
HIGH ANGULAR RESOLUTION DIFFUSION IMAGING OF BRAIN WHITE 

MATTER AND ITS APPLICATION TO SCHIZOPHRENIA 

 

By 

 

Xin Hong 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of  

DOCTOR OF PHILOSOPHY 

in 

Biomedical Engineering 

May, 2010 

Nashville, Tennessee 

 

Approved: 
 

Professor Adam W. Anderson 

Professor Zhaohua Ding 

Professor Mark D. Does 

Professor Daniel F. Gochberg 

Professor John C. Gore 



 

 

 

 

 

 

 

 

 

 

Copyright © 2010 by Xin Hong 

All rights reserved

  



 

 

 

 

 

 

 

 

 

 

To my beloved parents

 iii



ACKNOWLEDGEMENTS 

 

I am heartily thankful to my advisor, Dr. Adam W. Anderson, for his knowledge, 

guidance, patience, and support through all these years I have been working with him. I 

could not wish for a better advisor. I offer my sincerest gratitude to Dr. John C. Gore, 

director of the Institute of Imaging Science. I feel lucky to be a member of such a 

nurturing research environment. I am grateful to Dr. Zhaohua Ding for his advice and 

many invaluable discussions and advices. Thanks also go to other members of my 

dissertation committee, Dr. Mark D. Does and Dr. Daniel F. Gochberg, for their time and 

thoughtful comments on the manuscript.  

I would like to thank my labmates Dr. Lori R. Arlinghaus, who helped collect and 

pre-processed the images of the schizophrenia study, Dr. Ha-Kyu Jeong, who provided 

helpful suggestions and volunteered to be scanned, and Ann S. Choe, who always 

encourages me and cheers me up. 

I would like to thank Dr. Herbert Meltzer in the Department of Psychiatry and Dr. 

Sohee Park in the Department of Psychology for their help with the schizophrenia study. 

My appreciation also goes to Dr. Benoit M. Dawant and the members of his Medical 

Image Processing laboratory in the Department of Electrical Engineering and Computer 

Science, Dr. Xia Li, Dr. Yong Li, and Rui Li, for their expert assistance with image 

registration. This work was supported by grants from the NIH/NIBIB (R01-EB02777 and 

R01NS058639).  

Finally, I owe my deepest gratitude to my parents and my husband. This thesis 

would not have been possible without their immense love, encouragement and support. 

 iv



TABLE OF CONTENTS 

 

Page 

ACKNOWLEDGEMENTS............................................................................................... iv 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

LIST OF ABBREVIATIONS ..............................................................................................x 

LIST OF SYMBOLS ....................................................................................................... xiii 

Chapter 

I INTRODUCTION ........................................................................................................1 

Overview................................................................................................................. 1 
Diffusion and its Properties .................................................................................... 2 
Diffusion Tensor Imaging ....................................................................................... 4 
High Angular Resolution Diffusion Imaging.......................................................... 8 

II ESTIMATION OF WHITE MATTER PROPERTIES USING THE FORECAST 
MODEL.......................................................................................................................12 

Overview............................................................................................................... 12 
The FORECAST model ........................................................................................ 12 
Optimization of the FORECAST analysis ............................................................ 15 

Methods........................................................................................................... 17 
Negative peak regularization ...................................................................... 17 
Monte Carlo simulation and figures of merit for performance evaluation . 18 
Human data acquisition and analysis.......................................................... 19 

Results............................................................................................................. 21 
Results of simulations ................................................................................. 21 

i). Effect of negative peak regularization................................................ 21 
ii). Effect of the fitting method ............................................................... 24 
iii). Effect of the number of diffusion directions .................................... 26 
iv). Effect of the b value ......................................................................... 29 
v). Effect of the SNR .............................................................................. 30 
vi). Comparison to QBI........................................................................... 30 
vii). Estimation of the radial diffusivity.................................................. 31 

Results for in vivo human data ................................................................... 33 
Discussion....................................................................................................... 39 

An intravoxel fiber coherence index..................................................................... 43 

 v



III SPATIAL NORMALIZATION OF THE FIBER ORIENTATION 
DISTRIBUTION BASED ON HARDI DATA ..........................................................49 

Overview............................................................................................................... 49 
Introduction........................................................................................................... 50 
Methods................................................................................................................. 52 

FOD transformation ........................................................................................ 52 
Numerical simulations .................................................................................... 56 
Image acquisition and registration .................................................................. 58 

Results................................................................................................................... 62 
Discussion............................................................................................................. 70 
Conclusion ............................................................................................................ 76 

IV WHITE MATTER ALTERATIONS IN SCHIZOPHRENIA.....................................78 

Overview............................................................................................................... 78 
Introduction........................................................................................................... 79 
Methods................................................................................................................. 81 

Subjects ........................................................................................................... 81 
Image acquisition............................................................................................ 82 
Image pre-processing and registration ............................................................ 83 
FORECAST analysis ...................................................................................... 85 
Statistical analysis ........................................................................................... 86 

Results................................................................................................................... 87 
Discussion............................................................................................................. 93 
Conclusion ............................................................................................................ 99 

V CONCLUSION..........................................................................................................100 

Appendix 

A THIRTY-TWO DIFFUSION DIRECTIONS .........................................................102 

B THEORETICAL PREDICTION OF THE VARIANCE OF ..............................103 lmp

REFERENCES ................................................................................................................106 

 

 vi



LIST OF TABLES 

 

Table Page 

1. Comparisons of diffusion imaging techniques..................................................... 14 

2. Optimal weighting factor α under various imaging situations (SNR>=30)......... 22 

3. Subject demographics. ......................................................................................... 82 

4. t-test results at the cluster level. ........................................................................... 90 

5. List of the Cartesian coordinates of the 32 unit vectors uniformly 
distributed over a sphere used by the Philips scanner system. .......................... 102 

 

 vii



LIST OF FIGURES 

 

Figure Page 

1.  The mean (opaque) and the mean+standard deviation (transparent) FOD 
surfaces regularized by different methods and different weighting factors. ........ 24 

2. The mean (opaque) and the mean+standard deviation (transparent) FOD 
surfaces regularized by different methods and different weighting factors 
(each column) and fitted through different maximum orders (each row)............ 25 

3. Dependence on analysis parameters for two fibers crossing at 60º. .................... 26 

4. Dependence on imaging parameters for two fibers crossing at 60º, fitted 
through 6th order, regularized by the lower-order NP regularization and 
the optimal α value chosen for each configuration (Table 1)............................... 28 

5. Dependence on imaging parameters for two fibers crossing at 60º, fitted 
through 6th order, regularized by the lower-order NP regularization and 
the optimal α value determined by DSVD+GCV................................................. 29 

6. Top: the mean (opaque) and the mean+standard deviation (transparent) 
FOD surfaces by FORECAST. ............................................................................ 31 

7. The mean (top) and standard deviation (bottom) of radial diffusivity over 
500 trials estimated using various imaging parameters. ...................................... 32 

8. Comparison of fiber orientation accuracy between simulations using the 
estimated and true radial diffusivity values, and between pre and post 
regularization. ...................................................................................................... 33 

9. FORECAST analysis on averaged images........................................................... 36 

10. Bootstrap results: the mean (opaque) and the mean+standard deviation 
(transparent) FOD surfaces. ................................................................................. 37 

11. Maps of the mean and standard deviation of the voxel-wise fiber 
orientation error.................................................................................................... 38 

12. Maps of the mean and standard deviation of ACC. ............................................. 39 

13. Examples of intravoxel fiber structure (top) and the corresponding FODs 
and coherence indices. ......................................................................................... 45 

 viii



14. Examples of FA map, map, and κ map of white matter for three axial 
slices of human data............................................................................................. 47 

⊥λ

15. Left: the FODs along a fiber in the corpus callosum (as shown in blue in 
the FA map).......................................................................................................... 48 

16. Illustration of the limitations of the PPD algorithm............................................. 51 

17. A small patch on the unit sphere before (a) and after (b) transformation, 
with solid angles φθθ ddd sin=Ω '''sin' and φθθ ddd , respectively. ............. 54 Ω =

18. Simulated intravoxel fiber structures (a) and the corresponding FODs (b)......... 57 

19. Example of intra-subject normalization of data acquired after in-plane 
head rotation......................................................................................................... 64 

20. Example of intra-subject normalization of data acquired after 
through-plane head rotation. ................................................................................ 65 

21. Example of inter-subject normalization............................................................... 67 

22. Example of group data transformed to the common space.................................. 69 

23. Illustration of the possible FOD sampling differences. ....................................... 76 

24. Voxels with significant FA differences between groups are highlighted in 
red on averaged FA maps. .................................................................................... 89 

25. Scatter plots of 
⊥λ vs. FA (top) and κ vs. FA (bottom) in left posterior slf 

for all voxels in the cluster (1st column), for the subgroups of single-fiber 
voxels (2nd column), two-fiber voxels (3rd column), and three-fiber voxels 
(4th column).......................................................................................................... 92 

26. Coefficients c vs. b. Subplot in top left shows  for even orders from 0 
to 10. .................................................................................................................. 105 

l lc

 ix



LIST OF ABBREVIATIONS 

 

ACC Angular Correlation Coefficient 

acg anterior corona radiata 

acr anterior coronal radiata 

ADC Apparent Diffusion Coefficient 

atr anterior thalamic radiation  

cc corpus callosum  

cg cingulum bundle 

CO normal COntrols 

cpt corticopontine tract  

cst corticospinal tract 

DOT Diffusion Orientation Transform 

DSI Diffusion Spectrum Imaging 

DSVD Damped Singular Value Decomposition 

DTI Diffusion Tensor Imaging 

DW Diffusion Weighted 

FA Fractional Anisotropy 

FOD Fiber Orientation Distribution 

FORECAST Fiber ORientation Estimated using Continuous Axially Symmetric    
Tensors 

fm forceps major 

GCV Generalized Cross Validation 

GFA Generalized Fractional Anisotropy 

 x



GLM General Linear Model 

HARDI High Angular Resolution Diffusion Imaging 

ic internal capsule 

ifo inferior frontal-occipital fascicules 

ilf inferior longitudinal fascicules 

MRI Magnetic Resonance Imaging 

MTSVD Modified Truncated Singular Value Decomposition 

ODF Orientation Distribution Function 

pcg posterior corona radiata 

PAS Persistent Angular Structure 

PDF Probability Density Function 

PGSE Pulsed Gradient Spin Echo 

PPD Preservation of Principal Direction 

PRIDE Philips Research Imaging Development Environment 

QBI Q-Ball Imaging 

RF Radio Frequency 

RMS Root Mean Square 

ROI Region Of Interest 

RSS Residual Sum of Squares 

SENSE SENSitivity Encoding 

scr superior corona radiata 

sfo superior fronto-occipital fasciculus 

SH Spherical Harmonic 

 xi



slf superior longitudinal fasciculus 

SNR Signal to Noise Ratio  

SVD Singular Value Decomposition 

SZ SchiZophrenia 

T1-W T1-weighted 

T2-W T2-weighted 

TGSVD Truncated Generalized Singular Value Decomposition 

unf uncinate fasciculus 

 xii



LIST OF SYMBOLS 

 

S Diffusion weighted signal  

S0  Non-diffusion weighted signal  

)~(btr  Trace of the diffusion weighting matrix 

b~  Diffusion weighting matrix 

b Trace of the diffusion weighting matrix 

D Diffusion coefficient, Diffusivity 

D~  Diffusion tensor 

rr  Diffusion gradient direction 

qr  Diffusion gradient wave-vector 

λ  Mean diffusivity 

⊥λ  Radial diffusivity 

L Maximum order of SH expansion 

α  Weighting factor in regularization 

lcr  Convolution kernel expansion coefficients 

lmpr  Vector of the expansion coefficients of the FOD 

l Order of spherical harmonic 

m Degree of phase factor 

lmsr  Vector of the expansion coefficients of S
r

 

S
r

 Vector of the diffusion weighted signal 

X~   Design matrix 

 xiii



2
0sσ  Variance of the non-diffusion weighted signal 

2
sσ  Variance of the diffusion-weighted signal 

ir
r  ith sampling vector 

M~  Scatter (second moment) matrix of the sampling points  

κ Intravoxel fiber orientation coherence index 

iε  Eigenvalues of matrix M~  

ε  Mean of the three eigenvalues of matrix M~  

J~  Jacobian matrix 

θ  Polar angle of the spherical coordinates 

ϕ  Azimuthal angle of the spherical coordinates 

),( ϕθP  Fiber orientation distribution at angle ),( ϕθ  

ΩJ~  Angular Jacobian matrix

 xiv



 

CHAPTER I 

 

INTRODUCTION 

 

Overview  

Diffusion Tensor Imaging (DTI) (1) has become the primary imaging modality for 

non-invasive characterization of the microstructure of living tissues, particularly of 

human white matter. The technique is based on the fact that the self-diffusion of water 

molecules is sensitive to the microscopic composition, structure, and organization of 

tissues (2,3). Despite its success in research areas such as neural fiber tractography (4-6) 

and in various clinical applications (7-21), the technique suffers from some fundamental 

limitations (22). One major problem is that the classic second order tensor model is not 

able to adequately describe non-Gaussian diffusion, and thus not able to provide reliable 

estimations of the underlying tissue properties. New imaging techniques such as high 

angular resolution diffusion imaging (HARDI) (23-27) and new data reconstruction 

methods such as the Q-ball imaging (QBI) (28-30) have been proposed to address the 

problem. 

This chapter includes: (a) the basic concept of diffusion and the properties of 

diffusion that are measured and analyzed in this study, (b) the principles of diffusion 
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tensor imaging, its applications and limitations, (c) a brief introduction to new diffusion 

MRI techniques including acquisition and data reconstruction methods. 

 

Diffusion and its Properties 

Diffusion, also called Brownian motion, refers to the random translational motion of 

water molecules driven by thermal energy. There are two important aspects in describing 

diffusion. In a homogeneous medium where water molecules can move freely, the 

amount of movement is described statistically by the diffusion coefficient, or diffusivity, 

D, a scalar measure proportional to the mean squared molecular displacement per unit 

time. Diffusivity relies on several intrinsic properties of the medium: the mass of the 

molecules, the temperature, and the viscosity. On the other hand, in heterogeneous media, 

such as a biological sample, the measured diffusivity in an imaging voxel is the ensemble 

average of all the water molecules within the voxel, which is usually different from the 

intrinsic diffusion coefficient measured from a homogeneous medium. To distinguish 

these two concepts, the averaged diffusivity is named the apparent diffusion coefficient 

(ADC). ADC depends not only on the medium’s intrinsic properties, but also on the 

measurement parameters, such as the voxel size. 

In addition to the amount of the displacement, water diffusion has another 

important property, its directionality. If the averaged displacements are identical in all 

directions within a given elapsed time, the diffusion is isotropic. Otherwise, the diffusion 
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is anisotropic if the displacements vary along different directions. One example of 

isotropic diffusion occurs in the cerebrospinal fluid in the brain ventricles, where water 

molecules can move freely in any direction within the typical measurement time. In 

tissues like neural fibers, where the cellular architecture is highly organized, water 

encounters fewer barriers (such as microfilaments, membranes or myelin) along the 

primary axis of the fibers than perpendicular to this axis. Therefore, the molecular 

displacement along the fiber orientation is significantly larger than in other directions, 

showing strong anisotropy (31,32). 

