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CHAPTER I 

 

DOPAMINERGIC NEUROTRANSMISSION IN THE CENTRAL NERVOUS 
SYSTEM. 

 
 

INTRODUCTION 

 The catecholamine dopamine (DA) is one of several neurotransmitters that are 

produced and released in a specific subset of neurons in the central nervous system.  DA 

is synthesized via a series of enzymatic reactions that initiate with the cytosolic amino 

acid tyrosine (Fig 1). DA is then packaged into synaptic vesicles by a vesicular 

monoamine transporter (VMAT) and released at nerve terminals into the synapse upon 

depolarization by an afferent stimulus (Fig 2).  Synaptic DA then binds both pre- and 

postsynaptic receptors leading to a number of intracellular responses that modulated 

excitability.  DA signaling is terminated by the reuptake of DA into the presynaptic 

neuron by the DA transporter (DAT).  DA is also metabolized by monoamine oxidase B 

(MAOB) and catechol-o-methyl transferase (COMT), although these are thought to 

control intraneuronal levels of DA versus inactivating DA in the synapse.  DA that is 

reabsorbed by DAT is then repackaged into vesicles by VMAT and is ready for another 

subsequent round of release. 

 

THE IDENTIFICATION OF DOPAMINE AS A NEUROTRANSMITTER 

 DA was originally assumed to be a mere intermediate in the biosynthesis of 

norepinephrine until Carlsson and coworkers performed experiments on reserpinized 

animals and revealed  a  previously  unrecognized  role  for  DA  in  the  central  nervous  
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system (Carlsson et al., 1957).  The neurotoxin reserpine alters the pH gradient required 

for monoamine uptake into the synaptic vesicle via VMAT.  Initial studies revealed that 

the administration of reserpine depleted serotonin (5HT) brain levels in a dose dependent 

manner (Pletscher et al., 1955).  At the time, the mechanism of action was unclear at a 

molecular level, however, animals treated with reserpine became immobile, contributing 

to what is known as reserpine syndrome.  Loss of norepinephrine (NE) was assumed to 

be the cause of this syndrome and as expected, treatment of reserpinized animals with the 

NE precursor 3,4-Dihydroxyphenylalanine (DOPA), reversed reserpine syndrome.  The 

development of the Aminco-Bowman Spectrophotofluorimeter made measurements of 

norepinephrine levels in tissue samples possible.  Analysis of tissue from reserpinized 

and DOPA treated rabbits revealed that while animals regained mobility, there was only 

modest recovery of norepinephrine levels in the brain, (Carlsson et al., 1957). 

Intrigued by these findings, Carlsson and colleagues examined norepinephrine 

intermediates that might be responsible for the reversal of reserpine syndrome.  After 

development of a method for determining DA levels in the brain, they found that not only 

was DA maintained at an elevated level in the brain under basal conditions (compared to 

NE), but it was also completely depleted by reserpine.  The return of DA but not NE by 

administration of DOPA was then found to be correlated with recovery from reserpine 

syndrome (Carlsson and Waldeck, 1958).  (For a personal account, read Arvid Carlsson’s 

Nobel lecture (Carlsson, 2001)). 

 Several years after the discovery of DA as a potential neuromodulator of 

movement defects, it was discovered that DA was synthesized and stored in a specific 

subset  of  neurons  in  the  brain.   The  largest  collection  of DA containing neurons was  



Figure 2.  Illustration of the Dopaminergic Synapse.

Substantia Nigra projections to both the striatum (Caudate, Putamen, and Globus Palidus) and prefrontal
cortex are illustrated.  A dopaminergic neuron elaborating a synaptic terminal is highlighted with
emphasis on the presynaptic DAT (purple) and VMAT (red) loading synaptic vesicles containing
dopamine.  A post synaptic dopamine receptor (D4) is also illustrated.  Original Image adapted from
www.liebermanparkinsonclinic.com

4
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found in the basal ganglia (Bertler and Rosengren, 1959), and the discovery of the 

fluorescent properties of catecholamines when reacted with formaldehyde (creating  

formaldehyde-induced fluorescence (FIF)) resulted in the ability of researchers to trace 

specific connections of DA neurons in the brain (originally (Falck et al., 1962) and 

reprinted (Falck et al., 1982))  This allowed for the visualization of the major DA 

pathways in the central nervous system (Dahlstrom and Fuxe, 1964; Fuxe, 1965; Hillarp 

et al., 1966). 

 

DOPAMINE PATHWAYS IN THE MAMMALIAN BRAIN 

The neurons that synthesize and release DA represent only a small fraction of all 

neurons in the central nervous system and form the central DA nervous system.  There 

are three basic tracts of DA neurons: the nigrostriatal pathway, the mesocorticolimbic 

pathway, and the tuberoinfundibular pathway (Fig 3), although DA neurons are also 

found in other brain areas including the retina and olfactory bulbs (Fallon, 1988; 

Compton and Miller, 2002).  Of these, most is known about the effects of DA in the 

nigrostriatal pathway (from the substantia nigra to the striatum) and the 

mesocorticolimbal pathways (from the ventral tegmental area (VTA) to both the cortex 

(including the prefrontal, cingulate, and entorhinalcortices) and the limbic system 

(including projections to the nucleus accumbens septi, amygdala, olfactory tubercle and 

piriform cortex).   

The nigrostriatal pathway has its cell bodies in the substantia nigra (SN) of the 

midbrain and sends axonal projections to the caudate and putamen nuclei in the striatum 

(Fig 2 & 3).  These  projections  have  been  shown  to  be crucial for motor function with  



Figure 3.  Dopaminergic Projections in the Mammalian Brain

Illustration of major DA projections in the central nervous system.  The nigrostriatal pathway originates
in the substantia nigra and projects to the striatum.  The mesolimbic projections originate in the VTA and
project both to the nucleus accumbens (not shown) and areas in the prefrontal cortex.  The final system is
the tuberoinfundibular system which projects from the hypotlamamus to the pituitary.  Figure originally
posted at www.cnsforum.com

6
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loss of this pathway leading to Parkinson’s Disease (Ehringer and Hornykiewicz, 1960).  

Original studies using reserpinised animals that recovered from reserpine syndrome after 

DOPA treatment lead to work which demonstrated that motor dysfunction in Parkinson’s 

patients could be overcome with L-DOPA treatments (Birkmayer and Hornykiewicz, 

1961).  It was later shown that selective loss of DA neurons in this pathway was the 

hallmark of idiopathic Parkinson’s disease (Graybiel et al., 1990).  Selective lesioning of 

this projection with injections of DA neuron specific neurotoxins, including 6-

hydroxydopamine (6-OHDA), recapitulate Parkinsonian akinesia, demonstrating that this 

DA pathway is responsible for motor impairments typically noted in Parkinson’s patients 

(Burns et al., 1985; Rodriguez Diaz et al., 2001; Sherer et al., 2003).   

The mesocorticolimbal pathway begins in the ventral tegmental area of the 

midbrain and sends long axonal projections to structures including the nucleus 

accumbens (NAc) and to diffuse cortical areas in the forebrain.  Mesocortical projections 

to the NAc have been associated with addiction and reward while diffuse projections to 

higher cortical areas are associated with more cognitive functions.  A loss of cortical DA 

signaling results in a spectrum of disease states ranging from attention-deficit 

hyperactivity disorder  (ADHD) to schizophrenia (SZ).   

A role for DA in the mesocoritical pathway was first discussed by Olds and 

Milner in 1954, when it was revealed that rats would self stimulate to receive electrical 

input into the septal area (which included the NAc) (Olds and Milner, 1954).  After 

mapping of DA circuits by Fuxe revealed monoamine neurons projecting into this area 

(Fuxe, 1965), Crow examined the role of catecholamine containing neurons in the 

induction of this self stimulation paradigm (Crow, 1971).  This work set the stage for 
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investigation of DA’s role in rewarding behavior.  Subsequently, DA antagonists were 

demonstrated to block the maintenance of electrical self stimulation in this area, 

solidifying a role for DA in reward (Mogenson et al., 1979).   

A link between drugs of abuse and DA release in the NAc was later revealed by 

DiChiara and Imperato in 1988, when they reported that rats administered with drugs 

typically abused by humans resulted in an increase in DA concentrations in both the NAc 

and the striatum (specifically the caudate) (Di Chiara and Imperato, 1988).  Despite 

increased density of DA inputs into the striatum, DA concentrations were more 

significantly increased in the NAc.  Amphetamine and cocaine preferentially displayed 

the highest level of DA increase over baseline, but other substances of abuse including 

ethanol, nicotine, and several opiates (morphine and methadone) also elicited significant 

NAc DA increases.  Taken together, these studies differentiated the effects of the 

different DA pathways, revealing that DA was a principle neurotransmitter that 

modulated not only movement (with it’s effects in the striatum) but also played a crucial 

role in addictive behaviors (in the NAc). 

The final major DA pathway, the tuberoinfundibular tract projects from the 

hypothalamus to the infundibulum of the posterior pituitary (Gudelsky, 1981).  Here, DA 

release inhibits the release of the hormone prolactin, which is important in reproduction 

and the reproductive cycle. 

 

TERMINATION OF DOPAMINE SIGNALING: THE DISCOVERY OF THE 
DOPMAINE TRANSPORTER 
 
 Breakdown of acetylcholine at the neuromuscular junction via the enzyme 

acetylcholine esterase (ACHE) was recognized as the predominant mechanism by which 
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neurotransmitter-based signaling was terminated.  Insight into biogenic amine signaling 

termination was first discussed by Hertting and Axelrod who reported that circulating NE 

could be accumulated by sympathetic nerve endings and subsequently released by 

stimulation of the terminals (Hertting and Axelrod, 1961).  Work identifying 

catecholamine uptake regions in the brain revealed that both NE and DA could be 

specifically accumulated by distinct regions of the brain, and that this accumulation could 

be inhibited by co-application of either tricyclic antidepressants or drugs of abuse 

including cocaine and amphetamine (AMPH) (Glowinski and Axelrod, 1964; Ross and 

Renyi, 1967).  While cocaine and AMPH inhibited both DA and NE uptake in both the 

cortex and striatum, the tricyclic antidepressant desipramine selectively affected NE 

uptake in the cortex, with little effect on DA uptake in the striatum (Ross and Renyi, 

1967).  The two brain regions also displayed differential accumulation kinetics for either 

compound suggesting the existence of different molecular mechanisms that might 

underlie this specificity (Coyle and Snyder, 1969).   

 The first discussion of cocaine binding and DA uptake inhibition comes from 

work by Kennedy and Hanbauer, who first correlated sodium-dependent binding of 

cocaine with an inhibition of DA uptake, and postulated that the cocaine binding was 

inhibiting DA uptake at terminals in striatum (Kennedy and Hanbauer, 1983).  At the 

same time that DiChiara and Imperato were reporting that both cocaine and AMPH 

potently increased DA levels in the NAc, Ritz and co-workers showed that there was a 

direct correlation between displacement of the tritiated tricyclic antidepressant mazindol, 

and self administration of cocaine and cocaine like drugs in rats (Ritz et al., 1987).  For 

the first time it appeared that inhibition of uptake by cocaine and cocaine analogues 



 10 

might be the molecular trigger for the establishment of self-administration of these 

compounds in animal models.  This indicated that there must be a cocaine “receptor” that 

was somehow coupled to DA uptake. 

 The cloning of the DA transporter came in 1991 when several groups using 

information from other recently cloned biogenic amine transporters, produced cDNA 

capable of mediating DA uptake into non-DA cells.   Cloning of the γ-amino butyric acid 

(GABA) transporter sequence from rat brain tissue provided a template for investigation 

of other transporters which were postulated to mediate uptake of biogenic amines 

(Guastella et al., 1990).  Soon after, the NE transporter (NET) (Pacholczyk et al., 1991),  

5HT transporter (SERT) (Blakely et al., 1991; Hoffman et al., 1991), and both the rat and 

bovine DA transporter (rDAT, bDAT) (Giros et al., 1991; Kilty et al., 1991; Shimada et 

al., 1991; Usdin et al., 1991) cDNA sequences had been established and functional 

transporters had been expressed in non-neuronal cell lines.  Hydropathy plots generated 

from translated amino acid sequence, which was inferred from cDNA, revealed a putative 

12 transmembrane domain protein, with intracellular amino and carboxy terminal regions 

(Fig 4A).  A large extracellular loop region containing putative glycosylation sites was 

also noted for this sequence (Giros et al., 1991).   

Antisense RNA probes targeted against rDAT mRNA sequence confirmed 

expression of rDAT in the SN and VTA, and pharmacological profiling of rDAT in COS-

7 cells transfected with rDAT cDNA confirmed that this sequence coded for a bone fide 

DA transporter with sodium dependent DA transport which was inhibited by AMPH, 

cocaine, mazindol and several GBR compounds (Giros et al., 1991). Soon after rDAT 

and bDAT were cloned, the human DAT (hDAT) was cloned from human SN cDNA 



 11 

libraries, and revealed similar predicted topology and pharmacology as the previously 

cloned DATs  (Giros et al., 1992; Vandenbergh et al., 1992).  The cloning of the various 

DATs opened the door for focused studies on transporter localization and function both 

in vitro and in vivo. 

 

DAT LOCALIZATION AND FUNCTION IN MAMMALIAN SYSTEMS 

Initial studies of DAT localization were performed using antibodies directed 

against hDAT at both the amino terminus and second extracellular loop (Ciliax et al., 

1995) as predicted for the hDAT structure (Giros et al., 1992; Vandenbergh et al., 1992).  

Initial studies using hDAT antibodies displayed specificity for both hDAT and rDAT.  

When tested on rat brain sections, specific rDAT staining was noted in the striatum, NAc, 

olfactory tubercle, and cingulate cortex (Ciliax et al., 1995).  This low-resolution 

immunocytochemistry also revealed that DAT reactivity was limited to neuronal 

perikarya, as well as in dendrites and axons (Fig 4C).  The highest signal emanated from 

terminals in the striatum (Fig 4B), and was dependent upon DA neuron elaboration into 

this area (as defined by 6-OHDA lesioning studies).   This distribution was evocative of 

the earlier FIF studies examining DA in fixed brain slices, placing DAT in regions 

consistent with DA synthesis and storage (Fuxe, 1965).   

High-resolution electron microscopy studies visualizing gold labeled antibodies 

directed against the rat DA transporter (rDAT) demonstrated that, that rDAT is located at 

the plasma membrane in various compartments of DA neurons.  In the cell body, DAT 

was found at the plasma membrane in tubulovesicular structures.  DAT was also found 

associated  with  the  plasma  membranes  in intermediate and distal dendrites in the VTA  
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and SN (Hersch et al., 1997; Nirenberg et al., 1997).  More specifically, DAT signal was 

present in the cell body in intracellular membranes, but was not detected along the cell 

body plasma membrane (Nirenberg et al., 1997).  DAT immunoreactivity was also noted 

in dendritic compartments in the VTA, with the majority of immunogold signal 

emanating from plasma membrane inserted DAT (Nirenberg et al., 1997).  Examination 

of DA terminals in the NAc revealed that DAT immunogold labeling was present on the 

plasma membranes of axons associated with varicosities as well as in the more narrow 

intervaricose portions of the axon (Nirenberg et al., 1997).   

High resolution immuogold EM was also performed by Hersch et al. examining 

both the topology of rDAT and specifically the synaptic localization of DAT (Hersch et 

al., 1997).  These studies suggested the dendritic and plasma membrane localization 

noted by Nirenberg, but also revealed a “peri-synaptic” localization for DAT at the 

synapse (Fig 4D).  These studies revealed for the first time that DATs were not part of the 

active zone per se, but rather occupied sites just outside the active zone, where it may 

function to limit synaptic spill over of DA.   

Using both and NH2-terminal and second extracellular loop antibodies, Hirsh also 

confirmed the topology of the transporter, verifying that the NH2-terminus and second 

extracellular loop were found on opposing faces of the plasma membrane.  Also noted in 

these studies was a co-localization of DAT with the DA autoreceptor (D2 receptor) on the 

presynaptic terminal.  For the first time, the flow of DA from synthesis, to excretion, 

reuptake, and packaging back into synapses could be modeled (Fig 2).  This localization 

was soon confirmed in humans with hDAT residing in similar somatodendritic, and 

axonal compartments of DA cells in the VTA.  hDAT was also localized to terminals in 
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the striatum and in various cortical regions consistent with DA neuron elaboration into 

those areas.  Interestingly, DAT levels varied in these different cortical area, confirming 

for the first time that native DAT levels differed across brain regions (Ciliax et al., 1999).  

These studies give a static image of DAT localization in fixed and sectioned 

tissue and do not provide an evaluation of DAT distribution in different compartments 

within the same cell.  Several in vivo imaging studies including imaging in rhesus 

monkeys using radiolabeled ligands specific for DAT show a high density of DAT in the 

striatum (Fischman et al., 1997) and is consistent with an accumulation of plasma 

membrane elaborated DAT at nerve terminals seen in the high resolution immuno EM 

antibody studies (Hersch et al., 1997; Nirenberg et al., 1997).  With a static picture of 

DAT localization in several different mammalian systems, questions concerning the 

mechanisms of DAT regulation and localization moved to the forefront of DAT science. 

 

DOPAMINE TRANSPORTER REGULATION 

 Publication of the various DAT sequences and the generation of antibodies 

specific for DAT paved the way for examination of DAT protein regulation.  

Examination of DAT sequence revealed a conserved protein kinase C (PKC) consensus 

sequence in the intracellular NH2-terminus.  It had been previously shown that phorbol 

esters including phorbol 12-myristlate 13-acetate (PMA) were capable of activating PKC 

(Isakov et al., 1985).  PMA exposure to COS-7 cells transiently transfected with rDAT 

sequence displayed a reduced transport capacity (Vmax) by reducing the number of 

transporters on the plasma membrane (Kitayama et al., 1994).  Further investigation of 

DAT regulation in native synaptosome preparations recapitulated these findings, 
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suggesting that this was not an epiphenomenon associated with culture conditions 

(Copeland et al., 1996).  Activation by phorbol esters was also shown to directly 

phosphorylate rDAT in a PKC dependent manner, which was coupled to a reduction in 

Vmax (Huff et al., 1997).  This reduction in transport capacity has been linked to 

alterations in PKC activation, as inactivation of PKC (or PKC inhibition using 

bisindolylmaleimide or staurosporine) suppresses the phorbol ester induced decrease in 

DA transport Vmax (Zhang et al., 1997; Zhu et al., 1997).  Consistent with the activity of 

a kinase, activation of PKC by inhibition of protein phosphatases using okadaic acid or 

calyculin, proved sufficient to increase the phosporylation state of rDAT in synaptosomes 

(Vaughan et al., 1997).  The phosporylation state of DAT may also be altered via binding 

to protein phosphatase 2A (PP2A), bringing together both a potential kinase (PKC) and 

counter phosphatase (PP2A) for the first time (Bauman et al., 2000).  Current models of 

PKC-induced DAT decrease in Vmax involve DAT internalization after PKC induced 

phosphorylation of the transporter (Pristupa et al., 1998; Melikian and Buckley, 1999; 

Chang et al., 2001; Loder and Melikian, 2003) 

 While phosphorylation of DAT by PKC results in a decrease in Vmax and 

internalization of the transporter, recent studies suggest that phosphorylation may not be 

required for PKC dependent internalization (Granas et al., 2003; Holton et al., 2005), 

which suggests determinants for PKC dependent internalization via other mechanisms.  

Moreover, these studies suggest that PKC modulation may affect a different aspect of 

DAT function, namely reverse transport capacity.  Whereas DAT internalization 

undoubtedly occurs, altered efflux would explain some initial findings that reported a 

change in Vmax without a change in binding capacity of the transporter (Bmax) indicating 
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that while the number of transporters had not changed, their transport capacity had shifted 

(Kitayama et al., 1994; Copeland et al., 1996). 

 Initial studies examining reverse transport for DAT revealed that PKC activation 

increased DA release from striatal slices that could be blocked using DAT inhibitors 

(Cowell et al., 2000).  Efflux of DA through DAT has been shown primarily using 

AMPH stimulation (Khoshbouei et al., 2003).  A link to PKC and potential AMPH 

induced efflux came from studies using alanine substitution of five N-terminal serine 

residues in hDAT which had been postulated to be sites of PKC phosphorylation.  While 

alanine substitution of these residues did not effect DA uptake or surface expression, 

AMPH mediated efflux was completely abolished.  Substitution of these alanine residues 

with aspartic acid residues, which mimics phosrphorylation at these sights, restored 

AMPH mediated efflux (Khoshbouei et al., 2004).  This work suggests that NH2-terminal 

phosphorylation directly by PKC or via another kinase, not only affects transporter 

surface expression, but also enables the transporter to efflux DA as was initially noted in 

the Cowell studies on striatal slices.   

 In addition to PKC regulation of DATs, there is evidence that other second 

messenger systems effect DAT plasma membrane localization and function.  An initial 

report that insulin might have an effect on DAT function appeared in 2002, when Carvelli 

et al. demonstrated that insulin stimulated the activity of hDAT in HEK293 cells.  This 

activation depended upon PI 3-kinase activity and inhibition of this pathway resulted in a 

decrease in DA uptake in both the HEK cell lines and striatal synaptosomes (Carvelli et 

al., 2002).  This effect has since been replicated COS-7 cell lines (Lin et al., 2003).  More 

evidence for the PI-3 kinase effect on DAT regulation was revealed when dominant 
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negative forms of AKT were used to block insulin effects on DAT regulation (Garcia et 

al., 2005). 

 In vivo studies on streptozotocin-induced diabetic rats revealed that animals 

lacking insulin signaling self-administered lower levels of AMPH after becoming 

diabetic.  This streptozotocin treatment increased DA uptake (Vmax) without changing 

binding of a tritiated cocaine analogue ([3H]WIN35428) (Galici et al., 2003).  This 

apparent paradoxical effect of insulin (insulin activation increases DA uptake capacity 

(Carvelli et al., 2002) v. lack of insulin in diabetic animals also increases DA uptake 

capacity (Galici et al., 2003)) was elucidated when Owens and colleges showed that acute 

hypoinsulinemia in fasting animals reduced DA uptake in synaptosomal preparations.  

However, animals pre-exposed to AMPH and then made diabetic displayed the opposite, 

or enhanced DA clearance.  This was the first demonstration that insulin levels might 

effect AMPH modulation of DAT (Owens et al., 2005). 

 Recently, novel signaling pathways that participate in transporter regulation have 

been identified.  Proteins involved in the activation of the mitogen-activated protein 

kinase (MAPK) family have been reported to both decrease DAT activity and internalize 

the transporter (Moron et al., 2003).  Recent work in the Blakely lab on SERT and NET 

using p38 MAPK activation revealed an increased transport velocity (shift in Km) for the 

endogenous solute of both transporters Chinese hamster ovary (CHO) cells (Zhu et al., 

2005).  This mechanism was not conserved for DAT however, indicting that p38 MAPK 

pathways may be SERT and NET specific. 

   Specific modulation of DAT surface expression and activity by endogenous 

signaling pathways reveals orchestrated movements of DAT under differential 
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physiological conditions.  The initial discovery of PP2A/DAT protein-protein interactions 

began a search for yet unknown DAT interacting proteins that might mediate these 

selective movements of DAT between intracellular compartments and the plasma 

membrane.   

 

DAT INTERACTING PROTEINS 

Since the initial discover of a DAT/PP2A complex, several interacting proteins 

have been reported to associate with DAT including some linked to PKC activation 

pathways.  Studies by Torres et al. first demonstrated that a protein that interacts with C 

kinase (PICK1), directly interacts with the COOH-terminus of hDAT via a type II PDZ 

binding motif.  Truncation of this binding motif resulted in loss of PICK1-DAT 

interaction and intracellular accumulation of hDAT protein in transfected midbrain 

cultures (Torres et al., 2001).  Co-expression of PICK1 with hDAT resulted in an 

increased Vmax with increased surface clustering of DAT, indicating that PICK1 might 

stabilize DAT on the plasma membrane.  This PDZ binding domain is important for DAT 

maturation in the Golgi, plasma membrane retention, and function (Torres et al., 2001; 

Bjerggaard et al., 2004).  Evidence from Torres et al. suggested that this binding domain 

might also mediate synaptic targeting of DAT in midbrain cultures.  However, 

Bjerggaard et al. went on to show that in cell culture, the PDZ binding domain is not 

critical for plasma membrane expression but that ablation may correlate with a decreased 

expression and result in intracellular accumulation.  To date, the cellular and subcellular 

distribution of DATs in vivo remains unknown and the effects of PDZ ablation on DAT 

localization in an intact nervous system have not been studied.   
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Another PKC interacting protein, the receptor for activated C-kinase (RACK1) 

has also been reported to interact with the N-terminus of hDAT (Lee et al., 2004), which 

puts RACK1 close to NH2-terminal PKC consensus sequences important for DAT 

modulation. 

 Non-PKC interacting proteins have also been found to physically associate with 

DATs in vitro.  The SNARE protein syntaxin 1A has been reported to interact with the 

NH2-terminus of several monoamine transporters and has recently been demonstrated to 

interact with DAT (Sung et al., 2000; Lee et al., 2004).  The synaptic protein α-synuclein, 

which is implicated in the DA neurodegenerative disease, Parkinson’s disease, has also 

been found to associate with DAT and results in a decrease in Vmax with no change in DA 

affinity or Km in vitro (Wersinger and Sidhu, 2003).  In vivo expression of both mutant 

and normal human α-synuclein in C. elegans DA neurons resulted in an increased 

susceptibility to the neurotoxin 6-OHDA, a process that is known to be DAT-1 dependent 

(Lakso et al., 2003; Kuwahara et al., 2006). 

 Another presynaptic adaptor protein was recently demonstrated to interact with 

the COOH-terminus of DATs, providing a link to intracellular signaling pathways known 

to signal via tyrosine kinases.  Yeast two hybrid experiments using the COOH-terminus 

of DAT revealed an interaction with the LIM domain containing protein Hic-5 (Carneiro 

et al., 2002).  DAT interaction with Hic-5 resulted in reduced DA uptake in co-

transfected cells due to a reduction in plasma membrane associated transporters.  This 

interaction was dependent upon the Hic-5 LIM domain in vitro, and an in vivo interaction 

was reported using co-immunoprecipitation from striatal brain extracts. 
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 Investigation into the human movement disorder, early onset torsin dystonia, 

which results from mutant torsinA protein accumulation in DA neurons, revealed an in 

vivo interaction of torsin with DAT.  Expression of wild type torsinA in C. elegans DA 

neurons revealed that torsin expression reduced 6-OHDA induced DA toxicity and leads 

to sequestered GFP:DAT-1 fusion proteins in cell bodies within the DA neurons (Cao et 

al., 2005).  Mutant torsins lack this protective effect in C. elegans DA neurons.  Although 

direct interaction was not tested, GFP:DAT-1 sequestration in cell bodies indicates that 

torsin may form a complex with DAT-1 in vivo, an hypothesis that should be investigated 

further. 

 

THE C. elegans DOPAMINE TRANSPORTER 

Jayanthi et al. first described the cloning of a C. elegans DAT-1 protein and 

reported similar structure and pharmacology to other known DATs, with a 46% amino 

acid identity to the human DAT, including conservation of a type two PDZ binding 

domain at the distal COOH-terminus (IML) (Jayanthi et al., 1998).  In vivo, DAT-1 acts 

as a gateway for the neurotoxin 6-OHDA, with either pharmacologic or genetic ablation 

of the transporter leading to a sparing of DA neurons in a C. elegans toxicity model (Nass 

et al., 2002).   A 700 bp fragment 5’ of the DAT-1 translational start is sufficient to drive 

expression of GFP in all DA neurons in C. elegans, providing an opportunity for targeted 

expression of fusion proteins in an intact nervous system in vivo (Nass et al., 2001).  

The DA nervous system in C. elegans is well studied (for review see Chapter II) 

and the recent discovery of a DAT homologue (DAT-1) provides unique opportunities for 
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the examination of both native localization of DAT-1, but also study the dynamics of 

fluorescently labeled DAT-1 molecules in vivo, using intact C. elegans DA neurons. 

 

SPECIFIC AIMS OF THIS THESIS 

The C. elegans model presents important opportunities to gain insight into machinery 

supporting the cellular localization of DAT proteins. Germaine to our proposed study of 

DAT-1, the VMAT C. elegans homolog CAT-1 was examined by indirect 

immunofluorescence in both wild type (N2) and mutant C. elegans strains (Duerr et al., 

1999).  In terms of GFP translational fusions, the synaptic vesicle motor protein UNC-

104 has been directly visualized in C. elegans neurons, and mobility rates for this protein 

have been determined (Zhou et al., 2001), providing a precedent for the study of GFP 

based trafficking studies in vivo.  Cloning of the DAT-1 promoter region and 

transcriptional expression of GFP also offers DA specific expression of exogenously 

introduced proteins in living nematodes (Nass et al., 2002).  DA specific toxicity using 6-

OHDA, which has been demonstrated to be DAT-1 dependent, provides a basis for 

examination of DAT-1 function in vivo.  Thus, the specific aims of my project were to: 

I. Develop antibodies specific for DAT-1 and use these antibodies to 

determine the native localization of DAT-1 in wild-type (N2) animals and 

compare this localization to GFP:DAT-1 fusion proteins and establish 

whether DAT-1 is enriched in synaptic compartments as found in 

mammalian DA neurons.   

II. Verify the function of GFP:-DAT-1 fusions using 6-OHDA toxicity assays 

and examine the impact of different mutant lines on GFP:DAT-1 
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localization, including examination of a truncated GFP:DAT-1 fusion 

lacking the PDZ binding domain in vivo. 

III. Develop methods for examination of GFP:DAT-1 movements and 

localization in an intact DA nervous system in vivo. 
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CHAPTER II 

 

THE C. ELEGANS DOPAMINERGIC NERVOUS SYSTEM 

 

INTRODUCTION 

 The use of catecholamines as neurotransmitters in C. elegans was first suggested 

by Sulston and colleagues who, using formaldehyde induced fluorescence (FIF) 

techniques, identified both 5HT and DA in the C. elegans nervous system (Sulston et al., 

1975).  A combination of FIF and serial EM reconstruction resulted in an anatomical 

wiring of a DA nervous system in C. elegans, with a screen examining mutants that had 

lost FIF identifying several genes important for DA synthesis and accumulation.  The 

first example of direct DA effects on C.elegans mediated behavior came in 1982 when 

Huang et al. identified several DA induced phenotypes including egg laying, movement, 

and male mating behavior (Huang et al., 1982).  The publishing of the C. elegans genome 

(consortium, 1998) resulted in cloning of several DA receptors and the identification of  

the C. elegans DAT (DAT-1).  Genetic manipulations further elucidated pathways of DA 

signaling, implicating cellular signaling networks responsible for DA mediated behavior.  

In this chapter, I will review what is known about the C. elegans DA nervous system, 

moving from DA anatomy, to DA-mediated behaviors, and finally to biological 

molecules that support DA synthesis, storage, reuptake and DA signaling. 
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C. elegans DA NEUROANATOMY 

The C. elegans hermaphrodite, the principally propagated form of the organism, is 

comprised of 959 somatic cells including 302 neurons.  Remarkably, all neuronal 

connections have been determined by serial EM reconstruction (Ward et al., 1975; White 

et al., 1986; Hall and Russell, 1991). At these synapses, nematodes rely on many of the 

same neurotransmitters used in mammalsincluding DA, 5HT, acetylcholine, glutamate 

and GABA (Rand et al., 1998; Koushika and Nonet, 2000). DA was originally detected in 

C. elegans by its characteristic formaldehyde-induced fluorescence (FIF), revealing 8 DA 

neurons in the hermaphrodite with an additional set of 6 DA neurons specific to male 

worms (Sulston et al., 1975).  Sulston originally described the DA neurons in both the 

hermaphrodite and male, describing “bilateral symmetrical pairs and processes”.  The 

most anterior of these cell pairings is the left and right ventral cephalic neurons (CEPvL 

and R) (Fig 5A, B, & C).  These neurons reside in the isthmus between the anterior 

pharangeal bulb and the posterior bulb or the “grinder”, just anterior to the largest 

collection of ganglia in the worm known as the nerve ring (NR).  These neurons send 

long “dendritic-like” projections up to the nose of the animal, and have been identified as 

important in dictating basal slowing in response to bacterial lawn (Sawin et al., 2000).  

The ventral CEP group also sends “axonal-like” projections into the NR where they make 

synaptic connections with multiple partners including reciprocal connections between 

CEPvL to CEPvR (Table 1).  The next DA pairing lies just posterior to the NR on the 

dorsal aspect of the animal and is part of the cephalic neuron  grouping  (CEPdL  and  

CEPdR).  These neurons are just anterior to the posterior  
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Figure 5.  Anatomy of Dopaminergic Neurons in C. elegan s . 

 

A-E.   Illistration of DA cell bodies and dendr itic/axonal projections in both the hermaphrodite and 

male. 

