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CHAPTER I 

 

INTRODUCTION 

 

Overview 

 The research presented in this master's thesis demonstrates the integration of a variety of 

different control systems onto a mobile robot as well as present a method for acquiring 3-D 

sensor input from a 2-D laser scanner. Once acquired this thesis will present methods for 

processing the 3-D data to detect landmarks in the environment. The sensor data collected, once 

processed, will be used to create a map of the environment that the robot can use for localization 

and navigation.  

 

Mobile Robot Navigation History 

 The problem of enabling a mobile robot to autonomously navigate its environment is not 

new to robotics research. In fact, the problem has existed as long as mobile robots have existed. 

Researchers working on mobile robots have, since the beginning, used laser scanners to detect 

range information from the environment and to generate working world models that the robot 

could use.  

 One of the original mobile robots developed was Shakey [13], a mobile robot developed 

by researchers at Stanford Research Institute (SRI) and introduced in 1968. Shakey was outfitted 

with a camera for vision, a simple laser scanner, and bump sensors. Shakey had separate 

programs for perception, world modeling, and acting. These programs ran on a computer that 

was the size of a small room.  

 

 



 
Figure 1: Shakey, a mobile robot developed in 1968

 

 Since Shakey's development mobile robots have advanced quite dramatically. In that time 

as well, computers and processors have advanced exponentially. However, mobile robot 

navigation is still a problem for researchers. To better relate where navigation research currently 

stands: In 2004 the Defense Advanced Research Projects Agency (DARPA) began their Grand 

Challenge – an under-300 mile competition through the desert. The goal of the Grand Challenge 

was to reward the mobile robot that finished the course in the quickest time. No group finished. 

The best group traveled 7.4 miles before flipping over on a hairpin turn.  

 The results of the Grand Challenge show exactly where robot navigation is, but the 

results also show that researchers are on the right track. 7.4 miles of autonomous navigation is a 

long ways from Shakey. 

 

Mobile Robot Navigation Techniques 

 In her book Introduction to AI Robotics [10] Robin Murphy discusses navigation, 

localization, and map-making for mobile robots. Murphy poses four questions: 

1. Where am I going? 

2. What is the best way to get there? 

3. Where have I been? 

4. Where am I? 

 The answer to the first question typically comes from a human user or a mission planner.  

 The second question is the standard navigation question. It is the problem of path 

planning. Murphy [10] states that there are two forms of path planning, qualitative and 
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quantitative. Qualitative navigation is defined as path planning based on directives. Example 

directives for qualitative navigation can be: 

1. Go out the door turn right 

2. Follow the sidewalk until you get to the building 

3. Go in the building 

4. Go to the second floor 

5. Go to the last room on the left 

Quantitative navigation chooses routes “according to some measure of best” [10]. In 

addition, quantitative navigation contains waypoints that are often fixed points that may not 

correspond to objects in the world.  

 The answer to the third question lies in the creation of maps of the environment. As a 

robot explores an environment it is quite useful for that robot to create some form of map of that 

environment. With that map, the robot can then choose its own form of navigation as well as 

localize itself, which is then the answer to the fourth question. Localization is the process of 

determining position from some form of input, typically sensor input.  

 The intent of this master's thesis is to better understand the problems faced in mobile 

robot localization and navigation through the creation and application of mental maps of the 

environment.  

 

Summary and Organization 

 Chapter II of this thesis talks about qualitative navigation and the creation of cognitive 

maps. This chapter also gives the definition for the term landmark as well as discusses related 

work in the field of robotics. Chapter III defines the approach used in designing this system and 

creating the agents that run this system. Chapter III also discusses possible applications of this 

system as well as the current constraints on running the system in the real world. Chapter IV 

overviews the individual hardware and software systems that were involved in creating an 

overall system capable of obtaining 3-D laser scans from an environment, processing the data, 

and generating a cognitive map. Chapter V discusses the algorithms used to process the sensor 

data. This chapter presents much of the math that was involved in this thesis and also presents 

several sections of pseudo-code to better describe each algorithm. Chapter VI begins by 

discussing the localization and navigation algorithms used and Chapter VI ends by presenting the 

results that these algorithms produced utilizing the cognitive map generated in Chapter V. 
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Chapter VII discusses conclusions from this work as well as possible future work. 
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CHAPTER II 

 

QUALITATIVE NAVIGATION 

 

Cognitive Mapping 

 Navigation is as important of a concept in the world of robotics as it is in the world of 

humans and animals. Knowing where one's self is and how to traverse the current environment to 

reach a goal position is a problem which nature tackled eons ago. Certainly, with so many years 

of experience, there are examples in nature that the robotics world can draw upon.  

 How does a bee, after traveling great distance to find pollen, return to the hive? How do 

birds migrate year after year to the same spot? How do ants travel hundreds of meters and yet 

return to a dime-size nest entrance? The simple answer to the questions above is memory. A 

more complicated answer is that these animals must rely on the presence of landmarks and their 

ability to create a cognitive map of the environment. This cognitive map is then stored in the 

creature's memory and recalled for navigation. Studies have shown that animals that travel over a 

wide range have a larger hippocampus [4], the portion of the brain that helps handle the memory 

part of navigation, than animals that do not travel over wide ranges. This indicates that these 

animals have evolved more memory specific brains than animals that do not travel over wide 

ranges.  

 In all three cases mentioned above, landmarks are sensed and only relative spatial 

information is recorded (information of the form: to the left/right of, between, and next to) in the 

form of a cognitive map. The bee records the positions of trees and food sources. The birds 

utilize the positioning of heavenly bodies. The ant uses landmarks such as trees and plants, 

which, to the ant must appear, as mountains in the distance. From all of this, two questions must 

be asked: 

1. What is a landmark in an environment?  

Murphy [10] defines a landmark as “one or more perceptually distinctive features of 

interest on an object or locale of interest”. Murphy also breaks landmarks into groups such as 

artificial and natural. An “artificial” landmark is a landmark onto which features have been 

added to facilitate better recognition. A “natural” landmark is therefore a landmark on which 

features have not been added.  

Since the sensing module for this work is a laser scan, which returns distance 
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information, it is important that landmarks be spatially separable in the environment. This body 

of work will use landmarks that can be reliably and repeatable sensed in the environment and 

detected spatially to be in a different location than other landmarks. For example, a tree would be 

a landmark whereas the leaves on the trees would not do to the fact that the individual leaves 

could not be reliably, repeatable detected and separated.  

2. What is a cognitive map and how can one be created? 

 In an article on cognitive mapping [2], Richard Dagan defines creating a cognitive map as 

a “process composed of a series of psychological transformations by which an individual 

acquires, codes, stores, recalls, and decodes information about the relative locations and 

attributes of phenomena in their everyday spatial environment”. Jefferies and Yeap [5] term a 

cognitive map for an agent as a “memory, i.e. map in the head... for the places it [that agent] 

visits”. For this body of work a cognitive map shall be used to refer to recorded spatial 

relationships between landmarks detected within an environment. In other words, a cognitive 

map is a mental map of the environment that includes relative position information (the tree is x 

number of meters LEFT of the lamppost, which is w number of meters RIGHT of the trashcan).  

 An interesting example of animal cognitive mapping is the Clark's nutcracker, which 

stores food for the winter over a wide range. What is interesting about this bird and its use of the 

cognitive map is its apparent ability to use relationships between landmarks in its environment. 

Research by Kamil and Jones [6] show that the nutcracker “can learn to find the point halfway 

between two landmarks that vary in the distance that separates them... This demonstrates the 

ability to find a point defined not by the relationship between a goal and a landmark but by the 

relationship between landmarks”. In a forest full of trees that lose their leaves in winter, it is this 

ability to only utilize the relation between different landmarks in the search of a goal that enables 

the nutcracker to find in the winter, seeds stashed during the summer.   

 Work by Yeap [5] details the application of the theory of cognitive maps [18] to the 

creation and building of a map for a robot outfitted with a bank of sonar sensors. Similar 

methods have been implemented by Thrun [16] and Kortenkamp [8].  

 

Sensory & Landmark EgoSpheres 

Work by Peters [11] and Kawamura, et al. [7] define similar methods for the creation of a 

cognitive map.  The sensory egosphere (SES) proposed in [11] is a means of holding in a short-

term memory structure information about objects sensed from the environment. The SES stores 
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information about an object's location as well as other descriptors for the object such as color, 

type, and name.  

 

Figure 2: Sensory Egosphere displaying an object S detected at φs & θs with range Rs stored at location Ns. Taken 

from Peters [11] 

 

The objects stored in the SES are posted on a geodesic dome centered about the robot. 

Detecting objects and storing their position relative to an individual, or in this case a robot, is the 

basis for creating an SES as a structure representing what is in the environment right now. The 

humanoid robot, ISAC, is shown in figure 3 using the SES as it records information about 

objects placed in front of it. Once these objects have been recorded onto the SES, ISAC can then 

draw upon this database to accomplish tasks. An SES can be any structure that provides a means 

of storing objects detected in the immediate, surrounding environment.  
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Figure 3:  ISAC uses the SES while grasping a Barney Doll. Picture taken at the Center for Intelligent Systems 

http://eecs.vanderbilt.edu/cis

 

Storing the location of an object relative to a robot is also, in essence, creating a cognitive 

map. The idea of the SES is an extension of ideas proposed by Albus in [1] where he defines an 

egosphere as “a spherical surface that is a map of the world as seen by an observer at the center 

of the sphere”. The SES serves a more complicated purpose, but the simple concept of an 

egosphere [1], a structure that simply relates the location of objects around the robot to the 

position of the robot, should be considered interchangeable with the concept of a cognitive map 

for the robot’s current position. The combination of these structures should be considered an 

egocentric cognitive map. 

