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       This dissertation develops and applies an integrated framework for embedding flexibility in 

an engineered system architecture.  Systems are constantly faced with unpredictability in the 

operational environment, threats from competing systems, obsolescence of technology, and 

general uncertainty in future system demands.  Current systems engineering and risk management 

practices have focused almost exclusively on mitigating or preventing the negative consequences 

of uncertainty.  This research recognizes that high uncertainty also presents an opportunity to 

design systems that can flexibly respond to changing requirements and capture additional value 

throughout the design life.  There does not exist however a formalized approach to designing 

appropriately flexible systems. 

       This research develops a three stage integrated flexibility framework based on the concept of 

architecture options embedded in the system design.  Stage One defines an eight step systems 

engineering process to identify candidate architecture options.  This process encapsulates the 

operational uncertainty though scenario development, traces new functional requirements to the 

affected design variables, and clusters the variables most sensitive to change.  The resulting 

clusters can generate insight into the most promising regions in the architecture to embed 

flexibility in the form of architecture options.  Stage Two develops a quantitative option valuation 

technique, grounded in real options theory, which is able to value embedded architecture options 

that exhibit variable expiration behavior.  Stage Three proposes a portfolio optimization 

algorithm, for both discrete and continuous options, to select the optimal subset of architecture 

options, subject to budget and risk constraints.  Finally, the feasibility, extensibility and 

limitations of the framework are assessed by its application to a reconnaissance satellite system 

development problem.  Detailed technical data, performance models, and cost estimates were 

compiled for the Tactical Imaging Constellation Architecture Study and leveraged to complete a 

realistic proof-of-concept.   

 



 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

Copyright ©2010 by Jeff G. Pierce 

All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGEMENTS 

 

       I want to acknowledge some wonderful people without whom this milestone would not be 

reached.  First, I want to express my sincerest gratitude to my committee for their guidance, 

support and encouragement to pursue a topic that I am passionate about.   

Sankaran Mahadevan, Ph.D., Professor of Civil and Environmental Engineering, Vanderbilt 

University School of Engineering 

 

David Dilts, Ph.D., M.B.A., Director of Clinical Research, Oregon Health and Science 

University; Professor of Healthcare Management, Division of Management (OHSU) 

 

Kenneth Pence, Ph.D., Professor of the Practice, Engineering Management, Vanderbilt University 

School of Engineering  

 

Mark Abkowitz, Ph.D., Professor of Civil & Environmental Engineering, Vanderbilt University 

School of Engineering 

 

Surya Pathak, Ph.D., Assistant Professor, Business Program, University of Washington, Bothell 
 

       Dr. Sankaran Mahadevan‘s principled and unmatched intellectual leadership truly inspired 

me to get things right.  Dr. David Dilts exemplified uncompromising research standards and 

consistently forced me to challenge my assumptions.  Dr. Ken Pence kept my research direction 

grounded and purposeful.  Dr. Mark Abkowitz inspired me to reconsider how risk and uncertainty 

are managed in engineering.  Dr. Surya Pathak generously got in the trenches with me to hash out 

the intricacies of a problem.  I was well-served in my research to have such a balance of 

perspectives and breadth of experiences advising me.  I am grateful for your guidance and proud 

of our accomplishment. 

       I want to convey my heartfelt appreciation to my family.  I want to thank my wife, Laura, for 

her encouragement to pursue my passion, and loving dedication to me and our daughter 

throughout this process.  To my parents for teaching me to take pride in my work and continue 

diligently to the end, and to my other parents who have been beside me, encouraging and 

supporting me in love and sacrifice, thank you. 



v 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ......................................................................................................... iv 

 

LIST OF TABLES ...................................................................................................................... viii 

 

LIST OF FIGURES ...................................................................................................................... ix 

 

LIST OF ABBREVIATIONS .................................................................................................... xiii 

 

GLOSSARY OF KEY TERMS ................................................................................................. xvi 

 

CHAPTER 

 

I.  INTRODUCTION ..................................................................................................................... 1 

 

1.1 Motivation.......................................................................................................................... 1 

1.2 Introduction ....................................................................................................................... 2 

1.3 Integrated Design Flexibility Framework ...................................................................... 3 

1.4 Problem Statement and Research Question ................................................................... 5 

1.5 Research Goal and Objectives ......................................................................................... 6 

1.6 Research Approach ........................................................................................................... 7 

1.7 Research Scope .................................................................................................................. 8 

1.8 Thesis Outline .................................................................................................................... 9 
 

II.  FLEXIBILITY IN ENGINEERING SYSTEMS: A LITERATURE REVIEW .............. 11 

 

2.1 Introduction ..................................................................................................................... 11 

2.2 Value Centric Design as a Theoretical Construct for System Flexibility .................. 11 

2.3 Introduction to Flexibility .............................................................................................. 12 

2.4 Defining Flexibility ......................................................................................................... 14 
2.4.1 Flexibility in Engineering Systems ................................................................................... 16 

2.4.2 Flexibility in the Design Process ...................................................................................... 21 

2.4.3 Flexibility in Manufacturing Systems ............................................................................... 24 

2.4.4 Flexibility in Management ................................................................................................ 27 

2.4.5 Flexibility Versus Robust Design ..................................................................................... 27 

2.4.6 Flexibility and the "ilities" ................................................................................................ 28 

2.5 Options Theory ............................................................................................................... 30 
2.5.1 Financial Options .............................................................................................................. 31 

2.5.2 Traditional Valuation: Net Present Value ......................................................................... 36 

2.5.3 Real Options ..................................................................................................................... 37 

2.5.3.1 Real Options ―On‖ and ―In‖ Projects .................................................................. 39 

2.5.3.2 Real Options Provide a Unit of Analysis for System Flexibility ........................ 40 

2.5.3.3 Valuation Methods for Real Options ―On‖ Projects ........................................... 41 

2.5.3.3.1 Analytic Formulation (Black-Scholes) ........................................................................ 42 

2.5.3.3.2 Discrete Techniques ..................................................................................................... 44 

2.5.3.3.3 Numerical Techniques ................................................................................................. 47 

2.5.3.3.4 Decision Tree Analysis ................................................................................................ 48 



vi 

 

2.5.3.3.5 An Intuitive New Valuation Technique: The Boeing Approach .................................. 49 

2.6 Modeling the System ....................................................................................................... 51 

2.7 Chapter Summary .......................................................................................................... 54 

 

III.  A SCREENING PROCESS TO IDENTIFY OPTIONS FOR EMBEDDED ................. 56 

       FLEXIBILITY IN ENGINEERING SYSTEMS ............................................................... 56 

 

3.1 Introduction ..................................................................................................................... 56 

3.2 Screening Process for Candidate Architecture Options .............................................. 57 
3.2.1 Step 1: Identify and Define Scenarios .............................................................................. 60 

3.2.1.1 Likelihood and Opportunity: A Scoring Rubric for Scenario Assessment .......... 64 

3.2.2 Step 2: Determine Functional Requirements for Each Scenario ....................................... 70 

3.2.3 Step 3: Complete Functional-to-Physical Mapping and Populate DSM ........................... 72 

3.2.4 Step 4: Perform Sensitivity Analysis and Normalize sensitivity-DSM ............................ 74 

3.2.5 Step 5: Apply Clustering Algorithm ................................................................................. 76 

3.2.6 Step 6: Visualize Sensitivity Regions ............................................................................... 80 

3.2.7 Step 7: Complete Detailed Definition for AOs ................................................................. 82 

3.2.8 Step 8: Insert Detailed AOs into DSM and Estimate Correlation Metric ......................... 83 

3.3 Conclusion ....................................................................................................................... 85 
 

IV.  VALUATION OF FLEXIBILITY IN THE SYSTEM ARCHITECTURE .................... 87 

 

4.1 Introduction ..................................................................................................................... 87 

4.2 Valuation of Architecture Options Using a Variable Expiration Technique ............ 89 
4.2.1 Defining S and Tv: "Temporal Step" Value Functions ...................................................... 91 

4.2.2 Defining X: Strike / Exercise Price ................................................................................... 98 

4.2.3 Defining r, μ: Risk Aversion ........................................................................................... 100 

4.3 Architecture Option Valuation in the Collaborative Environment ......................... 102 

4.4 Analytics for Variable Expiration Technique ............................................................ 103 
4.4.1 Option Delta ................................................................................................................... 106 

4.4.2 Option Gamma................................................................................................................ 108 

4.4.3 Option Vega .................................................................................................................... 109 

4.4.4 Option Theta ................................................................................................................... 110 

4.4.5 Option Rho ..................................................................................................................... 113 

4.4.6 Using Option Analytics .................................................................................................. 116 

4.5 Conclusion ..................................................................................................................... 117 
 

V.  ARCHITECTURE OPTION SELECTION THROUGH 

      PORTFOLIO OPTIMIZATION ........................................................................................ 119 

 

5.1 Introduction ................................................................................................................... 119 

5.2 Selection of Optimal Portfolio of Architecture Options ............................................ 120 

5.3 Life Cycle Value ............................................................................................................ 120 

5.4 Risk Minimization through Uncertainty Diversification .......................................... 123 

5.5 Optimal Portfolio .......................................................................................................... 126 
5.5.1 Architecture Options on a Continuum ............................................................................ 127 

5.5.2 Discrete Architecture Options ........................................................................................ 136 

5.6 Conclusion ..................................................................................................................... 138 
 

 

 



vii 

 

VI.  THE TACTICAL IMAGING CONSTELLATION ARCHITECTURE  STUDY: 

       A PROOF OF CONCEPT FOR EMBEDDED ARCHITECTURE OPTIONS ............ 140 

 

6.1 Introduction ................................................................................................................... 140 

6.2 Background ................................................................................................................... 140 

6.3 Proof of Concept ........................................................................................................... 141 
6.3.1 Baseline System Architecture ......................................................................................... 144 

6.3.2 Flexibility Framework Stage One: Screening for TICAS Candidate AOs ..................... 147 

6.3.2.1 Step 1 ................................................................................................................ 148 

6.3.2.2 Step 2 ................................................................................................................ 152 

6.3.2.3 Step 3 ................................................................................................................ 156 

6.3.2.4 Step 4 ................................................................................................................ 158 

6.3.2.5 Step 5 ................................................................................................................ 162 

6.3.2.6 Step 6 ................................................................................................................ 163 

6.3.2.7 Step 7 ................................................................................................................ 164 

6.3.2.8 Step 8 ................................................................................................................ 171 

6.3.3 Flexibility Framework Stage Two: Valuation of TICAS AOs ....................................... 172 

6.3.3.1 Scenario Likelihood .......................................................................................... 172 

6.3.3.2 Value Stream Forecast ...................................................................................... 173 

6.3.3.3 Exercise Cost .................................................................................................... 176 

6.3.3.4 Discount Rates and Inflation ............................................................................. 178 

6.3.3.5 Variable Expiration Architecture Option Valuation .......................................... 179 

6.3.4 Flexibility Framework Stage Three: TICAS AO Portfolio Selection ............................. 183 

6.3.4.1 Implementation Cost Estimation ....................................................................... 184 

6.3.4.2 Architecture Option Correlation Matrix ............................................................ 187 

6.3.4.3 TICAS AO Portfolio Selection ......................................................................... 189 

6.4 Assessment and Limitations ......................................................................................... 191 
6.4.1 Stage One Assessment .................................................................................................... 191 

6.4.2 Stage Two Assessment ................................................................................................... 194 

6.4.3 Stage Three Assessment ................................................................................................. 195 

6.5 Conclusion ..................................................................................................................... 196 
 

VII.  SUMMARY AND FUTURE NEEDS .............................................................................. 198 

 

7.1 Summary of Contribution ............................................................................................ 198 

7.2 Future Needs ................................................................................................................. 201 

 

APPENDIX ................................................................................................................................. 204 

 

A. DEFINING CORRELATION OF RANDOM VARIABLE DISTRIBUTIONS ..... 204 

B. LEARNING CURVE APPLIED TO BUSINESS FORECAST EXAMPLE ........... 204 

C. GROUND SAMPLE DISTANCE ............................................................................... 205 

D. PUSHBROOM AND WHISKBROOM IMAGING STRATEGIES ........................ 206 

E. TICAS OPERATIONAL VIEWS OF MISSION SCENARIOS .............................. 207 

F. MODULATION TRANSFER FUNCTION IN RELATION TO NIIRS ................. 209 

G. TICAS SYSTEM BLOCK DIAGRAM ...................................................................... 211 

H. TICAS SYSTEM DESIGN STRUCTURE MATRIX ............................................... 212 

I. TICAS OPTICAL SUBSYSTEM ................................................................................ 215 

J. ELECTRICAL POWER PROFILE FOR BAC / PC IMAGE COLLECTION ..... 216 

 

REFERENCES ........................................................................................................................... 217 

1 



viii 

 

LIST OF TABLES 

 

Table                        Page 

Table 1: Terminology comparison of Financial Options and Real Options. ................................. 38 

Table 2: Scoring guidance for scenario likelihood. ....................................................................... 69 

Table 3: Scoring guidance for scenario conditional impact. .......................................................... 69 

Table 4: Interpretation of correlation coefficient. .......................................................................... 85 

Table 5: Estimation of most likely change to operating profit with typical business inputs. ........ 91 

Table 6: Pessimistic and optimistic change to operating profit using typical business inputs ....... 92 

Table 7: Input responsibility and method within the enterprise. .................................................. 102 

Table 8: Average annual return, Annualized standard deviation ................................................. 128 

Table 9: Correlation matrix .......................................................................................................... 128 

Table 10: Covariance matrix ........................................................................................................ 128 

Table 11: TICAS PC satellite performance (worldwide average). .............................................. 145 

Table 12: TICAS baseline launch vehicle selection. ................................................................... 147 

Table 13: Scenario scoring for likelihood and opportunity. ........................................................ 151 

Table 14: Additional functional requirements associated with TICAS operational scenarios..... 152 

Table 15: NIIRS interpretation example. ..................................................................................... 154 

Table 16: Mapping alternate mission scenarios to attributes via functional requirements .......... 155 

Table 17: TICAS ΔV and propellant estimates............................................................................ 170 

Table 18: Summary table of TICAS architecture options. ........................................................... 171 

Table 19: Summary of inputs and results for TICAS candidate AOs. ......................................... 182 

Table 20: Summary TICAS non-recurring and recurring cost estimate. ..................................... 186 

Table 21: TICAS architecture option implementation cost estimates. ........................................ 187 

Table 22: Correlation matrix for TICAS architecture options, simulated values. ....................... 188 

Table 23: Correlation matrix for TICAS architecture options, manual values. ........................... 188 

Table 24: Optimal portfolios with corresponding implementation cost. ..................................... 190 

 



ix 

 

LIST OF FIGURES 

 

Figure                Page 

Figure 1: Three stage integrated flexibility framework for identifying, valuating, and selecting 

architecture options .......................................................................................................................... 5 

Figure 2: High level research approach. .......................................................................................... 7 

Figure 3: The dissertation flow. ..................................................................................................... 10 

Figure 4: Conceptual model relating flexibility, uncertainty and design life. ............................... 13 

Figure 5: Result of requirements instability on spacecraft development schedule. ....................... 22 

Figure 6: Distinction between design process flexibility and design flexibility. ........................... 23 

Figure 7: Flexibility and robustness as a function of environment and system‘s objectives. ........ 28 

Figure 8: Illustration of system "ility" response to changes in context and need. ......................... 29 

Figure 9: Brownian motion ............................................................................................................ 33 

Figure 10: Total isk and option value. ........................................................................................... 39 

Figure 11: Two steps in a binomial lattice. .................................................................................... 45 

Figure 12: Definition of DSM relationships. ................................................................................. 53 

Figure 13: Three stage integrated flexibility framework for identifying, valuating, and selecting 

architecture options. ....................................................................................................................... 57 

Figure 14: Architecture options screening process flow diagram. ................................................. 59 

Figure 15: Example operational views for primary and alternate mission scenarios..................... 62 

Figure 16: Likelihood-Opportunity matrix for scoring scenarios. ................................................. 63 

Figure 17: DSM extension for relationships between endogenous and exogenous variables........ 73 

Figure 18: Notional DSM structure with system attributes and design variables. ......................... 74 

Figure 19: Clustering algorithm applied to a DSM. ....................................................................... 77 

Figure 20: "Hoodoo" plot composed of 3D bar plot from sensitivity analysis and 2D contour map 

from Likelihood-Opportunity score. .............................................................................................. 80 

Figure 21: Conceptual plot of sensitivity data combined with L-O scenario data. ........................ 82 



x 

 

Figure 22: Three stage integrated flexibility framework for identifying, valuing, and selecting 

architecture options. ....................................................................................................................... 87 

Figure 23: Variable Expiration option valuation chapter flow. ..................................................... 88 

Figure 24: Change in operating profit for pessimistic, most likely, and optimistic business case 

scenarios represented with triangular stochastic distributions. ...................................................... 93 

Figure 25: Simulated present value distribution of multi-scenario operating profit forecasts. ...... 93 

Figure 26: Value stream generated by AO with and without forecast uncertainty. ....................... 96 

Figure 27: Discrete likelihood distribution to represent uncertainty of the instigating scenario. .. 97 

Figure 28: Present value distribution of benefit stream for varying option viability date. ............ 98 

Figure 29: Variable Expiration option valuation accommodates stochastic exercise price. ........ 100 

Figure 30: Present value distribution as the difference between the appropriately discounted 

operating profit and the initiation cost. ........................................................................................ 104 

Figure 31: Close-up of present value distribution showing abandoned negative outcomes. ....... 104 

Figure 32: Truncated present value distribution to find mean option value. ............................... 105 

Figure 33: Constituent Deltas for each expiration year. .............................................................. 107 

Figure 34: Cumulative Delta for architecture option. .................................................................. 108 

Figure 35: Cumulative Gamma for architecture option. .............................................................. 109 

Figure 36: Constituent Vegas for each expiration year. ............................................................... 110 

Figure 37: Cumulative Vega for architecture option. .................................................................. 110 

Figure 38: Constituent option Thetas for each expiration year. ................................................... 111 

Figure 39: Cumulative Theta for architecture option. .................................................................. 112 

Figure 40: Temporal Step value function. ................................................................................... 113 

Figure 41: Mean option value decreases over time. ..................................................................... 113 

Figure 42: Option Rho for Investment Rate................................................................................. 114 

Figure 43: Option Rho for Market Risk Rate. ............................................................................. 115 

Figure 44: Option conjoint Rho. .................................................................................................. 115 



xi 

 

Figure 45: Three stage integrated flexibility framework for identifying, valuing, and selecting 

architecture options. ..................................................................................................................... 119 

Figure 46: Maximization of life cycle value with a portfolio of real options. ............................. 122 

Figure 47: Diversification of correlated assets. ........................................................................... 125 

Figure 48: Minimum variance portfolio and efficient frontier..................................................... 130 

Figure 49: Complete portfolio contains the optimal risky portfolio and the riskless asset. ......... 132 

Figure 50: Change in option value given a change in option cost. .............................................. 135 

Figure 51: Portfolio selection of discrete architecture options given design budget constraint. .. 138 

Figure 52: Three stage integrated flexibility framework for identifying, valuing, and selecting 

architecture options. ..................................................................................................................... 142 

Figure 53: TICAS Constellation with Broad Area and Point Collector satellites. ....................... 144 

Figure 54: TICAS Ground Segment architecture. ....................................................................... 146 

Figure 55: Architecture options screening process flow diagram. ............................................... 148 

Figure 56: TICAS system concept of operation representing the baseline system architecture. . 149 

Figure 57: Likelihood-Opportunity matrix for TICAS scenarios. ............................................... 152 

Figure 58: TICAS system attributes and performance of the baseline system architecture. ....... 156 

Figure 59: Functional to physical mapping of attributes to design variables............................... 157 

Figure 60: Design structure matrix representation of the TICAS system architecture including 

impact from system attributes. ..................................................................................................... 158 

Figure 61: TICAS optical subsystem image quality mathematical model. .................................. 159 

Figure 62: Tornado and Spider plots describe the level of sensitivity between the TICAS design 

variables and the NIIRS attribute. ................................................................................................ 161 

Figure 63: TICAS sensitivity-DSM for NIIRS Attribute 4. ......................................................... 162 

Figure 64: Clustered s-DSM showing three clusters and one bus. .............................................. 163 

Figure 65: Clustered Hoodoo plot of TICAS sensitivity-DSM for Scenario 3/Attribute 4. ........ 164 

Figure 66: Nadir ground sample distance. ................................................................................... 166 

Figure 67: Components of TICAS Modulation Transfer Function 3-mirror anastigmat design.. 167 



xii 

 

Figure 68: TICAS attitude control subsystem for stability and control requirements. ................ 168 

Figure 69: Ground sample at nadir and edge of field of regard for BAC and PC altitudes. ........ 169 

Figure 70: TICAS constellation revisit time for high NIIRS ....................................................... 174 

Figure 71: TICAS MTTA system attribute extracted from Community-KPPs and combined with 

the MTTA performance model to create stakeholder value function. ......................................... 175 

Figure 72: Triangular distributions to represent uncertainty in value derived from AO3.1. ....... 175 

Figure 73: Cumulative distribution function from NRO independent TICAS LCC estimate ..... 177 

Figure 74: AO3.1 exercise cost approximated by lognormal distribution from TICAS LCC. .... 177 

Figure 75: TICAS AO3.1 inputs required for VE-option valuation. ........................................... 179 

Figure 76: AO3.1 Summary stochastic results. ............................................................................ 180 

Figure 77: VE option value sensitivities for TICAS AO3.1. ....................................................... 181 

Figure 78: Total option payoff and AO mean value over time. ................................................... 182 

Figure 79: Stacked temporal step value function for TICAS candidate AO set. ......................... 183 

Figure 80: Standard NRO work breakdown structure. ................................................................ 184 

Figure 81: Lower level standard NRO work breakdown structure detailing spacecraft bus. ...... 185 

Figure 82: Optimal portfolio selection for TICAS AOs, simulated correlations. ........................ 190 

Figure 83: Optimal portfolio selection for TICAS AOs, manual correlations. ............................ 191 

 

 

 

 

 

 

 



xiii 

 

LIST OF ABBREVIATIONS 

 

Abbreviation Definition 

ACS  Attitude Control System 

AO  Architecture Option 

BAC  Broad Area Collector satellite 

BOE  Basis of Estimate 

CAIV  Cost as an Independent Variable 

CAL  Capital Allocation Line 

CDL  Common Data Link 

CDR  Critical Design Review 

CER  Cost Estimating Relationship 

CLIOS  Complex Large-scale, Interconnected, Open Socio-technical System 

CMEA  Change Modes and Effects Analysis 

CMG  Control Moment Gyro 

CONOP  Concept of Operation 

CONUS  Continental United States 

CPF  Central Processing Facility 

CPF  Cost Per Function 

CPM  Change Potential Number 

DCF  Discounted Cash Flow 

DDL  Direct Downlink 

DM  Datar-Mathews options valuation technique 

DoDAF  Department of Defense Architecture Framework 

DPI  Design Preference Index 

DSM  Design Structure Matrix 

DTA  Decision Tree Analysis 

EOL  End-of-Life 

EPS  Electrical Power System 

FMS  Flexible Manufacturing Systems 

FoS  Family-of-Systems 

FPA  Focal Plane Array 

FSEU  FPA Support Electronics Unit 

GA  Genetic Algorithm 

GAO  Government Accountability Office 

GB  Gigabit 

GM  Geometric Mean 

GMC  Ground Motion Compensation 

GPS  Global Positioning System 

GSD  Ground Sample Distance 



xiv 

 

H  Edge Height Overshoot 

HSDHU  High Speed Data Handling Unit 

ICE  Independent Cost Estimate 

IDEF0  Integration Definition for Function Modeling 

IFOV  Instantaneous Field of View 

IMINT  Imagery Intelligence 

IOC  Initial Operational Condition 

IPT  Integrated Product Team 

IR  Infrared 

ISR  Intelligence, Surveillance, and Reconnaissance 

KPP  Key Performance Parameter 

LCC  Life Cycle Cost 

LCV  Life Cycle Value 

LMLV  Lockheed Martin Launch Vehicle 

L-O  Likelihood-Opportunity 

LOS  Line-of-Sight 

LRR  Launch Readiness Review 

MAD  Marketed Asset Disclaimer 

MATE-CON  Multi-Attribute Tradespace Exploration with Concurrent Design 

MDL  Minimum Description Length 

MOE  Measure of Effectiveness 

MPT  Modern Portfolio Theory 

MTF  Modulation Transfer Function 

MTTA  Mean Time to Access 

NIIRS  National Imagery Interpretability Rating Scale 

NPV  Net Present Value 

NRL  Naval Research Laboratory 

NRO  National Reconnaissance Office 

OTF  Optical Transfer Function 

OV  Operational View 

PC  Point Collector satellite 

PDE  Partial Differential Equation 

PDR  Preliminary Design Review 

PSF  Point Spread Function 

R&D  Research and Development 

RER  Relative Edge Response 

RO  Real Option 

ROA  Real Options Analysis 

ROE  Return on Equity 

ROM  Rough Order of Magnitude 

SAF  System Adaptability Factor 

SCDL  Space-Common Data Link 



xv 

 

s-DSM  Sensitivity-Design Structure Matrix 

SE  Systems Engineering 

SNR  Signal-to-Noise Ratio 

SoS  System-of-Systems 

SSPA  Solid State Power Amplifier 

SWOT  Strengths, Weaknesses, Opportunities, and Threats 

TDI  Time Delay Integration 

TDRS  Relay Satellite 

TICAS  Tactical Imaging Constellation Architecture Study 

TPM  Technical Performance Measure 

TSAT  Transformational Satellite Communication System 

TSE  Traditional Systems Engineering 

TWTA  Traveling Wave Tube Amplifier 

UAV  Unmanned Air Vehicle 

USCM-8  Unmanned Space Vehicle Cost Model Version 8 

VE  Variable Expiration 

WBS  Work Breakdown Structure 

WGS  Wideband Gapfiller Satellite System 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

GLOSSARY OF KEY TERMS 

 

Attributes: Fundamental capabilities of the system that represent the features or functions of the 

system needed or desired by the customer. An attribute should usually be stated in such a way 

that it describes what the system should do. The associated capability should also be stated in a 

manner that is solution independent. This permits consideration of different ways of meeting the 

need or of providing the feature or function. 

 

Concept of Operation (CONOP): This type of document focuses on the goals, objectives, and 

general desired capabilities of the potential system without indicating how the system will be 

implemented to actually achieve the goals. 

 

Engineering System: Large-scale, technology enabled, interconnected system where analysis 

and design are done at the enterprise level (within and between organizations) and the societal 

level (considering contextual factors such as social, political, institutional and economic factors).  

As such, the design process examines the interaction of system components rather than examining 

individual components (which is primarily the domain of the engineering scientist). Because of 

system scale and complexity, emergent properties are very likely to occur and the design process 

requires the inclusion of many system characteristics and impacts that were not adequately 

considered in previous design approaches (i.e., quality, reliability, survivability, sustainability and 

flexibility, etc.). 

 

Family-of-Systems (FoS): A portfolio or group of systems singularly managed (e.g. military or 

defense projects) for the combined capability accomplished by the interaction and cooperation of 

the individual systems. 

 

Flexibility: The property of a system that allows it to respond to changes in its initial objectives 

and requirements—both in terms of capabilities and attributes—occurring after the system has 

been fielded, that is, in operation, in a timely and cost effective way 

 

[System] Function: A characteristic task, action, or activity that must be performed to achieve a 

desired outcome.  For a product it is the desired system behavior.  A function may be 

accomplished by one or more system elements comprised of equipment (hardware), software, 

firmware, facilities, personnel, and procedural data. 

 

Life Cycle Value (LCV): The value delivered over the entire design life of a system where value 

is defined as total benefits, articulated and unarticulated, net of cost. 

 

Model: A representation of a real world process, device, or concept. 

 

Options-thinking (optionality): A conceptual design approach, or mindset, that seeks to identify 

new paths and illuminate opportunities that may have previously been underused or overlooked.  
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Unlike conventional decision analysis, which works with a predetermined set of possible decision 

paths, the options approach seeks to identify new paths and change the decision tree by adding 

flexibility for its own sake. 

 

Operational Environment: The circumstances, objects, and conditions that will inßuence the 

completed system; they include political, market, cultural, organizational, and physical influences 

as well as standards and policies that govern what the system must do or how it must do it. 

 

Operational Uncertainty: Related to the requirements (or demands) on, and environment of, a 

fielded engineering system.  Aspects include: political uncertainty (pertaining to funding 

instability), lifetime uncertainty (pertaining to uncertainty in performing to the requirements 

during system lifecycle), obsolescence uncertainty (pertaining to uncertainty of performing to 

evolving expectation during system lifecycle), integration uncertainty (pertaining to uncertainty 

in the interactions with other necessary systems), cost uncertainty (pertaining to uncertainty in 

meeting operating cost targets), and market uncertainty (pertaining to uncertainty in meeting the 

demands of a changing market environment).    

 

Operationalization: Research method terminology for the act of translating a construct into its 

manifestation—for example, translating the idea of design flexibility into the actual instantiation 

of options in the architecture, or translating the idea of what is desired to be measured into the 

real measure. 

 

Operational Scenarios (synonyms: vignettes, threads): Deliberately anticipated use cases that 

embody, or encapsulate, the necessary functions or behavior of a fielded system in a forecasted 

environment. 

 

Nadir: The direction looking directly below a location.  It orbital mechanics, the nadir vector 

points from the satellite location to the center of the earth. 

 

[System] Requirement: (a) A condition or capability needed by a user to solve a problem or 

achieve an objective. (b) A condition or capability that must be met or possessed by a system or 

system component to satisfy a contract, standard, specification, or other formally imposed 

document. 

 

Risk Management: An organized method, or process, for identifying and measuring risk and 

devising options for handling or mitigating risk.  Risk is a level of threat due to potential 

problems, where knowledge of the risk is an opportunity to avoid a consequence of occurrence. 

 

System: An interdependent group of people, objects, and procedures constituted to achieve 

defined objectives or some operational role by performing specified functions. A complete 

system includes all of the associated equipment, facilities, material, computer programs, 

firmware, technical documentation, services, and personnel required for operations and support to 

the degree necessary for self-sufficient use in its intended environment. 
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System Architecture: An abstract description of the entities of a system and the relationships 

between those entities, intended to yield certain primary functions, plus other properties referred 

to as ―ilities‖ (e.g., durability, maintainability, flexibility, etc.). 

 

Systems Engineering (SE): The process by which a customer‘s needs are satisfied through the 

conceptualization, design, modeling, testing, implementation, and operation of a working system. 

 

System-of-Systems (SoS): A configuration of systems in which component systems can be 

added/removed during use; each provides useful services in its own right; and each is managed 

for those services. Yet, together they exhibit a synergistic, transcendent capability. 

 

Uncertainty Management: An organized method, or process, for dealing not only with risk 

(level of threat for negative consequence), but with opportunities enabled by uncertainty.  High 

levels of uncertainty present both potential downside consequences and upside benefits. 

 

Value-centric: Engineering design focus, or perspective, that incorporates both cost and utility 

implications for design trade-offs and analysis. 

 

Value-robust (synonyms: value-sustainable, persistent value): The ability to deliver value 

despite changes in context and stakeholder desires over the lifecycle of the system.  Also, it is the 

ability to capture latent (hidden, unarticulated, dormant, or evolved) value.  
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CHAPTER I 

 

1 INTRODUCTION 

 

1.1 Motivation 

 Across a wide array of industries, organizations, projects, and disciplines, flexibility has 

become a key design concept.  Businesses adjust strategies and redeploy resources as the 

competitive and consumer environments change; they use knowledge and labor capital in 

innovative ways to meet the demands of the uncertain future.  Builders create reliable and safe 

structures that not only meet the demands of today, but have value across an extended lifetime 

where design loads may be subject to unforeseen change.  Software designers maintain ―hooks‖ 

in the code where additional features can later be included.  From structures and architecture (Fox 

& Yeh, 1999) to manufacturing lines (Browne et al., 1994), the concept of flexibility has been 

studied and implemented across a diverse landscape of disciplines.  This has yielded an equally 

diverse set of definitions, approaches, and implementation techniques.  In the design of large, 

complex engineering systems, where the stakes are often the highest, the importance of flexibility 

is well known, but the structured means of designing it into the system architecture has yet to be 

resolved.  System engineers have relied largely upon intuition and ad hoc methods, which are 

neither rigorous nor repeatable (Crossley, 2006).  The systems engineering community by and 

large has neither adopted the philosophy nor developed the techniques required to design 

appropriately flexible systems.  This motivates a rigorous examination of the way systems are 

designed and developed in particular relation to a system‘s ability to handle uncertainty and be 

valuable over the entire course of its design life. 
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1.2 Introduction 

 Simply understood, flexibility is the ability to respond to change.  In relation to an 

engineered system, flexibility is the property (or attribute) of that system which is capable of 

undergoing classes of change with relative ease (Allen et al., 2001; Bartolomei et al., 2006).  

Flexibility can allow an engineered system to better handle unpredictability in the operational 

environment, threats from competing systems, obsolescence of technology, and general 

uncertainty in future system demands (Saleh, Hastings, and Newman, 2003).   

 The traditional systems engineering (TSE) process (Sage & Rouse, 1999; INCOSE SE 

Handbook, 2004) has worked well for monolithic system design which predominantly 

emphasizes a ―design-to-spec‖ philosophy and manages uncertainty with safety factors derived 

from probabilistic analysis (de Neufville, 2004).  This process remains well suited for systems 

that maintain relatively stable requirements for which a robust design, defined by Chen and Lewis 

(1999), and Saleh, Hastings, and Newman (2003), can adequately handle uncertainty.  Modern 

engineering systems however are more expensive, complex, and interconnected than ever before.  

They operate longer and when utilized as part of a dynamic Family-of-Systems (FoS) or System-

of-Systems (SoS), are subject to higher degrees of uncertainty than their monolithic 

predecessors
1
.  This new breed of systems engineering problem requires more intentionality in 

handling risk and uncertainty.   

 The risk management practices associated with TSE have tended to focus on the 

mitigation of negative consequences, often disregarding uncertainties that create opportunities 

(Browning & Hillson, 2003).  Years of emphasis on reliability analysis has perpetuated the 

prevailing mantra, ―good designs never fail (Petroski, 1994).‖  This design philosophy is 

                                                      

1
 The increased complexity due to the larger number of systems, subsystems, and components creates more 

sources from which uncertainty can arise.  Longer time scales allow uncertainty to grow larger.  System 

interconnections and the associated uncertainty increase exponentially as systems are added. 
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distinctly one-sided.  Concentration on failure prevention alone does not reflect the overarching 

objective to maximize the life cycle value (LCV) of a system—that is the value derived over the 

life of the system (Browning, 2005).  Alternatively, a value-centric approach can harness 

uncertainty by recognizing the importance of proactively designing for opportunities (Browning, 

2005; Ross & Rhodes, 2007; Saleh, Jordan, and Newman, 2007).  High uncertainty therefore 

produces an opportunity to embed added value in a system design through the system‘s ability to 

flexibly adapt to emergent conditions.   

 

1.3 Integrated Design Flexibility Framework 

 While many authors have eloquently discussed the topic of flexibility (see Chapter II), it 

is not apparent that any have proposed a general design approach that can be readily implemented 

by system engineers on real projects.  The aim of this work is therefore: to develop a high level 

conceptual framework, with associated qualitative and quantitative techniques, that emphasizes 

compatibility with current systems engineering practices, and allows for informed and justified 

decisions regarding the incorporation of embedded flexibility in a system architecture.   

 The use of options, specifically ―Real Options‖ has been proposed as a way to 

operationalize the concept of flexibility.  Fundamentally, ―options thinking‖ recognizes the 

existence of value in securing the freedom of choice as new information is revealed.  Widely used 

in finance, options are typically contracts that allow the holder of the option to purchase (or sell) 

an asset (e.g. shares of common stock, other market traded security) at a predetermined exercise 

price at or before the expiration date.  Similarly, a real option is a right, but not an obligation, to 

take some action at a certain cost within or at a specific time period (Dixit & Pindyck, 1994; 

Trigeorgis, 1996; Luenberger, 1998; Amram & Kulatilaka, 1999; Brennan & Trigeorgis, 1999; 

Mun, 2002; Copeland & Antikarov, 2003).  A real option is not a contract to buy or sell an 

underlying financial asset; it is the ability to ―do something,‖ to take an action, or implement a 

change or alteration.   
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 de Neufville (2002) identified two types of real options: 1) real options ―on‖ projects, and 

2) real options ―in‖ projects.  Real options ―on‖ projects, similar to financial call options, give a 

business the right, not obligation, to invest in a project.  Technology and the engineering design 

of the project are treated essentially as a ―black-box.‖  These options are concerned with ―go‖ or 

―no-go‖ decisions and are predominantly defined as options for scaling, deferring, and 

abandoning a project.  Real options ―in‖ projects are internal to the design process, embedded in 

the architecture, and allow an engineering design to change as actual demands on the system 

develop.  Real options ―in‖ projects require in-depth technical domain knowledge to discover and 

exploit and have been applied to engineering design in an effort to ―design in‖ flexibility (de 

Neufville, 2003).  Browning and Engel (2008) proposed an additional classification for real 

options ―in‖ projects, called ―Architecture Options (AOs).‖  Adapted from Baldwin and Clark 

(2000), they define AOs in terms of system modularity, where each module in the system of 

interest is composed of a set of software and hardware components.  Modules, they argue, 

accommodate uncertainty by allowing particular elements in the architecture to be changed more 

easily after the fact, and in unforeseen ways, with minimal extra-module interaction.  The authors 

conclude that the more modules that exist within the system, the more options that are present, 

yielding a higher ―option value.‖  Whereas the extra-module interactions constitute the ―option 

cost.‖  This research has adopted the term ―architecture options,‖ but has defined this concept in a 

different way. 