  

A.  DA neuronal cell bodies in the hermaphrodite are i llustrated as white spheres in t heir 

respective locations throughout the nematode body.  The CEP c ell bodies both dors al 

(CEPd) and ve ntral (CEPv) reside in the isthmus between the pharang eal and te rminal 

muscle bulbs used for feeding.  The ADE neurons lie both posterior and ventral to t he 

terminal bulb as depicted.  The final DA neuronal pair in the hermaphrodite are the PDE 

cell bodies which lie halfway between the vulva and tail in the ventral aspect of the 

nematode body. 

 

B.  Male neuroanatomy of DA neurons includes the CEP, ADE, and PDE cell groups with 

an additional 6 cell bodies in the male tail used for mating.  These neurons line the dorsal 

ridge of the tail and are divided into 3 sets called R5A, 57A, and R9A respectively. 

 

C.  Magnified illustrations of the DA neuron anatomy in the head.  CEP (both dorsal and 

ventral) send small “axonal-like” projections into the nerve ring w ith long “ dendritic-

like” projections up to the nose which terminate in sensilar endings.  The ADE neuron s 

send “dendritic-like” projections to the lateral walls (both left and right) which terminate 

in sensilar endings.  The ADE “axon al” projections move along the ventral aspect of the 

body anteriorly where they form a large ventral ganglion.  PDE projection termination is 

noted (arrowhead) along the v entral aspect of the body, just posterior to the ADE cell 

bodies. 

 

D.  Magnified illustration of the DA neuron anatomy of the mid-body.  PDE neurons send 

small “dendritic” projections to the lateral aspect of the muscle walls (both left and right) 

where they terminate in sensilar endings.  The PDE sends a long “axonal” projection 

which begins ventrally, and t hen moves both anteriorly, and poste riorly (not shown) 

along the ventral nerve cord. 

 

E.  Magnified illustration of the male DA neuron anatomy in the tail.  R5A, R7A, and R9A 

cell bodies send long projections along the dorsal ridge of the tail and into sensory rays of 

the tail.  Autofluorescence from the mail spicule is seen in H and is noted in t he 

illustration (asterisk). 

 

F-H.  Fluorescently labeled DA neurons in an intact living nematode.  3D reconstruction of confocal 

images used to visualize DA neurons in vivo.  Image stacks were taken at 0.5 M using two-channel 

imaging for both green fluorescent protein (GFP) and differential interference contrast (DIC) 

conditions.  3D reconstruction was performed using Zeiss LSM 510 software. 

 

F.  DA neurons and projections in the head of the nematode using cytosolic GFP expressed 

using the DAT -1 promoter in vivo.  Note long CEP projections into the nose of the 

animal and extensive elaboration of signal in the nerve ring (NR, arrowhead).  A small 

amount of autofluorescence can be seen in the gut (asterisk). 

 

G.  PDE projections in the mid-body of the nematode in vivo.  Only one of th e two PDEs is 

visible in this image but both the apical “dendrite” and ventral “axonal” projections can 

be seen.  Note that the predominance of the GFP signal is elaborated along the ventral 

nerve cord, projecting up to the head. 

 

H.  Male DA neuroanatomy in vivo.  R5A, R7A , and R9A cell bodies can be v isualized 

along the dorsal ridge of the male tail, sending projections down into the t ail sensory 

rays.  Spicule autofluorescence can be seen just below R5A cell body (asterisk). 
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bulb and send long “dendritic” projections up to the nose and short “axonal” projections 

into the nerve ring.  All four of the CEP “dendritic” projections terminate in the nose 

where they are surrounded by both sheath and socket cells (CEPsh and CEPso), which 

envelope the sensilum ending (Ward et al., 1975).  The CEP neurons as a group synapse 

on several neurons in the NR including the RIP neurons which are part of the pharangeal 

nervous system (Riddle, 1997) and neurons that are important for navigation in C. 

elegans (Gray et al., 2005) including the interneurons RIA and RIB and the head and 

neck motor neurons RIV, SIA, SIB, and SMB.   

The third pair of neurons in the head of the worm is known as the anterior deirid 

neurons (ADEL and ADER) and are located both ventrally and posterior to the posterior 

bulb (Fig 5).  ADE “dendrites” terminate in the anterior deirid located bilaterally on both 

sides of the worm head.  These dendritic projections terminate in a sensory organ known 

as a sensillum, which is embedded in the cuticle and made up of the ADE dendritic 

projection and a sheath and socket cell.  The ADEs send their “axonal” projections along 

the ventral aspect of the terminal bulb where they come together into what Sulston 

originally described as a “ventral ganglion” which lies just posterior to the NR.  Synaptic 

connections from the ADEs can be traced to several neurons in the NR including ALM, 

AVA, and AVD neurons (Chalfie et al., 1985) involved in touch response. 

The final pair of DA neurons in the hermaphrodite reside in the dorsal aspect of 

the worm, halfway between the vulva and the tail.  This pair known as the posterior deirid 

neurons (PDEs) send “dendritic” projections that terminate in the posterior deirid and 

make up a sensilla similar to the sensillar ending noted for the ADE neurons.  Again, the 

PDE ending is supported by both a sheath and a socket cell and embedded in the cuticle.   



Connectivity of the DA head neurons was documented by White et al. and is annotated in 

wormbase (www.wormbase.org).  DA neurons make extensive connections that are noted 

below.  Each neuron listed receives input from one of the 6 DA head neurons.  The 

specific neuron is noted using superscripted numbering system, with a key below the list. 

 

DA wiring:  

DA neurons synapse on:  ADEL
2
R

1
, ADAL

1
R

2
, ADLL

5
, ALA

2
, ALMR

1,2
, ASGR

6
, 

AVAL
1,2

R
1,2

, AVDL
1
R

2
, AVEL

1,4,6
R

2,3,5,6
, AVJR

1,2
, AVKL

1,2
R

2
, AVL

1
, BDUL

1
R

4
, 

CEPdL
1
R

2
, CEPvR

6
, FLPL

1,2
R

2
, IL1L

1,3
R

4
, IL2L

1
, IL1dL

3
R

4
, IL1vL

5
R

6
, IL2vR

6
, OLLL

5
, 

OLL
1,3

R
2,4,6

, OLQdL
3
R

4
, OLQvL

5
R

6
, PVR

2,6
, RIAL

1
, RIBL

3,5
R

4,6
, RICL

3,4,5,6
R

3,4,5,6
, 

RIFL
1
R

2
, RIGL

1,2
R

1,2
, RIH

1,2
, RIPL

3,5
R

4,6
, RIS

3,4
, RIVL

1,6
R

1,2
, RMDL

1
R

2
, RMDdL

2,4,5
R

6
, 

RMDvL
3
R

4
, RMGL

1,3
, RMFL

4,6
, RMHL

1,2,4,5,6
R

3,4,5
, RMGR

4,6
, SAAvR

2
, SDQR

2
, 

SIAdL
4
 R

1,3
, SIAvL

5
R

2,6
, SIBdR

1
, SMBdR

1,3,4
, URAdL

3
R

4
, URAvL

5
R

6
, URBL

1,3,5
R

4
, 

URXL
3
, URYdL

3
R

4
, URYvL

5
. Mu_bod

4
 

 

1
ADEL, 

2
ADER, 

3
CEPDL, 

4
CEPDR, 

5
CEPVR, 

6
CEPVL. 

Table 1.  Synaptic wiring of DA Neurons in C. elegans. 
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The PDE “axonal” projections project ventrally from the PDE cell body, and run both 

anteriorally and posteriorally along the ventral nerve cord.  Little is known about the 

synaptic connections made by the PDE neurons. 

The male tail contains 3 extra sets of DA containing neurons required for mating 

(Loer and Kenyon, 1993; Liu and Sternberg, 1995).  With serial EM reconstruction done 

only in hermaphrodites, no specific synaptic connections are mapped for these neurons.   

 

C. ELEGANS DOPAMINE SUPPORTED BEHAVIOR 

The effects of DA in the nematode have primarily been elucidated through 

analysis of animals where DA has either been reduced to inhibit DA signaling, or 

augmented to enhance DA signaling.  Reduction of DA can be achieved via laser ablation 

of DA specific neurons, whereas DA enhancement can be achieved via the exogenous 

application of DA. These studies have indicated a role for DA in a wide array of 

nematode behaviors including egg-laying, defecation, basal motor activity, 

sensation/response to food sources, and habituation to touch. Below, we review these 

behaviors as a context for understanding the physiological impact of DA signaling 

proteins and as a discussion of paradigms that show promise for further dissection of DA-

linked genes. 

 

Egg-laying:  

Following the elucidation of egg-laying deficits arising from deficits in response 

to exogenous and endogenous 5-HT (Trent et al., 1983; Desai and Horvitz, 1989), 

Schafer and Kenyon described the effects of exogenous DA on both egg laying and 
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movement (Schafer and Kenyon, 1995).  These effects display adaptation where, initially, 

animals exposed to high concentrations of DA (3mM) decrease egg-laying frequency and 

are rapidly paralyzed.  Both egg-laying and movement return to normal over the course 

of several hours despite continued DA exposure.  Increasing DA concentrations, once 

normal activity had returns, has no effect, indicating that both of these behaviors adapt in 

the presence of DA (Schafer and Kenyon, 1995).  Adaptation to DA requires prolonged 

exposure (at least 3 hours) and is reversed in a similar time course.  A forward genetic 

screen for mutants that failed to adapt to DA identified an animal that was UNC or 

uncoordinated and contained an allele of unc-2.  This gene proved to be important for 

modulating this DA mediated plasticity. The UNC-2 protein is a voltage gated calcium 

channel required for proper movement in C. elegans (Brenner, 1974; Schafer and 

Kenyon, 1995).  A novel allele of unc-2 was identified in this screen, suggesting that DA-

induced activation of unc-2 is required for this DA adaptation.  Cloning of the unc-2 gene 

revealed homology to mammalian voltage gated Ca++ channels.  Mosaic expression of 

UNC-2 coupled with in situ hybridization studies indicated that adaptation to DA is only 

rescued when UNC-2 is expressed in the VC and HSN neurons (Schafer and Kenyon, 

1995).  Recently, expression of the human migraine-associated Ca++ channel CACNA1A 

was found to be sufficient to rescue 5HT defects seen in unc-2 animals but no DA 

behaviors were tested (Estevez et al., 2004).  Interestingly, Olson and coworkers have 

established that D2 DA receptors regulate voltage-gated calcium channels in mammalian 

striatal medium spiny neurons via a macromolecular signaling network involving the 

proteins Shank and Homer (Olson et al., 2005).  Further manipulation of adaptation 

supported by C. elegans calcium channels may allow for a richer examination of these 
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interactions in vivo as well as provide for the elucidation of additional effectors that lie 

downstream of DA-regulated calcium signaling and which likely have mammalian 

homologues.   

Soon after Schafer and Kenyon reported their findings on DA and 5HT dependent 

adaptation, Weinshenker et al. re-examined 5HT effects on egg laying behavior and 

uncovered a 5HT independent pathway involving DA.  In their proposed model for 5HT-

induced egg laying, the hermaphrodite specific neuron (HSN) releases 5HT, which acts 

directly on egg laying muscles to induce their contraction.  However, the egg laying 

defective (egl) mutant egl-2(n693) lays eggs in response to the 5HT transporter inhibitor 

imipramine but not 5HT itself (Trent et al., 1983).  In an attempt to elucidate 5HT’s role 

in egg laying in light of this result, Weinshenker et al. used an egl mutant that lacked the 

HSN neuron ((egl-1 (n478) and (n986)) and tested various compounds including 

imipramine and the D2 antagonists chlorpromazine on egg-laying.  In their study, both 

imipramine and chlorpromazine induced egg-laying in the egl-1 background, implying 

that the effects of these compounds were not dependent on HSN release of 5HT.  Further 

studies revealed that egl-2 encoded an imipramine-sensitive potassium channel 

(Weinshenker et al., 1999), clarifying why the serotonergic HSN neuron was not required 

for imipramine reinstatement of egg laying in egl-2 mutants. However, they fail to 

explain the actions of D2 antagonists, leaving open a role for DA in the egg laying circuit 

(Weinshenker et al., 1995). We will return to this topic following a review of DA 

receptors. 
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Defecation:  

Application of exogenous DA decreases enteric muscle contractions in wild type 

worms resulting in slowed defecation (Weinshenker et al., 1995).  The egl-2 (n693) 

mutant that originally was found to exhibit egg-laying defects also inhibits enteric muscle 

contractions (EMCs).  This mutant is a gain of function mutation that displays enhanced 

potassium current at low voltages and that is expressed in C. elegans enteric muscles 

(Weinshenker et al., 1999). This suggests that DA normally enhances potassium channel 

activation and would explain why D2 antagonists such as chlopromazine, haloperidol, 

butaclamol, droperidol, and pimozide reinitiate defecation (Weinshenker et al., 1995). 

Since UNC-2 expression is also found in GABAergic DVB neurons, which work with 

AVL to control enteric muscle contractions (McIntire et al., 1993), it is not yet clear 

whether DA regulation occurs at the level of the AVL or on the enteric musculature itself. 

Regardless, DA modulation of potassium channels is also a critical facet in mammals of 

DA-mediated cortical plasticity (Dong et al., 2005) and thus further evaluation of the 

components supporting DA regulation of egl-2 in defecation circuits in the worm may 

shed light on pathways critical to higher brain function in man. 

 

Movement:  

Exogenous DA causes rapid and reversible paralysis in C. elegans.  This behavior 

displays adaptation or desensitization involving the activity of the voltage gated calcium 

channel UNC-2 (Schafer and Kenyon, 1995).  Unc-2 mutants displayed a leftward shift in 

paralysis induced by DA indicating a greater sensitivity to DA induced paralysis 
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compared to wild type worms.  Although this shift in DA potency was slight, the ability 

of unc-2 mutants to adapt to DA was severely compromised to the point where the 

majority of unc-2 animals display no spontaneous movement with prolonged DA 

exposure, whereas wild type animals regain movement after 3 to 4 hours in DA.  

Expression of unc-2 was noted in both the VC and HSN neurons (Schafer and Kenyon, 

1995).  This expression profile was extended to most motor neurons in the ventral nerve 

cord and the nerve ring motor neuron SDQR (Mathews et al., 2003). Expression was also 

seen in the head and tail region including in olfactory sensory cells AWC and the 

GABAergic tail neuron DVB. 

As often happens, progress in one area (DA signaling) leads to insights in another 

(channel biology). Cloning of various unc-2 mutations revealed that mutations sufficient 

to alter adaptation to DA reside in various locations in the UNC-2 protein, likely resulting 

in a loss of function of this channel (Schafer and Kenyon, 1995).  Indeed, insertion of 

identified unc-2 mutations into the rat voltage gated calcium channel alpha 1A subunit 

(the most homologous to UNC-2) and electrophysiological experiments revealed that 

mutations caused a variety of current defects from total loss of calcium current (e55 

mutation), to rapid inactivation (ra612) or reduction of pre-pulse potential (Mathews et 

al., 2003).  These studies underscore the opportunities available in combining forward 

genetic studies of model organisms with studies of mammalian channel orthologs 

(Weinshenker et al., 1999; Wei et al., 2005). Importantly, mammalian calcium channels 

are targets of DA modulation (Neve et al., 2004), and thus lessons learned in the effort to 

explore DA modulation of motor activity are likely to be relevant for the wide variety of 

actions of DA in the mammalian CNS. 
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Basal slowing response:  

Besides its use for studies of the control of basal motor activity, the nematode 

model  exhibits fine-tuning of motor plasticity that engages signaling pathways 

responsive to DA. C. elegans slow in the response to a bacterial lawn (Sawin et al., 

2000).  This response is mediated by either DA or 5HT depending on the dietary history 

of the animal.  DA dictates basal slowing response in well-fed animals. Under these 

conditions, the TH mutant cat-2(e1112) shows no basal slowing response, indicating that 

this behavior is DA mediated (Sawin et al., 2000; Chase et al., 2004). Exogenous DA 

restores basal slowing response in cat-2(e1112) mutants as well as in the cat-

4(e1141);bas-1(ad446) double mutant (an animal which lacks catecholamines 

altogether), indicating that a lack of endogenous DA is responsible for this behavior. 

Laser ablation of DA neurons has led to the identification of neurons that likely account 

for DA-mediated motor slowing in response to food (Sawin et al., 2000), specifically 

implicating actions of CEP neurons.  Interestingly, double ablation of both the CEP and 

ADE neuronal cell groups restored the basal slowing response, suggesting more complex 

control of this behavior than initially recognized.  Basal slowing was found to be a 

mechanosensory phenomenon as Sephadex G-200 beads could substitute for bacteria to 

elicit this response.  Moreover, elimination of DA, using either the cat-2(e1112) mutant 

or by cellular ablation of all DA neurons in hermaphrodites, removed basal slowing in 

response to Sephadex beads (Sawin et al., 2000).  Importantly, these studies reveal a role 

of DA in short-term motor plasticity reminiscent of actions the amine plays in fine-tuning 

the output of the motor program in vertebrates. Although the circuits that subserve motor 
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output in man are far more complex, lessons gathered regarding the neuromodulatory 

actions of DA in the C. elegans motor program can shed light on neuromodulatory 

integration just as studies of the modulation of the Aplysia gill reflex by 5HT have 

provided lessons relevant for learning and memory in man (Kandel and Schwartz, 1982). 

 

Area Restricted Search:  

An additional form of motor plasticity with DA support in the nematode is area 

restricted search (ARS) for food (Hills et al., 2004).  Search behavior is displayed by 

organisms when food is encountered and is typified by an increase in turning behavior 

(Bell, 1991).  This behavior is thought to arise from an organism’s need to conserve 

energy in the search for food, with search area increasing over time once the local food 

source has been exhausted.  This change from a focal to a more global search area results 

from a decrease in turns after food depletion.  If initially exposed to a bacterial lawn, 

nematodes that are subsequently moved to a plate with no bacteria display a high number 

of acute-angled turns (< than 50°) in search of food.  After 30 minutes without food, the 

number of these high angled turns is reduced, indicating that the worms are extending 

their search area (Hills et al., 2004), an activity that can be quantified using an ARS index 

determined by the number of turns observed in the first period divided by the number of 

turns observed in the last or test period. In contrast to the motor slowing response 

previously described, Hills and coworkers observed that changes in the ARSi were only 

seen in response to food and not in response to other sensory stimuli (Hills et al., 2004). 

Genetic ablation of all DA neurons resulted in an inability to change ARS after 30 

minutes on plates lacking food, indicating that either synaptic DA action or humoral DA 
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provided from one or more of these sources is required for ARS. Ablation of either the 

CEP or ADE neurons alone had no effect on adaptation, whereas PDE ablation resulted 

in a reduction in habituation, suggesting that PDE signaling is required for learning to 

expand ARS and decrease turning behavior.  Interestingly, ablation of both the ADE and 

PDE neurons results in a hyperturning phenotype that still habituates after 30 minutes off 

food, suggesting that multiple DA neurons coordinate to modulate ARS. Here, an intact 

CEP neuron may mediate hyperactive turning, an activity that is potentially opposed by 

ADE output.   Because habituation is still seen in this experiment, DA release in the 

nerve ring by CEP may be sufficient for ARS.  However, ADE inputs into the nerve ring 

are not sufficient to mediate ARS in the PDE/CEP double ablation implying that CEP-

specific innervations are required.  When both CEP and PDE neurons are ablated, 

habituation off of food is completely lost, implying that these two neurons work 

synergistically to mediate this behavior.  One complication in this analysis is that there 

appears to be two distinct behaviors assayed in this experiment.  The first is head turning 

frequency, and the second is ARS.  Head turning frequency is increased by CEP neurons 

and appears to be inhibited by both ADE and PDE neurons.  PDE neurons seem to be 

required for ARS because in the ADE/CEP double mutant ARS still occurs while in the 

genetic triple mutant habituation is lost while hyperturning is retained.  

Interestingly, exogenous DA increases the number of high angle turns, implying 

that DA is sufficient to activate ARS.  Endogenous DA was also shown to be required for 

ARS because cat-2 (tyrosine hydroxylase, see below) mutants that contain little 

endogenous DA do not show increased frequency of head turning.  Another interesting 

result of this research is the fact that movement through E. coli itself is required to 
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reinstate ARS (Hills et al., 2004), although it is not clear whether this activity engages 

food-source responsive circuits releasing endogenous DA or reflects an independent 

effect.  Interestingly, animals that are allowed to feed display reduced ARSi scores, 

indicating habituation.  Habituation is a common feature of the mammalian DA reward 

pathway and is thought to drive reinstatement of drug use (Gerdeman et al., 2003).  As 

such, future investigations of DA support for habituation of the ARS pathway may 

provide useful clues to plasticities underlying drug abuse.   

Another form of habituation that appears to involve DA is habituation to nose tap 

where, after a series of nose taps, worms will learn that the mechanical stimulation is 

non-threatening and will stop reversing (Rankin, 1991; Rankin and Broster, 1992; Rose 

and Rankin, 2001).  Touch response requires five sensory neurons (ALMs, PLMs, and 

AVM) along with eight interneurons (AVAs, AVBs, AVDs, and PVCs) (Chalfie et al., 

1985).  The tap withdrawal response requires 3 additional neurons (PVDs and the DVA 

interneuron) (Wicks and Rankin, 1995).   Mutants that cannot produce DA via tyrosine 

hydroxylase (cat-2, see below) are defective in normal habituation to non-generalized tap 

response but this response can be rescued with exogenous DA (Sanyal et al., 2004).  Thus 

DA may play a more general role in habituation of motor responses, whether elicited by 

food, mates, or threatening stimuli. Although Sanyal et al. note that the CEP and PDE 

neurons do not synapse directly on neurons mediating the touch habituation response 

(Sanyal et al., 2004), this still leaves inputs from the ADE neurons which make direct 

synaptic connections on ALM, AVA, and AVD (Table 1) neurons (White et al., 1986) 

which are utilized in both touch (Chalfie et al., 1985) and  tap habituation (Rose and 

Rankin, 2001).  Work by Chase et al. underscores the likely long range, non-synaptic 
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actions of DA in the nematode (Chase et al., 2004), similar to the proposed role of DA in 

“volume transmission” in the mammalian CNS (Rice, 2000).  Thus, although evidence of 

humoral signaling exists in the C. elegans literature (Chase et al., 2004), ADE inputs to 

these circuits need to be explored further. 

 

C. ELEGANS DOPAMINE BIOSYNTHESIS AND STORAGE 

Soon after the identification of nematode DA neurons, worm biologists 

implemented forward genetics to search for genes required for the production and storage 

of DA.  Screening for mutations that produce a loss of FIF led to the identification of 6 

independent catecholamine mutants (cat-1 through cat-6) (Sulston et al., 1975).  Cloning 

of several of these genes identified key proteins known to participate in either DA 

synthesis or storage.  DA synthesis in mammalian neurons begins with the conversion of 

the amino acid tyrosine to 1-dihydroxypheny-l-alanine (l-DOPA), the immediate DA 

precursor, by the enzyme tyrosine hydroxylase (TH), a process that requires the co-

enzyme tetrahydrobiopterin (THB).  THB is regulated by GTPcyclohydrolase (GTPCH) 

activity and loss of GTPCH results in down regulation of THB, resulting in decreased 

DA synthesis (Kapatos et al., 1999). Finally, an efficient, and more widely expressed 

aromatic amino acid decarboxylase (AADC) converts l-DOPA to DA.  Cytosolic DA is 

then rapidly packaged into synaptic vesicles by VMAT where DA is stored until secreted 

following neuronal depolarization. Intraneuronal metabolism occurs chiefly through the 

actions of mitochondrial MAO enzymes, although as will be noted below, DA reuptake is 

thought to play a more critical role in synaptic DA inactivation. 
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The first DA-related mutant identified (cat-1) displays a loss of punctate DA 

accumulation normally characteristic of DA nerve terminals (Sulston et al., 1975) and is 

considered likely to participate in the behavior or physiology of DA storage vesicles.  

This suspicion was validated in 1999 when Duerr and colleagues cloned the full length 

cat-1 gene and identified it as a VMAT homolog (Duerr et al., 1999).  CAT-1 protein was 

found to localize to DA and 5HT neurons (Table 2) and to be 47% identical to human 

VMAT1 and 49% identical to human VMAT2. Importantly, CAT-1 supports time-

dependent and saturable uptake of both [3H]DA and [3H]5HT in permeablized CV-1 

cells, consistent with its role as a VMAT (Duerr et al., 1999).  Original studies performed 

by Sulston et al. used the mammalian VMAT substrate reserpine to deplete these vesicles 

of catecholamines and eliminate FIF indicating that mammalian VMATs and CAT-1 

share similar pharmacology (Sulston et al., 1975). 

In situ, indirect immunofluorescence studies using antibodies directed against 

CAT-1 sequence revealed punctate nerve ring fluorescence reminiscent of combined DA 

and 5HT FIF.  In vivo, genomic cat-1 sequences (RM#424L) rescue the DA and 5HT-like 

FIF deficits of cat-1 mutants (Duerr et al., 1999). The availability of antibodies specific 

for CAT-1 allowed for important insights into how VMAT proteins are localized to 

synapses. Although VMATs are located on synaptic vesicles, the trafficking determinants 

of VMAT had not been defined. Unc-104 is a kinesin motor protein that is known to 

traffic synaptic vesicles from the cell body to nerve terminals (Hall and Hedgecock, 

1991).  Loss of function of this protein leads to synaptic vesicle retention in the cell body 

and a decrease in synaptic signaling, supporting an uncoordinated (UNC) phenotype.  

When   CAT-1   protein   was   visualized   in   unc-104(e1264)   mutant   animals  using  



Dopamine Synthesis and Transport Proteins    

    

BAS-1 Mammalian Homolog Aromatic Aminoacid Decarboxylase Loer and Kenyon 1993 

 Substrate L-Dopa, 5-THP Loer and Kenyon 1993 

 Antagonist ?  

 Cellular expression Dopamine and Serotonin neurons Hare and Loer 2004 

 Mutant Phenotype Defective Basal slowing response 

Defective male tail turning (mating) 

Sawin et al. 2000 

Loer and Kenyon 1993 

    

CAT-1 Mammalian Homolog Vesicular Monoamine Transporter 

(VMAT) 

Duerr et al. 1999 

 Substrate DA, Tyr >5HT>NE>Oct>>Histamine Duerr et al. 1999 

 Antagonist Reserpine Sulston et al. 1975 

 Cellular Expression Dopamine Neurons (ADE, CEP, PDE) 

Serotonin Neurons (NSM, HSN, VC4, 

VC5, ADF, RIH, AIM) 

Unidentifed Amine (RIC, CAN) 

Male Neurons 

Duerr et al. 1999 

Duerr et al. 1999 

Duerr et al. 1999 

Duerr et al. 1999 

Duerr et al. 1999 

 Mutant Phenotype Defective Basal Slowing Response 

Reduced Egg laying 

Decreased mating efficiency 

Decreased pharangeal pumping 

Defective male tail turning (mating) 

Duerr et al. 1999 

Duerr et al. 1999 

Duerr et al. 1999 

Duerr et al. 1999 

Loer and Kenyon 1993 

    

CAT-2 Mammalian Homolog Tyrosine Hydroxylase (TH) Lints and Emmons 1999 

 Substrate Tyrosine  

 Antagonist ?  

 Cellular expression DA neurons (CEPs, ADEs, PDEs) 

Male tail DA neurons (R5A, R7A, R9A) 

Lints and Emmons 1999 

 Mutant Phenotype Dopamine deficient 

Defective Basal slowing response 

! Tap Habituation 

Defective area restricted search 

Defective slowing in Sephadex beads 

Sulston et al. 1975 

Sawin at al. 2000 

Sanyal et al. 2004 

Hills et al.  2004 

Sawin et al. 2000 

    

DAT-1 Mammalian Homolog Dopamine transporter Jayanthi et al. 1998 

 Substrate DA > NE, Epi > 5HT  

 Antagonist Imipramine, Desipramine, Nisoxetine, 

Mazindol, GBR 12909, Nomifensine, 

Cocaine. 

Amphetamine‡
  

Imipramine 

Jayanthi et al. 1998 

 

 

Nass et al. 2002  

Jayanthi et al. 1998 

 Cellular expression DA Neurons (CEP, ADE, PDE) 

R5A, R7A, R9A in male tail 

Nass et al. 2002 

 

 Mutant Phenotype ?  

    

‡ Data implied from in vivo function studies.  
 

Table 2.  C. elegans DA Synthesis and Transport Proteins
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immunofluorescence approaches, CAT-1 vesicles were found to accumulate in the cell 

body, consistent with VMAT employing machinery that traffics other synaptic vesicle 

proteins to the synapse.  

Cat-2 has been identified as a TH homolog, with CAT-2 protein displaying 50% 

amino acid identity with both Drosophila and rat tyrosine hydroxylase (Lints and 

Emmons, 1999).  GFP promoter fusions using cat-2 promoter sequences demonstrate that 

CAT-2 is expressed in all DA neurons of the nematode (Lints and Emmons, 1999).  In 

addition, cat-2 mutants display markedly reduced DA levels (9% compared to WT) as 

assessed by HPLC (Sanyal et al., 2004) (Table 2).  

Cat-4 has features of a GTP cyclohydrolase enzyme suitable for production of the 

TH cofactor THB. While cat-4 has yet to be cloned and its mechanism of action has yet 

to be defined, predicted amino acid alignments reveal an 83.9% homology with the 

human splice isoform GCH-1 of GTP-cyclohydrolase (Wormbase, www.wormbase.org).  

An aromatic AADC homolog (bas-1) has been identified and is required for 5-HT 

supported male mating behaviors but as yet has not been implicated in DA-mediated 

behaviors (Loer and Kenyon, 1993) (Table 2).  Recently, Hare and Loer mapped the bas-

1 (C05D2.4) gene and revealed that bas-1 indeed codes for an aromatic AADC 

homologue that is sufficient to rescue bas-1 mutant lines for 5-HT immunoreactivity 

(Hare and Loer, 2004).  Although the gene encoded by C05D2.4 (bas-1) rescues 

serotonin immunoreactivity, other potential homologs which could retain some AADC 

activity exist in C. elegans and a small amount of 5-HT persists in bas-1 mutant lines 

(Weinshenker et al., 1995).  Two isoforms of bas-1 were identified, bas-1a, which 

displayed a 41% identity to human DOPA-decarboxylase (HsDDC), and bas-1b that 
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included a 27bp micro-exon inserted between predicted exons 2 and 3.  Although more 

limited information is available concerning a role for bas-1 in DA synthesis, expression 

of GFP reporter constructs using the bas-1 promoter region reveals DA neuron expression 

as would be predicted for an aromatic AADC homolog.  

Despite the presence of DA catabolites (DOPAC, 3-methoxytyramine, and 

homovalic acid) in whole worm extracts (Wintle and Van Tol, 2001), proteins important 

in the catabolism of DA have not been positively identified, although several MAO and 

COMT homologues exist in the genome (Wintle and Van Tol, 2001). 

 

THE C. ELEGANS DOPAMINE TRANSPORTER 

In mammalian systems, DA signaling is primarily terminated by presynaptic 

reuptake mediated by the DA transporter (DAT), with a contribution of DAT to 

presynaptic DA levels also evident (Gainetdinov et al., 2002).  Studies using DAT KO 

mice (Giros et al., 1996) demonstrate that, after evoked DA release, extracellular DA 

levels remain elevated in the absence of DAT protein.   The C. elegans DAT (dat-

1;T23G5.5, originally termed CeDAT-1) was identified by searching C. elegans genomic 

sequences for genes homologous to mammalian SLC6 family members, including 

cocaine-sensitive DA, NE and 5HT transporters (Jayanthi et al., 1998), specifically 

targeting sequences bearing a highly conserved transmembrane (TM) 1 aspartate residue 

thought to interact with biogenic amine substrates.  The identified DAT-1 protein bears 

43% amino acid identity with mammalian DA transporters with the bulk of conservation 

localized to the transmembrane domains (TM).   



Figure 6.  Validation that T23G5.5 Encodes a C. elegans DA Transporter.

