data points, the RBFs define an

implicit model of an object. An explicit representation, such as a triangular mesh, can be extracted

using iso-surfacing algorithms like marching cubes.

Having a compact functional representation of a surface, which also has the ability to interpo-

late and extrapolate, make using RBFs appealing for interpolating between pairs of key images.

The points used as input data to be fitted with the RBFs can be the outer contours of the cartoon

characters, or all of the pixels of a character, including color values. The fast evaluation method

developed by [Carr et al. 2003] provides a simple framework in the form of a toolbox in Matlab,

allowing for ease of use and accessibility to test the representation of cartoon data with RBFs.
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Figure VI.5: An example of the automatically generated contour and normal points which serve as
the input to the implicit surface generation step.

VI.4.2 Interpolating Contours using RBFs

To continue the discussion of using RBFs for inbetweening, we begin with thetask of interpolating

the outer contours of a pair of images of cartoon characters. Given input data from the previous seg-

mentation and layering operations, the RBF contour inbetweening algorithm proceeds as follows.

First, silhouettes are created automatically from the input data. The color of the background pixels

is known, so every pixel not equal to the background color is set to black and all background pixels

are set to white. The silhouettes are then used to create contours defining the shapes to be inbe-

tweened. The contours are generated from the silhouette images by startingat a pixel on the edge

of the silhouette and tracing around the silhouette in clockwise order. The contour image is just a

clockwise ordered list of(x,y) pixel positions. Next, using the ordered list of contour points, a set

of normals are computed. These normals (shown in Figure VI.5) define the interior and the exterior

of the contour for the RBF interpolation algorithm. The set of contour points and normals are then

given az coordinate, placing them in 3D space, and these point sets are used as input to the RBF

method, which generates an implicit surface interpolating the contour points. Amarching cubes

algorithm then creates a mesh describing the implicit surface, and the mesh is sliced at intermediate

points to create the intermediate contours. This process is quite fast and completes in approximately

one minute on a 1GHz Pentium.

If the intermediate contour needs further refinement, the following steps canbe taken: (1) the in-

dividual layers can be aligned, (2) constraint points can be added forthe RBF contour interpolation,

or (3) all methods can be used in conjunction. The alignment of layers can be done simply using

the centroid of the character layer (for example the centroids of the headsfor the head layer), or a

more complicated transformation can be applied using an iterative closest point registration algo-

rithm [Besl and McKay 1992]. Constraint points can be used to improve theintermediate contours.

The user can select desired constraint points on the previous intermediatecontour image to serve as

extra data points that must be interpolated by the RBFs. Alternatively or in combination with the

86



(a) Partitioned Layers

(b) Partitioned Contours

Figure VI.6: The top row shows an original key image on the left, the partitioned layers on the
right. Notice that the head has been registered to the key image in Figure VI.8(d). The bottom row
shows an example of the contours used for creating the RBF solution.Daffy is TM& c©Warner Bros.
Entertainment Inc.

above, the user can select desired constraint points on each of the original contour images. Normals

are calculated for the selected constraint points, and are passed on with the original contour points

and normals into the RBF contour interpolation routine. Next we describe the RBF interpolation

results, and note when any of the additional refinement methods are used.

The first example we describe uses two key images ofDaffy Duckand both techniques for in-

termediate contour refinement. The character is partitioned into three layers for both key images: a

head layer, an arm layer, and a body layer, as described in Chapter VI.1. The head layers are reg-

istered using the iterative closest point method with 12 control points for each image. Figure VI.6

shows the partitioned layers and final contours for one key image. Once the head images are reg-

istered, the contours are generated and the RBF interpolation method is employed. Two additional

constraint points are included with the contour points on the head layers, which are inserted at az

value half way between the two key images. These constraint points are used to restrict the fitting

of the RBFs around the lower part ofDaffy’s beak. The arm layers are registered, but required no

further contour refinement. The body layers did not require any contour refinement. Figures VI.7(a)

and VI.7(b) show the RBF interpolation results for theDaffyhead and body layers, respectively.
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(a) Head Layer RBF

(b) Body Layer RBF

Figure VI.7: The top image is the RBF solution for theDaffy Duckhead layer. The head images
were registered and two additional constraints were used. The bottom imageis the RBF solution for
theDaffy Duckbody layer.
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(a) Key image 1 (b) Inbetween Contours (c) Final Inbetween (d) Key image 2

Figure VI.8: The final inbetween frame generated using RBF interpolation method with layering
and constraints. The key images are shown on the left and right.Daffy is TM& c©Warner Bros.
Entertainment Inc.