 It is contended here that architecture options are not solely a function of the modularity of 

the system, but are instead an encapsulation of a set of physical design components (or design 

variables) that necessarily enable an identifiable function or capability of value.  Each AO must 

be tied to a function or functions that fulfill a desired stakeholder need, whether articulated or 

unarticulated by the stakeholder, whether known precisely or forecasted.  The AO value is then 

derived from the added capability enabled and not from the virtue of being modular.  

Furthermore, the AO cost is more generally a function of the implementation and operational 
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costs associated with the exercise of the option and not of the sheer number of interfaces present 

between modules (although interfaces can play a role in defining the implementation cost).  This 

distinction is important and will become apparent as the high level flexibility framework is next 

described. 

 A three stage approach has been developed in this research to discover, analyze and 

implement design flexibility in a system architecture.  This approach is pictorially illustrated in 

Figure 1.  Stage one deals with identifying the most promising regions in the system architecture 

for embedding AOs and subsequently developing detailed definitions for these candidate AOs for 

further valuation and selection.  After candidate AOs have been identified through the 

architecture screening process, they are next valuated either monetarily or through stakeholder 

utility functions.  A Real Options technique is extended to accomplish valuation which results in 

the mean option value and variance for each AO.  An optimal subset, or portfolio, of architecture 

options is then selected in stage three of this approach by solving the objective function for 

maximizing lifecycle value and minimizing portfolio risk.  AO risk is considered both in terms of 

the variance of the option payoff and the diversification of the underlying sources of uncertainty.     

 

 Stage 3 Stage 2 Stage 1 

Identify candidate 

architecture options 

Value architecture 

options 

Select optimal subset of 

architecture options 

 

Figure 1: Three stage integrated flexibility framework for identifying, valuating, and selecting 

architecture options 

 

1.4 Problem Statement and Research Question 

 System Engineers are faced with the challenge of designing and developing complex 

systems under uncertainty.  The demands for increased design life, higher complexity, broader 

interconnectedness, and integration within a family-of systems have all contributed to higher 
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levels of uncertainty in system operation.  Current systems engineering and risk management 

methods, by focusing on negative outcome prevention, do not effectively handle this uncertainty.  

Flexibility embedded in the system architecture has been proposed as a technique to manage 

operational uncertainty and capture its upside potential.  However, a formalized flexible design 

process does not currently exist.  This presents a need for a disciplined and integrated uncertainty 

management approach that yields lifecycle value-driven systems that can better handle the 

uncertainty in the operational environment.   

 

Research Question: 

How can system engineers design appropriately flexible systems that can deliver 

sustained value in the face of operational uncertainty over the system lifecycle? 

 

1.5 Research Goal and Objectives 

 The goal of this research is to develop an uncertainty management approach (framework) 

within the systems engineering process that utilizes design flexibility to facilitate architecture 

decisions based on the maximization of life cycle value.  Four distinct objectives have been 

identified and pursued in this research: 

A. Develop a process for identifying candidate architecture options 

B. Develop a systems engineering-compatible technique for valuing system architecture 

options 

C. Develop an approach to identify an optimal subset of architecture options subject to 

budget and risk tolerance constraints 

D. Demonstrate the flexibility framework by its application to an engineering system design 

problem and evaluate the approach for its extensibility into systems engineering practice. 
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1.6 Research Approach 

 In order to address the research question, the research design involves four main thrusts: 

knowledge capture and synthesis, theory and methodology development, framework integration, 

and framework implementation.  Knowledge capture and synthesis explores how existing ideas 

and theoretical constructs currently used to understand flexibility can be grafted into new flexible 

design solutions.  Theory and methodology development seeks to generate novel concepts and the 

necessary tools to support the framework development.  Framework integration is where the 

proposed new methods are fit together as a cohesive whole.   Framework implementation uses a 

real world design problem to test the proposed framework and characterize the salient issues for 

the system architect (e.g. data availability and collection, scenario planning, cost estimation, etc.).   

Framework implementation generates insights into the sensitivities of the design solution to the 

input parameters and also allows for an analysis of the limits, applicability, and deployability of 

the research.  This research approach is captured in the flow diagram in Figure 2. 

 

• Life Cycle Value 

and Value-Centric 

Design

• Architecture Options 

(AOs)

• Flexibility Framework

Scenario 

Development

DoDAF and 

Traditional SE

Tradespace 

Exploration

Assess, Document, and Iterate

Flexibility

- Identify AOs

- Value AOs

- Select AOs

• TICAS satellite design

• Design Structure 

Matrix

• Real Options

• Portfolio Optimization

Theoretical 

Construct

Operationalization

Methodology  

Development

Implementation

Framework 

Integration

DoDAF: Department of Defense Architecture Framework

SE: Systems Engineering

 

Figure 2: High level research approach. 
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1.7 Research Scope 

 Due to the expanse and complexity of the practices and techniques used to design 

engineered systems, a number of assumptions are required to limit the scope of any targeted 

investigation.  In particular, the scope of this research is limited by the following assumptions: 

1. The traditional systems engineering process as documented in Sage & Rouse (1999) and 

the INCOSE SE Handbook (2004) is adopted as the underlying design philosophy.  This 

systems engineering practice follows the process of identification of customer needs, 

requirements analysis, functional analysis and decomposition, design synthesis and 

tradeoffs, and system verification/validation.  This process provides the foundation for 

the eight step screening process presented in Chapter III. 

2. A definition of flexibility is adopted that emphasizes a system's response to uncertainty in 

the operational environment which occurs after the system has been fielded (Saleh, 

Lamassoure, and Hastings, 2002).  This research therefore excludes the type of flexibility 

found within the design process which is used to accommodate changes in requirements 

throughout the system development. 

3. Architecture options are defined to be physically independent.  This allows for the 

independent evaluation of the benefits, costs, and implementation characteristics of each 

architecture option irrespective of any potential physical overlap of the affected design 

parameters. 

4. A baseline system architecture is assumed to exist which meets at least the threshold 

requirements for the critical mission.  This allows for the evaluation of architecture 

options as an additional characteristic of the system and does not necessitate a full system 

optimization in assessing each individual architecture option. 

5. The value of each architecture option is described by the mean and variance of the option 

payoff.  Other statistical characteristics like the median or maximum values can be used 
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to enhance the understanding of the architecture option, but are not formally considered 

in the valuation and selection techniques. 

6. Selection of an optimal portfolio of architecture options in Chapter V is based on the 

economic or financial understanding of risk.  For the purposes of portfolio optimization, 

risk is defined in this research as the variance (or standard deviation) of the portfolio 

return (Markowitz, 1959).  In this research, risk is the uncertainty in the value of the 

architecture option.   Other definitions of risk which reflect characteristics like 

probability of failure (component level, system level, or mission level), technology 

maturity, or other external risks (e.g. environmental, societal, etc.) are not considered in 

this research. 

 

1.8 Thesis Outline 

 The structure and flow of the thesis is depicted in Figure 3 and described as follows.  

Chapter II is an overview of flexibility in system design.  This chapter covers current ways of 

thinking about flexibility and relevant valuation techniques.  Special focus is devoted to how the 

measurement of flexibility in management, economics, and finance relates to flexibility 

embedded within the system architecture.  Chapter III contains the first stage in the integrated 

flexibility framework: identification of candidate options for flexibility through an architecture 

screening process.  This chapter develops an eight-step process that leverages the design structure 

matrix to organize and identify clusters of design variables that are sensitive to changes in system 

demands.  Chapter IV proposes a new, intuitive methodology for valuing real options embedded 

in the system architecture.  This method is not constrained by many of the assumptions needed 

for traditional option valuation and emphasizes compatibility with the systems engineering 

process.  Mathematical measures of sensitivity are formulated to show how the option value 

changes as the input parameters change.  Chapter V develops a portfolio optimization technique 

that can be used to select an optimal subset of architecture options subject to the budget and risk 



10 

tolerance of the stakeholder.  Chapter VI demonstrates the proposed framework by its 

application to an electro-optical spacecraft design problem.  The methodology and related 

analytical techniques are applied for each stage of the integrated flexibility framework, followed 

by an assessment of its benefits and challenges.  Chapter VII summarizes the dissertation and 

provides recommendations for areas of future research. 

 

Chapter I: Introduction

Chapter II: Flexibility in 

Engineering Systems

Chapter III: Identification of 

Candidate Architecture Options

Chapter IV: Valuation of 

Architecture Options Embedded 

“In” Engineering Systems

Chapter V: Selection of 

Optimal Portfolio of 

Architecture Options

Chapter VI: Tactical Imaging 

Constellation Architecture Study

Chapter VII: Conclusion and 

Future Research

Literature 

Review

Proof of 

Concept

Synthesis of 

Flexibility 

Framework

 

Figure 3: The dissertation flow. 
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2 CHAPTER II 

 

2 FLEXIBILITY IN ENGINEERING SYSTEMS:  

2 A LITERATURE REVIEW 

 

2.1 Introduction 

 This dissertation chapter explores the idea of flexibility and its introduction into system 

design, both in theory and practice.  The topic is first motivated by explaining the theoretical 

construct of life cycle value which drives the desire for system flexibility.  The concept and 

definition of flexibility is formally introduced and differentiated from its close synonyms.  The 

context from which flexibility emerged is explored as well as some of the techniques that have 

previously been proposed to measure it.  Finally, the conclusion is reached that there does not 

currently exist a formalized or codified process with associated quantitative tools that allow for a 

rigorous and defendable assessment of flexibility in the system architecture.   

 

2.2 Value Centric Design as a Theoretical Construct for System Flexibility 

 The systems engineering and design community has seen an emphasis and proliferation 

of cost models
2
.  Most projects employ some form of Life Cycle Cost (LCC) analysis or 

Independent Cost Estimate (ICE) and utilize techniques like Cost Estimating Relationships 

(CERs), ―design to cost,‖ or Cost as an Independent Variable (CAIV) to support the systems 

engineering and trade study process.  To an outside observer, this emphasis on understanding 

project cost might indicate that engineering projects are exclusively cost sinks (Larson, Wertz, 

and D'Souza, 2005).  While cost modeling can be useful, emphasis in the design community 

                                                      

2
 Examples: SMC/Tecolote‘s Unmanned Space Vehicle Cost Model Version 8 (USCM-8), NASA/Air 

Force Cost Model (NAFCOM), Aerospace Corporation‘s Small Satellite Cost Model (SSCM), PRICE 

Systems cost model, Galorath‘s SEER, Aerospace Corp‘s CoBRA. 
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should also be placed on revenue and utility models (Saleh, Jordan, and Newman, 2007).  

Decision-makers must understand both the cost and revenue/utility of a system to adequately 

assess its value.  Ross (2006) defines value as the relative worth, importance, or quality of a thing 

with respect to its ability to accomplish its purpose or effect.  Simply understood as a perceived 

benefit net of cost, value has widely been proposed as a more complete and appropriate metric for 

system design (Browning, 2005; Ross, 2006; Ross & Rhodes, 2007; Saleh, Jordan, and Newman, 

2007; Browning & Engel, 2008).    

 Ross and Rhodes (2007), and Ross (2007) extended the idea of value-centric design by 

referring to the concept of value robustness.  They argue that for increasingly dynamic and 

interconnected environments, systems must be designed for enduring value; successful design 

strategies must create systems that can operate in a changing context, by adapting to shifting 

stakeholder needs and effectively leveraging uncertainty.  A value robust system can best deliver 

a sustained level of value, even capture latent or unarticulated stakeholder value, as new demands 

and opportunities arise throughout the entire system life.  As a design philosophy, one that is cost-

focused may attempt to minimize LCC by selecting the low cost approach that meets the 

threshold level customer requirements.  This approach does not necessarily reflect a best value 

solution.  In comparison, a value-focused (or value-centric) approach will seek to maximize LCV 

and will more fully consider design solutions that cost more, but deliver higher levels of value 

over the system lifecycle.  The desire for value robust systems that can operate under higher 

levels of operational uncertainty will inevitably drive the system architect toward more flexible 

design solutions that can deliver value even in the changing context.   

 

2.3 Introduction to Flexibility 

 Systems are constantly faced with unpredictability in the operational environment, threats 

from competing systems, obsolescence of technology, and general uncertainty in future system 

demands.  An analyst would conclude that systems that live longer and deliver more value are 
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those that can more effectively deal with uncertainty and change.  From a designer‘s perspective: 

if longer lifetime and increased value delivery are desired for a system, flexibility and 

adaptability must be embedded in the design (Saleh, 2003).  A unique relationship can be 

established from these observations—that is, the relationship between uncertainty, flexibility, and 

design life.  This is conceptually depicted in Figure 4.  Higher uncertainty and longer design life 

require increased flexibility; alternately stated, more flexibility allows a system to operate longer 

and cope with more uncertainty. 

 

 

Figure 4: Conceptual model of the relationship between flexibility, uncertainty and design life.  

Longer design life and higher uncertainty necessitate increased system flexibility; in other words, 

highly flexible systems can handle more uncertainty over an extended useful life. 

 

 Although this relationship appears evident and foundational, system engineers have 

attempted in the past to accomplish one without the other.  The design life of some  current 

systems continues to rise while the concept of system flexibility has struggled to establish a 

codified definition, let alone a formal implementation process.  Earth orbiting satellites, for 

example, are increasingly being developed for life spans of 15 years or more (e.g. 

geosynchronous communication satellites).  This practice is driven by high launch costs, but is 
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steeped more in the tradition of net present value (NPV) techniques that rely on out-year cash 

flows for investment and budgetary justification.  These estimates are many times based on static 

assumptions--a snapshot in time--and do not reflect the dynamic operational environment.  

 

2.4 Defining Flexibility 

 Intuitively, flexibility is interpreted as the ability to handle change.  Somewhat more 

thoroughly, Allen (2001) and Bartolomei (2006) describe flexibility as ―the property (or attribute) 

of a system that is capable of undergoing classes of changes with relative ease.‖  But what is 

‗change‘ and how is ‗relative ease‘ interpreted?  At what point in the system lifecycle does this 

‗change‘ occur? 

 The appropriateness of a definition truly depends on the industry and application.  

Although insightful literature exists in relation to flexibility in manufacturing systems (Klahorst, 

1981; Browne et. al., 1984; U.S.O.o.T. Assessment, 1984; Slack, 1987; Sethi & Sethi, 1990; 

Upton, 1995; De Toni & Tonchia, 1998; Nilchiani, 2005) and flexibility of the design process 

(Thurston, 1991; Wallace & Jakiela, 1996; Chen & Yuan, 1999; GAO-01-288, 2001; Saleh, 

2001), this research has concerned itself primarily with flexibility as applied to engineering 

systems and management.  There are a number of useful ways to define flexibility in engineering 

systems and management—some more conceptual and some aimed at quantification.  This 

research has adopted ideas in both categories as a foundation for the proposed flexibility 

framework and related work.  Any definition of flexibility, according to Saleh, Hastings, and 

Newman (2003), must address the following: 

 The time associated with the occurrence of change, i.e., when the ‗change‘ happens 

within the lifecycle of the system 

 What is changing, e.g., the system‘s operational environment, the system itself, or the 

customer‘s desires or demands for the system 

 Metrics of flexibility to enable the ranking of flexible design solutions. 
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 Chen and Lewis (1999) attempt to clarify the understanding of ‗change‘ such that 

flexibility is like ―[…] a system of roads that permits a driver to reach from one point to another 

using several paths; it is the ease of programming the system to achieve a variety of functions, or 

the ease of changing the system‘s requirements with a relatively small increase in complexity or 

rework.‖  These ideas are closely related to the concepts of network flexibility, where higher 

number of interconnections between nodes facilitates ease of movement and choice between 

multiple paths (Moses, 2003).  Like the human brain changes by forming new pathways in order 

to complete new tasks, some have described 'changes' within flexible systems in a similar context. 

 From a system modeling perspective, Shaw, Miller, and Hastings (2001) argue, with an 

analysis of a communication satellite system, that flexibility is defined by the ease of movement 

from one design point to another on the tradespace design surface.  This surface represents 

combinations of architecture design variables with the cost per function metric used to describe 

the ‗ease‘ of movement.  In contrast to strict multidisciplinary design optimization which searches 

for peaks and valleys, Shaw et al. described a flexible architecture as one that looks for plateaus 

or transitional regions in the tradespace. 

 Saleh, Lamassoure, and Hastings (2002) define flexibility in a way that emphasizes the 

timing and nature of the ‗change.‘  Assuming that design modifications are used to accommodate 

any changes prior to the system being fielded: ―[flexibility is] the property of a system that allows 

it to respond to changes in its initial objectives and requirements (both in terms of capabilities and 

attributes) occurring after the system has been fielded, that is, in operation, in a timely and cost 

effective way.‖  This definition implies that flexibility is necessary as a response to uncertainty in 

use—for if it were known exactly how the system was to be used over its lifetime, an appropriate 

design could exist from the beginning and flexibility would be completely unnecessary.   

 With its emphasis on changes occurring during operation (defining the ‗when‘) and focus 

on changes to initial objectives (defining the ‗what‘), Saleh‘s definition has been adopted 

throughout this dissertation with the terms ―system‖, ―design‖, ―requirements‖, ―capabilities‖, 
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and ―attributes,‖ used in the sense defined by IEEE Std 1223 (1998).  This definition serves as the 

foundation for our conceptual understanding of flexibility and responds to the first two needs 

identified by Saleh, Hastings, and Newman (2003) above. 

Flexibility is the property of a system that allows it to respond to 

changes in its initial objectives and requirements—both in terms 

of capabilities and attributes—occurring after the system has been 

fielded, that is, in operation, in a timely and cost effective way.  
 

 

2.4.1 Flexibility in Engineering Systems 

 Engineering systems are human-designed, technology-centered systems that are 

composed of interacting components and serve a given purpose (Moses, 2004).  These systems 

can have significant complexity resulting from numerous interconnections, interactions, and 

interdependencies that make the system difficult to predict, manage, and design (Allen et al., 

2001).  An acronym given to a particular class of these systems is CLIOS: a Complex Large-

scale, Interconnected, Open Socio-technical System.  This type of engineering system has 

interactions not just between components and subsystems, but between social, political, 

economic, institutional, and physical systems (Sussman, 2000; Dodder & McConnell, 2005).  

Examples of CLIOS systems can be found throughout the transportation, aerospace, energy, 

manufacturing, and telecommunication sectors (de Weck & Eckert, 2007).   

 Engineering systems are many times required to operate in highly uncertain and rapidly 

evolving environments which make the system behavior difficult to predict.  This uncertainty 

may occur because of changes in a dynamic market or in the wider economy.  Changes in 

strategy, public policy, competitive forces, and technology all influence a customer‘s demands on 

a system and contribute to the higher levels of operational uncertainty (de Neufville, 2004).  As 

engineering systems across the spectrum are desired to last longer and deal with more 

uncertainty, the importance of flexibility in the system design becomes not just apparent, but 

imperative. 
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 Numerous authors have taken up the challenge of defining and valuing flexibility in 

engineering systems, and while many of these methods have been elucidating and insightful, their 

mostly domain specific, qualitative, and descriptive nature has severely limited their general use 

and adoption by the systems engineering community.   

 A variety of domain specific methods to value flexibility have been proposed.  For 

example, in the spacecraft design domain,  Shaw, Miller, and Hastings (2001) introduced a cost 

per function (CPF) metric which represents the average cost of providing satisfactory satellite 

communication service between point A and point B within a defined market.  The elasticity of 

the CPF to changes in four ―quality-of-service‖ parameters—signal isolation (EIs), information 

rate (ER), information integrity (EI), and information availability (EAv)—is proposed as a measure 

of flexibility.  The metric is expressed as: 
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Type II adaptability is defined as the proportional change in CPF given a mission modification X, 

expressed as: 
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Type II adaptability is proposed as a metric of architecture comparison on the basis of how 

sensitive the communication satellite is to a mission change. 

 Nilchiani and Hastings (2003) explored the idea of provider-side flexibility using the 

application of an orbital transportation network (OTN), composed of satellites, orbital 

maneuvering vehicles, fuel depots, and service stations.  Total provider-side service flexibility 

was calculated as the weighted average of the three flexibility types: mix flexibility (long-term), 

volume flexibility (mid-term), and emergency service flexibility (short-term).  Mix flexibility is 

the ability to offer a variety of services with a given architecture and is expressed as: 
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where E is the total system lifecycle cost, S is the total lifecycle revenue, and m indicates multiple 

types of services are offered.  Volume flexibility is the ability to respond to changes in quantity 

demanded and is expressed as: 
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where IRisk-free represents the risk-free return on investments, and p(S) is the lognormal distribution 

of system revenues over the range of uncertainties.  The numerator represents the total discounted 

lifecycle profit.  Emergency service flexibility is the ability to provide non-scheduled services and 

can be understood as the excess annual servicing capability of the system divided by the current 

level of annual service: 

current

E
Cap

Cap
f max  

The total service flexibility is calculated as the weighted average of the three flexibility types 

with wi as the user-defined weight: 
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 Saleh (2001) proposed three types of customer-side flexibility along the two dimensions 

of system performance and mission: life extension, system upgrade, and mission change.  While 

Joppin and Hastings (2003) extended this idea with the use of the Hubble Space Telescope to 

demonstrate the value of customer-side flexibility in a scientific mission.  McVey (2002) 

proposed a framework for measuring on-orbit servicing flexibility, combining the economic 

aspects of markets with technological aspects of development, production, and operation costs.  

Each of these authors have taken a highly domain specific approach and have focused mainly on 

the analytical assessment of flexibility in space systems—a description rather than a prescription.  

Useful for particular applications and assessments, these metrics are limited in their extensibility 

to the wider systems engineering process. 

 Other authors that have contributed more generic flexibility metrics which are not 

specifically limited to a particular application.  These approaches benefit from their general 

usefulness as mental models, but instead are limited by their mostly descriptive nature.  Palani-

Rajan et al. (2005) described a change modes and effects analysis (CMEA) process in order to 

introduce a change potential number (CPN).  The CPN is based on an empirical study of how 

flexibility is dependent on the number of parts, functions, interfaces, types of interfaces, modules, 

and the manner of module arrangement.  It is described as a number between one and ten that 

represents the product flexibility—one being very low flexibility requiring a new product to 

accommodate change, ten being very high flexibility requiring only very minor modification to 

accommodate change.  This metric is calculated as: 
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where F is design flexibility, O is occurrence, R is readiness, and N is the maximum number of 

potential change modes (or causes of change).   

 Browning and Engel (2008) defined a metric called the system adaptability factor (SAF), 

derived from the ISO/IEC 9126-1 standard for software engineering quality, combining six 

categories: functionality (F), reliability (R), usability (U), efficiency (E), maintainability (M), and 

portability (P).  The SAF is proposed as the weighted average of the six constituent metrics: 
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 Nilchiani (2005) extended the generality even further by proposing a six-element 

framework outlining the widely common elements of flexibility: 

1. Boundary of the system to be studied 

2. Aspects of system to which flexibility is applied 

3. Time window in which flexibility is observed in the system 

4. The uncertain and probabilistic nature of the future of the system 

5. The degree of access to the system in order to apply the option or flexibility 

6. Responses of the system to change through changes from the owner‘s, designer‘s, 

operator‘s, and user‘s perspective in the value delivery. 

 

The author concludes that the final element, response to change, is the most salient as it 

characterizes the change in value-delivery which defines flexibility.  He writes, ―[...] the existence 

of a proper, timely, and cost-effective response is the difference between a flexible and a rigid 

(non-flexible) system.‖ 

 Ross and Hastings (2006), and Ross, Rhodes, and Hastings (2007) attempt to address the 

question of the cost feasibility of flexibility by proposing a conceptual metric termed filtered 

outdegree.  This metric represents the number of potential change mechanisms available to a 

design (i.e., transition paths to alternate design solutions), filtered by a cost threshold for adopting 

the transition path.   

 Many of these methods and metrics have emerged from the engineering community, 

however, application to systems engineering and design practice is limited by the qualitative, 
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conceptual, descriptive, or case-specific nature of each approach.  Alternatively, the management 

and finance communities have begun to embrace a different approach to flexibility which stems 

from widespread dissatisfaction with Net Present Value (NPV) analysis (Schwartz & Trigeorgis, 

2001).  It has been widely recognized in the finance community that NPV undervalues projects 

that contain flexibility and strategic interactions; these shortcomings have been known for a 

century (Fisher, 1907; Dean, 1951), but a means of addressing them had been unclear until 

recently.  Myers (1984) first articulated a concept he coined ―real options,‖ which has emerged as 

a way of thinking that helps managers formulate their strategic options and understand the value 

of future opportunities created by today‘s investment (Amram & Kulatilaka, 2000).  Real Options 

Analysis (ROA) builds upon the economic theory surrounding financial options valuation and has 

been proposed as a leading technique for analyzing and implementing flexibility early in the 

product or system lifecycle (Trigeorgis, 1996; Amram & Kulatilaka, 1999; Schwartz & 

Trigeorgis, 2001; Copeland & Antikarov, 2003; Mun, 2006).  When embedded within a system 

design, real options have been characterized as architecture options (Browning & Engel, 2008).  

This type of ―options thinking‖ establishes a theoretical basis for the quantitative modeling of 

flexibility in the design process (de Neufville, 2003).  It offers a way for the system architect to 

understand how design decisions today will affect the system‘s ability to deliver value throughout 

its lifecycle.  The architecture option approach is extensible to a variety of engineering disciplines 

(i.e., it is not application specific) and provides a means to ―design-in‖ flexibility from the front 

end rather than assess or describe it at the back end.  The idea of optionality has therefore been 

adopted as fundamental to the operationalization of flexibility in engineering systems. 

 

2.4.2 Flexibility in the Design Process 

 System requirements are rarely static.  Requirements are more often in a state of revision 

and flux throughout the system development cycle.  Funding changes, technology evolution, and 

uncertainty in the strategic and tactical environment can cause the stakeholder to continually 
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adjust his demands on the system (Saleh, 2001).  Uncertainty in the system's requirements can 

cause significant cost and schedule impacts.  For example, the schedule for the Global Positioning 

System (GPS) Block IIF spacecraft was extended to nearly double the time originally estimated 

due to changes and additions to the original system requirements.  Illustrated in Figure 5, new 

requirements on a system that arise during the development cycle can serious and costly design 

modifications.  
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Figure 5: Result of requirements instability on spacecraft development schedule.  Dark blue 

represents time required to PDR, maroon is time to CDR, light blue is time to delivery. 

 

In dealing with this reality, Chen and Lewis (1999) pose the following question:  

―How does one capture the uncertainty—which characterizes the early stages of 

design—and offer flexibility in specifying the design requirements so that the 

designs that are marginally outside the precise level of performance are not 

worthless?‖ 
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 It is clear that flexibility also plays a role and can be defined in relation to the uncertainty 

present within the design process.  There is a major distinction here which should be noted.  Both 

process and design flexibility, as defined earlier, describe an ability to handle change—process 

flexibility handles change prior to the fielding of the system, while design flexibility handles 

change after fielding.  This distinction is illustrated in Figure 6.   

 

Conceptual 

design

Preliminary 

design

Detailed    

design
Production

System 

operations

SDR PDR CDR LRR

System 

retirementIOC

Requirement changes occurring in this period 

necessitate design process flexibility

Requirement 

changes in this 

period necessitate 

design flexibility

Conceptual 

design

Preliminary 

design

Detailed    

design
Production

System 

operations

SDR PDR CDR LRR

System 

retirementIOC

Requirement changes occurring in this period 

necessitate design process flexibility

Requirement 

changes in this 

period necessitate 

design flexibility

 

Figure 6: Distinction between design process flexibility and design flexibility. 

 

 Various authors have attempted to quantify flexibility in the design process and some of 

those approaches are introduced here.  Thurston (1991) proposed a utility theory-based preference 

function to model the relationship between design decisions and the ultimate overall worth of a 

design.  Wallace and Jakiela (1996) suggested a specification-based design evaluation method 

that imitates how specifications are used by product designers in a multidisciplinary design 

environment.  Messac (1996) developed a "physical programming" approach that utilizes the 

aggregate preference function to reflect the preferences expressed in the class function of each 

attribute.  Chen and Yuan (1999) proposed a probabilistic design approach that introduces the 

design preference index (DPI) and a preference function that measure the design flexibility and 

the subjective degree of desirability for each level of a performance attribute, respectively.  The 

DPI is defined as the expected preference function value of design performance within the range 

of design solutions and is expressed as: 
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where P(y) is a function defining the relationship between the degree of desirability P and the 

level of performance.  It is defined between zero and one: one being fully acceptable or desired, 

zero being unacceptable.  The probability density function, f(y), describes the performance 

distribution when assuming random variations of designs in the box formed by the design ranges 

±Δy.   

 Flexibility in the design process has been predominantly understood as a type of give-

and-take relationship between the designer and customer.  It is the combination of ―[...] the 

customer‘s ability and willingness to lower product expectations, and the product developer‘s 

willingness and ability to invest more resources to reduce technical risks and other gaps before 

program start (GAO-01-288, 2001).‖  The ability to balance the customers' preferences (and 

degrees of satisfaction) with the realities of increased cost and schedule ultimately defines how 

flexible the design process is perceived to be. 

 

2.4.3 Flexibility in Manufacturing Systems 

 Nowhere has flexibility been studied and applied more than in manufacturing systems.  

Dynamic markets, product customization, shorter product cycle times, and global competition 

have spurred the desire of businesses to implement flexibility in manufacturing as a competitive 

advantage.  The emergence of computers and automation technology has contributed the 

necessary tools for the vision of flexible manufacturing to become realized.  Publications in this 

area are prolific and the sheer volume of literature is daunting.  There exists a wide variety of 

perspectives, formulations, and applications for flexible manufacturing systems (FMS) that range 

from the design of manufacturing cells and machine placement to scheduling, loading, and 
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control.   This section will give an overview of definitions and formulations of FMS to establish 

the context from which the current understanding of system design flexibility arose. 

 It was well known in early manufacturing that jobs spent a high proportion of time 

waiting for other jobs to clear a particular process and also for machines to be set-up.  Early in the 

1970‘s it was recognized that computers and numerical techniques could help automate job 

routing and control the manufacturing process—presumably, this would lead to higher efficiency.  

FMS was thereafter conceived.  The U.S. Office of Technology Assessment (1984) defined FMS 

as:  

―[…] a production unit capable of producing a range of discrete products with a 

minimum of manual intervention.  It consists of production equipment work-

stations (machine tools or other equipment for fabrication, assembly or 

treatment) linked by a materials-handling system to move parts from one 

workstation to another, and it operates as an integrated system under full 

programmable control.‖ 

 

More concisely, a FMS is a manufacturing system in which there is some amount of flexibility 

that allows the system to react in the case of changes.  Manufacturing flexibility generally falls 

into two broad categories: machine flexibility, and routing flexibility.  Machine flexibility is the 

system‘s ability to be changed to produce new product types and perform a different order of 

operations.  Routing flexibility is the system‘s ability to use multiple machines to perform the 

same operation and to absorb large-scale changes in volume, capacity, or capability.  Klahorst 

(1981) proposed that flexible manufacturing systems are comprised primarily of work machines, 

a material handling system, and a central control computer.  Other authors described 

manufacturing flexibility as a filter-buffer relationship, where flexibility acts as a buffer to the 

system against external perturbations; flexibility acts essentially as an uncertainty absorber (De 

Toni & Tonchia, 1998).  Slack (1987) proposed a numerical description of manufacturing 

flexibility based on three values: the range of possible states, the time needed to move from one 

state to another, and the cost required to change the state.  Upton (1995) focused on the system's 

ability to react to change by including a constraint to require little penalty in time, effort, cost, or 
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performance to do so.  Browne et. al. (1984) and Sethi and Sethi (1990) were some of the earliest 

works that provided a comprehensive classification of flexibility with eight and eventually eleven 

dimensions: machine, process, product, routing, volume, expansion, operation, production, 

material, program, and market flexibility.  An ideally flexible system, they argue, would have the 

maximum amount of each of these flexibility types, constrained only by cost. 

 Manufacturing systems provided the early test bed and proving ground for many ideas in 

flexibility.  Many of these ideas have been mirrored for application to engineering systems.  To 

mention a few: Ross and Hasting's (2007) understanding of "changeability" resembles the De 

Toni and Tonchia's (1998) idea of flexibility as an uncertainty absorber; the "filtered outdegree" 

metric is conceptually patterned from Upton's ideas on flexibility cost constraints; the 

comprehensive classification of flexibility, whether with six-elements (Nilchiani, 2005) or eleven 

(Sethi & Sethi, 1990), is used in similar fashion; the System Adaptability Factor proposed by 

Browning and Engel (2008) has an early manufacturing analogue in the aggregation of 

constituent flexibility factors proposed by Browne et. al. (1984). 

 A massive volume of mathematical formulations exist in devising metrics for FMS.  

While not presented here, an extensive review can be found in Nilchiani (2005).  The existing 

literature provides a wide variety of manufacturing flexibility measures and frameworks.  Most of 

these measures are of particular application to manufacturing and cannot be generally applied to 

other types and fields of engineering activities.  However, some fundamental ideas and metrics 

have reappeared in the emerging context of engineering system design.  In the wider sense, these 

measures have elucidated the context from which our current understanding of flexibility has 

emerged while having the potential to help guide our future steps.   
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2.4.4 Flexibility in Management 

 Managerial flexibility
3
 is management‘s ability to shift factors of production and 

allocate/transfer resources within the organization (Allen & Pantzalis, 1996).  Alternatively, 

management harnesses flexibility when decisions can be postponed until more information is 

available, minimizing an organization‘s exposure to uncertainty.  In either case, a plan of action is 

considered flexible when many contingencies exist, allowing management to alter course, defer 

decisions, and expand investments in light of uncertainty.   

 Managerial flexibility can be understood in the context of decision tree analysis (DTA) 

and real options (RO) thinking.  Traditional discounted cash flow (DCF) methods used by 

management to value projects and decisions have increasingly been subject to harsh criticism for 

ignoring the value of managerial flexibility.  This has led to a growing body of literature that has 

established the theoretical foundation for applying DTA and RO to the managerial decision 

process (Trigeorgis, 1996; Amram & Kulatilaka, 1999; Schwartz & Trigeorgis, 2001; Copeland 

& Antikarov, 2003; Mun, 2006).  The real options technique, by waiting to make decisions that 

are subject to uncertainty, allows for downside protection and also upside opportunity.  This topic 

will be discussed in detail in a subsequent section devoted to real option valuation. 

 

2.4.5 Flexibility Versus Robust Design 

 Although similar, in that flexibility and robustness are both characterized by the ability to 

handle change, these two attributes have different sources and responses to change which should 

be clearly distinguished and disentangled.  Saleh (2001) defines robustness as:  

―[…] the property of a system which allows it to continue satisfying a fixed set of 

requirements, in the environment or within the system itself, despite changes 

occurring after the system has entered service from the nominal or expected 

environment or system design parameters.‖ 

                                                      

3
 The expression was introduced by Trigeorgis & Mason (1987) 
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In comparison, flexibility implies the ability of the system design to handle changes in 

requirements (i.e. new functionality after fielding).  Saleh uses an insightful example of designing 

a system to last 50 to 100 years.  What major challenges would this system face?  He suggests 

that one would be primarily concerned with maintaining current functionality throughout the 

design life (indicative of design robustness), and creating new functions for changing 

requirements (indicative of design flexibility).  This relationship between changes in the system‘s 

environment and system objectives can be conceptually illustrated with Figure 7. 
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Figure 7: Flexibility and robustness as a function of environment and system’s objectives, adapted 

from Saleh (2001). 

 

2.4.6 Flexibility and the "ilities" 

 Traditional design criteria such as performance, cost, schedule, and risk have maintained 

preeminence in system design decisions.  However, non-traditional evaluation criteria 

(collectively referred to as the ―ilities‖) have become of greater interest as designers are more in 

tune with how the system delivers value over time.  The ―ilities‖ offer something different than 

the traditional static snapshot; they corporately define the degree to which systems are able to 

maintain or even improve function in the presence of change (McManus et al., 2007).  These 
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―ilities,‖ for example versatility, changeability, robustness, adaptability, flexibility, scalability, 

modifiability, and survivability, can be defined in terms of: 

1. What changed? 

2. Who or what instigated the change? 

3. What is the mechanism of change? 

4. What is the change effect? 

 

 McManus et al. (2007) proposed a three-dimensional framework to answer the first 

question of ‗what' changed.  Changes, they argue, occur in the environment or context, in the user 

expectations or needs, and in the form of the systems themselves.   Adding the fourth dimension 

of time allows the system engineer to interpret the ―ilities‖ as a method of navigating these three 

types of change over the system operational life.  The ―ilities‖ corporately provide ―a strategy for 

system change in response to changes in needs and context.‖  To illustrate this idea, McManus et 

al. proposed Figure 8 to represents the response of a system over various time increments (or 

epochs), given changes in the environmental context and user expectations.  A system is 

considered robust if performance continues to exceed expectation given a change in context 

(epoch 2) or a change in needs (epoch 3).  A system that can satisfy diverse expectations (epoch 

4) or the addition of a new metric is considered versatile.  

 

 

Figure 8: Illustration of system "ility" response to changes in context and need, source McManus et 

al. (2007). 
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 Ross, Rhodes, and Hastings (2007) proposed a mental model to clarify and quantify 

questions 2, 3, and 4 from above.  ―Changeability‖ is first defined as the generic, overarching 

umbrella under which the other ―ilities‖ reside—the ability of a system to alter form or function at 

an acceptable level of resource expenditure.  The change event is then said to have three aspects: 

the agent of change (who or what instigated the change), the mechanism of change, and the effect 

of change.  If the change agent is internal to the system (i.e. the system recognizes a need and 

changes itself autonomously), the change under consideration is characterized as an adaptability-

type change.  If the change agent is external to the system (i.e. something external must act on the 

system to implement a change), the change under consideration is characterized as a flexible-type 

change.  If no change agent exists, the system is considered rigid.  Next, the change mechanism 

defines the path by which the system can transition between its prior and post states.  The more 

transition paths, or mechanisms, that exist between states, the more changeable a system.  

Finally, the change effect characterizes the difference between the prior system state and the 

changed state.  When the change effect is a change to the level of an existing parameter (whether 

physical or functional), the system is considered scalable.  If the change effect serves to change 

the membership of the parameter set, the system is considered modifiable.   