A-B.  Saturation kinetics of [3H]-DA (A) and [3H]-NE (B) uptake by DAT-1 in transiently transfected
cells.  Specific uptake was defined by subtraction of uptake activity obtained in vector-transfected cells
assayed in parallel.  Note the difference in axes values; ordinate legends reflect multiplication of data
values by 1018 in order to obtain integer values on the y-axis. Insets, Eadie-Hofstee plots of saturation
data (axis units, cell/min/liter x 1024) (figure adapted from Jayanthi et al., 1998).  A.  Specific uptake of
3H-DA by DAT-1.  KM = 1.2 mM; Vmax = 1.08 pmol/106 cells/min.  B.  Specific uptake of 3H-NE by
DAT-1.  KM = 4.1 mM; Vmax = 0.79 pmol/106 cells/min. C.  Substrate selectivity of DAT-1 uptake
activity in DAT-1- or vector-transfected cells.  All [3H]-labeled substrates were assayed at a saturating
concentration of 20 nM.  Values represent mean +/- standard deviation of three separate transfections.
Ordinate legends reflect multiplication of data values by 1019 in order to obtain integer values on the y-
axis.  D.  Inhibition of DAT-1 mediated [3H]-DA uptake by monoamine transporter antagonists.  Points
+/- standard deviation acquired from three separate competition experiments; nonlinear curve fits
obtained using Kaleidagraph software (Synergy Software, Reading Pa)
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Full length cDNA encoding the product of the dat-1 gene, when transfected into 

HeLa cells, supports transport of several different monoamines including DA, NE, Epi 

and 5HT but at distinctly different rates (Fig 6C).  DAT-1 preferentially transports DA 

over other biogenic amines, with norepinephrine displaying reduced but detectable 

uptake (DA >> NE > Epi > 5HT).  Given the absence of NE biosynthetic pathways in C. 

elegans, DAT-1 activity in the nematode is primarily responsible for the inactivation of 

released DA.  Transport kinetics for both DA and NE was tested where DAT-1 displays 

saturable uptake kinetics with a Km of 1.2µm for DA and 4.1µm for NE.  When 

transporter specific antagonists were tested for inhibition of [3H]DA uptake (Fig 6D), the 

most potent DAT-1 inhibitors were the tricyclic antidepressants imipramine and 

desipramine, compounds that in studies of mammalian transporters, target 5HT and NE 

transporters (SERT and NET, respectively).  The mammalian NET inhibitor nisoxetine 

and the mixed DAT/NET antagonist mazindol also displays significant inhibition of DA 

uptake (Table 2).  These studies established DAT-1 as a bona fide DA transporter but 

illustrate that pharmacological sensitivities are often distinct in comparing vertebrate and 

invertebrate orthologs.   

 To gain insight into the expression pattern of DAT-1 in vivo, Nass and coworkers 

(Nass et al., 2002) drove synthesis of cytosolic green fluorescent protein (GFP) using a 

700bp DNA segment located immediately upstream of the dat-1 transcription initiation 

site, resulting in fluorescence in all known DA neurons in the worm (Nass et al., 2002).  

In vivo function of DAT was established through accumulation of the DA neurotoxin 6-

OHDA) (Nass et al., 2002).  6-OHDA treatments of animals wild type for the dat-1 allele 

expressing GFP in their DA neurons revealed loss of all DA head neurons with resistance 
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observed in the midline PDE neurons.    DA neuron degeneration can be blocked by 

incubation of worms in DAT-1 transport antagonists such as imipramine. Importantly, 

neuronal susceptibility to 6-OHDA can be both blocked in DAT-1 deficient lines, and 

transferred by expression of dat-1 in cells that typically do not express the transporter 

(Nass et al., 2002).  Features of this DA neuron degeneration, with its similarity to 

apoptotic versus necrotic cell death, offer insights into the pathophysiology of 

Parkinson’s Disease (Nass and Blakely, 2003).  In this regard, readily detectible DA 

neuron degeneration has also afforded adoption of the nematode model for studies of 

human alpha-synuclein mutants (Lakso et al., 2003) as well as the neuroprotective actions 

of torsin proteins (Cao et al., 2005). 

The dependence of 6-OHDA induced degeneration of DA neurons on functional 

DAT-1 has permitted a forward genetic screen for suppressors that have the capacity to 

elucidate key features of DAT, its regulatory machinery, or facets of toxin-induced cell 

death. Indeed, Nass and coworkers (Nass et al., 2005) used this assay to identify three 

novel ethyl methane sulfonate- (EMS)-generated mutant alleles of dat-1.  Two of the 

alleles identified resulted from point mutations in residues conserved across all known 

members of the SLC6 transporter gene family, suggesting a critical role for these residues 

in transporter structure and/or function. The third allele identified arises from a splicing 

defect altering the DAT-1 C-terminus by substituting an ectopic 15 amino acid sequence 

for the entire C-terminus.  Each of these mutations resulted in a complete resistance to the 

effects of 6-OHDA in vivo.  A fourth mutant was identified that also conferred complete 

resistance to 6-OHDA but which does not map to the dat-1 locus and remains 

unidentified. Translational fusions to the DAT-1 mutants were produced for in vitro and 
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in vivo expression to examine how these changes in DAT-1 protein lead to loss of 

function. The DAT-1 splicing mutant (dat-1(vt4) was found to be extremely defective for 

protein expression in transfected cells and demonstrated only weak expression in vivo, 

whereas the two point mutants displayed interesting trafficking and surface expression 

patterns, discussed in Chapter IV.   

Mammalian DAT proteins exhibit multiple conductance states (Mortensen and 

Amara, 2003).  Use of genetic/transgenic studies of DAT-1 in the nematode have been 

undertaken and have elucidated novel mechanisms that are relevant in terms of 

mammalian ion channel biology.  Recently, Carvelli et al. took advantage of nematode 

primary cell culture techniques and obtained recordings from DA neurons isolated from 

various transgenic lines to monitor DAT-1 channel activity triggered by DA (Carvelli et 

al., 2004). Lines expressing wild type DAT-1 displayed DA-triggered inward currents 

like that reported for mammalian transporters featuring chloride ion dependence in the 

context of a lack of inward leak currents (Kilty et al., 1991; Ingram et al., 2002).  

Interestingly, lines over-expressing an N-terminal GFP:DAT-1 fusion in a wild type 

DAT-1 background increased the probability of detection of single channel events 

without changing channel amplitude compared to wild type lines alone, suggesting  that 

N-terminal GFP tagging does not disrupt channel conductance per se but may affect 

channel gating.  The current generated by individual DAT-1 channels was also sufficient 

to generate a macroscopic depolarizing current in whole cell recordings, indicating that 

the transporter may participate in DA neuron excitability in vivo.  These studies lay the 

groundwork for genetic dissection of DAT-1 mediated currents and the role of DA 

neuron physiology in the nematode.   
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C. ELEGANS DA RECEPTORS  

In mammalian systems, DA acts on 5 distinct G-protein coupled receptors (D1-5) 

that fall into two separate categories, being either D1-like or D2-like based on signaling 

specificities.  These two classifications were originally assigned based on the receptor’s 

effect on cyclic AMP levels (Spano et al., 1978).  These two distinct classes are still 

recognized, the D1-like receptors positively coupling to adenylate cyclase (AC) 

increasing cAMP levels, and D2-like receptors inhibiting AC and cAMP formation, 

although additional second messengers and effector pathways are also recognized (Neve 

et al., 2004). Four DA receptors have been identified in C. elegans, specified as dop-1, 

dop-2, dop-3, and dop-4.  Each receptor was originally identified by homology searches 

and has been subjected to both in vitro and in vivo analyses as noted below. 

   

Dop-1 DA receptors (F15A8.5):  

Suo et al. initially identified a D1-like DA receptor using comparison of 

mammalian DA receptor amino acid sequences to a translation of published C. elegans 

genome.  The gene that displayed the highest homology, F15A8.5, was found to 

preferentially bind DA over other biogenic amines when expressed in COS-7 cells (Suo 

et al., 2002).  RT-PCR studies revealed that the dop-1 gene encodes 3 distinct splice 

variants CeDOP1-L, CeDOP-1M, and CeDOP-1S.  Differences in these three variants 

arise largely from differences in a 58 amino acid sequence within the receptor’s third 

intracellular loop, which in mammalian G-protein coupled receptors has been shown to 

be important for G-protein coupling (Luttrell et al., 1993).  The longest of these isoforms, 
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CeDOP-1L, retains this 58 amino acid insertion that also contains consensus 

phosphorylation sites for both PKC and PKA.  CeDOP-1M lacks this sequence, but 

maintains PKC and casein kinase consensus sequence in the third intracellular loop.  The 

CeDOP-1S isoform is almost identical to CeDOP-1M except for a deletion of 3 amino 

acids in the intracellular C-terminus that codes for another PKC consensus 

phosphorylation site (SSR).  Four splice variants have been predicted by gene models 

including the three isoforms identified by Suo et al. and have subsequently been named 

dop-1a – d, according to worm nomenclature procedures (Horvitz et al., 1979; Hodgkin, 

1995).  The splice variant dop-1d has yet to be identified experimentally.  Dop-1b was 

characterized pharmacologically in the initial report and displayed preferential 

displacement of [125I]Iodo-LSD by DA (DA > NE > 5HT > Tyr = OA).  Because there is 

no evidence of (nor)epinephrine in C. elegans (Horvitz et al., 1982; Sanyal et al., 2004), 

DA, 5HT, Tyr and OA profiles are the most physiologically relevant in considering 

potential endogenous agonists of these receptors in vivo.   

In 2004, Sanyal et al. reported the cloning of a D1-like receptor using both in 

silico methods and mammalian D2 receptor sequences, followed by validation of 

expression and function using RT-PCR and GTPγS binding, respectively (Sanyal et al., 

2004).  These investigators again identified sequence encoded by the F15A8.5 gene as 

positive for DA mediated GTPγS binding in COS-7 cells.  Only two isoforms of dop-1 

were identified in this study (short and long splice variants), corresponding to the CeDop-

1L and CeDop-1M transcripts described by Suo et al.  Both isoforms stimulated an 

increase in cAMP production upon DA stimulation, verifying their role as bone fide D1-

like receptors.  Interestingly, co-expression of dop-1 with the C. elegans GTPγS isoform 
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(gsa-1) in conjunction with the G-protein coupled inwardly rectifying potassium (GIRK) 

channel (Kir3.2) resulted in a robust activation of a large potassium current (Sanyal et al., 

2004).  GIRK activation in mammalian systems typically results from activation of Goα 

via D2 receptors (Missale et al., 1998), indicating that C. elegans DA receptors might 

signal differently than mammalian DA receptors. 

 Mammalian D1 receptor agonist and antagonists were assayed for functional 

coupling in culture on the DOP-1a isoform with mixed results (Table 3).  The 

mammalian D1 receptor specific antagonist SCH23390 worked only as an agonist on 

dop-1 at high (1µm) concentrations.  The D2 antagonists (+)-butaclamol and haloperidol, 

the mixed D1/D2 antagonist cis-flupenthixol, and octopamine displayed inverse agonist 

activity by decreasing the amount of basal cAMP activation (Sanyal et al., 2004).  5HT 

did not significantly activate dop-1a (in terms of GTPγS binding).  Once again, although 

signaling pathways appear to overlap comparing mammalian and worm receptors, their 

pharmacologies are distinct and remain useful for receptor classification. 

DA D1 receptors have been implicated in habituation to nose tap response 

(Rankin, 1991; Rankin and Broster, 1992; Rose and Rankin, 2001). Because dop-1 was 

found to be expressed in ALM and PLM neurons, tap habituation was tested in dop-

1(ev748) mutants and habituation to non-localized tap response was tested (Sanyal et al., 

2004).  Dop-1 knockout animals were found to habituate faster to this response than wild 

type animals implying that dop-1 is important for maintenance of the avoidance response. 

Expression of dop-1 in sensory neurons using the mec-7 promoter rescued tap habituation 

in dop-1(ev748) animals indicating that DA signaling via dop-1 in touch neurons is the  



C. elegans Dopamine System Protein Characterization    

    

D1-like Receptors    

    
DOP-1 Gene Products Dop-1a (L) 

Dop-1b (M) 
Dop-1c (S) 

Dop-1d† 

Suo et al. 2002 

Suo et al. 2002 
Suo et al. 2002 

Wormbase 
 G-protein Gs (gsa-1) 

Gq (egl-30) 

Sanyal et al. 2004 

Chase et al. 2004 

 2nd Messenger (!) cAMP formation Sanyal et al. 2004 

 Effector (!) GIRK current Sanyal et al. 2004 

 Agonist DA>NE>5HT. 

SKF38390, SCH23390. 

Suo et al. 2002 

Sanyal et al. 2004 
 Inverse Agonist Butaclamol 

Holoperidol 

Flupenthixol 

Sanyal et al. 2004 

Sanyal et al. 2004 

Sanyal et al. 2004 
 Cellular Expression PLM Neurons 

PHC Neurons 
ALM Neuron 

RIM, AUA, and RIB  
Cholinergic cells in ventral nerve cord 

Sanyal et al. 2004 

Sanyal et al. 2004 
Sanyal et al. 2004 

Sanyal et al. 2004 
Chase et al. 2004 

 Mutant phenotype ! Tap habituation Sanyal et al. 2004 

    
DOP-4 Gene Products dop-4 only Sugiura et al. 2005 

 G-protein ?  
 2nd messenger (!) cAMP formation Sugiura et al. 2005 

 Effectors ?  

 Agonist DA Sugiura et al. 2005 
 Antagonists ?  

 Cellular expression Pharyngeal neurons (I1, I2) 
ASG, AVL, CAN, and PQR neurons 

Vulva, intestine, rectal glands and epithelia, ray 

8 neurons (male tail) 

Sugiura et al. 2005 
Sugiura et al. 2005 

Sugiura et al. 2005 

Sugiura et al. 2005 
 Mutant Phenotype ?  

    

D2-like Receptors    

    

DOP-2 Gene Products dop-2a (L) 
dop-2b (S) 

Suo et al.  2003 
Suo et al.  2003 

 G-protein ?  

 2nd Messenger (") cAMP formation Suo et al. 2003 

 Effector ?  

 Agonist (binding) DA>5HT>Tyr>NE>Oct Suo et al. 2003 

 Antagonist (binding) Butaclamol, Clozapine, CH23390, Haloperidol, 
Spiperone, Chlorpromazine, Sulpiride 

Suo et al. 2003 

 Antagonists (signaling) Butaclamol Suo et al. 2003 
 Cellular Expression Dopamine Neurons (ADEs, CEPs, and PDEs) 

Neurons in the male tail 

Suo et al. 2003 

Suo et al. 2003 
 Mutant phenotype ?  

    
DOP-3 Gene Products dop-3a† 

dop-3b 
dop-3c 

dop-3d 

Wormbase 

Chase et al. 2004 
Sugiura et al. 2005 

Sugiura et al. 2005 
 G-protein Go (goa-1) Chase et al. 2004 

 2nd messenger (") cAMP formation Sugiura et al. 2005 

 Effectors DAG Kinase (dgk-1) ‡ 
RGS protein (eat-16) ‡ 

Chase et al. 2004 
Chase et al. 2004 

 Agonist DA >> Tyr > Oct Sugiura et al. 2005 

 Antagonists ?  
 Cellular expression PVD Neuron 

GABA neurons in ventral nerve cord 
Unidentified head neurons 

Unidentified tail neurons 
Body-wall muscle 

Chase et al. 2004 

Chase et al. 2004 
Chase et al. 2004 

Chase et al. 2004 
Chase et al. 2004 

 Mutant Phenotype Defective Basal slowing response 
" DA induced paralysis 

Chase et al. 2004 
Chase et al. 2004 

    

‡ Data implied from in vivo function studies. 
† As listed by homology modeling in wormbase (www.wormbase.org) 

Table 3. C. elegans Dopamine Receptors
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critical determinant of nose touch habituation.  Because ADE neurons synapse directly on 

a  subset  of  these  touch neurons (White et al., 1986) (ALM, AVA, and AVD) and ADE  

specific function was not tested in this study, it is difficult to determine whether ADE 

specific inputs or humoral DA reinstates this habituation. 

 

Dop-2 DA Receptor (K09G1.4):  

The C. elegans dop-2 receptor was originally identified by Suo et al.(Suo et al., 

2003) by homology searches using the mammalian D2 receptor as a template. RT-PCR 

studies revealed two dop-2 gene products that differ by 135 amino acids in the third 

intracellular loop (CeDop2L and CeDop2S).  These isoforms are the only two predicted 

splice variants for this gene in C. elegans and will be referred to as dop-2a (CeDop-2S) 

and dop-2b (CeDop2L) according to worm nomenclature (Horvitz et al., 1979; Hodgkin, 

1995).  Importantly, alternative splicing of the D2 receptor at this location is also noted 

for mammalian isoforms (Dal Toso et al., 1989; Giros et al., 1989; Monsma et al., 1989).   

Pharmacologically, DOP-2 preferentially binds DA over other biogenic amines.  

Both the dop-2a and dop-2b isoforms were expressed in COS-7 cells and biogenic amines 

were assayed for their ability to displace [125I]iodo-LSD.  LSD displays high nM affinity 

for both isoforms (KD = 6.6 ± 0.6nM for dop-2b and 6.5 ± 2.1 nM for DOP-2a) with DA 

displacing [125I]iodo-LDS with the highest potency (Ki = 2.98 ± .021 uM for DOP-2a and 

2.24 ± .019um for DOP-2b).  Displacement of [125I]iodo-LSD for other biogenic amines 

tested followed the same pattern for both isoforms with a rank order of potency for 

displacement that followed 5HT > tyramine > NE > octopamine (Table 3).  Antagonist 

profiles of [125I]iodo-LSD displacement for the two isoforms are almost indistinguishable 
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with butaclamol showing the highest potency (~35nM for either DOP-2a or DOP-2b). To 

examine functional coupling to cAMP production, each of the two C. elegans dop-2 

isoforms were transfected into CHO cells in combination with a commercially available 

vector (pCRE-Luc, Clontech) that displays increased luciferase activity in response to 

increase in cAMP levels.  Addition of forskolin stimulated an increase in luciferase 

activity that could then be inhibited by DA (0.1µm).  Both DOP-2a and DOP-2b isoforms 

decreased this forskolin-induced activation in CHO cells; the EC50 value for AC 

inhibition was reported to be ~74 nM for both dop2a and b, well below the Ki calculated 

for DA at these receptors and well within a physiological range.  This inhibition by DA 

was reversed by the addition of 10µm butaclamol, consistent with binding inhibition 

studies (Suo et al., 2003).  

Little is known of the behavioral contributions of dop-2. Exogenous DA increased 

the number of high angle turns.  The mammalian D2 antagonist raclopride blocked this 

reinstatement of ARS, implying that DA is sufficient to activate this behavior.  While 

raclopride is a specific D2 agonist in mammals, it is difficult to know what effect it may 

have on C. elegans receptors given the mixed pharmacology demonstrated by the cloned 

DOP receptors in response to mammalian antagonists (Suo et al., 2004). Future studies 

using dop-2 mutants may help clarify in vivo roles. 

 

Dop-3 DA Receptor (T14E8.3):   

A novel D2-like receptor was identified by Chase and colleagues based on 

sequence similarity to human D2 receptors (Chase et al., 2004).  Initially, several 

potential genes with high homology to the human D2 receptor were identified.  To 
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narrow their search, TM domains from the human DA, 5HT, and muscarinic 

acetylcholine receptors, along with the already identified DOP-1 and DOP-2 protein 

sequences, were aligned and compared to BLAST-based alignments of uncharacterized 

nematode homologs.  Three genes clustered with both the human and C. elegans DA 

receptors (T14E8.3, C24A8.1, and C02D4.2) with T14E8.3 displaying the highest 

homology to the known C. elegans D2 receptor dop-2.  T14E8.3 was therefore targeted 

for investigation and subsequently renamed dop-3.  Isolation of the full-length clone 

using RT-PCR revealed that DOP-3 protein is most similar to human D2 receptors with 

51% identity in putative transmembrane spanning domains and 38% identity overall.  

Alignment with the human D1 and D2 receptors reveals a large 3rd intracellular loop and 

a small C-terminal tail, consistent with D2-like receptors.  Four isoforms for dop-3 are 

predicted for the T14E8.3 locus (DOP-3a-d, see Table 3).  Comparison of the predicted 

amino acid sequences for each of these variants reveals that the isoform identified by 

Chase et al. most resembles DOP-3b.  No splice variants were reported in this original 

publication however recent work reveals at least one more splice isoform is coded for by 

C. elegans. 

Shortly after Chase et al. published their findings on dop-3b, Suguira and 

colleagues reported two novel DOP-3 splice variants, one which encoded a 590 amino 

acid receptor and another that encoded a truncated DOP-3 receptor (DOP-3nf) which 

lacked the sixth and seventh transmembrane domains normally predicted for the full 

length DOP-3 receptor (Sugiura et al., 2005).  The first of these receptors coded for 

sequence predicted for DOP-3c and is 18 amino acids shorter than the receptor reported 
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by Chase and colleagues.  The second truncated isoform coded for a 245 amino acid 

receptor that corresponds to the length of the predicted DOP-3d isoform.   

To determine whether either of these proteins encoded a bone fide DA receptor, 

the individual isoforms were transfected into CHO cells in conjunction with a cAMP 

responsive luciferase reporter gene.  The ability of different biogenic amines to reduce 

forskolin activated luciferase activity was tested on cells expressing the full-length DOP-

3c isoform.  DA displayed the most potent attenuation of forskolin induced luciferase 

expression, with an EC50 value of 5.57 ± 0.13µm.  Tyramine and octopamine also 

decreased luciferase expression but at much higher concentrations.  When DA was tested 

on cells expressing the truncated DOP-3d receptor isoform, no DA dependent inhibition 

of luciferase expression was reported indicating that this product may not function via 

adenylate cyclase and cAMP pathways.  Instead co-transfection of DOP-3d with DOP-3c 

reduced the EC50 value for DA, indicating that DOP-3d may act to blunt signaling by 

coupling to DOP-3c. 

The intrinsic pharmacology of DOP-3b has not been characterized, instead 

elegant genetic experiments have been conducted on knockout strains to determine the 

effects of dop-3 on DA-mediated behavior as discussed in more detail below.  These 

behavioral experiments revealed that dop-1 and dop-3 expressed by cholinergic neurons 

work antagonistically to mediate DA-induced paralysis, utilizing different G-proteins to 

mediate their effects.  Genetic dissection of DA signaling indicates that the dop-3 

pathway includes activation of the Goα protein goa-1, the RGS protein eat-16 (with its 

beta subunit gpb-2) and a diacylglycerol kinase (dgk-1). In these studies, Chase and 

coworkers isolated a dop-3 mutant line that displays reduced paralysis in response to 
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exogenous DA (Chase et al., 2004).  Expression of dop-3 was observed in both 

cholinergic and GABAergic cell bodies and paralysis in response to DA was rescued 

when dop-3 was expressed in cholinergic neurons using the acr-2 promoter (Chase et al., 

2004).  Screening for mutants with reduced paralysis in response to DA yielded 4 

additional mutants including novel alleles of goa-1, dgk-1, eat-16, and gpb-2.  

Importantly, all of these genes function as downstream effectors of Goα and have been 

shown to negatively modulate Gqα responses in C. elegans (Hajdu-Cronin et al., 1999; 

Miller et al., 1999).  These studies reinforce recent diversification of DA signaling 

pathways beyond simply modulation of cyclic nucleotides (Beaulieu et al., 2005). 

To examine potential DA receptor interactions in the worm, dop-1 and dop-3 

double mutants were generated.  The dop-1;dop-3 double mutants paralyzed in DA, 

suggesting that the dop-1 knockout should be hypersensitive to DA in terms of slowing, a 

trend that was noted by Chase et al. (Chase et al., 2004).  Expression of dop-1 using acr-2 

in the dop-3;dop-1 double mutant partially restored dop-3 resistance to paralysis, 

indicating that these receptors likely work antagonistically in cholinergic neurons to 

mediate DA effects. The fact, however, that the double mutant was still responsive to DA 

paralysis suggests that there is most likely another DA receptor in this pathway that acts 

via goa-1 that has yet to be identified (Jorgensen, 2004). Regardless, these studies were 

the first to demonstrate DA signaling in C. elegans modulating behavior mediated by two 

antagonistic DA receptors via differential G-protein coupling, underscoring further 

similarities to mammalian actions of DA. With respect to other DA-supported behaviors, 

dop-3 but not dop-1or dop-2 receptor knockouts alter basal slowing response in vivo 

suggesting that basal slowing mechanisms may engage signaling pathways similar to 
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those engaged for modulation of basal motor activity (Chase et al., 2004). Chase and co-

workers also remind us that actions of DA in the motor slowing circuit may arise from 

humoral actions of DA rather than from direct synaptic contacts (Chase et al., 2004). 

 

Dop-4 DA Receptors (C52B11.3):   

A novel D1 like DA receptor (dop-4) was cloned by Sugiura et al. using sequence 

homology to human DA receptors (Sugiura et al., 2005).  RT-PCR using a C52B11.3 

specific anti-sense primer coupled with splice leader sequence 1 (SL1) sense primer 

amplified a single transcript of 1.7bp.  HEK293 cells co-expressing this dop-4 cDNA 

with a cAMP responsive luciferase reporter construct was tested for alterations in 

luciferase levels in response to several biogenic amines.  Only DA produced a significant 

increase in luciferase expression, indicating that this receptor acts to increase cAMP 

levels specifically upon DA stimulation.  The increase in cAMP levels is consistent with 

D1-like activity, making DOP-4 the second D1-like DA receptor identified in C. elegans 

(Table 3).  Although this receptor was originally identified using homology searches to 

mammalian DA receptors, it clusters most with invertebrate DA receptors and may 

represent an invertebrate specific DA receptor.  More pharmacology on this receptor 

should be pursued to determine differences and similarities between DOP-4 and 

mammalian D1-like receptors in terms of G-protein coupling and down stream effectors 

before this conclusion is solidified.   

The expression of dop-4 was determined by fusing a 6.1kb promoter sequence 

including sequence up to the middle of exon 2 with GFP.  Fluorescence was noted in 

several pharangeal neurons (I1 and I2), and head neurons including ASG, AVL, CAN, 
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and PQR.  There was also reporter expression in vulva, intestine, rectal glands, and rectal 

epithelial cells.  Expression was also seen in neurons projecting into ray 8 in the male tail.  

This expression profile suggests that this receptor may play a role in the regulation of 

pharyngeal pumping, chemosensation, defecation, oxygen sensing and male mating 

behavior (Sugiura et al., 2005). 

 

Still More C. elegans DA Receptors?   

Studies of receptor involvement in egg-laying behaviors noted above also suggest 

a role of as yet uncharacterized DA receptors. The D2 antagonists chlorpromazine, 

butaclamol, and haloperidol increase egg laying in wild type and egl-1 mutants but not in 

animals lacking DA and 5HT (cat-4(e1141)), implying that DA antagonism at a D2 like 

receptor may play a role in activation of egg laying behavior (Weinshenker et al., 1995).  

This DA receptor would have to reside in vulval muscle and effect potassium 

conductance through egl-2.  Although dop-2 is inhibited by chlorpromazine, it is unlikely 

that the dop-2 receptor mediates DA dependent inhibition of egg-laying since evidence 

indicates it is not expressed in any of the neurons that mediate egg-laying responses, nor 

is it found in muscle (Suo et al., 2003).  Haloperidol acts as an inverse agonist on dop-1 

(chlorpromazine was not tested), however, dop-1 does not appear to be expression muscle 

cells (Chase et al., 2004; Sanyal et al., 2004).  As dop-3 is expressed in muscle, this 

receptor becomes an interesting candidate; however dop-3 does not appear to be 

expressed in vulval muscle cells and no constitutive egg-laying was noted in the dop-3 

mutants identified by Chase (personal comm., D. Chase).  These findings suggest the 
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existence of an unidentified DA and chlorpromazine/haloperidol-sensitive receptor that is 

linked to the egg-laying circuit. 

 

CONCLUSION 

The past fifty years of discoveries in catecholamine science has provided a rich 

literature, which to this day, provides a platform for novel catecholamine research.  As 

new technologies and models are explored, such as the C. elegans system described here, 

answers to old questions give rise to yet more possibilities.  Catecholamine biologists 

now have an impressive tool kit, enhanced by the utilization of powerful genetic models 

that, in the coming years, will reveal novel partners and pathways supporting DA 

signaling and stimulate our thinking about DA disorders and therapies in man.  Utilizing 

this system, we will examine the localization and function of both the endogenous DAT-1 

protein but also use GFP:DAT-1 fusion proteins to determine in vivo movements and 

describe mutants which impact DAT-1 function. 
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CHAPTER III 

 

ANTIBODY PRODUCTION AND IN SITU VISUALIZATION OF THE C. 
ELEGANS DA TRANSPORTER (DAT-1) 

 

INTRODUCTION 
 

Sulston and colleagues first described a DA nervous system in the adult 

hermaphrodite of C. elegans supported by 8 DA containing neurons (Sulston et al., 

1975).  The development of FIF techniques (Falck et al., 1962) allowed for visualization 

of a DA signal from specific neurons within fixed C. elegans.  Six of these neurons reside 

in the hermaphrodite head and were called the CEP and ADE cell groups.  Taking 

advantage of serial electron micrographs, Sulston et al, reconstructed the wiring of this 

DA nervous system in the head, reporting both axonal and dendritic like projections for 

each of the 6 head neurons.  The four CEP neurons send long dendritic projections to the 

nose of the worm with several small axonal projections into the nerve ring, while the two 

ADE cell bodies alternatively send small dendritic projections to body wall muscles with 

longer axonal projections to a ventral ganglion, which synapse into the nerve ring.  

Another cell group, the PDE cells, were located in the mid-body of the worm and 

sends long projections project ventrally from the PDE cell body, which run both 

anteriorally and posteriorally along the ventral nerve cord.  Little is known about the 

synaptic connections made by the PDE neurons. 

Although promoter fusions provided evidence of DAT-1 expression in these 

neurons, visualization of DAT-1 protein distribution in the various DA cell groups have 

not been explored, and specific localization of endogenous DAT-1 protein remained 
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unknown.  A COOH-terminal GFP fusion to DAT-1 (DAT-1:GFP) was reported to 

rescue 6-OHDA toxicity in the dat-1(ok157) KO strain but localization in vivo was never 

discussed (Nass et al., 2002).  Given known COOH-terminal interactions with 

mammalian DAT-1 proteins, we re-examined these proteins in vivo to reveal significant 

intracellular accumulation (Chapter IV).   

To advance studies of DAT regulation in a genetically-tractable model system, we 

have established the cellular localization of the C. elegans DAT-1 protein using newly 

developed DAT-1 antibodies.  Affinity-purified DAT-1 antibodies directed against the 

transporter’s COOH terminus specifically stained both DAT-1 transfected COS-7 cells 

and wild type (N2) nematode DA neurons and processes.  Native DAT-1 protein was 

detected at moderate levels within DA neuron cell bodies and was enriched in axon 

terminals, with low but detectible expression along dendrites.   

The function of the synaptic vesicle motor protein UNC-104, which is essential 

for the targeting of proteins that reside on synaptic vesicles to synapses, was also 

examined.  Localization of native DAT-1 protein in a mutant UNC-104 background (unc-

104(e1265)) reveals that DAT-1 localization to either the nerve ring or elaboration along 

dendrites is independent of UNC-104 function, revealing a heretofore unrecognized mode 

of delivery of DAT-1 protein to these cellular compartments.  

 

MATERIALS AND METHODS 

Plasmid Constructs   

Bacterial expression vectors were created for the production of GST:COOH-terminal 

fusion peptide for use in antibody production against the cytosolic C-terminus (C-term) 
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of DAT-1.  cDNA encoding the DAT-1 COOH-terminus was amplified from full length 

dat-1 cDNA (pRB235) using oligonucleotides that encoded a 5’ BamHI and 3’ EcoRI 

restriction sites suitable for cloning into pGEX5x3 expression vectors (Pharmacia 

Biotech, Milwaukee, WI)  (TCA sequence was added 3’ of either sequence and just 5’ of 

EcoRI sites to create a stop codon and have been underlined in the oligo sequences).  The 

COOH-terminal peptide was amplified using oligos RB 1402 (5’ – CGC CGG ATC CTC 

TAC AAA TTC GTC AAT GCG AGG – 3’) and RB 1403 (5’ – CGC CGA ATT CCT 

TCA TAG CAT TAT GTC AGA GTG CGG – 3’).  The resultant cDNA fragments were 

cloned into pGEMT-easy vectors and sequences verified by di-deoxy nucleotide 

sequencing (Center for Molecular Neuroscience, Neurogenomics Core).  Correct clones 

were subcloned into the bacterial expression vector pGEX5x3 (Promega, Madison WI) to 

create the final pBY633 vector. 

 

Peptide and Antibody Production   

Polyclonal antibodies were generated against a GST fusion protein consisting of the 

entire DAT-1 intracellular COOH-terminus.  The NH2 terminal GST fusion protein 

expression vector (pBY633) was transformed into BL21(DE3) cells for bacterial 

expression.  Individual colonies were picked and grown in 40mL of liquid broth (LB) 

overnight at 37°C under selection.  The 40mL LB/bacteria media was added to 400mL of 

LB with 2% glucose and agitated for 1 hr at 37°C.  Chemical induction of bacterial 

expression was initiated using isopropyl-beta-D-thiogalactopyranoside (IPTG) and 

protein purification was performed as previously described (Ferguson et al., 2003), 

except purified extract was visulized on an 10% SDS-PAGE gel via Zinc staining and the 
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full-length fusion protein was extracted by gel electroelution (Pierce, Rockford IL) .  The 

resultant purified full-length fusion protein was then dialyzed to a final concentration of 

1mg/mL and used for immunization into rabbits with emulsification adjuvent (Prosci, San 

Diego, CA).  Serum obtained from two different rabbits (RB1565 and RB1566) was first 

pre-absorbed against a fixed and permeabilized (Ruvkun fixation protocol (Finney and 

Ruvkun, 1990)) DAT-1 deficient C. elegans strain (dat-1, ok157) to remove any non-

specific antibodies generated by a previous nematodal infection in the rabbits as well as 

epitopes unrelated to the DAT-1 protein.  This dat-1 cleared antiserum was then used in 

all immunofluorescent experiments. 

