
OBJECT DETECTION AND LOCALIZATION USING APPROXIMATE NEAREST

NEIGHBOR SEARCH: RANDOM TREE IMPLEMENTATION

By

Esubalew Tamirat Bekele

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2009

Nashville, Tennessee

Approved:

Professor Richard Alan Peters II

Professor Don Mitch Wilkes

ii

To my beloved mother, Atale Belay

To my understanding sister, Wossenie Tsegaye

 and

To my wonderful brother, Embiale Zemedie

for investing in me to be where I am right now

iii

ACKNOWLEDGEMENT

I would like to take this chance to thank Dr. Peters II, Richard Alan for his

continued effort in this thesis in particular and in my progress towards this degree in

general. His confidence in me, his encouragement and passion that he has for his work

are among the various things that need to thank him for and am grateful for. I would like

to thank him for letting me try his code for epipolar geometry stereopsis.

I am also very thankful to Dr. Mitch Wilkes for his permission and support to help

me use their idea of random tree implementation for performance analysis. He was such a

great help in the successful completion of this thesis.

I thank also Jonathan Hunter for his kind and continuous support to give me a lot

of ideas whenever I want them. He was there whenever I wanted to talk to him.

I forward my heartfelt appreciation and thanks to Flo. I am so grateful to her

enduring support in material and anything I want. She was so encouraging and helpful. I

am so happy to get to know her.

Finally, I would like to thank all other colleagues, friends (Especially Abiy

Tekola, His wife Abigya and Birhan Woldegiorgis, my esteemed friends, for their

encouragement and being there whenever I wanted them) for their support and

encouragement.

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENT ... iii

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF EQUATIONS ... xi

LIST OF ACRONYMS .. xii

CHAPTER

I. INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Objective of the Thesis ... 4

1.3 The Proposed system .. 5

1.4 Structure of the Thesis .. 6

II. PERCEPT ACQUISITION AND PRE-PROCESSING .. 7

2.1 The test bed (ISAC) .. 7

2.1.1 The cameras ... 7

2.1.2 The Lenses ... 11

2.1.3 The Camera Mounts ... 11

2.1.4 The Frame Grabber .. 12

2.2 Pre Processing ... 14

2.2.1 Digital Image Processing using OpenCV .. 14

2.2.2 Noise Filtering ... 15

v

2.2.3 Background Subtraction... 18

III. FEATURE EXTRACTION .. 20

3.1 Biological Inspiration.. 20

3.2 Background of the features selected ... 24

3.3 Rationale For the use of High Dimensional Features ... 26

3.4 The perceptual features used ... 28

3.4.1 The color probability density function (pdf) .. 29

3.4.2 The texture component .. 31

3.5 Extraction of the features from the images ... 32

IV. PERCEPTUAL LEARNING AND SEGMENTATION.. 36

4.1 Perceptual Learning .. 36

4.1.1 The Pure Nearest Neighbor Algorithm .. 36

4.1.2 The Distance (Similarity) Measure .. 41

4.1.3 The Approximate Nearest Neighbor Algorithm (The Random Tree) 42

4.2 Segmentation... 50

4.3 Performance Measures .. 52

V. STEREOPSIS... 54

5.1 Camera Calibration ... 55

5.2 Co-planar Steriopsis .. 58

VI. PROPOSED EXPERIMENTS ... 62

6.1 Experiment I.. 64

6.2 Experiment II .. 65

6.3 Experiment III ... 66

6.4 Experiment IV ... 67

vi

VII. EXPERIMENTAL RESULTS AND DISCUSSIONS ... 68

7.1 Training Results (Experiment I Results)... 68

7.2 Testing Time Results (Experiment II Results).. 74

7.3 Testing Accuracy Results (Experiment III Results) ... 79

7.4 Stereopsis Results (Experiment IV Results) ... 84

VIII. CONCLUSIONS AND FUTURE WORK .. 86

8.1 Conclusions ... 86

8.2 Future Work .. 87

REFERENCES ... 89

APPENDIX ... 94

 SELECTED SEGMENTED IMAGES ... 94

KNN .. 94

Left .. 94

Right .. 107

RANDOM TREE .. 121

Left .. 121

Right .. 134

vii

LIST OF TABLES

Table Page

Table 1: the basic random tree data structure. .. 44

Table 2: List of the experimental objects that are used in the project 62

Table 3: Platform Specification of the test beds for experiment III 66

Table 4: Number of training images used and training vectors extracted out of them for
the old set of training images .. 69

Table 5:Number of training images used and training vectors extracted out of them for
the new set of training images .. 70

Table 6: Summary of the comparison of the pure nearest neighbor algorithm with
approximate random tree implementation .. 83

Table 7: Theoretically computed 3D coordinate ranges ... 84

Table 8: Experimentally found 3D coordinate ranges for both pure and random tree
implementations .. 85

viii

LIST OF FIGURES

Figure Page

Figure 1: General Structure of the proposed system ... 5

Figure 2: The two camera modules, the lenses and the mounts constitute ISAC’s eyes 8

Figure 3: The Sony XC-999 Color Video Camera Module .. 9

Figure 4: The inner parts of the camera. ... 9

Figure 5: Single camera Horizontal and Vertical FOVs ... 10

Figure 6: Working Field provided by the stereoscopic cameras of ISAC 10

Figure 7: The Sony fixed focus 6mm lens .. 11

Figure 8: The vertical tilt of -710 and a horizontal pan of 00 with the world frame of
reference for the vision system (not drawn to scale) .. 12

Figure 9: The original image and the smoothed image (not in their original size). 17

Figure 10: Original smoothed image (Left) and its background subtracted version (right)
... 19

Figure 11: The human receptor fields with in a tissue sample (right) and a typical CCD
arrays of a camera are shown here. ... 21

Figure 12: Parts of the human eye (13) ... 21

Figure 13: distribution of rods and cones around in the human retina. Boxes at the top
illustrate the appearance of cross sections through the outer segments of the
photoreceptors at different eccentricities. ... 22

Figure 14: The Visual pathway from eyes to primary visual cortex, of a human brain. .. 23

Figure 15: A Conical Model of the HSV color space. The hue is the angle that varies
from 00 to 3600. The saturation and the value both range from 0 to 1. 30

Figure 16: A 15 x 15 ROI of an image from which a single feature vector is calculated
out (Note: the figure is magnified from its original small size to see the details. 33

ix

Figure 17: A typical set of training feature vectors. The spikes at 10,001 are the texture
measures and the rest are the pdf of the histograms. .. 34

Figure 18: Plot of a feature vector that shows how sparse the vector is. It has dominant
non-zero values near the maxima of the pdf of the objects color. 35

Figure 19: A segmented image that is before the re-labeling with the recognized objects
and their corresponding centroids. (Centroids are superimposed for completeness.
However, they are calculated after re-labeling.) ... 51

Figure 20: A segmented image that is after the re-labeling with the recognized objects
and their corresponding centroids. .. 52

Figure 21: Contingency table or Confusion matrix of the four possible outcomes (52). . 53

Figure 22: The 30 images that are used in the calibration process 55

Figure 23: Example corners extracted from example image of the check board 56

Figure 24: Re-projection errors in the computation of the camera parameters 58

Figure 25: Geometrical configuration of the coplanar image planes, the respective frames
of reference and object projection to the image planes. .. 59

Figure 26: Experimental Setup of center of the head of ISAC and a table in front of him
(not drawn to scale) ... 61

Figure 27: The Experimental objects that are used by this project 63

Figure 28: plot of the training times of the old (36 training images) and new image set (54
training images) versus number of training vectors .. 71

Figure 29: training times in seconds versus minimum number of training vectors per
impure leaf node ... 72

Figure 30: Plots of testing time of the pure nearest neighbor algorithm with number of
testing vectors for the right and left images (top) and with number of training vectors
(bottom) TrIm represents Training Image and TsIm represents Testing Image in the
legends .. 74

Figure 31: Plots of testing time of the random tree for both left and right images with
number of testing vectors (above) and with number of training vectors (below) TrIm
represents Training Image and TsIm represents Testing Image in the legends 75

Figure 32: Plots of testing time of the pure algorithm with number of testing vectors and
with number of training vectors. This is the result of program running on Sally. 77

x

Figure 33: Plots of testing time with number of testing vectors and with number of
training vectors that run on Sally. ... 78

Figure 34: Testing accuracy plots and ROC curves for individual test objects of the pure
nearest neighbor search method. ... 79

Figure 35: Accuracy of individual test objects with number of training images and ROC
curves. ... 81

Figure 36: Accuracy plots of the random tree implementation with the minimum number
of training vectors in an impure node and the corresponding ROC curves for individual
test objects ... 82

Figure 37: 3D plots of the coordinates of the 352 centroids of the detected experimental
objects (dimensions are in mm) .. 84

xi

LIST OF EQUATIONS

Equation Page

Equation 1: Camera Color Model ... 25

Equation 2: Hue, Saturation and Value computation.. 30

Equation 3: Laplacian ... 31

Equation 4: Laplacian kernel .. 31

Equation 5: Texture measure .. 32

Equation 6: approximation function ... 38

Equation 7: Algorithm of pure nearest neighbor search ... 39

Equation 8: General Euclidean distance ... 39

Equation 9: General Minkowski Metric Formula ... 41

Equation 10: Euclidean distance for the approximate method ... 42

Equation 11: Training algorithm for the random search tree .. 46

Equation 12: Search algorithm for the random search tree ... 48

Equation 13: ROC calculation equations .. 53

Equation 14: Coplanar Stereopsis Equations .. 60

xii

LIST OF ACRONYMS

Acronym Page

2D: Two Dimensional ... 14

3D: Three Dimensional ... 14

AI: Artificial Intelligence .. 1

ANN: Approximate Nearest Neighbor ... 84

BSD: Berkley Software Distribution Licence... 13

Cal Tech: California Institute of Technology ... 11

CCD: Charge Coupled Devices .. 15

CIS: Center for Intelligent Systems .. 61

CRL: Cognitive Robotics Laboratory ... 61

CV: Computer Vision ... 13

CVAUX: Computer Vision Auxiliary Library ... 13

CVCAM: Computer Vision Camera Library .. 13

CXCORE: Core Datastructures Library ... 13

DLL: Dynamically Linked Libraries .. 12

fMRI: functional Magnetic Resonance Imaging ... 24

FOV: Field Of View ... 9

HIGHGUI: High Graphical User Interface Library .. 13

HSI: Hue, Saturation, Intensity ... 26

HSL: Hue, Saturation, Lightness .. 26

HSV: Hue, Saturation, Value .. 26

IplImage: Image Processing Library Image Data Structure ... 12

xiii

ISAC: Intelligent Soft Arm Control .. 4

JPEG: Joint Photographic Experts Group ... 12

KNN: K-Nearest Neighbors, K accounts for the K nearest neighbors to a query point ...94

LGN: Lateral Geniculate Nucleus .. 23

ML: Machine Learning Library .. 14

MT: Middle Temporal .. 24

OpenCV: Open Computer Vision Library .. 12

RGB: Red Green Blue .. 25

ROC: Receiver Operating Characteristics .. 51

ROI: Region Of Interest .. 32

1

CHAPTER I

INTRODUCTION

1.1 Overview

Much work has, and continues to be done toward making robots to think, to

behave, and to act like human beings. There are two branches of artificial intelligence

concerning this: Strong AI and Weak AI (1). The Weak AI group says that machines

have to think and act rationally, where as the Strong AI camp says that machines must

think and act humanly. Both camps have their rationale. The first raises the current

inability of machines to represent or to process the large amounts of data that is involved.

The second camp raises future possibilities of efficient algorithms and representations

and most importantly the discovery of how the human brain works. Humanoid robotics

researchers tend to be among the second group.

Humanoid robotics research focuses on perception, learning and control where in

each part; it tries to mimic the human counterparts. There have been many research

projects on robots (2) (3) that are based on neurobiological research results of humans.

