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PREFACE

Fault diagnosis is crucial for ensuring the safe operation of complex engineering systems. Many

present-day systems combine physical and computational processes, and are best modeled as hybrid

systems, where the dynamic behavior combines continuous evolution interspersed with discrete con-

figuration changes. Due to the complexity of such modern engineering systems, formal methods are

required for reliable and correct design, analysis, and implementation of hybrid system diagnosers.

This dissertation presents a systematic, model-based approach to event-based diagnosis of hybrid

systems based on qualitative abstractions of deviations from nominal behavior. The primary contri-

butions of this work center on (i) incorporating relative measurement orderings into fault isolation

for continuous and hybrid systems, which describe predicted temporal orderings of measurement

deviations, (ii) providing algorithms for event-based diagnosis of single and multiple faults, (iii)

developing an integrated framework for diagnosis of parametric, sensor, and discrete, i.e., switching

faults in hybrid systems, and (iv) developing and implementing an efficient event-based diagnosis

framework for continuous and hybrid systems that enables automatic design of event-based diag-

nosers and establishes notions of diagnosability for continuous and hybrid systems.

The effectiveness of the approach is demonstrated on two practical systems. First, the single fault

diagnosis method for continuous systems is applied in a distributed fashion to formations of mobile

robots. The results include a formal diagnosability analysis, scalability results, and experiments

performed on a formation of robots. Second, the approach developed for hybrid systems diagnosis

is applied to the Advanced Diagnostics and Prognostics Testbed, which is a complex electrical

distribution system for spacecraft and aircraft applications. The results focus on a subset of the

testbed, and include a diagnosability analysis, experiments from the actual testbed, and detailed

simulation experiments that examine the performance of the diagnosis algorithms for different fault

magnitudes and noise levels.
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CHAPTER I

INTRODUCTION

For complex engineering systems, online fault diagnosis is key to achieving safe and reliable operation

in spite of system faults. Faults must be detected and isolated early, so that reconfiguration actions

can be taken and catastrophic situations can be avoided. Many complex systems are embedded, that

is, they consist of a physical plant with a controller that is implemented in software. The system

may undergo configuration changes through the actions of the controller. Such systems can be

modeled best as hybrid systems, where the dynamic behavior evolves continuously in time, but may

undergo discrete changes as the system configuration, or mode, changes. Due to the complexity of

such modern engineering systems, formal methods are required for systematic design, analysis, and

implementation of hybrid system diagnosers. Model-based diagnosis provides a formal framework

to achieve these objectives [1].

In model-based diagnosis, fault diagnosis algorithms reason about differences in observed behav-

ior from that predicted by a model, by exploiting the analytical redundancy between the system

and its model. Logic-based approaches provide a formal logic framework for defining and solving

the diagnosis problem, however, they typically deal with only static systems [2–4]. Discrete-event

system approaches abstract time to event sequences, but largely ignore the continuous dynamics

of the system [5–8]. Continuous systems approaches represent the evolution of system behavior as

a function of time, but cannot deal with changes in system configuration [9–13]. Therefore, these

traditional approaches do not apply to hybrid systems, where diagnosis must deal with the evo-

lution of both the continuous and the discrete aspects of system behavior [14–19]. The previous

approaches, however, provide insights that can be leveraged to provide better solutions to hybrid

systems diagnosis.

This dissertation develops an event-based framework for fault diagnosis in hybrid systems that

extends the Transcend and Hybrid Transcend methodologies [14, 20–22]. In these frameworks,

diagnosis is based on analysis of fault transients, where observed deviations from nominal behavior

expressed in qualitative form are compared against qualitative predictions of faulty behavior, i.e.,

fault signatures, to isolate faults. We extend the previous work in four significant ways. First, we

extend the discriminatory ability of the diagnosis algorithms by including relative measurement or-

derings, which define predicted temporal orders of measurement deviations due to faults. Second,
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we extend fault isolation procedures that are based on the single fault hypothesis to multiple fault

diagnosis. Third, we extend the previous fault isolation from only parametric fault isolation algo-

rithms to include discrete faults, which are defined by unanticipated changes in the system mode.

Fourth, we merge all these contributions into a novel event-based framework for hybrid systems

diagnosis. A formal methodology is developed to design event-based diagnosers, and establish and

analyze notions of diagnosability for a system. Further, we perform experimental studies on two

practical systems, (i) a formation of mobile robots, and (ii) a complex electrical distribution system.

In the rest of the chapter, we first describe the motivation for our work, followed by the specific

research objectives. We then describe the specific contributions of the dissertation, and conclude

with the organization.

Motivation

Modern engineering systems in application domains such as robotics, electronics, and aeronautics

are typically made up of a large number of interacting components. These systems and components

are hybrid in nature, that is, they exhibit mixed continuous and discrete behavior. Model-based

diagnosis for such systems is a challenging task. The involved models must accurately define the

dynamic system behavior in each mode of operation. Practical systems are typically highly recon-

figurable, therefore, they operate in a large number of modes. Further, transitions between modes

may be controlled, which are based on known switching inputs, or autonomous, which are based on

internal system variables. The large number of possible system modes and the inability to predict

mode transitions after fault occur complicates the diagnosis task, and reduces the discriminatory

ability of diagnosis algorithms.

Model-based diagnosis takes advantage of the analytical redundancy between expected behavior

defined by a system model, and observed behavior provided by the sensors. Although modeling

is a challenging task, especially for hybrid systems, if an appropriate model can be developed,

then a model-based approach provides a better solution to the diagnosis problem, because the

knowledge contained in the model is leveraged for more precise and accurate diagnosis. Further,

model-based solutions can provide analysis tools to verify important properties of the model, such

as diagnosability.

In model-based diagnosis, one must take advantage of as much of the diagnostic information that

can be extracted from the model. The only form of information employed in typical approaches for

continuous and hybrid systems is that of fault signatures, defined by the deviations from expected,
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nominal behavior [9, 10, 14, 20]. Discriminatory ability can be improved by adding more sensors,

however, in many applications, adding extra sensors may not be cost-effective. Moreover, the ad-

dition of certain sensors may not be physically possible. Sensors may also be faulty, which adds to

the complexity of diagnosis. Uncertainty in the signatures or in the mode of the system decreases

the discriminatory ability of the algorithms. The full discriminatory power of a set of measurements

must be exploited so that faults can be diagnosed with the smallest number of measurements nec-

essary. Approaches in discrete-event systems use temporal information in the form of events, and

recent work in continuous systems diagnosis has shown that similar information can be extracted

from continuous models to enhance diagnosis [23–28]. This type of information can be employed in

addition to traditional fault signatures to enhance fault isolation.

Hybrid systems may undergo many different types of faults, so a comprehensive diagnosis frame-

work geared toward real-world applications must handle different fault types. In hybrid systems,

faults may not always be characterized by changes in system parameters, i.e., parametric faults, but

also attributed to undesired changes in the configuration of the system, i.e., discrete faults. Most

current hybrid systems diagnosis methods cater exclusively to either parametric faults [14, 17, 29]

or discrete faults [15, 30–34], but few to both [19, 35–37]. In order to be robust, hybrid diagnosis

strategies must deal with both fault types.

Fault isolation is also complicated by the occurrence of multiple faults. In general, a number of

different faults can occur in complex systems, and the likelihood of multiple faults occurring increases

in harsh operating environments. Fault diagnosis schemes that do not take into account multiple

faults run the risk of generating incorrect diagnoses or even failing to find a diagnosis after faults

occur. Multiple fault diagnosis is further complicated by the fact that multiple faults’ effects may

mask one another, thus making it difficult to differentiate between multiple fault candidates [38,39].

Due to fault masking, multiple faults can affect the measurements in many different ways, and this

adds uncertainty, which in turn reduces the discriminatory ability of diagnosis algorithms. Fur-

ther, the reasoning performed over the space of multiple fault hypotheses is expensive, so diagnosis

algorithms should be designed as efficiently as possible.

With all of these issues, diagnosis in hybrid systems becomes a challenging task. In order to

facilitate diagnostic analysis of hybrid systems, formal methods are required to establish and verify

important properties of systems, such as diagnosability. Formal methods also allow systematic

design, analysis, and implementation of diagnosers. Since diagnosis in hybrid systems is event-

based, i.e., events that change the mode of the system and events signifying fault occurrence, an

event-based framework to support such formal methods offers significant advantages.
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While developing the necessary theory is important, application to real systems is the goal.

Diagnosis algorithms should be tested and evaluated on real systems with practical significance.

In these systems, factors such as sensor noise and model inaccuracy make diagnosis challenging.

Therefore, there is a need to evaluate the robustness of the diagnosis algorithms for different fault

and noise magnitudes. Accurate simulation models of the system are required for this purpose.

Further, it is important to execute the diagnosis algorithms on the physical systems, where model

uncertainty is always present, and complicates the diagnosis task. Experiments on real systems

often brings to light new challenges that need to be addressed for actual deployment of the diagnosis

algorithms.

Contributions

This dissertation develops an event-based framework for fault diagnosis in hybrid systems that

extends the Transcend and Hybrid Transcend methodologies [14, 20–22]. In these frameworks,

diagnosis is based on analysis of fault transients, where observed deviations from nominal behavior

are matched against qualitative predictions of faulty behavior, known as fault signatures, to isolate

faults. Significant work has been done within Transcend that addresses the issues of modeling,

system monitoring, fault detection, and fault isolation for hybrid systems. However, the framework

does not utilize the temporal orders of measurement deviations within fault isolation and considers

only single and parametric faults. This work extends the previous fault isolation algorithms to

incorporate temporal orders of measurement deviations, address multiple faults, and provide an

integrated framework for diagnosis of both parametric and discrete faults in a formal event-based

framework. We also make necessary extensions to the other parts of the framework; specifically, we

extend the modeling language and symbol generation for discrete faults.

Our specific contributions are as follows.

1. Relative Measurement Orderings. We introduce the notion of relative measurement or-

derings, which define predicted temporal orders of measurement deviations due to faults. In

conjunction with fault signatures, measurement orderings allow us to define event-based fault

models, where the events are measurement deviations. Relative measurement orderings in-

crease the discriminatory ability of the diagnosis algorithms, which reduces ambiguities in the

diagnosis results, and generates the fault isolation results faster, so corrective actions can be

taken sooner. We establish how relative measurement orderings can be extracted from the sys-
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tem model, and correspondingly enhance the prediction algorithm of Transcend to predict

relative measurement orderings as well as fault signatures.

2. Discrete Faults. We extend the previous fault isolation schemes designed to isolate para-

metric faults, defined by unanticipated changes in a system parameter value, to discrete faults,

which are defined by unanticipated changes in the mode of a switching component. We extend

the modeling language and accompanying diagnosis model to incorporate discrete faults. We

extend the hypothesis generation algorithms of Transcend to identify discrete faults as pos-

sible causes of faulty behavior, and the prediction algorithm to predict the effects of discrete

faults. Further, we augment fault signatures with an additional symbol that is useful in distin-

guishing between parametric and discrete faults, and extend the symbol generation procedure

accordingly.

3. Multiple Faults. We extend the fault isolation scheme to perform multiple fault diagnosis.

We illustrate how the effects of multiple faults can be formed in a consistent manner from

the individual faults, for which relative measurement orderings are necessary. We improve the

efficiency of multiple fault isolation by extending notions of minimality used in logic-based

diagnosis, and limiting the cardinality of the multiple fault hypotheses.

4. Event-based Diagnosability Analysis and Diagnoser Design. We construct our ap-

proach as a formal, event-based framework for hybrid systems diagnosis. Under this frame-

work, we can create event-based diagnosers similar to those used in discrete-event systems

diagnosis, where events are defined as measurement deviations and controlled mode changes.

Using this framework, we establish notions of diagnosability for a system, and show how the

diagnosers can be used to verify diagnosability of a system. Moreover, we offer a spectrum of

implementations of the event-based diagnosers that trade off space- and time-efficiency.

5. Experimental Case Study for Robot Formations. We provide a case study to illustrate

our diagnosis approach using formations of mobile robots. Because the system is inherently

distributed, we apply the distributed Transcend approach [40, 41], but extend it to incor-

porate relative measurement orderings. We present diagnosis models for robot formations,

and provide a diagnosability analysis which shows that relative measurement orderings are re-

quired to discriminate between faults on different robots. We apply the distributed diagnosis

approach experimentally on a formation of four mobile robots.
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6. Experimental Case Study for Electrical Power Distribution Systems The mobile

robot system only requires continuous systems modeling and diagnosis. We also apply our

approach to a realistic electrical distribution system of a spacecraft, the Advanced Diagnostics

and Prognostics Testbed (ADAPT) at NASA Ames Research Center [42,43]. ADAPT contains

over 100 sensors, has over 170 possible faults, and incorporates over 50 circuit breakers and

relays that configure the system into different modes. The system also contains lead-acid

batteries that have highly nonlinear behaviors. Because of these elements, ADAPT serves as a

challenging testbed for hybrid systems diagnosis. We consider a subset of ADAPT that includes

a battery connected to two DC loads through relays. We provide diagnosability analysis of

the selected subsystem, and extensive simulation results that investigate the effect of fault

magnitude and sensor noise on the precision and accuracy of the diagnosis results. Further,

we provide experimental results obtained from running the diagnoser on the actual system to

demonstrate the approach.

Organization

Chapter II presents an overview of model-based diagnosis. First, we examine the problems that

need to be solved for diagnosis of hybrid systems. Then, we examine the logic-based approaches to

model-based diagnosis, which provide a formal foundation to the problem. Logic-based approaches

typically deal only with static systems, so we then describe approaches in discrete-event systems,

where time is abstracted to sequences of events. Because time is abstracted to events, it becomes

difficult to achieve fast fault detection and isolation. So, we then move to continuous systems

diagnosis, which represent the dynamic behavior of the system as a function of time. Continuous

systems representations do not account for changes in system configuration, therefore, we examine

model-based diagnosis methods for hybrid systems. Each modeling framework provides insights

into how to best use certain types of information, and we leverage this information throughout the

dissertation.

Chapter III formulates the problem of fault diagnosis in hybrid systems. Diagnosis becomes

difficult in hybrid systems when mode changes, multiple fault types, and simultaneous faults are

considered. We outline the specific challenges that arise, and overview the assumptions we make to

enable the problem to be more manageable for many practical systems. We then outline our general

architecture for diagnosis, and summarize the features of Transcend (e.g., [14,20–22,44–51]) that

we use.
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Chapter IV describes our modeling framework. We adopt hybrid bond graphs due to their many

advantages for model-based diagnosis [21]. We extend the modeling language to account for discrete

faults and to incorporate sensor models. We then present our diagnosis model, the temporal causal

graph [20]. We extend the temporal causal graph to explicitly account for the causal relationships

between discrete faults and the system variables, and also to account for sensor models.

Chapter V presents the qualitative fault isolation framework for continuous systems diagnosis.

We extend the Transcend methodology by incorporating relative measurement orderings and in-

cluding algorithms for isolation of multiple faults. We describe how fault hypotheses are generated,

and how predictions of faulty behavior are computed. We extend prediction to include relative

measurement orderings, and develop event-based fault models that combine fault signatures and

measurement orderings. We then describe the online fault isolation algorithms that use the event-

based fault models.

Chapter VI presents the qualitative fault isolation framework for hybrid systems diagnosis. We

extend the Hybrid Transcend methodology to account for both parametric and discrete faults, and

include algorithms for isolation of multiple faults. We describe how fault hypotheses are generated,

and how predictions of faulty behavior are computed as extensions of our updated continuous systems

approach. We then describe the online fault isolation algorithms that use the event-based fault

models for hybrid systems.

Chapter VII presents systematic design procedures that produce event-based diagnosers, by

compiling the event-based fault models and the fault isolation algorithms into a computational

structure that can be used for both efficient online diagnosis, and for examining diagnosability

properties of the system. We first develop notions of diagnosability within our framework, and

then describe our representation of event-based diagnosers. We then describe the design procedures

for single- and multiple-fault diagnosis in continuous systems, and diagnosers for hybrid systems,

which account for faults as well as controlled and autonomous mode transitions. We then provide a

spectrum of implementations of the event-based diagnosers that trade off space- and time-efficiency.

Chapter VIII provides a case study for our approach on formations of mobile robots, demon-

strating diagnosis of single faults in continuous systems. Because robot formations are distributed

systems, we present a distributed architecture of our approach that extends distributed Tran-

scend [40,41] to incorporate the use of relative measurement orderings, which results in distributed

event-based diagnosers for each robot that do not require a centralized diagnosis coordinator. We

present a general modeling and control framework for robot formations, and describe the distributed

diagnosis problem formulation and architecture. We then provide detailed diagnosabiltity and di-
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agnoser design results for the formation systems, and experimental results demonstrating the effec-

tiveness of the approach.

Chapter IX provides a second case study that focuses on hybrid systems. We apply our algo-

rithms to the Advanced Diagnostics and Prognostics Testbed (ADAPT) at NASA Ames Research

Center [42,43]. ADAPT brings the challenges of hybrid systems diagnosis to the forefront. The sys-

tem has a number of relays and circuit breakers, which makes the system behavior naturally hybrid.

Further, it contains lead-acid batteries, the behavior of which is highly nonlinear. Further, both

parametric and discrete faults can occur, and, therefore, ADAPT serves as a promising testbed to

validate our overall approach. We adopt a subset of ADAPT to demonstrate our approach, and first

present the component models. We then provide diagnosability results for the selected subsystem, as

well as detailed simulation experiments that vary fault magnitude and sensor noise to examine the

robustness of our algorithms. We also provide experimental results that were obtained by running

our diagnoser on the actual testbed.

Chapter X summarizes the contributions of this dissertation. We then point out the current

limitations of the approach, and describe directions in which this work may be improved in the

future.
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CHAPTER II

RELATED WORK IN MODEL-BASED DIAGNOSIS

Model-based diagnosis methods reason over differences between expected behavior defined by a

system model, and observed behavior provided by the sensors. Modeling is a challenging task,

and the quality of the model impacts the quality of the diagnosis results. But, if an appropriate

model can be developed, then a model-based approach provides a better solution to the diagnosis

problem, because the knowledge contained in the model is leveraged for more precise and accurate

diagnosis [2–6, 10, 14, 18–20, 28, 39, 52–55]. Further, model-based solutions can provide analytical

methods to verify important properties, such as diagnosability.

Approaches to model-based diagnosis mainly differ by the type of modeling representation used.

The manner in which the system is modeled largely influences the fault diagnosis techniques, and

the diagnostic precision that they can obtain. Logic-based approaches represent the system using a

formal language such as propositional or first-order logic [1–3, 56–61]. They typically abstract time

out of the system behavior description, thus they cannot be directly used to building diagnosers

for dynamic systems. Discrete-event system approaches abstract time by modeling system behavior

as a sequence of events, and the corresponding diagnosis schemes are based on analyzing observed

event sequences [5–8, 62–69]. Continuous system approaches employ a continuous- or discrete-time

representation of the system, and use quantitative and/or qualitative methods for diagnosis [9–13,

23–26,52,70–74]. Hybrid system approaches combine continuous and event-based behaviors, and are

the most general, but also the most complex [15, 17–19, 29–35, 75–77]. Hybrid diagnosis methods

range from estimation-based approaches to mixed qualitative and quantitative approaches.

This dissertation focuses on diagnosis of hybrid systems. Hybrid systems combine continuous

dynamic behavior and discrete mode behavior, where the continuous dynamics change from mode

to mode. Hybrid systems cover a wide class of systems and system behaviors, which implies that

model-based diagnosis of hybrid systems can be applied to a broad class of applications. For example,

hybrid systems are very important for modeling embedded systems, because they consist of physical

plants with continuous behaviors combined with computer processes that drive the plant to particular

operating modes through switching actions.

Diagnosis of hybrid systems is an open and active research area. As described in Fig. 1, model-

based diagnosis of hybrid systems can be decomposed into four problems [14,37]:
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Figure 1: Computational architecture for model-based diagnosis of hybrid systems.

1. Estimation. In dynamic systems, the behavior evolves over time, therefore, continuous mon-

itoring is necessary in order to predict the time-varying behavior. Some techniques utilize a

state-space or input-output model for designing an observer, which computes expected be-

havior given the system model, the inputs, and the measured outputs, and can be robust to

sensor noise, model uncertainty, and disturbances. Observers must also be efficient enough to

allow for real-time tracking, but in hybrid systems, tracking becomes complicated because the

state consists of both a continuous component and a discrete component. Hybrid observers

for diagnosis have been implemented using switched Kalman filters, banks of Kalman filters,

and particle filters [16,30,32–34,50,75].

2. Fault Detection. Given both measured and estimated outputs, observed differences are

computed, and a decision must be made as to whether the differences implicate the presence

of a fault in the system. Fault detection takes as input the difference between expected and

actual outputs, defined as the residual, and outputs a true or false value indicating fault

presence. In dynamic systems, sensor noise, model uncertainty, and disturbances make fault

detection challenging. A robust fault detection module is necessary to perform the decision

test. For example, one type of fault detector takes the form of a special observer known as a

residual generator. Robust residual generators that respond only to subsets of faults can also

be designed [9–12].

3. Fault Isolation. Given that a fault has occurred, fault isolation reasons about the differ-

ences between model-predicted and observed behavior, and establishes possible candidates as

combinations of faults that can explain the observed behavior. In single fault diagnosis, the

goal is to obtain a unique single fault that can explain the observations. It may not always

be possible to determine a unique candidate given the type of information used for diagnosis

and the sensors available on the system. In multiple fault diagnosis, the goal is expanded

to obtain sets of faults that, taken together, explain the observations. However, due to the
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Figure 2: Faults in dynamic systems.

interactions of multiple faults, which may cause fault masking, it is often hard to obtain a

unique candidate [38,39].

4. Fault Identification. If fault isolation discovers a unique fault set, then fault identification

computes the magnitudes of the faults that match the observations most closely. If multiple

fault sets remain after isolation, then this must be performed for each fault set, and the fault

set that obtains the closest match is determined to be the true fault set [14, 22, 45]. Some

approaches combine fault isolation and fault identification [15,17,32,78,79].

The objective of diagnosis is to establish which possible faults or combinations of faults match

the observed system behavior. As shown in Fig. 2, faults may manifest in different parts of the

system, namely, the actuators, the plant, and the sensors. In hybrid systems, faults can occur as

parameter value changes in continuous modes of operation, and are termed parametric faults. Faults

can also occur in the form of mode-changing behavior, which are represented as unexpected changes

in system mode and are termed discrete faults. Logic-based and discrete-event system approaches

deal with faults that are characterized as discrete, while continuous systems approaches deal with

faults that are characterized as parametric. Hybrid systems approaches must deal with both types

of faults.

Because of the different types of faults and the different modeling representations used, fault

diagnosis can be performed in many different ways. In order to provide a context for the research

described in this dissertation, we provide a taxonomy of approaches in model-based diagnosis. First,

we describe logic-based approaches, then discrete-event approaches, continuous systems approaches,

and finally hybrid systems approaches. We conclude with a summary of the different approaches

and describe how the insights they provide connect to the results of this dissertation.
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Logic-Based Diagnosis

Performing model-based diagnosis requires modeling the system of interest, and reasoning about

differences between model-predicted and observed behavior. The work in discrete, logic-based ap-

proaches provides a formal foundation for model-based diagnosis [1].

In logic-based approaches, the system is modeled in a formal logic framework. The system

and relevant domain knowledge are captured in a system description, SD. The set of components,

COMPS, is assumed to be a set of logical constants. Faults are simply modeled as incorrect behavior

of a component. If a component c ∈ COMPS is not working correctly, then the statement ab(c) is

true, and implies that the component is abnormal. The set of observations, OBS, is, like SD, a set

of logical sentences, and describes the current system state as observed by the sensors. The goal of

diagnosis is to find all c ∈ COMPS for which ab(c) is consistent based on OBS and SD.

There are a number of challenges in applying logic-based approaches to complex dynamic systems.

Unless the logic is restricted, diagnosis in this paradigm can be computationally inefficient because it

is based on theorem-proving, truth maintenance, or manipulation of logical expressions, which are all

NP-hard in general [80]. Modeling complex dynamic systems in a suitable logic is also very difficult

and tedious, and puts a lot of burden on the modeler. How to represent time at the appropriate level

of abstraction also becomes a difficult issue to resolve. A concise representation of the system with

only the information needed for diagnosis is necessary in order to keep these approaches as efficient

as possible.

Consistency-based Diagnosis

In consistency-based diagnosis, a set of faulty components is assumed, and checked for consistency

with the system model and the observations. A consistency-based diagnosis theory, using the SD,

COMPS, OBS, and ab(·) formulation, and an algorithm to compute diagnoses based on logical

consistency, is described in [2]. The advantage of the approach is that, given an adequate system

description in a suitable logic (e.g., first-order, temporal, dynamic), the approach can be readily

applied.

The General Diagnostic Engine (GDE) implements a similar approach that is developed to specif-

ically handle multiple fault diagnosis efficiently [3]. To help reduce the exponential nature of the

problem, fault candidates are handled using minimal sets that can explain all of the observations. Us-

ing minimal sets is reasonable because, in most cases, if some set of failed components C ⊆ COMPS

is consistent with the system observations, any superset of C is also consistent. Any component may
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be faulty, but its faulty behavior may not have been observed yet. Therefore, finding the minimal

sets is sufficient to characterize all possible diagnoses of the system. The approach is also incremen-

tal, so when a new observation is made, a conflict set is generated. A conflict set represents the

set of assumptions that supports a symptom. The current set of fault candidates is then updated

to account for the new conflict. The key advantage of the approach is the method of manipulating

multiple fault candidates efficiently, which may be extended to dynamic systems [38,39].

In GDE, components can be in one of two states, correct or faulty. In many practical situations,

however, it is not enough to know that a component is faulty, but also in what way it has failed.

The concept of behavioral modes is developed in [56], where the normal behavior of components

is described as well as specific faulty behaviors, for each possible known failure mode. Typically,

the behavioral specification also includes a mode with no constraints, in order to model unknown

failure modes. Diagnosis identifies which components have failed and in what modes, and reduces

to finding consistent assignments of modes to components.

Temporal Diagnosis

While logic-based approaches often abstract time out of the models, temporal diagnosis methods

retain time in a temporal logic framework. A diagnosis method performed by finding possible se-

quences of actions or events that brought the system to the current state is presented in [59]. Possible

trajectories leading to the current state are found by applying theorem proving methods. The tra-

jectories may contain faults that can explain the current history of observations, thus providing

the diagnosis results. In this approach, the system domain is axiomatized in the situation calculus,

where time is abstracted using events or actions.

A related approach that develops a temporal diagnosis framework is described in [58]. Temporal

diagnoses are defined as sequences of events that have occurred in the system. Systems are modeled

in a discrete-event framework using qualitative methods, and the goal is to find possible event

sequences that are consistent with the sequence of observations.

Other work has focused more specifically on temporal logics [60, 61, 81]. A temporal constraint

language that includes constraints to define different qualitative and quantitative temporal relations

between actions is provided in [60]. An efficient algorithm for abductive diagnosis using this language

is presented in [61]. As with the previous logic-based approaches, it is often difficult to model

complex, dynamic systems using a formal temporal logic language.
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Discussion

Logic-based approaches provide a formal reasoning framework for model-based diagnosis using the-

orem proving. For complex systems, however, especially hybrid systems, modeling in a formal logic

framework is cumbersome, and leads to large models where establishing results using theorem prov-

ing becomes very inefficient, especially when using temporal logics. Although most consistency-based

logic approaches deal with static systems, some of the concepts can be applied in diagnosis of dy-

namic systems. For example, the concept of minimal diagnoses can be applied to diagnosis of faults

in continuous systems if conflicts can be generated correctly with respect to time [39, 82]. We use

an equivalent form of conflicts and show how they can be computed correctly in Chapter V.

Discrete-event Systems Diagnosis

Often, temporal information can be encoded as sequences of events, which may correspond to discrete

observations, controller actions, alarms from system components, and other relevant system events.

Discrete-event systems (DES) abstract time to discrete points at which events occur. A DES model

is represented by a set of states, a set of observable and unobservable events, and transitions between

states that depend on the occurrence of events [83].

DES diagnosis methods typically compile a diagnoser for the system based on its DES model [5,

6]. The compiled diagnoser avoids the need for theorem proving, thus allowing for more efficient

diagnosis. In DES, faults are modeled as unobservable events. The diagnoser tracks observed event

sequences links them back to the unobservable fault events.

Example. Consider the models of a simple switch and its controller given in Figs. 3a and 3b,

respectively. The complete system model is given as a synchronization of these two component

models based on the shared Open and Close events. The unobservable fault events are Fail Open

and Fail Closed, in which the switch becomes stuck in its current state and fails to respond to

further controller commands. It is assumed that a sensor exists that determines whether the switch

appears to be on (1) or off (0).

DES diagnosis is based on relating observed system events to the system’s state. Ideally, fault

occurrences will eventually generate a sequence of observable events that are different from nominal

and other fault sequences. For example, a stuck-closed failure in the switch can be diagnosed when

an Open command is given but the sensor still reads 1.

There are many significant challenges to applying DES diagnosis methods to complex systems.

Describing a system in a discrete-event framework is the foremost issue. To apply DES methods, the

14



(a) Switch. (b) Controller.

Figure 3: DES models of a switch and its controller.

system behavior must be abstracted to event sequences that include sufficient detail so that faults

can be detected and isolated. When timing information is considered, the complexity of the model

grows. Detailed models are needed to improve diagnostic precision, but they become cumbersome

to develop, and they often degrade the efficiency of the diagnosis algorithms. More abstract models

offer greater algorithmic efficiency but less diagnostic precision. DES methods can be untimed, in

which the only timing information is ordering of events, or timed, in which timing information such

as time bounds on event occurrences are included.

Untimed Discrete-event Systems Diagnosis

An event-based modeling and diagnosis framework for systems in the DES framework is described

in [5,62]. Individual system components are modeled as DES, then composed to form the complete

system model. This model is used to construct a diagnoser that provides estimates of the system

state under nominal and faulty conditions. Unique fault isolation is formalized using the notion of

diagnosability applied to the formal language represented by the DES with respect to observable

events. Essentially, a DES language is diagnosable if, after the occurrence of a fault, there exists a

finite sequence of observable events that uniquely identifies that fault.

The diagnoser, constructed off-line from the model, serves as an extended observer. Each diag-

noser state has estimates of the current system state and failure labels. The diagnoser for the switch
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Figure 4: DES diagnoser the switch and controller system.

and controller system is shown in Fig. 4. The first number in the state refers to the state of the

controller, and the second number refers to the state of the switch. Failure label N represents nor-

mal, F1 represents the occurrence of Fail Closed, and F2 represents the occurrence of Fail Open.

Each state-label pair corresponds to a possible system state given the observations. In the diagnoser

events, the first event represents the observable controller event, and the second the sensor reading.

A failure label associated with a state implies that a failure of that type must have occurred. When

an event is observed, the diagnoser provides the new state estimate based on the observed event and

the previous state. If a fault occurs in the system, and the system is diagnosable, then the diagnoser

will eventually reach a state that corresponds to that failure type. For example, if the controller

tries to open the switch but the sensor reads 1, the diagnoser’s state estimate is that the switch is in

the stuck closed state and that Fail Closed has occurred. This corresponds to the diagnoser state

labeled by 12F1.