 

Mammalian Cell Culture and Immunofluorescence 

In order to test the specificity of our antibodies for immunofluorescence, HEK-293T cells 

were transfected with DAT-1 cDNA and probed with our purified DAT-1 antisera. Cells 

were plated at 60,000 cells/dish in γ-irradiated 35mm glass bottom microwell poly-d-

Lysine coated dishes (MatTek Cultureware, Ashland, MA) and allowed to attach for 24 

hr prior to transfection. The cells were transfected with 200ng of either DAT-1 cDNA 

(pRB454, (Jayanthi et al., 1998)) or an empty vector (pcDNA3, Invitrogen, Carlsbad, 

CA) using TransIT-LT1 (Mirus, Madison, WI) as the transfection vehicle. At 48hr post-

transfection, the cells were washed once with room temperature phosphate buffered 

saline (PBS). The cells were then fixed with 2mL of Prefer fixative (ANATECH LTD., 

Battle Creek, MI) for 15 minutes at room temperature and washed twice with TRIS 

buffered saline (TBS).  Cells were blocked for 1 hr in TBS containing 2% Normal Goat 

Serum (NGS) (Jackson Immunoresearch, West Grove, PA) and 0.2% IGEPAL CA-630 
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(Sigma Aldrich, St. Louis, MO).  DAT-1 cleared serum diluted 1:100 in blocking agent 

was added to the cells and incubated for 2 hours at room temperature. The cells were 

washed three times with TBS/0.2%IGEPAL CA-630 then stained for one hr at room 

temperature in a 1:5000 dilution of Goat anti-Rabbit CY3 labeled secondary antibody 

(Jackson ImmunoReseach) and finally washed two times with room temperature TBS and 

suspended in room temperature PBS for imaging.  

 

Confocal Imaging 

Indirect immunofluorescence images for both cell culture and nematode staining 

experiments were taken using an LSM510 confocal microscope (Vanderbilt Cell Imaging 

Core).  Either a single confocal image plane (1.2uM) or a series of 1.2uM image planes 

were obtained, creating a “Z stack”.  Z stacks were used to create 3D reconstructions of 

images and have been noted in the figure legends.   

 

C. elegans Fixation and Immunofluorescence 

Animals were fixed using 1% formaldehyde following a modified Finney/Ruvkun 

fixation protocol (Finney and Ruvkun, 1990) as adapted by C. Niemeyer and D. Miller 

(Miller and Niemeyer, 1995).  After fixation, animals were additionally permeabilized by 

adding 500µL of collagenase solution (2mg/mL collagenase type I, Sigma, 100mM TRIS 

pH 7.4, 1mM CaCl2) to 50µL of fixed strain.  Animals were shaken vigorously for 30 

minutes on a VWR mini-vortexer at high speed in a 1.5mL microcentrifuge tube and then 

pelleted at 2,000g on a Sorval Biofuge Fresco for 5 minutes.  The collagenase solution 

was then aspirated off and 500µL of antibody buffer A (AbA) was added to the worm 
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pellet.  Animals were washed in AbA 2 times.  Both antiserum from RB1565 and a Cy3 

conjugated goat anti-rabbit secondary antibody (Jackson ImmunoReseach) were exposed 

to fixed permeabilized dat-1 animals for 24 hr at 4°C to remove any non-specific 

antibodies.  Preabsorbed RB1565 was used at a concentration of 1:500 in AbA and 

exposed to permeablized animals for 16 hr at 4°C.  Animals were washed 6 times (3 

quick, and 3, 15 minute washes) in AbB.  The Cy3 preabsorbed secondary Ab was used 

at a concentration of 1:1000 in AbB.   

 

C. elegans Strains 

All strains were derived from the wild-type N2 Bristol isolate and maintained at 14 to 

25°C using standard methods (Brenner, 1974). The unc-104 (e1265) line was obtained 

from the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis).  The 

dat-1(ok157) strain was a gift of J. Duerr and J. Rand (Oklahoma Medical Research 

Foundation, Oklahoma City).  The BY250 strain which expresses GFP in all DA neurons 

was a gift from G Wong (A. I. Virtanen Institute, Kuopio University, Finland). 

 

RESULTS 

DAT-1 COOH Terminus Peptide Expression and Purification 

 Bacterial expression of the GST:COOH-terminal DAT-1 fusion was initiated by 

IPTG induction of BL21(DE3) cells.  Pre- and post- induction bacterial lysate was 

analyzed on a 12% acrylamide gel and protein was visualized by GelCode Blue staining 

(Pierce, Rockford, IL).  Protein staining revealed induction of GST:COOH-terminal 

peptide that was absent in the pre-induction lane, with a higher molecular weight than 
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purified GST alone (Fig. 7A).  The post-induction bacteria were then lysed and the 

GST:COOH-terminal fusion was purified on glutathione beads.  Purified product was 

again tested for purification using SDS-PAGE and revealed protein bands consistent with 

both a full length fusion protein as well as several degradation products which migrated 

at a lower molecular weight (Fig 7B).   

 To obtain a full length GST:COOH-terminal peptide, glutathione purified peptide 

was analyzed on a 10% polyacrylamide gel and zinc stained to isolate full length product 

(Fig. 7B).  The highest molecular weight product that had a mobility consistent with our 

full length GST:COOH-terminal fusion was extracted and electro-eluted to obtain a 

purified full length fusion peptide.  This purified product was again analyzed on a 12% 

polyacrylamide gel and visualized, revealing only full-length fusion peptide (Fig. 7C). 

This material was then used as an immunogen for DAT-1 antibody production in rabbits. 

 

Immunoreactivity of DAT-1 Antibodies via Western Blot Analysis 

 Two separate rabbits (PAS 1565 and PAS 1566, ProSci, Poway CA) were 

immunized with the GST:COOH-terminal DAT-1 peptide and serum collected from both 

was tested by ELISA to assay immunoreactivity.  The antiserum, now named RB1565 

and RB1566, showed evidence of a high specific ELISA titer (RB1565 > 1:75,000, and 

RB1566 > 1:50,000) and thus immunoblotting of purified DAT-1 protein was tested.   

 Both antisera were tested for immunoreactivity against GST, the GST:COOH-

terminal fusion peptide, and COS-7 cell extract expressing DAT-1 protein.  Only the 

antiserum from RB1565 showed high molecular weight product, consistent with the full  



Figure 7.  Peptide Purification and Antibody Recognition of DAT-1 by Western Blot Analysis.

A.  Bacterial lysate from BL21(DE3) cells transfected with the pBY633 GST:COOH-term fusion vector.
Lane 1 contains purified GST (asterisk) while lane 2 and 3 contain bacterial lysate.  Pre-induction lysate is
analyzed in lane 2 and compared with post-induction lysate in lane 3.  Significant GST:COOH-terminus
expression can be seen in the post induction lane (arrow).  B.  Zinc staining of post glutathione purified
fusion protein.  Several background or degraded bands are seen below the highest full length protein band
(arrow) which was selected for gel purification and ellectroelution.   C.  Post-purified and full length
peptide were analyzed in comparison to GST alone (asterisk).  All background and degredation products
were removed by previous gel purification (in B) and lanes 3 and 4 reveal full length fusion protein product
used to inoculate rabbits.  D.  Western blot analysis of GST, fusion peptide, and full length DAT-1 using
RB1565 antisera.  The antisera recognizes GST, the fusion peptide, and full length and glycosylated DAT-1
from COS-7 cell extracts (arrow).

66
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length DAT-1 protein (Fig 7D) and was therefore tested in immunofluorescence 

experiments on fixed C. elegans strains. 

 

DAT-1 Antibodies Recognize DAT-1 in Transfected Cells 

 Antisera RB1565 and RB1566 were assayed for DAT-1 immunoreactivity and 

specificity using HEK293T cells transfected with either a plasmid containing DAT-1 

cDNA (p235) or an empty vector (pBluescriptII).  Cells transfected with p235 (Fig. 8A & 

B), but not empty vector (Fig. 8C & D), showed specific periplasmic staining with the 

RB1565 antibody (and to a lesser degree with the RB1566 antisera, data not shown).  Ab 

RB1565 was therefore used in immunofluorescence experiments using either DAT-1 

knockout (dat-1(ok157)) or wild type (N2) C. elegans strains.   

 

DAT-1 Antibodies Define DAT-1 Expression in Fixed C. elegans In Situ 

N2 and dat-1 lines at mixed stages were washed off a small NA22/OP50 plates 

and fixed using a modified Finney Ruvkin fixation procedure.  Fixed animals were 

incubated in RB1565 antisera and subjected to indirect immunofluorescence using a goat 

anti-rabbit CY3 secondary antibody.  A majority of the N2 animals displayed staining in 

all the DA head neurons, including the four CEP and two ADE neurons (Fig 9A). The 

majority of the Cy3 secondary signal emanated from the ADE and CEP cell bodies (small 

dots represent cell somas, 9A) and in areas consistent with synaptic terminals innervating 

the nerve ring (asterisk, 9A) and the ventral ganglion (Fig. 9A, arrow).  There was also 

reduced signal along dendritic projections from the CEP cell bodies (arrowheads, 9A). 

Identification of the PDEs was rarely noted.  DAT-1 specific staining was absent in the  



Figure 8.  Antibody RB1565 Reveals DAT-1 Protein Expression in HEK Cells.

A.  HEK cells transfected with pBlueScript cDNA and probed with RB1565 display no detectible
RB1565 immunoreactivity.  B.  DIC images taken simultaneously during the CY3 scan reveal the
presence of multiple HEK cells in the field of view.  C.  CY3 imaging of RB1565 and CY3 secondary
antibodies recognizing DAT-1 protein expression in DAT-1 expressing HEK cells.  D.  DIC images
taken simultaneously during the CY3 scan reveal differential expression in multiple cells in the field of
view.

68
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dat-1(ok157) KO strain (Fig. 9C).  It should be noted that the greatest intensity of DAT-1 

specific staining was obtained using young animals, with a reduction in staining 

progressively occurring over the lifetime of the animal (data not shown).  Similar results 

were noted with our GFP:DAT-1 fusion protein and transcriptional regulation of the 

DAT-1 promoter region was tested and will be discussed in Chapter IV. 

 

The UNC-104 mutant unc-104(e1265) displays normal DAT-1 staining in situ. 

 The kinesin motor protein UNC-104 has been shown to traffic synaptic vesicle 

proteins directly to the synapse (Hall and Hedgecock, 1991).  To test whether DAT-1 

synaptic localization is dependent upon a functional UNC-104 protein, a mutant line 

(unc-104(e1265)), which has been shown to be sufficiently defective in VMAT 

localization (Duerr et al., 1999).  Unc-104 animals were selected based on their overall 

UNC phenotype and were fixed and subjected to indirect immunoflurescence assays 

using the RB1565 antibody. Significant immunoreactivity was maintained in nerve ring 

structures (Fig. 9B, asterisk) including the ventral ganglion projection from the ADE cell 

bodies (Fig. 9B, arrow).  Immunoreactivity was also detected in CEP projections up to 

the nose of the animal (Fig 9B, arrowheads) indicating that dendritic expression was 

maintained in this mutant line.  No significant cell body accumulation was noticed in this 

line (Fig. 9B, dot) suggesting that UNC-104 plays little role in DAT-1 synaptic 

localization.   

 

 

 



Figure 9.  DAT-1 Antisera RB1565 Reveals DAT-1 Localization In Situ.

A.  N2 animals stained with RB1565 followed by a CY3 secondary demonstrate cell body (dots),
synaptic (asterisk, arrow) and dendritic localization.  DAT-1 immunoreactivity in cell bodies is
restricted to the perinuclear zone and specific accumulation can be noted in the nerve ring
(asterisk).  There is also faint but specific staining out along dendritic projections from the CEPs
to the nose.  B.  Mutant unc-104 animals display similar staining patterns as noted in N2 animals
including ventral ganglion (arrow), nerve ring (asterisk) and dendritic expression(arrowheads).
C.  DAT-1 knockout animals display no specific anti-DAT-1 staining.

70

dat-1

C



 71 

DISCUSSION 

 

Indirect immunofluorescence using the newly developed RB1565 antibody 

reveals that the C. elegans DA transporter (DAT-1) is expressed in all cellular 

specializations of the C. elegans DA neurons.  Expression of DAT-1 is enriched in 

locations described as nerve terminals by Sulston (Sulston et al., 1975), in the ventral 

ganglion projection from the ADE cells, and in cell bodies, with reduced 

immunoreactivity in dendritic projections from the CEPs.  This staining is consistent with 

DAT immunostaining in higher organisms including rat and human studies, where DATs 

have been reported to be located in dendrites, cell bodies, with accumulation at terminals 

(Hersch et al., 1997; Nirenberg et al., 1997). 

 Cell body, dendritic, and synaptic localization of DAT-1 is consistent with 

antibody studies performed on mammalian DATs.  Studies performed by Nirenberg and 

colleagues on rat midbrain tissue using both immunohistochemistry and immunogold 

techniques revealed a high density of rDAT in nerve terminals of the striatum where it 

obtained a “peri-synaptic” localization (Hersch et al., 1997; Nirenberg et al., 1997).  An 

enriched synaptic density and peri-synaptic localization was also confirmed for hDAT in 

striatal tissue from post mortem brains (Ciliax et al., 1999).  These results are consistent 

with our findings in C. elegans fixed strains, where an increase in immunoreactivity is 

noted in areas consistent with synaptic localization.  

Substantia nigra cell bodies from rat midbrain also revealed significant 

immunoreactivity for DAT antibodies (Nirenberg et al., 1996; Hersch et al., 1997), with 

higher resolution immuno EM revealing DAT in structures consistent with Golgi body 
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and endoplasmic reticulm (ER), consistent with DAT-1 maturation and glycosylation via 

these pathways.  DAT was also found in tubuolovesicular bodies near the plasma 

membrane and inserted in dendrites (Nirenberg et al., 1996; Nirenberg et al., 1997).  

Again, we find striking similarities using our DAT-1 specific antibodies to studies 

performed in mammals.  DAT-1 signal is significant in the cell body, although it is 

apparently excluded from intracellular structures consistent with Golgi and ER 

membranes.  This exclusion could be due to the fact that our antibody detects COOH-

terminal epitopes whereas the previous studies used either NH2-termial or second loop 

directed antibodies.   

Studies on the human DA transporter (hDAT) reveal that different DA projections 

(Nigralstriatal v. mesocortical) contain a varying density of hDAT in terminal fields 

(Ciliax et al., 1999).  We report a similar finding in the C. elegans DA nervous system 

with CEPs expressing the highest about of immunolabeling followed closely by the ADE 

cell groups.  In all of our studies, there was no distinguishable PDE immunoreactivity, 

suggesting a very low level of DAT-1 is maintained in these cells.   

The kinesin motor protein UNC-104, which traffics synaptic vesicles and 

associated proteins to synaptic targets, is not responsible for DAT-1 localization to nerve 

ring structures.  Examination of DAT-1 localization using the RB1565 antibody reveals a 

localization pattern that is strikingly different from synaptic vesicle proteins visualized 

using similar fixation and visualization methods and GFP fusion techniques (Nonet et al., 

1993; Duerr et al., 1999; Nonet, 1999).  The fact that DAT-1 is not loaded onto transport 

vesicles and directly targeted to the synapse indicates a yet unknown mechanism for 

DAT-1 synaptic targeting and accumulation.  Recent findings of non-SNARE dependent 
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trafficking of the rat gamma-aminobutyric acid  transporter (rGAT-1) supports a role for 

the Exocyst complex proteins may be important for transporter budding from the 

Golgi/ER complex and subsequent plasma membrane localization/insertion (Farhan et al., 

2004).   

The Exocyst complex was originally identified in yeast and involves at least 15 

gene products which are specifically involved in vesicular transport from the Golgi to the 

plasma membrane (TerBush et al., 1996).  A member of the Exocyst complex, Sec-5, was 

shown to effect neuronal outgrowth without effecting synaptic release in drosophila, 

suggesting that the Exocyst complex does not effect synaptic vesicle targeting but does 

localize proteins important for neuronal growth to the plasma membrane (Murthy et al., 

2003).  This model of Exocyst mediated transporter localization supports a non-UNC-104 

dependent localization process that should be examined further.   

 This study highlights C. elegans DAT-1 steady state localization in fixed and 

permeabilized wild type strains using newly developed C-terminal antibodies.  These 

antibodies recognize full length DAT-1 in both transfected cells and in native wild type 

tissues, demonstrating utility as an immunohistochemical reagent.  RB1565 also 

recognized full length DAT-1 protein via western blot analysis, making this antisera a 

potential biochemical reagent.  Examination of the UNC-104 mutant line suggests that 

DAT-1 is not trafficked by this kinesin motor protein but might use a heretofore 

unrecognized localization strategy, potentially via exocyst machinery as is suggested for 

rGAT-1. 
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CHAPTER IV 

 

LOCALIZATION AND TRAFFICKING OF C. ELEGANS DAT-1 IN VIVO 

 

INTRODUCTION 
 

Reuptake of DA through DAT is the primary mechanism by which DA signaling 

is terminated at the synapse (Gainetdinov et al., 1998; Benoit-Marand et al., 2000).  

Either genetic or pharmacological ablation of DAT leads to a marked increase in DA 

clearance time, with clearance rate in the synapse diminishing to diffusion (Giros et al., 

1996).  This data implies a specific need for DAT to govern both the spatial (synaptic) 

and temporal (rapid termination) clearance of DA.  It is therefore important to understand 

mechanisms by which DAT is trafficked and retained at the synapse in order to better 

understand DA signaling in the nervous system.  

Electron micrographs using gold labeled antibodies directed against the rat DAT 

(rDAT) revealed that rDAT is located at the plasma membrane and on tubulovesicular 

structures near the soma of cell bodies.  It is also localized to plasma membranes in 

intermediate and distal dendrites in the Ventral Tegmental Area (VTA) and Substantia 

Nigra (SN), with the majority of rDAT localizing on either side of the active zone in a 

perisynaptic zone at the synapse (reviewed in Chapters I and III).  These studies give a 

static image of DAT localization in fixed and sectioned tissue.  Several in vivo imaging 

studies including imaging in rhesus monkeys using radiolabeled ligands specific for DAT 

show a high density of DAT in the striatum (Fischman et al., 1997).   Although these 

studies are consistent with an accumulation of plasma membrane elaborated DAT at 
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nerve terminals observed in the high resolution immuno EM antibody studies (Hersch et 

al., 1997; Nirenberg et al., 1997), they are of insufficient resolution to ascertain 

subcellular localization patterns in the same cell.  

The discovery of a bioluminescent protein that can be genetically encoded 

revolutionized the study of protein trafficking both in vitro and in vivo.  Publication of the 

primary sequence of the green fluorescent protein (GFP) from the jellyfish Aequorea 

victoria enabled biologist, for the first time, to encode genetically a fluorescence 

molecule (Prasher et al., 1992) and examine gene expression, protein trafficking and 

protein-protein interactions in real time, in vivo.   

The cloning of various DATs combined with the publication of the GFP sequence 

made translational fusions of DATs that could report DAT localization a possibility.  An 

NH2-terminal GFP fusion to hDAT was first utilized in 1999 when Daniels and Amara 

examined PMA induced internalization of hDAT in Madin-Darby canine kidney 

(MDCK) cells (Daniels and Amara, 1999).  Discussion of PMA-induced internalization 

of the transporter were emerging in the literature and various kinetic and biochemical 

studies had supported the idea of hDAT internalization upon PMA stimulation (Pristupa 

et al., 1998).  Using the GFP:hDAT fusion, regulated internalization upon PMA 

activation could be both qualitatively and quantitatively assayed in living cells, bypassing 

the dependence of molecular biologists on fixation and use of fluorescently labeled 

antibodies.  Fluorescently labeled DATs have since been used as tools to examine cellular 

localization, oligomerization, and movement of DAT in response to various stimulus in 

real time, demonstrating the utility of such fusions for elucidating DAT regulation 

(Sorkina et al., 2003; Kahlig et al., 2004; Garcia et al., 2005). 
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Torres et al. identified PICK1 as a modulator of DAT localization to the plasma 

membrane, suggesting that there exists proteins which mediate DAT localization in the 

membrane.  PICK1 was originally identified as a PKC interacting protein and was 

subsequently named for this interaction (protein that interacts with C kinase or PICK1) 

(Staudinger et al., 1995).  PICK1 contains a PDZ (PSD-95, dishevelled and ZO1) motif 

which is a molecular protein interaction domain and was found to be the mediator of 

PICK1/PKC binding (Staudinger et al., 1997).  This PDZ domain is promiscuous and can 

interact with several different tripeptide binding motifs including a type I (S/TxV, where x is 

any amino acid) and type II (φXφ, hydrophobic, x, hydrophobic) interaction domain usually 

located at the distal COOH-terminus of proteins (Staudinger et al., 1997).   

Investigation of DATs reveals a conserved type II PDZ binding motif in the distal 

COOH-terminus.  When the COOH-terminal peptide was used as bait in a yeast-two-

hybrid screen, PICK1 was identified as a DAT interacting protein (Torres et al., 2001).  

Truncation of the PDZ binding domain revealed that it is important for DAT maturation 

in the Golgi, plasma membrane retention, and function (Torres et al., 2001; Bjerggaard et 

al., 2004).  Evidence from Torres et al. suggested that this binding domain might mediate 

synaptic targeting of DAT in midbrain cultures.  Bjerggaard et al. found, however, that in 

cell culture, interfering with the PDZ binding domain by addition of an alanine to the 

PDZ binding sequence (which has been shown to disrupt PDZ interactions) did not 

interfere with plasma membrane expression.  However, ablation of the PDZ recognition 

motif correlates with a decreased protein expression and results in intracellular 

accumulation.  

To advance studies of DAT regulation in a genetically tractable model system, we 

previously established the cellular localization of the C. elegans DAT-1 protein using 
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DAT-1 specific antibodies.  In the current study, we take advantage of facile C. elegans 

transgenic techniques to examine the localization of a green fluorescent protein (GFP) 

fused to the NH2-terminus of DAT-1, creating a GFP:DAT-1 translational fusion protein.  

This protein is expressed specifically in nematode DA neurons in vivo in an attempt to 

establish a platform for studies of GFP:DAT-1 distribution and examine effects of 

mutations, including truncation of this conserved PDZ binding domain.  

The distribution of NH2-terminal-tagged GFP:DAT-1 matches that expected from 

native DAT-1 expression, including synaptic co-localization with monomeric red 

fluorescent protein (mRFP)-tagged vesicular monoamine transporter (VMAT). Whereas 

mRFP:VMAT targeting to synapses is lost in the synaptic vesicle motor mutant unc-104, 

GFP:DAT-1 (as well as native DAT-1 protein (described in Chapter III)) synaptic 

localization is unaffected, revealing a heretofore unrecognized mode of delivery of DAT-

1 protein to synapses. 

To date there is no model for the study of biogenic amine transporter localization 

to synaptic regions in an intact nervous system in vivo achievable at single neuron 

resolution.  In this study we present efforts to quantitate the localization of the C. elegans 

DA transporter (DAT-1) in different compartments of single dopaminergic neuron in 

vivo, and examine the impact of various perturbations linked to altered transporter 

trafficking, including the study of DAT-1 mutants identified in a forward genetic screen 

for 6-OHDA resistance, DAT-1 localization in an UNC-104 (microtubule based 

transport) deficiency line, and alteration of a canonical PDZ binding domain that is 

conserved in DAT-1.   
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MATERIALS AND METHODS 

Plasmid Construction   

Pdat-1::GFP:DAT-1 vector constructs   

In order to establish localization of a GFP:DAT-1 fusion protein in vivo, a GFP:DAT-1 

C. elegans expression vector was generated.  Creation of the Pdat-1::GFP:DAT-1 fusion 

vector pPM005 (pBY538) was described previously (Carvelli et al., 2004).  The PDZ 

deletion mutant was created using oligo RB2004 (5’ – CGG AAG ATC TTC AGT CAG 

AGT GCG GTT GAG TGG – 3’) and RB1241 described previously (Carvelli et al., 

2004).  Amplification of dat-1 cDNA using antisense oligo RB2004 deletes the final 9 

nucleotides from the distal COOH-terminus, creating a premature stop and ablating a 

PDZ motif (IML*) upon translation.  This ΔPDZ fragment was sub-cloned into pGem2T-

easy and the entire dat-1ΔPDZ cDNA was sequenced.  A correct clone was identified and 

sub-cloned into pBY538 replacing the full-length dat-1 cDNA and creating pBY814 (Pdat-

1::GFP:DAT-1ΔPDZ).  The COOH terminal fusion construct was created as described 

previously (Nass et al., 2002). 

Pdat-1::CAT-1:mRFP vector constructs.   

To establish synaptic areas in DA neurons, we created the DA neuron specific vector 

driving the monomeric Red Fluorescent Protein (mRFP) fused to the C. elegans VMAT 

homolog CAT-1.  mRFP was amplified from a pRSETv containing mRFP1 (Campbell et 

al., 2002) using oligos RB1957 (5’ – GGC GCG CCA TGG CCT CCT CCG AGG ACG 

– 3’) and RB1958 (5’ – GGC GAG ATC TTT AGG CGC CGG TGG AGT GG – 3’).  

RB1957 contains an AscI site just 5’ of the mRFP ATG and RB 1958 contains a BglII site 

in place of the TAG stop codon.  C. elegans vesicular monoamine transporter (VMAT or 
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CAT-1) was amplified from N2 genomic DNA using RB2010 (5’ – CGC CTT AAT 

TAA TGT CGT ACA TTC TTG ATT GG – 3’) containing a 5’ PacI site and RB2011 (5’ 

– GGC GCG CCT AAA TGC ACT GGT TGC AG– 3’) containing a 3’ AscI site.  Both 

mRFP and CAT-1 products were cloned into pGEM2T-easy creating pPM023 and 

pPM024 respectively.  Both clones were sequenced as above.  The dat-1 sequence from 

pBY538 was removed and replaced with mRFP isolated from pPM023 using AscI and 

BglII, enzymes creating pPM023.1.  The GFP sequence from pPM023.1 was removed 

and replaced by cat-1 isolated from pPM024 using PacI and AscI enzymes to create Pdat-

1::CAT-1:mRFP (pBY813).   

 

Mammalian Cell Culture and Immunofluorescence 

Methods for cell expression and imaging were described previously in Chapter III.  

 

C. elegans Fixation and Immunofluorescence 

Analysis of DAT-1 specific antibodies and strain preparation were described previously 

in Chapter III.    

 

Sample Preparation for Imaging 

In order to visualize fluorescent fusion proteins in vivo, gravid adults from either the 

BY250 (cytosolic GFP in all DA neurons), BY312 (GFP:DAT-1 fusion in all DA 

neurons), or the BY350 (GFP:DAT-1(ΔIML)) lines were picked to small NA22/OP50 

plates and allowed to lay eggs.  After 48hr at 20°C, small L2/L3 animals were collected 

using water and pelleted for 1 min at 2,000 x g.  Alternatively, synchronized L1s were 
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plated on small NA22/OP50 plates and collected with water 24 hr after plating.  Water 

was then decanted and anesthetic (.02% tetramisol, .2% Tricane in H2O) was added to the 

animals.  Animals were then allowed to paralyze in the anesthetic for 10 minutes before 

being mounted on a 2% agarose pad.  Animals prepared for immunofluorescence studies 

were directly mounted on 2% agarose after final antibody wash was completed.  Cover 

slips were then placed onto the sample and imaged within 30 minutes of original 

anesthetic exposure. 

 

C. elegans Strains 

All strains were derived from the wild-type N2 Bristol isolate and maintained at 14 to 

25°C using standard methods (Brenner, 1974). The unc-104 (e1265) line was obtained 

from the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis).  The 

dat-1(ok157) strain was a gift of J. Duerr and J. Rand (Oklahoma Medical Research 

Foundation, Oklahoma City).  The BY250 strain expressing cytosolic GFP driven by the 

DAT-1 promoter in DA neurons produced as described by Lakso and colleagues (Lakso 

et al., 2003) and was a gift from G. Wong. 

 

C. elegans Genomic Preparation 

Genomic preparation was carried out as describe previously (Nass et al., 2005). 

 

C. elegans dat-1 Genotyping 

In order to determine dat-1 alleles, dat-1 knockout (dat-1(ok157)) and wild type (dat-1) 

DNA was obtained and used to determine the genotype of lines after husbandry 
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experiments.  Oligonucleotides directed against a 30 base sequence 200 bp 5’ of the dat-1 

ATG (RB 1731 5’ – GGC ACA CAT ACA CCG GAA TAT TCG ACA TGC – 3’) and a 

27 base sequence 15 bp 3’ of the dat-1 stop codon (TGA) (RB 817 5’ – CGA GTG AAA 

CTA GGA TAA TGA AAG TGG – 3’) amplify a 4 kb fragment in N2 animals.  Mutant 

dat-1(ok157) animals contain a truncation midway through exon 4 that leads to a 

functional null (Nass et al., 2002).  Amplification of the dat-1 allele in this strain leads to 

a 1.8kb fragment.  DNA from genomic preps was used at a concentration of 1ng/µL.  

PCR based analysis was performed using Advantage 2 PCR kit from BD Biosciences 

with 1ng of DNA, 50pM of RB 1731 and RB 817 in a total reaction volume of 25µL.  

PCR was performed in a Peltier thermal cycler (PTC-200 from MJ Research) using an 

initial “hot start” of 94°C for 2 minutes then followed by 30 cycles of 94°C melting for 

15 seconds, 60°C annealing for 30 seconds, and 68°C extension for 6 minutes.  Samples 

were then analyzed via agarose gel electrophoresis. 

 

Construction of Transgenics and Stable Integrants 

Stable transformants were created by co-injection of plasmid constructs with a marker 

plasmid using standard methods (Mello et al., 1991). Transgenic animals containing the 

GFP:DAT-1 translational fusion (pBY538) were obtained after co-injection of a final 

concentration of 15ng/µL of pBY538, 60ng/µL of pRF4[rol-6(su1006)], 50ng/µL of 

carrier DNA (pBluescript), and 2µL of 10x injection buffer into the dat-1 strain.  

Transgenic animals containing the CAT-1:mRFP translational fusion (pBY813) were 

obtained after co-injection of a final concentration of 15ng/µL of pBY813, 60ng/µL of 

pRF4[rol-6(su1006)], 60ng/µL of carrier DNA (pBluescript), and 2 µL of 10x injection 
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buffer into dat-1 strain.  L4s from lines containing extrachromasomal arrays that 

conveyed low penetrance were exposed to 50ug/ml trimethyl Psoralen for array 

integration as previously reported (Clark and Chiu, 2003).  All integrated lines were then 

outcrossed 4 times to dat-1 animals unless otherwise noted. 

 

C. elegans Husbandry 

Previously we had acquired a strain that was genetically wild type for dat-1 but contained 

GFP in all DA neurons (BY250) (gift from G. Wong).  BY250 was crossed to dat-

1(ok157) strains creating a new BY326 line that expresses soluble GFP in DA neurons 

but is in the DAT-1 KO backgound.  To examine GFP:DAT-1 fusion function in vivo, 

BY312 animals integrated for the GFP:DAT-1 allele, were then crossed to strains 

carrying cytosolic GFP in the dat-1(ok157) background (BY326) strains creating BY329.  

The rest of the transgenic animals created were injected directly into dat-1(ok157) and 

outcrossed to dat-1(ok157) to preserve the dat-1(ok157) locus.  These lines were then 

crossed to BY326 for use in the toxicity assays.  All strains used in 6-OHDA toxicity 

assays were then genotyped to confirm the dat-1 allele. 

 

6-OHDA Toxicity Assay 

The 6-OHDA toxicity assay was performed as described previously (Nass et al., 2002) 

with slight modifications.  Animals were synchronized and plated as described previously 

(Carvelli et al., 2004).  After 24 hours at 20°C, plates were screened for older L4 animals 

that had not been destroyed as L1s by the bleaching procedure.  These animals were 

removed and the remaining L2/L3 animals were washed off of large 8P/NA22 plates 
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using sterile H20.  Animals were washed four times in H2O to remove all bacteria.  

Animals were pelleted and moved to a 1.5mL microcentrifuge tube and the total volume 

of the worm/water slurry was resuspended to a total of 500µL.  An initial stock of 

100mM 6-OHDA in 20mM ascorbic acid was alliquoted and kept at -80°C and used in all 

experiments to reduce variability.  An appropriate amount of the 100mM 6-OHDA in 

20mM ascorbic acid stock was added to the 500µL worm slurry making the final 

concentration either 50mM 6-OHDA in 10mM ascorbic acid (AA) or 25mM 6-OHDA in 

5mM AA.  Animals were then rocked gently on a Nutator at room temperature for 1 hour.  