Further work by Kawamura, et al. [7] defines the use of a landmark egosphere (LES) for 

navigation in mobile robots. The LES is a representation of detectable objects in relation to each 

other. An LES is used to specify goal locations as well as target positions en route to the goal. 

The difference between an SES and an LES is that an LES defines how objects relate to a 

desired, not current position. 
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Figure 4: The SES detects that objects are not in the correct locations to match the LES. Moving along the vector h 

will bring the robot towards the position specified by the LES. Figure taken from Kawamura, et al [7] 

 

Like the work in [7], the Clark nutcracker can be thought of as using its egosphere to act 

as an SES and LES in the generation of an egocentric cognitive map of where it has stored its 

seeds for the winter. 

 

Figure 5: Clark Nutcracker demonstrating the use of a cognitive map and navigating via its own egospheres 

 

 This research is intended to create an egocentric cognitive map through driving a mobile 

robot in an environment and recording several different egospheres [1] at different locations and 

combining them. Once a cognitive map has been created, newly recorded egospheres can then be 

used to localize the robot within the map as well as to determine where to navigate and what 
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obstacles to expect along the way. This function parallels the LES work by Kawamura, et al [7].  

 

Figure 6: The robot moves through an environment recording several egospheres and linking them to create a 

cognitive map 

 

3-D Landmark Detection 

 Creating a 3-D egocentric cognitive map requires the ability to sense 3-D information 

about the environment. Work by Thrun [17], Montemerlo [9], and Surmann [15] show how 3-D 

images of an environment can be constructed using either one or two 2-D laser range finders. 

The works by Thrun [17] and Montemerlo [9] both use two 2-D scanners, one facing forward 

and the other looking up, to create real-time 3-D images of an environment. The work by 

Surmann [15] shows how one 2-D laser scan can be used to learn 3-D information about an 

environment. This research will follow along the lines of Surmann’s work. One 2-D laser 

scanner will be used, mounted on an axis of revolution to obtain 3-D parametric information 

about the environment. This will not be real-time, but can be used to create a working SES for 

the robot, which in turn can be applied to the generation of a cognitive map. Surmann also 

demonstrates simple surface detection using a completed 3-D scan. The surface detection is 

mainly suitable for indoor environments. The work presented in this thesis will focus on surface 

detection for outdoor environments. 
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CHAPTER III 

 

APPROACH OVERVIEW 

 

This thesis will cover a large amount of work done to apply and integrate different 

hardware and software systems. In addition to system integration, specially developed software 

agents for control will be mentioned. This section is intended to relay the reasoning behind each 

system created as well as to discuss how this system may be applied and what constraints this 

system faces. 

 

Methodology 

 This system was constructed utilizing a variety of different and complex components. 

The methodology used in the development of this system was to build the required new 

components in such a way that would enable other researchers to quickly learn how to use this 

system and build upon it. Not all of the components, however, of this system were new, some 

were standard components in modern robotics research or re-used components from prior 

research. Chapters IV and V will discuss this further. 

 The communication agents in particular were designed so that the information that they 

handled could easily be added to or subtracted from or listened to by a new agent. The data 

processing agents and functions were designed to retrieve pertinent information from a 3-D laser 

scan, to quickly identify landmark size, position, and orientation, and then to compare the 

appropriately derived information to past scans. 

 The intention behind only storing landmark size, position, and orientation was to show 

that, while complex information about a landmark is helpful in navigation, the most important 

information is simply the size of the landmark and its position and orientation relative to other 

landmarks. In addition to the system integration discussed above, this thesis will show that 

through simple numerical techniques: 

1. Useful landmarks can be identified in an environment 

2. Important information can be quickly extracted for each landmark 

3. Information about successive scans of the environment can be combined to construct a 3-D 

map, useful to both a human user and a mobile robot 

4. A simple 3-D map of the environment containing only simple geometric information about 
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landmarks and their relation to each other is sufficient to allow a mobile robot to localize its 

position and navigate from point to point 

 

Applications 

 Obviously, this system was not intended to apply to every environment or every scenario. 

This system was designed for use in outdoor environments that contain the presence of some 

landmarks, but are not densely overpopulated with landmarks. The idea is: not enough landmarks 

and the robot has trouble localizing itself, too many landmarks and the robot has trouble 

navigating or could find several possible localizations. This research was not aimed at 

overcoming every possible obstacle that may arise in an environment, only at demonstrating 

effective navigation through outdoor walkways and courtyards.  

 The types of landmarks that work best for this research are landmarks that “stick out” in 

an environment, in other words, landmarks that can be separated from each other. For example, 

when a laser system looks at a bunch of bushes packed closely together it is likely that the 

system will interpret what it sees as one big “glob” of points. This is due to the fact that the 

leaves and branches from the bushes intermingle in such a way that it is extremely difficult to 

separate them. However, the same laser system can look at a bunch of bushes with some slight 

separation and see several separate landmarks. It is simply important that landmarks be 

separately distinguishable. In this way, other landmarks that are effective include, but are not 

limited to: 

1. Light posts 

2. Trash cans 

3. Benches 

4. Sides of building 

5. Tree trunks 

6. Signs 

 

Constraints 

 There were many constraints involved in this research. One of the main constraints was 

time. The time it takes to process the vast amount of points returned by one laser scan was a 

constant factor. Indeed, some programs were written just to pre-process the laser scans in order 

to throw away points that need not be looked at before more time expensive programs were run. 
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A lot of work and effort went into determining the best way to process the laser scans so that 

useful information could be extracted quickly. Since this research was intended to prove the 

concept that simple geometric information about landmarks can be used to create maps, localize, 

and navigate, it was decided to enforce the K.I.S.S. (Keep It Simple Stupid) concept when 

designing the laser processing and landmark identification routines. All of the processing 

routines were intended to be simple algorithms that can, if needed, be improved upon in the 

future. 

 One further constraint was that the laser was the only sensing module on the robot, which 

meant that there were no other sensors to detect the emergence of non-stationary obstacles 

(people, pets, etc) while navigating. Until a second sensor system is installed, this research 

system does not serve much of a practical purpose. 
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CHAPTER IV 

 

SYSTEM OVERVIEW 

 

Hardware 

 This section discusses the hardware system used for this research including the Segway 

robot, the SICK laser scanner, and the laser rotation platform.  

 

Figure 7: Segway RMP with rotating laser mounted 

 

Segway Robotic Mobility Platform 

 Vanderbilt University was one of twelve research institutions to receive the Segway 

robotic mobility platform (RMP) in the summer of 2003 as part of research grant sponsored by 

DARPA. The purpose of the grant was to allow universities the opportunity to experiment with a 

new form of mobile robot. No other robot exhibits the Segway RMP's unique capabilities.  
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Figure 8: The Segway HT, a commercial product produced by Segway LLC. The RMP is its mobile robot cousin. 

  

Based on the concept of the inverted pendulum, the Segway RMP, produced by Segway 

LLC, is a robotic variation of the Segway HT, originally designed as a human transport. Like the 

Segway HT, the RMP has a working payload in excess of 200 lbs. The RMP can reach a 

maximum speed of 8 mph, and can maintain both specifications mentioned prior for a period of 

approximately two hours.  

 The most unique capability of the RMP, however, is its ability to self-balance on just two 

wheels while carrying maximum payload. A bank of five internal gyroscopes monitors the pitch 

and the roll of the RMP and enables it to operate without falling over. In addition to its self-

balancing nature, one further aspect of the RMP worth noting is its potential striking similarity in 

size to the size of a human (the RMP is approximately 3’ tall, however, with sensors and 

hardware added to the top, it can reach heights near 4 ½’ to 5’). The Segway RMP has virtually 

the same footprint as a person, 2’ x 2 ½’. The turning radius of the RMP is also the same as a 

person, zero. Sensors can be added so that they interact with the environment much closer to 

human “eye-level” than sensors on typical mobile robots. The RMP can operate more naturally 

in environments designed for people by people. 

 The RMP must be controlled from a computer that sends signals through a CAN bus to an 

on-board microcontroller. CAN stands for Controller Area Network and is a control protocol 

primarily adhered to in the automotive industry for robust control of engine management and 

brake control. More information about the CAN protocol can be found at www.kvaser.com.  

For safety purposes the signal sent to the RMP must be sent through two CAN lines and 

received by the robot in sync. In addition to this safety measure, there are two kill switches 
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located on the RMP. If the CAN signals are received out of sync or if one of these kill switches 

is triggered then the RMP will immediately shut itself off. If the internal gyroscopes detect a 

pitch angle in excess of 45o or a roll angle in excess of 20o it will shut itself off as well.  

 

Figure 9: Pitch and roll limits that force the RMP to shut itself off 

To protect the laser and control laptop from such disasters, a simple safety system constructed of 

PVC pipe was implemented to catch the robot as soon as it passed the 45o limit. 