A state-based DES diagnosis approach is described in [6]. Being state-based, the focus is on deter-

mining system condition (failure mode), rather than the explicit failure events that have occurred.

This is because, in most practical settings, system models are constructed by composing several

smaller component models, each usually having a single nominal mode and a few failure modes.

Thus, there is a direct relation between system state and failure mode. The approach assumes that

the state set of the system can be partitioned according to the system condition, defined by a single

nominal mode and several failure modes of the system. In order to perform state-based diagnosis

of DES, the system model is augmented to include a set of outputs and an output map. System

condition is then inferred from the output sequence. A diagnoser that determines system condition

is constructed in [6]. Diagnoser states contain an output, possible system states consistent with the

output sequence, and possible system conditions associated with these states. The diagnoser, its

construction, and the diagnosability conditions are analogous to those in the event-based approach.
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Diagnosis of DES based on linear-time temporal logic (LTL) specifications is developed in [63],

where it is argued that it is more natural to express failures in LTL than in a formal language.

The DES model of the system is assumed to be given, and is extended by attaching LTL predicates

to each state. The specifications are formulated in terms of these predicates. With each fault

there exists an associated LTL specification. Violation of this specification indicates the occurrence

of the fault event. This approach is more general than the previous approaches, because it can

specify and diagnose properties such as safety, liveness, invariance, and stability [63]. A system

is said to be diagnosable if for each specification, the occurrence of an observable event sequence

that can be linked back to a violation of the specification can be detected after finite delay. This

is a generalization of the diagnosability definition for the event-based approach. An algorithm for

diagnoser construction based on the given specifications is provided in [63]. For each specification,

a diagnoser is constructed as an automaton accepting only nonfaulty traces with respect to the

specification. The occurrence of an observable event trace not accepted by the diagnoser indicates

a specification violation.

Specifying the behavior of a complex system using the DES modeling paradigm has its advantages

and disadvantages. One clear advantage is the simplicity of the diagnosis approach. The diagnoser

simply tracks the observable event sequences in the system, and entering certain diagnoser states

indicates which failures have occurred. Generation of the diagnoser or set of diagnosers is also

an automatic process given the system model. For diagnosis of complex systems, however, a DES

model may specify behaviors at too high a level of abstraction, and information which is crucial to

diagnosing critical failures may be lost. As the abstraction level is decreased, the size of the model

becomes too large and difficult to develop.

Timed Discrete-event Systems Diagnosis

In many cases, faults do not change system event sequences, but only change timing characteristics

of the system [7, 8]. The timing of an event sequence can change, or events can stop occurring.

Timed DES approaches address these issues. In developing a timed model, usually two machines

are constructed, an activity transition graph (ATG), and a timed transition graph (TTG) [84]. The

ATG is at a higher level of abstraction and includes time bounds on when events should occur. The

TTG is derived from the ATG, and introduces an additional observable event that represents the

tick of a global clock. Timing characteristics of the system are built into the system model using

the clock tick event.
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An extension of the untimed event-based DES diagnosis approach to timed DES is given in [7].

In the ATG, event labels are associated with timers and transitions are associated with lower and

upper time bounds. The lower time bound describes the delay that must occur before the transition

is enabled, and the upper bound describes the maximum delay that may occur before the transition

is taken. Based on the ATG, the TTG is generated, which incorporates the timing characteristics

specified by the timers and transition time bounds using the observable global tick event. In this

framework, a timed DES is said to be diagnosable if its TTG is diagnosable under the event-

based diagnosability definition presented in [62]. Therefore, the results of the untimed event-based

approach directly apply and the diagnoser is generated in the same manner using the untimed model,

but using the new observable tick event.

The untimed state-based approach can also be extended in a similar manner to timed DES

if the global tick is treated an another system observation. However, this can create very large

diagnosers and increase the online computation requirements [8]. An alternative approach that

does not update the state estimate at clock ticks but instead incorporates predictions of the system

condition is given in [8]. Clock events are projected out of the system model and a timed finite state

machine is constructed which associates timed delays with each transition. This increases design

time complexity, but reduces on-line computations and diagnoser size. The diagnoser structure is the

same as in the untimed state-based approach, but is augmented to included predictions of the system

state. In this way, permanent failures, which result in no new output symbols being generated, can

be diagnosed.

Timed discrete event behavior can also be modeled using timed automata models. A diagnosis

method for timed automata that extends the untimed event-based approach is described in [64].

Based on the system model, which includes fault events, a diagnoser is constructed to isolate the

occurrence of unobservable fault events.

Alternatively, chronicles have been used to model timed event traces in systems, and have been

applied mostly to telecommunication systems [65–67]. Chronicles are patterns of event traces that

include temporal constraints and represent the possible evolutions of the system behaviors for each

fault. Therefore, chronicles represent direct symptom to fault knowledge, thus they are very efficient

for online diagnosis [65,66]. As events occur in the system, they are matched against known chronicles

to determine which faults are present. However, a major drawback is that generating chronicles can

be difficult. Learning approaches for generating chronicles are described in [66]. Learning methods,

since they are based on training, require a lot of data to generate correct and reliable models of
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system behavior. In many systems, faulty data for training may be undesirable or impossible to

obtain.

A significant issue with timed DES approaches is the use of time bounds. Temporal constraints

in timed automata, chronicles, and other timed DES models that involve bounded intervals cannot

be used for continuous systems except in trivial cases, because the intervals are functions of the

fault magnitude. For continuous systems, time bounds depend on the system dynamics, which

depend on the time constants of the system, the system inputs, and fault magnitudes. Therefore, in

many practical cases, time bounds cannot be acquired. Quantization of the continuous dynamics is

required to address this issue.

A quantization scheme is used to model continuous systems with discrete inputs, sensors, and

faults based on a timed discrete event model in [68, 69]. The quantization allows automatic deriva-

tion of a DES model based on a continuous-time model. Starting with a state-space formulation

of the system, the state space is partitioned and events are defined for crossings of those parti-

tions. The quantizer generates the timed event sequence when events occur in the system. The

diagnoser then uses these timed event sequences, along with timed input sequences, to diagnose the

system. Quantization, however, inherently introduces nondeterminism in the model [68, 85]. From

a known quantized state and known input, it may be possible for the system to enter more than

one new quantized state, since the exact point in the quantized space is unknown. Because of the

nondeterminism, the diagnostic system must track multiple possibilities simultaneously. Having a

nondeterministic model degrades the performance and increases the computational requirements of

diagnosis algorithms.

The quantization approach seems appropriate only for systems with discrete inputs, discrete

sensor measurements, and discrete faults, because the inputs, measurements, and faults all have to

be discretized. If discrete sensors are available, then the approach is practical. If the sensors are

not discrete, then the discretization causes a loss of information. This may make fault detection less

sensitive, and important diagnostic information could be lost because of the measurement abstrac-

tion. The finer-grained the quantization and the greater the range of possible inputs, the larger and

more complex the model will be. Faults also have to be quantized by their magnitude. If faults can

occur in different system states (as is usually the case), then the DES model becomes very large,

just as with the other timed DES approaches. This methodology cannot handle multiple faults in a

feasible manner, because the state space increases exponentially with the number of possible faults.
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Discussion

DES models abstract away details of the continuous dynamics that are often important for fast

and precise fault detection and isolation. Timed models can capture some of the dynamics beyond

event ordering, but require quantizations, which are expensive, introduce nondeterminism, and re-

duce sensitivity to fault detection. Further, DES approaches lack sophisticated tools to deal with

system noise, model uncertainty, and disturbances, which are important factors in dynamic system

diagnosis. In hybrid systems, models for diagnosis need to seamlessly mix both discrete and con-

tinuous behaviors of the system. DES approaches do, however, provide a well-developed framework

for event-based diagnosis, and these techniques can be leveraged in building continuous and hybrid

system diagnosers [82, 86]. In Chapters V, we will show how event-based models of faulty behavior

in dynamic systems can be developed from continuous system models, and in Chapter VII, we will

show how this information can be used to compile event-based diagnosers for continuous and hybrid

systems.

Continuous Systems Diagnosis

In continuous systems diagnosis, the system is modeled using differential or difference equations. In

qualitative methods, the system equations are abstracted to a set of qualitative differential equa-

tions [73,74,87]. Quantitative methods focus on robust solutions for the estimation and fault detec-

tion problems by using a continuous model with an observer, so the behaviors can be tracked more

efficiently, and details of dynamic behavior are not lost in quantization [9–13, 52, 70]. Quantitative

methods also focus on eliminating the effects of noise, model uncertainty, and disturbances.

Diagnosis approaches for continuous systems deal with parametric faults, and may handle ad-

ditive and/or multiplicative faults [12, 13, 52, 70]. Parametric faults may also be characterized as

abrupt, i.e., sudden, discontinuous changes, or incipient, i.e., slow, smooth changes, and approaches

deal with abrupt and/or incipient faults.

Diagnosis in continuous systems presents a number of challenges. Obtaining a precise model of

the system is often very difficult. Therefore, model uncertainty will affect the performance of the

diagnosis algorithm. Diagnosis must also be robust to sensor noise and disturbances.

Qualitative Diagnosis Methods

Qualitative methods use qualitative abstractions to model complex systems while still maintaining

information that is important for diagnosis. The modeling language QSIM is developed to describe
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continuous models qualitatively in [87]. Approaches that use QSIM to handle multiple faults in

continuous devices are described in [73, 74]. The qualitative modeling framework quantizes the

state space using landmark values and specifies qualitative relations between the quantized states,

resulting in a set of qualitative differential equations. In a similar approach, the diagnostic system

Livingstone models components as probabilistic transition systems, where component states are

specified using qualitative constraints over small, finite domains [4]. Quantization, however, can

result in a large number of states, which may be inefficient for large systems, much like the effects

of quantization in timed DES.

Qualitative modeling techniques often yield relatively simple models that can describe behaviors

that are key to effective diagnosis. However, techniques based on qualitative simulation may generate

multiple possible behavior predictions because of the nondeterminism involved in the quantization

of the state space. The approaches need to deal with these multiple predictions and eliminate

those which are inconsistent or not physically possible, reducing their efficiency. Also, because the

state space is quantized, some faulty behaviors may be hidden within what appears to be correct

behaviors. That is, the changes in the model produced by faults may not change the qualitative

values of the states, therefore, faults can be missed completely, or, fault detection can be delayed.

An approach that deals with the above problems is using qualitative deviation models, motivated

by the fact that in many practical settings, the type of qualitative information that is available or

useful for diagnosis is in reference to nominal values [88–90]. Information about failure modes is

in the form of observations being too low or too high with respect to some nominal reference.

Qualitative information is exploited to perform diagnosis of a complex system without continuous

simulation in [89]. Qualitative deviation models with temporal information can also be utilized.

A technique using process algebras is developed in [91]. However, the approach focuses more on

characterization of diagnosis under the process algebra framework and much less on algorithms to

solve the problem under the characterization, and process algebras can also be very cumbersome as

a systems modeling language.

The qualitative deviation techniques are, in general, not very robust in most situations due to

sensor noise. Also, for diagnosing dynamic systems, comparison to a fixed reference value is not

enough. A proper comparison for fault detection must take into account the time-varying nature of

the system measurements, which needs to be generated using a dynamic model of system behavior.

The Magellan-MT diagnostic engine is developed for the purpose of online diagnosis of dynamic

systems in [71]. Knowledge about the system is encoded in the form of qualitative models. Both

the monitoring and diagnosis stages use these qualitative models, which, because they employ a
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quantization of the state space, only require new predictions to be made when a qualitative value of a

measurement changes. Faults are described in qualitative terms and diagnosis begins when significant

deviations are discovered. For the faults described in [71], information about the transients is not

needed, so constraints which go across time are not needed either. Therefore, Magellan-MT simply

performs static diagnosis at different time points in the system, based on new steady-state values.

Performing static diagnosis at different time points is not sufficient in most systems, so an

extension of the QSIM language [87] is developed for model-based monitoring and diagnosis in [72].

The algorithm exploits hierarchy in the model to keep diagnosis efficient by using a constraint

propagator and a dynamic model zooming strategy.

Effective diagnosis often requires knowledge of the fault transient, especially for faults related to

energy storage elements, where diagnosis based simply on new qualitative steady-state values has

little or no discriminatory power [20]. The Transcend approach addresses this problem [20,21,45].

Transcend is different from other qualitative approaches in that it monitors the system in the

continuous domain, using an observer, and performs fault isolation in the qualitative domain based

on deviations from nominal behavior. In contrast to traditional qualitative deviations models that

use only the steady-state values to diagnose, diagnosis in Transcend is based on the transients

produced by faults. The Transcend approach has also been extended to hybrid systems [14, 36].

Since Transcend forms the basis for the research of this dissertation, it will be described in greater

detail in Chapter III.

Quantitative Diagnosis Methods

Quantitative diagnosis methods for continuous systems exploit the functional redundancy between

the model and the sensor measurements [12, 13, 52, 70]. Relations over observable variables are

computed based on the system equations and the available sensors, where each relation is designed to

implicate a subset of possible faults. These relations produce residuals through residual generation

methods. Quantitative methods often include some type of design procedure to determine the

relations systematically.

Many diagnosis methods for continuous systems are based on analytical redundancy relations

(ARRs). Essentially, an ARR is a constraint of the form 0 = r, where r, the residual, is a function

of only the observable variables of the system [92]. If an ARR is violated, it indicates that a

fault is present. As an example, consider a resistive fault in a circuit. A possible ARR is vR(t) −

iR(t)R = 0, where R is the resistance, vR(t) is the voltage across the resistor, and iR(t) is the current
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Table 1: Example Structure Matrix for ARRs

Fault r1 r2 r3
f1 0 1 1
f2 1 0 1
f3 1 1 1

through the resistor. Assuming there are no sensor faults, this ARR will only become significantly

nonzero if the value of R is not the true value. ARRs are generated through a design procedure

that eliminates the unobservable variables in the system equations. This design procedure can be

complicated for complex systems, especially those with nonlinear behaviors and multiplicative faults

(see, e.g., [9, 93,94]).

Parity relations are a form of ARRs [9,10]. With parity relations, a transformation of the input-

output form of the system equations is derived to obtain the desired form of the residual structure

matrix, which is designed to enhance fault isolation. ARRs are designed to only respond to a subset

of the faults such that if a fault occurs, the set of nonzero residuals directly identifies that fault.

Table 1 provides an example of a structure matrix. The residuals are given by ri and the faults by fi.

Different combinations of nonzero residuals point to different faults, e.g., if f1 occurs, r2 and r3 will

be nonzero. In practical situations, a threshold is applied, and fault detection looks for the residuals

crossing these threshold values before using them for isolation. With parity relations, the design

process is algebraic for linear systems with additive faults, however, the approach becomes very

complex for nonlinear systems and multiplicative faults, and only applies under certain restrictive

assumptions.

Structural properties leading to residual structures that are robust to errors in fault detection

are described in [10]. For dealing with multiple faults under this paradigm, a structure matrix must

be designed with special properties. The most effective structure is a diagonal matrix, because it

enables unique identification of all possible combinations of faults. Since each residual responds to

exactly one fault in a diagonal structure, then every nonzero residual implicates a single fault, so a

set of nonzero residuals implicates a set of faults. However, such a structure is often hard to achieve.

Other structures are possible, but are limited in the maximum number of simultaneous faults [10].

Residual generators must be designed to be robust to noise and model uncertainty. Simply

applying a threshold to the residuals is typically not enough. Observer-based fault detection and

isolation is discussed in [11]. Observers estimate the system trajectory based on the system model

and the sensor measurements. In deterministic settings, a Luenberger observer can be used, and in

a stochastic setting, a Kalman filter can be used [11]. The residual is computed using estimated
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outputs. With observer-based approaches, diagnosing only sensor faults is straightforward, because

ŷi(t)−yi(t) would only be nonzero if sensor i was faulty. Conditions for robustness of observer-based

residual generators are described in [11].

A crucial problem arises with ARRs for continuous dynamic systems with multiplicative faults.

When a fault occurs, it is not likely that all residuals fire at the same time. If, for example, f3

occurs in the example of Table 1, it could be that r2 and r3 fire quickly, but r1 may not fire as

quickly. Therefore, the system may isolate f1 instead of f3. This issue is addressed by the dynamic

table of states (DTS) method [24]. A symptom detection time, associated with each residual, defines

the maximum amount of time from the occurrence of any fault to the symptom appearance [24].

Minimum times are also considered in [23]. Using this information, the approach overcomes the

pitfall in assuming near-instantaneous residual firings. Obtaining this kind of timing information,

however, may be difficult for complex systems. And, unless the fault magnitudes are bounded,

upper bounds on symptom appearance cannot be computed. Since these times have to correspond

to maximum times for any fault, they are also overly conservative because different faults may have

different maximum times [25].

Different methods for including timing information for fault isolation are considered in [25].

One method is to set a maximum waiting time for symptom appearance as in [23, 24]. Another

method is to consider the order of symptom appearance in what is called a dynamic fault signature

matrix. For some faults, symptoms appear in different temporal orders, therefore, they can be

isolated by considering this information [25–28]. A fault diagnosis algorithm that uses temporal

orders is described in [26]. Results illustrate that the diagnostic precision is improved over methods

that do not use timing information, and diagnostic error is improved over methods like DTS. Since

the approach is based on ARRs, it is difficult to apply the approach to nonlinear systems and

multiplicative faults. Also, how to systematically generate the temporal orderings is not addressed.

Similar techniques that do provide a way to compute the temporal orderings are developed in this

dissertation and described in Chapters V, VI, and VII. These techniques have also been reported

in [27,28,38,39,82,86,95,96].

Discussion

Most qualitative methods use a qualitative model for system monitoring, thus do not achieve fast

fault detection, and have to deal with extraneous qualitative behaviors that are generated but do
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not match the system behavior. Reasoning based on qualitative deviations models is efficient, but a

continuous observer is needed to track the system and achieve fast fault detection.

Quantitative, ARR-based approaches have been applied successfully in many areas, but lack

some important features. First, the design procedure for the residual generators does not easily gen-

eralize to multiplicative faults and nonlinear systems. Newer approaches recognize the importance

of delayed effects in the system [23–26], however the use of time bounds can introduce errors when

faults outside the considered magnitude bounds are encountered.

ARR approaches also do not provide sufficient discriminatory power, because only a binary test

is performed on the residual. In many practical cases, the sign of the residual can also help to

discriminate faults, as well as information on the transient behavior produced by the fault [20].

Continuous systems approaches cannot be directly applied to hybrid systems, because they do not

account for discrete mode behavior. Therefore, they cannot address the change in system dynamics

due to a mode change, or faults associated directly with mode changes. ARRs can be extended

to hybrid systems in a straightforward way by designing residual generators for each mode [35].

However, such an approach does not scale to systems with a large number of modes.

The diagnosis approach described in this dissertation uses observer-based residual generation,

where there is a one-to-one mapping between residuals and measurements. System tracking, there-

fore, takes place in the continuous domain, but diagnostic reasoning is performed in the qualitative

domain using deviations from nominal behavior. The sign and the dynamics of the deviation are

used, as well as the temporal order in which deviations are observed, which increases diagnostic

efficiency and precision.

Hybrid Systems Diagnosis

While logic-based, DES, and continuous systems diagnosis methods have been successful, the meth-

ods do not extend to complex systems that exhibit hybrid behaviors [16, 97]. Since hybrid sys-

tems mix continuous and discrete behavior, they need to combine methods from continuous and

discrete-event systems diagnosis. That is, they must reason about differences in observer-estimated

continuous behavior in a mode of operation, and system events such as mode changes and symptom

appearance that may be attributed to faulty modes.

Hybrid automata are a general scheme for hybrid system modeling [98]. In this modeling

paradigm, hybrid system behavior is defined by the continuous system dynamics and discrete mode

changes that alter the continuous dynamics and may reset state variables. Mode transitions are
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controlled or autonomous. Controlled transitions depend only on external events, and autonomous

transitions depend on internal system variables. Transition guards define when the mode transi-

tions are enabled. In hybrid systems, faults can affect the continuous behavior within a mode or

the discrete mode behavior, i.e., they may be parametric or discrete. Faults may be modeled in

hybrid systems by introducing parameters into the system model or by explicit fault events and

fault modes [19,37,99].

Example. Consider the switched circuit given in Fig. 5. Its hybrid automaton model is given

by Fig. 6 (note the similarity to Fig. 3). We assume that the switch Sw1 responds to external

control events Open and Close. The special failure events Fail Open and Fail Closed and their

corresponding failure modes model a switching fault, which changes the configuration of the system.

There are four modes modeling open, closed, stuck-open, and stuck-closed states of the switch.

Selecting the state variables as i1(t), the current through L1, and v2(t), the voltage through C1,

and the outputs as i1(t), v2(t), and i3(t), the current through R2, the system equations for the open

modes are given by f1 and g1:

f1(t,x(t),u(t)) =

 −R1
L1

− 1
L1

1
C1

0


 i1(t)

v2(t)

+

 1
L1

0

 v(t)

g1(t,x(t),u(t)) =


1 0

0 1

0 1
R2


 i1(t)

v2(t)

 .

The system equations for the closed modes are given by f2 and g2:

f2(t,x(t),u(t)) =

 −R1
L1

− 1
L1

1
C1

− 1
C1R2


 i1(t)

v2(t)

+

 1
L1

0

 v(t)

g2(t,x(t),u(t)) =


1 0

0 1

0 0


 i1(t)

v2(t)



A discrete fault such as a switching failure in this system can be diagnosed using DES methods

as described previously. However, to properly handle parametric faults, we must also bring in

techniques from continuous systems diagnosis. In hybrid systems diagnosis, the transition from the

open mode to the stuck-closed mode can be detected immediately, because the sensor measurements
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Figure 5: Example switched circuit.

Figure 6: Hybrid automaton for the switched circuit.

are monitored frequently as in continuous systems diagnosis. In a pure DES approach, we would

have to wait for the Close command to be issued before the fault could be detected. Additionally,

autonomous transitions would be unobservable in the DES framework, but the possible autonomous

transitions can be limited by correctly observing the continuous behavior of the system.

Due to the complexity of the behaviors modeled by hybrid systems, a number of challenges arise

in diagnosis. In order to detect faulty behavior, the system state must be tracked. As in continuous

systems diagnosis, the best way to achieve this is with an observer. Building hybrid observers is a

challenge in itself. Multiple modes may have to be tracked simultaneously if the system model is

nondeterministic, or if there is uncertainty about whether autonomous transitions have been taken
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Figure 7: Mode estimation.

or not. Further, different types of faults can manifest in hybrid systems, therefore, a robust hybrid

diagnosis scheme should be able to handle all fault types.

Discrete Fault Approaches

Since many diagnosis techniques rely on estimating the system behavior, estimation in hybrid sys-

tems is a fundamental issue to hybrid system diagnosis. Some hybrid diagnosis techniques, in fact,

are based purely on mode estimation. In these approaches, only discrete faults, modeled as fault

events or explicit fault modes, are handled. Therefore, there must exist a mode in the system model

for each fault considered. If the current mode estimate is a fault mode, then the fault is detected and

isolated. This is the general idea behind approaches based in logic [4, 73, 74] and DES [5–8, 64, 68].

In these approaches, estimating the system state solves the diagnosis problem. The difference in

the hybrid case is the use of hybrid models. Hybrid system diagnosability is investigated in this

framework in [76,77].

The estimation approach is illustrated in Fig. 7. The system starts in some known initial mode

q0 (there may be an initial state set as well). As the system is tracked, new modes are generated

(e.g., q1, q2, q3, . . .). Because the set of possible states explodes exponentially, only the most probable

trajectories are tracked. For example, q1, q4, and q7 are dropped from consideration. At some current

set of states, e.g. qi and qj , new modes are hypothesized to form the new current state set. The

states will then be probabilistically evaluated according to their consistency with the observations.

Robust observers with bounded estimation error for uncertain nonlinear systems are constructed

in [34]. The hybrid observer consists of both a mode observer and a continuous observer, with a

Kalman filter for each mode. Faults are modeled as discrete modes, so identifying the correct mode

isolates the fault. Using multiple Kalman filters, however, results in high space requirements for
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large hybrid systems. Further, the results presented in [34] show slow mode tracking, therefore

leading to delayed fault detection and isolation.

The problem of mode estimation is tackled in [30]. The system is modeled as concurrent proba-

bilistic hybrid automata that combine hidden Markov models with continuous dynamics, where the

mode transitions are probabilistic. The continuous dynamics are tracked using a bank of extended

Kalman filters. Each filter tracks a possible mode of the system as determined by a hidden Markov

observer. The hybrid observer decides which modes are most likely, and only a set of the most likely

modes are tracked using the Kalman filters. Since most of the probability space can be covered

by just a few modes, this is more efficient than using a filter for every mode, and achieves a close

enough approximation.

The hybrid estimation scheme developed in [30] is extended in [15] to handle unknown behavioral

modes that are common in discrete logic-based approaches like GDE [3]. In unknown modes, there

are no continuous dynamics associated with the mode so there are no constraints on the continuous

evolution. When an unknown mode is entered, it is tracked in a degraded fashion by utilizing

knowledge of the system structure. The motivation behind tracking unknown behavioral modes

is, for example, subtle component degradations which can only be modeled by introducing a large

number of modes to account for the possible rates of degradation [15]. However, adding the unknown

modes does not help in isolating these types of faults, because it only results in the diagnoser

discovering that something unknown has occurred. Further, the tracking in those modes is severely

degraded.

Using multiple Kalman filters can be computationally expensive, so an alternative approach is to

use particle filtering methods. With particle filters, the computational complexity is a direct function

of how many particles are used in the estimation. In addition, particle filters, unlike Kalman filters,

are not restricted to making the Gaussian noise assumption. Particle filters are used to estimate

the discrete mode of the system and its continuous outputs in [16, 33]. The efficiency of the hybrid

estimation scheme is improved by modifying transition guards. A small constant is added to the

guard boundaries to avoid chattering between mode estimates. This improves the performance of

the estimation at points close to autonomous transitions. Performance of the estimation algorithm

is improved by increasing the number of particles.

Particle filters for hybrid system diagnosis are developed and applied to planetary rovers in [31].

The authors point out, however, that particle filtering cannot be directly applied for diagnosis,

because fault states typically have very low transition probabilities, therefore, there may not be

enough particles in the true fault mode to produce the mode as a likely current mode. This can be
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solved by using more particles as in [33], but this increases the computation time and, hence, is not

practical for systems with limited resources. Using importance sampling, the approach ensures that

there are always enough particles in the possible fault modes without biasing the results [31].

The main disadvantages of approaches that are based solely on mode estimation are (i) they

handle only discrete faults, and (ii) fault detection may lag or faults may be missed because fault

modes have very low probabilities. Importance sampling is one method to overcome the second issue,

but it does not provide a basis for selecting which modes are important. Selecting all possible fault

modes increases the computation requirements. Many newer techniques use a reasoner to decide

which fault modes are consistent with observed behavior, and these form the set of considered

modes [32, 75]. A key advantage of using a reasoner is that it can provide fault hypotheses very

quickly without performing any estimation, because the reasoning is done in some abstract domain.

Estimation of uncertain hybrid concurrent systems is presented in [75]. Diagnosis of faults

that change the system mode is performed using a consistency-based approach. Particle filters for

mode estimation and the reasoner Livingstone 3 (L3) are combined in [32]. Faults are modeled as

unobservable transitions to faulty modes of the system. The basic diagnosis approach is illustrated

in Fig. 8. A particle filter is used to track the system to produce a nominal mode estimate and

detect faults. Look-ahead is used to properly account for the low probability states. When a fault

is detected, the true system mode is unknown (denoted by the q? mode). The L3 diagnosis engine

produces possible consistent candidates (e.g., qf1, qf2, and qf3) using the observations, and these

possible faults are tracked to determine which has occurred in the system, so only discrete faults are

handled. Limiting assumptions about the occurrence of multiple faults are also made. Further, the

approach assumes that faults can be detected within some known delay after they occur. For faults

represented as modes, this may be reasonable, but for many faults the detection delay will depend on

fault magnitude, as well as sensor noise, model uncertainty, and other factors. The Hybrid Diagnosis

Engine extends this work to a general modeling and diagnosis framework for hybrid systems [18].

Models can be specified at different levels of abstraction, supporting different types of diagnosis

algorithms.

Parametric Fault Approaches

Other approaches focus on parametric faults, which directly affect the continuous dynamics within

a mode. Hybrid systems diagnosis using Transcend [20] as a reasoner is described in [29]. In

contrast to the previous hybrid diagnosis approaches, this work considers only single, abrupt, para-
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Figure 8: Hybrid diagnosis based on mode estimation with a reasoner.

metric faults. The system is tracked using a hybrid observer, and it is assumed that there are no

autonomous mode changes. When the system behavior deviates outside of what is predicted by the

model, fault candidates are hypothesized using Transcend. A model is tracked for each of these

possible candidates using parameter estimation and model fitting. The approach is extended by

formulating the problem as Bayesian model selection in [29]. The possible candidates determined by

the qualitative diagnosis are used to bias the temporal prior, so the posterior for the fault models

will be weighted more heavily. To handle non-Gaussian noise and nonlinear dynamics, a particle

filter is utilized, which also has the benefit of being able to simultaneously track the different models.

Importance sampling could also be used to do this, as in [31], but using the results from the qual-

itative diagnosis helps to determine which fault models are important to track, rather than relying

solely on a priori fault probabilities. This is also similar to the use of L3 in [32].

Transcend is extended to hybrid systems in [14, 22, 49]. Assuming single, abrupt, parametric

faults, estimation is performed using a hybrid observer implemented as a switched extended Kalman

filter, and fault isolation is based on analysis of fault transients manifesting as deviations from

nominal behavior. Both controlled and autonomous mode changes are considered, and extended

diagnosis algorithms for hybrid systems are presented. Hybrid Transcend, since it forms a basis

for the results of this dissertation, will be described in more detail in the next chapter.

Combined Approaches

Very little work has addressed a combined approach to diagnosis of both parametric and discrete

faults in hybrid systems. An approach that models the system as a composition of hybrid automata

is described in [19]. The system model is constructed to satisfy certain constraints, allowing it to

be abstracted to a timed Petri net model that is used to monitor the system and detect faults.

When faults are detected, a decision tree diagnoser is invoked. The diagnoser is constructed offline

based on pre-generation of fault symptoms using the detailed hybrid system model in simulation.
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Pre-generating fault symptoms via simulation may be difficult for large systems with many modes

because different system modes may produce different qualitative symptoms [14]. The diagnoser

uses a mode estimation algorithm to request sensor tests or uses information provided from the

Petri net, assuming that sensor faults do not occur.

A combined approach based on parity relations is described in [35]. Parity relations are generated

for identifying both parametric faults and discrete modes, i.e., a residual rij is zero if the mode is

i and fault j is not present. The set of nonzero residuals thus identifies both the correct mode of

the system and whether some fault has occurred. As with other parity relations approaches, this

approach is difficult to apply to nonlinear systems with multiplicative faults. Since a set of parity

relations is computed for each mode, the approach may not be feasible when the number of modes

is very large.