Figure VI.8 shows the final inbetween for theDaffyexample described above. The intermediate

contour for each layer is reassembled after using the RBF contour interpolation method. The color

information is filled in manually for this example, and an automatic method will be discussed later.

Two more examples of the RBF contour interpolation method are described forBugs Bunnyand

the Coyote. Figure VI.9 shows the inbetweening results forBugs Bunny. For this example,Bugs

was partitioned into four layers: head, body, left and right arms. The only contour refinement used

aligning the heads in the head layer using the centroids. Figure VI.10 is an example inbetween

generated forWile E. Coyote. TheCoyotewas partitioned into four layers: head, left arm, right arm,

and body. The head and arm layers were aligned using their centroids. The RBF solution for each

of theCoyotelayers did not require any additional contour refinement. All of the examples shown

in this section have the color information for the intermediate contours filled in manually.

VI.5 Texturing or Re-coloring the Intermediate Contours

The final step in creating an inbetween is filling in the color and texture information. We have the

color and texture information for the original key images available, from which we generated the

intermediate contour, and the issue is how to best transfer this information andblend it into the

intermediate contour. In a production studio, a similar process is done when the line art is scanned

in and goes to the next step of ink and paint. Traditionally, the ink and paint process was all done

manually. Some studios now use a simple flood fill for each region of closed contours in the line

art. But an artist is still required to ensure that all contours are closed, else the flood fill would fail.

While some of the color information can be passed along from one frame to the next, an artist is

still required to touch up many frames before they are finalized.

We use the two key images to fill the inbetween contour by registering the key images and
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(a) Key image 1 (b) Inbetween Contours (c) Final Inbetween (d) Key image 2

Figure VI.9: The final inbetween frame generated using RBF contour interpolation method with
layering. The key images are shown on the left and right.Bugs Bunnyis TM& c©Warner Bros.
Entertainment Inc.

(a) Key image 1 (b) Final Inbetween (c) Key image 2

Figure VI.10: The final inbetween frame generated using RBF contour interpolation method with
layering and aligning the head and arm layers. The key images are shown on the left and right.Wile
E. Coyoteis TM& c©Warner Bros. Entertainment Inc.
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Figure VI.11: Moving from left to right: the first image is a close up of the first key image head
layer, the second image is this key image after using an affine transformation towarp the image to
match the inbetween contour, the third image is the automatically generated inbetween contour, the
last image is an overlay showing the transformed key image atop the inbetween contour.Daffy Duck
is TM& c©Warner Bros. Entertainment Inc.

generating an intermediate image based on the registration. As a proof of concept test, we first try

a simple affine transformation to register the two key images. Figure VI.11 shows an example of

applying an affine transformation (done manually in Adobe Photoshop) to one key image to align

it with the intermediate contour. As is clearly visible, a better registration of the key image to

the intermediate contour is necessary for improving the result. There is vastliterature on image

registration in the medical imaging community, where we looked for inspiration. The method we

employ to register a pair of key images is non-rigid elastic image deformation, developed by [Wirtz

et al. 2004], and recently adapted by [Li et al. 2006]. The next section briefly summarizes the

original method, followed by the results of the image registration.

VI.5.1 Summary of Elastic Registration

Although the method of the fast non-rigid elastic registration by [Wirtz et al. 2004] was developed

for the purpose of producing a high resolution three-dimensional reconstruction of a rat brain from

a series of images (slices of the brain) in a short amount of time, the techniqueadapts very well

for the purposes of registration and deformation of cartoon images. The authors chose to use elas-

tic registration due to the distortions introduced in slicing and digitization of a rat brain, and cite

several methods of elastic registration. They also use a fast implementation method for a system of

nonlinear equations based on the work of [Fischer and Modersitzki 1999], and a Gaussian pyramid

for evaluation of downsampled images to build up to a high-resolution final result.

