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CHAPTER 1

INTRODUCTION AND SIGNIFICANCE

Brain disorders have an increasingly poignant socioeconomic impact, and persons with

mental illness and mental disorders, Alzheimer’s disease, dementia, Parkinson’s disease, and

epilepsy are intensely affected by these disorders. The effect on those with mental illness

is especially profound, with more than 50% of illnesses beginning by age 14, and with 75%

manifesting by the age of 24. More than 43 million adults are affected by mental illness each

year, which corresponds to about one in every five people, including anxiety disorders, major

depression, bipolar disorder, and schizophrenia. In fact, depression is the leading cause of

disability worldwide. The 10th leading cause of death in America is suicide, and 90% of those

who commit suicide have underlying mental illness. 24% of state prisoners have had recent

episodes with a mental health condition, and 26% of adults staying in homeless shelters are

affected by mental illness. Mental illnesses cost the United States more than 193 billion

dollars in lost earnings each year [6].

With the penetrating effect of mental illness and brain disorders on society and the in-

creasing number of people that are being affected, it is essential to be able to effectively

diagnose and treat people with these types of disorders. For people with mental illness,

diagnostic challenges are complicated by the absense of a diagnostic test based on physi-

ological signals to identify or differentiate mental disorders. Magnetic resonance imaging

(MRI) presents a feasible method for providing neuroimaging data of the brain which may

assist in correctly diagnosing patients. Structural MRIs are able to provide a primary view

of the anatomy of the brain, whereas functional MRIs (fMRIs) are able to provide insight

into the metabolic consumption of oxygen in the brain, which is linked to regions of effort

exertion in the brain. The signal measured is the blood-oxygen-level dependent (BOLD)
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signal. Because of the phenotypical differences in the presentation of a normal healthy brain

versus one with an underlying disease pathology, it stands to reason that through processing

neuroimages, differences in anatomical and behavioral characteristics can be identified.

Using schizophrenia as an example of the work that has been done in neuroscience and

psychiatry for studying mental illness and brain disorders, there has been extensive use of

sMRI for assessment of anatomical differences in the hippocampus and other brain cortical

and subcortical regions including the parahippocampus and amygdala [7, 8, 9, 10, 11]. This

analysis is generally performed by an expert, and requires manually identifying, tracing, and

calculating the volume of ROIs to compare against a control population. Analyses of fMRI

data have led to discoveries of functional connectivity networks, linking disparate anatomical

regions through functional similarity. In schizophrenia, this has led to the observation of

altered dynamic connectivity of brain networks including the default mode network, dorsal

attention networks, and executive control networks [12].

An essential facet of research and science that cannot be under-emphasized is the usage

of tools to process and analyze the data. The introduction of the general linear model to

perform statistical parametric mapping (SPM) [13, 14], and the voxel-based morphometry

(VBM) framework [15, 16] first introduced the ability to examine statistical differences across

subjects, which dramatically improved efficiency, and allowed for rapid voxel-wise univariate

statistical testing to identify differences, including t-tests, F-tests, and correlation analyses.

Tools such as seed-based correlation analyses, graph theory, and independent components

analysis (ICA) [17, 18, 19] have been used extensively to investigate the synchronizing be-

haviors in the brain and understand its functionality.

The development of novel tools is thus of overwhelming importance to science, and par-

ticular to the field of neuroscience, investigating the activity of the brain. The purpose of

this work is to introduce and characterize two new methods for understanding the activity

of the brain. The first method investigates the networks in the brain by scrutinizing the
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behavior of the entirety of the brain relative to one voxel. This allows the disparate regions

in the brain which perform similar activities or have similar functions to be identified. Ad-

ditionally, the ability to perform Bayesian analyses due to the probabilistic nature of the

approach is introduced. The second method investigates the brain during regions of high

synchrony, or when many regions of the brain appear to be performing similar activities.

These periods are investigated both temporally and spatially to delve into the movement of

information in the brain. In this way, this work performs the function of introducing new

tools to explain the behavior of the brain, which can be used to study and understand brain

disorders to provide better diagnoses and treatments for those affected.
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CHAPTER 2

BACKGROUND

Magnetic resonance imaging (MRI) is a powerful tool in neuroimaging for investigating

the structure and functional behavior of the brain. Two related sub-modalities of MRI used

to investigate brain activity are structural MRI (sMRI), which provides a single detailed

anatomical 3D image of the brain, and functional MRI (fMRI) which shows the physiological

behavior of the brain by measuring the blood oxygen-level dependent (BOLD) signal. In

this imaging modality, a sequence of 3D images is obtained in time at a regular sampling

interval (TR) for a given spatial resolution. Technological advances in MRI are enabling

higher sampling frequencies combined with higher spatial resolution. With these advances,

a clear interpretation of the BOLD signal is expected to demonstrate the functionality of

brain regions under situations of rest as well as during tasks. The following sections will

describe how fMRI signals are acquired and processed such that meaningful information

regarding brain functionality may be obtained.

2.1 Basic overview of fMRI signal acquisition and image formation

Figure 2.1 shows the basic components of an fMRI scanner. At its most basic level, the

scanner emits a static magnetic field generated by superconducting electromagnets which are

cooled to temperatures near absolute zero. This allows large currents to be passed through

the wire coils which compose the electromagnet with low resistance, generating high, stable

magnetic field strengths. Common strengths of magnetic fields produced by MRI scanners

are 1.5 Tesla (T), 3, 4, and 7T, although scanners up to 11T for humans and 24T for animals

are currently in use. By comparison, the Earth’s magnetic field strength is 0.00005T and

large electromagnets used to lift cars are on the order of 1T [20].
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Patient Table

Radio frequency head 

coil (not shown)

Gradient coils

Solenoid

(static field)

Figure 2.1: Basic components of fMRI scanner (head coil not shown) [1]
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The scanner additionally includes a set of gradient coils, usually arranged to cause slight

perturbations in the static magnetic field along the x, y, and z directions. The shimming

coils are used to correct for small inhomogeneities in the static magnetic field and is set per-

subject at the commencement of scanning. The radio frequency (RF) head coils are used to

excite the atomic nuclei within the tissue given the static magnetic field. Since most atomic

nuclei of interest for fMRI studies have resonant frequencies in the RF spectrum, RF signals

can be used to perturb the nuclei from its equilibrium state to an excited states. Once the

RF signal is removed, these fMRI coils located directly around the head can measure the

desired relaxation signal.

MRI is based on detecting characteristics of nuclei possessing the nuclear magnetic res-

onance property (NMR) property, which means that the nucleus of the particle has both a

magnetic moment and angular momentum. The human body contains many particles with

the NMR property, particularly hydrogen due to the high concentration of water molecules

(H2O) in the body. When placed in a strong external magnetic field usually denoted B0,

for example an MRI scanner, although all the particles spin axes will not be in exactly the

same orientation, the net magnetization (M) will align along B0. The protons (i.e., nucleus

of hydrogen atom) will initiate precession about the magnetic axis at a frequency known as

the Larmor frequency which is based on the strength of the external magnetic field.

Figures 2.2 A, B, and C show the excitation and relaxation steps necessary to generate

a T1 signal. Figure 2.2A shows an initial spin field of protons spinning about B0 with a

M along the same longitudinal axis. Excitation via a 90◦ excitation radio frequency pulse

at the nuclei’s Larmor frequency causes M to tip into the transverse plane as more spins

accumulate at a higher energy state as shown in Figure 2.2B. If the T1 measurement time

is desired (i.e., the time required for the longitudinal component of the M to return to its

low energy state shown in A), this can be measured by receiver coils.
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Figure 2.2: Excitation and relaxation of spin echo pulse sequence [2]

Figures 2.2 C and D show transverse relaxation of M due to spin-spin interactions and

loss of coherence of the particles. This is referred to as the T2 decay or the T2 relaxation

time. Additionally, inhomogeneities in the magnetic field lead to spatial differences in the

spins of the protons which leads to a loss of coherence. The signal due to the combined effects

of the spin-spin interactions and the incoherence in spins due to the magnetic field is known

as T2* decay, which is always faster than T2 decay alone. The T2* signal is associated with

the BOLD signal, and reflects how the blood oxygenation of various regions of the brain vary

depending on usage.

Figures 2.2 E, F, and G show the effects of a specialized 180◦ refocusing pulse which

reverses the incoherence due to lack of field homogeneity. Together, Figures 2.2 A-G show

an entire spin-echo pulse sequence. A pulse sequence is a pattern of changing magnetic

field gradients and electromagnetic fields that allow an image to be constructed from MR

signals. Constructing the 3D image occurs in 2 major steps: slice selection to isolate a

2D slice from the brain volume, and frequency and phase encoding to identify MR signals

from unique voxels in the slice. Other types of pulse sequences used in MR imaging include

gradient-echo, magnetization-prepared rapid gradient echo (MPRAGE), and echo planar

(EPI) imaging.
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Figure 2.3: EPI pulse sequence timing diagram and sampling of k-space [3]

Due to the increased speed of sampling, EPI pulse sequences are a popular method

of acquiring fMRI images. Figure 2.3 shows the timing diagram corresponding to k-space

sampling using the EPI pulse sequence. As shown, a 90◦ excitation pulse is applied to the

sample to tip the magnetization into the transverse plane. This is physically executed by

manipulating the scanner’s Gz gradient coils (i.e., gradient along the z-axis). Following

this step, k-space is then sampled by transversing its perpendicular axes. As shown, the

Gx gradient can be applied for a time to sample in the horizontal direction, and then the

gradient Gy can be applied to move vertically to the next horizontal line of sampling. The Gx

gradient can then be applied in the opposite direction in order to sample along the reverse

direction of the original orientation. This mechanism of sampling leads to fast acquisition

time, as only one 90◦ excitation pulse is necessary to collect an entire slice.

Unfortunately, the speed comes at the cost of post-processing to realign the data due to

the way in which EPI images are acquired, EPI artifacts from imperfections in the magnetic

field, and geometric distortions. Boundaries between air-filled cavities and tissue types are

particularly responsible for these susceptibility artifacts. Magnetic field maps can aid in

compensating for these inhomogeneities.
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2.2 Physiological basis of fMRI

The BOLD signal has been shown to vary with relation to the metabolic consumption

of oxygen due to brain activity [21]. The mechanism for this lies in the differing magnetic

qualities of oxygenated and deoxygenated hemoglobin which are diamagnetic and paramag-

netic, respectively. A number of experiments were required to uncover the relation between

the BOLD signal and de/oxygenated hemoglobin. A first complication in the measurement

of brain activity from fMRI is that the measurement must be indirect; there must be a re-

lation between neuronal activity and oxygenated/deoxygenated hemoglobin. This pathway

is through blood flow due to increased metabolic activity in the brain.

The idea that differences in blood oxygenation could be measured by the T2*-weighted

contrast was demonstrated by a study on rats that breathed air with varying levels of oxy-

genation and through an ex-vivo experiment with blood vials in a saline casing. Both exper-

iments showed that deoxygenated blood decreases the MR signal in T2*-weighted images.

Figure 2.4 shows an example of a T2*-weighted image, resulting in the BOLD contrast

imaging of the brain slice shown. As can be seen in the image, there are regions of lower

signal which correspond to the darker regions of the image. These correspond to where there

are significant inhomogeneities due to deoxygenation of the blood in these regions. There

are additionally the lighter areas of the image, which correspond to where there is more

oxygenated blood and less iron to distort the sampling of the magnetic field in this region.

A reasonable hypothesis would be that since deoxygenated blood decreases the T2*-

weighted MR signal, one would expect for period of high brain activity (high oxygen con-

sumption and hypothesized rapid deoxygenation) to correspond to decreased MR signal,

whereas low brain activity (low oxygen consumption and hypothesized low deoxygenation)

to correspond to an increased MR signal. On the contrary, an influential experiment showed

that increasing brain activity (e.g., selectively activating a region in an animal brain) in-
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Figure 2.4: An example T2*-weighted BOLD contrast image
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creased the MR signal (corresponding to decreased deoxygenated hemoglobin) [22]. The

conclusions drawn from this experiment are numerous, the most applicable being that the

activation of brain activity results in hyperperfusion of oxygenated blood to brain to the

area; this exceeds the amount that is necessary to carry out the task. Thus, an increase in

brain activity can be extracted from the T2*-weighted fMRI since the MR signal will in-

crease due to increased oxygenation. During periods of decreased activity, there will not be

a hyperperfusion of oxygenated hemoglobin and more deoxygenated hemoglobin will persist,

leading to a decreased MR signal for that region.
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Figure 2.5: An archetypal hemodynamic response function [4]

Figure 2.5 shows a characteristic response curve for the hemodynamic response function

(HDR). The HDR is the resultant BOLD signal response due to an input impulse; for an

experiment, this is usually due to a task-based activation. The HDR as shown in Figure 2.5

lacks a region known as the initial dip, which is the subject of some controversy. The initial

dip is marked by a pronounced reduction in the MR signal approximately 1-2 seconds after

a stimulus; it has been attributed to increased localized uptake of oxygen due to neuronal

activity, although it is usually only detected with sufficient averaging in lower magnetic

fields and under high magnetic field strengths [23, 20]. Regardless, the rest of the HDR

signal shows a distinct behavior of reaching a peak approximately 5 seconds after the onset
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of stimulus. If the stimulus is maintained, the HDR will reach a plateau at a value slightly

lower than the peak. Finally, after the stimulus is removed, the HDR will experience what is

known as undershoot, for reasons not fully agreed upon including differing amounts of blood

flow versus blood volume [24] or changes in oxygen metabolism [25], and then will again

reach the initial baseline. The HDR imposes limits on spatial and temporal resolution due

to the physiology behind signal acquisition [26].

