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CHAPTER I

Introduction

The natural emergence of swarm behaviors has long been one of the marvels of the natural world (Wilson,

1962; Aoki, 1982). Complex patterns that arise in biological swarms serve many purposes and allow the

group to function more effectively as a whole. Many species have developed some form of swarm interac-

tion, from flocks of birds (Ballerini et al., 2008) to schools of fish (Aoki, 1982; Huth and Wissel, 1992) or

colonies of insects (Wilson, 1962; Hecker and Moses, 2015; Karaboga and Akay, 2009; Brito et al., 2012).

Biological swarming tasks can consist of gathering food (Wilson, 1962; Hecker and Moses, 2015), construct-

ing shelter (Brito et al., 2012), avoiding predators (Krause and Ruxton, 2002), and traveling long distances

(Couzin, 2009). The astounding fact about the described swarms is that their capabilities do not require cen-

tralized control for the swarm, but result from the interactions of individual agents (Aoki, 1982; Reynolds,

1987; Couzin et al., 2002; Huth and Wissel, 1992). The capabilities of swarms have long been considered

for use in artifical settings (Reynolds, 1987), but more recent results in swarm robotics are more practi-

cal and relevant (Dorigo et al., 2004; Beni, 2005; Murray et al., 2013; Hecker and Moses, 2015). Robots’

increased capabilities and features, coupled with decreasing costs permits the use of many smaller, less intel-

ligent robots, rather than relying on one robot with extensive capabilities (Seyfried et al., 2005; Cianci et al.,

2007). Swarm robotics requires comprehensive algorithms capable of completing complex tasks using large

numbers of robots. These requirements for a controller algorithm in swarm robotics can be solved by using

biological models from the natural world. The research objective of this Thesis is to assess the performance

of biologically inspired swarm communication models for use in swarm robotics tasks. Communication in

this Thesis refers to a swarm member reacting to the presence of another member or environmental object in a

well defined manner. This Thesis provides an analysis of several different biological swarm communications

models to assess their ability to complete swarm robotics tasks and demonstrate that different models are

significantly better at completing specific tasks.

There are many potential behavior models outlined in the swarms literature (Kolpas et al., 2013; Strandburg-

Peshkin et al., 2013; Ballerini et al., 2008; Huth and Wissel, 1992; Hecker and Moses, 2015). However, this

Thesis does not consider every model. While fluid dynamics or Voronoi graphs may be apt descriptors of

the collective swarm’s motions (Kolpas et al., 2013; Attanasi et al., 2013), these models do not sufficiently

describe the actions taken by individual swarm members. Voronoi and fluid dynamics models address the

swarm as a single entity, rather than as individual entities. Artificial implementations of a biological model,

like the Boids model, can be too simplistic and do not consistently produce prototypical swarm behavior

1



(Reynolds, 1987). Other models require interaction with the environment or are focused on a specific tasks,

as in the ant pheromone models used to gather food (Wilson, 1962).

The chosen communication models for this Thesis share a background in the biological world, and de-

scribe how agents move and react to the immediate environment. Each model sufficiently describes biological

phenomena (Aoki, 1982; Ballerini et al., 2008; Strandburg-Peshkin et al., 2013) and can be extended to com-

plete the robotics tasks studied in this Thesis. A consistent nomenclature must be established to define the

communication models and the studied tasks. An object, for the purposes of this Thesis, is any concrete item

or actor in the environment, while an agent reacts to objects in the environment. The foundational swarm

communication model is the metric model (Aoki, 1982; Couzin et al., 2002), which operates under the as-

sumption that an agent reacts to all objects within a given radius, with varying reactions depending on how

far away a given object is located relative to the agent. The biological analysis of swarms demonstrated that

the metric model is not always a highly accurate representation of starling swarm patterns (Ballerini et al.,

2008). Based on the starling results, the topological model was proposed. The topological model is developed

using the metric model rules, but posits that an agent only reacts to the closest n objects in the environment.

This model’s underlying assumption is that, in dense swarms, the agents are unable to track and respond to

every other bird in the flock; thus, a constraint on the number of objects considered was added (Ballerini

et al., 2008). The topological model ignores that the closest agents in a swarming environment may be occu-

luded, or not visible to the agent, which led to a model focused on the realities of biological visual systems

(Strandburg-Peshkin et al., 2013). The visual communication model is also based on the metric model’s in-

teraction rules, but assumes that the agent interacts with the objects that are visible to the agent. An object is

visible to an agent when a minimal portion of that object is within the agent’s field of view.

The prior swarm robotics research has focused primarily on the application of ant-based models (Dorigo

et al., 2004; Hecker and Moses, 2015) or specific models developed for unique properties of the robots

(Murray et al., 2013). Some work has been done to simulate the topological model and associate the results

with biological systems (Bode et al., 2011; Abaid and Porfiri, 2010), but only on a limited basis. Abaid’s

modeling was restricted to a one-dimensional ring around which the agents operated. Each of the three

communication models considered in this Thesis have been shown to be plausible explanations for collective

biological swarm behavior (Couzin et al., 2002; Ballerini et al., 2008; Strandburg-Peshkin et al., 2013).

The most common swarm activities can be reduced to combinations of several independent, simplistic,

and in some cases, atomic tasks, which have been mapped to common robotic swarm tasks (Hayes, 2014). An

analysis of these communication models for different robotic swarm tasks is required in order to understand

under which circumstances particular communication models provide the most impact on the swarm’s ability

to complete particular tasks. The overall hypothesis for this Thesis is that different tasks require unique
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swarm communication models for optimal completion of each task. Therefore, a simulation-based evaluation

incorporating the three communication models assessed the models’ relative performance on swarm robotics

based tasks such as searching for goals, avoiding adversaries, flocking, and moving to a specified area.

Chapter 2 provides a review of the pertinent literature, and further explores the motivation for the consid-

ered communication models. Chapter 3 defines the various communication models examined in the experi-

ments, along with the developed, implemented, and evaluated algorithms. Further, Chapter 3 describes the

simulator developed as the experimental platform. Chapter 4 presents the experimental design, experimental

results, and a discussion of the resulting implications. Chapter 5 presents the conclusions, contributions to

the field, and future work.
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CHAPTER II

Literature Review

Biological swarms present many promising concepts that can be applied to robotics, and serve as a motivation

for this Thesis. A review of the relevant biological swarm models was completed and narrowed to three

primary models. A general outline of the considered models is provided, along with the relevance of the

chosen models.

II.1 Biological Models

Biological swarms have repeatedly been shown to be the result of simple interactions between swarm mem-

bers (Aoki, 1982; Reynolds, 1987; Huth and Wissel, 1992). The simple interactions that define the biological

world lead to layers of complexity and completion of tasks that no single individual is able to handle. The

swarming patterns of bees allow for the construction of complex hives (Brito et al., 2012). Fish use swarm

behaviors to avoid predators and travel vast distances under the sea (Huth and Wissel, 1992; Makris et al.,

2009). Foraging for food drives the use of swarming behavior in ants (Wilson, 1962; Hecker and Moses,

2015). Birds demonstrate flocking patterns for a variety of tasks, from migration to foraging for food (Bal-

lerini et al., 2008). One point remains consistent across these biological examples; swarming behavior allows

for the execution of more complex actions than is otherwise possible with an individual entity.

Observations and simulations over the years have allowed for the development and refinement of bio-

logical models. The vast majority of the research has focused on fish (Aoki, 1982; Huth and Wissel, 1992).

Information from the oceans, lakes, and rivers (Huth and Wissel, 1992; Makris et al., 2009) in conjunction

with simulation of proposed swarming models (Aoki, 1982) has demonstrated that simple interaction models

can accurately describe biological swarming actions. Insects - in particular ants and bees - represent another

common class of biological swarm literature (Karaboga and Akay, 2009; Wilson, 1962). The ant’s forag-

ing abilities has been of particular interest (Wilson, 1962), specifically their use of pheromones. Modeling

of the interactions of ants in the presence of pheromones has proven particularly fruitful in understanding

the patterns of movement in ants. The more recent research has also focused on birds, more specifically

starlings. High resolution stereophotography allows for reconstruction of the three-dimensional swarming

patterns (Ballerini et al., 2008), which has motivated the further analysis of the specific patterns involved

with swarming behavior (Attanasi et al., 2013).

4



II.2 Motivation for Application of Biological Models

Biological swarms demonstrate a cohesiveness and unity, even when faced with threats and obstacles, which

makes the swarm robust to the loss of swarm entities without negatively impacting the overall task perfor-

mance (Ballerini et al., 2008). It has been found that hungrier swarm members form an ad-hoc leadership

sub-group that better guides the swarm towards a food source, when those entities have knowledge of the

food source (Krause et al., 2000). This emergent leadership allows the swarm to perform efficient decision-

making (Couzin et al., 2005) and act with more coordination. Thus, these biologically inspired models have

been shown to perform a required search behavior, with high efficacy. Biological swarm behavior is also

well suited to handle for predator/prey situations. Work by Olson, Knoester, and Adami (2013) shows that

swarming behavior likely arose in the biological world as a result of interactions with predators. As a result

of evolution, the swarming behavior will be highly effective in avoiding obstacles or predators (Olson et al.,

2013). The biological predator and obstacle avoidance behaviors are key to several of the robotic swarm

tasks.

Another primary advantage of biological swarms is their ability to transfer information quickly across

the swarm. Handegard, Boswell, Iannou, Leblanc, Tjøstheim, and Couzin (2012) showed that information

about predators quickly travels through the swarm of biological prey. This information transfer property

can allow swarm members to react to potential threats before the predators come into the individual swarm

member’s sensory range (Handegard et al., 2012). This information transfer has been shown to be effective,

regardless of the scale of the group (Cavagna et al., 2010). Additionally, the information spread correlates

linearly with the swarm’s size (Cavagna et al., 2010), and can even bypass parts of the swarm to inform the

whole group (Cavagna et al., 2013). The scalability and effectiveness of information transfer is promising,

because as swarm robots become a reality, the communication between swarm members must increase with

the group size (Seyfried et al., 2005; Cianci et al., 2007). Quick information transfer allows for increased

decision-making capabilities at a low cost in starling flocks (Young et al., 2013), which are the basis for

the topological communication model (Ballerini et al., 2008). Biological swarms allow for the emergence

of leadership, efficient communication, avoidance of obstacles or predators, and concise decision making,

which are ideal properties for robotic swarm intelligence.

II.3 Artifical Swarms

Prior work in artificial swarm intelligence confirms the efficacy of biological models. Reynolds was one of

the first to verify that the simple artifical models were able to lead to emergent swarming behaviors (Reynolds,

1987). A significant amount of the research thus far has been simulation based (Couzin et al., 2002; Aoki,

1982; Huth and Wissel, 1992), as the capabilities of the existing swarm robots have been mostly limited
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to only basic functionalities (Dorigo et al., 2004). The models for artificial swarms fall into two primary

categories, biologically inspired or artificially generated. The most prominent biologically inspired artificial

swarms are based on insectiod movement patterns and capabilities. Ants and their pheromone trails have been

simulated both for use in robotics (Fujisawa et al., 2014; Hecker and Moses, 2015), and also in the pursuit of

pathfinding or clustering algorithms (Shen and Jaikaeo, 2005; Handl and Meyer, 2007). Hecker and Moses

(2015) have created actual robotic swarms using ants as inspiration. The pheromones associated with the

ant models have been both virtually (Handl and Meyer, 2007; Hecker and Moses, 2015) and chemically

(Fujisawa et al., 2014) generated for different purposes. For example, a routing algorithm was implemented

that leaves a virtual breadcrumb trail of pheromones, using the ants’ foraging algorithm to find the best path

(Hecker and Moses, 2015). These biologically inspired algorithms establish the efficacy of using biological

models to complete robotics tasks.

The artifically generated models focus on the robotic capabilities in the swarm. The e-puck robots have

specific capabilities (e.g., sensors and actuators) that allow them to self-assemble and configure into different

shapes (Murray et al., 2013). A second model, incorporating the boids model, has been used to stabilize

unmanned aerial vehicles (Saska et al., 2014) without additional equipment. Swarm models, however, do not

need to be specifically developed for a particular platform. Brutschy et. al. developed a method to integrate

general swarm models into artifical swarm agents. The system requires an abstraction layer that provides the

model with relevant input (Brutschy et al., 2015). The implication is that the models and algorithms based on

biological swarms can be useful for developing robotic swarms for use in a variety of tasks.

II.4 Choice of Models

The chosen biological models were selected to facilitate illustration of how small differences between similar

models can lead to varied outcomes. Each model demonstrates a biologically verified model for swarm

behavior (Couzin et al., 2002; Ballerini et al., 2008; Strandburg-Peshkin et al., 2013). The models define the

communications between individual swarm members, but do not require excessive computation or hardware

requirements to the swarm robots or an associated simulator. The numerous models not selected for this

Thesis failed to fufill these requirements for the models: the model consistently demonstrates swarming

patterns and behaviors, provides a specific controller for individual agents, implements a biologically inspired

swarm communications model, uses only position and heading information from neighboring agents, and

does not require excessive or unusual computational or hardware capabilities.
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II.5 Alternate Models

A number of models exist that are not considered for this Thesis. Some models focused on the group prop-

erties and were not specific with regards to individual agents, modelling interactions that are not realistic in

robotic applications because they do not provide a clear controller for individual swarm members (Kolpas

et al., 2013; Nunnally et al., 2012). An interesting model of starling flocks relies on theories related to super

fluids, normal liquids transformed under extreme pressure or temperature changes, was shown to explain

the rapid information transfer across the swarm (Attanasi et al., 2013). However, this model focuses on the

propagation of information across the swarm without regard for the movement of individual swarm members.

The fluid dynamics model is unsuitable for this Thesis because it does not provide an algorithm to determine

individual behavior.

Voronoi diagrams, as generated from a Delaunay triangulation process, represent another alternative

model of swarm dynamics (Du et al., 1999). This model has a comparable descriptive ability to the topo-

logical model (Kolpas et al., 2013), but is not entirely feasible with swarms of robots due to its reliance on

the relative positioning of individuals. The relative positions of the swarm members may not be known by

an individual agent, due to environmental or sensor inaccuracies (Nunnally et al., 2012). The Voronoi model

requires relative positions to compute the Delaunay triangulation, and does not always have the information

required to do so in robotic swarms. Koilpas et. al. (2013) compared the capabilities of the Voronoi model

and the topological model in simulating a swarm and found both models to have comparative descriptive

abilities. Thus, the Voronoi model is less realistic and extraneous, and was not considered for the purpose

of this Thesis. Additional results by Cavagna et al. (2013) and Bialek et al. (2012) provide the statistical

probabilities of where birds will be positioned in a flock, whether the bird will lead the flock or follow along

the back edge; and which other individuals will be their neighbors. Both an analysis of change in neighbors

over time (Cavagna et al., 2013) and an entropic model of the entire flock (Bialek et al., 2012) do not address

the movements of the specific swarm members, but rather properties of the entire swarm. Although the en-

tropic model of the entire swarm is an interesting concept, this theory does not describe the swarm member’s

specific actions or reactions, and is thus unsuitable for the research focus of this Thesis.

Ant models focus on using pheromones, either as virtual tokens (Hecker and Moses, 2015) or as actual

chemical scents (Fujisawa et al., 2014), to set markers within the environment. Actual scents may not be

effectively monitored by robots in outdoor environments, and the swarm may not have consistent communi-

cation necessary to use artificial pheromones (Nunnally et al., 2012). Bees use dancing and other movements

as a form of communication to pass along information to the swarm (Dornhaus and Chittka, 1999; Karaboga

and Akay, 2009). The models of bees and ants require the use of communication techniques or capabilities
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that may not be readily available for artificial agents and are thus unsuitable for this Thesis. On the other

hand, the Boid model operates at too simple a level, using the rules of repulsion, orientation, and attraction

on all objects neighboring the agent (Reynolds, 1987). Flocking under this model can become confused with

a disturbance to the environment or environmental properties. The algorithm, which can be quite effective in

demonstrating some swarm capabilities, does not fit the criteria defined for the chosen models. The full list

of alternate models and the reasons the models were disqualified is contained in Table II.1.

Model Source Reason Eliminated
Voronoi Du et al., 1999 Inaccuracy Concerns
Entropic Model Bialek et al., 2012 Does not predict individual behavior
Neighbor Analysis Cavagna et al., 2013 Does not predict individual behavior
Fluid Dynamics Attanasi et al., 2013 Does not predict individual behavior
Boids Reynolds, 1987 Too Simple
Ants Fujisawa et al., 2014; Pheremones

Hecker and Moses, 2015
Bees Karaboga and Akay, 2009 Complex Communicaitons

Table II.1: Summary of alternate models and why they were eliminated.

II.6 Primary Models

Historically, the most prominent biological swarm communication model is the metric model. The metric

model, originally discovered in fish (Aoki, 1982), incorporates several different zones, defined by relative

radii, where an agent reacts differently to other objects in different zones. The three zones include a zone

of repulsion, where the agent moves away from the objects within, a zone of orientation, where the agent

orients its heading to the objects within the zone, and a zone of attraction, where the agent moves towards the

objects within the zone. This model is simplistic and effective in describing different swarm behavior states

and the associated transitions between these states (Couzin et al., 2002). This model serves as the foundation

for two biologically-based communication models that have been shown to better represent biological swarm

communications (Ballerini et al., 2008; Strandburg-Peshkin et al., 2013) and are considered in this Thesis,

the topological and visual models.

The topological model incorporates principles similar to the metric models, with one decisive difference.

The primary feature of the topological model is that the agent interacts with a fixed number of nearest neigh-

bors, instead of all those within a radius, as the metric model does. The topological model was originally

verified by analyzing migrating flocks of birds, comparing the actual bird’s movements to those predicted by

the model (Ballerini et al., 2008). Further work has modeled the swarms and compared the results to data from

the biological bird flocks to verify the model’s accuracy (Bode et al., 2011). A simplistic, one-dimensional

topological model verified that the model accurately describes schools of fish (Abaid and Porfiri, 2010).
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The most intuitive and biologically compelling communication model is the visual communication model

(Strandburg-Peshkin et al., 2013), in which the agent only communicates with the adjacent swarm members

that are visible (e.g., within the field of view) to the current agent. This model requires ranges of repulsion,

attraction, and orientation, but a different group of agents is visible to the agent compared to those that are

within the metric model’s radius. The ability of the agents to see an object is generally thought to have

an upper limit, denoted as the visual range in this Thesis. The model was originally compared both to the

performance of other models and that of fish schools to verify its predictive abilities (Strandburg-Peshkin

et al., 2013).

While having different properties, some similarities exist in how the agents interact in the swarm, given

that all three follow the metric model’s concepts of repulsion, orientation, and attraction. The visual model

performs closely to the metric model when the visual range is equal to or not much larger than the metric

model and when not many objects are occluded in the visual field (e.g., in a sparse or lowly populated

environment), as the objects that both models interact with are similar. The topological model performs like

the metric model when the topological number is high and the metric model has a small outer radius, because

the groups of agents that the models interact with are similar. Chapter III formally defines algorithms for the

three models.
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CHAPTER III

Algorithms

Three robotic swarm communication algorithms have been derived based on the biological literature. The

metric, topological, and visual algorithms have been designed to follow the biological definitions as closely

as possible.

III.1 Definitions

An object in the context of this Thesis is defined as any concrete item in the environment. An object can

represent an agent, an obstacle, an objective, a target, or an adversary. An agent (i.e., an individual) is

a swarm member that reacts and responds to other objects in the environment. An obstacle exists in the

environment and is to be avoided; an analogue in the real world is a rock or a wall that the agent must avoid.

An objective is an object or area that the agents must find in the environment and approach or access directly,

like a victim in a search and rescue scenario, or a rendezvous point. A target is something (e.g. a person, a

vehicle) that must be pursued, but not necessarily reached, with the implication that the target may move on

its own. An adversary is something that can harm the swarm, a predator in the natural world, that the agents

must avoid.

There are three central swarm communication models used in the context of this Thesis. The metric model

defines that each agent reacts to other agents depending on whether or not they are in one of several different

zones. The three zones are the zone of repulsion, wherein an agent reacts by moving in the opposite direction

of the agent in that zone; the zone of orientation, wherein the agent attempts to orient with the agents in that

zone; and the zone of attraction, where agents move towards the other agents in that region. The three zones

are generally concentric circles, designated by their radii, with repulsion being the interior zone, orientation

the middle zone, and attraction the exterior zone. Repulsion takes precedence over the other two zones in

order to prevent collisions. All agents within any of the three zones are considered for interaction with the

agent being modeled (Couzin et al., 2002). The topological model uses the same zones and preferences as the

metric model, but only considers the closest n agents, where n usually takes a value of 6 or 7 (Ballerini et al.,

2008). The visual model uses the same zones, but considers only those agents that are visible to the original

agent, or within the agent’s field of view (Strandburg-Peshkin et al., 2013). The three zones are denoted in the

algorithms by the radii that define them, namely the radius of repulsion (denoted RadRepulsion) for the zone

of repulsion, the radius of orientation (denoted RadOrientation) for the zone of orientation, and the radius of

attraction (denoted RadAttraction) for the zone of attraction.
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Algorithm 1 The GetNewDirection algorithm, which determines how agents respond to other objects.
GetNewDirection[Agent a, Objects oi]

1: Create vectors newDir, PositionComponent, DirectionComponent
2: for all oi do
3: if oi is an Objective AND distance(a, oi) <Rad Orientation then
4: mark oi as found
5: end if
6: end for
7: if distance(a, o1) <Rad Repulsion then
8: while distance(a, o1) <Rad Repulsion do
9: if o1 is an Obstacle or an Adversary then

10: PositionComponent = PositionComponent - (o1.position - a.position).normalize * 30 / distance(a,
o1)

11: else if o1 is an Objective then
12: Do Nothing
13: else
14: PositionComponent = PositionComponent - (o1.position - a.position).normalize
15: end if
16: Remove o1 from front of Objects
17: end while
18: newDir = temp1
19: else
20: for all oi do
21: if oi is an Obstacle or an Adversary then
22: vector PositonDi f f = o1.position - a.position
23: PositionComponent = PositionComponent - PositonDi f f .normalize * 30 / distance ( a, oi )
24: else if oi is an Objective then
25: if oi has not been found then
26: PositionComponent = PositionComponent + (oi.position - a.position).normalize * 20 / sqrt (

distance ( a, oi ) )
27: end if
28: else if oi is an Agent or a Target then
29: if distance(a, oi) <Rad Orientation then
30: PositionComponent = PositionComponent + oi.direction
31: else
32: DirectionComponent = DirectionComponent + (oi.position - a.position).normalize
33: end if
34: end if
35: end for
36: if PositionComponent exists and DirectionComponent exists then
37: newDir = (PositionComponent + DirectionComponent)/2
38: else if PositionComponent.exists then
39: newDir = PositionComponent
40: else if DirectionComponent.exists then
41: newDir = DirectionComponent
42: end if
43: end if
44: return newDir

11



These definitions only apply to the agent-to-agent communications, while the interactions between agents

and the other objects in the environment must also be defined. Obstacles and adversaries always have a

repulsive effect, with the repulsive force based on an inverse power law with regard to distance from the

object. An objective follows the same inverse power law as an obstacle, but with an attractive force, rather

than a repulsive force. A target is treated in the same manner as another agent, as it must be tracked, but

not necessarily approached. The agent’s reactions to objects in the environment and the resulting effect on

the agent’s new direction are outlined in Algorithm 1. Lines 9, 10, 22, and 23 describe the repulsive force

of adversaries, as a vector directing the agent away from the repulsive objects is added to the new direction.

Lines 14, 30, and 32, respectively describe the repulsive, orientative, and attractive forces caused by other

agents. These repulsive, orientative, and attractive forces are effected by adding vectors corresponding to

a direction away from the agent in the repulsive zone, the heading of the agent in the orientative zone,

and the direction towards the agents in the attractive zone, respectively, to the new direction object. Line 26

describes the attractive force of goals while line 4 describes the discovery of goals. When a goal is considered

discovered, it is marked as found by the algorithm. The attractive force is effected by adding a vector in the

direction from the agent to the goal to the agent’s new direction. This algorithm requires a list of relevant

objects and determines a new heading for the agent based on the defined rules. All objects have a position,

which describes their position (xp,yp), and a direction vector (θ ,r) that indicates their heading and magnitude,

respectively.

III.2 Metric Model

The metric model agents respond to all objects within the radius of attraction, with the responses as defined

in Algorithm 1 (Couzin et al., 2002). The metric model algorithm is provided in Algorithm 2. The agent in

this algorithm observes the positions and directions of other objects within the agent’s radius of orientation.

The radius of attraction is the maximum distance that an object can be from the agent and still interact with

the agent. When all objects within the radius of attraction are determined, lines 3 through 5 in Algorithm 2,

the metric model algorithm executes Algorithm 1’s interaction rules with the current agent and the associated

agents within the radius of attraction, and sets the resulting direction as the new direction for the agent, line

7 of Algorithm 2. An example of the range of sensing for an agent using the metric model is depicted in

Figure III.1. The shaded area emitting from the agent represents the agent’s blind spot, the center solid circle

represents the metric model agent, the squares represent objects within the agent’s communication range, and

the triangles represent objects outside of the agent’s radius of repulsion with which the agent is unable to

communicate. The dotted circle represents the radius of repulsion, the dashed circle represents the radius of

orientation, and the solid circle represents the radius of attraction.
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Figure III.1: A visualization of the sensing abilities of the metric model agent.

Algorithm 2 The Metric Model algorithm.
MetricModel[Agent a, Objects oi]

1: Create a priority queue withinRange of objects ordered by distance

2: for all oi do

3: if distance(a, oi) <RadAttraction then

4: add oi to withinRange with associated distance

5: end if

6: end for

7: a.direction = GetNewDirection[a, withinRange]

III.3 Topological Model

The topological model considers the closest c objects, independent of if they are goals, agents, or obstacles.

An agent’s response to each type of object is the same as the metric model (Ballerini et al., 2008). The

topological model is defined in Algorithm 3. The agent finds the closest c objects, lines 1 through 5, by

adding objects and their distances to a priority queue sorted by lowest distance to the current agent. The

closest c objects are identified from this ordering, lines 7 and 8, so that the agent can interact with the objects.

The agent then applies the interaction rules, as defined in Algorithm 1, and sets the resulting direction as the
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Figure III.2: A visualization of the sensing abilities of the topological model agent.

new direction for the agent in line 9. An example of the range of sensing for an agent using the topological

model (with c = 6) is provided in Figure III.2. The squares represent the six closest objects closest to the

agent. Note the difference from the metric model, which senses all objects within the radius of attraction.

Algorithm 3 The Topological Model algorithm.
TopologicalModel[Agent a, Objects oi]

1: Create a priority queue allOb jects of objects ordered by distance

2: for all oi do

3: add oi to allOb jects with associated distance

4: end for

5: Create a list of objects of size n named closestOb jects

6: Add the first c objects from allOb jects to closestOb jects

7: a.direction = GetNewDirection[a, closestOb jects]

III.4 Visual Model

The visual model is also a similar modification of the metric model, as all objects that are visible to the agent

generate a response from the agent. An object is visible to an agent if the object occupies at least a minimum

portion of the agent’s field of view. Again, the responses to each object type are identical to the responses
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described for the metric model (Strandburg-Peshkin et al., 2013). Algorithm 4 provides the primary visual

communication model, which also requires a visibility algorithm (Algorithm 5). The portion of the visual

algorithm in Algorithm 4 performs the same function as those in Algorithms 2 and 3; it observes objects in

the environment, and identifies those that are visible to the agent by applying Algorithm 5 in line 12. When

all visible agents are determined, the same interaction rules are applied by invoking Algorithm 1, and then a

new direction is provided.