A preprocessing step is performed to compensate for any artifacts due to rotation or translation

before the elastic registration proceeds. The authors briefly describe the process of elastic registra-

tion, which is paraphrased here. We refer the reader to the references provided in [Wirtz et al. 2004]

for more details. Each image, or digitized brain slice, requires finding a transformation based on

displacement fields for each slice. A minimization of a functional consisting of adistance metric

and smoother (the elastic potential energy) becomes the main objective. The distance metric is the

sum of squared intensity differences of each image after undergoing a transformation (given by the

displacement field). Two parameters,λ andµ, are Laḿe’s material constants.µ governs how far
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the material will stretch and is defined as the stress divided by the area.λ governs how fast the ma-

terial will stretch, and is dependent onµ. Minimizing the series of images and displacement fields

results in a system of nonlinear partial differential equations, or the Navier-Lamé (NLE) equation,

given by

µ∇2−→u +(λ + µ)∇(∇ ·−→u )+ f (−→u ) = 0 (VI.2)

where−→u is the displacement field that tries to minimize the sum of squared intensity differences

of the images,f (−→u ) is the derivative of the distance metric, the second term imposes a restriction

that the entire image (or surface material) is as “stretchable” everywhere on the surface, while the

first term enforces a constraint on how far the material will stretch. Simply put, the NLE equation

describes the elastic deformation of an object subject to a force, which in [Wirtz et al. 2004] is

simply the derivative of the distance metric. The object is deformed until an equilibrium is reached

between the forces. The system of equations for the three-dimensional registration differs slightly

from that of a system for a pure two-dimensional registration, so the authors use the solution from

[Fischer and Modersitzki 1999]. Setting the material constantsλ andµ of the object are important

for ensuring a good registration. Large material constants make the objectmore rigid, while small

material constants are more susceptible to noise effects but allow for largerdeformation.

In the multi-resolution step, the images are analyzed and registered at low levels of resolution

before proceeding to higher levels. The authors use a Gaussian pyramid. At the lower levels, the

number of iterations are restricted. After each level of deformation, the error function is recomputed

before performing registration at a higher level of resolution. Multi-resolution registration is both

computationally less expensive than trying to deform the whole series of images into place all at

once and more likely to result in a satisfactory convergence.

VI.5.2 Results of Re-coloring Contours

Once a deformation is known for registering the key images, the transformation can be applied to

generate an intermediate image and used as a preliminary texture for the intermediate contour. We

extended the algorithm for elastic registration of grayscale images [Li et al.2006] to color images.

Basically the deformation is computed on the luminance of the two key images and stored. This

deformation is then applied to each color channel separately, resulting in thefinal intermediate

color image to use for filling the inbetween contour. In our experience, the material parameters

µ and λ need only be set once, as the amount of deformation allowed for the different cartoon

characters was the same. By using the color information in the intermediate image,most of the

contour will be filled, requiring only a small amount of touch up, similar to the final touch up done

in a production studio pipeline. Our method requires only one step for the artist to touch up after

generating the intermediate texture, as opposed to the three steps for closingcontours, filling, then

the final touching up, thereby speeding up the process. Also, becausethe method is model-free, no

user input is required to generate the results, just the two input images.

The intermediate contours that were previously computed (Chapter VI.4.2) are used with the

elastic registration results in two ways. First, the contour is used to automatically re-assemble the
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Key image 1 Contour Deformation 1 Deformation 2 Key image 2

Figure VI.12: A comparison of results using elastic deformation for generating inbetweens on the
Bugs Bunnyhead layer. On the left and right are the original key images. The image labelled
“Contour” is the RBF contour interpolation result. “Deformation 1” is the result going from key
image 1to key image 2, while “Deformation 2” is the result going fromkey image 2to key image 1.
Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.

Table VI.1: Evaluating the similarity of the elastic deformation result to the intermediate contour
from the RBF contour interpolation step.

Images Hausdorff Distance
C to ER1 2.0545
C to ER2 2.3324

character layers quickly, as described in Chapter VI.1. Second, and more importantly, the contour

is used to determine the correct direction that the elastic deformation is applied tothe key images.

For example, the amount of force required to deform imageA into imageB will be different than

the amount of force required to deform imageB into imageA. We defineER1 as elastic deforma-

tion result usingkey image 1as the source andkey image 2as the destination.ER2 is the elastic

deformation result usingkey image 2as the source andkey image 1as the destination. Figure VI.12

shows the two key images, the intermediate contourC, and the results ofER1 andER2. We can see

thatER1 is visually better thanER2. To determine which deformation result more closely matches

the contourC, we use the Hausdorff distance described in Chapter V.2.3 to compute the similarity

of C to ER1 andC to ER2. The results are shown in Table VI.5.2. As we expected, the deformation

ER1 is a better match toC, which is used in the final inbetween.