2.3 Common preprocessing steps

A number of preprocessing steps are commonly applied to ameliorate inconsistencies in-

troduced by the pulse sequence and from various sources of noise. A popular pulse sequence

method is through interleaved slice acquisition, where non-sequential slices are imaged se-

quentially. For example, instead of slices 1-5 being acquired in that order, slices 1,3,and 5

might be acquired first, and then 2 and 4. This reduces cross-slice excitation. However, this

means that the BOLD time courses in adjacent slices are misaligned. A temporal interpola-

tion is usually performed to realign the time points.

An additional source of signal noise is through head motion. Small rotations or trans-

lations in the alignment of a participant’s head can cause misalignments in voxels in the

brain. This reduces the accuracy of results and if great enough in magnitude, can render

a participant’s scan wholly unuseable. Many different methods are employed to prevent

the occurrence of head motion, including bite bars, special dental molds, or individualized

masks, but specialized algorithms for estimating rotational and translational components of

head motion are often applied in practice.

Distortions in the magnetic field and field inhomogeneities can also cause signal loss or

intensity variations within the image. Distortions in the magnetic field are usually avoided

by using shims, which locally change problems in the magnetic field. However, a common
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preprocessing step is bias field estimation, where a map of intensity variations over space are

determined and these can then be corrected in the data.

fMRI scans are additionally usually co-registered to a structural scan through the esti-

mation of translational and rotational components. To facilitate the comparison of multiple

subjects, scans are usually normalized to a common space such as Talaraich space or Mon-

treal Neurological Institute (MNI) space. There are numerous methods to achieving this

normalization through surface mapping, estimation of rigid body and affine transformation

components, and warping, and many software packages available that provide this step of

preprocessing.

The data are furthermore filtered, usually both temporally and spatially. Temporal

filtering is used mostly to remove physiological noise; heart rates usually occur at 1.0 to 1.5

Hz and the rate of respiration at approximately 0.2 to 0.3 Hz [20]. The maximum frequency

that can be accurately sampled is half the sampling rate, which is dependent on the scanner.

However, depending on the frequency range of the data that is desired, a high, low, or

bandpass filter can be used to capture the desired frequency region. Spatial filtering is also

utilized in order to raise the signal to noise ratio (SNR) and improve the power of statistical

tests usually applied to interpret the data. Gaussian filters of size 6-10mm full width at half

maximum (FWHM) are usually employed for spatially fitering the data [20].

2.4 Resting-state fMRI

Analysis of the brain in the resting state fMRI (rs-fMRI) has been shown to be very

effective in revealing mechanisms of brain activity [27]. A resting state scan of the brain

is performed while the subject is lying in an MRI scanner, either with their eyes closed

or open, and not engaged in any particular task [28]. Several studies have demonstrated

that the brain is very active while a subject is at rest, and disparate regions of the brain

exhibit high correlations and coactivations, particularly in the frequency spectrum at <0.1
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Hz [29, 30]. Some research still indicates that a significant portion of the signal in this region

comes from head motion and aliased respiratory and heart rate artifacts [31].

Additionally, a number of networks have been consistently identified with high inter-

network connectivity. These networks are known as the resting state networks (RSNs), and

have been identified by different groups [32, 29, 33, 34, 35, 36], although sometimes the net-

works somewhat vary [28, 37]. RSNs are also referred to as intrinsic connectivity networks

(ICNs) to correct the notion that the brain is ever at rest in a living being [38]. RSNs persist

during all times in the human brain [39], and task-based paradigms serve only to highlight

specific arrangements of these networks [40]. These networks include the primary motor,

primary visual, extra-striate visual, insular-temporal/anterior cingulate cortex (ACC), left

and right parietal frontal, frontal, and default mode networks [28]. A commonly used parcel-

lation of the RSNs into 7 coarse regions and 17 fine regions by clustering can be found in Yeo,

2011 [5]. The 7 RSNs into which the brain is parcellated are visual, somatomotor, dorsal

attention, ventral attention, limbic, frontoparietal, and default mode network, and shown

in Figure 2.6. Additionally, several disease pathologies have been linked to abnormalities in

the resting state behavior of the brain [40, 41, 42, 43, 44].

2

Dorsal Attention Network (DAN) Default Mode Network (DMN) Frontoparietal Network

Visual Network Somatosensory Network Ventral Attention Network (VAN) Limbic Network

Figure 2.6: 7 resting state networks as identified by Yeo, 2011 [5]
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2.5 Functional connectivity computation

Functional connectivity (FC) has emerged as a popular tool in investigating the spa-

tially disparate, temporally related dynamics of brain functionality. FC is the temporal

co-activation behavior of spatially disparate regions of the brain [13] and can be observed

in the BOLD signal behavior during the resting state [45]. Popular methods include per-

forming seed-based and whole-brain correlation analyses [29]. These reveal the similarities

in brain signals between a seed region and all other brain regions, and the correlation of all

brain regions with all other brain regions. Alternative methods include data-driven meth-

ods such as principal components analysis (PCA) [46], clustering [47, 48, 49, 50] and other

graph-based connectivity methods [51, 28, 52, 53] have also been used to explore FC in the

brain. Other voxel-wise measures of connectivity have been proposed via identification by

point processes [54]. Probabilistic approaches employing Bayesian methods have also been

proposed to offer further analysis into the mechanisms of FC.

2.5.1 Dynamic functional connectivity

Recent studies have demonstrated that spontaneous brain activity appears to violate as-

sumptions of stationarity [55, 56, 57, 58], and that FC between brain regions fluctuates mean-

ingfully over several scales in time. Observed scales of this time-varying behavior include from

milliseconds (performed by other imaging modalities such as electroencephalogram (EEG),

magnetoencephalogram (MEG) [59], or ultrafast MR encephalography (MREG) [60], to sec-

onds and minutes [55, 61], to even over months and years [62, 54]. This observation has

led to a subfield of FC coined dynamic functional connectivity (dFC). dFC obtained from

resting state scans has been popular due to the unconstrained wandering of the mind during

fMRI acquisition [63].
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Several methods are commonly used to study dFC. The most popular method is through

sliding window analysis, where a temporal window size is selected, and any of the many

methods for evaluating FC is performed on this identified window. Following analysis on

the initial window span, the window is shifted by a desired step length, and the analysis is

performed again. This is repeated to the end of the timecourse. Sliding window analysis

is advantageous due to its simplicity in implementation, its approach allowing arbitrary

selection of the length of time that is desired to be studied (i.e., window length), and its

efficacy in revealing dFC features [61]. However, the sliding window analysis technique is

limited due to the difficulty of determining window sizes although some analytical guidelines

have been derived [64], and inability to resolve very complex multi-frequency interactions [61].

Additionally, depending on the activity of the brain, sliding window analysis can still cause

unwanted averaging over periods with very different levels of co-activations.
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CHAPTER 3

BAYESIAN METHODS FOR SEED-BASED CORRELATION ANALYSIS

Abstract

The first aim of my work is to introduce a method to address the limitation encoun-

tered by depending on a single seed point for seed-based correlation analysis (SCA),

and instead submit a probabilistic formulation of SCA which is robust to variations

in the initial seed point. The method will firstly produce the strength of the corre-

lations for voxels strongly correlated to the posterior cingulate cortex. Additionally,

this approach provides a probabilistic interpretation of functional connectivity net-

work behavior in the brain, and a maximum a posteriori (MAP) estimation of regions

belonging to the DMN and DAN will be demonstrated as an example application of

the procedure. In order to establish the ability of proposed method, seed cloud SCA

(SC-SCA), to provide comparably reliable results to those of SCA, the group maps

resulting from the method will be compared against those calculated from performing

SCA and region-based SCA. The SC-SCA method will also be compared against its

region-based counterpart, region-based SC-SCA in order to determine any extra ad-

vantages gained by performing a region-based correlation. The statistical significance

of the difference between methods will be evaluated by comparing the difference in the

median of the standard deviation of voxels across subjects. The components resulting

from the decomposition of the FC network from SCA and SC-SCA via ICA will also

be compared. This method represents a fully automated approach with probabilistic

interpretations which confers augmented understanding of the DMN and its relation

to underlying brain functionality.
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3.1 Introduction

3.1.1 Correlation analyses

SCA [29] is useful for addressing the fundamental question of FC - which regions of the

brain exhibit similar temporal patterns to those of a particular region of interest, regardless

of spatial distribution or anatomical connectivity? The temporal behavior of a particular

seed region of interest (ROI) is defined by its average BOLD signal time course, and is

then correlated with the time course of every other ROI in the brain. ROIs with coefficients

exceeding some threshold or level of significance using hypothesis testing are then considered

to be functionally connected to the seed region.

There are several types of ROIs conventionally used, depending on the granularity of

the desired FC network. Typical ROI selections include a single expertly-selected voxel,

geometric sets of voxels (usually a sphere), or an entire brain region as defined by a brain

atlas. Voxels or regions can also be identified based on statistical significance in task-based

fMRI scans [65].

Although single-seed ROI SCA methods are popular due to their simplicity and the

ease of interpreting the results, the FC networks generated depend notably on the initial

selection of the seed location, particularly if the seed point is a single voxel. The resultant

FC networks can vary widely if the seed location is varied even slightly [37, 66]. There

is no general consensus on locations for ROI seed centers, even for investigating a single

brain network or specific application. Thus, seed choice causes variety in the FC networks

generated for identical topics, obfuscating the meaning of the individual networks generated.

Although whole brain correlation can be performed (i.e., correlation between all voxels pairs)

to overcome the limitation to a single seed, this clouds the interpretation of connectivity with

a single region or seed.
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Despite this drawback, SCA has been used extensively to study resting state functional

connectivity and investigate the default mode network (DMN) and other resting state net-

works (RSNs) [67, 68, 69, 70]. Additionally, SCA has been used for many different ap-

plications including surgical planning [71], investigating FC of different brain pathologies

including epilepsy [72, 73], Alzheimer’s disease and aging [74, 75], autism spectrum disor-

ders [76, 77], mood disorders and schizophrenia [78, 79], the effects of chronic back pain [80],

and other clinical applications [52].

3.1.2 Independent components analysis (ICA)

Another popular method for investigating resting state connectivity and FC is through

independent components analysis (ICA) [81, 82, 83, 34, 84], which has been used to reliably

extract the resting state networks (RSNs) from several datasets [32, 85]. ICA is also known

as an approach to solving the cocktail party problem, a problem which is described as trying

to determine the underlying speech patterns from a room in which multiple speakers are

speaking and recording devices are spatially distributed throughout the room of interest. In

order to solve this question, the mixing problem can be formulated as:

X = AS (3.1.1)

where X is the matrix of fMRI data, or the recordings of the speakers through the recording

devices, S are the signals in a matrix optimized to have statistically independent spatial

maps or speech signals in its rows, and A is the mixing matrix, where time courses are

contained in the columns. For fMRI data, X has size p by n, where p is the number of time

points, and n is the number of voxels in an fMRI image. S has size q by n, where q is the

number of components, and thus A has size p by q. Analogous to the mixing formulation is
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its inverse, the unmixing formulation, which is given as:

S = A−1X (3.1.2)

In fMRI, ICA tends to be separated into two different flavors: spatial ICA (SICA), where

the independent components are spatially independent, and temporal ICA (TICA), where

the independent components are temporally independent. These are shown in Figure 3.1.

Independence can be formulated in a number of ways, including through mutual information,

infomax, and projection pursuit. An additional method of ICA frequently employed in fMRI

is probabilistic ICA (PICA), which employs probabilistic methods in order to determine the

best number of independent components to extract, and allows non-square mixing in the

presence of Gaussian noise.
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Figure 3.1: Spatial and Temporal formulations of ICA for fMRI
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3.1.3 Probabilistic methods in FC

Probabilistic interpretations of FC via Bayesian methods have also been employed. One

of the desirable features of probabilistic approaches for analysis of fMRI data is that they

are flexible in both the spatial and temporal domains [86]. However, Bayesian methods

have been predominantly limited to studying effective connectivity via data-driven methods

without using a priori models based on expert knowledge of brain structure and function [86,

87, 88, 89]. Effective connectivity differs from FC in that it identifies causality (i.e., directed

influence) between brain regions. Bayesian approaches have also been employed clinically

in studying FC differences in Alzheimer’s patients [90] and Parkinson’s disease [91] for both

task-based and resting state activity conditions [92].

3.1.4 Evaluating statistical significance between two populations

One possible method of evaluating whether a specific treatment (or method) is better

than another treatment is through hypothesis testing. In this approach, a hypothesis is made

about whether a parameter has a certain value or is in a particular range. Generally, the

default hypothesis is the null hypothesis (H0), or the hypothesis of no difference; that is, the

parameter for both treatments has the same value and there is no statistically significant

difference in applying the two treatments. The converse hypothesis, known usually as the

alternate hypothesis (HA) states that there is indeed a statistically significant difference

between the two treatments, and the parameter has a substantially different value or lies

outside the null range. The decision to accept or reject the null hypothesis and accept or

reject the alternate hypothesis is then based on test statistics calculated from the data [93].