 

Figure 10: PVC pipes help catch the RMP if it falls, and protects delicate sensor equipment 

 All of its unique capabilities make the Segway RMP an interesting variation on the 

standard mobile robot. The near human dimensions of the RMP allow researchers to operate this 

robot better in environments designed for people. The high payload and speed capabilities give 

researchers much more design freedom with the “gadgets” they choose to use on the Segway 

RMP. 

 

SICK LMS 200 

 This SICK laser scanner, model LMS 200 produced by SICK Inc., is a standard sensing 

module for practically all mobile robot research. The laser scanner, shown right, takes scans 

every 0.5o for the forward 180o. The scanner has a range of 8.2 meters and a resolution of 10 
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mm. The scanner is adequate for both indoor environments as well as outdoor environments. One 

drawback of the SICK laser scanner is that it does not detect glass very well. This inability is 

acceptable for the research described here, though, due to the fact that this work is conducted 

outside in environments without a lot of glass walls. 

 

 

 

 

 

 

  

 

Laser Rotation Platform

 An extremely vita

environment using a laser

to rotate the 2-D laser thr

however, for this applicat

environment from side to

task of rotating a laser is m

 As luck would hav

laser had already been de

[14]. The only modificati

 To maximize torq

system a high torque step

produced by Applied Mo

 The final step in th

a personal computer for c

computer's parallel port a

constructed in the lab. 

 

 This section discu

 

Figure 11: SICK LMS 200 developed by SICK Inc.
 

l part of this research is the ability to acquire 3-D laser images from the 

 scanner only capable of returning 2-D information. The solution was 

ough the third dimension. This parallels the work mentioned in [15], 

ion it was decided to turn the laser on its side and sweep the 

 side, rather than mount the laser as usual and sweep up and down. The 

uch less demanding on a system than lifting a laser.  

e it, an adequate rotation platform capable of smoothly moving the 

veloped by a previous graduate student, Arnon Ruengcharungpong 

on needed was the installment of a stronger motor.  

ue as well as to compliment the fact that this would be an open-loop 

per motor was chosen. The stepper motor chosen was The HT23-400 

tions Inc.  

e construction of the laser rotation platform was the implementation of 

ontrol of the stepper motor. A controller board that connects to a 

nd drives the stepper motor was ordered from http://kitsrus.com and 

Software 

sses the software systems used to control the robot, laser, laser rotation 
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platform, and to handle the communication. In addition, this section offers a brief overview of 

the user interfaces developed for this research. Below is a diagram of the overall software 

system. 

 

Figure 12: Different software agents are required to run all of the Segway’s many processes. 

 The intention behind the system shown above is to ensure that only ONE program sends 

commands to the robot. However, other programs can be added to listen to the data being shared 

with the RMP by subscribing to the Segway domain. Programs can also be added to 

communicate with the robot control program. An example set of programs that could be added 

is: 

1. Program to listen to other sensor information (if further sensors were added such as vision) 

coming off of the robot 

2. Program to process this sensor information and derive control commands to be sent to the 

robot controller 

If more programs were added to process sensor information and derive control 

commands, the robot controller would need to act in an executive manner and choose which set 

of control commands to pass on to the robot. The design of this system was done with the intent 

that future systems would need to interact with it, and that this interaction would occur through 

NDDS [12]. It is also worth mentioning at this point that the protocol used to handle the 
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communication, NDDS, is slowly being implemented on other systems in the lab. A description 

of NDDS is detailed later in this thesis. 

 

Robot Control 

 Control of the robot is achieved through the use of the Player robot device server [3] 

primarily developed by researchers at the Robotics Research Lab at the University of Southern 

California. The Player server runs on a host computer connected to the robot. To control the 

robot, clients must simply subscribe to this server. Player provides high-level client utilities that 

are used to send the actual commands to the robot as well as access data from the robot.  

 For this thesis, one client program was written. This client was run on the computer 

mounted on the robot. This client listened for commands from the NDDS communication agents 

discussed below and published information to those agents. Once connected to the robot, this 

client continually accessed and published all data coming from the robot, as well as continually 

listened for new commands to give to the robot. This client's only purpose was to ensure that 

data to and from the robot was current and as up-to-date as possible, therefore no other tasks 

were assigned to this client. 

 

Laser Control 

 Two types of control were implemented for the laser system. The first form of control 

was used to access the data coming from the laser. This was achieved through the use of the 

same software system, Player, that was used to control the robot. Player also acts as a device 

server for most forms of sensors and other devices commonly used by researchers. For a 

complete list of robots, sensors, and devices currently supported by the Player device server 

please refer to http://playerstage.sourceforge.net.  

 Accessing laser data was not the only form of laser control required by this research. In 

order to take 3-D scans of the environment, the laser had to be rotated about the third axis. As 

mentioned above, the controller board, used to control the laser rotation, connected to the 

computer's parallel port. A control agent was written to listen for commands and then to rotate 

the laser platform by sending the appropriate ASCII code to the parallel port so that the 

controller board would drive the stepper motor. The commands that this agent listened for were 

commands that specified when to begin a laser scan and in what direction the scan should 

proceed.  
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NDDS 

 As in everything in life, communication was vital to the success of this work. Proper 

communication between processes and programs in this system was an important part of this 

research. The communication protocol chosen was NDDS [12], which stands for Network Data 

Distribution Service. NDDS is a real-time application developed by Real Time Innovations 

(RTI) Inc. There were several pros for using NDDS: 

1. Easy to use and handles most of the complicated components on its own 

2. Can operate cross-platform (Linux & Windows OS’s) 

3. It is already being implemented by fellow researchers at NASA-JSC and is currently being 

considered for use on other robots within the lab 

 

Any n

partic

publis

acces

1. Th

2. Th

 

User 

 

Figure 13: NDDS applications can easily send & receive data 
across different platforms. For more information visit 

www.rti.com 
 

NDDS works by creating a domain to which processes can subscribe, publish, or both. 

umber of subscribers can listen to the information published on this domain, however, a 

ular data set can only be published by one publisher. The types of data that can be 

hed are message strings, data arrays, and boolean commands. In order for a subscriber to 

s a NDDS domain, the subscriber must simply know: 

e domain number to be accessed 

e format of the data from that domain the subscriber is interested in 

Interfaces 

A number of different user interfaces were written to work with this system. As the 
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system was being created it was necessary to write different user interfaces to help understand as 

well as represent how the research was progressing. Only a handful of these user interfaces were 

intended to be used with the final system: 

1. OpenGL graphic used to display the actual X, Y, Z points for a 3-D scan 

 

Figure 14: OpenGL graphic displaying points from a 3-D laser scan 

 

This graphic allows the user to understand what the scanned environment looks like as well as to 

serve as a tool for displaying features determined about the individual X, Y, and Z points. This 

graphic will be used in the later chapters in this thesis. 

2. GTK based GUI used to display forward and aerial view of the detected landmarks center of 

masses.  
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Figure 15: Displaying landmark mass center information for an inputted scan file 

 

This GTK based graphic can be used to show a forward and aerial view of the center of mass 

locations for landmarks detected from a scan. 

3. GTK based GUI used to accept commands from a person during training or running of the 

system 

 

Figure 16: GUI developed to train and control this system 

 

This GTK based graphic was used to control the system while training. It was designed to be 

small and simple so that it could be built upon. 

4. OpenGL graphic used after training to display the resulting cognitive map of the environment 
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Figure 17: Display of a cognitive map represented with OpenGL 

 

This display is an OpenGL representation of the cognitive map stored within the robot. It works 

as an interactive environment that the user can drive a simulated robot around in. The user can 

also adjust the viewing position to be either in the driver’s seat of the robot, or one of five aerial 

views looking down. The mouse, keyboard, or an attached joystick can be used to navigate 

within this environment. In this representation, blocks that overlap each other typically represent 

the same landmark detected in different scans and therefore shifted an incremental amount. 
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CHAPTER V 

 

SYSTEM TRAINING 

 

Data Acquisition 

 To produce a 3-D laser scan image of an environment requires the integration of all of the 

systems discussed above.  

human

begin 

proces

progra

hitting

the rob

 

Figure 18: A person interacts with the user interface & joystick, sending signals 
over NDDS to the RMP 
  

It is not necessary to have the robot a quire data for training. Having a 

ing 

t by 

This sends a com cesses on the trainer's side to 

l  

 

utonomously ac

 counterpart, called the trainer, to control the data collection helps make the entire train

s run quickly and smoothly. Once the Segway has been turned on and the appropriate 

ms have been started, the trainer begins the training process by subscribing to the robo

 the “Subscribe” button on the GUI. 

Figure 19: The GUI used to control the system 

mand over NDDS that tells all of the pro

istening for data. If this command is successful, the current X-position and Y-position of

ot will be displayed in the boxes on the left-hand side of the GUI. Then, using the joystick
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to control the robot, the trainer positions the robot for the first scan. To begin a scan, the trainer 

simply hits the button “Begin Scan”. If this is successful, the output prompt will display 

“Scanning”. 

 The “Begin Scan” button issues a command over NDDS to the program controlling the 

laser 

ors the signals coming over NDDS and for every 

the scan has 

 

stepper motor. This program then turns the laser rotation platform 600 steps = 180o. This 

program also keeps track of the direction of the last completed laser scan, so that the next 

scan will proceed in the opposite direction. For every one of the 600 steps, this agent publishes 

over NDDS the current step number as well as the laser scan associated with this step. This 

results in a 3-D scan of 108000 data points.  