The two properties of water diffusion, the overall diffusivity and its directional 

dependence, can provide useful information about the microscopic structure of biological 

tissues. Given an appropriate diffusion time (typically 30~50 ms for human brain 

diffusion MRI), the random walk of water molecules may reflect restrictions and 

hindrances by various barriers, such as macromolecules and cellular membranes, 

resulting in different diffusivity properties from freely diffusing bulk water. The 

microstructure of the samples can thus be inferred based on the measured diffusivity. In 

brain white matter, the degree of diffusion anisotropy is mainly determined by the packed 

and coherent axonal membranes, with some influence from myelin and other intracellular 

micro structures as well (3). Therefore, diffusion anisotropy provides a unique way to 

non-invasively probe the neural fibers’ structure. 
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Diffusion Tensor Imaging 

Diffusion properties are usually measured with a Pulsed Gradient Spin Echo (PGSE) 

pulse sequence in MRI experiments (33,34), featuring a pair of identical diffusion 

sensitizing gradient pulses applied along a prescribed direction before and after the 180º 

refocusing RF pulse. During the first gradient pulse, molecules at different positions will 

precess at different frequencies and thus will accumulate phase angles that depend on the 

molecules’ positions along the gradient direction. The 180º RF pulse and the second 

gradient pulse aim to cancel the position dependent phase angle. The spins that are 

de-phased by the first pulse will re-phase if they remain stationary during the time 

between the two gradients. Otherwise, if the water molecules diffuse to different 

positions, the effect of the first gradient can not be completely reversed by the second one. 

The de-phased spins will thus result in an attenuated signal intensity compared to the 

intensity measured without diffusion weighting:   

 DbtreSS )
~

(
0

−=  (1)

where S and S0 are the signal intensity measured with and without the diffusion 

sensitizing gradients (also known as the diffusion weighted signal and un-weighted 

signal), respectively. is the diffusion weighting matrix describing the strength and 

timing of the diffusion gradients. With negligible gradient ramp times and gradient cross 

terms, the diffusion sensitivity of the gradients can be represented by the trace of the 

matrix , , also known as the diffusion weighting factor, or simply the b factor. 

b~

b~ )~(btr
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According to Eq.(1), the diffusion coefficient D can be calculated with as few as two 

measurements, one with the diffusion sensitizing gradients, and the other without the 

gradients. 

For isotropic diffusion, the measured ADCs are identical when the diffusion 

gradients are applied in different directions. For anisotropic diffusion, the greater the 

diffusion along a certain direction, the more attenuated the measured signal will be along 

that direction, i.e., the measured ADC depends on the direction of the applied gradients. 

Therefore, the scalar ADC is not sufficient to fully describe anisotropic diffusion in 3D 

space. In the early 1990s, the tensor model was proposed to better address this problem 

(1). Instead of a scalar ADC, the diffusion tensor, a positive definite, symmetric 

matrix with six independent elements is utilized to characterize anisotropic diffusion. 

To measure the diffusion tensor, at least seven independent measurements are required, 

six diffusion weighted measurements along six non-collinear directions, plus one 

un-weighted. If the diffusion gradients are aligned with the sample’s natural symmetry 

axes (also called the principal axes), the resulting tensor is a diagonal matrix, with 

diagonal elements corresponding to the ADCs along these axes. In most experiments on 

living samples, the tissues’ principal axes are unknown, it is thus impossible to align the 

diffusion gradients with them. In this case, the eigenvalues of tensor indicate the ADCs 

along the three principal directions given by the corresponding eigenvectors.  

33×

The diffusion tensor provides three kinds of information about the tissue’s 

properties. First, the trace of the tensor describes the overall diffusivity (mean over all 
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directions) within the imaging voxel. This measure is related to properties such as the cell 

density, and the volume ratio of intracellular and extracellular space. Second, diffusion 

anisotropy can be described by various anisotropy indices derived from the tensor. These 

indices describe how much the diffusion profile deviates from isotropy. Anisotropy is 

sensitive to important structural properties such as degree of myelination of the neural 

fibers can be inferred from these indices. One of the most widely used anisotropy indices 

is Fractional Anisotropy (FA), which can be calculated from the eigenvalues of the tensor 

and ranges from 0 for isotropic diffusion to 1 for anisotropic diffusion. Third, the 

eigenvector associated with the largest eigenvalue of the diffusion tensor is assumed to 

indicate the principal orientation of the underlying structure. Many algorithms have been 

developed to map neural fiber tracts and study the connectivity between different regions 

of the brain based on this information (35,36). 

Due to the ability of DTI to probe the microstructure of tissues non-invasively, it 

has been applied to a wide range of research areas such as brain development(7), and 

aging (13), and a wide range of diseases and injuries including acute stroke (8,14,15), 

multiple sclerosis (9,16-18), epilepsy (10,19) and brain tumors (12,20,21) and treatment 

evaluation (37,38) (for a review of the clinical applications, see (39)). 

Although the diffusion tensor model works fairly well in identifying fiber 

orientations in some parts of the brain, it fails in other regions. One of the most 

significant limitations of DTI is its inability to describe diffusion where orientation 

heterogeneity occurs within an image voxel (22,40).  

 6



 

One reason for this problem is the size mismatch between the imaging voxel and 

the underlying structures. The typical neural axon diameter ranges from less than 1 

micron to more than 30 microns in human brain (41), while the typical voxel size in the 

clinical and research environment is on the scale of millimeters. Therefore, it is inevitable 

that some of the voxels contain fibers of heterogeneous diffusion properties. Several 

different situations may occur. First, multiple fiber populations of different orientations 

may show up within one voxel, for example, the so-called fiber crossing, ‘kissing’, and 

joining configurations. Second, fiber populations of the same orientation but different 

intrinsic diffusion properties may occur, for example, when one of the fiber bundles is 

affected by some disease. Third, even a single fiber bundle may change its orientation 

within one voxel, which is referred to as fiber bending. Fourth, intra-axonal and 

extra-axonal spaces with different diffusion properties may share a voxel. All these 

possibilities complicate the interpretation of the diffusion tensor.  The conventional 

second-order tensor model is based on the single Gaussian diffusion assumption, which 

gives only one principal direction of the diffusion displacements, the tensor model is 

therefore insufficient in describing diffusion with multiple preferential directions.  

This limitation results in two major problems of the tensor model in areas where 

complicated structures are present. First, the principal eigenvector associated with the 

largest eigenvalue can no longer be assumed to be the dominant diffusion direction, 

which makes fiber tracking based on the tensor model unreliable. Second, the anisotropy 
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indices derived from the tensor model may be misinterpreted when two fiber bundles 

with different anisotropy share a voxel (22,42). 

 

High Angular Resolution Diffusion Imaging 

To address the limitations of DTI and provide more accurate measurements of diffusion, 

new imaging techniques, as well as new data reconstruction methods, have been proposed. 

A straightforward way to reveal more details of the diffusion process is to obtain 

measurements in more directions and with more levels of diffusion sensitivity (multiple b 

values).  One example is diffusion spectrum imaging (DSI) (30,43,44), which collects 

diffusion measurements by sampling a three-dimensional Cartesian grid in q-space, 

which can be used to estimate the spin displacement probability density function (PDF) 

from the signal through a Fourier transform (45).  The spin displacement orientation 

distribution function (ODF) is then reconstructed by a radial projection of the PDF. The 

peaks of the estimated ODF provide directional information on the underlying structures. 

Since DSI is model-independent, it is capable of resolving multiple intravoxel fiber 

populations. However, in order to collect signals at all points of the Cartesian lattice to 

satisfy the Nyquist condition, DSI requires strong diffusion gradients and long image 

acquisition times. Both of these drawbacks limit its widespread clinical application. 

To accommodate the usual requirements of the clinical environment: short 

imaging time and modest gradient strength, an alternate imaging method termed high 
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angular resolution diffusion imaging was developed (23-27). Taking the middle ground 

between DTI and DSI, this technique obtains a number of measurements along directions 

evenly distributed on a spherical shell in q-space (i.e., in more than six directions with a 

single b value), and thus achieves a balance between the requirements for detailed 

angular information and for long imaging time and strong gradients. 

Various data reconstruction schemes have been developed to extract diffusion 

properties and reveal tissue structural information from the HARDI signal. A 

straightforward extension of the single Gaussian tensor model is multiple tensor fitting 

(23,46), which approximates the diffusion function as a mixture of multiple Gaussian 

tensors in voxels containing more than one fiber component. However, this method faces 

two major difficulties, model selection (the number of component tensors in each voxel 

needs to be determined before the fitting) and non-linear fitting (an optimization 

technique is needed to determine the best proportion for each component tensor). Another 

approach includes spherical harmonic (SH) decomposition of the ADC (24,47), which 

expresses the ADC profile function as a series of harmonic coefficients, and the 

generalized tensor model (26,48) , which expresses the diffusivity profile as a tensor of 

higher rank (>2). The major limitation of these methods is their inability to provide 

directional information on the underlying structures, since the maxima of the diffusion 

profile may not necessarily correspond to the principal directions of fast diffusion (49). 

Persistent angular structure (PAS) (27), a function on the sphere which extracts the 

angular information from the spin displacement probabilities, provides one way to infer 
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the directional structure being imaged. Since the calculation of PAS involves numerical 

integration and non-linear optimization, this method is computationally intensive. Phase 

analysis of diffusion circular spectrum (50) is another way to identify multiple intravoxel 

fiber orientations by utilizing the phase information of the circular spectrum of the ADC 

profiles. The accuracy of the estimated fiber orientations is limited by its major 

assumption of an orthogonal crossing angle between two fiber components of equal 

volume fractions, which is hard to guarantee in in vivo data. The diffusion orientation 

transform (DOT) (51) provides another model-free way to transform diffusion profiles 

into probability profiles. However, this method is based on the assumption of 

mono-exponential signal decay along each sampling vector in the q-space, which is not 

always valid. Q-Ball imaging (QBI) (28-30) is particularly popular due to its 

straightforward, model-independent reconstruction. Based on the Funk-Radon 

transformation, the fiber orientation distribution function along any direction γ is 

estimated directly by integration of the diffusion weighted signal measured along 

directions perpendicular to γ. Since the reconstruction of the ODF makes no a priori 

assumption about the distribution of the underlying diffusion process, QBI is able to 

reveal multiple fibers within a voxel. One drawback of QBI is that it usually requires a 

relatively high b value to achieve acceptable angular resolution.  

An alternative strategy to resolve multiple intravoxel fibers is spherical harmonic 

deconvolution (52-54). Making the assumption that all fiber components sharing a voxel 

have the same intrinsic diffusion properties, the observed diffusion signal can be 
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expressed as a convolution of a single fiber response function and a fiber distribution 

function. Once the response function is estimated, the fiber distribution can be 

reconstructed by spherical deconvolution. This method provides a direct estimate of the 

fiber orientation distribution, which is not available from the other methods mentioned 

above. The implementation proposed by Tournier (53) is limited in that a fixed response 

function is used for the whole dataset, which is equivalent to assuming the intrinsic 

diffusion properties are the same for all the fiber populations in the entire brain.  

Although the techniques mentioned above are capable of resolving multiple 

intravoxel fibers, none of them, except for the multiple tensor model and generalized 

tensor model, provides information about the intrinsic diffusion properties within each 

voxel. In certain developmental or pathological conditions, the change of intrinsic 

diffusivity (for example, due to changes in cell density, or damage to the myelin layers) 

could result in decreased FA values. Decrease of coherence in fiber orientation could also 

reduce the FA. None of these data analysis approaches is able to distinguish the possible 

causes. 
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CHAPTER II 

 

ESTIMATION OF WHITE MATTER PROPERTIES USING THE FORECAST MODEL 

 

Overview  

A new HARDI data reconstruction method termed Fiber ORientation Estimated using 

Continuous Axially Symmetric Tensors (FORECAST) (54) has been proposed. 

Compared with other reconstruction methods, FORECAST is able to provide a more 

accurate description of diffusion properties, especially in complex areas where the classic 

tensor model fails. 

This chapter includes: (a) a brief introduction to the FORECAST model, (b) 

optimization of the FORECAST analysis based on numerical simulations, and (c) an 

introduction to an intravoxel fiber orientation coherence index. 

 

The FORECAST model 

FORECAST is a HARDI data reconstruction technique based on a multiple tensor model. 

It assumes that within a voxel, different fiber components have the same proton density, 

the same relaxation properties, and negligible exchange between the components within 

the given diffusion time. The model further assumes that the diffusion tensor for each 
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fiber component is axially symmetric, with one larger eigenvalue and the other two equal 

and smaller. The measured signal is the sum of contributions from all the individual 

tensors. With a further assumption of uniform mean and radial diffusivity (λ and ⊥λ , 

respectively) within a voxel, the diffusion weighted signal can be expressed as a 

convolution of the fiber orientation distribution (FOD) function and the response function 

from an ideal single fiber. Instead of using a single response function for the entire brain 

as proposed in the other spherical convolution method (53), FORECAST estimates the 

response function for each voxel. The single fiber response function depends on the b 

value, the mean and radial diffusivities, and the angle between the diffusion gradient 

direction and the fiber orientation. By expressing the functions in terms of spherical 

harmonics, the convolution relationship between the measured signal and the fiber 

angular distribution becomes a simple algebraic equation in terms of spherical harmonic 

coefficients.  Once the radial diffusivity is estimated from the relation between the 

signals, the b value and the presumed mean diffusivity, the single fiber response function 

is obtained. The fiber angular distribution function can then be recovered. The peaks of 

the FOD function provide information about the underlying fiber components. The 

orientation of each peak estimates the primary orientation of the fiber, and the magnitude 

of each peak is assumed to be proportional to the volume fraction of the corresponding 

fiber.  
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Table 1. Comparisons of diffusion imaging techniques. 

Number of 
directions Method 

Min. Typical 

Model 

DTI 6 30 )~exp()( 0 rDrbSrS T rrr
⋅−⋅=  

QBI 18 252 ∫ ⊥
=

rq
qdqSr rr

rrr )()()(ψ  

FORECAST 18 92 ∫ ∫ ⊥⊥ −⋅−⋅−⋅=
π π

ϕθθβλλϕθλϕθ
2

0 0

2
0 '''sin)cos)(3exp()','()exp(),( ddbPbSS  

Note: S and S0 are diffusion weighted and non-diffusion weighted signal, b is the diffusion weighting factor. 
In the DTI model, D~  is the diffusion tensor. rr is the diffusion gradient direction. In the QBI model, qr  is 
the diffusion gradient wave-vector, ψ is the orientation distribution function. In the FORECAST model, 
θ and ϕ  are the polar and azimuthal angles of the diffusion gradient direction, )','( ϕθP is the fiber 
distribution in the direction )','( ϕθ , λ and ⊥λ  are the mean and radial diffusivity, β is the angle between 

),( ϕθ  and ( )',' ϕθ . 

 

The FORECAST model has several advantages over the QBI method. First, at 

moderate b levels accessible to common clinical routines, FORECAST can not only 

better recover multiple fibers within a voxel (54), it is also capable of resolving 

topological ambiguities such as fiber crossing, kissing, joining, and bending (55). Second, 

by estimating both the radial diffusivity and fiber angular distribution in each voxel, 

FORECAST is capable of distinguishing two different causes of decreased FA: fiber 

coherence change versus fiber intrinsic diffusivity change (see the last section of this 

chapter for further details). Third, by expressing functions in terms of SHs, the 

FORECAST model is computationally efficient, involving only linear matrix calculation, 

avoiding integration or interpolation. Note that recently QBI ODF reconstruction 

algorithms have also adopted the SH approach. (54,56,57). 
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Optimization of the FORECAST analysis 

One problem with the spherical deconvolution technique is its high susceptibility to noise. 