There are two major types of errors that can result from falsely rejecting or accepting

the null hypothesis: type I and type II errors. A type I error is frequently referred to as

a false positive, and is an error that results from falsely rejecting the null hypothesis. This
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means that in the case that there is truly no difference between two treatments, a difference

has instead been incorrectly identified. On the contrary, type II errors, false negatives, are

errors that result from incorrectly accepting the null hypothesis. In this case, one has falsely

identified that there is no difference between two treatments when there is indeed a difference.

The acceptable rates of type I and type II errors is highly dependent on the application [94].

Hypothesis tests can be either one-sided or two-sided. The efforts of a one-sided test

are usually focused towards determining whether there is a positive difference or a negative

difference between two treatments. On the other hand, in a two-sided test, the thrust is

determining whether there is any difference, regardless of whether the difference is positive

or negative [93].

Bootstrapping

The other critical parameters in performing the hypothesis test are the null and sampling

distributions. Although the sampling distribution is usually unknown for a particular sample,

it can be estimated. One popular method for estimating the sampling distribution of a

sample is through bootstrapping the distribution. The purpose of the bootstrap method is

to determine a parameter of the data such as a mean, median, or standard deviation, and

also the parameter’s distribution. The bootstrap method utilizes random samples drawn

from the data with replacement in order to generate a new distribution of a parameter of

interest. In this way, the sampling distribution can be formed for a particular sample, and

depending on the formulation, it can be used determine whether to accept or reject the null

hypothesis [94].

3.2 Methodology

This section describes the steps necessary to execute the method and the procedures

taken to evaluate the results. Processing was carried out using a combination of Matlab
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R2016a (The Mathworks Company; Natick, MA, USA), Statistical Parameteric Mapping,

Version 12 (SPM12) (The Wellcome Department of Neuroscience; Oxford, UK), and the

Brain Extraction Tool (BET) [95, 96] and Multivariate Exploratory Linear Optimized De-

composition into Independent Components (MELODIC) packages of the FMRIB Software

Library (FSL) (FMRIB Analysis Group; Oxford, UK) [97].

3.2.1 Data acquisition

Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium

(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by

the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research;

and by the McDonnell Center for Systems Neuroscience at Washington University.

The subjects were drawn from a population of 1200 healthy adult volunteers in the age

range of 22-35 years. The dataset contains high-resolution T1-weighted sMRI and fMRI brain

images. A total of 16 sets of fMRI data were randomly selected from the HCP database.

All HCP subjects were scanned using a customized Siemens Skyra 3T scanner with

identical imaging parameters. The T1w image was acquired using the 3D MPRAGE sequence

with 0.7mm isotropic resolution ((FOV = 224 mm, matrix = 320, 256 sagittal slices in a

single slab), repetition time (TR) = 2400 ms, echo time (TE) = 2.14 ms, inversion time

(TI) = 1000 ms, flip angle (FA) = 8◦, bandwidth (BW) = 210 Hz per pixel, echo spacing

(ES) = 7.6 ms). The fMRI scans were obtained using the following parameters: TR=720

ms, TE=33 ms, multiband factor=8, image matrix=104x90, 72 slices, 1200 volumes (time

points), and isotropic slice size=2x2x2 mm3. Full details regarding the acquisition of the

data can be found in [98].
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3.2.2 Data preprocessing

The HCP dataset minimizes the amount of preprocessing applied to the data; relevant

preprocessing steps include removal of spatial artifacts and distortions and registration of

surfaces and volumes to standard volume and surface spaces. Further preprocessing steps

were applied subsequent to retrieving the data. First, each voxel time series was temporally

filtered using a finite impulse response (FIR) bandpass filter (0.01Hz-0.1Hz) and linearly

detrended. Since convolution of an N th-order FIR filter with the data produces a finite im-

pulse response of length (N+1) at the beginning of the data and due to other computational

limitations, a total of 200 time points were removed from the beginning and end of the data.

The data were a resultant 800 volumes in length.

The temporally filtered and trimmed data was then spatially smoothed in FSL using a

6mm full width half maximum (FWHM) Gaussian filter. The data was then normalized by

de-meaning and dividing by the standard deviation of each voxel time series.

3.2.3 Probabilistic fMRI interpretations

Probabilistic network generation

In order to generate a network map demonstrating the probability of being highly con-

nected to the PCC, an initializing fixed seed point was first selected from the DMN. For this

work, we identified the initializing seed point at the MNI coordinates [0, -53, 26] [99, 100] in

the posterior cingulate cortex (PCC). SCA was performed using the selected PCC seed, and

the voxels with the top 20% of the calculated Pearson’s correlation coefficients (r > rt) were

selected to be included in a PCC seed cloud. A typical threshold value for rt is approximately

0.4. This seed cloud represents a set of voxels that are highly correlated with the initializing

PCC seed. Two thousand voxels were then randomly selected from the PCC seed cloud as

new initial seed points. SCA was performed for each of these seed points. Two types of
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Figure 3.2: Processing pipeline for generation of PCC network maps

maps were generated to understand the relations with the PCC as shown in Figure 3.2: a

probabilistic map and an average correlation coefficient map. To generate the probabilistic

maps, the random variable X was defined to be the correlation value at a particular voxel,

and takes on values in the range of r (i.e., [-1,1]). The event Ar is defined as an event on

X which occurs when X > rt, where rt is a threshold value for Pearson’s r. The indicator

function is then defined as:

1(X) =


1 X ∈ Ar

0 X /∈ Ar

This allows the probability of event Ar to be defined as:

P (Ar) = E[1(X)]
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This was implemented by thresholding each of the 2,000 SCA maps at rt + 0.1. This slight

increase was included to reduce artifacts around the initializing seed. These 2,000 maps were

averaged to generate a probabilistic PCC network map for each subject.

The average correlation coefficient map was generated in a similar way, except after the

2,000 SCA maps were generated, they were simply averaged to generate the PCC network

map reflecting the expected value of the correlation with the highly connected PCC seeds.

To perform a group analysis of all 16 subjects, the PCC network maps for each subject

were averaged to generate a group map. To determine binary inclusion of a voxel in the

PCC network for the average correlation map, the group PCC network correlation map

was thresholded at r=0.4, and voxels with r>0.4 were considered to be a part of the PCC

network.

Maximum a posteriori network estimation: an example application

In order to demonstrate the efficacy of this method for a Bayesian interpretation, an

example application of maximum a posteriori (MAP) estimation for the DMN and DAN

networks is presented. To use this method, a binary a priori estimate of the DMN and DAN

networks was obtained from the liberal 7 network Yeo cortical parcellation map [5]. This was

used as an initializing seed cloud in order to generate the expected value of the correlation

coefficient map (E[correlation|seed ∈ Network]), denoted θ for each of the 16 subjects.

For each voxel vi in the map, a probability density function (PDF) for the correlation was

generated using the 16 subjects, and was modeled as a Gaussian PDF by computing the

group mean µ and standard deviation σ as parameters. This computation is the likelihood

function for a voxel being in the network, and denoted as f(θ|vi ∈ Network).

The binary estimate of the network of choice was then used to generate a smoothed

estimate of the network by convolving each of the voxels with a Gaussian, producing an
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a priori estimate denoted P (vi ∈ Network) which reduces strict cutoffs in the probability

estimation.

According to Bayes’ Rule, using these elements, a maximum a posteriori estimation of

the probability of vi ∈ Network given the average correlation estimate θ can be expressed

according to Equation 3.2.1.

P (vi ∈ Network|θ) =
f(θ|vi ∈ Network)P (vi ∈ Network)

f(θ)
(3.2.1)

The term f(θ) can be computed using the smoothed a priori network estimates and the

likelihood function as shown in Equation 3.2.2.

f(θ) = f(θ|vi ∈ Network)P (vi ∈ Network)+

f(θ|vi /∈ Network)(1− P (vi ∈ Network))

(3.2.2)

3.2.4 Sensitivity analyses

Sensitivity analyses are essential in evaluating the dependence of the proposed algorithm

on the parameters used to generate the results. Two sensitivity analyses were performed in

order to determine the robustness of the PCC network map algorithm: (1) the number of

seeds used to produce the cloud of highly correlated points, and (2) the location of the initial

PCC seed point.

Number of cloud seeds

In order to assess the effects of varying the number of seeds to generate the point clouds

on the generated PCC network map, a subject whose PCC map was representative of the

PCC network was selected. An identical procedure to the one described in the above section

was performed; however, the number of seeds was varied from 1,000 to 10,000 in increments

27



of 1,000, generating 10 maps. In order to assess the similarity between the generated net-

works, each map was thresholded at an average correlation value of r = 0.4. Then, Dice’s

coefficient [101] was calculated between each of these binary maps and the base map (i.e.,

the map generated by choosing a 2,000 seed point cloud). Dice’s coefficient for two sets

(e.g., maps) X and Y are given by the following equation, and is a measure of the similarity

between the two maps.

D =
2(|X ∩ Y |)
|X|+ |Y |

The coefficient varies between 0 and 1 with 1 indicating that the maps are identical, and the

| ∗ | notation indicates the cardinality of the set.

Initial PCC seed location

A similar technique was employed to assess the robustness of the PCC network map

against variations in the location of the initial seed point. In order to assess this, the initial

seed point was varied from the original PCC seed point ([0, -53, 26]MNI) by ±10mm in 2mm

increments along the vertical, transverse, and sagittal axes. This generated a total of 31

maps, including the map corresponding to the original seed point. The maps were compared

in the same way as in Section 3.2.4 by thresholding the maps at r = 0.4, and calculating

Dice’s coefficient between the base map (i.e., the map generated with the PCC seed point of

[0, -53, 26]MNI) and each of the variational maps.

3.2.5 Comparison with SCA and region-based correlation

In order to compare the efficacy of this method against existing methods, the seed cloud-

based SCA (SC-SCA) was compared against the commonly used method, SCA. Additionally,

to further assess the significance of the initial seed point and associated time series, a region-

based method was also investigated.
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Generation of region time course

The region identified for use in the region-based SCA and SC-SCA was the PCC region.

In order to generate a binary image of the region, Yeo’s parcellation [5] of the DMN was first

attained and then transformed into MNI space using SPM12. Following this computation,

Multi-image Analysis Graphical User Interface (Mango) [102] was then used in order to

calculate the ROI corresponding to the PCC. This was done by drawing a 22mm sphere

around the estimated center of the PCC region in the DMN, and then performing a Shrink

Wrap on the enclosed region. This was then saved and exported as the new region.

Following the binary identification of this region into a mask, the mask was then applied

to each subject’s time course, allowing all the time courses for all the voxels in the included

region to be determined. These were then averaged in order to form the average time course

for the region. Thus, instead of a single point being used for the seed point, the whole

averaged time course for the region was utilized.

SCA

In order to assess the performance of SC-SCA, it was compared against the traditional

method of SCA. In fact, SCA simply requires a subset of the steps required for SC-SCA.

In order to perform SCA, first, a time course was identified based on either the PCC seed

described in Section 3.2.3 or the region-based time course described in Section 3.2.5. After

this time course was identified, it was then correlated with each other voxel in the brain

using the following equation:

rj =
1

n

(x− x̄) · (yj − ȳj)
σxσy,j

(3.2.3)
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where rj is the correlation value for the jth voxel in the brain, n is the number of volumes

in the time course, x is the seed time course, yj is the time course for the jth voxel, and σx

and σy,j are the standard deviations of each of the time courses.

The final generated product of SCA is a correlation map describing the correlation of the

time course with each other voxel of the brain.

Modality of method comparison

To determine if there is a statistically significant difference in the different methods, the

standard deviation of the correlation value in each voxel for each of the different methods

was determined. This was done by calculating the standard deviation per voxel across the 16

subjects for each method of generating correlation maps (SC-SCA vs SCA and seed-based

vs region-based). This generated single volume of standard deviations was considered as a

distribution of the standard deviations of the correlation values over all the voxels.

The following methods were then compared on the basis of the KS statistic:

• Seed-based SC-SCA vs seed-based SCA

• Region-based SC-SCA vs region-based SCA

• Seed-based SC-SCA vs region-based SC-SCA

• Seed-based SCA vs region-based SCA

• Seed-based SC-SCA vs region-based SCA

• Region-based SC-SCA vs seed-based SCA

In this way, the statistical significance between all of the different methods can be adequately

evaluated.
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Bootstrap of sampling distributions

In order to visually inspect the differences between the standard deviation in voxels of

all four methods, first, bootstrap sampling was performed on each of the four methods. To

perform this for a single method, a sample was generated by randomly choosing 16 subjects

(with replacement), and the standard deviation for each of the voxels was calculated. Then,

the median of the standard deviation of all the voxels was calculated for the sample. This

was repeated n times (1,000 in this work) in order to form a distribution of the median values

of the standard deviation of the voxels across the subjects. The 95% confidence interval was

then calculated for each of the distributions. This was repeated for each of the four methods.

Following this qualitative assessment of the difference between methods, a calculation

of the statistical significance between the difference between the medians of the standard

deviations across voxels was calculated. For a comparison between two methods, method

A and method B, a single sample was generated of 16 randomly chosen subjects with re-

placement. Using this sample, the standard deviation was calculated for each voxel, and

the medians, µA and µB, were determined for each method. Following this calculation, the

difference between the medians was calculated as µdiff = µA - µB. This allows for a signed

difference to be estimated between the two methods. This was repeated 1,000 times in or-

der to form a distribution of µdiff . In the case that there is no difference between the two

methods, the data should nearly be centered around a standard deviation difference of 0. A

statistically significant difference between the two methods, on the other hand, should be

indicated by where the y-axis (y0) lies with respect to the distribution. If P (y0 ≤ α/2) or

P (y0 ≥ (1−α/2)), then the null hypothesis is rejected and there is a statistically significant

difference between the two methods. In this work, the level of significance was set to α=0.05.