 The preceding discussion serves to disentangle the idea of flexibility from its close 

counterparts by adopting more precise definitions and taxonomy for these common ―ilities‖ in an 

attempt to avoid common misinterpretations. 

 

2.5 Options Theory 

 The use of options has been proposed as a way to understand the concept of flexibility.  

Fundamentally, ―options thinking‖ recognizes the existence of value in securing the freedom of 

choice as new information is revealed.  Widely used in finance, options are typically contracts 

that allow the holder of the option to purchase (or sell) an asset (e.g. shares of common stock, 

other market traded security) at a predetermined price at or before a predetermined date.  The idea 
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of considering optionality in engineering design and management is relatively new, but the 

fundamental thinking behind options emerged centuries ago.  Options on tulip bulbs became 

popular in the 1600‘s as a way to mitigate demand and price fluctuations in the Dutch tulip 

market.  Options and futures contracts were first formally traded when the Chicago Board of 

Trade was opened in 1848.  But derivatives on stocks did not gain popularity until 1973, when the 

future Nobel Prize-winning publication of Black and Scholes (1972) demonstrated that call 

options could be properly priced.  The Black-Scholes formula, by rigorously quantifying the 

value of an option, became the foundation of modern options trading and stimulated an entire 

field of research in contingent claims valuation. 

 

2.5.1 Financial Options 

 Derivative contracts associated with financial assets or commodities traded in financial 

markets are referred to as financial options.  Of the many types of derivatives that now exist in 

the market, the two most basic types of options contracts are: calls and puts.  A call option gives 

the holder the right, but not the obligation, to buy an underlying asset at a predetermined exercise 

price before a predetermined expiration date.  A put option gives the holder the right to sell the 

underlying asset under similar stipulations.  The contract will specify an exercise price (or strike 

price) and the expiration date (or maturity).  European-type options can be exercised only on the 

expiration date while American-type options can be exercised any time on or before maturity.   

 The value of such a contract securing the holder‘s right (without obligation) and the 

underwriter‘s obligation to fulfill the holder‘s right was an unsolved problem in economics 

throughout most of the 20
th
 century.  Black and Scholes (1972) and Merton (1973) published a 

closed-form solution using a partial differential equation (PDE) that defines the movement of the 

option value over time.  The solution relies on stringent market assumptions and specific 

boundary conditions that tend to limit the applicability of the formulation.  Nevertheless, the 

Black-Scholes PDE solution imparts significant insight into the fundamental options problem and 
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has single-handedly paved the way for research into the quantification of financial options and 

flexibility in general. 

 The Black-Scholes formulation can be applied only to a European-type option on a non-

dividend paying asset.  This requirement dictates that only one exercise time exists and that the 

asset yields no intermediate benefit.  Further assumptions include: 

 Price assumption and efficient market: a quoted price for the asset exists and is set by an 

open and liquid market 

 Replicating portfolio: a portfolio of the asset and its option can be established in each 

time period to yield a perfectly risk free portfolio 

 Volatility assumption: the volatility of the underlying asset can be established from a 

long history of trades that generate good statistics 

 Duration assumption: the volatility is stable over the life of the option. 

 

The mathematical structure underlying the replicating portfolio and volatility assumptions 

necessitate two additional requirements:  

 No arbitrage, and 

 Geometric Brownian motion of the underlying asset. 

 

 Arbitrage involves profiting from transactions in two simultaneous markets.  For 

example, if a stock could be purchased on the New York and London Stock Exchanges, arbitrage 

would be profiting from an uneven currency exchange rate that allowed a person to buy a stock in 

one market, exchange currency, and sell the stock (profitably) in the other stock exchange.  The 

no arbitrage condition is important in that it allows for a hypothetical tracking portfolio to be set 

up in such a way that there is no uncertainty about the value of the portfolio (i.e. no risk), thus 

yielding a return equal to the risk-free rate.   

 Standard Brownian motion is the basis for modern options theory and is one of the most 

important stochastic processes that make up the standard model for stock prices.  Simply put, a 

stock price that follows Brownian motion has a value next period equal to its value this period, 

multiplied by a continuous growth factor over some interval (illustrated in Figure 9): 
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Figure 9: Brownian motion, source www.wikipedia.org 
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The growth rate, ε is a normally distributed random variable with mean 0 and standard deviation 

1.  The expected value at any future time is its current value.  This process is also referred to a 

Wiener process.  A more generalized formulation can be expressed as: 

bdzadtdx  . 

Variables a and b are constants while dz is the basic Wiener process.  The b*dz term is regarded 

as the variability of the path followed by x, while the a*dt term implies a drift rate of a per unit of 

time. 

 The movement of stock prices is essential in valuating stock options since the option 

tracks with the value of the underlying asset.  With the assumption that the stock is a non-

dividend paying asset, the price follows geometric Brownian motion: 

SdzSdtdS    

where S is the stock price, μ is the expected return of the asset, and σ is the standard deviation of 

the return (volatility).  If f(S,t) is defined as the price of the call option, an equation can be written 
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using Ito‘s Lemma
4
 that relates the Wiener process of dS to a similar Wiener process of df 

(Rogers & Williams, 2000).  The equation for df, the change in the option price, is some function 

of the change in the stock price dS and time. 

Sdz
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A hypothetical portfolio can be established that contains just the stock and its call option.  The 

appropriately risk-free portfolio is short one call option and long an amount df/dS of shares.  

Because the stock and its option have the same source of uncertainty, as one goes up, the other 

will go down an equivalent amount.  This portfolio is therefore risk-free and will yield the risk-

free rate of return by definition.  The value of this portfolio can subsequently be defined by: 

S
dS

df
f   

And the change in value of this portfolio is: 

S
dS

df
f   

The no arbitrage condition guarantees that the portfolio will remain riskless during time Δt.  

Thus, 

tr   

where r is the risk-free interest rate.  The two expressions can be set equal and the equation for df 

is substituted from above: 

                                                      

4
 Ito's lemma states that if a variable x follows a stochastic process of the form, 

 

where W is white noise, then any smooth function G(x,t) follows the process, 

 

For derivation, see Ross (1996).  
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By simplification, this becomes: 
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This is the Black-Scholes options pricing differential equation that can be solved utilizing the 

appropriate boundary conditions.  In the case of a call option, the boundary condition is written 

as: 

]0,max[ XSf   

At time t = T, f equals the maximum of either zero (since an option is not an obligation) or the 

difference between the immediate stock price S, and the exercise price X.  Solving the differential 

equation subject to the boundary conditions, the closed form solution is expressed for the value of 

a call option c: 
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The five parameters needed to determine the option price are: 

1. S: the value of the underlying risky asset.   

2. E: the exercise (or strike) price. 

3. T: the time to expiration of the option. 

4. σ
2
: the standard deviation of the value of the underlying risky asset.   

5. rf: the risk-free rate of interest over the life of the option. 
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 Although this formulation can seem cryptic, there is an intuitive interpretation of the 

solution.  If the Black-Scholes solution is rewritten as, 

)]()([
210

dXNdNSeec rTrT   , 

it becomes clear that N(d2) is the probability that S>X (i.e. that the option is exercised) and thus 

the product X* N(d2) is the strike price times the probability that the strike price will be paid—

essentially this is the expected exercise cost.  The expression e
rT

*S0* N(d1) is the expected future 

value of an asset S0 that equals S if S>X, and equals zero otherwise.  Taken together and 

discounted to the present, the difference between the two expressions is the expected value of the 

option at maturity (i.e. the difference between the expected benefit and the expected cost). 

 

2.5.2 Traditional Valuation: Net Present Value 

 The single most widely used tool to value a project or business is discounted cash flows 

(DCF) analysis, which is used to bring the life cycle cash flows to their Net Present Value (NPV).  

Brealey and Myers (2000) define NPV as a project‘s net contribution to wealth.  NPV represents 

the present value of a project‘s stream of future free cash flows, discounted back to the present.  

Cash flow is essentially net income (revenue – expenses) and when taken in combination with the 

initial outlay of funds is a common metric of the expected profitability of a project irrespective of 

uncertainty.  The out-year cash flow streams are discounted to the present with a corporate hurdle 

rate, typically the Weighted Average Cost of Capital (WACC).  If the net present value is greater 

than zero, a decision-maker might reasonably conclude that the project is worth pursuing. 
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 This method has allowed managers to compare projects that have different time horizons 

and cash flows.  Recently, there has emerged widespread dissatisfaction with NPV analysis due to 

the belief that it undervalues projects that contain flexibility and strategic interactions.  Flexibility 
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to defer, switch, expand, or abandon a project based on forthcoming information is perceived to 

have value—this value is not represented using DCF and NPV (Schwartz & Trigeorgis, 2001).     

Net present value simply measures the expectation of cash inlays and outlays in a fixed 

environment and absent any options to change or alter the project if circumstances warrant it.  

NPV also forces the use of a single discount rate for all cash flows, which does not account for 

the possibility of rate fluctuations in the financial market or variations in the riskiness of those 

cash flows.   

 The shortcomings of DCF have been know for a century, many of them introduced by 

Fisher (1907) in his book on the rate of interest.  Although these inadequacies had been identified, 

a means of addressing them was unclear.  Dean (1951) proposed alternative ways of coping with 

these shortcomings, ranging from qualitatively applying professional judgment to applying 

quantitative handicaps to the mathematical analysis.  This lack of quantification led to the 

understanding that NPV was biased toward projects that had high short-term returns and against 

projects with longer-term outcomes (e.g. R&D, technology development).   

 

2.5.3 Real Options 

 Recognizing the gap that existed between financial theory and strategic investment, 

Myers (1984) first articulated a concept he coined ―real options.‖  Real Options Analysis (ROA) 

builds upon the economic theory surrounding financial options valuation and has been proposed 

as a leading technique for analyzing and implementing flexibility early in the product or system 

lifecycle (Trigeorgis, 1996; Amram & Kulatilaka, 1999; Schwartz & Trigeorgis, 2001; Copeland 

& Antikarov, 2003; Mun, 2006).  Whereas a financial option is a contractual instrument that gives 

the owner the ability to buy or sell an underlying financial asset (e.g. securities), a real option 

confers the right to take a tangible action at a certain cost within or at a specific time period (Dixit 

& Pindyck, 1994; Trigeorgis, 1996; Luenberger, 1998; Amram & Kulatilaka, 1999; Brennan & 

Trigeorgis, 1999; Mun, 2002; Copeland & Antikarov, 2003).  A financial option has a contract 
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purchase price, or premium that is paid per share, while a real option has an implementation or 

development cost that the designer must invest up front.  Table 1 compares the terminology 

between financial options and real options.  

 

Table 1: Terminology comparison of Financial Options and Real Options. 

Financial Options Real Options 

Usually exchange traded Not usually traded 

Contract with contingencies Strategy with contingencies 

Asset is a stock (S) Asset is a program/project 

Premium payment for option R&D investments 

Strike or exercise price (X) Non-recurring launch cost 

Risk free rate (rf) Risk free or investment rate 

Time to exercise (t) Time to commitment 

Payoff is stock or cash Payoff is operating profit 

Variance of stock, sigma (σ) Variance of operating profit 

 

 Real options theory has become, more broadly, a way of thinking that can help managers 

formulate their strategic options and understand the value of future opportunities created by 

today‘s investment (Amram & Kulatilaka, 2000).  As an alternative to NPV, real options analysis 

has been widely utilized for the valuation of projects that include flexibility.  Analogous to a 

financial ―call‖ option which allows the investor to purchase shares of stock at a predetermined 

date and price, a real option allows the designer/manager to exercise an option on a real or 

tangible asset.  The nature of options is asymmetrical—limiting downside risks to the premium 

paid for the option while simultaneously allowing for upside potential benefit (Figure 10).  Real 

options can be used as a hedge against negative outcomes and also as opportunities to grow and 

expand (Amram & Kulatilaka, 1999).  The more uncertainty that exists (i.e. higher volatility), the 

more valuable the real option becomes and the more incentive the designer has to keep the option 

available. 
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Figure 10: Total Risk and Option Value: (a) An increase in total risk widens the distribution of 

outcomes, creating more outcomes with a positive payoff. (b) The one-sided effect increases the value 

of the option. 

 

2.5.3.1 Real Options “On” and “In” Projects 

 de Neufville (2002) identified two types of real options: 1) real options ―on‖ projects, and 

2) real options ―in‖ projects.  The vast majority of the real options literature and valuation 

techniques are concerned with options ―on‖ projects, which treat both the technology and the 

engineering design as a ―black box‖.  These options are concerned with ―go‖ or ―no-go‖ 

management decisions and are predominantly defined as options for scaling, deferring, and 

abandoning a project (Gray et al., 2004).  The major objective for applying real options "on" 

projects is to more fully understand the value of the project given the manager's ability to reserve 

the launch decision (and launch costs) for a later date and a more current business case analysis.   

 In comparison, real options ―in‖ projects can be described as options internal to the 

design process, allowing an engineering design to adjust as actual demands on the system 

develop.  This type of option is considered to be an embedded architecture option and requires in-

depth technical domain knowledge to discover and exploit.  Real options "in" projects can allow 

for the augmentation of a hardware design, addition of functionality to software, modification to 

operational modes, or expansion of a system attribute.  The application of real options internal to 

the system has led to a broadened understanding of "optionality," and "options thinking," which 
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has been proposed as a theoretical basis for the quantitative modeling of flexibility in system 

design (de Neufville, 2003; Browning & Engel, 2008).  The major objective then for applying 

real options "in" projects is to help the system architect understand how design decisions today 

can affect the system‘s ability to deliver value throughout its lifecycle.   

 Real options "in" projects have not been studied as thoroughly as real options "on" 

projects and a consistent valuation technique does not yet exist.  However, a number of authors 

have described example applications for the valuation of embedded real options (Markish, 2002; 

Chaize, 2003; Wang, 2005; Zhao & Tseng, 2003; Kalligeros & de Weck, 2004; Greden & 

Glicksman, 2004).  Due to the nature of the valuation assumptions and requirements, these 

applications are many times thought to be contrived, unrealistic, and over-simplified (Kalligeros, 

2006).  Instead, system engineers continue to rely mainly on intuition and engineering judgment 

to define flexibility in the system design.  

 

2.5.3.2 Real Options Provide a Unit of Analysis for System Flexibility 

 As demonstrated in the previous literature review, the lack of a consistent unit of analysis 

makes it difficult to study flexibility in an organized, methodical, or scientific fashion.  A major 

reason why real options theory has gained interest and popularity centers on its ability to become 

a generalized unit of flexibility independent of the application domain.  Although there are 

various definitions for real options, they all converge on the idea that a real option secures a right, 

not an obligation—this exemplifies the asymmetric human decision making structure that seeks to 

take advantage of upside potential while limiting downside risk.  The differences between 

definitions are mainly in regards to scope.  In a very narrow sense, real options have been defined 

as the extension of financial options theory to a non-financial (or real) asset (Amram & 

Kulatilaka, 1999), and in a much broader sense, as an opportunity to take an action or exert 

control over a process (Dixit & Pindyck, 1994; Luenberger, 1998; Copeland & Antikarov, 2003).  

The former seeks to include the valuation approach in the definition, while the later tends to 
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emphasize the broadest theoretical application.  Because this research is chiefly concerned with 

the type of flexibility that allows a system to respond to change after it is fielded, the definition 

proposed by Saleh, Lamassoure, and Hastings (2002) is adopted:  [flexibility is] ―the property of 

a system that allows it to respond to changes in its initial objectives and requirements (both in 

terms of capabilities and attributes) occurring after the system has been fielded, that is, in 

operation, in a timely and cost effective way.‖  This definition necessitates the broader 

understanding of real options as a theoretical construct for embedding options in system 

architectures rather than as a straight forward extension of financial options theory.  In actuality, 

embedded options almost never resemble financial options to an extent that would allow credible 

use of traditional valuation techniques due to the assumptions required for proper use.  

Understanding a real option more generally as the right, but not the obligation to take an action at 

a certain cost within a specified period of time, allows for a neatly defined, basic unit of 

flexibility.  This approach is especially appealing because it is extensible to a variety of 

engineering disciplines (i.e., it is not application specific) and provides quantitative means to 

―design-in‖ flexibility from the front end rather than assess or describe it at the back end.  

Consequently, this research has adopted real options as a unit of analysis for system flexibility 

and further develops the concept of embedded architecture options for use in the system 

engineering process.  The remaining challenge is not conceptual; it is more analytical.  How can a 

real option be valued in a way that is both theoretically sound and practical for use in systems 

engineering?  The following section investigates the current techniques available to value real 

options. 

 

2.5.3.3 Valuation Methods for Real Options “On” Projects 

 The ability to determine a value for real options provides important insight into the value 

of opportunity and the value of flexibility.  Traditionally, the value of flexibility has been treated 

intuitively.  Real options valuation is intended to provide a systematic and quantitative approach 
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that managers can use to actively manage uncertainty and decide which options are financially 

justified.  However the valuation techniques available to practitioners often employ contradictory 

approaches and require underlying assumptions that can render the technique inaccurate or 

inappropriate for the application.  Although practitioners widely agree on the merits and appeal of 

the basic concept, Borison (2005) comments in his detailed critique of real options valuation, 

―[…] that there is a good chance that one could either apply an unsound approach or make 

inappropriate use of a sound one.‖  The following sections will provide an overview of the major 

analytic and discrete methods for valuing real options, the assumptions required, and the 

appropriateness (or practicality) of the technique for various applications. 

 

2.5.3.3.1 Analytic Formulation (Black-Scholes) 

 The breakthrough work by Black and Scholes (1972) and Merton (1973) yielded not only 

a mathematically insightful and elegant solution to the options pricing problem, but a vast field of 

research and study that would span the disciplines of finance, management, decision science, 

computer programming, engineering, and strategic planning, to name a few.  Valuation of real 

options, i.e. options not on financial assets, has been attempted predominantly as a direct 

analogue to financial options.  The Black-Scholes formula for financial options, as discussed in 

an earlier section on financial options, is a closed-form analytic solution to a partial differential 

equation, derived specifically for a non-dividend paying, European-type option (exercised only at 

maturity), using one source of uncertainty, for a single underlying asset, with a constant and 

known exercise price.  Applying arbitrage-enforced pricing and geometric Brownian motion to 

the behavior of the underlying asset, Black and Scholes created a theoretical replicating portfolio 

that, with the help of some Itô calculus (Rogers & Williams, 2000), can be used to solve the 

partial differential equation for a Call or Put option.  The Black-Scholes expression for the value 

of a call option is: 
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The five parameters needed to determine the option price are: 

1. S: the value of the underlying risky asset.   

2. X: the exercise (or strike) price. 

3. T: the time to expiration of the option. 

4. σ: the standard deviation of the value of the underlying risky asset. 

5. rf: the risk-free rate of interest over the life of the option.   

 When used to value real options, the analytic approach is perceived many times as cryptic 

and forced because of its financial terminology and incomprehensible assumptions associated 

with financial markets (Copeland, Koller, and Murrin, 1994; Amram & Kulatilaka, 1999).  These 

assumptions include: 

 European-style option: only one exercise time exists at maturity 

 Non-dividend paying asset: contingent claim yields no intermediate benefit 

 Efficient market: a quoted price for the asset exists and is set by an open and liquid 

market 

 Replicating portfolio: a portfolio of the asset and its option can be established in each 

time period to yield a perfectly risk-free portfolio 

 Volatility assumption: the volatility of the underlying asset can be established from a 

long history of price fluctuations that generate good statistics 

 Duration assumption: the volatility is stable over the life of the option 

 No arbitrage opportunities 

 Geometric Brownian motion
5
 (i.e. random walk) of the underlying asset 

 

                                                      

5
 Stochastic process that has a value next period equal to its value this period, multiplied by a continuous 

growth factor over some interval (Brush, 1968) 
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 Real options ―on‖ projects, which are not linked to a market-traded financial asset, rarely 

exhibit the behavior necessary to justify these assumptions, even for the most contrived 

applications (Kalligeros, 2006).  Architecture options embedded ―in‖ a project are even more 

difficult to link to a market-traded asset and will rarely, if ever, exist in an open, liquid market 

where the "no arbitrage" condition can be enforced.  The Black-Scholes formulation is a 

mathematically insightful and elegant solution and therefore has wide academic appeal.  

However, when applied to real options embedded "in" projects, the analogy to financial options 

breaks down rapidly, making this technique, in most cases, mathematically unsuitable. 

 Borison (2005) describes the ―Classical Approach‖ to real options valuation which 

appears most completely in Amram and Kulatilaka (1999), but earlier in Copeland, Koller, and 

Murrin (1994).  This method adopts the Black-Scholes approach to financial options almost 

entirely.  It assumes that a portfolio of market traded investments can be constructed to perfectly 

replicate the payoffs of the non-financial option.  The no-arbitrage condition guarantees that the 

option price is equivalent to the price of the replicated portfolio.  Market data is therefore used to 

determine the price and volatility of the underlying asset (i.e. replicated portfolio) which tracks 

the real option. 

 A variation to the classical approach, described by Luehrman (1997) and Luehrman 

(1998), uses subjective estimates for the value and volatility of the underlying investment 

opposed to the replicating market portfolio.  This difference essentially detaches the valuation 

from market data and relies solely on subjective estimates for the inputs.  The assumptions and 

solution mechanics are otherwise identical to the Black-Scholes classical approach.   

 

2.5.3.3.2 Discrete Techniques 

 The other major options pricing technique is the discrete method that expands a lattice 

(binomial, trinomial, or multinomial) in discrete time to simulate the potential price path of the 

underlying asset.  This method explicitly depicts the stochastic behavior of the underlying asset at 
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each time step, thereby eliminating the need for a partial differential equation.  Introduced by 

Cox, Ross, and Rubenstein (1979), the binomial lattice has been applied to a wide variety of 

options pricing scenarios (Copeland & Antikarov, 2003; Mun, 2006).  It has become a popular 

options pricing technique in no small part due to its ability to conceptualize and depict 

uncertainty.  In comparison to the abstract value of sigma, σ, in the Black-Scholes formulation, 

uncertainty is represented in the lattice as stochastic up and down movements of the underlying 

asset.  This technique can be illustrated by solving the first two steps in the Binomial Lattice, 

where the evolution of the underlying asset value S0 is represented by stochastic up and down 

movements in a binomial tree which yields option payoffs fu and fd (Figure 11).   
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Figure 11: Two steps in a binomial lattice. 

 

A single time step δt will yield the asset value of either Su or Sd, with probabilities u and d, 

respectively.  For real option valuation, a replicating portfolio is created with x shares of a stock 

and short one option such that the portfolio is risk free.  Upward and downward movements 

would yield portfolio values: 
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Utilizing the no-arbitrage condition, the riskless portfolio must earn the risk-free interest rate (r).  

The present value of the portfolio is therefore: 
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By substituting x from above, this equation reduces to: 
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 The lattice is solved sequentially at each node, forward then backward, while the 

recombination of nodes decreases the computational burden.  Essentially, the binomial lattice is a 

graphical extrapolation of the Black-Scholes formula; as more nodes are added (i.e., as the time 
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intervals shrink), the option value approaches that of the closed-form Black-Scholes solution.  

Although the representation of uncertainty is more comprehensible, the lattice technique inherits 

many of the same challenges described for the Black-Scholes approach in that it can be cryptic 

and improperly applied where the assumptions cannot be justified.    

 Copeland and Antikarov (2003) used a binomial lattice to solve their Marketed Asset 

Disclaimer (MAD) formulation.  The MAD approach is significantly different from the 

―classical‖ PDE techniques in that it does not rely on the existence of a traded replicating 

portfolio.  Instead, Copeland and Antikarov argue that the replicating portfolio is unnecessary 

because the NPV of the project itself is the best unbiased estimate of the market value of the 

project were it a traded asset.  So the NPV of the project is used as an estimate of the price the 

project would have if it were traded on the open market.  A risk-neutral binomial lattice is 

constructed with the NPV values that follow geometric Brownian motion and solved to obtain the 

option value.     

 

2.5.3.3.3 Numerical Techniques 

 Numerical techniques are useful when analytical solutions cannot be obtained or would 

require too much effort.  Both numerical integration and Finite Difference
6
 techniques can be 

applied to solve the Black-Scholes PDE, allowing for a much larger set of boundary conditions.  

The underlying formulation remains the Black-Scholes approach, therefore the similarly 

restrictive assumptions and limitations still apply. 

 Real option valuation can also be accomplished through simulation.  Simulation uses 

random numbers, typically through Monte Carlo trials, to generate possible paths of the evolution 

of the value of the underlying asset.  The real option decision rule (e.g. Max[S-X,0]) is embedded 

                                                      

6
 The option price is found by converting the stochastic PDE into a set of difference equations that are 

solved iteratively working backward from the end.  See Hull (2003) for a detailed exposition.   
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in each path, and the payoff is calculated directly for each trial and discounted at the risk-free 

rate.  The expected value of the discounted payoffs is the estimated value of the option (Hull, 

2003). 

 Monte Carlo simulation is not bound by the restrictive assumptions of other techniques.  

This type of valuation can handle path dependency where the value of the option depends on the 

particular path followed by the underlying asset—these options are known as compound options 

because they progress in phases and are usually influenced by several correlated sources of 

uncertainty.  Simulation requires only that the stochastic process for the underlying asset be 

defined. 

 

2.5.3.3.4 Decision Tree Analysis 

 Decision Tree Analysis (DTA), as a problem structuring and organizational tool, has been 

employed for real options valuation by explicitly representing each uncertainty as well as the 

contingent decisions based on that uncertainty.  The decision tree is a sequence of decision and 

uncertainty nodes that end in a terminal node, with each branch indicating an option available to 

the decision-maker.  DTA ―rolls back‖ or solves the decision tree by selecting the option with the 

highest expected value at each decision node, resulting in the optimal choice sequence. 

 Two noteworthy methods utilize DTA to value real options: 1) the ―Revised Classical 

Approach‖ and, 2) the ―Integrated Approach.‖  Both methods recognize a distinction between the 

sources of risk that influence corporate investments.  The first type is market-priced or public 

risks, and the second is corporate-specific or private risks.  The revised classical approach 

recommends the use of finance-based real options analysis only for investments dominated by 

public risks, where the stringent Black-Scholes assumptions are acceptable.  If the investment is 

dominated by private risk, dynamic programming and decision analysis should be used instead.  

This view has been articulated most extensively by Dixit and Pindyck (1994) and Amram and 

Kulatilaka (2000).  The integrated approach recognizes that corporate investments may not be 
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completely categorized as dominated by public or private risk, but more likely a mix of both.  

Smith and Nau (1995) and Smith and McCardle (1998) proposed that for public risks, a 

replicating portfolio should be identified and assigned ―risk neutral‖ probabilities; for private 

risks, subjective probabilities should be assigned.  Therefore, the ―risk adjusted decision tree‖ will 

represent both public and private risks explicitly and can be rolled back and solved for the option 

value.   

 

2.5.3.3.5 An Intuitive New Valuation Technique: The Boeing Approach 

 The valuation of real options in most real world applications necessitates the relaxation of 

one or more of the standard Black-Scholes assumptions.  While financial options are analyzed for 

traded securities that can be routinely observed and for which historical data exist, real options 

have tangible assets underlying their value which can be impossible to observe.  A market value 

and volatility for such assets rarely exists.   

 A recent advancement has occurred in options pricing that has uncovered a new 

mechanism for calculating the value of real options "on" projects.  The valuation approach has 

been developed and published by The Boeing Company's Computational Finance and Stochastic 

Modeling group and validated at Stanford University (Datar & Mathews, 2004; Mathews, Datar, 

and Johnson, 2007; U.S. Patent 6862579). 

 The Boeing Datar-Mathews (DM) technique is able to avoid the stringent assumptions 

and limitations of previous methods by utilizing the language and frameworks of standard 

discounted cash flow analysis (DCF) as opposed to partial differential equations.  The DM 

method yields the same results as the Black-Scholes and binomial lattice techniques (given the 

same inputs and discounting methods), but does not necessitate the existence of a replicating 

tracking portfolio, Brownian motion of the underlying, or arbitrage enforced pricing (Mathews & 

Salmon, 2007).   
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 The DM method can be understood as an extension to the NPV technique that includes 

distributions of outcomes at each time period, adjustment for risk aversion, and an algorithm for 

rational economic decision making.  Implemented in a spreadsheet, the DM formulation is as 

follows: 

  0 ,costlaunch profits operating  ueoption val Real  MAXAverage . 

The overscore bar indicates the present value distribution at time 0.  Where NPV calculates the 

discounted cash flow of a singular most-likely forecast, the DM method incorporates uncertainty 

in the estimate of future benefit by simulating the operating profit and launch cost at each time 

step.  Using a Monte Carlo procedure, "trials" are drawn from the distribution and discounted to a 

decision base year.  To account for different levels of underlying risk, a differential discount rate 

is applied.  Operating profit is discounted to the base year with the hurdle rate commensurate with 

market risk because future cash flow is subject to market uncertainty.  The launch cost is 

discounted to the base year with the investment rate which is reflective of a more secure and 

controllable source of capital.  Net profit is then calculated by taking the difference of the two 

discounted cash flows.  For each Monte Carlo trial, a rational decision-making algorithm is 

applied that expends the launch cost and reaps the operating profit only for outcomes where the 

forecasted net profit is positive.  If the forecasted net profit is negative at the decision point, the 

project is abandoned and the launch expenditure is retained.  The real option value can be 

described then as the average net profit appropriately discounted to the decision date and subject 

to the rational choice of pursuing only those scenarios where a profitable outcome is forecasted. 

 Using variables familiar to traditional options pricing, the DM algorithm can be 

succinctly expressed as: 
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where μ and r are the discount rates, S is the operating profit, and X is the exercise or launch cost, 

evaluated from t1 to t2.  The option value, Z, is the expected value of the MAX of the difference 

between the discounted benefits and costs. 

 The Datar-Mathews technique avoids the complex assumptions required for traditional 

options valuation by utilizing data directly from the business forecast.  The value of sigma () is 

not necessary as a specific input because it is calculated from the Monte Carlo analysis.  The 

value today of the operating profit (S0) is also not needed as a specific input; this allows S to be 

represented by other than a lognormal distribution which is required for Black-Scholes and 

Binomial methods.  The DM method allows for a variable (or stochastic) strike price and 

accommodates time-varying and differential discount rates required to reflect the differing levels 

of risk inherent in each cash inlay and outlay.  This technique combines versatility with intuition 

and communicates it in the common language of financial forecasts.  Versatility and generality 

allow the technique to be adapted for and expanded into the domain of embedded options, while 

intuitiveness and transparency are key for adoption into systems engineering practice. 

 

2.6 Modeling the System 

 In order to identify flexibility options within a system, the system must first be 

understood and modeled.  According to Browning (2001), modeling a complex system requires: 

1. decomposition of system into subsystems about which relatively more is known; 

2. definition of relationships between the subsystems that give rise to the system behavior; 

3. definition of the external inputs and outputs and their impact on the system. 

 

 There are a number of different approaches for accomplishing these system modeling 

tasks, including: Unified Program Planning (Hill & Warfield, 1972), Quality Functional 
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Deployment (Cohen & Levinthal, 1990), Axiomatic Design (Suh, 1998), CLIOS
7
 method 

(Sussman, 2000; Dodder & McConnell, 2005), System Architectures
8
 (Maier & Rechtin, 2000), 

and the Design Structure Matrix (Steward, 1981).  A detailed exposition of the merits and 

shortcomings of each methodology can be found in Bartolomei (2007).  Of these methods, the 

design structure matrix is most conducive to quantitative analysis and has the additional 

advantage of simplicity.  Bartolomei (2007) recognized that the DSM technique could be 

extensible to exogenous, e.g. environmental and functional, variables, which more specifically 

allows for the impact analysis of operational uncertainty.  Due to its compact, visual, and 

analytically advantageous format, an extended variation of the DSM is used in this research as a 

system model to facilitate the identification of architecture options.   

 As a brief introduction, the DSM is a succinct way of addressing the modeling issue by 

re-structuring the flow of information in a complex system design (Kusiak, 1990; Gebala & 

Eppinger, 1991; Eppinger, 1994; Kusiak & Larson, 1994; Gulati & Eppinger, 1996).  The DSM is 

an information exchange model which provides an elegant representation of the interactions that 

exist between the elements of a decomposed system or product (Steward, 1981).  The use of the 

DSM to represent the physical, task, and organizational views of engineering systems has 

expanded in recent years as there are over one hundred papers that demonstrate the value and/or 

extend the use of this matrix (Bartolomei, 2006).   

 For purposes of implementation, the DSM is a square matrix representation of a directed 

graph, where the nodes of the graph correspond to the column and row headings in the matrix and 

                                                      

7
 CLIOS: a Complex Large-scale, Interconnected, Open Socio-technical System.  This type of engineering 

system has interactions not just between components and subsystems, but between social, political, 

economic, institutional, and physical systems.   

8
 Most notably, the Department of Defense Architecture Framework (DoDAF) which includes system, 

technical, and operational views (SV, TV, OV, respectively). 
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the arrows correspond to the marks
9
 inside the matrix.  These marks indicate whether Task A and 

Task B are parallel (independent) design tasks, series (dependent) design tasks, or coupled 

(interdependent) design tasks which require iterative information flow.  This is illustrated in 

Figure 12.  The matrix can be populated by decomposing the architecture to the desired level of 

resolution and defining the intensity of each relationship.  A common taxonomy can be used to 

describe each relationship in terms of constituent components (e.g., spatial, energy, information, 

and material-related), with an intensity on a scale like that of -2 to 2 (Browning, 2001).  There are 

four different types of DSM models applied to various levels of abstraction: team, component, 

activity, and parameter.  Traditional views within these types include activities, objects, 

functions, and objectives (for a detailed description of each level of abstraction and type, see 

Sharman and Yassine (2007)). 

 

 

Figure 12: Definition of DSM relationships (http://www.dsmweb.org). 

 

 Analysis of the DSM most often uses a clustering algorithm to organize and consolidate 

the system representation.  Clustering of the DSM elements (i.e. rearranging the order) can find 

subsets, or modules, that are mutually exclusive or minimally interacting.  Clusters can contain 

                                                      

9
 A mark in the matrix simply identifies that a relationship exists between the elements.  Numbers and/or 

other metrics can be used to signify the intensity of the relationship. 
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most, if not all, of the interactions internally and the links between separate clusters can be 

minimized or eliminated (Gutierrez, 1998; Frick & Schulz, 2005).  A wide range of clustering 

algorithms can be found in Alexander (1964), Hartigan (1975), Gutierrez (1998), Thebeau (2001), 

and Whitfield, Smith, and Duffy (2002). 

 

2.7 Chapter Summary 

 Systems are constantly faced with unpredictability in the operational environment where 

threats from competing systems, technology obsolescence, and general uncertainty in future 

demands require systems to respond to changing requirements.  However, uncertainty generates 

an opportunity to design the system to respond to change and deliver additional value to the 

stakeholder across the system lifecycle.  As large, complex systems are required to operate longer 

under higher levels of operational uncertainty, and as system engineers transition from a cost-

focused to a value-focused design philosophy, flexibility will increasingly become an important 

design characteristic.  Yet there does not exist a codified process or accepted technique to 

rigorously define an appropriately flexible system architecture.  

 Flexibility can be understood as the property of a system that allows it to respond to 

changes in its initial requirements occurring during operation, in a timely and cost effective way.   

Many existing methods and metrics used to define and value system flexibility have emerged 

from the engineering community.  However, application to systems engineering and design 

practice is limited by the qualitative, conceptual, descriptive, or case-specific nature of each 

approach.  Alternatively, the management and finance communities have begun to embrace a 

different approach to flexibility which stems from widespread dissatisfaction with NPV analysis.  

Widely recognized that NPV undervalues projects that contain flexibility, real options analysis 

has emerged as a way to understand flexibility and quantify its value.  The Black-Scholes and 

Binomial Lattice techniques have been proposed to value real options as a direct analogue to 

financial options.  However, real options rarely exhibit the behavior necessary to justify the 
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stringent assumptions required for valuation, even for the most contrived applications.  Real 

options embedded "in" the system architecture will almost never be linked to a market-traded 

financial asset where arbitrage pricing can be enforced.  Although the traditional options 

valuation techniques demonstrate a mathematically insightful and elegant solution with wide 

academic appeal, real world applications cause the analogy to financial options to break down 

rapidly, making traditional techniques, in most cases, mathematically unsuitable.   

 The Datar-Mathews technique has articulated a new mechanism for options valuation 

which is not constrained by the mathematical structure and market assumptions of the Black-

Scholes approach.  The Datar-Mathews technique uses the taxonomy and framework of standard 

discounted cash flow analysis, but also includes distributions of outcomes at each time period, 

adjustment for risk aversion, and an algorithm for rational economic decision making.  By 

avoiding the underlying assumptions required for traditional valuation, the Datar-Mathews 

mechanism allows for potential application of real options to system design problems which are 

not completely analogous to financial options. 
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3 CHAPTER III 

 

3 A SCREENING PROCESS TO IDENTIFY OPTIONS FOR EMBEDDED 

3 FLEXIBILITY IN ENGINEERING SYSTEMS 

 

3.1 Introduction 

 One of the most significant challenges in applying an architecture options approach to 

flexible design is the problem of identifying the most promising points within the system to create 

options (Bartolomei, 2006).  This is the challenge undertaken in Stage 1 of the proposed 

integrated flexibility framework (Figure 13).  The identification of these architecture options 

(AO) requires knowledge of both the physical and non-physical aspects of the system as well as 

insight into the sources of uncertainty and dynamic behavior of that system.  System engineers 

must be able to bound or narrow the options space and focus on the options most likely to 

produce added value.  Additional expenditure of resources can then be justified to investigate, in 

greater detail, a smaller, more manageable set of potential architecture options.  This chapter 

proposes an eight step screening process that can help the system engineer discover opportunities 

for embedded flexibility by identifying promising regions in the architecture where AOs can be 

explored and exploited.  This process emphasizes compatibility with common systems 

engineering practice to facilitate deployability into industry. 
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 Stage 3 Stage 2 Stage 1 

Identify candidate 

architecture options 

Value architecture 

options 

Select optimal subset of 

architecture options 

 

Figure 13: Three stage integrated flexibility framework for identifying, valuating, and selecting 

architecture options. 

