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Chapter 1

Introduction

1.1 Why fMRI

Functional Magnetic Resonance Imaging (fMRI) is applied to explore the human brain

and its related diseases [1] [2] [3]. Through large efforts involving mathematical com-

puting, various relationships have been unveiled in fMRI images [1] [4] [5]. Blood oxy-

genation level-dependent (BOLD) signals have been considered one of the most useful and

information-bearing signals on which a lot of experiments and analysis has been conducted

to try to ”mine” the useful information [1] [3].

1.2 Functional Connectivity

During the complex processing of fMRI images, one idea is to explore ”connections”

between every pair of voxels, the unit being artificially segmented [1] [3]. This kind of re-

lationship is normally considered as ”Functional Connectivity (FC)” [1] [5] [3] [6]. This is

methodology frequently employed in fMRI processing [1]. More importantly, the Posterior

Cingulate Cortex (PCC), an area believed to be highly correlated with memory and other

important human properties, is a focus for FC [7] [8].

1.3 Preprocessing is the Cornerstone

Due to the large scale and high complexity of fMRI, a ”preparing phase”, usually char-

acterized as the preprocessing stage, essentially impacts all subsequent analyses [9]. A

high-quality preprocessing stage offers researchers a very solid foundation for conducting

more advanced works. This thesis focuses on one step in the preprocessing stage, and to

fully examine this step, a set of comprehensive analyses have been conducted.
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Due to the fact that few publications have focused on preprocessing because of the

simplicity of the procedures, and which therefore may be considered as ”not worth explo-

ration”, in this thesis, however, some complex evaluating methods have been applied to

examine the preprocessing stage. Guided by this purpose, many meaningful explorations

and conclusions are obtained.
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Chapter 2

Background

2.1 Band-Pass Filter in the Preprocessing Stage

A large number of attempts for preprocessing fMRI images in a broad range of fields

have been described. In the dataset upon which this thesis is based [11], a band-pass filter

(BPF) has been applied to the original brain-scanned data to filter the time sequence. This

step is very important because the removal of high and low frequencies largely optimizes

the potential subsequent analysis and makes them more precise.

Originally, based on experimental results and academic conclusions, a BPF designed

with pass band from 0.01 Hz to 0.1 Hz was employed to filter the time sequence, since

the coherent spontaneous low-frequency fluctuations have been identified at that frequency

range [13]. However, in this thesis, the upper pass band edge is increased, and different pass

band widths’ effects on filtering the time sequence are compared. This project developed

with five different pass bands - the five different BPFs, and applies them respectively to the

preprocessing stage.

2.2 Examining the BPF-Preprocessed Signals

Examination of effects brought by BPFs on the preprocessing phase is a difficult task.

In this thesis, several procedures are used to test the preprocessing phase. At first, a voxel

addressed as a ”seed” was selected from the PCC. Using this seed and an artificially deter-

mined value - the threshold value, a set of other voxels in the PCC area can be identified

in terms of the degree of connectivity to the seed, and this set is named as the PCC cloud.

Finally, a variable, termed as connection probabilities, was obtained via repeatedly gener-

ating PCC clouds by procedures described above. Many variations of these procedures for

evaluating the preprocessing stage are performed to explore in best approach.

3



Chapter 3

Methods

3.1 Chapter Introduction

The methods in this thesis were initiated by building five BPFs, then followed by pre-

processing; after that, PCC clouds will be produced by a unique algorithm based on the

preprocessing of those BPFs. Coming together with the PCC clouds will be the several

significant variables addressing the signal properties of patients’ brains.

3.2 Infinite Impulse Response (IIR) BPF

The IIRBPF usually deals with the linear time-invariant signal systems, which is con-

sistent with the brain signals in this thesis, and is also the necessary and core part of pre-

processing fMRI. They are mainly used for filtering the temporal sequence in signals of

length 1200 from four-dimension (4D) fMRI signals. There are five different IIRBPFs in

the preprocessing phase in terms of five different right-most ”stop-band frequencies”, rang-

ing from 0.1 Hz to 0.2 Hz with 0.025 Hz as single step, while the left-most ”stop-band”

frequency remains unchanged.

Figure 3.1: Five Different IIRBPFs
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The IIRBPFs shown above have been built on the sampling period of 0.72, which is

also the sampling period for processing the fMRI data. Applied with Fast Fourier Trans-

form (FFT), Figure 3.1 indicates that the pass band is clearly and quickly ”cut off” from

transition bands for all of those five IIRBPFs. Therefore, this building of IIRBPFs can be

regarded as successful.

3.3 Pearson’s Correlation Coefficients

The quantitative analysis in this thesis is mainly based upon the Pearson’s Correlation

Coefficients, which is widely used for signal processing in fMRI. All variables and their

corresponding analyses following this chapter will be regulated by it. Some significant

”preparing work” must be done before computing the Pearson’s Correlation Coefficients.

Firstly, a seed was selected from the Posterior Cingulate Cortex (PCC Network). Then,

some numbers, used as indices, were randomly chosen from normal distribution with µ = 0

and σ = 1, which is denoted as

X∼N (0, 1) , (3.1)

where the X is a set comprising 200 elements. Therefore, this set is determined as a ”Ran-

dom Window” drawn from the original temporal sequence with length 1200.

After applied those indices from X, all voxels in the brain are of length 200, and the

method of Pearson’s Correlation Coefficients is applied as

ρ =
1
N ∑

N−1
n=0 Si[n]S j[n]√

( 1
N ∑

N−1
n=0 S2

i [n])(
1
N ∑

N−1
n=0 S2

j [n])
, (3.2)

where the Si and S j are any two voxels inside the brain. In our method, equation 3.2 will

be applied to our selected seed and every voxel, respectively. The entire detailed algorithm

for computing Pearson’s Correlation Coefficient has been summarized below:

5



Algorithm 1 Get Pearson’s Correlation Coefficient
1: procedure Getcv(R,S,G,Seed) . The Selected Seed is from PCC Network
2: G← ProcessXcell(S,R) . R is the set indicating the preprocessed

brainmask
3: for all Gi ∈ G do
4: Norm(Gi)
5: end for
6: Seed← Seed−mean(Seed)
7: Norm(Seed) . The Seed has also been truncated using the

elements from X
8: cv← GetConnections(G,Seed) . Pearson’s Correlation Coefficients
9: end procedure

Algorithm 1 above mainly covers a general ”Pipeline” for obtaining the Pearson’s Cor-

relation Coefficients, values that are directly used for obtaining the PCC cloud. Two sub-

algorithms involved are presented below.

Algorithm 2 ProcessXcell and GetConnections
1: procedure ProcessXcell(S,R)
2: for all R j ∈ R do
3: if R j > 0 then
4: Si← Si−mean(Si)
5: if norm(Si)> 0 then
6: Si← Si÷norm(Si)
7: G← Si
8: Index← i . Index will be used for obtaining the 3D Co-

efficient matrix
9: end if

10: end if
11: end for
12: end procedure

13: procedure GetConnections(G,Seed)
14: for all Gk ∈ G do
15: xcv← Gk×Seed . Applied with Pearson’s Correlation Coeffi-

cients to Seed and every voxel in G, it is
now vectorized

16: end for

6



17: for all l ∈ Index do
18: cvl ← xcvl . Pearson’s Correlation Coefficients have

been obtained in form of a 3D matrix
19: end for
20: end procedure

With Algorithm 1 and Algorithm 2, the Pearson’s Correlation Coefficients can be

completely obtained with truncated voxels in it - as indicated in the cv. In the following

algorithms and descriptions, we use ”truncate()” to represent truncating the voxels with

length 1200 by using the indices from X in equation 3.1.

3.4 Posterior Cingulate Cortex (PCC) Cloud

Following the previous section, this section generates the PCC cloud in direct assistance

with Pearson’s Correlation Cofficients. And now a parameter, the threshold value r, will be

selected for determining which voxel in cv could be included in the potential PCC cloud -

the cloud describing the positions for all voxels in cv. This cloud can be reasonably denoted

as a set, that is

p ∈ P
{

p | p ∈ cv,cvi > r
}
, (3.3)

where p represents the voxels in cv, and r is the threshold value. Also, the length of voxels

should be truncated using the indices from X. A detailed algorithm is summarized as below:

Algorithm 3 Obtain PCC Cloud
1: procedure PCCcloud(cv,r)
2: for all pi ∈ cv do
3: if pi > r then
4: positions← (i, j,k) . (i, j,k) is the position for the corresponded voxels
5: end if
6: end for
7: end procedure

When we plot the positions from the algorithm above, the figure of the PCC cloud is

below

7



Figure 3.2: One example of the PCC cloud

Figure 3.2 depicits the positions of all voxels in cv with values larger than the thresh-

old value. As described in Algorithm 3, this plotting of PCC clouds is yielded by 3D-

coordinates of those voxels, therefore it could be regarded as the threshold value regulating

the number of voxels in the PCC cloud and the shape of that cloud.