The visibility algorithm (Algorithm 5) considers an object and a list of objects closer to the agent than

the object that is being considered. The algorithm then verifies if the agent can see the object by checking

that the object in question is not behind any of the objects in the list of closer objects. If there is a portion

of the agent’s field of view, above a defined threshold, that the object occupies, then the object is considered

to be within the agent’s field of view, and the algorithm returns true. If there are no objects between the

object being considered and the agent, then the object is clearly visible, and the algorithm returns true. The

threshold of the visibility algorithm is defined as the portion of the visual field that an object occupies when it

is positioned at the visual range of the agent. The visual model’s behavior differs from the topological model,

which considers only the closest n objects, and the metric model, which considers all agents, regardless of

visibility, within a certain range. Figure III.3 illustrates the objects that a visual algorithm agent is able to

sense. The squares are those objects that the circle visual agent is able to sense; while the objects within the

visual model’s agent’s field of view fall within the outer circle. Note that even though an object is within the

field of view, some objects are occluded and are not visible to the agent.
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Figure III.3: A visualization of the sensing abilities of the visual model agent.

Algorithm 4 The Visual Model algorithm.
VisualModel[Agent a, Objects oi]

1: Create a priority queue withinRange of objects ordered by distance

2: for all oi do

3: if distance(a, oi) <VisualRange then

4: add oi to withinRange with associated distance

5: end if

6: end for

7: Create a list visibleOb jects

8: Add closest object from withinRange to visibleOb jects

9: Remove closest object from withinRange

10: for all o j in withinRange do

11: if isVisible[a, o j, visibleOb jects] then

12: Add o j to visibleOb jects

13: end if

14: end for

15: a.direction = GetNewDirection[a, visibleOb jects]
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Algorithm 5 The visibility algorithm. Returns whether o j is occluded by oi from the viewpoint of a.
isVisible[Agent a, Object o j, Objects oi]

1: Calculate the arc a j in a’s visual field that o j comprises

2: for All oi do

3: Calculate the arc ai in a’s visual field that oi comprises

4: if ai covers some part of a j then

5: Remove the overlap area from a j

6: end if

7: end for

8: if the arc a j has a value greater than the threshold then

9: return true

10: else

11: return false

12: end if

III.5 Simulator Design

The simulator consists of four main components; the application, the simulator, the objects, and the con-

trollers. The application component handles all file input and output, and defines the necessary variables

and records the results. The file input includes reading in the objects, environmental constraints, and agent

parameters. There is a set of two JSON documents that define the input. The configuration file contains

the information regarding the agent’s communication model, specifically the model type and the different

radii or other parameters. The object file contains the locations and original directions of the objects within

the simulation, as well as any other environmental constraints. The file output is concerned primarily with

writing the results to a specific file in Comma Separated Value (CSV) format. The objects consist of the

agents, objectives, adversaries, and obstacles. Each of the objects maintains an internal state representing

their position, direction, and other internal properties. The simulator manages the environment, which is the

rectangular area within which the agents operate and objects are contained. The environment also contains

states associated with the objects (e.g., the state of a goal is whether or not it has been discovered). The

simulator calls the functions that update each of the objects over a timestep. The object’s position is updated

by moving the object along the given heading θ for a distance specified by the magnitude r. The final compo-

nent is the controller, which is contained inside each object. The controller regulates the object’s movement,

providing the object’s direction and magnitude value either by applying the respective communication mode

algorithm for the agents or by providing a constant direction and magnitude for the other types of objects.
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The simulator is written in C++ with the use of the Qt framework. The individual trials of the experiment

are run from the command line. A batch file calls the program with the corresponding object and configuration

files as arguments. There is an option to use a graphic user interface to view the swarm in motion if necessary.
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CHAPTER IV

Experiment

The experimental design contains the definitions of the tasks, the hypotheses for each experimental task, and

the metrics associated with each experimental tasks. The results, including descriptive statistics and a formal

statistical analysis, are presented. The discussion frames the importance of the results.

A task is an action or series of actions that the swarm must complete. A trial is a run of a specific task

with a given set of parameters and objects, while an experiment is a collection of trials over all the valid

parameters designed to evaluate a specific research hypotheses.

IV.1 Experimental Design

IV.1.1 Variables

The independent variables for each trial are the task being assessed in the trial, and the communication model

that the swarm uses to interact: metric, topological, or visual. The dependent variable for each trial is the

metric or metrics used to evaluate the swarm’s ability to complete the task.

IV.1.2 Parameters

There are four parameters common to all algorithms, while two additional parameters apply to specific al-

gorithms. There are three parameter classifications: those that are related to agents, those that relate to the

environment in which the swarm is operating, and those specific to the tasks.

IV.1.2.1 Agent Parameters

The number of agents in the swarm was 50, 100, 250, 500, and 1000. These values represent a broad range

of swarm sizes and ensure that the models generalize to different sizes.

The radius of repulsion, as defined for the communication model (Chapter III), represents the area in

which an agent reacts by moving in the opposite direction of an object within that radius. The radius of

repulsion values were set to 5, 25, 50, and 100 units. Units are an abstract measurement defined for the

simulator and are intended to be on the same scale as one-tenth of a meter. The radius of orientation is the

radius within which the agent attempts to orient with agents in that zone. The radius of orientation values

were set to 20, 40, 75, 150, 200, and 300 units. The constraint for the radius of orientation is that the value

must be strictly greater than the radius of repulsion for a particular trial. The radius of attraction is the radius

within which an agent will attempt to move toward objects in that region. The radius of attraction had the
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values of 25, 35, 80, 200, 400, and 600 units. The constraint for the radius of attraction is that each value

must be strictly greater than the value of the radius of orientation for a particular trial. The values for these

three radii were chosen to evaluate a variety of relative distances and ratios. The combination of 5-10-15 is

a smaller relative distance as compared to 100-300-600. The radii of 5-10-15 as compared to 5-10-50, is an

example of different ratios among the radii, as the ratio of the radius of attraction to the radius of repulsion

in the first grouping is much lower than in the second grouping. These different relative distances and ratios

caused the swarm to exhibit different types of behavior (Couzin et al., 2002).

Trials involving the topological model require an additional parameter, the number of closest agents, c,

which was set to 6, 7, 8, and 10. These values were chosen to fall around the ideal values for c (i.e., 6 or 7),

as defined in literature (Ballerini et al., 2008), while still providing some variability.

Trials involving the visual model agents require the maximum visual range, maxVisRange of the agent as

a parameter. The associated variable values are constrained for each trial to equal the radius of attraction,

double the trial’s radius of attraction, or equal the maximum diagonal length of the trial environment. These

values permit demonstration of the effect that different field of view ranges have on the model. Swarms may

be able to see more or less distance dependent on environmental conditions; thus, the model must compensate

for the ability to sense objects at different distances if the objects are not occluded.

Each agent has a heading and a position randomly assigned within a set area, where the area is propor-

tional to the swarm size. The heading was either completely random or constrained within a certain range

around a specific heading.

IV.1.2.2 Environment Parameters

The environment was represented as a rectangle proportional to the swarm size. That is, a larger swarm size

required a larger environment in which to operate. The x-axis was the longer of the two sides of the rectangle,

and the y-axis the shorter. Each environment had a corner at (0, 0) and a corner at (2d, d) in a unit coordinate

plane, with d being the length of the shorter side of the rectangle. Swarms with 50 or 100 agents operated in

the smallest sized environment, with dimensions of 1000 units by 2000 units. Swarms of 250 or 500 agents

operated in a middle sized environment, with dimensions of 2000 units by 4000 units. Swarms of 1000 agents

operated in the largest environment,k with dimensions of 4000 units by 8000 units. The environment sizes

were chosen to ensure that the available area was roughly proportional to the swarm’s size. A larger swarm

size (e.g., size 1000) in a small environment (e.g., 1000 units by 2000 units) will not be effective, since a large

majority of agents will always have other objects within the radius of repulsion. Thus, the dominant agent

behavior will be avoiding other objects. Similarly, the small swarm (50 agents) within a large environment

(2000 units by 4000 units) is ineffective. The swarm will be dispersed over too large of an area; thus, the
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agents will be unable to interact with one another.

Obstacles were randomly placed throughout the environment. The number of obstacles present was set

to 0, 25, 50, 100, or 250 obstacles. The number of obstacles was constrained based on the environment

size; thus, for the smallest environment, the maximum number of obstacles was 50. The maximum number

of obstacles allowed for the middle sized environment was 100. These number of obstacles were chosen to

ensure that the presence of obstacles does not significantly hinder the swarm’s communication. It is important

for swarms to operate efficiently in noisy environments (i.e., one that contains obstacles and other objects).

IV.1.2.3 Task Parameters

Eight tasks were evaluated for each algorithm. The only task requiring a specific task parameter is the Search

task, which requires the number of targets in the environment. The number of targets was 5, 10, 25, or 50.

These values were chosen to ensure that the swarms can find both smaller and larger numbers of targets.

The avoid task was constrained to only have a single adversary in the environment, and thus did not require

variation in the number of obstacles parameter. The variation in parameters, as defined in Chapter IV.1.2,

for specific tasks are delineated in Tables IV.1 and IV.2. A single trial was run for each combination of the

potential values for each parameter and variable for a given task.

Task Model numAgent numObst numGoal RadRep

Go To Location
Metric • • •
Topological • • •
Visual • • •

Search
Metric • • • •
Topological • • • •
Visual • • • •

Monitor
Metric • • •
Topological • • •
Visual • • •

Avoid
Metric • •
Topological • •
Visual • •

Follow
Metric • • •
Topological • • •
Visual • • •

Disperse
Metric • • •
Topological • • •
Visual • • •

Rally
Metric • • •
Topological • • •
Visual • • •

Maintain Group
/ Flocking

Metric • • •
Topological • • •
Visual • • •

Table IV.1: The summary of the parameters for each task, Part 1.
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Task Model RadOrient RadAttr topological c Visual Range

Go To Location
Metric • •
Topological • • •
Visual • • •

Search
Metric • •
Topological • • •
Visual • • •

Monitor
Metric • •
Topologica • • •
Visual • • •

Avoid
Metric • •
Topological • • •
Visual • •

Follow
Metric • • •
Topological • • •
Visual • •

Disperse
Metric • •
Topological • • •
Visual • • •

Rally
Metric • •
Topological • • •
Visual • • •

Maintain Group
/ Flocking

Metric • •
Topological • • •
Visual • • •

Table IV.2: Continued, the summary of the parameters for each task, Part 2.

IV.1.3 Tasks

Eight tasks were evaluated. These tasks represent real robot swarm tasks derived from biological swarm

tasks. The tasks also provide a broad representation of swarm capabilities and are comprehensive.

IV.1.3.1 Go to Location

The Go to Location task requires an area to be defined to which all agents attempt to move towards. A point

was randomly generated in the environment, with the point’s x location value being greater than 3d/2. The

target area was defined as the circle with radius equalling 1.25∗
√

numAgents∗RadRep2, with the center at

a randomly generated point. This radius defined an area large enough for the entire swarm to reach without

overcrowding and experiencing excessive repulsion effects. The swarm’s members were assigned indepen-

dent start locations in which the x value for each agent was less than d. The swarm moved throughout the

environment for 90 timesteps, at which point the percentage of swarm members that reached the goal area

was recorded. Example Go To Location task start and end states are presented in Figure IV.1. The triangles

represent obstacles randomly placed within the environment. The circles represent agents, and the dashed

circle represents the area that the agents must reach. The obstacles are distributed randomly throughout the
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Figure IV.1: Example start and end states for the Go To Location Task.

environment at the beginning of the trial and the agents are distributed in the left half of the environment. The

goal circle is designated in the right half of the environment. A number of agents have reached the goal area

at the end of the trial. Some agents did not reach the goal area, either because the group was not cohesive or

because an obstacle impeded movement to the goal area.

IV.1.3.2 Search / Monitor

The Search task required the agents to discover a number of goal objects distributed throughout the en-

vironment. The Search task began with target objects placed randomly throughout the environment. The

swarm agents were also placed randomly in the environment, and moved throughout the environment for 90

timesteps. When each target was discovered by an agent, the target was marked as found. At the end of the

trial, the number of discovered targets was recorded. A demonstration of a potential start and end states for

the Search task are presented in Figure IV.2. The triangles represent obstacles within the environment, and the

circles represent agents. The pentagons are goals that have not been discovered, and the stars are goals that

the agents have found. The obstacles, agents, and undiscovered goals are distributed randomly throughout

the environment at the beginning of the trial. Some goals, denoted as stars, were discovered by the end of the

trial, while others remain undiscovered by the swarm.

The Monitor task required the agents to observe the entire environment and began with the swarm mem-

bers distributed randomly across the environment. The environment had no or several obstacles positioned

randomly, as described in Chapter IV.1.2. The agents moved and interacted under the direction of the commu-
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Figure IV.2: Example start and end states for the Search Task.

nication models for 90 timesteps, after which the total coverage of the swarm was calculated. A Monitor task

example start and end states are presented in Figure IV.3. The triangles represent obstacles within the envi-

ronment, and the circles represent agents. The start state has the circle agents and triangle obstacles randomly

placed throughout the environment, while the end state has the agents relocated by swarming behaviors.

IV.1.3.3 Avoid Object

The Avoid Object task required the swarm agents to avoid a certain object. An object was placed at the

midpoint of the environment, point (d, d/2), and was designated as an adversary, with a heading of 180

degrees and a magnitude of 10, directed towards the swarm. The swarm was generated randomly with x

position values less than that of the adversary. The direction vectors of the individual swarm agents were

required to be within thirty degrees of the vector from the agent to the adversary object. The swarm moved

throughout the environment until 90 percent of the swarm had an x position value greater than that of the

adversary, at which point the simulation was stopped, and the dispersion was recorded. The adversary was

the only obstacle in the environment, as shown in Figure IV.4, in order to measure the specific effect of

the adversary without confounding the results by the impact of other types of obstacles. The start state has

the triangle adversary at the midpoint of the environment, and the circle agents randomly distributed to the

left of the adversary. The end state occurs when the agents have passed the adversary, while maintaining a

semblance of a swarm.

24



Figure IV.3: Example start and end states for the Monitor Task.

Figure IV.4: Example start and end states for the Avoid Task.
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Figure IV.5: Example start and end states for the Follow Task.

IV.1.3.4 Follow Object

The Follow Object task required the swarm to follow a certain target throughout the environment. A target

was placed at position (d/2, d/4). The swarm was generated with x and y values less than the respective values

of the target. The direction vectors of each swarm agent were generated, such that they were within thirty

degrees of the vector from the agent to the target. The target followed a randomly generated movement pattern

throughout the environment for 60 timesteps. The agents followed the target, and upon trial completion the

network efficiency and orientation error were measured. The simulation time of 60 timesteps was chosen to

allow the target to complete four random segments of 15 timesteps through the environment, so that the target

was facing a new direction and also preventing the agents from being accidentally in the correct position. A

demonstration of potential start and end states for the Follow Object task are presented in Figure IV.5. The

circle agents in the start state are concentrated in the lower left-hand corner, and the star target object is at the

upper right corner of the rectangle, within which the agents are generated. The end state has the target at the

endpoint of the path, and the agents arrayed behind the target. Some agents may not successfully follow the

target. Triangle obstacles are distributed randomly throughout the environment.

IV.1.3.5 Disperse / Rally

The Rally and Disperse tasks required the agents move closer or further away from other agents in the swarm,

respectively. The Disperse task began with the agents’ positions randomly generated, such that each agent
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Figure IV.6: Example start and end states for the Disperse Task.

was within the radius of repulsion of at least one neighbor. A demonstration of potential start and end states

of the Disperse task are presented in Figure IV.6. The triangle obstacles are randomly distributed throughout

the environment. The circle agents are generated in a cluster at the start state, and are expected to spread

throughout the environment prior to the end state. The trials ran for 90 timesteps, at which point the average

nearest neighbor distance was recorded.

The Rally task began with the agents’ positions randomly generated, such that each agent was outside

of the radius of repulsion of all neighbors, but within the range of attraction of at least one neighbor. A

demonstration of a potential start state and end state of the Rally task is presented in Figure IV.7. The

start state has the circle agents spread throughout the environment. The agents move closer together as

demonstrated in the end state. The triangle obstacles are distributed randomly throughout the environment.

The trial lasted for 90 timesteps, at which point the average nearest neighbor distance was recorded.

IV.1.3.6 Maintain Group / Flocking

The Flocking task expected the swarm to maintain a basic swarming behavior in which the swarm’s overall

state was relatively unchanged over time. The swarm was randomly distributed throughout the environment,

with the number of possible obstacles as defined in Chapter IV.1.2. The trial lasted for 90 timesteps, after

which the difference in orientation and center of gravity were measured. Potential start and end states for

the Flocking task are presented in Figure IV.8. The start state has the triangle obstacles and circle agents

randomly distributed throughout the environment. The agents flock, as represented in the end state.
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Figure IV.7: Example start and end states for the Rally Task.

Figure IV.8: Example start and end states for the Maintain Group / Flocking Task.
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IV.1.4 Metrics

This Thesis required a concrete assessment of each trial’s endpoint in order to compare the independent trials.

A specific metric or set of metrics was chosen for each task from a set of potential swarm metrics in order to

optimally assess the task’s results (Manning et al., 2015).

IV.1.4.1 Go to Location

The metric for the Go To Location task is the percentage of agents that reach the goal location (Parrish

et al., 2002). The most successful trial has the highest percentage of agents that reach the goal location. The

percentage of agents was determined by counting the number of agents that were within the task radius, and

dividing by the total number of agents for the trial. The algorithm used to calculate the metric is formally

defined in Algorithm 6.

Algorithm 6 The algorithm for the Percent Reached metric.
PercentReached[Objects oi]

1: Create integer numReached and set to 0

2: for all oi do

3: if (oi) is an Agent then

4: if (oi) is within the goal area then

5: increment numReached by 1

6: end if

7: end if

8: end for

9: return (numReached)/(numAgents)

IV.1.4.2 Search / Monitor

The Search task metric is the percentage of objectives found (Walker et al., 2012). The most successful trial

has the highest percent of goals found. This metric was calculated by totaling the number of goals that were

discovered by the swarm, and dividing by the total number of goals. The algorithm used to calculate the

metric is formally defined in Algorithm 7.
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Algorithm 7 The algorithm for the Percent Found metric.
PercentFound[Objects oi]

1: Create integer numFound and set to 0

2: for all oi do

3: if (oi) is an Goal then

4: if (oi) is within the goal area then

5: increment numFound by 1

6: end if

7: end if

8: end for

9: return (numFound)/(numGoals)

The metric for the Monitor task was the total environmental coverage (Walker et al., 2012). Total coverage

was calculated by determining the maximum range at which an agent can sense another object, and then

marking as covered the integer points (x, y) within that radius from the agent. When the area covered by all

agents was marked, the total coverage was calculated by counting the number of covered points and dividing

the sum by the total size of the environment. The most successful trial has the highest total coverage, as a

swarm with higher total coverage will be able to sense objects within a larger part of the environment and

respond to these objects. The algorithm used to calculate the metric is formally defined in Algorithm 8.

Algorithm 8 The algorithm that determines the Total Coverage of the swarm
TotalCoverage[Objects oi]

1: Create empty list of points coveredPoints

2: for all oi do

3: if (oi) is an Agent then

4: set double maxRange = oi’s maximum range

5: for all points p where p.distance(oi.position) < maxRange do

6: add p to coveredPoints

7: end for

8: end if

9: end for

10: Remove all duplicates from coveredPoints

11: return (coveredPoints.size)/(totalPoints)
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IV.1.4.3 Avoid Object

The avoidance metric was the expanse of the group as the swarm moves away from the adversary (Parrish

et al., 2002). The expanse of a swarm is a measurement of the dispersion of the swarm averaged over the

number of agents in the swarm. Dispersion is calculated by computing the mean squared differences of each

agent from the center of gravity of the swarm in both the x and y directions. These mean squared differences

are averaged over the entire number of agents and summed to determine the expanse of the swarm. A lower

expanse means that the agents are clustered more closely as one group, and so the most successful trial has

the lowest expanse. The algorithm used to calculate expanse is formally defined in Algorithm 9, which relies

upon the Center of Gravity and Dispersions defined in Algorithms 10 and 11, respectively.

Algorithm 9 The algorithm that determines the expanse of the swarm
Expanse[Objects oi]

1: Set double dispersionTemp = Dispersion(oi)

2: return (dispersionTemp/numAgents)

Algorithm 10 The algorithm that determines the center of gravity of the swarm
CenterOfGravity[Objects oi]

1: Create doubles xTotal, yTotal; set them to 0

2: for all oi do

3: if (oi) is an Agent then

4: xTotal += oi.Position.x

5: yTotal += oi.Position.y

6: end if

7: end for

8: Double xReturn = xTotal / numAgents

9: Double yReturn = yTotal / numAgents

10: return (xReturn,yReturn)
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Algorithm 11 The algorithm that determines the dispersion of the swarm
Dispersion[Objects oi]

1: Set point p(xCOG, yCOG) = CenterOfGravity(oi)

2: Create doubles xDifferenceSq, yDifferenceSq; set them to 0

3: for all oi do

4: if (oi) is an Agent then

5: xDifferenceSq += (oi.Position.x - xCOG)2

6: yDifferenceSq += (oi.Position.y - yCOG)2

7: end if

8: end for

9: return (xDi f f erenceSq+ yDi f f erenceSq)

IV.1.4.4 Follow Object

The Follow Object task’s metrics are the orientation error (Spears et al., 2004) and the network efficiency

(Mersch et al., 2013; Strandburg-Peshkin et al., 2013; Attanasi et al., 2013). The network efficiency measures

the spread of information through the swarm. A random swarm agent is designated as informed at the

beginning of the trial. Any other agent that interacts with an informed agent is also marked as informed. The

timestep at which each agent is first informed is recorded. The network efficiency is the number of timesteps

required to inform 90% of the swarm’s agents. The orientation error is measured as a percentage of agents

with a heading within 30 degrees of the target at the end of the trial. This metric is calculated by counting the

number of agents with a heading within 30 degrees of the target’s heading and dividing by the total number

of agents. The algorithm used to calculate Network Efficiency is formally defined in Algorithm 12, while the

algorithm used to compute the percent within 30 degrees is established in Algorithm 13. A higher value for

the network efficiency means that information takes a higher amount of time to propagate through the swarm,

and thus the swarm has a lower efficiency. A higher value for the percent within 30 degrees means that there

are more agents following the target, and thus the swarm has lower orientation error. Higher efficiency and

lower orientation error means that the swarm is both able to pass along information regarding the target and

stay oriented with the target, which is desirable. Thus, the most successful trial has the lowest orientation

error (and the highest percent within 30 degrees) as well as the highest efficiency (and the lowest efficiency

values).
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Algorithm 12 The algorithm for the Network Efficiency metric.
NetworkEfficiency[Objects oi]

1: Create an empty set of integers myTimesteps

2: for all oi do

3: if (oi) is an Agent then

4: add oi.timestepInformed to myTimesteps

5: end if

6: end for

7: Sort myTimesteps from lowest to highest

8: return myTimesteps.at(round(0.9∗numAgents))

Algorithm 13 The algorithm that determines the percentage of the swarm within 30 degrees of the target
PercentWithin30Degrees[Objects oi, Target t]

1: Create integer numWithin30Degrees

2: for all oi do

3: if (oi) is an Agent then

4: if |oi.θ - t.θ |< 30 then

5: increment numWithin30Degrees by 1

6: end if

7: end if

8: end for

9: return (numWithin30Degrees)/(numAgents)

IV.1.4.5 Disperse / Rally

The metric for the Disperse and Rally tasks is the average nearest neighbor distance (Parrish et al., 2002;

Krause et al., 2000). The most successful swarm in the Rally task has the lowest nearest neighbor distance,

as this indicates that the swarm is able to come together more effectively. The most successful swarm in the

Disperse task has the greatest nearest neighbor distance, as this indicates that the swarm is able to spread

through the environment. The nearest neighbor distance is calculated by finding the single nearest neighbor

to each agent, and taking the distance between the agent and that neighbor. The distances are averaged over

the entire swarm. The algorithm used to calculate the metric is formally defined in Algorithm 14.
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Algorithm 14 The algorithm for the Nearest Neighbor metric.
NearestNeighbor[Objects oi]

1: Create double array distances with size = number of agents; initialize the values to maximum value

2: for all oi do

3: for all o j do

4: if (oi.distanceo j <distances[i] then

5: Set distances[i] to oi.distance(o j)

6: end if

7: if (oi.distanceo j <distances[j] then

8: Set distances[j] to oi.distance(o j)

9: end if

10: end for

11: end for

12: Create a double totalDistance and set to 0.0

13: for all oi do

14: if oi is an Agent then

15: add distances[i] to totalDistance

16: end if

17: end for

18: return (totalDistance)/(numAgents)

IV.1.4.6 Maintain Group / Flocking

The metrics for Flocking were the magnitude of the changes in index of dispersion and center of gravity over

time (Leca et al., 2003). The center of gravity is a point computed by averaging the x and y positions for each

agent. The magnitude of the change in center of gravity is the distance from the center of gravity at the end

of the trial from the center of gravity at the beginning of the trial. The method for determining the center

of gravity is formally defined in Algorithm 10. The swarm dispersion is calculated by computing the mean

squared differences of each agent from the swarm’s center of gravity in both the x and y directions. The mean

squared differences are summed to obtain the swarm’s dispersion. The change in dispersion is calculated by

determining the difference between the dispersion at the beginning of the trial and the dispersion at the end of

the trial using the method defined in Algorithm 11. The absolute value of the change in dispersion determines

the magnitude of the change in dispersion. A lower magnitude of change in center of gravity means that the

swarm has not moved far from its original position. A lower magnitude of change in dispersion means the
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Task Hypothesis Description

Go To Location HGT L PercentReachedVisual > PercentReachedTopo > PercentReachedMetric

Search HS1 PercentFoundVisual > PercentFoundTopo
HS2 PercentFoundVisual > PercentFoundMetric

Monitor HM TotalCoverageVisual > TotalCoverageMetric > TotalCoverageTopo

Avoid Object HA1 ExpanseVisual < ExpanseMetric
HA2 ExpanseTopo < ExpanseMetric

Follow Object HF1 E f f iciencyVisual > E f f iciencyTopo > E f f iciencyMetric
HF2 ErrorVisual < ErrorTopo < ErrorMetric

Disperse HD1 NearestNeighborMetric > NearestNeighborVisual
HD2 NearestNeighborMetric > NearestNeighborTopo

Rally HR1 NearestNeighborVisual < NearestNeighborMetric
HR2 NearestNeighborTopo < NearestNeighborMetric

Maintain Group HMG1 ∆DispersionVisual > ∆DispersionTopo
HMG2 ∆DispersionMetric > ∆DispersionTopo
HMG3 ∆COGVisual > ∆COGTopo
HMG4 ∆COGMetric > ∆COGTopo

Table IV.3: Summary of hypotheses by task.

swarm has not expanded or contracted rapidly. Thus, the model with the lowest change in index of dispersion

and center of gravity over time represents the most successful in maintaining group location. The magnitude

of the changes in index of dispersion and center of gravity will be referred to as the change in dispersion and

the change in center of gravity for the sake of efficency.