 

3.2 Screening Process for Candidate Architecture Options 

 This section develops an architecture options screening process that has intended utility 

for system architects and system engineers.  At a high level, the output of this process, which is a 

set of candidate architecture options, can be useful to project managers for design decisions and 

resource allocation, but the following exposition is intended predominantly for those charged 

with the direct implementation and execution of the system design process.  The AO screening 

process is meant to exist within the systems engineering process, and thus be compatible with 

company best practices, and should be implemented at the early conceptual design phase of the 

project prior to Preliminary Design Review (PDR), but feasibly up through Critical Design 

Review (CDR).  Inputs to the screening process include company best practices for systems 

engineering and risk management, which can be adopted entirely or tailored for the individual 

project.  In many cases, the risk management practice will consist of identifying, assessing, 

mitigating, and tracking program risks with a major emphasis on negative outcome prevention—

this can serve as the foundation for an expanded ―uncertainty management‖ practice that is 

concerned also with the positive ramifications and potential upside benefits of uncertainty.  In 

assessing design solutions that manage uncertainty, this approach assumes that the 

implementation of flexibility occurs in a constrained tradespace in the neighborhood of a baseline 

architecture that meets the requirements associated with the critical mission.  Essentially, this 

requires that the types of flexibility considered must be augmentations to an existing design 

solution—a design solution synthesized from a rigorous systems engineering and tradespace 
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exploration process like that described in Ross and Diller (2003), Shah (2004), Hastings and 

McManus (2004), Ross et al. (2004), and Ross and Hastings (2005).     

 An effective screening model for AOs must accomplish at least 3 major objectives: 1) it 

must reasonably encapsulate and describe the uncertainty in the operational environment; 2) it 

must translate how the operational uncertainty will affect the functional and physical demands of 

the system, and 3) it must be able to quantitatively represent and organize the system such that the 

regions in the architecture most impacted by the operational uncertainty, vis-à-vis the functional 

and physical demands, are made evident.  This chapter lays out and expounds upon eight steps, 

illustrated in Figure 14, to accomplish these objectives:  

STEP 1: Define the set of potential operational scenarios and score each scenario for its 

likelihood and opportunity. 

STEP 2: Determine the unique functional requirements associated with each scenario. 

STEP 3: Complete a functional-to-physical mapping of functional requirements to physical 

design parameters by populating an expanded design structure matrix. 

STEP 4: Perform an analysis of the sensitivity of design parameters to changes in functional 

requirements, and normalize subsequent sensitivity-DSM. 

STEP 5: Apply an appropriate clustering algorithm that organizes the sensitivity-DSM into 

regions of highest sensitivity with minimal interaction between clusters. 

STEP 6: Combine operational uncertainty information from STEP 1 with sensitivity 

information from STEP 4 and STEP 5 to visualize sensitivity-opportunity regions with 

―Hoodoo‖ plot. 

STEP 7: Allocate resources to explore the most promising regions in the architecture and 

complete a detailed definition for the widest reasonable set of candidate architecture options. 

STEP 8: Insert the detailed AOs back into the system DSM and estimate AO-AO correlation 

metrics. 

EXIT process and proceed to the valuation and selection of AOs (Chapters IV and V). 
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Figure 14: Architecture options screening process flow diagram. 

  

 Each of the eight steps serves a necessary and distinct purpose in the screening process.  

The uncertainty in the operational environment must first be understood and defined in Step 1.  

The uncertainty drives the necessary system functions which are derived in Step 2.  These 

functions must then be understood in relation to the physical design variables that they affect.  

This mapping creates the necessary link between operational uncertainty and design implications.  

The first three steps in large part follow the traditional systems engineering practice of 

operational concept development and functional analysis/decomposition.  The design variables 

most sensitive to changes in the operational demands are identified and organized in Steps 4 and 

5.  The resulting groupings indicate a natural partitioning of variables within the system that must 

change in order to accommodate the operational uncertainty.  Step 6 combines the groupings with 

the underlying potential and significance of the driving operational uncertainty.  This fusion of 

information provides insight into the regions in the architecture where flexibility will be most 
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promising.  The process concludes with the detailed definition of the candidate set of architecture 

options which must be tempered in size and scope by the available resources. 

 

3.2.1 Step 1: Identify and Define Scenarios 

 The attribute of flexibility has little to no value for a system that will operate in a 

completely known, static, and defined environment.  In this case, the system designer can 

optimize the solution around known variables and can rely on robustness to handle any variability 

of performance and operating conditions.  Operational uncertainty
10

 is the driver for flexible 

design.  Where uncertainty is present, the designer is incentivized to keep options available for 

future use.  Step 1 of this process embraces uncertainty and encapsulates, or bounds, it through 

robust scenario development.  Traditional methods for quantifying variability-type uncertainty 

with probability density functions and other stochastic processes cannot adequately represent the 

changing demands of a system that is subject to changing mission requirements.  The objective 

for this step is to provide a series of scenarios, or vignettes, focused on varying missions and 

operational tasks to ensure complete assessment of the functions of a system in a realistic 

operational context.  This is a process of encapsulating and containing as much epistemic 

uncertainty as possible (Ferson et al., 2004). 

 In addition to the traditional systems engineering practice of developing the system 

Concept of Operations (CONOPS), Step 1 defines multiple distinct or adjacent CONOPS.  This 

set can be represented as a set of scenarios: 

                                                      

10
 Operational uncertainty: Related to the requirements (or demands) on, and environment of, a fielded 

engineering system.  Aspects include: political uncertainty (pertaining to funding instability), lifetime 

uncertainty (pertaining to uncertainty in performing to the requirements during system lifecycle), 

obsolescence uncertainty (pertaining to uncertainty of performing to evolving expectation during system 

lifecycle), integration uncertainty (pertaining to uncertainty in the interactions with other necessary 

systems), cost uncertainty (pertaining to uncertainty in meeting operating cost targets), and market 

uncertainty (pertaining to uncertainty in meeting the demands of a changing market environment)  

(Hastings, Weigel, and Walton, 2002). 
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 csssS ..., 21 . 

The system CONOPS is many times displayed with operational views (OV) classified as OV-1 

through OV-7 within the Department of Defense Architecture Framework (DoDAF V2.0, 

approved May 28, 2009).  These views describe, textually and graphically, the operational nodes 

and elements, assigned tasks and activities, and information flows between nodes.  This research 

contends that a high level representation of organizations, missions, nodes and elements, 

geographic configuration, connectivity, and information flow, like that included in DoDAF OV-1 

and OV-2, is sufficient for bounding the operational space.  As an example, a communication 

satellite may be designed for a single critical mission, in this case to facilitate unmanned air 

vehicle (UAV) transmissions, and is designed firstly to meet all associated threshold 

requirements, pictorially represented in Scenario 1 of Figure 15.  A robust scenario development 

process might identify potential secondary, tertiary, and quaternary missions, and would define 

the set of associated operational requirements.  Additional missions could include communication 

between mobile units, support for counter terrorism operations, and broadband data backhaul 

from overseas to the continental U.S. (CONUS).  These scenarios would require different types 

and quantities of onboard transponders, different power requirements, different processing and 

compression capabilities, and different ground segment complexity.  The level of detail needed 

for a high level operational view, OV-1 or OV-2, is illustrated in Figure 15 by showing mission 

tasks, required elements, geographical configuration, connectivity, and information flow.   
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Figure 15: Example operational views of communication satellite primary mission and alternate 

mission scenarios. 

 

 It would be most convenient for the system engineer if a credible probability of 

occurrence could be related to each scenario; the uncertainty could then be understood concretely.  

Early in the conceptual phase however, probabilities are illusive and attempts to distill the 

likelihood of a scenario would likely be met with skepticism.  This research proposes a second 

part to the scenario development step which resembles, in a symmetric way, the traditional risk 

management practice of utilizing a 5x5 matrix to represent the likelihood and consequence of 

program risks.  The traditional vertical axis which represents the likelihood of a risk event is 

adapted in this case to represent the likelihood of a flexibility-instigating scenario.  The horizontal 

axis—for risk events, representing the consequence of occurrence—instead represents the 

opportunity associated with the scenario.  The horizontal axis can also be understood as the 

conditional impact score, that is, if the scenario occurs, how much impact it will have on the 

system‘s ability to generate value to its stakeholders.  Depicted in Figure 16, the likelihood-
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opportunity (L-O) matrix qualitatively indicates the ability, whether marginal, moderate, or 

promising, of a scenario to induce the need for flexibility in the system design. 
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Figure 16: Likelihood-Opportunity Matrix for scoring scenarios. 

 

 Scoring each scenario, similar to scoring program risks, requires the solicitation of expert 

opinion and engineering judgment.  However, scoring a scenario that represents operational use 

cases and alternative system user requirements necessitates interaction with the users and/or 

stakeholders.  Whereas the technologist may be the most credible source for information related 

to technical performance risk, the user is the most fundamental source for potential mission 

demands.  A basic rubric is proposed to assist the collaborative effort of scoring each scenario 

when only limited types of information are available.  In traditional risk management, the 

likelihood score for program risks is generally adjudicated based on factors like 

hardware/software maturity and technology readiness levels (Mankins, 1995), complexity, 

quantity of interfaces, and degree of legacy or heritage design.  Where an explicit probability is 

unavailable, it is proposed that the likelihood of a scenario can instead be credibly based on 

factors like: stakeholder environment, operational environment, design life, and system 

characteristics (Table 2).  In traditional risk management, the consequence of a program risk 
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event is typically distilled in terms of program cost, schedule, and technical performance.  This 

research proposes that the opportunity associated with a scenario is more appropriately 

adjudicated in terms of change in required performance, competitive environment, system value, 

and strategic importance (Table 3).   

 The likelihood of the scenario and the degree of its opportunity (both represented on a 

scale of 1 to 5) are multiplied to result in a qualitative measurement for the expected value 

potential available in the flexibility-instigating scenario.  The notation to allow each scenario to 

carry its L-O score becomes: 

 )()(

2

)(

1

)(
..., 21 ci sLO

c

sLOsLOsLO

i sssS  , 

where LO(si)= Likelihood(si) * Opportunity(si). 

 

3.2.1.1 Likelihood and Opportunity: A Scoring Rubric for Scenario Assessment 

 

 Assessing the likelihood and opportunity of a scenario requires a high level of 

collaboration between the system engineer, the technologist, the stakeholder, and the end user.  

The end user must contribute insight into the potential use cases of the system.  The stakeholder 

must communicate the level of desire or utility in accommodating the end users‘ potential needs.  

The technologist must leverage his knowledge of the design to communicate the feasibility of the 

performance or capability required.  The system engineer must consolidate and combine this 

information with any information that can be observed about the nature of the system or of the 

environment in which the system will operate.  This is the crux of the assessment: utilizing and 

exploiting information that is available during the conceptual design phase to forecast the 

likelihood of an event and categorize the magnitude of its impact if the event occurs.   

 The pertinent question is then: what does the system engineer know and how can he use 

that knowledge to inform his scenario assessment?  Steiner (1998), and Steiner (1999) introduced 

a set of distinguishing features for what he called, ―enduring architectures.‖  Reinhardt et al. 
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(2001) describe how enduring architectures can be beneficial for complex and highly 

unprecedented systems that exist in an unknown market (or environment).  Fricke and Schulz 

(2005) provide further context in which to judge the appropriateness of a changeable architecture.  

An attempt has been made to combine this context with an understanding of Porter‘s 5 Forces 

(Porter, 1980) and SWOT
11

 analysis to distill a set of proxies that can be useful in scenario 

assessment.  The intention here is not to graft any one approach in a wholesale manner, but 

instead to merge relevant ideas from each approach to create a helpful scoring rubric. 

 The specific proxies and scoring guidance found in Table 2 and Table 3 are based on our 

determination of what the system engineer knows at the outset of product development.  He does 

not necessarily know the numeric probability of an event occurring, nor does he know the 

quantifiable value of accomplishing an additional task.  The system engineer does however know 

something about the stakeholder environment, the operational environment, the competitive 

environment, the actual system in question, and the higher level strategic picture.  For example, if 

the stakeholder environment is centralized and the operational environment is highly predictable, 

or if the design life of the system is relatively short, there would be a relatively low likelihood of 

alternative scenarios coming to fruition.  But if the stakeholders are decentralized with divergent 

value assessments, and if the operational environment is unproven or undefined, combined with a 

long system design life, a higher likelihood for alternative mission scenarios would be expected. 

 Utilizing proxies to assess the magnitude of the conditional impact is somewhat less 

intuitive; the rationale will therefore be explained briefly.  Three useful characteristics are 

proposed, first being ―performance.‖  The question can be asked of a scenario: how much 

performance is required and is it available from other systems?  This draws on the system 

                                                      

11
 SWOT Analysis, and acronym for Strengths, Weaknesses, Opportunities, and Threats, is a 

strategic planning method used to ensure a fit between the external situation a firm faces (threats 

and opportunities) and its own internal qualities or characteristics (strengths and weaknesses) 

(Hill & Westbrook, 1997). 
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engineer‘s knowledge of the competitive environment (i.e. other systems able to perform the 

capability necessitated by a scenario).  The magnitude of the conditional impact is low if very 

minimal change in required performance is required to accommodate a scenario -or- if another 

system can readily accommodate the need.  Conversely, the opportunity impact is high if a 

significant change in required performance is required -or- if no other system can accommodate 

the need.  The second proxy is system cost, or value.  This characteristic draws on the system 

engineer‘s knowledge of his own system, i.e., the cost of the system in question.  System cost can 

be somewhat associated with stakeholder utility or value, which can subsequently give some 

insight into how much utility can be gained by using the system in alternative ways.  This is 

certainly not always the case, but can be a general guideline.  Higher utility could possibly be 

found in using a $10 million dollar piece of test equipment in a new way in comparison to using a 

$10 thousand dollar asset.  Thirdly, the system engineer has knowledge about how the system in 

question relates to the higher level strategic picture.  Is the system strategically important, or rare?  

Is the system an integral part of a larger operational context?  If the system functions as a lynch 

pin in a larger SoS, or if it cannot be easily substituted by adjacent systems, the magnitude of the 

conditional impact when new mission requirements arise will be high.  The strategic 

characteristics of a system can also be understood in terms of two of Porter‘s 5 Forces: barriers to 

entry, and startup costs.  These are proxies for how irreplaceable the system is and how integral it 

is for performing at the highest contextual level.          

 The following are four examples of scenario scoring: 

1. High likelihood, Low impact: During the construction of a parking garage, assume a scenario 

where Starbucks Coffee has indicated that it will open a location across the street.  There is a 

good business case for the new location and therefore good reason to believe that the store 

will open as indicated, so the score for likelihood is assessed as high (5).  However, the 

parking garage will not need a high level of delta performance to accommodate the new 

traffic.  Also other parking across the street can easily accommodate the delta requirement.  
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Therefore the conditional impact, or opportunity score, can be rated for this scenario as low 

(1)—minimum delta performance required -and- competitive entities exist to accommodate 

need. 

2. High likelihood, High impact: During the development of a national reconnaissance satellite 

system, assume the scenario exists in which the system stakeholders have high utility for 

timely imagery transmitted to the warfighter on the battlefield.  An emerging program, 

TSAT, is under development which would deploy a constellation of communication satellites 

within 5 years to provide a communication crosslink for other satellites and enable imagery 

downlink in theater.  TSAT has been developed through critical design review (CDR) and has 

been appropriated the remaining production funds.  Although the system is still in the 

production phase, a case can be made for assessing the likelihood of TSAT on-orbit 

capability as medium high (4).  Based on the fact that the reconnaissance satellite has a high 

asset value, is of national strategic significance, and is an integral component of a larger SoS 

intelligence collection capability, the opportunity for in-theater imagery downlink using 

TSAT is assessed as high (5). 

3. Low likelihood, Low impact: Many scenarios would fall into this category.  A short design 

life, consolidated stakeholder, or predictable operational environment would indicate low 

likelihood for alternative scenarios.  Low system cost, few barriers to entry, the existence of 

competing systems, or small delta performance required would indicate minimal conditional 

impact on the system‘s ability to deliver additional value to stakeholders.  

4. Low likelihood, High impact: A bridge is being built for vehicle traffic across a major river, 

e.g. river Tagus at Lisbon (Gesner & Jardim, 1998).  The scenario exists where a train will 

need to be accommodated across the bridge sometime during its design life.  The stakeholder 

environment is very stable and the operational environment is well understood and 

observable.  Although there is currently no demand or plan for the train, the design life of the 

bridge is comparatively long enough to warrant a medium low likelihood assessment (2).  If 
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the train is needed, the bridge will need to accommodate twice its original load and require a 

high level of performance delta.  There exists no other bridge across the river (no competing 

solutions) and there are high startup costs for any substitute solution.  For these reasons, the 

conditional impact for this scenario is assessed as high (5). 

 Step 1 identifies and scores a set of vignettes/scenarios to provide sufficient 

encapsulation of the operational uncertainty, which as a function of the scenario detail, will 

enable subsequent steps in the screening process to understand the design impacts related to 

accommodating potential mission demands.  Assessing the likelihood and conditional impact of 

each scenario requires judgment and industry sense.  It is not an automated scoring technique, but 

like the longstanding risk matrix scoring method, it is a qualitative and subjective assessment that 

can help system engineers gain insight into the system design implications of uncertainty.  To 

more completely understand the design impacts, the system engineer must first translate the 

mission demands into concise functional requirements.  This is described in Step 2. 
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Table 2: Scoring guidance for scenario likelihood. 

 

Opportunity

(Conditional 

Impact)

Given that the opportunity occurs, what is the magnitude of 

the conditional impact?

Score Performance System Value/ Utility Strategic

1 Minimal or no performance 

delta required <1%, other 

systems exist to seamlessly 

perform desired function

Very low cost system, high 

technology turn over, high 

rate of obsolescence

Few barriers to entry, low 

startup costs for competing or 

substitute systems, minimal or 

no strategic importance

2 Small performance delta 

required, other systems can 

be easily modified to 

perform desired function 

Relatively low cost system, 
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turn over and obsolescence 

rate

Surmountable entry 

conditions, limited strategic 

importance

3 Moderate performance 

delta required, other 

existing systems could be 

utilized with moderate cost

Moderate cost system, 

sustainable or evolvable 

technology churn

Moderate barriers to entry, 

comparable startup costs, 

some strategic significance

4 High performance delta 

required, other systems 

could be utilized with 

significant cost

High cost, high value 

system, national or strategic 

significance

Very desirable component of 

larger operational context

5 Very high performance 

delta required >20%, or 

major degradation in 

capability, new system 

would be required otherwise

Very high cost, high value 

system.  Complex, highly 

unprecedented, one-of-a-

kind system

Necessary component of 

larger operational context

 

Table 3: Scoring guidance for scenario conditional impact. 
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3.2.2 Step 2: Determine Functional Requirements for Each Scenario  

 Step 2 requires a functional analysis of the system to define those additional functions 

required to accomplish the mission scenarios developed in the previous step.  The functional 

analysis translates the mission needs for each scenario into a coherent description of system 

functions
12

.  Functions are discrete actions of persons or things necessary to perform the mission.  

A complete functional decomposition is not required in this step as would be performed in 

traditional systems engineering practice (Sage & Rouse, 1999; INCOSE SE Handbook, 2004)—

the derived functions are maintained at a level where independent, discernable utility can be 

traced to the function.  In other words, the function should be at high enough level to provide 

uncoupled utility, on its own, instigated by the scenario.  This recommendation will necessarily 

be enforced as an assumption in future work aimed at valuing architecture options that provide 

specific system functions; low-level, decomposed functions cannot properly be valued when 

conditional on other functions.  For each scenario, this is represented as: 
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 Using the operational views in Figure 15 as an example, if "Scenario 4" occurs and a 

satellite communication system is desired to be used for broadband data backhaul to the 

continental U.S., stakeholder value is derived only by performing all the functions required for 

data backhaul.  A subset of functions that does not enable the data backhaul, e.g. requisite 

transponders without needed data compression software, does not elicit value.  This assumption 

helps to define, as will be seen in subsequent steps, the architecture option as a conglomeration or 

                                                      

12
 System function: ―A characteristic task, action, or activity that must be performed to achieve a desired 

outcome.  For a product it is the desired system behavior.  A function may be accomplished by one or more 

system elements comprised of equipment (hardware), software, firmware, facilities, personnel, and 

procedural data (INCOSE, 2004)." 
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compilation of design parameters that enable a set of system functions that together perform a 

desired mission task.  

 There are a number of useful techniques familiar to system engineers to accomplish a 

functional analysis.  These include: functional hierarchical diagrams, functional flow block 

diagrams, Integration Definition for Function Modeling (IDEF0) diagrams, N2 charts, state 

diagrams, specification trees, and timelines.  Step 2 aims to repeat a traditional systems 

engineering functional analysis for each alternative mission scenario where the basic top-down 

process includes (Defense Systems Management College, 2001): 

 Define the system in terms of functions, then decompose the top-level functions into 

lower-level subfunctions, 

 Translate higher-level performance requirements into detailed functional criteria—that is, 

identifying how well the functions have to be performed, 

 Identify and define all internal and external functional interfaces, 

 Complete functional partitioning to group functions that logically fit with the components 

likely to be used in order to minimize functional interfaces, 

 Examine all appropriate life cycle functions as well as functions of existing or adjacent 

systems that will interoperate with system, 

 Assess alternative functional approaches to meet requirements, 

 Reconsider scenario-imposed requirements to resolve functional issues. 

 An equally valid, and somewhat simpler, approach to this step would consider system 

attributes opposed to functions.  Consistent with a multi-attribute tradespace exploration (MATE) 

process described in the SSPARC final report to the National Reconnaissance Office (Hastings & 

McManus, 2004), system attributes are, ―what the user truly cares about.‖  A distilled set of 

attributes can be conceived that represent quantitative metrics that the decision maker needs to 

consider.  Sometimes described as key performance parameters (KPP), measures of effectiveness 

(MOE), or Technical Performance Metrics (TPM), these attributes should consider all relevant 

user needs and be of reasonable fidelity and predictability from high-level engineering models.  

This research has adopted the terminology of ―attributes‖ to represent the set of functional 

requirements that provide an independent, quantifiable capability or a level of desired 

performance.   
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 The set of system attributes associated with a scenario can be represented as: 

 aaa ,..., 21 , 

that contain functional requirements: 

  1

11

2

1

1 ,..., aFRFRFR  . 

 

3.2.3 Step 3: Complete Functional-to-Physical Mapping and Populate DSM 

 Step 3 translates the functional requirements into physical parameters and/or design 

variables.  In this step, the design structure matrix (DSM) is utilized as a modeling technique to 

represent the system, its interfaces, and the intensity of its relationships.  The DSM provides a 

succinct, quantitative way for organizing and re-structuring information in a complex system, 

with the additional advantage of simplicity.  For an excellent review of the DSM technique used 

for system decomposition and integration, see Browning (2001).  The assumption is made in this 

step that a system level DSM has been developed for the baseline architecture that performs the 

critical mission.  With this existing DSM as the point-of-departure, Step 3 extends the DSM to 

include exogenous, e.g. environmental and functional, variables.  Proposed by Bartolomei (2007), 

the extension of the DSM beyond the system boundary, enables additional insight into the system 

behavior affected by the stakeholders and other external system drivers (illustrated in Figure 17).  

The relationship between endogenous and exogenous variables is explored in this step as a means 

to understand how each scenario-generated functional requirement affects the physical design 

variables.  The system engineer must ask and answer the question: what design parameters and 

physical characteristics are impacted in order to meet a new or changed functional requirement?     
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Figure 17: DSM extension can represent relationships between endogenous and exogenous system 

variables 

 

 Consider a system with κ design variables, represented by the design vector: 

 xxx ,..., 21x . 

For tractability, design variables should be limited to those which have the largest effect on the 

system attributes, i.e. the set of functional requirements that provide stakeholder value.  Defining 

the design vector is more appropriately described as an exclusionary process that determines 

which design variables can be left out while still adequately representing the attributes of the 

architecture.  Through the use of a system model, the relationships between design variables can 

be observed and the system attributes can be calculated from a given design vector.  The 

corresponding DSM can be represented as: 

),( jiDSM  

where the DSM is a square matrix with κ rows and columns, whose entries i,j and j,i are equal to 

―1‖ (or sometimes denoted with an ―X‖) if the two variables i and j are coupled.  The variable η is 

the number of system attributes relevant to the decision maker, where each attribute can also be 

expressed as a set of its constituent decomposed functional requirements.  An expanded DSM can 

be constructed to include the η attributes and their relationships to the κ design variables.  A 

notional DSM is illustrated in Figure 18.   
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Figure 18: Notional DSM structure with system attributes and design variables. 

 

3.2.4 Step 4: Perform Sensitivity Analysis and Normalize sensitivity-DSM 

 Step 4 represents the conceptual centerpiece for identifying architecture options.  It is our 

argument that flexibility in the form of AOs will be most promising when embedded in the 

regions of the architecture most sensitive to changes in functional requirements, specifically those 

functional requirements associated with the identified user scenarios.  An analysis is performed in 

Step 4 that calculates the change required in one variable due to the change of another.  This 

procedure answers the question: what design variables must change, and by how much, in order 

to accommodate changes in the mission demands, i.e. system attributes.  Kalligeros (2006) 

proposed the idea of a sensitivity-DSM (sDSM), where entry i.j of an sDSM represents the 

normalized sensitivity of parameter i to unit changes in parameter j in the neighborhood of a 

particular architecture solution.  The sDSM was used in that case to find regions in the 

architecture most insensitive to change for the purpose of finding platform (i.e., standardized) 

components.  Potential platform components are those that act as a ―bus‖ in some way (Yu, 

Yassine, and Goldberg, 2007), or as an interface between other customized systems, having 

usefulness across product variants.  Our screening process is instead concerned with the highly 
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sensitive regions in the architecture which shed light on the critical areas for flexibility as the 

system is asked to accomplish different tasks.  The sDSM can also be defined as a square matrix 

with κ rows and columns, whose normalized entry i,j represents the percent change in variable i 

caused by a percent change in variable j.  A particular set of design variables is denoted as: 

 **

2

*

1

* ,..., xxxx . 

So the sDSM is defined as: 
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dx

dx
jisDSM . 

 Unlike the DSM which is valid for all designs, the sDSM is calculated for a particular 

design solution and therefore necessitates the assumption of an existing baseline architecture as 

the point-of-departure for the analysis.  The sDSM represents sensitivities between design 

variables (i.e., how design variables change in response to other design variables), and is next 

extended to include the sensitivities of design variables to changes in functional requirements.  

The south-west quadrant of Figure 18 contains these sensitivities and can be represented as: 
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 This step in the screening process is concerned only with the south-west and south-east 

quadrants which contain the sensitivities of design variables to changes in functional 

requirements and other design variables; the upper regions in Figure 18 would contain 

sensitivities of functional requirements to changes in other functional requirements and design 

variables.  These upper regions would provide little insight for the purposes of this architecture 

screening process and will not be considered here. 

 Each design element is affected in one of two ways: directly from the change in 

functional requirement, or indirectly from a propagated change in another design element.  This 
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process is concerned with the combined total change, due to both sources, and can express this 

change with the sum:  
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 This formulation states that the required change in xi is the cumulative change caused by 

all the functional requirements and other design elements to which xi is sensitive in the 

neighborhood of xi
*
.  The resulting matrix is populated with these sensitivity values which can 

either be normalized to the largest value or binned for simplicity.  A binning strategy might 

assign integer values on a 1 to 5 scale to represent the least to most sensitive relationships.   

 

3.2.5 Step 5: Apply Clustering Algorithm 

 The next step in this process helps the system engineer manipulate the visual structure of 

the data.  This organization provides further clarity of the data which helps generate insight into 

the relationships that exist between elements.  Clustering of DSM elements by rearranging the 

order of the rows/columns can help find subsets, or modules, that are mutually exclusive or 

minimally interacting.  Step 5 uses a DSM clustering technique to consolidate the elements in the 

system architecture that are most sensitive to changes in the functional requirements.  These 

sensitivity regions, when combined in Step 6 with the L-O score for each scenario, can help 

reveal the most promising areas in the architecture to embed flexibility. 

  DSM clustering has been proposed by numerous researchers as a means to improve 

system architectures (McCord & Eppinger, 1993; Pimmler & Eppinger, 1994).  Illustrated in 

Figure 19, clusters can contain most, if not all, of the interactions internally and the links between 

separate clusters can be minimized or eliminated (Gutierrez, 1998; Fricke & Schulz, 2005).  This 

type of data partitioning can help identify highly coupled subsets and separate them from 

uncoupled elements.  Traditional use of DSM clustering allows the system engineer to identify 
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natural groupings within the system, for example: to identify subsystems, create the work 

breakdown structure (WBS), develop the integrated product team (IPT) structure, or separate 

parallel tasks from sequential or iterative.  For this analysis, our main emphasis is on segregating 

physical design elements that are highly responsive to the changes imposed by future use cases or 

scenarios. 

 

 

Figure 19: Clustering algorithm applied to a DSM (Fricke & Schulz, 2005). 

 

 There is a wide range of clustering algorithms, a sample of which can be found in 

(Alexander, 1964; Hartigan, 1975; Gutierrez, 1998; Thebeau, 2001; Whitfield, Smith, and Duffy, 

2002).  However, there are some key features that must be present to adequately perform Step 5 

in this process: 

 The algorithm should be able to handle non-binary matrix entries 

 The algorithm should be able to find the optimal number of clusters 

 The algorithm should be able to detect ―bus‖ elements, i.e., those that have sensitivity 

interaction widely across the system 

 The algorithm should be able to detect overlapping clusters. 
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 One algorithm in particular meets these needs.  Yu, Yassine, and Goldberg (2007) 

proposed a clustering algorithm that uses an objective function based on the minimum description 

length (MDL) principle (Rissanen, 1978; Barron, Rissanen, and Bin, 1998; Grünwald & 

Rissanen, 2007), and a genetic algorithm as a search strategy.  The MDL principle is interpreted 

as follows: 

Among all possible models, choose the model that uses the minimal length for 

describing a given data set (that is, model description length plus mismatched data 

description length) [sic].
13

 

 

 The MDL approach has fundamental roots in inductive inference where the goal is to find 

laws or regularities underlying some given data set that can be used to gain insight, clarify, or 

predict future data.  Stated succinctly by Grünwald (2000), the MDL Principle is that, ―any 

regularity in the data can be used to compress the data, i.e. to describe it using less symbols than 

the number of symbols needed to describe the data literally.‖  In Step 5 the MDL idea is adopted 

to describe the sDSM with the simplest (i.e. symbolically shortest) model which compresses the 

dataset into discrete clusters that contain the given elements while also indicating which, if any, 

elements have been wrongly included or excluded in or from those clusters.  The MDL algorithm 

is implemented by minimizing the objective function that sums the model description with the 

mismatched data description.  The model description is: 

 



cn

i

ic cln
1

loglog  , 

where nc is the number of clusters in the sDSM, κ is the number of rows or columns in the sDSM, 

cli is the number of nodes in the ith cluster.  The logarithm is of base 2 which indicates that log κ 

bits are needed to describe nc.  Another matrix sDSM´ is then constructed with elements d´ij, 

which is used to compare the compressed model description with the original data.  Where the 

                                                      

13
 Yu, T.-L., A.A. Yassine, and D.E. Goldberg, An Information Theoretic Method for Developing Modular 

Architectures Using Genetic Algorithms. Research in Engineering Design, 2007. 18(2): p. 91-109 
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two models differ, d´ij ≠ dij, a mismatched data description is used to indicate if the mismatch is 

one-to-zero (Type-I) or zero-to-one (Type-II).  The mismatched data description is: 

    
 


1 2),( ),(

1loglog1loglog
Sji Sji

 , 

where the first log κ indicates i and the second indicates j with one extra bit to describe the type 

of mismatch.  In order to use nonbinary matrix entries, define the following two mismatch sets: 
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where S1 is the set of Type-I mismatches and S2 is the set of Type-II mismatches.  The sDSM 

entries are normalized to pij = (dij - dmin )/(dmax - dmin ), where dmax = maxi,j dij and 

dmin = mini,j dij.  Entry ij then has a probability (1 - pij) to be a type-I mismatch if it is inside a 

cluster, and a probability pij to be a type-II mismatch if it is outside clusters.   

 The goal of the clustering algorithm is to find model M that minimizes the objective 

function:  
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which, written after some arithmetic manipulation, is the sum of the model description over all 

clusters and the mismatched data description over both mismatch sets.  Weighting factors α and β 

are inserted to mimic the behavior of manual clustering; these coefficients represent the user‘s 

preference for including versus excluding elements in a cluster.  The value used for the weighting 

factors is dependent on individual preference and the application domain.  Manual calibration can 

also be used after the data is clustered to reflect the preference in a specific application.  This 

tuning of the clustering algorithm will alter the resulting data partition and may reveal alternate 

organizational structure and different design aspects within the architecture. 
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3.2.6 Step 6: Visualize Sensitivity Regions 

 Step 6 fuses the Likelihood-Opportunity scores from the scenarios in Step 1 with the 

design sensitivity information from Step 4 to display a clustered 3D architecture plot.  Figure 20 

displays an example of the two plots, a 3D bar plot and a 2D color map (known also as a contour 

or topographic map), that is combined to create a ―Hoodoo‖ plot.  The ―Hoodoo‖ plot, which is a 

reference to the natural geologic rock formations found in desert regions like Bryce Canyon 

National Park, is able to display information regarding structure (i.e. magnitude and clustering of 

the sensitive regions) while also displaying the underlying topography (i.e. the likelihood and 

impact of the instigating scenario).  It can also be thought of as downtown Manhattan built on a 

hilly landscape—the insight is available when viewing the skyline from a distance to see the 

overall city structure.  When viewed separately, the sensitivity and scenario information can 

certainly be useful.  However, the Hoodoo plot combines the relevant information in a novel and 

consolidated way in order to more effectively reveal the important data characteristics.  

 

 

Figure 20: Combine 3D Bar Plot from sensitivity analysis with 2D contour map from Likelihood-

Opportunity score to create "Hoodoo" Plot. 
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 The visualization can be either highly resolved, showing all levels of detail, or highly 

simplified, showing binned data and only three colors for the L-O score.  Compressed down to a 

2D plot in Figure 20, the sensitivity data is categorized as low, medium, and high ( ∙ , * , @ ) 

while the L-O score is shown as low, moderate, and promising (yellow, blue, purple).  The color 

of each node in the ―Hoodoo‖ plot is generated from the L-O score of the scenario from which the 

system attribute is affected.  That is, all downstream design elements related to the change in a 

system attribute will take on the L-O score of the driving scenario.  If multiple scenarios affect a 

system attribute, the attribute will propagate (to the design elements) the L-O score from the 

highest ―impact‖ scenario and need not be additive.  The notation as follows states that, for each 

element in the sDSM, if the absolute value of the cumulative change in xi—caused by all the 

functional requirements (viewed through the system attributes) and other design elements to 

which xi is sensitive in the neighborhood of xi
*
—is greater than zero, then the node is colored 

according to the highest LO score of the scenario that contains the affected functional 

requirements:    
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If the functional requirements that are contained in a system attribute are also a subset of the 

functional requirements that constitute the scenario vector, it can be said that the scenario drives 

the change seen in the sDSM element.  The ―Hoodoo‖ plot, whether 2D or 3D, can then be used 

to identify regions in the architecture that are sensitive to changes caused by a scenario, while 

displaying the opportunity (or relative impact) of that scenario.  This research asserts that the 
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confluence of these aspects represent the most promising regions to embed flexibility in the form 

of architecture options. 

 

 

Figure 21: Conceptual plot of sensitivity data combined with L-O scenario data. 

 

3.2.7 Step 7: Complete Detailed Definition for AOs  

 While a robust screening process can help identify promising regions in the architecture 

to embed AOs, the detailed definition of feasible AOs is an inherently creative endeavor and 

cannot reasonably be automated.  For example, a screening process can identify the elements in 

the spacecraft electrical power system that are sensitive to changes in future power demand, but 

cannot specify the best option available to accommodate that change.  The system engineer in 

collaboration with specialty engineers and domain experts must decide if more efficient multi-

junction solar cells, next generation traveling wave tube amplifiers (TWTA), or multiple in-series 

solid state power amplifiers (SSPA), are the better implementation option for the desired effect.  



83 

This type of analysis can require significant time and resources and necessitates the prerequisite 

of a managerial-type decision point.  For this reason, Step 7 of the screening process exits the 

implementation phase and requires a management resource allocation decision.  The 

unconstrained management objective is to complete detailed definitions for the largest set of 

candidate architecture options to allow for broad analysis and deliberation.  However, this 

objective is realistically constrained by available time, resources, and engineering labor pool as 

well as external stakeholder preferences and other programmatic considerations.  Step 7 requires 

a management decision for resource allocation and establishes the constraints on the size and 

completeness of the actual set of AOs available to the system architect for consideration and 

implementation.  Step 7 subsequently requires completion of the detailed definition for all AOs 

under consideration.  The output of this step is a functional and physical description of each 

architecture option, including necessary hardware, software, internal and external interfaces, 

technology maturity assessment, and any other preliminary design review (PDR)-level of design 

description deemed appropriate.   

 

3.2.8 Step 8: Insert Detailed AOs into DSM and Estimate Correlation Metric 

 The final step in the screening process is to insert the well-defined AOs into the system 

DSM and populate the element relationships.  The resulting DSM will have all candidate AOs 

embedded simultaneously in the system design—this is not necessarily a design solution nor is it 

meant to be completely realistic.  The purpose of this DSM is twofold: first, to discover the extent 

to which AOs have overlapping physical characteristics, and second, to trace the physical design 

of the AO back to the top level scenario.   