Current research clearly demonstrates that it is the human brain that represents (stores)

and processes the bulk of information related to percepts, learning and control. (There is

some evidence that a muscle can store some information related to movements. Hence

2

not only the brain is responsible for storage and processing.) Humans learn from

experience (3). A child learns much from his or her parents. With respect to visual

learning, the parents might show the child an object, say the object’s name, what it does

etc. The child’s brain stores the object’s features, and their relations to the object’s other

affordances (though, the representation for the storage is not fully understood). This is

called supervised learning. Sometimes, a child learns about objects or situations by

himself. It will try various actions on the object and based on its reaction the child will

modify his actions. That is partially supervised learning. On some occasions, the child

might learn without any feedback at all and that is unsupervised learning. Of the

neurobiological sciences, cognitive sciences are of particular interest to humanoid

robotics.

The perceptual learning process, especially visual learning involves a lot of data

and hence requires high performance machines or efficient representation and processing.

It also requires focusing on what is relevant to the current task.

Ideally, robots would perceive (visually) environments at the level of the human

visual system so as to emulate human-like sophisticated reasoning and control of actions.

However, this is a big problem that is not solved to date. Among the reasons for this

failure are the limited processing and storage of current machines, the lack of efficient

representations (features), lack of very efficient algorithms, and the infinitely large

possibilities in complex environments. Perhaps most importantly, the lack of sufficient

neurological knowledge due to the complexity of the human visual system makes

engineering approaches to the problem somewhat ad hoc. This is what is called the visual

3

discrepancy problem (2). It is not possible to encode all possibilities in the robot and have

the robot perceive as humans perceive in a dynamic and complex environment.

To operate in complex and dynamic environments, therefore, it makes sense

intuitively to have the robots form percepts on their own by learning in supervised, semi-

supervised, and completely unsupervised ways, in contrast to the preprogramming. Based

on those self-formed percepts, the robot should be able to classify future perceptions. The

robot should first learn the objects’ features, store them in some form, and then use them

to segment future images and recall the learned objects on its own.

To this end, a typical robotic vision system should meet the following criteria. It

should learn, form, and store percepts from its past experience. It should also adapt to

dynamic environments since, for example, a robot might observe the same object in

different lighting conditions, at different places, or in different poses (position and

orientation with respect to the robot). It should focus on the most relevant part of the

visual percept that is linked to the current task at hand. This work will incorporate two of

the three criteria.

The proposed system is able to learn colors and textures from its visual

experience using the approximate nearest neighborhood algorithm using a random search

tree for fast response. The system also is able to adapt to dynamic situations. This is

achieved by learning a large sample for individual objects in different conditions so as to

help the classifier perform better in different conditions.

4

1.2 Objective of the Thesis

The main objective of this thesis is to build a perceptual system that is capable of

recognizing objects whose features have been learned previously and capable of

distinguishing a new object. The system was developed for a humanoid robot that acts in

a complex and dynamic environment like ISAC, the Vanderbilt Humanoid.

5

1.3 The Proposed system

Figure 1: General Structure of the proposed system

6

1.4 Structure of the Thesis

 The current chapter was overview of the system that was implemented in this

work, the criteria that were to be met, and the general goals of the thesis.

 Chapter 2 is a discussion of the percept acquisition and preprocessing steps. The

process of image capturing together with the details of capturing hardware and software

are presented. The preprocessing noise removal and background subtraction methods that

were used in this work are also discussed.

 Chapter 3 is a discussion of the feature extraction step. The very high dimensional

feature vector representation and how it is extracted from the images is dealt in a greater

depth. The chapter also includes the rationale to use a very high dimensional feature

space.

 Chapter 4 is devoted to the description of the approximate nearest neighbor

algorithm used in this work and its theoretical comparison with the pure method. The

chapter introduces the new random tree implementation discusses how the search trees

are constructed and how the search trees are used to find the nearest neighbor.

 Chapter 5 is the presentation of the approximate coplanar stereopsis technique

that was used. It explains the assumptions made to use this approximation and shows how

stereopsis was implemented.

 Chapter 6 describes the four experiments that were performed and their setups.

Chapter 7 presents the experimental results along with a discussion of the results. Chapter

8 concludes the thesis.

7

CHAPTER II

PERCEPT ACQUISITION AND PRE‐PROCESSING

2.1 The test bed (ISAC)

The test bed for this project is the Vanderbilt humanoid robot, ISAC, an acronym

for Intelligent Soft Arm Control. ISAC is composed of many parts from perception to

cognition and control both in hardware and software domains. The main focus of this

project is perception and part of cognition. The robot is equipped with two stereoscopic

cameras with mounts that are capable of moving the cameras both horizontally and

vertically. ISAC is also equipped with two soft arms that are actuated by muscle like air

pressured rubbers (McKibben artificial muscles).

2.1.1 The cameras

The two “eyes” of ISAC are Sony XC-999 CCD Color Video Camera Modules

(4). The lenses are two VCL-06S12XM fixed focus lenses (5). The combination of the

camera module and the lenses together with the moving mount constitute ISAC’s two

eyes as shown in the figure below.

8

Figure 2: The two camera modules, the lenses and the mounts constitute ISAC’s eyes

The cameras has a native 768 (H) x 494 (V) elements with a sensing area of 6.4 x

4.8 mm. In this project, however, a 620 x 470 resolution is used, due to the original

configuration on the ISAC system. This is partly important for the reduction of the

number of pixels (from 379392 to 291400, which is 23.2% reduction in data), and hence

the data to be processed, without harshly affecting the picture quality. The camera tube

and the inner parts of the camera are shown below.

9

Figure 3: The Sony XC-999 Color Video Camera Module (4)

Figure 4: The inner parts of the camera. (4)

As shown in the figure above, most of the space is occupied by the cables and

their shield. Each camera has horizontal field of focus (FOV) of approximately 55.770

and vertical FOV of 42.780 as shown in Figure 5 (6).

li

sp

fr

The o

imitations in

pan of 11 in

ront of them

Figu

objects that

n the horizon

nches. This p

as shown in

Figure 6: Wo

ure 5: Single cam

are used in

ntal and ver

provides a v

n the figure b

orking Field pr

10

mera Horizonta

this project

rtical FOVs.

visible area o

below.

rovided by the s

al and Vertical

t must be in

 The two ca

of 47 inches

stereoscopic cam

FOVs (6)

n the range

ameras are l

s high and 5

meras of ISAC (

provided by

located at a

51 inches wi

(6)

y the

head

ide in

11

The above distances are computed for a distance of 5 inches from ISAC’s eyes.

The actual stereopsis calculations that are used for this project are presented in the

Stereopsis chapter of this thesis.

2.1.2 The Lenses

The camera can be operated with either 6mm or 12mm focal length lenses. The

lenses that are actually in use are the 6mm fixed focus lenses. The focal length has been

verified (6.38 mm) with best accuracy using the California Tech (Cal Tech) Matlab

calibration toolbox (7). The lens is shown in the figure below together with its

specifications.

Figure 7: The Sony fixed focus 6mm lens (5)

2.1.3 The Camera Mounts

The cameras are mounted on Directed Perception Model PTU-D46-17.5 miniature

Pan-Tilt units (8). These pan-tilt control mounts are capable of fast tracking speed of up

12

to 3000/second, a resolution of 0.0030. For this research, a tilt of -710 measured below a

horizontal line along the axis of the cameras and a 00 horizontal pan were used for both

cameras. The images were taken by presenting the objects on a table in front of ISAC in

its working space provided by the horizontal and vertical FOVs. This enabled accurate

results using an approximate co-planar Stereopsis.

Figure 8: The vertical tilt of -710 and a horizontal pan of 00 with the world frame of reference for the vision
system (not drawn to scale)

2.1.4 The Frame Grabber

The input video signal that is converted to voltages by the sensor array is then

transferred to a video grabber that works with the cameras to convert the input analog

signal in to a digital form and store the images. The frame grabber that is used in this

project is the imagination vision systems PXC200 Precision Color Frame Grabber (9).

This grabber has a high color resolution and can connect up to four camera inputs. It has

Y

X

Z

Horizontal

-710

13

three image capture modes: software-initiated grab, triggered grab, and continuous

acquire mode. The first mode is used in this project. The grabber comes with C DLLs

that are used to initialize the grabber by setting the height, width, resolutions, and

brightness and are used to allocate the buffers for the incoming digital image data. Each

frame is then copied from the buffers to an IplImage data structure that is provided by the

OpenCV library (10). The image frames are then stored to disk as JPEG (Joint

Photographic Experts Group) image files.

For this project, two sets of images which contain 74 and 90 images were used for

the experiments (they are called the old set and the new set from now on). The old set

was the primary set that is used for most of the experiments. The world coordinates of the

setup were not recorded at the time of collection of the old set. That is one of the reasons

why the new set was used. The other compelling reason to take a new set was to see the

performance of the proposed system beyond 6 set of training images (which was the limit

of the old set) to 9 set of training images for each of the test objects. The detail of this is

in the experiments, and discussion and results section of this thesis.

14

2.2 Pre Processing

2.2.1 Digital Image Processing using OpenCV

OpenCV is an acronym that stands for the Open Computer Vision open source

library which is primarily supported by Willow Garage. The library was originally

developed by Intel and is free under a BSD (Berkley Software Distribution license) (11).

It is a cross-platform library that runs on Windows, Mac OS X, Linux, VCRT (Real-Time

OS for smart camera) and others.

The library is composed of libraries like CV, CVCAM, HIGHGUI, CXCORE,

and the outdated CVAUX. The main image processing functions are contained in the CV

library. CVCAM is a library that contains functions related to camera operations like

initializing cameras, image capture from camera, saving to file, etc. The HIGHGUI

library is a library of helpful functions that are used to create windows graphical user

interfaces very easily and quickly. The main supporting library to the CV library is the

CXCORE library. It contains core data structures and algorithms that are used in

processing images using the CV library. The OpenCV library also adds a machine

learning library called MLL recently. While most of the OpenCV implementations are C

functions the MLL library is a C++ implementation of most of the common machine

learning algorithms that are useful to digital image processing. The CVAUX library is an

outdated library that is a collection of auxiliary image processing functions. The summer

2009 release is purported to be a major improvement on the current versions of the

15

libraries. It is to provide a C++ interface to most of the functions in the five major

libraries, a better python interface than the current version, better 2D and 3D descriptors

and features, major changes to the MLL library to include new procedures, optimization

and support for threading, and other things (12).

Part of this project was implemented with the OpenCV libraries. Copying the

images from the buffers of the frame grabber, saving the images, retrieving back the

images, noise reduction, background subtraction for training, feature extraction, and

saving the feature vector sets were done using this versatile library.

2.2.2 Noise Filtering

Digital images like other digital signals are corrupted by noise. The type and

source of the noise might vary depending on the environment of the recording, the

camera used, and the other tools involved in the capture and storage of the digital images.

The noise types may be distributed according to known distributions like the Gaussian or

normal. The source of noise might also vary from simple thermal and sound disturbance

to electromagnetic interference. For instance, when the first set of images were taken for

this project, the electronic valves of ISAC were turned on and the electromagnetic

disturbance from the valves created a set of horizontal lines on the images. Since such

kinds of noise are difficult to remove, because of their correlation and significant

illumination as the objects, the valves were turned off and another set of images were

taken. The most typical and dominant noise in the digital images were salt and pepper

16

noise (sparse light and dark disturbances) and dense Gaussian noise (13). The former one

might be due to aging and failure of the CCD (charge coupled devices) in the cameras

and dust inside the camera. This type of noise is observed on the images that are taken

using ISAC’s cameras. Apparently some years ago there was an experiment that used a

laser. The researchers repeatedly shined the laser around the right camera of ISAC. As a

consequence the right eye is not, now, as effective as the left eye of ISAC. This became

evident as the first set of images was taken. The right images were darker than those of

the left images and a bit noisier than the left ones. The brightness for the right eye was

therefore set to 0.2 and the left eye 0.1 in -0.5 to 0.5 range of brightness. This wasn’t the

only problem that was encountered due to the discrepancy between the right and left

eyes. The noise level of the right eye was significantly higher than that of the left eye.

Hence the noise filtering parameter that was good for the left eye performed poorly on

the right one. If a good value is set for the right eye, then the left eye was over-filtered

which destroyed part of the objects of interest as noise. But an optimal parameter (7x7

window size for the original image and 3x3 window size for the HSV image was used)

was found after some experimenting.