IV.1.5 Hypotheses

IV.1.5.1 Go to Location

The hypothesis (HGT L) for the Go To Location task is that the visual model will have a significantly higher

percentage of agents reaching the goal area, followed by the topological model, with the metric model having

the lowest percentage of agents reaching the goal location. The metric model has clearly defined endpoints

as to where an agent will be in the zone of attraction; thus, if the straggler becomes too far displaced from the

swarm, it will be unable to rejoin the swarm (Couzin et al., 2002). However, the topological and visual models

have the potential to perform an attracting movement far outside the zone of orientation; thus it is possible

that a straggler can rejoin the swarm. For example, the closest five or six agents to an agent that is separated

from the main swarm, may be part of that main swarm. The main swarm would then have an attractive effect

on the topological model agent when the swarm will otherwise be outside of the metric model agent’s radius

of attraction (Ballerini et al., 2008). The ability to sense distant agents allows the topological agent to sense

the swarm and eventually return to it. The visual method permits a similar behavior. The objects within a

visual model agent’s field of view may be in a situation similar to that described for the topological model.
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The objects that the visual model agent can sense may be outside of the radius of attraction, and thus out of

the range of the metric agent, which means visual agents have a higher likelihood of returning to the swarm

than metric agents. More objects are within the visual model agent’s field of view, on average, than the fixed

topological number (Strandburg-Peshkin et al., 2013), which means that the visual model agent has a larger

number of attractive inputs from the main group. The higher amount of attraction means the visual model

agent has a higher likelihood of returning to the main swarm than the topological model agent. Thus, the

visual model results in fewer stragglers than the topological model, which performs better than the metric

model.

IV.1.5.2 Search / Monitor

The hypotheses for the Search task are that the visual model will detect significantly more objects, than either

the topological model (HS1) or the metric model (HS2) . The metric model is unable to sense the targets

outside of the zone of attraction, which results in less effective searching (Couzin et al., 2002). Similarly,

the topological model only focuses on the closest agents or targets and has a less effective search capability

(Ballerini et al., 2008). The visual model is only bounded by the associated field of view and line of sight.

Thus, it can better locate targets (Strandburg-Peshkin et al., 2013).

The Monitor task’s hypothesis (HM) is that the visual model will provide significantly larger total cover-

age, with the metric model providing the second largest coverage, and the topological metric providing the

lowest coverage. The reasoning behind this hypothesis is that the visual model can recognize objects located

outside of the radius of attraction, thus it can provide better coverage than the metric or topological models

(Strandburg-Peshkin et al., 2013). The metric model responds to objects within the radius of attraction only,

which is usually more constrained and results in less coverage than the visual model (Couzin et al., 2002).

However, the metric model is more responsive than the topological model, which can only sense the closest

objects (Ballerini et al., 2008).

IV.1.5.3 Avoid Object

The hypotheses for the Avoid task are that the topological model (HA1) and the visual model (HA2) will both

have a significantly smaller expanse than the metric model, which will have the highest expanse, and perform

with the lowest efficacy. The topological model has been shown to have better performance in staying together

after encountering an adversary (Ballerini et al., 2008), and the visual model acts in a manner similar to the

topological model (Strandburg-Peshkin et al., 2013).
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IV.1.5.4 Follow Object

The first hypothesis (HF1) is that the visual model will have significantly higher efficiency, followed by the

topological model, with the metric model resulting in the lowest efficiency and performance. The second

hypothesis (HF2) is that the visual model will have significantly lower error, with the topological model

having higher error and the metric model resulting in the highest error. These hypotheses are formulated

based on the logic that the visual model agents are more capable of reacting to the target object, as most of

the outer agents and some interior agents will have a line of sight to the target (Strandburg-Peshkin et al.,

2013). The topological model agents on the edge of the swarm closest to the target will likely have the target

as one of their closest objects, where the metric model may be unable to sense the target as it may be outside

of the radius of attraction (Couzin et al., 2002).

IV.1.5.5 Disperse / Rally

The Disperse task’s hypotheses are that the metric model will have significantly higher nearest neighbor

distances, greater than either the topological (HD1) or the visual (HD2) models. The hypotheses for the Rally

task are that the topological (HR1) and visual (HR2) models both have lower nearest neighbor distances than the

metric model. The metric model is limited in range to the radius of attraction, while the topological and visual

models are not (Strandburg-Peshkin et al., 2013). This limitation in range means that agents spread further

apart than the radius of attraction in the topological and visual models will be sensed in those models and

cause an attractive effect while the metric model agents cannot sense at that range. The additional attractive

forces imply that the swarm will coalesce more quickly with the topological and visual models, which will

not be the case with the metric model. Thus, the visual and topological models rally to a similar distance, with

the metric model performing at the lowest efficiency. The metric model in the dispersion task can respond to

all agents within the radius of repulsion, while the topological and visual models are limited to the closest n

agents and those within the field of view, respectively (Strandburg-Peshkin et al., 2013). The metric model

agents can experience a greater repulsive force, and the swarm will have a greater nearest neighbor distance,

while both the topological model and visual model swarms will have a significantly smaller distance (Couzin

et al., 2002).

IV.1.5.6 Maintain Group / Flocking

The Flocking task’s hypotheses are that the topological model will have a significantly lower change in

Index of Dispersion and Center of Gravity over a set period of time, and both the visual model’s change in

Dispersion (HMG1) and Center of Gravity (HMG3) and the metric model’s change in Dispersion (HMG2) and

Center of Gravity (HMG4) will have a significantly lower values than the topological model. The logic behind
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the hypotheses is that the limited number of interactions that the topological model performs (Strandburg-

Peshkin et al., 2013) will prevent disturbances from spreading rapidly across the swarm. The topological

model requires a response from a small set of agents (Ballerini et al., 2008) while the visual and metric

models respond to a much larger subset of the swarm. Thus, any disturbances in the swarm affect only a small

number of local agents in the topological model, which is less likely to effect the position and dispersion of

the swarm than either of the visual or metric models.

IV.2 Results

One trial was executed for each combination of the parameters used for each task. That is, for each given

number of agents, set of radii values, and model type, a single trial was completed. The topological and

visual models required additional parameters (c and maxVisRange, respectively), which required additional

trials. Different tasks required fewer or more trials, depending on the associated required parameters. The

parameters required for each task are detailed in Tables IV.1 and IV.2. The Avoid tasks only used one obstacle

in the environment, and thus needed 2,160 trials. The Search task required the number of goals, thus requiring

32,832 trials.

The Avoid trials were distributed as: metric = 270 trials, topological = 1080 trials, and visual = 810 trials.

The Search task had its 32,832 trials distributed as: metric = 4,104 trials, topological = 16,416 trials, and

visual = 12,312 trials. All other tasks required 8,208 trials. The standard number of trials per model for all

tasks were distributed among the communication models based on the model’s required parameters: metric

= 1026 trials, topological = 4104 trials, and visual = 3078 trials. The number of topological model trials was

four times the number of metric model trials in every task due to the extra parameter c, and the number of

visual model trials was three times the number of metric model trials due to maxVisRange.

The large number of trials per task meant that a Shapiro-Wilk test is unable to determine the normality

of the data. The use of QQ-plots to determine the normality was similarly inconclusive. Thus, the analysis

used the non-parametric Kruskal-Wallis and Wilcoxon Rank-Sum tests to determine significant differences

between trials of the three models.

A full summary of the results is shown in Table IV.4. All figures provide the mean and the standard error

of the presented results.

IV.2.1 Go to Location

There were a total of 8,208 trials for the Go To Location task, decomposed by model: metric = 1,026 trials,

topological = 4,104 trials, and visual = 3,078 trials. The metric was the percentage of agents that reached the

goal area, PercentReached. The mean PercentReached for the metric model was 13.60%, with a standard
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Task Result

Go To Location PercentReachedVisual < PercentReachedTopo
PercentReachedMetric < PercentReachedTopo

No significant difference between PercentReachedMetric and PercentReachedVisual

Search PercentFoundTopo > PercentFoundVisual
No significant difference between PercentFoundMetric and PercentFoundVisual
No significant difference between PercentFoundMetric and PercentFoundTopo

Monitor TotalCoverageTopo > TotalCoverageVisual > TotalCoverageMetric

Avoid Object ExpanseVisual < ExpanseTopo
ExpanseMetric < ExpanseTopo

No significant difference between ExpanseMetric and ExpanseVisual

Follow Object E f f iciencyVisual < E f f iciencyTopo < E f f iciencyMetric
ErrorVisual < ErrorTopo < ErrorMetric

Disperse NearestNeighborTopo > NearestNeighborVisual
NearestNeighborTopo > NearestNeighborMetric

No significant difference between NearestNeighborMetric and NearestNeighborVisual
Rally NearestNeighborVisual > NearestNeighborTopo > NearestNeighborMetric

Maintain Group ∆DispersionMetric > ∆DispersionVisual > ∆DispersionTopo
∆COGVisual > ∆COGTopo
∆COGMetric > ∆COGTopo

Table IV.4: Summary of the results of the analyses conducted.

deviation (std. dev.) of 21.70%. The mean PercentReached for the topological model was 14.00% (std. dev.

= 21.57%), while the mean PercentReached for the visual model was 13.64% (std. dev. = 21.59%).

A Kruskal-Wallis test indicated that there was a significant impact of model type (p = 0.0447, χ2(2) =

6.21). The Wilcoxon Rank-Sum test provided pairwise comparisons of the models and determined that the

topological model had a significantly higher PercentReached than both the visual (p = 0.0488, z = 6,483,746)

and the metric models (p = 0.0438, z = 2,021,637). There was no significant difference between the metric

and the visual models. The distributions for each model are illustrated in Figure IV.9. These results imply

that the topological model has a significantly higher percentage of agents reaching the goal area than both the

visual and metric models.

The data was further analyzed by the different parameters. The means and standard deviations for the

Go To Location task analyzed by the number of agents are provided in Table IV.5. The descriptive statistics

are visualized in Figure IV.10. The Kruskal-Wallis test found no significant affect of the model type on the

PercentReached when analyzed by number of agents.

The means and standard deviations for the Go To Location task analyzed by the number of obstacles are

provided in Table IV.6. The descriptive statistics are visualized in Figure IV.10. The Kruskal-Wallis test did

not find any significant affect of the model type on the PercentReached analyzed by number of obstacles.

The means and standard deviations for the Go To Location task analyzed by the radius of repulsion are
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Figure IV.9: The distributions for each model in the Go To Location task.

Figure IV.10: The distributions of PercentReached by number of agents and model.
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Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 9.72% (17.63%) 10.52% (17.74%) 9.84% (17.53%)
100 16.17% (25.90%) 17.78% (25.14%) 16.46% (25.68%)
250 11.51% (17.70%) 11.95% (17.47%) 11.81% (17.32%)
500 20.04% (28.18%) 19.71% (28.14%) 19.69% (28.12%)
1000 10.90% (16.26%) 10.91% (16.42%) 10.86% (16.33%)

Table IV.5: The means and standard deviations of the Go To Location task by number of agents.

Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 13.68% (22.13%) 14.01% (21.96%) 13.63% (21.92%)
25 13.61% (22.01%) 14.09% (21.83%) 13.73% (21.91%)
50 13.70% (21.90%) 14.42% (21.73%) 13.84% (21.82%)
100 14.17% (21.81%) 14.17% (21.67%) 14.13% (21.61%)
250 10.92% (16.45%) 10.92% (16.48%) 10.89% (16.42%)

Table IV.6: The means and standard deviations of the Go To Location task by number of obstacles.

presented in Table IV.7. The descriptive statistics are visualized in Figure IV.12. The Kruskal-Wallis test

did not find any significant affect of the model type on the PercentReached in the trials where the radius of

repulsion was greater than 25. The Kruskal-Wallis test found highly significant affects of the model type

on the PercentReaced when the radius of orientation was equal to 5 (p < 0.01, χ2(2) = 10.34) and 25 (p <

0.001, χ2(2) = 31.75). The Wilcoxon Rank-Sum test found that in trials where the radius of repulsion was

equal to 5, the topological model had a significantly higher PercentReached than the visual (p < 0.01, z =

998,845) and metric (p = 0.0287, z = 301,703.5) models. The Wilcoxon Rank-Sum test found that when the

radius of repulsion was equal to 25, the topological model had a significantly higher PercentReached than

the visual (p < 0.001, z = 554,572.5) and metric (p < 0.001, z = 141,399) models. That is, the topological

model performed significantly better than the visual and metric models with the radius of repulsion equal to

5 or 25.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 0.07% (0.18%) 0.16% (0.68%) 0.09% (0.21%)
25 4.90% (4.41%) 5.84% (4.20%) 4.97% (3.45%)
50 19.31% (6.13%) 19.82% (6.03%) 19.47% (5.96%)
100 63.85% (15.54%) 63.89% (15.28%) 63.73% (15.42%)

Table IV.7: The means and standard deviations of the Go To Location task by radius of repulsion.

The means and standard deviations for the Go To Location task analyzed by the radius of orientation

are provided in Table IV.8. The descriptive statistics are visualized in Figure IV.13. The Kruskal-Wallis test

found no significant affect of model type on the PercentReached in the trials where the radius of orientation
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Figure IV.11: The distributions of PercentReached by number of obstacles and model.

Figure IV.12: The distributions of PercentReached by radius of repulsion and model.
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Figure IV.13: The distributions of PercentReached by radius of orientation and model.

was less than 300. The Kruskal-Wallis test found a significant affect of the model type on the PercentReaced

in the trials where the radius of orientation was equal to 300 (p = 0.0283, χ2(2) = 7.13). The Wilcoxon

Rank-Sum test determined that when the radius of orientation was equal to 300, the topological model had

a significantly higher PercentReached than the visual (p = 0.0223, z = 149,898.5) and metric (p = 0.0471, z

= 41,420) models. That is, the topological model performed significantly better than the visual and metric

models with the radius of orientation equal to 300.

Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 0.12% (0.24%) 0.13% (0.24%) 0.13% (0.27%)
40 2.85% (3.99%) 3.31% (4.11%) 2.93% (3.68%)
75 8.67% (9.43%) 8.94% (9.22%) 8.59% (9.31%)
150 22.01% (26.63%) 21.95% (26.57%) 22.07% (26.54%)
200 21.71% (26.82%) 21.99% (26.59%) 21.68% (26.61%)
300 21.11% (27.21%) 22.79% (26.46%) 21.39% (26.83%)

Table IV.8: The means and standard deviations of the Go To Location task by radius of orientation.

The means and standard deviations for the Go To Location task analyzed by the radius of attraction are

presented in Table IV.9. The descriptive statistics are visualized in Figure IV.14. The Kruskal-Wallis test

found no significant affect of model type on the PercentReached when analyzed by radius of attraction.
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Figure IV.14: The distributions of PercentReached by radius of attraction and model.
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Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 0.16% (0.23%) 0.13% (0.24%) 0.14% (0.29%)
35 0.19% (0.33%) 0.13% (0.24%) 0.19% (0.35%)
80 5.6% (7.93%) 5.62% (7.81%) 5.35% (7.77%)
200 12.33% (19.57%) 12.14% (19.54%) 12.10% (19.62%)
400 16.21% (23.68%) 16.67% (23.52%) 16.24% (23.53%)
600 15.85% (23.82%) 16.71% (23.45%) 16.16% (23.53%)

Table IV.9: The means and standard deviations of the Go To Location task by radius of attraction.

IV.2.2 Search / Monitor

The Search task had a total of 32,832 trials, decomposed by model: metric = 4,104 trials, topological =

16,416 trials, and visual = 12,312 trials. The metric for the search task was the percentage of goals found,

PercentFound. The metric model trials had a mean PercentFound of 72.85% (std. dev. = 33.13%). The

topological model resulted in a mean PercentFound of 73.94% (std. dev. = 32.44%), while the mean for the

visual model was 72.69% (std. dev. = 32.65%). The distributions of this data are visualized in Figure IV.15.

The Kruskal-Wallis test found a significant affect of model type (p < 0.001, χ2(2) = 16.67). The

Wilcoxon Rank-Sum test determined that the swarm using the topological model had a significantly higher

PercentFound (i.e., identified significantly more goals), than the visual model (p < 0.001, z = 103,800,609).

The topological and metric models and the visual and metric models comparisons were not significantly dif-

ferent. These analyses imply that the visual model found a lower percentage of goals than the topological

model.

The means and standard deviations for the Search task, analyzed by the number of agents, are reported

in Table IV.10. The descriptive statistics are visualized in Figure IV.16. The Kruskal-Wallis test found no

significant difference based on model type for the PercentFoundhwen analyzing the results by the number of

agents for 50, 100, or 1,000 agents. The Kruskal-Wallis test found a highly significant affect of the model type

on PercentFound when the number of agents was 250 (p = 0.0159, χ2(2) = 8.28) or 500 (p < 0.001, χ2(2) =

29.59). The Wilcoxon Rank-Sum test found that, when the number of agents was 250, the topological model

resulted in a significantly higher mean PercentFound than the visual model (p < 0.01, z = 4,661,256). That

is, for trials with 250 agents, the topological model outperformed the visual model. The Wilcoxon Rank-

Sum test for 1,000 agents determined that the topological model had a significantly higher PercentFound

than both the visual model (p < 0.001, z = 4,786,319) and the metric model (p < 0.001, z = 1,376,854).

This analysis implies that the topological model performs significantly better than both the visual and metric

models. Although the data was not statistically significant, it is interesting to note that the metric model trials

had a lower mean percentage of goals found than the visual model for 500 or 1,000 agents.
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Figure IV.15: The distributions for each model in the Search task.

Figure IV.16: The distributions of PercentFound by number of agents and model.
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Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 38.17% (35.72%) 38.87% (35.43%) 37.34% (34.70%)
100 48.46% (39.37%) 49.04% (38.60%) 46.92% (38.26%)
250 85.15% (20.72%) 84.85% (19.95%) 84.22% (19.96%)
500 89.64% (16.53%) 92.76% (10.73%) 90.20% (14.07%)
1000 85.02% (18.51%) 86.15% (17.42%) 86.13% (17.17%)

Table IV.10: The means and standard deviations of the Search task by number of agents.

The means and standard deviations for the Search task analyzed by the number of obstacles are presented

in Table IV.11. The descriptive statistics are visualized in Figure IV.17. The Kruskal-Wallis test found no

significant affect of the model type on the PercentFound when analyzing the results by number of obstacles,

when the number of obstacles was 0, 50, or 250. The Kruskal-Wallis test found a significant affect of the

model type on PercentFound when the number of obstacles was 25 (p = 0.0201, χ2(2) = 7.82) and 100 (p

= 0.0320, χ2(2) = 6.88). The Wilcoxon Rank-Sum test found that the topological model had a significantly

higher mean percentage when the number of obstacles was 25 (p < 0.01, z = 7,256,544) and 100 (p = 0.0181,

z = 2,617,933). Although the results were not significant, the trials in which there were 50, 100, or 250

obstacles all demonstrated that there was a higher mean PercentFound for the visual model when compared

to the metric model.

Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 70.44% (33.61%) 71.16% (33.22%) 69.53% (33.71%)
25 69.57% (35.27%) 70.64% (34.39%) 68.64% (68.64%)
50 68.01% (36.59%) 68.94% (35.99%) 68.69% (35.35%)
100 86.42% (18.89%) 88.28% (16.55%) 86.86% (17.45%)
250 84.79% (18.60%) 86.28% (16.73%) 86.26% (16.51%)

Table IV.11: The means and standard deviations of the Search task by number of obstacles.

The means and standard deviations for the Search task analyzed by the number of goals are provided

in Table IV.11. The descriptive statistics are visualized in Figure IV.17. The Kruskal-Wallis test found no

significant affect of the model type on the PercentFound when analyzing the results by number of goals,

when the number of goals was 5, 25, or 50. The Kruskal-Wallis test found a significant affect of the model

type on PercentFound when the number of goals was 5 (p < 0.001, χ2(2) = 20.04). The Wilcoxon Rank-Sum

test determined that the topological model had a significantly higher mean percentage than both the metric

(p < 0.001, z = 6,608,783) and visual (p = 0.0103, z = 2,021,771) models for the trials where the number of

obstacles was 5. That is, the metric and visual models performed worse than the topological model when the

number of goals was 5.
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Figure IV.17: The distributions of PercentFound by number of obstacles and model.

Figure IV.18: The distributions of PercentFound by number of goals and model.
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Number of Goals Metric Mean (Std. Dev.) Topological Mean (Std. Dev.) Visual Mean (Std. Dev.)
5 80.16% (35.33%) 83.30% (33.18%) 81.45% (33.76%)
10 71.11% (32.23%) 72.17% (31.16%) 71.09% (31.25%)
25 70.44% (31.48%) 70.46% (31.19%) 69.79% (31.28%)
50 69.69% (32.31%) 69.82% (32.33%) 68.42% (32.65%)

Table IV.12: The means and standard deviations of the Search task by number of goals.

The means and standard deviations for the Search task analyzed by the radius of repulsion are reported

in Table IV.13. The descriptive statistics are visualized in Figure IV.19. The Kruskal-Wallis test did not

find a significant affect of the model type on the PercentFound when the results were analyzed by radius of

repulsion, when the radius of repulsion was 50 or 100. The Kruskal-Wallis test found a significant affect of

the model type on PercentFound when the radius of repulsion was 5 (p = 0.0475, χ2(2) = 6.09) and 25 (p

< 0.01, χ2(2) = 10.88). The Wilcoxon Rank-Sum test found that the topological model had a significantly

higher mean percentage than the visual model when the radius of repulsion was 5 (p = 0.0289, z = 15,648,480)

and 25 (p < 0.01, z = 8,120,798). Although the results were not significant, the trials in which the radius

of repulsion was 5 demonstrated that there was a higher mean PercentFound for the visual model when

compared to the metric model.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 63.72% (35.00%) 65.46% (34.56%) 64.27% (34.40%)
25 72.85% (32.57%) 74.25% (31.63%) 72.36% (32.08%)
50 80.66% (28.91%) 81.30% (28.15%) 80.29% (28.66%)
100 87.96% (25.22%) 87.14% (25.92%) 86.72% (26.09%)

Table IV.13: The means and standard deviations of the Search task by radius of repulsion.

The means and standard deviations for the Search task analyzed by the radius of orientation are provided

in Table IV.14. The descriptive statistics are visualized in Figure IV.20. The Kruskal-Wallis test found

no significant affect of the model type on the PercentFound when the results were analyzed by radius of

orientation when the radius of orientation was 40 or 300. The Kruskal-Wallis test found a significant affect of

the model type on PercentFound when the radius of orientation was 20 (p < 0.001, χ2(2) = 21.01), 75 (p <

0.01, χ2(2) = 12.24), 150 (p = 0.0158, χ2(2) = 8.29), or 200 (p = 0.0476, χ2(2) = 6.09). The Wilcoxon Rank-

Sum test found a significant difference when the radius of orientation was equal to 20 between the metric and

the visual models (p < 0.01, z = 282,626), and between the metric and topological models (p < 0.001, z =

358,249.5). These results imply that when the radius of orientation was equal to 20, the metric model found a

higher percentage of agents than either the metric or the visual models. The Wilcoxon Rank-Sum test found

a significant difference between the topological and visual models when the radius of orientation equals 75 (p
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Figure IV.19: The distributions of PercentFound by radius of repulsion and model.

< 0.001, z = 5,246,490), which means that when the radius of orientation equaled 75, the topological model

outperformed the visual model. The Wilcoxon Rank-Sum test found that the visual model has a significantly

lower PercentFound than the topological model (p < 0.01, z = 5,192,409) when the radius of orientation was

equal to 150. That is, the metric model outperformed the visual model when the radius of orientation was

equal to 150. The trials with the radius of orientation equal to 200 were found by the Wilcoxon Rank-Sum

test to have topological model means that were significantly higher than both the metric model means (p =

0.0480, z = 705,371.5) and the visual model means (p = 0.0436, z = 2,289,062). That is, the topological

model outperformed both the metric and visual models.

Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 37.02% (29.02%) 44.03% (31.56%) 41.49% (30.11%)
40 54.62% (31.22%) 54.04% (31.86%) 53.22% (31.26%)
75 69.46% (30.04%) 70.72% (29.11%) 69.05% (29.33%)
150 84.14% (27.24%) 84.98% (26.99%) 83.82% (27.07%)
200 88.03% (26.30%) 88.49% (25.52%) 87.27% (26.63%)
300 90.91% (24.29%) 89.99% (24.32%) 89.76% (25.01%)

Table IV.14: The means and standard deviations of the Search task by radius of orientation.

The means and standard deviations for the Search task analyzed by the radius of attraction are presented
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Figure IV.20: The distributions of PercentFound by radius of orientation and model.

in Table IV.15. The descriptive statistics are visualized in Figure IV.21. The Kruskal-Wallis test found

no significant affect of the model type on the PercentFound when the results were analyzed by radius of

attraction, when the radius of attraction was 80. The Kruskal-Wallis test found a significant affect of the

model type on PercentFound when the radius of orientation was 25 (p < 0.001, χ2(2) = 32.94), 35 (p <

0.01, χ2(2) = 10.26), 80 (p = 0.0456, χ2(2) = 6.1772), 200 (p = 0.0476, χ2(2) = 6.09), 400 (p = 0.0109,

χ2(2) = 9.0457), and 600 (p < 0.01, χ2(2) = 11.19). The Wilcoxon Rank-Sum test found a significant

difference when the radius of attraction is equal to 25 between all possible pairwise model combinations.

The signficiance results are included in Table IV.16. This analysis means that when the radius of attraction

was equal to 25, the topological model finds a higher percentage of agents than either the metric or the visual

models, and the topological model finds a higher percentage of agents than the metric model. The Wilcoxon

Rank-Sum test found a significant difference between the topological and visual models when the radius of

attraction equaled 35 (p < 0.01, z =8,929), which means that when the radius of attraction was equal to 35,

the topological model outperformed the metric model. The Wilcoxon Rank-Sum test found that the metric

model has a significantly higher mean PercentFound than the topological model (p = 0.0173, z = 1,219,119)

and the visual model (p = 0.0217, z = 914,147.5) when the radius of attraction equaled 200. That is, the

metric model outperforms the visual model and the topological model when the radius of attraction equaled
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200. The trials when the radius of attraction was equal to 400 were found by the Wilcoxon Rank-Sum test

to have topological model means that are significantly higher than both the metric model means (p = 0.0180,

z = 3,594,143) and the visual model means (p = 0.0137, z = 11,546,567). That is, the topological model

outperforms both the metric and visual models. The Wilcoxon Rank-Sum test found the topological model

to have a significantly higher mean PercentFound than the visual model (p < 0.001, z =11,655,251), which

means that the topological model performs significantly better than the visual model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 21.26% (16.18%) 44.01% (31.66%) 35.82% (27.57%)
35 33.58% (23.82%) 43.95% (31.78%) 39.41% (28.93%)
80 61.54% (31.90%) 60.67% (32.30%) 60.16% (32.09%)
200 72.75% (32.54%) 70.14% (32.64%) 70.49% (32.07%)
400 76.29% (32.54%) 78.82% (30.86%) 77.72% (31.00%)
600 78.29% (30.75%) 78.92% (30.64%) 76.96% (31.62%)

Table IV.15: The means and standard deviations of the Search task by radius of attraction.