This was repeated for each of the of the combinations of the different methods.
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3.2.6 Decomposition of networks via ICA

In order to determine the constituent components of the networks produced by SCA and

SC-SCA, the networks were decomposed into independent components (ICs) using ICA. This

was performed by first thresholding the seed-based correlation maps produced by SC-SCA

and SCA at 0.5 to produce an estimate of the voxels which are most highly correlated to the

seed of interest. These networks were then decomposed using MELODIC in the FSL [97]

software package. The number of constituent ICs for the software to generate was set to 10.

Following ICA on the SC-SCA and SCA networks, the ICs were visually inspected for

similarities between the two groups. Similar ICs were grouped together and dissimilar ICs

were noted.

3.3 Results

A probability value or a correlation value at a particular voxel for a single subject in a

generated PCC network map can confer several interpretations and expand current under-

standing of the DMN and connections to the PCC. Robust definition of the DMN is critical

to understanding structure-function relations within this network, and how it remodels dur-

ing the disease process or evolves with development or aging [103, 104, 105, 106]. These

interpretations are extended for the group of 16 subjects and their dependence on particular

parameters is reported in the following sections.

3.3.1 Probabilistic network map

Figure 3.3 shows the expected value of the probability of being highly correlated to

the PCC. The average probabilities range from 0 to 0.6. As shown, the regions with the

highest probabilities (in white, >0.55) are the precuneus (pC) and the PCC, and neither of

these two regions contains the location of the initializing PCC seed. Other regions with high
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probabilities of connection are closely related to the commonly accepted regions of the DMN,

which include the medial prefrontal cortex (mPFC), the left and right inferior parietal lobule

(R/L IPL) with probabilities >0.45, and also the parahippocampus (PH) and hippocampal

formation (HF) regions with probabilities >0.35.
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Figure 3.3: Probabilistic PCC network for set of 16 subjects

The most straightforward interpretation of these probabilities is a probability of connec-

tion; that is, if a random seed was identified in the brain, what is the probability that it

would be highly connected to the PCC? An alternate interpretation also allows the relation

of the percentage of the PCC network with high correlation to the voxel of interest; that

is, what percentage of the PCC network has a high correlation to a particular voxel? This

method allows a deeper probabilistic understanding of connections in the DMN, while also

being in accordance with the current understanding of DMN FC.
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3.3.2 Correlation network map

Figure 3.4 displays the mean PCC correlation network map for the group of 16 subjects.

As shown, there is high correlation (r>0.65) between the main parts of the PCC network,

mPFC, the PCC, pC, and the right and left IPL. The expected values of the correlations

range from 0 to 0.7; although correlation values with the DMN can often dip into negative

values, these values are likely averaged out due to the computational averaging over an entire

time series and different seeds for a voxel to compute the correlation coefficient.
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Figure 3.4: Mean Pearson’s correlation coefficient for set of 16 subjects

This method also reveals other sets of sub-networks associated with the DMN, while also

showing the extent of the connectivity between the sub-networks and the PCC network.

This is clearly demonstrated when evaluating the correlation values (i.e., r) on intervals,

e.g., (-∞,0.3), [0.3, 0.4), [0.4,0.5), [0.5,0.6), [0.6,0.7), and [0.7,∞). Although these ranges
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were defined arbitrarily, the delineations via correlation coefficient tend to segment the PCC

network into regions referred to as the DMN and others sometimes associated with the DMN.

As Figure 3.4 shows, the r≥0.7 (in white) region identifies the most highly correlated

regions in the PCC network; as shown, this includes the pC and PCC, neither of which are

within a 4mm sphere of the seed region. However, these are essential components of the

DMN.

The second most correlated segmentation (interval [0.6,0.7)) shown in red includes a

larger region surrounding the highly correlated regions in white, but additionally include all

of the regions which are known to be in the DMN (mPFC, right and left IPL, PH). However,

there are an additional set of regions including the right and left mid frontal gyrus, the right

and left fusiform gyrus, and the middle and superior right and left temporal gyrus, the left

superior parietal lobule, the left cingulate gyrus, and the left culmen. An unexpected region

of correlation of between 0.6 and 0.7 with the PCC network is the lingual gyrus, which is

not usually associated with the DMN.

The third most correlated segmentation are the areas with r between 0.5 and 0.6 (orange),

and correspond to the largest volume of the brain. Although this is the third level of

connection identified by the arbitrary thresholds, the correlation values are still relatively

high, meaning that the PCC network spans and touches many regions and networks of the

brain with high levels of connectivity. These regions include the right and left mid frontal

gyrus, which are areas speculated to be associated with the DMN, as well as the insula,

cuneus, and several other regions.

Correlation values of r<0.5 (yellow, green, and blue), appear to correspond very strongly

to white matter pathways along which information can be passed along the transverse,

vertical, and sagittal axes. Partial volume effects and the effects of smoothing are likely

responsible for the clear interface values (e.g. outlining of ventricles) between white matter
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and gray matter values. The ventricles correspond to the lowest areas of correlation to the

PCC network.

It is additionally interesting to note the interpretation of these results based on the

hypothesis considered about brain functionality. One hypothesis about the functionality of

the brain is that there is a certain time-multiplexing of different subsystems of the brain

to the PCC; in that case, the PCC network generated may reflect the amount of time

that the subnetworks or regions are connected to the PCC network. On the other hand

as represented here, if the assumed hypothesis is that the brain is organized into constant

networks of varying connectivity, then the PCC network generated represents the average

strength of the connectivity.

3.3.3 MAP DMN and DAN estimation

Figures 3.5, 3.6, and 3.7 show a set of MAP estimates for the DMN based on the a priori

probability maps used for their calculation. Figure 3.5 shows the probability estimates for

voxel-wise inclusion in the DMN given a 4 mm Gaussian smoothing of the binary a priori

DMN map. The probabilities range from 0 to 0.99, and as shown, the mPFC, the right and

left IPL, the PCC, and PC all have probabilities >0.9 of being in the DMN. The amount

of smoothing used can be interpreted as reflecting the amount of confidence in the a priori

estimate; more smoothing corresponds to less confidence and vice versa.

In contrast, Figure 3.6 shows the DMN for a 10 mm Gaussian smoothing of the binary a

priori DMN map. Due to the larger area of smoothing, the DMN inclusion estimates have a

slightly lower range, from 0 to 0.87, but all of the same regions with the highest probabilities

are included in the DMN MAP estimate. As shown, there is a significant difference in the

detail obtained from the 4 mm vs the 10 mm smoothing; for example, fine “u” and “n”

shapes can be seen in the axial and coronal slices at Z=-4 and Y=60, respectively. However,

at the 10 mm smoothing, these levels of fine detail are lost. This can also be seen in the
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Figure 3.5: 4mm Gaussian kernel a priori smoothing for DMN

X=-56 sagittal slices of the brain, where two regions of very high probability can be discerned

in the mPFC; however, this is again lost in the 10 mm MAP estimate.

Figure 3.7 shows the effect of complete ignorance (i.e. uniform a priori probability of 0.5

for all brain voxels) of the a priori probabilities on the MAP estimate. This is equivalent to

a maximum likelihood estimate. As shown, most regions have a probability of 0.5; however,

the regions that are known to be in the DMN still have higher probabilities (e.g., >0.7) of

inclusion in the DMN. This map has the smallest maximum MAP probability value of 0.77.

Figures 3.8, 3.9, and 3.10 show a similar set of MAP estimates for the DAN network.

Figure 3.8 shows the MAP estimate using a relatively “certain” a priori DAN network with

a 4mm smoothing applied. As shown, the voxels with high a posteriori estimates are those

belonging to the DAN network. This can be seen in the component brain regions, including

the right and left intraparietal sulcus (IPS) and the right and left frontal eye fields (FEF).
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Figure 3.6: 10mm Gaussian kernel a priori smoothing for DMN
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Figure 3.7: Maximally ignorant (assuming a constant) a priori distribution (p=0.5), equiv-
alent to maximum likelihood estimation for DMN
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There are also regions of high MAP value in the right and left fusiform gyrus. The MAP

estimates range from 0 to 0.96, which the voxels with the highest MAP estimates more likely

to be in the DAN.

Figure 3.9 shows a MAP estimate for a less certain a priori distribution for the DAN

network. Similarly to Figure 3.6, the produced estimates appear a little more diffuse than

the 4mm networks, with a lower range of values for the MAP estimates. The range for the

MAP estimates for this level of smoothing is from 0 to 0.78 and the regions with the highest

certainty around 0.7 are the IPS, FEF, and fusiform gyrus regions.

The maximum likelihood estimation for the DAN network is shown in Figure 3.10. As

shown, most areas have an value close to the a priori estimate of p=0.5, but regions associ-

ated with the DAN have slightly elevated values. These values range from about 0.6 to the

maximum value of 0.77. In this case, these regions for the IPS and the FEF are in the most

superior regions of the brain; in contrast to Figure 3.8, the FEF and IPS regions in the axial

slices are not nearly as pronounced.

3.3.4 Sensitivity analyses

The effect of the number of seeds parameter and the location of the initializing PCC

seed were specifically assessed in this study. There are additionally other parameters which

have an impact on the generated PCC network maps; however, their contributions have

predictable results. For example, a correlation threshold corresponding to the 80th percentile

and higher (i.e., top 20% of the correlation values) was used to identify the seed cloud of

voxels highly correlated with the PCC. This threshold can be raised or lowered; raising the

threshold results in PCC network maps that have higher overall correlation values, whereas

lowering the threshold results in lower overall correlation values. Similar behavior exists with

the r = 0.4 threshold used to generate the sensitivity maps; lowering the threshold simply

creates larger binary maps and raising the threshold creates binary smaller maps.
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Figure 3.8: 4mm Gaussian kernel a priori smoothing for DAN
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Figure 3.9: 10mm Gaussian kernel a priori smoothing for DAN
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Figure 3.10: Maximally ignorant (assuming a constant) a priori distribution (p=0.5), equiv-
alent to maximum likelihood estimation for DAN

Number of cloud seeds

Figure 3.11 displays the effect of varying the number of seeds selected from the PCC seed

cloud on the PCC network generated. As shown, there is a similarity of at least 99% for the

maps generated via any of the numbers of seeds that were investigated. Utilizing 1,000 seeds

results in a slightly smaller similarity than the larger number of seeds (2,000 seeds has an

overlap of 100% since it is compared against itself), and the most effective number of seeds

as compared to 2,000 seeds are 3,000 and 4,000.

As the number of seeds increases, the similarity between the networks generated and the

2,000 seed map decreases slightly. This >99% similarity thus validates the usage of 2,000

seeds to generate the networks; the usage of this number of seeds thus optimizes the speed of

the algorithm (fewer seeds results in faster processing time) with the fidelity of the results.

41



Figure 3.11: Dice’s coefficient for sensitivity analysis for effect of number of seeds utilized
on the PCC network generated

Initializing PCC seed location

The effect of varying the initializing seed of the PCC network along the sagittal, trans-

verse, and axial axes is shown in Figure 3.12. All of the results are compared initializing the

algorithm with the [0,-53,26]MNI seed, which corresponds to the 0 mm offsets in Figure 3.12.

Since this is the location which is being compared against, Dice’s coefficient of similarity

with this seed location is 100%.

As shown in Figure 3.12(a), varying the initializing seed location along the sagittal axis

does towards the right represents only a minimal 4% change in the similarity of the networks

generated. Varying the seed location along the sagittal axis towards the left however, has a

slightly increased change of ∼12%, and thus, varying along one direction rather than another

has a small, asymmetric impact on the network generated.

Varying along the transverse axis in an anterior direction represents the largest devi-

ation of all from the network generated at a difference of 20% in the network, as shown

in Figure 3.12(b). Due to the importance of sub-organs represented in the vicinity of the

PCC (e.g., pC) along the transverse axis, varying in the anterior direction can correspond to

42



(a) Sensitivity of varying ±10mm on sagittal axis

(b) Sensitivity of varying ±10mm on transverse
axis

(c) Sensitivity of varying ±10mm on vertical axis

Figure 3.12: Sensitivity analysis varying the location of the initializing PCC seed point
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becoming increasingly closer to an organ that has strong connections to other subnetworks,

thus leading to a slightly different network produced. This 10 mm anterior venture results in

a network with slightly stronger correlation values to the pC, PCC, mPFC, and other areas

associated with the DMN, but also has strong correlation (>0.61) to regions such as the cere-

bellar tonsil, declive, and culmen. Varying the location of the initializing PCC seed towards

the back of the head only results in a small difference (∼8%) in the compared networks.

Figure 3.12(c) shows that varying the location of the initializing PCC seed along the axial

direction in either the superior or inferior directions produces a rather symmetric effect on the

generated network, and does not particularly affect the network generated. All perturbations

of the location in the axial direction resulted in Dice similarities exceeding ∼90%.

3.3.5 Comparison of region-based and seed-based SCA and SC-SCA

The following results outline the generated correlation maps generated from SCA and

SC-SCA. The statistical differences between the methods will additionally be described.