We compare the results of elastic registration to the manually filled in results of Chapter VI.4.2.

The same characters and pairs of key images are used. Figure VI.13 shows a close up of theDaffy

head layer with the two key images, the intermediate texture generated using the elastic registration,

an overlay of the intermediate texture on the inbetween contour, and the finalresult after a small

amount of manual touch up. Figures VI.14, VI.15, and VI.16 show the final results on the three

characters. A comparison is also be made between the image morphing results ofChapter VI.2 and

those here. Figure VI.17 shows a close up of theBugs Bunnyhead layer with the results of the image
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Figure VI.13: Moving from left to right: the first image is a close up of the first key image head
layer, the second image is a close up of the second key image head layer, thethird image is the
automatically generated inbetween texture, the fourth image is an overlay showing the intermediate
texture overlayed on the inbetween contour, and the fifth image is the final inbetween for the head
layer.Daffy Duckis TM& c©Warner Bros. Entertainment Inc.

Key image 1 Final Inbetween Key image 2

Figure VI.14: The final inbetween frame generated using RBF contour interpolation method with
elastic registration providing the color and texture information. The key imagesare shown on the
left and right.Daffy Duckis TM& c©Warner Bros. Entertainment Inc.
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Key image 1 Final Inbetween Key image 2

Figure VI.15: The final inbetween frame generated using RBF contour interpolation method with
elastic registration providing the color and texture information. The key imagesare shown on the
left and right.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.

Key image 1 Final Inbetween Key image 2

Figure VI.16: The final inbetween frame generated using RBF contour interpolation method with
elastic registration providing the color and texture information. The key imagesare shown on the
left and right.Wile E. Coyoteis TM& c©Warner Bros. Entertainment Inc.
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Key image 1 Image Morph Deformation 1 Deformation 2 Key image 2

Figure VI.17: A comparison of results using image morphing and elastic deformation for generating
inbetweens on theBugs Bunnyhead layer. On the left and right are the original key images. The
image labeled “image morph” is the result of using 30 feature lines and is half way between the two
key images. The images labeled “deformation 1” and “deformation 2” show theresults of using
the elastic registration. “Deformation 1” is the raw result, while “Deformation 2”is the manually
touched up result. A small amount of correction was required on one eye and ear.Bugs Bunnyis
TM& c©Warner Bros. Entertainment Inc.

morphing side by side with the elastic deformation. Using the semi-automatic elastic deformation

algorithm produces inbetweens of comparable quality, yet with no significant burden placed upon

the user.

VI.6 Summary

The results in this chapter show that using implicit surfaces together with elasticdeformation is

a viable and robust technique for generating inbetweens for cartoon animation. It works well on

three cartoon characters, each of which exhibit differences in color and shape. By providing a

semi-automatic method for inbetweening, this chapter presents a third necessary and important

component of a system for building re-usable motion libraries of traditional animation.

Including the artist or animator in the process of creating the inbetweens ensures the quality of

the resulting images, and the methods presented here require only minimal intervention for touching

up novel sequences of animation. The processes described here canaid animators in the process of

generating inbetweens, as it provides a strong template for a finished product. Considering the

minimal amount of user interaction involved, we believe that this method yields better inbetweens

for two-dimensional animation than has previously been reported.
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CHAPTER VII

SUMMARY AND FUTURE DIRECTIONS

VII.1 Summary of Contributions

In this dissertation, we have presented the components of a system to develop existing cartoon

animation into motion libraries and novel animation sequences. Traditional animation is an art

form everyone is familiar with, but successfully merging it with computer animation techniques has

historically been one of the most challenging areas of research in computeranimation. Traditional

animation for film and television has become very expensive and time consumingin spite of the

many technological advances in computer animation. The components developed here accomplish

three necessary tasks of any re-use system: segmentation, re-sequencing, and inbetweening.

This research makes technical inroads into the problem of re-using traditional animation, and is

focused on the three key tasks of building a re-usable cartoon motion library. First, we developed

a fast and robust method for segmenting cartoon images requiring very little user input. Second,

we determined that manifold learning techniques allow for a parameterization oflarge amounts of

cartoon data, providing a simple way of re-using existing cartoons. Third,we showed that implicit

surface techniques along with an elastic deformation technique can be successfully applied to the

inbetweening problem, creating a semi-automatic and interactive method for generating inbetweens.