Pairing Significance z-Value
Metric-Visual p < 0.001 6,211.5
Metric-Topological p < 0.001 6675.5
Topological-Visual p = 0.0110 39,106.5

Table IV.16: The significance results from the Wilcoxon Rank-Sum Test for the Search task when the radius
of attraction equals 25.

A total of 8,208 trials were conducted for the Monitor task: 1,026 metric model trials, 4,104 trials using

the topological model, and 3,078 trials under the visual model. The metric for the Monitor task was the

percent of the environment covered (i.e., within sensor range of an agent), PercentCoverage. The metric

model had a mean PercentCoverage of 88.78% (std. dev. = 23.30%). The mean PercentCoverage for the

topological model was 98.41% (std. dev. = 1.77%), while the visual model had a mean PercentCoverage of

95.03% (std. dev. = 16.42%). The Percent Coverage data is visualized in Figure IV.22.

The Kruskal-Wallis test found a strong affect of model on PercentCoverage (p < 0.001, χ2(2) = 2,190.99).

The Wilcoxon Rank-Sum test found highly significant differences between all pairings, as presented in Table

IV.17. These results show that the percent coverage for the visual model was significantly higher than either

of the other two models, and that the topological model had a significantly higher PercentCoverage than the

metric model.

The means and standard deviations of the Monitor results grouped by number of agents are reported

in Table IV.18. The descriptive statistics are visualized in Figure IV.23. The Kruskal-Wallis test found a

highly significant impact of the model type on PercentCoverage for each subgroup by number of agents,
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Figure IV.21: The distributions of PercentFound by radius of attraction and model.

Figure IV.22: The distributions for each model in the Monitor task
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Pairing Significance z-Value
Metric-Visual p < 0.001 839,495
Metric-Topological p < 0.001 2,315,698
Topological-Visual p < 0.001 2,327,127

Table IV.17: The significance results from the Wilcoxon Rank-Sum Test for the Monitor task.

as detailed in Table IV.19. The Wilcoxon Rank-Sum test found that for trials with 50 agents, there was a

highly significant difference between the metric and topological models (p < 0.001, z = 67,220), the metric

and visual models (p < 0.001, z = 31,386.5), and the topological and visual models (p < 0.001, z = 59,997).

The Wilcoxon Rank-Sum test found that for trials with 100 agents, there was a highly significant difference

between the metric and topological models (p < 0.001, z = 68,443.5), the metric and visual models (p <

0.001, z = 20,312), and the topological and visual models (p < 0.001, z = 44,440). The Wilcoxon Rank-Sum

test found that for trials with 250 agents, there was a highly significant difference between the metric and

visual models (p < 0.001, z = 32,720), and the topological and visual models (p < 0.001, z = 114,025).

The Wilcoxon Rank-Sum test found that for trials with 500 agents, there was a highly significant difference

between the metric and visual models (p < 0.001, z = 30,214.5), and the topological and visual models (p

< 0.001, z = 101,976.5). The Wilcoxon Rank-Sum test found that for trials with 1000 agents, there was a

highly significant difference between the metric and topological models (p < 0.01, z = 160,591), the metric

and visual models (p < 0.001, z = 53,102), and the topological and visual models (p < 0.001, z = 154,513.5).

These analyses indicate that for all possible number of agents, the topological model had a significantly higher

coverage and better performance than the visual model, and that the metric model had a significantly lower

coverage and worse performance than the visual model. All trials with 50,100, or 1000 agents also indicate

that the topological model has a significantly higher PercentCoverage and better performance than the metric

model.

Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 87.35% (25.74%) 97.31% (2.06%) 94.17% (18.22%)
100 90.70% (20.83%) 96.94% (2.50%) 96.10% (14.40%)
250 87.37% (24.57%) 98.62% (1.14%) 94.28% (17.49%)
500 90.92% (20.09%) 98.75% (1.08%) 96.31% (13.93%)
1000 87.91% (24.45

Table IV.18: The means and standard deviations of the Monitor task by number of agents.

The means and standard deviations of the Monitor results grouped by number of obstacles are provided

in Table IV.20. The descriptive statistics are visualized in Figure IV.24. The Kruskal-Wallis test found a

highly significant impact of the model type on PercentCoverage for each subgroup by number of obstacles,
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Number of Agents Significance χ2(2)
50 p < 0.001 329.61
100 p < 0.001 464.76
250 p < 0.001 417.69
500 p < 0.001 493.76
1000 p < 0.001 607.85

Table IV.19: The significance results from the Kruskal-Wallis Test for the Monitor task by number of agents.

Figure IV.23: The distributions of PercentCoverage by number of agents and model.

as detailed in Table IV.21. The Wilcoxon Rank-Sum test found that for trials with 0 obstacles, there was

a highly significant difference between the metric and visual models (p < 0.001, z = 56,568.5), and the

topological and visual models (p < 0.001, z = 186,444). The Wilcoxon Rank-Sum test found that for trials

with 25 obstacles, there was a significant difference between the metric and topological models (p = 0.0147,

z = 159,773), the metric and visual models (p < 0.001, z = 60,035.5), and the topological and visual models

(p < 0.001, z = 159,349.5). The Wilcoxon Rank-Sum test found that for trials with 50 obstacles, there was a

highly significant difference between the metric and topological models (p < 0.001, z = 173,714.5), the metric

and visual models (p < 0.001, z = 60,946.5), and the topological and visual models (p < 0.001, z = 144,441).

The Wilcoxon Rank-Sum test found that for trials with 100 obstacles, there was a highly significant difference

between the metric and visual models (p < 0.001, z = 19,303) and the topological and visual models (p <
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0.001, z = 54,310). The Wilcoxon Rank-Sum test found that for trials with 250 obstacles, there was a highly

significant difference between the metric and topological models (p < 0.01, z = 7,325.5), the metric and

visual models (p < 0.001, z = 2,123.5), and the topological and visual models (p < 0.001, z = 5,625). These

analyses indicate that for all possible number of obstacles, the topological model had a significantly higher

coverage and better performance than the visual model, and that the metric model had a significantly lower

coverage and worse performance than the visual model. All trials with 25, 50, or 250 obstacles also indicate

that the topological model has a significantly higher PercentCoverage and better performance than the metric

model.

Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 88.54% (23.39%) 98.39% (2.01%) 94.90% (16.56%)
25 88.77% (23.34%) 98.54% (1.38%) 95.03% (16.43%)
50 88.99% (23.22%) 97.95% (2.10%) 95.18% (16.28%)
100 89.01% (23.08%) 98.66% (1.27%) 95.14% (16.22%)
250 88.29% (24.52%) 99.37% (00.66%) 94.68% (17.19%)

Table IV.20: The means and standard deviations of the Monitor task by number of obstacles.

Number of Obstacles Significance χ2(2)
0 p < 0.001 493.57
25 p < 0.001 577.69
50 p < 0.001 643.04
100 p < 0.001 371.55
250 p < 0.001 136.33

Table IV.21: The significance results from the Kruskal-Wallis Test for the Monitor task by number of obsta-
cles.

The means and standard deviations for the monitor results grouped by radius of repulsion are provided

in Table IV.22. The descriptive statistics are visualized in Figure IV.25. The Kruskal-Wallis test found a

highly significant impact of the model type on PercentCoverage for each subgroup by radius of repulsion, as

detailed in Table IV.23. The Wilcoxon Rank-Sum test found that for trials with radius of repulsion equal to

5, there was a highly significant difference between the metric and visual models (p < 0.001, z = 106,090.5),

the metric and topological models (p < 0.001, z = 272,440.5), and the topological and visual models (p <

0.001, z = 430,039). The Wilcoxon Rank-Sum test found that for trials with radius of repulsion equal to 25,

there was a highly significant difference between the metric and topological models (p < 0.001, z = 189,636),

the metric and visual models (p < 0.001, z = 55,982.5), and the topological and visual models (p < 0.001, z

= 157,497.5). The Wilcoxon Rank-Sum test found that for trials with radius of repulsion equal to 50, there

was a highly significant difference between the metric and topological models (p < 0.001, z = 117,715.5),

the metric and visual models (p < 0.001, z = 41,816), and the topological and visual models (p < 0.001,
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Figure IV.24: The distributions of PercentCoverage by number of obstacles and model.

z = 73,767). These analyses indicate that for trials with the radius of repulsion equal to 5, 25, or 50, the

topological model has a significantly higher PercentCoverage and better performance than both the visual

and metric models, and the metric model has a significantly lower PercentCoverage and worse performance

than the visual model. The Wilcoxon Rank-Sum test found that for trials with radius of repulsion equal

to 100, there was a highly significant difference between the metric and topological models (p < 0.001, z

= 49,543.5), the metric and visual models (p < 0.001, z = 21,146), and the topological and visual models

(p < 0.001, z = 39,956.5). That is, for trials with radius of repulsion equal to 100, the visual model has a

significantly higher PercentCoverage and better performance than the metric and topological models, and the

metric model has higher PercentCoverage than the topological model.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 81.04% (30.27%) 98.01% (1.95%) 91.00% (22.79%)
25 90.83% (18.61%) 98.14% (1.75%) 96.50% (11.81%)
50 94.06% (15.03%) 98.96% (1.05%) 97.72% (9.31%)
100 99.34% (2.09%) 99.32% (1.56%) 99.78% (1.24%)

Table IV.22: The means and standard deviations of the Monitor task by radius of repulsion.

The means and standard deviations for the Monitor task results grouped by radius of orientation are
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Radius of Repulsion Significance χ2(2)
5 p < 0.001 703.42
25 p < 0.001 713.43
50 p < 0.001 581.98
100 p < 0.001 324.49

Table IV.23: The significance results from the Kruskal-Wallis Test for the Monitor task by radius of repulsion.

Figure IV.25: The distributions of PercentCoverage by radius of repulsion and model.

presented in Table IV.24. The descriptive statistics are visualized in Figure IV.26. The Kruskal-Wallis test

found a highly significant impact of the model type on PercentCoverage for each subgroup by radius of

orientation, as detailed in Table IV.25. The Wilcoxon Rank-Sum test found that for trials with radius of

orientation equal to 20, there was a highly significant difference between the metric and topological models

(p < 0.001, z = 13,870.5), the metric and visual models (p < 0.001, z = 10,342), and the topological and

visual models (p < 0.001, z = 60,338). The Wilcoxon Rank-Sum test found that for trials with radius of

orientation equal to 40, there was a highly significant difference between the metric and topological models

(p < 0.001, z = 39,690), the metric and visual models (p < 0.001, z = 16,218.5), and the topological and

visual models (p < 0.001, z = 68,097.5). The Wilcoxon Rank-Sum test found that for trials with radius of

orientation equal to 75, there was a highly significant difference between the metric and topological models

(p < 0.01, z = 92,493), the metric and visual models (p < 0.001, z = 39,610), and the topological and visual
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models (p < 0.001, z = 150,537). These analyses indicate that for trials where the radius of orientation is equal

to 20, 40, or 75, the topological model has a significantly higher PercentCoverage and better performance

than both the metric and visual models, and the visual model has a significantly higher PercentCoverage

than the metric model. The Wilcoxon Rank-Sum test for a radius of orientation equal to 150 found a highly

significant difference between the metric and topological models (p < 0.001, z = 120,594), the metric and

visual models (p < 0.001, z = 39,460.5) and the topological and visual models (p < 0.001, z = 83,348.5).

That is, the trials where the radius of orientation was equal to 150, the visual model had a significantly higher

PercentCoverage and better performance than both the metric and topological models, and the topological

model has higher PercentCoverage than the metric model. The Wilcoxon Rank-Sum test found that when the

radius of orientation equaled 200, there was a highly significant difference between the metric and topological

models (p < 0.001, z = 72,051.5), the metric and visual models (p < 0.001, z = 18,650.5), and the topological

and visual models (p < 0.001, z = 13,887.5). The Wilcoxon Rank-Sum test found that for trials with radius of

orientation equal to 300, there was a highly significant difference between the metric and topological models

(p < 0.001, z = 65,354), the metric and visual models (p < 0.001, z = 18,351.5), and the topological and

visual models (p < 0.001, z = 29,249.5). These analyses mean that for trials where the radius of orientation

is 200 or 300, the visual model has a significantly higher PercentCoverage and better performance than both

the metric and topological models, and the metric model has higher PercentCoverage than the topological

model.

Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 58.03% (40.15%) 97.96% (1.93%) 77.37% (34.71%)
40 83.04% (24.18%) 97.92% (1.79%) 93.36% (16.23%)
75 84.63% (22.27%) 98.03% (1.77%) 93.97% (14.95%)
150 97.64% (3.43%) 98.47% (1.89%) 99.46% (1.72%)
200 99.60% (0.90%) 98.95% (1.26%) 99.98% (0.12%)
300 99.70% (0.69%) 99.18% (1.38%) 99.97% (0.16%)

Table IV.24: The means and standard deviations of the Monitor task by radius of orientation.

Radius of Orientation Significance χ2(2)
20 p < 0.001 89.32
40 p < 0.001 232.89
75 p < 0.001 345.19
150 p < 0.001 650.26
200 p < 0.001 716.13
300 p < 0.001 563.01

Table IV.25: The significance results from the Kruskal-Wallis Test for the Monitor task by radius of orienta-
tion.

The means and standard deviations for the Monitor task results grouped by radius of attraction are reported
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Figure IV.26: The distributions of PercentCoverage by radius of orientation and model.

in Table IV.26. The descriptive statistics are visualized in Figure IV.27. The Kruskal-Wallis test found a

highly significant impact of the model type on PercentCoverage for each subgroup by number of agents, as

detailed in Table IV.27. The Wilcoxon Rank-Sum test found that for trials with radius of attraction equal

to 25, there was a highly significant difference between the metric and topological models (p < 0.001, z

= 0), the metric and visual models (p < 0.001, z = 174) and the topological and visual models (p < 0.01,

z = 2,888). The Wilcoxon Rank-Sum test found that for trials with radius of attraction equal to 35, there

was a highly significant difference between the metric and topological models (p < 0.001, z = 0), the metric

and visual models (p < 0.001, z = 182) and the topological and visual models (p < 0.01, z = 2,888). The

Wilcoxon Rank-Sum test when the radius of attraction was equal to 80 found a highly significant difference

between the metric and topological models (p < 0.001, z = 0), the metric and visual models (p < 0.001, z =

6,436) and the topological and visual models (p < 0.001, z =102,830.5). The Wilcoxon Rank-Sum test with

radius of attraction equal to 200 determined that a highly significant difference existed between the metric

and topological models (p < 0.001, z = 11,914.5), the metric and visual models (p < 0.001, z = 12,979)

and the topological and visual models (p < 0.001, z = 132,951). These analyses indicate that for trials

where the radius of attraction is equal to 25, 35, 80, or 200, the topological model has a significantly higher

PercentCoverage and better performance than both the metric and visual models, and the visual model has a
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significantly higher PercentCoverage than the metric model. The Wilcoxon Rank-Sum results for a radius of

attraction equal to 400 found a highly significant difference between the metric and topological models (p <

0.001, z = 339,180.5), the metric and visual models (p < 0.001, z = 69,672) and the topological and visual

models (p < 0.001, z = 86.451.5). The Wilcoxon Rank-Sum test found that for trials with radius of attraction

equal to 600, there was a highly significant difference between the metric and topological models (p < 0.001,

z = 391,903), the metric and visual models (p < 0.001, z = 89,775) and the topological and visual models (p

< 0.001, z = 44,118). These analyses indicate that for trials with a radius of attraction is equal to 400 or 600,

the visual model has a significantly higher PercentCoverage and better performance than both the metric and

topological models, and the metric model has a significantly higher PercentCoverage than the topological

model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 6.67% (2.10%) 97.87% (2.04%) 42.70% (41.48%)
35 12.06% (3.65%) 98.00% (1.93%) 49.07% (37.94%)
80 44.86% (9.75%) 97.97% (1.79%) 76.87% (24.30%)
200 92.08% (4.01%) 98.18% (1.86%) 97.96% (3.51%)
400 99.50% (0.75%) 98.55% (1.74%) 99.96% (0.16%)
600 99.69% (0.81%) 98.59% (1.66%) 1.00% (0.00%)

Table IV.26: The means and standard deviations of the Monitor task by radius of attraction.

Radius of Attraction Significance χ2(2)
25 p < 0.001 47.62
35 p < 0.001 47.20
80 p < 0.001 280.90
200 p < 0.001 430.11
300 p < 0.001 1,498.75
600 p < 0.001 1,860.44

Table IV.27: The significance results from the Kruskal-Wallis Test for the Monitor task by radius of attraction.

IV.2.3 Avoid Object

The Avoid task had a total of 2160 trials: metric = 270 trials, topological = 1,080 trials, and visual = 810

trials. The resulting metric value for the Avoid task was the expanse, measured in units squared. The mean

expanse for the metric trials was 440,312.2 units2 (std. dev. = 554,458.8 units2). The topological trials had a

mean expanse of 537,337.2 units2 (std. dev = 608,850.1 units2). The visual model trials had a mean expanse

of 409,926.9 units2 (std. dev. = 504,317.5 units2). These means and standard errors are visualized in Figure

IV.28.

The Kruskal-Wallis test found a highly significant affect of model on expanse (p < 0.001, χ2(2) = 61.96).

The Wilcoxon Rank-Sum test found a highly significant difference between the the topological and visual
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Figure IV.27: The distributions of PercentCoverage by radius of attraction and model.

Figure IV.28: The distributions for each model in the Avoid task.
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models (p < 0.001, z = 523,154) and the topological and metric models (p < 0.001, z = 117,576). No

significant difference was found between the visual and metric models. This analysis demonstrates that the

expanse of the topological model was significantly higher than that of both the metric and visual models.

The means and standard deviations by number of agents are presented in Table IV.28. The descriptive

statistics are visualized in Figure IV.29. The Kruskal-Wallis test found a significant affect of the model

type on expanse by number of agents; the results are provided in Table IV.29. The Wilcoxon Rank-Sum

test for the trials with 50 agents found that there was a highly significant difference between the metric and

topological models (p < 0.001, z = 3,584), between the metric and visual models (p < 0.01, z = 3,308), and

the topological and visual models (p < 0.001, z = 21,600). The Wilcoxon Rank-Sum test for the trials with

100 agents found that there was a highly significant difference between the metric and topological models (p

< 0.001, z = 2,713), between the metric and visual models (p = 0.0203, z = 3,451), and the topological and

visual models (p < 0.001, z = 25,677). These analyses mean that the topological model had a significantly

higher mean expanse than the visual and metric models, and the metric model had a significantly lower mean

expanse than the visual model in trials with 50 or 100 agents. The Wilcoxon Rank-Sum test for the trials with

250 agents found that there was a highly significant difference between the metric and topological models (p

< 0.001, z = 3,148) and between the topological and visual models (p < 0.001, z = 24,925). The Wilcoxon

Rank-Sum test for the trials with 500 agents found that there was a highly significant difference between the

metric and topological models (p < 0.001, z = 2,377) and between the topological and visual models (p <

0.001, z = 29,087). That is, the topological model performed signficantly better than the metric and visual

models with 250 or 500 agents. The Wilcoxon Rank-Sum test for the trials with 1000 agents found that

there was a highly significant difference between the metric and topological models (p < 0.001, z = 3,462),

between the metric and visual models (p = 0.0428, z = 5,180), and between the topological and visual models

(p < 0.001, z = 26,643). This analysis means that for the trials where there were 1000 agents, the topological

model performed worse than the metric and visual models due to a higher mean expanse, and the visual model

performed better than the metric model due to a lower expanse.

Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 56,004.37 (33189.77) 78,299.28 (23188.93) 68,614.19 (21744.25)
100 57,993.01 (38,551.4) 94,454.55 (27,510.92) 71,448.41 (24,758.35)
250 294,259.6 (113,405.2) 390,863.2 (83,540.75) 315,140.8 (102,205.9)
500 307,334.4 (122,095.4) 437,009.9 (91,754.03) 293,959.2 (118,815.6)
1000 1,485,970 (277,095) 1,686,059 (278,527.4) 1,300,472 (446,413.2)

Table IV.28: The means and standard deviations of the Avoid task by number of agents.

A similar analysis was conducted for the results grouped by the radii of attraction, orientation, and re-
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Number of Agents Significance χ2(2)
50 p < 0.001 28.69
100 p < 0.001 78.19
250 p < 0.001 61.55
500 p < 0.001 135.10
1000 p < 0.001 81.53

Table IV.29: The significance results from the Kruskal-Wallis Test for the Avoid task by number of agents.

Figure IV.29: The distributions for each model in the Avoid task by number of agents.

pulsion. The means and standard deviations for the results grouped by radius of repulsion are reported in

Table IV.30, and the descriptive statistics are visualized in Figure IV.30. The Kruskal-Wallis test found a

significant affect of the model type on the expanse for each of the subgroups, with significance as detailed

in Table IV.31. The Wilcoxon Rank-Sum test for the trials with the radius of repulsion equal to 5 found that

there was a highly significant difference between the metric and topological models (p < 0.01, z = 17,612)

and between the topological and visual models (p < 0.001, z = 82,245). The Wilcoxon Rank-Sum test for

the trials with the radius of repulsion equal to 25 found that there was a highly significant difference between

the metric and topological models (p < 0.001, z = 8,338) and between the topological and visual models (p

< 0.001, z = 42,049). The Wilcoxon Rank-Sum test for the trials with the radius of repulsion equal to 50

found that there was a highly significant difference between the metric and topological models (p < 0.01, z
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= 4,547) and between the topological and visual models (p < 0.001, z = 21,738). These results imply that

when the radius of repulsion equaled 5, 25 or 50, the topological model had a significantly higher expanse

and thus performed worse than the metric and visual models. The Wilcoxon Rank-Sum test for the trials with

the radius of repulsion equal to 100 found a significant difference between the topological and visual models

(p < 0.01, z = 8,923), indicating that the topological model had a significantly higher expanse, and worse

performance, with respect to the task than the visual model.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 419,497.3 (580,161.4) 505,886.8 (593,135.9) 354,684.4 (474,285.4)
25 411,736.3 (531,628) 543,671.6 (614,945.2) 387,298.1 (478,835.7)
50 442,152.5 (520,387.9) 546,288.6 (610,290.2) 441,205.6 (497,198.5)
100 561,099.3 (582,504.3) 604,047.9 (639,640.2) 574,992.4 (613,348.8)

Table IV.30: The means and standard deviations of the Avoid task by radius of repulsion.

Radius of Repulsion Significance χ2(2)
5 p < 0.001 34.12
25 p < 0.001 28.23
50 p < 0.001 15.40
100 p = 0.0117 8.89

Table IV.31: The significance results from the Kruskal-Wallis Test for the Avoid task by radius of repulsion.

The means and standard deviations for the results grouped by radius of orientation are provided in Table

IV.32. The descriptive statistics are visualized in Figure IV.31. The Kruskal-Wallis test found no significant

affect by model type on expanse when the radius of orientation was equal to 20, 40, or 75. The Kruskal-Wallis

test found a significant affect of the model type on expanse when the radius of orientation was equal to 150 (p

< 0.01, χ2(2) = 13.42), 200 (p < 0.001, χ2(2) = 20.34), or 300 (p < 0.001, χ2(2) = 38.12). The Wilcoxon

Rank-Sum test found a significant difference for radius of orientation equal to 150 between the metric and

topological models (p = 0.0254, z = 5,856) and the visual and topological models (p < 0.001, z = 25,821).

The Wilcoxon Rank-Sum test found a significant difference in trials with radius of orientation equal to 200

between the metric and topological models (p < 0.01, z = 2,313) and the visual and topological models (p

< 0.001, z = 12,439). The Wilcoxon Rank-Sum test found a significant difference in trials with radius of

orientation equal to 300 between the metric and topological models (p < 0.001, z = 1,924) and the visual and

topological models (p < 0.001, z = 13,429). These analyses imply that when the radius of orientation was

equal to 150, 200, or 300, the topological model had a significantly higher expanse and lower performance

relative to the task than both the metric and visual models.

The means and standard deviations for the results grouped by radius of attraction are presented in Table

IV.33. The descriptive statistics are visualized in Figure IV.32. The Kruskal-Wallis test found no significant
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Figure IV.30: The distributions for each model in the Avoid task by radius of repulsion.

Figure IV.31: The distributions of expanse by radius of orientation and model.
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Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 484,925.6 (585,212.6) 520,252.5 (595,978.7) 437,101.7 (512,542.8)
40 459,072.4 (577,606.1) 520,563.1 (598,694.1) 430,150.2 (515,227)
75 454,234.6 (556,578.3) 512,261.1 (617,367.5) 428,946.1 (516,295.4)
150 465,029.6 (594,652.3) 517,658 (580,664.3) 407,633.7 (508,409.1)
200 413,300.9 (553,563.2) 546,069.4 (593,726.9) 385,673.2 (490,532.1)
300 357,143.6 (459,514.4) 625,325.2 (670,228.1) 368,487.3 (482,582.8)

Table IV.32: The means and standard deviations of the Avoid task by radius of orientation.

affect of the model type on expanse in the trials where the radius of attraction was equal to 25, 35, or 80.

The Kruskal-Wallis test found a significant affect of the model type on expanse when the radius of attraction

was equal to 200 (p = 0.0372, χ2(2) = 6.58), 400 (p < 0.001, χ2(2) = 33.42), or 600 (p < 0.001, χ2(2) =

42.05). The Wilcoxon Rank-Sum test found a significant difference for a radius of attraction equal to 200

between the visual and topological models (p = 0.0118, z = 17,360), indicating that the topological model had

a significantly higher expanse and performed less effectively than the visual model. The Wilcoxon Rank-Sum

test found a significant difference for a radius of attraction equal to 400 between the metric and topological

models (p < 0.001, z = 12,202) and the visual and topological models (p < 0.001, z = 60,707). This analysis

indicates that when the radius of attraction was equal to 400, the topological model had a significantly higher

mean expanse and performed worse than the metric and visual models. The Wilcoxon Rank-Sum test found

a significant difference in trials with radius of attraction equal to 600 between the metric and topological

models (p < 0.001, z = 11,065), the metric and visual models (p = 0.0282, z = 10,273), and the visual and

topological models (p < 0.001, z = 61,049). These analyses imply that when the radius of attraction equaled

600, the topological model had a significantly higher expanse and lower performance relative to the task than

both the metric and visual models, and that the metric model had a significantly lower expanse and higher

performance than the visual model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 542,778.2 (660,826.5) 521,021.8 (608,943.5) 468,528.2 (550,152.6)
35 546,382.1 (649,677.6) 521,757.9 (610,805.8) 465,022.7 (546,166.8)
80 527,356.1 (587,783.6) 519,266.8 (622,439) 471,620.8 (553,198.5)
200 500,912.3 (595,592.8) 512,150.5 (587,831.2) 426,807.1 (516,184.8)
400 432,963 (555,577.1) 548,818.2 (611,474.2) 402,351 (500,749.1)
600 373,394.8 (513,439.5) 547,644.1 (616,598.5) 381,243.8 (480,998.3)

Table IV.33: The means and standard deviations of the Avoid task by radius of attraction.
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Figure IV.32: The distributions of expanse by radius of attraction and model.