Several noise filters were considered initially. After some experimental trials and

information about the filters, the median filter was chosen. The types of noise filters can

be grouped as linear and non-linear filters. The median filter is an example of a non-

linear filter and usually works fine in the presence of the uncorrelated salt and pepper

noise that was dominant in this project’s images. The median filter scans the image. For

each pixel, it gets the list of the neighboring pixels, sorts the list, and replaces the

17

intensity of the pixel with the median value. This replaces the sparse noise pixels with the

median of their neighbors. The overall effect is blurry smoothening effect. If this filter is

applied to with a proper window size, it preserves image details like edges, which are

particularly important to distinguish the objects from their background. One of the test

images is filtered using the median filter and shown below to see the effect. In the

example a median filter of window size 9 was used to emphasize the smoothing effect. In

the experiments, a window size of 3 was used.

Figure 9: The original image and the smoothed image (not in their original size).

The median filtering is superior to the averaging filter in the presence of isolated

outlier points. If the averaging filter were used, the outliers would significantly affect the

average and the result will be unwanted. The median filter ignores the outlier points by

selecting the median values always and hence removes noise which is uncorrelated to

data points or other noise points (14).

18

2.2.3 Background Subtraction

For the purpose of this project specifically, and in computer and/or robotic vision

in general, separating the objects of interest from the unwanted parts of an image is

crucial. Since image data is large, effectively doing this job is critical to focus only on the

important parts for processing. This project was focused on object recognition using

approximate nearest neighborhood. For the recognizer to be effective in the sense of both

storage and time, it is imperative that it only focuses on objects to be learned. This was

achieved by background accumulation and subtraction on the training images with the

result that the number of training feature vectors was tremendously reduced. Background

subtraction can be applied whenever there is a steady or close to steady background. For

example, we cannot apply background subtraction for each testing image to a robot that is

moving around. Because as the robot is moving as the background is changing. However,

for this project since the training images were taken in a steady environment, background

modeling and subtraction was applied to the training images.

The background subtraction that was used in this thesis involved two steps:

learning and modeling the background, followed by its subtraction from the incoming

images. This is called the Averaging Background Method (14). It basically learns and

stores the average and standard deviation of each pixel as frames of background images

are modeled by the system. Based on these absolute frame-to-frame differences, it sets

high and low thresholds. Once the background is modeled by sufficient frames, the

incoming image is separated in to its color planes and each plane is checked to see if

values are in ranges of the high and low thresholds. If they are in range then a single

19

channel black and white mask image is set and if not it is unset. The three channel results

are then logically ORed, because presence of a background in any channel is sufficient.

The final result is then inverted to indicate the foreground objects. The mask is passed

through some morphological operations to get closer to a regular object shape mask. The

original image is then masked to separate out the objects from the background. The

following figure illustrates an original image and its background subtracted equivalent.

Figure 10: Original smoothed image (Left) and its background subtracted version (right)

From the images above, we can see that strong edges are preserved. This required

much experimentation due to the above explained discrepancy between the right and the

left cameras. Setting the thresholds and setting parameters of the morphological

operations for the mask was very tricky, especially for objects that had similar averages

and standard deviations as the background. The red object shown here was among those

objects that were difficult to separate from its background.

20

CHAPTER III

FEATURE EXTRACTION

3.1 Biological Inspiration

Some robotic vision systems are biologically motivated by the human visual

system (2) (3). The internal design of today’s modern cameras is basically based on the

human visual system. The sensory arrays are the counterparts of the rods and cones in the

retinas of the human visual system. The electrical stimuli are carried through electrical

wires while the chemo-electrical stimuli from the retina sensors are carried by nerve

fibers to the brain. This is just a basic comparison. The dependence goes beyond that to

the level that much of today’s robotics research is based on neuropsychological findings

about the workings of the visual system. The following figures show the similarity

between the human eye receptor fields and the camera CCD arrays.

21

Figure 11: The human receptor fields with in a tissue sample (right) and a typical CCD arrays of a camera are
shown here. (2) (15)

Figure 12: Parts of the human eye (2)

The main difference is the rods and cones of the human eye are not evenly

distributed throughout the retina unlike the sensors in camera CCD arrays. Their

sizes are not also the same in the different parts of the retina. Although daylight

22

vision system is cone-mediated, the number of rods (91 million) far exceeds the

number of cones (approximately 4.5 million). Therefore, the density of the rods is

much higher than that of the cones in most of the retina except at a highly

specialized small region of the retina called the fovea. The cones are highly dense

and smaller in diameter around there. This high density of cones at the fovea

gives this region a high visual acuity. Consequently the human eye can only

concentrate acutely on a small region at a time. A 60 eccentricity to the line of

sight would reduce the visual accuracy by 75% (16). The distribution of cones and

rods at the fovea is shown below.

Figure 13: distribution of rods and cones around in the human retina. Boxes at the top illustrate the appearance
of cross sections through the outer segments of the photoreceptors at different eccentricities. (16)

The visual stimuli that are formed in these receptors are transported to part of the

brain called the visual cortex. The connections, parts involved and the visual cortex are

shown in Figure 14 below (17).

23

Current researchers use fMRI images from human and monkey subjects in

experiments to untangle the workings of this complex system. The visual cortex contains

at least 5 parts starting from the primary visual cortex (V1) to the Middle Temporal (MT

or V5) area. Each area is specialized in to different functions ranging from motion

analysis, global localization, feature binding, attentional modulation and others.

Figure 14: The Visual pathway from eyes to primary visual cortex, of a human brain. (17)

24

The lateral geniculate nucleus (LGN) receives the signals from the optic nerves

and most of the color coding is done here. Here, there are many color sensitive cells. The

partially processed visual information is transmitted to the primary visual cortex, which is

also known as V1, which separates the information in to different parts and passes it to

the specialized visual areas of extrastriate cortex region for further processing. There are

particular classes of neurons in V1 that are unresponsive to edges, bars and lines but are

responsive to texture. The next part of the visual cortex (V2) is divided in to two major

parts: the dorsal and the ventral pathways (18). The ventral pathways (the “what”

pathways) are responsible for object identification using features like color and shape,

while the dorsal pathways (the “where” pathways) are responsible for processing of

position and motion or in general object location (2). This is the inspiration that motivates

this work for object detection and localization. The selection of the features is based on

this biological motivation.

3.2 Background of the features selected

There are many features to be considered for segmentation of colored images and

hence object detection. Color, textures, and shapes are among the most common ones.

Shapes are relatively complex features that are not most frequently used for segmentation

purposes alone. Shapes can be represented by using contours. An object’s shape can be

modeled by contours that are obtained from the object in the training time and some

distance measure can be used as explained in (19) to cluster pixels which do or do not

25

belong to a particular shape model. Other methods use descriptors to store information

that is obtained from the contours. There are a number of representations that are used for

this purpose. Chain codes, polygonal approximations, signatures, boundary segments,

skeletons, and others are among such representations (20). Shape features can be used

together with color and texture features. Texture features and color features alone are a

robust feature combination. Each of them alone may not be efficient and sometimes

actually unhelpful.

Textures are useful to identify the smoothness, coarseness, and regularity of a

region. Different texture descriptors are used for such measures. Some are maximum

probability, element difference moment, inverse element difference moment, uniformity,

and entropy (20).

Color features are often used for image segmentation for robotic applications.

Human color perception is not understood fully in the psychology and neurobiology

world. However there has been much research on the subject. In digital image processing

colors are represented by models called color spaces. There are different color space

representations of the same colors. The RGB space is the most widely used space for the

representation of the information contained in digital images and storage. Each pixel in a

digital image has three separate values. The collection of these values defines color space

planes.

The R, G, and B are obtained by a color camera, with the general model (21):

Equation 1: Camera Color Model

26

Where: , , ,

Other important color spaces include CMYK, l*u*v*, the l*a*b*, HSV, HSL or

HSI, YUV, and others. RGB is used mainly for representation and storage as it is very

sensitive to environment variations like lighting conditions. This is because it is a direct

function of the sensor arrays of the camera. For segmentation and object recognition

purposes, mostly color spaces that separate luminance from color like the HSV, HSI, and

l*u*v* are used (22) (23) (24) (25) (26) (27).

3.3 Rationale For the use of High Dimensional Features

Segmentation can be performed using methods ranging from simple thresholding

to using feature vectors of high dimensionality. Simple thresholding suffers from the

specificity of the threshold. Choosing an optimal threshold is not an easy task and

sometimes it may even be impossible. For instance, if there is a lot of dynamicity like

lighting variations in the environment, the color values even for a particular object will

vary in range. There might even be a range overlap between two colors. So, in such

situations not only the simple thresholding, but also adaptive thresholding techniques will

suffer a lot.

27

Generalized feature vectors are often used for object recognition. The

dimensionality of a feature vector can have an effect on the accuracy and the speed of the

recognizer, balancing the two and achieving the optimal dimensionality is of a great

importance. The time and space complexity of an algorithm are fundamental measures of

the algorithm. However, for non-perfect (in result) algorithms like those for machine

learning accuracy is also important.

In general having a higher dimensional feature gives better accuracy overall and,

consequently, a higher capacity to learn (3). For instance, in this project, there is a red

bean bag object. The totality of colors deemed to be red will usually range over some

values and might therefore require a number of elements in the feature vector. The higher

the dimensionality of the feature vector, the higher the resolution of the description of

red. If it is used correctly that greater resolution in representation can lead to increased

accuracy in the testing phase.

However, using a high dimensional feature vector has a time and space penalty,

which is similar to ‘the curse of dimensionality’ problem where irrelevant attributes of a

feature are included in a vector while only a small number of dimensional attributes is

sufficient for classification (28). But, the bins in the feature vector used in this project

are mostly unoccupied (ZERO), because the feature vectors represent very large sets of

possible colors and a texture measure but are gathered from a small region of the image.

Moreover, not all colors will be present in a particular scene. For example, this vectors

used by this project each had a total of 10,000 color bins and a texture measure

concatenated to form 10,001 dimensional (length) feature vector. But in a particular scene

28

in a particular region, there will only be hundreds (at most) distinct colors present.

Therefore, the feature vector will be mostly zeros. This gives the advantage of using a

sparse representation for the feature vectors. Only the non-zeros values together with

their indices are stored and processed. This tremendously decreased the time and the

space complexity of the nearest neighborhood algorithm that was applied to them. The

other ‘curse’ of dimensionality is the need for larger training sets as the dimensionality

increases. The rule of thumb suggested by (3) is to use five times the size of the feature

vector, which generally implies that the size of the database increases linearly with the

size of the feature vector. However, as images are naturally full of data, it is easy to take

as many training images as required and get the required minimum database size.

However, the size of the database should not be increased beyond the point where the

accuracy curve starts to flatten out. Increasing the database number beyond adds

computational cost without any significant gain in accuracy.

3.4 The perceptual features used

By taking biological evidence, time and space complexity, accuracy and

simplicity in to account, the feature vectors used in this project were composed of color

bins and a texture measure. The two features are described in more detail below.

29

3.4.1 The color probability density function (pdf)

To use color as features that represent a particular region in general and an object

in particular, one of the color spaces must be selected. Due to its relative insensitivity to

lightning conditions, rotation and translation, and other factors the (Hue, Saturation,

Value) or HSV color space is often used for image segmentation. It is more robust than

the RGB representation and is computationally inexpensive compared to other robust

color representations (29). The HSV color space as formally defined by Alvy Ray Smith

in 1978 is extensively used in computer graphics and other applications (29). Many

interactive graphics applications use an HSV color wheel that permits a user to select

from a continuous distribution of colors. Among such applications are Pixel Image

Editor, Pixia, Bryce, The GIMP, Paint, Mac OS X, and Photoshop. Other well known

applications like CSS3 specification, Inkscape, Macromedia studio, MS Windows, Paint

Shop use HSL, a relative of the HSV space.

There are many definitions for HSV in different literature. However, this project

uses the most standard definition used by the above mentioned well known applications

as well as the OpenCV library (29) (30). The definition that was implemented for this

project was compared to the built in function in OpenCV and found to be similar. The

definition is as follows:

30

max max , , , , 0,1

min min , ,

 0 , max

60 max 360 360 , max

60 max 120 , max

60 max 240 , max

 0 , max 0
max

1 ,

Equation 2: Hue, Saturation and Value computation

The HSV space has a direct graphical interpretation of colors. The hue is a

measure of the visible difference between colors. The saturation is the measure of how

intense a particular color is and the value is the brightness or luminance of the color. The

following cone is a mathematically accurate model of the HSV space.