High order SH approximation of the FOD function is desirable in order to achieve high 

angular resolution (54) so that fibers with small orientation differences within a voxel can 

be distinguished. However, the higher order the SH expansion is, the higher is its 

susceptibility to noise. In order to reduce the effect of noise and enhance the solution 

robustness, several techniques have been developed, including an order-dependent low 

pass filter (53), minimum entropy minimization (58), and Tikhonov regularization 

(56,57,59-61). Selective filtering, by empirically choosing small weighting factors for 

high-order items and large weightings for low-order items, attenuates the high frequency 

noise, at the cost of reduced angular resolution. The automatic entropy method eliminates 

user interaction, but the non-linear optimizer does not guarantee a globally optimized 

solution.  

Tikhonov regularization is a popular method to enhance the numerical stability of 

least squares problems by imposing additional constraints on the solution. Different types 

of constraints have been proposed. The simplest one is to minimize the Euclidean norm 

of the solution. Descoteaux  and coworkers defined a cost function describing the 

roughness of the FOD surface (57). Alternatively, one can minimize the magnitude of the 

negative peaks of the FOD, which represent noise (59). There are several computational 

methods to obtain the regularized solution:  directly solving the least-squares equations, 
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or converting the equations into a generalized form and finding the least-squares solution 

in an iterative manner (61), or choosing from the Singular Value Decomposition (SVD) 

based methods, including Damped SVD (DSVD), Modified Truncated SVD (MTSVD), 

Truncated Generalized SVD (TGSVD) and others (57,62). To determine the optimal 

regularization weighting factor α, one can choose a value empirically (59,61), by the 

L-curve method (57), or by Generalized Cross Validation (GCV) (60). There is a 

freely-available MATLAB regularization software package, including the 

abovementioned computational methods based on SVD, the L-curve and GCV methods, 

that can be used to choose the regularization parameter (63). Though improvements 

brought by various regularization techniques have been demonstrated for other spherical 

harmonic reconstruction methods (56,57,59-61), none has been reported for the 

FORECAST model.  

The main goals of this study include: 1. to quantify the effects of regularization on 

the FORECAST model’s robustness to noise. We aim to determine the optimal cost 

function, computational methods and algorithm to determine the optimal regularization 

parameter. 2. To explore the FORECAST model’s performance, specifically its 

dependence on the regularization method. 3. To determine the optimal parameters (for 

both imaging and data reconstruction) for FORECAST analysis of clinical studies of 

white matter diseases.  

 

 16



 

Methods  

Negative peak regularization 

The reconstructed fiber distribution function from spherical deconvolution may contain 

negative values in some orientations due to noise and SH truncation. Because the FOD 

gives the estimated volume fraction of fibers along each orientation, a negative FOD 

value is certainly non-physical, and should be eliminated (59). To identify the 

orientations along which the estimated FOD has negative magnitudes, the FOD is 

estimated in 1002 directions evenly distributed over a sphere (generated by 10th order 

icosahedral tessellation of the sphere). The sum of the negative FOD values can then be 

used as the cost function in the Tikhonov regularization. The position and magnitude of 

the negative FOD lobes can vary depending on the maximum order SH used, leading to 

different constraint and regularization results. In this study, we tested the regularization 

algorithm in two different schemes. In the first, referred to as ‘same-order’ regularization, 

the regularization term is based on the FOD estimated to the same maximum order L as 

the fitting error term and the final FOD. In the second scheme, termed ‘lower-order’ 

regularization, proposed by Tourier et al. (59), the maximum order of the SHs in the 

regularization term is (L-2) instead of L.  

In addition to the FOD negative values, other cost functions including the 

Euclidean norm of the FOD coefficients and the roughness of the FOD surface, combined 

with various computational methods and algorithms to determine the regularization 
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parameter were tested. The MATLAB routines provided by Hansen (63) were adapted 

and applied to evaluate these. Since the routines work for real matrices, complex SH were 

converted into real SH according to (64). Based on our preliminary results (not shown), 

the discussion will be focused on regularization based on negative peak minimization and 

solved in two ways, direct least-squares solution combined with empirically chosen α, 

and DSVD combined with GCV. 

 

Monte Carlo simulation and figures of merit for performance evaluation 

Two fibers with equal volume fraction and crossing angle ranging from 60º to 90º were 

simulated with smm /109.0 23−×=λ and . For each structure, 

different values of three key imaging parameters were tested (b=1000, 2100, and 

3250s/mm2, number of diffusion gradient directions (32, 92, and 252), and SNRs varied 

from 10 to 100 in steps of 10). For each SNR (signal to noise ratio) level, random noise 

with zero mean and standard deviation of S0/SNR, where S0 is the ideal signal without 

diffusion weighting, was added to the ideal signal (both the diffusion weighted and 

un-weighted). For each combination of the given structure and imaging parameters, 500 

Monte Carlo trials were performed. For each resulting dataset, FORECAST analysis was 

applied using various parameters, including the maximum fitting order (4th or 6th order), 

the regularization order (same-order or lower-order) for negative peak regularization, and 

the method of regularization and determination of the weighting factor α (DSVD+GCV, 

smm /1054.0 23−
⊥ ×=λ
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or direct least-squares calculation with a preset value ranging from 0.0001 to 1). The 

mean and standard deviation of the estimated radial diffusivity were compared. The mean 

and standard deviation of the FODs over 500 trials were calculated. The angular bias of 

the mean FODs from the true fiber orientation was compared. In addition, the mean and 

standard deviation of the following figures of merit for each configuration were 

compared. 

i). Angular deviation of the FOD peaks from the true fiber orientation. 

ii). Angular Correlation Coefficient (ACC) between the estimated FOD and the true FOD. 

The ACC is a natural similarity measure concerning both the shape and orientation 

between two spherical functions, ranging from -1 (perfect negative correlation) to 1 

(exactly identical) (54). According to our preliminary studies, an ACC value of at least 

0.8 is desirable for reproducible estimation of the FOD. 

Since the FOD depends on the estimated radial diffusivity, to investigate if 

improved estimation of ⊥λ will help better estimate the FOD, we re-ran the simulations 

replacing the estimated ⊥λ by the true ⊥λ value. The resulting FODs were compared to 

the FODs obtained using the original algorithm. 

 

Human data acquisition and analysis 

In addition to the numerical simulation, we validated the techniques using in vivo human 

data. HARDI data from a normal subject were acquired with informed consent on a 
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Philips 3T scanner (Philips Healthcare, Andover, MA). A single-shot EPI sequence was 

employed with , ms48TE = ms000,10TR = . The dataset contains isotropic 

voxels at the spatial resolution of 2.5 mm. Diffusion weighting (b=1000s/mm2) was 

applied along 92 directions given by the 3rd order icosahedral tessellation of a sphere 

(these 46 directions and their opposites give 92 directions). Sensitivity encoding (SENSE) 

was used with a SENSE factor of 3 in order to reduce total imaging time. Four identical 

scans were acquired for the purpose of studying reproducibility. 

559696 ××

FORECAST analysis was performed with negative peak regularization using the 

optimal parameters determined by simulations (shown in the next section).  Furthermore, 

the bootstrap method (65) was applied in order to investigate the reproducibility of fiber 

orientation. For each voxel, a set of 92 diffusion weighted signals was drawn randomly 

from the pool consisting of the 4 acquisitions, and the process was repeated for a total of 

500 trials. FORECAST analysis was performed on the 500 re-sampled datasets, and on 

the high-SNR dataset achieved by averaging the 4 acquisitions. For each voxel, the FOD 

calculated from the high-SNR dataset was considered to be the 'gold standard', and the 

peaks of the FOD were assumed to indicate the 'true' fiber orientation. The fiber 

orientations estimated by each of the 500 FODs from the re-sampled dataset were 

compared to the ‘true FODs’. The mean and standard deviation of the FOD surfaces over 

the 500 re-samples were also calculated for visual inspection. 
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Results 

Results of simulations 

i). Effect of negative peak regularization 

The mean FOD surfaces and the mean plus one standard deviation (mean+std) FOD 

surfaces in Figure 1 and 2 demonstrate that with the proper choice of the regularization 

order and the weighting factor α, regularization based on negative peak minimization is 

able to reduce the effects of noise and help to reveal the true peaks of FODs. 

Comparisons of the figures of merit further confirms the improvement by regularization 

in terms of lower mean angular error, higher mean ACC and smaller angular bias of the 

mean FOD maxima, as shown in Figure 3. The improvement is prominent at low b values, 

small numbers of diffusion gradient directions, and low SNRs. For example, for the 

60º-crossing-fiber structure acquired using 92 diffusion directions, b=1000s/mm2 and 

SNR=30, the 6th order fitting with proper regularization (lower-order regularization with 

α=0.03) is able to reach a mean angular error of 13º compared to 36º without 

regularization, a mean ACC of 0.64 compared to 0.05, an angular bias of the mean FOD 

peaks of 1.3º compared to 4.5º.  

The results also show that the lower-order regularization outperforms the 

same-order regularization compared for matching imaging parameters, in that it better 

separates the crossing fibers, provides lower mean angular error, higher mean ACC and 

smaller angular bias of the mean FOD maxima.  
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The key problem associated with regularization is the choice of the weighting 

factor α. For all the imaging conditions and the range of α tested here, the optimal value 

of α for negative peak regularization depends on imaging parameters such as the b value, 

number of diffusion gradient directions, and the fitting order, as well. Choosing the 

optimal α from a range of preset values is a trade off among all the figures of merit, 

requiring considerable user interaction. For example, the peaks of the mean regularized 

FOD are narrower with α=0.006 than with α=0.01, but the angular bias from the true 

orientations and the mean angular error is larger. In general, the higher the b value, and/or 

the larger the number of diffusion directions, the smaller α is needed. Table 2 summarizes 

the optimal value of α under the imaging situations tested here. Note that within the range 

of the SNR tested, especially when higher than 30, the optimal value of α does not vary 

much. 

 

Table 2. Optimal weighting factor α under various imaging situations (SNR>=30). 

b value (s/mm2) 
Number of directions  

1000 2100 3250 

32 0.03 0.03 0.02 

92 0.03 0.02 0.02 

252 0.01 0.01 0.01 
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GCV provides an automatic way to determine the regularization weighting factor. 

Based on simulations at moderate to high SNRs, the combination of DSVD and GCV is 

able to provide similar regularization as using the value chosen as above. In fact, the 

optimal α value for each imaging situation determined by DSVD+GCV is close to (most 

of the time somewhat smaller than) the one chosen based on Monte Carlo simulations. At 

a low SNR level (<30), however, the α value determined by DSVD+GCV has large 

variations, and hence unstable regularization performance. Figure 1 compares the optimal 

α value determined under various imaging situations. 

Different options for the constraint functions (the solution norm, the FOD surface 

roughness, the negative FOD peaks), computational methods (direct least-squares, DSVD, 

TGSVD and other SVD based methods), and ways to determine the  regularization 

parameter (L-curve, GCV) were combined and their performance was tested by Monte 

Carlo simulation and compared with the negative peak regularization. The results (not 

shown) indicate that the negative peak regularization outperforms other methods, at least 

in the tested conditions, in terms of the overall shape of the mean FOD and the relatively 

small standard deviation. It appears that the L-curve approach generates too large a value 

for α, resulting in over-regularization, independent of the cost function, or calculation 

method used. On the other hand, the optimal α determined by GCV seems to be a bit too 

small, which leads to under-regularization and large variance of FODs.  

 

 23



 

 
Figure 1. The mean (opaque) and the mean+standard deviation (transparent) FOD surfaces 
regularized by different methods and different weighting factors. Data were simulated at 
b=1000s/mm2, 92 diffusion directions, SNR=30, analyzed through 6th order. The red lines denote 
the true fiber orientations. The title of each subplot gives the corresponding cost function and the 
α value. For NP+DSVD+GCV, the α value is the mean over the 500 trials. (regularization 
methods: NP=Negative Peak, DSVD=Damped Singular Value Decomposition, GCV=Generalized 
Cross Validation). 

 

ii). Effect of the fitting method 

Theoretically speaking, higher order SH gives higher angular resolution, at the cost of 

higher susceptibility to noise. The simulation results in Figure 2 and 3 show that without 

regularization, FODs fitted through 6th order are much noisier than those through 4th order. 
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However, with proper regularization, the 6th order fitting can give sharper peaks and 

lower angular error.  

 

 
Figure 2. The mean (opaque) and the mean+standard deviation (transparent) FOD surfaces 
regularized by different methods and different weighting factors (each column) and fitted through 
different maximum orders (each row). Data were simulated at b=1000s/mm2, 92 diffusion 
directions, SNR=30. The red lines denote the true fiber orientations. The title of each subplot 
gives the corresponding regularization method and the α value. For NP+DSVD+GCV, the α value 
is the mean over the 500 trials. 
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4th order, NP-lower-order
4th order, NR
6th order, NP-lower-order
6th order, NR
4th order, NP-same-order
6th order, NP-same-order
4th order, NP+DSVD+GCV
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Figure 3. Dependence on analysis parameters for two fibers crossing at 60º. Each subplot shows 
one figure of merit vs. α regularized by different methods and fitted through different maximum 
orders. Angular error measures the difference in orientation between an FOD peak and the true 
fiber. In each subplot, solid lines and circle denote a maximum order of 4, dash-dot lines and star 
denote a maximum order of 6. Color denotes regularization methods: magenta (non-regularized, 
NR, displayed on the vertical axis for reference), green (NP+DSVD+GCV), blue 
(NP-lower-order), and red (NP-same-order). (ACC=angular correlation coefficient). 

 

iii). Effect of the number of diffusion directions 

Figure 4 and 5 show the dependence of FORECAST performance on imaging parameters. 

As expected, the 252-direction acquisition outperforms the 92-direction acquisition, 

which in turn is better than the 32-direction acquisition. This confirms the hypothesis that 
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the more measurements acquired, the higher the achievable angular resolution will be as a 

matter of practice. The advantages are more prominent at low SNR levels. Since the 

acquisition time for HARDI is proportional to the number of diffusion directions, the 

time for 92-direction scan roughly allows for three 32-direction scans. According to 

theory, the SNR of the averaged three 32-direction datasets should be about 1.7 times that 

of a single image of the 92-direction dataset without averaging, i.e., the results from the 

92-direction data at a SNR level of 20 should be comparable to the results from the 

32-direction data at a SNR level of 34. Our simulation results at b=1000s/mm2 show 

close agreement with this prediction in terms of the angular error and ACC measures. In 

fact, the 92-direction acquisition outperforms the imaging-time-matched 32-direction 

measurement, while the 252-direction measurement achieves a mixed performance 

(higher angular error and higher ACC) compared to the imaging-time-matched 

92-direction measurement, and better compared to the imaging-time-matched 

32-direction measurement. Furthermore, as the b value increases from 1000s/mm2 to 

3250s/mm2, the advantage of the high number of diffusion measurements over low 

number of measurements becomes more obvious, probably because the benefit of high 

diffusion sensitivity overrides the effect of the increased SNR achieved by image 

averaging. Another possible explanation is the non-linear relationships between the SNR 

and the evaluation figures of merit. 
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 dir32 b=1000
dir32 b=2100
dir32 b=3250
dir92 b=1000
dir92 b=2100
dir92 b=3250
dir252 b=1000
dir252 b=2100
dir252 b=3250

 
Figure 4. Dependence on imaging parameters for two fibers crossing at 60º, fitted through 6th 
order, regularized by the lower-order NP regularization and the optimal α value chosen for each 
configuration (Table 1). Each subplot shows one figure of merit vs. SNR at various numbers of 
measurement directions and b values. In each subplot, solid lines, dashed lines, and dotted lines 
denote b values of 1000, 2100 and 3250s/mm2, respectively. Blue, red, and green denote 32, 92, 
and 252-direction measurements, respectively. 
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Figure 5. Dependence on imaging parameters for two fibers crossing at 60º, fitted through 6th 
order, regularized by the lower-order NP regularization and the optimal α value determined by 
DSVD+GCV. Each subplot shows one figure of merit vs. SNR at various measurement numbers 
and b values. In each subplot, solid lines, dashed lines, and dotted lines denote b values of 1000, 
2100 and 3250s/mm2, respectively. Blue, red, and green denote 32, 92, and 252-direction 
measurements, respectively. 