3.5 Different Seed Methods and Threshold Selection

All algorithms discussed above rely upon a single seed, selected from the PCC, and a

threshold value determined through ”engineering experience”. However, experience does

not necessarily lead to complete exactness. Given the fact that the seed selected previously

is located in the PCC, is it reliable? Besides that, is the threshold value of 0.4 ”good

enough” to produce a fully reasonable PCC cloud - that is, are all voxels in the PCC cloud

all ”qualified”? To address these issues, other methods for selecting seed and threshold

value should be taken into considerations.

The first new method introduced is a novel way for determining the seed, which is

referred to as the ”Region-based Seed (RbS)”. Compared to that original seed selected

8



from the PCC, RbS is more likely to be reasonable, since it depends on the entire Cingulate

Cortex (CC). Similar to the ”brainmask” obtained from the preprocesing stage, there is

a ”cingulate cortex mask”, denoted as ”xccmask”, also obtained from the physiological

analysis of human brain. And this ”xccmask” is now applied in this thesis for obtaining a

reliable seed. A detailed algorithm for obtaining the RbS is described below:

Algorithm 4 Obtain Region-based Seed (RbS)
1: procedure RegionSeed(Q,S)
2: for all Qi ∈ Q do . Q is the set representing the ”xccmask”
3: if Qi > 0 then
4: RbS← S j
5: end if
6: end for
7: Mean(RbS)
8: Transpose(RbS) . Transfoming to the form of vector
9: end procedure

A new method for determining thresholds uses the characteristic of ”Adaptiveness”.

This method is termed: Adaptively-Selected Threshold (AST). AST is the more reliable

threshold value which characterizes the property of ”following-up” to specific subjects.

The AST is proposed by Charreau S. Bell, a PhD candidate in our group. This concept was

developed due to the impact of properties in specific subjects on selection of thresholds.

Specifically, Charreau S. Bell found that the original threshold value almost filters out all

voxels for some subjects, but oppositely, for some other subjects, that original threshold

almost does ”nothing”, which means that too many qualified voxels, the values of which are

all larger than the original threshold value. Therefore, it is considered more reasonable to

”follow up” each subject for determining the threshold value instead of arbitrarily selecting

one.

Algorithm 1 yields vectorized Pearson’s Correlation Coefficients, xcv:

9



xcv =



xcv1

xcv2

xcv3

...

xcvn


, (3.4)

where xcvi = Seed ·Si[n]. Then, ten percentiles are found for xcv. Those numbers equally

divide xcv into ten parts, which are the 10th,20th, . . . ,100th percentiles. After that, a set

is created as H, which includes those ten percentiles. Finally, if the top 20% of voxels

would be selected for building the PCC cloud, then a detailed algorithm for obtaining AST

is stated below:

Algorithm 5 Obtain Adaptively-Selected Threshold (AST)
1: procedure AdaptiveSeed(xcv,H)
2: for all Hi ∈ H do
3: PE← percentile(Hth

i ) ∈ xcv . 10 percentiles in PE
4: end for
5: Index← length(PE)−20÷10 . Top 20% of voxels
6: AST = PEIndex . Every percentile in PE represents a range of

10% of voxels
7: end procedure

Based on those reasonable grounds, RbS and AST have both been applied in the quan-

titative approaches in this thesis. They are every important, and also considerably impact

several critical variables and their corresponding analyses, which will be introduced soon.

3.6 Subspace Filtering

Yielded by Algorithm 1, cv can be used to plot for determining the situation for cor-

relating selected seeds with other voxels. The plane with which the selected seed shares is

plotted for visualization of cv.

10



Figure 3.3: Visualization of Pearson’s Correlation Coefficients

Now the question is emerged as ”could cv be artificially increased?”. It might be fea-

sible through Principal Component Analysis (PCA) to find a lower-dimension plane onto

which to project the original cv. The degree of dimension depends on the number of com-

ponents composed of the largest part of information among all components.

As indicated in Algorithm 3.3, the PCC cloud is obtained by singling out those voxels,

the values of which correlation coefficients are above the threshold value. And now, for

every voxel singled out, its corresponding signal sequence in xcell has been collected and

gathered as

Signals = ∑
i

SiST
i , (3.5)

where Si has still been truncated using the indices from X in equation 3.1. Then Signals

can be decomposed as

Signals = UΣVT, (3.6)

where U is unfolded as

U = [U1,U2, . . . ,UP, . . . , . . .]. (3.7)

11



The value of P is the degree of plane dimension for projecting the original data. That

brings us to the second question addressing the methods for choosing P. Two methods of

selecting P will be provided in this thesis for intending to increase cv. The first method is

based on ”visual inspection”, while the second one deals with this issue using a mathemat-

ically stricter approach, a methodology widely employed in the field of Machine Learning.

”Visually” selecting the P value is introduced first. Equation 3.6 is essentially the oper-

ation of Singular Value Decomposition, the SVD, which results in a matrix Σ, the diagonal

matrix with singular values in descending order inside it. This matrix is visualized as below

Figure 3.4: Visualization of Singular Values Matrix Σ

Due to the truncation, the length of Σ is also 200, as shown in Figure 3.4. Under

careful observation, a ”turning point” is appeared in the plot above, which is about ”10”

with respect to the horizontal axis. This ”turning point” cuts off the ten highest singular

values from the rest. Hence, P = 10 could be a suitable choice.

The second operation for determining P is a mathematically stricter method of ”com-

puting” the P. The diagonal matrix Σ in equation 3.6 is

12



Σ =


σ11

. . .

σnn

 , (3.8)

where elements except those along the diagonal are all equal to 0, and n denotes the length

of Signals, which is 200. Then, P, the smallest integer, should be selected such that

∑
P
i=1 σii

∑
n
i=1 σii

> 0.99. (3.9)

Computing the P value in this method is more reasonable and logical, since the value

of equation 3.9 guarantees the 99% of the variance in the original signals is retained [10].

This high degree of variance retaining is required in PCA for maintaining the necessary

precision and completeness of the original data. After P has been determined, U is now

truncated such as

Uproj = [U1,U2, . . . ,UP], (3.10)

where the Uproj may be employed to project the original data onto the P dimensional plane.

Actually, the two methods discussed above prove that the Subspace Filtering, the PCA

in this thesis, is not necessary, since the first method just ”forces” the increase of the cor-

relation coefficients at the expense of losing much of the original information, while the

second method produces a very large P value in the range of 110 to 130 (through the exper-

iments conducted in MAT LABT M); therefore, it is very close to the length of the original

data. More complete results and analysis for this section will be provided in the next chap-

ter.

3.7 Connection Probabilities

The final topic in this chapter is Connection Probabilities (CP), a matrix denoted as

xpdf. CP measures the probabilites of every voxel’s relationships to other voxels. As pre-

13



viously mentioned, Algorithm 1 through Algorithm 3 yield the PCC cloud, and now these

three algorithms can be used to obtain xpdf. In addition, although the Subspace Filtering is

not necessary in this thesis, it can be used in initiating the procedures for obtaining the xpdf

that are contained within Algorithm 1 to Algorithm 3. It should be noticed that until now,

two methods of finding seeds and determining the threshold values have been presented in

this thesis. Therefore, different combinations among these methods will produce different

results for xpdf.