 On the training side, a program monit

new step that program records the step number and the corresponding laser scan.  

 Once the scan is completed, a message is sent back to the training side that 

been completed. The GUI prompt then asks the trainer to enter a filename. The format for the 

filename is a three-letter descriptor of the current training set followed by a numerical number 

that denotes the scan number for this training set. For example, out23 would be the filename for

the 23rd scan for the training set out, in this case outside. 

 

 

Figure 20: Demonstrating entering a scanfile name 

 

fter labeling this file, the trainer hits the “Answer” button and the filename is assigned 

to the data, a directory is created for the processed data, and the data is sent to be processed. The 

 

 the GUI the trainer can use. The button labeled “Other” is 

r 

A

data processing, which will be discussed in the next section, takes a couple minutes after which 

the prompt will inform the trainer that the processing is finished. The trainer then re-positions the

robot in preparation for a new scan.  

 There are two other buttons on

currently an extra button intended to be used if the trainer wished to add another capability to 

this system. The button labeled “Kill All” does exactly this. Once this button is hit, the prompt 

asks the trainer “Do you want to Exit”. If the trainer answers yes, a signal is sent over NDDS fo

all processes to stop what they are doing and exit.  

 

 25



Data Processing 

 When the entire 3-D laser scan is sent to be processed, several actions take place. In this 

 it 

o transform the 108000 data points from polar to 

  Once the X, Y, & Z points are calculated they are stored in a file (in the directory created 

ese 

he X, Y, & Z points are first processed to determine, for each point, how well that point 

atche

ble 

section, the initial data processing will be discussed. The following two sections, Landmark 

Identification and Map Generation, will continue with the data processing and discuss how 

landmarks are identified and the cognitive map of the system is generated. Throughout these 

sections a sample laser scan from the courtyard outside Featheringill Hall will be displayed as

goes through the various stages of processing. 

 The first step in processing this data is t

cartesian form (x, y, z). The current coordinate frame being used is: 

X – runs out in front of the robot 

Y – runs up and down 

Z – runs right to left 

Figure 21: X, Y, & Z points for a sample laser scan 

for this scan) in case the trainer should ever like to know what the original scan looked like. 

After storing these points the data processing program then begins to look at the patterns in th

points.  

 T

m s to a plane. However, processing 108000 simultaneously is far too much to ask from 

most standard computer processors. Therefore, the data is broken into smaller, more managea

chunks. The current size of the chunks is 1500 points at a time. While testing the system, this 
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number seemed to give the best results in the shortest amount of time. Increasing this number 

drastically increases the processing time. Decreasing this number further, however, only 

provided minimal timesavings.  

 The algorithm currently being used returns two values for every point in the data set. The 

he 

s 

 λ: 
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terms e

nnnn e

e
e

d
c
b
a

zyx

zyx
z

.

.

1
....
....
1
1

2

1

222

11

 (2) 

In order to match these points to a plane, the sum of squared error terms, e1-n, should be 

minimi

first value returned is an angle value that corresponds to the angular offset, α, from the horizontal 

(x-z) plane for the plane onto which the current point would map. The second value returned is a 

smoothness value, λ. The lower λ is, typically between 0 & 0.1, the better the current point 

corresponds to a plane with its surrounding points. When λ is not very low (> 0.2) is when t

overall average of a particular group of points is flat but there is a high variance between the 

points themselves (i.e. over rocky sections of ground, or the leaves of trees, or the intersection

between a horizontal and vertical plane).  

 The math behind calculating α and

A 3-D plane is defined by the equation: 

0=+++ dczbyax  

& z points (1…n) the above equation can be written in matrix form where the 

1-n represent the error terms that arise because these points may not match perfectly to a 

plane. 
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zed. To accomplish this the coefficient matrix, [a, b, c, d]T = α, needs to be made as 

small as possible while adhering to the constraint : 

1=α  (3) 

which 

(4) 

This produc

can be written 

01 =− αα T  
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 27



Applying a Lagrange m

α  (7) 

which is a function of α and λ

 in terms of α and λ and set the resultants equal to zero, due to 

ultiplier, λ, to the constraint and adding the constraint to the sum of 

squared errors term yields 

1()( αλαα TTT XXE −+= )

.  

The next step is to differentiate E

the minimizing sum of squared errors constraint. 

λαα +==
∂ )(0 XXE T  
α∂

(8) 

αα
λ

TE
−==

∂
∂ 10  (9) 

Solving for λ gives 

αα
ααλ

TT XX
=   T (10) 

which is a Ray

d to fit the constraint, 1 - αTα = 0) 

  

  

 

(10) 

which is a Ray

d to fit the constraint, 1 - αTα = 0) 

  

  

 

leigh quotient. From all of this, the sum of squared errors will be minimized when leigh quotient. From all of this, the sum of squared errors will be minimized when 

λ = smallest eigenvalue of XTX λ = smallest eigenvalue of XTX 

α = associated eigenvector (scaleα = associated eigenvector (scale

 Below is the pseudo-code for this algorithm:  Below is the pseudo-code for this algorithm: 

  
1.

  

 

  

  

This proceThis proce

  

  

  

  

  

  

  

 

 For each data chunk of 1500 points DO:
1. For each point in this data chunk DO: 

dius 

 for this matrix
ctors calculate α & λ. 

1. Find all points within a specified ra
2. Collect these points in a matrix 
3. Generate the eigenvalues & eigenvectors
4. From the eigenvalues & eigenve
ss results in the following image: ss results in the following image: 
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The color code for th

Green = Vertical plane 

ed = Out of range 

o plane 

that can be made from this are: 

 to appear as clusters of blue points 

. Tree trunks, though round in nature, are approximated well as vertical planes 

s collections of green points with 

Landmark Identification 

ribed above, the next step is to begin 

entifying landmarks in the laser scan. The technique chosen to identify landmarks was simple, 

yet surprisingly robust. Below is the pseudo-code for this technique: 

is image:  

Figure 22: Vertical & Horizontal planes calculated for the 
sample laser scan 

R

White = Horizontal plane 

Blue = Does not match t

 

 The interpretations 

1. Trees covered with leaves tend

2

3. Benches and other small vertical landmarks will appear a

blue lining the edges 

4. Flat surfaces, such as the ground, are detected very well 

 

 Once the data has been processed in the manner desc

id
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 For every point in the image not currently associated with a landmark DO:
1. Place this point on a stack 
2. Find all other points in the image within a certain radius from this point
3. Add these points to the stack 
4. RECURSIVELY: 

k DO: 1. For all points in the stac
1. Find all other points within a certain radius  

stack 2. Add these points to the 
is process does not require the pre-processing of points discussed in the previous 

his pro n the image as one single 

 However, by combining this process with knowledge gained from the pre-processing 

y. Since a continuous 

g points higher than 2.5 

hness factors (< 1.0). 

s chosen to 

tween 

 and eighteen inches. APPENDIX A discusses the radius chosen and offers examples 

tal 

ing on the floor. Since the Segway RMP 

an 

cess could also, theoretically connect all points i

above, useful landmarks can be identified quickly and robustly.  

e information used from the pre-processing step includes: 

points above and below a certain height: Points below a certain height are considered 

rt of the floor and undergo their own processing discussed shortl

 of leaves can interconnect all landmarks, for the time bein

are ignored. 

points that are out of range. This alone greatly speeds up processing. 

points that have a very high smoothness factor, λ. Even bushes and trees have 

ly low smoot

e radius defining whether to add a point to the current stack or not wa

 the distance of the point in question from the origin. The radius used varied be

it was chosen as it was. APPENDIX A also gives examples of vertical and horizon

tification for different tolerances on α and λ. 

 mentioned above, points below a certain height that were considered a part of the 

rwent their own processing. The height threshold set was the height of the robot. This 

ume that whereever the robot was, it was stand

ave the ability to go over bumps (steps) on the ground, all points higher or lower th

 Segway was currently standing had to be considered obstacles. The algorithm that 

 points to identify the usable floor was the exact same algorithm used to identify 

, but with two exceptions: 

oints within a certain height range were looked at 
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2. Very tight tolerances were kept on α  & λ so that points that were not on the same plane 

current floor, or points that were o

as the 

n the same plane but could not be considered smooth would 

sep

 

 In order to ge

mple knowledge th

to know where exactl

not be added to the floor  

 The figure below shows the different landmarks detected as well as the floor. Each 

arate landmark has a different color, though color assignment is arbitrary. 

si

size and shape of the

representation of the 

 The first step 

Center of mass algori

described in the pseu

 

  

 

 

Figure 23: Landmarks detected for the sample laser scan as well 
as the useful floor area 
n

at landmarks exist in the laser scan. The most important bit of knowledge is 

y the landmarks are located. It would be nice to know a little bit about the 

arch is 

Cognitive Map Generation 

erate a cognitive map from a laser scan, more information is required than 

 landmarks in question. Once this knowledge is gained, a 3-D map 

environment can be created.  

is to calculate the center of mass of each landmark relative to the robot. 

thms are relatively straightforward. The algorithm used for this rese

do-code below: 
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1. Fo

1.
r each detected landmark DO:

 For each point in the landmark DO: 
1. Find all other points within a certain radius of this point 
2. Treat the number of points within that radius as the 

int 
ight for all points 

 

weight for that particular po
2. Sum X, Y, & Z multiplied by the we
3. Divide this sum by the total weight 

 

 

 

 

 

 

 The radius jects, like trees with 

ng skinny bra h ved from the actual center, near the 

unk. 

ely useful in navigation. To calculate the distribution of points for a landmark, first 

chosen for this algorithm was 0.05 meters ensuring that ob

lo nc es, do not have their center of mass mo

tr

 Once the center of mass for each landmark is calculated, that landmark's location in the 

map is known. However, calculating parametric information about each landmark would be 

extrem

construct the matrix: 
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  N is the number of points for that landmark. 