After treatment, animals were spread on a large 8P/NA22 plate without removal of the 6-

OHDA.  After 72 hr at 20°C, animals were washed off plates using H2O and individual 

strains were placed onto separately prepared 2% agarose pads on slides for visualization.  

Strains were blinded for scoring and animals were scored on a 4 point scale with 4 = no 

intact neurons and 0 = all intact neurons.  A total of 3 groups with 50 animals in each 

group made up the score for each strain.  The total toxicity scored was determined as % 

toxicity using the total number of neurons ablated for the group divided by 200 (total 

number of neurons in group). 

 

C. elegans Biochemistry 

Strains were grown on large 100mm 8P/NA22 plates until gravid.  Eggs were then 

harvested from adults by sodium hypocholirite treatment to synchronize strains (see 

above) and isolated in 35% sucrose by centrifugation for 10 min at 2,000 x g (Sorval).  

This purified egg population was then washed 3x in H2O and 2x in M9 solution.  Eggs 

were incubated at RT for 24 hours and allowed to hatch in M9 solution.  After 24 hours 
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in M9, L1 larvae were plated on large 8P/NA22 plates and incubated at 20°C for 48 hr.  

Animals were then harvested using H20 and then separated from bacterial contaminants 

using 35% sucrose flotation at 2,000 x g for 10 minutes (Sorval).  The top layer 

containing L2/L3 animals was harvested and animals were washed 2x in H20.  After the 

second wash, protease inhibitor cocktail (Sigma) was added to the worm slurry and 

worms were quick frozen in liquid nitrogen.  Frozen strains were then ground to a powder 

using mortar and pestle and kept at -80°C until ready for western blot analysis.   

 

Western Blot Analysis 

To each tube containing the worm slurry preps described above, 500µl of 

Radioimmunoprecipitation Assay Buffer (RIPA) containing a 1:200 dilution of Protease 

Inhibitor Cocktail (Sigma Cat#P8340) was added.  The tubes were rocked on a Nutator at 

40C for 2 hr. Post incubation, extracts were spun at 6,000 x g for 10 minutes to pellet 

undissolved worm debris. The supernants were then transferred to 1.7ml microcentrifuge 

tubes where they were centrifuged at 16,000 x g rpm for 20mintues to further remove 

debris. After centrifugation, samples were transferred to fresh 1.7ml centrifuge tubes and 

placed on ice. The total protein concentration of each sample was assayed using a BCA 

Protein Assay kit (Pierce Cat#23250) and analyzed on a SmartSpec 3000 (Bio-Rad).  An 

equivalent amount of total protein from each sample was calculated and 35µg of total 

protein from each worm line, with the exception of BY250 where only 7µg of total 

protein was used to reduce the signal, was transferred to a new microcentrifuge tube then 

treated with 4X Lammuneli Sample Buffer for 30 min at 250C.  The samples were run on 

a 4-20% Tris SDS-Page Ready Gel (Bio-Rad Cat# 161-1105) then transferred overnight 
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to an Immobilon-P PVDF membrane (Millipore Cat# IPVH00010). The membranes 

where blocked for one hour in Phosphate Buffered Saline (PBS) containing .5%  

Tween20 and 5%  instant nonfat dried milk. After blocking, the membranes were 

incubated for one hour with a 1:1000 dilution in blocking solution of a primary Mouse 

anti-GFP antibody (Clontech BD Living Colors A.v. Monoconal Antibody (JL-8)). The 

membranes were then washed three times for 10 minutes with PBS containing .5% 

Tween 20. After washing, the membranes were incubated for one hour with a 1:15,000 

dilution in blocking solution of a secondary Goat anti-Mouse peroxidase-conjuated 

antibody (Jackson ImmunoResearch Laboratories Cat# 115-035-062).  The membranes 

were again washed three times for 10 minutes with PBS containing .5% Tween 20.  The 

peroxidase was activated using Western Lightning Chemiluminescence Reagent Plus 

(Perkin Elmer Cat# NEL105) and exposed for 15 min to Hyperfilm ECL (GE Healthcare 

Biosciences Cat# RPN3114K).  

To examine the accuracy of the protein loading equivalency, the membranes were 

stripped by rocking them in a 2% SDS, 62.5mM Tris-HCL pH6.8, and 0.7µl/ml b-

mercaptoethanol stripping buffer at 500C for 30 min. The membranes were rinsed with 

deionized water then reblocked and blotted as described above but using a 1:1000 

dilution of a primary Mouse monoclonal anti-Actin antibody (MP Biomedicals Cat# 

69100) instead of the anti-GFP antibody.  

Band densities were analyzed using NIH image and average band density values 

(±S.E.M) were imported into Excel.  Each of the actin bands was normalized to the 

hightest intensity actin band and then used to normalize the band density recorded for the 
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GFP band density in that lane.  Density values were then imported into GraphPad Prism 

(GraphPad, San Diego, CA) and used to generated density bar graphs. 

 

Confocal Imaging 

Imaging was performed as described previously (See Chapter II). 

   

Quantitative Imaging 

In order to determine relative amount of GFP:DAT-1 in different neuronal compartments 

within a single neuron, single confocal image planes (1.2µm) containing both cell body 

and synaptic regions of selected strains were imaged and used to determine the relative 

amount of GFP signal in the different cellular compartment.  Each sample was scanned 

and saturation of pixels was monitored and digital gain was reduced until all pixels 

contained in the image plane were within linear range of the detector (0 – 255 AFU).  A 

single image was then scanned using 4x averaging, containing a 1.2µm section that 

included both the synaptic and cell body regions of a single neuron (and when possible, 

the dendrite).  Pixel intensity was determined using either a line scan over the surface of 

the cell body or synapse with the peak intensity value being used to calculate the overall 

intensity amounts.  Alternatively, pixel density was calculated in Metamorph™ by 

selecting either an area of interest that included the entire cell body, to obtain a total cell 

body fluorescence measure, or a 15 unit radius circle was used to collect data from the 

synaptic region.  Both methods yielded similar results and the specific method used is 

noted in the results.  To ensure consistency, each image was examined non-biasly for a 

maximum pixel intensity level above 220 AFU.  Any images that did not contain at least 
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one pixel above a threshold level of 220 AFUs (as measured by examining the 

“maximum” pixel intensity for the whole image in Metamorph™) were eliminated from 

the data set.   

 

RESULTS 

A GFP Fusion Protein Recapitulates DAT-1 Staining and Rescues 6-OHDA Sensitivity   

 To obtain data for DAT-1 localization and function in living animals, we fused 

GFP to the NH2 terminus of DAT-1 and expressed the fusion protein in all DA neurons of 

a dat-1 (KO) strain using the DAT-1 promoter.  Microinjection of pBY538 (15ug/µL) 

with the rol-6 dominant plasmid (pRF4) and carrier plasmid (pBSKII) created transgenic 

animals containing an extrachromasomal array that were positive for GFP signal.  Several 

lines displaying >90% penetrance were selected for imaging.  All lines showed 

expression in all of the DA neuron head groups (ADEs and CEPs).  GFP:DAT-1 

expression was only observed in the posterior neurons (PDEs) in higher expressing lines 

(>15ng/µL/injection).  Because these lines showed a high degree of mosaicism, we 

integrated the array into the genome to create four stably expressing lines.  Of these four 

lines, the lowest expressing line, as assessed by fluorescent imaging (BY312), was used 

to examine GFP:DAT-1 localization and function in the DA neurons.   

 Confocal imaging of BY312 revealed detectable levels in all aspects of the 6 head 

DA neurons (Fig 10D) with no detectable GFP signal in the PDE neurons.  The highest 

level of GFP expression localized to discrete swellings along the axonal projections and 

at the nerve terminals projecting into the nerve ring (Fig 10D, asterisks).  All of the DA 

head neurons displayed a high level of GFP:DAT-1 expression in cell bodies, which was  



Figure 10.  A GFP:DAT-1 Fusion Protein Recapitulates Native DAT-1 Staining.

Antibodies generated against the COOH-terminus of DAT-1 were first tested on HEK cells transfected
with dat-1 cDNA.  Specific staining of DAT-1 in transfected cells (A) but not in cells transfected with an
empty vector (B) display specificity of DAT-1 antibodies.  Antibodies were then used on wild type (N2
strain) animals and displayed a specific staining pattern for the 6 known DA head neurons (C).  A
GFP:DAT-1 fusion protein recapitulates this native staining pattern (D) with expression in the cell
bodies (arrows) at terminals (asterisks) and in dendrites (arrowheads).
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excluded  from  the  nucleus  and  elaborated  near  the plasma membrane.  The four CEP 

cells showed reduced but consistent expression out along dendritic processes (10D, 

arrowheads).  

 To test the function of the GFP:DAT-1 fusion protein in vivo, 6-OHDA toxicity 

studies were performed.  Toxicity of DA neurons depends upon uptake of 6-OHDA via a 

functional, plasma membrane inserted DAT (Nass et al., 2002; Nass et al., 2005).  

Various lines expressing cytosolic GFP in all DA neurons were used to monitor this 

toxicity.  These lines expressed either the wild type dat-1 allele (BY250), the genetically 

null allele (BY326), or the GFP:DAT-1 fusion protein in the null dat-1(ok157) 

background (BY329, Table 4).  All three strains were synchronized and L2 animals were 

exposed to a high concentration (50mM) of 6-OHDA.  This concentration was sufficient 

to lead to 81.1% toxicity of DA neurons in wild type DAT-1 expressing strains (BY250) 

with marked blebbing and loss of GFP fluorescence in all dendritic processes (Fig 11A, 

arrowheads).  In control animals, only 10.6% of the dat-1 knockout lines (BY326) 

showed any dendritic blebbing or toxicity, with the majority of animals showing no 

effects of the toxin (Fig. 11C).  The introduction of GFP:DAT-1 into the genetically null 

background (BY329) substantially rescued 6-OHDA induced sensitivity to 67.3%, with 

animals showing a range of ablation of the dendritic processes (Fig. 11B, arrowheads).  

This level toxicity was significantly reduced compared to wild type (81.1% v. 67.3%, 

Students t-test) but provided sufficient rescue over the genetically null dat-1 strain (Fig. 

11D). 

 

 



DNA Plasmids Constructs   
   

p R F 4  Expression C. elegans 

 Translated protein rol-6(su1006) 

   

   

pRB235 Parental Vector pBlueScript II 

 Expression  Cell Culture 

 Vector Insert dat-1 cDNA 

 Translated Protein DAT-1 

   

pBY538 Parental Vector pFA6 

 Expression  C. elegans 

 Vector Insert Pdat-1::GFP:dat-1 

 Translated Protein GFP:DAT-1 fusion 

   

pBY633 Parental Vector pGEX-5x3 

 Expression  Bacterial  

 Vector Insert dat-1 C-terminus 

 Translated Protein GST:DAT-1 C-term 

   

pBY813 Parental Vector pBY538 

 Expression  C. elegans 

 Vector Insert Pdat-1::cat-1:mRFP 

 Translated Protein CAT-1:mRFP 

   

pBY814 Parental Vector pFA6 

 Expression  C. elegnas 

 Vector Insert Pdat-1::GFP:dat-1(!IML) 

 Translated Protein GFP:DAT-1(!IML) 

   

 

Table 4.  DNA  Plasmids Used for GFP:DAT-1 Experiments.
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GFP:DAT-1 Co-localizes with the Synaptic Marker Protein VMAT:mRFP In Vivo. 

The distribution of GFP:DAT-1 in the DA neurons revealed accumulation at 

regions consistent with presynaptic DA terminals innervating the nerve ring (Sulston et 

al., 1975).  To better define the synapse, a known synaptic protein, the vesicular 

monoamine transporter (VMAT or CAT-1) was tagged and used for co-localization 

studies with GFP:DAT-1 in vivo.  Specifically, a Pdat-1::CAT-1:mRFP line was created 

using vector p813 and expressed in the DAT-1 KO background (dat-1(ok157)).  

Expression was restricted to the DA neurons in C. elegans and displayed a punctate 

distribution, with the majority of the fluorescent signal emanating from the area of the 

nerve ring.  These lines were then integrated and outcrossed 4x to the DAT-1 knockout 

line (dat-1(ok157)), to eliminate any mutations that might be caused the integration 

procedure, creating BY346.  BY312 (GFP:DAT-1:dat-1(ok157)) animals were then 

crossed to BY346 animals to create a two color animal for use in co-localization studies.  

The VMAT:mRFP signal displayed a distinctively different localization pattern 

compared to GFP:DAT-1 in the DA neurons in vivo.  The VMAT:mRFP signal was split 

between unidentified punctate structures within the cell body (Fig 12B, arrowhead) and 

labeling of terminals projecting into the nerve ring (Fig 12B, arrow).  Expression of 

another synaptic vesicle fusion protein, snaptobrevin (SNB-1) fused to mRFP, leads to a 

similar expression pattern in these same neurons (data not shown) leading us to believe 

that cell body accumulation is not an expression artifact, but rather a feature of synaptic 

vesicle associated protein expression and trafficking.  Areas of highest GFP:DAT-1 

fluorescence signal (Fig 12A, arrow) co-localized with VMAT:mRPF at terminals in the 

DA neurons (Fig 12C, arrow), providing evidence of synaptic enrichment of GFP:DAT-1  



Figure 11.  A GFP:DAT-1 Fusion Protein Restores DAT-1 Function In Vivo.

Animals expressing cytosolic GFP in all DA neurons were subjected to the DA specific neurotoxin 6-
OHDA.  Animals expressing endogenous DAT-1 (N2) were highly susceptible to 6-OHDA toxicity
(A and D) compared to DAT-1 knockout lines (dat-1) (C and D) with fragmented dendrites (arrows).
Animals that were genetically null for DAT-1 but expressed the GFP:DAT-1 fusion protein in all DA
neurons (GFP:DAT-1;dat-1) rescued 6-OHDA sensitivity to near wild type levels (B and D).
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in vivo.  Occasionally, mRFP signal could be observed in dendritic projections that co-

localized with GFP:DAT-1 accumulation at dendritic swellings, potentially displaying 

potential sites of en passant or dendro-dendritic signaling (see Fig. 12C, inset arrow).  

 

GFP:DAT-1 Fusion Protein Accumulates at the Synapse In Vivo. 

  Having defined areas of GFP:DAT-1 accumulation as synaptic, we quantified 

DAT-1 distribution in different cellular compartments of individual DA neurons in vivo.  

Single 1.2µm confocal image planes containing cell body, synaptic regions, and 

occasionally dendrites of a single DA neuron in BY312 animals in vivo, were captured 

and used to determine the relative amount of GFP signal in different cellular 

compartments.  Pixel intensity was determined using a line scan over the surface of either 

the synapse (Fig 13A), cell body (Fig 13B), or dendrite (not shown) with the peak 

intensity value being used to calculate the max intensity values.  A representative 

intensity line scan reveals the Gaussian and punctate nature of the synaptic region (Fig 

13C), while a representative scan from the cell body reveals a bi-modal distribution with 

most of the fluorescence falling along the perimeter of the cell body, within or near the 

plasma membrane (Fig 13D).  Synaptic regions were found to have an average maximal 

fluorescence intensity value of 217.5 ± 6.7 AFU, while maximal cell body fluorescence 

was found to be 41.6% lower (127.0 ± 6.0 AFU) when compared to synaptic fluorescence 

(Fig 13E).  Fluorescence in dendrites had the lowest value with an average fluorescence 

of 76.9 ± 8.5 AFUs or 65% less fluorescence compared to synaptic regions (Fig 13B).  In 

contrast, expression of a cytosolic fluorophore (pTimer), resulted in a predominant 

accumulation of fluorescent signal in the cell body, with little export into the synaptic or  
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dendritic regions (Fig. 14F & H). This data indicates that GFP:DAT-1 is not evenly 

distributed within the cell but rather accumulates at synaptic locations, suggesting either 

an active transport mechanism to the synapse or a passive retention of DAT-1 leading to 

accumulation at the synapse. 

 

DAT-1 Does Not Traffic to the Synapse on Synaptic Vesicles 

 As noted in chapter II, synaptic vesicle associated proteins are delivered to the 

synapse via the kinesin motor protein UNC-104 (Hall and Hedgecock, 1991).  Included 

in this list of UNC-104 dependent proteins is the VMAT2 homologue CAT-1 (Duerr et 

al., 1999). Several hypomorphic alleles of unc-104 have been identified which display an 

overall uncoordinated phenotype resulting from cell body retention of synaptic vesicle 

precursors and their proteins, leading to a reduction in synaptic transmission.  To 

determine UNC-104’s role in GFP:DAT-1 synaptic accumulation, BY312 and BY250 

lines were crossed to the unc-104(e1265) strain which carries an UNC-104 hypomorph, 

creating BY330 and BY354 respectively.  VMAT:mRFP localizes to puncta in the nerve 

ring in a wild type (N2) strain (Fig 14B, arrow), but the mRFP signal is  restricted to the 

ADE and CEP cell bodies in the unc104 mutant line (Fig 14D, arrows).  This is consistent 

with previously reported studies using CAT-1 antibody staining (Duerr et al., 1999), and 

confirms that the e1265 allele is sufficiently hypomorphic to mislocalize VMAT:mRFP 

in vivo.   

Examination of the BY330 lines revealed that reduced function of UNC-104 has 

no effect on overall GFP:DAT-1 distribution (Fig. 15B).  GFP:DAT-1 distribution in the 

unc-104 background did not effect accumulation of GFP signal into the nerve ring (Fig.  
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15B, asterisk) nor out into dendrites (Fig. 15B, arrowheads).  To ensure this was not an 

artifact of the GFP tag on DAT-1, the e1265 strain was permeabilized and indirect 

immunofluorescence assays was performed to examine native DAT-1 localization in this 

strain.  Consistent with the GFP fusion data, this hypomorphic allele had no effect on 

DAT-1 distribution in situ (See Chapter III).  To test in vivo function of native DAT-1 in 

the unc-104(e1265) background, BY354 animals (Table 5) were subjected to 25mM 6-

OHDA and assayed for DA neuron toxicity.  Animals carrying the e1265 allele showed a 

slight and insignificant increase in toxicity induced by 6-OHDA (Fig 19).  Consistent 

with imaging studies, these data indicate that reduction of UNC-104 kinesin motor 

function has little or no effect on DAT-1 localization or function in vivo.  

 

Animals Carrying the unc-104 Hypomorphic Allele Display Reduced Synaptic 

Accumulation In Vivo 

 Whereas VMAT:mRFP signal is entirely retained in the DA cell bodies in the 

(e1265) mutant background, GFP:DAT-1 expression extends both into the axons and 

dendrites, indicating that UNC-104 is not required for somatic export in vivo.  Although 

the unc-104(e1265) background does not alter DAT-1 synaptic localization, per se, 

synaptic density in the unc-104(e1265) background is reduced (Fig 18, G).  

Accumulation of GFP:DAT-1 in nerve terminals of BY312 animals, not in the (e1265) 

backgournd, display a significantly higher density of GFP:DAT-1 signal (one-way 

ANOVA, p < .05).  Because a consistent area measure is taken for each synapse (15 unit 

radius), and maximal pixel intensity within this region is calculated to be > 220 AFU for  



Figure 14.  VMAT:mRFP is Retained in Cell Bodies in an UNC-104 Mutant.

VMAT:mRFP predominantly localizes to the nerve ring (NR) when expressed in a wild type
(N2) strain in vivo (B, NR arrow).  Outcrossing VMAT:mRFP to the e1264 allele of unc-104
leads to cell body retention (D, ADE and CEP cell bodies, arrows).
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each sample (see Methods), this result would indicate a decrease in synaptic density in 

these mutants.   

 

Examination of Novel DAT-1 Mutant Alleles in C. elegans in vivo.  

A genetic screen for mutants resistant to the DA specific and DAT-1 dependent 

toxin 6-OHDA was conducted and novel DAT-1 alleles were isolated (Nass et al., 2005).  

Three novel alleles were identified in this screen, two of which confered missense 

mutations, and a third that resulted in mis-splicing event which results in a neomorphic 

COOH-terminal tail.  The two point mutations recovered result in a glycine to a 

glutamine amino acid substitution at positions 55 and 90 (G55E and G90E respectively).  

The third allele, a splicing mutation, results in a novel reading frame at the beginning of 

exon 12, resulting in a 13 amino acid substitution that replaces a 32 amino acid sequence 

normally coding the remainder of the DAT-1 COOH-terminus.  

To determine the impact of DAT-1 mutations in vivo, we generated transgenic 

nematodes expressing either wild type or mutant GFP:DAT-1 fusion proteins in all DA 

neurons of the worm.  Animals expressing the wt GFP:DAT-1 (GFP:DAT-1WT) fusion 

displayed a readily detectible level of expression in all DA head neurons (CEP, ADE).  

We observed expression of GFP:DAT-1WT primarily along the plasma membrane of the 

CEP and ADE cell somas, out along dendrites, and in terminals as described above, 

consistent a synaptic localization in the nerve ring (Fig 16A).  

Examination of the expression pattern of animals expressing the G55E mutant 

(GFP:DAT-1G55E) revealed little effect on the global distribution of the transporter.  

Overall GFP expression did appear reduced in these lines relative to the wild type  



C. elegans Strains Created or Used   

   

N2 Genotype Wild Type Strain 
   

dat-1(ok157) Genotype dat-1 translocation mutation 
 Protein expression DAT-1 loss of function 

   
unc-104(e1265) Genotype unc-104 mutant 

 Protein expression UNC-104 hypomorph 
 Phenotype Uncoordinated coiler 

   
BY250(vtIs7) Genotype N2 background 

Pdat-1::GFP integration 
 Protein expression GFP in all DA neurons 

   

BY312(vtIs6) Genotype dat-1(ok157) background 
Pdat-1::GFP:dat-1 integration 

pRF4 integration 
 Protein expression GFP:DAT-1 fusion in DA Neurons (low) 

rol-6(su1006) in cuticle 
 Phenotype Roller  

   
BY320(vtIs13) Genotype dat-1(ok157) background 

pBY538 integration 
pRF4 integration 

 Protein expression GFP:DAT-1 fusion in DA Neurons (high) 
rol-6(su1006) in cuticle 

 Phenotype Roller  

   
BY326 Genotype vtIs7 in dat-1(ok157) background 

 Protein expression GFP in all DA neurons 
   

BY329 Genotype vtIs6; vtIs7; in dat-1(ok157) background 
 Protein expression GFP in all DA neurons 

GFP:DAT-1 fusion in all DA neurons 
rol-6(su1006) in cuticle 

 Phenotype Roller 
   

BY330 Genotype vtIs6 in unc-104(e1265) background 
 

 Protein expression GFP:DAT-1 in all DA neurons 

 Phenotype Uncoordinated 
   

BY350(vtIs12) Genotype dat-1(ok157) background 
pBY814 integration 

pRF4 integration 
 Protein expression GFP:DAT-1(!IML) in all DA neurons 

rol-6(su1006) in cuticle 
 Phenotype Roller  

   
BY351 Genotype vtIs12; vtIs7; in dat-1(ok157) background 

 Protein expression GFP:DAT-1(!IML) in all DA neurons 
GFP in all DA neurons 

rol-6(su1006) in cuticle 

   
BY352(vtIs13) Genotype dat-1(ok157) background 

pBY813 integration 
pRF4 integration 

 Protein expression CAT-1:mRFP fusion in all DA neurons 
rol-6(su1006) in cuticle 

 Phenotype Roller 
   

BY353 Genotype vtIs13 in unc-104(e1265) background 
 Protein expression CAT-1:mRFP fusion in all DA neurons 

rol-6(su1006) in cuticle 
 Phenotype Uncoordinated 

   

BY354 Genotype vtIs7 in unc-104(e1265) background 
 Protein expression GFP in all DA neurons 

 Phenotype uncoordinated 
   

 

Table 5.  C. elegans Strains Used  to Test GFP:DAT-1 Function in vivo..
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construct, suggesting an alteration in the overall amount of protein synthesized or 

retained within DA neurons (Fig 16B).   

Transgenic lines carrying the G90E (GFP::DAT-1G90E) mutation exhibited both a 

reduction in protein expression as well as an altered pattern of localization.  In all lines 

examined, mutant expression was evident in the ADE and CEP cell bodies but was 

notably absent from either axonal or dendritic processes (Fig 16C). This distribution is 

consistent with both a protein trafficking/processing defect and enhanced degradation or 

reduced synthesis.   

No appreciable GFP signal could be detected in lines injected with the COOH-

terminal splice mutant (ΔK584R, GFP:DAT-1ΔK584R) mutation, despite clear evidence of 

successful transgene expression as indicated by rol-6(d) (+) phenotype.  Only when the 

mutant DNA concentration was increased to over 3x the gene dosage used to create the 

other transgenic lines (50ng/µL compared to 15ng/µL), weak expression was evident, and 

in these cases, restricted to ADE and CEP cell bodies (Fig 16D). 

 

Ablation of the COOH-terminal PDZ Binding Domain (IML) of DAT-1 Reduces DAT-

1 Stability and Results in Inntracellular Retention. 

 Findings that elimination of the DAT-1 COOH-terminus in (GFP:DAT-1ΔK584R)  

leads to loss of synaptic localization encouraged us to further investigate elements in the 

DAT-1 COOH-terminus responsible for somatic export and synaptic localization.  

Several investigators have shown that the conserved COOH-terminal PDZ binding 

domain of several biogenic amine transporters is important for membrane insertion, and 

when deleted, leads to a decrease in maximal uptake (Vmax) without a change in uptake  
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kinetics (Km) (Torres et al., 2001; Bjerggaard et al., 2004; Farhan et al., 2004).  Torres et 

al. demonstrated that  transfection  of  the  hDAT  lacking  the PDZ binding domain into 

midbrain neurons results in cell body accumulation with a lack of synaptic targeting.  To 

determine whether this conserved binding domain alters synaptic enrichment in C. 

elegans in vivo, a mutant GFP:DAT-1 construct lacking the last 3 amino acids 

(GFP:DAT-1(ΔIML)) was injected into dat-1 strains.   

Low concentrations of GFP:DAT-1(ΔIML) DNA (15ug/µL) initially used to 

create transgenic lines lead to stable transgenic strains (as measured by ROL-6 dominant 

phenotype) but displayed no detectible GFP signal.  This concentration of wild type 

GFP:DAT-1 has been previously shown to yield high expression of GFP:DAT-1 in all 

head DA neurons (Nass et al., 2005).  DNA was therefore injected at increasing 

concentrations (30, 60, and, 90 µg/µl) until a stable transgenic line could be obtained that 

displayed consistent GFP signal in all DA head neurons (at 90µg/µl).   

 Imaging of animals showing >90% penetrance for our injection marker (rol-6) 

revealed intracellular retention of some of the GFP:DAT-1(ΔIML) protein compared to 

wild type GFP:DAT-1 (See Fig 17A & B, arrows).  This intracellular accumulation was 

never observed at any concentration in wild type GFP:DAT-1 expressing lines.  

Consistent with the intracellular accumulation observed in the ΔIML line, addition of 

COOH-terminal GFP (DAT-1:GFP), which occludes PDZ interactions (Bjerggaard et al., 

2004; Madsen et al., 2005), recapitulates this intracellular accumulation (Fig 17C).  These 

findings indicate that an intact and/or available DAT-1 COOH terminal sequences 

support efficient protein export and cell body export. 
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Neither PDZ Binding Domain Truncation Nor COOH-terminal Addition of GFP 
Effect Synaptic Localization In Vivo 
 

The creation of an integrated ΔPDZ line (BY350) reduced the amount of 

GFP:DAT-1(ΔIML) expression and resulted in loss of cell body retention described 

above.  GFP:DAT-1(ΔIML) cell body elaboration became indistinguishable from non-

mutant GFP:DAT-1 protein cell body localization (Fig. 17A).  There was no overall 

change in cellular distribution for the different DAT-1 strains (BY312, BY350, and DAT-

1:GFP) with the PDZ mutant lines accumulating a majority of their fluorescence in the 

nerve ring (Fig 18B, C, & F, arrows).   

To quantify subcellular localization among the different lines, fluorescence 

density measurements were made in the different neuronal compartments and compared 

across strains.  Consistent with our earlier data regarding BY312 accumulation at 

synaptic regions, density measures were consistent with peak fluorescent values 

measured previously (Max AFU v. AFU/µm2, Fig 13E v. Fig 18A).  A significant 

increase in both cell body fluorescence and synaptic density is observed in the DAT-

1:GFP strain (Fig 18E, asterisks) most likely as a result of significant transporter over-

expression (Fig 18F).  This visible increase in accumulation is not observed in the BY350 

line, which maintains expression at levels comparable to both BY320 and BY312 (Fig 

18C).  

 

DA Uptake and 6-OHDA Sensitivity is Unaffected in Delta PDZ Strains 

Although trafficking of GFP:DAT-1(ΔIML) to synaptic structures appears to be 

unaffected  in  vivo,  these  assays  do  not permit conclusions related to plasma 

membrane insertion.  Therefore, we sought to determine the effect of this mutation on  
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DAT-1 transporter uptake capacity both in vivo and in vitro.  It had previously been 

reported that a COOH-terminal DAT-1:GFP fusion rescued 6-OHDA sensitivity at a high 

50mM concentration (Nass et al., 2002).  To determine the functional significance of the 

PDZ binding domain truncation, the integrated the GFP:DAT-1(ΔIML) line (BY350) was 

crossed to a line expressing soluble GFP in the dat-1(ok157) background (BY326) to 

create BY351 for use in 6-OHDA experiments.  

In an attempt to differentiate subtle differences between the strains, a 25mM 

concentration of 6-OHDA was used, which results in a 60% loss of neurons in the wild 

type DAT-1 expressing line (BY250).  Consistent with data from higher 50mM studies, 

the BY329 line restores 6-OHDA sensitivity to the dat-1 strain at levels which are mildly, 

but significantly, reduced compared to wild type (BY250) (Fig 11 and Fig 19).  The 

BY351 strain displayed similar reduction in overall toxicity level compared to the BY250 

line that was insignificantly different than toxicity observed in the BY329 line (Fig 19).  

In vivo quantitiation using GFP fluorescence was used for relative comparisons 

between strains (see methods).  GFP:DAT-1(ΔIML) in the BY350 line is expressed at a 

level that is intermediate to both the GFP:DAT-1 expressing lines (BY312 and BY320, 

Fig 20A). Western blot data of integrated lines using polyclonal GFP antibodies 

normalized to actin confirm these relative expression levels (data not shown).   

Neurons cultured from the BY350 line display an intermediate level of uptake 

capacity, which is consistent with expression data (Fig 20A and B).  Maximal uptake 

(Vmax) suggests that PDZ truncation does not effect DA uptake in these cells (Fig 20B). 

To rule out contributions from a wild type dat-1 allele that may have contaminated these 

lines, genotyping for the dat-1(OK157) (KO) allele or dat-1 (N2) allele was performed on  
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the lines used for both uptake and 6-OHDA experiments.  No wild type dat-1 

contamination was found, indication that GFP:DAT-1(ΔIML) expression is sufficient to 

rescue both 6-OHDA sensitivity and DA uptake in the dat-1 background (Fig 20D).  

Examination of DA uptake efficiency (uptake/DAT protein) suggests that the 

lowest expressing line (BY312) is capable of higher levels of DA uptake per unit 

transporter (Fig. 20C).  As expression level increases, efficiency decreases suggesting the 

existence of a saturable process, limiting DAT-1 in vivo activity. 

 

DISSCUSSION 

 This is the first demonstration of localization of a GFP-tagged biogenic amine 

transporter in an intact nervous system in vivo.  Important in this study is the comparison 

of the NH2-terminal GFP:DAT-1 fusion protein distribution to antibody visualized native 

proteins, as the NH2-termius is a site of known protein interactions. Our previous 

antibody staining localizing native DAT-1 protein is recapitulated by GFP:DAT-1 fusions 

(both BY312 and BY320), including cell body elaboration and targeting of DAT-1 to 

synaptic regions within the nerve ring.  GFP:DAT-1 expression was consistent with 

antibody staining of native DAT-1 expression in all compartments examined, including a 

low level of dendritic elaboration of both signals.  Globally, antibody immunoreactivity 

was preferentially detected in the CEP neurons, followed by ADE and rarely seen in 

PDEs.  The antibody data suggests that our GFP:DAT-1 fusion is fidelitus to native 

DAT-1 DA neuron expression. 

The NH2-terminal GFP:DAT-1 fusion allows for a more dynamic imaging 

modality for DAT-1 steady state localization in DA neurons of the nematode C. elegans  



Figure 19.  6-OHDA Toxicity of Various DAT-1 Expressing Lines.