Although Subspace Filtering is not exactly correct for ”forcing” the correlation coef-

ficients to be increased, it can be used to generate a source for dynamically selecting the

seeds to obtain the high-probability-oriented voxel-wise connection variable. Applied

with the value of P, the original signals can be projected onto a P dimensional plane - the

new PCA-processed signals are produced. Then, a new cv, produced again by previous al-

gorithms, will be employed to offer a ”source” for us to choose several seeds, a procedure

similar to Algorithm 3. After that, we choose a ”loop” with specific length, and in every

iteration of this ”loop” a seed will be dynamically selected from the ”source” in the order

of the sequence number of its corresponding loop. Finally, taking as input arguments those

variables discussed above, procedures in Algorithm 1 to Algorithm 3 will be repeated, in

the regulation of the length of that loop, to obtain the xpdf. In sum, this entire process

is dynamic. However, if the RbS is applied, then the seed will remain unchanged during

every iteration. Aside from that, due to different combinations of seed and threshold meth-

ods, some vital details in this dynamic process can vary greatly. In the same manner as for

the previous notice, in this chapter only methods are introduced, and the further analyses,

details, and results will appear in the next chapter.

The following outlines more comprehensive procedures describing how to obtain xpdf.

These procedures ”conclude” the main approaches introduced in this chapter, and includes

all algorithms, all seed methods and threshold selections as previously introduced.
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Algorithm 6 Comprehensively Obtain the Connection Probabilities-xpd f
1: procedure Obtainxpd f (R,S,G,P,OriginalSeed,r,Upro j,Looplength)
2: Pro j =Upro jUT

pro j
3: for all Ri ∈ R do
4: if Ri > 0 then
5: Truncate(Si)
6: Si−mean(Si)
7: Si← Pro j ·Si . Projection is now complete
8: end if
9: end for

10: G← ProcessXcell(Spro j,R)
11: SelectSeed . Select RbS or Original Seed
12: if Seed = OriginalSeed then
13: Seed−mean(Seed)
14: Seed÷norm(Seed)
15: end if
16: cvnew← GetConnections(G,Seed)
17: SelectT hreshold . Select AST or Original Threshold
18: if r = AST then
19: r← AST
20: end if
21: Logicindex← f ind(cvnew > r) . Os and 1s will be presented in Logicindex
22: for all Li ∈ Logicindex do . Li ∈ {0,1}
23: if Li > 0 then
24: positions← (i, j,k) . This positions will be used for dynamically

selecting the Seed
25: end if
26: end for
27: while Loop < LoopLength do
28: if Seed = OriginalSeed then
29: Seeddyn← SpositionsLoop . Dynamically selecting the Seed for each it-

eration in while
30: elseSeeddyn← RbS . If RbS has been previously selected, the dy-

namic Seed will be equal for every iteration
31: end if
32: Truncate(Seeddyn)
33: Seeddyn−mean(Seeddyn)
34: Seeddyn÷norm(Seeddyn)
35: cvdyn← GetConnections(G,Seeddyn)
36: xpd fdyn← f ind(cvdyn > r) . There will be 0s and 1s in xpd fdyn for every

interation
37: xpd f ← xpd f + xpd fdyn . xpd f has been initiated as 0s, then recur-

sively summing up it and xpd fdyn for every
iteration

38: end while
39: end procedure
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3.8 Whole-Brain Timescore (WBTc) Peaks vs. Bandwidth of BPFs

Compared with previous discussions, the Whole-Brain Timescore (WBTc) will be much

more direct. The WBTc purely measures the ”time resolution” in every original voxel. It

is simply computed as

WBTc[n] =
N

∑
i

Si[n]
N

∑
j

S j[n], (3.11)

where i and j should have the same range, and N is 1200 because of the ”Whole-Brain”

Timescore. The equation 4.1 should be considered as summing up all the correlations

between every pair of voxels in the brain.

In the next chapter, many results and analyses will be presented for illustrating the

relation between WBTc peaks and bandwidth of those five different IIRBPFs which have

been used for preprocessing the brain signals.
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Chapter 4

Results

4.1 Chapter Introduction

Chapter 3 comprehensively presents several computational methods for evaluating the

preprocessing of fMRI images, obtaining and analyzing their significant properties. In this

chapter, all the experimental results, evaluations, and interpretations will be involved for

the full and quantitative illustrations of the methods previously discussed. In addition,

this chapter also provides a comprehensive analysis for the selection of those methods

introduced in previous chapter.

4.2 Population of Subjects and the Logic of Analysis

In our data set, there are seventeen subjects in total, a data set from Massachussets

General Hospital [11], the brain fMRI images of which have been processed by all the

methods mentioned in the last chapter. Correspondingly, each of those subjects have five

different xcell because those five different IIRBPFs have preprocessed the original signals.

Therefore, for every method in the previous chapter, there are also five ”parallel paths”

with respect to every resulting variable, typically xpdf. Aside from that, it is even more

important to explore differences and similarities for all those variables.

For the sake of simplicity of expressions in this chapter, the original serial number for

each subject has been abbreviated as indicated in table below:

Table 4.1: Subjects Serial Numbers Mapping Table

Original# 100206 100408 100610 101006 101107 101309 101410 101915 102008 102311 102513 102816 140117 153227 170934 200109 702133
Abbreviated# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Table 4.1 maps each subject’s original serial number to a simple sequence number,

which will be used for denoting every subject over this chapter.
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4.3 Seed Evaluations

Several important sets of experiments were involved for implementing all the methods

and addressing all the issues in previous chapter. Since all methods are based on seed,

therefore, it is essential to evaluate its effectiveness first.

As previously indicated, two methods for seed selection, the single seed selected from

the PCC and the RbS, have been presented, and the former is named as ”Original Seed

(OS)”. Both of them are evaluated in terms of Pearson’s Correlation Coefficients, the cv,

at the same plane with which OS shares, and the number of voxels in the PCC cloud, while

the threshold value is remained unchanged for this part. The figure below shows the cv

from the two seed selection methods based on the preprocessing of five different IIRBPFs.

Figure 4.1: The Correlation Coefficients based on two Seed Methods and Different BPFs

Obviously, based on all those five IIRBPFs, the cv of RbS is much better than that of

OS; therefore, the RbS, in this situation, makes significant improvements, which could be a

sufficient reason for the favoring toward choosing RbS as the reliable seed. As mentioned

before, the figure above only takes one ”slice” from the whole brain, and it is necessary to

know the concrete number of voxels in the PCC cloud. For the two tables presented below,
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the threshold value remains as 0.4, which is the ”experience-based value”.

Table 4.2: The number of voxels in the PCC cloud based on OS and r = 0.4

Subject# BPF1 BPF2 BPF3 BPF4 BPF5
1 810 4100 1780 602 725
2 88920 81547 91800 68492 52162
3 20297 16271 6242 9039 5853
4 25 24 20 19 23
5 74543 64406 59129 53493 78976
6 32928 17871 19814 18940 8370
7 819 29 20 24 22
8 36109 36086 18917 17958 8611
9 136259 124692 126656 118551 102364

10 14101 3079 55 321 79
11 56314 69106 43631 28062 29822
12 34844 26709 30720 32912 18461
13 79 54 54 51 41
14 3801 2742 1563 156 599
15 230 323 212 91 172
16 3779 836 3737 799 34
17 51341 40180 39067 37744 32362

Table 4.3: The number of voxels in the PCC cloud based on RbS and r = 0.4

Subject# BPF1 BPF2 BPF3 BPF4 BPF5
1 80327 93560 91214 89676 84250
2 114868 120756 110477 112459 101993
3 77106 81375 71555 72886 63714
4 34247 32457 22388 25355 21009
5 154657 159141 160173 143326 152141
6 82491 75836 53540 66346 56320
7 33550 29552 22521 31144 22728
8 139157 132824 128190 108895 117002
9 145516 149595 140373 131949 136957

10 107911 106337 97031 96079 88714
11 113597 111981 99664 106907 87848
12 104802 94718 82200 82057 88772
13 106238 108086 101370 109454 92280
14 65152 50175 56063 57413 46664
15 25602 20095 22417 17438 20827
16 43374 32398 38869 25041 26430
17 150246 142142 135346 120912 121290
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As expected, the values in Table 4.2 vary significantly much more than those in Table

4.3, because the RbS is more reliable compared to OS. Although this variance could also

be attributed by the subjects’ properties, the RbS ”reconciles” those differences to some

degree. In conclusion, RbS can be a better seed method.

4.4 Threshold versus Variation in Connection Probabilities

The previous part evaluates seed methods with respect to the number of voxels in the

PCC cloud. In this part, seed evaluations will continue on the basis of more advanced

methods, which will support threshold evaluations.

In the last chapter, a complex variable has been introduced, the Connection Probabil-

ities, denoted as xpdf, which is based upon the selection of seed and threshold value (r).