 The eige

Rxx are the direction vectors for each eigenvalue in the main X, Y, & Z directions. Therefore, the 

atrix corresponds to the component of the first 

nvalues of Rxx are the distribution of points in each direction. The eigenvectors of 

first row and first column of the eigenvector m

eigenvalue in the X direction. The second row, first column of the eigenvector matrix 

corresponds to the component of the first eigenvalue in the Y direction and the third row, first 

column corresponds to the component in the Z direction. Assuming uniform distribution of 
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points, the actual length in each direction can be calculated from the eigenvalues as:  

 
Figure 24: Uniform distribution of points for an object 

The mean of x = L/2, where L is the length of the object.  

Therefore the variance of x can be calculated as: 

dx
L

xx 20

2 ∫ ⎟
⎠

⎜
⎝

−=σ  LL 1
2
⎞⎛ (17) 

Which, when evaluated yields 

12

2
2 L
x =σ  (18) 

 equations above are, in essence, the variance of the 

distributions. With the uniform distribution assumption the estimate length is determined to be: 

The eigenvalues returned by the

γ12=L   (19) 

articular Where γ corresponds to one of the eigenvalues (the variance of the distribution in a p

direction). 

 

Figure 25: Two landmarks detected from the sample scan 
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 An example of what this algorithm returns for two objects taken from the scan above:  

The first landmark is a long bench. The eigenvalues and eigenvectors were calculated to be: 
Table 1:Eigenvalues & eigenvectors for a long bench landmark 

Eigenvalues 9367.85 17649.7 4.83985e+06 

Eigenvector: X 
component of 
eigenvalue 

0.925795 -0.308432 -0.218572 

Eigenvector: Y 
component of 
eigenvalue 

0.318313 0.947926 0.010620 

Eigenvector: Z 
component of 
eigenvalue 

0.203915 -0.079406 0.975763 

 

From this, the third and largest eigenvalue for the bench protrudes primarily in the Z 

re 

calculated to be: 
Eigenvalues & e  for a tree landm

 

direction. 

 The second landmark is a tree behind the bench. The eigenvalues and eigenvectors we

Table 2: igenvectors ark 

Eigenvalues 51469.7 70702.2 366542.0 

Eigenvectors X 0.986215 0.015724 -0.164719 
component of 
eigenvalue 
Eigenvector Y 
component of 
eigenvalue 

-0.162859 -0.083827 -0.983082 

Eigenvector Z 
omponent oc

e
f 

igenvalue 

0.029266 -0.996356 0.080111 

 

 Again, the third eigenvalue is the largest but this time it protrudes mainly in the Y 

niform distribution assumption the lengths can be calculated as 

 

5 meters deep, 0.460 meters tall, ters wide 

ters deep, 2.097 meters tall, 0 s wide 

direction.  

 From the u

Bench: 0.33  7.620 me

Tree:  0.785 me .921 meter
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The odo

along with the 

metry i taken from

relative position, size, and orientation values just calculated, to generate an overall 

ronment. Two views of the co  generated f  scan are shown 

d 27.  

 

 

nformation  the robot during the training period can be used, 

map of the envi

in figures 26 an

gnitive map or the trial

 

Figure 27: Aerial view of the cognitive map from the sample laser scan 

Figure 26: Front view of the cognitive map from the sample laser scan 
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 The program used to make the map also creates a robot the size of the Segway RMP and 

places that robot within the map at the point that is considered to be the origin of the map. 

Effects such as shadows, fog, and the floor grid were added to aid the trainer in understanding 

and realizing the different 3-D locations of landmarks.  

 Figures 28 through 33 show some laser scans taken from different locations of the same 

area, along with the map generated by combining these scans. 

 

 

 

 

 

 

 

 

 

 
Figure 28: A 3-D laser scan of the environment 
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Figure 29: A scan taken after moving forward 0.9 
meters 
Figure 30: A scan taken after moving forward an 
additional 1.3 meters 
Figure 31: The final scan taken after moving 
forward an additional 0.5 meters, right 0.5 meters 
and turning 45o right 



 

Figure 32: Aerial view of the cognitive map generated from the above set of sample scans 

 

 

 Even though 

identification routine

benches, bushes, ligh

dimensions dx, dy, d

quite well. Each of t

 

Figure 33: Forward view of the cognitive map generated from the above
set of sample scans 
each algorithm for data processing mentioned above as well as the landmark 

s all act in a general sort of way (i.e. different landmarks such as trees, 

t posts, etc are not identified as such, rather identified as a box with 

z and orientation dtheta). Landmarks from different scans seem to coincide 

he four scans detected the long bench in front of the robot, the bench to the 
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right of the robot, as well as the same trees in the environment. The map generation shows that 

t 

these groups of landmarks detectably maintain their geometric configuration as the robot moves 

about in the environment.  

 Following the process and techniques mentioned above, 27 scans from the area jus

outside Featheringill Hall were taken. Odometry information between scan locations was 

recorded and all of the data was processed using the algorithms outlined in this document. 

Different views of the overall cognitive map generated are shown in figures 34 through 39. 

 

 

 

Figure 34: Driver’s seat view of the overall cognitive map 
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Figure 35: Above the robot & facing towards the front of the robot in the overall cognitive map 

 

Figure 36: Behind & above the robot; facing the same direction as the robot in the overall cognitive map 
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Figure 37: Left & above the robot in the overall cognitive map 

 

Figure 38: Right & above the robot in the overall cognitive map 
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Figure 39: Above the robot facing down in the overall cognitive map 

  

From these pictures a person not familiar with the training environment can deduce that 

there is a long low wall or bench in front of the robot as well as similar structures to the 

immediate right and a little ways off to the left of the robot. Behind this low wall appear to be 

several thin, tall objects. Behind and to the left of the robot there appears to be high walls 

enclosing the environment. Off to the right of the robot there are two open paths that are 

separated by tall, thin landmarks. Finally, the overall area immediately surrounding the robot 

appears to be open area mostly incased by long, low walls with openings at the corners. 

 It is worth mentioning at this point that some error does accrue in the system during 

training. Odometry readings are not exact and the laser system can jostle around during 

movement causing some slight errors in the calibration that will effect the overall placing and 

orientation of landmarks that are not near the robot. It will be shown in the next section that the 

system can handle these errors. It is important to remember that few, if any, cognitive maps are 

intended to be exact spatial replications of an environment. 
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CHAPTER VI 

 

SYSTEM PERFORMANCE 

 

 Cognitive map generation is only the first step towards enabling the Segway RMP with 

the ability to localize itself within its environment and navigate from point to point. From the 

internal cognitive map, the RMP must be able to identify particular sets of landmarks and relate 

those to landmarks detected from a single 3-D laser scan taken at a random location. The RMP 

must also be able to utilize its cognitive map to plan a path through the environment that avoids 

obstacles and reaches a goal state.  

 

Localization 

 Localization in mobile robots is a very old problem with many solutions. Possessing only 

knowledge about the placement of landmarks in the environment and the positioning of 

landmarks relative to the robot is the primary method of mobile robot localization. With this 

knowledge, two important questions arise:  

1. How many landmarks does the robot detect? 

 The number of landmarks that the robot detects is vital for proper localization. Only 

detecting one landmark, at a distance dL, localizes the robot to any point on the sphere 

surrounding the robot with radius dL.  

 

Figure 40: Localizing position from 1 landmark 

Assuming that the robot can only move in two dimensions reduces the localization space 

to a circle around the landmark. 
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Figure 41: Localizing the robot on a 2-D plane from 1 landmark 

Detecting two landmarks, at distances dL1 and dL2, localizes the robot to two points.  

 

Figure 42: Localizing the robot from 2 landmarks 

 

In order to localize to only one possible point requires the presence of at least three 

landmarks, at distances dL1-3.  

 

Figure 43: Localizing the robot from 3 landmarks 
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2. Are there features on these landmarks that make them discernable from different locations? 

 The number of landmarks required to localize can be reduced if more knowledge about 

particular landmarks is present. For example, if two landmarks can be determined to be different 

from each other, then the two-landmark case from above can be used for localization and the 

orientation of the landmarks from the robot’s perspective can be used to determine which of the 

two possible locales the robot does actually occupy.  

 

 

Figure 44: Knowing that landmark A is left of landmark B in the robot’s view, the position of the robot can be 
determined 

If the precise orientation of a landmark can be determined then only one landmark is 

necessary for localization because the robot can determine where on the circle (radius dL) around 

the landmark it is located by understanding exactly how the landmark appears to be oriented with 

respect to the robot. 