 

iv). Effect of the b value 

The simulation results also demonstrate that when data are analyzed through 4th order, 

measurements at  and produce similar performance, 

both significantly better than measurements at (results not shown). 

When analyzed through 6th order, however, a b value of 3250s/mm2 provides the lowest 

2/2100 mmsb = 2/3250 mmsb =

2/1000 mmsb =
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angular deviation and the highest ACC among the 3 b values, though the differences 

between and are not large.  2/2100 mmsb = 2/3250 mmsb =

 

v). Effect of the SNR 

As expected, the simulations demonstrate that the higher the SNR, the lower the angular 

deviation and angular bias of the mean FOD, and the higher the ACC. Generally, a SNR 

level no less than 30 is required to separate 2 fibers crossing at 60º. 

 

vi). Comparison to QBI 

We also compared the performance of the FORECAST FOD and QBI ODF based on 

signals simulated using a high b value (3250s/mm2). Results are shown in Figure 6. It is 

obvious that the FORECAST FOD is able to reveal the true fiber orientations better than 

the QBI ODF. 
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Figure 6. Top: the mean (opaque) and the mean+standard deviation (transparent) FOD surfaces by 
FORECAST. Bottom:  the mean (opaque) and the mean+standard deviation (transparent) ODF 
surfaces by QBI. The red lines denote the true fiber orientations. Data were simulated at 
b=3250s/mm2, 252 diffusion directions, SNR=30, 100, respectively, and fitted through 6th order. 
The FORECAST FODs were regularized using lower-order NP regularization with the optimal α 
value determined as in Table 1. 

 

vii). Estimation of the radial diffusivity 

As shown in Figure 7, the FORECAST model over-estimates the radial diffusivity under 

the tested conditions. The bias does not vary much with a SNR level above 30, though the 
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standard deviation becomes smaller with higher SNR. For the same number of diffusion 

directions, the higher the b value, the smaller the bias. For the same b value, 32-direction 

acquisition gives the smallest bias. The 92 and 252-direction acquisitions provide 

comparable bias, but the larger the number of diffusion directions, the smaller the 

standard deviation of the estimated ⊥λ . Using  and 92 diffusion 

directions, the radial diffusivity is over-estimated about 19%. 

2/1000 mmsb =
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Figure 7. The mean (top) and standard deviation (bottom) of radial diffusivity over 500 trials 
estimated using various imaging parameters. The black dotted line denotes the true radial 
diffisivity. 
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The re-calculation of FOD using the true radial diffusivity shows that a more 

accurate estimation of ⊥λ is able to improve the estimation of fiber orientations. While 

the improvement is obvious before regularization, it becomes negligible after proper 

regularization (see Figure 8).  

 

 
 Figure 8. Comparison of fiber orientation accuracy between simulations using the estimated and

true radial diffusivity values, and between pre and post regularization. Data were simulated using 
92 diffusion direnctions and 3 different b values (see each panel), with the SNR level ranging 
from 10 to 100. FODs were approximated to 6th order and regularized by minimizing negative 
peaks of the 4th order FODs with α=0.03. 

 

Results for in vivo human data 

FORECAST analysis was performed on the in vivo dataset acquired. The SNR was 

estimated to be about 40 for a single acquisition based on the Residual Sum of Squares 

(RSS, i.e., estimating the noise based on the residuals of a 6th order SH fit of the signal as 

a function of orientation). According to the simulation results, the optimal analysis 
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parameters were chosen as follows: the 6th order fitting and lower-order negative peak 

regularization with 03.0=α , or with α determined by DSVD+GCV. Both methods were 

applied and the results were compared.  

Figure 9 compares the FODs regularized by the two methods on one axial slice of 

the averaged high SNR data. The α value chosen by DSVD+GCV for that slice ranges 

from 0.00015 to 0.11, with a mean value of 0.013 and a median value of 0.0076. The 

FODs regularized with the fixed α value (0.03) tend to be slightly 'over-regularized', 

while those with α chosen by DSVD+GCV for each voxel appear to be 

'under-regularized'. Taking the example of the genu of the corpus callosum (cc) (e.g., in 

the yellow ellipse in Figure 9), the FODs regularized by the individually determined α 

contain extra lobes in the anterior-posterior orientation with significant magnitudes, even 

in the position of the median line. These small lobes do not agree with the known 

anatomy, and therefore are considered noise. Another example of under-regularization is 

the second fiber component in the left-right direction among the anterior-posterior 

oriented superior fronto-occipital fasciculus (sfo) (e.g., in the blue ellipse in Figure 9).  

The results in Figure 9 also demonstrate that in regions where fiber bundles with 

different orientations cross, the FORECAST model is able to distinguish the fiber 

components. For example, in the voxels containing both corpus callosum fibers and 

cingulum (cg) fibers, the estimated FODs show clearly two peaks oriented in the 

left-right and anterior-posterior directions, respectively, indicating the orientation of the 

two fiber bundles (see the orange ellipse in Figure 9). In the area where the sfo (in the 
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anterior-posterior direction), corticopontine tract/corticospinal tract (cpt/cst) (in the 

superior-inferior direction), and the local association fiber (in left-right direction) meet, 

the FODs exhibit three distinct peaks each giving the principal orientation of these tracts 

(see the purple ellipse in Figure 9). 

The mean and mean+std of the FOD surfaces over the 500 bootstrap resamples in 

the same ROI regularized by the two methods are compared in Figure 10. The maps of 

the mean angular deviation from the 'true' fiber orientations over the 500 resamples are 

shown in Figure 11. Figure 12 compares the mean ACC over the resamples with respect 

to the ‘true’ FODs in the same slice. These results further illustrate that a fixed α value of 

0.03 produces more stable results than DSVD+GCV, in terms of smaller variation in the 

FOD surfaces, more consistent fiber orientation (for example, see the sfo highlighted in 

the red ellipses in Figure 10),  smaller angular deviation from the 'true' fiber orientations, 

and higher similarity to the ‘true’ FODs.  
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Figure 9. FORECAST analysis on averaged images. Inset: FA map with ROI highlighted in the 
yellow box. Top: FODs regularized with α=0.03. Bottom: FODs regularized with α determined 
individually for each voxel by DSVD+GCV. The FODs in voxels with low FA (<0.2) are not 
shown. 
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Figure 10. Bootstrap results: the mean (opaque) and the mean+standard deviation (transparent) 
FOD surfaces. Inset: FA map with ROI highlighted in the yellow box. Top: regularization with 
α=0.03. Bottom: regularization with α determined individually for each voxel by DSVD+GCV. 
The FODs in voxels with low FA (<0.2) are not shown. 
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Figure 11. Maps of the mean and standard deviation of the voxel-wise fiber orientation error. Top: 
results with α=0.03. Bottom: results with α determined individually for each voxel by 
DSVD+GCV. 

 

 38



 

 
Figure 12. Maps of the mean and standard deviation of ACC. Top: results with α=0.03. Bottom: 
results with α determined individually for each voxel by DSVD+GCV. 

 

Discussion 

The simulation results indicate that the 6th order FORECAST analysis is able to provide 

reliable estimates of the fiber orientation, at least for up to two fibers in a voxel, and in 

the b value and the SNR range tested. In theory, high order SHs contain high spatial 

frequency components of the approximated functions. Therefore, the higher the fitting 
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order, the narrower the angular point spread function, and the higher the angular 

resolution. On the other hand, the HARDI measurement is sensitive to noise. The high 

order fitting will be more sensitive to high frequency noise. To overcome the effect of 

noise and achieve satisfactory results with the 6th order fitting, a higher b value and/or a 

higher SNR is required. With data acquired at low b values and low SNRs, one way to 

improve the estimation is regularization. The simulations demonstrate the improvements 

by Tikhonov regularization based on minimizing the negative peak of the 4th order FOD.  

The in vivo data acquired and analyzed using the optimal parameters chosen by 

the simulations further demonstrates the feasibility of the FORECAST analysis on 

clinical data. In this study, a dataset with a low b value of 1000s/mm2, 92 diffusion 

gradients, and a SNR level of above 30 was acquired within 17 minutes, which is 

achievable in the common clinical environment. The FORECAST analysis with proper 

regularization is able to produce reliable estimates of the fiber orientations (less than 10º 

error in most white matter voxels).  

When choosing the best α from a range of preset values, the weighting of each 

figure of merit for overall performance evaluation is somewhat arbitrary. In order to 

minimize the effects of the individual analyzer and to reduce the processing time, it is 

desirable to develop an automatic algorithm for the choice of α. The software package by 

Hansen (63) provides some automatic methods.  Among them DSVD+GCV seems to 

work the best for the FORECAST model based on our simulations. However, the in vivo 

data analysis shows that the α value automatically determined by DSVD+GCV tends to 
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be too small, even for data with a high SNR level estimated to be around 80. The small 

mean/median α value (smaller than the empirically chosen one) explains the 

under-regularization, and the large variation in the α value leads to unstable regularization 

performance. Despite these shortcomings, the optimal α value estimated by DSVD+GCV 

could serve as a reference in the future development of a better algorithm.  

According to the simulations, to achieve estimates of the fiber orientations as 

accurate as possible within limited imaging acquisition time, it seems better to acquire a 

larger number of diffusion directions than to repeat a smaller number of directions. The 

simulation results also indicate that when data are analyzed through 4th order, 

measurements with b values of 2100s/mm2 or 3250s/mm2 produce lower angular 

deviation and higher ACC than at a b value of 1000s/mm2. When analyzed through 6th 

order, the higher the b value (among these 3 values), the better the performance. This 

result can be explained by the relationship between the convolution kernel expansion 

coefficients lcr and the b value, and the relationship between the theoretical variance of 

lcr and lmpr (the SH coefficients of the FOD, where the non-negative integer l denotes the 

SH order, and the integer m denotes the degree or phase factor). lcr depends on the b 

value, ⊥λ and the fitting order. Using the 6th order fitting |cl| reaches its maximum at 

for the value of2/3200 mmsb = ⊥λ used in this study. The theoretical variance of lmpr is 

proportional to 1/|cl| (see APPENDIX B for detailed derivation). Therefore, for a 

given ⊥λ and the 6th order fitting, gives the smallest variance of 2/3200 mmsb = mp6
r , 

which produces the most reliable FOD estimates. For 4th order fitting, a b value of 
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3250s/mm2 gives performance similar to that of 2100s/mm2, even though |cl| reaches its 

maximum at . One possible explanation is the difference of |cl| at these 

two b values are small.  

2/2100 mmsb =

A factor affecting the conclusions of this study is the possible violation of the 

assumptions of the FORECAST model. The FORECAST model assumes that diffusion 

within a fiber is cylindrically symmetric and within each voxel all fiber components share 

the same radial diffusivity, which is not always true. Studies suggest that in some regions, 

the diffusion profile of a coherent fiber bundle may be oblate instead of prolate (40). In 

addition, fiber components within a voxel may have unequal radial diffusivities. 

Nevertheless, violation of the identical radial diffusivity assumption affects the volume 

fraction more than the fiber orientation estimation (54). In the two-fiber simulation of this 

study, in order to make the analysis simple, the radial diffusivities and the volume 

fractions of the two fibers were set to be the same. Further investigation needs to be done 

in the future to explore how to make the estimation more reliable when these assumptions 

are violated. 

Another limitation of the FORECAST model is that estimation of the FOD is 

dependent on estimation of the radial diffusivity, i.e., errors in the estimated ⊥λ may lead 

to errors in the FOD. According to our simulations, FORECAST tends to 

over-estimate ⊥λ , the bias is about 15% under our usual imaging situations 

( , 92 diffusion measurements, SNR=30). More accurate estimation of 2/1000 mmsb =
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⊥λ leads to obvious improvement in the estimation of the FOD without regularization. 

After regularization, however, the improvement is not obvious. In spite of this, improving 

the estimation of ⊥λ will be helpful in clinical studies of white matter disease.  

 

An intravoxel fiber coherence index 

In addition to the partial volume effect, another limitation of the tensor model is the 

interpretation of the fractional anisotropy. FA is generally interpreted as reflecting the 

‘integrity’ of neural fibers. During the period of brain development or degeneration, or in 

certain pathological conditions, the organization of fiber bundles, as well as the intrinsic 

diffusivity of fibers (affected by factors such as the axon diameter, the cell 

number/density, and thickness of the myelin layer) may change, leading to FA alterations 

detected by DTI. However, the tensor model is not able to distinguish these possible 

causes. By estimating both the radial diffusivity and fiber orientation distribution in each 

voxel, FORECAST has the potential to distinguish between changes in fiber 

microstructure and fiber organization in cases where anisotropy is altered. 

To describe the degree of fiber coherence, some coherence measures based on the 

eigenvectors of a group of neighboring tensors have been proposed (32,66,67). However, 

they are not able to describe the degree of coherence within a voxel. Furthermore, in 

regions with heterogeneous fiber orientations where the tensor eigenvectors do not 

correspond to the fiber axes, these measures become unreliable.  

 43



 

HARDI techniques provide detailed information of the fiber distribution. A scalar, 

rotationally invariant measure is needed to describe the degree of fiber coherence based 

on HARDI data at sub-voxel level. Similar to the definition of FA based on the 

normalized standard deviation of the tensor eigenvalues, generalized fractional anisotropy 

(GFA) was defined as the normalized standard deviation of the QBI ODF (29). Although 

GFA is a good anisotropy measure of the QBI ODF, it is not able to characterize the 

FORECAST FOD function as well. For example, GFA of the FORECAST FOD does not 

monotonically decrease as the angle between the two fibers increases.  We aim to define 

an intravoxel coherence measure whose features include rotational invariance, values 

ranging from 0 to 1, and monotonic dependence on the number of fibers and their 

crossing angles.  

In order to describe quantitatively the degree of fiber orientation coherence within 

a voxel, we developed a coherence index (κ) based on the fiber orientation distribution 

function. Calculation of the coherence index is performed in 3 steps: 

1. The FOD function is sampled in a number (N) of directions evenly distributed 

over a unit sphere, resulting in N points Nizyxr iiii ...1],,,[ ==
r .  

2. A scatter (second moment) matrix of these sampling points, M~ , is constructed 

as follows (68): 

 ∑
=

⋅=
N

i
i

T
i rrM

1

~ rr  (2)
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3. The coherence index is calculated based on the eigenvalues of the scatter 

matrix in a way similar to the calculation of FA based on the eigenvalues of 

the tensor matrix.  

 
∑

∑

=

=

−
= 3

1

2

3

1

2

2

)(3

i
i

i
i

ε

εε
κ  (3)

where 3,2,1, =iiε are the eigenvalues of matrix M~ , and ∑
=

⋅=
3

13
1

i
iεε is the 

mean of the three eigenvalues. 

The coherence index κ is a scalar, ranging from 0 to 1. Completely incoherent 

fiber distributions have 0=κ , whereas parallel fibers have 1=κ . Examples of simulated 

intravoxel fiber structures with various crossing angles, their corresponding FODs and κ 

values are shown in Figure 13. 