For one subject, there are correspondingly five different xpdfs. If the absolute value of the

difference in each pair of xpdfs is calculated, then ten difference values will be obtained.

After that, for each difference value, the CDF will be calculated and a CDF plot will also

be obtained. The figure below is one example of a CDF plot for difference values.

Figure 4.2: One example of a CDF plot for xpdf difference values
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In Figure 4.2, each value of xpdf difference has been scaled by 1000, and the CDF

values have been evaluated from 0.1 to 1. In our analysis, two significant variables re-

garding the difference values in each pair of xpdfs will be calculated for a comprehensive

assessment. The first one is CDF(0.1), the value considered as the boundary for deter-

mining the preliminary similarities in each pair, and another one is the Area Under Curve,

the AUC, which will be applied to measure the overall similarities in each pair. Compared

with the first variable, AUC is more comprehensive. However, the CDF(0.1) is stricter and

”demanding”. Ideally, it is expected, albeit unrealistically, to see the CDF(0.1) = 1. For

instance, the situation in Figure 4.2 is very close to ideal condition, but it should be noticed

that many other situations would be worse than it.

There are many potential ways for calculating AUCs. In this thesis, the Trapezoidal

Rule is employed for obtaining AUCs, because the calculation of AUCs is essentially the

numerical quadrature. For every small region under the curve, the region composed of

every two neighboring points along the x axis, its area can be obtained by approximating it

as a trapezoid [12]. For one region, it is calculated as

b∫
a

f (x)dx≈ (b−a)
[

f (a)+ f (b)
2

]
(4.1)

where a and b represent every two neighboring points. By summing over every small area

in this way, we have

b∫
a

f (x)dx≈
N

∑
k=1

f (xk−1)+ f (xk)

2
∆xk (4.2)

where N is the number of areas calculated by equation 4.1. Due to the small number of

panels in Figure 4.2, the error produced by equation 4.2 can be neglected.

For following pages, several plots and tables will be presented regarding the variations

of xpdf with the changes of threshold and seed selections.
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If the threshold is 0.4 with the two seed methods applied, then we have the two tables

below:

Table 4.4: CDF(0.1) of the xpdf difference values based on r = 0.4 and OS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.969757 0.816493 0.961101 0.931626 0.65673 0.758355 0.699996 0.990207 0.985193 0.882323
2 0.700817 0.764749 0.574024 0.32467 0.835071 0.736773 0.441462 0.642782 0.379745 0.49702
3 0.826001 0.68958 0.744563 0.683712 0.809316 0.892141 0.808421 0.990999 0.963223 0.907196
4 0.995995 0.985743 0.992802 0.987689 0.96848 0.997562 0.980036 0.999915 0.99971 0.95354
5 0.578512 0.426703 0.704485 0.629637 0.617555 0.728209 0.733882 0.907548 0.848394 0.63974
6 0.744263 0.732037 0.626841 0.569351 0.947533 0.820971 0.679471 0.810239 0.706219 0.840139
7 0.939747 0.904477 0.89269 0.887098 0.976548 0.971796 0.959694 0.994561 0.990479 0.996522
8 0.547945 0.460801 0.37429 0.316456 0.711829 0.676979 0.401807 0.796377 0.494377 0.515673
9 0.603331 0.653481 0.38498 0.295437 0.856447 0.62838 0.415148 0.587212 0.373772 0.638038

10 0.540965 0.491785 0.488825 0.452831 0.601012 0.598881 0.518301 0.899566 0.610233 0.61849
11 0.888512 0.658602 0.638384 0.712498 0.683087 0.670466 0.742069 0.898821 0.948459 0.962174
12 0.850322 0.716238 0.612016 0.56752 0.687593 0.599083 0.568712 0.785913 0.679177 0.826247
13 0.847084 0.858729 0.758627 0.706055 0.956656 0.859584 0.832387 0.854902 0.824968 0.948759
14 0.753798 0.717616 0.684175 0.678065 0.913801 0.837469 0.845851 0.903982 0.91388 0.973932
15 0.938876 0.973736 0.959344 0.974831 0.950257 0.933973 0.937 0.995903 0.994394 0.999961
16 0.931471 0.942348 0.878501 0.831799 0.994959 0.970703 0.885392 0.947237 0.889572 0.932306
17 0.512504 0.458109 0.446078 0.413593 0.743391 0.650807 0.680054 0.740977 0.772159 0.836323

Table 4.5: CDF(0.1) of the xpdf difference values based on r = 0.4 and RbS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.968229 0.958366 0.94922 0.934613 0.938863 0.934852 0.916785 0.946268 0.933545 0.941446
2 0.977274 0.947752 0.959803 0.931158 0.935695 0.939178 0.908193 0.964066 0.938859 0.935
3 0.968008 0.944147 0.943543 0.915976 0.931691 0.937837 0.909361 0.957942 0.943435 0.936907
4 0.966976 0.938224 0.944547 0.930495 0.946976 0.954254 0.939421 0.986113 0.973553 0.965408
5 0.962712 0.960263 0.885217 0.930251 0.977095 0.866962 0.942613 0.862863 0.940837 0.933656
6 0.934324 0.869171 0.903192 0.878689 0.893688 0.931864 0.897908 0.97617 0.964623 0.92345
7 0.95195 0.929368 0.95373 0.934558 0.939865 0.961282 0.944358 0.978338 0.96736 0.946148
8 0.946092 0.931705 0.861365 0.894688 0.944194 0.889684 0.92128 0.896974 0.928927 0.975794
9 0.976457 0.94979 0.925982 0.934916 0.941963 0.91632 0.930304 0.939403 0.948558 0.975919

10 0.949877 0.92558 0.923855 0.899741 0.937744 0.937717 0.911682 0.961818 0.938591 0.944516
11 0.944349 0.919309 0.931216 0.870652 0.920907 0.938554 0.872673 0.969442 0.926082 0.902044
12 0.92483 0.879226 0.880891 0.903073 0.916291 0.917553 0.939994 0.938062 0.955293 0.968078
13 0.946473 0.937097 0.947218 0.898877 0.92592 0.940272 0.893577 0.960519 0.914244 0.895566
14 0.920029 0.936226 0.940715 0.905383 0.970474 0.972329 0.953326 0.967025 0.936786 0.931442
15 0.961332 0.964985 0.950529 0.958094 0.981753 0.966477 0.972839 0.959236 0.967996 0.980796
16 0.933015 0.94789 0.913717 0.91542 0.972882 0.947436 0.952356 0.926677 0.935103 0.970253
17 0.929726 0.906218 0.84147 0.852568 0.944215 0.882792 0.893594 0.896745 0.918558 0.941814

Comparing the two tables above, the situation fits our expectations - values of CDF(0.1)

based on Region-based Seed (RbS) are much higher and less-varying than those based on

Original Seed (OS). Specifically, the values higher than 0.9 from Table 4.5 are much more

than values from Table 4.4. This situation is considered ”good”, since more similarities

means more stability.
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If the AST is applied, then we have another two tables below:

Table 4.6: CDF(0.1) of the xpdf difference values based on AST and OS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.987555 0.92841 0.916312 0.982801 0.60987 0.560432 0.873133 0.725477 0.939366 0.975348
2 0.693594 0.79935 0.744425 0.776203 0.895875 0.873579 0.931065 0.858355 0.877762 0.917272
3 0.95317 0.888408 0.86071 0.933956 0.789289 0.773187 0.877017 0.852539 0.93416 0.936277
4 0.627689 0.376227 0.868317 0.563104 0.489522 0.920131 0.683798 0.974839 0.83999 0.408734
5 0.855562 0.92263 0.947811 0.740782 0.968918 0.905682 0.709442 0.653141 0.441962 0.487362
6 0.848802 0.819177 0.736359 0.74419 0.860886 0.820465 0.776914 0.785942 0.745482 0.812141
7 0.773176 0.759757 0.910821 0.844687 0.7618 0.949876 0.860872 0.943352 0.844018 0.610041
8 0.972021 0.99884 0.788215 0.9801 0.992135 0.489762 0.895447 0.163295 0.328696 0.991516
9 0.866374 0.933224 0.799099 0.888585 0.983204 0.891349 0.962156 0.712841 0.857158 0.985985