IV.2.4 Follow Object

The Follow task had 8,208 trials in total, decomposed by model: metric = 1,026 trials, topological = 4,104

trials, and visual = 3,078 trials. The metrics for the Follow Object task were network efficiency, measured by

the number of timesteps that it took 90% of the agents to become informed, and the percent of agents that had

a heading within 30 degrees of the target’s heading. The metric model had a mean network efficiency of 8.87

timesteps, (std. dev. = 11.11 timesteps). The mean network efficiency for the topological model was 11.44

timesteps (std. dev. = 7.26 timesteps), while the visual model mean network efficiency was 15.60 timesteps

(std. dev. = 12.87 timesteps). The network efficiency data distributions for each model can be viewed

in Figure IV.33. The Kruskal-Wallis test found a highly significant affect of the model type on network

efficiency (p < 0.001, χ2(2) = 515.47). The Wilcoxon Rank-Sum test found highly significant differences

between all three pairings, as presented in Table IV.34. The results imply that the metric model resulted in a

significantly faster time for information propagation (and better network efficiency) than both the topological

and visual models. The topological model has a significantly faster time for information propagation (and

better efficiency) than the visual model.

The means and standard deviations by number of agents are presented in Table IV.35. The descriptive
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Pairing Significance z-Value
Metric-Visual p < 0.001 859,688
Metric-Topological p < 0.001 1,394,966
Topological-Visual p < 0.001 5,386,823

Table IV.34: The significance results from the Wilcoxon Rank-Sum Test for the Follow task using the network
efficiency metric.

Figure IV.33: The distributions of network efficiency for each model in the Follow task.

statistics separated by number of agents are displayed in Figure IV.34. The Kruskal-Wallis test found a

significant affect of the model type on network efficiency for each of the subgroups, with significance as

detailed in Table IV.36. The Wilcoxon Rank-Sum test for 50 agents found that there was a highly significant

difference between the metric and visual models (p < 0.001, z = 24,186.5), and between the topological and

visual models (p < 0.001, z = 98,986). These results indicate that with 50 agents, the visual model had a

significantly slower time for information propagation, and lower efficiency, than the metric and topological

models. The Wilcoxon Rank-Sum test for the trials with 100 agents found that there was a highly significant

difference between the metric and topological models (p < 0.001, z = 34,643), the metric and visual models

(p < 0.001, z = 19,260.5), and the topological and visual models (p < 0.001, z = 113,568.5). The Wilcoxon

Rank-Sum test for the trials with 250 agents found that there was a highly significant difference between

the metric and topological models (p < 0.001, z = 62,053), the metric and visual models (p < 0.001, z =
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35,492.5), and the topological and visual models (p < 0.001, z = 210,729.5). These analyses indicate that

for the trials with 250 or 100 agents, the metric model had a significantly faster time for propagation and a

higher efficiency than both the topological and metric models, and the topological model had a faster time

for propagation and higher efficiency than the visual model. The Wilcoxon Rank-Sum test for the trials with

500 agents found that there was a highly significant difference between the metric and topological models (p

< 0.001, z = 42,768) and the metric and visual models (p < 0.001, z = 29,054.5). The Wilcoxon Rank-Sum

test for the trials with 1000 agents found that there was a highly significant difference between the metric and

topological models (p < 0.001, z = 79,907) and the metric and visual models (p < 0.001, z = 61,481). That is,

for trials with 500 or 1000 agents, the metric model had a significantly faster time for propagation and better

efficiency than the topological and visual models. The data contained partial evidence that the topological

model had a faster time for propagation (and better network efficiency) than the metric model. The trials

with 50 agents showed that the metric model had a higher mean time of 9.51 timesteps (std. dev. = 11.19

timesteps) than the topological model’s mean of 8.29 (std. dev. = 6.28). This difference was not significant.

Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 9.52 (11.19) 8.29 (6.28) 13.89 (12.28)
100 8.13 (11.08) 9.77 (7.07) 14.83 (11.87)
250 8.51 (11.05) 9.53 (5.77) 15.53 (13.56)
500 8.30 (10.85) 13.60 (8.23) 15.11 (10.82)
1000 9.66 (11.32) 14.14 (6.68) 17.54 (14.42)

Table IV.35: The means and standard deviations of the Follow task by number of agents for Network Effi-
ciency.

Number of Agents Significance χ2(2)
50 p < 0.001 130.32
100 p < 0.001 132.04
250 p < 0.001 154.76
500 p < 0.001 180.20
1000 p < 0.001 141.43

Table IV.36: The significance results from the Kruskal-Wallis Test for the Follow task by number of agents
for Network Efficiency.

The means and standard deviations by number of obstacles are provided in Table IV.37. The descriptive

statistics separated by number of obstacles are displayed in Figure IV.35. The Kruskal-Wallis test found a

significant affect of the model type on network efficiency for each of the subgroups, with significance as

detailed in Table IV.38. The Wilcoxon Rank-Sum test for the trials with zero obstacles found that there

was a highly significant difference between the metric and topological models (p < 0.001, z = 99,892), the

metric and visual models (p < 0.001, z = 59,845), and the topological and visual models (p < 0.001, z
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Figure IV.34: The distributions of Network Efficiency by number of agents and model.

= 363,914). The Wilcoxon Rank-Sum test for the trials with 25 obstacles found that there was a highly

significant difference between the metric and topological models (p < 0.001, z = 99,050), the metric and

visual models (p < 0.001, z = 58,836.5), and the topological and visual models (p < 0.001, z = 362,710). The

Wilcoxon Rank-Sum test for the trials with 50 obstacles found that there was a highly significant difference

between the metric and topological models (p < 0.001, z = 99,967), the metric and visual models (p < 0.001,

z = 60,268), and the topological and visual models (p < 0.001, z = 361,890). The Wilcoxon Rank-Sum test

for the trials with 100 obstacles found that there was a highly significant difference between the metric and

topological models (p < 0.001, z = 30,949), the metric and visual models (p < 0.001, z = 20,538), and the

topological and visual models (p < 0.01, z = 143,362.5). These results indicate that with 0, 25, 50, or 100

obstacles, the metric model had significantly faster mean information propagation time and higher efficiency

than both the topological and visual models, and the visual model had slower mean information propagation

time and lower efficiency than the topological model. The Wilcoxon Rank-Sum test for the trials with 250

obstacles found that there was a highly significant difference between the metric and topological models (p

< 0.001, z = 3,241) and the metric and visual models (p < 0.001, z = 2,552). These results imply with 250

obstacles, the metric model had significantly faster mean information propagation time and higher efficiency

than both the topological and visual models.
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Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 8.72 (11.10) 10.92 (7.20) 15.12 (12.61)
25 8.71 (11.03) 10.99 (7.20) 15.37 (12.82)
50 8.97 (11.20) 11.16 (7.17) 15.72 (12.89)
100 8.88 (11.11) 12.62 (7.49) 15.95 (12.75)
250 9.87 (11.39) 14.19 (6.69) 17.56 (14.45)

Table IV.37: The means and standard deviations of the Follow task by number of obstacles for Network
Efficiency.

Number of Obstacles Significance χ2(2)
0 p < 0.001 136.90
25 p < 0.001 142.13
50 p < 0.001 137.52
100 p < 0.001 88.54
500 p < 0.001 26.52

Table IV.38: The significance results from the Kruskal-Wallis Test for the Follow task by number of obstacles
for Network Efficiency.

Similar evidence was discovered when the data was analyzed by the radii of repulsion, orientation, and

attraction. The means and standard deviations for radius of repulsion are presented in Table IV.39. The

descriptive statistics separated by radius of repulsion are displayed in Figure IV.36. The Kruskal-Wallis test

found a significant affect of the model type on network efficiency for each of the subgroups, with significance

as detailed in Table IV.40. The Wilcoxon Rank-Sum test when the radius of repulsion was equal to 5 found

that there was a highly significant difference between the metric and topological models (p < 0.001, z =

127,153.5) and the metric and visual models (p < 0.001, z = 103,085). That is, for trials when the radius of

repulsion equaled 5, the topological model had a signficantly faster mean time for information propagation

and better efficiency than the metric model, and the metric model had a significantly faster mean time for

information propagation and better efficiency than the visual model. The Wilcoxon Rank-Sum test for a

radius of repulsion equal to 25 found that there was a highly significant difference between the metric and

topological models (p < 0.001, z = 24,907) and the metric and visual models (p < 0.001, z = 13,488.5). Thus,

when the radius of repulsion equaled 25, the metric model had a significantly faster time for information

propagation and better efficiency than both the visual and topological models. The Wilcoxon Rank-Sum test

where the radius of repulsion was equal to 50 found that there was a highly significant difference between

the metric and topological models (p < 0.001, z = 65,521.5), the metric and visual models (p < 0.001, z =

19,365.5), and the topological and visual models (p < 0.001, z = 148,770.5). The Wilcoxon Rank-Sum test

for a radius of repulsion equal to 100 found that there was a highly significant difference between the metric

and topological models (p < 0.001, z = 9,608), the metric and visual models (p < 0.001, z = 1,341.5), and
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Figure IV.35: The distributions of Network Efficiency by number of obstacles and model.

the topological and visual models (p < 0.001, z = 63,795). These analyses indicate that when the radius

of repulsion equaled 50 or 100, the metric model had a faster time for information propagation and better

efficiency than the topological and visual models, and the topological model had a faster time for information

propagation and better efficiency than the visual model.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 8.35 (16.83) 6.65 (3.28) 13.63 (18.12)
25 11.15 (2.88) 19.34 (5.32) 19.46 (5.10)
50 10.62 (4.41) 13.59 (6.36) 19.37 (7.83)
100 2.77 (0.83) 5.53 (2.38) 7.33 (2.54)

Table IV.39: The means and standard deviations of the Follow task by radius of repulsion for Network
Efficiency.

The means and standard deviations for the Follow task results for network efficiency grouped by radius of

orientation are presented in Table IV.41. The descriptive statistics are visualized in Figure IV.37. The Kruskal-

Wallis test found a highly significant impact of the model type on network efficiency for each subgroup by

radius of orientation, as detailed in Table IV.42. The Wilcoxon Rank-Sum test found that when the radius of

orientation was equal to 20, there was a highly significant difference between the metric and visual models
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Radius of Repulsion Significance χ2(2)
5 p < 0.001 366.30
25 p < 0.001 561.53
50 p < 0.001 312.64
100 p < 0.001 337.90

Table IV.40: The significance results from the Kruskal-Wallis Test for the Follow task by radius of repulsion
for Network Efficiency.

Figure IV.36: The distributions of Network Efficiency by radius of repulsion and model.

(p < 0.01, z = 16,269.5) and the topological and visual models (p = 0.0472, z = 71,642.5). That is, when the

radius of orientation was 20, the metric model had a signficantly slower time for information propagation and

a lower efficiency than the visual model, and the visual model had a significantly slower propagation time

and lower efficiency than the topological model. The Wilcoxon Rank-Sum test found that when the radius

of orientation was equal to 40, there was a highly significant difference between the metric and topological

models (p < 0.001, z = 27,872.5), the metric and visual models (p < 0.001, z = 18,114), and the topological

and visual models (p < 0.01, z = 124,457.5). The Wilcoxon Rank-Sum test found that when the radius of

orientation was equal to 75, there was a highly significant difference between the metric and topological

models (p < 0.001, z = 67,380.5), the metric and visual models (p < 0.001, z = 38,652), and the topological

and visual models (p < 0.001, z = 252,092.5). The Wilcoxon Rank-Sum test found that when the radius of
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orientation was equal to 150, there was a highly significant difference between the metric and topological

models (p < 0.001, z = 59,862), the metric and visual models (p < 0.001, z = 36,524), and the topological

and visual models (p < 0.001, z = 275,167). The Wilcoxon Rank-Sum test found that when the radius of

orientation was equal to 200, there was a highly significant difference between the metric and topological

models (p < 0.001, z = 25,738.5), the metric and visual models (p < 0.001, z = 14,279.5), and the topological

and visual models (p < 0.001, z = 116,760.5). The Wilcoxon Rank-Sum test found that when the radius of

orientation was equal to 300, there was a highly significant difference between the metric and topological

models (p < 0.001, z = 25,277.5), the metric and visual models (p < 0.001, z = 14,826.5), and the topological

and visual models (p < 0.001, z = 121,227.5). These analyses imply that when the radius of orientation was

greater than 20, the metric model had a significantly faster propagation time and higher efficiency than the

visual and topological models, and the visual model had a significantly slower propagation time and lower

efficiency than the topological model. An interesting note is that when the radius of orientation was equal

to 20, the mean for the topological model was higher than the mean for the metric model. However, the

Wilcoxon Rank-Sum test did not find a significant difference between the two models when the radius of

orientation was equal to 20.

Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 22.11 (26.95) 5.71 (2.30) 18.00 (22.47)
40 7.55 (4.97) 12.17 (7.18) 15.69 (12.54)
75 9.02 (5.72) 13.36 (7.10) 17.77 (12.00)
150 6.54 (4.48) 11.65 (7.46) 14.05 (10.14)
200 6.21 (4.03) 11.51 (7.29) 14.46 (10.23)
300 6.18 (4.09) 11.75 (7.61) 13.93 (9.46)

Table IV.41: The means and standard deviations of the Follow task by radius of orientation for Network
Efficiency.

Radius of Orientation Significance χ2(2)
20 p < 0.01 9.31
40 p < 0.001 82.14
75 p < 0.001 145.27
150 p < 0.001 148.57
200 p < 0.001 121.07
300 p < 0.001 113.73

Table IV.42: The significance results from the Kruskal-Wallis Test for the Follow Task task by radius of
orientation for Network Efficiency.

The means and standard deviations for the Follow task results for network efficiency grouped by radius of

attraction are presented in Table IV.43. The descriptive statistics are visualized in Figure IV.38. The Kruskal-

Wallis test found a highly significant impact of the model type on network efficiency for each subgroup by
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Figure IV.37: The distributions of Network Efficiency by radius of orientation and model.

radius of attraction, as detailed in Table IV.44. The Wilcoxon Rank-Sum test found that when the radius of

attraction was equal to 25, there was a highly significant difference between the metric and topological models

(p < 0.001, z = 1,444), the metric and visual models (p < 0.001, z = 788.5), and the topological and visual

models (p < 0.001, z = 1,174.5). The Wilcoxon Rank-Sum test found that when the radius of attraction was

equal to 35, there was a highly significant difference between the metric and topological models (p < 0.001, z

= 1,444), the metric and visual models (p < 0.01, z = 741), and the topological and visual models (p < 0.001,

z = 1,137). These results indicate that when the radius of attraction was 25 or 35, the topological model had

a faster propagation time and higher efficiency than both the metric and the visual models and the metric

model had a slower propagation time and lower efficiency than the visual model. The Wilcoxon Rank-Sum

test found that when the radius of attraction was equal to 80, there was a highly significant difference between

the metric and visual models (p < 0.001, z = 11,843) and the topological and visual models (p < 0.001, z

= 51,528). That is, when the radius of attraction equaled 80, the visual model had a significantly slower

time for propagation and lower efficiency than both the metric and topological models. The Wilcoxon Rank-

Sum test found that when the radius of attraction was equal to 200, there was a highly significant difference

between the metric and topological models (p < 0.001, z = 43,376) and the metric and visual models (p

< 0.001, z = 31,650.5). This analysis implies that when the radius of attraction equaled 200, the metric
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model had a significantly faster propagation time and higher efficiency than both the visual and topological

models. The Wilcoxon Rank-Sum test found that when the radius of attraction was equal to 400, there was

a highly significant difference between the metric and topological models (p < 0.001, z = 130,378.5), the

metric and visual models (p < 0.001, z = 81,804.5), and the topological and visual models (p < 0.001, z

= 635,728). The Wilcoxon Rank-Sum test found that when the radius of attraction was equal to 600, there

was a highly significant difference between the metric and topological models (p < 0.001, z = 123,950), the

metric and visual models (p < 0.001, z = 71,048.5), and the topological and visual models (p < 0.001, z =

589,897). These results imply that when the radius of attraction was equal to 400 or 600, the metric model

had a significantly faster information propagation time and higher efficiency than both the topological and

visual models, and the visual model had a slower information propagation time and lower efficiency than the

topological model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 60 (0) 5.67 (2.30) 35.79 (27.00)
35 60 (0) 5.68 (2.29) 40.68 (26.61)
80 10.55 (6.41) 11.71 (7.12) 20.34 (14.97)
200 7.16 (5.25) 11.73 (7.32) 11.92 (8.05)
400 6.36 (4.22) 11.56 (7.24) 13.53 (9.24)
600 6.08 (3.99) 11.71 (7.41) 15.63 (12.07)

Table IV.43: The means and standard deviations of the Follow task by radius of attraction for Network
Efficiency.

Radius of Attraction Significance χ2(2)
25 p < 0.01 52.75
35 p < 0.001 53.03
80 p < 0.001 80.20
200 p < 0.001 82.80
400 p < 0.001 224.29
600 p < 0.001 289.08

Table IV.44: The significance results from the Kruskal-Wallis Test for the Follow Task task by radius of
orientation for Network Efficiency.

The mean percentage of agents within thirty degrees of the target for the metric model was 15.13% (std.

dev. = 7.32%), the topological model had a mean of 17.70% (std. dev. = 9.94%), and the visual model mean

was 17.96% (std. dev. = 7.68%). The Kruskal-Wallis test indicated that there was a highly significant affect

of the model type on percentage within 30 degrees (p < 0.001, χ2(2) = 153.13). The Wilcoxon Rank-Sum

test found highly significant differences between all three pairings, as presented in Table IV.77. These results

imply that the visual model had a significantly higher percentage of agents following the target, (and lower

error) than the topological and metric model. The topological model had a significantly higher percentage of
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Figure IV.38: The distributions of Network Efficiency by radius of attraction and model.

agents following the target (and lower error) than the metric model.

Pairing Significance z-Value
Metric-Visual p < 0.001 1,162,784
Metric-Topological p < 0.001 1,747,481
Topological-Visual p < 0.001 5,819,213

Table IV.45: The significance results from the Wilcoxon Rank-Sum Test for the Follow task using the per-
centage of agents within 30 degrees metric.

The means and standard deviations by number of agents are presented in Table IV.46. The descriptive

statistics separated by number of agents are displayed in Figure IV.40. The Kruskal-Wallis test found a

significant affect of the model type on percent within 30 degrees for each of the subgroups, with significance

as detailed in Table IV.47. The Wilcoxon Rank-Sum test for 50 agents found that there was a highly significant

difference and between the topological and visual models (p < 0.01, z = 142,818). These results indicate that

with 50 agents, the visual model had a significantly higher percentage of agents within 30 degrees, and less

heading error than the topological model. The Wilcoxon Rank-Sum test for 100 agents found that there was a

highly significant difference between the metric and visual models (p < 0.001, z = 29,904) and the topological

and visual models (p < 0.001, z = 138,967.5). That is, when there were 100 agents, the visual model had a
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Figure IV.39: The distributions of percentage of agents within 30 degrees for each model in the Follow task.

significantly higher percentage of agents within 30 degrees and less heading error than the topological and

metric models. The Wilcoxon Rank-Sum test for the trials with 250 agents found that there was a significant

difference between the metric and topological models (p < 0.001, z = 78,352.5), the metric and visual models

(p < 0.001, z = 51,889), and the topological and visual models (p = 0.0312, z = 261,834.5). This result implies

that with 250 agents, the metric model had a significantly lower percentage of agents within 30 degrees and

more heading error than the topological and visual models, and the visual model had significantly higher

percentage of agents within 30 degrees and less efficiency error than the topological model. The Wilcoxon

Rank-Sum test for the trials with 500 agents found that there was a significant difference between the metric

and topological models (p < 0.001, z = 59,879), the metric and visual models (p < 0.001, z = 40,415.5), and

the topological and visual models (p = 0.0184, z = 260,135). The Wilcoxon Rank-Sum test for the trials with

1000 agents found that there was a highly significant difference between the metric and topological models

(p < 0.001, z = 113,556), the metric and visual models (p < 0.001, z = 73,525.5), and the topological and

visual models (p < 0.001, z = 397,103.5). That is, for trials with 500 or 1000 agents, the metric model had

a significantly lower percentage of agents within 30 degrees and a larger heading error than the visual and

topological models, and the topological model had a higher percentage of agents within 30 degrees and less

error than the visual model.
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Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 17.04% (11.21%) 18.33% (15.52%) 19.38% (13.32%)
100 14.96% (7.38%) 17.79% (12.47%) 18.32% (9.45%)
250 15.36% (6.52%) 17.73% (9.29%) 17.98% (6.46%)
500 13.85% (6.31%) 17.74% (6.66%) 17.55% (4.56%)
1000 14.93% (5.17%) 17.22% (5.72%) 17.21% (3.49%)

Table IV.46: The means and standard deviations of the Follow task by number of agents for percentage of
agents within 30 degrees.

Number of Agents Significance χ2(2)
50 p = 0.0205 7.77
100 p < 0.001 22.90
250 p < 0.001 28.50
500 p < 0.001 89.80
1000 p < 0.001 62.67

Table IV.47: The significance results from the Kruskal-Wallis Test for the Follow task by number of agents
for percentage of agents within 30 degrees.

The percentage of agents within 30 degrees means and standard deviations from when the data was

grouped by number of obstacles are provided in Table IV.48. The descriptive statistics separated by number

of obstacles are displayed in Figure IV.41. The Kruskal-Wallis test found a significant affect of the model

type on percentage of agents within 30 degrees for each of the subgroups, with significance as detailed in

Table IV.49. The Wilcoxon Rank-Sum test for the trials with zero obstacles found that there was a highly

significant difference between the metric and topological models (p < 0.001, z = 124,934), the metric and

visual models (p < 0.001, z = 79,906.5), and the topological and visual models (p < 0.001, z = 391,291). The

Wilcoxon Rank-Sum test for the trials with 25 obstacles found that there was a highly significant difference

between the metric and topological models (p < 0.01, z = 129,792), the metric and visual models (p < 0.001,

z = 83,992.5), and the topological and visual models (p < 0.001, z = 388,897.5). These results imply that

when there were zero or 25 obstacles, the metric model had a significantly lower percentage of agents within

30 degrees and higher error than the topological and visual models, and the topological model had a lower

percentage of agents within 30 degrees and higher error than the visual model. The Wilcoxon Rank-Sum test

for the trials with 50 obstacles found that there was a highly significant difference between the metric and

topological models (p < 0.001, z = 116,112.5), the metric and visual models (p < 0.001, z = 79,553), and the

topological and visual models (p = 0.0478, z = 414,161.5). That is, when there were 50 obstacles, the metric

model had a significantly lower percentage of agents within 30 degrees and larger error than the topological

and visual models, and the topological model had a higher percentage of agents within 30 degrees and less

error than the visual model. The Wilcoxon Rank-Sum test for the trials with 100 obstacles found that there
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Figure IV.40: The distributions of percentage of agents within 30 degrees by number of agents and model.

was a highly significant difference between the metric and topological models (p < 0.001, z = 39,621.5) and

the metric and visual models (p < 0.001, z = 27,536.5). The Wilcoxon Rank-Sum test for the trials with 250

obstacles found that there was a highly significant difference between the metric and topological models (p

< 0.01, z = 4,501) and the metric and visual models (p < 0.01, z = 3,219). These results imply that when

there were 100 or 250 obstacles, the metric model had a significantly lower percentage of agents within 30

degrees and larger error than the topological and visual models.

Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 14.75% (6.58%) 17.75% (11.79%) 18.10% (8.24%)
25 15.61% (9.18%) 16.88% (9.63%) 17.99% (8.35%)
50 15.01% (6.70%) 18.48% (10.44%) 18.32% (8.48%)
100 15.18% (6.68%) 17.70% (6.69%) 17.35% (4.35%)
250 15.08% (4.70%) 17.63% (5.71%) 17.14% (3.75%)

Table IV.48: The means and standard deviations of the Follow task by number of obstacles for percentage of
agents within 30 degrees.

The means and standard deviations by radius of repulsion are presented in Table IV.50. The descriptive

statistics separated by radius of repulsion are displayed in Figure IV.42. The Kruskal-Wallis test found no

significant affect of the model type on percentage of agents within 30 degrees when the radius of repulsion
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Number of Obstacles Significance χ2(2)
0 p < 0.001 43.75
25 p < 0.001 36.13
50 p < 0.001 42.73
100 p < 0.001 31.94
500 p = 0.0131 8.67

Table IV.49: The significance results from the Kruskal-Wallis Test for the Follow task by number of obstacles
for percentage of agents within 30 degrees.

Figure IV.41: The distributions of percentage of agents within 30 degrees by number of obstacles and model.

was 25. The Kruskal-Wallis test found a significant affect of the model type on percentage of agents within

30 degrees when the radius of repulsion was 5, 50, or 100, with significance as detailed in Table IV.51. The

Wilcoxon Rank-Sum test when the radius of repulsion was equal to 5 found that there was a highly significant

difference between the metric and topological models (p < 0.001, z = 219,159.5) and the metric and visual

models (p < 0.001, z = 151,959). That is, when the radius of repulsion equaled 5, the metric model had a

significantly lower percentage of agents within 30 degrees and higher orientation error than the topological

and visual models. The Wilcoxon Rank-Sum test where the radius of repulsion was equal to 50 found that

there was a highly significant difference between the metric and visual models (p= 0.0179, z = 58,366.5) and

the topological and visual models (p < 0.001, z = 220,476). This result indicates that when the radius of

repulsion was equal to 5, the visual model had a significantly higher percentage of agents within 30 degrees
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and less orientation error than the topological and metric models. The Wilcoxon Rank-Sum test for a radius of

repulsion equal to 100 found that there was a highly significant difference between the metric and topological

models (p < 0.001, z = 27,800), the metric and visual models (p < 0.001, z = 9,209.5), and the topological

and visual models (p < 0.001, z = 52,053). That is, when the radius of repulsion equaled 100, the visual

model had a significantly higher percentage of agents within 30 degrees and less orientation error than the

topological and metric models, and the metric model had significantly lower percentage of agents within 30

degrees and larger orientation error than the topological model.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 13.23% (9.81%) 18.95% (14.00%) 18.12% (10.75%)
25 17.27% (4.79%) 18.01% (7.28%) 17.67% (5.86%)
50 17.06% (4.27%) 16.87% (4.07%) 17.84% (3.53%)
100 13.23% (4.16%) 14.61% (4.37%) 18.28% (3.83%)

Table IV.50: The means and standard deviations of the Follow task by radius of repulsion for percentage of
agents within 30 degrees.

Radius of Repulsion Significance χ2(2)
5 p < 0.001 116.81
25 Not Significant N/A
50 p < 0.001 312.64
100 p < 0.001 227.86

Table IV.51: The significance results from the Kruskal-Wallis Test for the Follow task by radius of repulsion
for percentage of agents within 30 degrees.

The means and standard deviations for the Follow task results for percentage of agents within 30 degrees

grouped by radius of orientation are presented in Table IV.52. The descriptive statistics are visualized in

Figure IV.43. The Kruskal-Wallis test found a highly significant impact of the model type on percentage of

agents within 30 degrees for each subgroup by radius of orientation, as detailed in Table IV.53. The Wilcoxon

Rank-Sum test found that when the radius of orientation was equal to 20, there was a highly significant

difference between the metric and visual models (p < 0.001, z = 14,472.5) and the metric and topological

models (p < 0.001, z = 19,061.5). These results imply that when the radius of orientation was 20, the metric

model had a significantly lower percentage of agents within 30 degrees and higher error than the topological

and visual models. The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 75,

there was a highly significant difference between the metric and topological models (p < 0.001, z =85,328),

the metric and visual models (p < 0.01, z = 68,902), and the topological and visual models (p < 0.01, z =

339,344.5). That is, when the radius of orientation was 75, the topological model had a significantly higher

percentage of agents within 30 degrees and less orientation error than the metric and visual models, and the
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Figure IV.42: The distributions of percentage of agents within 30 degrees by radius of repulsion and model.

metric model had a lower percentage of agents within 30 degrees and higher orientation error than the visual

model. The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 40, there was a

significant difference between the metric and topological models (p = 0.0206, z = 40,603.5), the metric and

visual models (p < 0.001, z = 27,343.5), and the topological and visual models (p = 0.0138, z = 126,413.5).