Both GFP:DAT-1 (BY329) and GFP:DAT-1(ΔIML) (BY351) rescue 6-OHDA sensitivity in a dat-
1(ok157) knockout background.  This rescue is significantly reduced compared to wild type (BY250)
suggesting an effect of NH2-terminal tagging.  The unc-104(e1264) line expressing a wild type dat-1
allele shows robust toxicity with a trend toward an increase in toxicity (BY250 v. unc104). * p < .05
Student’s t-test.
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in vivo.  Overall expression levels differed in the 3 sets of DA neurons in the worm with 

the greatest expression observed in the four neurons of the CEP cell group with a slightly 

lower level of expression in the two ADE cells and much lower level of expression in the 

2 PDE neurons (CEP > ADE >> PDE), implying that there may be different regulatory 

elements in these cells.  This differential expression level is consistent with native DAT-1 

staining using immunofluorescence assays.  The differential DAT-1 density in these 

neuronal groups may account for their differential susceptibility to 6-OHDA toxicity 

(Nass et al., 2002).  Originally noted by Nass and colleagues (but also seen in our 

experience), the CEP cell group, which in our experience displays the highest level of 

both DAT-1 immunoreactivity and GFP:DAT-1 expression, is preferentially susceptible 

to the effects of this toxin.  The ADE cell groups rarely display any notable toxicity as is 

true for the PDE neurons.   

Examination of DAT-1 immunoreactivity at different stages of the worm’s 

lifecycle was explored using DAT-1 specific antibodies and preliminary results indicate 

that DAT-1 immunoreactivity decreases precipitously between L4 and adult.  Our 

GFP:DAT-1 fusion protein also demonstrated age specific expression, with highest 

expression observed in young L2/L3 animals.  Synchronization of GFP:DAT-1 strains 

and preliminary examination of GFP expression over the lifetime of the animal indicates 

that GFP:DAT-1 fusion expression decreases after L4.  Expression of the fluorescent 

molecule which changes its spectral profile as it ages, pTimer, indicates that the promoter 

is turned off near the transition from L4 to adult.  

Differential cellular expression levels seen for DAT-1 in both the antibody 

experiments and with the GFP:DAT-1 fusion proteins is consistent with mammalian data  
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where DATs are expressed at varying levels in different DA neuron groups.  Highest 

levels of mammalian DATs is reported in substantia nigra neurons (in the nigrostriatal 

pathway) with lower expression observed in ventral tegmental neurons (in the 

mesocortical pathways) and scant expression in DA neurons of the arcuate nucleus (in the 

tuberoinfundibular pathways) (Hoffman et al., 1998; Ciliax et al., 1999), presumably 

reflecting differential needs for DA clearance in these pathways.  

 Despite consistencies between the wild type DAT-1 immunostaining localization 

and the GFP:DAT-1 fluorescence, there is a slight and significant decrease in 6-OHDA 

sensitivity between the native and GFP fused DAT-1.  This difference may reflect a 

difference in copy number or disruption of N-terminal binding partners important for 

transport efficiency, which may be lost in the GFP fusion.  We have previously shown a 

biophysical difference between the wild type DAT-1 protein and the N-terminal fusion, 

which results in an increase in open probability for the tagged transporter (Carvelli et al., 

2004).  The SNARE protein syntaxin 1A has been shown to interact with the NH2-

terminus of several biogenic amine transporters including the human DAT (hDAT) (Lee 

et al., 2004), the human norepinephrine transporter (hNET) (Sung et al., 2003), the rat 

serotonin transporter (rSERT) (Haase et al., 2001), and the GABA transporter (GAT-1) 

(Deken et al., 2000).  These interactions are reported to change the conducting state of the 

respective transporters, altering ion permeation from coupled to uncoupled ion flux 

(SERT (Quick, 2003) as well as GABA and NE transport rates (Sung et al., 2000; Hansra 

et al., 2004)).   Cumulatively, our data suggests that although a free NH2-terminus is not 

required for DAT-1 synaptic accumulation, once localized, NH2-terminal interactions 

may be required for appropriate transporter function.   
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The accumulation of GFP:DAT-1 at the synapse is independent of the function of  

the kinesin motor protein UNC-104, suggesting that DAT-1 is transported to terminals 

via mechanisms distinct from transport of synaptic vesicle precoursors.  All synaptic 

vesicle proteins tested to date in C. elegans, require a functional UNC-104 (Hall and 

Hedgecock, 1991; Nonet et al., 1993; Nonet et al., 1998; Duerr et al., 1999).  The fact 

that DAT-1 targets to synapses independently suggests that DAT-1 maybe loaded onto 

constitutive secretory vesicles rather than synaptic vesicles.  This has recently been 

suggested for the GABA transporter GAT-1 where non-SNARE mediated exocytosis and 

trafficking is mediated by Exocyst proteins and is PDZ binding domain-independent 

(Farhan et al., 2004). Interestingly, synaptic density of GFP:DAT-1 is modestly reduced 

in the unc-104(e1265) background (Fig 19G), suggesting that UNC-104 dependent cargo 

or DA signaling itself may be important for establishing synaptic density of DAT-1. 

Examination of mutant DAT-1 alleles illustrates that transgenic expression of 

GFP-tagged transporters in C. elegans in vivo is an amenable approach to investigate 

otherwise intractable questions about somatic export and synaptic targeting in an intact 

nervous system.  As an initial example of the use of this system, we examined several 

DAT-1 alleles recovered from a forward screen using DAT-1 dependent 6-OHDA toxin 

accumulation and subsequent DA degeneration.   

Biochemical experiments using an N-terminal, HA tagged version of these 

mutants revealed initial biosynthesis defects of these mutants, which tracked with the in 

vivo deficits reported here.  The G55E mutant when expressed in COS-7 cells revealed 

reduced expression of full-length transporter that fails to express wild type levels of 

transporter on the plasma membrane and induces no detectable [3H]DA uptake (Nass et 
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al., 2005).  Expression of an NH2-terminal GFP tagged version of the this mutant in vivo 

reveals an overall reduction of GFP signal with no detectable difference in overall 

localization.  Loss of DA uptake activity in the face of relatively normal patterns of 

trafficking suggests that the G55 residue is likely to play an important role in the 

structural organization of DAT-1 protein and transporter surface insertion/stability but 

may also indicate actions of this residue in the DA transport process.  The dat-1(vt2) 

allele, located in TM1, changes a conserved glycine residue to a glutamate (G55E) (Fig 

21).  

The G90E dat-1 point mutation recovered in this screen, dat-1(vt3), induces a 

conversion of a conserved glycine at position 90 in TM2 to a glutamate (G90E, Fig 21). 

The G90E mutation demonstrates a shift in the ratio of mature to immature protein such 

that there is a resultant accumulation of immature protein in COS-7 cells (Nass et al., 

2005).  Uptake of DA by this mutant was either just above or equivalent to that achieved 

with non-transfected cells, suggesting a significant impact on the DA transport process.  

In vivo GFP imaging indicates somatic retention with an accumulation of intracellular 

signal at opposing aspects of the cell bodies.  While it does appear that some of the 

transporter resides at or below the cell surface, it is clear that no protein is trafficked out 

to synaptic or dendritic areas (Nass et al., 2005).   

The recent publication of a high-resolution structure of a DAT-1 homolog, a 

leucine transporter (LeuTAa) from Aquifex aeolicus (Yamashita et al., 2005), adds new 

dimensions  to  interpreting  the  physical  impact  of  DAT-1  mutations.  Mapping of the 

DAT-1 Gly55 and Gly90 residues onto the LeuTAa structure (in which these glycines are 

conserved) demonstrates that G55E mutation lies in close proximity to the proposed  



Figure 21.  Structure Modeling of DAT-1 Mutations.

A.  Schematic of DAT-1 membrane topology.  The two mutations, G55E and G90E, occur at
positions entirely conserved across eight species variants of dopamine, norepinephrine, and
epinephrine transporters as well as most other SLC6 family members including LeuTAa.  B -
E.  Side view of LeuTAa crystal structure (PDB accession number 2A65.Q9).  Proposed
ligand-binding residues highlighted in green; DAT-1 mutations highlighted in red with
glutamate side chain substituted for that of glycine.  Amino acid substitutions introduced and
images generated using UCSF Chimera software (http://www.cgl.ucsf.edu/chimera).  B.
LeuTAa protein with the binding pocket (green) and the G55E mutation (red) highlighted.  C.
LeuTAa protein with the binding pocket and the G90E mutation highlighted.   D.  Higher
magnification of the proposed LeuTAa binding pocket with the G55E mutation highlighted in
red.   E.  Higher magnification of the proposed LeuTAa binding pocket with the G90E
mutation highlighted in red. (Figure courtesy of Ms. Julie Field, Vanderbilt, TN)
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substrate binding site, engaging residues in TMs 1, 3, 6, and 8 (Yamashita et al., 2005).  

The substitution of a large, acidic side chain in this area likely results in a deformation of 

the ligand binding pocket, potentially changing the rotation or helix packing of TM1 that 

may serve a dual role in transporter assembly and function. In addition to the introduction 

of bulk at this site, the introduction of a charged side chain, and a new hydrogen bonding 

partner, in the bottom of the ligand binding pocket may disrupt the favorable binding 

orientation of DA or its co-transported ions, thereby reducing transport efficiency.   

 The TM2 mutation, G90E, introduces change in a region of the protein distal to 

the substrate binding site.  However, the addition of increased bulk as well as the 

introduction of a charged side chain in a protein region likely isolated from the aqueous 

permeation pathway may significantly impact the helix packing of TM2 with its TM1 and 

6 neighbors that support substrate interactions.  Review of the LeuTAa structure suggest 

that the G90E mutation may impact the structure specifically of TM6, a helix proposed to 

participate in ligand binding as well as the gating mechanism of transport (Yamashita et 

al., 2005).  Given that the G90E mutant reported by Nass et al. 2005 exhibits a reduction 

in transport Vmax but no change in DA Km, it seems likely that alterations in helix packing 

of TMs 1, 2, and 6 induces significant adverse changes linked to the translocation of DA 

rather than compromising DA recognition. Like the G55E mutant, the decreased 

efficiency of helix packing of TMs 1, 2 and 6 may also induce global protein misfolding, 

resulting in trapping of immature DAT in the ER (Nass et al., 2005).  In COS-7 cells, the 

G55E mutant demonstrates modestly diminished levels of both mature and immature 

DAT-1 protein, implying that this mutation does not affect maturation of dat-1 through 

the glycosylation pathway (Nass et al., 2005).  In vivo, the G55E mutation yields an 
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overall diminished GFP signal relative to wild type DAT-1 suggesting this mutation leads 

to a diminished capacity of overall DAT-1 protein expression. The fact that significant 

quantities of DAT-1 G55E appear in the axons and dendrites of DA neurons coupled with 

the almost complete loss of surface expression observed in the COS-7 cell experiments 

suggests that this mutation may disrupt surface trafficking or retention, a measure that is 

likely indeterminable using in vivo imaging techniques currently utilized.  

 The most severe phenotype was evident for the COOH-terminal splice mutant 

(ΔK584R) where 32 amino acids from the DAT-1 COOH terminus were removed and 

replaced with an ectopic sequence unrelated to any sequences known in the gene family.  

Given both the removal of significant COOH-terminal sequences and the addition of 

ectopic COOH-termianal sequence, it is difficult define the exact mechanism supporting 

the loss of DAT-1 in these neurons.  Regardless, the findings do underscore and 

important role of the native COOH-terminal sequences in DAT-1 biosynthesis and 

trafficking.  In COS-7 cells, small amounts of immature protein and no mature protein 

were evident in total extracts, and surface fractions were devoid of DAT-1 protein (Nass 

et al., 2005).  Similarly we could visualize no GFP signal in vivo until the DNA injection 

concentration was significantly increased (by over 3 fold).  Even at 50 ng/µL (as 

compared with 15 ng/nL), only a few weakly visible soma were evident and no process 

expression could be visualized.  

 Recent studies have revealed that the COOH-terminal domain supports multiple 

protein-protein interactions and appears to be essential for transporter biosynthetic 

progression. The mammalian DAT COOH terminus has been found to interact with 

PICK-1 (Torres et al., 2001), α-synuclein (Lee et al., 2001; Lee et al., 2004), and Hic-5 
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(Carneiro et al., 2002). A C. elegans α-synuclein ortholog is not evident in a BLAST 

search of genomic sequences whereas multiple PICK-1 and Hic-5 related genes exist. 

Hic-5, a multiple LIM domain protein that may serve as a scaffold to link DAT to other 

modulators supporting DAT localization and/or function, interacts with the 

juxtamembrane regions of the human DAT COOH terminus, a region not highly 

conserved in C. elegans DAT-1, but nonetheless interrupted by alterations in DAT-1 

COOH terminal sequences.  

Several authors have investigated the effects of the DAT PDZ binding domain 

and have reported similar results as those presented here.  Torres et al. first characterized 

an interaction with hDAT and the PKC interacting protein PICK1 that depended upon the 

type II PDZ binding domain located at the distal C-terminus of hDAT (Torres et al., 

2001).  In their study, co-expression of PICK1 with hDAT increased Vmax for hDAT 

without affecting DA Km values.  This increase in DA transport activity was lost when 

the PDZ binding domain was ablated (-KLV), with a trend towards a decreased Vmax for 

the truncated protein.  Bjerggaard et al. provided a further characterize this interaction 

and also reported a significant decrease in Vmax with the PDZ truncated transporter (-

KLV*). 

Intracellular retention in of hDAT PDZ truncation lines was initially reported by 

Torres et al., who argued that this sequence may also play an important role in synaptic 

targeting for the rDAT (Torres et al., 2001).  Bjerggaard et al also reported an 

intracellular retention observed for the PDZ truncated hDAT, coupled with an overall 

reduction in expression level for this mutant (Bjerggaard et al., 2004).  Addition of even a 

single alanine to this sequence (LKVA*), shown to interfere with PDZ binding, rescued 
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intracellular accumulation suggesting that the PDZ binding domain is not important for 

cell surface targeting but rather may be important for protein stability and/or expression. 

In our study, the PDZ mutant lines were capable of rescuing both 6-OHDA 

sensitivity and uptake in cultured cells in the dat-1(ok157) KO background.  Nass et al. 

previously reported that a COOH-terminal fusion rescues 6-OHDA sensitivity in vivo 

(Nass et al., 2002), indicating that PDZ ablation by sequence addition did not effect DA 

uptake capacity using this measure.  In the current study, elimination of the PDZ binding 

domain (IML) is consistent with this finding, where 6-OHDA toxicity levels for 

transgenic GFP:DAT-1(ΔIML) line is similar to the full length GFP:DAT-1 fusion.  

Cultured neurons from this line also demonstrated substantial DA uptake capacity, 

consistent with total expression levels as observed by fluorescence and western blot 

analysis, indicating functional rescue is not limited to the substrate 6-OHDA toxicity 

assays.  

Although DA uptake appears to be unaffected by PDZ disruption, loss of the PDZ 

binding domain leads to a decrease in overall expression, coupled with intracellular cell 

body accumulation. The intracellular retention observed with the PDZ ablation mutants, 

coupled with lack of expression evident in the ΔIML lines at low DNA concentrations, 

indicate multiple problems with overall stability and biosynthesis of the ΔIML construct.  

Interestingly, integration and decreased expression of the ΔIML construct resulted in 

rescue of this retention, which was not observed in high expressing WT lines (BY320), 

indication that PDZ binding may be secondary to another primary export/recycling 

process in vivo.  
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In contrast to Bjerggaard et al (2004), we find that masking of the PDZ binding 

domain with the addition of GFP to the COOH-terminus does not relieve the intracellular 

accumulation observed with the PDZ truncation, indicating that PDZ binding partners 

may be important for intracellular trafficking.  Our data also conflicts with the findings of 

Torres et al. (2002) in that disruption of the PDZ binding domain did not affect synaptic 

accumulation in vivo.  We are not the first to report a lack of effect examining PDZ 

binding domain ablation in vivo.  Despite evidence that disruption of PDZ binding 

domain interactions blocks synaptic delivery of AMPA receptors and LTP induction in 

vitro (Hayashi et al., 2000), in vivo expression of a PDZ ablated GluR1 receptor, which 

replaced the endogenous GluR1 gene, failed to effect either synaptic localization or LTP 

induction (Kim et al., 2005).  It is also unlikely that truncation of the IML sequence for 

DAT-1 reveals amino acids capable of maintaining PDZ interactions as the three amino 

acids proximal to this deletion are HSD, which are not recognized as a PDZ binding 

motif.  Although interaction with a specific PDZ containing proteins has not been shown 

for DAT-1 per se, complete ablation of this conserved interaction domain would indicate 

that the IML sequence is not utilized for DAT-1 localization in C. elegans. 

 Given the role of DAT in the termination and modulation of DA signaling in the 

brain, motifs within DAT and proteins that determine DAT localization become 

important targets for drugs that aim to alter DA signaling.  Here we present a novel 

system that illustrates the localization of the C. elegans DA transporter DAT-1 and use 

this sytem to explore the impact of DAT-1 mutations as well as manipulations of 

potential DAT-1 regulators.  Our work establishes a pattern of synaptic enrichment 
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tractable for phramacological or genetic manipulations that define key determinants of 

presynaptic transporter function in vivo. 
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CHAPTER V 

 

USING FLUORESCENCE RECOVERY AFTER PHOTOBLEACH (FRAP) TO 
MONITOR DAT-1 MOVEMENTS IN VIVO. 

 

INTRODUCTION 

 Perhaps the earliest example of protein movement in a fluid membrane came from 

studies by Frye and Edidin who examined integral membrane protein movements using 

indirect immunofluorescence (Frye and Edidin, 1970).  In these experiments, human and 

mouse heterokayrons were exposed to either primary antibodies directed against human 

cell antigen (polyclonal antibodies from rabbit directed against whole human cell 

membrane) or mouse antibodies directed against the H-2 alloantigen.  Goat anti-mouse 

and goat anti-rabbit secondary antibodies were then conjugated to different fluorescent 

dyes and antigen mobility assayed after heterokaryons fusion was induced by Sendai 

virus infection.  Frye and Edidin then described a re-distribution of both epitopes across 

the newly fused membrane and reasoned that this re-distribution occurred via diffusion in 

the membrane, setting the stage for examination of membrane fluidity and protein 

mobility in the plasma membrane.   

A formal model of plasma membrane fluidity and protein mobility was 

popularized in 1972 when Singer and Nicolson published their fluid mosaic model for the 

structure of cell membranes (Singer and Nicolson, 1972).  In the Singer and Nicolson 

model, the plasma membrane is described as an amphipathic lipid bilayer, containing 

integral membrane proteins that span the membrane using both polar and non-polar 

residues.  This model supported thermodynamic movement of these proteins indicating 
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for the first time, the potential of proteins to be freely or differentially mobile in the 

plasma membrane, as suggested by the earlier work by Frye and Edidin.   

In 1976, Axelrod and colleagues published their initial work on mobility 

measurement using fluorescence photobleaching recovery kinetics (Axelrod et al., 1976).  

This technique took advantage of the fact that fluorophores attached to lipids or proteins 

would loose their fluorescence and become “bleached” when exposed to a high intensity 

laser.  Importantly, excitation intensity and duration could be adjusted so as not to 

damage the conjugated target whose lateral diffusion is being monitored.  When focused 

and intensified, a small area of sample could be bleached and then monitored as the 

surrounding flourophores intermixed with the now bleached area.  The rate of this 

recovery could be quantified and related to the diffusion of the fluorophores using an 

equation that assumed both “pure” two-dimensional diffusion and an excitation source 

with a Gaussian intensity profile.  Another assertion was that the bleaching occurred at a 

speed significantly faster than the diffusion rate for the area (> 10% of the halftime for 

diffusion), so as not to mask any of the initial recovery during the bleaching phase.  They 

experimentally tested this technique and verified its validity using a fluorescent dye in a 

water/glycerol (1:1) mix.  This technique, originally termed fluorescence photobleaching 

and recovery (FPR), has since been renamed fluorescence recovery after photobleaching 

(FRAP) and will be referred to as FRAP throughout the rest of the chapter. 

The first determination of integral membrane protein lateral mobility using FRAP 

was performed on rhodamine conjugated rhodopsin from frog outer retinal segments in 

1981 (Wey et al., 1981). Using high speed flash photometry, The same lab previously 

reported a diffusion rate of rhodopsin in the membrane to be (3.5 ± 1.5) x 10-9 cm2/s 
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(0.35µm2/s) (Poo and Cone, 1974).  The conjugation of the rhodamine moiety had no 

effect on rhodopsin diffusion rate, making fluoraphore conjugation a viable option for 

non-photoreactive integral membrane proteins.  One limitation of this system was that it 

required conjugation of organic dyes antibodies, limiting use to reconstituted, or ex-vivo 

preparations.   

The use of genetically encoded green fluorescent protein (GFP) labeled fusion 

proteins for FRAP was first demonstrated by Cole et al, examining Golgi protein 

retention (Cole et al., 1996).  Golgi membrane proteins were fused to GFP and FRAP 

studies of Golgi membrane was performed in transfected HeLa cells.  This study revealed 

that within Golgi stacks, a highly mobile pool of proteins moves laterally along this 

membrane, with diffusion constants ranging from 3 to 5x10-9cm2/s (0.3 to 0.5 µm2/s).  

Examination of mutant Golgi proteins that appeared visually to be retained in specific 

stacks within the Golgi complex maintained this 0.3 to 0.5 µm2/s diffusion rate.  

Although these proteins appeared “retained” in the Golgi membrane, they were clearly 

free to diffuse along that membrane and were not immobilized per se. 

Several neuronal proteins have been the subject of FRAP experiments in both 

cultured neurons and non-native cell lines.  Angelides first described that fluorescently 

labeled Na+ channels from chick embryonic myotubes displayed altered fluorescence 

intensity, depending on cellular localization (synaptic v. non-synaptic).  In additon, they 

found that the synaptically localized Na+ channels were immobilized compared to the 

non-synaptic channels (Angelides, 1986).  Examination of rat dissociated spinal cord 

neurons revealed a similar distribution of Na+ channels, with a diffuse localization along 

the cell body plasma membrane compared to a clustering of signal at the axon hillock and 
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at nerve terminals (Angelides et al., 1988). FRAP experiments revealed that these 

punctate fluorescent signals were immobilized in the membrane, whereas the diffusely 

localized channels in the cell body were freely mobile.   

To date, mobility estimates for a neurotransmitter transporter have not been 

reported using FRAP techniques.  This information is of particular interest where distinct 

compartments appear to contain transporter proteins and associated molecules.  The 

creation of transgenic C. elegans expressing GFP:DAT-1 fusions in DA neurons provides 

an opportunity to examine movements of one such transporter in an intact nervous system 

in vivo.  With findings of GFP:DAT-1 localization reminiscent of sodium channel 

distribution in rat spinal cords as described by Angelidis, we reasoned that FRAP might 

also reveal differential kinetics of GFP:DAT-1 mobility in different compartments of DA 

neurons in vivo. 

   

METHODS 

In Vivo FRAP  

 In order to explore mobility of DAT-1 in different cellular compartments using 

FRAP, animals were prepared as described in Chapter IV and imaged via confocal 

microscopy using the Alexa 488 filter set with a 40x oil objective.  Both the cell body and 

the synapse were normalized by adjusting the detector gain in order to maximize 

fluorescent intensity across the region of interest (cell body or synapse) for each 

experiment yet remain within the linear range of the detector.  Images were captured 

using a 6x live zoom on the compartment of interest at 3% laser power.  A series of 

1.2µm optical slices (95.9nM pinhole) were taken over the course of the experiment and 
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set with no time delay between images.  Five pre-bleach baseline images were collected 

before a single pulse of 488 laser at maximum intensity was exposed to a 15x15 unit box, 

with a bleach spot radius of 1.05µm within the sample.  Another 25 samples were then 

collected without time delay (.986s between data point collection due to scan rate) and 

the region of interest that correlated to the bleach region was saved for analysis. 

 

Sample Preparation for Live Imaging 

In order to mount the live nematodes for FRAP analysis, animals were prepared as 

described previously in Chapter IV, except a more potent anesthetic (.02% tetramisol, 

.2% tricane, and 1% levamisol) was added to the mounting media.  Animals were then 

allowed to paralyze in the anesthetic for 10 minutes before being mounted on a 2% 

agarose pad.  Cover slips were then placed onto the sample and imaged within 30 minutes 

of original anesthetic exposure. Each experiment lasted only a total of 1 min. 

 

FRAP Data Analysis 

Sample Imaging 

Image series, which represent time points during the FRAP experiment, were loaded 

using the LSM510 software and the region of interest that was analyzed.  Another 15x15 

pixel region of interest (1.10µm2) at an area opposite the experimental bleached area was 

also monitored to determine fluorescence decay from a contiguous membrane within the 

cell body and determine immobile fraction.  A third 15x15 pixel control area that was 

outside the bleached cell body was monitored to adjust for any bleaching that may have 

occurred during sample collection over the course of the experiment. Any samples that 
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demonstrated appreciable (>5%) bleaching over the course of the experiment were 

excluded from the data set. 

In synaptic areas, FRAP experiments were conducted using the same 15 x 15 unit 

area, which typically encompassed nearly the entire synaptic region.  To determine 

synaptic immobile fraction, cytosolic GFP, which is assumed to be freely mobile, was set 

as the 100% recovery threshold, to take into account geometric constraints of the 

synapse.  Data from each region of interest was then collected along with the time stamp 

from each image and exported to an Excel spreadsheet.   

Data collection and Normalization 

The region of interest from the first 5 images, which represented the pre-bleach samples, 

was averaged to obtain a pre-bleach average intensity.  This pre-bleach average was then 

used to normalize intensity points collected during the experiment such that:  

                                        (Norm AFU(t) = AFU(t)/AFUavepre)  (1) 

These normalized AFU values (which ranged from 0 to 100) were then used to 

generate both FRAP and fluorescent recovery curves. The second region of interest, 

which represents the non-bleached region of interest, was normalized the same way as the 

bleach region.  Normalized non-bleached data points were then used to determine the 

immobile fraction of the protein being analyzed.  Final bleach levels were calculated 

using the last five normalized fluorescence intensity points collected for each experiment 

and then averaged for each strain.   

Immobile fraction was determined by subtracting the final fluorescence levels for 

the non-bleached fraction (A3f) from the bleach depth achieved (Bd) to achieve what 

should represent the maximal achievable recovery level (Max Rec): 
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                                                     (A3f –Bd) = Max Rec  (2) 

where A3f represents an average value for the last 5 data points collected once 

equilibrium is reached for the non-bleached area and Bd represents an average value for 

the bleach depth achieved for the bleached area.  The final bleached recovery level (A2f) 

was then subtraced from Bd and divided by the Max Rec to achieve the mobile fraction: 

                                   (A2f- Bd)/Max Rec  x 100%= Mobile Fraction (3) 

where, A2f represents an average value for the last 5 data points collected once 

equilibrium is reached for the bleached area.  The immobile fraction was then determined 

by subtracting the mobile fraction from 100. 

Curve fitting, immobile fraction, and Diffusion coefficients 

 Data that had been normalized was then imported into GraphPad Prism 

(GraphPad, San Diego, CA) for graphical and statistical analysis.  Mean and standard 

error of the mean (S.E.M.) were calculated for each point and plotted.  

Fluorescence recovery half times were obtained by setting the first data point 

collected after the bleach to zero and calculating K using a one-phase exponential 

association equation (Prism, Synergy Software): 

F(t) = F(tmax)(1 – e –Kt))                                                  (4) 

This equation relates to the two dimensional diffusion equation described by 

Axelrod (Axelrod et al., 1976) in terms of fluorescence where,  

K=πD/w2                                                            (5) 

as described by Matsumoto (equation 2, (Matsumoto et al., 2005), where D is the two 

dimensional diffusion coefficient and w is the half-width of the Gaussian source beam 

bleach radius.  In our experiments, our bleach radius was 1.05µm and the radius of the 
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laser used was .145µm wide (personal communication, S. Goowin, Vanderbilt Cell 

Imaging Core).  Omega, (w) for our experiments was therefore estimated to be 1.195µm 

as is consistent with evaluations of w by Wey and Cone (Wey et al., 1981). 

 

 

RESULTS 

GFP:DAT-1 is Amenable to FRAP Based Mobility Assignments in vivo 

 To examine the possibility of utilizing FRAP-based mobility measurements in C. 

elegans neurons in vivo, strains expressing a GFP:DAT-1 fusion in DA neurons produced 

as described in Chapter IV, were subjected to fluorescence photobleaching followed by 

monitoring of fluorescent recovery.  Using a high intensity laser focused on a small area 

of the cell body (with a bleach diameter of 1.05µm), we achieved specific photobleach of 

the selected area and observed rapid recovery of fluorescence signal (Fig 22A).   

To determine in vivo GFP:DAT-1 mobility and immobile fraction, three areas of 

interest are monitored during these FRAP experiments.  A control non-bleached region 

that is discontiguous with the compartment undergoing photobleaching is monitored to 

ensure that individual fluorescent sampling of each time point does not contribute to a 

decrease in fluorescence over the course of the experiment (Fig 22B, area 1).  In this 

example, our control area is a synaptic bouton that is elaborated from an adjacent cell 

body out of the plane of focus.  The second region monitored is the region specifically 

bleached using a single high intensity laser pulses (412 wavelength at 100% power for 1 

iteration).  This bleaching intensity was selected because it effectively bleaches 85% of 

the synaptic area (see below).  Five baseline measurements from this area are taken  



Figure 22.  Example of Typical Cell Body FRAP Experiment.

A single cell body inside a living nematode (A, inset) is selected for FRAP experiments.  An area of
interest is then exposed to high intensity laser and monitored over the time course of the experiment.
(B,C,D, area 2).  A non-bleached region, which is contiguous with the experimental (bleached) region is
also monitored (B,C,D, area 3).  Data from these 2 areas are then normalized to prebleach fluorescent
levels and plotted v. time (A).  Curves from both the bleached and non-bleached regions are then used to
determine both immobile fraction and diffusion rates for the fluorescent protein used in the experiment.
A third region (circle in B, C, D, area 1) which is not part of the same neuron, is monitored to normalize
for sample bleaching that may occur after continual scans.

(1)

(2)

(3)

(1)

(2)

(3)
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before the high intensity bleach, followed by monitoring at .986ms intervals until 

recovery is achieved.  Qualitatively, this area can be monitored before (Fig 22B, box 2), 

immediately after bleach (Fig 22C, box 2), and once a plateau of recovery has been 

achieved (Fig 22D, box 2).  Quantitatively, pixel intensity under this area of interest is 

recorded by  the  LSM510  software  and  an integrated value is recorded for each image 

captured.  The integrated intensity values are then plotted for each image and bleach and 

recovery curves are generated (Fig 22 A).   

In order to quantify the immobile GFP:DAT1 fraction in this small 

compartmentalized area, we monitored a third area of interest that is contiguous with the 

compartment subjected to photobleaching (in this case the cell body). This compartment 

is monitored under the assumption that it provides a spatially contiguous source for the 

relocation of fluorescent DAT-1 into the bleached area. In this case, fluorescent decay 

after photobleaching is recorded.  Once equalibrium is achieved the one half final 

florescence difference between these two areas (equation 2) represents the immobile 

fraction for either compartment.   

 

Cell Body and Synaptic FRAP of GFP:DAT-1 Reveals Differential Kinetics and 

Immobile Fraction Levels   

 Examination of GFP:DAT-1 mobility yield distinct mobility rates in the different 

cellular compartments of the DA neurons.  When FRAP experiment were performed on 

DA cell bodies, a moderate bleach level followed by rapid and robust recovery of the 

fluorescent signal was detected as is illustrated in the representative experiment (Fig  
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Figure 23.  Differential Recovery of Fluorescence in the Synapse Compared to the Cell Body.

An example image of fluorescent bleaching area used to assess mobility in the different
subcompartments of single neuron.  A.  Cell body and synaptic fluorescence in the DA neurons and
specific bleach areas used to generate data in B and C are noted.  Cell body fluorescence recovery
curves taken from region 1(A) reveal rapid and robust recovery of signal to a stable plateau.  This
contrasts to negligible recovery seen in the synaptic area (A, box 2), which displays only an initial
curve (0-2 sec post bleach), and then displays a more linear ascent to a stable plateau.
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23B).  This bleach depth and recovery trend were observed consistently in all cell body 

FRAP experiments across different animals with summary data shown in figure 24A.   

When FRAP was monitored in synaptic areas, a deeper and more robust bleach 

depth was achieved, which is consistent with highly immobile proteins, and minimal 

recovery was noted (Fig 23C).  This pattern of synaptic FRAP was also a reliable finding 

in synaptic areas across animals, with summary  data  shown  in  Figure 27.  With initial 

results displaying differential mobility kinetics in the two different cell regions, further 

FRAP studies were performed to compare GFP:DAT-1 to cytosolic GFP as well as DAT-

1 mutant strains. 

 

GFP:DAT-1 in Cell Body Fraction Consists of Very Small Immobile Fraction 

 To examine differential membrane and cytosolic mobility rates and immobile 

fraction percentages in DA cell bodies, both the GFP:DAT-1 fusion line (BY312) and the 

GFP cytosolic line (BY250) were subjected to cell body FRAP experiments.  As noted 

above, this intensity was set such that the experimental GFP:DAT-1 fluorescence was 

typically bleached to ~ 15% of pre-bleach levels in synaptic compartments (see below).  

Once set, the bleaching parameters did not change for any other strains or regions tested.  