10 0.999367 0.972035 0.968219 0.563669 0.344486 0.32913 0.067317 0.766802 0.260242 0.223226
11 0.968169 0.935643 0.988509 0.972744 0.918957 0.991164 0.974082 0.987801 0.980759 0.771989
12 0.782154 0.962851 0.734039 0.892593 0.841499 0.735568 0.776082 0.565702 0.715914 0.873315
13 0.861322 0.98461 0.910215 0.685773 0.970508 0.805658 0.533225 0.376425 0.109072 0.416454
14 0.770823 0.860211 0.395787 0.612551 0.842578 0.400315 0.586756 0.314667 0.502896 0.926412
15 0.770168 0.954281 0.913751 0.953695 0.983422 0.943931 0.97098 0.652234 0.737224 0.811842
16 0.898698 0.875609 0.942638 0.969596 0.873936 0.938864 0.968416 0.961988 0.982405 0.932941
17 0.595388 0.521785 0.585283 0.444901 0.740197 0.789524 0.620888 0.879829 0.715673 0.642144

Table 4.7: CDF(0.1) of the xpdf difference values based on AST and RbS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.968364 0.964283 0.956166 0.957902 0.963081 0.957572 0.9592 0.964899 0.959321 0.956708
2 0.978404 0.974057 0.973464 0.979711 0.977097 0.975985 0.978466 0.982706 0.97591 0.97777
3 0.964779 0.963414 0.962801 0.953044 0.966578 0.969903 0.962236 0.970068 0.963914 0.96457
4 0.951129 0.957157 0.958804 0.956335 0.964051 0.954875 0.957871 0.961653 0.962716 0.961126
5 0.967849 0.972039 0.964819 0.965449 0.959966 0.972655 0.967233 0.963147 0.961306 0.966108
6 0.964369 0.964318 0.967241 0.963352 0.962519 0.966228 0.966327 0.959261 0.964361 0.962961
7 0.941606 0.924923 0.928117 0.936006 0.937305 0.943129 0.934387 0.944271 0.932838 0.938981
8 0.976933 0.977914 0.975781 0.971676 0.976095 0.978939 0.972505 0.979389 0.975035 0.975432
9 0.978362 0.97693 0.970539 0.972322 0.977798 0.97201 0.975741 0.976053 0.979876 0.975698

10 0.980876 0.976209 0.978095 0.977183 0.975275 0.97989 0.980108 0.975772 0.973524 0.979885
11 0.966957 0.967852 0.969868 0.969147 0.968808 0.969768 0.967101 0.970793 0.970124 0.971831
12 0.967316 0.966207 0.96509 0.969441 0.961962 0.954557 0.965664 0.970107 0.966295 0.964174
13 0.953249 0.955495 0.951646 0.951291 0.946018 0.939322 0.953914 0.963199 0.951046 0.946946
14 0.967047 0.967157 0.953868 0.954114 0.96155 0.962682 0.962475 0.951414 0.955057 0.959405
15 0.954855 0.955027 0.951142 0.951517 0.948196 0.946898 0.954712 0.954669 0.953703 0.950564
16 0.946416 0.954984 0.954539 0.946961 0.952537 0.953903 0.947415 0.9523 0.949784 0.947428
17 0.962478 0.954325 0.951841 0.954124 0.957789 0.955885 0.958403 0.965828 0.957353 0.956015

This is the third time the advantage of RbS has been identified based on Table 4.6 and

Table 4.7. More importantly, for the same reason, the AST also offers the advantage of

reliability over the r = 0.4.
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If the threshold value is artificially increased to r = 0.5, then we have

Table 4.8: CDF(0.1) for xpdf difference values based on r = 0.5 and OS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.999427 0.997191 0.930802 0.992078 0.901362 0.834638 0.875989 0.895037 0.991405 0.999922
2 0.643061 0.515001 0.469345 0.425786 0.713883 0.711464 0.531922 0.831495 0.593103 0.63902
3 0.895384 0.847411 0.820243 0.821551 0.98149 0.939632 0.950163 0.981677 0.982424 0.996606
4 1 1 1 1 0.988136 0.989337 0.989279 1 1 1
5 0.911333 0.639098 0.746765 0.472345 0.529323 0.670774 0.389643 0.870005 0.608068 0.544047
6 0.978334 0.868892 0.815 0.824981 0.846737 0.811025 0.813536 0.950323 0.969353 0.996377
7 0.995822 0.976745 0.985627 0.973376 0.979379 0.985999 0.973862 1 1 0.987228
8 0.976854 0.954415 0.706441 0.602957 0.695448 0.527504 0.520624 0.589338 0.567701 0.740876
9 0.835173 0.356317 0.353288 0.368418 0.390594 0.382051 0.396825 0.905147 0.955261 0.927323

10 0.945677 0.822775 0.845724 0.699634 0.748643 0.764968 0.702096 0.964626 0.794138 0.791658
11 0.662395 0.617935 0.609398 0.618678 0.801878 0.750337 0.883503 0.93858 0.992871 0.997593
12 0.747796 0.725421 0.69388 0.698205 0.920046 0.870459 0.896449 0.883546 0.893539 0.950575
13 0.9495 0.956993 0.939891 0.934281 0.999965 0.991736 0.979994 0.982294 0.971542 0.992945
14 0.967655 0.970655 0.954062 0.947657 0.999427 0.997516 0.99426 0.997903 0.994133 0.999207
15 0.971424 0.998698 0.987027 0.975918 1 1 0.999991 0.991763 0.980882 0.996093
16 0.952611 0.952153 0.962835 0.941099 0.999944 0.999974 0.99454 0.99697 0.985462 0.987632
17 0.867113 0.731007 0.721346 0.684791 0.79701 0.78575 0.738188 0.952599 0.902666 0.912449

Table 4.9: CDF(0.1) for xpdf difference values based on r = 0.5 and RbS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.968437 0.971923 0.945279 0.923062 0.973251 0.933471 0.909653 0.929078 0.897377 0.934765
2 0.986233 0.967225 0.947955 0.931876 0.945572 0.913696 0.904817 0.947756 0.935686 0.959462
3 0.955313 0.951171 0.941809 0.94436 0.959185 0.951236 0.961202 0.963292 0.964627 0.970198
4 0.980969 0.974638 0.972302 0.976442 0.978027 0.977071 0.98176 0.983787 0.987618 0.992195
5 0.96641 0.933358 0.931983 0.943496 0.939733 0.941729 0.93772 0.942932 0.927061 0.926337
6 0.94934 0.949666 0.93356 0.905437 0.970152 0.956106 0.929975 0.962584 0.937367 0.953676
7 0.985054 0.988974 0.986148 0.982481 0.993271 0.990304 0.988467 0.984284 0.979611 0.982748
8 0.943706 0.937333 0.945669 0.867581 0.963257 0.960426 0.88903 0.965604 0.899512 0.898605
9 0.943481 0.911816 0.898838 0.88015 0.942778 0.9364 0.91461 0.955682 0.934938 0.950237

10 0.925457 0.931107 0.904579 0.891769 0.972467 0.958312 0.949943 0.945751 0.933832 0.963006
11 0.882087 0.902114 0.856051 0.835185 0.97161 0.940983 0.928575 0.932876 0.915855 0.954923
12 0.951959 0.968573 0.960016 0.881631 0.973664 0.967671 0.902994 0.95957 0.884571 0.899502
13 0.872122 0.826146 0.831756 0.773872 0.925066 0.919535 0.883237 0.960935 0.929507 0.915147
14 0.956013 0.948908 0.963149 0.940547 0.960863 0.973685 0.956392 0.987948 0.976372 0.961858
15 0.982637 0.966628 0.966827 0.972882 0.975073 0.976052 0.9813 0.992431 0.994036 0.995161
16 0.99441 0.985903 0.987316 0.987619 0.9576 0.960708 0.961348 0.98921 0.987679 0.988177
17 0.938193 0.887864 0.863627 0.821808 0.902457 0.878225 0.829787 0.926044 0.894252 0.917055

From this pair of tables, the RbS is still much better than OS. Although several ”1s”

appear in Table 4.9, artificially-raised threshold filters out a lot of voxels; therefore, it is

not reasonable.

The previous six tables mainly illustrate the advantages of RbS and AST in reducing the

difference of xpdfs in terms of the values of CDF(0.1), and there is one additional plot of

drawing the lines representing the means of each subject for all previous six tables, which

is the more evident comparison among them.
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Figure 4.3: Plots of means for each pair of BPFs from Table 4.4 to Table 4.9

Obviously, the figure above shows that the advantage of RbS is evident and powerful,

especially when it is associated with AST, which is an excellent combination. This combi-

nation is not only in a high similarity range, but also it no longer fluctuates, in contrast to

other combinations.