Discussion

Many hybrid systems approaches handle only parametric or only discrete faults, and the approaches

that handle both do not scale well to large systems. Further, approaches make the single fault as-

sumption, or make strict assumptions about the occurrence of multiple faults. In purely estimation-

based approaches for discrete faults, the number of possible multiple-fault modes becomes exponen-

tial in the number of considered faults. Although the probability of multiple faults occurring is low,

diagnosers that make the single fault assumption may generate incorrect diagnoses when multiple

faults occur. Because of the disadvantages presented by the combined approaches to hybrid systems

diagnosis, an efficient scheme in a combined framework is needed. In this dissertation, we develop

an approach that addresses both parametric and discrete faults in an integrated framework, based

on qualitative reasoning over deviations from nominal behavior.

Summary

As continuous systems diagnosis methods have shown, the best way to track a system is using a

continuous- or discrete-time representation. Logic-based and DES diagnosis approaches which rely

on abstracted models that quantize the state space lag in fault detection and may miss crucial

faults that are hidden within the quantized state trajectory. They are also limited in the classes

of faults they can easily address. Continuous systems approaches, unlike DES approaches, do not

handle event-based information, like time of symptom appearance, in a robust way. Additionally,

ARR approaches are difficult to apply to nonlinear systems and multiplicative faults, and the design
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procedure for residual generation is complex. Multiple faults are also ignored or difficult to design

for in both ARR approaches and many hybrid diagnosis approaches. Further, many hybrid systems

diagnosis approaches restrict their faults to exclusively parametric or discrete faults.

In the following chapters, we describe methods for multiple fault diagnosis in hybrid systems

based on Transcend and Hybrid Transcend. Like many continuous systems approaches, an

observer is used to track system behavior and provide a nominal reference for diagnosis. Fault

isolation is performed at a qualitative abstraction, and we use event-based techniques from the DES

area to improve fault isolation based on observed sequences of measurement deviations from nominal

behavior. Unlike many hybrid systems approaches, we diagnose both parametric and discrete faults.

Multiple faults are also handled by using concepts from the traditional logic-based approaches.
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CHAPTER III

HYBRID SYSTEMS DIAGNOSIS:
PROBLEM FORMULATION AND ARCHITECTURE

Most real world systems involve the interaction of physical and computational processes, therefore,

they combine continuous-time and discrete mode behavior, and are modeled as hybrid systems. A

hybrid system evolves in time in a continuous manner, but the continuous dynamics may change

when the system mode changes. Because hybrid systems combine continuous and discrete behaviors,

the diagnosis task becomes very challenging. Our approach extends the Transcend [20, 45] and

the Hybrid Transcend [14,22] methodologies, which diagnoses faults based on the transients they

cause in the system behavior immediately after they occur.

Hybrid Transcend addresses fault isolation in hybrid systems for single, abrupt, parametric

faults [14]. Other than mode changes, it does not use any event-based information in fault isolation,

and does not address discrete fault diagnosis or multiple fault diagnosis. This dissertation extends

Hybrid Transcend to address the above challenges. We develop an event-based framework that

(i) utilizes temporal orders of measurement deviations to improve the discriminatory ability of the

diagnosis algorithms, (ii) addresses both parametric and discrete faults, and (iii) isolates multiple-

fault candidates.

In order to develop the new framework, we first present a general formulation of the diagnosis

problem for hybrid systems. We then describe the challenges this problem poses and specify the

assumptions we make. We then present the Transcend-based diagnosis architecture for fault

diagnosis of hybrid systems.

Problem Formulation

We consider the problems of single and multiple fault diagnosis in hybrid systems. Formally, hybrid

systems can be defined as follows [19,98,99].

Definition 1. A hybrid system is defined as H = (Q,X,Σ, Init, E, f,G), where Q is the set of

discrete states, X is the continuous state space, Σ is the set of transition events, Init ∈ Q × X is

the initial state, E ⊆ Q × Σ × Q is the set of discrete transitions, f : R × Q ×X → X is the flow

condition, and G : E → 2X is the transition guard function.
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Each mode of the system defines a new set of continuous dynamics. Transitions between modes

can occur due to external and known controller actions such as controlled relay switching, or au-

tonomous behaviors that depend on internal system variables such as circuit breakers tripping or

discrete faults.

The most general problem we consider is multiple fault diagnosis in hybrid systems, so we

formulate the problem for this case, which reduces to simpler cases (i.e., single fault diagnosis

and continuous systems diagnosis) when additional assumptions are made about the system dy-

namics or cardinality of the faults. Given a hybrid system, we first define a set of faults, F =

{f1, f2, . . . , fn}, which may be either parametric or discrete. Second, we define a set of measure-

ments M = {m1,m2, . . . ,mp}, which are time-varying signals obtained from the available sensors.

Last, we denote the set of modes as Q = {q1, q2, . . . , qr}. We refer to a set using uppercase symbols

and an element of the set using lowercase symbols.

Diagnosis occurs over a time interval. We denote the time of fault occurrence as tf and the time

of fault detection as td ≥ tf . Diagnosis begins at td. Mode changes may occur after tf , and faults

may affect the measurements differently in different modes of operation, so possible mode changes

need to be accounted for [14]. We therefore adopt the following definition of a candidate.

Definition 2 (Candidate). A candidate c is defined as c = (Fi, qi), where Fi ⊆ F is a set of faults,

and qi ∈ Q is a mode. The set of all candidates is denoted as C.

Example. The candidate ({f1, f2}, q0) implies that both f1 and f2 have occurred and the system

is currently in mode q0. In shorthand, we represent this candidate as (f1f2, q0).

We obtain observations from the sensors, and find candidates consistent with these observations.

A candidate is consistent with the observations if, when introduced into the system model, the

model-generated behaviors match the observations. Since consistency depends on the model used

for diagnosis, its definition can vary among the different approaches. A diagnosis is a collection of

candidates that are consistent with the observations provided to the diagnoser.

Definition 3 (Diagnosis). At time t ≥ tf , a diagnosis d ⊆ C is a set of candidates consistent with

the observations made on the system during the interval [tf , t].

Example. The diagnosis {(f1f2, q0), (f3, q1)} means that two candidates are consistent with the ob-

servations made up to the current point in time. Either both f1 and f2 have occurred and the system

is in q0, or f3 has occurred and the system is in mode q1. The diagnosis {(f1, q0), (f1f2, q0), (f2f3, q0)}

means that the predicted system mode is q0, and either f1 has occurred by itself, f1 and f2 both

occurred, or f2 and f3 both occurred.
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We wish to find all possible consistent candidates, i.e., the maximal diagnosis.

Definition 4 (Maximal Diagnosis). At current time t ≥ tf , the maximal diagnosis is the set of all

candidates consistent with the observations made on the system during the interval [tf , t].

We desire the maximal diagnosis because it gives us every possible explanation for the faulty

behavior. This leads us to the following problem definition.

Problem (Multiple Fault Diagnosis in Hybrid Systems). Given a hybrid system S with a set of

faults, F , a set of measurements, M , a set of modes Q, and a candidate cardinality limit l, the

multiple fault diagnosis problem for hybrid systems is to find the maximal diagnosis d of candidates

with cardinality ≤ l for a given sequence of observations.

The problem definition is the most general and applies to single fault diagnosis or continuous

systems diagnosis. For example, if we take Q to be a singleton, and l = 1, then we are performing

single fault diagnosis in continuous systems. Candidates become single faults, and diagnoses become

sets of faults.

Challenges in Hybrid Systems Diagnosis

In addition to the challenges in diagnosis of dynamic systems presented in Chapter II, additional

issues arise in trying to solve the diagnosis problem for hybrid systems. Next, we identify these

challenges and describe the assumptions that make the problem more manageable.

Finding the Maximal Diagnosis

Finding the maximal diagnosis is a hard problem. The space of possible candidates is exponential

in the number of faults, therefore, space and time complexity of diagnosis algorithms becomes

exponential in the general case. Therefore, the maximal diagnosis is not useful in practice. We can

simplify this problem by adopting the idea of minimality [3,57] and extending it to hybrid systems.

Definition 5 (Minimal Diagnosis). A diagnosis d is minimal if for all (Fi, q) ∈ d, there does not

exist some (Fj , q) ∈ d, such that Fj ⊂ Fi.

This definition of minimality means that for a given mode, we cannot have two candidates for

that mode in the diagnosis, such that the fault set of one is a superset of the other. The one which

is a subset is the simpler, more probable explanation and covers the superset. For example, the

diagnosis {(f1, q0), (f1f2, q0)} is not minimal because {f1} ⊂ {f1, f2} and both candidates predict
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the system is in mode q0. The diagnosis {(f1, q0), (f1f2, q1)} is, however, minimal, because although

{f1} ⊂ {f1, f2}, the candidates are for different modes.

In dynamic systems, it is necessary to abstract the continuous stream of measurements to dis-

crete observations, since it is difficult to reason directly with the complete data stream. Because

information is lost, fault masking may occur, and therefore, we can only be certain about minimal

diagnoses. For example, consider a system with two possible faults, f1 and f2, that can occur. As-

sume that fault f1 occurs. It will affect the system and change the outputs. Assume that a second

fault, f2 occurs. It will also change the system outputs. If f1 has a much larger magnitude than

f2, the effects of f2 may never be observed given the set of measurements and the chosen level of

abstraction, i.e., f1 completely masks f2. In this case, we would obtain a diagnosis of only f1. But,

the candidate {f1, f2} is also consistent, it is just that the behaviors due to f2 were never directly

observed. Therefore, a maximal diagnosis would contain both {f1} and {f1, f2} as candidates. It

would not contain {f2}, because f2 occurring by itself is ruled out. Representing just the minimal

diagnosis, that containing only f1, is sufficient to represent the complete set of consistent candidates.

Therefore, for some consistent fault set Fi, any Fj ⊃ Fi is also consistent. This also applies to static

systems [2, 3, 57]. The key advantage of a minimal diagnosis, then, is that it is a concise represen-

tation of the maximal diagnosis, so finding the minimal diagnosis, which is much more efficient and

useful in practice, gives us the maximal diagnosis. We do not have to explicitly compute all possible

supersets because they are implied by the minimal diagnosis.

Due to fault masking, we can only adopt a best effort paradigm to diagnosis. That is, if multiple

faults occur, then, using a discrete abstraction of the continuous measurements, we cannot always

determine with certainty all the faults that did occur. What the minimal diagnosis represents is

the possibilities that have been determined with certainty. So, a diagnosis of {f1, f2f3} would mean

that we know with certainty that either f1 must have occurred, or f2 together with f3 must have

occurred, and also that f2 or f3 could not have occurred by themselves. If, for example, we see

effects that are consistent with f1 occurring by itself, we cannot rule out the possibility that f1

occurred with some other fault that it masked.

Like logic-based approaches to model-based diagnosis, we exploit the property of minimality in

our diagnosis algorithms. Candidates with more faults are only explored as possible candidates when

candidates with fewer faults can no longer explain the observations. Also, we prune the diagnosis

to make it minimal. For example, if the diagnosis is {(f1, q0), (f2, q0)}, and a new observation

makes (f1, q0) inconsistent, we then consider larger candidates containing f1. This may result,

for example, in a new diagnosis of {(f2, q0), (f1f2, q0), (f1f3, q0)}, which would then be pruned to
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{(f2, q0), (f1f3, q0)}. Pruning (f1f2, q0) will not affect future minimal diagnoses, because if we obtain

another observation directly implicating f1, we will regenerate the candidate.

While the minimal diagnosis does provide a concise representation of the maximal diagnosis,

it still grows exponentially with the number of discrete observations [3]. Therefore, we make the

following assumption.

Assumption 1 (Candidate Cardinality). At most l faults occur together in the system.

Under this assumption, each candidate contains at most l faults, so the candidate space is

polynomial in l. Note that by faults occurring together, we mean that when the first fault occurs,

not all symptoms are detected before the next fault occurs. Otherwise, the problem reduces to single

fault diagnosis.

Handling Mode Changes

After a fault occurs at time tf , it is detected at some later time td ≥ tf . Therefore, we do not know

the true time of fault occurrence, and, hence, do not know the system mode at that time, q(t−f ).

Thus, we must hypothesize, based on the system model, which autonomous mode changes may have

occurred during the time interval [t−f , td], and which mode changes may occur after td [14, 22].

Mode changes can be hypothesized either based on controlled or autonomous switching. Con-

trolled mode changes are known, but autonomous mode changes must be hypothesized. For example,

a controlled mode change could be a commanded on or off action of a relay in an electrical system.

Circuit breakers turn off based on an endogenous variable, i.e., the current passing through them,

therefore, the mode change when a circuit breaker trips is autonomous.

Like [14, 22], we make an assumption on the number of mode changes that occur between fault

occurrence and detection.

Assumption 2 (Number of Mode Changes Before Fault Detection). The actual system mode at

t−f is within nback mode changes from the estimated mode at td.

Under this assumption, we limit the number of possible modes of fault occurrence. Therefore,

diagnosis is more efficient because there are a limited number of mode trajectories after fault occur-

rence to consider.

We also assume that mode changes do not cause resets in state variables.

Assumption 3 (No State Resets). Mode changes do not cause state variable resets.
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State resets can be handled within our framework, as long as the effects can be qualitatively

propagated to determine the measurement deviations that they will cause. This has been described

in [14,22], therefore we do not present the details and refer the reader to those references.

Handling Different Fault Types

Faults may differ in whether they affect the continuous behavior or the discrete behavior of the

system [19,35–37,99]. Faults may be parametric, directly affecting the continuous behavior within a

mode, or may be discrete, changing the system mode. We allow both parametric and discrete faults.

Faults may also have different time-varying profiles. They may be persistent, i.e., always faulty

after tf , or intermittent, i.e., alternately nominal and faulty after tf . Intermittent faults are difficult

to characterize and diagnose, and have mostly been dealt with at very high levels of abstraction [100–

104]. We restrict the faults to be persistent.

Assumption 4 (Persistent Faults). All faults are persistent.

For a parametric fault, the change in the parameter value over time may be arbitrary. Two

commonly accepted profiles are abrupt, i.e., a sudden change in value, and incipient, i.e., a slow

change in value. We restrict parametric faults to be abrupt. Incipient fault profiles are more

difficult to deal with qualitatively and require a tighter integration with quantitative methods [78,

79,105–107].

Assumption 5 (Abrupt Faults). All parametric faults are abrupt.

Although abrupt faults may be restrictive, they are a good approximation for many practical

faults in sensors, actuators, and the physical process. Even if diagnosis methods for incipient or

intermittent faults are available, they should be complemented by diagnosis of abrupt parametric

and discrete faults that may have catastrophic consequences if not detected and isolated quickly.

Fault modeling will be described in greater detail in Chapter IV.

Diagnosis Architecture

With these assumptions, we adopt an architecture for fault diagnosis in hybrid systems based on the

Transcend [20,45] and the Hybrid Transcend [14,22] methodologies. In Transcend, diagnosis

is based on analysis of measurement deviations from nominal behavior. Like qualitative deviations

models [88], we reason about faults based on observed differences with respect to nominal behavior,

only the nominal reference is changing with time, as shown in Fig. 9. This can be viewed as a
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Figure 9: Fault isolation based on a qualitative abstraction.

Figure 10: Event-based hybrid diagnosis architecture.

qualitative abstraction, as opposed to quantitative abstractions of the state space used by QSIM-

based approaches [73, 74] and timed DES methods [68, 69]. The use of qualitative reasoning also

makes fault isolation more computationally efficient than hybrid diagnosis approaches based on mode

estimation, because they must simulate multiple possible trajectories.

The computational architecture is shown in Fig. 10. Since the system is dynamic, we contin-

ually track the system in discrete time using a hybrid observer to produce the nominal reference,

based on known inputs and controlled mode changes. A fault detector determines if the measured

values are above or below thresholded nominal values. Significant deviations are abstracted using a

symbol generator as qualitative increasing/decreasing values. The symbol generator produces events

representing the measurement deviations. The event-based diagnoser isolates faults based on mea-

surement deviation events and controlled mode change events. Note that the diagnoser may be

followed by a fault identification module, such as those described in [14,22,45].

The main contributions of this dissertation focus on the design and implementation of the event-

based diagnoser for continuous and hybrid systems, which will be described in detail in Chapters V,

VI, and VII. The other pieces of the architecture are briefly described in the rest of the section, and

use the techniques developed in previous Transcend work [14, 20–22, 28, 44–47, 49, 50]. However,

they are extended to support both parametric and discrete faults. In particular, we extend the
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modeling language to incorporate discrete fault events, and we extend the symbol generator to

produce an additional symbol that is useful for discriminating between discrete and parametric

faults.

System Model

We model physical systems using hybrid bond graphs (HBGs) [48]. HBGs support first principles,

energy-based, physical systems modeling, and represent the hybrid dynamic behavior of a system.

They are useful for diagnosis because they retain the system topology, enable the automatic deriva-

tion of system equations, and allow for the derivation of other representations that capture the causal

and temporal relations between the system variables. We extend the HBG modeling language to

incorporate discrete faults by introducing unobservable fault events into the local automata that

control the switching between modes. HBGs and their extensions will be described in more detail

in Chapter IV.

Hybrid Observer

Fault detection operates on the residuals, which are defined as the difference between the estimated

and measured values of the output variables. For an ideal system with noiseless measurements and a

perfect model, a nonzero residual indicates a fault occurrence. Noise and model imperfections make

the residual generation and fault detection tasks more complex. We address this issue by using a

hybrid observer to track the system trajectory, and defining the fault detection task as a statistical

test of significance. The hybrid observer helps to compensate for sensor noise and modeling errors

in producing the estimated behavior.

The hybrid observer can be implemented in many ways. Using the HBG modeling framework, we

can automatically derive the system equations for any mode [48,108,109]. Using these equations, we

generate an extended Kalman filter for the current mode of operation, accompanied by an automata

scheme that implements the switching for the HBG [14,50]. The observer takes in the system inputs,

u(t), controlled mode changes σq, and the sensor outputs, y(t), to produce the estimated outputs,

ŷ(t), where t is discrete. In both the Kalman filter and the fault detection test, all noise is assumed

to be zero-mean Gaussian. Kalman filters are very efficient and optimal for linear systems with

Gaussian noise, which is a practical assumption for many systems. Alternatively, particle filters can

be used, which can deal with non-Gaussian noise, but are less efficient [31–33].

41



Fault Detection

The difference between the observed outputs, y(t), and the estimated outputs, ŷ(t), define the

residual vector r(t). A fault detector is associated with each available sensor. The fault detection

scheme is based on a Z-test that uses the estimated variance of the residuals and a pre-specified

confidence level to establish the significance of observed nonzero residuals. To cope with noise, we

couple this with a sliding window technique to compute the mean and variance at different time

points [44].

The Z-test is a statistical inference test that determines if a sample belongs to a population with

a known distribution [110]. It requires the mean and standard deviation of the population, and the

mean and size of the sample. These values are estimated using sliding windows over the residual for

a measurement. A small sliding window (e.g., 5 samples), W1, is used to estimate the current mean

µr(t) of a residual r(t) = y(t)− ŷ(t):

µr(t) =
1
W1

t∑
i=t−W1+1

r(i). (1)

We take the mean of the population to be zero, since the residual should be zero when the system

is free of faults. We compute the variance from data history of the nominal residual signal over a

window W2 preceding W1, where W2 �W1 (e.g., 100 samples)1, as an estimate of the true variance:

µ′r(t) =
1
W2

t−W1∑
i=t−W1−W2+1

r(i) (2)

σ2
r(t) =

1
W2

t−W1∑
i=t−W1−W2+1

(r(i)− µ′r(t))2. (3)

We perform a statistical hypothesis test for the residual, using the Z-test. After setting a confi-

dence level (e.g., 95%), the Z-test provides bounds z− and z+. The thresholds ε−r (t) and ε+r (t) are

computed based on these bounds and the z-score:

ε−r (t) = z−
σr(t)√
W1

+ E (4)

ε+r (t) = z+ σr(t)√
W1

− E, (5)

1To ensure that W2 does not have any samples from after fault occurrence, the window can be shifted earlier by
some fixed number of samples.
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where E is a modeling error term. A mean value µr(t) that lies outside of the thresholds at time

t implies a fault. Unlike techniques that use fixed thresholds, this strategy can be viewed as a

dynamic thresholding technique, because the threshold is recomputed at each time step based on

the estimated signal variance.

Still, the fault detectors must be tuned to optimize performance. Tuning a fault detector refers

to setting its sensitivity. Optimally, each fault detector will be tuned to minimize missed detections

(false negatives), and false alarms (false positives). Since we assume faults are persistent, missed

detections are unlikely, unless the fault magnitude is very small. In that case, however, the system

is still operating within normal ranges. A more sensitive fault detector will detect faults faster and

have fewer false negatives, but may generate more false positives. Similarly, a less sensitive fault

detector will take more time to detect faults and may produce more false negatives but fewer false

positives. In practice, the fault detectors are empirically tuned to the highest possible sensitivity

to avoid false alarms for the expected or observed levels of noise for the system under nominal

conditions. The detectors can be tuned by adjusting window sizes, the confidence level, and the

modeling error term [44]. The fault detection module is interchangeable and can be replaced. Other

fault detection strategies can be found in [111,112] and the references therein.

Symbol Generation

Once a fault has been detected, fault isolation is invoked. Detection of a fault indicates that

some measurement has deviated from its nominal value. Symbol generation abstracts this devi-

ation symbolically into qualitative increasing/decreasing values, which produces a measurement

deviation event, σ0, for the diagnoser. As further measurements deviate, additional events (i.e.,

σ1, σ2, . . . , σi, . . . , σp, where p is the number of measurements) may be produced, referring to de-

viations in these measurements. Once a fault is detected, the observer stops tracking the state

trajectory, otherwise the faulty behaviors will be compensated for, and symbol generation will be

incorrect. Future estimated values provided for symbol generation are computed using only the

model of the system.

In order to represent the dynamics of the deviation, two features are extracted from the change in

a residual, and these are abstracted symbolically as +, 0, and - symbols, representing above, at, and

below nominal, respectively. The two features capture (i) whether or not a discontinuity occurred,

and its sign, and (ii) the first-order change of the residual, as illustrated in Fig. 11 for deviations

in the positive direction. For example, a positive discontinuity, or jump, with a negative first-order

43



Figure 11: Symbolic abstractions of measurement deviations.

Table 2: Qualitative Symbols

Symbol Description

0 No change in the residual (or its slope)
+ Increase in the residual (or its slope)
- Decrease in the residual (or its slope)
X Estimated and measured values are both zero or nonzero
N Estimated value is zero and measured value is nonzero
Z Estimated value is nonzero and measured value is zero

change is abstracted to +-, and no discontinuity with a positive first-order change is abstracted

to 0+. It is assumed that discontinuities will be detected at the point of fault occurrence, since

discontinuities can be immediately differentiated from the system noise.

Assumption 6 (Discontinuity Detection). Discontinuities are detected at the point of fault occur-

rence.

In addition to the increasing/decreasing values, we extend symbol generation by introducing

specific symbols that are helpful in distinguishing parametric from discrete faults. Because discrete

faults cause mode changes, they effectively cause some variables to change from nonzero to zero or

change from zero to nonzero. For example, when a switch opens, the current through it becomes

zero. Parametric faults, however, cannot cause this behavior with a finite change in magnitude.

This behavior forms a special class of discontinuities, and we refer to it as discrete change behavior.

If the variables that may exhibit the discrete change behavior are measured, then knowing whether

a variable exhibited a discrete change or not provides additional discriminatory information. There-

fore, we include an additional symbol denoting the discrete change in the measured value from the

estimated value calculated by the hybrid observer. The symbol N denotes zero to nonzero behav-

ior, the symbol Z denotes nonzero to zero behavior, and the symbol X denotes no observed discrete

change.

Fig. 12 illustrates the alternatives for the discrete change feature. The symbol Z may be generated

if a switching element unexpectedly turns off or if a switching element becomes stuck in the off state

when it is expected to turn on. The symbol N may be generated if a switching element unexpectedly

44



Figure 12: Symbol generation for the discrete change feature.

turns on if a switching element becomes stuck in the on state when expected to turn off. Note that

the symbols are generated with respect to the expected nominal behavior.

Table 2 summarizes the computed features. The symbolic features are computed robustly using

the Z-test on the residual. The initial change in a measurement is provided at the time of fault

detection for the measurement. If the residual was positive, we take a +, and if negative, a -. After a

deviation is detected in a measurement, then the slope of the residual is calculated. Again using the

Z-test, an initial value is computed over a small window starting from the point of fault detection,

from which the slope of the residual is determined over another small, but larger window (e.g., 15

samples) after the end of the smaller window [44]. If the slope is determined to be + or - within

that window, it is reported. Otherwise, it is reported as 0, implying that the true slope is either

zero or unknown but very small. Based on the initial direction of change and the computed slope,

we determine whether a discontinuity has occurred. If the initial change matches the computed

slope, we do not classify this as a discontinuity. So, for example, a + in the magnitude and a + in

the slope will be reported as 0+, whereas a + in the magnitude and a - (or 0) in the slope will be

reported as +- (or +0). This strategy assumes that discontinuities of the form ++ or -- will not occur,

which is a practical assumption for parametric faults, because for parametric faults these symbols

imply an unstable system. These symbols may occur for sensor faults, however, for example, some

sensor faults may cause an immediate increase followed by a smooth increase, i.e., a ++. The symbol

generator cannot determine these types of discontinuities, therefore, it will only report elements
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of the set {+-, -+, 0+, 0-, +0, -0}. A more advanced symbol generation technique is necessary to

correctly identify ++ and --.

To compute the discrete change feature, we do not use the residual, but use the observed and

estimated values. After a fault is detected, we compute the mean of the observation y(t) and the

mean of the estimate ŷ(t) over a small window, W3, to compute the discrete change feature:

µy(td) =
1
W3

td+W3−1∑
i=td

y(i) (6)

µŷ(td) =
1
W3

td+W3−1∑
i=td

ŷ(i), (7)

where td is the time of fault detection. We wish to determine whether each signal belongs to a

population with zero mean, and choose the variance of the population to be the variance of the

residual defined by y(t)− ŷ(t), σ2
r(t), as a good approximation of the true variance of the zero-mean

distribution we wish to match to. So, the thresholds ε−dc and ε+dc are computed as:

ε+ydc = ε+ŷdc = z+σr(td)√
W3

+ Edc (8)

ε−ydc = ε−ŷdc = z−
σr(td)√
W3

+ Edc, (9)

where Edc is a modeling error term. These thresholds are the same for fault detection (Equations 4

and 5), only they are computed for y(t) and ŷ(t) rather than r(t). If µy(td) is outside its bounds,

we say it is nonzero, otherwise we say it is zero. Similarly, if µŷ(td) is outside its bounds, we say

it is nonzero, otherwise we say it is zero. If the estimate is nonzero and the measurement is zero,

we report Z, and if the estimate is zero and the measurement is nonzero, we report N, otherwise, we

report X.

Summary

We extend the Transcend and Hybrid Transcend methodologies for multiple fault diagnosis in

hybrid systems. To keep the diagnosis efficient, we incorporate a candidate cardinality limit and

exploit the concept of minimality. The proposed approach handles persistent and abrupt faults

that may be parametric or discrete. Like Hybrid Transcend, we also restrict the possible mode

trajectories after fault occurrence by assuming the hybrid observer has executed a limited number

of mode changes between the actual time of fault occurrence and the time of fault detection.
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We extend Hybrid Transcend to an event-based architecture. We perform system tracking of

hybrid behaviors using a hybrid observer. Fault detection and symbol generation are defined as tests

of statistical significance to avoid false alarms. In contrast to many approaches in continuous and

hybrid systems diagnosis, diagnostic reasoning operates using computed symbolic features, rather

than operating based purely on mode estimation, which is computationally more efficient.
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CHAPTER IV

MODELING FOR DIAGNOSIS

Model-based diagnosis requires rich models of system behavior, where both the nominal and faulty

behaviors of the system need to be correctly captured in a concise manner. Models for diagnosis

must meet the following requirements.

1. Level of Abstraction. Diagnosis models should only represent the behaviors needed for

diagnosis. Because diagnosis requires reasoning over the system model, the representation

of the system must model the behaviors at the right level of abstraction to support efficient

reasoning procedures. Diagnostic reasoning often uses cause and effect knowledge of the sys-

tem [1,3,20,59,89]. Therefore, diagnostic models should include both causal and, for dynamic

systems, temporal information, so that the possible causes of deviations from nominal behavior

can be identified, and the future effects of possible candidates can be predicted. It is often use-

ful to have different models at different levels of abstraction for different parts of the diagnosis

problem.

2. Executable Models. For dynamic systems, the system behavior changes with time, so it

must be tracked in order to provide a correct reference for deviations from nominal behav-

ior. Therefore, the system model should be capable of efficiently simulating the system for

generating correct behavior over time. The model should contain enough information so that

observed faulty behavior can be mapped back to faulty components.

3. Component-based Models. The modeling paradigm should support component-based mod-

els, which enables reuse of component models, and thus decreases the modeling effort. Further,

this provides a framework for model-based component fault isolation. Components should be

defined in a common framework with common sets of interfaces between them, so that their

interactions are clear and precise, and composition principles can be applied to derive system

behavior from the component models.

Bond graphs define a language for energy-based modeling of physical systems [113]. They retain

system topology and support first principles, physical systems modeling. Further, they allow for

automatic generation of system equations [113]. They are particularly suitable for diagnosis be-

cause they incorporate causal and temporal information required for deriving and analyzing fault
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transients [20, 28]. Furthermore, components can be explicitly represented as bond graph elements,

which makes it easier to link observed fault transients to parameter value changes in the system

components [20, 45]. Due to their advantages, several model-based diagnosis methods have been

developed using the bond graph paradigm [14,21,114,115].

Hybrid bond graphs (HBGs) extend bond graphs by allowing ideal binary switching of compo-

nent connections. Because HBGs are based on bond graphs, they support automatic generation of

system equations, simulation models [108, 109, 116], and observers [14, 22, 50]. HBGs also allow for

component-oriented modeling [117].

Hybrid Transcend uses the HBG modeling paradigm for modeling of hybrid systems for fault

diagnosis. This dissertation also uses HBGs, and extends the HBG language to model sensors, sensor

faults, and discrete faults. Preliminary results have appeared in [36,37]. The modeling paradigm has

been used for domain-specific contributions for the robotics and electrical power systems domains,

provided in the case studies found in Chapter VIII and also [28,95], and in Chapter IX and also [36,

37,86,116], respectively.

The diagnosis model in Transcend, the temporal causal graph, is generated automatically from

the bond graph model, and is used for to identify possible causes of faulty behavior, and to predict

future behavior of faults [20]. We extend the temporal causal graph and its derivation procedure

for the extensions made to the HBG modeling language, so that it can be used for isolation of both

parametric and discrete faults.

We begin by describing the bond graph modeling language, followed by a description of the

hybrid bond graphs and our extensions. We then discuss fault modeling, after which we detail the

diagnosis model and how to it is generated automatically from a HBG model, given the extensions

made to HBGs.