The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 150, there was a highly

significant difference between the metric and topological models (p < 0.01, z = 89,514.5), the metric and

visual models (p < 0.001, z = 53,273.5), and the topological and visual models (p < 0.001, z = 263,561.5).

The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 200, there was a highly

significant difference between the metric and topological models (p < 0.01, z = 39,842.5), the metric and

visual models (p < 0.001, z = 24,883), and the topological and visual models (p < 0.01, z = 122,711.5).

The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 300, there was a highly

significant difference between the metric and topological models (p < 0.001, z = 36,330.5), the metric and

visual models (p < 0.001, z = 19,870), and the topological and visual models (p < 0.001, z = 108,396.5).

These results imply that when the radius of orientation was 40, 150, 200, or 200, the metric model had a

significantly lower percentage of agents within 30 degrees and higher orientation error than the topological

and visual models, and the topological model had a lower percentage of agents within 30 degrees and higher
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orientation error than the visual model.

Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 15.11% (4.65%) 17.72% (4.85%) 17.13% (4.71%)
40 15.27% (4.75%) 16.96% (6.35%) 17.25% (4.62%)
75 16.93% (8.74%) 19.52% (10.14%) 17.39% (6.19%)
150 14.30% (7.10%) 16.92% (10.92%) 17.78% (7.79%)
200 14.65% (6.76%) 16.91% (11.36%) 18.02% (8.82%)
300 14.03% (8.99%) 17.66% (11.82%) 20.36% (11.27%)

Table IV.52: The means and standard deviations of the Follow task by radius of orientation for percentage of
agents within 30 degrees.

Radius of Orientation Significance χ2(2)
20 p < 0.001 20.65
40 p < 0.001 16.27
75 p < 0.001 22.32
150 p < 0.001 56.92
200 p < 0.001 26.85
300 p < 0.001 74.02

Table IV.53: The significance results from the Kruskal-Wallis Test for the Follow Task task by radius of
orientation for percentage of agents within 30 degrees.

The means and standard deviations for the Follow task results for percentage of agents within 30 degrees

grouped by radius of attraction are presented in Table IV.54. The descriptive statistics are visualized in Figure

IV.44. The Kruskal-Wallis test found no significant affect of model type on percentage of agents within 30

degrees when the radius of attraction was 25, 35, or 80. The Kruskal-Wallis test found a highly significant

impact of the model type on percentage of agents within 30 degrees when the radius of attraction was 200,

400, or 800, with significance as detailed in Table IV.55. The Wilcoxon Rank-Sum test found that when

the radius of attraction was equal to 200, there was a highly significant difference between the metric and

topological models (p < 0.001, z = 57,094.5) and the metric and visual models (p < 0.001, z = 39,656.5).

That is, when the radius of attraction was 200, the metric model had a lower percentage of agents within 30

degrees and higher orientation error than the visual and topological models. The Wilcoxon Rank-Sum test

found that when the radius of attraction was equal to 400, there was a highly significant difference between

the metric and topological models (p < 0.001, z = 186,470), the metric and visual models (p < 0.001, z =

120,303.5), and the topological and visual models (p < 0.001, z = 639,670). The Wilcoxon Rank-Sum test

found that when the radius of attraction was equal to 600, there was a highly significant difference between

the metric and topological models (p < 0.001, z = 186,294.5), the metric and visual models (p < 0.001,

z = 115,584), and the topological and visual models (p < 0.001, z = 617,825.5). These results imply that

when the radius of attraction was 400 or 600, the metric model had a lower percentage of agents within 30
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Figure IV.43: The distributions of percentage of agents within 30 degrees by radius of orientation and model.

degrees and higher orientation error than the visual and topological models and the visual model had a higher

percentage of agents within 30 degrees and lower error than the topological model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 15.07% (4.89%) 17.86% (4.96%) 16.92% (4.08%)
35 17.21% (4.61%) 16.87% (4.75%) 16.11% (6.22%)
80 19.49% (9.66%) 18.00% (8.73%) 17.83% (7.07%)
200 15.27% (6.71%) 18.59% (10.26%) 17.63% (5.88%)
400 14.53% (6.85%) 17.49% (10.03%) 18.07% (7.98%)
600 14.08% (6.90%) 17.36% (10.43%) 18.24% (8.60%)

Table IV.54: The means and standard deviations of the Follow task by radius of attraction for percentage of
agents within 30 degrees.

IV.2.5 Disperse / Rally

The Disperse task ran 8,208 trials, distributed across models: metric = 1,026 trials, topological = 4,104

trials, and visual = 3,078 trials. The metric for the Disperse task was the average nearest neighbor distance,

NearestNeighbor. The mean NearestNeighbor across the metric model was 22.31 units (std. dev. = 10.93

units). The topological model had a mean NearestNeighbor of 26.59 units (std. dev. = 9.69 units), while the
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Radius of Attraction Significance χ2(2)
25 Not Significant N/A
35 Not Significant N/A
80 Not Significant N/A
200 p < 0.001 28.62
400 p < 0.001 71.07
600 p < 0.001 88.02

Table IV.55: The significance results from the Kruskal-Wallis Test for the Follow Task task by radius of
orientation for percentage of agents within 30 degrees.

visual model’s mean NearestNeighbor was 24.16 units (std. dev. = 14.31 units). The distributions for these

three models are illustrated in Figure IV.45.

The Kruskal-Wallis test indicated a highly significant affect of the model type on mean nearest neighbor

distance (p < 0.001, χ2(2) = 372.71). The Wilcoxon Rank-Sum test found a highly significant difference

between both the topological and visual models (p < 0.001, z = 7,777,349) and the topological and met-

ric models (p < 0.001, z = 1,506,726). This result implies that the topological model had a significantly

larger nearest neighbor distance and performed better than both the visual and metric models. No significant

difference was found between the metric and visual models.

The means and standard deviations by number of agents are presented in Table IV.56. The descriptive

statistics are visualized in Figure IV.46. The Kruskal-Wallis test found a significant affect of the model

type on nearest neighbor distance when analyzed by the number of agents; the results are provided in Table

IV.57. The Wilcoxon Rank-Sum test for the trials with 50 agents found that there was a significant difference

between the metric and topological models (p < 0.001, z = 41,204), the metric and visual models (p < 0.01,

z = 33,232), and the topological and visual models (p = 0.0164, z = 170,558). The Wilcoxon Rank-Sum test

for the trials with 100 agents found that there was a significant difference between the metric and topological

models (p < 0.001, z = 36,252), the metric and visual models (p < 0.001, z = 31,328), and the topological

and visual models (p = 0.0245, z = 169,742). The Wilcoxon Rank-Sum test for the trials with 250 agents

found that there was a highly significant difference between the metric and topological models (p < 0.001, z

= 53,630), the metric and visual models (p = 0.0102, z = 61,822), and the topological and visual models (p

< 0.001, z = 343,486). These analyses indicate that when there were 50, 100, or 250 agents, the topological

model had a significantly larger nearest neighbor distance and better performance than the metric and visual

models, and the visual model had a significantly larger nearest neighbor distance and better performance than

the metric model. The Wilcoxon Rank-Sum test for the trials with 500 agents found that there was a highly

significant difference between the metric and topological models (p < 0.001, z = 63,276) and the topological

and visual models (p < 0.001, z = 367,073). These results indicate that when there were 500 agents, the
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Figure IV.44: The distributions of percentage of agents within 30 degrees by radius of attraction and model.

Figure IV.45: The distributions for each model in the Disperse task.
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topological model had a significantly larger nearest neighbor distance and better performance than the metric

and visual models. The Wilcoxon Rank-Sum test for the trials with 1000 agents found that there was a highly

significant difference between the metric and topological models (p < 0.001, z = 102,033), the metric and

visual models (p < 0.01, z = 135,883), and the topological and visual models (p < 0.001, z = 654,517). That

is, when there were 1000 agents, the topological model had a significantly larger nearest neighbor distance

and better performance than the metric and visual models, and the metric model had a significantly larger

nearest neighbor distance and better performance than the visual model.

Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 28.93 (15.32) 33.65 (15.46) 31.19 (17.90)
100 24.24 (11.08) 29.48 (10.21) 28.08 (14.92)
250 20.26 (8.64) 25.75 (6.93) 24.89 (14.29)
500 19.21 (7.55) 23.18 (5.60) 21.32 (12.25)
1000 21.29 (9.77) 24.00 (6.00) 19.28 (9.99)

Table IV.56: The means and standard deviations of the Disperse task by number of agents.

Number of Agents Significance χ2(2)
50 p < 0.001 20.63
100 p < 0.001 35.19
250 p < 0.001 111.12
500 p < 0.001 127.84
1000 p < 0.001 353.26

Table IV.57: The significance results from the Kruskal-Wallis Test for the Disperse task by number of agents.

The means and standard deviations by number of obstacles are presented in Table IV.58. The descriptive

statistics are visualized in Figure IV.47. The Kruskal-Wallis test found a significant affect of the model type on

the nearest neighbor distance by number of obstacles; the results are provided in Table IV.59. The Wilcoxon

Rank-Sum test for zero obstacles found that there was a highly significant difference between the metric and

topological models (p < 0.001, z = 105,129) and the topological and visual models (p < 0.001, z = 528,643).

The Wilcoxon Rank-Sum test for 25 obstacles found that there was a highly significant difference between the

metric and topological models (p < 0.001, z = 104,618) and the topological and visual models (p < 0.001, z =

525,314). The Wilcoxon Rank-Sum test with 50 obstacles found that there was a highly significant difference

between the metric and topological models (p < 0.001, z = 105,746) and the topological and visual models

(p < 0.001, z = 522,084). The Wilcoxon Rank-Sum test for 100 obstacles found that there was a highly

significant difference between the metric and topological models (p < 0.001, z = 35,694) and the topological

and visual models (p < 0.001, z = 208,281). These results indicate that when there were 0, 25, 50, or 100

obstacles, the topological model had a significantly larger nearest neighbor distance and better performance
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Figure IV.46: The distributions for each model in the Disperse task by number of agents.

than the visual and metric models. The Wilcoxon Rank-Sum test for 250 obstacles found that there was

a significant difference between the metric and topological models (p < 0.001, z = 3,940), the metric and

visual models (p = 0.0193, z = 5,305), and the topological and visual models (p < 0.001, z = 26,247). That is,

when there were 250 obstacles, the topological model had a significantly larger nearest neighbor distance and

better performance than the visual and metric models, and the metric model had a significantly larger nearest

neighbor distance and better performance than the visual model.

Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 23.13 (11.95) 27.64 (11.02) 25.16 (15.22)
25 22.63 (10.88) 27.16 (10.09) 24.92 (14.68)
50 22.61 (11.16) 26.89 (9.84) 24.85 (14.47)
100 20.39 (8.92) 24.24 (6.27) 21.72 (12.39)
250 20.81 (9.64) 23.96 (5.94) 19.27 (9.85)

Table IV.58: The means and standard deviations of the Disperse task by number of obstacles.

A similar analysis was conducted for the results grouped by the radii of attraction, orientation, and repul-

sion. The means and standard deviations for the results grouped by radius of repulsion are reported in Table

IV.60, and the descriptive statistics are visualized in Figure IV.48. The Kruskal-Wallis test found a signifi-
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Number of Obstacles Significance χ2(2)
0 p < 0.001 85.07
25 p < 0.001 82.46
50 p < 0.001 77.48
100 p < 0.001 100.78
250 p < 0.001 71.86

Table IV.59: The significance results from the Kruskal-Wallis Test for the Disperse task by number of obsta-
cles.

Figure IV.47: The distributions for each model in the Disperse task by number of obstacles.

cant affect of the model type on the nearest neighbor distance for each of the subgroups, with significance

as detailed in Table IV.61. The Wilcoxon Rank-Sum test for the radius of repulsion equal to 5 found that

there was a highly significant difference between the metric and topological models (p < 0.001, z = 121,093),

the metric and visual models (p < 0.001, z = 192,103), and the topological and visual models (p < 0.001,

z = 1,629,281). The Wilcoxon Rank-Sum test for the radius of repulsion equal to 25 found that there was a

highly significant difference between the metric and topological models (p < 0.001, z = 13,856), the metric

and visual models (p < 0.001, z = 157,747), and the topological and visual models (p < 0.001, z = 856,532).

These results indicate that when the radius of repulsion was 5 or 25 the topological model had a significantly

larger nearest neighbor distance and better performance than the visual and metric models, and the metric

model had a significantly larger nearest neighbor distance and better performance than the visual model. The
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Wilcoxon Rank-Sum test for the radius of repulsion equal to 50 found that there was a highly significant

difference between the metric and visual models (p < 0.001, z = 53,527) and between the topological and

visual models (p < 0.001, z = 224,041). The Wilcoxon Rank-Sum test for the radius of repulsion equal to

100 found that there was a highly significant difference between the metric and visual models (p < 0.001, z

= 3,673) and between the topological and visual models (p < 0.001, z = 16,637). That is, when the radius of

repulsion was equal to 50 or 100, the visual model had a significantly larger nearest neighbor distance, and

better performance than the topological and visual models.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 13.53 (9.42) 19.12 (6.14) 12.06 (3.90)
25 24.56 (2.26) 31.08 (4.35) 22.36 (5.32)
50 30.01 (9.24) 31.24 (11.25) 32.85 (9.90)
100 31.71 (9.39) 32.04 (9.88) 50.67 (7.10)

Table IV.60: The means and standard deviations of the Disperse task by radius of repulsion.

Radius of Repulsion Significance χ2(2)
5 p < 0.001 1,123.00
25 p < 0.001 1,088.28
50 p < 0.001 28.22
100 p < 0.001 536.17

Table IV.61: The significance results from the Kruskal-Wallis Test for the Disperse task by radius of repulsion.

The means and standard deviations for the results grouped by radius of orientation are provided in Table

IV.62. The descriptive statistics are visualized in Figure IV.49. The Kruskal-Wallis test found a significant

affect of the model type on the nearest neighbor distance for each of the subgroups, with significance as

detailed in Table IV.63. The Wilcoxon Rank-Sum test found a significant difference for radius of orientation

equal to 20 between the metric and topological models (p < 0.001, z = 14,095), the metric and visual models

(p = 0.0218, z = 16,699), and the visual and topological models (p < 0.001, z = 154,467). That is, when

the radius of orientation equaled 20, the metric model had a significantly larger nearest neighbor distance

and better performance than the visual and topological models, and the topological model had a significantly

larger nearest neighbor distance and better performance than the visual model. The Wilcoxon Rank-Sum test

found a significant difference for radius of orientation equal to 40 between the metric and topological models

(p < 0.001, z = 30,142) and the visual and topological models (p < 0.001, z = 211,920). The Wilcoxon Rank-

Sum test found a significant difference for radius of orientation equal to 75 between the metric and topological

models (p < 0.001, z = 70,453) and the visual and topological models (p < 0.001, z = 424,186). These

results mean that when the radius of orientation equaled 40 or 75, the topological model had a significantly

larger nearest neighbor distance and better performance than the visual and metric models. The Wilcoxon
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Figure IV.48: The distributions for each model in the Disperse task by radius of repulsion.

Rank-Sum test found a significant difference for radius of orientation equal to 150 between the metric and

topological models (p < 0.001, z = 67,547), the metric and visual models (p < 0.01, z = 67,144), and the

visual and topological models (p < 0.001, z = 355,908). The Wilcoxon Rank-Sum test found a significant

difference for radius of orientation equal to 200 between the metric and topological models (p < 0.001, z =

27,659), the metric and visual models (p < 0.01, z = 29,296), and the visual and topological models (p <

0.001, z =158,457). These results mean that when the radius of orientation equaled 150 or 200, the topological

model had a significantly larger nearest neighbor distance and better performance than the visual and metric

models, and the metric model had a significantly smaller nearest neighbor distance and worse performance

than the visual model. The Wilcoxon Rank-Sum test found a significant difference for radius of orientation

equal to 300 between the metric and topological models (p < 0.001, z = 29,365), the metric and visual models

(p < 0.01, z = 29,073), and the visual and topological models (p < 0.01, z = 151,989). That is, when the

radius of orientation equaled 300, the topological model had a significantly larger nearest neighbor distance

and better performance than the visual and metric models, and the visual model had a significantly smaller

nearest neighbor distance and worse performance than the metric model.

The means and standard deviations for the results grouped by radius of attraction are presented in Table

IV.64. The descriptive statistics are visualized in Figure IV.50. The Kruskal-Wallis test found a significant
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Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 14.16 (11.32) 11.29 (0.78) 9.28 (0.37)
40 19.11 (11.28) 22.57 (5.81) 15.69 (7.11)
75 22.13 (10.27) 27.10 (6.91) 21.98 (10.96)
150 24.63 (10.62) 30.18 (8.34) 29.78 (15.16)
200 24.59 (9.74) 30.90 (8.78) 30.60 (14.84)
300 26.12 (8.74) 31.60 (9.57) 32.20 (13.73)

Table IV.62: The means and standard deviations of the Disperse task by radius of orientation.

Radius of Orientation Significance χ2(2)
20 p < 0.001 503.06
40 p < 0.001 216.55
75 p < 0.001 168.31
150 p < 0.001 66.67
200 p < 0.001 53.87
300 p < 0.001 40.08

Table IV.63: The significance results from the Kruskal-Wallis Test for the Disperse task by radius of orienta-
tion.

affect of the model type on the nearest neighbor distance for each of the subgroups, with significance as

detailed in Table IV.65. The Wilcoxon Rank-Sum test found a significant difference with a radius of attraction

equal to 25 between the metric and topological models (p < 0.001, z = 28) and the visual and topological

models (p < 0.001, z = 4,165). That is, when the radius of attraction was 25, the topological model had a

significantly larger nearest neighbor distance and better performance than the metric and visual models. The

Wilcoxon Rank-Sum test found a significant difference when radius of attraction was equal to 35 between the

metric and topological models (p < 0.001, z = 0), the metric and visual models (p < 0.001, z = 97), and the

visual and topological models (p < 0.001, z = 4,331). This result implies that when the radius of attraction

was 35, the topological model had a significantly larger nearest neighbor distance and better performance

than the metric and visual models, and the visual model had a significantly larger nearest neighbor distance

and better performance than the metric model. The Wilcoxon Rank-Sum test found a significant difference

when the radius of attraction was equal to 80 between the metric and visual models (p = 0.02612, z = 22,205)

and the visual and topological models (p < 0.001, z = 107,902). That is, when the radius of attraction was

80, the visual model had a significantly smaller nearest neighbor distance and worse performance than the

metric and topological model. The Wilcoxon Rank-Sum test found a significant difference in trials with

radius of attraction equal to 200 between the metric and topological models (p < 0.001, z = 58,057) and the

visual and topological models (p < 0.001, z = 280,716). The Wilcoxon Rank-Sum test found a significant

difference for a radius of attraction equal to 400 between the metric and topological models (p < 0.001, z =

153,159) and the visual and topological models (p < 0.001, z = 844,937). These results imply that when the
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Figure IV.49: The distributions for each model in the Disperse task by radius of orientation.

radius of attraction was 200 or 400, the topological model had a significantly larger nearest neighbor distance

and better performance than the metric and visual models. The Wilcoxon Rank-Sum test found a significant

difference with a radius of attraction equal to 600 between the metric and topological models (p < 0.001, z

= 148,174), the metric and visual models (p < 0.01, z = 156,863), and the visual and topological models (p

< 0.001, z = 833,547.5). That is, when the radius of attraction was 600, the metric model had a signficantly

smaller nearest neighbor distance and worse performance than the visual and topological models, and the

topological model had a significantly larger nearest neighbor distance and better performance than the visual

model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 9.44 (0.46) 11.28 (0.74) 9.54 (0.57)
35 8.50 (0.26) 11.26 (0.76) 9.11 (0.36)
80 21.96 (10.57) 23.04 (8.13) 18.30 (10.15)
200 23.71 (13.28) 25.85 (8.97) 22.36 (13.47)
400 22.91 (9.94) 28.25 (9.47) 26.27 (14.45)
600 22.52 (10.21) 28.21 (9.45) 26.65 (14.90)

Table IV.64: The means and standard deviations of the Disperse task by radius of attraction.

The Rally task also ran 8,208 trials, with the same distribution across models as the Disperse task. The
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Radius of Attraction Significance χ2(2)
25 p < 0.001 98.56
35 p < 0.001 120.34
80 p < 0.001 76.90
200 p < 0.001 85.64
400 p < 0.001 125.54
600 p < 0.001 126.44

Table IV.65: The significance results from the Kruskal-Wallis Test for the Disperse task by radius of attrac-
tion.

metric for the Rally task was also the nearest neighbor distance, NearestNeighbor. However, the Rally task

requires a lower nearest neighbor distance for better performance, as opposed to the Disperse task which

requires a higher nearest neighbor distance for better performance. The mean nearest neighbor distance for

the metric model was 59.22 units (std. dev. = 31.37 units). The topological model had a mean nearest

neighbor distance of 65.44 units (std. dev. = 31.68 units), while the visual models had a mean nearest

neighbor distance of 67.20 units (std. dev. = 31.55 units). Each model’s distribution can be seen in Figure

IV.51.

The Kruskal-Wallis test found a significant affect of the model type on nearest neighbor distance (p <

0.001, χ2(2) = 62.00). The Wilcoxon Rank-Sum test found significant differences between all three pairings,

as presented in Table IV.66. This analysis indicates that the metric trials had a significantly smaller nearest

neighbor distance than the topological and visual models. The topological model had a significantly smaller

nearest neighbor distance than the visual model.

Pairing Significance z-Value
Metric-Visual p < 0.001 1,317,854
Metric-Topological p < 0.001 1,838,365
Topological-Visual p < 0.05 6,094,318

Table IV.66: The significance results from the Wilcoxon Rank-Sum Test for the Rally task.

The means and standard deviations by number of agents are presented in Table IV.67. The descriptive

statistics are visualized in Figure IV.52. The Kruskal-Wallis test found a significant affect of the model type

on the nearest neighbor distance by number of agents; the results are provided in Table IV.68. The Wilcoxon

Rank-Sum test for 50 agents found that there was a significant difference between the metric and topological

models (p < 0.01, z = 45,356) and the metric and visual models (p < 0.001, z = 31,850). The Wilcoxon

Rank-Sum test for 100 agents found that there was a significant difference between the metric and topological

models (p < 0.001, z = 37,002) and the metric and visual models (p < 0.001, z = 29,451). The Wilcoxon

Rank-Sum test for 500 agents found that there was a highly significant difference between the metric and

topological models (p < 0.001, z = 73,383) and the metric and visual models (p < 0.001, z = 51,889). These
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Figure IV.50: The distributions for each model in the Disperse task by radius of attraction.

Figure IV.51: The distributions for each model in the Rally task.
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results imply that when there were 50, 100, or 500 agents, the metric model had a significantly smaller nearest

neighbor distance and better performance than the topological and visual models. The Wilcoxon Rank-Sum

test for 250 agents found that there was a highly significant difference between the metric and topological

models (p = 0.0387, z = 84,834), the metric and visual models (p < 0.001, z =56,928), and the topological

and visual models (p = 0.0228, z = 260,800). The Wilcoxon Rank-Sum test for 1000 agents found that there

was a highly significant difference between the metric and topological models (p = 0.0251, z = 132,964),

the metric and visual models (p < 0.001, z = 88,681), and the topological and visual models (p < 0.01, z =

405,575). That is, when there were 250 or 100 agents, the metric model had a significantly smaller nearest

neighbor distance and better performance than the topological and visual models and the visual model had a

significantly larger nearest neighbor distance and worse performance than the topological model.

Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 71.61 (32.61) 77.64 (34.65) 79.30 (35.59)
100 49.57 (29.26) 61.07 (27.27) 59.18 (27.45)
250 65.53 (30.38) 69.24 (32.46) 72.69 (31.75)
500 47.43 (27.59) 55.33 (26.69) 56.40 (25.63)
1000 61.94 (30.92) 65.77 (32.31) 69.01 (31.55)

Table IV.67: The means and standard deviations of the Rally task by number of agents.

Number of Agents Significance χ2(2)
50 p < 0.01 13.17
100 p < 0.001 35.22
250 p < 0.001 15.57
500 p < 0.001 31.37
1000 p < 0.001 20.29

Table IV.68: The significance results from the Kruskal-Wallis Test for the Rally task by number of agents.

The means and standard deviations by number of obstacles are presented in Table IV.69. The descriptive

statistics are visualized in Figure IV.53. The Kruskal-Wallis test found a significant affect of the model type

on the nearest neighbor distance when the number of obstacles was less than 250; the results are provided

in Table IV.70. The Wilcoxon Rank-Sum test for zero obstacles found that there was a significant difference

between the metric and topological models (p = 0.0361, z = 133,790), the metric and visual models (p <

0.001, z = 91,349) and the topological and visual models (p < 0.01, z = 401,600). These results imply

that when there were zero obstacles, the metric model had a smaller nearest neighbor distance and better

performance than the topological and visual models, and the visual model had a larger nearest neighbor

distance and worse performance than the topological model. The Wilcoxon Rank-Sum results for 25 obstacles

found that there was a highly significant difference between the metric and topological models (p < 0.001, z
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Figure IV.52: The distributions for each model in the Rally task by number of agents.

= 123,652) and the metric and visual models (p < 0.001, z = 91,400). The Wilcoxon Rank-Sum test for 50

obstacles found that there was a highly significant difference between the metric and topological models (p

< 0.001, z = 122,524) and the metric and visual models (p < 0.001, z = 90,683). The Wilcoxon Rank-Sum

analysis for 100 obstacles found that there was a significant difference between the metric and topological

models (p = 0.0189, z = 46,232) and the topological and visual models (p < 0.01, z = 32,743). These results

imply that when there were 25, 50, or 100 obstacles, the metric model had a smaller nearest neighbor distance

and better performance than the topological and visual models.

Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 57.67 (31.90) 61.43 (31.73) 65.72 (32.02)
25 59.17 (31.49) 66.67 (31.45) 67.33 (31.82)
50 59.77 (31.38) 67.81 (31.58) 68.22 (31.46)
100 59.46 (30.59) 65.23 (31.27) 66.89 (30.44)
250 63.63 (31.04) 68.09 (32.67) 69.82 (31.56)

Table IV.69: The means and standard deviations of the Rally task by number of obstacles.

A similar analysis was conducted for the results grouped by the radii of attraction, orientation, and repul-

sion. The means and standard deviations for the results grouped by radius of repulsion are reported in Table
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Number of Obstacles Significance χ2(2)
0 p < 0.001 19.11
25 p < 0.001 17.69
50 p < 0.001 19.26
100 p < 0.01 9.56
250 Not Significant N/A

Table IV.70: The significance results from the Kruskal-Wallis Test for the Rally task by number of obstacles.

Figure IV.53: The distributions for each model in the Rally task by number of obstacles.