The evaluations based on CDF(0.1) are now complete, and we redirect our focus to

AUCs-based evaluations.

Table 4.10: AUCs of the xpdf difference values based on r = 0.4 and OS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.988608 0.952863 0.984174 0.976049 0.88467 0.935856 0.917806 0.994027 0.990876 0.96767
2 0.917912 0.933952 0.886898 0.739812 0.954229 0.930602 0.798978 0.895592 0.768644 0.843655
3 0.956745 0.918076 0.935027 0.917179 0.953367 0.967532 0.951432 0.991627 0.984865 0.974042
4 0.993664 0.989817 0.992604 0.990322 0.989525 0.995136 0.991541 0.997409 0.996084 0.986689
5 0.87029 0.843815 0.910893 0.898535 0.876089 0.891666 0.920779 0.975835 0.958304 0.870136
6 0.934814 0.933107 0.897044 0.860629 0.980113 0.953443 0.920375 0.951459 0.920059 0.959938
7 0.978178 0.969723 0.967768 0.967435 0.985646 0.984827 0.983788 0.992439 0.991418 0.993785
8 0.86624 0.815807 0.807684 0.646326 0.925928 0.913604 0.768316 0.948202 0.821549 0.832873
9 0.88684 0.90771 0.819436 0.745575 0.960099 0.906052 0.831653 0.895547 0.825407 0.908953

10 0.861876 0.738129 0.755135 0.626561 0.868268 0.885587 0.756081 0.973047 0.879697 0.864733
11 0.969007 0.916914 0.906637 0.926904 0.924316 0.916352 0.934988 0.972018 0.983562 0.987429
12 0.961293 0.925576 0.894596 0.866992 0.915646 0.889028 0.863437 0.945306 0.921662 0.957025
13 0.955546 0.958048 0.931568 0.918917 0.985606 0.956458 0.942647 0.957832 0.944342 0.983121
14 0.926695 0.910473 0.889589 0.897048 0.975386 0.95622 0.958431 0.973273 0.975753 0.988946
15 0.983116 0.986323 0.982063 0.983651 0.985517 0.980226 0.980636 0.990945 0.991422 0.996771
16 0.977567 0.979381 0.965829 0.949368 0.992975 0.985036 0.967497 0.982262 0.966993 0.979603
17 0.860309 0.825508 0.774155 0.790446 0.930236 0.883123 0.913171 0.928055 0.941579 0.95399
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The table above indicates the Area Under Curve, obtained by Trapezoidal Rule, for all

17 subjects each with 10 pairs of xpdf difference values based on ten pairs of IIRBPFs-

preprocessed data. The situation in Table 4.10 is based upon r = 0.4 and RbS, and other

situations will be presented below in the same order as CDF(0.1)-based evaluations.

Table 4.11: AUCs of xpdf difference values based on r = 0.4 and RbS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.964096 0.928996 0.917532 0.932008 0.882592 0.87424 0.893127 0.944033 0.949567 0.957806
2 0.933125 0.890536 0.88334 0.879162 0.934672 0.927046 0.925549 0.965812 0.962533 0.966645
3 0.923021 0.904376 0.903363 0.918614 0.94895 0.945269 0.960346 0.957003 0.9652 0.968677
4 0.962515 0.960836 0.955982 0.954326 0.971977 0.971436 0.969096 0.972164 0.969677 0.966395
5 0.912367 0.959518 0.973608 0.961302 0.939608 0.934345 0.924527 0.967074 0.969957 0.961772
6 0.904205 0.937157 0.923927 0.904635 0.973475 0.967465 0.952199 0.949551 0.927717 0.941167
7 0.969836 0.980779 0.961742 0.965251 0.974076 0.951346 0.958797 0.930572 0.945251 0.975012
8 0.910379 0.877038 0.895316 0.858167 0.924726 0.935016 0.897754 0.9656 0.944439 0.936888
9 0.963106 0.938986 0.943551 0.926412 0.943416 0.951513 0.930859 0.961292 0.941281 0.951348

10 0.965176 0.932714 0.913529 0.905251 0.935155 0.914472 0.903662 0.9502 0.933936 0.95354
11 0.936616 0.935209 0.930448 0.89419 0.952352 0.952269 0.915112 0.951969 0.917614 0.925008
12 0.887068 0.839286 0.859519 0.85062 0.922066 0.930548 0.927779 0.965511 0.957813 0.948305
13 0.959091 0.917389 0.876449 0.823557 0.893569 0.850474 0.795747 0.906134 0.86543 0.906212
14 0.957836 0.946864 0.928412 0.899701 0.948203 0.937279 0.90763 0.942653 0.916113 0.946362
15 0.983215 0.977897 0.970268 0.964683 0.971454 0.962268 0.957442 0.967245 0.956183 0.964645
16 0.919492 0.884726 0.88084 0.851564 0.940589 0.938181 0.912584 0.968628 0.954379 0.951353
17 0.900222 0.949309 0.830245 0.824593 0.967554 0.869279 0.883153 0.845269 0.838393 0.931578

In Table 4.11, the AUC values over the entire table are close to ”1” than the condition

in Table 4.10. Although the difference between these two tables is not as large as the

corresponding situations in CDF(0.1)-based evaluations, the former conditions comprises

the entire areas under curves; therefore, even a small difference can be regarded as a ”large

improvement”.

Table 4.12: AUCs of the xpdf difference values based on AST and OS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.995732 0.980483 0.977473 0.994958 0.891847 0.879945 0.965706 0.926894 0.983901 0.993172
2 0.927253 0.945487 0.930764 0.943813 0.972559 0.966405 0.979424 0.961639 0.966386 0.975543
3 0.983581 0.968921 0.962412 0.981337 0.946031 0.942042 0.967527 0.962211 0.982189 0.983162
4 0.909424 0.826395 0.967484 0.882277 0.873537 0.979994 0.919414 0.993451 0.959835 0.845609
5 0.964445 0.983108 0.984132 0.927222 0.990687 0.973628 0.930445 0.890385 0.824155 0.81496
6 0.959125 0.954396 0.934043 0.925766 0.965128 0.955288 0.937678 0.947142 0.934437 0.951275
7 0.943634 0.938945 0.978596 0.959766 0.941298 0.987373 0.966265 0.985824 0.96153 0.904847
8 0.991735 0.999663 0.943069 0.993701 0.997596 0.850533 0.970787 0.615967 0.797278 0.996994
9 0.965217 0.981272 0.949816 0.97062 0.993843 0.970763 0.988253 0.929511 0.963261 0.99419

10 0.999798 0.991807 0.990797 0.878437 0.786573 0.790623 0.524511 0.939367 0.728975 0.722372
11 0.988148 0.982413 0.996033 0.992019 0.978099 0.996581 0.991884 0.995349 0.993028 0.94499
12 0.943546 0.988269 0.931598 0.972432 0.958385 0.932106 0.934521 0.879111 0.924929 0.968324
13 0.961985 0.995863 0.97551 0.908514 0.991766 0.945794 0.856279 0.826477 0.679049 0.826558
14 0.937521 0.963804 0.820144 0.885997 0.960257 0.796543 0.888918 0.770714 0.858879 0.980112
15 0.945306 0.987656 0.978099 0.987036 0.994111 0.984709 0.99081 0.915335 0.936551 0.954118
16 0.967513 0.963042 0.983829 0.99137 0.96585 0.983849 0.991244 0.98874 0.994665 0.981014
17 0.891092 0.859237 0.887354 0.826139 0.9316 0.94634 0.896324 0.968172 0.923295 0.909396
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Table 4.13: AUCs of the xpdf difference values based on AST and RbS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.968364 0.964283 0.956166 0.957902 0.963081 0.957572 0.9592 0.964899 0.959321 0.956708
2 0.978404 0.974057 0.973464 0.979711 0.977097 0.975985 0.978466 0.982706 0.97591 0.97777
3 0.964779 0.963414 0.962801 0.953044 0.966578 0.969903 0.962236 0.970068 0.963914 0.96457
4 0.951129 0.957157 0.958804 0.956335 0.964051 0.954875 0.957871 0.961653 0.962716 0.961126
5 0.967849 0.972039 0.964819 0.965449 0.959966 0.972655 0.967233 0.963147 0.961306 0.966108
6 0.964369 0.964318 0.967241 0.963352 0.962519 0.966228 0.966327 0.959261 0.964361 0.962961
7 0.941606 0.924923 0.928117 0.936006 0.937305 0.943129 0.934387 0.944271 0.932838 0.938981
8 0.976933 0.977914 0.975781 0.971676 0.976095 0.978939 0.972505 0.979389 0.975035 0.975432
9 0.978362 0.97693 0.970539 0.972322 0.977798 0.97201 0.975741 0.976053 0.979876 0.975698