Bond Graphs

Bond graphs are directed graphs defined by a set of vertices and a set of edges. In bond graphs,

vertices represent components. The edges, called bonds (drawn as half arrows), represent ideal

energy connections between the components. Associated with each bond are two variables: effort

and flow, denoted by ei and fi, respectively, where i denotes the bond number. The product ei× fi
defines the rate of energy transfer through the bond. In the electrical domain, these variables map to

voltage and current, whereas in the mechanical domain, they map to force and velocity, respectively.
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Bond graph elements interface with bonds through ports. Bond graphs contain one-port, two-

port, and multi-port elements. One-port elements model energy dissipation as resistances (R: R,

where e = Rf), energy storage as capacitances (C: C, where ė = 1
C f) and inertias (I: I, where

ḟ = 1
I e), and energy sources as sources of flow (Sf: u, where f = u) and effort (Se: u, where e = u).

Two-port elements for energy transformation include transformers (TF: n, where e1 = ne2 and

f2 = nf1) and gyrators (GY: r, where e1 = rf2 and e2 = rf1). One- and two-port elements connect

to junctions, which are the multi-port elements. 1-junctions represent points of common flow (e.g.,

series connections), where all f are equal and
∑
e = 0. The directions of the bonds determine the

signs of the efforts in the summation. 0-junctions represent points of common effort (e.g., parallel

connections), where all e are equal and
∑
f = 0. The directions of the bonds determine the signs of

the flows in the summation. Therefore, junctions represent idealized energy exchange ports, where

power and energy are conserved. The constituent equations of the bond graph elements form a set

of differential algebraic equations that describe the continuous behavior of the system.

Signal links (drawn as full arrows) are also used in the bond graph language, and represent infor-

mation transfer pathways. Each link is associated with a single effort or flow variable. Nonlinearities

can be introduced via modulated elements, which express nonlinear component parameters as alge-

braic functions of endogenous variables and exogenous inputs. Modulated elements are denoted by

an M prefixed to the standard bond graph element name. The inputs to modulated elements are

connected using signal links. For example, it is typical in battery models that the resistance is a

function of the amount of charge left in the battery. The corresponding resistance, represented as

an MR in the bond graph model, would express that function.

Example. Fig. 13 illustrates a system from the electrical domain. The circuit, shown in Fig. 13a,

consists of a voltage source Se with input v(t), resistors R1 and R2, inductor L1, and capacitor C1.

Its bond graph is given in Fig. 13b. The current (i.e., flow) through the voltage source, resistance R1,

inductance L1, and the rest of the circuit is equal, therefore, these elements are connected through a

1-junction. Elements C1 and R2 are in parallel so have the same voltage (i.e., effort), and, therefore,

are connected through a 0-junction.

Sensors can also be modeled in bond graphs. If the physical processes of the sensor needs to be

modeled, then the sensor can be instantiated using bond graph elements. Typically, it is sufficient

to represent the output equation of the sensor. For example, if the voltage (effort) over C1, e5(t), is

measured, then the sensor output, y(t), can simply be modeled as y(t) = e5(t).
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(a) Schematic. (b) Bond graph.

Figure 13: Circuit example.

Causality

A bond graph captures the dynamics of a continuous system through a set of constituent equations.

These equations form a set of differential algebraic equations, but often, an explicit formulation,

such as state-space equations, is preferred, e.g., for use in deriving observers such as Kalman filters.

Causality in bond graphs assigns computational directions to the bond variables, which is useful in

deriving computational forms [113]. The causality of a bond is depicted using a causal stroke on

one end. For example, in Fig. 13b, the causal stroke on bond 3 implies that it imposes flow on R1,

which responds with an effort that is imposed on the 1-junction.

Energy storage elements can be placed in either integral or derivative causality. In integral

causality, the constituent equations are expressed in their integral form. For example, the equation

for a capacitor in integral causality is e =
∫ t

0

1
C
fdt. The effort, e, is computed by integrating the

flow, f . In derivative causality, the constituent equations are expressed in their derivative form.

For example, the equation for a capacitor in derivative causality is f = C de
dt . The computational

direction is different here, because the flow, f , is computed using the derivative of the effort, e.

Derivative causality leads to issues with simulation, therefore, integral causality is the preferred

causality [113]. Throughout this dissertation, we assume the energy storage elements operate in

integral causality.

Assumption 7 (Integral Causality). All energy storage elements of a bond graph model operate in

integral causality.

Each bond graph element has a set of causal constraints, shown in Fig. 14 with the constituent

equations in their explicit form. A source of effort imposes effort, therefore its bond must impose

effort on the connected junction. With sources of flow, the bond imposes flow on the adjacent
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Figure 14: Causal constraints and explicit equation forms of bond graph elements.

junction. The equations for resistances are algebraic, therefore, their bond has no causal constraints.

Under integral causality, bonds attached to capacitors must impose flow on the capacitor, and bonds

attached to inertias must impose effort on the inertia. The equations for transformers and gyrators

are algebraic as well, so can be in two different causal forms.

Associated with each junction, we define a special bond known as a determining bond. The

determining bond for a 1-junction is the unique bond that determines its flow value. The effort

value of this bond is an algebraic function of the effort values on all all other bonds incident on this

junction. Similarly, the determining bond for a 0-junction is the unique bond that determines its

efforts, and all other bonds determine the flow on that bond by an algebraic function of their flow

values.

Definition 6 (Determining Bond). The determining bond for a 1-junction (0-junction) is the unique

bond that determines the flow (effort) for that junction.

Based on the set of constraints, causality can be assigned systematically using the Sequential

Causal Assignment Procedure (SCAP) [113]. For example, consider the circuit of Fig. 13b. Because

of the Se, bond 1 must impose effort on the 1-junction. Under integral causality, bond 2 imposes

flow on the 1-junction, becoming its determining bond. So, bonds 3 and 4 (and 1) must impose

effort on the 1-junction. Under integral causality, bond 5 imposes effort on the 0-junction, so bond 6

(and 4) must impose flow on the 0-junction, and all bonds have causality assigned. Causality cannot

always be determined, and this usually indicates an incorrect model [113]. Therefore, we assume
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that bond graph models have valid causality assignments. Given a causal bond graph and using the

equation forms of Fig. 14, it is straightforward to generate a computational form, e.g., state-space

equations, signal flow graphs, or block diagrams (e.g., [108,109,113,116]).

Hybrid Bond Graphs

Bond graphs define a modeling language for continuous systems. Hybrid bond graphs (HBGs)

extend bond graphs to a hybrid modeling framework, in a way that they produce physically verifiable

hybrid models of system behavior [48]. Unlike other approaches that use switching bonds, switch

elements, or modulated transformers and gyrators to model switching in bond graphs [118–121],

HBGs introduce controlled junctions. Controlled junctions act as ideal switches, enabling a junction

to be in either the on or the off state. When a 1-junction is off, it behaves as a source of zero flow, so

it imposes f = 0 on all its bonds. Similarly, when a 0-junction is off, it acts as a source of zero effort,

and imposes e = 0 on all its bonds. When on, controlled junctions behave as normal junctions.

The switching behavior of a controlled junction is defined by a control specification (CSPEC),

modeled as a finite automaton [14, 48]. A CSPEC defines a finite number of states. The state

transitions may be attributed to controlled or autonomous events. Associated with each state is

an output, which determines whether the junction is on or off. The traditional CSPEC definition,

which we will later extend, is as follows.

Definition 7 (Control Specification). A control specification is a tuple M = (S,E, δ, o, s0), where

S is the finite set of states, E is the set of events, δ : S × E → S is the transition function,

o : S → {on,off } is the output function, and s0 ∈ S is the initial state.

Example. Fig. 15 shows a switched circuit. Essentially, the switch, Sw1, functions as a series

connection that turns on and off. So, in the HBG, the switch is modeled as a controlled 1-junction.

In Fig. 15b, the controlled junction modeling the switch is denoted with the dashed arrow. When

the junction is on, the switch is closed, and when the junction is off, the switch is open, and the

current through R2 is forced to zero.

CSPECs for the circuit switch are given in Fig. 16. The states are labeled with the state name

and the state output. The CSPEC for a relay controlled by switching signal, sw, is shown in Fig. 16a.

When sw is true, an event is generated and the junction moves to s1, where the junction is on. When

sw is false, it moves to s0, where the junction is off. For a circuit breaker (Fig. 16b), the junction

behavior is autonomous. It is initially in s0, where the junction is on. When the current through
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(a) Schematic. (b) Bond graph.

Figure 15: Switched circuit example.

(a) Relay CSPEC. (b) Circuit breaker CSPEC.

Figure 16: Circuit switch CSPECs.

the circuit breaker, f5, exceeds the value 10, a corresponding event is generated and the CSPEC

moves to s1, where the junction is off.

Because HBGs define switching locally, they provide a concise representation of the hybrid model.

This contrasts to hybrid automata models [98], where system modes are pre-enumerated, which, in

practical systems, is not often feasible. In HBGs, the system mode is defined implicitly by the

individual states of all the CSPECs. Because a single mode change may correspond to multiple

junctions switching their mode, events may be shared over different CSPECs. Given an event e and

the current system mode q, the new system mode, q′, is given by q′ = µ(e, q), where the system

mode transition function, µ, simply applies e to all CSPECs, and obtains the new CSPEC states

for each controlled junction. Associated with each mode q is a continuous bond graph, where each

controlled junction’s CSPEC defines whether the junction is on or off. The computational model

for each mode (i.e., state-space equations, signal flow graphs, block diagrams, etc.) can be derived

systematically using standard bond graph methods [113].

Because the system equations are different in each mode, causality assignments may change from

mode to mode. Fig. 17b shows the HBG when the junction is off, with the off state denoted by a

gray color of the junction and its bonds. The off junction imposes flow on all adjacent elements,

because it acts as a source of zero flow. Fig. 17a shows the HBG when the junction is on. In this

mode, the junction now imposes effort on R2.
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(a) Causal HBG for the on mode. (b) Causal HBG for the off mode.

Figure 17: HBGs for the switched circuit.

The Hybrid Sequential Causal Assignment Procedure (Hybrid SCAP) is used to assign causality

to HBGs [108,109,116]. Rather than simply applying SCAP globally every time the mode is changing

to obtain the causality for the new mode, the main idea behind Hybrid SCAP is that, when a

mode change occurs, only a small part of the model usually changes, so causality can be reassigned

incrementally rather than globally. This approach enables the computational model for a new mode

to be automatically generated from the previous mode efficiently [108,109,116].

Like bond graphs, HBGs support component-based modeling practices. A component-based

HBG modeling language is described in [22,117]. System components are defined as HBG fragments

that interface through energy ports (for bonds) and signal ports (for signals).

Modeling Faults

Since we assume faults are persistent (Assumption 4), we classify faults only along the dimension of

their modeling representation. We define hybrid system faults as either (i) parametric faults or (ii)

discrete faults. Parametric faults are associated with changes in parameter values, and are useful for

modeling partial failures or degradations in system components [14, 20, 99]. For example, a change

in the electrical resistance can be modeled by a change in the resistance parameter value. Discrete

faults, which may be modeled as fault events or fault modes, are associated with mode changes, and

are useful for modeling switching failures in components [19, 35–37, 99]. For example, a relay may

turn off by itself, or become stuck in a particular state. Like in DES approaches, we model all faults

as unobservable events.

It should be noted that faults modeled using parameter changes can also be modeled as new

modes if the fault magnitude is known, and this is the approach taken in discrete fault approaches

for hybrid systems [15,18,30–32,75–77]. In most cases, fault magnitudes are unknown, and to cover

a large number of possible fault magnitudes, many new modes are needed. Discrete faults can also

be captured at a very detailed level as parameter value changes, for example, a switch turning off

can be modeled as a resistance for the switch going to infinity, but this produces stiff, nonlinear
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models that are difficult to simulate and analyze efficiently, and may introduce algebraic loops into

the system equations, which makes analysis even more challenging.

Parametric Faults

Formally, we define a parametric fault as follows.

Definition 8 (Parametric Fault). A parametric fault is an unexpected change in the value of a

system parameter in the model.

Parametric faults may be additive or multiplicative in nature [10,52]. Additive faults are modeled

as unknown inputs to the system that do not affect the evolution of the system state. For example,

consider the sensor model y(t) = y′(t) + b(t), where b(t) is a bias term added to the true value, y′(t),

to produce the observed value, y(t). Nominally, the bias is zero, but when a bias fault occurs, the

bias is nonzero and affects the sensor output in an additive way.

Multiplicative faults are modeled as changes in internal system parameters, and they affect the

system dynamics and, therefore, the evolution of the system state. For example, a resistance change

in a circuit will affect the voltage and current through the resistor, which in turn will affect other

voltages and currents throughout the circuit. Sensor faults may also be multiplicative if there is

feedback from the sensor to the plant through a controller.

We represent parametric faults as unobservable events that change a parameter value. In HBGs,

system components appear as HBG model parameters, so changes in these parameters model multi-

plicative faults. For example, a change in capacitance can be modeled as a change in the capacitance

value of the corresponding C element in the HBG model. Additive faults map to source elements

(Se and Sf) in the HBG. For example, a sensor bias can be parameterized as a source, where a

change in the nominal zero value of the source represents a bias. In the circuit example of Fig. 15,

parametric faults may include increase and decrease in resistance (R1 or R2) and capacitance (C1)

values. We denote parametric faults by the parameter name and its change, e.g., R+
1 denotes a

parametric fault that increases the value of R1. Unlike discrete faults, parametric faults do not

directly induce changes in system mode.

Parametric faults may also have different profiles, i.e., the time-varying behavior of the parameter

value change may be arbitrary. In most cases, changes are abstracted as either abrupt or incipi-

ent [52]. Abrupt faults manifest at full magnitude immediately. Incipient faults represent slow

degradations and other effects such as sensor drift, and are not considered here (Assumption 5).
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Definition 9 (Abrupt Fault). An abrupt parametric fault in parameter θ is a step change in the

component parameter value, i.e., for t ≥ tf , θ(t) = θ(t−f ) + ∆θ(t), where ∆θ(t) = A.

The faulty parameter value, θ(t) for t ≥ tf , is represented as the sum of its nominal value, i.e.,

its value before the fault, θ(t−f ), and the fault function, ∆θ(t). The fault profile depends on the

time-varying behavior of the fault function. For an abrupt fault, the fault function is simply a

constant A, where the magnitude is represented by the value of A. Note that the definition implies

that faults are persistent, i.e., the parameter is faulty for all t ≥ tf .

Discrete Faults

An important contribution of this dissertation is the modeling and diagnosis of both parametric and

discrete faults within an integrated framework. Formally, we define a discrete fault as follows.

Definition 10 (Discrete Fault). A discrete fault is a discrepancy between the actual and expected

mode of a switching element in the model.

A discrete fault causes a switching element to enter a fault mode. Such a switching element

may be part of an actuator, the plant, or a sensor. For example, a type of sensor failure where the

sensor output is always zero can be modeled as a discrete fault. In the nominal mode, the sensor

model is y(t) = y′(t), but in the fault mode, the sensor model is y(t) = 0. Another fault mode

may be one where the sensor becomes stuck at its value at the time of fault occurrence, i.e., the

sensor model for the fault mode is y(t) = y(tf ). Discrete faults in the circuit example include switch

malfunctions. For example, the switch may be commanded to turn on, but remain stuck off. Also,

it may unexpectedly turn on or off without a command.

We model a discrete fault as an unobservable fault event that brings the component to the

corresponding fault mode. In HBGs, mode changes are modeled using controlled junctions whose

modes are determined by CSPECs, so discrete faults are captured as unexpected changes in CSPEC

state. We introduce new unobservable fault events in the CSPEC and link discrete faults to them.

Mode changes in components may correspond to many junctions changing mode, so these fault

events may be shared among the different CSPECs of the component. The linking of discrete faults

to fault events in the CSPEC gives, as with parametric faults, a one-to-one mapping between model

entities and faults. Thus, we provide an extended definition of the CSPEC to include discrete faults.

Definition 11 ((Extended) Control Specification). A control specification is a tuple M = (S, E,

δ, o, s0), where S is the finite set of states, E = Eo ∪ Eu is the set of observable and unobservable
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(a) Relay CSPEC. (b) Circuit breaker CSPEC.

Figure 18: Circuit switch extended CSPECs.

(fault) events, δ : S×E → S is the transition function, o : S → {on,off } is the output function, and

s0 ∈ S is the initial state.

Example. The extended CSPECs for the circuit of Fig. 15 are given in Fig. 18. For the relay

CSPEC (Fig. 18a), we introduce fault events τ0 and τ1. When τ1 occurs, the CSPEC moves to s2,

where the junction is stuck on. If the junction was previously off, then this fault manifests in the

measurements immediately, i.e., the switch turns on by itself. Otherwise, it will only manifest when

sw becomes false, i.e., the switch becomes stuck on. The case is similar for the τ1 event. For the

circuit breaker CSPEC (Fig. 18b), only the stuck off fault, τ0, is appropriate, and the behavior is

similar. The circuit breaker may open due to the current limit being exceeded, which is nominal

behavior, or may turn off due to a fault, i.e., it turns off when the current limit has not yet been

exceeded.

Because we consider faults to be persistent, all discrete faults are essentially “stuck” faults, i.e.,

a switching element enters a fault mode and persists in that mode. As illustrated by the example,

discrete faults may manifest in the sensors in two ways. In one case, if the CSPEC transitions from

a nominal state to a fault state, both of which map to the same output, then the discrete fault will

only be detected when a mode change is expected to occur, but does not. For example, a relay is

on, then becomes stuck on, and some time after, a command is issued to turn it off. In the other

case, if the CSPEC transitions from a nominal state to a fault state, where the two states map to

different outputs, then the discrete fault should be detected immediately. For example, a relay is

on, and then becomes stuck off. In the absence of a controller command to turn off, there is an

immediate discrepancy between the expected and actual modes of the relay.
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Temporal Causal Graphs

HBG models capture the continuous and discrete dynamics of a system. Since they represent the

system equations, they are useful for designing observers and simulating system behavior. How-

ever, we need a representation of the system behavior that explicitly incorporates cause and effect

relationships between the faults and the measurements. The temporal causal graph (TCG) is an

abstraction of the continuous behavior to a qualitative domain [20]. Using the TCG, we can reason

efficiently about the qualitative behavior of the system when a fault occurs with respect to nominal

behavior.

A key advantage for fault diagnosis of the BG and HBG modeling languages is the use of causality.

Causality maintains the causal relations between system variables, so changes in measured variables

can be mapped back to possible sources of change, and fault effects can be propagated forward

to predict effects on the measurements. The TCG uses the causality of a bond graph model to

capture this information by explicitly separating out the variables and signals from the bond graph

and making the relations between variables clear. The TCG is essentially a signal flow graph with

qualitative edge labels, and captures the propagation of qualitative fault effects on the measurements.

We provide an extended form of the TCG to encode the effects of both parametric and discrete faults

that is defined as follows.

Definition 12 (Temporal Causal Graph). A temporal causal graph is a labeled directed graph

G = (V,E, L, lE) where V = VX ∪ VT is a set of vertices representing system variables X and failure

events T , E ⊆ V × L× V is a set of edges indicating causal and temporal relations between system

variables, L ⊆ {=,+1,−1, N, Z} ∪ {θ : θ ∈ Θ} ∪ {1/θ : θ ∈ Θ} ∪ {θ dt : θ ∈ Θ} ∪ {1/θ dt : θ ∈ Θ} is

a set of labels (where Θ is the set of system parameters), and lE : E → L is a labeling function that

maps edges to labels.

Like a signal flow graph, the vertices of a TCG may represent system variables, such as the efforts

and flows of a bond graph model. Additionally, vertices may represent fault events. The addition of

vertices for fault events provides explicit sources in the TCG for discrete faults. Because the fault

events are explicit in the TCG, the TCG can be used to analyze the effects of the occurrence of

discrete faults.

The edges of the TCG are labeled according to the causal and temporal relations between system

variables and fault events. Edges may connect two system variables, or connect a fault event to a

system variable. For an edge (v1, l, v2) connecting two variables, the label l may be =, representing

equality, +1, indicating direct proportionality, −1, indicating inverse proportionality, θ or 1
θ , indi-
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cating a parametric relation (i.e., v2 = θv1 or v2 = 1
θv2), or θ dt or 1

θdt, indicating an integration

(i.e., v2 = θ
∫
v1 dt or v2 = 1

θ

∫
v1 dt). Because the system parameters are explicit in the TCG, the

TCG can be used to analyze the effects of changes in the values of the parameters, i.e., parametric

faults. For an edge (v1, l, v2) connecting a fault event to a variable, the label l may be +1 or −1,

but may also be N , indicating that the fault event will cause the connected system variable to go

from zero to a nonzero value, or Z, indicating that the fault event will cause the connected system

variable to go from a nonzero value to zero.

Constructing the TCG

For a particular mode, the TCG is constructed based on the system equations for that mode. Using

bond graphs, this process is made easy. First, causality is assigned using SCAP [113], or, in the

case of HBGs, may be reassigned based on the assignment of the previous mode using Hybrid

SCAP [108, 109, 116]. Then, the bonds are converted to system variables (one effort and one flow

per bond) and the bond graph elements are converted into labeled edges connecting the variables of

their associated bonds (see Fig. 19). Signal links are converted into single edges, with the qualitative

label corresponding to the qualitative relationship between the variables. This requires sensitivity

analysis and may result in a label indicating an unknown relationship [20]. An algorithm for TCG

generation is given in [22].

Example. Fig. 20 shows a bond graph and its corresponding TCG. The numbered bonds are

converted to corresponding variables with the subscript indicating the bond number. For example,

bond 3 becomes e3 and f3. The resistor R1 relates these two variables, i.e., e3 = R1f3. The causality

of the bond indicates that the 1-junction is imposing flow on R1, and R1 is imposing effort on the

1-junction. Therefore, the causal relationship is from f3 to e3. The label is R1, which corresponds to

the constituent equation of the resistor in the given causality. For the inductance, the relationship

between f2 and e2 is an integration, hence the dt label. Junctions sum one type of variable according

to the bond signs, and set the other type equal. For the 0-junction, bond 5 is determining the effort

of the junction, so e4 and e6 are set equal to e5. According to the bond signs, f4 = f5 + f6. Since

f5 must be determined, f4 and f6 causally affect f5 with labels +1 and −1, respectively.

We extend the TCG generation algorithm for Hybrid Transcend, presented in [22], to perform

two additional steps. First, we incorporate sensor models into the TCG in order to model sensor

faults. We then incorporate discrete faults into the TCG. These are described next.
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Figure 19: Temporal causal graph transformations.

(a) Bond graph. (b) Temporal causal graph.

Figure 20: Temporal causal graph example.

Incorporating Sensors

If sensors are modeled using bond graph elements, their parameters appear explicitly in the TCG.

Otherwise, they can be introduced by converting the sensor models into equivalent TCG fragments.

For example, consider the sensor model m1(t) = f6(t) + b1(t), where b1(t) is a sensor bias term. The
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Figure 21: Temporal causal graph with sensors.

measured value of f6(t) will be the true value biased by b1(t). Fig. 21 illustrates how this is reflected

in the TCG. Additional variables are added for the bias term b(t) and the sensor measurement m1(t).

To reflect the output equation, +1 edges are made from the bias variable to the sensor variable and

the true flow variable f6(t) to the sensor variable. As another example, consider the sensor model

m2(t) = g2(t)e5(t), where g2(t) is a gain term. The measured value of e5(t) will be the true value

multiplied by the sensor gain g2(t). Fig. 21 illustrates this scenario as well. An additional variable

for the sensor measurement, m2(t), is included, and an edge made from the true effort variable e5(t)

to the sensor variable is made, labeled with the gain g2(t). More complicated sensor models (e.g.,

those including multiple fault terms or different fault profiles) may be modeled in this fashion as

well.

Incorporating Discrete Faults

We also augment the TCG to capture the effect of discrete faults on the system variables by creating

a new vertex in the TCG for each discrete fault event. Because discrete faults represent changes

in CSPEC state and, therefore, junction mode, they must directly affect the variables associated

with a junction. We create edges with +1, −1, N , and Z labels linked to the appropriate junction

variables. We also introduce the junction mode variable pi for each controlled junction i, which the

discrete fault will also affect, allowing us to use sensors that measure the state of switching elements

during fault isolation. The discrete fault event is added to the TCG and edges made to the junction

variables if it is possible from the last known mode that the discrete fault could have occurred, given

the logic of the junction’s CSPEC.
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In order to correctly connect the fault event to the junction variables, we must analyze what

happens when a junction turns on or off. Consider first the case where a junction turns off. We need

to determine which variables are immediately affected by the change in the junction mode. From

bond graph causal analysis, each 1-junction (0-junction) that is on has a flow (effort) determining

bond. When a junction turns off as the result of a fault, the determining flow (effort) will be

immediately affected because it goes to zero. Take the case of a 1-junction. When it turns off, all

the flows of its bonds are forced to zero. Therefore, the fault event causing the junction to turn

off should immediately affect all the flow variables of the junction. Since there is a single flow that

determines the other flows when the junction is on, this can be represented with an edge labeled

with Z going from the fault event to the determining flow. Since the other flows are equal to this

flow, the relationship is also captured on these variables by the single edge.

However, the flow of the switching 1-junction is not the only variable that is immediately affected.

This is revealed by causal analysis. When a junction changes state in a hybrid bond graph, the

causality of the bond graph changes. There are two ways in which the causal change can be absorbed.

1. The first way is through a resistor. The bond of a resistor can be in either causal form. If the

change in causality of the determining bond propagates to a resistor, the resistor can absorb

the change by switching causality.

2. The second way is though another junction of the opposite type simultaneously changing state.

For example, if a 1-junction is adjacent to a 0-junction such that the determining bond of the

1-junction is the one connected to the 0-junction, and both junctions switch off simultaneously,

then the causality of the connecting bond switches causality and absorbs the causal change.

Consider the case of a switching 1-junction. In the first scenario, since a resistor absorbs the

causal change, the effort and flow of the determining bond are algebraically related. Therefore, if

the flow is immediately affected, then the effort will be also, so an edge from the fault event to this

variable is necessary. This is shown in Fig. 22 , assuming that the flow is positive (a gray coloring

indicates the junction is off). If the effort and flow are related by a gain, then they will both go

to zero, so the edge is labeled by a Z. This is shown in Fig. 23. If not, then they will change

in the same direction if the algebraic path between the variables has an overall +1 label, and in

opposite directions if the path has an overall −1 label. In physical systems, resistance should be

positive, so the path should always have a +1 label and we can assume that the effort and flow of

the determining bond change in the same direction.
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Figure 22: Temporal causal graph transformation for a switching 1-junction with a discrete fault
where a non-adjacent resistor absorbs the causal change.

Figure 23: Temporal causal graph transformation for a switching 1-junction with a discrete fault
where an adjacent resistor absorbs the causal change.

Assumption 8 (Consistent Direction of Change). When a junction turns off, the effort and flow of

its determining bond change in the same direction.

In the second scenario, the effort of the 1-junction’s determining bond is determined by the 0-

junction when both junctions turn off, and similarly the flow of the 0-junction’s determining bond

is determined by the 1-junction when both junctions turn off. Therefore those variables will be

immediately affected, and go to zero, so edges are needed here as well and will be labeled by Z.
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Figure 24: Temporal causal graph transformation for simultaneously switching adjacent 1- and
0-junctions with a discrete fault.

(a) TCG for the q1 mode. (b) TCG for the q0 mode.

Figure 25: TCGs for the nominal modes of switched circuit.

This is shown in Fig. 24. When the junctions are expected to be on, the τ0 fault that causes them

to turn off directly affects the shared determining bond, bond 2, and so affects e2 and f2.

Example. Consider the circuit and the CSPECS given in Figs. 13 and 18, respectively. Recall that

there is a τ0 event causing the junction to turn off, and a τ1 event causing it to turn on. Consider

the mode where the relay is closed, i.e., the junction is on. The extended TCG for this mode is

shown in Fig. 25a. In this case, R2 absorbs the causal change when the 1-junction turns off. The

on switch creates a configuration where a voltage is imposed on R2, determines its current. An off

switch, however, imposes zero current on R2, and, therefore, determining its voltage. As a result,

the τ0 fault will immediately affect e6, f6, and p1. Because e5 is equal to e6, we place the (τ0, Z, e6)

edge as (τ0, Z, e5) instead, so that the causal order of affected variables is maintained. Note that in

this case, a Z label can be used on the edge to e5 because it is equal to f6 times a gain, and since

f6 goes to zero, so will e6 and e5.
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(a) TCG for the qτ0 fault-induced mode. (b) TCG for the qτ1 fault-induced mode.

Figure 26: TCGs for the fault-induced modes of the switched circuit.

When a junction is off, then the analysis is easier. Consider the case of a 1-junction. When off,

all its flows are zero and its bonds impose flow on all adjacent components. We need to represent

the effects of the fault in this mode. When the junction turns on, all its flows will become nonzero,

therefore, they are all immediately affected. So, we create edges labeled with N from the fault event

to each flow. The TCG for the circuit example in this case is shown in Fig. 25b. The τ1 fault will

immediately affect f5, f6, and p1.

Because discrete faults induce mode changes, it is also necessary to derive the TCG for the

induced fault modes, especially since multiple junction mode changes may correspond to a single

discrete fault. TCGs for the fault-induced modes are constructed the same way as the nominal

modes, only the junction modes are changed to reflect the occurrence of the fault. The TCGs for

the fault-induced modes for τ0 and τ1 are shown in Fig. 26. For example, in Fig. 26a, τ0 is linked to

an off junction, whereas in Fig. 25a, it is linked to an on junction.

Summary

Bond graphs provide a useful framework for physical systems modeling. Hybrid bond graphs extend

the bond graph language to modeling hybrid systems. The model in each mode is a continuous

bond graph, and the bond graph models for a new mode are derived from the previous bond graph

model by turning junctions on and off. HBGs provide many advantages, such as compactly repre-

senting the hybrid behavior and incorporating causal information, so we use them to model hybrid

systems and develop hybrid observers. Since faults are explicitly modeled in the HBG, the temporal

causal graph, derived automatically from the HBG, can be used to relate observed discrepancies in

the measurements to possible faults, and relate possible faults to predicted discrepancies. We ex-

tended the HBG language to include the modeling of sensors, sensor faults, and discrete faults. The

temporal causal graph, which serves as the diagnosis model, was similarly extended to incorporate

the modeling extensions, validated by causal analysis. Our methods are not entirely dependent on

HBGs, but HBGs provide a systematic way to produce temporal causal graphs. The TCG is used
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in the qualitative fault isolation algorithms that perform the hypothesis generation, prediction, and

tracking steps. These methods are described in the two following chapters.
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CHAPTER V

QUALITATIVE FAULT ISOLATION IN CONTINUOUS SYSTEMS

The qualitative model-based approach to fault isolation analyzes observed deviations from nomi-

nal behavior in the system measurements. These deviations are abstracted to qualitative increas-

ing/decreasing values for magnitude and slope of the residuals, and are represented as events. This

chapter builds up the theory for fault isolation in continuous systems based on measurement devi-

ation events, and describes the associated algorithms for fault isolation. The results of this chapter

extend the Transcend methodology presented in [20,45].