Figure 15: A Conical Model of the HSV color space. The hue is the angle that varies from 00 to 3600. The
saturation and the value both range from 0 to 1. (29)

31

3.4.2 The texture component

To differentiate between two regions that are similar in color features, a single

texture value of the region was incorporated. A spatial Lapalacian operator was applied to

the image region. The Laplacian is a 2D isotropic measure of the second spatial

derivative of an image region (3). The Laplacian of image intensity with spatial

coordinate , : , is given by:

,

Equation 3: Laplacian

To compute the Laplacian for the discrete valued digital image, the following

kernel is used.

, = 1/8 *

Equation 4: Laplacian kernel

First, the image was convolved with this Laplacian kernel. The result of this was

normalized to 1 and its magnitude was further convolved with an averaging kernel. The

averaging kernel (was a 15 x 15 window of ones in each cell and a dividing factor

of 225 (= 15 x 15). The overall effect of the kernel is to normalize the images region’s

Laplacian values and then average out to get the texture measure.

-1 -1 -1

-1 8 -1

-1 -1 -1

32

 The calculation of the final texture measure is then summarized as follows:

,
,

255

Equation 5: Texture measure

3.5 Extraction of the features from the images

This section explains how the features were extracted from the images. The input

image was passed through a color space conversion routine that converted the native

RGB vectors into HSV space as described in the above section. The image in HSV space

is then is scanned by a moving window to extract the features for each analysis region.

The size of the region of interest (ROI), which equals the window size, affects the

segmentation algorithm. Too large a size will cause the number of feature vectors

extracted from an image to be insufficient to represent the objects and the background.

Too small a size will extract many feature vectors, which make the resolution subtle, but

may force the classifier to be too specific and to lose generality as well as increase the

processing time... The optimal value for the images that we are using was found to be 15

x 15 in [Tugcu 2007] (3). Therefore each ROI is obtained by moving the moving window

of size 15 x 15 (225 pixels) around the entire image with a horizontal and vertical

displacement of 10 pixels. The regions overlap by 5 pixels in each direction to enforce

continuity on the feature vector sample. An HSV ROI taken out of an image while

processing is shown below:

33

Figure 16: A 15 x 15 ROI of an image from which a single feature vector is calculated (Note: the figure is
magnified from its original small size to see the details).

For each such ROI, a feature vector of size 10,001 is extracted. The first 10,000

values are obtained from the normalized color histogram (which is a probability density

function – pdf) of the ROI while the last value is the texture measure of the region. The

pdf is computed from a quantized histogram that partitions the HSV space in to a 10, 000

regions by dividing the H dimension into 100 evenly distributed bins and the S and the V

dimensions into 10 bins. The H dimension is first normalized by dividing the positive

angle in degrees by 360. Hence the bin step is effectively 0.01. For the S and V

dimensions the bin step is 0.1 as their range was originally from 0 to 1. Each element of

the first 10,000 in the vector for a region therefore contains the number of pixels in the

region that had a color in the range represented by the corresponding bin of the

histogram.

For any given region, the number of distinct colors that can is obtained is never

greater than the total number of pixels contained in the region — 225. That is small

compared to the size of the vector that is used to represent the region (10,000). Therefore,

most of the feature vector elements are zero. In fact each feature vector will always have

at least 9,775 zeros in it. Here is where an efficient way to store and process this feature

is imperative. There is neuropsychological evidence that shows that primates use sparse

coding (31) for feature representation in the primary visual cortex. A computer analog of

34

this is an efficient coding that enables fast processing and minimal storage space for a

feature vector. A sparse vector is stored using two separate vectors, one for the non-zero

values and one for their indices into the feature vector. Any increase in the

dimensionality of the feature vector affects neither the computational time nor the storage

requirements since the number of possible colors with non-zero pdf values is determined

by the number of pixels in the region.

Figure 17: A typical set of training feature vectors. The spikes at 10,001 are the texture measures and the rest
are the pdf of the histograms.

The above figure shows a set of training features that contain 413 feature vectors.

The feature vectors are obtained from 6 images that contain each of the six experimental

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

9

10

11

12

dimension of feature vector (1-10,001)

M
ag

ni
tu

de
 o

f t
he

 p
df

 a
nd

 te
xt

ur
e

plot of a particular feature vector

35

objects together with the background. We can see that there are 6 clusters other than the

texture spike. These correspond to the six objects. From this, we can see that the feature

vector is easily separable and mostly concentrated around the objects’ maxima.

Figure 18: Plot of a single feature vector that shows how sparse the vector is. It has dominant non-zero values
near the maxima of the pdf of the objects color.

0 2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

index for a value in the feature vector (1-10,000)

pd
f v

al
ue

s
(0

-1
)

plot of a single feature vector

36

CHAPTER IV

PERCEPTUAL LEARNING AND SEGMENTATION

4.1 Perceptual Learning

The main problem in this thesis is a typical classic problem that can be addressed

by a machine learning algorithm. Among several machine learning algorithms, simplicity

and being readily suited for the high dimensionality nature of the problem, the nearest

neighborhood algorithm is chosen. In this chapter, first the generic pure k-nearest

neighborhood search algorithm is explained and then the distance measure that is used in

the approximate search method is discussed. The random tree implementation of the

approximate nearest neighborhood search algorithm that is used in the thesis is then

presented. Finally, the testing of the algorithm to segment images is explained.

4.1.1 The Pure Nearest Neighbor Algorithm

There is a class of machine learning algorithm called instance learning (28).

Instance learning constructs the approximation target function at the time of testing

unlike the other classes of machine learning algorithms. The usual learning algorithms

construct the description of the target function when the training samples are presented

37

while instance based learning methods store the training samples themselves. Until a new

instance of testing samples is presented for classification, generalization beyond the

examples is postponed. These types of algorithms are usually called ‘lazy’ learning

methods because processing doesn’t start unless a test instance vector is presented to be

classified. This has an advantage of giving the approximation function the ability to

encompass the new instance instead of pre-formulating the function from examples and

classifying the new instance using the old function.

The nearest neighbor algorithm is one of such instance-based learning methods.

The learning phase is storing the example data in memory and when a new query

instance point is encountered, a set of similar related instances is retrieved and used to

give the query instance a label (classify). In the testing phase, a local distinct

approximation function is formed for each query instance to classify. This has an

advantage when the target function is complex if it is to be generalized by the whole

instance space and hence results in a less complex local approximation.

The big con of this learning method is that the cost of classification both in time

and space can be very high as the number of data becomes very large. This is because all

the computation is at classification time as opposed to at training time. This means for

each test vector, the set of similar training vectors are processed to give the target

function. Therefore, there should be an efficient indexing technique for indexing the

training examples should be devised. The approximate nearest neighborhood algorithm

that is explained below is one of such techniques and is the one that is used in this

project.

38

The k-nearest neighbor learning algorithm assumes all instances correspond to

points in the n-dimensional space . It can be used for discrete set of data and real

valued set of data. The mapping function is described by:

:

Equation 6: approximation function

Where , … ,

Let be the query instance point. The algorithm a value) that is determined

by the values of the k-nearest neighbors of . For K = 1, the value is , where is

the closest point to . If K is different from 1, the most common value among the K

nearest neighbors is assigned to the query instance. This is the most basic definition of

the algorithm. The algorithm can be augmented by giving weights to points which is

proportional to the distance squared of a training point from the query point.

The formal mathematical definition of the algorithm with weights for both

discrete and real-valued data sets is given below (28).

 :

• , ,

 :

• ,

o , … ,

o Return

39

 V ,

 V
∑
∑

,
1
,

, , 1,
0,

 ,

, … ,

Equation 7: Algorithm of pure nearest neighbor search

, –

Equation 8: General Euclidean distance

The above defined algorithm is a very robust inductive inference algorithm in the

presence of noisy training data. Its effectiveness is linked with the number of training

data points provided. The higher the number of training vectors the higher the

effectiveness or the accuracy. This algorithm delays all processing until a new query

point is presented for classification as discussed above and hence an efficient memory

indexing scheme is apparently required to make the classification faster. This is gives rise

to a need to implement the approximate nearest neighbor algorithm discussed below.

Various methods have been proposed as shown in section 4.1.3. The nearest neighbor

40

algorithm is used for image segmentation and object recognition, and other tasks in

various researches (32) (33) (34).

The pure (aka, naïve) nearest neighbor search calculates the distance from the

query point to every point to the database to get the k-best nearest neighbors from the

training samples (35). Let the training sample set be S, the cardinality (the number of

training vectors) of S be N, and the dimensionality S or the dimensionality of each vector

be d: the running time of the comparison is approximately . This indicates that

when the dimensionality is comparable to the number of elements, the running time will

be approximately . And this implies that as the number of training samples

increases, the running time increases with the square of the numbers and this is the testing

time or the response time for the query. This creates a long latency and possibly an

unresponsive system as N becomes very large. This is undesirable property of the pure

nearest neighbor. Therefore, considering efficient indexing algorithms is inevitable.

Many such algorithms are developed. Most of such algorithms use tree data structures as

the problem this is a clustering problem and the data sets become more and more alike as

they are sub-divided in to sub groups using the distance measure as a similarity measure.

In the sections below, we will see, first, the similarity measure and different types of

indexing algorithms in general and the random tree implementation that is used in this

work in particular.

41

4.1.2 The Distance (Similarity) Measure

The search algorithm uses similarity as criterion to classify a query point based on

the training samples. This similarity is one of the key issues and perhaps the most

important for the effectiveness of the algorithm. Specifically, in the nearest neighbor

search, the similarity measure is some sort of distance between the query point and a

point in the training samples in the feature space as shown in the algorithm’s presentation

in the above section. Researchers have been investigating different distance for this

purpose. Among such distances are the Euclidean distance, the Mahalanobis distance

(36), and the others (3). However, most fast nearest neighbor algorithms are specifically

using the Euclidean distance and for general metric spaces, progress has been slow (37).

Due to its simplicity, the Euclidean distance makes the search faster as the similarity is

computed faster although it is scale-variant, which means that it is dependent on the scale

of measurements.

The Euclidean distance is among the distance metrics generically known as the

Minkowski metric although the Minkowski metric generally includes a time dimension

besides the space dimension in which the Euclidean space is based on. The general

spatial Minkowski metric in a K-dimensional space is given by:

 –

/

Equation 9: General Minkowski Metric Formula

These distances are of the form norm equations. It is of particular importance

when 2 1 as described in (38)

42

(39) (40) (41). For unitary or holistic stimuli, such as the color pdf, the closest

approximation to an invariant relation between data and distances has been achieved by

Euclidean distance and though for separable stimuli like the texture a city-block could be

used (2), as the texture measure is a single value amongst the 10,001 values using

Euclidean distance for all doesn’t affect the system performance significantly. Hence, the

Euclidean distance is used in this project as a similarity measure. Therefore, the distance

between two feature vectors as shown below:

 –

Equation 10: Euclidean distance for the approximate method

4.1.3 The Approximate Nearest Neighbor Algorithm (The Random Tree)

As discussed above, the run time of pure nearest neighbor search algorithm

becomes intractable as the number of elements in the training set becomes large. Many

researchers have investigated various data structures to find an optimal indexing

algorithm that can reduce the runtime of the search from quadratic to at least linear or at

best logarithmic (42) (43) (44) (45) (46) (47) (48) (49). Among the representations that

are used by the above researchers are Kd-tree, R-Tree, Quad Tree, Metric Tree, Cover

Tree, Spill Trees, Approximate Nearest Neighbor Graph and others. Although there are

many solutions that can give a running time of log as depicted by (50) (51) (52),

they are not suited for very high-dimensional feature space. The ANN library, for

43

example, is good up to dimension of 20 and its results are not good beyond this

dimension.

Therefore, an efficient implementation for very high-dimensional feature spaces is

demanded as this project is based on the advantage of the very-high dimensional feature

space. [Tugcu and Wang, et al (3) (2)] proposed a tree-structured vector quantization

method that is used to generate a 3-way random nearest neighbor search tree. It is

basically an implementation of an M-Way search tree with M = 3. However, this

implementation is purely random and there is no ordering in generation of the child nodes

from the parent node. The approximate search method that is implemented in this project

is based on this proposed method. First the tree data structure and then the tree creation

and search algorithms that are used in this thesis are presented in the following figures.