Region identification

Figure 3.13 shows selected slices of the the Yeo, 2011 [5] parcellation of the DMN (in

white) in the vertical, transverse, and sagittal directions. The area identified to be the PCC

is shown in red. The other brain region near the PCC and in some slices appear to be adjoint

to the PCC is the pC.

Correlation maps of different methods

Figure 3.4 shows the generated correlation map for the seed-based correlation analy-

sis for SC-SCA, and discussion of this map can be found in the preceding sections. Fig-

ures 3.14, 3.15, and 3.16 show the remaining 3 correlation maps for the combined treatments

of SCA vs SC-SCA and seed-based vs region-based correlation analysis.
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Axial

Coronal Sagittal

Figure 3.13: PCC region (in red) identified using Yeo, 2011 parcellation of the DMN (in
white)
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Figure 3.14: Group correlation map for region-based SC-SCA

Figure 3.14 shows the correlation map for the region-based SC-SCA method. The range

of this correlation map is a minimum of -0.03 to 0.71. In this case, the correlation map

does dip into negative values, although it is only very slightly less than zero. As shown, in

this case, compared to the seed-based method, the strength of the correlation values in the

classical DMN regions including the mPFC and the left and right IPL are all much weaker

and less pronounced. The only place that retains the high level of correlation is in the PCC

region, particularly near the region from which the comparison time course was calculated.

All other correlations in DMN regions are less obvious than in its seed-based analogue.

Seed-based SCA is shown in Figure 3.15. This correlation map differs greatly from the

seed-based and region-based methods of SC-SCA. As shown, the area of highest correlation

is directly around the seed point, which has a correlation value of 1. Other DMN regions

including the mPFC and right and left IPL have substantially lower correlation values around

0.6-0.7. Looking at this from a network perspective, it would not be unreasonable to consider
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Figure 3.15: Group correlation map for seed-based SCA
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Figure 3.16: Group correlation map for region-based SCA
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the PCC and pC as their own private network, and the left and right IPL and the mPFC

as a totally different network. This is because their correlation values are so disparate. The

minimum value of the correlation map generated by this method is -0.05, which is only a

very slight negative value, and the maximum is 1.

The correlation map resulting from region-based SCA is shown in Figure 3.16. As shown,

the map appears to be similar to the region-based SC-SCA method in that it has a somewhat

ambient correlation value of about 0.5 with nearly the whole brain. There is a maximum in

the correlation in the region where the time course was calculated from in the PCC. However,

again and similarly to seed-based SCA, there is relatively little correlation to the right and

left IPL and the mPFC. The majority of the maxima in correlation appears to be within

the PCC region. The maximum value of correlation in this map is 0.82, and the minimum

is slightly negative at -0.03.

Assessment of statistical significance

Figure 3.17 shows a comparison between the distributions of the median of the standard

deviations of voxels across 1,000 bootstrap samples. As shown, seed-based SCA has the

highest median value of 0.23, and it visually differs in location from the other three methods.

The rest of the methods have similar medians of 0.1811, 0.1712, and 0.1615 for seed-based

SC-SCA, region-based SC-SCA, and region-based SCA.

Figure 3.18 shows the sampling distribution of µdiff for the comparison between seed-

based SC-SCA and seed-based SCA. The 95% confidence interval for this comparison is

(-0.0876, -0.0178). As shown, the entirety of the distribution is to the left of 0. This means

that there is definitively a statistically significant difference between seed-based SC-SCA

and seed-based SCA. Since the differences are negative, this shows that seed-based SC-SCA

has a statistically significant lower median than that of seed-based SCA, which presents an
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Figure 3.17: Distribution of medians bootstrapped from four methods of correlation analysis
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Figure 3.18: Comparison of difference in medians of standard deviations of voxels for seed-
based SC-SCA and seed-based SCA

advantage of SC-SCA over SCA: there is statistically significant lower inter-subject variance

in the correlation maps created by SC-SCA.

The sampling distribution of µdiff for the two region-based methods for SC-SCA and

SCA are shown in Figure 3.19. The figure shows that the distribution overlaps 0 and has

values on both the positive and negative side. For this comparison, the confidence interval

of the data was found to be (-0.0087, 0.0299). A value near the lower bound for 2.5% of the

data (-0.0087) is shown in the figure, and as shown, it is not on the right side of the y-axis;

in other words, this means that the comparison of these methods do not meet the criteria for

statistical significance of a difference between them, and quantitatively, there is no particular
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Figure 3.19: Comparison of difference in medians of standard deviations of voxels for region-
based SC-SCA and region-based SCA

difference in using one method rather than the other. This means that it is equally effective

to use region-based SC-SCA or region-based SCA; they produce similar results in terms of

inter-subject variability for the correlation maps created.

Figure 3.20 shows the sampling distribution of µdiff for seed-based SC-SCA and region-

based SC-SCA. As shown, the distribution overlaps zero and results on data on both sides

of the y-axis. The 95% confidence interval of the data can be found in the range (-0.0086,

0.0265), and as shown in the figure, the lower bound falls on the left side of the y-axis. Thus,

again, the difference between these two methods is not statistically significant, meaning that
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Figure 3.20: Comparison of difference in medians of standard deviations of voxels for seed-
based SC-SCA and region-based SC-SCA

utilizing a region-based method vs. a single seed point does not make a substantial difference

when using SC-SCA. SC-SCA performs equally well with both methods.

The comparison between using a seed-based approach versus a region-based approach for

SCA is shown in Figure 3.21. In this case, the entirety of the distribution is on the either on

the y-axis or to the right side of the y-axis, which means a statistically significant difference is

found between these two methods. The 95% confidence interval here is (0.0250, 0.1171), and

statistical significance can again be seen by observing the y-axis with respect to the confidence

interval lower bound, 0.0250; since the y-axis is less than this lower bound, the results are

statistically significant. Considering the side of the graph on which the distribution falls, this
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means that seed-based SCA has higher inter-subject variance in the correlation maps than

using its region-based analogue. This means that for SCA, the choice of a seed-based method

versus a region-based method again does, in fact, matter. This confirms the point of view

often expressed in the seed-based correlation literature for resting state fMRI; a region-based

method is often preferred to a seed-based method for SCA. Compared to the previous finding

about seed-based SC-SCA and region-based SC-SCA, this presents a particular advantage for

SC-SCA; since region-based methods are used in SCA to overcome the problem of producing

different networks for different close seed points, SC-SCA alone is able to overcome this

problem as shown by its ability to produce similar maps, regardless of whether seed-based

SC-SCA or region-based SC-SCA is utilized.

Figure 3.22 shows the comparison between seed-based SC-SCA versus the region-based

version of SCA. As shown, the distribution overlaps the y-axis and so it is distributed about

y=0. In order to determine statistical significance, the bounds of the 95% confidence interval

of the distribution were calculated to be (-0.0062, 0.0479). As shown, the lower bound falls

to the left hand side of the y axis (i.e, the y-axis is greater than the lower bound), so that

the difference between these two methods is not statistically significant. This is also an

advantage conferred to seed-based SC-SCA, since this comparison shows that it produces

similar results to region-based SCA, which has shown to be superior to seed-based SCA.

Figure 3.23 shows the distribution of µdiff for the comparison between region-based SC-

SCA and seed-based SCA. The 95% confidence interval for the comparison between these

two methods is (-0.1003, -0.0240). As shown, the distribution lies entirely on the left-hand

side of the y-axis, showing that the difference between these two methods is statistically

significant. In interpreting the directionality of the difference, the negative signifies that

region-based SC-SCA has a lower variance between the maps produced by this method than

those produced by seed-based SCA. This shows that using the region-based method with

SC-SCA is statistically and quantitatively different from that of seed-based SCA, and confers
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Figure 3.21: Comparison of difference in medians of standard deviations of voxels for seed-
based SCA and region-based SCA
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Figure 3.22: Comparison of difference in medians of standard deviations of voxels for seed-
based SC-SCA and region-based SCA
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Figure 3.23: Comparison of difference in medians of standard deviations of voxels for region-
based SC-SCA and seed-based SCA

yet another advantage to SC-SCA. Additionally, previous findings are consistent with these

findings; it was found that there was no significant difference between region-based and

seed-based SC-SCA, and seed-based SC-SCA is superior to seed-based SCA in terms of

inter-subject variance.

The results of the following 3 comparisons suggest that it is immaterial which method is

used in the following cases:

1. The two region-based methods: region-based SC-SCA and region-based SCA

2. Seed-based SC-SCA or region-based SCA
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3. Seed-based SC-SCA or region-based SC-SCA

This shows that the two region-based methods are quantitatively similar, and it does not

matter which is used because they produce similar results. Using a region-based method

may introduce a disadvantage in general due to the difficulty in identifying a region as

well as possible inhomogeneity in the time courses gathered from the region. Additionally,

it is irrelevant whether seed-based SC-SCA and region-based SCA is used; this presents

an advantage for SC-SCA because the seed-based method can possibly be easier to use

by identifying a single seed voxel and due to the probabilistic advantages conferred by the

method. Additionally, there are no significant differences between using seed-based vs region-

based SC-SCA; using the region does not improve the consistency among the maps created

with the subjects. This is additionally another advantage of SC-SCA.

On the other hand, the results of the other half of the comparisons suggest that there are

distinct differences in the standard deviation of the maps that are produced in the following

cases:

1. Seed-based SC-SCA vs seed-based SCA

2. Region-based SC-SCA vs seed-based SCA

3. Seed-based SCA vs. region-based SCA

Firstly, there are disparities in the stability of voxels as measured by the standard deviation in

the maps created by seed-based SC-SCA vs. seed-based SCA. It is not clear that seed-based

SC-SCA is more stable in terms of inter-subject variability of voxels between generated maps.

Also, there are differences between using region-based SC-SCA vs seed-based SCA. This can

also be easily seen in the maps produced in the figures comparison of the correlation maps

of the 4 different methods. Region-based SC-SCA has lower variance in the maps between

subjects than seed-based SCA. Also, there is a statistical difference in using seed-based SCA

vs region-based SCA, where region-based SCA has been shown to be superior as measured
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by inter-subject map variability. This makes sense since region-based SCA methods are often

used in the literature instead of seed-based methods. Region-based methods, particularly

with SCA, increase the stability of the generated map in terms of the location of the seed

region. This also makes sense in this context; choosing the same seed in each subject may

correspond to slightly different regions or voxels due to the acquisition and preprocessing

of the data, thus slightly different maps per subject are created from using the seed-based

method. SCA is particularly sensitive to these discrepancies, whereas the results show that

SC-SCA does not improve in stability due to using a region as the seeding time course.

3.3.6 Decomposition of networks into constituent ICs

Figures 3.24 and 3.25 show the decomposition of the SCA and SC-SCA thresholded

networks into their constituent 10 ICs. These figures are divided for clarity and convenience.

Figure 3.24 and the first 3 frames of Figure 3.25 show a set of ICs in which an SC-SCA

match was found for each SCA IC. As shown, although each of the ICs generally matches

its SCA analogue, the SC-SCA ICs are much more diffuse and expanded.

Additionally, the ICs shown resemble several of the RSNs and cover several anatomical

areas of the brain. Similar IC (SIC) 1 shows a part of the DMN, with the PCC and right

and left IPL well-represented. There is a small area identified which is located within the

mPFC. As shown, the PCC region is divided into two parts in the SCA network, but the two

regions are connected into one contiguous region in the SC-SCA network. SIC 6 displays

the mPFC region of the DMN, and again the IC in the SC-SCA method is more widespread

than in the SCA method.

SICs 2 and 3 resemble the DAN, divided by the more prominent side that is represented

(i.e., SIC 2 has a more prominent right part of the DAN and SIC 3 has a more prominent

left part of the DAN). This is particularly pronounced in the SC-SCA network IC. SIC 4 has
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regions in common for SCA and SC-SCA, but there are several more regions of activation

in the SC-SCA formulation.

SIC 5 most strongly shows the difference in the FC formulation of SCA vs the SC-SCA

formulation. As shown, the ICs contain regions in the frontal lobe and in the PCC area;

however, the SC-SCA region additionally shows the path of activation between them. It

additionally demonstrates connectivity with the cerebellum and lateral sides of the brain.

SIC 7 shows a similar level of connectivity between regions. Again, as shown in the SC-SCA

method, there is enhanced connectivity between a PCC region and an mPFC region, whereas

in the SCA method, these regions are completely separate.

SIC 8 and Dissimilar ICs (DSICs) 1 and 2 show regions and networks of the brain that are

highly recognizable. SIC 8 shows a small piece of the cerebellum for the SCA method, but

shows a larger region of connectivity in the cerebellum, on the brain stem, and in the occipital

lobe of the brain. DSICs 1 and 2 for SCA appear to both be regions of the cingulate cortex.

On the other hand, DSICs 1 and 2 for SC-SCA appear to be the somatosensory network and

the occipital lobe.

SC-SCA presents several advantages over SCA, the most important being the Bayesian

inferences and calculations that can be performed due to the probabilistic nature of the

method. Additionally, the method relies less on the identification of the initial seed - firstly,

as shown by the sensitivity analyses, but also because the initial seed is only used to identify

points that are highly correlated to the initial seed point. This corresponds in this work

to approximately 2,000 points which are averaged to determine the network of correlation.