 This research recognizes the importance of discovering how AOs are physically related, 

that is, how the implementation of one AO affects, or is affected by the existence of another.  The 

question can be asked: does one AO, by nature of its physical design, augment or influence the 

implementation of another AO?  To approach this question, the following assumption is required: 
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AOs in the DSM cannot be mutually exclusive--there is no sense to analyze the relationship 

between AOs that cannot exist at the same time.  To be clear, the exercise of two AOs can be 

mutually exclusive (where only one can be utilized in operation), but the physical characteristics 

required to embed each AO cannot be mutually exclusive.  Where only one of a set of AOs can be 

implemented at a time (e.g., the TWTA and SSPA solutions), a single option must be chosen for 

the overlap analysis.  Iterations to this analysis can be completed to substitute and accommodate 

the excluded alternate options.  For tractability, a quantitative answer to the posed question is not 

attempted.  However, the supersaturated DSM is used as a tool to understand the relationships 

between AOs in the system context in order to accomplish some of the following: filter out 

incompatible AO pairs, discover opportunities to pursue AOs that have common implementation 

elements, coordinate vendor requests for information (RFI), develop a high level architectural 

strategy for AO mix, consolidate reference data in preparation for detailed AO pricing, and 

develop a more complete understanding of the physical commonalities between AOs that both 

help and hinder system level synthesis. 

 The second way the supersaturated DSM is used is similar to the common systems 

engineering practice of requirement traceability.  However, instead of tracing system performance 

back to the parent requirement, the AO physical design parameters is traced, by route of the 

functional requirements, back to the driving mission scenario.  The purpose here is to understand 

how candidate AOs satisfy multiple functional requirements derived from different scenarios (i.e. 

sources of operational uncertainty) and subsequently estimate a measure of correlation between 

AOs.  If two AOs satisfy functional requirements associated with the same scenario, they have an 

overlapping source of uncertainty—these are defined as perfectly positively correlated.  If two 

AOs satisfy functional requirements associated with two different scenarios, the AOs are 

uncorrelated given the scenarios are independent.  Functional requirements which are shared 

between scenarios are partially correlated AOs.  AOs will be negatively correlated if they satisfy 
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functional requirements associated with negatively correlated scenarios.  The correlation 

coefficient, ρ, can be estimated as: 

scenario correlated negatively with assciated ntsrequiremte functionalsatisfy  AO and AO if ,01-

scenariosbetween  shared are that tsrequiremensatisfy  AO and AO if ,10

scenariost independendifferent   with twoassociated ntsrequiremte functionalsatisfy  AO and AO if ,0
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 In the more complicated case where ρij is between zero and one, a preliminary correlation 

value can be assigned based on the number of functional requirements that are shared between the 

AOs and the relative value potential of each functional requirement.  A qualitative scale similar to 

Table 4 has widely been proposed to guide engineering judgment and correlation coefficient 

interpretation.  

 

Table 4: Interpretation of correlation coefficient. 

Correlation Negative Positive 

Small −0.3 to −0.1 0.1 to 0.3 

Medium −0.5 to −0.3 0.3 to 0.5 

Large −1.0 to −0.5 0.5 to 1.0 

 

 An exact numeric value at this stage is not essential and will be in some ways arbitrary 

and should not be observed too strictly (Cohen, 1988).  After the architecture option is valued as 

described in Chapter IV, a more rigorous treatment of the correlation coefficient is presented 

based on the AO's statistical properties that become discernable.   

 

3.3 Conclusion 

 Flexibility in the system design can be understood as the set of architecture options which 

allow the system to respond to changes in its initial objectives in a timely and cost effective way.  

Architecture options are sets of physical design components that enable a distinguishable function 

with discernable value predicated on an uncertain mission scenario.  A screening process can be 
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used during conceptual design to identify the most promising regions within the system to create 

options.  The system engineer is then able to investigate a smaller, more manageable set of 

potential architecture options.  An eight step screening process is presented that encapsulates and 

describes the operational uncertainty, translates it into functional and physical demands on the 

system, and organizes and represents the most promising regions with a compact system model.  

After the candidate architecture options are identified through the screening process, they can be 

valued with the technique described in the following chapter. 
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4 CHAPTER IV 

 

4 VALUATION OF FLEXIBILITY IN THE SYSTEM ARCHITECTURE 

 

4.1 Introduction 

 As system designers embrace the notion that it is more appropriate to seek to maximize 

the life cycle value of a system than to solely minimize the life cycle cost, flexibility becomes a 

critical characteristic.  Flexibility embedded in the system architecture can allow the system to 

perform new functions to accommodate changing demands over time, thus capturing latent 

stakeholder value.  In order to make flexibility-informed design decisions, the value of flexibility 

must be quantified.  The previous chapter developed the idea of architecture options: tangible 

design opportunities that accomplish a distinguishable function with discernable value in light of 

an uncertain mission scenario occurring.  Architecture options were employed as a way to 

operationalize the concept of system flexibility.  This chapter will discuss the second part of the 

three stage integrated framework (Figure 22) for designing appropriately flexible systems: 

valuing architecture options.   

  

 Stage 3 Stage 2 Stage 1 

Identify candidate 

architecture options 

Value architecture 

options 

Select optimal subset of 

architecture options 

 

Figure 22: Three stage integrated flexibility framework for identifying, valuing, and selecting 

architecture options. 

 

 An architecture option valuation technique is developed in this chapter that embraces the 

theoretical underpinnings of real options analysis while avoiding the constraining mathematical 
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structure and market assumptions necessary for traditional methods like Black-Scholes and 

Binomial Lattice.  Based on a recent development in real options analysis (Mathews, Datar, and 

Johnson, 2007), real options "on" projects can be valued in a more intuitive and robust way.  See 

Section 2.5.3.3.5 for an overview of the Datar-Mathew (DM) technique.  This advancement has 

enabled this research to augment and extend the DM valuation technique to handle real options 

embedded "in" the system in a way that can better facilitate adoption by the technical and systems 

engineering communities.   

 The following sections will present the Variable Expiration technique and define each of 

the input parameters of the algorithm.  Discussions are included regarding how the new technique 

handles benefit stream forecasts for both commercial and military projects, variable exercise cost, 

and risk aversion through differential discounting.  Finally, analytic valuation tools are presented 

to describe the more intricate behavior of architecture options and the sensitivities of option value 

to changes in the input parameters.  This flow is illustrated below in Figure 23. 
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Figure 23: Variable Expiration option valuation chapter flow. 
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4.2 Valuation of Architecture Options Using a Variable Expiration Technique 

 Architecture options embedded "in" the system behave differently, compared to a 

manager's real option "on" a project, and require additional considerations for proper valuation.  

The decision point for real options "on" a project is predefined as the investment gate where the 

irreversible launch cost is expended to pursue the venture.  This real option is handled 

appropriately with a European-type option with only one exercise opportunity at expiration.  Real 

options embedded "in" the architecture can theoretically be exercised at anytime during the 

design life of the system.  This option more resembles an American-type option in that the 

exercise date is not predefined but is instead bounded by the expiration date.  However, an 

additional consideration exists in that the embedded option is subject to a second source of 

uncertainty beyond the uncertainty in the price path of S--that is the viability of the option.  An 

embedded option will generate value only if the scenario exists to allow its usage.  When the 

scenario occurs that instigates the exercise of an embedded option, that option is described as 

"viable."  This occurrence is uncertain and therefore must be characterized by a random variable.  

Even after an option becomes viable, there remains uncertainty in the value that can be derived, 

or in a commercial sense, the profit that can be generated, through the exercise of the option.  A 

new technique is developed in this research that allows for the valuation of options that exhibit 

both uncertainty in the option payoff and uncertainty in the option expiration date.  These options 

are characterized in this research as variable expiration (VE)-type options. 

 Although architecture options can be exercised any time before expiration, the rational 

decision maker will exercise only when the operating profit forecast is positive and will abandon 

otherwise.  In the case where scenarios (as described in the previous chapter) encapsulate the 

uncertainty in option viability, the forecast will be positive only when the relevant scenario 

occurs.  Therefore option viability is defined by the likelihood function of the mission scenario or 

potential business case.  When the uncertainty in option viability is merged with that of option 



90 

payoff, a new variable expiration-type option is defined that more closely reflects the behavior of 

real options "in" projects.   The valuation logic is implemented as follows: 
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viability is represented with the random variable Tv and defines the first economically rational 
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between zero and the design life in years, tDL.  The case where the option never becomes viable, 

i.e., the instigating scenario never occurs, is represented as Tv equal to zero, which zeroes out the 

operating profit for that trial.  Conceptually, as Tv extends further in time, there are fewer years to 

reap the benefits of the architecture option after exercise.  The algorithm can also be stated as: 
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A Monte Carlo simulation is performed to evaluate the expected value of the appropriately 

discounted cash flows, conditioned on rational decision-making at the option viability date.  

Valuing an embedded option in this way can be understood as owning a market basket of 

European-type options--one for each expiration year--and prorating their value by the probability 

of becoming viable in that year (or time step).  This technique utilizes the same validated logic as 

the DM method, described in the literature review Section 2.5.3.3.5, and extends it for use with 

embedded real options.  It is not constrained by the complex market assumptions of traditional 

valuation methods and instead utilizes the terminology and frameworks familiar to financial 

forecasts. 
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4.2.1 Defining S and Tv: "Temporal Step" Value Functions 

 In financial options, the variable S is the uncertain value of the underlying asset or stock.  

It fluctuates with a mean, standard deviation, and drift rate in Black-Scholes and an up and down 

probability in binomial lattice technique.  S0 is the market consensus, and observable, value of S 

today in Year 0 (i.e., the stock price listed on the exchange or in newspapers).  In real options, the 

value of S is the stream of future operating profits which is neither observable or known with 

certainty.  The analogue to S0 is the present value distribution of the cashflows which are 

consolidated through discounting the flows to particular dates.   

 For architecture options, S can similarly be a stream of operating profit, but more 

generally is the future stream of potential benefits generated by the utilization the option.  It is the 

delta benefit in each year above the benefit derived from the baseline system architecture.  This 

benefit stream is contingent on "if" the option becomes viable and also "when" the option 

becomes viable.  Option viability is defined by the likelihood function represented by Tv.  If the 

option never becomes viable, S is zero for all years and no delta benefit will be derived over the 

design life.  If Tv is greater than zero, S will be comprised of the benefit stream starting in year Tv 

and extending through the system design life.  In terms of operating profit (i.e., revenue and cost), 

S can be estimated with some of the common business variables described in Table 5.  Arbitrary 

numbers are included as representative quantities to demonstrate the calculations. 

Table 5: Estimation of the most likely change to operating profit with typical business inputs. 

Most Likely Delta from Baseline Business Case 

  Year 
     

($T) 0 1 2 3 4 5 

Unit ΔPrice 25 
     

First Unit ΔCost 30 
     

Target Learning Curve 
 

0.85 0.85 0.85 0.85 0.85 

Unit ΔCost 
 

14 11 10 9 8 

Unit Δquantity - 40% year/year growth 
 

30 42 59 82 115 

ΔRevenues (Unit ΔPrice * Unit ΔQuantity) 
 

750 1050 1470 2058 2881 

Recurring ΔCosts (Unit ΔCost * Unit ΔQuantity) 
 

405 462 563 703 889 

ΔOperating Profits (ΔRevenue - Recurring ΔCost) 
 

345 588 907 1355 1992 
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 Uncertainty is included in the business forecast by varying any of the independent 

variables, most commonly the price, quantity, and unit cost.  Distributions of almost any kind can 

be applied to develop a time-varying stochastic forecast.  A simple method is to develop a 

pessimistic and optimistic business case to define the bounds of a triangular distribution in each 

analysis year.  Table 6 describes a pessimistic and optimistic case and Figure 24 illustrates the 

numbers.  

 

Table 6: Pessimistic and optimistic forecasted change to operating profit using typical business inputs 

Pessimistic  Delta from Baseline Business Case 

  Year 
     

($T) 0 1 2 3 4 5 

Unit ΔPrice 20           

First Unit ΔCost 30           

Target Learning Curve   0.90 0.90 0.90 0.90 0.90 

Unit ΔCost   20 18 16 15 15 

Unit ΔQuantity - 20% year/year growth   15 18 22 26 31 

ΔRevenues (Unit ΔPrice * Unit ΔQuantity)   300 360 432 518 622 

Recurring ΔCosts (Unit ΔCost * Unit ΔQuantity)   298 318 353 399 456 

ΔOperating Profits (ΔRevenue - Recurring ΔCost)   2 42 79 119 166 

       
Optimistic Delta from Baseline Business Case 

  Year 
     

($T) 0 1 2 3 4 5 

Unit ΔPrice 30           

First Unit ΔCost 30           

Target Learning Curve   0.80 0.80 0.80 0.80 0.80 

Unit ΔCost   9 7 5 4 4 

Unit ΔQuantity - 60% year/year growth   45 72 115 184 295 

ΔRevenues (Unit ΔPrice * Unit ΔQuantity)   1350 2160 3456 5530 8847 

Recurring ΔCosts (Unit ΔCost * Unit ΔQuantity)   399 470 603 800 1079 

ΔOperating Profits (ΔRevenue - Recurring ΔCost)   951 1690 2853 4729 7769 
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Figure 24: Change in operating profit for pessimistic, most likely, and optimistic business case 

scenarios represented with triangular stochastic distributions. 

 

 

Figure 25: Simulated present value distribution of multi-scenario operating profit forecasts. 
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 A Monte Carlo simulation is used to simulate the operating profit in each year.  The 

market discount rate of 15% is used to generate the present value distribution, S0, at Year 0 

(Figure 25).  When the business concern is cashflow, the analysis is very straight forward in 

looking at revenue and cost.  The forecasting question in defining S is: Given the occurrence of an 

instigating scenario in Year X, what impact does the exercise of architecture option Y have on the 

independent variables that affect operating profit?  However, many times in systems engineering, 

the organizational concern is not necessarily cashflow, but is the value or utility derived from a 

system.  This requires a more intricate analysis of the system, it's attributes, and the preferences 

of its stakeholders. 

 An important assumption in this research is that the architecture option is treated as an 

independent addition to a baseline architecture that fulfills the critical mission.  This allows for 

the independent evaluation of each AO and does not require iterative optimization of the entire 

system design with the inclusion of each AO.  An end-to-end design optimization can certainly be 

incorporated into this analysis, but would require linked models of the entire architecture and 

reliance on techniques like multi-attribute tradespace exploration with concurrent design (MATE-

CON).  This level of modeling will be an important extension in future research, but is not 

included here.   

 The value derived from exercising an architecture option is linked with performing a new 

or changed mission either with a completely new capability or a change to an existing system 

attribute.  This linkage necessitates an adequate understanding of the utility derived from the 

capability required for each instigating scenario.  Value/utility functions in general are more 

difficult to estimate in comparison to operating profits in the commercial sector which leads to a 

mostly subjective forecast.  In addition, large systems may have multiple stakeholders with 

diverse value assessments.  This makes the development of value functions even more 

challenging and may require a combinatorial or holistic approach that assigns weighting factors to 

each stakeholder (Hastings & McManus, 2004; Ross, 2006; Browning & Honour, 2008). 
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 The simplest case can be modeled by assuming a constant and predefined utility of some 

magnitude which is delivered each year by performing a capability linked to the exercise of the 

architecture option, shown at top in Figure 26.  This stream of utility can be appropriately 

discounted to the base year as a point estimate of the AO's total lifecycle utility.  The only 

relevant uncertainty in this case is the scenario's likelihood distribution which defines the option 

viability.  A more complex case will model the uncertainty of the utility derived.  Each annual 

utility forecast can be represented with a distribution in the same way as described for the 

cashflow analysis.  This case is shown with lognormal distributions at bottom in Figure 26.  In 

modeling the random variables, it has been found that defining the random forecast values as 

partially correlated to the forecast values in adjacent years (e.g., ρ=0.7) provides additional 

realism to the model, as illustrated in Appendix A.  This will result in a present value distribution 

for the additional utility.  The final layer of complexity occurs when utility is understood as a 

function of performance.  In many cases, the stakeholder will have nonlinear utility assessments 

for varying levels of performance.  If a scenario requires a particular capability, and that 

capability has a dynamic range, there will be varying levels of utility in that range.  For example, 

if a scenario for the Global Positioning System (GPS) requires an increase in broadcasted signal 

power to overcome enemy jamming, there will be a range of utility associated with varying levels 

of power.  As the signal power capability increases, the utility derived may asymptotically 

approach a maximum value.  The traditional utility function that varies with performance 

essentially represents the present value of the most likely utility stream.  This can be used in one 

of two ways when assessing architecture options.  First, it can be used to help identify multiple, 

mutually exclusive AOs that can be compared with one another for inclusion in the architecture; 

this can be applied as a feedback loop into the first stage of the flexibility framework.  Second, it 

can help the system engineer include actual performance variability in the utility forecasts for S.  

This level of analysis requires the close consultation of engineers, stakeholders, and end users.  
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Simply stated, S can be understood as an uncertain stream of benefit attached to the exercise of an 

AO; S0 is the appropriately discounted contribution to lifecycle value. 

 

 

Figure 26: At top, value stream generated by architecture option that excludes forecast uncertainty 

and results in a single value for S0.  At bottom, value stream that includes forecast uncertainty and 

results in a present value distribution for S0. 

 

 Our Variable Expiration technique incorporates the uncertainty of the instigating scenario 

by defining the option expiration as a random variable.  Tv represents the first rational opportunity 

to exercise the architecture option and can be described with a probability distribution.  A simple 

way to represent Tv is with a discrete (or Bernoulli) distribution.  This representation is 

appropriate many times when the scenario likelihood is communicated as a lifetime probability.  

For example, if the stakeholder believes there is a 35% probability that a scenario will occur 
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sometime during the five-year system design life, a discrete distribution can be created that splits 

the probability between the operational years as displayed in Figure 27. 

 

 

Figure 27: Discrete likelihood distribution to represent uncertainty of the instigating scenario. 

 

 The value of the architecture option is directly related to when the option is exercised.  

The problem can be simplified by "discretizing" the expiration dates, most simply into years.  The 

architecture option can be thought of as a group of European-type options, one for every analysis 

period.  The value of the European option is augmented by the scenario likelihood function.  If a 

discrete distribution is used for the scenario, the expected value of each European option can be 

multiplied by the probability that the option will become viable in that period.  The VE technique 

calculates the values directly from the forecasts, not from the mean value, but it is conceptually 

helpful to understand the option value as a function of the viability date and the mean option 

value at that date.  Figure 28 illustrates this idea with two Monte Carlo trials: one with option 

viability earlier in the lifecycle resulting in a longer stream of benefits, the other showing viability 

later in the lifecycle and fewer benefit years.  Using the mean of many Monte Carlo trials for each 

analysis year, shown by the histograms on the left, a "Temporal Step" value function can be 

constructed which is constituted by the mean values of the discounted benefit stream for each 
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year (in base year dollars).  This representation depicts the relationship between future benefit 

stream and the scenario likelihood assessment, and when combined with the exercise price, can 

bring insight into the timing required of a scenario in order to break even with the upfront 

architecture option expenditure.   

 

 

Figure 28: Present value distribution of benefit stream varying with option viability date.  Also, 

notional  Temporal Step value function composed of the associated mean values. 

 

 

4.2.2 Defining X: Strike / Exercise Price 

 For exchange traded options, the strike price, X, is a contractual price at which the stock 

can be purchased at a later date.  The price is predetermined and fixed; traditional valuation 

methods like Black-Scholes require this.  The strike price (or exercise price) for real options "on" 

a project represents the one-time, irreversible launch cost required to build, manufacture, or 

otherwise fully commit to the project.  For architecture options embedded "in" the system, the 

exercise price is the one-time initiation or system augmentation cost.  This includes the total 

system upgrade cost, which is expended only if the instigating scenario occurs and if the net 

forecasted benefit is positive.  The recurring operational costs associated with the AO like 
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maintenance, support, and additional management of the new capability are not included in the 

exercise cost--those costs are incorporated in forecast S.  The expense required for complex 

system upgrades in many cases is uncertain because of the uncertainty in upgrade scope and 

extent as well as variations based on the timing of the upgrade.  The Variable Expiration 

technique can handle this type of uncertainty in X by representing it as a stochastic value as 

illustrated in Figure 29.   

 The exercise cost/price for architecture options can be estimated with a Rough Order of 

Magnitude (ROM) or a more complete costing procedure substantiated with a detailed Basis of 

Estimate (BOE).  A BOE will include the costing methodology, the sources of data used, 

mathematical calculations, and associated assumptions and resulting judgments.  The level of 

detail will vary significantly depending on the expectations and requirements of the customer, 

maturity of the program definition, and the availability of relevant historical information.  The 

format and requirements for preparing BOE rationale will typically be specified in the contract 

pricing instructions, but will many times include common techniques and practices such as:  

 Projections from history 

 Similar-to (Analogous) 

 Cost Estimating Relationship (CER) 

 Parametric Cost Models 

 Manufacturing Labor Standards 

 Level-of-Effort 

 Detail Task Buildup 

 Supplier Proposals/Quotes 

 Expert Judgment 

 Basic Task Units (BTUs) 

 Labor Conversion Factors 

 Improvement Curves 
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Figure 29: Variable Expiration option valuation accommodates stochastic exercise price. 

 

4.2.3 Defining r, μ: Risk Aversion 

 The Variable Expiration technique uses a differential discounting method that applies an 

"investment" rate, r,  to the exercise price and a "market-risk" rate, μ, to the operating profit 

stream.  The use of two discount rates instead of one allows us to more closely reflect the 

different types of underlying risk.  The exercise price, or launch cost, is relatively secure, where 

management exerts control and discretion over the funds.  The launch cost is expected to be 

incurred only if there is good prospects for a successful investment.  Therefore, the investment 

rate, r, takes a value closer to the risk-free rate used in Black-Scholes, and represents the least 

expensive source of capital--in corporate finance, this will typically be the general obligation 

corporate bond rate.  In comparison, the market-risk rate, μ, is higher as it reflects market 

uncertainty and the return rate required as a corporate investment hurdle.   

 Differential discounting is a risk adjustment technique that essentially shifts the relative 

values of different cash flows at Time 0 to reflect risk aversion.  The launch cost is cash-on-hand 
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and valued more highly than the uncertain stream of potential operating profit.  The manager may 

be quite risk averse as he stands to lose the cash-in-hand in comparison with the uncertain 

benefits dependent on market risk.  Therefore the launch cost is discounted at a lower rate than 

the operating profit; this reflects risk aversion and translates to perceived reduction in the chances 

of a positive outcome in the Monte Carlo generated present value distribution.   

 The discounting method employed here is different from traditional options valuation 

methods and is worth discussing briefly.  Many have argued that the beauty of directly applying 

the Black-Scholes formulation to real options centers on its ability to align disparate investor risk 

orientations to a single risk-free rate.  This is accomplished with a risk neutral construct enabled 

by arbitrage enforced pricing.  To explain, consider that a traded market asset has stochastic 

components that are perfectly correlated with a real option and consider further that arbitrageurs 

can short sell the real option.  A portfolio can be theoretically constructed that perfectly replicates 

the real option.  If then, there is any mismatch between the return on the real option and that on 

the traded asset, an arbitrageur can gain riskless profit by shorting one and long the other.  In an 

open liquid market, this opportunity will not last as arbitrageurs will enforce a single price and 

bring the situation into equilibrium.  This dynamic helps us prove that there is a market price for 

risk that holds in the worlds of risk preference and risk neutrality.  Black-Scholes embraces this 

theoretic phenomenon and performs risk-neutral valuation to determine option value independent 

of individual risk preference.  As can be seen in the Black-Scholes formulation, S0N(d1) is the 

probability of the exercise of the stock, and Xe
-rt

N(d2) is the risk-neutral probability of exercise.  

Although both expressions are "probabilities," neither is the true exercise probability as would be 

understood by risk-averse individuals or corporations; they are both risk-neutral measures of 

theoretic probability.  Black-Scholes therefore uses only the risk-free discount rate and forces all 

inputs to be stated in Time 0 values.  The binomial lattice similarly relies on the risk-neutral 

construct and its associated market assumptions, but requires an additional translation to the risk-

free world with the application of a risk-free probability multiplier at each node.         
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 The Variable Expiration technique, like that of the DM method, avoids the risk neutral 

construct and the requirements for a replicating portfolio by using differential discount rates that 

directly reflect risk aversion as well as the differing levels of underlying risk.  True probabilities 

can therefore be used in the valuation which allow the technique to be more intuitive and 

transparent for management and systems engineering decisions.   

 

4.3 Architecture Option Valuation in the Collaborative Environment 

 Complex system design occurs many times within large organizations that merge highly 

specialized enterprise functions into an interdependent collaboration.  Valuating architecture 

options requires inputs from numerous enterprise functions and is overviewed in Table 7.   

 

Table 7: Input responsibility and method within the enterprise. 

Variable Contributor Method 

Benefit Stream, S Management Combination of the following 

   Commercial Project:   

      Unit Cost Engineering, Vendors 

Bottom-up hardware, software 

and labor estimate, historical 

projection 

      Unit Price Marketing 
Market analysis, consumer 

behavior, business forecasting 

      Unit Quantity Marketing 
Market analysis, consumer 

behavior, business forecasting 

   Military/Scientific 

Project: 
  

      System Attributes Engineering, Stakeholders Systems engineering process 

      Utility Function Engineering, Stakeholders 
Expert solicitation, Delphi 

method 

      Value Assessment Engineering, Stakeholders 
Expert solicitation, Delphi 

method 

Augmentation Cost, X Engineering, Vendors 

ROM, BOE, CERs, ICE, 

parametric, Bottom-up build 

and labor 

Investment Rate, r Finance Corporate bond rate 

Market Rate, μ Finance Corporate hurdle rate 

Design Life, tDL Engineering, Stakeholders 
Mean mission duration, 

reliability analysis 

Option Viability, Tv 
Systems Engineering, 

Stakeholders, End Users 

Scenario / Vignette Planning, 

DoDAF OV-1, OV-2 
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4.4 Analytics for Variable Expiration Technique 

 Using the data in Table 5 and Table 6 combined with the discrete likelihood distribution 

in Figure 27, this section formulates various analytic measures in order to better understand the 

more intricate behavior of the architecture option value.  The data in Table 5 and Table 6 describe 

a most likely, pessimistic, and optimistic business case scenario related to the exercise of an 

architecture option.  Changes to the quantity sold, price, and unit cost are forecasted, resulting in 

revenue and cost projections that directly translate to operating profit.  Triangular distributions, 

with correlation coefficients of 0.7, are created to represent the operating profit in each year, 

illustrated in Figure 24.  The implementation cost (i.e. exercise price) is represented by a normal 

distribution with mean of $700 and standard deviation of 10%.  The Variable Expiration 

technique is implemented with 100,000 trials in a Monte Carlo simulation using the stochastic 

modeling software Crystal Ball.  For instances where the option becomes viable, based on the 

discrete Tv distribution, the difference between the appropriately discounted operating profit and 

implementation cost is calculated at Year 0 and displayed in Figure 30.  The option viability year 

shifts the operating profit stream to that year and is extended through the remaining design life; 

an inflation rate of 1% per year is also applied to the future operating profit forecasts.  A rational 

economic decision making algorithm is then applied where negative projected outcomes are 

abandoned and positive projected outcomes are pursued by the exercise of the architecture option.  

The higher resolution depiction of the present value distribution, Figure 31, shows the abandoned 

negative outcomes.   The mean option value of $485 is determined by truncating the negative 

outcomes and calculating the residual mean (Figure 32). 
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Figure 30: Present value distribution that is the difference between the appropriately discounted 

operating profit and the initiation cost. 

 

 

Figure 31: Close-up of present value distribution showing abandoned negative outcomes. 
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Figure 32: Truncated present value distribution to find mean option value. 

 

 The assessment of the architecture option is informed mainly by the mean value, 

however, other statistics and analytics can bring important insight into the behavior of the option.  

The span of outcomes is reflected in the maximum of $9,602 and represents the upper bound, 

while the standard deviation of $1,235 reflects the dispersion of outcomes.  Other second and 

third order analytics can be important for revealing sensitivities of the option value to changes in 

the input parameters.  In traditional Black-Scholes analysis, these analytics are commonly 

referred to as the Option Greeks: Delta, Gamma, Vega, Theta, and Rho (excluding other higher 

order derivative measures).  However, the common formulations, treated extensively by Hull 

(2003), do not translate exactly to the proposed variable expiration technique.  The traditional 

formulation has therefore been used as a foundation to extend the analytical techniques for use 

with variable expiration-type options.  This transformation and the resulting mathematical 

formulations are discussed in the following sections. 
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4.4.1 Option Delta 

 The option Delta is a measure of the rate of change of the option value with respect to 

changes in the price of the underlying asset.  Delta is calculated with the first derivative of the 

option value with respect to asset price: 

dS

dC
  Delta   

 The Variable Expiration technique regards the asset price, S, differently than traditional 

valuation methods.  It is not the fluctuating stock price, but instead is interpreted as the present 

value distribution of the future benefit stream.  Changes in S0 therefore cannot have precise 

attribution in the stochastic model since infinite combinations of the structure of the benefit 

stream, S, can result in identical changes to S0.  However, some of the closed form Black-Scholes 

algebraic formulations can still be utilized if the VE parameters are translated into the Black-

Scholes construct.  By appropriately discounting the VE benefit stream to Time 0, translating the 

standard deviation to an annualized volatility measure, and assuming a lognormal distribution of 

the outcomes, the mean and standard deviation of the future value distribution can be used to 

approximate an equivalent stock price, S, and subsequently utilize the Black-Scholes algebra to 

estimate Delta.  For Variable Expiration options, Delta can be represented as the sum of the 

individual Deltas for the portfolio of European-type options that theoretically constitute the 

architecture option, multiplied by the probability of option viability in the respective time period: 
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 For architecture options, Delta will take on a value between zero and one: zero if the 

option value is insensitive to changes in S0, and one if the option price moves point-for-point with 

the change in S0*P(Tv). This occurs typically when S0 is deep in-the-money, i.e. much larger than 

X.  Individual Deltas for each expiration year are shown in Figure 33 and the cumulative Delta for 

the VE option is shown in Figure 34.   

 

 

Figure 33: Constituent Deltas for each expiration year. 
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Figure 34: Cumulative Delta for architecture option. 

 

4.4.2 Option Gamma 

 The option Gamma is the second derivative of the value function with respect to the 

underlying price.  Using Black-Scholes notation, Gamma can be calculated with the standard 

normal probability density function as: 
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 Gamma is also understood as the rate of change of Delta with respect to the underlying 

price and can be used to identify where the option value is changing most quickly with changes in 

S0.  It is sometimes useful to identify the range of S0 where Gamma is neutralized; the architecture 

option in this range will have a more predictable and consistent value movement, zero or P(Tv).  

This plot is displayed in Figure 35.    
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Figure 35: Cumulative Gamma for architecture option. 

 

4.4.3 Option Vega 

 The option Vega is the derivative of the option value with respect to the volatility.  It 

represents the theoretical change in value of the option given a one percent change in volatility.  

The formulation for a Variable Expiration option is:   
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 The VE technique does not specifically use a measure of volatility, since uncertainty in 

the benefit stream is calculated directly from the forecasts as a standard deviation.  However, the 

standard deviation of the future value distribution can be annualized and translated into volatility 

for each expiration year.  This yields the option Vega shown in Figure 36 and Figure 37.  Vega 

displays how sensitive the option value is to changes in the level of uncertainty and typically 

peeks at-the-money (i.e., where the mean of the discounted present value distribution is equal to 

the initiation cost). 
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Figure 36: Constituent Vegas for each expiration year. 

 

 

Figure 37: Cumulative Vega for architecture option. 

 

4.4.4 Option Theta 

 The option Theta is the derivative of the option value with respect to the time.  It 

represents the change in option value given a one day decrease in time to expiration--essentially 

instantaneous time decay.  The architecture option has a finite life and each day that passes 
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reduces the uncertainty in the option value.  Uncertainty is what gives the option additional time 

value above its intrinsic value.  It would therefore be expected that the option value would 

decrease with time as fewer opportunities remain to successfully exercise the AO.  The 

formulation of Theta for a Variable Expiration option is:   
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As shown in Figure 38 and Figure 39, Theta drops off rapidly as the option maturity approaches.  

Also, the cumulative stepwise behavior is a result of the consecutive exclusion of the unexercised 

annual benefit. 

 

 

Figure 38: Constituent option Thetas for each expiration year. 
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Figure 39: Cumulative Theta for architecture option. 

 

 An alternative way to understand the impact of passing time is to revisit the Temporal 

Step value function from Section 4.2.1.  By combining the benefit stream with the exercise cost 

for each time period, an option value function can be constructed (Figure 40) which depicts the 

mean payoff if the architecture option were to be exercised in a given year.  The Temporal Step 

value function is contingent on option exercise, however the combined intrinsic and extrinsic 

value of the option to the system designer is associated with the expected payoff.  Probability 

information for option viability must be combined with the contingent value function to produce 

Figure 41 which depicts the total expected value of the architecture option as time passes.  These 

representations can elucidate timing information associated with when an option must be 

exercised or when a scenario must occur to allow for a successful exercise of the architecture 

option.   
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Figure 40: Temporal Step value function. 

 

 

Figure 41: Mean option value decreases over time. 

 

4.4.5 Option Rho 

 The traditional option Rho measures the sensitivity of option value to changes in the risk-

free interest rate.  The VE technique however uses differential discounting and avoids the risk 

neutral construct and subsequently the risk-free rate.  The VE valuation technique is instead 

performed in the world of risk preferences and, at its core, is a comparison of risk-adjusted 
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returns between a safe investment (discounted at private risk) and a risky investment (discounted 

at market risk).  When the corporate bond rate is used as the investment rate, the valuation 

contrasts the value of prospective risky operating profits against paying off corporate bond 

holders.  A higher investment rate therefore signifies a more expensive source of capital and a 

more risky cash outflow.  This outflow is not valued as highly when risk-adjusted and is a smaller 

hurdle for positive NPV outcomes resulting in an increased option value, shown in Figure 42.  A 

similar interpretation applies to the market rate in that higher market risk causes the prospective 

operating profits to be perceived as less valuable and will reduce the mean option value seen in 

Figure 43.  The option Rho is consequently redefined here as the sensitivity of the option value to 

changes in the investment rate and the market risk rate, both separately and conjointly, as in 

Figure 44.  These metrics are generated through iterative Monte Carlo runs for varied discount 

rate inputs.   

 

 

Figure 42: Option Rho for Investment Rate. 
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Figure 43: Option Rho for Market Risk Rate. 

 

 

Figure 44: Option conjoint Rho. 
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4.4.6 Using Option Analytics 

 Although this research is chiefly concerned with the mean value and dispersion of the 

option value, as communicated in the Stage 3 selection process presented in Chapter V, second 

and third order sensitivities can reveal important aspects of option behavior.  These sensitivities 

can guide the analysis toward the most important variables and best use of investigative 

resources.  The option Delta can serve as a broad filter by defining the threshold where changes in 

the benefit stream lead to either no change in option value, or maximum change in option value.  

The maximum change for VE-type options will not be one-for-one, but is commensurate with the 

likelihood function (in this 0.35/1.00).  This generates insight into how changes to the likelihood 

function (e.g. lifetime probability) will ultimately affect the option value.  The option Delta is 

also used in Section 5.5.1 to quantify the change in option value as the system performance 

changes in response to changes in cost (See Figure 50 for illustration). 

 The option Gamma can be used to identify if the option is relatively stable.  When the 

forecasted value stream is much below or above the exercise cost, the option value will react 

predictably to perturbations in this quantity (the straight line segments of the option Delta).  In the 

nonlinear range however, the option value is not as predictable, and leads to a wider variation of 

the impact of change.  For analysis purpose, neutralizing the option Gamma helps stabilize the 

model. 

 The option Vega describes how the uncertainty in the benefit stream forecasts affects the 

option value.  Where the option value is highly affected, the analyst is inclined to stringently 

verify the assumptions and inputs.  Where the option Vega indicates only a minor impact from 

uncertainty, the fidelity of the inputs may be moderated without significant impact. 

 The option Theta, as well as the other time varying analytics, help to discover when the 

option must be exercised to meet an objective.  Objectives may include: breaking even, minimum 

level of return, rank ordering of options, etc.  If the option Theta drops sharply early in the design 

life of the system, this may indicate that the option has only a narrow time window to be 
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advantageously exercised.  Also, if the Temporal Step Value function is high only for the first 

year and negligible otherwise, the mean value may erroneously suggest a strong architecture 

option, while overlooking the constraint of exercising the option in the first year. 

 The option Rho is a straight forward depiction of how the option value changes as the 

discount rates are changed.  This sensitivity reveals how important the discount rate is to the 

overall analysis.  In general, a longer design life will cause the discount rates to have a more 

significant impact on the option value as the compounding cumulative effect is realized.  Also, 

when the discounted value stream approaches the exercise cost, the discount rates become more 

important as the rational exercise decision is at the margin.   

 

4.5 Conclusion 

 This chapter presents the second stage of an integrated framework for use in designing 

appropriately flexible system architectures.  Existing methods devised to assess system flexibility 

have been constrained by a conceptual, descriptive, or domain-specific nature that has seriously 

limited their applicability for systems engineering.   This research employs real options, 

specifically architecture options, as a generic unit of analysis for flexibility.  Real options analysis 

can be applied across engineering domains while it more accurately reflects the asymmetric 

human decision process that seeks to limit downside risk and take advantage of upside 

opportunity.   

 Real options valuation methods have predominantly been applied to options "on" projects 

which deal exclusively with managerial flexibility.  A consistent means to value system flexibility 

as part of the design process has, to this point, been elusive.  Traditional analytic and discrete 

valuation techniques are heavily constrained by the financial market assumptions required for 

proper usage; this fact has discouraged the larger engineering community from pursuing real 

options as a design tool.   
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 The Datar-Mathews technique has revealed an alternative mechanism for option 

valuation which avoids the stringent market assumptions and enhances the overall transparency 

and versatility of option valuation.  This chapter uses the underlying logic of the Datar-Mathews 

technique to extend real options analysis to options embedded "in" the system architecture.  To 

reflect the behavior of architecture options, a new technique is developed that allows for variable 

expiration of the option.  The VE technique combines the uncertainty of the instigating scenario 

with the uncertainty inherent in the option payoff.  The mean option value is derived by 

comparing the risk-adjusted returns from the stream of operating profit with that of the option 

initiation cost and subsequently applying a rational economic decision algorithm.  