This laser intensity results in a less robust bleach depth in the cell body (~65% of 

baseline) with recovery after 10 seconds to a plateaued level (Fig 24A).  Monitoring of a 

non-bleached region of interest in comparison to the selected bleach region revealed 

consistently elevated final level for the non-bleached region.  Using these two final 

bleach levels for each experiment revealed a 15% immobile fraction for GFP:DAT-1 in 

the cell body (Fig 24A, inset).   
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Bleaching the cell body of the cytosolic GFP line using the same bleaching 

parameters results in a reduced bleach depth (~33% of baseline) with rapid recovery (~3 

seconds) to plateau (Fig 24B).  To record more of the recovery phase when using this 

cytosolic GFP line, scan rate was increased to 425ms/slice.  This did not effect overall 

bleaching of the sample but increased resolution of the recovery phase of the experiment.  

Again, the final five data points  collected  for both the mobile and immobile fraction 

were averaged and compared.  Consistent with a freely moving fluorophore, there is no 

difference between the bleached and non-bleached regions at equilibrium, suggesting free 

exchange between these two areas and no immobile fraction (Fig 24B, inset).  The 

immobile fraction noted for DAT-1 fusion likely reflects a pool of mature plasma 

membrane embedded DAT-1 in the cell body that is not free to relocalize during the time 

course of our experiments. 

 

A Large Percentage of GFP:DAT-1 is Immobilized at the Synapse  

 Using the same FRAP parameters used for cell body measurements, both GFP 

and GFP:DAT-1 fusions were analyzed in regions previously defined to be synaptic 

(Chapter IV).  Bleaching of the GFP:DAT-1 fusion in synaptic regions resulted in ~ 90% 

bleaching of GFP signal, with slow recovery to plateau (~14 seconds) (Fig 25).  As 

observed with cell body FRAP studies, bleaching of cytosolic GFP in the presynaptic 

terminal resulted in a reduced bleach depth relative to GFP:DAT-1, with only ~45% 

bleaching of the baseline GFP signal and a rapid recovery (~3 seconds) to plateau (Fig 

25).  Again, the last 5 data points were averaged to calculate a final plateaued recovery.  

Statistical analysis (one-way ANOVA, p < .05) revealed a significant difference between  
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the amount of GFP recovery achieved in the synapse compared to the amount of 

GFP:DAT-1 fusion recovery seen (Fig 25, inset).   

Because the synaptic region is a very small structure, it is impossible to monitor a 

contiguous non-bleached region.  To determine the immobile fraction, GFP:DAT-1 

recovery was subtracted from GFP alone recovery plateau (which should represent the 

highest amount of available recovery for a freely moving fluorophore given the geometric 

constraints of the structure) and an immobile fraction of 49% is suggested.  This level of 

recovery indicates that there is a very large percentage of GFP:DAT-1 that is 

immobilized in the synapse by an as yet unknown mechanism.  Comparison of total 

recovery for either cytosolic GFP or the GFP:DAT-1 fusion in the two compartments 

(cell body v. synapse) reveals that whereas cytosolic GFP recovery is not significantly 

different between the two compartments, there is a significant difference in the immobile 

fraction reported for GFP:DAT-1 in the synapse compared to the cell body (Fig 26). 

 

GFP:DAT-1 Mobility is 100 Fold Slower Than Cytosolic GFP in the Cell Body 

 To determine mobility rate of both the GFP:DAT-1 and cytosolic GFP in DA cell 

bodies, the recovery phase of the FRAP experiment was examined and a recovery rate 

constant (K) was determined.  Both signals were normalized from 0 (lowest bleach depth) 

to 100 (final recovery plateau level), which is necessary to determine K (Fig 27).  Data 

points were then used to generate curves using a one-phase exponential association model 

(see methods above) and determine K.  Modeling recovery using this equation, the 

mobility rate constant, K, equaled 0.295 for GFP:DAT-1.  Converting K to diffusion 

using  the  modified  Axelrod  equation  (methods)   resulted  in  a  diffusion  constant  of  
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Figure 26.  Comparison of Final Recovery Levels After Photobleach in Different Cellular
Compartments.

Examination of recovery levels for both GFP and GFP:DAT-1 in the different compartments assayed using
FRAP-based techniques reveals that although there is no difference between either GFP or GFP:DAT-1 in the
cell body, there is a significant decrease in GFP:DAT-1 recovery in the synapse compared to synaptic GFP.
GFP:DAT-1 recovery levels are also significantly reduced compared to GFP:DAT-1 and GFP cell body
recovery (* P < .05, Student’s two tailed t-test), indicating a relative immobilization of GFP:DAT-1 in the
presynaptic terminal.
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0.13µm2/s.  This diffusion rate is consistent with both integral membrane protein mobility 

but is considerably reduced compared to measurements of receptors from dissociated 

cultures (Velazquez et al., 1989).  Using this equation to model cytosolic GFP mobility 

reveals that GFP in the cell body is 100 fold faster, with a mobility rate constant (K) of 

2.896 and a diffusion rate of 1.32µm2/s.  

 

Both Cytosolic GFP and GFP:DAT-1 Diffusion Rate is Reduced in the Synapse 

 To assess GFP:DAT-1 mobility in the synapse, recovery curves for both the GFP 

and GFP:DAT-1 fusion were calculated as described above (Fig 28).  For both cytosolic 

GFP and GFP:DAT-1 the mobility kinetics are reduced in the synaptic region as 

compared to values obtained in the cell body.  Whereas the GFP rate constant was 2.896 

in the cell body, K in the synapse is reduced to 0.895.  This equates to a diffusion rate of 

0.406µm2/s.  This reduction in diffusion rate equates to about a 9x reduction in GFP 

mobility in the synapse.  The GFP:DAT-1 fusion rate constant is also reduced, from 

0.295 in the cell body to 0.138 in the synapse.  This equates to a diffusion rate of 

0.063µm2/s for this fusion in the synapse and a 4x reduction in mobility in this structure.  

These findings suggest a greatly reduced protein mobility in the presynaptic terminals.  

However, DAT-1 still appears to diffuse at rates far slower than GFP (over 40 times 

slower in this structure).   

 

The GFP:DAT-1 ΔIML Mutant Resembles Wild Type GFP:DAT-1 In Vivo 

 PDZ domain interactions have been proposed to influence plasma membrane 

expression  and  localization  of  DAT  (Torres et al., 2001).   Thus  the  PDZ recognition  



Figure 27.  FRAP Recovery Curves for GFP and GFP:DAT-1 in the Cell Body.

Data generated from FRAP experiments is used to generate recovery curves in order to determine the rate
constant of recovery (K).  The first data point collected after bleaching is normalized to zero and the final data
points are normalized to 100.  Curve fitting using a single exponential association model (equation (3)) is
used to generate K and best fit lines are shown above.  K values are then used to determine the diffusion rate
of the molecules according to a modified Axelrod equation (4).  Error bars represent S.E.M. with an N = 20
for each.
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sequences could support transporter mobility in both the cell body and the terminals.  To 

test the effects of PDZ binding domain disruption on GFP:DAT-1 trafficking, lines 

expressing GFP:DAT-1(ΔIML) that were noted to posses an intracellular accumulation of 

GFP signal were examined by FRAP.  Robust bleaching and recovery was noted in these 

strains (Fig 29A).  Examination of both bleached and non-bleached areas in the cell body 

revealed the same difference seen with the GFP:DAT-1 fusion, which translates to a 15% 

immobile fraction (Fig 29 A, inset).  Diffusion rates were calculated for the mutant 

GFP:DAT-1(ΔIML) line and compared to both the GFP and GFP:DAT-1 proteins in the 

DA cell bodies.  The rate constant obtained for GFP:DAT-1(ΔIML) recovery was 0.348.  

This equates to a diffusion rate of 0.158µm2/s.  This value for the GFP:DAT-1(ΔIML) 

lines are, for the most part, indistinguishable from the GFP:DAT-1 lines (0.158µm2/s v. 

0.134µm2/s respectively, p > .05 Student’s t-test). 

 

CONCLUSIONS 

 In this chapter we utilized FRAP techniques to examine the in vivo movement of 

GFP:DAT-1 fusion protein and mutants in various cellular compartments within intact 

DA neurons in vivo.  FRAP experiments performed on the wild type GFP:DAT-1 fusion 

reveal differential kinetics and immobile fractions within different compartments of the 

DA neurons, reminiscent of experiments performed by Angelides on voltage gated 

sodium channels using cultured rat spinal cord neurons (Angelides et al., 1988). 

In their study, Angelides et al. used a fluorescent analog of a sodium channel 

specific neurotoxin to label voltage-gated sodium channels on cultured mature rat cortical 

and spinal cord neurons.  These cultures elaborated highly branched cell processes, and it  



Figure 28.  FRAP Recovery Curves for GFP and GFP:DAT-1 in the Synapse.

Data collected from FRAP experiments performed in the presynaptic terminal were normalized
such that the first point collected was set to zero and the final 5 points were averaged and used to
normalize the values to 100.  A first order exponential association model (equation 3) was then
used to generate a curve fit and define the rate kinetic K.  Best fit curves for both GFP (black trace)
and GFP:DAT-1 (red trace) are shown above.  The corresponding kinetics were then used to
determine diffusion rate using a modified Axelrod model (equation 4).  Error bars represent S.E.M
with an N = 20 for each.
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was common to note swellings suggestive of varicosities and terminal boutons.  

Fluorescent labeling revealed diffuse cell body staining with concentrated punctate 

patterns at both the axon hillock and at terminals consistent with synaptic connections to 

cell bodies.  When diffusion rates were calculated for each of these compartments, 

mobility of sodium channels in the cell body were over 80 times faster than rates in the 

axon  hillock  and  over  600 times faster compared to rates at terminals.  Although we do 

not see such robust changes in mobility at the synapse, analysis of the synaptic recovery 

curve leads us to hypothesize that the diffusion rate calculated here most likely represents 

potentially 3 populations of GFP:DAT-1 proteins.   

The first population, represented by the rapid recovery in the lower part of the 

curve (Fig 23, 0-2 sec after bleach) likely represents GFP:DAT-1 proteins that are freely 

diffusing in the membrane and able to rapidly invade our 1.05µm bleach space.  The 

second population of GFP:DAT-1 proteins likely represented here corresponds to fusion 

protein delivery into they synapse from the axon, and is graphically depicted by the more 

linear area of the curve (Fig 23, 2-12 sec after bleach).  The final pool of GFP:DAT-1 in 

this synaptic population is the immobile fraction which we argue accounts for almost 

50% of the GFP:DAT-1 found in the synapse.  Immobile fractions of sodium channels 

and GABA receptors were in the range of 80 – 90% immobile in synaptic areas, however 

immobility was quantified differently in these studies (Angelides et al., 1988; Velazquez 

et al., 1989) (see below) 

Consistent with the hypothesis that GFP:DAT-1 is primarily immobilized at 

synaptic areas, Angelides reported that Na+ channel fluorescence concentration at 

terminals is dictated by synaptic connections.  In experiments examining either  



0 5 10 15 20

30

40

50

60

70

80

90

100

110

120
Bleach

Non Bleach

Control

Time

Figure 29.  Comparison of GFP:DAT-1(ΔIML) and GFP:DAT-1 FRAP Curves in the Cell Body.

A.  Composite FRAP experiments using the GFP:DAT-1(ΔIML) fusion protein.  Recovery of both the
bleached and non-bleached areas after photobleaching achieve distinguishable equilibrium levels which
are used to calculate immoble fraction for this mutant.  Final recovery levels for each region are
significantly different (A, inset.  p < .05, paired Student’s t-test).  B. FRAP recovery curves were
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denervated chick myotubes or myotubes co-cultured with spinal cord neurons, only the 

myotubes co-cultured with the spinal cord neurons displayed any punctate fluorescent 

staining (Angelides, 1986).  Although we have not attempted to quantify accumulation 

from dissociated cultures to examine the effect of deinnervation on this signal, the fact 

that GFP signal accumulates at areas which co-label which fluorescently-labeled VMAT 

(VMAT:mRFP) suggests that there are proteins or mechanisms in place to retain or 

accumulate DAT-1 at sites of synaptic activity. 

 Initially, we had hypothesized that diffusion rates for the ΔPDZ fusion in the cell 

body would reveal lower mobility due to the visual intracellular accumulation noted in 

this line (Fig 17B).  The area assessed by FRAP was sufficiently large to include both the 

plasma membrane and intracellular pool of the GFP:DAT-1(ΔIML) protein and previous 

studies of ΔPDZ DATs had shown biochemical evidence of an accumulation of immature 

protein (Bjerggaard et al., 2004), consistent with retarded progression through Golgi 

glycosylation pathways.  Our study however, indicates that the inclusion of this 

intracellular, presumably Golgi-retained, protein has no effect on GFP:DAT-1(ΔIML) 

diffusion rates compared to wild type GFP:DAT-1 rates.  This is consistent with lateral 

mobility of Golgi proteins reported by Cole et al. in their examination of apparently 

“retained” Golgi mutant proteins (Cole et al., 1996).   

Our assessment of synaptic immobility for the GFP:DAT-1 fusion differs from 

traditional definitions utilized in FRAP analysis.  Typically, mobile fraction is defined as 

the difference in fluorescence after bleach at time infinity subtracted from bleach depth 

achieved and divided by 100 minus the bleach depth to obtain a percent mobile fraction. 

                                          [(AFU(f∞) – Bd)/(100 – Bd)] x 100 (6) 
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The immobile fraction is then determined by subtracting the mobile fraction from 

100.  In our experiments, this would give an immobile fraction for GFP of 45.29% and of 

79.57% for GFP:DAT-1, which would be more consistent with the immobile fractions of 

both sodium and GABA channels reported previously (Angelides et al., 1988; Velazquez 

et al., 1989).  Because almost the entirety of the synaptic region is being bleached, and 

this area represents a closed structure, we decided instead to normalize to soluble GFP, 

which is expected to have no true immobile fraction in this structure.  Our estimate of 

49% immobile fraction is therefore a conservative estimate, adjusted for the fact that the 

geometric constraints of the synapse clearly over estimate immobility (as is evident from 

immobile fraction reported for the soluble GFP).  Further studies with additional 

fluorescent membrane proteins expressed in DA neurons should be useful in further 

estimating DAT immobilization.  Of particular utility would be membrane proteins that 

display a uniform density across cellular compartments.   
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this section I will briefly review the findings reported in the thesis and 

speculate more generally on some of the results, with an emphasis on hypotheses needing 

future evaluation.  Sections below are divided into specific overall themes that can direct 

future work related to DAT-1 localization. 

 

OVERALL REVIEW 

Antibodies directed against the intracellular COOH-terminus of C. elegans DAT-

1 specifically identified DAT-1 in the DA head neurons, including both the CEP and 

ADE cell groups.  Although the specifics of their cellular architecture differ, DAT-1 was 

consistently found at varying levels in the major compartments of these neurons, with 

synaptic, cell body, and dendritic localization evident.  DAT-1 signal was absent in dat-1 

KO alleles (dat-1(ok157)) and displayed enrichment in presynaptic terminals compared to 

cell bodies.  It should be noted that, even in older animals, specific staining was difficult 

to detect in PDE cell bodies and processes.   

A presynaptic enrichment of DAT-1 is consistent with previous studies performed 

by several labs examining the localization of DAT in both rat and human brain tissue 

(Hersch et al., 1997; Nirenberg et al., 1997; Ciliax et al., 1999).  Without the 

ultrastructure provided by high resolution EM, we were fortunate to evaluate this 

localization to published synaptic wiring for expectations regarding “synaptic” areas 
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elaborated by the DA head neurons (White et al., 1986).   We observed DAT-1 specific 

reactivity at low levels in dendrites with an enrichment of DAT-1 staining in cell bodies 

and areas consistent with presynaptic terminals of both the CEP and ADE neurons in the 

esophageal nerve ring.  Although antibody staining of wild type animals provided 

validation of GFP:DAT-1 cellular localization, relative quantification of 

immunofluorescence signal would have been confounding, due to the variability of 

relative staining caused by the permeabilization steps needed for antibody 

immunoreactivity.   

Expression of a GFP:DAT-1 fusion in DA neurons recapitulated native 

immunostaining localization in wild type DAT-1 animals.  This construct rescued 6-

OHDA toxicity in the dat-1(ok157) background, indicating that our fusion was functional 

in vivo.  In vitro culture experiments using this GFP:DAT-1 fusion line confirmed 

GFP:DAT-1 protein is capable of [3H]DA uptake.  Additionally, we found that 

GFP:DAT-1 maintained channel like states, with similar current amplitudes recorded in 

wild type strains (Carvelli et al., 2004).  Interestingly, this fusion produces an increase in 

channel activity in the form of increased mean open time for DA gated ion permeation, 

indicating that interactions of proteins that mediate this activity may have been disrupted 

using the NH2-terminal tag (Carvelli et al., 2004). 

Relative quantification of GFP:DAT-1 fluorescence revealed a specific 

accumulation of GFP:DAT-1 signal in synaptic regions (consistent with VMAT:mRFP 

localization) when compared to the cell body from which the axon was derived, 

consistent with qualitative findings from antibody studies.  This analysis revealed a 

preferential distribution of GFP:DAT-1 fluorescence with highest density in the synapse, 
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followed by the cell body, and finally in the dendrites.  This distribution was specific for 

GFP:DAT-1 fusions as both a nuclear localized GFP and cytosolic fluorophore (pTimer) 

displayed highest density in the cell body.   

Establishment of wild type GFP:DAT-1 localization allowed for comparisons to 

localization patterns in mutant lines including 1) analysis of an unc-104 mutant, 2) 

mutants identified in a forward genetic screen for 6-OHDA toxicity suppression, 3) a 

truncated GFP:DAT-1(ΔIML) protein bearing loss of a putative PDZ recognition 

sequence.  Examination of GFP:DAT-1 in the unc-104(e1265) mutant background 

revealed a reduction in synaptic density for DAT-1, with preservation of relative 

GFP:DAT-1 synaptic enrichment.  Reasons for this decreased synaptic density are 

currently unclear, but hypotheses are discussed below.   

DAT-1 mutants recovered from a forward genetic screen for 6-OHDA toxicity 

suppression displayed altered GFP:DAT-1 localization or expression when the mutations 

were placed into the GFP:DAT-1 fusion and expressed in DA neurons.  These studies 

support the validity of the model for evaluating mutant DAT-1 alleles, as our in vivo 

expression largely matches expectations inferred from in vitro biochemical experiments. 

Finally we tested the specific hypothesis that a conserved type II PDZ binding 

motif in DAT-1 (IML) would participate in synaptic accumulation.  Previous studies 

using rDAT and hDAT proteins suggested that the PDZ binding domain at the distal 

COOH-terminus of DAT-1 may be required for DAT stability, plasma membrane 

insertion, and potentially synaptic elaboration (Torres et al., 2000; Bjerggaard et al., 

2004).  To test this hypothesis in vivo using C. elegans, the PDZ binding domain found in 

DAT-1 (IML) was both truncated, creating a disruptive HSD* COOH-terminal tail, or 
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masked using addition of GFP sequence to the COOH-terminus.  Both mutations resulted 

in intracellular accumulation of GFP:DAT-1 signal at high expression levels.  When the 

GFP:DAT-1(ΔIML) transgene was integrated, expression of the fusion protein was 

decreased and this intracellular accumulation was lost, resulting in a mostly wild type 

localization.  When quantified, both mutants displayed synaptic accumulation that was 

indistinguishable from wild type GFP:DAT-1.  Both molecules were also capable of 

restoring 6-OHDA sensitivity to the dat-1(ok157) KO strain, indicating in vivo plasma 

membrane expression and localization.   

This mutant PDZ expressing strain was also tested in FRAP studies, examining 

DAT mobility in C. elegans DA neurons in vivo.  Initial FRAP studies performed on 

GFP:DAT-1 lines revealed a diffusion consistent with previously studies membrane 

proteins.  Synaptic GFP:DAT-1 diffusion rates were not altered per se, but immobile 

fraction was increased from 2.5% (in the cell body) to between 50 and 80% in the 

synapse (depending on immobile fraction measurements used).  Although cytosolic GFP 

also displayed an apparent immobile fraction in the synapse, this difference was not 

significantly different from cell body immobile fraction for GFP in the cell body.  The 

GFP:DAT-1(ΔIML) mobility rate was similar to the wild type GFP:DAT-1 fusion protein 

mobility rate, indicating that the PDZ binding domain of DAT-1 does not effect cell body 

mobility.  This PDZ mutant line has not been evaluated for synaptic immobility or 

diffusion and should be pursued further.    
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DAT CELLULAR EXPRESSION AND AGING 

 Examination of our lowest expressing GFP:DAT-1 fusion line in mixed staged 

animals revealed that GFP:DAT-1 expression was highest in young L2/L3 animals.  This 

observation led us to investigate the role of the 700bp promoter region of DAT-1 used in 

our studies, which we hypothesized might direct this differential expression of our 

transgene.  Using the DAT-1 promoter to drive expression of a molecular fluorophore 

that changes its fluorescent property over time (pTIMER), revealed that this promoter 

region was most active in young L2/L3 animals (consistent with our GFP data), and that 

transcription/translation was being halted at young adult (Fig 30).  Interestingly, 

expression of the mFRP tagged VMAT using the same DAT-1 promoter fragment 

displayed robust expression in the adult, indicating DAT-1 protein in these neurons may 

be relatively unstable.  Permeabilization of synchronized and staged animals confirmed a 

loss of native DAT-1 in aged worms, with less than 20% of animals over the age of L4 

displaying any appreciable DAT-1 specific staining (data not shown). 

 While our aging data is preliminary, the findings are consistent with studies in 

human brain samples (Bannon et al., 1992). A forward genetic screen could be 

implemented looking for regulators of both DAT-1 degradation and transcription factors 

that effect this regulation using either the GFP:DAT-1 fusion line or the pTimer lines.  In 

the first case, worms could be mutagenized and retention  of GFP:DAT-1 signal in the 

adult could be used to identify genes effecting this degradation (and potentially 

transcriptional regulators).  In the second case, the pTimer line could be mutagenized and 

animals could be sorted using a “worm sorter” to identify strains that retain dual labeling  



Figure 30.  Loss of Expression of Both GFP:DAT-1 and pTimer Fluorescence in Older Animals.

A. Complete expression of GFP:DAT-1 in all head neurons of an L3 animal.  B.  GFP:DAT-1
expression is lost in the adult with only two of the CEP neurons expressing GFP:DAT-1 in this
representative animal.  C.  Examination of DAT-1 promoter efficiency in young v. old animals.  L3
animal expressing pTimer fluorophore in all DA neurons of the worm.  PDE expression has just begun
in this animal (green fluorescence in PDE projection (asterisk) with extensive two color labeling in the
head neurons.  D.  Young adult animals have already lost expression of both colors in most neurons
with only one CEP neuron remaining transcriptionally/translationally active.  Note only red
fluorescence in CEP neuron just behind the two color neuron (arrow)

A B

C D

*
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(both green and red fluorescence).  Either of these screens would be fairly straightforward 

with the latter requiring minimal effort to initially identify candidate genes. Finally, the 

transcriptional regulator Nurr-1 has been implicated in DAT regulation (Bannon et al., 

2002), and homologues to this protein exist in C. elegans (wormbase, 

www.wormbase.org) . 

 

SYNAPTIC DENSITY OF DAT-1  

 Data from our GFP:DAT-1 fusion lines in the unc-104(e1265) background 

showed a reduced synaptic density for DAT-1 accumulation.  While synaptic enrichment 

of DAT-1 was evident, focal accumulation levels at the synapse were reduced, indicating 

that either proteins that depend on UNC-104 for synaptic localization or DA signaling 

affects DAT-1 synaptic density.  To test the first possible scenario, UNC-104 dependent 

proteins with known mutant alleles should be investigated.  A recent paper published by 

Sieburth et al. used the a more severe allele of UNC-104 (unc-104(KIF1A) to examine 

synaptic mutant proteins identified using a large aldecarb resistance based RNAi screen 

(Sieburth et al., 2005).  Of the original 185 synaptic proteins identified, 16 were found to 

be UNC-104 dependent.  Of the proteins listed, M04D8.2, an insulin/IGF receptor (ins-

22) is perhaps the most intriguing.  Insulin has been found to increase DAT surface 

density in mammalian cells, potentially by inhibition of PP2A via AKT (Azoui et al., 

1996; Begum and Ragolia, 1996) . Additionally, given the effects of insulin on AMPH 

induced rDAT and hDAT internalization (Galici et al., 2003; Garcia et al., 2005; Owens 

et al., 2005), signaling though this pathway should be explored.   
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 The second possibility presented by these data is that reduced DA signaling in the 

UNC-104 mutant might contribute to a decrease in synaptic density.  To test this, 

synaptic density measures can be acquired in known DA synthesis mutants (bas-1 and 

cat-1) as well as in mutants lacking the presynaptic DA D2-like receptor, dop-2.  The 

synthesis mutants are particularly attractive, as any density reduction seen in the cat-1 

(TH homologue) mutant should be reversed with the exogenous addition of L-DOPA, 

whereas L-DOPA in the bas-1 (AADC) line should have no effect.  

 Alternative means of DAT-1 localization that does not utilize UNC-104 should 

also be examined.  Recent work on the GABA transporter indicates that GAT-1 buds 

from the Golgi complex and is inserted into membranes using components of the Exocyst 

complex, specifically the exo-70 protein (Farhan et al., 2004).  Another Exocyst protein, 

Sec-5, was reported to disrupt integral membrane trafficking important for synaptic 

elaboration in drosophila, without effecting neurotransmitter release, indicating that this 

protein localizes a sub-set of proteins outside of those targeted by UNC-104 (Murthy et 

al., 2003).  Because mutations in the exocyst proteins often lead to lethality, as in the 

Murphy study mentioned above, cultured DAT-1 neurons expressing GFP (from the 

BY250 strain) could be FACS sorted and exposed to double stranded RNA (dsRNA) for 

targeted disruption of Exocyst homologues.  This dsRNA should result in RNAi of the 

targeted proteins and each condition can be screened for loss of [3H] DA uptake in these 

sorted cultures.  These experiments are also relatively straight forward, requiring minimal 

generation of novel tools (mainly the dsRNA constructs). 

 
FUTURE FRAP EXPERIMENTS 
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 Initial FRAP studies on GFP:DAT-1 lines display a large immobile fraction of 

DAT-1 protein in synaptic areas.  Because we are the first group to explore FRAP of a 

presynaptic membrane protein using traditional FRAP methods, it is difficult to compare 

our results to any known protein mobility rates.  As such, it would be important to 

express a transmembrane domain spanning protein fused to GFP to determine lateral 

mobility of this protein in both the presynaptic terminal and cell body.  This would help 

better define the immobile fraction noted for DAT-1 in these studies as this may be a 

physical constraint of membrane protein diffusion in small close compartments such as 

the synapse. 
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APPENDIX A 

 

TANDEM AFFINITY PURIFICATION OF DAT-1 INTERACTING PROTEINS. 

 

INTRODUCTION 

 The rate of DA clearance from synaptic terminals depends upon the number of 

plasma membrane associated and active DA transporters (DATs).  Plasma membrane 

insertion and retention of the hDAT is influenced by several signaling pathways and by 

direct protein-protein interactions (Copeland et al., 1996; Bauman et al., 2000; Torres et 

al., 2001; Carneiro et al., 2002).  As such, identifying novel proteins that interact with 

DATs is important for understanding modulation of these transporters and establishing a 

functional effecting on DA clearance.  In this Appendix, I describe my attempts at 

isolating C. elegans DA transporter (DAT-1) associated proteins using a tandem affinity 

purification (TAP) tagged DAT-1 transporter expressed in vivo, and discuss limitations 

and future directions of such experiments. 

 Post-translational DAT modulation is well established in the literature.  In many 

cell hosts, pharmacological manipulation using phorbol esters including phorbol 12-

myristlate 13-acetate (PMA) reduce transport capacity (Vmax) by reducing the number of 

transporters on the plasma membrane (Kitayama et al., 1994; Copeland et al., 1996; Huff 

et al., 1997).  This reduction in transport capacity has been linked to PKC or PKC 

inhibition using bisindolylmaleimide or staurosporine to suppress phorbol ester-induced 

decrease in Vmax (Zhang et al., 1997; Zhu et al., 1997). Consistent with the activity of a 

kinase, activation of PKC using PMA or by inhibiting protein phosphatases using 
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okadaic acid or calyculin, yields a significant increase in basal phosporylation state of 

rDAT in synaptosomes (Vaughan et al., 1997).  DAT also associates with protein 

phosphatase 2A, suggesting the possibility that DAT phosphorylation is tightly controlled 

through protein-protein associations (Bauman et al., 2000).  

Since this initial finding, several interacting proteins have been reported to 

associate with DAT including some linked to PKC activation pathways.  Studies by 

Torres et al. first demonstrated that PICK1, directly interacts with the C-terminus of 

hDAT via a type II PDZ binding motif (see Chapter IV).  Truncation of this binding 

motif resulted in loss of PICK1-DAT interaction and intracellular accumulation of hDAT 

protein in transfected midbrain cultures (Torres et al., 2001).  Co-expression of PICK1 

with hDAT resulted in an increased Vmax with increased surface clustering of DAT, 

indicating that PICK1 might stabilize DAT on the plasma membrane.  In chapter IV, I 

show that this interaction may contribute more to transporter biosyntheis and stability 

rather than synaptic localization.  Another PKC interacting protein, the receptor for 

activated C-kinase (RACK1) has also been reported to interact with the N-terminus of 

hDAT (Lee et al., 2004), which puts RACK1 close to N-terminal PKC consensus 

sequences important for DAT modulation. 

 Non-PKC interacting proteins have also been found to physically associate with 

DATs in vitro.  The SNARE protein syntaxin has been reported to interact with the N-

terminus of several monoamine transporters and has recently been demonstrated to 

interact with DAT (Lee et al., 2004).  The synaptic protein α-synuclein, which is 

implicated in the DA neurodegenerative disease, Parkinson’s disease, has also been found 

to associate with DAT and results in a decrease in Vmax with no change in DA affinity or 
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Km in vitro (Wersinger and Sidhu, 2003).  In vivo expression of both mutant and normal 

human α-synuclein in C. elegans DA neurons resulted in an increased susceptibility to 

the neurotoxin 6-OHDA, a process that is known to be DAT-1 dependent (Lakso et al., 

2003; Kuwahara et al., 2006). 

 Another presynaptic adaptor protein was recently demonstrated to interact with 

the N-terminus of DATs, providing a link to intracellular signaling pathways known to 

signal via tyrosine kinases.  Yeast two hybrid experiments using the n-terminus of DAT 

revealed an interaction with the LIM domain containing protein Hic-5 (Carneiro et al., 

2002).  DAT interaction with Hic-5 resulted in reduced DA uptake due to a loss of 

plasma membrane associated transporters.  The DAT/Hic-5 interaction was dependent 

upon the Hic-5 LIM domain in vitro, and evidence of in vivo interaction was reported 

using coimmunoprecipitation (Carneiro et al., 2002) from striatal brain extracts . 

 Investigation into the human movement disorder, early onset torsin dystonia, 

which results from mutant torsinA protein accumulation in DA neurons, revealed an in 

vivo interaction of torsin with DAT (Cao et al., 2005).  Expression of wild type torsinA in 

C. elegans DA neurons revealed that torsin expression reduced 6-OHDA induced DA 

toxicity and sequestered GFP:DAT-1 fusion proteins in cell bodies within the DA 

neurons (Cao et al., 2005).  Mutant torsins reduced this protective effect in these neurons. 

Although direct interaction was not tested, GFP:DAT-1 sequestration in cell bodies 

indicates that torsin may forms a complex with DAT-1 in vivo, a hypothesis that should 

be investigated further. 

 Several techniques for identifying putative protein interactions have been 

established and used for identifying DAT interacting proteins.  The most successful to 
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date has been the use of yeast-two-hybrid system, which takes advantage of yeast 

selection (both positive and negative) to identify putative interacting fragments (Fields 

and Song, 1989).  This system takes advantage of transcription factors, which, in the 

absence of protein-protein interactions, are inactive.  To take advantage of this system, 

selective fragments of your protein of interest are fused to one of these binding factors 

and used as “bait” (historically, Torres et al. used the hDAT COOH-terminus (Torres et 

al., 2001)) to probe a random cDNA fragment library fused to the “prey” protein.  If the 

bait fragment and prey fragment interact, yeast transcription is activated, affecting either 

color-based selection or survival on minimal media.   

 Yeast-two-hybrid system was used in the Caron laboratory to discover both 

PICK1 and HIC-5 interactions with the COOH-terminal domain of hDAT (Torres et al., 

2001; Carneiro et al., 2002), and while this system has proven successful in the past, 

there are many disadvantages to yeast-two-hybrid based screens.  The first of these has to 

do with the physical requirements of the screen itself.  Because the screen depends on 

transcriptional regulation of two nuclear proteins fused to peptide fragments to create a 

positive result, the native accessability of these protein domains is impossible to assay.  

In other words, just because the peptide fragments interact in the nucleus of yeast does 

not mean that full length translated and properly folded proteins will interact in vivo.  