All of these techniques can be successfully modified and applied to aid in the problem of merging

traditional animation methods with computer animation. We believe the utility of these techniques

will open new avenues of research in two-dimensional animation and may leadto a resurgence in

interest to cartoon animation.

Isolating the characters from completed animations and creating a characterlibrary is the first

necessary step in re-using cartoon data. We explored three techniques: an ad hoc method based

on the probability of encountering certain pre-selected color values, a level set method with the

speed function defined by either gray-level intensity or color values, and classifying the color and

optical flow magnitudes using support vector machines (SVMs). We demonstrated the success

of classifying cartoon data using SVMs, requiring minimal user intervention,and applied simple

morphological operations to clean up any incorrectly classified regions ofthe images. The same

morphological operations can be used to clean up results from the ad hoc method as well. The

support vector machine technique outperformed the ad hoc and level setsegmentation techniques

that we tried, which could not effectively deal with the amount of noise in theanimations. The SVM

technique also proved to be the fastest at segmenting full images.

Once the characters are segmented, the second step for re-using cartoon data is how to access

and re-sequence the data itself. An appropriate distance metric for comparing the similarity of the

images is crucial, and we showed that an approximate Hausdorff distance metric was superior to the

more common L2 and cross-correlation metrics. We also demonstrated that the use of a manifold

learning algorithm, in particular ST-Isomap, could successfully create a manifold of sparse data such
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as those found in hand-drawn cartoons. The key to building a good manifold representing the data

was in the identification of an appropriate distance metric. A simple traversal ofthe manifold based

on the shortest-cost path results in a sequence of image indices used for re-sequencing the frames

to create novel animations. A cost is associated with each edge taken along the re-sequenced path,

and that value is a useful measure of the visual discontinuity between frames of the new animation.

Theoretically, the discontinuity exists because the manifold is not sampled densely enough by the

data for its structure to be parameterized. Hand-drawn cartoon data is inherently sparse, representing

a fundamental obstacle for manifold learning techniques.

Because of this sparsity, we developed a semi-automatic method of generatinginbetweens to

make the available data more dense and provide increased smoothness to animation streams. Our

procedure involves three steps. In the first step, the character is partitioned into several layers

such as head and torso. In the second step, intermediate shape contoursare generated for each

layer using an RBF-based technique, and in the final step the cartoon color or texture is fit to the

intermediate shape using an elastic deformation technique. All of these steps require some user

intervention; however having a semi-automatic method for generating new images is an important

factor in quality control. Including the animator or artist in various aspects ofbuilding a motion

library and re-using the cartoon data becomes necessary to ensure thatthe results maintain some

nuances of cartoon animation that give it the characteristics we find most appealing.

Creating and re-using three-dimensional computer models for animation are fast and easy to

manipulate, and many studios have turned to these as their preferred method of animation, particu-

larly in film production. Animated films have gained much popularity in recent years, in particular

three-dimensional computer animations, which can be seen in the dramatic increase of animated

films being released today. Many of the television cartoon series use ’toon-rendering of three-

dimensional computer models to help reduce production costs. Yet, severalTV cartoons are still

hand-drawn (likeThe Simpsons), but now use computers instead of actual cels. Since [Catmull

1978], there have only been a handful of contributions to two-dimensional animation, and it has

been one of the most interesting challenges since the dawn of computer graphics. It is sad to see the

traditionally animated TV cartoon or film be lost simply because of production costs. Many of us

grew up watching theLooney TunesandMickey Mousecartoons on Saturday mornings, and mar-

velled at the expressiveness and exaggerated motions the characters exhibited. Much of that charm

is lost today in favor of more simplistic motion from ’toon-rendered models and three-dimensional

cartoons. Providing a means of re-using existing cartoon data can help in speeding up the produc-

tion time of creating new hand-drawn animations. In particular, the artists charged with generating

inbetweens could use a system like the one proposed here to match keyframes as start and end

poses, while the system generates the inbetween frames either by re-sequencing or creating new

images. The idea of re-using cartoon data by re-sequencing is a novel one, and may revive interest

in traditional animation as a viable form of art, thereby encouraging more studios to revisit creating

traditional animations.
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VII.2 Future Directions

This research, while answering several important questions about re-using traditional animation,

gives rise to other interesting questions and potential topics of further research. To make re-using

cartoons economically viable, the first step would be to build a complete system including a graphi-

cal user interface (GUI) that would encapsulate all of the components presented in this dissertation.