Implementation of the VE technique is readily accomplished by a combination of spreadsheet 

notation and stochastic modeling. 

 Option valuation metrics are devised in this chapter to assess option value sensitivity and 

are presented as a tool to understand the intricacies of option behavior.  The option analytics can 

help system designers understand the ramifications and tradeoffs between model inputs and can 

guide the analytical emphasis toward the most important variables.  Each real option in this 

analysis is treated individually with respect to the delta value stream generated by exercising the 

option.  However, overall system flexibility is defined by the conglomeration of multiple, distinct 

architecture options.  The next chapter presents an approach for selecting an optimal subset of 

architecture options that maximizes the expected portfolio return while minimizing risk. 
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5 CHAPTER V 

 

5 ARCHITECTURE OPTION SELECTION THROUGH 

5 PORTFOLIO OPTIMIZATION 

 

5.1 Introduction 

 In Chapter III, architecture options were introduced as a conceptual vehicle to understand 

system flexibility.  The architecture option was defined as set of physical design characteristics 

that enable functional capabilities which responds to the needs generated by an uncertain mission 

scenario.  A screening process was described to identify promising regions in the architecture 

where options could be embedded.  Real option theory was then employed in Chapter IV to value 

the architecture option.  A new technique was described to allow valuation of real options that 

have variable expiration characteristics based on scenario uncertainty.  This chapter deals with 

stage three (Figure 22) in the integrated flexibility framework and develops an optimization-based 

approach by which the system engineer can select a subset of architecture options to compose an 

optimal portfolio.  This portfolio defines the system flexibility and yields a quantitative measure 

of risk and return. 

 

 Stage 3 Stage 2 Stage 1 

Identify candidate 

architecture options 

Value architecture 

options 

Select optimal subset of 

architecture options 

 

Figure 45: Three stage integrated flexibility framework for identifying, valuing, and selecting 

architecture options. 
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5.2 Selection of Optimal Portfolio of Architecture Options 

 Budgets and risk aversion prohibit systems from being infinitely flexible.  What then is 

the right level of flexibility--what we've previously described as the 'appropriate' level of 

flexibility?  The appropriate level of flexibility depends on characteristics like the following: 

 extent of uncertainty in the operational environment,  

 availability of architecture options in the design space, 

 cost and feasibility of augmenting the system during operation, 

 mean and variance of the potential benefit stream, 

 design life of the system, 

 risk aversion of the stakeholders, 

 size of the initial investment necessary to secure the architecture option in the design. 

 Instead of addressing each of these factors individually, these factors can be consolidated 

by leveraging the AO identification from Chapter III and the AO valuation from Chapter IV to 

distill the concept of 'appropriately flexible design' into two underlying ideas: 1) maximization of 

life cycle value (LCV), and 2) minimization of risk through diversification.  From this, two major 

premises are derived which together serve to define the optimal portfolio of architecture options: 

Premise 1: An optimal subset of architecture options will maximize the expected life 

cycle value of the system for a given level of risk.  

Premise 2: An optimal subset of architecture options will minimize portfolio risk for a 

given level of expected life cycle value. 

 

5.3 Life Cycle Value 

 Flexibility, in itself, is not valuable simply by virtue of being flexible.  Flexibility has 

value only when associated with a system or entity that generates utility from its exploitation.  An 

appropriately flexible system therefore is a system that utilizes flexibility to maximize its life 
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cycle value--that is the total value derived by the stakeholder during the system design life.  

Value is simply the perceived benefit net of cost, and in comparison to life cycle cost, has been 

extolled as a more complete and useful metric for system assessment (Amram & Kulatilaka, 

2000; Browning, 2005; Ross, 2006; Ross & Rhodes, 2007; Saleh, Jordan, and Newman, 2007; 

Browning & Engel, 2008).  Proposed by Saleh (2007), LCV can be expressed as: 
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where u(t) is the revenue/utility model, θ(t) is the operating cost model, and the difference is 

discounted to the present and integrated over the design life of the system.  CIOC is the 

development and production cost required to reach initial operational capability; this is 

represented as a function of the system design life, TLife.  The LCV expression represents the 

accumulation of the discounted operating profits (revenue - cost) minus the development cost.  

The methodology here is compatible with the proposed VE option valuation technique and is 

therefore expanded to include the value of flexibility in the LCV calculation. 

   

p
pp

DL
DL

AO AOAO
t

t

t

DLIOC
rt

DL CrZtCdtettutV ),()()]()([)(
0

 

0 
  

where the VE option value from Chapter IV is: 
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CAOp is the initial investment cost required to include AOp in the system design.  This formulation 

represents the system life cycle value, including the benefits associated with a portfolio of 

architecture options minus the up-front development cost for each AO in the portfolio.  Depicted 

in Figure 46, the yellow shaded region represents the potential value desired by the stakeholders 

above that derived from the baseline system architecture.  Life cycle value is maximized as the 

system is able to capture increasingly more latent stakeholder value, depicted in light blue, 

through the exercise of architecture options.   
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Figure 46: Maximization of life cycle value with a portfolio of real options.  3-dimensional depiction 

of value delivery over time.  Desired stakeholder value (yellow) increases over time.  A portfolio of 

architecture options (light blue) captures latent value across different operational scenarios. 

 

To maximize the system life cycle value given the program budget, B, the objective function can 

be written: 
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In order to maximize the expression, E[V(tDL)], the AO summation term need only be maximized.  

This is true because of the assumption that a baseline architecture exists that can be assessed 

independently of the AO portfolio, which allows the definite integral and the development cost to 

be treated as constants.  Two other assumptions are made: first, the delta cost associated with 

each AO is fully captured in the CAOp term and does not affect the CIOC.  Second, the design life is 

considered to be fixed.  Although the value of the AO is certainly dependent on the design life, it 

is recommended that future research address the wide ranging implications of varying this factor 

in the analysis.  These assumptions simplify the objective function to: 
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where now the budget variable, b, represents the management funds available to pursue flexibility 

in the design.  In combination with maximizing LCV, an optimal subset of architecture options 

should minimize risk.  This objective can be accomplished through risk diversification. 

 

5.4 Risk Minimization through Uncertainty Diversification 

 The concept of maximizing return while simultaneously minimizing risk was first 

developed by Markowitz (1952) and is now referred to as modern portfolio theory (MPT).  

Markowitz recognized that portfolio variance could be reduced through diversification.  Whereas 

the leading method for selecting investments at the time had been to carefully analyze the 

intricacies of each investment or firm for its relative potential.  This emphasis on individual asset 

potential might lead an investor to have owned all railroad stocks based on their appealing risk-

reward characteristics.  This concept of portfolio risk was born and Markowitz demonstrated that, 

as assets are included in the investment portfolio, total risk (defined by the portfolio variance) 
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decreases.  Consequently, the expected portfolio return is the weighted average of the expected 

returns of the individual assets.  A Markowitz portfolio is defined as the portfolio that achieves 

the highest expected return for a given level of risk.  Conversely, this portfolio has the lowest risk 

for a given level of expected return.  The set of all Markowitz portfolios define a curve in risk-

reward space called the Efficient Frontier (Markowitz, 1959). 

 The variance of an individual asset is the expected value of the sum of squared deviations 

from the mean: 

])[()( 22   RERVar R . 

The portfolio variance for a simple portfolio containing just two assets can be expanded: 

BAABBABBAABBAAp wwwwww  2)( 222222   

where wi represents the relative portfolio weight or proportion of the asset.  The last term in this 

expression contains the correlation coefficient, ρAB, which defines the extent of co-movement of 

the asset return.  If ρAB is equal to +1, the returns of assets A and B are perfectly positively 

correlated, and the portfolio risk will be equal the weighted sum of the individual asset risks.  If 

ρAB is equal to 0, the assets are perfectly uncorrelated, and the portfolio variance is the weighted 

sum of the individual variances.  Negative values of correlation coefficient represent inversely 

correlated assets and the portfolio will have an even lower variance than if the assets were 

completely uncorrelated.  Figure 47 depicts a notional pair of assets with expected returns of 3 

and 5 and standard deviations of 2 and 3, respectively.  Each mark represents a random 

proportion of each asset contained in the portfolio.  Roe equals -1 defines the top leading edge of 

risk-reward performance; Roe equals +1 shows the poorest performing portfolios.  Roe values 

between -1 and +1 define portfolio in between. 
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Figure 47: Diversification of correlated assets. 

 

 The notation is expanded to a portfolio of many assets by: 


 


n

i

n

j

jijipp rrCovwwrVar
1 1

2 ),()(   

where the Covariance is defined as: 
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Matrix notation can be used by defining V as the covariance matrix and w as the vector of 

portfolio weights of each asset: 
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The minimum risk portfolio, containing n number assets, can be found by solving for the set of 

portfolio weights that minimizes the Lagrange function Λ for portfolio variance: 
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λ1 are the Lagrange multipliers and other variables are as previously defined.  By taking the 

partial derivatives of the Lagrange function with respect to each of the variables, w1, w2,..., wN, λ1, 

and setting them equal to zero subject to the Lagrangian constraints, the resulting values will 

define the minimum risk portfolio. 

 

5.5 Optimal Portfolio 

 The optimal portfolio of architecture options is one that lies on the efficient frontier, 

where there exists no combination of options that yield a larger expected return for a given level 

of risk.  Mathematically, the efficient frontier is the intersection of the set of minimum risk 

portfolios with the set of maximum expected LCV portfolios.   

 Two types of systems engineering situations will typically exist.  The first is when the 

system architect has identified a range of performance valid for the architecture option, where the 

cost to enable varying levels of delta performance will increase with the level of performance 

desired.  For example, to continue a brief satellite scenario from Chapter IV, if the architecture 

option exists which increases GPS signal power to combat enemy jamming, the more power 

enabled, the more the stakeholder is satisfied (to a certain extent), and the more it will cost.  The 

architecture question exists: how much of the available program funds should be allocated to 

embed signal power flexibility as opposed to the other available architecture options?  The second 
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situation is when the cost to embed each architecture option is known; the cost can be known 

precisely or treated as a stochastic variable
14

.  The optimal portfolio decision in this situation 

consists of determining which set of the defined architecture options to "purchase."  Portfolio 

selection for each of these situations is described next. 

 

5.5.1 Architecture Options on a Continuum 

 Having a pool of money such as management reserve, discretionary funds, spiral 

development funding, or otherwise, the system architect will want to know how to most 

efficaciously expend those dollars.  When considering architecture options that are continuous in 

nature (i.e., additional performance and utility is achieved with additional cost), the optimal 

portfolio will allocate the available resources among the set of options  that results in a minimum 

variance, maximum return portfolio.   

 To demonstrate this process, an example portfolio has been created which contains 

undetermined proportions of six large capitalization stocks.  These stocks were chosen mainly to 

exhibit both positive and negative correlation between asset returns.  Ten years of data, from 

2000 to 2010, were compiled to calculate the average annual return, annualized standard 

deviation, and correlation coefficients between assets.  Summary data are listed in Table 8, Table 

9 and Table 10. 

 

 

 

 

                                                      

14
 Variability in initiation cost can be included by defining CAOi as a random variable which simply 

augments the values of the existing E[V(tDL)] and σAOi which are calculated in Chapter IV. 
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Table 8: Average annual return, Annualized standard deviation 

Asset 

Average 

Return 

Standard 

Deviation 

Hewlett-Packard (HPQ) 9.58% 13.64% 

Boeing (BA) 5.52% 13.58% 

Chevron (CVX) 2.98% 10.02% 

Lockheed Martin (LMT) 11.70% 8.34% 

Caterpillar (CAT) 7.89% 16.00% 

Exxon Mobile (XOM) 2.24% 10.29% 

 

Table 9: Correlation matrix 

  HPQ BA CVX LMT CAT XOM 

HPQ 1 0.090329 0.268221 -0.18478 -0.31399 0.576522 

BA 0.090329 1 0.041045 0.651821 0.450723 0.627282 

CVX 0.268221 0.041045 1 -0.0542 -0.12079 0.270371 

LMT -0.18478 0.651821 -0.0542 1 0.365603 0.359357 

CAT -0.31399 0.450723 -0.12079 0.365603 1 -0.07049 

XOM 0.576522 0.627282 0.270371 0.359357 -0.07049 1 

 

Table 10: Covariance matrix 

  HPQ BA CVX LMT CAT XOM 

HPQ 0.018618 0.001674 0.003668 -0.0021 -0.00686 0.008097 

BA 0.001674 0.018448 0.000559 0.007387 0.009795 0.00877 

CVX 0.003668 0.000559 0.010043 -0.00045 -0.00194 0.002789 

LMT -0.0021 0.007387 -0.00045 0.006961 0.004881 0.003086 

CAT -0.00686 0.009795 -0.00194 0.004881 0.025601 -0.00116 

XOM 0.008097 0.00877 0.002789 0.003086 -0.00116 0.010595 

 

The asset proportions, w, that yield the minimum variance portfolio can be found by: 
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The only constraint is that the asset proportions sum to one.  For computational convenience, the 

optimization can be performed with the Solver function in Microsoft Excel and does not require 
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the Lagrange calculations by hand.  Also, it is many times useful to utilize matrix notation which 

can be expressed with: 
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where, 
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Solving for the minimum variance portfolio results in an expected return of 6.95%, standard 

deviation of 1.04%, and the following portfolio composition: 
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The set of intersecting minimum variance, maximum return portfolios can be generated by adding 

a constraint to the optimization which specifies a desired level of expected return, E
*
.  Therefore 

for each level of expected return, a minimum variance portfolio can be calculated and plotted to 

find the set of optimal risky portfolios.  
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Figure 48 shows the optimal portfolios in red along the efficient frontier and the minimum 

variance portfolio with a blue square.  The gains from diversification are readily observed when 

compared to any of the individual assets pictured as green triangles.  The portfolios illustrated 

along the black dashed line are also minimum variance portfolios, but because an investor will 

always prefer a higher return for the same level of risk, these portfolios are dominated and can be 

discarded. 

 

 

Figure 48: Minimum variance portfolio and efficient frontier. 

 

 Each of the portfolios along the efficient frontier are optimal portfolios, where one cannot 

be declared better than another.  However, using information about a riskless asset, that is, the 

"risk-free" rate of return, the portfolio can be found that maximizes the "reward-to-variability" 

ratio.  Known as the Sharpe ratio (Sharpe, 1966), this metric measures the excess return per unit 

of risk against a riskless benchmark asset--the incremental return of the portfolio compared to the 

incremental increase of risk.  In this example, the risk-free asset has been defined as the 10-yr 
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U.S. Treasury Bill which yields the risk-free rate, Rf = 3.85%.  The portfolio that maximizes the 

Sharpe ratio can be found by: 

1

..

][
Max  

1









n

i

i

p

fp

w

ts

RRE
S



 

The result is a portfolio with expected return of 8.12% and a standard deviation of 1.2%, 

composed of asset proportions: 
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 The final step in finding the optimal portfolio balances the investor‘s willingness to trade 

off risk against expected return.  The Sharpe ratio defines the slope of a line, described as the 

capital allocation line (CAL), that originates at the riskless asset and intersects the optimal risky 

portfolio, shown in Figure 49.  This line represents the set of portfolios that contain just the 

optimal risky asset and the riskless asset.  The optimal combination is found at the intersection of 

the investor's utility function and the CAL.  Utility functions for varying degrees of risk aversion 

can be plotted as a set of indifference curves that represent the indifference of an investor to 

combinations of risk and return.  According to Chen (2008), a common utility function is used by 

the Association of Investment Management and Research (AIMR) to describe investor risk-return 

preference.  This function increases with expected return and decreases with the portfolio 

variance, multiplied by a risk aversion coefficient, A: 

2][ pp AREU   
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Figure 49: Complete portfolio contains the optimal risky portfolio and the riskless asset. 

 

The optimal complete portfolio, C, which includes some proportion of the risky portfolio, y, and 

the risk-free asset, is found as the investor seeks to maximize his utility:   
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By reserving some portion of cash in hand for allocation to the riskless asset, risk can be 

decreased further from the minimum variance portfolio.  Alternatively, if additional cash is 

borrowed at the risk-free rate to fund the purchase of the risky portfolio, a leveraged portfolio can 
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be created, along the CAL, that has risk-reward characteristics beyond the efficient frontier.  This 

represents the highly risk tolerant investor. 

 This example demonstrates optimal portfolio selection using data from the stock market 

and is further grounded in the realities of the financial markets with the use of the risk-free T-Bill 

as the investment benchmark.  When translated to fit systems engineering applications, some 

subtle differences arise in collecting and using the relevant data.  These differences involve the 

calculation of expected return, standard deviation, asset correlation, risk-free rate, and portfolio 

weights. 

 For architecture option selection, the expected value and standard deviation of the AO is 

calculated by the truncated present value distribution from Chapter IV.  Both measures are 

reported with respect to the entire design life, tDL.  Therefore, the average annual return and 

annualized standard deviation must be converted by: 
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 Architecture option correlation is calculated by dividing the covariance of the two 

random variables, AOi and AOj, by the product of their standard deviations: 
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This calculation is possible when the occurrence of each scenario is treated as the random 

variable, Tv, for example a Bernoulli distribution, which flows into a value function for the AO 

that satisfies functional requirements associated with that random event.  Each AO, having its 

own stochastic value stream, also reflects the random value of the scenario and, after Monte Carlo 

simulation, yields an expected value and variance.  The correlation coefficients can be calculated 

and used to populate the correlation matrix, C.  In Step 8 of the Chapter III AO screening process, 

a procedure is described that assigns a correlation coefficient to AOi-AOj pairs.  If two AOs 
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satisfy functional requirements associated with the same scenario, they have an overlapping 

source of uncertainty—these are defined as perfectly positively correlated, ρij = 1.  If two AOs 

satisfy functional requirements associated with two different scenarios, the AOs are perfectly 

uncorrelated, ρij = 0.  When functional requirements are shared between scenarios, these AOs are 

partially correlated and require the statistical calculation above. 

 The return on the U.S. treasury bill is not always an appropriate benchmark for the risk-

free rate.  A more appropriate benchmark for AO portfolio selection is the corporate bond rate.  

This rate represents the firm's least expensive source of capital and reflects the shareholder's 

perspective of comparing the risky portfolio to that of paying off the bond holders. 

 The final difference between optimizing a portfolio of stocks and a portfolio of 

continuum architecture options relates to how the portfolio weights are interpreted and calculated.  

When an investor purchases shares of stock, whether one share or one thousand shares, the 

investment return on a percentage basis remains consistent.  Therefore, when a portfolio is 

composed of varying proportions of stocks, the proportion does not affect the expected rate of 

return of each asset.  Optimization can be accomplished by solving for the respective weights 

without regard to how the selected weights change the expected return of the asset.  This should 

not be blindly assumed when dealing with architecture options.  The expected rate of return for an 

architecture option is the difference between the mean option value and option cost, divided by 

the option cost. 

i

ii

i

AO

AOAO

AO
C

CVE
RE




][
][  

If the expected rate of return is assumed to be constant for all levels of proportional investment, it 

is necessary that the expected value increases in the same proportion to the option cost (e.g., 

additional 10% in cost yields additional 10% in option value to keep rate of return constant).  This 

assumption allows the portfolio optimization to proceed without regard to the total budget 
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available or portfolio weights.  In many cases, this is not a good assumption and a more complete 

treatment of this issue requires additional computational steps in the analysis.  

   The core of the issue is to determine how changes in option expenditure (cost) affect the 

expected value of the option.  This can be accomplished first by propagating the delta cost, 

determined by the asset weight, back through the AO cost model and utility function.  The new 

utility value is translated into mean option value by integrating under the "Delta" curve developed 

in the option analytics section in Chapter IV.  This yields a new option value for the new cost and 

is conceptually illustrated in Figure 50.   

 

 

Figure 50: Change in option value given a change in option cost. 
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As the proportion of AOi in a portfolio changes, the total expenditure on that AO changes 

depending on the total dollars being allocated to the portfolio (i.e., the flexibility budget).  A 

change in option expenditure can be traced to a change in performance through the Performance-

Cost curve.  The resulting delta performance can be traced to a change in stakeholder utility 

through the traditional utility function.  The utility function is the basis of estimate for the future 

benefit stream forecast, S, defined in Chapter IV.  S is discounted and consolidated to S0 at Time 

0 and is a driving factor in the VE option valuation.  The option "Delta" is the first derivative of 

option value with respect to S0 and reveals the sensitivity of the option value to changes in S0.  

Integrating under the "Delta" curve results in the total value change due to a change in S0.  The 

option "Gamma" measure can also be useful to indicate where the "Delta" curve is neutralized or 

linear, meaning that changes in S0 lead to a linear change in option value (essentially multiply 

delta S0 by P(Tv)).  The expected rate of return is updated with each iteration to the portfolio 

composition, and is always measured against the initial utility that served as the basis for the 

estimate of S. 

 

5.5.2 Discrete Architecture Options 

 The second situation that typically occurs involves architecture options with known cost 

(including options with cost variability).  The optimal portfolio decision is not one of weights, per 

se, but of yes-no decisions.  The optimal portfolio contains a finite set of architecture options 

which yields the highest level of expected return for a specified budget, b, given the level of risk.  

This situation can be represented by a binary integer objective function where AObp is a 0-1 

variable.  If it is 0, the AO is not included in the portfolio; if it is 1, the AO is included in the 

portfolio.   
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Values from the stock market example are used again here in combination with the vector CAO 

which is defined to contain the design cost of each architecture option: 
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Portfolio risk-return combinations are limited to the values resulting from the set of portfolios 

defined by the mixed sum of all possible combinations of architecture options, shown with blue 

diamonds in Figure 51.  The efficient frontier is defined by the set of portfolios that maximizes 

expected return, subject to the budget, b, for all achievable values of risk.  In this sense, portfolios 

that lie on the efficient frontier on the "dominated" underside of the curve, are not necessarily  

inefficient portfolios because of the budget constraint.  It is true that for the given level of risk, a 

higher rate of return is possible by the portfolio directly above the one in question, however the 

higher rate of return is accomplished with a higher total design cost.  The budget constraint 

therefore legitimizes all portfolios on the efficient frontier.  If the budget is sufficiently large, the 

system architect would select the optimal portfolio that maximizes the Sharpe reward-to-

variability ratio, which in this case is the same portfolio that minimizes risk.  The CAL originates 

at the corporate bond rate (5% being used here) and intersects the selected portfolio; this line 
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represents all proportions of the risky portfolio and the risk-free alternative (paying off bond 

holders).  The portfolio that exists at the intersection of the stakeholder utility function, (which 

represents stakeholder indifference between risk-return combinations), and the CAL is the 

complete optimal portfolio of architecture options. 

 

 

Figure 51: Portfolio selection of discrete architecture options given design budget constraint. 

 

5.6 Conclusion 

 After identifying and valuing architecture options, the system architect is faced with the 

decision of which set of options to pursue.  The optimal subset of architecture options is defined 

by the maximization of life cycle value and minimization of risk through diversification.  Some 

systems engineering situations require the assessment of architecture options that exist on a 

continuum, where additional performance and value can be generated with additional 

expenditure.  Other situations require a go, no-go decision on a set of discrete, fixed-price 

architecture options.  In both cases, optimal portfolios can be constructed that minimize the 

portfolio risk for a given level of expected return or conversely maximize the expected return for 

a given level of portfolio risk.  The set of optimal portfolios can be identified and selected based 
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on stakeholder risk tolerance and available budget.  A decision is then be made to expend all 

available funds toward the risky portfolio, or conserve some allocation for the riskless asset.  This 

proportion is determined by the intersection of the stakeholder indifference curve with the capital 

asset line, and results in the complete optimal portfolio of architecture options. 
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6 CHAPTER VI 

 

6 THE TACTICAL IMAGING CONSTELLATION ARCHITECTURE  STUDY: 

6 A PROOF OF CONCEPT FOR EMBEDDED ARCHITECTURE OPTIONS 

 

6.1 Introduction 

 Flexibility embedded in the system design has application across a wide variety of 

engineering domains.  Generally, whenever  there exists uncertainty in system operation, where 

changes may occur in the mission objectives, there also exists an opportunity to design the system 

to adapt and respond to that change.  Flexibility has been studied and assessed in a variety of 

contexts, but rarely treated in an integrated way that separates the application domain from the 

process.  In the previous chapters, a framework has been proposed that approaches the concept of 

flexibility from an application independent perspective.  A generic process has been described 

that leverages current systems engineering practices and the familiar taxonomy of financial 

markets to identify, value, and select architecture options that can be embedded in the system 

design to provide operational flexibility.  This chapter provides a proof of concept by 

demonstrating the proposed methodology on a U.S. intelligence, surveillance, and reconnaissance 

(ISR) system called the Tactical Imaging Constellation Architecture Study (TICAS).   

 

6.2 Background 

 The Tactical Imaging Constellation Architecture Study was a 1995 concept definition 

activity headed by the Naval Research Laboratory (NRL) in collaboration with the Jet Propulsion 

Laboratory (JPL), Lawrence Livermore National Laboratory (LLNL), and four aerospace industry 

partners: TRW, Spectrum Astro, Ball Aerospace Technical Corporation, and Hughes Aerospace 

Corporation.  The stated objective for the TICAS contract was to: 
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―Develop and define a high performance satellite constellation using 1995 enabling 

technologies to provide earth image data meeting anticipated future needs. The 

constellation shall use lightweight launch vehicles.‖
15

 

 

Concept development was completed through Phase II but was never built.  The final report of 

the TICAS investigation recommended a system architecture composed of a family-of-systems 

which included two Point Collector (PC) satellites and two Broad Area Collector (BAC) 

satellites.  The constellation was designed to meet both tactical and national imagery needs which 

consisted of requirements for high resolution point targets with ground sample distance (GSD)
16

 

on the order of 3-inches, and also broad area lower resolution imagery with GSD between 10 and 

80-inches.  Demands for high resolution imagery typically occur in relatively constrained regions 

of less than 4 nmi
2
, whereas demands for coarse imagery can span wide regions of hundreds of 

square nautical miles. Competing design objectives therefore existed in that collecting high 

resolution imagery compels the design to lift the largest possible telescope mirror to the lowest 

altitude which, due to orbital geometry, limits the frequency and expanse of visible earth access.  

Coarse imagery of large areas would require either large amounts of time (on the order of weeks) 

or large numbers of satellites.  For this reason, the TICAS constellation was composed of low 

flying Point Collector satellites to satisfy demands for high resolution imagery, and high flying 

Broad Area Collector satellites to meet wide area imagery needs.   

 

6.3 Proof of Concept 

 This section attempts to rigorously apply the three stages of the proposed flexibility 

framework (Figure 52).  Actual TICAS design and performance models are used in stage one to 

identify promising regions in the architecture to embed flexibility based on operational scenarios 

derived from expert interviews within the satellite reconnaissance community.  Both parametric 

                                                      

15
 TICAS Phase II Final Study Report (1996) 

16
 See Appendix C for exposition on ground sample distance. 
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and bottom-up life cycle cost estimates are combined with value functions for Intelligence 

Community key performance parameters (KPPs) to  complete stage two valuation of flexibility 

options.  Stage three explores combinations of architecture options which optimize the life cycle 

value of the imagery constellation for given levels of program budget and risk.  The proposed 

framework is subsequently assessed for its strengths and weaknesses as well as the extensibility, 

usefulness, and limitations of the framework when applied to real world system design problems. 

 

 Stage 3 Stage 2 Stage 1 

Identify candidate 

architecture options 

Value architecture 

options 

Select optimal subset of 

architecture options 

 

Figure 52: Three stage integrated flexibility framework for identifying, valuing, and selecting 

architecture options. 

 

 The TICAS system architecture was chosen for this proof of concept for several reasons.  

First, the TICAS constellation of satellites allows for an assessment of a family-of-systems (FoS) 

with a single design authority that exhibits optimization preferences at the high-level FoS context.  

Secondly, satellites in general provide an interesting context to analyze flexibility because the 

domain tends to stretch the limits of the flexibility framework to the extremes.  Once the satellite 

is launched into orbit, there does not exist an opportunity to physically access or alter the 

spacecraft; all potential functionality that is dependent on the physical state of the spacecraft is 

essentially cast in stone at launch.  Unlike aircraft, e.g., the B-52 Stratofortress, that can be 

upgraded and altered after initial operation, a satellite design must contain all attributes of 

flexibility in the initial system architecture.  Satellites also tend to be complex, high-technology, 

and expensive.  Complexity requires extensive and intricate relational models to describe the 

interconnections within the design which makes it more challenging to identify opportunities for 

flexibility.   High technology systems tend to have higher uncertainty in performance, due to 



143 

limited testing, which makes it difficult to accurately predict system behavior in operation.  

Satellites are inevitably expensive and produced in small quantities which makes the stakes in this 

domain extremely high and the ramifications of design decisions incredibly important.  

Spacecraft design can arguably be described as an extreme case for the application of the 

proposed integrated flexibility framework.  This allows us to assess the effectiveness of the 

proposed methodology for even the most challenging system design problems. 

 A third reason the TICAS was selected as a proof of concept is because of the quantity 

and availability of technical design data.  The NRL and the National Reconnaissance Office 

(NRO) have gone to great lengths, at significant expense, to collect and compile descriptions, 

data, and analytical models related to the TICAS investigation.  It is highly unusual to have the 

quantity of detailed design material available which has been made available for TICAS.  

Industry contractors typically prefer to keep detailed models and pricing data proprietary for 

competitive reasons.  Also, ISR projects are often times developed in the classified environment 

which prohibits general access to any information.  The nature of the industry-laboratory 

partnership combined with the willingness of the NRL-NRO to archive the TICAS investigation 

material have provided a unique opportunity to gain insight into the design and requirements of a 

potential national system. 

 Lastly, TICAS was chosen because of the intimate involvement that the author had in 

compiling and analyzing the technical design material.  The author worked at the NRO in 2008 

with the TICAS principal investigator to leverage the technical material in order to establish a 

curriculum to teach electro-optical spacecraft design.  An NRO internal course, IMIMT 501, was 

developed which utilizes TICAS architecture principles and analytical models to demonstrate 

spacecraft design techniques.   
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6.3.1 Baseline System Architecture 

 The TICAS baseline system architecture serves as the point-of-departure for this analysis 

and consists of a space segment, ground segment, and launch segment.  The space segment is 

composed of two "Broad Area Collector" satellites and two "Point Collector"  satellites, 

illustrated in Figure 53.   

 

96.91° @ 200 nmi

(2 Point Collectors)

Broad Area 

Collector

Point           

Collector

TICAS 

Constellation

99.98° @ 600 nmi

(2 Broad Area Collectors)

 

Figure 53: TICAS Constellation with Broad Area and Point Collector satellites. 

 

 The BAC satellites provide the majority of broad area visible spectrum imagery from a 

sun-synchronous
17

 orbit with altitude of 600 nmi.  Each BAC satellite can use a pushbroom 

imaging strategy to collect 100,000 nmi
2
 of imagery per orbit, with better than 12-inch GSD at 

nadir and 20-inch GSD at 40° look angle.  The BAC can also use a whiskbroom imaging strategy 

                                                      

17
 Sun-synchronous orbit requires that the rate of precession of the satellite around the earth is equal to the 

period of the earth around the sun.  This is accomplished by choosing a satellite inclination such that the 

steady shift in right ascension matches Earth‘s revolution about the sun.  Sun-synchronous orbit preserves 

the solar illumination angle throughout the year which can be advantageous for image comparisons. 
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to collect up to 20,000 nmi
2
 of area per orbit surrounding a specified site

18
.  The BAC 

additionally incorporates a multi-spectral capability over four visible to near-IR spectral bands 

with better than 80-inch GSD.   

 The PC satellites are in a lower, 200 nmi, sun-synchronous orbit and provide the majority 

of visible spectrum high resolution point target images.  The PC can collect 120 point targets per 

orbit per satellite.  These images have an area of 2 nmi by 2 nmi with 3-inch GSD at nadir and 

13-inch GSD at a 20° look angle.  In addition to visible spectrum collection, the PC configuration 

can provide infrared imagery in the same two by two nmi ground footprint with 18-inch GSD at 

nadir.  A critical parameter for the relatively low altitude PC satellite is the revisit time required 

to collect high-end resolution at a specific site.  The PC satellite capability to achieve a specific 

GSD anywhere in the world is summarized in Table 11.   

 

Table 11: TICAS PC satellite performance (worldwide average). 

Revisit Time 

(Days) GSD (Inches) 

11.9 3 

1.6 4 

0.7 5 

 

 The TICAS Ground Segment provides tracking, telemetry, and command (TT&C), image 

data acquisition and processing, direct downlink (DDL), and mission management.  The ground 

segment architecture is depicted in Figure 54.  All imagery data collected by both BAC and PC 

satellites is transmitted to a central processing facility (CPF), via a 1000 Mb/s link to a 

geosynchronous relay satellite, for processing, image construction and dissemination.  Collected 

imagery is stored in the 1,024 Gbit onboard solid state data recorder (SSDR) until it can be 

transmitted to the CPF, occurring at least once per orbit.  Satellite commanding is sent through a 

                                                      

18
 See Appendix D for description of imaging collection strategies. 
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32 kb/s forward command link via the relay.  The BAC satellite provides an additional direct 

downlink capability to get near-realtime broad area imagery to the warfighter in theater.  The 

DDL approach allows Theater Commanders to have "dynamic ownership" and tasking authority 

of the satellite while the asset is overhead which then transmits realtime imagery to a tactical 

processing facility (TPF) at 274 Mb/s.  The direct downlink capability is contingent on the 

completed development of a space common data link (CDL) and Class IV ground equipment that 

is fully interoperable with upgraded legacy Class I equipment.   

 

 

Figure 54: TICAS Ground Segment architecture. 

 

 A critical parameter for the ground segment is "timeliness."  Measured in minutes, 

timeliness is the time between tasking request and product correlation.  This duration is 

dependent on the connectivity between tasking request and imagery collection (responsiveness), 

and also the latency between imagery collection and product delivery (freshness).  Timeliness is 

the sum of responsiveness and freshness; this parameter is a function of the number of collectors 
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and their orbital characteristics, observation opportunities, projected weather, relay availability, 

and satellite health and status. 

 The TICAS Launch Segment utilizes a combination of Lockheed Martin Launch 

Vehicles (LMLV) and Boeing's Delta II class launch vehicles to inject the PC and BAC 

spacecraft into 200 nmi circular orbit.  The LMLV3-8 launch vehicle is used to insert the BAC 

vehicles into a 200 nmi parking orbit where onboard satellite propulsion raises the BAC to its 

final 600 nmi orbit.  The Delta II 7920 is used to insert the heavier PC satellites into final 200 nmi 

sun-synchronous circular orbit.  A total of four launches from the Western Test Range (WTR) are 

required to populate the TICAS architecture to full operational capability estimated for the year 

2001.  The launch vehicle selection is summarized in Table 12. 

 

Table 12: TICAS baseline launch vehicle selection. 

Satellite 

Injection 

Altitude 

(nmi) 

Injection 

Inclination 

(deg) 

Satellite Wet 

Weight w/20% 

Margin (lb) 

Launch Capability 

Throw 

Weight 

(lb) 

Launch 

Margin 

(%) 

Launch 

Vehicle 

Point Collector #1 200 96.91 6429 7730 16.8 

Delta II 

7920 

Point Collector #2 200 96.91 6429 7730 16.8 

Delta II 

7920 

Broad Area Collector #1 200 99.98 5703 5725 0 LMLV3-8 

Broad Area Collector #2 200 99.98 5703 5725 0 LMLV3-8 

 

  

6.3.2 Flexibility Framework Stage One: Screening for TICAS Candidate AOs 

 Illustrated in Figure 55, this section applies the proposed eight steps of the AO screening 

process to identify areas in the TICAS system architecture where flexibility may have the most 

potential.   
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Figure 55: Architecture options screening process flow diagram. 

 

6.3.2.1 Step 1 

 The concept of operation (CONOP), as depicted in Figure 56, reflects the TICAS 

baseline system architecture.  The CONOP describes how the system is intended to operate in 

order to meet the threshold requirements of the stakeholders; this can be characterized as the 

critical mission.  In Step 1, alternate mission scenarios are developed that attempt to more 

completely  represent potential demands on the system in a realistic operational context. 
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Figure 56: TICAS system concept of operation which represents the baseline system architecture. 

 

In consultation with the Principal Investigator for TICAS and in a 2008 interview with the 

Director of Operations for a national reconnaissance constellation, a set of vignettes has been 

developed which represents some of the uncertainty that the TICAS would have faced in the 

operational environment.  Insight into operational uncertainty for TICAS is undeniably 

retrospective since the pertinent question asked during expert interviews was essentially: "given 

the current environment, what functionality or capability do you wish the existing system had in 

order to better accomplish current objectives?"  The goal of a robust scenario development 

process is to uncover as many potential stakeholder needs as possible and qualify them with 

information available during concept definition.  The set of representative alternate operational 

scenarios that can, to a certain extent, encapsulate operational uncertainty for TICAS is described 

with the following six vignettes and is illustrated for selected operational views in Appendix E: 
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1. Conflict in Space: As space dominance continues to provide the United States with an 

asymmetric wartime advantage, potential adversaries will attempt to disrupt America's 

freedom of action in space by both destructive and non-destructive means.   

2. Availability of Advanced Communication Relay: The demand for bandwidth and high-

rate data transfer is outpacing the current military and commercial capability.  The 

disparity between supply and demand is only expected to increase.  New technologies 

and space communication constellations (e.g., WGS, TSAT, TDRS-H, -I, -J) are being 

developed to close this gap and provide advanced space relay capabilities that can 

increase data transfer by orders of magnitude in the coming decade (circa 1996).   

3. Desire for More Frequent Point Collection: Struggles for regional power and 

international tension will create an environment where hostile nations will continue to 

pursue clandestine nuclear programs.  Detection of activities associated with possible 

nuclear facilities will require timely and consistent access to high resolution imagery over 

denied areas.  National reconnaissance capability may be required to significantly reduce 

imaging constellation revisit time (i.e., mean time to access) for high resolution imagery.  