This leads to a large number of “false positive” interactions (Fields, 2005).   

 The second of the limitations of yeast-two-hybrid has been alluded to in the first, 

and that is, only a fragment of the full-length peptide is used as the bait protein.  In the 

case of earlier studies, only the intracellular COOH-terminus was used, limiting the 

number of potential interacting proteins returned by the system.  This can be overcome 
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by sub-cloning other fragments into the bait vectors, however this increases the work 

substantially.    

 Another method employed by biochemists in a search for protein-protein 

interactions is co-immunoprecipitation (co-IP) with a target protein followed by protein 

analysis by 2-D gel or mass spectrometry.  In this system, full-length protein of interest is 

detected by specific antibodies and isolated under mild conditions.  Proteins that interact 

with your protein of interest co-IP as a result.  Immunoisolated complexes are then 

resolved on a 2-D polyarylamide gel, typically using both pH and isoelectric point or 

mobility to discriminate individual proteins.  These proteins are then visualized using 

protein dyes (Commassie or silver).  Novel proteins are then removed from the gel and 

trypsin digested for analysis by mass spectrometry.  While this system appears relatively 

straightforward, there are a few caveats that should be considered.  Firstly, generation or 

use of a highly specific and efficient antibody suitable for IP procedures is required.  If 

no specific antibody is available, generation of a good IP antibody can take months to 

years (if you ever get one).  Once a suitable antibody has been obtained, different 

solubilization conditions effect co-IP quality.  Different detergent and ionic 

concentrations effect protein-protein interactions and can alter the success of the co-IP 

procedure.  Also, specificity of your antibody for your protein of interest is paramount in 

returning a limited number of false positives.  This issue can be diminished by pre-

absorbing the antibody against non-transfected cells but can be problematic if attempting 

to IP proteins out of native tissue (unless knock out animals have been generated).   

 The final limitation to this technique comes in novel protein selection and 

identification by mass.  Once IP experiments have been performed, novel proteins are 
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identified by visualization using either commercial dyes or silver staining.  These 

procedures are effective only within certain concentration ranges (from µg to mg, 

depending on the techinique).  Low affinity or abundant interactions will therefore be lost 

using this technique.  Proteins that are isolated are then trypsin digested and subject to 

mass separation and spectral identification using a mass spectrometer, which can yield a 

prediction of the protein sequence.  

Recent development of a tandem affinity purification (TAP) system in yeast had 

yielded novel proteins important in mRNA splicing, which had not previously been 

identified using genetic screening techniques (Rigaut et al., 1999).  This TAP technique 

takes advantage of a dual affinity purification tag fused to the protein of interest.  This 

dual tag allows for two sequential rounds of affinity column purification, which reduces 

non-specific binding of background proteins.  Another advantage of this dual tag is that it 

takes advantage of well characterized, commercially available, high affinity reagents for 

the IP reactions, overcoming problems discussed above.  Bound protein complexes are 

then eluted and either isolated by gel electrophoresis or entire protein complexes are 

precipitated and digested for analysis by mass spectrometry. 

 Another recent advancement in protein identification using tandem mass 

spectrometry provides a unique opportunity for identification of large protein complexes 

that have been immunopurified from organisms with published genomic sequence.  This 

technique for direct analysis of large protein complexes using mass spectrometry, termed 

DALPC, couples mulitdimentional liquid chromatography (LC) and tandem mass 

spectrometry (MS/MS) to separate and fragment peptides (Link et al., 1999).  Mass 

spectra from peptide sequences are then compared to theoretical spectra from translated 
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protein sequences inferred from the published genome using the SEQUEST algorithm.  

Combination of both the TAP and the LCS/MS/MS techniques allows for the rapid 

identification of protein targets and potential protein-protein interactions that can then be 

then tested and verified using biochemistry and molecular biology techniques. 

 With the recent publication of the C. elegans genome sequencing project, we 

reasoned that large scale IP of DAT-1 using TAP tag technology coupled with DALPC, 

would yield novel and conserved DAT-1 interacting proteins.  Mammalian homologs of 

these proteins can then be identified and tested for interaction and functional significance 

in higher organisms.   

 

MATERIALS AND METHODS 

C. elegans Strains 

All strains were derived from the wild-type N2 Bristol isolate and maintained at 14 to 

25°C using standard methods (Brenner, 1974).  The dat-1(ok157) strain was a gift of J. 

Duerr and J. Rand (Oklahoma Medical Research Foundation, Oklahoma City).  The 

BY250 strain was a gift from G Wong. 

 

TAP Vectors 

In order to generate an NH2-terminal DAT-1 fusion protein, both in vitro and in vivo 

vectors were produced.  The original pFA6 vector containing an N-terminal tandem 

affinity purification (TAP) construct has been described previously and was a gift from 

K. Gould, Vanderbilt University.  The DAT-1 promoter region (Pdat-1) and the dat-1 

cDNA amplification has been described previously (Nass et al., 2002).  For studies using 
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TAP vectors, three separate constructs were made, one for in vitro and another two for in 

vivo expression.  The in vitro construct utilized an hCMV promoter amplified from 

pcDNA3.1 using sense oligo RB1244 (5’ – CGC GGA TCC ATA TAC GCG TTG ACA 

TTG ATT ATT GAC – 3’) and antisense oligo RB1245 (5’ – CGC CTT AAT TAA CAG 

AGA GCT CTG CTT ATA TAG – 3’).  This amplified hCMV was then inserted 5’ of 

the TAP tag using BamHI and PacI sites added during PCR amplification (underlined in 

oligos). Dat-1 cDNA was inserted in frame 3’ of the TAP construct using AscI and BglII 

sites to create the final hCMV::TAP:DAT-1 expression vector (pBY537, see Table 6).  

To create the in vivo TAP:DAT-1 expression vector and the TAP alone control vector, 

amplified Pdat-1 was inserted into the pBY537 vector using BamHI and PacI sites 

replacing hCMV, creating pBY533.  To create the TAP alone control vector, the DAT-1 

promoter region was removed from pBY533 using BamHI and PacI enzymes.  This 

promoter was then placed into the original pFA6 TAP vector using these same sites 

creating pBY578.   

 

Construction of Transgenics and Stable Integrants 

In order to create lines expressing the TAP:DAT-1 fusion in DA neurons, stable 

transformants were created by co-injection of plasmid constructs with a marker plasmid 

using standard methods (Mello et al., 1991). Transgenic animals containing the 

TAP:DAT-1 translational fusion (pBY533) were obtained after co-injection of a final 

concentration of 15ng/µl of pBY533, 60ng/µl of pRF4[rol-6(su1006)], and 50ng/ul of 

carrier DNA (pBluescript)  in  PBS  directly  into  the  dat-1  strain.   Transgenic animals  



DNA Plasmid Constructs   

   

pFA6 Expression  Yeast 

 Vector inserts TAP 

   

pRB533 Expression C. elegans 

 Vector inserts Pdat-1::TAP:DAT-1 

 Translated Protein TAP:DAT-1 

   

pRB537 Expression Mamalian Cell Culture 

 Vector inserts hCMV::TAP:DAT-1 

 Translated Protein TAP:DAT-1 

   

pRB578 Expression C. elegans 

 Vector inserts Pdat-1::TAP 

 Translated Protein Cytosolic TAP 

   

 

Table 6.  Plasmid Constructs Used for TAP Experiments
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containing the TAP alone control vector (pBY578) were obtained using the same 

conditions.  L4 animals from lines containing extrachromasomal arrays that conveyed 

low penetrance for the rol-6 phenotype were exposed to 50ug/ml trimethyl Psoralen for 

array integration as previously reported (Clark and Chiu, 2003).  All integrated lines were 

then outcrossed 4 times to dat-1 animals. 

 

C. elegans dat-1 Genotyping 

This technique was described previously in Chapter IV. 

 

Pdat-1:TAP:DAT-1 Genotyping 

In order to verify that strains had been integrated with the TAP:DAT-1 construct and not 

just the rol-6 plasmid, genomic DNA was obtained from Pdat-1::TAP:DAT-1 integrated 

lines (BY327 and BY328) as described above.  A sense oligonucleotide that was initially 

used to amplify the DAT-1 promoter region (RB 1239 5’ – CGG CGG ATTC CAA GCT 

TCC ATG AAA TGG AAC TTG AAT CC – 3’) and an oligo directed against an 18 base 

sequence of the protein A domain of TAP (RB 1226 5’ – CGG TGC TTG AGA TTC 

ATT – 3’) were used to amplify a 1.1 Kb cDNA fragment.  Animals lacking the 

integrated pBY533 vector should yield no appreciable cDNA after amplification.  DNA 

from genomic preps was used at a concentration of 1ng/µl.  PCR based analysis was done 

using Advantage 2 PCR kit from BD Biosciences with 1ng of DNA, 100pM of RB 1239 

and 1pM of RB 1226 in a total reaction volume of 25µl.  PCR was performed in a Peltier 

thermal cycler PTC-200 from MJ Research using an initial “hot start” of 94°C for 2 
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minutes then followed by 30 cycles of 94°C melting for 15 seconds, 60°C annealing for 

30 seconds, and 68°C extension for 2 minutes.  

 

Cell Culture and Transformation 

To initially test function of the tagged TAP:DAT-1 protein, COS-7 cells were plated at 

50,000 cells per well in 24 well tissue culture treated plates (Perkin Elmer) with 500µL of 

DMEM (InVitrogen) complete medium (10% FBS (Hyclone), 100units/mL Penicillin, 

100ug/mL Streptomycin, and 2mM L-Glutamine). The cells were transfected with 200ng 

of either DAT-1 cDNA (pRB235, (Jayanthi et al., 1998)), the TAP alone control vector 

(pFA6), or the TAP:DAT-1 fusion vector (pRB537) using 0.6µL of FuGENE 6 

Transfection reagent per well (Roche Diagnostics).  Cells were allowed to incubate 

further with transfection reagent plus DNA for 48hr before either western or uptake 

experiments were performed.   

 

Western Blot Procedures 

In order to verify immunoreactivity of the TAP tag, membranes from transfected COS-7 

cells were collected by addition of 100µl of membrane prep solution (0.1µl sigma 

protease inhibitor, 100mM NaCl, 50mM TRIS) followed by scraping on ice.  Dissociated 

cells were then collected in a 1.5ml microcentrifuge tubes and membranes were pelleted 

by centrifugation in a Sorval microcentrofuge for at 16,000 x g (13,000 RPM) for 15min 

at 4°C.  The supernatant was then discarded and the resultant pellet was re-suspended in 

300µl of RIPA buffer with protease inhibitor.  Protein was then loaded onto a 10% 

polyacrylamide gel and run for 3 hours.  Proteins were then transferred to a nitrocellulose 
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membrane overnight in Towbin transfer buffer (25mM Tris, 192mM glycine, and 20% 

methanol).  After transfer, the membrane was stripped in western blot stripping solution 

(60mM Tris pH 6.8, .2% SDS and 10mM β-ME).  The membrane was then blocked for 2 

hours using 5% milk solution in PBS/T.  TAP:DAT-1 was detected using either our 

DAT-1 COOH-terminal antibody (Rb1565) or mouse purified IgG at 1:5000 (1 hour), 

followed by either goat anti mouse or goat anti-rabbit horseradish peroxidase-conjugated 

secondary at 1:10,000 (1 hr). 

 

[3H] Dopamine Uptake Procedures 

COS-7 cells transfected as described above were washed once with 370C KRH 

buffer including 10mM D-glucose, 100µM ascorbic acid, 100µM paragyline, and 1mM 

tropolone. Cells were pre-incubated at 370C in the same buffer for 10 min. Some wells 

contained the DAT-1 antagonist imipramine (1µM final) to assess nonspecific uptake.  

All cells were incubated for 10 min at 370C with 50nM of [3H]DA 

(dihydroxyphenylethylamine 3,4, -[7-3H], Perkin Elmer) prior to washing 3X with ice-

cold KRH buffer. Counts accumulated were solubilized using Microscint 20 (Perkin-

Elmer) scintillation fluid with gentle rocking for 1 hr before quantitation using a Top 

Count scintillation counter (Packard). 

   

Whole Worm Protein Extraction 

Lines were initially plated on large 100mm OP50/NA22 plates and allowed to starve to 

force dauer formation.  Each line was then washed off the plates using sterile H2O and 

pelleted.  100µl of concentrated worm slurry was then added to a total of 8 100mm 8P 
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plates.  Once animals were gravid, animals were then synchronized per protocol (Carvelli 

et al., 2004) and plated again on 32 8P plates per line.  Animals were grown for 24 hr at 

20°C and then washed off the 8P plates with M9 solution.  These L2/L3 lines were then 

washed 3x in M9 in large 50ml conical tubes (falcon) and then rewashed another 2x in 

isotonic sucrose.  Lines were then pelleted in isotonic sucrose and quick frozen in liquid 

nitrogen.  Lines were allowed to thaw on ice and subjected to French press at 500psi, on 

high.  Each line was put through the French press twice to ensure disruption.  The 

extracts were then either subjected to differential centrifugation or used directly for TAP 

purification.  For lysates subjected to differential centrifugation, an initial P1 pellet was 

collected by centrifugation at 2,000 rpm for 10 minutes.  The supernatant from this was 

collected in a high-speed centrifuge tube and subjected to 20,000xg for 1.5 hr.  The 

supernatant from this spin was then decanted and collected as an S2 fraction and the 

precipitate from this spin was collected and kept as a P2 fractions.  Fractions were then 

analyzed by western blot. 

 

TAP Purification and Protein Preparation 

 Protein lysates collected as described above were subjected to TAP purification as 

described (Rigaut et al., 1999).  Once the final eluate was collected, proteins were 

precipitated using 2% trichloroacetic acid (TCA).  Precipitated pellets was were washed 

using 100% acetone.  After precipitation, the protein precipitate was resuspended and 

trypsin digested as previously described (Link et al., 1999).  A portion of the eluate was 

analyzed on a gradient (4-20%) polyacrylamide gel and visualized by silver staining 

using Bio-Rad Silver Stain Plus reagent (Bio-Rad, Hercules, CA). 
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RESULTS 

TAP:DAT-1 Construct Design 

To avoid disruption of known COOH-terminal protein interactions, we used the 

NH2-terminal TAP tag which results in initial translation of the IgG binding domain 

(Protein A) followed by a tobacco etch virus (TEV) cleavage sequence, and finally the 

calmodulin binding protein (CBP) (Fig 31A).  This NH2-terminal tag allows for initial 

purification using IgG Sepharose beads followed by TEV protease cleavage and 

subsequent calmodulin resin purification.  This NH2-terminal tag, fused to DAT-1, results 

in a free COOH-terminus and only hinders N-terminal interactions at the very proximal 

NH2-terminus (Fig 31B). 

 

TAP:DAT-1 Fusion Protein Supports Dopamine Uptake in vitro 

To determine if fusion of the TAP tag to the NH2-terminus of the C. elegans DAT 

(DAT-1) would affect transporter function, we expressed full length fusion protein 

(TAP:DAT-1) in COS-7 cells and monitored DA uptake.  An equivalent amount DA of 

control empty vector (pFA6), non-tagged DAT-1 expression vector (pRB235), and our 

experimental TAP:DAT-1 construct (pRB537) was transfected and resulted in equivalent 

uptake amounts for both the tagged and non-tagged version of DAT-1.  This uptake was 

blocked in both cases by the DAT-1 antagonist imipramine at 1µm (Fig. 31C), revealing 

it to be specific for DAT-1.  No specific uptake was noted in our control vector 

expressing cells. 

 



Figure 31.  TAP:DAT-1 Construct and DA Uptake Results.

A.  Schematic representation of the N-terminal TAP tag with initial translation of the
protein A domain followed by the TEV cleavage site and CBP domain.  B.  Illustration
of translated TAP:DAT-1 fusion displaying N-terminal TAP tag and free C-terminal
DAT-1 domain.  C.  Uptake results for different DAT-1 constructs in transfected COS-7
cells.  Both the non-tagged DAT-1 and the TAP tagged DAT-1 show robust specific
uptake of [3H]-DA.  Uptake through both constructs is also blocked using the known
DAT-1 antagonist imipramine.

Vehicle
Imipramine
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Western Blot of COS-7 Cell Extracts 

 COS-7 cells transfected with either pFA6 (control vector), pBY235 (DAT-1), or 

pBY537 (TAP:DAT-1 fusion) were harvested and tested for immunoreactivity using 

previously described antibody DAT-1 RB1566.  This antibody was originally raised 

against the intracellular COOH-terminus of DAT-1 but failed to recognize endogenous 

DAT-1 protein by western blot.  To test whether this antibody would interact with the 

Protein A binding domain of the TAP:DAT-1 fusion, both DAT-1 and TAP:DAT-1 was 

extracted from COS-7 and analyzed by western blot.  RB1566 identified both purified 

GST (Fig 32, lane 1) and the protein A domain of TAP:DAT-1 (Fig 32, lane 4) binds the 

IgG region of this antibody.  This antibody however failed to recognize DAT-1 (lane 3), 

as discussed in Chapter III.  Purified rabbit IgG and mouse IgG also bind to the protein A 

domain of both TAP and TAP:DAT-1 fusion by western (data not shown). 

 

TAP:DAT-1 Expression in vivo 

Animals expressing either the TAP:DAT-1 fusion protein (BY324) or the control 

TAP alone protein (BY325) were initially subjected to both dat-1 and TAP genotyping to 

verify integration of the TAP construct and absence of wild type dat-1 allele.  The full 

length dat-1 gene yields a 3.8kb fragment where as the dat-1 knockout (ok157) generates 

only a 1.8Kb PCR product.  As a control for heterogygous genotype, 0.5ng of both the 

wild type (N2) genome and the knockout (dat-1) genome were mixed and yielded both 

the 3.8 and 1.8 Kb bands, eliminating a false dat-1 designation that could result from the 

smaller amplicon masking the presence of the larger.  The BY324 and BY325 lines were 

then probed for the presence of the TAP construct, using pRB534 as a control.  Both the  



Figure 32.  Western Blot and Genotyping Data of TAP Cells and Strains.

A.  Proteins purified from COS-7 cells using antibody RB1566 displays specific
immunoreactivity for both GST (positive control) and TAP:DAT-1 (arrow).  While this
antibody was originally designed to recognize the DAT-1 COOH-terminus, DAT-1 is
not detected under these conditions (pRB235, lane 3).  Background bands from the
pFA6 parental vector are seen in lane 2.  B.  Genotyping of all strains for either the wild
type dat-1 allele or the dat-1(ok157) allele reveals that all TAP expression strains
(BY324 and BY325) are in the dat-1(ok157) knockout background as expected.  Control
lines BY250 and BY326 used in 6-OHDA experiments are also shown.  C.  Genotyping
for the integrated TAP construct reveals that both TAP expression strains contain the
TAP construct.  The injected vector (pRB534) yields the expected 1.1Kb band while a
negative control line (GFP:DAT-1 fusion, BY329) does not produce an amplicon.
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control TAP DNA (from BY325, see Table 7) and the TAP:DAT-1 fusion DNA (from 

BY324) yielded the expected 1.1Kb fragment, consistent with the control.  Satisfied that 

both lines contained copies of the TAP construct, we proceeded to examine protein 

expression in whole worm extracts from both lines. 

 

Western Blot of Purified Worm Extracts Containing TAP and TAP:DAT-1 fusions 

 Worms identified as containing integrated TAP and TAP:DAT-1 fusion vectors 

by PCR were then allowed to clone and extracts were generated for western blot analysis 

of TAP:DAT-1 collected proteins.  Whole worm lysis was originally separated by 

differential centrifugation to generate 3 separate lysate fractions as described in the 

methods.  Western blotting using purified mouse IgG identified TAP:DAT-1 full length 

protein in the control lane (lane 1, pRB537) and in the S2 and P2 fractions (Fig. 33A, 

lanes 3 and 4).  These bands were absent in the TAP alone expression worms but a band 

consistent with the mobility of full length TAP was detected in both the P1 and S2 pellets 

(~40Kd, lanes 5 and 6). 

 

TAP Purification of Whole Worm Extracts and DALPC Analysis  

With evidence of full length TAP-DAT-1 fusion of protein expression via western 

blot analysis, we proceeded with TAP purification and DALPC analysis of DAT 

associated proteins. Total worm lysate from both the BY324 and BY325 lines were 

subjected to dual column affinity purification.  Fractions from each step of the 

purification were saved for gel analysis and the final eluate was divided in two.  Half was 

precipitated using TCA and the other half was and run with the saved fractions from each  



C. elegans Strains Created or Used   

   
BY250 (vtIs7) Genotype N2 Background 

Pdat-1::GFP integrated 

 Protein Expression GFP in all DA Neurons 

   

BY324(vtIs14) Genotype dat-1(ok157) 

pRB533 integrated 

pRF4 integrated 

 Protein expression TAP:DAT-1 in DA neurons 

Rol-6(su1006) in cuticle 

 Phenotype roller 

   

BY325(vtIs15) Genotype dat-1(ok157) 

pRB578 integrated 

pRF4 integrated 

 Protein expression TAP in DA neurons 

Rol-6(su1006) in cuticle 

 Phenotype roller 

   

BY326 Genotype vtIs7 

dat-1(ok157) 

 Protein Expression GFP in All DA neurons 

   

BY327 Genotype vtIs7 

vtIs14 

dat-1(ok157) 

 Protein expression TAP:DAT-1 in DA neurons 

GFP in all DA neurons 

Rol-6(su1006) in cuticle 

 Phenotype roller 

   

BY328 Genotype vtIs7 

vtIs15 

dat-1(ok157) 

 Protein expression TAP in DA neurons 

GFP in all DA neurons 

Rol-6(su1006) in cuticle 

 Phenotype roller 

   

 

Table 7.  C. elegans Strains Used to Test TAP:DAT-1 Function in vivo..
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of the purification steps on a 4 – 20% gradient gel for analysis by silver staining.  Protein 

purification using the TAP method reveals specific purification of several distinct protein 

bands not seen in the control purified eluate (Fig 33C, asterisks).  With confidence of 

specific purification, we proceeded with LCS/MS/MS and peptide identification. 

Peptides generated from the final eluate, which become candidate interacting 

proteins, were identified by the SEQUEST algorithm.  Consistent with functional TAP 

tag, a calmodulin (cmd-1) homologue was isolated from the control animals.  Peptide 

fragments were considered specific by subtracting protein fragments identified in our 

experimental TAP:DAT-1 expressing line (BY324) against those identified using the 

TAP alone control line (BY325).   

Analysis of SEQUEST generated data did not yield DAT-1 specific peptides, nor 

did we recover any potential PICK1 homologues identified in worm base as might be 

expected (www.wormbase.org).  We did recover specific peptides that corresponded to 

both identified and novel proteins in C. elegans.  Proteins were distributed primarily as 

proteins with unknown function in C. elegans (40%), protein processing factors (20%), 

structural proteins (15%), signaling proteins (15%), and membrane proteins (10%) (Table 

8). 

 

6-OHDA Analysis of both TAP and TAP:DAT-1 Expressing Lines 

 To test the function of our TAP:DAT-1 fusion protein in vivo, animals integrated 

with either the TAP or TAP:DAT-1 fusion construct were crossed to BY326 (dat-1 null 

with cytosolic GFP in all DA neurons).  Lines that were both pure for GFP expression  

and  conveyed  a  100%  rol   phenotype,   were   subjected   to   50mM   6-OHDA.   This  



Figure 32.  Biochemistry and Uptake Experiments from TAP Expression Worm Lines.

A.  Lysate from TAP strains were subjected to differential centrifugation and the different
fractions were tested for TAP immunoreactivity.  Control protein from COS-7 cells expressing
the TAP:DAT-1 fusion (lane 1) is recognized by purified mouse IgG.  Similar bands are noted in
the S2 and P2 pellets for the TAP:DAT-1 expressing line (BY324, lane 3 and 4 arrows) but not in
the TAP alone expressing line (BY325).  A band that is consistent with TAP alone mobility is
noted in BY325 lines (lane 5 and 6, arrows).  B.  6-OHDA induced toxicity in TAP expressing
lines reveals that the TAP:DAT-1 fusion does not restore DA neuron susceptibility to 6-OHDA.
Wild type stains (BY250) loose over 80% of their neurons whereas TAP:DAT-1 (BY327), TAP
alone (BY328), and the dat-1 KO line (BY326) do not restore sensitivity.  C.  Lysates from
whole worm extracts after TAP purification show specific purification of protein bands in the
TAP:DAT-1 expressing line (lane 6, asterisks).

A B

C
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concentration of 6-OHDA has previously been shown to cause significant DA neuron 

toxicity in dat-1 wild type animals (Nass et al., 2002).   

 Neither the TAP control nor the TAP:DAT-1 fusion line rescued the dat-1 

knockout phenotype, failing to convey DA neuronal susceptibility to 6-OHDA (Fig 33B).  

The TAP:DAT-1 expressing line displayed almost complete resistance to 6-OHDA, 

which was indistinguishable from dat-1 knockout animals.  Animals expressing the wild 

type dat-1 allele (BY250) convey greater than 80% toxicity to these neurons and a 

similarly tagged GFP:DAT-1 fusion is able to restore almost WT levels of 6-OHDA 

induced toxicity (Chapter IV).   

 

CONCLUSIONS 

 While it is disappointing that the TAP:DAT-1 fusion protein did not restore 6-

OHDA sensitivity, significant progress was made toward use of multi-tagged transporter 

for immunoisolation in C. elegans.  It should be noted that this system was recently used 

to identify nicotinic receptor (UNC-29) associated proteins in C. elegans, identifying 

several novel protein-protein interactions important for nicotinic sensitivity (Gottschalk 

et al., 2005).  Total recovery of nicotine paralysis was seen with the COOH-terminal 

UNC-29:TAP fusion, indicating successful plasma membrane elaboration of the receptor.  

The expressed version of the TAP tag used by Gottschalk et al. differed slightly in the 

Protein A domain (direct communication, A. Gottschalk) which may account for loss of 

rescue with our NH2-terminal tagged version.   

 The original TAP tag had to be modified in plants due to the presence of a nuclear 

localization signal in the calmodulin binding domain.  When fused to GFP, the originally 
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published TAP protein resided primarily in the nucleus with very little cytoplasmic 

elaboration of the GFP signal (Rohila et al., 2004).  This may not have been an issue in 

the original system as proteins tagged for immunoisolation by Rigaut et al. were splicing 

factors which normally reside in the nucleus (Rigaut et al., 1999).   

 A significant amount of TAP:DAT-1 protein was produced and differential 

isolation of the TAP control and TAP:DAT-1 fusion yielded novel and potential DAT-1 

interacting proteins.  While TAP:DAT-1 failed to rescue 6-OHDA sensitivity in vivo, 

several potential DAT-1 interacting proteins were identified which may be important for 

early DAT-1 synthesis and potentially DAT-1 trafficking during biogenesis.  It is 

unlikely however that any of the proteins identified will be important for plasma 

membrane retention/insertion or for synaptic localization.  In fact, proteins expected to be 

found at the plasma membrane or synapse (PICK1 and syntaxin) were not recovered by 

this technique.  Interestingly, one of our hits was recently reported to be a DAT-

interacting protein in both cell culture and from rat synaptosomes taken from midbrain 

cultures (a homolog of RACK1 (K04D7.1, Table 8).   

 

FUTURE DIRECTIONS 

 Significant changes to the tandem affinity purification tag should be made before 

attempting immunoisolation of DAT-1 (or other C. elegans transporters).  While the use 

of this tag originally appeared promising, lack of verifiable expression level in individual 

neurons is problematic.  In vitro expression showed no significant impairment of 

TAP:DAT-1 fusion uptake capacity, and both PCR and western blot based analysis from  



DAT-1 Interacting Proteins Identified by Mass Spectrometry. 

 
Cytoskeletal/Structural Proteins_____________________________________________________________________________ 

Actin Interacting Protein 
Actin 
Tubulin  Chain 

 
Plasma Membrane Associated Proteins_______________________________________________________________________ 

SER-3 
-  Metabotropic Serotonin Receptor 
-  48% identity with Human Alpha 1C Aderenergic Receptor 2 

 
NCA-1 
-  Voltage Gated Ca++ Channel 
-  87.4% identity with Human VGCNL1 (voltage gated channel like 1) 
-  Expressed in Head Neurons in C. elegans (Hamming and Snutch, 2003 Int Worm Meeting) 

 
Cell Signaling Proteins____________________________________________________________________________________ 

SRC-1 
-  96.8% identity with Human protein tyrosin kinase Fyn A 
-  Serine /Threonine Kinase Activity 
-  Expressed in Neurons in C. elegans 

 
TAX-6 
-  85.3% identity with Human Calcineurin Subunit A  
-  Serine/Threonine Phosphatase activity 
-  Expressed in sensory neurons 
GTP Binding Protein 
-  52.3% identity with Rat RagA 

 
Protein Processing Accessory Proteins________________________________________________________________________ 

HSP-1 
-  Heatshock protein 1 
EFT-3 
-  Elongation factor 1  
RSP-1 
-  40s Ribosome 
60s Ribosome 

 
Proteins of Unknown Function______________________________________________________________________________ 

K04D7.1 
-  97.5% homologous to rat RACK1 
-  Egl phenotype (consistent with DA dysfunction) 
-  putative nucleotide binding protein 
-  putative PKC binding protein 

 
T28D6.4 
-  54.5% homologous to mouse ankyrin 1 
-  Protein contains 8 Ank repeats 

 
F49B2.4 
-  F box domain containing protein 
-  In yeast, homologue binds Skp-1p and is important in recyling 

 
C31E10.8 
-  In yeast, homolog is a GTPase activating protein 
-  Activates Sec4p to regulate exocytosis 

 
Y73F8A.2 
-  PP2A  subunit homolog 

 
ZC132.4 
-  35.4% homology to human synaptonemal complex 1 protein 

 
F44E5.1 
-  No known or putative function 

 
M05D6.6 
-  No known or putative function 

Table 8.  DAT-1 Interacting Proteins Identified by Mass Spectrometry
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integrated strains displayed both an integrated construct and protein expression.  It is 

likely therefore that the construct was integrated at low levels into the genome and that 

low level expression was achieved.  Without direct visualization of the tagged protein 

however, it is impossible to know if the fusion protein was being trafficked as expected 

for non-tagged DAT-1 protein.  6-OHDA studies would suggest that at least plasma 

membrane insertion and retention was not achieved.   

 In the future, a directly identifiable tandem affinity tag should be tested for use in 

C. elegans.  One of the advantages of the C. elegans system is direct visualization of cells 

and neurons in vivo.  Substitution of the protein A domain of the TAP tag with a Fire 

vector GFP would be recommended.  This construct contains artificial introns within the 

GFP sequence that increases mRNA stability and protein expression in vivo.  An NH2-

terminal GFP would allow for direct visualization and commercial antibodies could be 

used in the first immuo-isolation step.   

 Addition of the GFP would ensure appropriate expression of the tagged protein 

and cellular and subcellular localization could be determined.  Of course, as is true with 

any GFP fusion, in vivo function in the form of knockout rescue should be tested.  In the 

case of DAT-1, GFP:DAT-1 fusion has already been shown to confer dat-1 dependent 6-

OHDA toxicity to the DA neurons and cellular localization matches that of native protein 

probed with DAT-1 directed antibodies.   

 Retention of the TEV clevage sequence or a similar non-worm protease sequence 

would be recommended in order to free the complex from high affinity antibody 

interactions between the GFP and anti-GFP antibodies.  Alternatively, purified GFP 
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could be used to compete off the GFP tagged protein from the primary immuno-isolation 

complex.   

 Because there is some concern with a nuclear localization sequence within the 

calmodulin binding domain of the TAP tag, either a modified CBP domain should be 

used or an alternate tag should be employed.  A hemaglutanin A (HA) tag might be 

advisable as HA resin is commercially available and the HA tag and anti-HA resin has 

been directly tested for immunoprecipitation of DAT-1 protein (Nass et al., 2005).  After 

washing, the HA resin could be analyzed directly via polyacrylamide gel for band 

isolation or purified hemagglutanin could be used to compete the protein complex off the 

HA resin.  This new method of isolation would provide several improvements over the 

current system including in vivo visualization of tagged protein localization.  Use of this 

novel TAP (GFP:TEV:HA) tag would retain the dual purification steps and greatly 

improve current TAP technology and should be investigated. 

 Any identified proteins could be easily assayed for both in vitro function and co-

IP.  With the release of the C. elegans ORFeome (Reboul et al., 2003; Lamesch et al., 

2004), over 13,000 C. elegans cDNAs are now commercially available in Gateway™ 

vectors (Open Biosystems, Huntsville, Al).  Hits available from this library can be rapidly 

moved from Gateway™ entry vectors to destination vectors for mammalian expression.  

These destination vectors have specific tags (GFP, HA, 6-his, etc.) which can be used for 

biochemistry to map a direct interaction.  At the same time, DA uptake experiments with 

co-expression of DAT-1 can be used to assay function.  The potential for identification of 

native DAT-1 interacting proteins using this technology is significant and should be 

investigated in the future using improved tags. 
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