 

 
Figure 13. Examples of intravoxel fiber structure (top) and the corresponding FODs and 
coherence indices. 
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The relationship between FA, radial diffusivity and κ is of particular interest since 

FA is thought to reflect both the radial diffusivity and fiber coherence. We investigated 

the relationship in in vivo data. HARDI images of a normal subject were acquired with 

informed consent on a Philips Intera Achieva 3T scanner, using the following imaging 

parameters: a single-shot EPI sequence, b=1000s/mm2, 92 diffusion-sensitizing directions, 

, , SENSE ms48TE = ms000,10TR = 3factor = , 559696 ×× matrix size, and 2.5mm 

isotropic voxel size. Four repeats were acquired and averaged to obtain images of a 

higher SNR. In the remainder of this section the non-averaged and averaged images are 

referred to as dataset1 and dataset2, respectively. Maps of FA, ⊥λ  and κ were generated 

for all the white matter voxels in each slice (segmented by a FA threshold of 0.2). The 

correlations between FA and κ, and between FA and ⊥λ were calculated. Figure 14 shows 

examples of several slices. As expected, ⊥λ appears negatively correlated with FA, and κ 

is positively correlated with FA, though the correlation between ⊥λ and FA is stronger 

than that between κ and FA. 
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Figure 14. Examples of FA map, ⊥λ map, and κ map of white matter for three axial slices of 
human data. r and p are the correlation coefficient and the corresponding p value with respect to 
FA. 

We further investigated the variations of ⊥λ , κ, and FA along a fiber tract. Fiber 

tracking along the posterior part of the corpus callosum was performed on the 

above-mentioned in vivo dataset using the Philips Research Imaging Development 

Environment (PRIDE) software by Philips. Then the FA, ⊥λ , and κ were calculated for 

each voxel along the tract. Figure 15 shows the FODs and these three measures plotted 

against position along the tract. It is obvious that radial diffusivity is negatively correlated 

with FA. In the central segment of the fiber tract, where the coherence is relatively 
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constant, FA change is mostly due to radial diffusivity change. At the two ends of the 

tract, however, both increased radial diffusivity and decreased coherence contribute to the 

reduction of FA. 

 

 
Figure 15. Left: the FODs along a fiber in the corpus callosum (as shown in blue in the FA map). 
Typical voxels in the middle and at the two ends of the fibers are highlighted. Right: FA, ⊥λ , and 
κ as functions of the voxel position along the fiber. 
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CHAPTER III 

 

SPATIAL NORMALIZATION OF THE FIBER ORIENTATION DISTRIBUTION 

BASED ON HARDI DATA 

 

Overview  

Comparison of high angular resolution diffusion imaging measurements between subjects 

or between time points for the same subject are facilitated by spatial normalization. In 

this chapter, an algorithm is developed to transform the fiber orientation distribution 

function, based on HARDI data, taking into account not only translation, but also rotation, 

scaling, and shearing effects of the spatial transformation. The algorithm is tested using 

simulated data, and intra-subject and inter-subject normalization of in vivo human data. 

All cases demonstrate reliable transformation of the FOD. This technique makes it 

possible to compare the intravoxel fiber distribution between subjects, between groups, or 

between time points for a single subject, which will be helpful in HARDI studies of white 

matter disease. 

This chapter includes: (a) a brief introduction to the challenges that need to be 

addressed when performing spatial transformation of fiber orientation distribution 

functions, (b) the concept and detailed algorithm proposed to solve the problems, (c) 

implementation and results of the experiments with digital simulations and in vivo data, 
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and (d) discussion of factors that may possibly affect the transformation results and the 

limitations of this algorithm. 

 

Introduction 

Diffusion MRI is a useful tool to study the structure and organization of human brain 

white matter. Due to anatomical differences between individual brains, spatial 

normalization of the data is usually needed to make comparisons between subjects, 

especially for voxel-based analysis. However, simple normalization of diffusion weighted 

(DW) images is not sufficient to retain the orientation information of the underlying 

structure. The preservation of principal direction (PPD) algorithm (69,70) has been 

proposed to rotate the diffusion tensor so that the principal directions of the tensor are 

preserved relative to local anatomical structures. This algorithm is limited since it is 

based on the tensor model which is not able to resolve multiple fibers within a voxel. In 

addition, the rotation does not account for possible shearing and isotropic scaling effects. 

Compared with diffusion tensor imaging, high angular resolution diffusion imaging is 

able to provide more accurate estimates of the distribution of fiber orientations within a 

voxel. However, effective spatial normalization of HARDI data has not yet been 

demonstrated. Figure 16 illustrates the limitations of the PPD algorithm. 
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Figure 16. Illustration of the limitations of the PPD algorithm. (a). an example of a single-fiber 
voxel before and after a vertical shearing effect. (b) a voxel with two perpendicular fibers before 
and after the same vertical shearing effect. In each panel, the top row shows the simulated 
intravoxel fiber structure. The middle row shows the tensors before and after the PPD 
transformation. The bottom row shows the FORECAST FODs before and after the PPD 
transformation. The PPD algorithm inappropriately rotates the entire FOD in (b). 

 

In this study we propose an algorithm to transform the FOD function based on 

HARDI data, taking into account not only translation, but also rotation, scaling, and 

shearing effects. The algorithm is tested with transformations of both simulated data and 

in vivo human data.  
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Methods 

FOD transformation 

The FOD derived from spherical deconvolution methods (52-54) is a function on the unit 

sphere. The peaks of the FOD provide information about the underlying fiber 

components. The orientation of each peak indicates the orientation of a fiber, and the 

magnitude of each peak is proportional to the volume fraction of the corresponding fiber. 

When sampled in a number of directions evenly distributed over a sphere, the FOD 

function can be approximated by the values it takes in those directions. This can be 

represented by a set of sampling vectors, the lengths of which represent the fiber volume 

fractions along the corresponding directions.  

From the deformation field that registers the DW images, a Jacobian matrix J~  

can be derived for each voxel, which represents the local deformation at that point. The 

path taken by a fiber through the voxel can be approximated by a series of line segments, 

written for the ith segment. Under the local deformation, these 

segments transform to

[ T
iiii dzdydxrd ,,=

r ]

ii rdJrd rr
⋅=' . Since every fiber passing through the voxel is subject 

to the same Jacobian, the FOD must also be transformed using J~ . Applying J~  to the 

sampling vectors of the corresponding FOD will give the new orientations of these 

vectors, and hence a discrete approximation of the transformed FOD.  

The integral of the FOD over a unit sphere equals to 1, which is a basic property 

of a distribution function, and should be retained after transformation. The value of the 
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FOD at polar angle θ  and azimuthal angle φ  is written ),( φθP . The volume fraction of 

fibers with orientation near ),( φθ equals Ω⋅dP ),( φθ , where φθθ ddd sin=Ω  is the 

element of solid angle describing the neighborhood (see Figure 17). The volume fraction 

of fibers oriented toward this small patch Ωd must remain the same after the patch is 

transformed: 

 ')','('),( Ω=Ω dPdP φθφθ  (4)

where the unprimed and primed symbols represent the corresponding quantities before 

and after transformation, respectively. Equivalently,  

 '''sin)','('sin),( φθθφθφθθφθ ddPddP =  (5)

Therefore, the length of the transformed vectors should be adjusted to guarantee that: 

 '''sin
sin),()','('

φθθ
φθθφθφθ
dd

ddPP =  (6)

According to the substitution rule for multiple variables, 

 φθφθ ddJdd )~det(' Ω=′  (7)

where ⋅ denotes absolute value, )det(⋅ denotes the determinant, and 
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which is the Jacobian of the angular transformation from ),( φθ to )','( φθ . Substituting 

this relation into Eq.(6), we have 

 )~det(
1

'sin
sin),()','('

Ω

=
J

PP
θ
θφθφθ  (9)
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Figure 17. A small patch on the unit sphere before (a) and after (b) transformation, with solid 

angles φθθ ddd sin=Ω  and '''sin' φθθ ddd =Ω , respectively. 

 

To calculate , let ΩJ~ ),( φθPr =  and )','(' φθPr =′ be the FOD magnitudes along the 

original direction ),( φθ and the corresponding transformed direction )','( φθ , respectively. 

Since J~  is most naturally expressed as a 33×  matrix in Cartesian space, we must 

convert from spherical to Cartesian coordinates,  

 
⎪
⎩

⎪
⎨

⎧

=
=
=

θ
φθ
φθ

cos
sinsin
cossin

rz
ry
rx

 (10)

before applying the spatial normalization Jacobian J~ , then convert the results back to 

spherical coordinates,  
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The Jacobians of these two transformations are 
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and 
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respectively. The total transformation consists of 3 parts: 
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Therefore, for a direction ),( φθ , the angular Jacobian, , of the total transformation to ΩJ~

)','( φθ  is given by the lower right 22× part of total
~J .  
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In summary, the transformation of an FOD is performed in 4 steps: 

1. A Jacobian matrix J~  for each voxel is derived from the deformation field of 

the spatial normalization transformation applied to the DW images.  

2. Each FOD is represented by a number of sampling vectors evenly distributed 

over a sphere. For each sampling vector, J~  is applied to transform the 

orientation from ),( φθ  to )','( φθ .  

3. For each sampling vector, )~det( ΩJ  is calculated for the pair of directions 

),( φθ and ),( φθ ′′ , and the length of the vector is adjusted according to Eq.(9).  

4. Finally, the transformed FOD is approximated by the set of transformed, 

length-adjusted sampling vectors.  

Note that noise and truncation artifacts may cause the FOD to have negative 

values along some orientations. These negative vectors are transformed in the same way 

as positive vectors in order to maintain the unit integral of ),( φθP . 

 

Numerical simulations 

The proposed algorithm was tested using numerical simulations. Four intravoxel fiber 

structures with crossing angle varying from 0º to 90º were chosen. The corresponding 

FODs were simulated using the FORECAST spherical deconvolution method (54) 

through 6th order. Two transformations were applied to the FODs: a horizontal stretch 
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π  (see Figure 18 part a). The 

integrals of the transformed FODs were tested against the expected value 1. Performance 

was evaluated by the angular error between the peaks of the transformed FODs and the 

true transformed fiber orientations. Four different numbers of sampling points, 92, 252, 

1002, and 4049, all generated by icosahedral tessellation of the unit sphere (71), were 

tested in each case. 

 

 
Figure 18. Simulated intravoxel fiber structures (a) and the corresponding FODs (b). (a). From 
top to bottom the crossing angle between fibers increases from 0º to 30º, 60º, and 90º. The Left 
column gives the original fiber structure. The middle and right columns illustrate the fiber 
structures after a horizontal stretch and a vertical shear, respectively (denoted by the black 
arrows). (b). Corresponding FODs with the true fiber orientations plotted in the solid lines. 
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Image acquisition and registration 

In addition to numerical simulations, this algorithm was also tested by transformation of 

in vivo human data. Two intra-subject experiments and one inter-subject experiment were 

performed.  All scanning procedures were approved by the Vanderbilt University 

Institutional Review Board and performed on a Philips Intera Achieva 3T scanner. 

High-performance gradient coils (80 mT/m gradient strength and 100 mT/m/ms slew-rate) 

and an 8 channel SENSE head coil were used. In the first intra-subject experiment, a 

healthy subject rotated his head in the scanner between scans, first around the left-right, 

then around the superior-inferior axis. HARDI images were acquired (by single-shot EPI 

and SENSE) in all the three head positions, using the following imaging parameters: 

b=1000s/mm2, 92 diffusion-sensitizing directions (the 46 directions given by 3rd order 

icosahedral tessellation of a sphere (71) and their opposites), ms48TE = , 

, SENSE ms000,10TR = 3factor = , 539696 ×× matrix size, and 2.5mm isotropic voxel 

size. For each head orientation, high resolution T2-weighted (T2-W) images (TE = 80 ms, 

TR = 6000 ms, matrix size, 53512512 ×× 5.245.045.0 ××  mm voxel size) were also 

obtained with a turbo spin echo sequence at the same slice positions for registration 

purposes. The total imaging time was about 1 hour. A second intra-subject experiment 

was performed on another healthy subject using the same imaging parameters, but data 

were collected in only two head orientations which differed by rotation around the 

anterior-posterior axis. For the inter-subject experiment, HARDI images were acquired 
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from a group of 23 schizophrenia outpatients and 20 healthy controls using the following 

imaging parameters: b=1000s/mm2, 92 diffusion-sensitizing directions, ms48TE = , 

, SENSE ms000,10TR = 3factor = , 559696 ×× matrix size, and 2.5mm isotropic voxel 

size. High resolution T2-W images ( ms80TE = , ms000,6TR = , matrix 

size, mm voxel size) and T1-weighted (T1-W) images (using a 

multi-shot gradient echo sequence with 

55512512 ××

5.245.045.0 ××

ms6.4TE = , ms9.8TR = , SENSE 2factor = , 

matrix size, 176256256 ×× 111 ×× mm voxel size) were also obtained for registration 

purposes. Eddy current distortion correction (72) was performed on each set of HARDI 

images prior to further analysis.  

The  images in each HARDI data set have higher image contrast than the 

individual DW images, therefore they were used in the image normalization process and 

the resulting transformation was then applied to the DW images for each diffusion 

direction. Image normalization for each experiment was performed in a series of steps, 

involving registration of the 

0=b

0=b  images to their corresponding anatomical image 

volumes and then registration of the anatomical volumes to a common image space.  

Both linear (73) and nonlinear (74) registration algorithms were used. The process for 

each experiment is described below.  

For the intra-subject experiment with three head positions, one head position was 

designated as the target to which the remaining positions (denoted as source images) were 

registered through the following steps.  First, the 0=b  images for each head position 

were registered to the corresponding high resolution T2-W volume by a non-linear 
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transformation, initialized using parameters from rigid registration between the two 

image sets.  Then a similar two-step transformation was carried out between the T2-W 

images of each source and the target.  Finally, the two transformations between the 

source  images and the source T2-W images, the two transformations between the 

source T2-W images and the target T2-W volume, and the inverse of the two 

transformations between the target 

0=b

0=b  images and the target T2-W volume were 

combined to form the total transformation between the source 0=b  images to the target 

 images. The  images from the two head positions in the second intra-subject 

experiment were co-registered in the same manner, where one position was selected as 

the target, and the other position was the source image. 

0=b 0=b

The data collected for the inter-subject experiment were originally co-registered 

for use in a voxel-based analysis of fractional anisotropy measures derived from a 

diffusion tensor analysis of the HARDI data.  The normalization process consisted of 

two main steps: creation of a study-specific FA template and co-registration of the 

individual FA maps to the FA template.  This was done in an attempt to minimize 

potential bias in the normalization results due to selecting a single subject as the target 

image.  The study-specific template was created by a set of 3 registration steps.  First, 

nonlinear registration, initialized by rigid registration, between the  images of each 

subject and the corresponding high-resolution, slice matched T2-W images was 

performed to reduce image distortion due to susceptibility artifacts. Second, rigid 

registration between the T2-W images and T1-W images of each subject was performed.  

0=b
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Third, nonlinear registration, initialized by rigid registration, between the T1-W images 

of each subject and the T1-W image volume of a target subject (chosen from the control 

group) was performed. The resulting transformations were combined to create a single 

transformation for each subject, which was applied to the subject’s FA map.  The 

normalized FA maps from all subjects were averaged to create the study-specific template.  

Finally, each subject’s original FA map was then registered to the FA template through 

both rigid registration with scaling and nonlinear registration. The resulting 

transformations were combined to create the transformation applied to the DW images in 

this study. Compared to simpler schemes, this multistep approach was found to provide 

more robust inter-subject registration (for more details see (75)).  