4.  Need for Direct Downlink for In-Theater Operations: National assets are utilized for 

both strategic and tactical purposes.  During a time of conflict, overhead reconnaissance 

assets may be desired to transmit tactical imagery directly into the theater of battle where 

Theater Commanders will have tasking priority and near realtime access to imagery 

products as the satellite passes overhead. 

5. Need for Increased Broad Area Search: Where specific intelligence is scarce, overhead 

reconnaissance capability can be used to search wide areas for activities or infrastructure 

related to terrorist training camps, illicit crop production, nefarious maritime vessels, etc.   

As autonomous feature extraction and search and identification algorithms are improved, 

large amounts of imagery can be processed and flagged for detailed analysis.  These 

occurrences may require increased broad area search capability. 



151 

6. Desire for Realtime Anomaly Resolution: Unproven, one-of-a-kind systems inevitably 

encounter anomalies during operation.  During times of conflict and/or great national 

urgency, imagery systems will be desired to maintain operational availability with little 

or no downtime.  System anomalies must be diagnosed and resolved quickly and 

seamlessly.  

The six representative scenarios, S={s1,s2,...,s6}, are scored for their likelihood and opportunity in 

Table 13 and pictured in Figure 57.   

 

Table 13: Scenario scoring for likelihood and opportunity. 

Scenario, si 

Likelihood-

Opportunity 

Score, LO(si) 

Comments 

Scenario 1: Conflict in 

Space 

(1) * (5) = 5 Consolidated, knowledgeable stake holder, 

high-value strategic system in larger SoS 

context  

Scenario 2: Availability of 

Advanced 

Communication Relay 

(4) * (3) = 12 Forecasted bandwidth environment 

strongly indicates the need for additional 

crosslink/downlink capabilities; moderate 

impact on system value 

Scenario 3: Desire for 

More Frequent Point 

Collection 

(4) * (5) = 20 Regional political environment suggests 

high likelihood of covert foreign programs; 

only limited and/or expensive options exist 

to supplement TICAS PC capability 

Scenario 4: Need for 

Direct Downlink for In-

Theater Operations 

(3) * (5) = 15 Moderate likelihood of conflict requiring 

realtime tactical imagery.  Timely data has 

high potential to transform battle space. 

Scenario 5: Need for 

Increased Broad Area 

Search 

(4) * (2) = 8 Increased search capability relies on 

unproven autonomous image feature 

extraction.  Search function has mainly 

strategic value and is not always time 

critical. 

Scenario 6: Desire for 

Realtime Anomaly 

Resolution 

(5) * (1) = 5 TICAS will almost certainly encounter 

anomalies during operation, however, 

rarely do they pose significant threat of 

prolonged system outage.  Also, other 

systems in TICAS FoS can supplement 

capability during anomaly resolution. 
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Figure 57: Likelihood-Opportunity Matrix for TICAS scenarios. 

 

6.3.2.2 Step 2 

 Specific system functions are identified that would enable TICAS to respond to each 

operational scenario.  These functional requirements are listed in Table 14 and do not explicitly 

specify a design solution or particular implementation.  However, the scenario itself may 

naturally indicate particular solution approaches. 

 

Table 14: Additional functional requirements associated with TICAS operational scenarios. 

Scenario 1: Conflict in Space 

FR1.1: Spacecraft shall be capable of maneuvering to avoid destructive attack 

FR1.2: Spacecraft shall be capable of protecting optics and electronics from non-

destructive attack 

FR1.3: System shall be capable of identifying source of attack through geolocation 

Scenario 2: Availability of Advanced Communication Relay 

FR2.1: System shall establish and maintain contact with advanced relay 

constellation and be capable of transmitting data at rates between 1.2 and 3.6 

Gbit/s 

FR2.2: TICAS Ground Segment shall support advanced relay frequency band and 

data rate 

FR2.3: BAC satellite power subsystem shall be capable of transitioning to 

bandwidth-limited imaging instead of power-limited 
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Scenario 3: Desire for More Frequent Point Collection 

FR3.1: System shall be capable of repositioning constellation orbital parameters to 

reduce revisit time required to collect imagery with GSD <5 inches 

FR3.2: BAC shall be capable of transitioning to point collection operational mode 

Scenario 4: Need for Direct Downlink for In-Theater Operations 

FR4.1: System shall be capable of transmitting imagery to tactical processing 

facilities in-theater over a Space Common Data Link 

FR4.2: Ground Segment shall support in-theater priority tasking through "Dynamic 

Ownership" 

Scenario 5: Need for Increased Broad Area Search 

FR5.1: System shall be capable of increasing contiguous and total imaging area 

capability 

FR5.2: System shall have adequate throughput and memory to support increased 

imaging volume 

Scenario 6: Desire for Realtime Anomaly Resolution 

FR6.1: Spacecraft shall collect realtime onboard anomaly data and transmit to 

ground processing facility via SGLS omni-directional transponder while in safe-

mode 

FR6.2: System shall be capable of diagnosing anomaly 

FR6.3: System shall complete timely anomaly disposition 

 

 Subsets of system functions that affect high level performance characteristics can be 

consolidated by defining system attributes.  Due to the fact that TICAS was designed to meet 

national imagery requirements, the system attributes are derived from those key performance 

parameters defined by the imagery intelligence (IMINT) community.  Attributes common across 

the IMINT community fall into four general categories: image quality, frequency and timeliness 

of target access, quantity of imagery (e.g., number of  points targets, size of contiguously sampled 

area), and geolocation
19

 of imagery. 

                                                      

19
 Geolocation is the attribute that describes how accurately the system can determine the location of the 

image on the earth.  As the spacecraft better knows where it is (orbit position knowledge) and where it's 

looking (attitude and line of sight knowledge), the system can reduce geolocation circular and linear error 

probabilities. 
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 As the most fundamental attribute, image quality in space reconnaissance is described in 

terms of the empirically derived National Imagery Interpretation Rating Scale (NIIRS).  NIIRS 

covers a range of spatial scales from entire ports and airfields down to the slots in the heads of 

screw fasteners
20

.  Some examples are listed in Table 15.  NIIRS is objectively assessed through 

the measurable aspects of image quality described by Leachtenauer et al. (1997) in the General 

Image Quality Equation (GIQE): 

SNRGHGSDRER GMGMGM /*48.1)/(log*32.381.11NIIRS 10  . 

The GIQE expresses NIIRS as a function of ground sample distance in inches (GSD), signal-to-

noise ratio (SNR), and the optical modulation transfer function characterized by the relative edge 

response (RER), edge height overshoot (H), and the noise gain (G) due to sharpening.  The 

signifier GM represents the geometric mean.  Typically, the NIIRS value is dominated by the 

GSD term where NIIRS 5 and 7.5 roughly correspond to 20-inch and 3-inch GSD.  However, the 

factors derived from the modulation transfer function (MTF) are foundational to image quality.  

The relationship between MTF and NIIRS is described in Appendix F. 

 

Table 15: NIIRS interpretation example. 

NIIRS Rating Image Interpretability 

0 Interpretation precluded due to poor quality 

1 Detect a medium-sized port facility 

2 Detect large hangars at airfields 

3 Detect a large surface ship in port 

4 Detect an open missile silo door 

5 Identify rail cars by type 

6 Identify automobiles as sedans or station wagons 

7 Identify individual rail ties 

8 Identify windshield wipers on a vehicle 

9 Detect individual spikes in railroad ties 

 

                                                      

20
 For a detailed set of examples that analysts use to rate the quality of an image, see: 

http://fas.org/irp/imint/niirs.htm. 
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 Each operational scenario identified for TICAS requires (or will result in) some change to 

one or more system attributes in order to respond to the new functional requirements.  For 

simplicity, the functional requirements for each scenario are replaced by the affected system 

attribute, shown in Table 16.  Figure 58 shows both IMINT community defined attributes and 

TICAS specific attributes and displays the predicted performance of the baseline system 

architecture relative to the threshold requirements.   

 

Table 16: Mapping of alternate mission scenarios to the affected system attributes via the identified 

functional requirements. 

Scenario, 

S={s1,…,s6}

Functional 

Requirements

si=[FR1,…,FRξ]

Attribute, 

A={a1,…,a13} Key Performance Parameter Units

s1
FR1.1, FR1.2, FR1.3

FR6.1, FR6.2, FR6.3
a1 Operational Availability %

s2 a2 Number of Imaging Bands No.

s3 a3 NIIRS 5, Mean Time to Access, 40° hr.

s4 FR3.1, FR3.2 a4 NIIRS 7.5, Mean Time to Access, 40° hr.

s5 a5 Best NIIRS

s6
FR2.1, FR2.2, FR2.3

FR4.1, FR4.2
a6 Timeliness min.
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Figure 58: TICAS system attributes and performance of the baseline system architecture. 

 

6.3.2.3 Step 3 

 The TICAS system attributes are subsequently mapped to design variables; this 

flowdown is displayed for selected attributes in Figure 59.  Highly detailed models will allow fine 

resolution into the design variable interaction but may unnecessarily complicate the problem.  

Effectively defining the functional to physical mapping is more accurately a process of selective 

exclusion--deciding which design interactions can be simplified or bypassed while retaining an 

insightful system model.   
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Figure 59: Functional to physical mapping of attributes to design variables. Bold outlined boxes 

contain design variables affected by TICAS operational scenarios via relevant system attributes. 

 

 A design structure matrix (DSM) is populated with the TICAS system interactions and 

hierarchy derived from the system block diagram, which is included in Appendix G.  Lattix 

LDM
21

, a system architecture modeling tool, is used to manage and organize the system 

interactions.  Figure 60 displays the high level subsystem view which shows the number of 

interactions between and within subsystems as well as the connection to the identified system 

attributes.  The expanded 107-element TICAS DSM model and element list can be found in 

Appendix H.  Detailed mathematical models exist to define the matrix dependencies for many of 

the TICAS subsystems: photometry and radiometry models for the optical subsystem (OS), 

                                                      

21
 http://www.lattix.com 
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transfer function control loops for the attitude determination and control subsystem, 

communication link budgets for both wide and narrow band communication subsystems, battery 

charging and load profiles for the electrical power subsystem (EPS), etc.  Describing each of 

these mathematical models in detail is not particularly useful for this analysis, however a closer 

look at the optical subsystem is included in the next step to demonstrate the level of fidelity that 

can be incorporated into the AO screening process. 

 

 

Figure 60: Design structure matrix representation of the TICAS system architecture including 

impact from system attributes.  Values displayed in the diagonal elements represent the number of 

intra-subsystem relationships while off-diagonal values represent the number of relationships 

between subsystems. Dependencies of a row element are signified across the columns. 

 

6.3.2.4 Step 4 

 A sensitivity analysis is completed to quantify the extent to which the TICAS design 

variables must change in order to accommodate the changing requirements.  Tornado diagrams 

and Spider plots have been used to discover the most sensitive design variables as the system 

attributes are changed.  The TICAS system model is large and the relationships are complex.  For 

this reason, a single mission scenario and its affected system attribute have been chosen as a 

representative example to demonstrate this step in the framework.  Therefore, a detailed 
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description of the design implications of accommodating Scenario 3 (i.e. desire for more frequent 

point collection) is presented through the lens of the necessary changes that the scenario would 

require from the NIIRS Attribute (4).  Scenario 3 and its affected attribute were selected because 

they directly affect the optical subsystem; this subsystem constitutes the bulk of what makes an 

electro-optical satellite unique among its satellite peers.  The relationships between orbits, optics, 

sensors, and spacecraft motion, make for a complex and interesting set of design variables and 

trade-offs.  

 The NIIRS attribute is modeled using physical and mathematical relationships related to 

photometry, radiometry, optics, orbital mechanics, and digital image processing.  These 

relationships are captured in the spreadsheet depicted in Figure 61 and are presented in a logical 

tree structure that represents the hierarchy of dependency in the model.   

 

National Imagery Interpretability Rating Scale (NIIRS) 4.82

RER_GM 0.381655 GSD_GM @ Edge FOR (in)20.010 H_GM 0.836 G 1.0 SNR 21.22

GSD Along Track (in) 24.958

GSD Across Track (in) 16.043

Differential_Signal Net_Noise 33

Elevation to Polar Altitude (nmi) 600 (difference e-) 4341.919

(radians) 0.162366 Earth Radius (nmi) 3432.37 Average_Signal

IFOV (sr) 2.58E-07 (mean e-) 40762.9 TDI_NEC Elect_and_Quant_Noise

(e-) 32 (e-) 6

Elevation Angle Pixel Pitch

(radians) 0.698132 (µm) 8.00 Signal from Bright Surface

Signal_Bright (W/cm^2/sr/µm)0.00914 TDI stages (e-) 64

Height Focal Length Signal from Dim Surface Unit_Cell_Noise (e-) 4

(earth radii)0.174806 (meters) 30.96 Signal_Dim (W/cm^2/sr/µm) 0.00822 1/f Noise (e-) 2

Readout Noise (e-) 0

Leakage_Noise_per_Line_Time (e-) 4

Scattered Component Leakage_Carriers (e-) 18

Scattered_Comp 0.00399

Reflected Component

Reflected_Comp 0.01156

Rel_At_Path_Length 1.85828

Bright_Rad (@ 15%)|Data[30]0.00443 W/cm^2/sr/µm

Dark_Rad (@ 7%)|Data[30] 0.00375 W/cm^2/sr/µm

Band_Width 0.080 micron

Band_Center 0.65 microns

Solar_Angle 40.4 deg

Diameter_m 2.4 meters

IFOV_sr 2.6E-07 sr

TDI_stages_e 64 e-

Line_Rate 7000 1/sec

E_Photon 3.1E-19 joules/photon

Transmission_Optics 0.65

Reflectivity_Dim 0.07

Reflectivity_Bright 0.15

Elevation_deg 40 deg

h 6.6E-34 m2 kg / s

Radiance_Data_Run, Data[30] 30 deg

Edge Height Overshoot
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Figure 61: TICAS optical subsystem image quality mathematical model. 

 

The Tornado and Spider plots in Figure 62 indicate that the most sensitive design variables to 

changes in the NIIRS attributes are focal length, pixel pitch, relative edge response, elevation 



160 

angle, altitude, and edge height overshoot.  It is apparent to the spacecraft designer that focal 

length and pixel pitch define instantaneous field of view (IFOV), which in combination with 

altitude describes the ground sample distance.  Therefore the sensitivity model essentially finds 

that changes in NIIRS will require significant changes to GSD, some change to image quality (as 

represented by RER and H, quantified by the modulation transfer function), and smaller changes 

to the variables that constitute the signal-to-noise ratio (the largest being atmospheric path as 

defined by the elevation angle).  Additional information regarding the feasible ranges of the 

design variables can be included in the analysis to find not just the level of sensitivity (i.e., the 

slope of the line in the Spider plot), but also the direction of the sensitivity in the feasible range.  

For instance, NIIRS is sensitive to pixel pitch, but the feasible range represents  decreases to 

NIIRS.  Comparatively, NIIRS is sensitive to altitude where the feasible range has the potential to 

increase the attribute value.  This information is useful for the detailed definition of the 

architecture option in Step 7.  
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Figure 62: Tornado (left) and Spider (right) plots are used to discover the level of sensitivity between 

the TICAS design variables and the NIIRS attribute. 

   

 The sensitivity information is binned using a scale of zero to five, five being the most 

sensitive.  Going down the list of design variables, the top two were assigned the most sensitive 

value of 5, while those at the bottom of the list are assigned to bin of value 1.  The sensitivity 

value is propagated through the DSM three tiers/levels (i.e., not necessarily through transitive 

closure) and the judgment was made to use the highest value if a design variable is affected by 

multiple relationships simultaneously.  The TICAS sensitivity-DSM is populated with the 

resulting values, with the subset of affected elements displayed in Figure 63. 
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Figure 63: TICAS sensitivity-DSM for NIIRS Attribute 4. 

 

6.3.2.5 Step 5 

 The TICAS s-DSM is clustered using an algorithm that seeks to minimize the model 

description length.  All parent subsystems and organizational hierarchy are dissolved to allow 

reordering of the design variables.  A comprehensive search strategy would generate all possible 

architectures and exhaustively evaluate each one to determine the best.  This search strategy is 

only possible for small matrix sizes as the numbers of possible architectures increase as (2
n
-1), 

where n is the number of elements in the matrix.  Even with modern computing capability, 

exhaustive search is many times prohibitively expensive.  Therefore a genetic algorithm (GA) 

search strategy is employed using (λ+μ) selection, uniform crossover, and mutation.   

 The GA search is initiated with λ=100 as the initial population of chromosomes.  

Uniform probability of crossover (pc=0.5) is used to randomly switch parent genes until μ=10,000 

offspring chromosomes are produced.  (λ+μ) selection chooses λ best chromosomes, as 

determined by the MDL fitness function, and passes them to the next generation until the process 

is terminated at a predetermined 200 iterations.  Weighting factors α and β are embedded in the 

search strategy to mimic the behavior of manual clustering.  Yu, Yassine, and Goldberg (2007) 
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found in their study of a 10MWe gas turbine that α : β set to 35:190, most accurately reflected the 

user‘s preference for including versus excluding elements in a DSM cluster.  The corresponding 

weighting values of α ≈ 0.1037 and β ≈ 0.5630 have been adopted for TICAS s-DSM clustering, 

but recommend a case-specific application of α and β values based on user preference.  The 

resulting clustered s-DSM displayed in Figure 64, contains 3 clusters (labeled Candidate AO3.1, 

AO3.2, and AO3.3) and 1 sensitivity bus (AO3.4).  These clusters represent groups of design 

variables that are responsive to a change in Attribute 4; a change to Attribute 4 is instigated by 

Scenario 3.  Therefore, the four clusters represent four candidate AOs for Scenario 3, which are 

subsequently assessed to determine if a detailed definition (Step 7) is warranted for each. 
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Figure 64: Clustered s-DSM showing three clusters and one bus. 

 

6.3.2.6 Step 6 

 The "Hoodoo" plot shown in Figure 65 is constructed from the TICAS sensitivity matrix 

and the likelihood and conditional impact scores of the instigating scenarios (See Section 3.2.6 
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for process description).  The clustered design variables sensitive to changes in the TICAS NIIRS 

Attribute 4 were generated from a scenario that was scored as promising (LO(s3) = 20), and are 

therefore displayed in purple.  The confluence of high sensitivity and high impact reveals groups 

of design variables, or otherwise regions in the design space, where architecture options for 

TICAS should be studied and defined in greater detail. 

 

Legend
12 < LO ≤ 25
6 < LO ≥ 12
0 ≤ LO ≥ 6
Clusters

 
Figure 65: Hoodoo plot of TICAS sensitivity-DSM with clusters shown for Scenario 3/Attribute 4. 

 

6.3.2.7 Step 7 

 As discovered with the Tornado plot and design variable clustering, there can be more 

than one way to approach the requirements of a particular operational scenario.  In fact there may 

be many creative or innovative design solutions that address the underlying operational 

uncertainty.  For this reason, a constraint must be set on the time, energy, and resources expended 

to define potentially numerous architecture options.  For the TICAS analysis, at least one 
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candidate AO is identified for each underlying scenario.  The range of options is discussed in 

relation to Scenario 3/Attribute 4, while a summary is presented for the other candidate AOs. 

 Scenario 3 requires more frequent access to high NIIRS imagery.  As this requirement is 

propagated through the system design via Attribute 4, it is clear that two approaches exist: 1) add 

PC satellites to the constellation, or 2) increase NIIRS capability of the BAC satellites and use as 

point collectors.  The first approach is infeasible due to high cost and production lag time, and 

was therefore excluded as an architecture option.  The second approach is described with the 

NIIRS attribute for the BAC satellite.  Four clusters were identified (Figure 64) in the s-DSM 

which essentially represent four different architecture approaches to increasing the BAC NIIRS 

capability: 

1. AO3.1: Reduce GSD by altering flight operations and observational geometry 

2. AO3.2: Increase image quality by changing modulation transfer function and sampling 

characteristics 

3. AO3.3: Tighten control on spacecraft attitude and line-of-sight (LOS) pointing to reduce 

jitter and blur 

4. AO3.4: Increase signal-to-noise ratio 

 Reducing GSD for AO3.1 requires a change to either orbit altitude or IFOV
22

.  IFOV is a 

function of telescope focal length and pixel pitch, which are two parameters that are not readily 

changeable in the field.  Effective pixel pitch can only be increased using pixel aggregation; 

smaller pixel pitch, as is needed to reduce GSD, would require an alternative focal plane array at 

the back end of a more complex beam splitter optical design.  A graphic showing the TICAS 

optical subsystem is included in Appendix I.  Effective focal length can also be marginally 

adjusted with a more complex optical design or with the use of a focus mechanism, but not 

                                                      

22
 The IFOV is the range of incident angles seen by a single detecting element in the focal plane. 
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realistically in a way that significantly reduces GSD during operation.  Reducing the range to the 

target is a more effective way to reduce GSD on orbit (see Figure 66).   

GSD = p * H/f

pixel pitch = p

focal plane

ground plane

H = altitude

optics with 
aperture 
diameter D

f = focal length

 

Figure 66: Nadir ground sample distance. 

  

 Increasing image quality by changing the system modulation transfer function is the 

mechanism of AO3.2.  Objects in the image scene are filtered by the MTF; the MTF essentially 

describes how the system blurs the image.  Factors contributing to the MTF are mirror diameter, 

optical aberrations, manufacturing defects, sensor effects like sampling, charge diffusion, 4-phase 

clocking, and pixel crosstalk.  MTF contributions from successive uncorrelated factors can be 

treated multiplicatively (e.g. Optical MTF * Sensor MTF), while phase correlated terms like 

successive optics must be handled as a system.  These factors are shown in Figure 67.  MTF 

characteristics are usually firmly defined before launch and cannot be significantly altered in the 

field.  Recent developments in piezoelectric actuators have shown promising capability for on-

orbit mirror aberration correction, but this expensive technology is usually reserved for large 

segmented reflectors and was not available during the TICAS development.   
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Figure 67: Modulation transfer function components for TICAS three-mirror anastigmat design. 

 

 The contribution to system MTF that can be controlled on-orbit is related to jitter.  AO3.3 

captures the major design variables related to spacecraft stability, including control moment gyros 

(CMGs), attitude control system (ACS) interface, and F/# 
23

.  Despite having distinctly different 

operational requirements in terms of coverage and collection approach, the attitude control 

subsystems for the BAC and PC spacecraft are identical (Figure 68) and are both capable of broad 

area and point collection modes.  This fact indicates that there is not an appreciable NIIRS gain 

related to changing the TICAS ACS design variables as they were designed and selected in order 

to meet the jitter requirements derived from both optical system configurations.  The TICAS 

estimated jitter performance has RSS total of 37 nrad/axis at 3σ, against the design requirement 

of 67 nrad/axis at 3σ. 

                                                      

23
 The F/# describes the ratio of focal length to mirror diameter.  Fast optics, with small F/#, are compact 

and more agile.  Slower optics, with large F/#, typically hang farther out from the pointing control 

mechanisms and require more time to slew and settle. 
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Figure 68: TICAS attitude control subsystem is designed to meet both the broad area and point 

collection stability and control requirements. 

 

 AO3.4 captures the NIIRS dependency on the signal-to-noise ratio, which is mainly a 

function of atmospheric path (i.e. elevation angle), illumination (i.e. solar angle), and detector 

noise parameters.  The best NIIRS occurs at nadir with an elevation angle of 90 degrees.  

Illumination is not a design parameter per se because it is defined by the solar angle kept constant 

by the sun-synchronous orbit
24

.  Additionally, after a minimum threshold of SNR is reached, there 

is very little NIIRS gain associated with improving the signal relative to the noise.  In the TICAS 

optical system model, even infinite SNR would increase NIIRS from 4.82 to 4.86.  For this 

reason, AO3.4 is not an extremely effective architecture option. 

 After analyzing the design variables that are sensitive to the NIIRS attribute, AO3.1 was 

selected for detailed definition and valuation.  Architecture option AO3.1 is generally defined as 

                                                      

24
 Illumination characteristics: (i) 17.8° average daytime solar elevation at 40° north latitude at Winter 

solstice; (ii) 28.9° average daytime solar elevation at 40° north latitude at Spring equinox; (iii) 40.4° 

average daytime solar elevation at 40° north latitude at Summer solstice. 
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an orbit maneuver that lowers the BAC operational altitude, reducing the nadir ground sample 

from 11.3 in. to 3.0 in., and increasing NIIRS from approximately 5.64 to 7.54 at nadir.  A 

comparison of the GSD before and after the orbit maneuver is depicted in Figure 69.   

 

Altitude

600 nmi

200 nmi

 

Figure 69: Ground sample at nadir and edge of field of regard for BAC and PC altitudes. 

 

 The BAC architecture must be modified in several ways to accommodate this operational 

capability.  Most pressingly, the spacecraft must have the fuel available for the altitude change 

and orbit maintenance at the lower altitude, characterized as ΔV.  The baseline BAC propulsion 

subsystem was designed to raise the orbit from the 200 nmi insertion altitude to the operational 

altitude of 600 nmi.  AO3.1 would select the larger Delta II 7920 launch vehicle to insert the 

BAC satellite directly into the 600 nmi orbit.  The comparable fuel saved from orbit raising 

would be used to lower the orbit if and when AO3.1 is exercised.  Additional fuel is also required 

to overcome orbital decay at the lower altitude due to atmospheric drag
25

.  Outlined in Table 17, 

an additional 776 lbs of fuel (940 - 164 lbs) is required to accomplish AO3.1; this does not 

require a change in the propulsion system design except in regards to the size of the tankage.  

Other design implications are as follows: 

                                                      

25
 ΔV required for orbital maintenance is estimated at the maximum value of 4,677 ft/s, which assumes that 

the AO3.1 is exercised at the beginning of a five year operational life. 
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 Variable FPA clocking, from 22,300 Hz to 11,150 Hz, to match the FPA line rate to the 

apparent ground speed. 

 Incorporate the gimbaled antenna for wideband communication utilized in the PC design 

 FPA Support Electronics Unit (FSEU) must perform A/D conversion at eleven bits/pixel 

and 6 GB/s data stream to the High Speed Data Handling Unit (HSDHU).  The new 

performance requirement is less than the baseline capability of 20 GB/s and therefore 

does not require a design change. 

 The BAC electrical power profile will change in accordance with Appendix J.  The 

baseline BAC electrical power system is designed to generate 3940 W at end-of-life 

(EOL), whereas the PC is designed for 3500 W (EOL), which includes approximately 

230 W to support the PC infrared (IR) detector and cryocoolers which are not included in 

the BAC.  Therefore the EPS capability of the baseline BAC spacecraft is sufficient to 

accommodate point collection imaging power requirements with no significant design 

change. 

 

Table 17: TICAS ΔV and propellant estimates. 

 

Baseline Architecture Architecture Option 

Parameter PC BAC BAC AO3.1 

Launch Vehicle Selection LMLV3-8 LMLV3-8 Delta II 7920 

Injection Error  

(± 20 nmi ± 0.06°) (ft/s) 63 63 55 

Orbital Adjust & Maintenance  

(± 1 nmi @ 200 nmi) (ft/s) 4,677 25 4,677 

Orbital Boost and Disposal (ft/s) 1279* 1279** 1279 + 1279* 

Total ΔV w/10% Margin (ft/s) 6,621 1,504 8,019 

Total Fuel Requirement (lb) 776 164 940 

    *Boost to 600nmi disposal orbit 

   **Boost to 600nmi operational orbit 

    



171 

 The screening process is completed for each instigating scenario and related system 

attributes.  Candidate architecture options are defined with the summary included in Table 18. 

 

Table 18: Summary table of TICAS architecture options. 

Scenario 1: Conflict in Space 

AO1.1: Incorporate optical power limiting filter to protect sensor from high intensity 

laser attack. 

AO1.2: Select electronics that are additionally radiation hardened for prompt dose 

and total dose radiation. 

Scenario 2: Availability of Advanced Communication Relay 

AO2.1: Include X/Ka-band gimbaled antenna with required amplifier and 

electronics capable of data rates between 1.2 and 3.6 Gbit/s.  EPS to have power 

margin to transition to bandwidth-limited imaging. 

Scenario 3: Desire for More Frequent Point Collection 

AO3.1: Conduct orbit maneuver to lower the BAC operational altitude from 600 nmi 

to 200 nmi. 

Scenario 4: Need for Direct Downlink for In-Theater Operations 

AO4.1: Complete development of Space-Common Data Link (SCDL) and ground 

segment priority tasking operational mode.  Design BAC for SCDL downlink and in-

theater command uplink. 

Scenario 5: Need for Increased Broad Area Search 

AO5.1: Raise PC spacecraft to 600 nmi "disposal orbit" early to increase field-of-

regard for broad area search.   

AO5.2: Use pixel aggregation on PC to contribute to broad area search at 200 nmi. 

Scenario 6: Desire for Realtime Anomaly Resolution 

AO6.1: Develop and maintain anomaly resolution and simulation laboratory with 

engineering development units and flight software.  Collect additional onboard 

health and status data and incorporate related tunable "switches" into design. 

 

6.3.2.8 Step 8 

 The final step in the AO screening process consists of inserting all detailed candidate 

AOs back into the DSM of the baseline system architecture.  The purpose is to discover the extent 

to which AOs have overlapping physical characteristics and to trace the physical design of the 

AO back to the top level instigating scenario.  For the TICAS analysis, it is assumed that all 
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candidate AOs are physically independent and that traceability to the instigating scenario is 

directly defined.  These assumptions make Step 8 unnecessary for this analysis.  Correlation 

coefficients for the candidate architecture options will be generated from the simulation in Stage 

Two. 

 

6.3.3 Flexibility Framework Stage Two: Valuation of TICAS AOs 

 This section applies the proposed Variable-Expiration (VE) option valuation technique to 

the architecture options identified for the TICAS architecture.  Value and cost information has 

been compiled from archived TICAS reports and cost spreadsheets in order to conduct AO 

valuation.  Historical references and engineering judgment has been used to estimate the interest 

rate, inflation rate, and lifetime probabilities for the underlying mission scenarios.  Understanding 

the imprecise nature of forecasting and our limited capacity to uncover every design implication 

of an architecture option, this analysis does not rely on absolute precision, but on consistency.  

An idea widely embraced in the field of life cycle cost (LCC) modeling is that a good LCC model 

is not always one that yields a final value closest to reality, but instead one that allows the system 

architect to make informed and consistent trade-offs between design variables; essentially, the 

absolute value is not as important as the change in value between design decisions.  With this in 

mind, the variables needed for AO valuation have been derived from all available data and treated 

consistently in the model.  Detailed estimates for the value forecasts and cost models will be 

described for architecture option AO3.1, as with the previous section, with a summary included 

for all other AOs. 

 

6.3.3.1 Scenario Likelihood 

 Based on the volatile geopolitical environment in the Middle East and the perceived 

growing threat of clandestine foreign nuclear programs, the likelihood of Scenario 3 was scored 

as "highly likely (4)" which translates to a lifetime probability of between 60% and 80%.  This 
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valuation will use 60% for the random variable Tv, distributed equally within the TICAS five-year 

design life. 

  

6.3.3.2 Value Stream Forecast 

 The value stream (S) is probably the most difficult quantity to forecast precisely for 

military and scientific projects.  Whereas commercial applications can rely on revenue and cost 

data to substantiate operating profit forecasts, military projects must rely on stakeholder 

communication and national directives to justify value assumptions.  In the case of TICAS, key 

performance parameters (KPPs) have been established by the Intelligence Community, as 

illustrated in Figure 58, which communicate threshold and objective-level requirements for 

national reconnaissance systems.  This establishes a bound on the value function, where limited 

value is derived below the threshold requirement, and maximum value is derived at or around the 

objective level.  The change in performance for the TICAS constellation as a result of AO3.1 can 

be calculated as the change in mean time to access (MTTA), which is also called "Revisit Time."  

MTTA, measured in hours, is a function of geographic latitude as shown in Figure 70.  Therefore, 

the MTTA KPP is specified at 40° North latitude, which broadly defines the geolocation of the 

Middle East.   
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Figure 70: TICAS constellation revisit time for high NIIRS (5.23 @ edge of FOR and 7.54 @ nadir).  

Dashed line represents one PC satellite failure with performance below  baseline architecture. 

 

The performance characteristics are mapped to the stakeholder value function shown in Figure 

71.  Uncertainty in the stakeholder value derived is estimated with a 20% uncertainty factor 

applied across the entire performance range (dashed lines).  The additional value derived from 

AO3.1 (ΔValue) is the difference between the value derived from the baseline architecture and 

that derived from the augmented architecture given the exercise of the AO.   
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Figure 71: TICAS MTTA system attribute extracted from Community-KPPs (Left), combined with 

the MTTA performance model, is used to create stakeholder value function (right). 

 

A triangular distribution is created to represent the uncertainty in the value function for each year 

within the design life using a most likely value of  $70M and a 20% lower and upper bound 

(Figure 72). 
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Figure 72: Triangular distributions are used to represent the uncertainty in the value derived from 

AO3.1. 
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6.3.3.3 Exercise Cost 

 The exercise cost, X, is the one time irreversible expenditure that is required to exercise 

AO3.1; this expenditure of time and resources occurs during operation at the option viability date.  

There are presumably some small costs required to transition the spacecraft from broad area 

search collection to point collection.  These activities may include additional staffing, analysis, 

training, software transition costs, etc.  However, these are minimal due to the fact that Point 

Collectors will already exist in operation and protocols will have been established to manage this 

type of reconnaissance capability.  The significant exercise cost is associated with the down-time 

of the spacecraft.  The BAC xenon-ion propulsion system is used to lower the orbit to 200 nmi in 

a series of nearly continuous burns.  Two burns are performed each orbit for 43 minutes each, 

meaning that 86% of each orbital period is used for orbit lowering.  These autonomous 

maneuvers require a total of 173 days to reach the new orbit.  Image collection cannot occur 

during orbit transfer and therefore the cost to exercise AO3.1 is 173 days of 86% inactivity.  This 

quantity is monetized as the prorated fraction of the total life cycle cost of the TICAS 

constellation.  The NRO conducted an Independent Cost Estimate (ICE) for the TICAS 

constellation which resulted in the LCC estimate shown with the cumulative distribution function 

in Figure 73.  If both BAC satellites are transitioned to high NIIRS point collection, 1/2 of the 

constellation will be inactive for 8.15% (0.86*173days / 5yrs*365days) of the design life.  Using 

the appropriate portion of the total LCC, the exercise cost is represented with the lognormal 

distribution with mean $179M and standard deviation $157M (Figure 74).   
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Figure 73: Cumulative distribution function from NRO independent LCC estimate of TICAS. 

 

 

Figure 74: AO3.1 exercise cost approximated by lognormal distribution derived from TICAS LCC. 

 

 An alternative way to approximate the exercise cost associated with the TICAS orbit 

transfer down-time is to estimate the price of the corresponding imagery if it were instead 

purchased from a commercial satellite imagery provider.  In late 2001, Space Imaging announced 

its new pricing for IKONOS satellite imagery products
26

.  For newly tasked 1m (39 inches) 

                                                      

26
 The Space Imaging company launched the world's first one-meter resolution, commercial Earth imaging 

satellite, IKONOS, on Sept. 24, 1999.  Pricing in 2001 can be found at: 

http://www.spaceref.com/news/viewpr.html?pid=6911 
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resolution panchromatic imagery, the stated price from Space Imaging was $25/sq. km.  For 4m 

multi-spectral imagery, the price was $18/sq. km.  The aggregate area collection capability of the 

two BAC satellites is 40,000 nmi
2
 per day.  Therefore, 86% of 173 days of inactivity results in a 

missed opportunity to collect an equivalent 20,412,045 sq. km.  For an equal proportion of 

panchromatic and multi-spectral collection, the IKONOS market price in 2001 would have been 

approximately $438,858,968 before any government discount.  This estimate is at the medium 

high range of the LCC-based estimate (+1.66σ), which likely reflects the difference between the 

cost of a system and the price required to make a profit.  This analysis has selected the LCC-

based approach because it includes uncertainty information as opposed to a market based point 

estimate. 

 

6.3.3.4 Discount Rates and Inflation 

 Two discount rates are used in this analysis.  The exercise cost is discounted to the 

decision date using the 10-yr U.S. Treasury note, averaged across the TICAS operational life 

from 2001 to 2006.  This rate of 4.44%
27

 represents the average rate at which the government 

borrowed money during the stated timeframe.  The value stream is discounted at a higher market 

risk rate.  Government investments, such as a national reconnaissance system, do not have a 

stated "required rate of return" on that investment; a direct analogy to a private sector investment 

does not readily exist.  However, if the assumption is made that the open and competitive bidding 

process yields a system that delivers value on par with the average profit expectations of the 

contractor, contractor data can reasonably be used as a government sector proxy.  The return on 

equity (ROE)
28

 averaged across the Aerospace & Defense Sector is 18.00%, while the average 

ROE for the Communication Services Sector (which includes commercial satellite imagery 

                                                      

27
 http://www.federalreserve.gov/releases/h15/data.htm 

28
 Return on Equity demonstrates how well a company uses investment funds to generate earnings growth. 
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providers like DigitalGlobe and GeoEye) is 11.86%.  The less restrictive value of 11.86% has 

been chosen for this analysis, understanding that the stakeholders of a government program (i.e., 

taxpayers) do not keep the government as accountable as would company shareholders.  An 

inflation rate of 2.55% is used in the analysis which is the average annual inflation rate between 

2001 and 2005
29

. 

 

6.3.3.5 Variable Expiration Architecture Option Valuation 

 The inputs required to conduct Variable-Expiration option valuation for AO3.1 are 

pictorially represented in Figure 75.  The architecture option valuation is completed using 

100,000 Monte Carlo trials, resulting in a mean option value of approximately $27M and standard 

deviation of $52M.  The stochastic results of the simulation are included in Figure 76.  Analytical 

plots that describe the sensitivity of the option value to changes to the input parameters as well as 

option value change over time have been generated and are presented in Figure 77 and Figure 78. 