The basic diagnoser architecture is shown in Fig. 27. Given one or more initial measurement

deviation events, σ0, the diagnoser produces an initial diagnosis, i.e, a set of fault hypotheses,

d0. The initial diagnosis triggers the prediction scheme, which generates the set of predictions P0

as fault signatures and relative measurement orderings for the hypothesized candidates. A tracking

procedure refines candidates as more measurement deviation events are generated, and may generate

new predictions Pi when new fault hypotheses are considered. After each new event, candidate

tracking produces an intermediate diagnosis di, which represents a refined set of fault hypotheses.

A user-specified stopping criterion terminates the fault isolation process. This criterion is based on

isolation of a unique candidate, the number of measurements that have deviated, or a specified time

limit.

The previously developed Transcend algorithms apply to only single, abrupt, parametric faults.

Further, the temporal order of the measurement deviations was not utilized to refine the fault

candidates. One of the primary contributions of this dissertation research is the use of relative

measurement orderings, which define predicted partial orders of measurement deviations for each

Figure 27: Event-based diagnoser architecture.
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fault [27,28,95]. We show how the extended form of the temporal causal graph can be used to predict

measurement orderings by extending the original prediction algorithm. Further, we relax the single

fault assumption and and extend the Transcend approach to include multiple fault isolation in

continuous systems [38, 39]. The results provided in this chapter provide the framework for the

diagnoser design for continuous systems, described in Chapter VII.

The chapter is organized as follows. We first describe the hypothesis generation procedure. Then,

we describe briefly fault signatures, and formulate the concept of relative measurement orderings

and illustrate how they are computed. We next discuss how fault isolation progresses as more

measurement deviation events are provided, and how isolation may terminate. We conclude with a

summary of the approach and comparisons to related approaches.

Hypothesis Generation

When the fault detector indicates the first measurement deviation, we obtain a + or - symbol

representing whether the measurement is above or below its nominal value, respectively. The goal

of hypothesis generation is, given this initial deviation σ0, to produce a consistent set of initial fault

candidates.

In order to do this, we utilize the backward propagation algorithm, PropagateBackward, of

Transcend [20]. The algorithm starts at a measurement vertex given the sign of the deviation,

and propagates the deviation backwards through the TCG to include all fault parameters that are

consistent with the observed deviation. The parameter change will be identified as a fault candidate

if the direction of change of the incident vertex is consistent.

Example. Consider the circuit given in Fig. 28, which will be used as a running example throughout

the chapter. The schematic and corresponding bond graph are shown Figs. 28a and 28b, respectively.

Assume that a decrease in the measured current through R2, or i−3 , is observed. The annotated TCG

for this circuit is given in Fig. 29. In the circuit, we consider F = {C+
1 , C

−
1 , L

+
1 , L

−
1 , R

+
1 , R

−
1 , R

+
2 ,

R−2 }, for faults in the capacitor, inductor, and resistances. Propagating back in the TCG, the

decrease in i3 can be explained by f−6 which in turn can be explained by R+
2 , given f6 is positive.

It can also be explained by e−6 , which in turn can be explained by e−5 and hence C+
1 . Propagating

backwards further can link the change to parameter changes, R+
1 and L+

1 . Thus the initial fault

hypothesis set is {C+
1 , L

+
1 , R

+
1 , R

+
2 }.
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(a) Schematic. (b) Bond graph.

Figure 28: Example circuit.

Figure 29: TCG for PropagateBackward example.

Prediction

The objective of the prediction phase is to determine the effects that faults will have on the measure-

ments. These predicted effects are used to check if candidates are consistent with the observations.

Predictions are represented formally as fault signatures, which qualitatively abstract measurement

deviations caused by fault transients, and relative measurement orderings, which define temporal

orders of the measurement deviations.

Fault Signatures

Abrupt faults generate transients in the dynamic system behavior. Assuming that the system

output y(t) is continuous and continuously differentiable except at the point of fault occurrence, tf ,

the transient response at t > tf can be approximated by a Taylor series expansion [41,45]:

y(t) =
∞∑
n=0

y(n)(tf )
(t− tf )n

n!
,
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where y(n)(tf ) represents the nth derivative of the continuously differentiable signal y(t) just after

fault occurrence. If |y(k+1)| is bounded, the Taylor series expansion up to the kth derivative is a good

approximation of the true signal y(t) for t close to tf . For t > tf , the residual, r(t) = y(t) − ŷ(t),

can then be approximated by

r(t) =

( ∞∑
n=0

y(n)(tf )
(t− tf )n

n!

)
− ŷ(t).

This is the basis for establishing a signature for a fault transient, represented using the magnitude

and derivative values of the residual signal. We abstract these magnitude and derivative values using

the qualitative values +, -, and 0, which imply an increase, decrease, or no change from the nominal

behavior, respectively.

In general, a fault signature is defined as the qualitative value of zeroth- through kth-order

derivative changes on a residual due to a fault occurrence. However, because only the magnitude and

slope can be reliably measured, symbol generation only provides us with the immediate magnitude

change and the observed slope. Therefore, we condense the full signatures to the magnitude change

and the first nonzero derivative change, which eventually manifests as an first-order change that can

be observed in the residual. For example, a seventh-order signature 000-+-+ becomes 0-, and the

signature +-+-+-+ becomes +-. The set of possible restricted fault signatures is then given by {+-,

-+, ++, --, +0, -0, 0+, 0-, 00}. The first symbol represents the immediate direction of abrupt change

(a discontinuity) and the second symbol represents the slope that will be observed. The signatures

++ and -- may occur for certain types of sensor faults, but for faults related to system parameters,

they imply positive feedback, and hence, an unstable system, so are typically disregarded [45]. For

+0 and -0, the 0 slope symbol implies that the fault causes a jump but no subsequent change in

the measurement. This occurs, for example, with sensor bias faults. The signature 00 represents

no change due to the fault, i.e., the fault effect cannot reach the measurement because there is no

causal relation. Given a measurement m, and deviation d, we write a signature as an event using

md, e.g. m+−
1 . The definition of a fault signature is as follows.

Definition 13 (Fault Signature). A fault signature for a fault f and measurement m is the

qualitative magnitude and slope change in m caused by the occurrence of f , and is denoted by

σf,m ∈ Σf,m. We denote the set of all fault signatures for fault f and measurements M as Σf,M ,

where Σf,M =
⋃
m∈M

Σf,m.
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If the fault signature for a fault f and measurement m can be uniquely determined, then Σf,m

is a singleton. Ambiguities may arise in the qualitative arithmetic, however, resulting in a signature

containing a ∗, which may manifest as either +, -, or 0. So, in general, σf,m may not be unique. For

example, a 0* may manifest as 0+ or 0-.

Relative Measurement Orderings

The traditional Transcend scheme uses only fault signatures to distinguish between faults. The

order in which the measurements deviate is not taken into account when refining fault hypotheses.

We define the notion of relative measurement orderings, which capture the intuition that fault

effects will manifest in some parts of the system before others. For example, a fault occurring in one

component will likely manifest first in that component and then in other components, if there are

energy storage elements in the path between the sensors. If there are no energy storage elements,

the relation is algebraic and no delay will be observed.

Definition 14 (Relative Measurement Ordering). If the effects of fault f manifest in measurement

mi before measurement mj then we can define a relative measurement ordering between mi and mj

for fault f , denoted as mi ≺f mj . We denote the set of all measurement orderings for a fault f and

measurement set M as Ωf,M .

Relative measurement orderings can be derived from the system model given a particular mode.

We describe how to generate orderings from the TCG, based on the notion of a fault path.

Definition 15 (Fault Path). A fault path for a fault f and measurement m is a path in the TCG

which begins at the fault f and ends at the measurement m. The set of all fault paths from f to m

is denoted by FPf,m.

Example. Consider a fault in R2 for the TCG in Fig. 30, where f2, e5, and f6 are measured. A

fault path for R2 to f6 is [f6]. Another is [f6
−1−→ f5

1/C1dt−→ e5
=−→ e6

1/R2−→ f6].

Due to cycles associated with state loops, there are possibly an infinite number of fault paths,

however, only a finite subset of these are important. The order of a fault path is defined as the

number of temporal edges (i.e., edges with dt) in the path. A minimum order fault path is a path

in FPf,m that contains the minimum number of temporal edges needed to reach m from f . More

than one fault path of a specific order may exist for f and m, since there are often multiple paths

from one vertex to another in the TCG.
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Figure 30: Derivation of relative measurement orderings for a fault in R2.

Definition 16 (Minimum Order Fault Path Set). The minimum order fault path set for f and m

is the set of all minimum order fault paths, and is denoted as FP ∗f,m.

Example. Consider again a fault in R2. The minimum order fault path set for f6 is {[f6]}. It has

no temporal edges so its order is 0. For e5, it is {[f6 −1−→ f5
1/C1dt−→ e5]} with order 1, and for f2, it is

{[f6 −1−→ f5
1/C1dt−→ e5

=−→ e4
−1−→ e2

1/L1dt−→ f2]} with order 2.

A fault path describes the temporal propagation of a fault to a specific measurement in the

system. For a certain fault, there may be multiple fault paths leading to a measurement. Based

on the Taylor series expansion of measured signals, we know the lowest order effect of a fault will

manifest first [45]. So, only the minimum order fault path sets are useful in determining relative

measurement orderings. For this purpose, we define a method for comparing fault paths.

Definition 17 (Temporal Subpath). For p ∈ FPf,mi and p′ ∈ FPf,mj , p is a temporal subpath of

p′, denoted as p @ p′, if all temporal edges in p exist in p′ in the same sequence, and the order of p

is less than the order of p′.

Example. Given a fault in R2, [f6] @ [f6
−1−→ f5

1/C1dt−→ e5] @ [f6
−1−→ f5

1/C1dt−→ e5
=−→ e4

−1−→

e2
1/L1dt−→ f2].
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The following theorem shows how relative measurement orderings are derived from the TCG,

based on the temporal subpaths, which can be related to transfer functions, and, therefore, be used

to characterize delays.

Theorem 1. If for every p′ ∈ FP ∗f,mj there exists p ∈ FP ∗f,mi such that p @ p′, then we have

mi ≺f mj.

Proof. In the signal flow graph for the TCG, let ri be the measurement vertex corresponding to mi,

rj the vertex for mj , and rf the successor vertex of the edge with fault parameter f . The transfer

functions from rf to ri, Ri(s) and from rf to rj , Rj(s), can be derived. Assume for every p′ ∈ FP ∗f,mj
there exists p ∈ FP ∗f,mi such that p @ p′. Then each minimum order path from rf to rj must go

through ri or a vertex which can be expressed as ri ·G, where G is some constant gain. Rj(s) is a

sum of terms which each correspond to different forward paths from rf to rj . Because lower order

effects manifest first for a measurement, terms that correspond to forward paths of non-minimum

order can be removed to produce R′j(s). Similarly, R′i(s) can be produced. Because every minimum

order path from rf to rj goes through a vertex ri ·G, R′i(s) must appear as a factor in each term of

R′j(s), therefore R′j(s) = H(s)R′i(s), where H(s) is a proper transfer function. The order of mi is

less than the order of mj by the definition of the @ relationship, so the number of poles for R′i(s)

must be less than the number for R′2(s). H(s) must introduce more poles than zeros to R′j(s), and,

therefore, H(s) is strictly proper. From H(s), we can discretize using the given sampling rate of the

system to get H(z). Since H(s) is strictly proper, H(z) is, therefore r′2(k) = f(r′i(k−1)). Since r′j(k)

depends only on past values of r′i(k), with appropriately selected detection thresholds1, a deviation

resulting from fault f will appear first in mi and then in mj , thus mi ≺f mj .

Therefore, for a given fault f , we can say that it manifests in measurementmi before measurement

mj if for all minimum order fault paths of mj , there is a minimum order fault path for mi that

the fault will traverse before completing the traversal along the given fault path to mj . Specifically,

each of the fastest paths (i.e., the minimum order fault paths) to mj must pass through mi (or a

variable algebraically related to it), after which an additional delay occurs, because the path order

increases after passing through mi. Hence, the transient due to the fault manifests later in time

for mj than for mi. Thus, the deviation in mi will be observed before the deviation mj . Since we

establish orderings based on common subpaths, we ensure that the time constants associated with
1This guarantees that for some time |ri(k)| will be greater than |rj(k)|, after that time |rj(k)| may overtake |ri(k)|

depending on the gain of H(z). Therefore thresholds must be small enough such that deviations will cross them before
that time.
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the paths that produce the initial deviation on a measurement are shared. So, if the fault detectors

are tuned with similar sensitivities, the orderings will hold.

Example. For example, consider the R+
2 fault. Its minimum order fault path for f6 is a temporal

subpath of the minimum order fault path for e5, which in turn is a temporal subpath for f2. Thus,

we can define f6 ≺R+
2
e5, f6 ≺R+

2
f2, and e5 ≺R+

2
f2. However, if there was some other fault path

of order 2 to f2 that did not pass through e5, we would not be able to establish the third ordering,

because we would not know, in general, which path is faster, since the time constants associated

with the paths are not shared. For L+
1 , FP ∗

L+
1 ,f2

= {[f2]}, FP ∗
L+

1 ,e5
= {[f2 =−→ f4

+1−→ f5
1/C1dt−→ e5]},

and FP ∗
L+

1 ,f6
= {[f2 =−→ f4

+1−→ f5
1/C1dt−→ e5

=−→ e6
1/R2−→ f6]}. We can define the orderings f2 ≺L+

1
e5

and f2 ≺L+
1
f6, but not one between e5 and f6, because they are of the same order so the temporal

subpath relation will not hold.

Informally, two faults can be distinguished using orderings if there exist two measurements which

deviate in some order for one fault, and in the opposite order for a second fault. Discrimination

between faults using relative measurement orderings is based on the notion of temporal conflicts in

the ordering relationships.

Definition 18 (Temporal Conflict). A temporal conflict between ordering sets Ωfi,M and Ωfj ,M

exists if there are two measurements mk,ml ∈ M such that (mk ≺fi ml) ∈ Ωfi,M and (ml ≺fj
mk) ∈ Ωfj ,M .

The combined use of fault signatures and measurement orderings increases the discriminatory

ability of the algorithms, because more information is utilized for refining candidates. We will show

in Chapter VIII that for some systems, measurement orderings are actually necessary for the system

to be diagnosable, i.e., signatures alone cannot diagnose the system.

Prediction Algorithm

The prediction algorithm computes fault signatures and relative measurement orderings given a para-

metric fault f , the set of measurements M , and a TCG, (V,E,L, lE). PropagateForward extends

the algorithm presented in [20] by computing measurement orderings. It is shown as Algorithm 1.

Propagation starts at the fault. If the fault is additive, and, hence, represented as a change in

a source parameter, it is associated with a vertex, but if multiplicative, its parameter is associated

with a set of edges (for TF and GY elements, the parameter will appear on multiple edges). The first

step is to obtain the initial vertices from which to propagate and define the zeroth-order signature
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Algorithm 1 (Σf,M ,Ωf,M )← PropagateForward(f,M, (V,E, L, lE))
Vpend ← ∅
set all Σf as unmarked
for all v ∈ V do
TPv ← ∅

if f is multiplicative then
for all (v, lf , v

′) ∈ E do
σv′(0)← consistent sign
Vpend ← Vpend ∪ {(v′, σv′)}

else
σv′(0)← consistent sign
Vpend ← Vpend ∪ {(v, σv′)}

for all v ∈ Vpend do
minOrderv ← 0

while Vpend 6= ∅ do
v = PopFront(Vpend)
for all (v, l, v′) ∈ E do

if σv′ not determined to sufficient order then
σv′ ← UpdateSignature(v, σv, l, v

′, σ′v)
if l is instantaneous then

PushFront(Vpend, v
′)

if v′ not visited then
minOrderv′ ← minOrderv

if minOrderv < minOrderv′ then
TPv′ ← TPv′ ∪ TPv

else
PushBack(Vpend, v

′)
if v′ not visited then
minOrderv′ ← minOrderv + 1

if minOrderv < minOrderv′ then
TPv′ ← TPv′ ∪ {pl : p ∈ TPv}

for all v ∈ V do
set all unmarked derivatives in σv to 0

Ωf,M ← ComputeOrderings(TPv,M)
return (Σf,M ,Ωf,M )

values for those vertices. Additive faults (e.g., sensor bias) are already represented by a vertex, so

the change in vertex is positive if the fault is an increase, or negative if the fault is a decrease. For

multiplicative faults, the initial signature for the vertex the edge points to is determined based on

whether the predicted fault is an increase or decrease in parameter magnitude, and what the sign

of nominal value of the variable is for that vertex. If it is positive, a parameter increase increases

the variable and a parameter decrease decreases the variable. The opposite happens if the variable

is negative.

The algorithm starts from the initial set of vertices and propagates their signatures to successor

vertices in increasing derivative order. It also propagates sets of minimum order temporal paths

encountered (consisting of only the temporal edges), which are used later to compute the measure-

ment orderings. Propagating in increasing derivative order ensures these paths are built up correctly.

Signatures are determined up to the sufficient order, which, under our two-symbol representation,
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Function 2 Ωf,M ← ComputeOrderings(TPSet,M)
for all mi,mj ∈M do

if mi reachable from f and mj unreachable then
Ωf,M ← Ωf,M ∪ {mi ≺f mj}

else if (∀pj ∈ TPmj )(∃pi ∈ TPmi)pi @ pj then
Ωf,M ← Ωf,M ∪ {mi ≺f mj}

return Ωf,M

means that the first two nonzero symbols in the signature must be computed for discontinuities, or

the first nonzero symbol otherwise. The propagation stops when all reachable vertices have been

determined to sufficient order. The signature propagation is handled by UpdateSignature, and is

described in [20].

After propagation, the orderings are computed using the collected minimum order temporal

paths. This procedure is given as Function 2. Measurement orderings are declared for reachable

versus unreachable measurements, with respect to the fault. They are also declared when the

condition of Theorem 1 is satisfied.

The signatures and orderings for the circuit of Fig. 13 are shown in Table 3. In the circuit, we

define the measurements as M = {i1, v2, i3}, or the current through L1, the voltage across C2, and

the current through R2, respectively. In the bond graph, these correspond to f2, the flow of bond 2,

e5, the effort of bond 5, and f6, the flow of bond 6. In deriving the signatures, we have assumed

that variable values are nominally positive.

Example. Consider R+
2 . An increase in R2 will cause an immediate decrease in f6. Since all

subsequent paths from f6 to any other observed variable in the system contain some edge with a

dt specifier (implying an integration), then deviations in these measurements will only be detected

after f6 deviates. The measured variable e5 will deviate next with a first-order increase, i.e., 0+.

The change is opposite to the change in f6 because of the −1 specifier in the path, which implies an

inverse relationship. This change propagates back to f6, yielding a complete signature of +-. The

measured variable f2 will deviate next because of the dt specifier on the path from e5 to f2, with a

second-order decrease, i.e., 0-. This will be eventually detected as a first-order change.

Event-based Fault Modeling

Fault signatures combined with relative measurement orderings provide event-based information

for diagnosis. Therefore, we combine the notions of fault signatures and relative measurement or-

derings into an event-based framework, where significant measurement deviations are symbolically

abstracted to events. For a specific fault, the combination of all fault signatures and relative mea-
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Table 3: Fault Signatures and Relative Measurement Orderings for the Circuit

Candidate i1 v2 i3 Measurement Orderings

C+
1 0+ -+ -+ v2 ≺ i1, i3 ≺ i1

C−1 0- +- +- v2 ≺ i1, i3 ≺ i1
L+

1 -+ 0- 0- i1 ≺ v2, i1 ≺ i3
L−1 +- 0+ 0+ i1 ≺ v2, i1 ≺ i3
R+

1 0- 0- 0- i1 ≺ v2, i1 ≺ i3
R−1 0+ 0+ 0+ i1 ≺ v2, i1 ≺ i3
R+

2 0- 0+ -+ v2 ≺ i1, i3 ≺ i1, i3 ≺ v2
R−2 0+ 0- +- v2 ≺ i1, i3 ≺ i1, i3 ≺ v2

surement orderings yields all the possible ways a fault can manifest. Our event set is then the set

of possible measurement deviations. We denote each of these possibilities as a fault trace.

Definition 19 (Fault Trace). A fault trace for a fault f over measurements M , denoted by λf,M , is

a string of length ≤ |M | that includes, for every m ∈M that will deviate due to f , a fault signature

σf,m, such that the sequence of fault signatures satisfies Ωf,M .

Example. Consider C+
1 for measurements M = {i1, v2, i3}. To simplify the notation we will drop

the M subscript in our examples. λC+
1

= v−+
2 i−+

3 i0+1 is a valid fault trace, but λC+
1

= i0+1 v−+
2 i−+

3 is

not because the measurement deviation sequence does not satisfy ΩC+
1

.

Note that the definition implies that fault traces are of maximal length, i.e., a fault trace includes

deviations for all measurements affected by the fault. We group the set of all fault traces into a fault

language. The fault model, defined by a finite automaton, concisely represents the fault language.

Definition 20 (Fault Language). The fault language of a fault f ∈ F with measurement set M ,

denoted by Lf,M , is the set of all fault traces for f over measurements M .

Definition 21 (Fault Model). The fault model for a fault f ∈ F with measurement set M , is the

finite automaton that accepts exactly the language Lf,M , and is given by Lf,M = (S, s0,Σ, δ, A)

where S is a set of states, s0 ∈ S is an initial state, Σ is a set of events, δ : S×Σ→ S is a transition

function, and A ⊆ S is a set of accepting states.

The finite automata representation allows for the composition of the fault signatures and relative

measurement orderings into fault models. The possible fault signatures Σf,m can be represented as a

finite automaton with event set Σf,m, shown in Fig. 31 (left), for the case where Σf,m is a singleton.

It consists of only the single event corresponding to the fault signature. In general, multiple edges

for each σf,m ∈ Σf,m are needed going from the first state of the automaton to the final state.

This represents the constraint that a measurement’s deviation is only observed once. Also, each
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σf,m σf,mi σf,mj

Figure 31: Fault signature finite automaton representation (left) and relative measurement ordering
finite automaton representation (right).
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Figure 32: Fault models for the faults of the circuit.

relative measurement ordering, mi ≺f mj , with associated signature sets Σf,mi and Σf,mj , can be

represented as an automaton with event set Σf,mi ∪ Σf,mj , shown in Fig. 31 (right), for the case

where Σf,mi and Σf,mj are singletons. The automaton consists of the associated signatures in the

determined ordering. The following lemma formalizes the composition of these automata.

Lemma 1. For fault model for fault f , Lf,M , is the synchronous product of the individual finite

automata for all σf,m ∈ Σf,M and all (mi ≺f mj) ∈ Ωf,M .

Proof. Since the synchronous product must accept fault traces that obey all individual ordering con-

straints and includes all measurement deviation events for the fault, it accepts all valid measurement

deviation sequences, i.e., all λ ∈ Lf,M , and no others.

Example. Fig. 32 shows the fault models for the circuit example. Accepting states are denoted by

a double circle. Consider R+
1 . Its orderings specify that i1 must deviate before v2 and i3. Therefore,

i0−1 is first, followed by v0−
2 and i0−3 in either order.

Fault models are an alternative representation of fault signatures and measurement orderings

that combine the two forms of diagnostic information into a formal event-based framework. Clearly,

forming fault models requires additional computation after signatures and orderings are computed.

Therefore, it is not immediately clear what the computational advantage of fault models is. We use

the formal framework developed in this section in the rest of the chapter to precisely describe our

methodology for consistency-based diagnosis. The algorithms do not explicitly use fault models,
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but we describe in Chapter VII how fault models form the basis to a compilation-based technique

for efficient online diagnosis, and how the formal framework they provide can be used to formulate

notions of diagnosability and obtain systematic methods for deciding if a system is diagnosable.

The construction of fault models is based on the assumption that signatures and orderings can

be precomputed. As we observed in the previous section, however, the effect of faults depends on

the signs of the variables in the system. For example, a resistance increase, R+, causes the current

through the resistor to decrease if the current is positive, but increase if negative, because it becomes

less negative. If the variable signs can change over time, they can be accounted for by selecting the

appropriate fault models. Since the prediction algorithm takes into account variable sign, then the

correct signatures will be computed at fault detection. If the sign is not taken into account, then

we would isolate R− instead of R+, but by checking the sign of the immediate variable affected by

R, we can determine which of these is the correct candidate.

Candidate Tracking

Hypothesis generation produces the set of fault candidates consistent with the initial measurement

deviation, and prediction computes future effects these candidates will have on the measurements.

Progressive monitoring uses the predictions (i.e., signatures and orderings, or, equivalently, fault

models) to match candidates to new measurement deviations, but must refine candidates when a

new measurement deviation occurs. Measurement deviations may implicate new faults. We extend

the progressive monitoring algorithms of Transcend to use both fault signatures and relative

measurement orderings, and to isolate multiple parametric faults.

Progressive monitoring is shown as Algorithm 3. It begins with the initial diagnosis d0, consist-

ing of single-fault candidates obtained using backward propagation for event σ0. Since backward

propagation uses only the initial sign of the deviation and does not use measurement orderings in

selecting initial candidates, we first predict the effects of the faults. We then check consistency using

the full signatures and measurement orderings. If consistent with the predictions, the candidate is

placed in d.

After initializing d, CandidateTracking waits for events to occur. When it receives a mea-

surement deviation event, it must refine the current candidates. This consists of checking whether

the current candidates are consistent with the new information, and if not, generating new, more

complex candidates that are consistent. In general, hypothesis refinement works as follows. Given a

current diagnosis di, and the measurement deviation event, σi+1, we generate a new diagnosis, di+1.

80



Algorithm 3 d← CandidateTracking(d0, σ0)
d← ∅
for all {fi} ∈ d do
Pfi ← PropagateForward(fi,M, TCG)
if fi consistent with σ0 then
d← d ∪ {{fi}}

while termination condition is false do
wait for σ
d← RefineHypotheses(d, σ)

return d

For each candidate of the old diagnosis (di), we check consistency with the new deviation (σi+1). If

consistent, we retain the candidate. If inconsistent, we reject the candidate. However, there may

be a more complex candidate, constructed from the rejected candidate, that is consistent, and we

need to explore the resultant possibilities. We add newly created candidates which are consistent

to the new diagnosis (di+1). We then prune the new diagnosis to make it minimal and to eliminate

candidates above the candidate cardinality limit l (Assumption 1).

Because multiple fault diagnosis builds on single fault diagnosis, we first explain hypothesis

refinement for single faults, and then for multiple faults. The RefineHypotheses algorithm has a

different implementation in each case, although setting l = 1 in the multiple fault algorithm reduces

it to the single fault algorithm.

Refining Single Fault Hypotheses

First, let us take the simplest case of single fault diagnosis (SFD) in a continuous system. Since

candidates can only be single faults, we simplify our representation of a candidate c to a single fault

rather than a set of faults, and omit the mode, i.e., c = f .

When a measurement deviation occurs, we check if each candidate is consistent. Consistent

candidates are retained and inconsistent candidates dropped. We need to be able to define how

a candidate is consistent, i.e., what are the possible traces that the candidate may be linked to.

Consistency is defined formally through the use of a language for a candidate. For SFD in continuous

systems, these languages correspond directly to the fault languages. Given a complete fault trace, we

can check which fault languages contain the trace, and this provides our set of consistent faults, i.e.,

our diagnosis. Clearly, traces are built up over time as measurements deviate. Therefore, we check

consistency in an incremental manner. Given a partial trace, the set of consistent faults is given by

those whose language contains a trace that is an extension of the given partial trace. In simpler

terms, given a new measurement deviation, a candidate (i.e., fault) is consistent if the signature
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Algorithm 4 di+1 ← RefineHypotheses(di, σi+1) (Single Fault Diagnosis)
di+1 ← ∅
for all fi ∈ di do

if fi consistent with λiσi+1 then
di+1 ← di+1 ∪ {fi}

return di+1

of the fault on that measurement matches, and the sequence of measurement deviations up to the

current point in time satisfies the measurement orderings.

Matching the orderings is straightforward, but matching the signatures has two special cases.

The first is the * symbol that may be produced during forward propagation due to an ambiguity in

the qualitative arithmetic. The * symbol may manifest as +, -, or 0 in the symbol generation. So the

* symbol will match any observed deviation. For example, an observed 0+ will match a predicted 0*.

As described previously, the event-based fault models represent both possible deviations. The second

special case is a 0 observation for the slope. In our symbol generation procedure, a 0 computation

for the slope occurs when the slope cannot be determined to be + or - within the slope window. This

may happen either because the slope is truly zero or very small over the window. But, we assume

that if a 0 slope is calculated, then the observed discrepancy is a discontinuity. So, for example, an

observed -0 would not match with a predicted effect of 0- but would match with -0 and -+.

RefineHypotheses for SFD is shown as Algorithm 4. The new diagnosis, di+1, is formed from

the old diagnosis di, by retaining consistent candidates and dropping inconsistent candidates. So,

consistency is checked in an incremental manner. We denote by λi the trace from event σ0 up to

σi. Given the new deviation, σi+1, the new trace is λiσi+1. Before the new deviation, all faults in

the diagnosis are known to be consistent with λi. When a new deviation occurs, we need to make

sure each fault is still consistent. We can do this by checking that the predicted signature matches

the observed effect and that the orderings are satisfied. Since we know orderings have been satisfied

up to the current point, then to check if the new deviation is consistent, we only need to check it

against measurements that have not yet deviated. That is, we can ignore measurements which have

already deviated in checking the orderings. So, in a sense, we are projecting out already deviated

measurements, and checking consistency with the rest of the measurements for the signatures and

orderings. After all measurements deviate, the diagnosis will contain only faults for which the final

trace belongs to their fault language or can be extended to a larger trace in their language.

Example. Assume we observe i0−1 as the first deviation for the circuit of Fig. 28. Both R+
1 and

C−1 match the signature. However, the prediction for C−1 is that either v2 or i3 will deviate before

i1, so C−1 is not consistent. The prediction for R+
1 is that i1 will deviate first, so R+

1 is consistent.
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Figure 33: Faulty versus nominal behavior for the circuit measurements. R+
2 (50% increase) is

injected at 5.00 s and R−1 (50% decrease) at 5.50 s.

We should next observe v0−
2 and i0−3 in either order, thus the full fault trace will be i0−1 v0−

2 i0−3 or

i0−1 i0−3 v0−
2 .

Refining Multiple Fault Hypotheses

We now take the case of multiple fault diagnosis (MFD) in a continuous system. For this, we omit

the mode to simplify our representation of a candidate c, i.e., c = Fi, where Fi ⊆ F .

Checking consistency for MFD is more complex than SFD due to (i) fault masking, which

is a function of fault magnitudes, which are unknown, and (ii) relative time of individual fault

occurrences, which are also unknown. Therefore, the language of a candidate for MFD is actually

formed by some sort of composition of the possible traces of the faults it contains. We need to

analyze the effect of multiple faults on the signatures and orderings to correctly characterize the

candidate language and, thus, consistency, for MFD.

Example. Assume R−1 and R+
2 both occur, and R+

2 happens before R−1 , as shown in Fig. 33. In

this example, all nominal parameter values are chosen to be 1. Here, the fault trace is i−+
3 v0+

2 i0+1 .

This sequence of measurement deviations is not consistent with any single fault. It matches with

R+
2 up until the third deviation. If we made the single fault assumption, R+

2 would be dropped. For

MFD, we must look for additional explanations beyond single faults that can cause the observed

behavior.