Building such a GUI should take into account the needs of both the animator and the production

studio environment. For studios still working on traditional animations, the animators could add

new source material to the motion library as they draw new characters, and access existing draw-

ings easily. Having a user friendly GUI would make re-using traditional animation much more

accessible.

VII.2.1 Threshold Detection Revisited

Another aspect of the GUI would be to automate the selection of a threshold value for determining a

visual discontinuity (discussed in Chapters V.5 and V.6). Statistical analysison the cost of transitions

might reveal a good threshold value. For example, with theDaffy data set, there are a total of 559

transitions with an average transition cost of 1.883, a minimum transition cost of 0.001, and a

maximum transition cost of 20.987. There are three scene cuts with a cost of the transition at the

scene borders greater than 15.1, which is expected since the character may not be facing the same

direction in one scene to another. Figure VII.1 shows two original images ata scene cut. Our

manually selected threshold value of good transitions being less than a cost of 2.2 represents 76.6%

of all transitions, a bad transition with a cost of greater than 3.9 represents 12.9% of all transitions,

with the remaining 10.5% of transitions falling between those threshold values. Determining the

threshold value of good transitions can be automatically set based on selecting the cost value that

represents approximately 75% or more of the total transitions.

VII.2.2 Segmenting Black and White Cartoons

In addition to building a GUI, there are other technological innovations that could improve such a

system. One challenge is how to improve the segmentation methods to handle old black and white

cartoons. Although we found the SVM technique superior to the others, theSVM technique may

fail if it were applied to very early animation from the 1920’s and 1930’s, which contain significant

amounts of noise, and no color information. It is likely that other automatic or semi-automatic

segmentation techniques would fail as well. Figure VII.2 shows an example ofa black and white

cartoon from 1936 that exhibits lighting changes and a bright white spot in two sequential frames.

Noise and artifacts like these are common throughout the entire cartoon and are typical of the earlier

animations.

VII.2.3 Incorporating Principles of Animation

While some of the principles of animation [Thomas and Johnston 1981] may be maintained by re-

sequencing existing traditional animation, others such as “timing” and “slow in slow out” cannot
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Figure VII.1: Two pairs of images at scene cuts from theDaffydata set, illustrating that these images
would result in a high transition cost because of the dissimilarity of the character in the images. The
top row is the first scene cut, the bottom row is the second scene cut.Daffy Duckis TM& c©Warner
Bros. Entertainment Inc.

Figure VII.2: Two sequential images from the 1936 animated short “Porky’s Road Race,” produced
by Leon Schlesinger. Notice the lighting changes onPorky’s face and the large white spot that
appears in the second frame behind the car. Also, one ofPorky’s dimples is missing in the first
frame.Porky Pigis TM& c©Warner Bros. Entertainment Inc.
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be maintained by simply traversing a low-dimensional manifold of the data using a shortest-cost

method. Finding a traversal method that incorporates timing information would bean interesting

future direction. Another approach would be to incorporate high-level information from the anima-

tion principles into the distance metric, for example to keep certain frames close together if they

exhibit “squash and stretch” or “anticipation.” To accomplish that would require a fair amount of

user intervention in annotating the cartoon images with which principles of animation are exhibited

in each of the frames.

VII.2.4 Inbetweening Revisited

We developed a method for producing inbetweens for traditional animation that produced good

results. An alternative method for generating inbetweens would be to createa mesh with the color

information from the key images as the texture on the mesh. A volumetric texture for the mesh

can be generated and used for slicing, and a slice of that mesh would be theresulting inbetween

image. We recently examined a method for creating and slicing a mesh to extract interpolated color

or texture information: Mean Value Coordinates (MVC) by [Ju et al. 2005]. The MVC method

shows promise as a future direction in inbetweening, specifically in creating ahigh-resolution mesh

where each vertex represents a pixel in the key images, and using that mesh for slicing. By using a

mesh to represent the character layers entirely (color and shape information together), the remaining

issue of silhouette changes can be addressed.