44

The Random Search Tree data structure:

Table 1: This the basic data structure for the search tree.

:

:

Each node keeps a set of indices to the training feature vector data, a reference to

a reference to its parent, a reference to its children, the center index, and some other

useful data and statistics about the data.

45

The Random Tree Building Algorithm is given below:

 , , , ,

{

 ;

 ;

{

 ;

 , , , , , ;

 ;

 {

 . ;

 . ;

 . . . 1;

 }

 . 0;

 .

 ;

46

 {

 , , ;

 , , , , , , , , , ;

 . , , , , ;

 . , , , , ;

 . , , , , ;

 }

}

}

Equation 11: Training algorithm for the random search tree

The tree creation starts with an original list of all indices to the feature vectors

presented to the system. The parent node then constitutes this original list. Three indices

are then randomly chosen (they must refer to three different feature vectors) and are taken

as the centers indices for the three children nodes of the parent node. The original list is

then divided in to three based on the similarity measure, Euclidean distance. Vectors that

are similar to the right center are grouped to the right node indices and so on. The sub

lists are again sub processed by considering as if they are the original lists of their

respective nodes. This process will continue until two conditions are met: either the

parent node is a pure node (where all training examples that belong to the list of this node

have same training labels) or the number of the feature vectors that belong to the node is

less than a certain minimum. This minimum and the number of total (original) training

vectors are the parameters that are tuned to get optimal tree. Therefore, those are the two

47

parameters of the random tree that are used in this thesis to get optimal values for the

parameters. Therefore, a leaf node is either a pure node or a node with data length less

than the minimum.

Sorting the indices based on the training labels of the training example vectors

had been tried in this project to get an optimal tree that may have much pure leaf nodes

than tree that is generated by randomly selecting the centers. Quick sort have been tried

and its space complexity as it uses recursion and much stack space is intractable as the

number of points is becoming very large. Next, one of the slow () stable sort

algorithms called gnome sort have been tried. However, its run time for the original list

was almost comparable to the random tree creation time. Therefore, the idea of sorting

was not used and hence the tree used is pure random tree.

The Random Tree Search Algorithm is given below:

 ,

{

 ;

 .

 .

 . ;

 ;

 {

48

 , , ;

 ;

 }

 {

 . ;

 . ;

 . ;

 . ;

 . ;

 . ;

 , , , ;

 min

 , ;

 min

 , ;

 , ;

 }

}

Equation 12: Search algorithm for the random search tree

49

Once the tree has been created, given a query point, the tree can be searched using

the root node only. The search algorithm is very straightforward and it uses the distance

heuristic and hence optimal than a brute force depth and breadth searches at least. It starts

from the root node and compares the query point with the three centers of the children

nodes. The search will then continue with the node whose center is more similar to the

query point than that of the others until it reaches a leaf node. If a leaf node is reached,

the node is checked for purity. If the leaf node is a pure node then, the label of the

training samples in that node is returned. If the node is an impure node, a pure nearest

neighbor search is applied on the sub list of the leaf node. This will increase the accuracy

of the search without significantly affecting the search time. The reasons for this are: if,

the tree is an optimal tree, the proportion of impure leaf nodes are not significant

compared to pure leaf nodes and the sub list that is used for classification is very small

(less than or equal to the minimum number of vectors of leaf nodes) compared to the

original list. This has been proved from the results obtained. Since, the query point is

only compared to the three centers of the children nodes, the search time is

approximately log . This is also proved in the results obtained. However, there is

an additional space requirement due to the tree structure. If the original training data was

an , where N is the number of points and d is the dimensionality, an extra space

of is required for storing the indices of the training feature vectors in the leaf nodes.

The sum of the number of the entire leaf node vectors is equal to the length of the original

list, N.

50

4.2 Segmentation

Like the training images the test images are passed through the pre-processing

(except background subtraction) and feature extraction steps described above. This

results in set of query points to be classified and labeled. Once the search tree is formed

using the training feature vectors and labels that are obtained from the training images,

each query point is labeled using the search algorithm described above. Each labeled

query point in the feature space represents a 15 x 15 image ROI (patch) in the image

space. As a consequence, the label obtained for the query point is given to the 225 pixels

in the image space and that represents a percept. One or more of such image patches

constitute the test objects in the scene. The image that is obtained by assigning the labels

to the classified pixels and zero to the unclassified non-trained object pixels is the

segmented image. The segmented image is then analyzed using morphological operations

to get correct blobs for the recognized objects. The blobs are then passed through region

property operator to get the region properties like centroid, area, perimeter, bounding

box, etc. Since there are misclassifications by the system, getting the blobs would

produce false object blobs that belong to a group of misclassified image region. This is

corrected by re-assigning labels based on a simple rule. Pixels that are neighbors (in

image space) to pixels that represent a percept are re-labeled to the label a new label that

represents the percept. A percept is then the label that has the maximum number of pixels

in the region. The following figures show two images that demonstrate a segmented

image and an image that is re-labeled to get the blobs of the objects in the scene.

51

Figure 19: A segmented image that is before the re-labeling with the recognized objects and their corresponding
centroids. (Centroids are superimposed for completeness. However, they are calculated after re-labeling.)

52

Figure 20: A segmented image that is after the re-labeling with the recognized objects and their corresponding
centroids.

4.3 Performance Measures

 There are standard performance measures that are used to compare machine

learning algorithms. Among such measures are training time, testing time, accuracy, and

ROC curve. These measures are used to compare the performance of the random tree

implementation with that of the pure (naïve) nearest neighbor algorithm. The first three

measures are straightforward and most common measures for most prediction related

algorithms. The fourth one is specific to machine learning algorithms and communication

53

systems and is a standard measure of machine learning methods. ROC (which stands for

Receiver Operating Characteristic) is a plot of true positive prediction rate versus false

prediction rate. In an experiment with negative outcomes (absence of a particular object)

and positive outcomes (presence of a particular object), the four possible outcomes are

shown in the figure below.

Figure 21: Contingency table or Confusion matrix of the four possible outcomes (53).

Equation 13: ROC calculation equations

Therefore, the above three performance metrics together with training and testing

times are the performance measures of this project.

54

CHAPTER V

STEREOPSIS

Stereo-vision is inevitable to get an accurate estimation of depth to a point in the

world frame of reference out of the camera coordinates. This is the crucial part of the

vision system after segmentation. The depth of a point can be computed from the

disparity between points in the right and left images. Disparity is the absolute positional

difference between the two projections of a given 3D point in the left and right image

planes of the cameras. Intuitively, disparity is inversely proportional to depth. However,

there are methods to accurately compute depth from disparity. From the depth the other

coordinate values can be calculated directly. The computation of the depth however

involves the knowledge of some camera parameters like the focal length (actual). To get

such parameters the cameras should be calibrated first. The following two sections

describe the camera calibration and the stereopsis that is followed in this thesis to

compute the three coordinates of the centroids of detected objects in the segmented

images with respect to the world frame.

55

5.1 Camera Calibration

As explained above, camera calibration is the process of computing useful camera

parameters especially the focal length from the series of images taken by the camera

using different techniques. The most common method is the Tsai equations (54). The

calibration toolbox that is used in this project is the camera calibration toolbox for Matlab

that is developed at California Institute of Technology (7).

First, a set of images (30) of a planar check board are taken using the ISAC’s

cameras. The toolbox requires 20 - 25 images to accurately calibrate the camera. The

images that are used in the calibration are shown below.

Figure 22: The 30 images that are used in the calibration process

Calibration images

56

Then corners of each check board in each image are extracted using the software.

An example corner extraction is shown below.

Figure 23: Example corners extracted from example image of the check board

The calibration results that are obtained using the first run of the 30 calibration

images are shown below.

 : 310.73573 310.73573

 : 159.50000 119.50000

: 0.00000 90.00000

: 0.00000 0.00000 0.00000 0.00000 0.00000

O
dX

dY

Xc (in camera frame)

Y
c

(in
 c

am
er

a
fra

m
e)

Extracted corners

50 100 150 200 250 300

50

100

150

200

57

Since, the calibration toolbox uses a gradient decent method to iteratively

compute the parameters; there is an optimization run to get the best results. After the

optimization run, the following parameter estimations were obtained.

 : 320.21217 318.17184 8.20312 7.79713

 : 162.86545 123.91991 7.18556 6.02375

:

 0.00000 0.00000

 90.00000 0.00000

:

 0.21542 0.30542 0.00031 0.00032 0.00000

 0.04866 0.16166 0.00314 0.00652 0.00000

 : 0.07453 0.22937

Note: The numerical errors are approximately three times the standard deviations (for

reference).

The software will also display the re-projection errors in the calculation and as can be

seen in the following figure, the errors are fairly small. The maximum error in both

dimensions is less than a pixel. The cameras’ nominal focal length is 6mm and the

parameter for pixels per mm as find out in (6) is 50 / . The focal length

calculated is then calculated in mm using the average focal length

. .

6.38384

58

319.192

Figure 24: Re-projection errors in the computation of the camera parameters

5.2 Co‐planar Steriopsis

After the focal length and the pixels per mm are known, the three coordinates of

the centroids of the objects can be computed using stereopsis. There are two different

methods to compute the coordinates. The general method involves computation of the

rectification of the right and left images using homographies before computing the

coordinates and is applied in general camera configurations. The second method involves

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Reprojection error (in pixel) - To exit: right button

x

y

59

the computation of the coordinates from disparity directly without rectification. This

method is applicable if the two camera image planes are coplanar or assumed to be

coplanar. Due to its simplicity, and the zero pan angles used for both cameras, the second

method is chosen for this project. It is an approximation of the general method and hence

some intrinsic error is expected. The general method is the accurate method of computing

the coordinates.

The method assumes that the two image planes are parallel or coplanar. The

following figure shows the scenario and the following set of equations are derived from

the geometry of the figure. These equations are used to calculate the coordinates , ,

of a point with respect to the camera head frame that is located at the center of the two

cameras (55).

Figure 25: Geometrical configuration of the coplanar image planes, the respective frames of reference and
object projection to the image planes. (55)

60

Equation 14: Coplanar Stereopsis Equations

The xyz values are then computed with the above formulae and the result was off

the theoretical value by some factor for the depth and in the depth computation that factor

was taken in to account. Therefore, the factor was calculated to get a closer to the

real value. The factor computed is 2.2556. Then all the depths are multiplied by this

factor before computing the x and the y coordinates to get the correct results.

The following figure shows the experimental setup of ISAC and a table in front of

him. Using this physical measurements, configuration and field of view of the cameras

that is shown in chapter 2, the theoretical minimum and maximum limits of the three

coordinates are calculated for comparing the results of the experiment and are shown in

the results section of experiment 4.

61

Figure 26: Experimental Setup of center of the head of ISAC and a table in front of him (not drawn to scale)

62

CHAPTER VI

PROPOSED EXPERIMENTS

The goal of this project is to investigate the efficiency of the random tree

implementation of the nearest neighbor search for the purpose of object detection for a

robot learning to classify objects with minimal help from human trainer. The experiments

are specifically designed to show the time effectiveness and the accuracy of the system.

The experiments are undertaken for several training and testing images and they are

basically done on ISAC’s vision system inside the CRL (cognitive robotics laboratory) of

the center for intelligence (CIS) at Vanderbilt University, Electrical Engineering and

Computer Science Department. The Test Objects are listed in the following table and are

shown in the figure below.

Table 2: List of the experimental objects that are used in the project

Number Object

1 Red Bean Bag

2 Blue Bean Bag

3 Green Lego Toy

4 Yellow Bean Bag

5 Purple Bean Bag

6 Orange Bean Bag

63

Figure 27: The Experimental objects that are used by this project

As the system is mainly using the pdf of the color histogram as discriminating

feature, the objects are selected in such a way that they can reflect the typical different

colors. To show that the system is rotation, translation and size invariant the images are

taken by placing the objects at different positions and orientations and one big object

relative to the others is included.

64

6.1 Experiment I

This experiment is designed for investigating the run times for the construction of

the random tree. The random tree implementation is different than the pure (naïve)

method in that all processing is not done at the time of classification. Instead, like other

machine learning algorithms the tree construction is the training phase of the system. The

system is presented with the training features that represent the test objects in this phase.