What we find is that when multiple faults occur, a conservative estimate of the deviation on

a single measurement can be expressed as the union of the individual signatures. So, with R−1

and R+
2 occurring together, we may see either 0+ or 0- on i1, only 0+ on v2, and 0+ or -+ on i3.

However, these must be constrained by the measurement orderings. For example, a fault trace such

as i0+3 v0+
2 i0−1 is not possible if these two faults occur together, because even though the signatures
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Figure 34: Faulty versus nominal behavior for the circuit measurements. R+
2 (50% increase) is

injected at 5.00 s and R−1 (75% decrease) at 5.00 s.

all belong to either R−1 or R+
2 , the sequence of the signatures does not match, i.e., orderings are

necessary for correctly characterizing the possible traces resulting from multiple faults. Either i0+1

(from R−1 ) or i−+
3 (from R+

2 ) should have occurred as the first deviation.

This concept relates back to the derivation of measurement orderings from the TCG. Assume a

fault f1 produces the fault trace m0+
1 m0+

2 m0+
3 and a fault f2 produces the fault trace m0−

3 m0−
2 m0−

1 .

We cannot see a trace such as m0+
1 m0−

2 m0+
3 . The first deviation (from f1) is possible, but the second

(from f2) is not. This is because the orderings imply that the fastest path from f2 to m2 is through

m3, so in order to see f2’s effect on m2, m3 would have to deviate first. If f2 had occurred, we would

have to see its deviation on m3 or some other deviation on m3 from another fault that masks f2’s

effect before we can see f2’s deviation on m2.

So, because of masking, the signatures are found in the union of the signatures of the individual

faults, but must be constrained by orderings. Relative time of fault occurrence matters as well, and

in conjunction with fault masking, implies that multiple faults occurring together can manifest in

many different ways.

Example. Fig. 34 shows again R−1 and R+
2 both occurring, but this time simultaneously, and with

R−1 having a larger magnitude. Now, the observations are the same but the sequence changes.

With these magnitudes and fault occurrence times, the trace changes to i−+
3 i0+1 v0+

2 . Similarly,

we can imagine R1 occurring later and not even observing its effects as initial deviations on the

measurements. Or, R+
2 may occur at a larger magnitude, and so we observe i0−1 instead of i0+1 .

Clearly, relative times of fault occurrence and fault magnitudes play a large role. Our approach

can only be viewed as a best effort paradigm, because we can only hypothesize the occurrence

of faults for which we actually see consistent deviations. Just as with single fault diagnosis, this

is a conservative approach. We will produce candidates for which we see consistent deviations,

84



0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

i
1

Time (s)

i 1(t
) i

1
0+ @ 5.71 s

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

v
2

Time (s)

v 2(t
)

v
2
0+ @ 5.16 s

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

i
3

Time (s)

i 3(t
)

i
3
−+ @ 5.00 s

 

 

Nominal
Faulty
Threshold

Figure 35: Faulty versus nominal behavior for the circuit measurements. R+
2 (50% increase) is

injected at 5.00 s and C+
1 (100% increase) at 5.50 s.

however, we will not explicitly generate nonminimal candidates for which minimal explanations are

consistent. For example, if two faults occur together, we can never determine with certainty that

both faults occurred if the effects are consistent with just one of the faults occurring by itself. Our

minimal diagnoses represent the possible certain candidates that we can obtain, but, as described in

Chapter III, cover nonminimal candidates which cannot be determined with certainty. Therefore,

we still end up with a diagnosis that represents all consistent possibilities.

Since multiple faults can produce many different possible measurement deviation sequences, the

distinguishability of the diagnosis algorithms reduces. That is, different combinations of faults can

produce the same traces, even if the single faults by themselves all produce unique traces. This is

demonstrated by the following example.

Example. Consider R+
2 and C+

1 occurring together, as shown in Fig. 35. The same fault trace

as the first example (Fig. 33) is observed, i.e., i−+
3 v0+

2 i0+1 . Therefore this particular fault trace

matches both candidate {R+
2 , C

+
1 } and candidate {R+

2 , R
−
1 }, even though the individual faults are

each distinguishable from each other.

These examples give us an intuitive idea of how to define the language of multiple-fault candidate,

i.e., what possible traces multiple faults can produce. As discussed, the measurements that deviated

up to a particular point play a large role in determining the possible traces. In the previous example,

i−+
3 forms the start of a fault trace for both C+

1 and R+
2 . The next deviation, v0+

2 , continues the

trace for R+
2 but not for C+

1 . The third deviation, i0+1 , continues a trace for C+
1 , although the

deviation in v2 that preceded it did not match C+
1 . So at each point, the consistent “new” faults

are those that match the deviation with respect to the previously deviated measurements projected

out. We can formalize the notion of measurement projection on a trace as follows.
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Definition 22 (Measurement Projection). A measurement projection for a trace over measurements

Mi, PMi
, is defined as

PMi
(ε) = ε

PMi(σm) =

 ε m /∈Mi

σm, m ∈Mi

PMi
(λσm) = PMi

(λ)PMi
(σ),

where ε is the empty trace. The measurement projection for a fault language L is defined as PMi
(L) =

{λ : PMi
(λ′) where λ′ ∈ L}.

Essentially, PMi
(λ) returns a version of λ without the events for measurements in M −Mi. For

example, P{i1,i3}(i
−+
3 v0+

2 i0−1 ) = i−+
3 i0−1 . We are interested in projecting out measurements that have

already deviated, so if Mi is the set of measurements that have already deviated, we use PM−Mi
.

Note also that Lf,M−Mi
= PM−Mi

(Lf,M ), i.e., the fault language computed with a subset of the

measurements M −Mi (those that have not yet deviated) is the same as that fault language with

the measurements in Mi (those that have deviated) projected out.

Using this concept, we can now begin to define the candidate language for MFD in continuous

systems. We start by defining a candidate trace, which extends our earlier notion of a fault trace

and is based on the notion of a prefix.

Definition 23 (Prefix). A trace λi is a prefix of trace λj , denoted by λi v λj , if there is some

(possibly empty) sequence of events λk that can extend λi such that λiλk = λj .

Definition 24 (Candidate Trace). An event trace λ = σ is a candidate trace for c = Fi, if σ v λ′ ∈

Lf,M for some f ∈ Fi. An event trace λ = λiσi+1 is a candidate trace for c = Fi, if λi is a candidate

trace for Fi, and σi+1 v λ′ ∈ Lf,M−Mi
for some f ∈ Fi. A candidate trace for c is denoted as λc.

We are only concerned with maximal traces, i.e., those for which all measurements that will

deviate for the faults of the candidate have deviated (as with fault traces).

Definition 25 (Maximal Candidate Trace). A candidate trace λc for c = Fi is maximal if for all

f ∈ Fi, Lf,M−Mi
= ∅, where Mi is the set of deviated measurements for λc.

Now, we can define the language of a candidate c = Fi, Lc,M , as the set of maximal candidate

traces for c.

Definition 26 (Candidate Language). The candidate language for candidate c = Fi and measure-

ments M , denoted as Lc,M , is the set of all maximal candidate traces λc.
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Example. Consider R+
2 and C+

1 occurring together, as shown in Fig. 35 with trace i−+
3 v0+

2 i0+1 . If

we inspect the fault models for these two faults, we can see that this corresponds to the first two

events in LR+
2 ,q1

and the first and third events in LC+
1 ,q1

, where the second event is skipped over.

After the first event, we advance in both fault models, i.e., the deviation may be from either fault.

Then, we project out i3, and the next event should be either v0+
2 (from R+

2 ) or v+−
2 (from C+

1 ). The

next event is v0+
2 which must have been caused by R+

2 . We then project out both i3 and v2, and

the next event should be i0−1 (from R+
2 ) or i0+1 (from C+

1 ). The next event is i0+1 , which must have

been caused by C+
1 .

The candidate language for a set of faults essentially contains all traces for which at each point

in the trace, there is a fault in the set whose abbreviated fault language (that with deviated mea-

surements projected out) contains a trace that starts with the new event. Clearly, this maps easily

back to incremental consistency checking, as with SFD. Before the new deviation, all fault sets in

the diagnosis are known to be consistent. When a new deviation occurs, we need to make sure each

candidate is still consistent. As the previous examples show, when new faults manifest, they must

respect the signatures and measurement orderings for the fault with respect to measurements that

have not already deviated due to other faults. So we can determine the faults that are consistent

with a new deviation, σi+1, by checking if the event forms the start of a valid trace in the fault

languages with deviated measurements, Mi (i.e., measurements for events in the current trace, λi),

projected out. We call this set of faults the hypothesis set.

Definition 27 (Hypothesis Set). For a fault set F = {f1, f2, . . . , fn} and deviated measurements

Mi, with fault languages {Lf1,M−Mi , Lf2,M−Mi , . . . , Lfn,M−Mi}, the hypothesis set hF,Mi(σi+1) for

the new event σi+1 is computed as the set of all f ∈ F such that there exists some λ ∈ Lf,M−Mi

where σi+1 v λ.

A hypothesis set contains a fault if the language for the fault over measurements which have not

yet deviated (M −Mi) is consistent with σi+1. A fault will be consistent if σi+1 forms the start of a

valid fault trace for its abbreviated language (Lf,M−Mi). The hypothesis set essentially represents

the set of “new” faults that may have occurred, although it may contain faults that are already in

the current diagnosis.

Hypothesis sets are used in constructing new diagnoses incrementally. A previous diagnosis

represents the set of candidates consistent up to the current point in time. Given a new event, can-

didates that are still consistent can be retained. However, candidates which are no longer consistent

can now be explained by a new version of the candidate containing at least one more fault in the
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hypothesis set. Each candidate represents a logical and of faults, and both d and h represent the

logical or of these candidates. So, we can construct the new diagnosis (i.e., what is true now) as the

old diagnosis d, anded with the hypothesis set h.

Definition 28 (∧ Operator). For diagnosis d and hypothesis set h, d in conjunction with h, denoted

as d ∧ h, is defined as {Fi ∪ {fj} : Fi ∈ d, fj ∈ h}.

As a second step, we need to prune the diagnosis by removing (i) any candidates with cardinality

above the limit l (Assumption 1), (ii) any candidate which is a superset of another (to make the

diagnosis minimal), and (iii) any candidate which violates fault persistency (Assumption 4). A

candidate that contains, e.g., both R+
1 and R−1 says that the same parameter changed twice, so

violates persistency. We define the overall operation using ∧l.

Definition 29 (∧l Operator). For diagnosis d and hypothesis set h, d∧l h is defined as {Fi ∈ d∧h :

|Fi| ≤ l, (¬∃Fj ∈ d ∧ h, Fj ⊂ Fi), Fi satisfies Assumption 4}.

If we choose the candidate cardinality limit l = 1, then the process reduces to SFD, and we can

obtain the new diagnosis simply by intersecting the old diagnosis with the hypothesis set. For SFD,

though, the hypothesis set does not even need to be derived in the first place, because we are only

concerned with faults in the hypothesis set that are already in the current diagnosis, i.e, we only

eliminate candidates from the current diagnosis, and never add to it.

Example. Assume we observe i−+
3 first, giving an initial diagnosis of {R+

2 , C
+
1 }. Since this is our

first deviation, our hypothesis set is also {R+
2 , C

+
1 }. Say that next we see v0+

2 . Now, ignoring i3, we

obtain the hypothesis set {R+
2 }. Given our previous diagnosis, our new diagnosis is our old diagnosis

anded with our hypothesis set. In this case, we obtain {R+
2 , C

+
1 R

+
2 }, or, as a minimal diagnosis,

{R+
2 }. If we next observe i0+1 , then ignoring i3 and v2, we get a hypothesis set of {R−1 , C+

1 }. Anding

this with our previous diagnosis, we obtain {R+
2 R
−
1 , R

+
2 C

+
1 }, and this agrees with Figs. 33 and 35.

The incremental consistency checking has similarities with GDE [3]. For example, consider the

fault signatures in Table 4 and the candidate lattice given in Fig. 36. The lattice represents the

space of possible candidates. In GDE, observations yield conflicts, which are used to generate new

diagnoses. A conflict is defined as a set of assumptions which cannot all be true, and thus support

a symptom (e.g., a1 ∧ a2 ∧ a3). In our approach, we obtain direct symptom to fault knowledge for

each single fault, i.e., fault signatures and measurement orderings, or fault models. So, instead of

representing the negated and of assumptions, we represent the or of negated assumptions. This

just applies De Morgan’s rule, so it is equivalent. Our negated assumptions are faults, i.e., an
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Table 4: Lattice Example Fault Signature Table

Fault m1 m2 m3

f1 0+ 0+ 0+
f2 0+ 0+ 0-
f3 0+ 0- 0+
f4 0- 0- 0-

Figure 36: Minimality in the Lattice Representation

assumption is that a fault has not occurred, so we obtain a1 ∧ a2 ∧ a3 ≡ a1 ∨ a2 ∨ a3 ≡ f1 ∨ f2 ∨ f3.

Thus conflicts are equivalent to the hypothesis sets of our approach. The difference is that GDE

performs this operation in the context of static models, but we generate ours correctly in a dynamic

setting.

In the lattice of Fig. 36, we may get a conflict C1 (or hypothesis set) of {f1, f2, f3}. So, each fault

by itself is consistent. The C1 line of the lattice then rules out f4 by itself as a consistent candidate.

The new maximal diagnosis is given by all the candidates above the line. Given a conflict C2 of

{f3, f4} allows us to eliminate candidates which do not contain either f3 or f4. Given both conflicts,

the maximal diagnosis is defined by the intersection of the two maximal diagnoses. In this case, the

minimal diagnosis is simply {f3}. The updating of the current diagnosis using conflicts is equivalent

to our updating of the current diagnosis using hypothesis sets. The main difference between the

approaches is our direct application to dynamic systems, through the use of event-based information

in forming the hypothesis sets.

A key contribution of the GDE approach is the notion of a minimal cover. Using conflicts (or

hypothesis sets) systematically obtains minimal diagnoses, because with each new conflict, we are

only increasing our current candidates by at most one additional fault. The RefineHypotheses

algorithm for MFD, shown as Algorithm 5, takes advantage of minimality. If all the candidates in

the current diagnosis can explain the new deviation, we retain the previous diagnosis, because it

89



Algorithm 5 di+1 ← RefineHypotheses(di, σi+1) (Multiple Fault Diagnosis)
di+1 ← ∅
if all c ∈ di consistent with λiσi+1 then
di+1 ← di

else
hi+1 ← ∅
Fi+1 ← PropagateBackward(σi+1, TCG)
for all fi+1 ∈ Fi+1 do
Pfi+1,M ← PropagateForward(fi+1,M, TCG)
if fi+1 consistent with σi+1 for M −Mi then
hi+1 ← hi+1 ∪ {fi+1}

di+1 ← di ∧l hi+1

return di+1

is minimal. If not, we obtain the hypothesis set, anding it with the previous diagnosis to obtain

the new diagnosis. We do this by first using PropagateBackward to obtain an initial set of single

faults for the new deviation, but since PropagateBackward does not use the full signature or use

orderings, it may generate faults that are inconsistent as single faults, given the full information. We

compute full predictions using PropagateForward, and use these to check consistency for the set of

measurements that have not yet deviated (M −Mi), where Mi denotes the set of measurements for

events in λi. We then compose the hypothesis set hi+1 with the old diagnosis di using ∧l, which

takes the logical and, and prunes the resultant diagnosis.

We achieve minimality through two operations. First, we only augment a candidate if it cannot

explain the current deviation. So in the previous example, we had a diagnosis of {R+
2 , C

+
1 } and

obtained v0+
2 . This is still consistent with the candidate R+

2 , so we do not seek out other candidates

which are consistent but not minimal, such as R+
2 R

+
1 . Since we see no direct evidence that R+

1

has occurred, we do not consider it. After composing the diagnosis with the hypothesis set, we

obtained {R+
2 , C

+
1 R

+
2 }. Our second operation is to prune this to make it minimal. We have seen no

direct evidence that C+
1 and R+

2 must have occurred together (since there is an alternate, minimal

explanation, i.e., that R+
2 by itself occurred), so remove it from the diagnosis. As described in

Chapter III, we can do this because the candidate {R+
2 } covers the candidate {C+

1 , R
+
2 }.

Although we employ a fault size limit of l, we are actually limited in what we can distinguish

by the number of measurements, |M |. Each new measurement deviation can only add one fault to

a given candidate, so a candidate cannot grow in size beyond |M |. Therefore our minimal diagnosis

will never have candidates above size |M |.
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Terminating Fault Isolation

Candidate tracking stops when the termination condition is true. Determining such a condition is

an important issue, and nontrivial for MFD. In SFD, we can terminate whenever we have a unique

candidate left. With this information, fault identification modules can use the history of measure-

ments to determine fault magnitude [14, 45]. A unique candidate may not always be attainable if

multiple candidates may produce the same effects. In this case, the algorithm must wait until all

measurements that should deviate have deviated, or use a time limit.

In MFD, a unique candidate may be obtained, but the next measurement that deviates can

always increase the size of the diagnosis. Therefore, ending isolation after a unique candidate is

obtained may ignore future evidence of more faults. The most conclusive minimal diagnosis can

only be obtained after all measurements have deviated. However, as we have seen, it may be the

case that more faults have occurred, but their effects have been completely masked. These candidates

would be covered by the minimal diagnosis, but the approach can only be viewed as a best effort

paradigm. We can only be sure that faults have occurred if we see direct evidence that match only

that fault. If faults are assumed to be independent, then we can assign a priori probabilities of

individual fault occurrence, and use this to look for a unique most likely candidate in the diagnosis.

Using probabilities in this way still does not help establish when to terminate isolation, because

new measurement deviations can always eliminate previous candidates in favor of larger, less likely

candidates. A time limit may be used, or, if combined with quantitative methods, we can wait until

the probability of some candidate approaches unity and reaches a threshold probability level, e.g.,

as in the quantization-based hidden Markov model methods [68, 69]. We will show in Chapter VII

how we can determine whether it is possible for a current diagnosis to change if more deviations

occur, and thus enable early termination.

Summary

Hypothesis generation produces an initial set of candidates to start monitoring. Prediction provides

fault signatures and relative measurement orderings, and progressive monitoring uses these to track

fault candidates as new events occur in the system. The algorithms are different depending on

the assumptions (i.e., single versus multiple faults), but follow the same basic approach. Because

minimality and a fault size limit are used, the isolation algorithms are efficient.

Like the previous Transcend approach, our qualitative fault isolation approach depends heavily

on correct symbol generation for correct diagnosis. If an incorrect symbol is provided, then correct
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candidates may be eliminated. Therefore tuning the fault detectors and symbol generators is very

important in this framework and robust techniques for signal to symbol transformation are neces-

sary [47]. The use of statistical tests helps make the symbol generation step robust. This is critical

to avoid generating incorrect fault candidates and eliminating correct candidates.

Fault detection is also crucial in using measurement orderings. If the fault detector for one

measurement is more sensitive than another, then it will have a faster response. This may provide

inaccurate ordering information to the fault isolation algorithms, which may result in correct can-

didates being eliminated. In practice, it is desirable to tune the fault detectors to similar sensitivity

levels. We do this by using similar parameter values for all fault detectors.

As described, our approach to multiple fault diagnosis uses ideas from consistency-based meth-

ods applied to static systems [2, 3]. We focus on dynamic systems, so we use information on fault

transients to form conflicts and refine diagnoses. Unlike previous work, our methodology also in-

corporates temporal information to increase the discriminatory power of the measurements. Other

aspects of our approach, such as using candidate cardinality limits, has been used in other work,

such as the signed digraph approach in [122]. Consideration of smaller combinations of faults before

larger combinations to reduce computational complexity is also used by [122], and has been used

in our earlier work in [38]. Other signed digraph approaches also investigate multiple faults [123],

however most signed digraphs do not account for the effects of integration and time delays. Other

methods for multiple faults use fault propagation graphs which abstract all diagnostic information

to tests and alarms, which rely heavily on properly designed tests but do not address the test design

problem [124–127]. Our use of incremental consistency checking is also similar to sequential testing

approaches [128,129].

One of the main contributions of this chapter is the introduction of relative measurement order-

ings into qualitative diagnosis. We combined measurement orderings with fault signatures to form

an event-based framework for diagnosis, based on fault traces, fault languages, and fault models. We

also described how to check consistency of candidates and form new diagnoses based on the event-

based information. In the next chapter, we describe how this work extends to hybrid systems and

isolation of both parametric and discrete faults, based on the Hybrid Transcend methodology [14].
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CHAPTER VI

QUALITATIVE FAULT ISOLATION IN HYBRID SYSTEMS

This chapter extends the qualitative fault isolation schemes to hybrid systems, where the continuous

system behavior may be interspersed with discrete configuration (mode) changes in the system.

Fault isolation is still based on observing deviations from nominal behavior in the measurements,

however, the algorithms must now deal with mode changes. This chapter builds up the theory

for fault isolation in hybrid systems based on measurement deviation events, and describes the

associated algorithms for fault isolation. The results of this chapter extend the Hybrid Transcend

methodology described in [14,22].

In hybrid systems, mode changes may occur between fault occurrence and detection, and also

after fault detection. Some of these mode changes may be controlled, i.e., based on known con-

troller output, but some may also be autonomous, i.e., the configuration change is a function of

the system variables or unobservable fault events. Nominal autonomous mode transitions cannot

be predicted after fault occurrence because a correct model of the system is no longer known [14].

This complicates the diagnosis task, and, therefore, requires reasoning about possible mode changes

during both hypothesis generation and candidate tracking. This reasoning is performed in Hybrid

Transcend [14]. We adopt the Hybrid Transcend framework, and extend the diagnosis scheme

to include discrete faults attributed to switching elements.

The diagnoser architecture for hybrid systems is shown in Fig. 37. Given an initial measurement

deviation event, σ0, the diagnoser produces an initial diagnosis, i.e., set of fault hypotheses, d0,

which includes candidates for different possible modes of fault occurrence. The initial diagnosis

triggers prediction, which generates the initial set of predictions, P0, i.e., fault signatures and relative

measurement orderings, for all the candidates in d0 for their hypothesized modes. Tracking further

measurement deviations and controlled mode change events updates the candidate set. Measurement

deviations may require hypothesizing possible autonomous mode changes, Q′i, which are passed to

the prediction module to produce new predictions, Pi, when the mode changes or when multiple

fault hypotheses are considered. When controlled mode changes, σq, occur, which are known, new

predictions are also necessary. After each new event, candidate tracking produces an intermediate

diagnosis, di. A user-specified stopping criterion terminates isolation and provides the final diagnosis,

d.
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Figure 37: Event-based diagnoser architecture for hybrid systems.

The previous Hybrid Transcend approach assumed only single, abrupt, parametric faults, and

did not utilize the temporal order of the measurement deviations in the fault isolation task. We

incorporate measurement orderings into the approach, and show how the extended form of the

temporal causal graph can be used for integrated parametric, sensor, and discrete fault isolation [36,

37]. Further, we relax the single fault assumption and allow multiple faults to occur, and provide

updated algorithms for multiple fault isolation in hybrid systems. The results provided in this

chapter are used in diagnoser design for hybrid systems, described in Chapter VII.

The chapter is organized as follows. We first describe the hypothesis generation procedure. Then,

we describe how we extend event-based fault modeling to hybrid systems. We next discuss how fault

isolation progresses as more events are provided, and how it may terminate. We conclude with a

summary of the approach and comparisons to related approaches.

Hybrid Hypothesis Generation

When an initial measurement occurs, generating a + or - symbol representing whether the signal

residual increased or decreased, respectively, the hybrid hypothesis generation uses the symbol and

hypothesized system mode at the time of fault detection, q̂(td), to produce a consistent set of initial

fault candidates. We extend hypothesis generation in Hybrid Transcend by hypothesizing the

occurrence of discrete faults.

Determining Possible Modes of Fault Occurrence

Because there is a delay associated with fault detection, in many cases faults will not be detected at

exactly the point of fault occurrence. Due to this delay, mode changes may occur between the actual

time point of fault occurrence and its detection. This requires that we hypothesize the true mode of

fault occurrence in order to produce consistent candidates and form the initial diagnosis [14]. For

example, if the previously known mode was that a particular switch was already off, then we should
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not generate a stuck-off fault of the switch as a candidate. In the following, we use the Hybrid

Transcend approach presented in [14] to determine the true mode of fault occurrence, but include

discrete fault modes.

Immediately before the time of fault occurrence, tf , the system was operating nominally in some

mode q(t−f ). The fault, however, is only detected at td ≥ tf , when the system is in some mode q(td).

Controlled and autonomous mode changes may have occurred during the interval [tf , td], so it may

be the case that q(t−f ) 6= q(td). If a discrete fault occurred, then, since discrete faults induce mode

changes in the system, q(t−f ) 6= q(t+f ). For parametric faults, though, the mode immediately before

and immediately after the fault occurrence is the same, i.e., q(t−f ) = q(t+f ).

At the time of fault detection, the system behavior has possibly progressed to some new mode,

but the mode predicted by the hybrid observer may be different. Since we no longer have an accurate

estimate of the system state when a fault occurs, we actually obtain a set of possible modes of fault

occurrence, Q̂t−f . In order to simplify this problem, we assume that we can accurately track the

system mode under nominal conditions [14].

Assumption 9 (Accurate Mode Tracking Under Nominal Conditions). For t < tf , q̂(t) = q(t).

Recall that we assume the observer-estimated mode trajectory is no more than nback mode

changes from the mode immediately preceding fault occurrence, i.e., q(t−f ) (Assumption 2). Then,

given Assumptions 2 and 9, we can guarantee the true mode of fault occurrence, q(t−f ), belongs to our

observer-estimated mode trajectory, and is in {q̂i−nback , q̂i−nback+1, . . . , q̂i − 1, q̂i}, where q̂i = q̂(td).

We define the set of possible modes of fault occurrence as Q̂t−f . Fig. 38, shows how this works. Given

nback = 2, the possible modes of fault occurrence are given by the set Q̂t−f . If modes are not changed

at high frequency, nback is typically set to 2 [14]. Any number of unpredicted mode changes may

have occurred from the true q(t−f ), but these will be hypothesized in a forward reasoning process,

described later.

The RollBack procedure performs a backward mode search starting from q̂(td) to produce the set

of possible modes, Q̂t−f , in which the fault may have occurred [14]. Since we assume discontinuities

are detected at the point of fault occurrence (Assumption 6), then, if a discontinuity is observed,

Q̂t−f
= {q̂(td)}. Since abrupt parametric faults and discrete faults always produce discontinuities

on at least one system variable, it is useful to measure these variables because it pinpoints exactly

q(t−f ). For example, an abrupt capacitance fault will produce a discontinuity on the voltage across

the capacitor, and a switch turning on or off will produce a discontinuity in the value of the current

through the switch.
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Figure 38: Computing the true mode of fault occurrence.

Figure 39: Switched circuit.

(a) Causal HBG when the switch is off. (b) Causal HBG when the switch is on.

Figure 40: Causal HBGs for the switched circuit.

Example. Consider the circuit given in Fig. 39, which will be used throughout the chapter. The cor-

responding causal HBGs for the different modes are shown in Fig. 40. We take Q = {q0, q1, qτ0 , qτ1},

representing the nominal modes q0 for the switch off and q1 for the switch on, and the faulty modes,

qτ0 for the stuck-off fault, τ0, and qτ1 for the stuck-on fault, τ1. Consider that a fault is detected

when q̂(td) = q1. If the mode change to q1 happened recently, then the fault may have occurred

before the mode event when the system was still in q0. In this case, Q̂t−f = {q0, q1}, from which

either τ1 or τ0 may occur. But, if the deviation was detected as a discontinuity, then Q̂t−f
= {q1},

from which only τ0 may occur.
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Deriving Hypotheses

We need to derive consistent fault candidates for all potential modes of fault occurrence, subject

to the stated assumptions. In order to produce correct candidates, we need to treat autonomous

mode changes differently from Hybrid Transcend. As a motivating example, consider a circuit

that contains a resistance and a circuit breaker on the same line. Assume a fault that decreases

the resistance, causing an increase in the current, which in turn causes the circuit breaker to trip.

Because the circuit breaker operation is fast, we may only observe a decrease in the current due to

the circuit breaker tripping, rather than the initial increase in current due to the resistance fault.

Since the current model of the system is incorrect after fault occurrence, we cannot correctly predict

nominal autonomous mode changes [14]. In Hybrid Transcend, however, since only parametric

faults are dealt with, it is assumed that the first observed measurement deviation will be from a

parametric fault. With this assumption, the RollBack procedure in Hybrid Transcend will include

the correct mode of fault occurrence, i.e., that where the circuit breaker is on. However, for the

actual fault, i.e., the resistance decrease, the current should increase, but for this situation a decrease

is observed. Therefore, the correct candidate will not be identified. Even if the mode where the

circuit breaker is off is considered, the prediction of the correct fault is no effect on the current,

because in that mode the circuit breaker determines the current (i.e., it is set to zero). Still, the

correct candidate will not be identified.

To address this problem, we need to link unpredicted nominal autonomous mode changes back

to the measurement deviations that they may produce. In our approach, we treat unpredicted, but

nominal, autonomous mode changes after a fault occurrence the same as we treat discrete faults (un-

predicted, but faulty, autonomous mode changes), because both produce deviations from predicted

nominal behavior. As a result, when we generate hypotheses, we determine what can happen from

the current expected mode of fault occurrence, which includes parametric faults, discrete faults,

and unpredicted nominal autonomous mode changes. So, we include similar “fault” events for both

unpredicted nominal autonomous mode changes and discrete faults, assuming that the autonomous

mode changes are of the form where their effects can be predicted (like discrete faults). As a result,

in the previous example, we will generate as a hypothesis that the circuit breaker has tripped, be-

cause we can predict that it would have caused the decrease in current. Since we saw a deviation

from normal behavior, we would have to conclude that some fault, for which we have not yet seen

any evidence, has occurred that in turn caused the circuit breaker to trip. Knowing the CSPEC
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of the circuit breaker allows us to determine how the variables it depends on may have changed to

cause the mode change, which can be mapped back to faults using backward propagation.

So, we need to link the initial measurement deviations back to possible parametric faults, discrete

faults, or nominal, but unpredicted, autonomous mode changes. Given a measurement deviation,

σ, defined by a measurement m and sign of deviation s, and a TCG for a mode (V,E, L, lE)q, the

hypothesis derivation algorithm computes the possible faults that may have occurred in that mode.

PropagateBackward extends the algorithm given in [20] by implementing steps to determine which

unpredicted autonomous mode changes could have caused the observed deviation σ in addition to

the steps that determine if parametric faults are consistent with σ. The TCG for each possible

q̂(t−f ) is used, and determines what could have happened from that mode, i.e., what are the changes

in the current mode that can explain the initial measurement deviation. These may be changes in

parameter values, changes in variables (for additive faults), or the occurrence of fault events that

correspond to discrete faults or unpredicted nominal autonomous mode changes.