10 0.980876 0.976209 0.978095 0.977183 0.975275 0.97989 0.980108 0.975772 0.973524 0.979885
11 0.966957 0.967852 0.969868 0.969147 0.968808 0.969768 0.967101 0.970793 0.970124 0.971831
12 0.967316 0.966207 0.96509 0.969441 0.961962 0.954557 0.965664 0.970107 0.966295 0.964174
13 0.953249 0.955495 0.951646 0.951291 0.946018 0.939322 0.953914 0.963199 0.951046 0.946946
14 0.967047 0.967157 0.953868 0.954114 0.96155 0.962682 0.962475 0.951414 0.955057 0.959405
15 0.954855 0.955027 0.951142 0.951517 0.948196 0.946898 0.954712 0.954669 0.953703 0.950564
16 0.946416 0.954984 0.954539 0.946961 0.952537 0.953903 0.947415 0.9523 0.949784 0.947428
17 0.962478 0.954325 0.951841 0.954124 0.957789 0.955885 0.958403 0.965828 0.957353 0.956015

For this pair of tables, they are both quite similar in the range of values; therefore, it

is the RbS again justifying its advantage. For the reason of complete comparisons, the

threshold value was once again increased from 0.4 to 0.5, and the two corresponding tables

are obtained below:

Table 4.14: AUCs of the xpdf difference values based on r = 0.5 and OS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.996132 0.994349 0.978436 0.991295 0.975488 0.953013 0.969664 0.972826 0.989999 0.9974
2 0.908469 0.856008 0.841769 0.747097 0.93557 0.926002 0.836563 0.9552 0.886308 0.902908
3 0.972075 0.962103 0.95437 0.95571 0.987697 0.980298 0.981507 0.988801 0.989143 0.995579
4 0.999167 0.998869 0.99886 0.998957 0.994868 0.995045 0.994986 0.998983 0.998972 0.998901
5 0.975592 0.916557 0.930995 0.841324 0.891323 0.913947 0.809121 0.965334 0.908534 0.87176
6 0.98885 0.962906 0.947427 0.950953 0.954966 0.939846 0.942761 0.982684 0.985606 0.994583
7 0.995241 0.99042 0.9928 0.988839 0.991447 0.993 0.989862 0.997966 0.996885 0.993172
8 0.991985 0.985429 0.920927 0.853112 0.92684 0.812293 0.74513 0.876202 0.808999 0.926539
9 0.954056 0.744304 0.75444 0.77944 0.763841 0.77434 0.799286 0.973903 0.985106 0.979526

10 0.984034 0.955218 0.958978 0.910359 0.93253 0.942843 0.886333 0.988383 0.951079 0.939981
11 0.890407 0.850615 0.837688 0.879365 0.951792 0.940923 0.969686 0.980327 0.993413 0.99708
12 0.928486 0.925875 0.908719 0.90981 0.977268 0.966735 0.971481 0.970573 0.972495 0.985081
13 0.982181 0.984014 0.979389 0.977408 0.998539 0.995711 0.993091 0.993903 0.991072 0.996012
14 0.984667 0.985023 0.981417 0.980721 0.99616 0.993989 0.993092 0.99442 0.992912 0.99667
15 0.991172 0.996594 0.993289 0.99223 0.99838 0.997809 0.997963 0.994744 0.993785 0.997493
16 0.985159 0.985071 0.985609 0.981666 0.997192 0.997105 0.994453 0.995631 0.992859 0.994171
17 0.964728 0.914859 0.915727 0.897598 0.942521 0.941773 0.923485 0.982162 0.971375 0.975746

27



Table 4.15: AUCs of the xpdf difference values based on r = 0.6 and RbS

Sub.# BPFs(1&2) BPFs(1&3) BPFs(1&4) BPFs(1&5) BPFs(2&3) BPFs(2&4) BPFs(2&5) BPFs(3&4) BPFs(3&5) BPFs(4&5)
1 0.968437 0.971923 0.945279 0.923062 0.973251 0.933471 0.909653 0.929078 0.897377 0.934765
2 0.986233 0.967225 0.947955 0.931876 0.945572 0.913696 0.904817 0.947756 0.935686 0.959462
3 0.955313 0.951171 0.941809 0.94436 0.959185 0.951236 0.961202 0.963292 0.964627 0.970198
4 0.980969 0.974638 0.972302 0.976442 0.978027 0.977071 0.98176 0.983787 0.987618 0.992195
5 0.96641 0.933358 0.931983 0.943496 0.939733 0.941729 0.93772 0.942932 0.927061 0.926337
6 0.94934 0.949666 0.93356 0.905437 0.970152 0.956106 0.929975 0.962584 0.937367 0.953676
7 0.985054 0.988974 0.986148 0.982481 0.993271 0.990304 0.988467 0.984284 0.979611 0.982748
8 0.943706 0.937333 0.945669 0.867581 0.963257 0.960426 0.88903 0.965604 0.899512 0.898605
9 0.943481 0.911816 0.898838 0.88015 0.942778 0.9364 0.91461 0.955682 0.934938 0.950237

10 0.925457 0.931107 0.904579 0.891769 0.972467 0.958312 0.949943 0.945751 0.933832 0.963006
11 0.882087 0.902114 0.856051 0.835185 0.97161 0.940983 0.928575 0.932876 0.915855 0.954923
12 0.951959 0.968573 0.960016 0.881631 0.973664 0.967671 0.902994 0.95957 0.884571 0.899502
13 0.872122 0.826146 0.831756 0.773872 0.925066 0.919535 0.883237 0.960935 0.929507 0.915147
14 0.956013 0.948908 0.963149 0.940547 0.960863 0.973685 0.956392 0.987948 0.976372 0.961858
15 0.982637 0.966628 0.966827 0.972882 0.975073 0.976052 0.9813 0.992431 0.994036 0.995161
16 0.99441 0.985903 0.987316 0.987619 0.9576 0.960708 0.961348 0.98921 0.987679 0.988177
17 0.938193 0.887864 0.863627 0.821808 0.902457 0.878225 0.829787 0.926044 0.894252 0.917055

Table 4.14 and Table 4.15 are also quite similar. Comparisons will be more evident

among the past six tables by plotting the means along columns for every table.

Figure 4.4: Plots of means for each pair of BPFs from Table 4.10 to Table 4.15

Numerically, those six plotting lines in the figure above are not considerably different,

but as previously discussed, for the values representing AUCs, even a relatively small dif-

ference matters for recommending selection of seed and threshold. Obviously, in Figure

4.4, the combination of AST and RbS is still the most appropriate.
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The combination of AST and RbS yields very reliable and stable similarities between

different IIRBPFs-preprocessed data due to the AST’s following-up to each subject’s prop-

erties and the high reliability of RbS. Different subjects have different properties, therefore

its potential threshold value is also different and ”subtly changed”; it is no longer reason-

able for arbitrarily choosing a single value as a threshold value, regardless of whether it is

based on ”experience”. The AST perfectly solves this problem. RbS also adaptively yields

the seed on the basis of the voxels across the entire brain, therefore it always builds a seed

based on ”effective” voxels for different subjects. With both the reliable and safe threshold

value and seed, the PCC cloud and other important variables can be obtained in a much

more reasonable manner.

Before the end of this topic, it is necessary to discuss what exact threshold value se-

lected by the AST algorithm for each set of data. Secondly, the number of voxels in the

PCC cloud based on AST is also presented for further illustration of seed evaluations.