The system is then able to construct the tree from this feature vectors. The constructed

tree is then serialized for later classification stage.

The key performance criterion in this experiment is the training (tree

construction) time. The training time is computed for six different sets of training images

and also for six possible values of minimum number of leaf node vectors.

The number of the training images (hence, the number of training features) is

varied as follows: the first tree is constructed using only one training image for each test

object (6 pair of images). The second tree is constructed using two training images for

each test object (12 pair of images) and so on until the sixth tree which is constructed

using 6 training images for each test object (36 pair of images).

The minimum number training vectors that belong to a leaf node unless the node

is a pure node is the other tree parameter that is varied from 50 to 300 in increments of

50. This effectively produces six distinct trees for each eye.

65

6.2 Experiment II

This experiment is concerned about the testing or classification run time of the

system. It compares the run times using the tree implementation to that of the pure

nearest neighbor search algorithm. For this purpose the function knnclassify that is

already implemented in Matlab is used. One of the reasons for choosing Matlab for the

second half part of the project is to get a common platform to compare the running times

of the pure one to that of the random tree implementation as implementing the naïve

algorithm is beyond the scope of this project. The second important reason to choose

Matlab for the tree construction and search is that Matlab is very efficient in numeric

manipulations especially in sparse representations, matrices and indexing them. However,

it is well know that the system would be faster if implemented in C++. The image

capture, the pre-processing and the feature extractions are done in C++.

Different combinations of the objects are used to get the testing images and totally

38 image pairs are used as testing images for testing run time comparisons. As the run

time curves are clearly shown until cumulative feature vectors of 25 testing images and as

the overall run times are very large, the experiment is performed until 27 batch of testing

images. Two platforms are used to run the experiments in parallel and to see platform

behavior of the systems run time. The Platforms are specified in the table below:

66

Table 3: Platform Specification of the test beds for experiment III

Name: My Laptop Name: Sally (A computer that is used for

vision system of ISAC)

Model: HP Pavilion dv6000 Model: Dell Desktop PC

RAM:2GB RAM: 1GB

CPU: AMD Turion 64x2 Dual Core

Processor with speed of 1.8 GHz each.

CPU: Intel Pentium IV dual core

3.06GHz, 3.05GHz

OS: Windows Vista Home Premium (32 bit) OS: Windows XP Enterprise

Testing run times are compared using both number of training images (vectors)

and training vectors.

6.3 Experiment III

The accuracy of the random tree implementation is compared to the pure

algorithm in this experiment. This experiment is specifically designed to show the

robustness of the system over the naïve implementation using ROC and accuracy as

principal performance criteria. The setting of this experiment is similar to that of the

second experiment, but it is separated as an independent experiment because the aspect of

the system that it addresses is different to that of the above experiment.

67

6.4 Experiment IV

This experiment focuses on the performance measure of the system using the

coordinates of the centroids of the objects that are computed using the approximate

assumed coplanar method. This assumption may introduce inaccuracies in the

computation but it is generally acceptable as the main focus of this thesis doesn’t include

cognition and hence very accurate coordinate may not be required.

For this experiment, a new set of 36 testing pair of images are taken with

measured world dimensions that are used to calculate the limits in all the three

dimensions.

68

CHAPTER VII

EXPERIMENTAL RESULTS AND DISCUSSIONS

In this chapter a detailed discussion of the experimental findings is presented

together with the experimental results in various formats. The experimental setups are

discussed in the previous chapter and hence this chapter focuses on the results and their

discussion.

7.1 Training Results (Experiment I Results)

In this experiment, six pairs (for the right and left images, a total of 12) of search

trees were created and trained for the 6 set of training data using the number of training

images as parameter that is explained in the experimental setups in the previous chapter.

Then, six other pairs (for the right and left images, a total of 12) of search trees were

trained using the minimum number of training vectors per leaf node. The number of

training vectors that are used for the first set of search trees and the set of the minimum

number of training vectors per impure leaf node are given in the tables below.

69

Table 4: Number of training images used and training vectors extracted out of them for the old set of training
images

Search Trees Number of training

images used

Number of training

vectors used

Right Left Right Left

1 6 6 423 413

2 12 12 828 805

3 18 18 1203 1185

4 24 24 1595 1555

5 32 32 2040 1949

6 36 36 2440 2321

70

Table 5: Number of training images used and training vectors extracted out of them for the new set of training
images

Search Trees Number of training

images used

Number of training

vectors used

Right Left Right Left

1 6 6 475 467

2 12 12 941 921

3 18 18 1467 1424

4 24 24 1954 1892

5 32 32 2414 2367

6 36 36 2880 2827

7 42 42 3358 3320

8 48 48 3824 3761

9 54 54 4277 4197

From the tables above, we can see that the number of training vectors that are

extracted out of the right and left images representing the same scene is different. This is

partially due to the defect on the right camera that is explained above. It captures noisier

images than the left ones and even though a different noise filtering parameters are used,

it still produces a little bit more than the left counterpart. If the noise filtering parameter

is increased further it will start to suppress even the objects features. The training time

result is shown in the following plot.

71

Figure 28: plot of the training times of the old (36 training images) and new image set (54 training images)
versus number of training vectors

The plot above depict that the training times vary approximately linearly with the

number of training vectors and they are in the orders of 7.42 ms for each training vector.

This is the cost that is paid to get an optimal testing time in the test runs. The total

training times for even 54 training images is well below 100 seconds. This is an extra

overhead over the training of the pure one, because the pure method does all the

processing at testing time.

413 805 1185 1555 1949 2321
0

5

10

15

20

25

30
training time vs # of training vectors for Old Left images

of training vectors

tra
in

in
g

tim
e

(s
ec

)

423 828 1203 1595 2040 2440
0

5

10

15

20

25

30

35
training time vs # of training vectors for Old Right images

of training vectors

tra
in

in
g

tim
e

(s
ec

)

467 921 1424 1892 2367 2827 3320 3761 4197
0

10

20

30

40

50

60

70

80
training time vs # of training vectors for New Left images

of training vectors

tra
in

in
g

tim
e

(s
ec

)

475 941 1467 1954 2414 2880 3358 3824 4277
0

10

20

30

40

50

60

70
training time vs # of training vectors for New Right images

of training vectors

tra
in

in
g

tim
e

(s
ec

)

72

The minimum number of training vectors per leaf node is also varied from 50 to

300 with increments of 50 for the old set of training images and the following

performance is obtained.

Figure 29: training times in seconds versus minimum number of training vectors per impure leaf node

 It is expected that as the minimum number of training vectors in an impure node

increases, the total number of nodes will decrease as more vectors can be contained in a

single impure leaf node. Hence, the tree becomes shallower and the training time will

decrease with increase in the parameter.

The figures above clearly show this fact. The right tree is at some points against

this behavior. That can be attributed to the defect of the right eye and the randomness of

50 100 150 200 250 300
0

5

10

15

20

25

30

35
training time vs minimum # of leaf node vectors for Left images

minimum # of leaf node vectors

tra
in

in
g

tim
e

(s
ec

)

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
training time vs minimum # of leaf node vectors for Right images

minimum # of leaf node vectors

tra
in

in
g

tim
e

(s
ec

)

73

the tree. Since the centers of children nodes of a parent node are selected randomly,

sometimes the leaf nodes might be more pure and hence shallower tree and sometimes

the tree might contain more impure nodes and deeper tree and that will affect the training

time a bit. However, the random points are selected using a random number generator

that generates a uniformly distributed set of points in a range and hence the discrepancy

in the randomness of the tree is a little. This can be seen the above plots that there is only

one point in the right search trees that took longer than the previous tree and one that took

shorter than the next tree.

Overall, this experiment can be called a success and it clearly shows us that the

running time of the training with the number of training vectors is approximately linear

or O n , if the number of training vectors is n.

74

7.2 Testing Time Results (Experiment II Results)

Figure 30: Plots of testing time of the pure nearest neighbor algorithm with number of testing vectors for the
right and left images (top) and with number of training vectors (bottom) TrIm represents Training Image and
TsIm represents Testing Image in the legends

 Figure 30 shows that the run time of pure (naïve) nearest neighbor search

algorithm is approximately quadratic with the number of testing vectors and linearly

increases with the number of training vectors. This is the result that is obtained by

running on the laptop. The result that is obtained on the desktop pc (Sally) will be

0 500 1000 1500 2000 2500
0

200

400

600

800

1000
testing time vs # of testing vectors for Knn Left on Laptop

of testing vectors

te
st

in
g

tim
e

(s
ec

)

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

200

400

600

800

1000
training time vs # of training vectors for Knn Left on Laptop

of training vectors

te
st

in
g

tim
e

(s
ec

)

0 500 1000 1500 2000 2500
0

200

400

600

800

1000
testing time vs # of testing vectors for Knn Right on Laptop

of testing vectors

te
st

in
g

tim
e

(s
ec

)

0 500 1000 1500 2000 2500
0

200

400

600

800

1000
training time vs # of training vectors for Knn Right on Laptop

of training vectors

te
st

in
g

tim
e

(s
ec

)

6 TrIm
12 TrIm
18 TrIm
24 TrIm
32 TrIm
36 TrIm

6 TrIm
12 TrIm
18 TrIm
24 TrIm
32 TrIm
36 TrIm

1 TsIm
2 TsIm
3 TsIm
4 TsIm
5 TsIm
6 TsIm
7 TsIm
8 TsIm
9 TsIm
10 TsIm
11 TsIm
12 TsIm
13 TsIm
14 TsIm
15 TsIm

1 TsIm
2 TsIm
3 TsIm
4 TsIm
5 TsIm
6 TsIm
7 TsIm
8 TsIm
9 TsIm
10 TsIm
11 TsIm
12 TsIm
13 TsIm
14 TsIm
15 TsIm

75

discussed shortly. This result shows that the testing time becomes very large as the

number of both testing and training images gets larger. Naturally, a nearest neighbor

search needs much training vectors to get a good accuracy and hence, the pure method

will get the system slower. The reason for this slow classification is primarily that all

computation occurs at the time of classification.

Figure 31: Plots of testing time of the random tree for both left and right images with number of testing vectors
(above) and with number of training vectors (below) TrIm represents Training Image and TsIm represents
Testing Image in the legends

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120
testing time vs # of testing vectors for Tree Left on Laptop

of testing vectors

te
st

in
g

tim
e

(s
ec

)

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

20

40

60

80

100

120
training time vs # of training vectors for Tree Left on Laptop

of training vectors

te
st

in
g

tim
e

(s
ec

)

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140
testing time vs # of testing vectors for Tree Right on Laptop

of testing vectors

te
st

in
g

tim
e

(s
ec

)

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140
training time vs # of training vectors for Tree Right on Laptop

of training vectors

te
st

in
g

tim
e

(s
ec

)

1 TsIm
2 TsIm
3 TsIm
4 TsIm
5 TsIm
6 TsIm
7 TsIm
8 TsIm
9 TsIm
10 TsIm
11 TsIm
12 TsIm
13 TsIm
14 TsIm
15 TsIm

1 TsIm
2 TsIm
3 TsIm
4 TsIm
5 TsIm
6 TsIm
7 TsIm
8 TsIm
9 TsIm
10 TsIm
11 TsIm
12 TsIm
13 TsIm
14 TsIm
15 TsIm

6 TrIm
12 TrIm
18 TrIm
24 TrIm
32 TrIm
36 TrIm

6 TrIm
12 TrIm
18 TrIm
24 TrIm
32 TrIm
36 TrIm

76

 This result is very encouraging that shows the random tree implementation is

surely an approximation with good running time at the time of classification. The running

time with respect to the number of testing vectors first seems linear and starts to bend as

the number of testing vectors increases. This effect will be shown in the result obtained

using Sally as the number gets bigger.

 Since the random tree implementation hold the center of a node as a

representative of the training vectors in the node, there is only one comparison performed

in each node and the search is directed to the similar branch and hence the training time is

not affected significantly by the increase in the number of training vectors. The results

show that it is more or less constant time with number of training vectors.

77

Figure 32: Plots of testing time of the pure algorithm with number of testing vectors and with number of
training vectors. This is the result of program running on Sally.