 For this research, landmarks were separately distinguishable through the knowledge of 

their 3-D location (center of mass) as well as their 3-D size and relative orientation. Due to this 

fact only two landmarks were required for accurate localization. Only utilizing two landmarks, 

though, causes another problem to arise. Since the robot has a large internal cognitive map filled 

with many landmarks there is a possibility that the robot can find a match for just two landmarks 

in a position that is not the correct position. To combat this, the robot calculates a set of possible 

locations and then systematically evaluates each location in that set by comparing what 

landmarks the robot DOES detect to the landmarks the robot SHOULD detect if the current 

location was the actual location. The location that matches best with the environment view the 

robot currently detects is chosen as the actual location of the robot.  

The pseudo-code for this algorithm: 
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1. For each pair of landmarks detected by the robot DO: 
    1. Find a matching pair of landmarks in the cognitive map 
    2. If a match is found DO: 
        1. Calculate the location the robot would need to be in to detect this match 
        2. Store this location in a list 
2. For each location in the location list DO: 
    1. For each landmark detected by the robot DO: 
        1. Find a possible match in the cognitive map 
        2. If a match is found DO: 
            1. Increase a goodness factor for this location 
        3. If a match is not found DO: 
            1. Decrease the goodness factor for this location  
3. Return the location with the best goodness factor 

 

This algorithm assumes the robot is in the environment for which it possesses the 

cognitive map. If the robot were to obtain a 3-D laser scan from a different environment the 

robot would still return the location (if one exists) with the best possible goodness factor, even 

though this number would be very low negative.  

  

Navigation 

 Once the robot has localized itself within the environment the robot must also move itself 

around in the environment. There are many different navigation techniques for mobile robots, 

some of which are discussed by Murphy [10]. Because there are no sensors on the Segway RMP 

to detect moving obstacles, the RMP must navigate solely around stationary obstacles. 

Furthermore, the internal cognitive map created through the process described in this work 

identifies and locates stationary obstacles. Therefore, navigation of the environment can stem 

solely from the robots internal cognitive map. The technique applied in this thesis is a sum of 

vectors approach.  

The robot calculates a path from a starting point (typically the location point determined 

above) to an ending point by repeatedly summing incremental vectors pointing from the starting 

point to the ending point with vectors pushing away from obstacles or landmarks in then 

environment. 
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Figure 45: The robot moves towards an end position while being repelled by landmarks 

This technique, for each landmark, creates two vector fields. The first vector field extends 

from the landmark two meters in each direction and pushes the robot back a small fraction of the 

distance DLi in the opposite direction as DLi. The second vector field extends from the landmark 

one half meter in each direction and repels the robot back away from the landmark. The end 

result is that the robot moves directly to the end position until it reaches a landmark. Upon 

reaching a landmark the robot moves along the side of the landmark until it can resume moving 

towards the end position. The robot then resumes moving directly to the end position.  

 

 

Figure 46: Each increment step the robot takes while navigating between two points and avoiding obstacles 
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Results 

 The results are presented and discussed as follows: 

1. Generation of cognitive map 

2. Localization from sample laser scans 

3. Navigation through internal cognitive map 

 

Generation of Cognitive Map 

 
 

 

Figure 47: The entire cognitive map generated from all of the training data 
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Figure 48: Side view of the entire cognitive map 

 

Figure 49: Aerial view of the entire cognitive map 

 

The generation of the final cognitive map went very much according to design. However, 

there were some interesting occurrences that are worth noting.  
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1. Vertical landmarks were detected and placed very well 

2. Landmarks that extend past the range of the SICK laser were detected well, but over 

successive scans, their center of mass tends to move due to the emergence of the sections that 

were previously out of range. 

3. Objects could appear greater than they actually were! This is due to the fact that stray tree 

branches can occasionally connect two separate landmarks to make them appear, during 

processing, as one landmark.  

4. Size and orientation values were quite consistent for vertical landmarks over successive scans. 

5. Size and orientation values did vary slightly for horizontal landmarks, but only in the direction 

that extended past the range of the laser (typically the primary direction of the landmark). 

6. The overall layout of the environment as well as the simple size and shape of most landmarks 

was well preserved. 

 

Localization From Sample Laser Scans 

 Below are a few figures demonstrating the localization algorithm. To generate these 

figures a laser scan was taken at random from within the environment. After processing, the 

localization algorithm determined the position of the robot. This position is shown in the figures 

as the white square. The actual position that the laser scan was taken from is shown as the blue 

square. The difference is also represented in the tables that follow each figure.  

 

Figure 50: The blue square indicates the actual robot position. The white square indicates the position localized 
from the cognitive map 
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Table 3: Localized position versus actual position, including goodness factor, for figure 50 
 

 Localized Actual Goodness 
X Position 0.916 m 0.904 m 22.5 

Z Position 0.296 m 0 m  

Angle -13.8o 0o  

 

 

Figure 51: The white square almost perfectly coincides with the actual robot position (blue square) 

 
Table 4: Localized position versus actual position, including goodness factor, for figure 51 

 
 Localized Actual Goodness 
X Position 2.917 m 2.29 m 16.0 

Z Position 3.608 m 3.511 m  

Angle -1.46o 0o  
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Figure 52: Sample localization towards the left of the courtyard 

Table 5: Localized position versus actual position, including goodness factor, for figure 52 

 Localized Actual Goodness 

X Position 2.175 m 2.748 m 3.5 

Z Position 6.779 m 6.743 m  

Angle -0.69o 0o  

 

The localization algorithm works best when it can use two vertical landmarks for 

positioning. This is due to the fact that the placement of vertical landmarks does not change over 

successive laser scans, whereas the placement of horizontal landmarks may change over 

successive scans (see Generation of Cognitive Map).  In addition, because of this fact, 

environments that work best for localization are environments that have vertical landmarks 

distributed throughout. Many outdoor environments do possess a useful dispersement of vertical 

landmarks. Combined with occasional horizontal landmarks this system could work well in 

many environments. It would be important for the trainer, however, to recognize the 

dispersement of vertical landmarks while training and make sure to utilize them as much as 

possible (i.e. do not avoid taking scans of areas with many vertical landmarks such as trees 

simply because the robot could not navigate those areas).  
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Navigation Through Internal Cognitive Map 

Once localization had been accomplished, it was decided to simply demonstrate the 

robots navigation through its own internal cognitive map rather than through the actual 

environment. Since the cognitive map was an accurate depiction of the stationary obstacles in the 

local environment around the robot and since the robot had no further sensors to detect non-

stationary obstacles while navigating, demonstrating proper navigation through the cognitive 

map would effectively show how the robot would navigate if extra sensors were installed.   

 

 

Figure 53: Robot navigating around obstacles within the cognitive map 
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Figure 54: A second navigation demonstrating that once the robot overcomes the first obstacle it can move directly 
to the goal 

 

It was discovered that occasionally the robot would come too close to obstacles while 

navigating. This is due to the fact that single objects in the actual environment are sometimes 

represented as a collection of objects in the cognitive map. The problem that arises is that the 

vector fields from these objects can cancel each other out. Obviously, if the robot were equipped 

with more sensors to find landmarks between successive steps in the navigation process, this 

problem could be avoided. 
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CHAPTER VII 

 

CONCLUSIONS 

 

Contributions 

 Much research has been conducted on the generation of maps for mobile robots. The 

approach in this thesis has outlined a method to generate a cognitive map for a mobile robot in an 

outdoor environment. Unlike most previous work in this area, this work is accomplished not by 

using two 2-D laser scanners but by using one rotating 2-D laser scanner. In addition, the 

methods used for processing these laser scans are both simple and robust. This work also 

discusses simple localization and navigation routines that the robot can use for the 

accomplishment of some task.  

 In order for the localization algorithm to work properly for a sample laser scan from the 

environment, it is necessary for two landmarks to be identified from that scan that can be 

matched with landmarks from the robots internal cognitive map. Often times it is the case that 

several possible locations are found to have a single matching pair of landmarks. At this point it 

becomes necessary to evaluate each possible location to determine whether this location could be 

the location of the original sample laser scan. 

 The navigation algorithm used in this work would require more sensors to be placed on 

the robot before it could be used in the real world. However, the algorithm used does work and if 

the step size in the path planning is kept to a minimum and the robot updates its current location 

as it travels with new laser scans the navigation algorithm could be applied to the real world.  

 Finally, this work spends much time talking about the hardware and software components 

that were put together to create an overall robotic system. When Vanderbilt University received 

the Segway RMP, there were no sensors on-board the robot, no means of controlling the robot, 

and no means of sharing data to and from the robot. Through the use of software packages such 

as NDDS, developed by RTI, and the Player robotic server, developed by researchers at 

www.playerstage.sourceforge.net, as well as through the integration of various components 

present in the Center for Intelligent Systems lab, a working robot with sensors, agents to handle 

control and data sharing, along with agents to represent information to a user was created.  
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Future Work 

It is certainly hoped that the work in this thesis is extended. The idea of the cognitive map 

is an extremely useful idea for mobile robot navigation. This work has shown that a cognitive 

map can be generated easily from a single 2-D laser scanner equipped to scan 3-D. The next step 

would be to utilize more complex algorithms for the identification of landmarks as well as for the 

classification of landmarks. The information returned by a 3-D laser scan appears to be detailed 

enough to allow for different types of landmarks to be identified as such (i.e. trees, bushes, 

benches, etc are all identified as trees, bushes, benches respectively). In addition, close 

examination of the 3-D laser scan has revealed lines on the ground that correspond to the lines of 

a sidewalk (this will be discussed in Appendix A). Given the high number of points produced for 

a single laser scan and the current processing power of most laptop computers, specific research 

would need to be done to determine how best to quickly identify such features in the 

environment.  