SC-SCA also appears to have fewer artifacts around the seed region as compared to SCA,

and is able to identify the finer structures of connection despite being near the seed region.

Additionally, because the network generated by SC-SCA is larger and shows secondary con-

nectivity (i.e., connectivity to voxels highly connected to the PCC), the decomposition of

the network into ICs is highly illuminating. Instead of simply disparate regions of the brain,
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SCA

SC-SCA

Similar IC 1 Similar IC 2 Similar IC 3 Similar IC 4 Similar IC 5

Figure 3.24: Decomposition of generated SCA (top) and SC-SCA (bottom) networks into
constituent networks. The ICs for each method which are similar are shown with a green
outline.
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SCA

SC-SCA

Similar IC 6 Similar IC 7 Similar IC 8 Dissimilar IC 1 Dissimilar IC 2

Figure 3.25: Decomposition of generated SCA (top) and SC-SCA (bottom) networks into
constituent networks. The ICs for each method which are similar are shown with a green
outline. Groups of ICs with no matches are shown with an orange outline.
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more networks are shown, and the pathways and areas of activation between regions are high-

lighted. Thus, in addition to the quantitative advantages shown over SCA, the qualitative

advantages of SC-SCA are also numerous.
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CHAPTER 4

INSTANTANEOUS GLOBAL CORRELATION ANALYSIS (IGCA) FOR AVALANCHE

ANALYSIS

Abstract

The purpose of this work is three-fold in studying dynamic functional connectivity

(dFC) at the time scale of seconds. My first contribution is to use data-driven tech-

niques with minimal extrinsic expert knowledge to distinguish between the FC of the

brain during periods of large co-activations (avalanches), and during intervals when

the brain has low co-activations. The method is inspired by the point process tech-

nique [107, 54], but instead defines a time interval which identifies avalanching periods

based on the magnitude of whole-brain correlation. This allows the data to be reduced

into two classes - avalanching periods and non-avalanching periods. Secondly, a set of

dFC co-activation patterns (CAPs) will then be characterized, and are the networks of

connectivity that are formed during avalanching periods and non-avalanching periods.

Lastly, the spatial propagation of the avalanche will be demonstrated by using the

regions of highest activation to track the epicenters of activity.

4.1 Introduction

4.1.1 Avalanches

Recent studies have suggested that brain activity remains in a critical state throughout

processing, and localized neural activity may cause cascades in neural activity throughout

the brain [108, 109, 110]. Thus, brain activity may be dominated by brief peaks or intervals

of brain activity [107, 111, 112]. Appropriately termed brain avalanches, these periods of
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high organized activity throughout a significant portion of brain regions may be responsible

for the majority of the brain’s behavior during a scan. Thus, important network information

may be overlooked when studying functional connectivity using the entire period of the scan

rather than brief instances [57]. This likely extends to the concept of the sliding window

analysis, which may indiscriminately average over regions with dissimilar temporal behavior,

leading to convoluted results.

A number of methods have additionally been introduced to study brain behaviors at brief

periods of time including via point processes and peaks in the BOLD signal [107, 54, 111, 112].

Tagliazucchi, 2012 [107] approaches the detection of avalanches through using a point-process

approach, in which a seed region is identified, and suprathrehold crossings, where the thresh-

old was considered to be one standard deviation above the mean, were considered to be points

in the point process of interest. The thresholded time frames were used to extract clusters

of voxels which were activated during these frames through a nearest neighbor clustering

scheme. These clusters were then organized into avalanches by investigating the spatial

overlap between clusters and transition from inactivation to activation of these clusters.

This work concluded that the brain persists in a critical state and avalanches correspond to

a system undergoing order-disorder phase transitions, and that resting state activation maps

can be created by a few subset of the points in the entire time series for a set of voxels.

A second of the Tagliazucchi publications from 2016 [54] came to similar conclusions about

the condensation of the entire time series into a few different points, but followed a slightly

different methodology. In this method, the binarized suprathrehold crossings of a seed point

were utilized to calculate a correlation-like calculation of co-activation matrices between

voxels. The functional connectivity between all voxels in the brain was then calculated

by summing all of the co-activation matrices over time. This resultant matrix reflects the

coupling between signals. The group determined that less than 1% of the data was necessary

to reproduce findings obtained from a full time series.
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Two works by Liu, 2013 [111, 112] follow a similar methodology of using seed points to

extract suprathreshold crossings as in [107, 54]. However, they deviate from the methodology

by then clustering the maps derived from the point process thresholding into networks with

similar spatial extent. Through this method using the posterior cingulate cortex (PCC) as a

seed, they are able to divide the default mode network (DMN) into co-activation maps. This

group produced a similar finding that very little of the data (15%) is necessary to almost

perfectly reconstruct the PCC-seeded correlation map generated from all of the data.

In addition to demonstrating that the majority of brain activity occurs in a few frames,

they also suggest that all of the data can be condensed into a few frames which are able to

accurately represent the entire time series. This is a desirable quality with the increasing

data sizes from fMRI scans due to advances in fMRI technology which have created higher

spatial and temporal resolution in fMRI scans. This reduction in data size while simul-

taneously preserving most of the information in the data produces accurate results with

substantially decreased data size, faster computational times, and decreased computational

hardware demands.

4.2 Methodology

This section describes the steps necessary to execute the method and the procedures

taken to evaluate the results. Processing was carried out using a combination of Matlab

R2016a (The Mathworks Company; Natick, MA, USA), Statistical Parameteric Mapping,

Version 12 (SPM12) (The Wellcome Department of Neuroscience; Oxford, UK), and the

Brain Extraction Tool (BET) [95, 96] and Multivariate Exploratory Linear Optimized De-

composition into Independent Components (MELODIC) packages of the FMRIB Software

Library (FSL) (FMRIB Analysis Group; Oxford, UK) [97].
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4.2.1 Data acquisition

Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium

(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by

the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research;

and by the McDonnell Center for Systems Neuroscience at Washington University.

The subjects were drawn from a population of 1200 healthy adult volunteers in the age

range of 22-35 years. The dataset contains high-resolution T1-weighted sMRI and fMRI brain

images. A total of 16 sets of fMRI data were randomly selected from the HCP database.

All HCP subjects were scanned using a customized Siemens Skyra 3T scanner with

identical imaging parameters. The T1w image was acquired using the 3D MPRAGE sequence

with 0.7mm isotropic resolution ((FOV = 224 mm, matrix = 320, 256 sagittal slices in a

single slab), repetition time (TR) = 2400 ms, echo time (TE) = 2.14 ms, inversion time

(TI) = 1000 ms, flip angle (FA) = 8◦, bandwidth (BW) = 210 Hz per pixel, echo spacing

(ES) = 7.6 ms). The fMRI scans were obtained using the following parameters: TR=720

ms, TE=33 ms, multiband factor=8, image matrix=104x90, 72 slices, 1200 volumes (time

points), and isotropic slice size=2x2x2 mm3. Full details regarding the acquisition of the

data can be found in [98].

4.2.2 Data preprocessing

The HCP dataset minimizes the amount of preprocessing applied to the data; relevant

preprocessing steps include removal of spatial artifacts and distortions and registration of

surfaces and volumes to standard volume and surface spaces. Further preprocessing steps

were applied subsequent to retrieving the data. First, each voxel time series was temporally

filtered using a finite impulse response (FIR) bandpass filter (0.01Hz-0.1Hz) and linearly

detrended. Since convolution of an N th-order FIR filter with the data produces a finite im-
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pulse response of length (N+1) at the beginning of the data and due to other computational

limitations, a total of 200 time points were removed from the beginning and end of the data.

The data were a resultant 800 volumes in length.

The temporally filtered and trimmed data was then spatially smoothed in FSL using a

6mm full width half maximum (FWHM) Gaussian filter. The data was then normalized by

demeaning and dividing by the standard deviation of each voxel time series.

4.2.3 Temporal avalanche detection and CAP extraction

Following the additional preprocessing steps applied to the data, an instantaneous whole

brain correlation (WBC) analysis was then performed. The full processing pipeline is shown

in Figure 4.1. At each of the remaining 800 time points, a WBC for a single time point was

performed. The instantaneous WBCs for a single time point t were calculated according to

following equation:

WBCt =
1

2

i∑ j∑ 1

n

(xi − x̄i)(yj − ȳj)
σx,iσy,j

(4.2.1)

where x and y are voxels and i and j iterate over v voxels for i 6= j. An important difference

between the pairwise correlation calculation in Equation 4.2.1 which reflects its instantaneous

nature is that the length of the time series is n = 1, but x̄ and ȳ are calculated over the

entire time series for voxels i and j. Following this correlation, the mean value of each WBC

was computed, leading to an 800-point plot of average WBC for each subject. High and low

correlation thresholds γH and γL were then identified for each subject, such that values in

excess of γH value were considered in the avalanching state, while time points lower than γL

were considered in the non-avalanching state. In order to ensure consistency among subjects,

γH was set at the value of one standard deviation greater than the mean of the entire WBC

series, and γL was set to be the mean of the entire WBC series.
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Figure 4.1: Processing pipeline for avalanche analysis

The dataset for each subject was then divided as shown in Figure 4.1 using these time

points. An avalanches state dataset was created by including only volumes identified as being

in the avalanche state; a complementary dataset was also formed using only volumes classified

as the non-avalanching state. This divided data for all of the subjects were then temporally

concatenated, and group ICA was performed using MELODIC in FSL. The independent

components (ICs) generated were defined to be the CAPs for the avalanche state versus the

non-avalanching state.

Additionally, a comparison between CAPs in the avalanching versus non-avalanching

state was performed. Assuming that CAPs are similar although not identical between states,

Dice’s coefficient [101] D (a measurement of similarity) was calculated between each of the

active CAPs and all of the inactive CAPs to identify which inactive CAPs correspond to

those identified during the avalanche activation period. Dice’s coefficient was calculated as

shown in Equation 4.2.2, and ranges from 0 to 1, where 0 is completely different and 1 is

identical.

D =
2(|X ∩ Y |)
|X|+ |Y |

(4.2.2)
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4.2.4 Spatial avalanche detection and identification

The avalanche detection algorithm will proceed similarly to the method described by

Tagliazucchi et. al. in [107] with an important differentiation in the originating data to

determine the clusters. In order to determine clusters of high activity, the WBC will be

first normalized at each time point; that is, each instantaneous WBC will be de-meaned

and divided by the standard deviation, producing a z-score map for each time point. These

will then be thresholded at a significance level of α=0.05. This produces voxels of significant

activation in the data for each of the time points. This differs from [107] in that the threshold

is applied to the WBC, not based on suprathreshold crossings of the BOLD signal of a seed

region.

The voxels were then clustered into groups by identifying if another activated voxel was

in the vicinity of its 3D nearest neighbors (i.e., 26 points surrounding the voxel). For the

set of voxels with nearest neighbors activated, this was grouped into a cluster. The location

of the 3D centroid of the cluster was first determined, and then the maximum value of the

WBC within the cluster was identified and the location recorded. The locations of both the

centroid and the local maxima were matched to the Harvard-Oxford regions of interest [113]

in order to determine their physiological brain region. In performing this labeling, both the

lateralized cortical and subcortical atlases were used; this means that for some regions, there

are potentially no labels, and for others, there are potentially two labels. The regions that

contained no labels were eliminated, and the region corresponding to the lateralized cortical

atlas was utilized in the case that there were multiple labels.

4.2.5 Investigation of avalanche properties

In order to investigate properties of avalanches such as the frequency of a particular type

of avalanche’s occurence or the frequency of a particular type of avalanche common between
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all subjects, the avalanche was then converted to a directed graph. The nodes of the graph

are the locations of the WBC correlation maxima of the cluster, and the information was

considered to flow from one node to another if the two corresponding clusters were spatially

overlapping at a time t and t + 1. The information was considered to flow from the cluster

at time t to time t + 1. Additionally, an adjacency matrix was generated for each of the

graphs for simplicity of calculations.

In order to determine the frequency of each type of avalanche, all the graphs for all

16 subjects were investigated simultaneously. In order to determine the similarity between

graphs, the element-wise multiplication of two graph adjacency matrices AGi and AGj (i.e.,

AGi,Gj = AGi ·∗ AGj) was calculated, and the sum of all the entries in the matrix was calcu-

lated; this quantity is representative of the number of nodes and edges which are common

between both the graphs. In order to compare all the graphs of different sizes, this value

was scaled by the total number of edges in both graphs. This calculation is similar to a Dice

coefficient calculation, and is shown in the following equation:

DGi,Gj =
2 ∗

∑
(AGi ·∗ AGj)∑

(AGi) +
∑

(AGj)
(4.2.3)

This pairwise calculation of similarity was entered into a matrix S, a nG×nG (where nG is

the total number of graphs for all of the subjects) matrix, where the i, jth entry corresponds

to DGi,Gj. In the case that two graphs are completely identical, the coefficient will be 1, and

in the case they are completely different, the coefficient will be zero.

In order to calculate the graphs with the highest rate of occurrence, S was binarized

to Sb to identify only that graphs that had 100% similarity with another graph. The sum

of each row of Sb was calculated to identify the most popular graphs. This list was then

sorted to remove redundant graphs and calculate the total number of times a particular

graph occurred. In this way, the frequency of each graph was calculated.
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4.2.6 Evaluation of avalanche trajectory

Another interesting aspect of a spatial characterization of avalanches is to determine how

local maxima in WBC values appear to traverse the brain. A question of interest is whether

these maxima follow known trajectories in the brain. In order to investigate this question,

the Johns Hopkins University (JHU) white matter tractography atlas [114] was employed,

which identifies certain well-known white matter fiber tracts.