In each experiment, the total transformation was applied to the DW images for 

each diffusion direction.  Based on the transformed HARDI images, FODs were 

calculated using the FORECAST spherical deconvolution method through 6th order.  To 

reduce the effects of noise, the FODs were regularized by minimizing the negative values 

(59) with a fixed weighting factor (α=0.3, which was chosen to optimize reproducibility 

based on Monte Carlo simulations). The Jacobian matrix for each voxel was calculated 

based on the deformation field of the total transformation, and was used to transform the 

FODs as described above. For the intra-subject experiments, the FODs in the target 

image, and in the transformed source image before and after adjusting the FOD 

orientation and shape were compared. The similarity between two FODs was evaluated 

by the angular correlation coefficient and the root mean square (RMS) error of the 
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point-wise FOD values. For the inter-subject experiment, the transformed FODs from 

different subjects were compared.  The mean and standard deviation of the transformed 

FODs over the control group (excluding the target subject) were derived, and the ACC 

and RMS error for each subject relative to the group mean were also calculated.  

 

Results 

Simulation results demonstrate the ability of the proposed method to handle non-rigid 

transformations in spatial normalization which can not be fully accounted for by a simple 

rotation. The transformed FOD is able to provide reliable estimates of the transformed 

fiber orientation when the number of sampling points is sufficient. In our test, 92 

sampling points gives poor performance in terms of high angular error and large 

deviation from the unit integral. When the number increases to 252 and above, the 

angular error drops to acceptable levels (for example, a mean error of 5º in the horizontal 

stretch of the 60º-crossing case), and the unit integral is preserved. There is no significant 

difference in the angular accuracy achieved when the number of sampling points 

increases beyond 252. Parts of the simulation results are shown in Figure 18. 

An example of the intra-subject transformation is shown in Figure 19. It is 

obvious that the FODs derived from the transformed HARDI images maintain their 

orientations in the original source image, and do not agree with the fiber tracts in the 

target image.  After transformation, the FODs indicate the correct orientation of the 
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corpus callosum and the cingulum bundle, and the similarity to the corresponding target 

FODs becomes higher. The mean ACC across all the white matter voxels in the slice is 

raised from 0.53 before transformation to 0.70 after transformation. The mean RMS error 

is lowered from 0.26 to 0.20. Figure 20 shows an example of different fiber tracts (the 

right internal capsule) and rotation axis from the other intra-subject transformation, where 

the mean ACC increases from 0.56 before transformation to 0.78 after transformation and 

the mean RMS error decreases from 0.25 to 0.17. 
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Figure 19. Example of intra-subject normalization of data acquired after in-plane head rotation. 
The FA is shown in one slice of the target (a), source (b), and transformed source (c) datasets. 
FODs in the ROI (highlighted in the yellow box) overlaid on the FA map in the target image (d), 
in the transformed image before (e) and after (f) FOD transformation. ACC between source and 
target FODs before (g) and after (h) transformation. RMS error with respect to the target FODs 
for the source FOD before (i) and after (j) transformation. Note that a white matter mask was 
applied (FA ≥ 0.25). The size of each FOD is scaled by the corresponding FA value. 
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Figure 20. Example of intra-subject normalization of data acquired after through-plane head 
rotation. The FA is shown in one coronal slice of the target (a), source (b), and transformed (c) 
image. Note that images were acquired axially. FODs in the ROI (highlighted in the yellow box) 
overlaid on the FA map in the target image (d) and in the source image before (e) and after (f) 
FOD transformation. ACC between source and target FODs before (g) and after (h) 
transformation. RMS error with respect to the target FODs for the source FODs before (i) and 
after (j) transformation. Note that a white matter mask was applied (FA ≥ 0.25). The size of each 
FOD is scaled by the corresponding FA value. 

 

The transformation results between subjects are demonstrated in Figure 21 and 22. 

Figure 21 compares the FODs along part of the left cingulum from two subjects before 

and after transformation. It is clear that the FODs derived from the transformed DW 

 65



 

images without adjustment still take the orientation of the fiber before registration, not 

the transformed fiber. After transformation, the FODs are more consistent with the 

transformed cingulum bundle.  

 

 66



 

 
Figure 21. Example of inter-subject normalization. (a)-(d): results for subject A. FA map in the 
native (a) and common (b) space, with corresponding ROI highlighted in the yellow box. FODs 
in the ROI before (c) and after (d) transformation, overlaid on the FA map. (e)-(h): results from 
subject B in the same ROI: native (e) and common (f) space FA maps and ROI FODs before (g) 
and after (h) transformation. The similarity between subject A and B FODs in the ROI is shown in 
ACC (i) and RMS deviation (j) maps. The size of each FOD is scaled by the corresponding FA value. 
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Figure 22 shows the mean and standard deviation of the transformed FODs over 

the control group of 19 subjects. The region of interest (ROI) was chosen to include 

voxels containing single fiber and multiple fiber orientations. The variation of the 

transformed FODs across subjects is small, but relatively higher at the boundary between 

white matter and cerebrospinal fluid, or the boundary between two distinct fiber bundles. 
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Figure 22. Example of group data transformed to the common space. (a): The mean (opaque) and 
mean+std (transparent) FODs over a group of 19 subjects normalized to a common space. The 
inset shows the ROI (yellow box) in the averaged FA map and enlarged FODs from 5 
representative voxels highlighted in colored boxes. The mean (b) and std (c) ACC maps in the 
ROI were calculated across all subjects (relative to the group mean FOD). The mean (d) and std 
(e) RMS error maps are also shown. Note that in all cases a white matter mask was applied 
(averaged FA ≥ 0.25). 
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Discussion  

Spatial normalization of brain MR images, especially those between subjects, usually 

involves scaling and shearing due to anatomic differences between individual brains. 

These factors, in addition to the relatively simple case of rotation, may change not only 

the orientation, but also the overall shape of the fiber orientation distribution within an 

imaging voxel. Therefore, it is necessary to take into account scaling and shearing effects 

in order to obtain accurate transformed FODs. This is demonstrated by the numerical 

simulations and the high similarity achieved in our between-subject normalization results.  

Recently Chiang and coworkers proposed a fluid registration method for HARDI 

data, in which the principal direction of the diffusivity function is estimated using 

principal component analysis, and its reorientation is performed using a rotation derived 

from the PPD algorithm (76). This method is limited in that the principal direction of the 

diffusivity function is not able to fully describe multiple fiber orientations within a voxel. 

Also, a rotation is not sufficient to represent the non-rigid transformations involved in the 

normalization process. By contrast, the algorithm proposed in our study not only takes 

advantage of HARDI data by working on the FOD functions, but also successfully 

addresses the problem of non-rigid deformation. 

Although the normalization algorithm was demonstrated using the FOD derived 

from the FORECAST model, the method is applicable to FOD functions derived from 

other spherical deconvolution approaches as well. Similarly, the orientation distribution 
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function (ODF) derived from Diffusion Spectrum Imaging (28,44) or Q-Ball imaging (29) 

gives the probability that spin displacement lies in a particular direction. This is also an 

angular distribution function on the unit sphere that can be transformed according to the 

proposed method. 

For simple spatial normalization where only rigid rotation is involved, the 

reorientation of the FOD function can be achieved in two ways: calculating the FOD 

based on rotated diffusion gradient directions, or simply rotating the FOD calculated 

using the original gradient directions. These two are equivalent because the relationship 

between the FOD and measured DW signal is linear and shift-invariant, where shifts on a 

sphere are equivalent to rotations. For non-rigid spatial transformation, however, the first 

approach does not work even if the original deconvolution kernel is used (results not 

shown). This is because non-rigid transformations are not shift-invariant on the unit 

sphere and therefore do not preserve the convolution relationship between the FOD and 

measured signal. Similarly, transforming the diffusion gradient directions does not give 

the correctly transformed ODF of QBI, since non-rigid transformation does not preserve 

Funk-Radon transform relationships.  

Since the FOD function is expressed in terms of spherical harmonic expansion 

coefficients, the highest expansion order determines its angular resolution. One factor that 

will possibly affect the accuracy of the transformed FOD is the SH expansion order. Due 

to the scaling and shearing effects possibly included in the image registration process, 

especially for inter-subject cases, the transformed FOD may take a different shape (for 
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example, a narrower peak), which may require higher order SH expansion in order to be 

fully described. Insufficient SH order may lead to error in both the shape and orientation 

of the resulting FOD. In this case, expressing the FOD through a higher order may be 

helpful. Take the example in the simulation study where a voxel with two fibers crossing 

at 60º undergoes a stretch (see Figure 18 part b row 3 column 2) and results in a smaller 

crossing angle. The transformed FOD fitted through 6th order gives a mean angular error 

of 4.6º, which is reduced to 1.5º when fitted through 8th order.  Note that a higher SH 

order can provide higher angular resolution at the cost of introducing high frequency 

noise (which may also affect the accuracy of FODs), somewhat longer computational 

time and larger data storage space. The optimal SH order depends on both the original 

fiber configuration and the nature of the spatial normalization. Here in our in vivo data, 

we chose to use the same SH order for both the target and transformed FODs in order to 

facilitate the comparison between them.  

The number of sampling points is another factor that may affect the accuracy of 

the transformation algorithm. According to the simulations, 252 sampling points evenly 

distributed over a unit sphere are able to achieve satisfactory results. A higher number 

improves the performance slightly, but at the cost of longer computation time. 

Although the transformation is successful in most voxels (high similarity between 

the transformed source and the target FODs), there are some regions where the 

transformation is less accurate.  One example is the small lateral region in the left 

hemisphere (right side of the image) in Figure 19 (see part j, for example), where the 

 72



 

ACC between the transformed source and target FODs is relatively low and the RMS 

error is relatively high. The low similarity stems from shape and orientation differences 

between the FODs: the target FODs clearly show two fiber components with different 

orientations, while most of the original and transformed source FODs contain only one 

fiber along the mean orientation of the two fibers in the target image (details not shown 

here). Generally speaking, the discrepancy could result from three possible causes. It may 

be due to any one of them, or more likely, a combination of some or all of them. First, 

FODs from either the target or the source image or both might not be reliable due to 

limitations of the FORECAST model. This model assumes a single radial diffusivity for 

all fibers within a voxel (i.e., a single kernel for spherical deconvolution within a voxel) 

(54). Violation of this assumption may cause errors in the estimated fiber volume 

fractions. Based on simulations, the error could be about 25% at the current SNR level of 

30~50 under the imaging protocols used in this study (results not shown). Also, errors in 

the estimated FOD may be due to noise or image artifacts, which were not completely 

removed by the eddy current distortion correction and the regularization process. Since 

interpolation is involved in the image registration process, the transformed image is in 

fact spatially smoothed, resulting in a higher SNR level (and partial volume averaging) 

than the target image, and hence likely requires a smaller regularization weighting factor. 

Even though the regularization weighting factor was chosen carefully based on Monte 

Carlo simulations and the chosen value is considered proper for the SNR range here, the 

fixed value might still under-regularize the target FODs and over-regularize the 
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transformed FODs. Alternative methods were tested to objectively determine the 

regularization weighting factor for each voxel, such as the generalized cross validation 

(GCV) (60) and the L-curve method (57). Both methods gave discrepant results between 

the target and the transformed source, similar to those using the fixed factor, and none of 

them gave better overall regularization than the fixed value. A better FOD regularization 

method will be helpful in the validation of the transformation technique. However, the 

problem of regularization is beyond the scope of this study.  

Second, the discrepancy may come from local image registration errors. 

Registration based on FA maps (rather than 0=b  images) was tested, but this gave 

similar results. Note that the region in question is at the edge of the brain, containing 

complex gyral and sulcul structures, which may vary drastically between subjects.  This 

presents a major challenge for accurate registration, even with the sophisticated nonlinear 

registration method used in this study. The adaptive bases algorithm (74) uses regularly 

spaced radially symmetric basis functions to model the deformation field and works on a 

multi-resolution scale, allowing fine adjustments within local regions.  The initialization 

parameters for the algorithm (a total of 14 levels with number of basis functions 

increasing from 3 to 40 along each dimension) were selected based upon prior experience 

with the algorithm to provide the best possible match throughout the brain without 

introducing registration artifacts such as tearing and folding. Close inspection of the 

corresponding FODs in the target and source images and the neighborhood indicates that 

this is likely one cause of the FOD discrepancy in this region since transformed FODs 
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with high similarity to the corresponding target FODs can be found in the near 

neighborhood (about 1~2 voxels away, details not shown). More advanced image 

registration methods may improve the results of our method in the future. 

Third, the discrepancy may be due to sampling differences between the two 

acquisitions. For example, consider the possible sandwich-like topology of fiber mixing, 

which is not positioned exactly in the same way in the target and source image voxels. 

Suppose one fiber bundle lies inferior to another with different orientation and the mixing 

area is thin relative to the slice thickness. One axial slice of the target image is centered 

exactly between the two bundles and thus the FODs fully capture the fiber mixing, while 

in the source image two neighboring slices happen to lie just superior and inferior to the 

mixing plane, and thus the FODs in each slice reveal just one of the fiber bundles (as 

illustrated in Figure 23). In this case, even if the FODs give reliable orientations of the 

fiber tracts and the image registration is accurate, the transformation algorithm can not 

provide satisfying results since the source and target FODs contain different fiber 

populations. Inspection of the neighboring slices indicates that this is likely another cause 

of the FOD discrepancy in this region (data not shown). 
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Figure 23. Illustration of the possible FOD sampling differences. Left column: FODs in the target 
image where the voxel in the middle slice captures the fiber crossing. Right column: FODs in the 
source image where the neighboring slices miss the fiber crossing. 

 

Conclusion  

We developed an algorithm to perform spatial normalization of the FOD function derived 

from HARDI data, which makes it possible to compare the intravoxel fiber distribution 

between subjects, between groups, or between two image sets acquired at different time 

points for the same subject. This is an important step forward from spatial normalization 

of scalar images and diffusion tensors, since the FOD function derived from HARDI 

provides more detailed information about intravoxel fiber structure than scalar measures 
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such as FA, and the diffusion tensor. This technique will likely be helpful in clinical 

studies that make use of HARDI data to assess white matter disease. 
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CHAPTER IV 

 

WHITE MATTER ALTERATIONS IN SCHIZOPHRENIA 

 

Overview  

Schizophrenia is a severe mental disease affecting about 1% of the population. Previous 

DTI studies in schizophrenia have reported white matter alterations as measured by 

changes in fractional anisotropy. However, DTI analysis is not capable of distinguishing 

between possible causes of these changes. Both intrinsic fiber properties (e.g., axon 

packing density and myelination) and fiber coherence (the degree to which fibers are 

parallel within a voxel) influence fractional anisotropy. To distinguish these effects, we 

performed a group comparison of radial diffusivity and intravoxel fiber coherence 

estimated by spherical deconvolution analysis of HARDI images, aiming to reveal more 

details about the white matter abnormalities in schizophrenia.  

This chapter includes: (a) a brief introduction to current investigations on 

schizophrenia using diffusion MRI, (b) our experiment including data acquisition, 

preprocessing, and analysis, and (c) observed results, discussion and conclusion. 
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Introduction 

Schizophrenia is a severe mental disorder affecting about 1% of the population. Early 

conventional MRI studies found volume increase in the ventricles and reduction in the 

frontal and temporal regions in people with schizophrenia (77-79). These findings 

inspired investigations of anatomic connectivity between these brain regions. In addition, 

functional studies of the brain revealed multiple cortical and subcortical regions affected 

by schizophrenia (80-82), suggesting disturbed connections among those functionally 

related regions. Abnormalities associated with myelin found in postmortem brains (83-85) 

and genetic studies (86-88) provide further supporting evidence for the hypothesis of 

white matter involvement in schizophrenia.  