IV.71, and the descriptive statistics are visualized in Figure IV.54. The Kruskal-Wallis test found a significant

affect of the model type on the nearest neighbor distance when the radius of repulsion was less than 100, with

significance as detailed in Table IV.72. The Wilcoxon Rank-Sum test for the radius of repulsion equal to 5

found that there was a highly significant difference between the metric and topological models (p < 0.001, z

= 260,150) and the metric and visual models (p < 0.001, z = 187,222). That is, when the radius of repulsion

was 5, the metric model had a smaller nearest neighbor distance and better performance than the visual and

topological models. The Wilcoxon Rank-Sum test for the radius of repulsion equal to 25 found that there was

a highly significant difference between the metric and topological models (p < 0.001, z = 130,945), the metric

and visual models (p < 0.001, z = 87,099), and the topological and visual models (p < 0.01, z = 449,102).

The Wilcoxon Rank-Sum test for the radius of repulsion equal to 50 found that there was a highly significant
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difference between the metric and topological models (p < 0.001, z = 74,481), the metric and visual models

(p < 0.001, z = 49,187), and the topological and visual models (p = 0.0113, z = 241,834). These results imply

that when the radius of repulsion was 25 or 50, the metric model had a smaller nearest neighbor distance and

better performance than the visual and topological models, and the visual model had a significantly larger

nearest neighbor distance and worse performance than the topological model.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 37.42 (21.66) 45.89 (26.28) 47.40 (26.63)
25 51.62 (14.89) 58.80 (19.94) 61.42 (19.95)
50 73.41 (12.08) 77.66 (15.20) 79.65 (14.94)
100 118.57 (9.56) 119.08 (10.24) 119.45 (11.28)

Table IV.71: The means and standard deviations of the Rally task by radius of repulsion.

Radius of Repulsion Significance χ2(2)
5 p < 0.001 42.08
25 p < 0.001 45.00
50 p < 0.001 26.96
100 Not Significant N/A

Table IV.72: The significance results from the Kruskal-Wallis Test for the Rally task by radius of repulsion.

The means and standard deviations for the results grouped by radius of orientation are provided in Table

IV.73. The descriptive statistics are visualized in Figure IV.55. The Kruskal-Wallis test found a significant

affect of the model type on the nearest neighbor distance for each of the subgroups, with significance as

detailed in Table IV.74. The Wilcoxon Rank-Sum test found a highly significant difference for radius of

orientation equal to 20 between the metric and topological models (p < 0.01, z = 21,681) and the metric and

visual models (p < 0.01, z = 15,676). The Wilcoxon Rank-Sum test found a significant difference for radius

of orientation equal to 150 between the metric and topological models (p < 0.001, z =85,690) and the metric

and visual models (p < 0.001, z = 64,365). The Wilcoxon Rank-Sum test found a significant difference for

radius of orientation equal to 200 between the metric and topological models (p < 0.001, z = 31,893) and the

metric and visual models (p < 0.001, z = 24,849). This result implies that when the radius of orientation was

20, 150, or 200, the metric model had a significantly smaller nearest neighbor distance and better performance

than the topological and visual models. The Wilcoxon Rank-Sum test found a significant difference for radius

of orientation equal to 40 between the metric and visual models (p < 0.001, z = 26,167) and the visual and

topological models (p < 0.001, z =113,291). The Wilcoxon Rank-Sum test found a significant difference

for radius of orientation equal to 75 between the metric and visual models (p < 0.001, z = 256,970) and the

visual and topological models (p < 0.001, z = 61,674). That is, when the radius of orientation was 40 or 75,

the visual model had a significantly larger nearest neighbor distance and worse performance than the metric
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Figure IV.54: The distributions for each model in the Rally task by radius of repulsion.

and topological models. The Wilcoxon Rank-Sum test found a significant difference for radius of orientation

equal to 300 between the metric and topological models (p < 0.001, z = 32,626), the metric and visual models

(p < 0.001, z = 27,930), and the visual and topological models (p < 0.01, z = 152,282). This result implies

that when the radius of orientation was 300, the metric model had a significantly smaller nearest neighbor

distance and better performance than the topological and visual models, and the visual model had a smaller

nearest neighbor difference and better performance than the topological model.

Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 23.13 (18.14) 25.00 (19.36) 28.33 (20.88)
40 38.02 (17.86) 40.12 (17.38) 45.80 (18.73)
75 50.75 (19.05) 52.79 (18.47) 58.13 (21.03)
150 74.16 (30.42) 81.41 (25.94) 82.15 (28.51)
200 77.72 (29.30) 90.61 (22.03) 89.74 (24.60)
300 79.25 (26.30) 90.92 (20.39) 86.41 (25.12)

Table IV.73: The means and standard deviations of the Rally task by radius of orientation.

The means and standard deviations for the results grouped by radius of attraction are presented in Table

IV.75. The descriptive statistics are visualized in Figure IV.56. The Kruskal-Wallis test found a significant

affect of the model type on the nearest neighbor distance when the radius of attraction was 25, 35, 400, or
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Radius of Orientation Significance χ2(2)
20 p < 0.01 10.59
40 p < 0.001 33.95
75 p < 0.001 43.57
150 p < 0.001 19.23
200 p < 0.001 35.48
300 p < 0.001 32.75

Table IV.74: The significance results from the Kruskal-Wallis Test for the Rally task by radius of orientation.

Figure IV.55: The distributions for each model in the Rally task by radius of orientation.

600, with significance as detailed in Table IV.76. The Wilcoxon Rank-Sum test found a significant difference

when the radius of attraction was equal to 25 between the metric and topological models (p < 0.001, z =

105) and the visual and topological models (p < 0.001, z = 3,682). The Wilcoxon Rank-Sum test found a

significant difference in trials with radius of attraction equal to 35 between the metric and topological models

(p < 0.001, z = 33), the metric and visual models (p < 0.001, z = 116), and the visual and topological

models (p < 0.001, z = 3,440). These results imply that when the radius of attraction was 25 or 35, the

topological model had a significantly larger nearest neighbor distance and performed worse than the metric

and visual models. Additionally, when the radius of attraction was 35, the visual model had a significantly

larger nearest neighbor distance and performed worse than the metric model. The Wilcoxon Rank-Sum

test found a significant difference when the radius of attraction was equal to 300 between the metric and
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topological models (p < 0.001, z = 201,624), the metric and visual models (p < 0.001, z = 139,689), and the

visual and topological models (p = 0.0103, z = 658,845). The Wilcoxon Rank-Sum test found a significant

difference in trials with radius of attraction equal to 600 between the metric and topological models (p <

0.001, z = 166,717), the metric and visual models (p < 0.001, z = 114,643), and the visual and topological

models (p < 0.01, z = 657,839). These results imply that when the radius of attraction was 400 or 600, the

metric model had a significantly smaller nearest neighbor distance and performed better than the topological

and visual models, and the visual model had a significantly larger nearest neighbor distance and performed

worse than the topological model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 9.64 (0.14) 10.91 (0.77) 9.62 (0.83)
35 9.13 (0.29) 10.87 (0.73) 10.07 (0.67)
80 28.31 (16.66) 26.73 (14.66) 27.53 (15.40)
200 48.58 (27.22) 50.78 (25.78) 51.45 (24.15)
400 72.10 (27.47) 77.62 (25.88) 80.09 (24.11)
600 68.08 (28.23) 80.36 (24.11) 82.67 (23.87)

Table IV.75: The means and standard deviations of the Rally task by radius of attraction.

Radius of Attraction Significance χ2(2)
25 p < 0.001 61.86
35 p < 0.001 66.41
80 Not Significant N/A
200 Not Significant N/A
400 p < 0.001 31.51
600 p < 0.001 94.56

Table IV.76: The significance results from the Kruskal-Wallis Test for the Rally task by radius of attraction.

IV.2.6 Maintain Group / Flocking

The Flocking task ran a total of 8,208 trials, decomposed by model: metric = 1,026 trials, topological = 4,104

trials, and visual = 3,078 trials. The first metric for this task was the change in dispersion, ∆Dispersion. The

mean change in the dispersion for the metric model was 357,635,626,632 (std. dev. = 4,286,798,000,000).

The topological model had a mean change in dispersion of 59,883,809 (std. dev. = 239,713,646), and the

visual model had a mean change in dispersion of 239,292,507,151 (std. dev. = 3,520,467,000,000). The

Kruskal-Wallis test indicated that there was a highly significant affect of the model type on the change in

dispersion (p < 0.001, χ2(2) = 16.39). The Wilcoxon Rank-Sum test found highly significant differences

between all three pairings, as presented in Table IV.77. These results imply that the metric model had a

significantly higher change in dispersion and worse performance than the topological and visual models, and

the topological model had a lower change in dispersion and better performance than the visual model.
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Figure IV.56: The distributions for each model in the Rally task by radius of attraction.

Pairing Significance z-Value
Metric-Visual p < 0.001 1,659,308
Metric-Topological p < 0.001 2,272,305
Topological-Visual p < 0.001 6,136,590

Table IV.77: The significance results from the Wilcoxon Rank-Sum Test for the Flocking task using the
change in dispersion metric.

The means and standard deviations by number of agents are presented in Table IV.78. The Kruskal-Wallis

test found a significant affect of model type on the change in dispersion for each subgroup, with significance

as detailed in Table IV.79. The Wilcoxon Rank-Sum test for 50 agents found that there was a significant

difference between the metric and visual models (p = 0.0192, z = 44,195) and the topological and metric

models (p < 0.01, z =59,743). That is, when there were 50 agents the metric model had a significantly higher

change in dispersion and worse performance than the topological and visual models. The Wilcoxon Rank-

Sum test for the trials with 100 agents found that there was a highly significant difference between the metric

and topological models (p < 0.001, z = 64,836), the metric and visual models (p < 0.001, z = 46,640), and

the topological and visual models (p < 0.001, z = 139,039). This result implies that when there were 100

agents, the topological model had a significantly higher change in dispersion and worse performance than

the metric and visual models, and the visual model had a singificantly lower change in dispersion and better
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performance than the metric model. The Wilcoxon Rank-Sum test for the trials with 250 agents found that

there was a highly significant difference between the topological and visual models (p < 0.01, z = 256,652).

That is, when there were 250 agents, the topological model had a significantly lower change in dispersion and

better performance than the visual model. The Wilcoxon Rank-Sum test for the trials with 500 agents found

that there was a significant difference between the metric and topological models (p < 0.001, z = 106,913),

the metric and visual models (p = 0.0318, z = 76,803), and the topological and visual models (p < 0.001, z

= 251,461). This result implies that when there were 500 agents, the topological model had a significantly

lower change in dispersion and better performance than the visual and metric models, and the visual model

had a higher change in dispersion and worse performance than the metric model. The Wilcoxon Rank-Sum

test for the trials with 1000 agents found that there was a highly significant difference between the metric

and topological models (p < 0.001, z = 178,295), the metric and visual models (p < 0.01, z = 123,634), and

the topological and visual models (p < 0.001, z = 375,341). This result implies that when there were 1000

agents, the topological model had a significantly lower change in dispersion and better performance than the

visual and metric models, and the visual model had a lower change in dispersion and better performance than

the metric model.

Number Metric Mean Topological Mean Visual Mean
of Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 3,736,087 2,636,684 2,824,896

(2,952,971) (1,783,581) (1,905,783)
100 10,563,342 26,548,123 6,842,840

(8,978,625) (530,708,659) (5,208,805)
250 38,201,943 28,010,942 28,672,674

(38,881,264) (30,777,258) (24,079,711)
500 83,433,086 50,746,755 2,389,278,216

(87,564,534) (51,794,132) (59,253,167,464)
1000 1,358,909,000,000 147,041,434 907,371,365,819

(8,285,942,000,000) (188,669,151) (6,821,263,000,000)

Table IV.78: The means and standard deviations of the Flocking task by number of agents for change in
dispersion.

Number of Agents Significance χ2(2)
50 p = 0.0101 9.19
100 p < 0.001 29.23
250 p = 0.0158 8.30
500 p < 0.001 18.89
1000 p < 0.001 49.36

Table IV.79: The significance results from the Kruskal-Wallis Test for the Flocking task by number of agents
for change in dispersion.

The means and standard deviations by number of obstacles are provided in Table IV.80. The Kruskal-
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Wallis test no found significant affect of the model type on change in dispersion when the number of obstacles

was 0 or 25. The Kruskal-Wallis test found a significant affect of the model type on change in dispersion when

the number of obstacles was 50, 100, or 250, with significance as detailed in Table IV.81. The Wilcoxon

Rank-Sum test for the trials with 50 obstacles found that there was a highly significant difference between

the metric and topological models (p < 0.01, z = 16,1457). That is, when there were 50 obstacles, the metric

model had a significantly higher change in dispersion and worse performance than the topological model.

The Wilcoxon Rank-Sum test for the trials with 100 obstacles found that there was a significant difference

between the metric and topological models (p < 0.01, z = 60,441) and the topological and visual models (p

= 0.0136, z = 143,988). The Wilcoxon Rank-Sum test for the trials with 250 obstacles found that there was

a significant difference between the metric and topological models (p < 0.001, z = 7,650), the metric and

visual models (p = 0.0288, z = 5,244), and the topological and visual models (p < 0.01, z = 14,523). These

results imply that when there were 100 or 250 obstacles, the topological model had a significantly smaller

change in dispersion and better performance than the metric and visual models. In addition, when there were

250 obstacles, the metric model had a significantly higher change in dispersion and worse performance than

the visual model.

Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 1,248,949,582 54,943,073 64,909,213,598

(9,681,733,534) (117,239,588) (1,828,971,000,000)
25 194,930,435,979 47,831,707 193,631,948,060

(3,167,776,000,000) (107,392,062) (3,163,918,000,000)
50 580,218,854,250 61,469,067 195,293,000,000

(5,466,327,000,000) (426,175,313) (3,164,239,000,000)
100 3,558,359,049 69,649,397 433,297,000,000

(16,334,286,997) (120,959,450) (4,748,229,000,000)
250 2,902,411,000,000 107,624,952 977,495,680,891

(12,032,880,000,000) (103,739,056) (7,119,924,000,000)

Table IV.80: The means and standard deviations of the Flocking task by number of obstacles for change in
dispersion.

Number of Obstacles Significance χ2(2)
0 Not Significant N/A
25 Not Significant N/A
50 p = 0.0163 8.23
100 p < 0.01 11.90
500 p < 0.001 17.15

Table IV.81: The significance results from the Kruskal-Wallis Test for the Flocking task by number of obsta-
cles for change in dispersion.

The means and standard deviations for radius of repulsion are presented in Table IV.82. The Kruskal-
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Wallis test found a significant affect of the model type on change in dispersion when the radius of repulsion

was 5, 25, or 100. The Kruskal-Wallis test found a significant affect of the model type on change in dispersion

when the radius of repulsion was 50 (p < 0.001, χ2(2) = 17.29). The Wilcoxon Rank-Sum test where the

radius of repulsion was equal to 50 found that there was a highly significant difference between the metric and

topological models (p < 0.001, z = 100,944) and the topological and visual models (p < 0.01, z = 237,286).

That is, when the radius of repulsion was 50, the topological model had a significantly smaller change in

dispersion and better performance than the metric and visual models.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 89,510,643 65,802,919 1,324,076,091

(147,320,149) (355,077,045) (43,596,585,100)
25 86,108,623 65,892,832 65,223,687

(134,466,728) (131,773,081) (103,366,976)
50 11,935,905,044 60,494,991 4,144,922,683

(28,542,848,689) (125,314,656) (17,656,000,000)
100 2,739,694,000,000 28,289,574 1,835,345,000,000

(11,667,360,000,000) (46,602,249) (9,637,281,000,000)

Table IV.82: The means and standard deviations of the Flocking task by radius of repulsion for change in
dispersion.

The means and standard deviations for the Flocking task results for change in dispersion grouped by

radius of orientation are presented in Table IV.83. The Kruskal-Wallis test found no impact of the model

type on change in dispersion when the radius of orientation was 40 or 75. The Kruskal-Wallis test found a

significant impact of the model type on change in dispersion when the radius of orientation was 20, 150, 200,

or 300, as detailed in Table IV.84. The Wilcoxon Rank-Sum test found that when the radius of orientation

was equal to 20, there was a significant difference between the metric and topological models (p = 0.0268, z =

22,508) and the topological and visual models (p = 0.0380, z = 84,661). The Wilcoxon Rank-Sum test found

that when the radius of orientation was equal to 300, there was a significant difference between the metric and

topological models (p < 0.01, z = 53,024) and the topological and visual models (p = 0.0448, z = 128,672).

That is, when the radius of orientation was 20 or 300, the topological model had a significantly lower change

in dispersion and better performance than the metric and visual models. The Wilcoxon Rank-Sum test found

that when the radius of orientation was equal to 150, there was a highly significant difference between the

metric and topological models (p < 0.01, z = 116,453). This result implies that when the radius of orientation

was 150, the topological model had a significantly lower change in dispersion and better performance than

the metric model. The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 200,

there was a significant difference between the metric and topological models (p < 0.01, z = 52,566) and the

metric and visual models (p = 0.0276, z = 38,788). That is, when the radius of orientation was 20 or 300, the

108



metric model had a significantly larger change in dispersion and worse performance than the topological and

visual models.

Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 33,325,247 23,627,768 29,496,714

(64,237,966) (22,762,142) (43,931,615)
40 45,852,464 25,826,092 33,047,757

(74,388,988) (25,156,560) (43,237,600)
75 3,915,940,705 30,192,818 1,443,171,908

(17,221,026,157) (30,154,833) (10,540,507,613)
150 917,155,920,415 43,106,243 688,726,588,358

(6,848,465,000,000) (45,829,475) (5,958,537,000,000)
200 687,654,758,099 90,872,275 343,404,000,000

(5,950,859,000,000) (550,739,666) (4,212,733,000,000)
300 344,707,083,586 159,847,927 236,510,618,858

(4,221,932,000,000) (254,355,664) (3,503,072,000,000)

Table IV.83: The means and standard deviations of the Flocking task by radius of orientation for change in
dispersion.

Radius of Orientation Significance χ2(2)
20 p = 0.0265 7.26
40 Not Significant N/A
75 Not Significant N/A
150 p = 0.0102 9.18
200 p = 0.0307 6.97
300 p < 0.01 9.76

Table IV.84: The significance results from the Kruskal-Wallis Test for the Flocking Task task by radius of
orientation for change in dispersion.

The means and standard deviations for the Flocking task results for change in dispersion grouped by

radius of attraction are presented in Table IV.85. The Kruskal-Wallis test found a highly significant impact of

the model type on change in dispersion for each subgroup by radius of attraction, as detailed in Table IV.86.

The Wilcoxon Rank-Sum test found that when the radius of attraction was equal to 25, there was a highly

significant difference between the metric and topological models (p < 0.01, z = 352) and the topological

and visual models (p < 0.01, z = 2,793). That is, when the radius of attraction was 25, the metric model

had a significantly smaller change in dispersion and better performance than the topological model and the

topological model had a significantly smaller change in dispersion and worse performance than the visual

model. The Wilcoxon Rank-Sum test found that when the radius of attraction was equal to 35, there was

a significant difference between the metric and topological models (p < 0.001, z = 274), the metric and

visual models (p = 0.0318, z = 362), and the topological and visual models (p = 0.0210, z = 2,674). These

results imply that when the radius of attraction was 35, the metric model had a significantly smaller change
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in dispersion and better performance than the topological and visual models and the topological model had a

significantly smaller change in dispersion and worse performance than the visual model. The Wilcoxon Rank-

Sum test found that when the radius of attraction was equal to 200, there was a highly significant difference

between the metric and topological models (p < 0.001, z = 60,241) and the metric and visual models (p <

0.01, z = 45,954). That is, when the radius of attraction was 200, the metric model had a significantly larger

change in dispersion and worse performance than the visual and topological models. The Wilcoxon Rank-

Sum test found that when the radius of attraction was equal to 80, there was a highly significant difference

between the metric and visual models (p < 0.001, z = 14,849), the topological and visual models (p < 0.001,

z = 15,367), and the topological and visual models (p < 0.001, z = 93,435). The Wilcoxon Rank-Sum test

found that when the radius of attraction was equal to 400, there was a significant difference between the metric

and topological models (p < 0.001, z = 268,574), the metric and visual models (p = 0.0257, z = 189,563),

and the topological and visual models (p < 0.01, z = 655,801). The Wilcoxon Rank-Sum test found that

when the radius of attraction was equal to 600, there was a highly significant difference between the metric

and topological models (p < 0.001, z = 312,540), the metric and visual models (p < 0.001, z = 220,918),

and the topological and visual models (p < 0.001, z = 640,140). These results imply that when the radius

of attraction was 80, 400, or 600, the topological model had a significantly lower change in dispersion and

better performance than the metric and visual models and the metric model had a significantly larger change

in dispersion and worse performance than the visual model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 7,622,904 23,768,669 23,970,857

(9,621,117) (22,957,970) (45,057,354)
35 4,449,229 23,779,814 24,602,065

(3,891,698) (22,983,799) (43,472,650)
80 2,120,786,680 27,606,965 495,317,943

(12,906,487,474) (27,419,984) (6,129,122,680)
200 551,331,524,968 33,794,284 461,024,224,923

(5,326,128,000,000) (36,739,567) (4,891,529,000,000)
400 459,487,728,276 79,200,098 205,490,371,331

(4,860,706,000,000) (388,710,149) (3,245,615,000,000)
600 306,416,260,402 69,832,824 256,094,776,244

(3,974,658,000,000) (137,751,279) (3,651,661,000,000)

Table IV.85: The means and standard deviations of the Flocking task by radius of attraction for change in
dispersion.

The second metric for the flocking task was the change in center of gravity. The mean change in center

of gravity for the metric model was 78.39 units (std. dev. = 596.06 units). The topological model had a mean

change in center of gravity of 32.48 (std. dev. = 59.57 units). The visual model mean change in center of
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Radius of Attraction Significance χ2(2)
25 p < 0.001 15.38
35 p < 0.001 17.88
80 p < 0.001 57.25
200 p < 0.01 12.69
400 p < 0.001 20.34
600 p < 0.001 95.60

Table IV.86: The significance results from the Kruskal-Wallis Test for the Flocking Task task by radius of
orientation for the change in dispersion.

gravity was 45.32 units (std. dev. = 489.56 units). These descriptive statistics are illustrated in Figure IV.57.

The Kruskal-Wallis test found a significant affect of the model type on change in center of gravity (p < 0.001,

χ2(2) = 283.56). The Wilcoxon Rank-Sum test indicated that there was a significant difference between the

topological and visual models (p < 0.001, z = 7,604,785) and the visual and metric models (p < 0.001, z =

1,872,424). The test did not find a significant difference between the metric and topological models. These

results show that the topological model had a significantly lower change in the center of gravity, than both

the visual and topological models.

The means and standard deviations by number of agents are presented in Table IV.87. The descriptive

statistics are displayed in Figure IV.58. The Kruskal-Wallis test found a significant affect of the model type

on the change in center of gravity for each of the subgroups, with significance as detailed in Table IV.88.

The Wilcoxon Rank-Sum test for the trials with 50 agents found that there was a highly significant difference

between the topological and visual models (p < 0.001, z = 181,714). That is, when there were 50 agents, the

visual model had a significantly lower change in center of gravity and better performance than the topological

model. The Wilcoxon Rank-Sum test for the trials with 100 agents found that there was a highly significant

difference between the metric and visual models (p < 0.001, z = 50,111) and the topological and visual

models (p < 0.001, z = 193,245). The Wilcoxon Rank-Sum test for the trials with 250 agents found that

there was a highly significant difference between the metric and visual models (p < 0.001, z = 84,940) and

the topological and visual models (p < 0.001, z = 340,645.5). The Wilcoxon Rank-Sum test for the trials

with 500 agents found that there was a highly significant difference between the metric and visual models (p

< 0.001, z = 86,530) and the topological and visual models (p < 0.001, z = 329,871). These results imply

that when there were 100, 250, or 500 agents, the visual model had a significantly lower change in center

of gravity and better performance than the metric and topological models. The Wilcoxon Rank-Sum test

for 1000 agents found that there was a highly significant difference between the metric and visual models

(p = 0.0471, z = 134,426), and the topological and visual models (p < 0.001, z = 530,051). That is, when

there were 1000 agents, the topological model had a significantly lower change in center of gravity and better
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Figure IV.57: The distributions of change in center of gravity for each model in the Flocking task.

performance than the metric and visual models.

Number of Metric Mean Topological Mean Visual Mean
Agents (Std. Dev.) (Std. Dev.) (Std. Dev.)
50 15.42 (19.58) 22.84 (34.03) 11.16 (9.52)
100 25.16 (44.24) 39.15 (78.90) 11.53 (17.58)
250 20.28 (35.60) 27.26 (44.72) 7.13 (9.37)
500 29.23 (66.84) 48.25 (82.21) 13.56 (98.24)
1000 233.91 (1,146.63) 25.82 (41.42) 142.06 (943.82)

Table IV.87: The means and standard deviations of the Flocking task by number of agents for the change in
center of gravity.

The means and standard deviations by number of obstacles are provided in Table IV.89. The descriptive

statistics separated by number of obstacles are displayed in Figure IV.59. The Kruskal-Wallis test found a

significant affect of model type on the change in center of gravity when the number of obstacles was less

than 250, with significance as detailed in Table IV.90. The Wilcoxon Rank-Sum test when there were zero

obstacles found that there was a significant difference between the metric and topological models (p < 0.001,

z = 129,144), the metric and visual models (p < 0.001, z = 124,594), and the topological and visual models

(p < 0.001, z = 544,510). That is, when there were zero obstacles, the topological model had a significantly

higher change in the center of gravity and worse performance than the metric and visual models, and the
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Number of Agents Significance χ2(2)
50 p < 0.001 20.08
100 p < 0.001 51.02
250 p < 0.001 56.91
500 p < 0.001 43.99
1000 p < 0.001 58.34

Table IV.88: The significance results from the Kruskal-Wallis Test for the Flocking task by number of agents
for the change in center of gravity.

Figure IV.58: The distributions of the change in center of gravity by number of agents and model.

metric model had a higher change in the center of gravity and worse performance than the visual model. The

Wilcoxon Rank-Sum test when there were 25 obstacles found that there was a highly significant difference

between the metric and visual models (p < 0.001, z = 132,333) and the topological and visual models (p <

0.001, z = 520,516). The Wilcoxon Rank-Sum test when there were 50 obstacles found that there was a highly

significant difference between the metric and visual models (p < 0.001, z = 130,361), and the topological and

visual models (p < 0.001, z = 527,488). These results imply that when there were 25 or 50 obstacles, the

topological model had a significantly lower change in center of gravity and better performance than the

visual model, and the metric model had a higher change in center of gravity and worse performance than the

visual model. The Wilcoxon Rank-Sum test when there were 100 obstacles found that there was a highly

significant difference between the metric and visual models (p < 0.001, z = 47,175), and the topological and
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visual models (p < 0.001, z = 185,418). That is, when there were 100 obstacles, the topological model had

a significantly lower change in the center of gravity and better performance than the visual model, and the

visual model had a higher change in the center of gravity and worse performance than the metric model.

Number of Metric Mean Topological Mean Visual Mean
Obstacles (Std. Dev.) (Std. Dev.) (Std. Dev.)
0 24.81 (55.38) 36.73 (64.66) 20.90 (254.89)
25 54.30 (441.79) 33.99 (58.65) 38.54 (439.25)
50 107.95 (757.99) 30.53 (62.27) 40.16 (447.56)
100 33.93 (71.78) 29.37 (52.85) 71.38 (655.97)
250 452.28 (1,662.10) 22.79 (37.14) 148.98 (982.59)

Table IV.89: The means and standard deviations of the Flocking task by number of obstacles for change in
center of gravity.