In order to determine whether the maxima of the avalanches traverse a fiber tract, the

locations of the maxima in the avalanche were first identified. Then, the percent intersection

as defined in the following equation was calculated:

% intersection =
|tract points ∩ avalanchemaxima points|

|avalanchemaxima points|
∗ 100 (4.2.4)

Avalanches that had more than 50% intersection were considered to be moving along a JHU

white matter tract.

4.3 Results

4.3.1 Avalanche detection and CAP extraction

Figure 4.2 shows a representative example of the instantaneous WBC calculated for a

subject. The sampling period is marked by strongly varying levels of instantaneous corre-

lation rather than a constant or slowly varying value. The γH and γL cutoffs are shown in

yellow and orange, respectively. Thus, the avalanching period is shown by the high and peak

WBC values at particular time points.

The left side of Figure 4.3 shows the CAPs identified by group ICA during the avalanching

period. The right side of this figure are the CAPs which correspond to the same networks, but

are determined during the non-avalanching period. As shown, there are major similarities
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Figure 4.2: Representative subject example of total instantaneous WBC

between the two types of networks; however, during the non-avalanching periods, the active

regions of the brain appear to be smaller and more segmented. On the other hand, activation

during avalanching confers greater connectivity between different disparate regions in the

brain. This is most evident in the appearance of an entire anterior/posterior connectivity

region that appears in the brain in CAP 8, whereas the non-avalanching CAP has a limited,

local region of activity.

As shown, several commonly known networks and brain structures can be readily iden-

tified upon inspection of Figure 4.3. CAP 1 strongly resembles the visual network. CAP 2

contains the corpus callosum, including the body, the genu, and the splenium. This CAP is

likely to be an actual functional component rather than a consequence of the difference in

the BOLD properties of white matter and gray matter because it does not include all of the

white matter and is very specific to the corpus callosum. Other CAPs also include regions of

white matter. CAP 7 includes many of the regions of the default mode network (DMN), and

CAP 13* includes most of the cerebellum with an additional connection to the midbrain.

Table 4.1 shows the decomposition of each of the CAPs into their constituent resting

state networks (RSNs) as defined by Yeo in 2011 [5]. All values reflect the percent of the
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Figure 4.3: Positive activations of 13 CAPs. left: active state, right: inactive state
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RSN that intersects with the CAP; values with parentheses indicate the non-avalanching

CAPs whereas values without parentheses are the avalanching CAP intersection values. As

indicated by the *, CAPs 1, 2, 3, 4, 6 and 8 have significant negative activations (regions

not shown in Figure 4.3.

CAP 4* demonstrates a known relation between the DMN and the dorsal attention

network (DAN), part of the task-positive network, where the significant activation of the

DMN also corresponds to the deactivation of the DAN. More than 10% of the DAN is

accounted for by 10 of the 13 CAPs, showing the interconnectedness of this particular network

within most of the avalanching CAPs; however, it is only significantly present in 2 of the

non-avalanching networks. CAPs 4* and 7 have significant intersection with the DMN, and

it is particularly prominent in CAP 7.

The total number of times a network is activated in the avalanching and non-avalanching

states is shown at the bottom of Figure 4.1. As shown, during the activation state, there

are more networks represented in the CAPs than in the inactive state. A similar metric can

be seen for the CAPs on the right of the table, reflecting how many networks are active in

each CAP. Together, these metrics suggest that more information is being passed between

networks or among networks in the avalanching states than in the non-avalanching states.
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Table 4.1: Composition of RSNs by Active CAPSs. All values are percentages of the network of interest; only percentages
greater than 10% are shown. CAPs marked by * correspond to CAPs which have significant regions of negative activation
in addition to positive activations. Values in red indicate percentages of networks that are negatively activating. Values in
parentheses correspond to the non-avalanching regions, whereas those without correspond to the avalanching periods.

CAP# \ RSN# Visual Somatomotor DAN VAN Limbic Frontoparietal DMN Active Inactive

1* 44.4 (41.2) 18.3 (13.9) 2 2

2* (10.7) 0 1

3* 12.4 11.3 11.2 3 0

4* 22.3 15.9 (10.1) 43.4 (28.0) 3 2

5 23.8 (25.8) 45.9 (55.8) 10.5 3 2

6* (10.5) 44.6 (27.3) 16.8 (12.4) 17.3 3 2

7 16.7 21.4 52.4 (34.3) 3 1

8* 19.6 12.2 17.1 3 0

9 12.4 31.7 (19.8) 13.5 (12.7) 3 2

10 14.1 19.5 (11.6) 52.0 (22.4) 13.9 4 2

11 14.7 (12.6) 22.1 (28.6) 12.4 (17.0) 3 3

12 30.3 (33.5) 12.7 14.6 3 1

13* 14.0 13.9 2 0

Active 4 3 10 3 4 5 6

Inactive 2 2 2 3 2 4 4



4.3.2 Spatial avalanche identification

Figures 4.4, 4.5, and 4.6 show the evolution of an avalanche through 11 0.72s sampling

periods. The figures are divided in this manner for display purposes. As shown, the avalanche

begins with two small regions in the first frame, and then grows first into 4 larger and

distributed areas which grow towards one another to form a large contiguous region. The

area of activation appears to be in the cortical region of the brain. The region grows until

about halfway through the entire avalanche, where it begins to dissipate. The avalanche

appears to terminate in a region somewhat lower than the originating cluster areas.

Figure 4.4: Frames 1-4 out of 11 for a sample avalanche
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Figure 4.5: Frames 5-8 out of 11 for a sample avalanche
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Figure 4.6: Frames 9-11 out of 11 for a sample avalanche
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4.3.3 High frequency of occurrence spatial avalanches

Figure 4.7 shows an example of one of the graphs generated by the method described.

As shown, the nodes are labeled according to the Harvard-Oxford ROIs which occur at the

maximum correlation value in the local cluster. As shown, the information in the graph

moves between two regions of the brain - nodes 107 and 108, which correspond to the right

cerebral white matter and the right cerebral cortex, respectively. The graph additionally has

two edges which are labelled with arrows in order to describe the direction of connection (in

our case, information motion).

This particular graph illustrates one of the disadvantages of this particular method: in

some cases, the temporal behavior of the information flow is lost. For example, in this

example, it is unclear whether the exchange was initiated in the white matter or in the

cerebral cortex. Additionally, it is unknown how many times this exchange occurred between

these two regions. Regardless, the graph shows that information is passed between these two

regions.

Figure 4.7: Sample avalanche graph. Graph shows the avalanche with the 19th highest
frequency.

Tables 4.2 - 4.6 show the top 50 occurring avalanche types in addition to their frequency

of occurrence in order of descending frequency. Indices are given for ease of reference.
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These tables are divided in this manner for clarity and display purposes. As shown, the

most frequently occurring avalanche is information moving within the left cerebral white

matter. This accounts for more than 17% of the avalanches occurring in the brain for all the

subjects. The second most occurring is information being passed within the right cerebral

white matter, which accounts for approximately 16% of all of the avalanches. Together,

these two regions of avalanche - white matter - define more than 30% of all the avalanches

that occur in the brain. Again, due to the nature of the graphs, it is impossible to determine

how many times information was passed through the white matter; it is only known that

information is passed from an area of white matter to a different region of white matter at

least once.

Information passing within the right and left cerebral cortex accounts for the approxi-

mately 18% of all of the avalanches, although there appears to be slightly more information

flow in the left part of the cerebral cortex rather than the right. It is interesting to note that

this is gray matter, and although most of the processing in the brain is considered to occur

in the gray matter, the maxima of the avalanches indicate that during the high activation

times in the brain, it is mostly white matter that is activated. Following the cerebral cortex,

information passed within the brain stem accounts for 4% of all of the avalanches.

The first 4 avalanche types account for more than 50% of the avalanches. The other 50%

is accounted for through many less frequent avalanches. The most frequent type of avalanches

following the top 5 is passing information between white matter and gray matter. Avalanche

12, at a frequency of 1.1%, shows information passing within the frontal pole becoming of

interest, and although the frequency is decreasing, information begins being passed back and

forth from the frontal pole to white matter. Additionally, at a frequency of around 0.84%,

the occipital cortex begins to become prevalent, and again, at lower frequencies, information

begins being passed between the white matter and the occipital poles and occipital cortex.
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At approximately avalanche 20, information circuits begin to become obvious, with in-

formation passing through the same nodes multiple times. This can be seen at avalanches

20-22, in which information is passed back and forth for an undetermined number of times

within the avalanche. It is interesting to note that in these three cases, information does not

appear to be passed between hemispheres, and all communication is done within a single

hemisphere. This seems to be the trend with the majority of the top 50 types of avalanches

that occur.

At a frequency of around 0.65%, information begins being passed within the temporal

pole, and at a frequency of about 0.52%, information begins being passed from the temporal

pole to other regions of the brain, particularly the gray matter of the left cerebral cortex. At

a slightly lower frequency of 0.39%, this also occurs except the communication is between

the right frontal pole and the right cerebral cortex.

Although usually a region in which communication occurs is first shown in the left hemi-

sphere (e.g., the left cerebral white matter and left cerebral cortex have higher frequencies

than the right cerebral white matter and cortex), this is violated at avalanche 37 (frequency

of 0.32%) in which the communication between the right putamen appears before the left

putamen (frequency of 0.19%). This occurs again with the right precuneus cortex (avalanche

39), and its left analogue does not occur within the top 50. This suggests that perhaps a

few very distinct regions have stronger operation in the right hemisphere, whereas most of

the rest of the general operations are carried on in the left hemisphere of the brain.

At frequencies of 0.26%, information flows in both hemispheres from the cerebral white

matter to the occipital cortex, suggesting that perhaps some information is being passed

through the white matter whose terminal location is the occipital cortex, and this usage of

the white matter as a medium occurs at high correlation activity in the brain. Additionally,

at these lower frequencies, information begins to flow in regions including the left temporal

fusiform gyrus, right parahippocampal gyrus, left putamen, and left thalamus.
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Table 4.2: Type and rate of occurrence for avalanches 1-10 out of 50 high frequency occurring avalanches

Index Rate
(%)

Pathway of Information Motion

1 17.4 Within left cerebral white matter

2 15.8 Within right cerebral white matter

3 11.2 Within left cerebral cortex

4 7 Within right cerebral cortex

5 4.1 Within brain stem

6 2.3 Left cerebral cortex to left cerebral white matter

7 2.1 Right cerebral white matter to right cerebral cortex

8 1.9 Right cerebral cortex to right cerebral white matter

9 1.8 Left cerebral cortex to within left cerebral white matter

10 1.4 Left cerebral white matter to left cerebral cortex
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Table 4.3: Type and rate of occurrence for avalanches 11-20 out of 50 high frequency occurring avalanches

Index Rate
(%)

Pathway of Information Motion

11 1.1 Left cerebral white matter to within left cerebral cortex

12 1.1 Within right frontal pole

13 0.98 Within left cerebral white matter to left cerebral cortex

14 0.84 Within left lateral superior occipital cortex

15 0.84 Right frontal pole to within right cerebral white matter

16 0.78 Right frontal pole to right cerebral white matter

17 0.78 Right cerebral cortex to within right cerebral white matter

18 0.78 Within right cerebral white matter to right cerebral cortex

19 0.78 Within right cerebral white matter to right frontal pole

20 0.78 Back and forth between right cerebral white matter and right cerebral cortex
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Table 4.4: Type and rate of occurrence for avalanches 21-30 out of 50 high frequency occurring avalanches

Index Rate
(%)

Pathway of Information Motion

21 0.71 Within right cerebral white matter to back and forth with right cerebral cortex

22 0.71 Within left cerebral white matter to back and forth with left cerebral cortex

23 0.65 Within left temporal pole

24 0.65 Back and forth between left cerebral white matter and left cerebral cortex

25 0.58 Right cerebral white matter to right frontal pole

26 0.52 Right cerebral white matter to within right cerebral cortex

27 0.52 Within left cerebral cortex to left cerebral white matter

28 0.52 Within left occipital pole

29 0.52 Left temporal pole to left cerebral cortex

30 0.45 Within right lateral superior occipital cortex
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Table 4.5: Type and rate of occurrence for avalanches 31-40 out of 50 high frequency occurring avalanches

Index Rate
(%)

Pathway of Information Motion

31 0.39 Within right cerebral white matter to within right cerebral cortex

32 0.39 Right cerebral cortex to right frontal pole

33 0.39 Left lateral superior occipital cortex to left cerebral white matter

34 0.32 Left lateral inferior occipital cortex to left cerebral cortex

35 0.32 Left middle temporal gyrus, temporooccipital part to left cerebral cortex

36 0.32 Within right occipital pole

37 0.32 Right putamen to right cerebral white matter

38 0.32 Within right cerebral cortex to right cerebral white matter

39 0.32 Within right precuneus cortex

40 0.26 Within left cerebral white matter to left lateral superior occipital cortex
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Table 4.6: Type and rate of occurrence for avalanches 41-50 out of 50 high frequency occurring avalanches

Index Rate
(%)

Pathway of Information Motion

41 0.26 Right cerebral white matter to right lateral superior occipital cortex

42 0.26 Back and forth between right cerebral white matter and right lateral superior
occipital cortex

43 0.26 Within left temporal posterior fusiform cortex

44 0.26 Within right cerebral white matter and back and forth with right frontal pole

45 0.26 Within right cerebral white matter to back and forth with within right cerebral
cortex

46 0.26 Within right anterior parahippocampal gyrus

47 0.26 Within left superior frontal gyrus

48 0.19 Right lateral superior occipital cortex to within right cerebral white matter

49 0.19 Left putamen to within left cerebral white matter

50 0.19 Left thalamus to within left cerebral white matter
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4.3.4 Avalanche motion about white matter fiber tracts

Figure 4.8 shows the trajectory of the maxima (in red) of an avalanche through a fiber

tract (in green). As shown, the traversal is not temporally extensive, and lasts only 3 frames.