The extended PropagateBackward is given as Algorithm 6. Starting from the vertex associated

with the deviated measurement, vm, PropagateBackward traverses the graph backward, visiting

instantaneous edges before integrating edges. As an edge is handled, the current sign and the edge

label are used to determine the sign to propagate to the predecessor variable. The DetermineSign

function performs this operation, and simply produces a consistent sign. If not yet visited, the

predecessor will be added to the Vpend queue. If the edge is parametric, GetCandidate determines if

the parameter change is a possible fault and returns both the parameter and the sign of its change,

or returns nothing. If the predecessor variable itself is a candidate (i.e., because it represents an

additive fault represented as a source element) it is added as a fault hypothesis. See [20] for further

details on implicating parametric faults.

To handle fault events, we need to extend the traditional backward propagation algorithm. If the

predecessor vertex is a fault event vertex (where the fault event is given by τv), then it is determined

whether the event is possible from the known mode (based on the mode transition function µ),

and if so, whether it is consistent with the observation. If, according to the TCG, the variable

was supposed to go to zero, and it was positive and decreased or negative and increased, or was

supposed to go nonzero, and either increased or decreased, then it is added. For the +1 and −1

edges, consistency is checked. Recall that the TCG construction assumes variable values are positive,

so, for example, if the edge has a +1 label and an increase was observed, this is only consistent with

the fault event occurring if the variable is positive, and if the variable was negative, then a decrease

would have to be observed for it to be consistent. The signs of estimated variables are also required
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Algorithm 6 Fq ← PropagateBackward(σ, (V,E, L, lE)q)
(m, s)← σ
Vpend ← {(vm, s)}
Vvisited ← {vm}
while Vpend 6= ∅ do

(v, s)← PopFront(Vpend)
for all (v′, l, v) ∈ E do

if v′ is not a fault event then
if v′ /∈ Vvisited then
s′ ← DetermineSign(v, s, l)
if l is instantaneous then

PushBack(Vpend, (v
′, s′))

else
PushFront(Vpend, (v

′, s′))
if l is parametric then
Fq ← Fq ∪ {GetCandidate(v, s, l)}

if v′s ∈ F then
Fq ← Fq ∪ {v′s}

else
if µ(τv, q) 6= ∅ then

if l = Z ∧ ((s = - ∧ v̂ > 0) ∨ (s = + ∧ v̂ < 0)) then
Fq ← F1 ∪ {τv}

else if l = N ∧ v̂ = 0 ∧ (s = + ∨ s = -) then
Fq ← F1 ∪ {τv}

else if l = +1 ∧ ((s = + ∧ v̂ > 0) ∨ (s = - ∧ v̂ < 0)) then
Fq ← F1 ∪ {τv}

else if l = −1 ∧ ((s = - ∧ v̂ > 0) ∨ (s = + ∧ v̂ < 0)) then
Fq ← F1 ∪ {τv}

for parametric faults, because determining how a parameter increase or decrease affects the edge’s

destination vertex depends on the sign of the variable associated with that vertex. Estimated values

of all variables in the TCG can be computed from the estimated state variables, so these are all

available from the observer.

Example. The TCG for the circuit of Fig. 39 for mode q1 is given in Fig. 41. Consider that a

decrease in the measured current through R2, or i−3 , is observed when the switch was expected to be

closed. In the circuit, we consider F = {C+
1 , C

−
1 , L

+
1 , L

−
1 , R

+
1 , R

−
1 , R

+
2 , R

−
2 , τ0, τ1}, for faults in the

capacitor, inductor, resistances, and switch. Propagating back in the TCG for the nominal mode

q1, the decrease in i3 can be explained by f−7 which in turn can be explained by the fault event

τ0, given f7 is positive. It can also be explained by R+
2 or e−7 . Propagating backwards further

can link the change in e−7 to C+
1 , R+

1 , and L+
1 . Thus PropagateBackward for q1 would return

{C+
1 , L

+
1 , R

+
1 , R

+
2 , τ0}.

The overall procedure, GenerateHypotheses, is shown as Algorithm 7. Given the initial event

σ0, and given the estimated mode at the time of fault detection, q̂(td), the algorithm firsts rolls back

to generate possible modes of fault occurrence. For each of these modes, it generates fault hypotheses
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Figure 41: TCG for PropagateBackward example.

Algorithm 7 d0 ← GenerateHypotheses(σ0, q̂(td))
d0 ← ∅
Q̂
t−
f
← RollBack(q̂(td))

for all q̂ ∈ Q̂
t−
f

do

Fq ← PropagateBackward(σ0, TCGq̂)
for all f ∈ Fq do
d0 ← d0 ∪ {(f, µ(f, q(t−f )))}

return d0

using PropagateBackward. It then forms candidates out of these (i.e., fault, mode pairs) and adds

these to d0, which becomes the initial diagnosis. For discrete faults, it provides the mode induced by

the discrete fault, as determined by the mode transition function µ. In other words, it determines

q̂(t+f ) from q̂(t−f ) given the fault event. If the fault is parametric, it will not change the expected

mode.

Example. Consider again that i−3 is observed and the mode is known to be q1. Since there are

no autonomous transitions that may occur other than discrete faults, the only possible q̂(t−f ) ∈ Q̂tf
is that where the switch is on, i.e., q1. Therefore, the initial diagnosis, d0, is the set of faults

returned by PropagateBackward in mode q1, augmented with the induced fault modes, i.e., d0 =

{(C+
1 , q1),(L+

1 , q1),(R+
1 , q1),(R+

2 , q1),(τ0, qτ0)}.

Prediction

In hybrid systems, prediction must account for the hypothesized mode. We extend the prediction

algorithm in Hybrid Transcend to generate signatures for unpredicted autonomous mode changes.

We also extend our earlier event-based modeling framework to hybrid systems.

As discussed in Chapter IV, mode changes in HBGs explicitly set some variables from nonzero

to zero or from zero to nonzero, which forms a special class of discontinuities. We augment fault

signatures to include this discrete change information, because it directly indicates unpredicted
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autonomous mode changes. We include in the signature additional symbols N, Z, and X, implying

zero to nonzero, nonzero to zero, or no discrete change behavior in the measurement from the

estimate. Given a measurement m, deviation d, and discrete change dc, we write a signature as an

event using md,dc, e.g. m+−,X
1 . The extended definition of a fault signature is as follows.

Definition 30 ((Extended) Fault Signature). A fault signature for a fault f and measurement m

in mode q is the qualitative magnitude, slope, and discrete change in m caused by the occurrence

of f , and is denoted by σf,m,q ∈ Σf,m,q. We denote the set of all fault signatures for fault f and

measurements M in mode q as Σf,M,q, where Σf,M,q =
⋃
m∈M

Σf,m,q.

In hybrid systems, relative measurement orderings are now defined with respect to a particular

mode, i.e., Ωf,M,q represents the orderings for fault f over measurements M in mode q. The notions

of fault traces, fault languages, and fault models extend similarly. Therefore, for each fault f in

each mode q we have a fault language Lf,M,q and a fault model Lf,M,q. However, we also need to

generate fault models for discrete faults, and to do this, we need to update the PropagateForward

algorithm. Note that GenerateHypotheses (Algorithm 7) applies the mode change induced by the

fault. This is especially important for discrete faults, because this is the correct mode in which to

make predictions. So in prediction, the goal is to find out the effects of a discrete fault in this mode.

For a given mode q, the prediction algorithm computes fault signatures and relative measure-

ment orderings given a parametric or discrete fault f , the set of measurements M , and a TCG,

(V,E, L, lE)q. The extension to the algorithm comes in UpdateSignature, shown as Function 8.

For each fault, the normal increase/decrease propagation needs to occur in addition to the propa-

gation of the discrete change symbol. The increase/decrease propagation works as in [20], but for

discrete faults,the increase or decrease propagation depends on whether the fault causes the junction

to turn on or off. If the fault results in a junction turning off, then a decrease is propagated if the

junction variable was last known to be positive, otherwise an increase is propagated. The estimated

variable sign is needed for parametric faults as well, because an increase or decrease in a parameter

value will have a different effect if the immediately affected variable is positive or negative. If the

fault results in a junction turning on, then, in general, we do not know whether the junction variables

will become positive or negative. However, this is determined during PropagateBackward, as shown

in the following example.

Example. Consider the τ1 fault for the circuit. The TCGs for the different modes are shown in

Fig. 42. Consider that we observe v+
2 in mode q0. When we propagate backward (Fig. 42a), we map

v+
2 to f+

6 , which in turn implicates the τ1 fault. So in this case, if τ1 is the actual fault, it will cause
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Function 8 σv′ ← UpdateSignature(v, σv, l, v′, σ′v)
assign consistent signature to σv′

if l = Z then
σv′(dc) = Z

else if l = N then
σv′(dc) = N

else if σv(dc) = Z ∧ l is equality or of θ or 1/θ form then
σv′(dc) = Z

else if σv(dc) = N ∧ l is equality or of θ or 1/θ form then
σv′(dc) = N

else
σv′(dc) = X

f+
6 . Since the flows at a 1-junction are equal, the + change should be propagated forward to both

f6 and f7 in the TCG for the fault mode, qτ1 (Fig. 42d). Since we assume a consistent direction of

change for the effort and flow of the determining bond (Assumption 8), f7 and e7 should change in

the same direction, so we also know what to propagate to e7.

For propagation of the discrete change value of the signature, which is denoted by dc in the

UpdateSignatures function, parametric faults and vertices with the X value (no discrete change

behavior) initially propagate the X. A Z symbol (variable goes to from nonzero to zero) will be

propagated when an edge with a label of Z is traversed, and will continue propagating along paths

of the θ, 1/θ, and = form. Similarly, an N symbol (variable goes from zero to nonzero) will be

propagated when an edge with a label of N is traversed, and will continue propagating along paths

of the θ, 1/θ, and = form. When an edge that is not of that form is encountered, X propagates along

the rest of the paths.

The signatures and orderings for the circuit of Fig. 39 are shown in Table 5. In the circuit, we

define the measurements as M = {i1, v2, i3}, or the current through L1, the voltage across C2, and

the current through the switch Sw1, respectively. In the HBG, these correspond to f2, the flow of

bond 2, e5, the effort of bond 5, and f7, the flow of bond 7. In deriving the signatures, we have

assumed that variable values are nominally positive.

Example. Consider the τ0 fault. The fault-induced mode, q̂(t+f ) = qτ0 , is given by the TCG in

Fig. 26a. Propagation begins at the fault event τ0. This results in an immediate change in p1,

resulting in a signature of (-0,Z), and an immediate decrease in f7, assuming f7 was positive,

resulting in (-*,Z) for i31. It will also cause a decrease in f6, which will propagate to the rest of

the system. The Z symbol is also propagated to the immediate variables. This propagation stops at

f5, because f5 is f4− f6. The residual for v2 will exhibit a first-order increase due to the integration
1Even though the TCG does not predict the *, it is necessary to include. The slope in the new mode does not

change, but the slope in the estimated mode may change, so the residual may have a nonzero slope.
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(a) TCG for mode q0.

(b) TCG for mode q1.

(c) TCG for mode qτ0 .

(d) TCG for mode qτ1 .

Figure 42: TCGs for the nominal and fault modes.

along the edge labeled with 1/C1dt, resulting in a signature of (0+,X). The increase propagates to
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Table 5: Fault Signatures and Relative Measurement Orderings for the Switched Circuit

Candidate i1 v2 i3 Measurement Orderings

(C+
1 , q0) 0+,X -+,X 00,X v2 ≺ i1, i1 ≺ i3, v2 ≺ i3

(C−1 , q0) 0-,X +-,X 00,X v2 ≺ i1, i1 ≺ i3, v2 ≺ i3
(L+

1 , q0) -+,X 0-,X 00,X i1 ≺ v2, i1 ≺ i3, v2 ≺ i3
(L−1 , q0) +-,X 0+,X 00,X i1 ≺ v2, i1 ≺ i3, v2 ≺ i3
(R+

1 , q0) 0-,X 0-,X 00,X i1 ≺ v2, i1 ≺ i3, v2 ≺ i3
(R−1 , q0) 0+,X 0+,X 00,X i1 ≺ v2, i1 ≺ i3, v2 ≺ i3
(R+

2 , q0) 00,X 00,X 00,X ∅
(R−2 , q0) 00,X 00,X 00,X ∅
(C+

1 , q1) 0+,X -+,X -+,X v2 ≺ i1, i3 ≺ i1
(C−1 , q1) 0-,X +-,X +-,X v2 ≺ i1, i3 ≺ i1
(L+

1 , q1) -+,X 0-,X 0-,X i1 ≺ v2, i1 ≺ i3
(L−1 , q1) +-,X 0+,X 0+,X i1 ≺ v2, i1 ≺ i3
(R+

1 , q1) 0-,X 0-,X 0-,X i1 ≺ v2, i1 ≺ i3
(R−1 , q1) 0+,X 0+,X 0+,X i1 ≺ v2, i1 ≺ i3
(R+

2 , q1) 0-,X 0+,X -+,X v2 ≺ i1, i3 ≺ i1, i3 ≺ v2
(R−2 , q1) 0+,X 0-,X +-,X v2 ≺ i1, i3 ≺ i1, i3 ≺ v2
(τ0, qτ0) 0-,X 0+,X -*,Z v2 ≺ i1, i3 ≺ i1, i3 ≺ v2
(τ1, qτ1) 0+,X 0-,X +-,N v2 ≺ i1, i3 ≺ i1, i3 ≺ v2

i1 and changes sign, providing a second-order decrease (due to 1/L1dt) at i1, yielding (0-,X). Based

on the fault path analysis, a deviation will appear first in i3, followed by v2, followed by i1.

Based on the updated PropagateForward algorithm, we can derive signatures and orderings for

faults in any given mode, and this allows us to create our fault models. Fig. 43 shows the resultant

fault models for the circuit example for the nominal modes q0 and q1, and the fault-induced modes

modes qτ0 and qτ1 . Note that we also require fault models for parametric faults in the fault modes,

e.g., LR+
1 ,M,qτ0

, but these are omitted from the figure because they are similar to those for the

nominal modes, e.g., LR+
1 ,M,qτ0

captures the same traces as LR+
1 ,M,q0

. The observed effects of

discrete faults depend on the expected mode of the system, therefore, without loss of generality, we

assume fault events are specific to the originating mode.

Example. Take R+
1 in q1. Its orderings specify that i1 must deviate before v2 and i3. Therefore,

i0−1 is first, followed by v0−
2 and i0−3 in either order. In mode q0, i3 is not affected, so LR+

1 ,q1
has no

event for i3. Since a fault in R2 produces no observable effects in q0, its fault models have no events.

Hybrid Candidate Tracking

Hypothesis generation produces the set of fault candidates consistent with the initial measurement

deviation, and prediction computes future effects these candidates will have on the measurements.

In hybrid systems, candidate tracking uses the predictions (i.e., signatures and orderings, or, equiv-

alently, fault models) to match candidates to new measurement deviations, but must also refine

104



i
0−,X
1

v
0−,X
2

(a) L
R+

1 ,q0
(b) L

R+
2 ,q0

v
−+,X
2

i
0+,X
1

(c) L
C+

1 ,q0

i
−+,X
1

v
0−,X
2

(d) L
L+

1 ,q0

i
0+,X
1

v
0+,X
2

(e) L
R−1 ,q0

(f) L
R−2 ,q0

v
+−,X
2

i
0−,X
1

(g) L
C−1 ,q0

i
+−,X
1

v
0+,X
2

(h) L
L−1 ,q0

i
0−,X
1

i
0−,X
3 v

0−,X
2

i
0−,X
3v

0−,X
2

(i) L
R+

1 ,q1

i
−+,X
3

v
0+,X
2

i
0−,X
1

(j) L
R+

2 ,q1

i
−+,X
3 v

−+,X
2

i
−+,X
3v

−+,X
2

i
0+,X
1

(k) L
C+

1 ,q1

i
−+,X
1

i
0−,X
3 v

0−,X
2

i
0−,X
3v

0−,X
2

(l) L
L+

1 ,q1

i
0+,X
1

i
0+,X
3 v

0+,X
2

i
0+,X
3v

0+,X
2

(m) L
R−1 ,q1

i
+−,X
3

v
0−,X
2

i
0+,X
1

(n) L
R−2 ,q1

i
+−,X
3 v

+−,X
2

i
+−,X
3v

+−,X
2

i
0−,X
1

(o) L
C−1 ,q1

i
+−,X
1

i
0+,X
3 v

0+,X
2

i
0+,X
3v

0+,X
2

(p) L
L−1 ,q1

i
−+,Z
3 i

−0,Z
3

v
0+,X
2

i
0−,X
1

(q) Lτ0,qτ0

i
+−,N
3

v
0−,X
2

i
0+,X
1

(r) Lτ1,qτ1

Figure 43: Fault models for the faults of the circuit.

candidates and their predicted effects when mode changes occur. Measurement deviations may

indicate new faults or unpredicted autonomous mode changes. We extend the candidate tracking

algorithms of Hybrid Transcend to use both fault signatures and relative measurement orderings,

to isolate both parametric and discrete faults, and to isolate multiple faults.

In hybrid systems, mode changes may occur after fault occurrence that affect the diagnosis.

These mode changes may be controlled or autonomous. With controlled mode changes, we can

produce a new nominal reference from which symbol generation calculates measurement deviations.

The occurrence of autonomous mode changes (such as discrete faults) cannot be predicted correctly

after a fault because a correct model of the system is no longer known [14]. Thus, autonomous mode
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changes will produce deviations from expected nominal behavior which must be accounted for during

candidate tracking, otherwise incorrect results may be obtained. As part of the tracking, we need to

hypothesize the occurrence of autonomous mode changes that are attributed to additional discrete

faults as well as nominal autonomous mode changes that are consistent with the observed behavior.

In Hybrid Transcend, when a measurement deviation event is observed, one of two things

happens. Either a candidate is consistent with the deviation, or it is inconsistent. For example,

consider a circuit with a circuit breaker. Assume that a fault occurs which causes some measurement

deviations that are detected and therefore the fault is hypothesized, but also which causes an increase

in the current through the circuit breaker, which in turn causes the circuit breaker to trip. Assume

that the increase due to the fault was not detected before the circuit breaker tripped. Then, the

measurement deviation observed with respect to the expected mode will be a decrease in that

current. The prediction for the fault is an increase in the current, but since a decrease was observed,

an inconsistency is present. If inconsistent, Hybrid Transcend handles this by hypothesizing

possible autonomous mode changes using a RollForward process, which determines which possible

autonomous mode changes may have occurred [14]. If mode changes cause the discrete change

behavior, i.e., generate N and Z symbols in the measured variables, then this process can be made

more efficient.

In Hybrid Transcend, once an autonomous mode change is hypothesized, a new parallel thread

is created which must update its nominal reference with the mode change, in order for future symbol

generation to be correct with respect to the new reference. This results in multiple threads for each

hypothesized autonomous mode change, where each has a new model and new symbol generators

that use the updated reference for the candidate. In this dissertation, we simplify the approach by

keeping only a single reference, that of the expected mode at the point of fault occurrence, which

changes only with controlled mode change events. Therefore, parametric faults, discrete faults, and

unpredicted nominal autonomous mode changes all produce deviations from this reference. With

a single reference, we have to treat autonomous mode changes as faults, i.e., they are placed in F ,

because they represent some change from the expected behavior. Since the effects of parametric

faults and unpredicted mode changes may become interleaved due to masking and relative times of

occurrence, we must treat the problem as a multiple fault problem. So, we deal with multiple fault

hypotheses, which include parametric faults, unpredicted nominal autonomous mode changes, and

discrete faults. This assumes a class of autonomous mode changes that act as discrete faults, i.e.,

their effects on the measurements can be predicted using the discrete fault methodology, such as a
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circuit breaker tripping. As we will show later, using the N and Z symbols, and measuring variables

for which they are produced, makes the approach very powerful for the type of systems we deal with.

In addition to being much more computationally efficient, the single-reference approach is suitable

for a practical class of physical systems, such as the electrical distribution system presented in

Chapter IX, where mode changes occur from relays and circuit breakers (i.e., state variables are not

reset due to mode changes). Although the single-reference approach is more efficient, since we do

not separate out the effects of autonomous mode changes and actual faults, we may lose diagnostic

power, because the effects due to mode changes can mask those of faults. In the following, we

describe our approach using the single-reference paradigm, and leave its extension to the multi-

reference paradigm as future work.

Refining Hybrid System Hypotheses

As with continuous systems, we need to define the candidate language for a hybrid candidate in

order to formally characterize consistency of candidates. As discussed, traces for hybrid candidates

contain both controlled mode change events and measurement deviation events. We denote the set

of possible measurement deviation events as ΣM . Given modes Q = {q0, q1, . . . , qr}, we abstract

the mode change events to ΣQ = {σq0 , σq1 , . . . , σqr}, where σqi indicates an event that changes the

system to mode qi.

In defining the language, controlled mode changes are easy to deal with. They produce a new

nominal reference for symbol generation, and all hypothesized faults must be consistent with the

predictions in the new mode for new measurements that deviate. In other words, for any future

measurement deviations, a candidate must be consistent with the predictions for the new mode,

with previously deviated measurements projected out.

Example. Assume R−2 occurs in mode q1, followed by a controlled mode change to q0, as shown in

Fig. 44. Here, the trace is i+−,X3 v0−,X
2 σq0 . When changing to q0, the nominal reference changed, so

since i1 did not deviate enough to cross the threshold before the mode change, it will not do so in

the new mode, because the fault does not continue to affect the measurement.

Unpredicted autonomous mode changes also affect the diagnosis. We need to also predict what

unpredicted mode changes may have occurred from the expected mode in order to generate correct

diagnoses.

Example. Assume that R−2 and τ0 both occur, as shown in Fig. 45. Note that if τ0 is an unpredicted

nominal autonomous mode change, instead of a discrete fault, we treat it the same way. The observed
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Figure 44: Faulty versus nominal behavior for the circuit measurements. R−2 (50% decrease) is
injected at 5.00 s and a controlled mode change to q0 at 5.10 s.
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Figure 45: Faulty versus nominal behavior for the circuit measurements. R−2 (50% decrease) is
injected at 5.00 s and τ0 is injected at 5.20 s.

trace is i+−,X3 v0−,X
2 i0−,X1 . This trace is not consistent with any single fault in the expected mode,

q1. Therefore, multiple changes to the system must have occurred. We can see that i+−,X3 v0−,X
2 is

consistent with R−2 in q1, and that i0−,X1 is consistent with τ0 then occurring. So, using a similar

approach to MFD in continuous systems, we can obtain a candidate with both R−2 and τ0.

From the example, it is clear that the same principles from multiple fault approach in continuous

systems apply here, given an expected mode. To determine what new faults are consistent, we check

with respect to measurements that have not yet deviated. There may be different possible modes of

fault occurrence, depending on the history of control actions, therefore, the set of consistent faults

depend also on the expected mode of fault occurrence. For example, in the circuit, if the mode

is known to be q1 immediately before fault occurrence, then the stuck-on fault, τ1, should not be

considered as a fault candidate, because if it did occur we would not have seen a deviation, because

q1 and qτ1 map to the same mode of the corresponding junction, i.e., the junction is on for both

modes.

We can now define a candidate trace for hybrid candidates.
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Definition 31 ((Hybrid) Candidate Trace). An event trace λ = σ is a candidate trace for c = (Fi, qi)

and initial mode of fault occurrence q0, if σ v λ′ ∈ Lf,M,qi for some f ∈ Fi where qi = µ(f, q0). An

event trace λ = λiσi+1 is a candidate trace for c = (Fi, qi+1) and initial mode of fault occurrence q0,

if λi is a candidate trace for (Fi, qi), and if σi+1 ∈ ΣQ then µ(σi+1, qi) = qi+1, or if σi+1 ∈ ΣM then

qi = qi+1 and σi+1 v λ′ ∈ Lf,M−Mi,qi+1 for some f ∈ Fi. A candidate trace for c with initial mode

q0 is denoted as λc,q0 .

Clearly, there may be an infinite number of candidate traces because controlled mode changes

may keep occurring indefinitely. However, as in continuous systems, we are only concerned with

maximal traces, i.e., those for which all measurements that will deviate in the current mode have

deviated (as with fault traces).

Definition 32 (Maximal (Hybrid) Candidate Trace). A candidate trace λc,q0 for c = (Fi, qi) is

maximal if for all f ∈ Fi, Lf,M−Mi,qi = ∅, where Mi is the set of deviated measurements for λc,q0 .

Now, we can define the language of a candidate c with respect to an initial mode of fault

occurrence q0, Lc,M,q0 , as the set of maximal candidate traces for c starting in q0.

Definition 33 ((Hybrid) Candidate Language). The candidate language for candidate c, measure-

ments M , and initial mode of fault occurrence q0, denoted as Lc,M,q0 , is the set of all maximal

candidate traces λc,q0 .

The candidate language consists of all maximal traces for which at each point in the trace, there

is a fault whose abbreviated fault language (that for the current candidate mode with deviated

measurements projected out) contains a trace that starts with the new event, if the new event is

a measurement deviation. If the new event is a controlled mode change, then to be consistent the

candidate mode is changed. In simpler terms, a maximal trace is consistent with a candidate if the

mode of the candidate can be reached via the sequence of controlled mode changes in the trace and

the autonomous mode changes in the candidate, and the measurement deviations within the trace

match the faults in the intermediate modes. As with continuous systems diagnosis, the definition

of the candidate language makes it clear that we can check consistency incrementally, in which we

project out measurements that have already deviated. We use a (hybrid) hypothesis set formulation,

which extends the original hypothesis set by including modes.

Definition 34 ((Hybrid) Hypothesis Set). For a fault set F = {f1, f2, . . . , fn}, deviated mea-

surements Mi, modes Q = {q1, q2, . . . , qr}, and fault languages {Lf1,M−Mi,q1 , . . . , Lf1,M−Mi,qr ,
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Lf2,M−Mi,q1 , . . . , Lfn,M−Mi,qr}, the hypothesis set hF,Mi(σi+1) for the new event σi+1 is computed

as the set of all (f, q) ∈ F ×Q, such that there exists some λ ∈ Lf,M−Mi,q where σi+1 v λ.

Using the extended hypothesis set, diagnosis works similarly to MFD in continuous systems, only

candidates also contain the mode, which brings in additional reasoning. When a controlled mode

change occurs, all current candidates are updated to the new mode, although if an autonomous

mode change is included in the candidate, it may not change to the expected mode. For example,

if the candidate has hypothesized that switch is stuck-off, and the controller command is for the

switch to turn on, the candidate mode will not change. When a measurement deviation occurs, then

if there are inconsistent candidates, we find a hypothesis set, which essentially represents the set of

“new” faults that may have occurred since the last measurement deviation, although it may also

include faults which are in the current diagnosis. The hypothesis set includes (i) new faults in the

current mode, (ii) unpredicted nominal autonomous mode changes, and (iii) discrete faults. The ∧

operator is defined as follows for hybrid systems.

Definition 35 (∧ operator). For diagnosis d and hypothesis set h, d ∧ h is defined as {(Fi ∪

{fj}, µ(fj , qi))) : (Fi, qi) ∈ d, (fj , µ(fj , qi)) ∈ h, µ(f, qi) 6= ∅}.

For each candidate in the current diagnosis and candidate in the hypothesis set, we add to the

resultant diagnosis a candidate with a new set of faults formed from the faults of the diagnosis

candidate and the fault in the hypothesis set candidate (which includes autonomous mode changes).

The mode of the new candidate is determined to be the mode of the hypothesis set candidate, if the

mode change is possible (if not, the new candidate is not included). If that candidate is a parametric

fault, the mode will not change, but if it is an autonomous mode change, it will.

We define the overall operation using ∧l.

Definition 36 (∧l operator). For diagnosis d and hypothesis set h, d ∧l h is defined as {(Fi, qi) ∈

d ∧ h : |Fi| ≤ l, (¬∃(Fj , qi) ∈ d ∧ h, Fj ⊂ Fi), Fi satisfies Assumption 4}.

The ∧l operator is similar to the corresponding operator for continuous systems, only the mode

is considered when pruning candidates to make the diagnosis minimal. According to our definition

of minimal diagnoses (Definition 5), we only prune a candidate if a second candidate exists for the

same mode that contains a subset of the faults in the first candidate. Like continuous systems, we

also remove candidates that violate our candidate cardinality limit l (Assumption 1), and those that

violate the persistency assumption (Assumption 4).

Candidate tracking is shown as Algorithm 9. It begins with the initial diagnosis d0, consisting of

single-fault candidates obtained by GenerateHypotheses for event σ0. Since hypothesis generation
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Algorithm 9 d← HybridCandidateTracking(d0, σ0)
d← ∅
for all ({fi}, qi) ∈ d do
Pfi,qi ← PropagateForward(fi,M, TCGqi)
if (fi, qi) consistent with σ0 then
d← d ∪ {({fi}, q0)}

while termination condition is false do
wait for σ
if σ is a mode change event then
d← UpdateHypotheses(d, σ)

else if σ is a measurement deviation event then
d← RefineHypotheses(d, σ)

return d

Algorithm 10 d← UpdateHypotheses(d, σ)
for all (Fi, qi) ∈ d do
qi ← µ(qi, σ)
for all fi ∈ Fi do
Pfi,qi ← PropagateForward(fi, TCGqi)

return d

uses only the initial sign of the deviation and does not use measurement orderings in selecting

initial candidates, we first predict the effects of the faults. We then check consistency using the full

signatures and measurement orderings. If consistent with the predictions, the candidate is placed in

d.

After initializing d, HybridCandidateTracking waits for events to occur. Because both con-

trolled mode change events and measurement deviation events may occur, two algorithms are used.

The first, UpdateHypotheses, changes the modes of all the current candidates in response to a con-

trolled mode change event. The second, RefineHypotheses, refines the current diagnosis in response

to a measurement deviation event. When the termination condition is satisfied, fault isolation stops.

When a controlled mode change event occurs, candidates are updated using Algorithm 10. If the

candidate includes an autonomous mode change (such as a discrete fault) then the new candidate

mode will not be the mode expected by the mode change event. For example, a turn on command

to a stuck-off switch will not actually change the mode. For each candidate, we apply the mode

change. The change is also applied in the observer, which in turn produces a new nominal reference

for fault detection and symbol generation. Because the effects of the faults may be different in the

new mode [14], we need to predict the effects of the fault in the new mode. Therefore, the prediction

algorithm, PropagateForward (Algorithm 1) is called.

RefineHypotheses for hybrid diagnosis is shown as Algorithm 11. If all the candidates in

the current diagnosis can explain the new deviation, we retain the previous diagnosis, because

it is minimal. If not, we obtain the hypothesis set, which is determined using a combination of
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Algorithm 11 di+1 ← RefineHypotheses(di, σi+1) (Hybrid Diagnosis)
di+1 ← ∅
di+1 ← ∅
if all c ∈ di consistent with λiσi+1 then
di+1 ← di

else
hi+1 ← ∅
for all (., qi) ∈ di do
Fi+1 ← PropagateBackward(σi+1, TCGqi)
for all fi+1 ∈ Fi+1 do
qi+1 ← µ(fi+1, qi)
Pfi+1,M,qi+1 ← PropagateForward(fi+1,M, TCGqi+1)
if (fi+1, qi+1) consistent with σi+1 for M −Mi then
hi+1 ← hi+1 ∪ {(fi+1, qi+1)}

di+1 ← di ∧l hi+1

return di+1

PropagateBackward and PropagateForward to obtain consistent candidates, as in the continuous

case, except this is done for all modes of the current diagnosis, because we need to find changes from

the current possible modes. Note that the hypothesis set may contain parametric faults, nominal

autonomous mode changes, and discrete faults. We then compose the hypothesis set hi+1 with

the old diagnosis di using ∧l, which takes the logical and, and prunes the resultant diagnosis on

a per-mode basis, which is consistent with our definition of minimality (Definition 5). The and

operation does not combine two candidates that imply both a mode change and a new fault (except

for autonomous mode changes, where the mode change and new fault refer to a single change)

because it would not be minimal. Note also that in RefineHypotheses, we do not compute the full

hypothesis set according to Definition 34, because we only compute parametric faults in the current

mode of a candidate, or autonomous mode changes which are plausible from the current mode of a

candidate, which is more efficient.