Diffusion tensor imaging (2) is a useful tool for non-invasive characterization of 

the microstructure of white matter. Fractional anisotropy is the most widely used measure 

to describe white matter integrity in DTI analysis. A number of DTI studies on 

schizophrenia have reported altered diffusion properties in widespread white matter 

regions (89-93), as well as some major fiber tracts including the corpus callosum 

(90,92,94-96), the cingulum bundles (97-99), the arcuate fasciculi (92,96,100,101), the 

uncinate fasciculi (95,100-102), and the internal capsules (92,96,103,104). However, 

findings reported in the literature are not consistent regarding the locations, size, and 

extent of the observed abnormalities, largely due to the complicated and variable nature 

of this disease, and the differences in the way the data were acquired and analyzed (for a 
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review, see (105)). Furthermore, many DTI studies are limited by small sample size, low 

magnetic field strength, low angular resolution, anisotropic voxel size, etc. Most 

importantly, the underlying mechanism of the altered FA remains unclear since the tensor 

model is insufficient to distinguish the possible causes, such as a change in the fiber 

orientation coherence, a change in the intrinsic diffusivity of the fibers, or both. In this 

study, we aim to address this problem by utilizing more extensive imaging data and more 

sophisticated analysis methods. 

High angular resolution diffusion imaging takes a step forward from diffusion 

tensor imaging by acquiring diffusion measurements along more directions and 

reconstructing data by more advanced models, and hence is able to reveal more details of 

the diffusion process. Fiber orientation estimated using continuous axially symmetric 

tensors (54) is a HARDI data reconstruction technique based on spherical deconvolution. 

With an assumption of uniform mean and radial diffusivity for each fiber component 

within a voxel, the diffusion weighted signal can be expressed as a convolution of the 

fiber orientation distribution function and the response function from an ideal single fiber. 

FORECAST is able to recover multiple intravoxel fibers at moderate b levels feasible in 

common clinical protocols. Furthermore, by estimating both the radial diffusivity and 

fiber orientation distribution in each voxel, FORECAST is capable of distinguishing two 

different causes of altered FA: fiber coherence or fiber intrinsic diffusivity change. 

Recently a spatial normalization of the FOD function based on HARDI data was 

proposed (106), which makes it possible to compare the intravoxel fiber distribution 
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between subjects in a common space. Utilizing the set of advanced techniques mentioned 

above, the aim of this work is to reveal more detailed information of the white matter 

alterations in schizophrenia than conventional DTI is able to provide.  

 

Methods 

Subjects 

Imaging data were acquired for a group of 33 patients with schizophrenia (SZ) and a 

group of 22 normal controls (CO). An additional normal subject, who was a 36 year old, 

right-handed female, was scanned using the same protocol and assigned to be the initial 

target for image registration, and excluded from group comparison. All patients were on 

antipsychotic medication at the time of investigation. Informed consent was obtained 

from each subject, and all scanning procedures were approved by the institutional review 

board. Datasets of 2 patients were excluded from analysis due to severe movement 

artifacts, SENSE artifacts, and poor registration (see the section Image pre-processing 

and registration for explanations). The remaining subject’s information is summarized in 

Table 3.  
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Table 3. Subject demographics. 

CO SZ Group  

Feature  Female Male Total Female Male Total 

Number  12 10 22 14 17 31 

Range  26~53 22~51 22~53 23~54 23~52 23~54 
Age (years) 

Mean ± std  36 ± 8 35 ± 10 36 ± 9 44 ± 9 36 ± 9 40 ± 10

Left 1 0 1 2 3 5 

Right 11 10 21 12 13 25 Handedness 

Ambidextrous 0 0 0 0 1 1 

 

Image acquisition 

All images were acquired using an 8 channel SENSE head coil on a Philips Intera 

Achieva 3T scanner with high-performance gradient coils (80 mT/m gradient strength 

and 100 mT/m/ms slew-rate). A single-shot EPI sequence was used to acquire HARDI 

images with the following parameters: b=1000s/mm2, 92 diffusion-sensitizing directions 

(the 46 directions given by 3rd order icosahedral tessellation of a sphere (71) and their 

opposites), , ms48TE = ms000,10TR = , SENSE 3factor = , matrix size, 

and 2.5mm isotropic voxel size. For image registration purposes, high resolution 

T1-weighted and T2-weighted images were also obtained for each subject. T2-weighted 

images were acquired at the same slice positions as the HARDI images using a turbo spin 

539696 ××
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echo sequence with the following parameters: ms80TE = , , 

 matrix size, 

ms000,6TR =

53512512 ×× 5.245.045.0 ××  mm voxel size. T1-weighted images were 

acquired using a multi-shot gradient echo sequence with ms6.4TE = , ms9.8TR = , 

SENSE , 2factor = 176256256 ×× matrix size, 111 ×× mm voxel size. The total 

imaging time for all three scans was about 26 minutes.  

 

Image pre-processing and registration 

Prior to further analysis, two pre-processing steps were performed on each set of HARDI 

images in order to reduce the effects of noise and artifacts. Since the HARDI images in 

this study were acquired using EPI sequence, they were susceptible to eddy current 

distortion, especially in the direction of phase encoding (107). Eddy current distortion 

and bulk subject motion were corrected by registering each diffusion weighted image to 

the corresponding  image via an affine transformation using an algorithm 

described by Netsch and van Muiswinkel (72).  

0=b

Another problem of the EPI acquisition is interference from the extracranial fat 

signal, which may be incompletely suppressed. The problem may become more severe 

and affect more brain voxels if parallel imaging techniques, such as SENSE, are 

employed, as in this study. If fat suppression varies between image volumes (due to 

diffusion gradient-driven eddy currents, for example), then fat signal aliased into the head 

can produce high signal variance in the affected voxels. A voxel-wise wild bootstrap 
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analysis on the FA value was performed. Those voxels in which FA uncertainty 

(measured as the standard deviation of the re-sampled values) exceeded a user-defined 

threshold (0.065 for this study) were identified as corrupted by artifacts and excluded 

from further analysis (more details of this algorithm are described in (75)).   

The image registration process consisted of two main steps: creation of a 

study-specific FA template and co-registration of the individual FA maps to the FA 

template. This was done in an attempt to minimize potential bias in the normalization 

results due to selection of a single subject as the target image. The study-specific template 

was created by a set of 3 registration steps. First, nonlinear registration, initialized by 

rigid registration, between the 0=b  images of each subject and the corresponding 

high-resolution, slice matched T2-W images was performed to reduce image distortion 

due to susceptibility artifacts. Second, rigid registration between the T2-W images and 

T1-W images of each subject was performed. Third, nonlinear registration, initialized by 

rigid registration, between the T1-W images of each subject and the T1-W image volume 

of the target subject was performed. The resulting transformations were combined to 

create a single transformation for each subject, which was applied to the subject’s FA map. 

The normalized FA maps from all subjects were averaged to create the study-specific 

template. Finally, each subject’s original FA map was then registered to the FA template 

through both rigid registration with scaling and nonlinear registration. The resulting 

transformations were combined to create the transformation applied to the DW images in 

this study. Compared to simpler schemes, this multistep approach was found to provide 
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more robust inter-subject registration. A white matter mask was obtained by applying a 

threshold of 0.2 to the averaged FA map across all subjects. Statistical analysis was 

performed on white matter voxels only. 

 

FORECAST analysis 

For each subject the total transformation was applied to the DW images for each 

diffusion direction. Based on the transformed HARDI images, radial diffusivity, ⊥λ , and 

FOD for each voxel were calculated using the FORECAST spherical deconvolution 

method. To reduce the effects of noise, the FODs were regularized by minimizing the 

negative values (59) with a fixed weighting factor (α=0.3, which was chosen to optimize 

reproducibility based on Monte Carlo simulations). The Jacobian matrix for each voxel 

was calculated based on the deformation field of the total transformation and was used to 

transform the FODs as described in (106). Both the pre- and post-transformed FODs were 

expanded through 6th order spherical harmonics.  

To describe the degree of fiber orientation coherence within a voxel, a coherence 

index, κ, was calculated based on the variance of the eigenvalues of the scatter (i.e., the 

second moment) matrix of the FOD function (108). The coherence index is a scalar, 

ranging from 0 to 1. Completely incoherent fiber distributions have 0=κ , whereas 

parallel fibers have 1=κ .  
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In addition, the number of intravoxel fiber components was determined based on 

the number of distinct FOD peaks. If the estimated FOD contained more than one peak, 

and the magnitude of a particular peak was too small relative to the largest one within the 

same voxel, this peak was considered false, produced by either imaging noise, or 

contamination from neighboring tissues with isotropic diffusion properties (such as 

cerebrospinal fluid or gray matter), or truncation artifact from the SH fitting. Those false 

peaks were ignored. The magnitude ratio threshold was set to 1/5 to best catch the false 

peaks based on our preliminary results. For voxels with more than one fiber, the crossing 

angle between the largest two fiber components was also calculated. 

To evaluate the quality of the HARDI images, signal to noise ratio was also 

calculated for each voxel based on the residual sum of squares (i.e., estimating the noise 

based on the residuals of a 6th order SH fit of the signal as a function of orientation). Then 

the mean SNR over all white matter voxels was obtained for each subject.  

 

Statistical analysis 

T-test was carried out to compare the mean age between the two groups. In addition, 

z-test was performed to compare gender and handedness. In addition, a voxel wise t-test 

of group differences in FA was performed in each white matter voxel. The significance 

level was set at 0.01. In order to further reduce false positive error, a threshold for cluster 

size of 6 contiguous voxels was applied. In clusters with significant FA differences 
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between groups, follow-up t-tests on ⊥λ and κ were conducted for each voxel, as well as 

for the mean over each cluster, with the significance level set at 0.05. Furthermore, a 

general linear model (GLM) between FA, ⊥λ , and κ was applied for each voxel in those 

clusters. 

In voxels with group difference in fiber coherence, we further tested if there are 

differences in the number of fibers between groups by performing z-tests on the 

proportions of single-fiber, two-fiber, and three-fiber voxels. Moreover, we separated the 

data in each cluster according to the number of fibers, and tested if fiber coherence is 

different between groups for voxels with the same number of fibers. The threshold for all 

follow-up tests was set at 0.05. 

 

Results 

There are no significant differences in age (p=0.17), gender (p=0.25), or handedness 

(p=0.095) between the patients and the controls. The HARDI images of the patient group 

have significantly lower SNR compared with the control group (p=0.0014). The mean 

and standard deviation of the SNR are 31.21±4.44 for the patients and 34.93±3.59 for the 

controls, respectively. Significantly lower FA in SZ is found in multiple white matter 

regions including the right uncinate fasciculus (unf), the left corticopontine 

tract/corticospinal tract (cpt/cst), the left posterior limb of internal capsule (ic), the 

posterior part of bilateral interior frontal-occipital/inferior longitudinal fascicules (ifo/ilf), 
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right anterior corona radiata/corpus callosum (acr/cc), right forceps major (fm), the 

posterior part of the left superior longitudinal fasciculus (slf), the splenium of corpus 

callosum and adjacent cingulum (cc/cg) bilaterally, the left superior corona radiata (scr), 

and the left medial superior part of the anterior/posterior central gyri (acg/pcg). These 

locations are shown in Figure 24. Note that clusters that appeared to be affected by 

artifacts were discarded. One example is the cluster in the inferior genu of the cc (see 

parts b and c in Figure 24), which is contaminated by cerebrospinal fluid.  

In each cluster, the mean radial diffusivity over all voxels is found significantly 

higher in SZ. All voxels in the left posterior ifo/ilf, right acr/cc, left acg/pcg show 

significantly elevated ⊥λ , while fewer than half of the voxels in other clusters show 

significant group difference in ⊥λ . In all regions except for the left posterior ifo/ilf, the left 

posterior cc/cg, the left cpt/cst, and the left scr, the mean fiber coherence is significantly 

lower in SZ. At the voxel level, only a few voxels in the left ic, the right fm, the left 

posterior slf, the right posterior cc/cg, and the right unf, and more than half of the voxels 

in the left acg/pcg exhibit significantly lower κ, no voxel in right posterior ifo/ilf and the 

right acr/cc shows significant group differences. Table 4 summarizes the t-test results of 

all regions at the cluster level. 
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Figure 24. Voxels with significant FA differences between groups are highlighted in red on 
averaged FA maps. From top to down, and left to right: (a) right uncinate and left corticopontine 
tract/corticospinal tract, (b) the genu of the corpus callosum, left posterior limb of the internal 
capsule, and the posterior part of the  right interior frontal-occipital/inferior longitudinal 
fasciculus, (c) the genu of the corpus callosum and the posterior part of the left interior 
frontal-occipital/inferior longitudinal fasciculus, (d) right anterior corona radiata/corpus callosum, 
right forceps major, (e) right anterior corona radiata/corpus callosum and bilateral cingulum, (f) 
the posterior part of the left superior longitudinal fasciculus and the posterior part of bilateral 
cingulum and adjacent corpus callosum, (g) left superior corona radiata, (h) the left superior 
medial part of the anterior/posterior central gyri. These slices are not equally spaced. 
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Table 4. t-test results at the cluster level. 

Mean FA Mean ⊥λ  

(10-5cm2/s) 

Mean κ Locations Cluster 

size 

SZ CO 

p(FA) 

SZ CO 

p( ⊥λ ) 

SZ CO 

p(κ) 

l. ic 9 0.56 0.59 0.0021 0.48 0.45 0.0065 0.82 0.84 0.0020

l. ifo/ilf 7 0.45 0.50 0 0.65 0.57 0.0001 0.84 0.84 0.53 

r. ifo/ilf 33 0.29 0.35 0 0.81 0.69 0 0.83 0.86 0 

r. acr/cc 21 0.31 0.35 0 0.65 0.61 0 0.90 0.91 0.0058

r. fm 31 0.44 0.52 0 0.53 0.49 0 0.86 0.88 0 

l. slf 13 0.34 0.40 0 0.55 0.52 0 0.81 0.84 0 

l. cc/cg 15 0.51 0.55 0 0.52 0.49 0 0.81 0.82 0.64 

r. cc/cg 30 0.44 0.48 0 0.56 0.53 0 0.85 0.86 0.0002

r. unf 7 0.33 0.38 0 0.65 0.62 0 0.81 0.86 0 

l. cpt/cst 11 0.48 0.53 0 0.51 0.49 0.0047 0.79 0.81 0.12 

l. acg 19 0.35 0.43 0 0.59 0.49 0 0.84 0.89 0 

l. pcg 6 0.36 0.45 0 0.56 0.49 0 0.90 0.93 0 

l. scr 7 0.45 0.50 0 0.50 04.8 0 0.87 0.87 0.69 

 

GLM analysis finds strong correlation between FA and ⊥λ  at both the voxel and 

cluster levels in all regions, even after controlling for fiber coherence variation. The 
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correlation between FA and κ after controlling for ⊥λ variation is found to be strong at 

the cluster level in all regions. At the voxel level, however, only the left posterior ifo/ilf , 

the right fm, and the right uncinate fasciculus exhibit significant correlation between FA 

and κ in all voxels in the cluster, while the right posterior ifo/ilf and the left pcg have 

more than half of the voxels with significant correlation. In all other regions no more than 

half of the voxels reach significance. 

According to the z-tests few voxels show significant group difference in the 

fractions of single-fiber, two-fiber, and three-fiber voxels in each cluster. Among the 

clusters where the mean coherence is significantly lower in SZ, the left ic, the right 

posterior ifo/ilf, the left posterior slf, the right posterior cc/cg, the right unf, the left 

acg/pcg, and the right fm exhibit significantly lower coherence in the two-fiber voxel 

and/or the three-fiber voxel subgroup. No significant coherence difference in the 

single-fiber voxel subgroup is found in any cluster.  