Number of Obstacles Significance χ2(2)
0 p < 0.001 84.00
25 p < 0.001 57.17
50 p < 0.001 62.93
100 p < 0.001 30.10
250 Not Significant N/A

Table IV.90: The significance results from the Kruskal-Wallis Test for the Flocking task by number of obsta-
cles for change in center of gravity.

Similar evidence was discovered when the data was analyzed by the radii of repulsion, orientation, and

attraction. The means and standard deviations for radius of repulsion are presented in Table IV.91. The

descriptive statistics separated by radius of repulsion are displayed in Figure IV.60. The Kruskal-Wallis test

found a significant affect of the model type on change in center of gravity for each of the subgroups, with

significance as detailed in Table IV.92. The Wilcoxon Rank-Sum test when the radius of repulsion was equal

to 5 found that there was a highly significant difference between the metric and visual models (p < 0.001,

z = 281,828) and the topological and visual models (p < 0.001, z = 1,088,319). That is, when the radius of

repulsion was 5, the visual model had a significantly lower change in center of gravity and better performance

than the metric and topological models. The Wilcoxon Rank-Sum test for a radius of repulsion equal to 25

found that there was a highly significant difference between the metric and topological models (p < 0.001, z

= 139,202), the metric and visual models (p < 0.01, z = 136,311), and the topological and visual models (p <

0.001, z = 603,013). This result implies that when the radius of repulsion was 25, the topological model had a

significantly higher change in center of gravity and worse performance than the metric and visual models, and

the visual model had a significantly lower change in center of gravity and better performance than the metric

model. The Wilcoxon Rank-Sum test where the radius of repulsion was equal to 50 found that there was a

highly significant difference between the metric and visual models (p < 0.001, z = 82,040) and the topological
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Figure IV.59: The distributions of change in center of gravity by number of obstacles and model.

and visual models (p < 0.001, z = 335,255). That is, when the radius of repulsion was 50, the visual model

had a significantly lower change in center of gravity and better performance than the topological and metric

models. The Wilcoxon Rank-Sum test for a radius of repulsion equal to 100 found that there was a highly

significant difference between the metric and visual models (p < 0.001, z = 34,552) and the topological and

visual models (p < 0.001, z = 137,012). This result implies that when the radius of repulsion was 100, the

topological model had a significantly lower change in center of gravity and better performance than the visual

model, and the visual model had a significantly higher change in center of gravity and worse performance

than the metric model.

Radius of Metric Mean Topological Mean Visual Mean
Repulsion (Std. Dev.) (Std. Dev.) (Std. Dev.)
5 32.30 (62.11) 39.64 (75.63) 12.27 (72.98)
25 17.71 (32.13) 37.92 (59.00) 9.35 (13.06)
50 53.07 (99.51) 25.91 (34.34) 21.78 (62.73)
100 386.43 (1,618.14) 9.66 (10.61) 258.56 (1,333.35)

Table IV.91: The means and standard deviations of the Flocking task by radius of repulsion for the change in
center of gravity.

The means and standard deviations for the Flocking task results for the change in center of gravity grouped
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Radius of Repulsion Significance χ2(2)
5 p < 0.001 49.12
25 p < 0.001 85.38
50 p < 0.001 88.28
100 p < 0.001 64.27

Table IV.92: The significance results from the Kruskal-Wallis Test for the Flocking task by radius of repulsion
for the change in center of gravity.

Figure IV.60: The distributions of the change in center of gravity by radius of repulsion and model.

by radius of orientation are presented in Table IV.93. The descriptive statistics are visualized in Figure IV.61.

The Kruskal-Wallis test found a highly significant impact of the model type on change in center of gravity

for each subgroup by radius of orientation, as detailed in Table IV.94. The Wilcoxon Rank-Sum test found

that when the radius of orientation was equal to 20, there was a highly significant difference between the

topological and visual models (p < 0.001, z = 65,382). The Wilcoxon Rank-Sum test found that when the

radius of orientation was equal to 40, there was a highly significant difference between the topological and

visual models (p < 0.01, z = 124,102). These results imply that when the radius of orientation was 20 or

40, the topological model had a lower change in center of gravity and better performance than the metric

model. The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 75, there was

a highly significant difference between the metric and topological models (p < 0.001, z = 119,980) and the
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metric and visual models (p < 0.001, z = 91,487). That is, when the radius of orientation was 75, the metric

model had a significantly higher change in center of gravity and worse performance than the topological and

visual models. The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 150,

there was a highly significant difference between the metric and topological models (p < 0.01, z = 92,019),

the metric and visual models (p < 0.001, z = 105,967), and the topological and visual models (p < 0.001, z

= 460,964). The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 200, there

was a highly significant difference between the metric and topological models (p < 0.001, z =28,510), the

metric and visual models (p < 0.001, z = 45,645), and the topological and visual models (p < 0.001, z =

226,490). These results imply that when the radius of orientation was 150 or 200, the topological model had

a significantly lower change in the center of gravity and better performance than the visual and metric models,

and the metric model had a significantly higher change in the center of gravity and worse performance than

the visual model. The Wilcoxon Rank-Sum test found that when the radius of orientation was equal to 300,

there was a highly significant difference between the metric and topological models (p < 0.001, z = 36,011),

the metric and visual models (p < 0.001, z = 48,392), and the topological and visual models (p < 0.001, z =

227,230). That is, when the radius of orientation was 300, the visual model had a significantly lower change

in the center of gravity and better performance than the topological and metric models, and the metric model

had a significantly higher change in the center of gravity and worse performance than the topological model.

Radius of Metric Mean Topological Mean Visual Mean
Orientation (Std. Dev.) (Std. Dev.) (Std. Dev.)
20 4.56 (4.00) 3.59 (2.15) 4.29 (2.86)
40 4.71 (3.90) 3.94 (2.52) 4.21 (2.35)
75 20.28 (60.80) 5.21 (3.96) 9.70 (37.50)
150 156.95 (948.52) 25.24 (26.40) 106.19 (824.82)
200 125.95 (824.16) 59.40 (68.51) 61.28 (584.44)
300 129.18 (587.77) 107.53 (95.97) 63.40 (494.79)

Table IV.93: The means and standard deviations of the Flocking task by radius of orientation for the change
in center of gravity.

Radius of Orientation Significance χ2(2)
20 p < 0.001 14.59
40 p = 0.0183 8.00
75 p < 0.001 16.36
150 p < 0.001 271.75
200 p < 0.001 324.80
300 p < 0.001 317.11

Table IV.94: The significance results from the Kruskal-Wallis Test for the Flocking Task task by radius of
orientation for the change in center of gravity.

The means and standard deviations for the Flocking task results for change in center of gravity grouped
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Figure IV.61: The distributions of the change in center of gravity by radius of orientation and model.

by radius of attraction are presented in Table IV.95. The descriptive statistics are visualized in Figure IV.62.

The Kruskal-Wallis test found a highly significant impact of the model type on change in center of gravity

when the radius of attraction was not equal to 35, as detailed in Table IV.96. The Wilcoxon Rank-Sum

test found that when the radius of attraction was equal to 25, there was a significant difference between the

topological and visual models (p = 0.0215, z = 1,660). The Wilcoxon Rank-Sum test found that when the

radius of attraction was equal to 200, there was a highly significant difference between the topological and

visual models (p < 0.001, z = 247,598). These results imply that when the radius of attraction was 25 or

200, the visual model had a significantly higher change in center of gravity and worse performance than

the topological model. The Wilcoxon Rank-Sum test found that when the radius of attraction was equal to

80, there was a significant difference between the metric and visual models (p = 0.0249, z = 22,228) and

the topological and metric models (p < 0.001, z = 31,540). That is, when the radius of attraction was 80,

the metric model had a significantly higher change in the center of gravity and worse performance than the

topological and visual models. The Wilcoxon Rank-Sum test found that when the radius of attraction was

equal to 400, there was a highly significant difference between the metric and topological models (p < 0.001,

z = 203,110), the metric and visual models (p < 0.001, z = 199,660), and the topological and visual models (p

< 0.001, z = 910,044). This result implies that when the radius of attraction was 400, the topological model
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Figure IV.62: The distributions of the change in center of gravity by radius of attraction and model.

had a significantly lower change in the center of gravity and better performance than the metric and visual

models, and the metric model had a significantly higher change in center of gravity and worse performance

than the visual model. The Wilcoxon Rank-Sum test found that when the radius of attraction was equal to

600, there was a highly significant difference between the metric and visual models (p < 0.001, z = 241,045)

and the topological and visual models (p < 0.001, z = 929,481). That is, when the radius of attraction was

600, the topological model had a significantly lower change in the center of gravity and better performance

than the visual model, and the metric model had a significantly higher change in the center of gravity and

worse performance than the visual model.

Radius of Metric Mean Topological Mean Visual Mean
Attraction (Std. Dev.) (Std. Dev.) (Std. Dev.)
25 5.79 (5.76) 3.51 (2.14) 4.87 (4.11)
35 4.62 (4.98) 3.65 (2.22) 4.74 (3.44)
80 13.29 (45.71) 4.57 (3.56) 6.61 (21.93)
200 97.23 (739.13) 12.61 (19.23) 73.64 (676.51)
400 103.60 (675.39) 44.68 (72.34) 46.04 (457.35)
600 72.53 (552.63) 43.84 (66.03) 46.28 (504.91)

Table IV.95: The means and standard deviations of the Flocking task by radius of attraction for the change in
center of gravity.
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Radius of Attraction Significance χ2(2)
25 p = 0.03609 6.64
35 Not Significant N/A
80 p < 0.01 151.57
200 p < 0.001 19.46
400 p < 0.001 224.29
600 p < 0.001 214.98

Table IV.96: The significance results from the Kruskal-Wallis Test for the Flocking Task task by radius of
orientation for the change in center of gravity.

Task Hypothesis Description Result

Go To Location
HGT L PercentReachedVisual > PercentReachedTopo Partially Supported

> PercentReachedMetric

Search
HS1 PercentFoundVisual > PercentFoundTopo Not Supported
HS2 PercentFoundVisual > PercentFoundMetric Partially Supported

Monitor
HM TotalCoverageVisual > TotalCoverageMetric Partially Supported

> TotalCoverageTopo

Avoid Object
HA1 ExpanseVisual < ExpanseMetric Partially Supported
HA2 ExpanseTopo < ExpanseMetric Not Supported

Follow Object
HF1 E f f iciencyVisual > E f f iciencyTopo Partially Supported

> E f f iciencyMetric
HF2 ErrorVisual < ErrorTopo < ErrorMetric Fully Supported

Disperse
HD1 NearestNeighborMetric > NearestNeighborVisual Partially Supported
HD2 NearestNeighborMetric > NearestNeighborTopo Not Supported

Rally
HR1 NearestNeighborVisual < NearestNeighborMetric Not Supported
HR2 NearestNeighborTopo < NearestNeighborMetric Not Supported

Maintain Group
HMG1 ∆DispersionVisual > ∆DispersionTopo Fully Supported
HMG2 ∆DispersionMetric > ∆DispersionTopo Fully Supported
HMG3 ∆COGVisual > ∆COGTopo Fully Supported
HMG4 ∆COGMetric > ∆COGTopo Fully Supported

Table IV.97: A summary of the hypotheses and if they were supported, either fully, partially, or not at all.

IV.3 Discussion

Each of the eight tasks presented a different result as to which of the swarm communication models was best

suited to accomplishing the task. The topological model had a better performance in the Go To Location,

Search, Monitor, Disperse, and Flocking tasks. The metric model performed better in the Rally task, while

the visual model performed better in the Follow task. The visual and metric models both outperformed the

topological model in the Avoid task. The difference in optimal communication models implies that the overall

research hypothesis, that each task requires a different model for optimal performance, was supported.

HGT L, the hypothesis that the visual model will have a higher percent of agents reach the goal than the

topological and metric models, while the topological model will have a higher percentage of agents reach

the goal than the metric model, was partially correct in that the topological model had a higher percentage

of agents reach the goal than the metric model. However, the topological model performed better than the
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visual model for this task. This result occurs because the topological model communicates with a limited

number of agents, as compared to the metric and visual models (Strandburg-Peshkin et al., 2013), which

allows for a greater cohesiveness among the agents in the topological model swarm. The visual and metric

models have a greater sensing range and; thus, were more likely to become obstructed by the presence of an

obstacle in the environment, while the topological agents were limited to the closest agents within the swarm

and ignored the obstacles. As a result, a greater percentage of the topological model swarms was able to

reach the goal area. The data was consistent across the number of agents and number of obstacles, but there

were large differences across the radii of attraction, repulsion, and orientation. The larger values for these

radii demonstrated a significantly better ability for the agents to reach the goal area, which implies that the

increased sensing range was necessary for reaching the goal area. Future experiments may consider providing

the agents with prior knowledge regarding the goal location, perhaps by directing them towards the correct

area at the start of the trial.

The hypothesis for the Search task, HS1, that the visual model will find more goals than the topological

model, was not supported. The results demonstrated the opposite outcome, that the visual model found

fewer goals, on average than the topological model. The significantly larger percentage of goals found by

the topological model agents, as compared to the visual model can be explained by the constrained number

of objects to which the topological model agents react, as compared to the visual model agents. The agents

were required to come within a certain radius of a goal in order to successfully find a goal. Thus, if a small

number of topological agents sense the goal, they will all be attracted to the goal object, and end up within the

required radius. The visual model agents, while more likely to be able to sense the goal, may be misdirected

by an obstacle or attracted by two goals simultaneously because they can sense more objects. Hypothesis

HS2, that the visual model will find more goals than the metric model was partially supported. The visual

model’s greater sensing range was better able to detect the goals than the metric model, which led to a higher

percentage of goals being found by swarms using the visual model. However, on the whole, this difference

was not significant.

The hypothesis, HM for the Monitor task that the visual model will have better coverage than the metric

and topological models, while the topological model will have better coverage, was also partially verified.

The topological model provided the best coverage of all the models. The hypothesis was supported by the fact

that the metric model had a significantly lower percentage of coverage than the visual model. This result can

be explained by the potential sensing range of the agents for each communication model. The visual model’s

sensing range is anywhere within the field of view, which can be anywhere from the size of the radius of

attraction to the size of the environment, while the metric model is limited to the radius of attraction. The

topological model agent’s sensing range is limited by the distance of the nearest neighbor that is farthest away
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from the agent. Any object closer to the agent than the farthest neighbor can be sensed by the agent. An agent

in the corner of the map can only sense objects, within at most a specific radius under the metric or visual

models, where the metric agent’s sensing range is the radius of attraction and the visual model’s sensing range

is at most the visual range, if no occlusion occurs. However, if the nearest neighbors of the agent are spread

across the map, under the topological model, the agent is able to see much farther than under the metric

or visual models. The trends in the data considered by radius of repulsion, orientation, and attraction all

support this conclusion. The lower values for radius of attraction, where the metric and visual models have a

constrained sensing range, show that the topological model has a significantly higher percent coverage. The

higher values for radius of attraction show that when the visual and metric models have enhanced sensing

range, they achieve a higher coverage percentage than the topological model. Across all of the parameters,

the metric model is less able to sense the environment than the visual model. The lower sensing range of the

metric model is illustrated in the lower values for radius of attraction, as the metric model has a significantly

lower coverage percentage. The visual model agents are able to sense more of the environment than the

metric model agents, as predicted by the hypothesis. The radii of orientation and repulsion followed a similar

pattern, because the radius of attraction is constrained by those two values. The trends in the data by number

of agents and number of obstacles were consistent across all values, providing no further support.

Neither of the Avoid task hypotheses were fully supported. HA1 stated that the metric model will have

higher expanse than the visual model, and received partial support, while HA2 hypothesized that that the topo-

logical model will have lower expanse than the metric model and received no support. The topological model

had a greater expanse than the metric model in many instances when the data was considered by individual

parameters, and the topological model was almost always significantly better than the metric model. How-

ever, HA1 received support in several of the parameter specific analyses, as the metric model had a higher

mean expanse than the visual model, occasionally with a significant difference. The trends when the data

was considered by the different patterns were consistent. There was an increase in expanse along with the

increasing number of agents, which is a result of the increasingly large areas within which the agents can op-

erate as the number of agents increases. The metric model had a higher expanse than the visual model when

the sensing range of the agent was low; that is, when the radii of repulsion, orientation, and attraction were

low. As the radii decreased, the metric agent’s ability to sense and stay close to its neighbors decreased. The

reason the hypothesis is not fully supported is due to the interaction between the agents and the adversary.

The topological model agents only interact with a set number of closest agents, which means that the repul-

sive reaction to the adversary has a greater relative impact on the topological agent. The metric and visual

model agents sense a much wider array of objects, which allows the attractive force towards other agents

to counteract the adversary’s repulsive effect. The additional attractive force prevents the metric and visual
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swarms from spreading out and having a higher expanse. As the radius of attraction, and thus the maximum

sensing range of the metric model is limited, the performance of the metric model suffers, leading to higher

and higher mean expanse values as the radius of attraction decreases. The metric model generally has a larger

expanse than the visual model, due to the metric model’s limited sensing range. The visual model senses

objects outside of the radius of attraction when the field of view is greater than the radius, whereas the metric

model is always limited to the radius of attraction as its maximum.

The results demonstrated a result that was counter to the Follow task hypothesis, HF1, which stated that

the visual model will have a higher efficiency than the topological and metric models, while the metric model

will have lower efficiency than the topological model. This result can be explained by the communication

models’ interaction patterns; the agents were generated in one corner of the map, and thus, the original

interactions were likely based more on repulsion because all of the agents are within a small distance of each

other. The metric model agents, which can sense all objects within the radii, were able to interact with more

agents in the confined space and become informed faster. The topological model agents were limited to the

nearest objects, and the visual model agents were limited to the visible agents. The visual model has the

lowest latency, because the near agents were occluded when all of the agents are concentrated in the corner

of the environment at the trial start. The trends for network efficiency, when considered by the different

radii showed that there was a markedly higher time for information propagation in the metric model, than

the topological model when the sensing range of the agent was small. That is, when the radius of attraction

is constrained to 25 or 35, with the radius of orientation at 20 and the radius of repulsion at 5, the metric

model was unable to sense as many agents as the topological model and unable to propagate information

as effectively as the topological model. Thus, the metric model’s superior ability to react to agents within

the radius of repulsion positively influenced its network efficiency. A future experiment can better measure

network efficiency by increasing the area in which the original agents are generated, in order to allow for non-

repulsive actions to have an effect on the swarm’s network efficiency. The second Follow task hypothesis,

HF2, in which the metric model has higher error than the topological and visual models, and that the visual

model has lower error than the topological model, was supported by the results. The lowest error and highest

percentage of agents following the target occurred with the visual model, followed by the topological model,

with the metric model having the lowest percentage of agents following the target and the highest error.

The results were consistent when considered by number of agents and obstacles, as well as by the radii of

repulsion, orientation, and attraction. More visual agents, after expanding from the corner in which they were

generated, are able to sense the target, than the metric or topological model agents, and are better able to

remain aligned with the target.

The Disperse task’s first hypothesis, HD1, states that the metric model will have a higher nearest neighbor
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distance and perform better than the visual model. HD2 hypothesizes that the metric model can have a higher

nearest neighbor distance and perform better than the topological model. HD1 was partially supported, while

HD2 was not supported. The topological model had a significantly higher nearest neighbor distance than the

visual and metric models, which was mostly consistent when considered by the different parameters. This

result can be explained by the topological model only focusing on a constrained number of nearest agents,

compared to the visual and topological models. The hypothesis determined that the greater number of agents

that the visual and metric models can respond to and repulse from is an advantage. However, the data implies

that the larger number of agents that the visual and metric models respond to prevents the desired repulsion, as

they will attempt to move away from objects in multiple directions and not make any significant movements.

The topological model’s nearest neighbor distance remained more constant than the metric and visual models

even when varying the number of agents or obstacles. The metric and visual models were dependent on the

changes in number of objects. Partial support for HD1 occurs in small radii and crowded environments (i.e.,

those with large numbers of agents and obstacles). The trend of higher distances for the metric model at low

values for radius of repulsion and orientation indicate that as the sensing range of the metric model decreases,

the metric model focuses better on closer objects and repels away from other objects. The smaller sensing

range allows the metric model to sense fewer objects and behave more like the topological model.

The hypotheses for the Rally task, HR1, hypothesized that the metric model will have a higher nearest

neighbor distance and perform worse than the visual model. HR2 stated that the metric model will have a

higher nearest neighbor distance and perform worse than the visual model. Neither hypothesis was supported.

The metric model had the lowest nearest neighbor distance, significantly lower than the topological and visual

models. The hypotheses for this task were predicated on the idea that the topological and visual models’

greater sensing range will allow more attraction than the metric model. However, the results suggest that the

ability to communicate with more objects misdirected the visual and topological models. The topological and

visual models’ greater sensing range meant that they were more likely to be attracted to agents in opposite

directions or to be repulsed by an obstacle. The metric agents only responded to those agents within the radius

of attraction and actually moved closer together. The topological model sensed fewer objects at a distance,

due to the limited topological number. As such, the topological model agents came together more effectively

than the visual model agents. The hypotheses’ logic was correct in identifying the sensing range as a key

performance determinant, but did not fully consider the effect that the sensing range had on the each model’s

performance. The nearest neighbor distances were consistent across the various parameters.

The Flocking task hypothesis, HMG1, stated that the visual model will have a higher change in dispersion

than the topological model, while HMG2 hypothesized that the metric model will have a higher change in

dispersion than the topological model. HMG3 stated that the visual model will have a higher change in center
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Task Recommended Model(s)
Go To Location Topological
Search Topological
Monitor Topological
Avoid Object Metric, Visual
Follow Object Visual
Disperse Topological
Rally Metric
Maintain Group / Flocking Topological

Table IV.98: Summary of recommended models for tasks.

of gravity than the topological model, and HMG4 conjectured that the metric model will have a higher change

in center of gravity than the topological model. All four hypotheses were supported by the results. The

topological model’s lower level of interaction proved to be the key in maintaining a relatively stable center

of gravity and dispersion, as proposed in the hypotheses. The results’ trends indicated that as there were

more objects within the environment, the topological model’s limited interaction allowed the swarm’s change

in dispersion and center of gravity to remain low. The larger sensing range of the metric and visual model

caused the changes in dispersion and center of gravity to skyrocket. A similar pattern was observed as the

agents’ radii of repulsion, orientation, and attraction increased; the topological model would have a consistent

performance, while the metric and visual models would have exponentially larger changes in swarm position

and density. The topological model swarms, in which agents were less likely to sense an obstacle, maintained

a low change in center of gravity and dispersion across different parameters.

Across all of the tasks, there was a clear difference between the topological model and the visual or metric

models. This difference is particularly evident for the Disperse, Go To Location, Avoid, and Flocking tasks,

and partially true for the Search task. Each task appears to have a clearly identified model that is the best

alternative for the most successful task completion. The recommended models for each task are presented

in Figure IV.98. The recommendations in which there was a clear model choice, as in the Go To Location,

Monitor, Avoid, Disperse, Flocking, and Rally tasks were straightforward. One or two models in each of

these tasks perform significantly better than the other model or models. The Search task contained only

partial indication of which model was best, but the topological model was better than the metric model, even

if no significant difference was found. The Follow Object task had conflicting results. The error metric was

deemed to be more immediately relevant to the task, and thus the visual model was selected.

The three biologically inspired communication models were able to perform most of the tasks, although

not always in the manner expected. The models performed as predicted in some cases, but more frequently

the result was different from what was predicted, but reasonable in hindsight.
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CHAPTER V

Contributions, Conclusions, and Future Work

V.1 Conclusions

This Thesis analyzed the applicability of biologically inspired swarm communication models to typical

swarm robotics tasks. Progress has been made in determining which communication models are applica-

ble to a given task, by simulating potential tasks and analyzing the results using swarm specific metrics.

Some specific tasks seem to favor the usage of a given model, like the topological model for the Disperse

task or the Flocking task. Others have a less clear difference between the models, favoring a pair of models

over the third. An example is how the visual and the metric models are preferred over the topological model

in the Go To Location task.

Biological swarms have been shown to have the ability to complete swarm robotics tasks. The abilities

of different swarm communications models have been contrasted, illustrating the strengths and weaknesses

of each model. This Thesis uses these differences to provide evidence for where one model is preferable to

another of the models.

V.2 Contributions

There are two primary contributions of this Thesis. The first component is the creation of algorithms repre-

senting the biological swarm communication models that can be applied for use in swarm robotics. A novel

application of the biological communication models as viable algorithms for completing swarm robotics tasks

was introduced. The models analyzed in this thesis had been used primarily to describe biological swarms.

The models were used to either describe a property of the biological swarms (Couzin et al., 2002; Ballerini

et al., 2008), or to emulate a facet of swarm behavior (Abaid and Porfiri, 2010). This was the first application

of these models to a variety of tasks useful for swarm robotics.

The second primary contribution is the analysis of the performance of these models in the context of

swarm robotics task. A wide range of exemplar robotics tasks were used for this Thesis, laying the ground-

work for the application of these models to actual robots. The biological models were shown to be capable

of completing the tasks, and performing in a swarm robotics environment. This capability means that further

research can be conducted on the capabilities of biological swarm models in robotics scenarios.
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V.3 Future Work

This work only begins to explore the potential of these biologically inspired swarm models. Further applica-

tions fall into one of two groups; the application based group or the theory based group. Future work from the

applications perspective involves implementing these models in physical swarms of robots and assessing the

performance of the models in real world scenarios. The models can be implemented for a variety of robots;

unmanned aerial vehicles, small insectlike robots, or even submersibles. Determining which models work

in certain environments will be a viable research topic. The visual model, for example, may not work as

efficiently in situations where the field of view is heavily occluded by dust or obstacles. The implementation

for use in the real world will not pose any great challenge using the algorithms described in Chapter III and

an appropriate abstraction layer (Brutschy et al., 2015).

The other perspective to consider is more theoretical, studying the more abstract capabilities and proper-

ties of biologically inspired swarms. While the analyzed swarms are homogenous swarms, further research

can prove that a mixture of different models of interaction will perform more effectively in the tasks. If each

robot is required to hold a single model, mixing the algorithms through the swarm may provide a way for

the properties of individual models to complement each other. A mixture of topological and visual model

agents, for example, can allow swarm to have the cohesiveness presented by the topological model and the

sensing capabilities of the visual model. Alternatively, the research can focus on adapting and optimizing a

specific model to perform in a more broad environment. The analysis environments were chosen to distin-

guish the differences of the models for each task, and were held constant for a given swarm size; variations

in the environment’s shape or properties can provide interesting differences for research. Larger obstructions

in the environment may mean that the advantages of the visual model, for example, can be negated due to a

reduction in the number of visible objects.

An alternative approach to the research perspective involves the completion of more complex tasks.

Swarms can be required to navigate first through an environment full of obstacles, and then search for goals

once they have reached a given location. The chaining of the primitive tasks more closely resembles potential

applications in the real world. Transitions from one model of interaction to another will provide an interest-

ing avenue for research, as after one task is complete, the swarm might need to transition to a model more

suitable for the follow-up task. Endless possibilities stem from these simple biologically inspired models.
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