The idea behind MVC is to find a function that can interpolate a set of values at the vertices of a

mesh smoothly into its interior. MVCs have been used for closed 2D polygons,and the work by [Ju

et al. 2005] generalizes the method to closed triangular meshes, leading to interesting applications

such as our interest in volumetric textures. Since mean value coordinates work on arbitrary data

associated with each mesh vertex, MVC can take either color information or texture coordinates.

What the algorithm provides is an interpolation of color or texture coordinatedata to the interior of

the mesh volume, creating a volumetric texture.

Here we present results showing the viability of using the MVC method for inbetweening. The

first step in using MVC is to create the mesh. Creating a mesh manually is a difficultand time

consuming task, usually left to expert modelers or animators. To reduce theburden on the user of

creating a mesh, we modify the RBF interpolation method described in Chapter VI.4.2. Instead of

creating a mesh from a pair of contours, we use all of the color information inboth key images.

Essentially the two color images are on parallel planes separated by a small distance, and the idea

is to find a plane between the parallel ones with the interpolated color values and use that result as

an inbetween image. Setting up the images to create a mesh is done as follows. Each key image

is viewed as a slice of planar data points, with each point having(x,y) pixel position data and

their associatedR,G,B color values. Two “slices” (on parallel planes) are separated along thez-

axis by some small amount. The input to the FastRBF toolbox are the(x,y) pixel coordinates that

represent the character, and their associatedR,G,B values for each image, which are now in 3D

space since each plane of pixel coordinates and color values have an associatedz coordinate value.
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Key image 1 Key image 2 Normals

Mesh view 1 Mesh view 2 Mesh view 3 Mesh view 4

Figure VII.3: An example of how to set up a mesh for use with the MVC slicing method. On the
top row the two input images and the normals for the data points, red points indicate one image and
green points indicate the second image. On the bottom row, the resulting mesh shown from four
viewpoints.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.

One requirement is that the key images used are already segmented and partitioned into layers. As

such, none of the background pixels are used, i.e., if a pixel at(x,y) has color equal to the known

background color, it is excluded from the input data used to create the mesh. Normals for each

data point are calculated using a pre-defined FastRBF function, and bi-harmonic basis functions

are used for the RBFs. Both pixel locations and color data are interpolatedby the RBFs to create

an isosurface. Finally, a mesh is created by using a fast marching-cubesalgorithm, and the color

values for each point are interpolated across the surface of the mesh. Each vertex in the mesh has an

associated color value, allowing for easy interpolation of color when the mesh is sliced using MVC.

Figure VII.3 shows the steps involved in creating the mesh using RBF interpolation.

Nine slices are generated at 0.1, ...,0.9 distance between the top and bottom slice of the mesh

from figure VII.3. For proof-of-concept, they are created at a low resolution 128 x 128. Figure VII.4

shows the results of slicing the RBF mesh. There are several interpolation defects, such as the

blurring of color features in the middle, for example, at the 0.5 slicing plane. This blurring is

inevitable because we are doing interpolation on the colors. The overall loss in quality is a result

of several interpolation steps, including the RBF interpolation of color to create the mesh, down-

sampling the mesh to run efficiently using MVC, and also the MVC interpolation itself. The run-
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0.1 slice 0.2 slice 0.3 slice 0.4 slice 0.5 slice

0.6 slice 0.7 slice 0.8 slice 0.9 slice

Figure VII.4: Slices of the mesh generated using RBF interpolation of pixel location and colors.
In the top row, the slices at 0.1 distance to 0.5 distance from the top and bottom planes, and in
the bottom row, the slices at 0.6 distance to 0.9 distance from the top and bottom planes. Images
obtained courtesy of Dr. Tao Ju.Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.

time of the MVC algorithm isNverts∗Npoints, whereNverts is the number of vertices in the

mesh, andNpointsis the number of points to be evaluated. The interpolation example shown in

figure VII.4 took approximately 10 minutes for each slice. Each slice has 128x 128 points, and the

color at each point is interpolated from 18,622 mesh vertices. With nine slicesextracted, the total

time to generate the slicing results took 90 minutes. However, since in many casesonly one or two

slices would be required for the inbetweens, the run-time of this algorithm is reasonable on small

meshes.