 The above is the result of runs on Sally. The number of testing vectors keeps

increasing from where it has stopped on the laptop runs discussed above. Here it starts

with vectors from 16 testing images and ends on vector sets from 27 set of testing

images. This clears shows that as the number of testing vectors becomes larger and larger

the run time becomes more quadratic () where N is the number of training vectors

2000 2500 3000 3500 4000 4500
0

200

400

600

800

1000

1200

1400
testing time vs # of testing vectors for Knn Left on Sally

of testing vectors

te
st

in
g

tim
e

(s
ec

)

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

200

400

600

800

1000

1200

1400
training time vs # of training vectors for Knn Left on Sally

of training vectors

te
st

in
g

tim
e

(s
ec

)

2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500
testing time vs # of testing vectors for Knn Right on Sally

of testing vectors

te
st

in
g

tim
e

(s
ec

)

0 500 1000 1500 2000 2500
0

500

1000

1500
training time vs # of training vectors for Knn Right on Sally

of training vectors

te
st

in
g

tim
e

(s
ec

)

6 TrIm
12 TrIm
18 TrIm
24 TrIm
32 TrIm
36 TrIm

6 TrIm
12 TrIm
18 TrIm
24 TrIm
32 TrIm
36 TrIm

16 TsIm
17 TrIm
18 TrIm
19 TrIm
20 TrIm
21 TrIm
22 TrIm
23 TrIm
24 TrIm
25 TrIm
26 TrIm
27 TrIm

16 TrIm
17 TrIm
18 TrIm
19 TrIm
20 TrIm
21 TrIm
22 TrIm
23 TrIm
24 TrIm
25 TrIm
26 TrIm
27 TrIm

78

and d is the dimensionality of the vectors. The runtime is also keeps linear () as the

number of training vectors (n) gets larger.

Figure 33: Plots of testing time with number of testing vectors and with number of training vectors that run on
Sally.

 The run time of the random tree implementation becomes more logarithmic as the

number of testing vectors keeps increasing and seems to keep constant with number of

training vectors. Due to the randomness of the tree sometimes the run time even

2000 2500 3000 3500 4000 4500
50

100

150

200

250

300
testing time vs # of testing vectors for Tree Left on Sally

of testing vectors

te
st

in
g

tim
e

(s
ec

)

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
50

100

150

200

250

300
training time vs # of training vectors for Tree Left on Sally

of training vectors

te
st

in
g

tim
e

(s
ec

)

2000 2500 3000 3500 4000 4500 5000
50

100

150

200

250

300

350
testing time vs # of testing vectors for Tree Right on Sally

of testing vectors

te
st

in
g

tim
e

(s
ec

)

0 500 1000 1500 2000 2500
50

100

150

200

250

300

350
training time vs # of training vectors for Tree Right on Sally

of training vectors

te
st

in
g

tim
e

(s
ec

)

16 TsIm
17 TsIm
18 TsIm
19 TsIm
20 TsIm
21 TsIm
22 TsIm
23 TsIm
24 TsIm
25 TsIm
26 TsIm
27 TsIm

16 TsIm
17 TsIm
18 TsIm
19 TsIm
20 TsIm
21 TsIm
22 TsIm
23 TsIm
24 TsIm
25 TsIm
26 TsIm
27 TsIm

6 TrIm
12 TrIm
18 TrIm
24 TrIm
32 TrIm
36 TrIm

6 TrIm
12 TrIm
18 TrIm
24 TrIm
32 TrIm
36 TrIm

79

decreases even with increasing number of training vectors. But, overall it can be

approximated as linear.

7.3 Testing Accuracy Results (Experiment III Results)

Figure 34: Testing accuracy plots and ROC curves for individual test objects of the pure nearest neighbor
search method.

The performance plots in this figure show that the accuracy of the system is high

and consistent. The accuracy seems to flatten out with as the number of training vectors

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
93

94

95

96

97

98

99

100
Accuracy vs # of training vectors for Knn Left

of training vectors

A
cc

ur
ac

y

0 1 2 3 4 5 6 7 8
65

70

75

80

85

90

95

100
Receiver Operating Characteristic (ROC) curve for Knn Left

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

)

0 500 1000 1500 2000 2500
96

96.5

97

97.5

98

98.5

99

99.5

100
Accuracy vs # of training vectors for Knn Right

of training vectors

A
cc

ur
ac

y

0 0.5 1 1.5 2 2.5 3 3.5
86

88

90

92

94

96

98

100
Receiver Operating Characteristic (ROC) curve for Knn Right

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

)

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

80

becomes large. This shows that after a certain limit, the addition of training vectors does

not add to the overall accuracy.

Due to the difference in color sensitivity to light conditions and texture, the

objects seem to significantly contribute to their individual testing accuracy. However, as

there is more and more training vectors available from each object the testing accuracies

become closer and closer. This suggests that a fairly large amount of training database is

required to get optimal result for any kind of object using the nearest neighbor search

algorithm.

The ROC curves for individual images are also pretty much consistent with the

typical ROC curve with minimal maximum false positive rate which is less than 10

percent and hence the search trees are in the normal operating region of the ROC curves.

81

Figure 35: Accuracy of individual test objects with number of training images and ROC curves.

 The results above show that the performance of the random implementation is

very comparable to that of the pure implementation that is discussed above. The accuracy

plot for the left search trees seems almost similar to the pure implementation. The right

trees seem to have slightly variable accuracies across objects at the beginning but come

closer as the number of training vectors gets larger.

 The ROC curves also show that the search trees are operating in the better

operating region of the ROC curve with maximum false positive rate of a little bit greater

than 10 percent. This is closer to that of the pure implementation.

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
88

90

92

94

96

98

100
Accuracy vs # of training vectors for Tree Left

of training vectors

A
cc

ur
ac

y

0 2 4 6 8 10 12
60

65

70

75

80

85

90

95

100
Receiver Operating Characteristic (ROC) curve for Tree Left

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

)

0 500 1000 1500 2000 2500
93

94

95

96

97

98

99

100
Accuracy vs # of training vectors for Tree Right

of training vectors

A
cc

ur
ac

y

0 1 2 3 4 5 6 7
70

75

80

85

90

95

100
Receiver Operating Characteristic (ROC) curve for Tree Right

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

)

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

82

 As we discussed above, increasing the number of training vectors beyond a

certain limit does not increase the accuracy and sometimes it might even have a negative

effect on it as shown in the right accuracy plot above. As the training vectors become

larger in number the accuracy starts to decrease at last. This shows that not all of training

vectors contribute to the overall accuracy. There might be a lot of redundancy and may be

discrepancy.

Figure 36: Accuracy plots of the random tree implementation with the minimum number of training vectors in
an impure node and the corresponding ROC curves for individual test objects

The best set of training images is used in this particular experiment which is 6

testing images for all the 6 test objects. So, the number of training vectors is constant for

this experiment to see the effect of the minimum number of training vectors per each

50 100 150 200 250 300
98

98.5

99

99.5

100
Accuracy vs min # of training vectors per leaf node for Tree Left

min # of training vectors per leaf node

A
cc

ur
ac

y

0 0.5 1 1.5 2 2.5
85

90

95

100
Receiver Operating Characteristic (ROC) curve for Tree Left

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

)

50 100 150 200 250 300
97.5

98

98.5

99

99.5

100
Accuracy vs min # of training vectors per leaf node for Tree Right

min # of training vectors per leaf node

A
cc

ur
ac

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
88

90

92

94

96

98

100
Receiver Operating Characteristic (ROC) curve for Tree Right

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

)

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

Object1
Object2
Object3
Object4
Object5
Object6

83

node. On the above experiments, the minimum number of training vectors per leaf nodes

was kept constant and it was 100. As we can see here 100 is an optimal value in accuracy

with just 1 percent below the accuracy with minimum number of leaf node training

vectors of 300 with significant saving in training and testing time.

The results above suggested that minimum number of leaf node training vectors

above 50 has sufficiently high accuracies and increasing the parameter beyond that has

little gain in accuracy but with time penalty.

The summary of the performance comparisons of the pure nearest neighbor search

implementation to the approximate nearest neighbor search with random tree

implementation is given in the table below.

Table 6: Summary of the comparison of the pure nearest neighbor algorithm with approximate random tree
implementation

 Pure (Naïve) implementation Random Tree implementation

Training Time Not Applicable

Testing Time Vs TsVr log

Testing Time Vs TrVr 1

Space

Accuracy Higher Comparably Higher

False Positive Rate Lower Comparably Lower

84

7.4 Stereopsis Results (Experiment IV Results)

Figure 37: 3D plots of the coordinates of the 352 centroids of the detected experimental objects (dimensions are
in mm)

Table 7: Theoretically computed 3D coordinate ranges

 X Y Z

Minimum -269.2474 mm -37.764 mm 725.748 mm

Maximum 269.2474 mm 334.48665 mm 853.9210 mm

-200

-100

0

100

200

0

50

100

150

200

250
700

720

740

760

780

800

820

840

x to the left of head (mm)

XYZ Positions wrt camera head center of the detected objects using Knn

y to up of head (mm)

z
fro

m
 c

en
te

r o
f t

he
 h

ea
d

aw
ay

 fr
om

 e
ye

s
to

 fr
on

t (
m

m
)

-200

-100

0

100

200

0

50

100

150

200

250
700

720

740

760

780

800

820

840

x to the left of head (mm)

XYZ Positions wrt camera head center of the detected objects using Random Tree

y to up of head (mm)

z
fro

m
 c

en
te

r o
f t

he
 h

ea
d

aw
ay

 fr
om

 e
ye

s
to

 fr
on

t (
m

m
)

Z

Y

X

Z

Y

X

85

Table 8: Experimentally found 3D coordinate ranges for both pure and random tree implementations

 X Y Z

Minimum (pure) -119.1697 mm 26.2413 mm 717.9863 mm

Maximum (pure) 111.9748 mm 225.9821 mm 838.4570 mm

Minimum (Tree) -119.1697 mm 26.2413 mm 717.9863 mm

Maximum (Tree) 111.9748 mm 225.9821 mm 838.4570 mm

The above results illustrate that the coplanar assumption was quite good. The

calculated three dimensional coordinates are almost in the theoretical range except the

 and that is just off the minimum by 7.7617 mm. This is quite a good result because

it is assumed that the camera image planes were parallel approximately. If the values

were computed using the general non-coplanar technique using homographies, the results

would be more accurate than the above results.

From the 3D plots we observe that almost all the points seem to lie on a plane that

is at a certain angle to the xy-plane. This is good because the experimental objects were

all lying on the table in front of ISAC in all the experimental images.

86

CAHPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The perceptual learning system that is employed in this work shows very

promising results. The approximate nearest neighbor search: random tree implementation

shows a very good run time performance and outfits the pure implementation by a large

extent in the overall run time performance with a comparably high accuracy. The system

was able to maintain its internal representation of the test objects and was able to classify

them without explicit programmer information like thresholds encoded to the system.

This is one of the desired requirements of the system.

The logarithmic classification run time will make it equal to most efficient

implementations like the kd-tree while the ability to incorporate very high dimensional

feature spaces makes it superior. The most widely known approximate nearest neighbor

search algorithm which is the kd-tree implementation called ANN (52) is able to classify

feature vectors as high dimensional as only 20 while the random tree implementation that

is used in this work was able to go up to 10001 and has a potential for even higher

dimensions.

The comparisons made in Table 2 are actually based on a sparse vector

representation for both pure and approximate method used in this work. As long as the

87

sparse coding is used, increasing the feature vector dimension will not affect the

processing time. Because the total number of non-zero feature vectors elements is

dependent on only the size of the image patch which in this work was 225 from which

they are extracted not on the actual dimension which in this work was 10001. The use of

a very high dimensional feature space makes the system as discriminatory as possible by

incorporating a higher resolution in color.

In general, even though the system is tried in a relatively less complex and

unstructured experimental setting for the goal of making an algorithmically sound

comparisons, it can be proved robust even in more complex and unstructured

environments for example with rapidly changing background.

8.2 Future Work

There can be a lot of future progress on this work to integrate it to a robotic

cognition and control like ISAC and the implementation can be used even in other vision

system that need high response time and accurate recognition with less complex

representation and processing.