 

Time
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Value Stream, STv

PV @ 

4.44%

PV @ 
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~Tri($70M, ±20%)

 

Figure 75: TICAS AO3.1 inputs required for VE-option valuation. 

 

                                                      

29
 U.S. Bureau of Labor Statistics: ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt 



180 

Likelihood Function S0 Present Value 

Distribution

v

v

v

v

T

tTr

T

tT
XeSe

)()( 00 




Option Value


 ][),(

)()( 00

0 v

v

v

vDL

T

tTr

T

tTt

t XeSeErZ


Exclude Zero Values

 

Figure 76: AO3.1 Summary stochastic results. 
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Figure 77: VE option value sensitivities for TICAS AO3.1. 
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Figure 78: Total option payoff and AO mean value over time. 

 

 A similar valuation process has been conducted for the entire set of candidate TICAS 

architecture options previously identified in Table 18.  A summary of the input parameters and 

AO value results is listed in Table 19.  The stacked temporal step value function, Figure 79, is 

used to compare the set of AOs and develop a general sense of the rank potential of the candidate 

set.   

 

Table 19: Summary of inputs and results for TICAS candidate AOs. 

Lifetime 

Probability, 

T v Value Stream, S Exercise Cost, X

Investment 

Rate, r

Market Risk 

Rate, μ
Inflation 

Rate, r i

Mean 

Option 

Value

Standard 

Deviation

AO1.1 ~Tri($15M, 80%) ~LN($2M, $12M) 4.44% 11.86% 2.55% $5.98M $15.11M

AO1.2 ~Tri($25M, 80%) ~LN($1M, $3M) 4.44% 11.86% 2.55% $10.28M $24.70M

AO2.1 0.60 ~Tri($20M, 50%) ~LN($2M, $1M) 4.44% 11.86% 2.55% $23.70M $26.05M

AO3.1 0.60 ~Tri($70M, 20%) ~LN($179M, $157M) 4.44% 11.86% 2.55% $27.26M $52.43M

AO4.1 0.50 ~Tri($40M, 40%) ~LN($65M, $25M) 4.44% 11.86% 2.55% $16.85M $31.04M

AO5.1 ~Tri($55M, 50%) ~LN($179M, $157M) 4.44% 11.86% 2.55% $24.05M $60.28M

AO5.2 ~Tri($5M, 80%) ~LN($1M, $0.5M) 4.44% 11.86% 2.55% $5.65M $6.64M

AO6.1 0.80 ~Tri($10M, 80%) ~LN($3M, $3M) 4.44% 11.86% 2.55% $14.33M $13.27M

Input Parameters Results

0.20

0.60
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Figure 79: Stacked temporal step value function for TICAS candidate AO set. 

 

6.3.4 Flexibility Framework Stage Three: TICAS AO Portfolio Selection 

 The mean option value quantified in Stage Two is the expected value of the architecture 

option--that is, the threshold amount a rational decision maker would spend to obtain the AO.  

The expected return on the AO investment is the amount gained above and beyond the cost to 

obtain the option.  Therefore, in order to determine the expected return, the implementation cost 

required to obtain the option must first be estimated.  The expected return is then annualized, 

along with the standard deviation, which yields risk and return data points for each candidate 

TICAS AO.  A portfolio optimization process is conducted to help select the subset of AOs that 

minimizes risk for the level of return that is within the program budget and stakeholder risk 

tolerance. 

 Detailed cost estimations for the TICAS system were conducted during the original 

architecture study.  These estimates were composed of data derived from parametric analysis, 

analogues to similar satellite projects, and piecewise hardware and software build-ups.  A second 

cost estimating activity was completed by the NRO in an Independent Cost Estimate in order to 

validate and enhance the original estimate.  Data from both sources have been leveraged to 
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estimate the implementation cost for each embedded architecture option.  The estimation process 

is described for AO3.1 and a summary table is provided for the other TICAS candidate AOs. 

 

6.3.4.1 Implementation Cost Estimation 

 Three cost drivers were identified in relation to implementing TICAS AO3.1: inclusion 

of a gimbaled crosslink antenna, resized spacecraft propulsion system, and selection of an 

alternate launch vehicle.  FPA variable clocking and decreases to the performance required from 

the FSEU, HSDHU, and EPS, were not determined to have non-recurring or recurring cost 

implications.  The cost estimate for the required design changes is organized using the standard 

NRO Work Breakdown Structure (WBS) in Figure 80, and the lower level WBS for the 

spacecraft bus, Figure 81.  The affected portions of the system architecture are highlighted in the 

WBS. 
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Figure 80: Standard NRO work breakdown structure. 
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Figure 81: Lower level standard NRO work breakdown structure detailing the spacecraft bus. 

  

 A gimbaled crosslink antenna for wideband communication must be included in the BAC 

design in order to maintain connectivity at the lower altitude.  Due to the fact that the PC 

spacecraft also requires this functionality, there is no non-recurring cost associated with the 

change, only a relatively minor recurring cost for the azimuth-elevation gimbal drive and gimbal 

electronics.  As shown in Table 20, the existing cost estimate for the communication payload is 

based on the widely utilized parametric Unmanned Space Vehicle Cost Model, Eighth Edition 

(USCM 8)
30

.  These estimates are based on cost-estimating relationships (CERs), specifically 

weight and power.  The USCM 8 CER for the communication subsystem recurring cost is 

approximately $63K/lb in FY 2000 dollars.  Weighing 23 lbs and using an average 11.3 W of 

power, the antenna gimbal cost is estimated at $1.45M.   

                                                      

30
 https://www.uscm8.com 



186 

Table 20: Summary TICAS non-recurring and recurring cost estimate for first unit PC spacecraft, 

and associated ground and launch segments. 

Element                                   (BY$07) NR ($M) Rec ($M) Total ($M) Source

Spacecraft 371.7$     297.3$     669.0$     Sum

Spacecraft SEPM 34.2$       48.4$       82.6$       CER from USCM 8

Spacecraft AI&T 46.3$       40.0$       86.3$       CER from USCM 8

Spacecraft Optical Payload 122.3$     108.8$     231.1$     Sum, ROM

Spacecraft Communication Payload 44.1$       39.7$       83.8$       Sum, CER from USCM 8

Spacecraft Bus 70.9$       56.7$       127.6$     Sum, CER from USCM 8

Flight Softward 27.8$       -$         27.8$       Analogy from other space programs, Aerospace Corp.

Booster Adaptor 7.0$         3.2$         10.2$       Analogy from NRO IMINT Program

Spacecraft Support Equipment 19.1$       -$         19.1$       Analogy from NRO IMINT Program

Spacecraft Transportation & Storage -$         0.4$         0.4$        Analogy from NRO IMINT Program

Spacecraft Propellant -$         0.1$         0.1$        Analogy from NRO IMINT Program

Ground 509.5$     -$         509.5$     Sum

Ground SEIT/PM 163.3$     -$         163.3$     NCG CER

Ground Terminal 16.1$       -$         16.1$       Sum

Command & Control 72.0$       -$         72.0$       Sum

Mission Management 106.0$     -$         106.0$     Sum

Data Archive & Storage n/a

Mission Data Processing 86.3$       -$         86.3$       Sum, Partial Mission Partner

Mission Data Analysis & Dissemination n/a n/a

Collection Management n/a n/a

Mission Infrastructure 38.2$       -$         38.2$       Sum

Factory/Support Faciilty 8.0$         -$         8.0$        Sum

Ground Sustainment (Dev - Launch) 19.6$       -$         19.6$       CER

Launch 12.4$       57.5$       69.9$       Sum

Launch Integration 12.4$       12.9$       25.3$       Analogy from Government Launch Office

Launch Operations & Mission Support -$         5.2$         5.2$        CER from USCM 8

Launch Vehicle -$         39.4$       39.4$       Open Source Documentation

Included in Other Elements

Mission Partner

Mission Partner

 

 

 The BAC propulsion subsystem must be scaled to accommodate the larger ΔV capability 

required for AO3.1.  Extracted from the TICAS mass and power tables for both BAC and PC 

spacecraft, the BAC propulsion subsystem will need to grow from 45 lbs to 175 lbs, not including 

liquid propellant.  There is no significant non-recurring cost for this change, however, the 

recurring cost is estimated with the appropriate USCM 8 CER: 

0.686DryWeight * 65.808 = FY$2000  

The change in recurring cost is calculated as $2,275K - $896K = $1,379K.  The additional liquid 

propellant will add approximately $100K per BAC spacecraft for a total propulsion subsystem 

change in cost of $1.48M per space vehicle. 

 The most significant implementation cost for AO3.1 is the change in launch vehicle 

selection due to the requirement to lift more weight to a higher altitude.  The baseline design for 

the BAC spacecraft utilizes a LMLV3-8 launch vehicle, later renamed Athena II, which was 
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priced at $26M in 2000
31

.  AO3.1 requires the selection of a more capable launch vehicle, the 

Delta II 7920, which was priced at an inflation adjusted $32.72M in 2000.  The difference is 

$6.72M per launch vehicle. 

   The total implementation cost of AO3.1 for both BAC spacecraft is calculated as: 2 * 

(1.45M + 1.48M + 6.72M) = $19.3M. 

 A rough order of magnitude (ROM) cost estimation has been conducted for the entire set 

of candidate TICAS architecture options with the results listed in Table 21. 

 

Table 21: TICAS architecture option implementation cost estimates. 

Architecture 

Option 

Implementation 

Cost 

AO1.1 $4.0M 

AO1.2 $5.0M 

AO2.1 $14.0M 

AO3.1 $19.3M 

AO4.1 $11.0M 

AO5.1 $15.0M 

AO5.2 $3.0M 

AO6.1 $10.0M 

 

6.3.4.2 Architecture Option Correlation Matrix 

 Correlation coefficients between each architecture option is calculated from the option 

value data generated during the Monte Carlo simulation.  If two TICAS AOs are responsive to the 

same mission scenario (e.g., AO1.1 and AO1.2), those AOs will have perfectly positively 

correlated results; if two AOs are responsive to independent mission scenarios, the correlation 

between their values will be zero.  If two AOs are responsive to negatively correlated scenarios, 

their values will also be negatively correlated.  There also exists a case where two AOs cannot be 

simultaneously exercised--that is, their exercise is mutually exclusive.  This requires an additional 

                                                      

31
 http://www.astronautix.com/lvs/athena.htm 
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feature in the AO valuation algorithm that checks for the coincident AOs (which are disallowed) 

and forces the selection of the single AO that has the higher payoff in that trial.  This effectively 

decreases the number of successful outcomes for each mutually exclusive AO and therefore 

decreases the expected value.  AO3.1 and AO5.x were defined as mutually exclusive in this 

simulation because they require the system to accomplish opposite objectives; therefore the 

additional selection algorithm is applied within the simulation.  Each of the six mission scenarios 

are assumed to be independent for this analysis.  The resulting correlation matrix is shown in 

Table 22.  The statistical models do not exactly replicate the underlying correlation of the AOs, 

therefore correlation values can also be entered manually, as in Table 23. 

 

Table 22: Correlation matrix for TICAS architecture options, simulated values. 

AO1.1 AO1.2 AO2.1 AO3.1 AO4.1 AO5.1 AO5.2 AO6.1

AO1.1 1

AO1.2 0.87318 1

AO2.1 -0.00332 -0.00416 1

AO3.1 0.00466 0.00487 0.00209 1

AO4.1 -0.00129 -0.00241 0.00030 0.00337 1

AO5.1 -0.00056 0.00136 0.00385 -0.18132 -0.00208 1

AO5.2 0.00010 -0.00080 -0.00318 -0.31858 -0.00518 0.33221 1

AO6.1 0.00095 0.00071 0.00292 0.00462 0.00149 -0.00019 0.00445 1  

 

Table 23: Correlation matrix for TICAS architecture options, manual values. 

AO1.1 AO1.2 AO2.1 AO3.1 AO4.1 AO5.1 AO5.2 AO6.1

AO1.1 1

AO1.2 1 1

AO2.1 0 0 1

AO3.1 0 0 0 1

AO4.1 0 0 0 0 1

AO5.1 0 0 0 0 0 1

AO5.2 0 0 0 0 0 1 1

AO6.1 0 0 0 0 0 0 0 1  
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6.3.4.3 TICAS AO Portfolio Selection 

 The set of optimal portfolios is discovered by minimizing the risk (i.e. variance) for every 

possible level of expected return.  Expected return is calculated as the difference between the 

mean architecture option value and the implementation cost, as a percentage, and annualized 

across the five year TICAS design life.  The associated risk is the standard deviation of the AO 

value, as a percentage, also annualized across the same time period.  The TICAS AOs are treated 

as discrete variables, where they are either included fully in the architecture or excluded.  As can 

be seen by the difference in risk-reward characteristics between the individual TICAS AOs (gold 

circles) and the portfolios (blue diamonds) in Figure 82, there is significant benefit to be had by 

diversifying the portfolio across the underlying sources of uncertainty.  Each portfolio along the 

efficient set is an optimal portfolio that minimizes risk for the commensurate level of return.  The 

optimal portfolio that maximizes the Sharpe ratio is discovered for both simulated and manually 

entered correlation coefficients, highlighted with red squares in Figure 83.  A summary of the 

optimal portfolios is included in Table 24 for varying levels of budget and risk aversion--AOs 

indicated with a "1" are included in the portfolio and those with a "0" are excluded.   
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Figure 82: Optimal portfolio selection for TICAS architecture options, simulated correlations. 

 

Table 24: Optimal portfolios with corresponding implementation cost, simulated correlations. 

Risk (σp) E[Returnp]

Portfolio 

Cost ($M) AO1.1 AO1.2 AO2.1 AO3.1 AO4.1 AO5.1 AO5.2 AO6.1

1.06689 0.21690 5.0 0 1 0 0 0 0 0 0

0.42346 0.20132 8.0 0 1 0 0 0 0 1 0

0.30219 0.16942 12.0 1 1 0 0 0 0 1 0

0.20635 0.16199 22.0 0 1 1 0 0 0 1 0

0.15585 0.15332 26.0 1 1 1 0 0 0 1 0

0.10666 0.13801 37.0 1 1 1 0 1 0 1 0

0.08728 0.13523 36.0 1 1 1 0 0 0 1 1

0.06864 0.12741 47.0 1 1 1 0 1 0 1 1

0.06312 0.11650 81.3 1 1 1 1 1 1 1 1  
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Figure 83: Optimal portfolio selection for TICAS architecture options, manual correlations. 

 

6.4 Assessment and Limitations 

 Defining and selecting architecture options in a complex system design is by no means 

automatic.  Implementation of the proposed flexibility framework is an inherently creative 

activity that requires in depth technical analysis within the application domain.  For this reason, 

several subtleties and complexities were discovered in each stage of the implementation which 

should be mentioned briefly.  

 

6.4.1 Stage One Assessment 

 We found that it is critical to make simplifying assumptions about the design element 

relationships.  The analysis must focus on a prioritized or dominate set of interactions rather than 

on the existence of any level of interaction.  We found that if we were to look far enough 

downstream, almost every design variable was affected by every other.  The Lattix DSM tool 

allowed for the identification of first, second, and third tier interactions, all the way to transitive 

closure.  The effects of functional requirement changes on downstream variables was limited to 
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direct and secondary interactions to allow for insightful results.  Also, the physics models that 

mathematically define the interactions were designed to capture the driving relationships within 

the system and exclude some lower-level interactions.   

 Managing the number of elements in the model is a major challenge early in the 

conceptual design because of the uncertainty about which variables will be important.  However, 

because the computational burden grows exponentially with each additional element, DSM size 

becomes a major consideration.  The genetic algorithm used for clustering a 34-element matrix 

required upwards of 48 hours of computational time using a 2.26 GHz Intel processor.   

 With small matrix sizes, manual clustering of the sDSM can be equally useful.  

Recognized by Yu, Yassine, and Goldberg (2007), the genetic algorithm must be calibrated to 

individual preferences for including versus excluding cluster elements.  Instead of trying to 

calibrate the model for each application, manual manipulation of the final clusters can accomplish 

much of the calibration a posteriori, especially when the system contains natural or common 

subsystems that organically cluster the interrelationships.  Users must understand that the 

clustering algorithm is a tool to get to the most insightful model and not a definitive termination 

of the analysis. 

 With respect to using system attributes vice functional requirements to define the effects 

of scenario instigated change, an important tradeoff was found to exist between increased 

complexity and increased model resolution.  System attributes (e.g., MTTA NIIRS, timeliness, 

operational availability, etc.) provide a concise and stakeholder-focused way to quantify the 

significance of performance change.  Directly aligned with the stakeholders' perception of value, 

system attributes also make for a more credible value forecast in Stage Two.  The major 

drawback is that not every scenario requires a change to a system attribute and not every 

functional requirement fits nicely into an attribute.  In the case of TICAS Scenario 1 which deals 

with a "conflict in space," the system attribute obviously affected is "operational availability."  

However, the initial assessment of TICAS operational availability did not reflect the risk of 
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adversarial attack.  Instead, it reflected system reliability, part redundancy, and design life factors.  

Therefore the magnitude of change to the attribute is not completely consistent with the ability to 

mitigate a space attack.  Proper assessment of the value of the "conflict in space" AOs must 

distinguish the value at the functional requirement level when the attribute is not an adequate 

match to the actual AO.  

 Sensitivity of the design variable to a change in an attribute (or functional requirement) 

needs to be coupled with information regarding the feasible range of the design parameter in 

order to more fully capture the potential for flexibility.  A variable can be highly sensitive to 

change in the neighborhood of the baseline architecture, but a truer measure of flexibility 

potential needs to define the possible values for that variable.  We found that pixel pitch for the 

TICAS detector was highly sensitive to changes in the NIIRS attribute.  However, the current 

value for that design variable was already a technological challenge, pushing the state of the art 

for space systems--the design variable did not have realistic ability to change in the direction that 

would accommodate the NIIRS requirement.  We found that the s-DSM must be coupled with a 

Tornado or Spider plot that defines the feasible ranges of the design variables. 

 The flexibility framework is intended to help system designers expand the frame of 

reference to potential operational scenarios, feasible design modifications, and promising 

architecture changes.  This broad perspective is stifled somewhat by the assumption we have 

made which requires a baseline system architecture as a point of departure for the 

implementation.  Although a necessary assumption for this research, a baseline system 

architecture biases the designer toward expansion or alteration of the current design solution and 

does not fully encourage ingenuity and creativity, which we believe is essential to architecture 

option definition.  The baseline TICAS propulsion system is an electric xenon ion design which 

was originally selected for its light weight and efficiency to handle orbit maintenance and 

correction.  When used for substantial orbit raising, the electric propulsion system takes much too 

long to reach final orbital altitude and therefore results in significant downtime cost.  If the 
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system was originally designed with AO3.1 included in the architecture, an alternative propulsion 

system may have been selected.  Consideration of new system design concepts as part of the 

flexibility analysis requires efficient tradespace exploration coupled with the architecture option 

approach.  We see this area as an interesting and promising stream of future research. 

 

6.4.2 Stage Two Assessment 

 The Variable Expiration option valuation technique is no exception to the rule of 

"garbage-in, garbage-out."  The space industry in particular has incredible difficulty with cost 

estimation credibility.  Decades of underestimating and overrunning has contributed to a 

widespread distrust of all satellite cost models.  However, we have found that consistency in the 

selection and application of cost estimating tools may not always result in a precise value, but a 

set of values across the design space that allows for insightful decision making, trade-offs, and 

architecture choices.  Estimating cost based solely on weight and power may seem artificial to the 

average observer, especially one involved with business and financial forecasts in the commercial 

sector.  However, parametric models are an industry standard for satellite programs partly 

because they provide the necessary consistency for design trade studies.  We had a choice in the 

TICAS AO3.1 analysis to use a parametric LCC-based cost estimate or a more clever, market-

based estimate.  We found that it was preferable to use the LCC-based approach because it 

provided greater consistency and comparability with other estimates. 

 If cost is hard to estimate precisely, value may be impossible.  Value estimates are 

inevitably based on a right understanding of the customer (or stakeholder).  When the customer 

may not fully understand himself, this challenge becomes immense.  System attributes and utility 

functions have great merit, but present additional uncertainty in already uncertain mission 

scenarios.  Market-based revenue and cost forecasts will almost always be preferred where they 

are available, but scientific and military missions will continue to require judgments of value.  

For TICAS, we would prefer to have "less rational" value assignments made by the stakeholder, 
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rather than completely justifiable value assignments made by the system engineer.  For this 

reason, system attributes, community-KPPs and other stakeholder communications of value are 

far more desirable as the basis of value stream forecasts than would be an arbitrary assessment 

required for functional requirement valuation.   

 Discount rates are much more evident in commercial applications where a corporate bond 

rate is available, as is a required rate of return for the firm.  For the TICAS analysis, the U.S. 

Treasury note was used to estimate the cost of investment capital.  This assumes that the 

organization spending the money can choose to retain the money and instead pay down the 

national debt.  If this were the case, the stated discount rate is a great analogy.  However, after 

money is allocated and appropriated to a government entity by the congress, that money finds a 

way to be spent; if it is not spent (and spent fast enough), another program will siphon it off and 

spend it somewhere else.  This reality suggests that additional investigation is required to fully 

define a government analogy to the investment rate. 

 How risk averse are decision makers within government agencies?  The market risk rate 

used in this analysis assumes they are as risk tolerant as decision makers in the aerospace and 

defense private sector.  Government service employees, even executives, do not have the same 

accountability nor incentives present in the private sector; risk tolerance is a function of these 

factors.  As opposed to a return on equity or required rate of return that defines acceptable market 

risk, government risk taking decisions will have more to do with the political hazard associated 

with wasting taxpayer money or failing with a project.  Further research is needed to more clearly 

identify a government analogy to ROE.  

 

6.4.3 Stage Three Assessment 

 Portfolio optimization can identify the best subsets of AOs, but for TICAS and other 

systems designed in similar organizational environments, the best portfolio is not always the right 

portfolio.  Large defense programs, including space systems, have requirements driven and 
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defined to a high degree by external factors.  These programs are defined at the national policy 

level via national (imagery) requirements.  The result is that almost all requirement trades are 

made above the system architect's level.  Performance and funding choices for space systems are 

dictated by the high level acquisition process and are many times outside of the control of the 

acquiring agency.  Even if promising AOs are discovered, the decision to embed those options in 

the system architecture lies higher up the command chain.  This realism does not take away from 

the merits of AO selection, only in that it adds another layer of necessary stakeholder 

communication and validates the need for transparency and clarity in the flexibility framework.    

 Practical considerations within the application domain can significantly impact the 

usefulness of the flexibility framework.  Most military weapon systems have life cycle costs 

dominated by post development costs: production, training, operations, sustainment, depot costs, 

etc.  These typically far outweigh the cost of initial development.  This funding dynamic can be 

much more amenable to the additional up-front costs necessary to embed flexibility as these 

programs can better absorb early expenditures.  Space systems exist in stark contrast as the 

majority of costs are realized during system development and initial deployment (launch).  This 

creates serious competition for funding and little tolerance for unsubstantiated system 

requirements. 

 

6.5 Conclusion 

 This chapter presents a proof of concept for the proposed three stage flexibility 

framework.  The Tactical Imaging Constellation Architecture Study was chosen for its 

complexity, realism, and depth of technical detail.  The proposed screening process was 

conducted to help define a set of candidate architecture options within the system design.  

Potential operational scenarios were identified and subsequently scored for their likelihood and 

conditional impact.  Changes to functional requirements and system attributes necessitated by 

each operational scenario were determined and flowed to the impacted design variables.  
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Sensitivity analysis was used to identify the TICAS design variables most reactive to the potential 

changes.  The most sensitive design variables were clustered and visualized to help identify the 

most promising flexibility regions in the architecture.  A set of candidate architecture options was 

created and defined in detail. 

 Each architecture option was valuated with the proposed Variable Expiration real options 

technique.  Implementation costs, exercise costs, value streams, and discount rates were estimated 

from archived data and used as inputs to the option valuation.  Mean option values and standard 

deviations were calculated for each AO and retained for subsequent AO selection.  Analytical 

plots were generated which describe the sensitivity of the option value to changes in each of the 

input parameters.   

 For varying levels of budget and risk tolerance, optimal subsets of architecture options 

were identified through portfolio optimization.  An assessment of the complexities and limitations 

of the flexibility framework was presented along with recommendations for future research. 
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7 CHAPTER VII 

 

7 SUMMARY AND FUTURE NEEDS 

 

7.1 Summary of Contribution 

 This research set out to determine what characteristics enable systems to remain 

persistently valuable throughout their operational life and if these characteristics could be 

rigorously incorporated in future system designs.  It was concluded that uncertainty in the 

operational environment can significantly affect the system's ability to remain valuable.  This 

leads to the risk of a system becoming obsolete or being unable to respond to changing needs.  It 

was found that traditional systems engineering techniques approach this concept almost 

exclusively by focusing on the prevention of negative outcomes associated with uncertainty.  A 

growing number of authors have recognized that operational uncertainty also creates an 

opportunity to deliver additional value to the stakeholder if the system can flexibly adapt to the 

new requirements.  This research concludes that the maximization of life cycle value for a system 

designed to operate in an uncertain environment relies heavily on the characteristics of flexibility 

embedded in the architecture. 

 In order to study and assess the concept of flexibility in a consistent and methodical way, 

the Architecture Option (AO) has been defined as a unit of analysis.  Different from previous 

definitions, the AO is proposed to be an encapsulation of a set of physical design components (or 

design variables) that necessarily enable an identifiable function with discernable value, 

instigated by a change in operational objectives.  This research contends that an appropriately 

flexible design will contain some combination of architecture options, exercised (or utilized) if 

and when they are warranted, which maximizes the life cycle value of the system.  Consequently, 

this research embarked on the challenge of designing an integrated framework that seeks to 
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communicate a process and develop a toolset that enables system engineers to make flexibility-

informed design decisions. 

 Existing literature to this point has not treated embedded design flexibility in a 

comprehensive way.  Descriptive measures, conceptual frameworks, and case-specific methods 

have not resulted in a general flexible design approach that can be applied across engineering 

disciplines.  This research has developed a comprehensive, three stage integrated flexibility 

framework that can identify, value, and select an optimal subset of architecture options to embed 

in the system design and provide operational flexibility.  This framework is not case specific and 

it incorporates both qualitative and quantitative tools that are application independent.   

 Stage One of the framework developed an eight step architecture option screening 

process that identifies and encapsulates operational uncertainty, traces new functional 

requirements to the affected design variables, and clusters the variables most sensitive to change.  

These clusters are combined with information from the alternate use cases to generate insight into 

the most promising areas in the architecture to embed flexibility.  The proposed process is 

compatible with existing systems engineering practice and adopts some of the traditional system 

engineering techniques related to operational concept development, functional analysis and 

decomposition.   

 Stage Two developed an architecture option valuation technique, grounded in real options 

theory, that is able to value options with variable expiration.  Architecture options by nature have 

uncertainty in the exercise date and therefore require a valuation technique that can handle 

variable expiration.  Traditional options valuation approaches were determined to be overly 

constrained by market assumptions and complex mathematical structures which made their usage 

unrealistic and many times inappropriate.  Instead, this research found that the Datar-Mathews 

valuation mechanism could be augmented to accommodate embedded architecture options with 

variable expiration.  The challenges and intricacies of the valuation approach are presented with a 

discussion regarding the compatibility of the technique with existing business and market 
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forecasting frameworks.  This is a significant step forward for the use of real options analysis to 

value embedded architecture options using a more transparent economic mechanism which can 

lead to greater adoption by industry and other users.     

 In Stage Three, a portfolio optimization technique was developed to select an optimal 

subset of architecture options.  Embracing the premise that an optimal portfolio of AOs will 

maximize the system's expected life cycle value and minimize portfolio economic risk, an 

optimization algorithm was proposed for both discrete and continuous AOs.  The set of optimal 

portfolios which lie along the efficient frontier is found to represent the subsets of architecture 

options which yield the lowest level of economic risk for any given level of expected return.  The 

selected optimal portfolio is found to be dependent on the budget and risk tolerance of the 

stakeholder. 

 Finally, the feasibility, extensibility and limitations of the integrated framework were 

assessed by its application to a satellite system development problem.  The flexibility framework 

was  applied to the Tactical Imaging Constellation Architecture Study, which was a complex 

family-of-systems design activity in 1996.  Detailed technical data, performance models, and cost 

estimates were compiled and leveraged to assess the flexibility framework with as much realism 

as possible.  Given the alternate mission scenarios identified in Stage One, it was found that 

system flexibility in the form of a portfolio of TICAS architecture options could yield between 

11.7% and 20.1% expected annual return with associated risk of between 6.3% and 42.3%, 

respectively.  The budget required for these portfolios ranged from the low end of $8.0M to the 

high end of $81.3M.  A detailed assessment of each stage of the framework was presented along 

with the challenges uncovered by applying the framework to a realistic system architecture.  

 This research was interdisciplinary at its core.  Ideas from diverse disciplines including 

system architecture, stochastic modeling, risk management, finance, and optimization were fused 

in order to develop an integrated approach to designing appropriately flexible systems.  The 

importance of design flexibility has been recognized across a wide variety of industries, from 
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engineering and technology to real estate and infrastructure development.  For this reason, the 

contribution of this research is also potentially wide and diverse.  These contributions fall into the 

following five categories: 

1. A screening process for identifying candidate architecture options within a system design 

2. A valuation technique for embedded architecture options 

3. A methodology for selecting an optimal portfolio of architecture options 

4. An integrated framework for considering ―system design flexibility‖ 

5. Insight into the challenges of applying flexibility to a complex system design problem. 

 

7.2 Future Needs 

 In the course of conducting this research, a variety of topics were handled that exist in a 

relatively new and undeveloped research environment.  In Stage One, we found that the ability to 

adequately encapsulate operational uncertainty is critical to identifying candidate architecture 

options.  We currently rely on scenario planning and vignette development ideas from business 

forecasting and market research.  However, for military and scientific missions, revenue and cost 

are replaced by other more subjective parameters.  Developing scenarios around unarticulated 

stakeholder demands is significantly more challenging than around predicted consumer behavior.  

This topic is ripe for study and will be critical in capturing the uncertainty that pervades the 

operational environment. 

 The MDL-GA algorithm used for DSM clustering in Stage One is the only technique we 

could identify which allows for overlapping, non-binary, clustering with bus identification.  

Therefore it is hard to compare the efficacy of the algorithm compared to other available 

techniques.  The algorithm worked well for this application, but it will need to be applied and 

validated across other domains.  The weights used to calibrate the clustering algorithm were 

adopted from the algorithm authors without validation of the intra-cluster preferences of specific 

stakeholders.  The preference for inclusion versus exclusion of elements in the cluster is a stream 
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of research we feel can be tested rigorously and scientifically using actual programs and specific 

stakeholders. 

 Options valuation is a relatively new field all together.  Applying theories and tools from 

Finance to the systems engineering domain has inherent complexities.  Practitioners will 

inevitably need to familiarize themselves with financial concepts and frameworks to guarantee 

the right application of the techniques.  Underlying assumptions, implementation of stochastic 

models, development of stakeholder value functions, consistency in cost modeling, and the use of 

specific discount rates to characterize risk all require substantial insight into the intricacies of the 

technique.  Although we believe the theoretical and practical foundation has been laid for the use 

of real options in system architecture, additional research that expounds on the nature and 

complexities of option valuation along with further automation is seen as beneficial and useful.   

 A pivotal assumption was made in this research to assume the existence of a baseline 

system architecture that meets the threshold requirements of a defined critical mission.  This 

allowed us to treat flexibility essentially à la carte and value each AO independently.  

Complexities involving significant physical overlap of architecture options (which would affect 

selection) and complications involved with analyzing the types of flexibility that fundamentally 

alter the design solution were not addressed comprehensively.  We believe this will be a critical 

extension of the research: incorporating the flexibility framework within a rapid, iterative 

architecture generation and assessment process.  Similar to a multi-attribute tradespace 

exploration process with concurrent design, we believe future research in full scale design 

simulation that embraces flexibility will be fruitful. 

 Validation of any proposed framework is the gold standard of quality assessment.  

Finding an objective benchmark for comparison is the real challenge.  In regards to flexibility, the 

question has been asked: "Are we trying to value the unimaginable?  Yes.  Does the unimaginable 

have value?  Yes."  This reveals the quandary when claiming a particular valuation technique or 

process is objectively valid.  We can make the assessment that the proposed framework does 
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indeed work for a particular application under certain restrictions, assumptions and constraints.  

How well it works is subject to interpretation.  Future research is recommended to search for an 

objective benchmark or standard to compare the framework and results.  A clever way to validate 

real options as a method to value flexibility has been proposed in relation to valuing the stock 

price of companies like Google and Amazon.  It was recognized that the market price of Google 

and Amazon stock well exceeded the traditional valuation based on the discounted stream of 

future earnings normalized by the shares outstanding.  The reason the stock price so outpaced the 

valuation was theorized to be because these companies existed in highly uncertain markets and 

had invested significantly in portfolios of real options to scale up, scope up, switch up, study and 

start their business activities.  The value of flexibility embedded in the organization was proposed 

to fill the observed valuation gap and real options analysis was used to test this theory.  For future 

research, we believe this type of validation is possible for architecture options if we can find a 

suitable proxy or market-based benchmark that allows for objective comparison. 
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8 APPENDIX 

 

A. DEFINING CORRELATION OF RANDOM VARIABLE DISTRIBUTIONS 

 Random distribution forecast values can be defined as partially correlated with the 

adjacent forecast to provide additional realism to the model, illustrated in the figure below.  If the 

forecast in a particular year is high, the forecasts in the years on either side should also be 

relatively high to maintain rational consistency. 

 

 

B. LEARNING CURVE APPLIED TO BUSINESS FORECAST EXAMPLE 

 The typical learning curve is used to define how costs will decrease for every doubling of 

cumulative volume produced.  When defining an optimistic versus pessimistic business forecast, 

the learning curve can be used to implement this market sentiment and disposition.  Typical 

values in the aerospace and defense industry are between 80% and 90% learning. 
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C. GROUND SAMPLE DISTANCE 

 The ground sample is the projection of a single detector pixel, through the optical system, 

along the line of sight to the ground.  The ground sample distance is the separation of adjacent 

samples, measured as the (IFOV * altitude) at nadir.  As the observational altitude increases and 

the slant angle diverges from nadir, the ground sample becomes oblique, and the distance 

between adjacent samples grows.  

 

Along Track

Across Track

Orbit

Nadir




ρ Range

η Elevation Angle

GSD Across Track ρ x IFOV

GSD Along Track ρ x IFOV/sin(η)

Nominal GSD is Geometric Mean GSD = ρ x IFOV/SQRT(sin(η))
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D. PUSHBROOM AND WHISKBROOM IMAGING STRATEGIES 

 Several imaging techniques are used to optimize image quality under varying levels of 

lighting, motion, stability, and required SNR.  Of these technique, the TICAS spacecraft uses a 

strategy that sweeps the detector line array either along the direction of vehicle motion 

("pushbroom") or back-and-forth across the direction of vehicle motion ("whiskbroom").  The 

pushbroom strategy maximizes total area collection, while the whiskbroom strategy maximizes 

the contiguous area collection around a particular ground site.  Ground motion compensation 

(GMC), or nodding, and time delay integration (TDI) are used with these scanning strategies to 

increase the effective exposure time and therefore the photons on the detector. 
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E. TICAS OPERATIONAL VIEWS OF MISSION SCENARIOS 

 Consistent with the DoDAF Architecture Framework, high level Operational Views (OV-

1 and OV-2) are presented here for the TICAS mission scenarios.  These examples represent the 

varying levels of detail and structure that can serve to encapsulate and define the changing 

TICAS operational environment.  
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F. MODULATION TRANSFER FUNCTION IN RELATION TO NIIRS 

 A scene is just the sum of many points, and therefore an image is the sum of the point 

spread function (PSF) multiplied by each point in the scene.  Illustrated along the top path in the 

figure below, this process is a convolution operation.  The Fourier Transform is used to 

mathematical transform the operation from a convolution (shift, multiply, add operation) into a 

simple multiplication.  The Fourier Transform of the PSF is the optical transfer function (OTF).  

The OTF measures the optical system's ability to transfer contrast as a function of spatial 

frequency. 

 

scene
Point Spread Function

convolve

*

image

scene spectrum

multiply

X

image spectrum

Fourier Transform Inverse Fourier 

Transform

• The brightness of each pixel represents the amplitude of the sine

• The location of each pixel represents the frequency of the sine (in 2D)

• The phase of each pixel (not shown) represents the shift of the sine

     dxxixfF  2exp  


   FFT 1
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0.4

0.6

0.8

1.0

Optical Transfer Function

Spatial frequency

 

 

 The system transfer function describes the ways the system blurs an image, including 

optical aberrations, manufacturing defects, spacecraft jitter, detector effects, etc.  The transfer 

function can be described with an amplitude and phase term: 

       ,2exp,, iAH   

The MTF is the absolute value of the amplitude term and measures the system's ability to resolve 

ground spatial dimension.  If the scene contains a sharp edge that is desirable to resolve, the ideal 

spatial signal would look like a step function.  Displayed in the figure below, the step function is 
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composed of sine waves and is filtered by the MTF as a function of spatial frequency (i.e., 

different frequencies are affected differently). 

 

Relative Edge 

Response, RER

Edge Height 

Overshoot, H

 

 

Using the TICAS 3-mirror anastigmat optical MTF shown earlier in Figure 67, the scene step 

function is filtered and transmitted as the image represented by the green line.  The slope of the 

transmitted step function is characterized by the Relative Edge Response term in the NIIRS 

equation, while the "ringing" is captured by the Edge Height Overshoot term. 



G. TICAS SYSTEM BLOCK DIAGRAM 
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H. TICAS SYSTEM DESIGN STRUCTURE MATRIX 
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I. TICAS OPTICAL SUBSYSTEM 
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J. ELECTRICAL POWER PROFILE FOR BAC AND PC IMAGE COLLECTION 
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