Table 4.16: Threshold values selected by the AST algorithm on the situation of OS

Sub.# BPF(1) BPF(2) BPF(3) BPF(4) BPF(5)
1 0.274693 0.222655 0.231766 0.235654 0.184559
2 0.543607 0.510234 0.450738 0.463251 0.448139
3 0.307701 0.279913 0.28008 0.272949 0.247172
4 0.097494 0.090196 0.109359 0.064573 0.086821
5 0.552929 0.480519 0.356104 0.45585 0.391393
6 0.333637 0.349384 0.27091 0.27476 0.294246
7 0.136062 0.120574 0.118613 0.071118 0.079504
8 0.41043 0.333599 0.242732 0.370396 0.23511
9 0.624799 0.641597 0.604538 0.59008 0.570539

10 0.289436 0.153972 0.21934 0.206602 0.260193
11 0.458281 0.43802 0.426183 0.352677 0.33339
12 0.400423 0.350727 0.319152 0.327272 0.295247
13 0.122504 0.111195 0.064123 0.076264 0.1181
14 0.209963 0.209287 0.180953 0.220296 0.197627
15 0.172374 0.160002 0.121895 0.115844 0.114398
16 0.236377 0.24926 0.223756 0.181018 0.147648
17 0.396995 0.365285 0.406486 0.375263 0.328746
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In the table above, due to the significant variations in properties of different subjects,

the thresholds vary greatly along the vertical direction, while in the horizontal direction,

they vary less evidently, but are still different because of some new frequency components

appearing because of the effects from different IIRBPFs. The table below shows the thresh-

olds selected by the AST algorithm with respect to the situation of RbS.

Table 4.17: Threshold values selected by the AST algorithm on the situation of RbS

Sub.# BPF(1) BPF(2) BPF(3) BPF(4) BPF(5)
1 0.555431 0.532276 0.527396 0.470133 0.450542
2 0.647697 0.65928 0.649229 0.653711 0.602796
3 0.481516 0.517819 0.474489 0.509856 0.468694
4 0.369148 0.336267 0.313676 0.287636 0.3118
5 0.735484 0.70972 0.783183 0.689302 0.682313
6 0.481915 0.475878 0.439491 0.435968 0.430153
7 0.360218 0.363179 0.341174 0.353925 0.312367
8 0.683718 0.632576 0.660185 0.650961 0.602663
9 0.694333 0.702597 0.694224 0.671476 0.672109

10 0.655213 0.650721 0.574604 0.587952 0.606542
11 0.606533 0.575285 0.559257 0.51673 0.54133
12 0.541271 0.536621 0.541501 0.483249 0.527378
13 0.557319 0.516964 0.488135 0.480487 0.519238
14 0.460643 0.443943 0.390326 0.410157 0.406898
15 0.318581 0.333509 0.309448 0.29228 0.285607
16 0.39379 0.36632 0.337191 0.346456 0.328456
17 0.659295 0.635647 0.587545 0.591345 0.600621

As indicated by Table 4.17, the threshold values largely increase because of the effects

exerted by RbS.

The AST also places a interesting effects on the number of voxels in the PCC cloud.

Because AST ”follows-up” every situation, therefore, the number of voxels remains the

same for each subject, regardless of the effects from IIRBPFs. The following figure repre-

sents the number of voxels in the PCC cloud based on AST accompanied with both the OS

and RbS.
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Figure 4.5: Number of voxels in the PCC cloud produced by AST with both OS and RbS applied

Interestingly, in the figure above, for every subject (along the horizontal axis), the num-

ber of voxels remains almost exactly same, regardless of the application of IIRBPFs and

the selection of seed methods (with an extremely small difference). Again, they are stable

and reliable.

Finally, a summary can be made for this thesis. For most reasoning processes in this

thesis, the seed methods and threshold selections are inseparable from each other. The

original seed is the one selecting from the area in the PCC network, and its selection is

mainly based on ”experience”, and is not reliable. Furthermore, no matter which single

seed is selected, there is always the possibility that it will not be sufficient to be considered

as a ”good” seed. However, the RbS is the most suitable seed. For the same reason, the

artificially-set threshold values are also not reasonable enough, instead, the AST algorithm

is the most appropriate method. In sum, the combination of AST and RbS is excellent in

terms of reliability and stability. Nevertheless, there is only one concern - if it is desired

to generate more voxels in the PCC cloud, more considerations should be taken before

employing the RbS, since the higher threshold values triggered by RbS may filter out more

voxels than does OS. In other hands, this situation may be a trade off.

31



4.5 Subspace Filtering Evaluations and Interpretations

Following the previous chapter, some concrete experimental results and analysis will

be presented below for supporting the assertion that Subspace Filtering (SF) is not neces-

sary in this thesis. Previously, one of the methods for SF involves choosing the projection

dimension as 10, which is also the number of the ten highest singular values by decom-

posing the original signal matrix. However, as discussed before, it is not the most correct

and reasonable method since it forces an increase in the correlations among voxels. The

following is a figure of the results in this situation.

Figure 4.6: Results of not-exactly-correct Subspace Filtering

As indicated by the figure above, there is a large, but not reasonable, difference be-

tween pre-SF and SF conditions in each pair. By forcing the increase in the correlation

coefficients (cv), even the stable RbS becomes unstable - that is, the cv based on RbS has

been changed too much. The reason for these conditions is that too much other informa-

tion has been discarded. Therefore, the ten highest singular values could not guarantee

the required completeness retained compared to the original signals. This method should

therefore be removed.
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Another method of cv is more mathematically strict, and it is yielded by maintaining

the 99% of the original variance. The situation can be plotted as below.

Figure 4.7: Results of correct, but not necessary, Subspace Filtering

As expected, the figure above does not show a detectable difference in each pair. Not

inconsistent with the previous discussions, this is because of the large value of projection

dimension selected for maintaining the 99% of variance in original signals. For the case

above, the projection dimension has been selected as 111 out of 200. Therefore, in this

thesis, the subspace filtering can be considered unnecessary.

4.6 Whole-Brain Timescore Evaluations and Interpretations

Regarding the Whole-Brain Timescore (WBTc), we simply concentrate on the relation

between the bandwidth of those IIRBPFs, preprocessing the brain signals, and their corre-

sponding WBTc for each subject. Associated with the theory of Digital Signal Processing,

it may be expected the change of spike width and increase of new frequency components

in WBTc has some connections with the change of bandwidth of IIRBPFs. The follow-

ing figure shows the WBTc for one of the subjects which has been preprocessed with five

different IIRBPFs.
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Figure 4.8: One example of Whole-Brain Timescore based on five BPFs-preprocessed brain data

Examining the above figure carefully, as bandwidth of IIRBPFs is increased, some new

frequencies appear, the height and width of spikes change evidently, and the change in

number of spikes is also detectable.

4.7 Overall Evaluations and Interpretations

This chapter mainly presents many experimental results and their analyses for mak-

ing comparisons among several seed and threshold methods. In the very beginning of this

project, a single seed selected from the PCC network, and the threshold value is set by

experience. However, these choices are not precise, and they cannot stand against the tests

from all sides. Although the PCC cloud and Pearson’s Correlations Coefficients are not

very difficult to mathematically obtain, their reliability and reasonability are more impor-

tant. Aside from that, they are just the inception for other more advanced research in this

area; hence, they must be yielded by a very reasonable method for inducing high-level anal-

yses. All factors which have been listed contribute to the excellence of the Region-based

Seed and Adaptively-Selected Threshold, and they are recommended for researchers in this

area.
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Chapter 5

Conclusions and Future Works

5.1 The summary of this thesis

This thesis mainly illustrates the effects of five different IIR band-pass filters in the

preprocessing stage on fMRI image analysis. A procedure has been designed for eval-

uating these effects in terms of the corresponding changes triggered on several variables

during that procedure. By the comprehensive evaluations, it has been decided that the

Region-based Seed and Adaptively-Selected Threshold is the best combination for not be-

ing affected too much by the changes of IIRBPFs in the preprocessing phase. This decision

is based on two reason. First, this combination precisely selects the threshold for every

IIRBPF-preprocessed signal in each subject. Second, it is very reliable and stable with

respect to the number of voxels in the PCC cloud, and to the connection probabilities.

In the analysis of the Subspace Filtering, a comparison has been applied to prove it is not

necessary. In the case of the Whole-Brain Timescore, this variable typically characterizes

the effects of IIRBPFs in preprocessing stage.

5.2 Perspective Works

A possible direction left by this thesis, which is worth exploring, is that the combination

of RbS and AST is indeed unaffected too much by the IIRBPFs; nevertheless, a small but

noticeable range of difference, shown in Table 4.3 and Table 4.4, need further efforts for

discovering whether there are any real important signals in that range because of the effects

from those five different IIRBPFs.
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