One of such future improvements would be integrating this algorithm to ISAC’s

visual system and develop a more robust vision for ISAC by further experimenting with

the algorithm and comparing it with other machine learning algorithms like neural

networks and support vector machines.

88

The other improvement that can be made to the system is to modify it so that it

can incorporate novelty detection. Since the search trees keep distance statistics in each

node about the statistics of the distance of the training vectors in that node from the

center of the node, novelty detection can easily be integrated easily. If a new object is

detected, the distance from the feature vector obtained from its images the center of any

leaf node will be greater than the maximum distance and hence by making simple

comparison with the maximum, a new object can be detected. In this classification run,

the feature vectors from the new object can then be added to the tree leaf node under

consideration very easily.

The other improvement that can be added is the use of the general epipolar

geometry based stereopsis algorithm for the computation of the centroids. An attempt has

been done to incorporate this in this work, but due to time limitation it was not

incorporated in this work. The homographies that are computed for the cameras of ISAC

can be used to rectify the segmented images before computing the coordinates of the

centroids.

The incorporation of additional features in the feature vector like shape features

more texture feature like the Gabor texture measures that are introduced in (2) can be

another future direction for the system. Using basically many different features in the

feature vector will make the system more accurate. However, caution should be taken not

to significantly affect the desirable logarithmic run time performance.

89

REFERENCES

1. Norvig, Stuart J. Russell and Peter. Artificial Intelligence A Modern Approach,
second edition. New Jersey : Printice Hall, 2003.

2. Wang, Xiaochun. A Vision-Based Perceptual Learning System For Autonomous
Mobile Robot, PhD Dissertation. Nashville : Vanderbilt University, Graduate School,
2007.

3. Tugcu, Mert. A Computational Neuroscience Model With Application to Robot
Perceptual Learning, PhD Dissertation. Nashville : Vanderbilt University, Graduate
School, 2007.

4. Sony, Corporation. XC-999/999P Video Camera Module Oprating Manual. Tokyo,
Japan : s.n., 1991.

5. Sony, Co. VCL-06S12XM fixed focus (6mm) lenses. Tokyo : Sony, 1991.

6. Beagley, Sean. Gesture Recognition and Mimicking In a Humanoid Robot. Nashville :
Vanderbilt University, 2008.

7. Bouguet, Jean-Yves. CalTech Camera Calibration Matlab Toolbox. Camera
Calibration Toolbox for Matlab. [Online] June 2, 2008.
http://www.vision.caltech.edu/bouguetj/calib_doc/.

8. Perception, Directed. Directed Perception. [Online] 2 2009.
http://www.dperception.com/pdf/specs-ptu-d46.pdf .

9. Imagenation, corporation. Imagenation Vision System Specialists. PXC200
Precision Color Frame Grabber Manual. [Online] imagenation, December 1997.
http://www.imagenation.com/dnfiles/pxc/mn_200_02.pdf.

10. Intel, Corporation. Intel Co. Intel Open Computer Vision Library . [Online] Intel,
Februray 7, 2009. http://opencv.willowgarage.com/wiki/.

11. Wikipedia. Wikepedia-OpenCV. Wikipidia the free encyclopedia. [Online] 2009.
http://en.wikipedia.org/wiki/OpenCV.

12. Bradski, Gary. OpenCV 2009-06 Wiki. OpenCV Wiki. [Online] 2009.
http://opencv.willowgarage.com/wiki/OpenCV200906.

13. Wikipedia, wiki. Wikipedia-Noise Reduction. Wikipedia the free encyclopedia.
[Online] Wikepedia.org, 2009. http://en.wikipedia.org/wiki/Noise_reduction.

90

14. Kaehler, Adrian and Bradski, Gary. Learning OpenCV: Computer Vision with the
OpenCV Library. Sebastopol, CA : O'Reilly, 2008.

15. Review, Digital Photography. Fujifilm latest CCD. Digital Photography Review.
[Online] Digital Photography Review. [Cited: 03 14, 2009.]
http://www.dpreview.com/news/article_print.asp?date=0809&article=08092210fujifilmE
XR.

16. Dale Purves, David Fitspatrick, S. Mark Williams, james O. McNamara, George
J. Augustine, Lawrence C. Katz, and Anthony-Samuel LaMantia. Anatomical
Distribution of Rods and Cones. Neuro Science: Second Edition. [Online] Sinauer
Associates, Inc., 2001. [Cited: 03 06, 2009.]
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=neurosci.section.762.

17. Hubel, David H. Eye, Brain, and Vision. Harvard University Medical School.
[Online] Harvard University, 1995. [Cited: 03 06, 2009.]
http://hubel.med.harvard.edu/index.html.

18. Wiki, Wikipedia. Visual Cortex. Wikipedia. [Online] Wikipedia.org. [Cited: 03 06,
2009.] http://en.wikipedia.org/wiki/Visual_cortex.

19. Paragios, Nikos, Chen, Yunmei and Faugeras Olivier. Handbook of Mathematical
Models in Computer Vision. New York : Springer, 2006.

20. Gonzalez, Rafael C. and Woods, Richard E. Digital Image Processing: second
edition. Upper River Sadle, New Jersey : Prentice Hall, 2002.

21. Gevers, Theo and Smeulders, Arnold W.M., ISIS Faculty of WINS, University of
Amesterdam. Color based Object Recognition. Amsterdam

22. Hunter, J.E., Wilkes, D.M., Levin, D.T, Heaton, C., Saylor, M.M. Autonomous
Segmentation of Human Action for Behaviour Analysis. Nashville : Vanderbilt
University.

23. Hunter J.E., Tugcu M., Wang X., Costello C., Wilkes D.M. Exploiting Sparse
Represntations in Very High Dimensional Feature Spaces Obtained from Patch Based
Processing. Nashville : Vanderbilt University.

24. Schwarz Margaretha, Grewe Lynn, and Kak Avi. Represntation of Color and
Segmentation of Color Images. Purdue University, School Of Electrical Engineering.

25. Juraj, Horvath. Image Segmentation Using Clustering. Kosice : Technical
University of Kosice, Slovak Republic.

91

26. Peter, Comaniciu Dorin and Meer. Robust Analysis of Feature Spaces: Color
Image Segmentation. Piscataway, NJ : Rutgers University, Department of Electrical and
Computer Engineering.

27. Bruce James, Balch Tucker, and Veloso Manuela. Fast and Cheap Color Image
Segmentation for Interactive Robots. Pittsburgh, PA : Carnegie Mellon University,
School Of Computer Science.

28. Mitchell, Tom M. Machine Learning. McGraw-Hill Science/Engineering/math ;
School of Computer Science; Carnegie Mellon University, 1997.

29. Wiki, Wikipedia. HSL and HSV Color spaces . Wikepedia: The free encyclopedia.
[Online] Wikipedia.org. [Cited: 03 10, 2009.]
http://en.wikipedia.org/wiki/HSL_color_space.

30. authors, A group of contributing. CV Reference Manual. Intel Open Source
Computer Vision Library. [Online] University of Pensylvania. [Cited: 03 10, 2009.]
http://www.seas.upenn.edu/~bensapp/opencvdocs/.

31. Vinje, Willimam E., and Gallant, Jack L. Sparse Coding and Decorrelation in
Primary Visual Cortex during Natural Vision; University of California at Berkley.
Science Magazine. 2000, Vol. 287, 5456.

32. Tran, Thanh N. Knn Density-Based Clustering for High Dimensional Multispectral
Images. Nijmegen : University of Nijmegen, The Netherlands, 2003.

33. Beis, Jeffrey S., and Lowe, David G. Shape Indexing Using Approximate Nearest-
Neighbor Search in High-Dimensional Spaces. Vancouver, B.C., Canada : Department of
Computer Science, University of British Columbia.

34. Anna Atramentov, and LaValle, Steven M. Efficient Nearest Neighbor Searching
for Motion Planning. Department of Computer Science, Iowa State University and
University of Illinois Urbana.

35. Wiki, Wikipedia. Nearest Neighbor Search. Wikipedia: The free encyclopedia.
[Online] wikipedia.org. [Cited: 03 14, 2009.]
http://en.wikipedia.org/wiki/Nearest_neighbor_search.

36. Wiki, Wikipedia. Mahalanobis distance. Wikipedia: The free encyclopedia. [Online]
wikipedia.org. [Cited: 03 14, 2009.] http://en.wikipedia.org/wiki/Mahalanobis_distance.

37. Kollar, Thomas. Fast Nearest Neighbors: cover tree implementation, Litrature
Review.

92

38. Similarity, kernels, and the triangle inequality. Jakel, Frank, Scholkopf, Bernhard,
Witchmnann, Felix A. Berlin, Germany : Elsevier Inc.; Journal of Mathematical
Psychology, 2008, Vols. 52: pages 297-300.

39. Toward A Universal Law of Generalization for Psycological Science. Shepard, R.N.
1987, Vols. 237: Pages 1317-1323.

40. Attention and the Metric Structure of the Stimulus Space. Shepard, R.N. Journal of
Mathematical Psychology, 1964, Vols. 1: pages 54-87.

41. The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance
Function. Shepard, R.N. Psychometrica, 1962, Vols. 27: pages 125-140.

42. Mozaffari, Saeed, Faez, karim and Ziaratban, and Majid. Character
Representation and Recognition Using Quadtree-based Fractal Encoding Scheme.
Tehran, Iran : Electrical Engineering Department, University of Technology.

43. Panigrahy, Rina. Nearest Neighbor Search using Kd-trees. Computer Science
Department, Stanford University, 2006.

44. Motwani, Piotr Indyk and Rajeev. Approximate Nearest Neighbors: Toward
Removing the Curse of Dimensionality. Stanford, CA : Department of Computer Science,
Stanford University, 1999.

45. Liu, Hongzhi, et al. Fast Image Segmentation using Reagion Merging with a K-
Nearest Neighbor Graph. Shangai, China : Department of Computer Science and
Engineering, Fudan University.

46. Cano, Javier, Perez-Cortes, Juan-Carlos and Salvador, and Ismael. Comparison
of Two Fast Nearest-Neighbor Search Methods in High-Dimensional Large-sized
Databases. Valencia, Italy : Politechnique University of Valencia.

47. Berchtod, Stefan, et al. Fast Nearest Neighbor Search in High-dimensional Space.
Munich, Germany : Institute for Computer Science, University of Munich.

48. Liu, Ting, et al. An Investigation of Practical Approximate Nearest Neighbor
Algorithms. Pittsburgh, PA : School of Computer Science, Carnegie Mellon University.

49. Garcia, Vincent, Barlaud, Michael and Debreuve, and Eric. Fast K-Nearest
Neighbor Search using GPU. Sophia Antipolis, France : University of Nice-Sophia
Antipolis.

50. Ruhl, D. Karger and M. Finding Nearest neighbors in Growth Restricted Metrics.
Proceedings STOC, 2002.

93

51. Lee, R. Krauthgamer and J. navigating Nets: Simple Algorithms for Proximity
Search. s.l. : Proceedings of the 15th Annual Symposium on Discrete Algorithms
(SODA), pages 791-801, 2004.

52. David M, Mount and Sunil Arya. ANN: A Library for Approximate Nearest
Neighbor Searching . David M Mount's Website. [Online] Department of Computer
Science, University of Maryland. [Cited: 03 14, 2009.]
http://www.cs.umd.edu/~mount/ANN/.

53. Wiki, Wikipedia. Receiver Operating Characteristics (ROC). Wikipedia: The free
encyclopedia. [Online] wikipedia.org. [Cited: 03 15, 2009.]
http://en.wikipedia.org/wiki/Receiver_operating_characteristic.

54. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision
Metrology Using Off-the-Shelf TV Cameras and Lenses. Tsai, Roger Y. No. 4, IEEE
Journal of Robotics and Automation, 1987, Vols. RA-3: Pages 323-344.

55. Peters, Alan II. Coplanar Stereopsis, Computer Vision Lecture Notes. 2008.

94

APPENDIX

SELECTED SEGMENTED IMAGES

KNN

Left

95

96

97

98

99

100

101

102

103

104

105

106

107

Right

108

109

110

111

112

113

114

115

116

117

118

119

120

121

RANDOM TREE

Left

122

123

124

125

126

127

128

129

130

131

132

133

134

Right

135

136

137

138

139

140

141

142

143

144

145

146

147