 Following concepts used by Thrun [17], Montemerlo [9], and Surmann [15] the use of a 

cognitive map can be applied to indoor environments as well. In indoor environments individual 

landmarks would not be as useful as simple noting and recording the presence of hallways, 

doors, and openings. The technique used here to identify vertical and horizontal planes would be 

of great use in mapping 3-D hallways, doorways, and rooms.  

 Finally, extra sensors could be added to the Segway RMP. The landmark identification 

algorithm could be adjusted to incorporate input from these extra sensors while identifying 

landmarks. This extra information could aid in localization. The navigation algorithm could be 

equipped to utilize these sensors so that the robot can operate safely in the real world and avoid 

moving obstacles. The type of sensors added could be vision, sonar, or laser.  

 

 55



APPENDIX A 

 

A CLOSER LOOK AT DATA PROCESSING 

 

 Taking a 3-D laser scan of an environment generates a lot of data. In addition, a lot of 

useful information about the environment is presented. Obviously not all of this information was 

utilized for this research. This appendix is going to discuss the data processing that did take place 

for the 3-D laser scans as well as present visual displays when parameters of the data processing 

algorithms were tweaked. This appendix will conclude by presenting some of the other forms of 

information present in a 3-D laser scan. 

 As mentioned in Data Processing the 3-D laser scans were initially processed to find 

vertical and horizontal planes in an environment. The parameters returned by this processing 

were an α value which related the angular offset the current plane was from horizontal and a λ 

value which related how smooth the current plane was. (Remember: for every point in the laser 

scan a plane that held that point was calculated using that point's nearest neighbors) 

 The graphing program used plotted points based on their α and λ values. Therefore, 

tweaking the tolerance at which a plane was considered horizontal or vertical and the tolerance at 

which a plane was considered smooth, gives some interesting results.  

 For the following figures the α and λ tolerances are given in the table and, as before, the 

different colors used are: 

White = Horizontal plane 

Green = Vertical plane 

Blue = Does not match to plane 

Red = Out of range 
Table 6: α & λ values for figures 55 – 62 

 

Figure # α λ 
55 0.2 0.05 
56 0.4 0.05 
57 0.2 0.001 
58 0.4 0.001 
59 0.2 1.0 
60 0.4 1.0 
61 0.05 0.05 
62 0.05 0.001 
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Figure 55: Planes detected when α = 0.2, λ = 0.05 

 

Figure 56: Planes detected when α = 0.4, λ = 0.05 
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Figure 57: Planes detected when α = 0.2, λ = 0.001 

 

Figure 58: Planes detected when α = 0.4, λ = 0.001 
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Figure 59: Planes detected when α = 0.2, λ = 1.0 

 

Figure 60: Planes detected when α = 0.4, λ = 1.0 
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Figure 61: Planes detected when α = 0.05, λ = 0.05 

 

Figure 62: Planes detected when α = 0.05, λ = 0.001 

  

It should be noted from these images that adjusting α has a greater effect on properly 

finding vertical and horizontal planes in the environment than adjusting λ.  
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 The landmark identification algorithm used for this research was rather simple: it 

recursively found all points within a certain radius of a given home point and added these points 

to the current landmark. There were not many parameters in this algorithm that could be 

tweaked, but one parameter that did have an effect on the landmarks detected was the radius used 

when adding points to a landmark. Initially a very tight radius was used, approximately six 

inches. This value was chosen because it corresponds approximately to the linear distance 

between two individual laser values at maximum distance. 

 

 

Figure 63: The linear distance between successive laser values reaches a maximum of approximately 6 inches 

 

The algorithm, however, tended to miss landmarks, such as trees, whose points were 

spread out and were themselves located at least three to four meters away. The reason that this 

happened was that the points in landmarks such as trees are spread out over a wide area, and 

since the landmark was located at some distance from the laser scanner, the angular resolution 

caused connecting points to be missed.  

 Next, a larger radius was chosen that was approximately eighteen inches in length. As 

would be expected, though, the algorithm connected near-by landmarks.  

The difference between having a radius of six inches and a radius of eighteen inches is shown 

below: 
 

 

 

 

 

 

 

 

 

 Figure 64: Floor detected with an 18 inch radius 

 

 

Figure 65: Floor detected with a 6 inch radius 
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Figure 67: Bench detected with a 6 inch radius 

 

 

 

 

 

 

 

 

 

 
Figure 66: Bench detected with an 18 inch radius 

 

 

 

 

 

 

 

 

 

 

 

Figure 68: All of the landmarks detected with an 18 
inch radius 

Figure 69: All of the landmarks detected with a 6 
inch radius 

 

 In order to keep the landmark detection algorithm simple, it was decided to make the 

radius used for connecting points a linear function of the distance, from the origin, of those 

points. At maximum distance the radius was eighteen inches while at a distance of a half-meter 

the radius was six inches. 

 The research discussed in this thesis was only intended for outdoor environments. The 

research was also only intended to find usable, repeatably identifiable landmarks. From the data 

collected by these 3-D laser scans much more work could be done. For example, even though 

usable floor was identified from a laser scan, this research did not utilize this information in 
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navigation. In addition, it was noted that the laser scan did detect the edges of sidewalks. This 

information could be extremely useful in actual outdoor navigation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70: Normal view of an image 
 

 

Figure 72: Aerial view showing sidewa
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Figure 71: Aerial view of the same image showing 
sidewalk lines 
 

lk at an angle just greater than 45o



 

Figure 73: Aerial view showing a sidewalk that the robot is in-line with 

The sidewalk lines in each figure can be seen running alongside of the robot until the density of 

the data is lost due to the angular resolution of the laser. 

 Finally, similar techniques to create block environments could be used with 3-D laser 

scanning to create virtual hallways and rooms from an indoor environment.  
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Figure 74: Hallway inside Featheringill Hall after the data was processed to identify vertical and horizontal planes 

 

 

Figure 75: Hallway in Featheringill Hall leading to an open area in front of elevators 
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Figure 76: Inside the ISAC lab in Featheringill Hall. A lot of objects make the room seem cluttered, but the walls 
and floor are still well identified 

 

 The research presented in this work shows that this is possible and could be done as 

potential future work. 
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APPENDIX B 

 

A CLOSER LOOK AT LOCALIZATION 

 

 The localization algorithm used in this work relies on the detection of at least two 

landmarks from a laser scan. Once detected the vector connecting the two landmarks is 

compared to similar vectors between landmarks in the cognitive map. From this comparison, a 

possible position is calculated. For each possible position a goodness factor is then calculated 

and the position with the best goodness factor is returned as the position of the robot. 

 This appendix will discuss in further depth the results returned by the localization 

algorithm as well as the goodness factor calculated for possible locations. Occasionally, there 

were not enough landmarks in a 3-D laser scan to accurately localize the robot. The results for 

these cases will also be discussed.  

 Once a pair of landmarks was identified with in a 3-D laser scan, the vector between them 

was calculated. 

 

Figure 77: Vector rAB with orientation angles θ, about the x-axis, and ψ, about the y-axis, connects the two 
landmarks 

 

 This vector was systematically compared to all vectors between pairs of landmarks in the 

cognitive map. For a match to exist two criteria had to be present: 

1. The vectors had to be at least 85% similar 

2. The landmarks had to be oriented in the same direction as their respective matches 
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The purpose for the second criteria mentioned was to ensure that landmark matches were 

consistent (i.e. tall and thin matched with tall and thin, short and long matched with short and 

long, etc). After a match was found the position and orientation in which the robot would need to 

be in order to detect the given landmark pair was calculated. For all matches found, a position 

and orientation of the robot was calculated.  

 The goodness factor calculated by this algorithm relates numerically how well a possible 

position as well as the landmarks detected at that position fit into the cognitive map. If a 

landmark appears in the laser scan that does not appear in the cognitive map, the goodness factor 

is decreased. In addition, if a landmark does not appear in the laser scan but does appear in the 

cognitive map, the goodness factor is decreased. For every landmark that does appear in the laser 

scan and is matched to a landmark, by position and orientation information, with in the cognitive 

map, the goodness factor is increased. Maintaining the goodness factor in this way allows for the 

possibility that features in the environment may change slightly, such as the addition or removal 

of landmarks, but the localization algorithm still has a likelihood of working properly. The 

goodness factor can also be considered a form of confidence factor. If the goodness factor is 

negative, the robot should consider not being very confident in its calculated location and should 

move slightly and take a second scan of the environment with which to localize from. 