The motion of the cluster maxima within the tract is laterally and then in a axially downward

direction.

In total, the number of avalanches moving about a fiber tract corresponds to approxi-

mately 0.05% of all the avalanches in total. Of this percentage, 51% of these avalanches are

moving about the forceps minor. The forceps minor is a fiber bundle that connects surfaces

of the frontal lobes through the genu of the corpus callosum. This bundle connects the

frontal poles.

The following fiber tracts occurred more than once and their frequency is indicated as

follows:

• Left superior longitudinal fasciculus, 22%

• Left anterior thalamic radiation, 10%

• Right anterior thalamic radiation, 7%

The left and right anterior thalamic radiations are located laterally and also posterior

to the forceps minor, which suggests that there is information in this entire region that is

being passed through the fiber tracts. However, these avalanches which correspond to the

fiber tracts appear to be very short, usually only 2 or 3 frames of 0.72 seconds.

Avalanches can be formulated as both temporal and spatial activities, as shown by the

preceding work. The times in which these avalanches occur reflect changes in the decom-

position of the brain into independent components, or CAPs, and reflects spatial motion

of information moving throughout different maxima in the brain. This work assumes a

correspondence between the location of maxima in instantaneous WBC and the motion of

information through the brain, and this assumption is bolstered by the movement of the
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(a) Frame 1 of 3 of avalanche following forceps mi-
nor fiber tract

(b) Frame 2 of 3 of avalanche following forceps mi-
nor fiber tract

(c) Frame 3 of 3 of avalanche following forceps minor
fiber tract

Figure 4.8: Trajectory of cluster maxima along forceps minor
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cluster maxima through space in reasonable trajectories. It is interesting to note that most

of the avalanches are related to information flow within white matter and can be postulated

that avalanches represent times where information is being sent through the white matter

to reach other locations in the brain. Although sometimes the initiating location is lost, the

avalanches appear to capture the transfer to and through the white matter and the delivery

of the information to its terminal location.

89



CHAPTER 5

CONCLUSIONS

5.1 Probabilistic fMRI Interpretations

MRI is a non-invasive and increasingly accurate method for studying the structure and

function of the brain. Although the structures of the brain are statically and structurally con-

nected, through the use of fMRI which measures the BOLD signal, a reflection of metabolic

activity of the brain, the FC of the brain can be investigated. A popular method for in-

vestigating FC is through the use of seed-based correlation analysis, although varying the

location of the desired seed even slightly in the same region can produce significantly dif-

ferent networks. In this work, a method is presented which produces a stable network with

probabilistic interpretations, that is robust to both variance in parameters used to generate

the network as well as the choice of the initial seed location. To produce this network, an

initial seed is selected, and Pearson’s correlation coefficient is calculated between this seed

and each voxel’s time series in the brain. A seed cloud of highly correlated voxels are then

determined, and an SCA executed for each of the randomly selected seeds from the cloud.

Depending on whether a probabilistic map or a correlation map is desired, the SCA maps

are thresholded, and these are then averaged to create a PCC network map.

This method was specifically applied to the DMN, using the PCC as the initializing seed

location. 16 subjects were used in our study, and a group map was generated as the av-

erage of the 16 PCC network maps generated from the subjects. The group probabilistic

PCC network map showed the highest probability of connections with the pC and the PCC

(p>0.55), followed by the mPFC, left and right IPL (p>0.45), and the PH and the HF

(p>0.35). This result demonstrates that these regions have a high probability of high corre-

lation with the PCC and that a high percentage of the PCC network is highly correlated to
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these regions. The group correlation PCC network map had the highest correlation with the

pC and the PCC (r>0.7), and a slightly lower correlation with the mPFC and right and left

IPL (r>0.65), a set of regions known as the DMN. Other regions were shown to be slightly

less correlated that are not always associated with the DMN. Depending on the hypothesis of

brain connectivity employed, this can mean that the overall strength of connectivity between

these regions is lower although the regions are still functionally connected, or the temporal

FC of the regions varies through time.

This method was then employed to demonstrate that common forms of Bayesian estima-

tion, including MAP estimation, can be performed to produce unique probabilistic interpre-

tations of the data. The detail of the MAP estimation and range of the probabilities was

strongly dependent on the a priori probability map used; however, all maps confer the same

conclusions: the mPFC, the right IPL, the PC, and the PCC are all regions with a high

probability of being in the DMN. The different a priori probabilities represented different

confidences in a binary map of the DMN, and as the a priori maps approach the binary

probability map, the MAP maps become more detailed in the finer details of regions in the

DMN. This was also shown in the DAN network, where the IPS and the FEF were shown

to be regions of high probability of being in the DAN.

The generated PCC network was shown to be robust to changes in the number of seeds

selected from the seed cloud and variation of the initializing seed location up to ±10 mm.

Variation in the number of seeds as compared to the number of seeds that was used in this

study produced almost no effect; the Dice’s coefficient of similarity was >99% for all of the

investigated numbers of seeds (from 1,000 to 10,000). Additionally, varying the location of

the initializing PCC seed differed along each axis, often asymmetrically based on moving

in a positive direction or a negative one; however, in general, the similarities between the

maps were >88%. The only deviant from this high similarity was variance in the anterior

direction along the transverse axis; this resulted in a similarity closer to 80% at a 10 mm
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variation; this is likely due to approaching other brain regions which may have very different

connectivity maps.

The dependence of the method on the initial time course location was also investigated

using the difference between the median value of standard deviations of voxels across subjects

to assess the difference between the standard deviations of 16 subjects using each of the

variations in the method. The SC-SCA method presented was additionally compared against

traditional SCA to determine any advantages gained by using SC-SCA. The results show that

qualitatively, SC-SCA generates correlation maps that are more detailed than SCA, and have

less artifacts near the seed point. When compared against region-based SC-SCA and seed-

and region-based SCA, there is a statistically significant advantage in using seed-based SC-

SCA vs seed-based SCA, region-based SC-SCA vs seed-based SCA, and region-based SCA

vs. seed-based SCA. There is no statistical difference in using either of the region-based

methods, seed-based SC-SCA vs region-based SCA, and seed-based SC-SCA vs region-based

SC-SCA.

Most notably, this shows that the SC-SCA stability in the standard deviation of voxels

among subjects is not improved by using a region-based seeding time point; on the other

hand, there is an improvement of the stability of the maps produced by region-based SCA

rather than seed-based SCA. In the light of current literature, this suggests that region-based

SCA is superior to that of seed-based SCA due to its resistance to change when different

close voxels are chosen as the seed point, but this characteristic is not present in SC-SCA.

Seed-based SC-SCA and region-based SC-SCA work equally as well as each other, and both

better than seed-based SCA. They are on par with region-based SCA, but additionally have

the qualitative advantage that probabilistic interpretations are conferred by SC-SCA.

Additionally, the decomposition of the thresholded SCA and SC-SCA networks was per-

formed using ICA. Although 8 out of the 10 generated ICs were similar, the SC-SCA ICs

were much more diffuse and showed higher connectivity between disparate regions in the
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brain. This reflects potential pathways through which information flows in the brain. Sev-

eral networks of similarity were found in the matching ICs, including the posterior region

of the DMN, the mPFC, and the right and left parts of the DAN. There were 2 dissimilar

ICs found; in SCA, these were two different regions of the cingulate gyrus, and in SC-SCA,

these were the somatosensory network and the occipital lobe.

The method proposed in this work offers the potential of engineering fully automated

definition of the DMN network or other resting state networks. Particularly in light of in-

creasingly large fMRI database that is available to the community [115] complete automation

as exemplified in this work will greatly accelerate the productivity of brain research. Fur-

thermore, this work represents an introduction to a method that could have far-reaching

applications due to its stability and ability to show a gradated correlation measure of how

sets of regions and networks may be connected to a single seed. The introduction of this

more stable method of performing seed-based correlation analysis can have very far-reaching

applications in understanding the FC of the brain.

5.2 Avalanche detection and CAP extraction

Recent studies have shown that assumptions of stationarity in brain functionality may

be too strong, and that brain functionality is dominated by periods of high activity in the

brain. This work addresses this non-stationarity by investigating the behavior of the brain

during avalanches, which are periods of unification or similar temporal behavior in the whole

brain.

To investigate brain behavior during avalanches, a WBC was performed for each of 16

subjects at each of 800 time points at which the BOLD fMRI data was sampled. A thresh-

old was introduced to distinguish periods of avalanching versus period of non-avalanching

behavior. All the periods of avalanching behavior for all 16 subjects were concatenated to

create an entire time series of avalanching, and the same was done for the non-avalanching
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regions. Group ICA was performed on both time series separately, and the DICE coefficient

was calculated between the independent components generated from the avalanching time

series and the non-avalanching time series to determine regional correspondence between the

two types of components.

CAPs generated from the avalanching region included some readily identifiable networks

including the visual system, the DMN, and a connection between the cerebellum and the

midbrain. The anatomical structure of the corpus callosum was also distinguished in the

avalanching CAPs. In comparison to the non-avalanching CAPs, the avalanching CAPs were

more diffuse, and showed more connection between brain regions. Additionally, when the

CAPs were segmented into their RSNs, there were more RSNs present in the avalanching

time periods than the non-avalanching time periods. This work suggests that brain activity

is dominated by avalanches of activity where there is more communication between RSNs

and disparate regions of the brain during the avalanching period as compared to the non-

avalanching period.

The approach presented in this work represents a novel perspective in viewing activations

in the brain. The approach uses a whole brain correlation produced at each time point, which

describes how each voxel in the brain is correlated to each other voxel in the brain. When

summed, this gives an description of the overall levels of correlation in the brain. This

activity fluctuates throughout the duration of the sampling, reaching large peaks at some

points with periods of low activity as well. This approach represents the first time this

has been reported, and additionally, the spatial motions of the activated clusters in the

avalanches throughout the brain have been evaluated for their frequency.

5.3 Future Work

There are many directions in which the two thrusts of this work may be extended. For

the seed cloud SCA method, the network generated appears to be larger than just the DMN,

94



particularly when the region-based method is used. Performing principal or independent

components analysis could show how the network is able to be subdivided into its subcom-

ponent networks. Additionally, this method can be easily extended to become a Bayesian

analysis to potentially further understand the causality in activation of these brain regions.

The method may additionally be employed to investigate other networks within the brain,

including the language and control networks.

The avalanche approach is particularly interesting, in that many different analyses may

be performed once the instantaneous WBC is generated. The spatial interpretation of the

avalanche demonstrates this. One of the hindrances of spatial method in particular was

the necessity to label each of the maxima of the clusters using an atlas. If an expert in

neuroscience and brain anatomy was brought in, many of the data points with no label

could be labelled, expanding the clusters that are represented in the brain. Additionally, an

expert could view the motion of the clusters within the avalanches to identify if there are

any known tracts or movement of information which coincide with the avalanches.

In addition, studies of the internal movement of the most popular motions (i.e., motions

within white matter) can also help to interpret how data moves along the white matter.

If the thresholds for significance are lowered, perhaps even the gray matter initiating the

signal transfer can also be captured and a full thread of information transmission can be

assessed. Lastly, instead of generating the thresholds at the global level (i.e., using the

entire time series for each voxel) to calculate the z-scores for thresholding, the mean and

standard deviation calculations may instead be made at the volume level, so that the most

significant voxels at each time point may be identified. This may assist in identifying the

flow of information.

Finally, the most interesting future directions of this work can be in the assessment of

brain disease pathologies and task-related experiments. It would be interesting to assess how

the generated DMN using SC-SCA varies throughout a particular task, and how it varies
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among subjects with a particular disorder of the brain. It would also be intriguing to assess

if there is any difference in the motion of clusters in avalanches between control patients and

those with a disorder. In this way, the potential causes and effects of disease pathologies on

the brain could be investigated in a new way.

In conclusion, in-depth understanding of the structure and functionality of the brain is

essential, from both a scientific and clinical standpoint. Brain disorders and diseases have

a profound impact socioeconomically and in the personal lives of those affected and their

families. Crucial to the treatment of this population, particularly those with mental illness,

is diagnostic imaging of the brain which can help identify the type of illness as well as the

best way to treat the illness. One of the prerequisites of this type of diagnosis is the ability

to understand the normal way the brain functions versus the altered mechanism due to the

illness. The purpose of this work is to that end - to provide tools that produce an unique

view into the complex interplay of signals sent between regions of the brain. This work

presented two innovative new tools that allow novel probabilistic interpretations of the brain

and investigate behavior during the critically times of high brain voxel signal coherence.

These tools will aid in the development of science relative to the function of the brain to

improve the diagnostic outlook of those with brain disorders in the future.
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