Figure 25 shows scatter plots of ⊥λ vs. FA and κ vs. FA in the left posterior slf for 

data points pooled together and grouped by the number of fibers. Since there is no 

significant group difference in the number of fibers or coherence in the single-fiber and 

three-fiber voxels, the lower mean coherence in the entire cluster in SZ is mainly 

attributed to the large fraction of two-fiber voxels and their reduced coherence. It is 

obvious that in this region FA is strongly correlated with ⊥λ . The reduced FA in SZ is 

mainly due to the increased ⊥λ , and the decreased κ in the two-fiber voxels also plays a 

role in the FA abnormalities. Similar results are found in the left posterior ic and the right 
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posterior cc/cg, the right posterior ifo/ilf, the right fm, the right unf, and the left acg/pcg. 

In the right fm, coherence in single-fiber and two-fiber voxels is almost the same for the 

two groups, and the cluster difference mainly comes from the three-fiber voxels even 

though the number of these voxels is much smaller than that of two-fiber voxels. In the 

right ifo/ilf and the left post central gyrus both the two-fiber and three-fiber subgroups 

contribute to the significant group difference in κ. 

 

 
Figure 25. Scatter plots of vs. FA (top) and κ vs. FA (bottom) in left posterior slf for all voxels 
in the cluster (1st column), for the subgroups of single-fiber voxels (2nd column), two-fiber voxels 
(3rd column), and three-fiber voxels (4th column). The P values of t-tests are shown in titles. The 
green cross denotes the mean of the SZ group and the green square denotes the mean of the CO 
group. 

⊥λ
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Discussion  

The frontal and temporal lobes are two major regions where patients with schizophrenia 

have shown abnormalities in structure, neuropathology, and function. Examples are white 

matter volume reduction (77), total volume reduction (79), interstitial neuron 

misdistribution (109), abnormal metabolic rate (103), and magnetization transfer ratio 

reduction (96,110). Diffusion MRI provides another line of evidence for the white matter 

abnormalities in these regions. Our findings of FA reduction in the right anterior corona 

radiata/corpus callosum agree with the previous DTI investigation of Ardekani et al. (94). 

Also, our findings in the bilateral interior frontal-occipital/inferior longitudinal fasciculi 

in the temporal regions are consistent with previous reports (96,101). 

In addition to the white matter projected into or past the frontal and temporal 

lobes from other brain regions, the fibers connecting these two areas directly are 

proposed to play an important role in the neuropathology of schizophrenia. There are 

three major fiber bundles connecting the frontal and temporal lobes: the uncinate fasciculi, 

the superior longitudinal fasciculus, and the cingulum bundles. In our study, patients with 

schizophrenia show decreased FA values in the right uncinate fasciculus. Kubicki et al. 

(102) showed a significant correlation between the FA values in the right uncinate 

fasciculus and visual attention in patients with schizophrenia, though the FA values did 

not differ from healthy controls. Larger sample size and more advanced imaging and 
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analysis techniques may explain why our study appears to have higher sensitivity in 

detecting abnormalities in the fiber tract. 

We also found FA reduction in the left slf in the patient group. Left slf is the major 

fiber pathway connecting Wernicke’s and Broca’s areas, two important cortical regions 

involved in language processing. A number of functional studies have suggested a link 

between language disturbance in SZ and dysfunction in these two areas (111-115). Earlier 

DTI studies in SZ also reported abnormalities in the left slf, (96,100,101). Our results 

support the hypothesis that both these cortical regions and the fiber pathway between 

them may contribute to the verbal deficits in SZ patients. 

Several previous DTI studies have revealed decreased FA value in the anterior 

and/or middle part of the cingulum bundles (96,98,99). In our patients, however, the 

anterior and middle parts of the cingulum bundles do not differ in FA compared with the 

controls, while the posterior part of the cg and the adjacent corpus callosum seem to be 

affected. Nevertheless, our findings, together with the structural, neuropathological, and 

functional abnormalities mentioned above, suggest that disturbed communication within 

and between the frontal and temporal lobes may play an important role in the pathology 

of schizophrenia.  

The corpus callosum is the major fiber bundle connecting the left and right 

hemispheres. Previous DTI investigations in schizophrenia have revealed FA reduction in 

the genu (90,95) and the body (96) of the cc. Our finding of abnormalities in the cc 

provides another line of evidence for the hypothesis that inefficient communication may 
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be related to functional asymmetry of the two hemispheres (116) and many cognitive 

deficits in schizophrenia (117). 

Our finding of decreased FA in the right fm agrees with earlier DTI studies that 

identified the splenium of the cc and the adjacent occipital area (90,94), suggesting an 

association with impaired early visual processing in schizophrenia (118). 

Abnormalities in the internal capsules in schizophrenia have been demonstrated in 

several reports. The abnormalities include reduced FA in the anterior limb of the ic  

bilaterally (92,96), and in the left alone (104). Increased FA in the posterior limb of the ic 

has also been found (92). Our finding of reduced FA in the posterior limb of the ic is of 

interest. The thalamus is an important structure relaying information between cortical and 

subcortical regions, as well as between cortical regions.  Structural and functional 

alterations in the thalamus have been reported in schizophrenia (for a review, see (119)). 

The abnormalities observed in the current study, suggesting an association with the 

thalamocortical somatosensory radiations which cross the posterior limb of the ic, 

warrant further investigations. 

Our study not only shows reduced FA values in multiple white matter regions in 

schizophrenia, which replicated the findings of previous DTI investigations, but also 

analyzed the intravoxel radial diffusivity and fiber coherence, providing further details of 

the structural alterations which are not available from conventional DTI. To the best of 

our knowledge, this is the first HARDI analysis applied to schizophrenia.  
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We found significantly elevated radial diffusivity in each affected region in the 

patient group, and strong correlations with the decreased FA values. There are several 

possible causes of the changes in radial diffusivity, such as changes in the axon diameter, 

in the fiber density, or damage to the myelin layer. Abnormal number and density of 

interstitial white matter neurons in schizophrenia have been reported based on  

postmortem tissues in the temporal region (84) and in the prefrontal region (85). Also, 

postmortem histology (83,120) and magnetization transfer ratio studies (96,110) have 

provided direct evidence of myelin sheath damage, as well as indirect evidence from 

abnormalities in oligodendrocytes. Furthermore, genetic studies (86-88) have detected 

abnormal oligodendrocyte-related and myelination-related gene expression in 

schizophrenia. These findings all support our results of radial diffusivity elevation.    

In addition to the increased radial diffusivity, decreased intravoxel fiber coherence 

is found in most of the regions with reduced FA values, though the degree of alteration 

varies for different tracts. Note that in our samples the FA differences between groups are 

found in areas where multiple fiber bundles with different orientations either cross (e.g. 

the cc/cg, acr/cc), or converge/diverge (e.g., the cpt/cst). Moreover, in regions where 

decreased coherence is detected in patients, no significant group difference is found on 

the numbers of fibers, or fiber coherence in the single-fiber voxels. These results suggest 

that the observed coherence differences are likely related to the way multiple fibers share 

a region, rather than the way fibers with similar orientations pack into a bundle.  
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By transforming the FOD functions from each subject’s native space into a 

common space, it is possible to compare the three-dimensional intravoxel fiber 

distribution directly between subjects. In the present study we considered only the scalar 

coherence index derived from the FOD function. To investigate more details of fiber 

crossing, future work may extend to compare the full FOD functions, or even individual 

fiber tracts obtained in the common space. 

There are several limitations to the current study. First, in our FORECAST 

analysis there are possible violations of the assumption that different fiber components 

within a voxel share the same radial diffusivity. Since radial diffusivity is affected by a 

number of factors, such as the fiber density, and axon diameter, and the myelin thickness, 

it is possible that two fiber bundles sharing the same region have different radial 

diffusivities. Violations of this assumption may affect the estimated volume fractions of 

each fiber components within a voxel (54), and hence the shape of the estimated FOD 

function and the intravoxel coherence index. Note that in the present study, reduced 

coherence in multiple-fiber voxels are observed in patients, while no group difference in 

either the number of fibers, or the crossing angles is detected. Therefore, except for the 

‘true’ differences in the way multiple fiber bundles meet, another possible cause of the 

observed coherence abnormalities is a difference in the estimated volume fraction of one 

of the fiber components, which may actually result from changes in radial diffusivity of 

one bundle. The original FORECAST model under the single radial diffusivity 

assumption is not able to distinguish between these two cases. A more advanced model 

 97



 

has been proposed to estimate multiple radial diffusivities and FODs within a voxel 

(62,121). However, the method was demonstrated on high-SNR data not achievable in 

typical clinical environments. Further investigations will be needed to understand the 

coherence abnormalities. 

In the present study, voxel-based t-tests were performed to detect FA differences 

between groups. In general, voxel-based analysis relies on accurate image registration, 

and misregistration may lead to false positive (and false negative) results. We carefully 

developed a multistep registration process, taking into account not only the inter-subject 

variations in brain anatomy, size, and orientation, but also factors such as subject 

movement and susceptibility artifacts, which may affect accuracy of intra-subject 

registration. Although this method provided robust performance for large fiber bundles, 

in regions where fibers tracts branch off into the gray matter and present large anatomical 

variations between subjects, the results are not as satisfactory. Thus caution should be 

taken when interpreting statistical results in these areas. Misregistration may be part of 

the reason group differences in fiber coherence are not detected at the individual voxel 

level. 

In order to further control false positive error, we set a small threshold of p-values 

(0.01) and a threshold of 6 continuous voxels for the cluster size, aiming to balance 

between low false positive error and high sensitivity. 

Other limitations include a possible confound from the duration of illness and 

antipsychotic medication, which are not taken into account in our analysis. A longitudinal 
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study of first-episode patients before and after antipsychotic treatments, or comparisons 

between medicated and unmedicated patients may be helpful in understanding the white 

matter alterations that occur with disease progression and how they are affected by 

medication. 

 

Conclusion  

In summary, we performed voxel-based comparisons between healthy controls and 

patients with schizophrenia on diffusion properties derived from FORECAST analysis of 

HARDI images. Decreased FA and elevated radial diffusivity were found in a number of 

white matter regions in patients. Our results also suggest that increased radial diffusivity 

is the major contributor to the FA reduction, while decreased intravoxel fiber coherence 

also plays a role in the white matter alterations. The set of techniques employed in this 

work, as a step forward from conventional DTI analysis, will likely be helpful in clinical 

study of other white matter diseases as well. 

. 
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CHAPTER V 

 

CONCLUSION 

 

FORECAST is an advanced spherical deconvolution method for the reconstruction of 

HARDI data. Analysis based on the FORECAST model is used to characterize the 

structure and organization of brain white matter. By estimating both the radial diffusivity 

and the fiber orientation distribution within a voxel, the FORECAST model provides 

detailed information about the underlying structures, which is otherwise not available 

from the conventional second order tensor model. The radial diffusivity describes 

intrinsic structural properties such as the axon diameter, the neuron number/density, and 

the thickness of the myelin layer. The fiber orientation distribution function provides 

information about the organization of the intravoxel fiber components including the 

orientation and the volume fraction. Based on the shape of the FOD function, we 

developed a scalar index to help quantitatively describe the fiber coherence within a 

voxel. 

Using Monte Carlo simulations, we investigated the performance of the 

FORECAST model in terms of estimating intravoxel fiber structure using various 

imaging and analysis parameters. Based on the results of the simulation, as well as 

bootstrap analysis of in vivo human data, the optimal imaging and processing parameters 
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for conducting the FORECAST analysis within typical clinical constraints were 

determined, and the accuracy of the model was estimated. 

In order to compare the fiber distribution between subjects, it is necessary to 

transform the FOD functions into a common space. We developed an algorithm of spatial 

normalization of the FOD function, which accounts for not only translation, but also 

rotation, scaling, and shearing effects of the transformation. This technique may be 

helpful in detecting organizational differences in white matter between groups. 

Finally, we applied the techniques mentioned above to study white matter 

alterations in schizophrenia. Voxel-based comparisons between the patients group and the 

control group reveal decreased FA and increased radial diffusivity in a number of white 

matter regions in the patients. Our results also suggest that the FA reduction is mainly 

attributed to the increased radial diffusivity, while decreased intravoxel fiber coherence 

also contributes to the white matter alterations associated with schizophrenia. This set of 

techniques, as a step forward from conventional DTI analysis, will be helpful in clinical 

studies of white matter diseases besides schizophrenia. 
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APPENDIX A 

 

THIRTY-TWO DIFFUSION DIRECTIONS 

  

Table 5. List of the Cartesian coordinates of the 32 unit vectors uniformly distributed over a 
sphere used by the Philips scanner system. 

x y z x y z 
1 0 0 0.7771 0.4707 -0.4178 
0 1 0 0.9242 -0.1036 -0.3677 
0 0 1 0.4685 -0.7674 -0.4378 

-0.0424 -0.1146 -0.9925 0.8817 -0.1893 -0.4322 
0.1749 -0.2005 -0.9639 0.6904 0.7062 -0.1569 
0.2323 -0.1626 -0.959 0.2391 0.7571 -0.608 
0.3675 0.0261 -0.9296 -0.0578 0.9837 0.1703 
0.1902 0.3744 -0.9076 -0.5368 0.8361 -0.1135 
-0.1168 0.8334 -0.5402 -0.9918 -0.1207 -0.0423 
-0.2005 0.2527 -0.9466 -0.9968 0.0709 -0.0379 
-0.4958 0.1345 -0.858 -0.8724 0.4781 -0.1014 
-0.0141 -0.6281 -0.778 -0.2487 0.9335 0.2581 
-0.7445 -0.1477 -0.6511 0.1183 0.9919 -0.0471 
-0.7609 0.3204 -0.5643 0.3376 0.8415 0.4218 
-0.1809 0.9247 -0.3351 0.5286 0.8409 0.1163 
-0.6796 -0.4224 -0.5997 0.9969 0.055 -0.0571 
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APPENDIX B 

 

THEORETICAL PREDICTION OF THE VARIANCE OF  lmp

 

According to the FORECAST model, the convolution relationship between the diffusion 

weighted signal S and the FOD function P can be expressed as a simple algebraic 

equation in terms of their SH coefficients lmsr and lmpr :  

 
l

lm
lm cs

sp
0

=  (16)

where the non-negative integer l denotes the SH order, and the integer m denotes the 

degree or phase factor (for each l, m ranges from –l to l). S0 is the signal without diffusion 

weighting. cl is the convolution kernel expansion coefficients determined by the order l, 

the b value, the mean diffusivityλ , and the radial diffusivity ⊥λ (54). Therefore, assuming 

that is known, lc
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The diffusion weighted signal S
r

can be expressed in terms of its SH expansion 

coefficients lmsr as 

 lmsXS rr
⋅= ~  (18)

where X~  is the design matrix comprised of spherical harmonics. The lmsr  is 

determined by linear least squares estimation using Eq.(18). Hence, the variance of is lms

 ( ) 1~'~22
−

= kkss XX
lm

σσ  (19)

where is the variance of the diffusion-weighted signal, 2
sσ ( ) 1~'~ −

kkXX is the kth element on 

the diagonal of the matrix ,with . Assuming the variance of the 

diffusion-weighted signal equals the variance of the non-diffusion weighted 

signal , Eq.

( ) 1~'~ −

XX 12 +++= mllk

2
sσ

2
0sσ (19) becomes 

 ( ) 1

0

~'~22
−

= kkss XX
lm

σσ  (20)

Inserting Eq.(20) into Eq.(17), we have 
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Therefore, for a given fitting order l, to minimize the variance of the estimated , the b 

value should be chosen to maximize

lmp

lc . Hence for a typical value of 

, the scm /1054.0 25−
⊥ ×=λ 6=l order coefficients, mp6

r , have the lowest variance at 

. The dependence of on the b value is shown in 2/3200 mmsb = lc Figure 26.  
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Figure 26. Coefficients vs. b. Subplot in top left shows  for even orders from 0 to 10. The 

other subplots show for orders 4, 6 and 8 (assuming ). 
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