To yield the best results and eliminate losses in quality due to RBF interpolation, a high-quality

mesh would have to be generated manually. Figure VII.5 shows an example ofa mesh created

manually with the texture information on each large surface plane applied froma partitioned key

image layer. The idea is to generate an interpolation between two texture images using slices of a

volumetric texture. Although all of the color information is preserved without any loss of detail, the

MVC method can only use one texture applied to a closed mesh. Using the two keyimages as one

texture will result in an interpolation across the texture coordinates and notproduce a meaningful

inbetween. One alternative to using two textures is to create a high resolution mesh with each vertex

assigned a color value, similar to the RBF mesh discussed above. If it is possible to associate every

mesh vertex with a specific color and not lose any detail from the image, then the mesh would

have an extremely high vertex count, resulting in an unreasonable computational time to extract

an intermediate slice. Another idea for improving the results is to have a correspondence between

features on the two planes, and use MVC on smaller meshes segmented by those corresponding

points. The difficulty with any of these improvements is that the generation of themesh is no longer
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Top plane view Rotated view Rotated view Bottom plane view

Top plane view Rotated view Rotated view Bottom plane view

Figure VII.5: Several viewpoints of the manually created mesh. The top andbottom planes are the
two key images. The bottom row shows the same mesh with the underlying wireframe highlighted.
Bugs Bunnyis TM& c©Warner Bros. Entertainment Inc.

automatic, and if correspondences need to be determined between features on the two image planes,

the burden of both of these tasks is placed back with the user.

Although the major limitations of using MVC on a high-resolution mesh lie in the currentstate

of technology, we believe that the MVC technique will become a viable resource once computing

power increases. While we do not claim to have solved the two-dimensional inbetweening problem,

we have overcome some of the hurdles that require large amounts of user-intervention. We provided

a method of inbetweening that is model-free, and may have reached the limits of such methods.

It may be possible to apply techniques such as view-dependent geometry [Rademacher 1999] to

achieve improved texture filling on inbetweened contours by using a three-dimensional model of the

character. Assuming one can extract a three-dimensional model from twoor more images, the view-

dependent geometry method may help when the character partitioning into layers is insufficient in

resolving the self-occlusion problem (discussed in Chapter II.1.2). Sometimes layering alone will

not solve the occlusion problem, and having a three-dimensional representation of the character may

resolve any remaining issues, in particular the silhouette changes.

Another interesting avenue of research is in generating a high-quality volume mesh from a pair

of keyframe images, or extending the method of MVC to be able to interpolate across multiple
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textures on a mesh. The mesh shown in figure VII.3 is generated using RBFs. This represents

an interesting first step towards automatic mesh generation, but suffers from loss of detail in the

image due to interpolation across the mesh when fitting the RBF and then again when slicing the

mesh using MVC. Once again, incorporating ideas from [Rademacher 1999] with implicit surface

representations, such as RBF interpolation, could provide a reasonablemesh automatically. Having

a model sheet (defined in Chapter II) of a character would help in the creation of a mesh of that

character in a neutral pose.

VII.2.5 Stop-Motion Animation

Although this dissertation has focused on traditional hand-drawn animation and how to best merge

it with computer animation techniques, another form of animation has not been influenced much by

computational technology. Stop-motion animation is an extremely laborious process, more so than

hand-drawn animation, and is an interesting form of art that is still popular infilms today. Some re-

search has been done on stop-motion animation, in particular how to add motion blur [Brostow and

Essa 2001]. Like traditional animation, stop-motion does not exhibit any motionblur because both

are series of still images that when played back create the illusion of a moving scene. Motion blur

occurs when objects move while a camera shutter is open. Stop-motion animation,sometimes re-

ferred to as clay animation or “claymation” because of the pliable material suchas clay orPlasticine

used to create the characters, has a unique look that is not easily simulated bya computer. It would

be interesting to apply the methods of this dissertation to clay animation characterslike Wallaceand

Gromit, figure VII.6, and build a motion library out of clay characters instead of hand-drawn ones.

One new challenge for re-using clay characters that does not arise in the hand-drawn ones, is in

re-lighting the clay characters in a re-sequenced animation. Because the clay characters are actual

three-dimensional models on a set with real lights, re-sequencing frames of those characters would

exhibit changes in the shadows and lights that appear on them. Some of thoseshadows can be seen

in figure VII.6 onGromit.

105



Figure VII.6: Examples of a stop-motion animation characterGromit, from the film “The Wrong
Trousers,” exhibiting changing lighting conditions.c©Aardman / Wallace and Gromit Ltd. 1993.
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