 Below are several figures showing sample localizations. A table that presents the 

calculated localizations for the three best goodness factors follows each figure. Again, the blue 

robot indicates the actual position and the white robot indicates the localized position. NA means 

that further possible localizations were not found. 
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Figure 78: Localizing the robot with small error 

 

Table 7: Three best localized positions, including goodness factor, versus actual position for figure 78 

 X Position Z Position Orientation Goodness 

Actual Position 0 m 0 m 0o  

Localized 1 -0.079 m 0.361 m 4.03o 3 

Localized 2 -0.107 m 0.697 m -0.47o 0.5 

Localized 3 0.061 m 0.785 m 7.03o 0 
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Figure 79: Again, some small error can arise in localization 

 

Table 8: Three best localized positions, including goodness factors, versus actual position for figure 79 

 X Position Z Position Orientation Goodness 

Actual Position 2.29 m 1.81 m 0o  

Localized 1 2.21 m 1.29 m 0.24o 23.5 

Localized 2 2.18 m 1.11 m -5.0o 22.0 

Localized 3 2.22 m 0.439 m 1.49o 21.5 
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Figure 80: Localizing on the left side of the courtyard outside Featheringill Hall 

 

Table 9: Three best localized positions, including goodness factors, versus actual position for figure 80 

 X Position Z Position Orientation Goodness 

Actual Position 2.75 m 6.74 m 0o  

Localized 1 2.18 m 6.78 m 3.5o 3.5 

Localized 2 2.74 m 6.79 m 1.4o 1.0 

Localized 3 2.19 m 6.95 m 0.5o 0.5 
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Figure 81: Localizing as the robot is moving out of the courtyard 

 

Table 10: Three best localized positions, including goodness factors, versus actual position for figure 81 

 X Position Z Position Orientation Goodness 

Actual Position 2.75 m -3.58 m 0o  

Localized 1 2.73 m -3.50 m 2.3o 14.5 

Localized 2 2.65 m -3.60 m 0.8o 12.0 

Localized 3 NA NA NA NA 
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Figure 82: Localizing as the robot continues to move away from the courtyard 

 

Table 11: Three best localized positions, including goodness factors, versus actual position for figure 82 

 X Position Z Position Orientation Goodness 

Actual Position 3.66 m -5.42 m 0o  

Localized 1 3.85 m -5.31 m 1.3o 17.0 

Localized 2 3.03 m -4.82 m -18.4o 13.5 

Localized 3 3.55 m -5.28 m 12.1o 12.0 

 

 It was possible for the robot to calculate a false localization. However, when using this 

algorithm it was hoped that knowledge gained from the calculation of the goodness factor would 

enable the robot to identify such false localizations. Knowing that a localization is false, or most 

likely false, the robot could then reposition itself in the environment in order to make a more 

accurate localization.  

 Below are figures that show false localizations and the corresponding goodness factors. 
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Figure 83: False localization. However, with very low goodness factors, these occurrences can be caught 

 

Table 12: Three best localized positions, including goodness factors, versus actual position for the false localization 
in figure 83 

 X Position Z Position Orientation Goodness 

Actual Position 7.18 m -15.39 m -45o  

Localized 1 4.02 m -17.52 m -10.1o -3.5 

Localized 2 NA NA NA NA 

Localized 3 NA NA NA NA 
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Figure 84: Another false localization 

 

Table 13: Three best localized positions, including goodness factors, versus actual position for the false localization 
in figure 84 

 X Position Z Position Orientation Goodness 

Actual Position 1.83 m -3.41 m 0o  

Localized 1 0.763 m 0.693 m -8.5o -8.5 

Localized 2 0.741 m 0.729 m -7.1o -10.0 

Localized 3 0.950 m -1.35 m 4.4o -10.5 
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Figure 85: False localization can occur near places that had previously been localized correctly, but the goodness 
factor does not lie 

 

Table 14: Three best localized positions, including goodness factors, versus actual position for the false localization 
in figure 85 

 X Position Z Position Orientation Goodness 

Actual Position 2.29 m 8.55 m 0o  

Localized 1 2.30 m 2.62 m 1.1o -11.5 

Localized 2 2.30 m 2.62 m 12.3o -11.5 

Localized 3 5.36 m 3.89 m 43.7o -15.0 

 

  

 76



REFERENCES 
 
 

[1] Albus, J. S., Outline for a Theory of Intelligence, IEEE Transactions on Systems, Man and 
Cybernetics, 21, 743-509, 1991 

 
[2] Dagan, R., “Cognitive Mapping” http://intraspec.ca.cogmap.php 2004 
 
[3] Gerkey, B., Vaughan, R., and Howard, A., “Player/Stage Project”, 

http://playerstage.sourceforge.net, 2003 
 
[4] Hauser, M., Wild Minds: What Animals Really Think Henry Holt & Company, 2000 
 
[5] Jefferies, M. E., Yeap, W.K., Smith, L., and Ferguson, D., Building a Map for Robot 

Navigation Using a Theory of Cognitive Maps in IASTED Proc. Artificial Intelligence and 
Applications, 2001 

 
[6] Kamil, A., and Jones, J., “The seed-storing corvid Clark's nutcracker learns geometric 

relationships among landmarks”, http://www.nature.com/cgi-
taf/DynaPage.taf?file=/nature/journal/v390/n6657/abs/390276a0_r.html&dynoptions 1997 

 
[7] Kawamura, K., Koku, A. B., Wilkes, D. M., Peters, R. A., and Sekmen, A., Toward 

Egocentric Navigation, International Journal of Robotics and Automation, Vol 17, No. 4, 
2002 

 
[8] Kortenkamp, D. M., Cognitive maps for mobile robots: A representation for mapping and 

navigation Ph.D. Dissertation, University of Michigan, 1993 
 
[9] Montemerlo, M.,  Hahnel, D., Ferguson, D., Triebel, R., Burgard, W., Thayer, S., Whittaker, 

S., and Thrun, S., A System for three-dimensional robotic mapping of underground mines 
Comput. Sci. Dept., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-02-185, 
2002 

 
[10] Murphy, R., Introduction to AI Robotics MIT Press, 2000 
 
[11] Peters, R. A., Hambuchen, K., Kawamura, K., and Wilkes, D. M., The Sensory Ego-Sphere 

as a Short-Term Memory for Humanoids, Proc. IEEE-Ras Int'l Conf. On Humanoid Robots, 
Waseda University, Tokyo, Japan, 451-459, 2001 

 
[12] Real-Time Innovations Inc. “Network Data Distribution Service – NDDS”.  

http://www.rti.com
 
[13] Rosen, C., “Shakey the Robot” http://www.activrobots.com/HISTORY/ &  

http://www.sri.com
 
[14] Ruengcharungpong, A., An Internet-Based Remote Manufacturing System, Master’s Thesis, 

Vanderbilt University, 1999 
 

 77

http://intraspec.ca.cogmap.php/
http://playerstage.sourceforge.net/
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v390/n6657/abs/390276a0_r.html&dynoptions
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v390/n6657/abs/390276a0_r.html&dynoptions
http://www.rti.com/
http://www.activrobots.com/HISTORY/
http://www.sri.com/


[15] Surmann, H., Lingemann, K., Nuchter, A., and Hertzberg, J., A 3D laser range finder for 
autonomous mobile robots, Proc. 32nd ISR, 153-158, 2001 

[16] Thrun, S., Learning metric-topological maps for indoor mobile robot navigation Artificial 
Intelligence, 99(1), 1998, 21-71 

 
[17] Thrun, S., Martin, C., and Liu, Y., A Real-Time Expectation-Maximization Algorithm for 

Acquiring Multiplanar Maps of Indoor Environments With Mobile Robots, IEEE 
Transactions on Robotics and Automation, Vol 20, No. 3, 2004 

 
[18] Yeap, W. K., and Jefferies, M. E. Computing a Representation of the Local Environment. 

Artificial Intelligence, 107, 1999, 265-301 
 
 

 78


	TABLE OF CONTENTS
	ACKNOWLEDGMENTS
	I would like to first and foremost thank Dr. Kazuhiko Kawamu
	I would like to acknowledge and thank my fellow graduate stu
	Finally, I would like to thank Flo Fottrell whose tireless w
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	INTRODUCTION
	Overview
	Mobile Robot Navigation History
	Mobile Robot Navigation Techniques

	Summary and Organization

	Cognitive Mapping
	Sensory & Landmark EgoSpheres
	CHAPTER III
	APPROACH OVERVIEW
	Methodology
	Applications
	Constraints
	CHAPTER IV
	SYSTEM OVERVIEW
	Hardware
	Segway Robotic Mobility Platform
	SICK LMS 200
	Laser Rotation Platform
	Software
	Robot Control
	Laser Control
	NDDS
	User Interfaces



	CHAPTER V
	SYSTEM TRAINING
	Data Acquisition
	Data Processing

	Y – runs up and down
	Landmark Identification
	Cognitive Map Generation



	CHAPTER VI
	SYSTEM PERFORMANCE
	Localization
	Navigation
	Results
	Generation of Cognitive Map



	Localization From Sample Laser Scans
	Localized
	Actual
	Goodness

	X Position
	Z Position
	Angle
	Localized
	Actual
	Goodness

	X Position
	Z Position
	Angle
	Localized
	Actual
	Goodness

	X Position
	Z Position
	Angle
	Navigation Through Internal Cognitive Map
	CONCLUSIONS
	Contributions
	Future Work
	A CLOSER LOOK AT DATA PROCESSING

	Red = Out of range
	A CLOSER LOOK AT LOCALIZATION

	Goodness


	Actual Position
	Goodness

	Actual Position
	Goodness

	Actual Position
	Goodness

	Actual Position
	Goodness

	Actual Position
	Goodness

	Actual Position
	Goodness

	Actual Position
	Goodness

	Actual Position