Example. Consider that the initial mode is q0 with l = 1. The first observation is v−+,X
2 . The

initial diagnosis is then {(C+
1 , q0)}. The candidate (C+

1 , q1) is also in the complete hypothesis set,

but we do not include it because the mode is known to be q0, i.e., µ(C+
1 , q0) = q0, so anding with

(∅, q0), we still get (C+
1 , q0), therefore we do not need to compute (C+

1 , q1) in the hypothesis set. In

further examples we provide only the truncated form of the hypothesis set. Under the single fault

assumption, fault isolation may stop here, but we continue for the purposes of illustration. The

second observation is i0+1 , and {(C+
1 , q0)} is still our diagnosis. Then a controlled mode change to q1

occurs. Now, future measurement deviations must be consistent with this mode, and the diagnosis

becomes {(C+
1 , q1)}. The third observation is i−+,X

3 , and the diagnosis remains {(C+
1 , q1)}.
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Consider that the initial mode is q1 with l = 1. The first observation is i−+,Z
3 . Because

GenerateHypotheses (Algorithm 7) considers possible mode changes from q1, the initial hypothesis

set and diagnosis are both {(τ0, qτ0)}. Since controlled mode changes have no effect in this mode, the

diagnosis will remain {(τ0, qτ0)} under the single fault assumption. Without the use of the discrete

change feature for the signature, we would also have to consider the candidate (R+
2 , q1), and would

not be able to distinguish it from τ0.

Consider the fault trace i0+,X1 v0−,X
2 σq1i

−+,Z
3 with the circuit starting in mode q0 and l = 3, i.e.,

the initial diagnosis is {(∅, q0)}. After i0+,X1 , the hypothesis set is {(R−1 , q0)} and the diagnosis then

becomes {(R−1 , q0)}. After v0−,X
2 , the hypothesis set is {(R+

1 , q0), (L+
1 , q0)}. Note that (R−2 , q0) and

(τ1, qτ1) are not included because they require a deviation in i3 first. The diagnosis then becomes

{(R−1 R+
1 , q0), (R−1 L

+
1 , q0)}. Pruning, we obtain simply {(R−1 L+

1 , q0)}, because (R−1 R
+
1 , q0) violates

fault persistency (Assumption 4). After a controlled mode change to q1 from event σq1 , the diagnosis

is updated to {(R−1 L+
1 , q1)}. After i+−,N3 , the hypothesis set is {(τ0, qτ0)}, since τ0 is possible from

q1. The new diagnosis is then {(R−1 L+
1 τ0, qτ0)}, which implies that three faults have occurred and

the mode changed to qτ0 . If τ0 was instead an unpredicted nominal autonomous mode change, the

result would be the same, since we would treat it as a fault.

The approach here is the most general and solves the SFD and MFD problems in either continuous

or hybrid systems, given the assumptions made. If we eliminate the modes, it reduces to MFD

in continuous systems. As shown with the continuous MFD approach, setting l = 1 solves the

continuous SFD problem.

Terminating Fault Isolation

Candidate tracking stops when the termination condition is true. In the hybrid case, the mode does

not matter, so candidate tracking may terminate not on a unique candidate, but on a unique fault set,

e.g., termination would occur on both the candidate {(f1, q0)} and the candidate {(f1, q0), (f1, q1)}.

The mode the system moved into is not relevant, all that is needed is what fault occurred. With

this information, fault identification modules can use the history of measurements and known mode

changes to determine fault magnitude [14,45].

With more measurement deviations, the candidates may change. The most conservative strategy,

then, is to wait for all measurements that will deviate to deviate. For hybrid systems, a mode change

may change which measurements are reachable by the fault. Mode changes may be autonomous so

it may be unknown when the next will occur. In this case, a time limit may have to be used in
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order to ensure isolation stops after a finite amount of time. We will show in Chapter VII how we

can determine whether it is possible for a current diagnosis to change if more deviations occur, and

thus enable early termination.

Summary

Hypothesis generation produces an initial set of candidates, and this is followed by a tracking

procedure to refine the candidates. Prediction provides fault signatures and relative measurement

orderings, and the candidate tracking uses these to match new events to consistent candidates.

During isolation, unpredicted autonomous mode changes (which may be nominal or faulty) are

hypothesized based on the measurement deviations they create. The approach assumes a single

reference for symbol generation, but can be extended to the multiple-reference approach used by

Hybrid Transcend.

One of the main contributions of this chapter is the extension of our event-based diagnosis

framework to hybrid systems. We described how to check consistency of candidates and form new

diagnoses based on the event-based information. The other main contribution is the extension of

Hybrid Transcend to diagnose discrete faults, for which we take advantage of the discrete behavior

they cause in certain variables to improve fault isolation and help distinguish between discrete and

parametric faults. We describe in the next chapter how this reasoning can be compiled into event-

based diagnosers, and how it establishes notions of diagnosability for a system.
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CHAPTER VII

DIAGNOSER DESIGN

Our diagnosis framework establishes an event-based diagnosis paradigm for continuous systems

with extensions to hybrid systems. Discrete-event system methods are an important framework

for event-driven diagnosis in safety-critical systems, since they comprise a well-developed theory

that facilitates both diagnosability analysis and systematic construction of computationally efficient

online diagnosers. Existing DES diagnosers are designed as extended observers that estimate the

system state under nominal and faulty conditions [5, 6, 62, 63]. Although these methods have been

used in many practical diagnosis applications [5, 130–132], they are not suitable for systems with

complex continuous dynamics. Quantizing the continuous behavior using a finite set of states and

events results in large, nondeterministic models that degrade the performance and increase the

computational requirements of the diagnosis algorithms [68, 69, 85]. In the presence of faults, these

models become increasingly complex, and deriving such models for different fault magnitudes is

computationally inefficient.

In contrast to traditional DES approaches, our approach focuses on constructing DES-style

diagnosers for isolating parametric and discrete faults in continuous systems and hybrid systems,

based on a qualitative abstraction of the measurement deviations from the nominal behavior. In our

approach, we essentially compile our qualitative fault isolation algorithms for a given system, based

on its fault models, to form an event-based diagnoser. The contributions of the approach center on:

(i) systematic design of event-based diagnosers, (ii) diagnosability analysis of systems, and (iii) a

spectrum of diagnoser implementations that trade off space and time efficiency. Preliminary results

for single fault diagnosis of continuous systems have appeared in [82,86,96,133], and multiple fault

diagnosis for continuous systems in [38,39].

First, we present notions of diagnosability, formalized within our framework. We then describe

our event-based diagnosers. Because multiple fault diagnosis builds on single fault diagnosis, and

hybrid systems diagnosis builds on continuous systems diagnosis, we present the different cases in

turn to establish the connections between them, and the extensions required going to the more

complex cases. We then describe a spectrum of online diagnoser implementations and illustrate how

they trade off space and time complexity. We conclude with a summary and comparisons to work in
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Table 6: Notation

Symbol Explanation

f A fault
F The set of faults
Fi A set of faults
m A measurement
M The set of measurements
Mi A set of deviated measurements up to the ith event
q A mode
Q The set of modes
c A candidate
C The set of all candidates
d A diagnosis
σ An event
σf,m A measurement deviation event
ΣM The set of measurement deviation events
σq A controlled mode change event to mode q
ΣQ The set of controlled mode change events
λ A trace
λi A trace up to the ith event
Lf,M,q The fault language for fault f , measurements M , and mode q
Lf,M,q The fault model for fault f , measurements M , and mode q
λc,q A candidate trace for candidate c starting in mode q
Lc,M,q The candidate language for candidate c, measurements M , starting in mode q

DlF,M,Q A diagnoser for faults F , measurements M , and modes Q, and candidate cardinality l

the DES area. The notation used throughout the previous chapters and this chapter is summarized

in Table 6. The circuit example from Chapter VI (Fig. 39) will also be used throughout the chapter.

Diagnosability

Diagnosability is an important property of a system, because it enables us to make guarantees about

the unique isolation of faults. We first provide definitions of distinguishability and diagnosability and

then describe how these notions are captured in our event-based framework.

If two candidates will always produce different effects, we say they are distinguishable. For hybrid

systems, we must define distinguishability with respect to an initial expected mode at the point of

fault occurrence, i.e., that which will be used as the reference mode in computing deviations from

expected behavior. In general, there may be a set of possible modes, which is why RollBack is

necessary. To simplify the definitions, we define only with respect to a single expected mode of fault

occurrence, but the framework can be extended to sets of possible expected modes.

Definition 37 (Distinguishability). For an expected mode q ∈ Q at the point of fault occurrence, a

candidate ci is distinguishable from a candidate cj , denoted by ci �q cj , if for any possible sequence
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of controlled mode changes, ci always eventually produces effects on the measurements that cj

cannot.

In Chapters V and VI, we defined the notions of candidate languages for continuous and hybrid

systems, respectively. These languages essentially capture the effects produced on the measurements

for candidates, and thus characterize consistency of candidates with observed effects. Therefore,

candidate languages can be used to establish distinguishability within our framework.

Recall that in single fault diagnosis for continuous systems, candidate languages are described by

fault languages, Lf,M . If two faults share a common fault trace, or the fault trace of one fault is a

prefix (denoted by v) of a fault trace for the other fault, they are not distinguishable. For multiple

faults in continuous systems, we form traces that interleave those of the single faults. In hybrid

systems diagnosis, we also form interleaved traces of single faults, but these are also interleaved with

controlled mode change events. Based on the language of a candidate, we can formally establish

distinguishability in our framework.

Lemma 2. For an expected mode q0 ∈ Q at the point of fault occurrence, a candidate ci is distin-

guishable from a candidate cj given measurements M and possible modes Q, if there does not exist

a pair of candidate traces λci,q0 ∈ Lci,M,q0 and λcj ,q0 ∈ Lcj ,M,q0 such that λci v λcj .

Proof. Assume ci is not distinguishable from cj , i.e., ci ∼q0 cj for initial mode of fault occurrence

q0. Then, by definition, starting in mode q0, there must exist a maximal candidate trace by ci that

cj can also produce. Therefore, there must exist some maximal candidate trace for ci, i.e., some

λci,q0 ∈ Lci,M,q0 , and some sequence of events for cj that is not distinct from λci,q0 . So, λci,q0 must

be a candidate trace λcj ,q0 for cj . Therefore, if ci ∼q0 cj then there exits some λci,q0 ∈ Lci,M,q0

and λcj ,q0 ∈ Lcj ,M,q0 such that λci,q0 v λcj ,q0 . By the contrapositive, if there does not exist

λci,q0 ∈ Lci,M,q0 and λcj ,q0 ∈ Lcj ,M,q0 such that λci,q0 v λcj ,q0 , then ci �q0 cj .

Since candidate traces include mode change events, the candidate languages cover all possible

sequences of controlled mode change events interleaved with measurement deviations. Therefore,

checking distinguishability is equivalent to checking for common traces. So, if a maximal candidate

trace, which is a sequence of controlled mode change events and measurement deviation events, for

some candidate is a prefix for a second candidate, then if the first candidate occurs and produces that

trace, the candidates cannot be distinguished, because no more measurements will deviate (since

the trace is maximal).

As described in Chapter V, multiple faults occurring together can manifest in many different

ways, and this reduces the distinguishability of the candidates. For example, a candidate (fi, qi)
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can never be distinguished from another candidate (fifj , qi), because fi can completely mask fj , or

partially mask it in such a way that fi by itself is also consistent, i.e., any trace for (fi, qi) is also

a trace for (fifj , qi). So, we cannot distinguish the candidates. As discussed in Chapter III, we are

really only concerned with finding a minimal diagnosis, which leads us to the notion of candidate

coverage.

Definition 38 (Candidate Coverage). A candidate ci = (Fi, q) covers a candidate cj = (Fj , q) if

Fi ⊆ Fj .

We say that a candidate covers another candidate if, for the same mode, its fault set is a nonstrict

subset of the other candidate’s fault set. So, for example, (f1, q0) covers (f1f2, q0), but not (f1f2, q1).

In our framework, a system can be defined as follows.

Definition 39 (System). A system S is defined as (F,M,Q,LF,M,Q), where F = {f1, f2, . . . , fn}

is a set of faults, M = {m1,m2, . . . ,mp} is a set of measurements, Q = {q1, q2, . . . , qr} is a set of

modes, and LF,M,Q is the set of fault languages for each fault in each mode, i.e., LF,M,Q = {Lf,M,q :

f ∈ F, q ∈ Q}.

Using candidate coverage, we obtain the following notion of l-fault diagnosability for a system.

Definition 40 (l-fault Diagnosability). A system S = (F,M,Q,LF,M,Q) is l-fault diagnosable if for

all ci and cj and possible modes of fault occurrence q0 ∈ Q, where |ci| ≤ l and |cj | ≤ l, if ci does

not cover cj or cj does not cover ci then ci �q0 cj .

If the system is l-fault diagnosable, then for every pair of candidates with cardinality ≤ l, where

one does not cover the other, the candidates are distinguishable using the measurements in M . So,

each sequence of measurement deviations and controlled mode changes we observe can be eventually

linked to a minimal diagnosis with a unique candidate. Hence, we can uniquely isolate all candidates

of interest. If the system is not diagnosable, then ambiguities may remain after fault isolation, i.e.,

after all possible measurement deviations have been observed.

The definition of l-fault diagnosability is about making guarantees about fault isolation. Although

controlled mode change events affect the diagnosis, since the diagnoser has no control over which

controlled mode change events are issued, we cannot, in general, make any restrictions about when

a mode change event will be issued. So, l-fault diagnosability is conservative. It may be possible,

however, to avoid ambiguous diagnosis results if certain mode changes are permitted or prohibited.

We define this as Q-diagnosability.
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Definition 41 (l-fault Q-diagnosability). A system S = (F,M,Q,LF,M,Q) is l-fault Q-diagnosable

if for all ci and cj and possible modes of fault occurrence q0 ∈ Q, where |ci| ≤ l and |cj | ≤ l, ci does

not cover cj or cj does not cover ci, and ci ∼q0 cj , then for every maximal λci,q0 where λci,q0 v λcj ,q0
for some λcj ,q0 , either there exists some sequence of controlled mode changes λQ where λci,q0λQ is

not maximal for any candidate, or for every λckλQ = λci,q0 where λQ is a sequence of controlled

mode changes, λck is not maximal for any candidate.

Q-diagnosability means that for any trace that violates l-fault diagnosability, there is some

sequence of controlled mode changes that can be applied such that the new trace is no longer

maximal, i.e., more measurement deviations will occur, or for every partial trace that can become

the violating trace via a sequence of controlled mode changes, the partial trace is not maximal. The

first case corresponds to executing controlled mode changes to ensure more measurement deviations

will occur. The second case corresponds to blocking a sequence of controlled mode changes such

that we never encounter the violating trace in the first place.

Note that distinguishability and diagnosability are simplified for continuous systems, because

controlled mode changes cannot take place. For SFD, distinguishability reduces to determining of

the fault traces of single faults cannot be prefixes of another [86]. For MFD, we need to bring in

candidate coverage because we are dealing with minimal diagnoses and only want to distinguish

minimal diagnoses.

Other definitions of diagnosability have been provided in the literature (e.g., [6, 62, 76, 77, 134]),

however, diagnosability is a property of a system using a modeling representation and a particular

set of diagnosis algorithms. Therefore, our definitions are specific to our framework. However, there

are similarities, e.g., in a DES framework, diagnosability is typically defined as there always being

some finite sequence of observable events after a fault occurs that distinguishes the fault.

Diagnosers

We construct from our fault models an event-based diagnoser, which is an extended form of a finite

automaton. If our system is diagnosable, we can construct a diagnoser that uniquely isolates all

candidates. If not, the constructed diagnoser will give ambiguous results for some maximal traces.

We wish to use the diagnoser to help determine system diagnosability as well as to serve as an efficient

online implementation. The goal of the event-based diagnoser is, given a sequence of measurement

deviation events and controlled mode change events, to determine which faults are consistent with

the observed sequence. We define formally a diagnoser in our framework.

119



Definition 42 (Diagnoser). A diagnoser for a fault set F , measurements M , and modes Q, with

candidate cardinality limit l, is defined as DlF,M,Q = (S, I,Σ, δ, A,D, Y ) where S is a set of states,

I ⊆ S is set of initial states, Σ is a set of events, δ : S × Σ → S is a transition function, A ⊆ S is

a set of accepting states, D ⊆ 2C is a set of minimal diagnoses with candidates of cardinality ≤ l,

and Y : S → D is a diagnosis map.

A diagnoser is a finite automaton extended by a set of diagnoses and a diagnosis map. The

initial states correspond to possible modes of fault occurrence, so for continuous systems, we replace

I with a single initial state s0. A diagnoser takes events as inputs, which, as with fault models,

correspond to measurement deviations, but for hybrid systems, may also correspond to controlled

mode change events. From the current state, a measurement deviation event causes a transition to

a new state. The diagnosis for that new state represents the set of candidates that are consistent

with the sequence of events seen up to the current point in time, i.e., it encodes the results that

candidate tracking would obtain. So, like traditional DES diagnosers, the diagnoser states provide

estimates of the system condition, but only after fault occurrence. As discussed in Chapter III, we

assume that nominal behavior is tracked using a hybrid observer.

The accepting states of the diagnoser correspond to a fault isolation result. We say that a

diagnoser isolates a candidate if it accepts all maximal candidate traces for the candidate, i.e., all

traces in the candidate language, and the accepting states map to diagnoses containing the candidate

or some other candidate that covers it (i.e., a candidate for the same mode which contains a subset

of the candidate’s faults).

Definition 43 (Isolation). A diagnoser DlF,M,Q isolates a candidate c, where |c| ≤ l, if for all

possible initial modes of fault occurrence q0, DlF,M,Q accepts all λc,q0 ∈ Lc,M,q0 and for each s ∈ A

that accepts a λc,q0 ∈ Lc,M,q0 , there exists some c′ ∈ Y (s) such that c′ covers c.

The notion of isolation gives us an indication of correctness of our diagnosers. If our diagnoser

isolates all candidates, then it covers all possible observable candidate traces, and, therefore, is

constructed correctly. If it does not isolate all candidates, then possible traces are omitted and

incorrect diagnosis results will be obtained when those missing traces actually occur.

Due to fault masking, for a particular λc ∈ Lc,M,q0 , the candidate c may not be in the minimal

diagnosis, which is why we define isolation with respect to minimal diagnoses. For a diagnoser to

isolate a candidate, it is only required that for each trace, the diagnosis for that trace contains a

candidate which covers c.
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We also would like to achieve unique isolation of candidates, which is a stronger notion of isolation.

Unique isolation relates to diagnosability, so provides guarantees about the ambiguity of the diagnosis

results. For unique isolation, we seek unique candidates of cardinality ≤ l in the minimal diagnoses,

which follows our definition of l-fault diagnosability.

Definition 44 (Unique Isolation). A diagnoser DlF,M,Q uniquely isolates a candidate c, where |c| ≤ l,

if DlF,M,Q accepts all λc ∈ Lc,M,Q and for each s ∈ A that accepts some λc, {c′} = Y (s) such that

c′ covers c.

For unique isolation, we require the diagnoser isolates the candidate, but also that the corre-

sponding accepting states uniquely determine c or a candidate that covers it. This means that the

diagnoser will accept all maximal candidate traces, but also that each maximal trace will uniquely

identify a minimal diagnosis with a single candidate. So, if we can design a diagnoser that isolates

all candidates of interest, then by examining the diagnoser we can determine if it uniquely isolates

all candidates, and if so, that the system is diagnosable. If not diagnosable, we can also use the

diagnoser to determine which traces result in ambiguities, and if possible, be able to avoid those

traces by blocking or executing certain controlled mode changes during isolation, i.e., determine if

the system is l-fault Q-diagnosable.

Since candidate languages for hybrid systems must account for any possible sequence of con-

trolled mode changes, the diagnoser must account for all these traces as well. In order to establish

diagnosability of a hybrid system, this is unavoidable. The diagnoser, then, becomes infeasible for

online diagnosis of practical hybrid systems. After describing how to construct the diagnoser for

hybrid systems, we will describe alternative implementations that are more feasible.

Single Fault Diagnoser for Continuous Systems

In SFD for continuous systems, the system is defined as S = (F,M,LF,M ), and we can simplify our

representation of a candidate to a single fault rather than a set of faults, and omit the mode, i.e.,

c = f . Therefore, a state of the diagnoser maps to a set of consistent single faults, and only one

initial state, s0, is needed in the diagnoser. Since discrete faults only apply to hybrid systems, we

also omit the discrete change feature from the signature since it provides no additional information

for parametric faults alone.

Ultimately, we would like to systematically construct a diagnoser for a system S that isolates all

f ∈ F . Further, we would like to show that if S is diagnosable, then this diagnoser uniquely isolates

all f ∈ F . To do this, we first provide a way to construct a diagnoser for each fault f that isolates
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Figure 46: Diagnosers for the individual faults of the circuit for mode q0.

f . Then, we provide a composition operator to compose two diagnosers, such that if each diagnoser

isolates its own set of faults, the composed diagnoser will isolate the combined set of faults. We then

compose the individual diagnosers into a global diagnoser that isolates the complete set of system

faults.

First, we construct a diagnoser for each single fault f from its fault model, Lf,M . Because the

fault model Lf,M accepts the fault language Lf,M , it is easy to show that this diagnoser isolates f .

Definition 45 (D∗{f},M ). Given f with Lf,M = (S, s0,Σ, δ, A), D∗{f},M , (S, s0,Σ, δ, A, {{f}}, Y ),

where:

Y (s) =

 ∅, s = s0

{f}, otherwise.

Lemma 3. D∗{f},M uniquely isolates f .

Proof. D∗{f},M extends Lf,M by defining D and Y . Therefore, by definition of Lf,M , D∗{f},M must

accept all λf ∈ Lf,M . By definition of Y , Y (s) for all s ∈ A must map to {f}, since s0 /∈ A. So,

D∗{f},M uniquely isolates f .

Example. The diagnosers corresponding to the individual faults of the circuit (Fig. 39) are shown

in Figs. 46 and 47 for modes q0 and q1, respectively. The M subscript is omitted in the examples

to simplify the notation. Note that since we assume that until a deviation is observed the system is

nominal, initial states cannot be accepting states, so for R+
2 and R−2 in q0, the initial state is not an

accepting state. For example, consider D∗{L+
1 }

for q0 and q1. If the only mode is q1, and L+
1 occurs,

then two possible traces can be produced, either i−+
1 i0−3 v0−

2 or i−+
1 v0−

2 i0−3 . In q0, however, i3 cannot

be affected, so only i−+
1 v0−

2 is possible.

We next define a composition operator, denoted as ∆. The ∆ composition provides a way to

systematically construct the diagnoser for fault set F . We first define the history of a state.
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Figure 47: Diagnosers for the individual faults of the circuit for mode q1.

Definition 46. The history of a state s is defined as H(s0) = ε (the empty trace), and for s 6= s0,

H(s) = {σ1σ2 . . . σn : δ(. . . (δ(δ(s0, σ1), σ2) . . .), σn) = s}.

Definition 47 (∆ Composition). Given the diagnoser for a set of faults Fi, DFi,M = (Si, s0,i, Σi, δi,

Ai, Di, Yi) and the diagnoser for a set of faults Fj , DFj ,M = (Sj , s0,j ,Σj , δj , Aj , Dj , Yj), the diagnoser

defined by the ∆ composition of DFi,M and DFj ,M is DFi,M∆DFj ,M , (S, s0,Σ, δ, A,D, Y ), where:

• S = Si × Sj ,

• s0 = (s0,i, s0,j),

• Σ = Σi ∪ Σj ,
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• δ((si, sj), σ) = 

(δ(si, σ), δ(sj , σ)), δ(si, σ) ∧ δ(sj , σ),

|λi| = |λj |,

λi ∈ H(si), λi ∈ H(sj)

(δ(si, σ), sj), δ(si, σ) ∧ ¬δ(sj , σ)

(si, δ(sj , σ)), ¬δ(si, σ) ∧ δ(sj , σ)

∅, otherwise,

• A = {(si, sj) : si ∈ Ai ∨ sj ∈ Aj}

• D = P(Fi ∪ Fj)

• Y ((si, sj)) = 

Yi(si) ∪ Yj(sj), H(si) ∩H(sj) 6= ∅

Yi(si), (∃λi ∈ H(si), λj ∈ H(sj))λj @ λi

Yj(sj), (∃λi ∈ H(si), λj ∈ H(sj))λi @ λj

∅, otherwise.

Theorem 2. If DFi,M isolates all fi ∈ Fi, and DFj ,M isolates all fj ∈ Fj, then DFi,M∆DFj ,M
isolates all faults in Fi ∪ Fj.

Proof. Assume DFi,M isolates all fi ∈ Fi, and DFj ,M isolates all fj ∈ Fj . Then for some fault

fi ∈ Fi with some trace λfi ∈ Lfi , DFi,M must accept λfi , and this corresponds to some sa,i ∈ Ai,

where fi ∈ Yi(sa,i). By the definition of δ, λfi will correspond to state (sa,i, sj) for some sj ∈ Sj .

Since (sa,i, sj) ∈ A by definition of A, DFi,M∆DFj ,M accepts λfi . By definition of H, H(sa,i) must

contain λfi . If λfi ∈ H(sj), then H(sa,i) ∩ H(sj) is nonempty, and fi ∈ Yi(sa,i) ⊆ Y ((sa,i, sj)).

If λfi /∈ H(sj), then by definition of δ there must be some λj ∈ H(sj) where λj @ λfi , so f ∈

Yi(sa,i) = Y ((sa,i, sj)). Therefore, DFi,M∆DFj ,M isolates fi. The same reasoning applies to some

fj ∈ Fj . Thus, DFi,M∆DFj ,M isolates all faults in Fi ∪ Fj .

The theorem shows that ∆ preserves the isolation property. As a result, it is both commutative

and associative with respect to isolation. Therefore, the order in which a set of diagnosers are

composed does not matter, because at each intermediate step, isolation of the combined fault sets

is maintained. Therefore, we can define the global diagnoser as a composition of the individual

diagnosers.

Definition 48 (D∗F,M ). For fault set F = {f1, f2, . . . , fn}, D∗F,M is defined as D∗{f1},M ∆ D∗{f2},M
∆ . . . ∆ D∗{fn},M .
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Corollary 1. The diagnoser D∗F,M isolates all f ∈ F .

Because each D∗{f},M isolates f if constructed from Lf,M as described, and since ∆ preserves the

isolation property, then D∗F,M as constructed above isolates all f ∈ F . Further, if the fault set is

diagnosable, then this diagnoser guarantees that each fault is uniquely isolated.

Theorem 3. A system S = (F,M,LF,M ) is diagnosable if and only if D∗F,M uniquely isolates all

f ∈ F .

Proof. Assume some fi ∈ F with fault trace λfi ∈ Lfi,M . D∗F,M accepts λfi and for corresponding

accepting state sa, fi ∈ Y (sa) by Corollary 1 and the definition of isolation. Since S is diagnosable,

there is no fj ∈ F with fault trace λfj ∈ Lfj ,M where λfi v λfj . Therefore, fj /∈ Y (sa). So,

Y (sa) = {fi} and D∗F,M uniquely isolates each f ∈ F . Assume that D∗F,M uniquely isolates each

f ∈ F . Then each possible fault trace λfi has an associated accepting state sa, where Y (sa) = {fi}.

Thus, there cannot be some λ v λfj for fi 6= fj that can reach sa, otherwise fj ∈ Y (sa). Therefore,

fi � fj , so F is diagnosable. Thus S is diagnosable if and only if D∗F,M uniquely isolates each

f ∈ F .

The diagnoser construction procedure is shown as Algorithm 12. It is described as combin-

ing two diagnosers, but, as with ∆, can be easily be modified to combine k diagnosers simul-

taneously. The construction algorithm operates by tracing paths in the two given diagnosers.

If the same event is available in both current states, then we advance in both diagnosers, i.e.,

(s1, s2) σ→ (δ(s1, σ), δ(s2, σ)). Otherwise, we advance in only one, e.g., if σ can only be taken from

s1, then (s1, s2) σ→ (δ(s1, σ), s2). If the computed diagnosis for the new state, d, is empty, then

δ((s1, s2), σ) is set to ∅, because this means the current sequence of measurement deviations is

inconsistent with the single fault assumption.

The diagnosis for the new state is formed by composing the current diagnosis with the hypothesis

set. The hypothesis set, h, is the set of faults consistent with the current event. It is formed as

the union of the diagnoses of the diagnoser states advanced to via the event σ. The new diagnosis

for the composed diagnoser state is constructed as the intersection of the current diagnosis and the

hypothesis set. For example, if {fi, fj} is the current diagnosis and the hypothesis set is {fi} then

the new diagnosis is {fi}, which means that only fi is consistent with the current event sequence.

Example. The diagnosers for the circuit (Fig. 39) are shown in Figs. 48 and 49 for modes q0 and

q1, respectively. We can see that since all accepting states have singleton diagnoses, the system is

diagnosable.
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Algorithm 12 D ← D1∆D2

S ← ∅, δ ← ∅, D ← ∅, Σ← Σ1 ∪ Σ2

so ← (so1, so2), Y (so)← ∅, S ← {so}, Spend ← {so}, A← ∅
while Spend 6= ∅ do

(s1, s2)← pop(Spend)
for all σ ∈ Σ do

if δ1(s1, σ) and δ2(q2, σ) then
s′ ← (δ1(s1, σ), δ2(s2, σ))
h← Y (δ1(s1, σ)) ∪ Y (δ2(s2, σ))

else if δ1(s1, σ) then
s′ ← (δ1(s1, σ), s2)
h← Y (δ1(s1, σ))

else if δ2(q2, σ) then
s′ ← (s1, δ2(s2, σ))
h← Y (δ2(s2, σ))

else
s′ ← ∅
h← ∅

if s′ 6= ∅ then
if Y ((s1, s2)) = ∅ then
d← h

else
d← Y ((s1, s2)) ∩ h

if d 6= ∅ then
S ← S ∪ {s′}
δ((s1, s2), σ)← s′

D ← D ∪ {d}
Y (s′)← d
if s1 ∈ A1 or s2 ∈ A2 then
A← A ∪ {s′}

if s′ /∈ Spend then
push(Spend, s

′)

Consider the fault trace i−+
3 v0+

2 i0−1 for mode q1 (Fig. 49). For i−+
3 occurring as the first deviation,

only C+
1 or R+

2 could have occurred, given the known fault signatures and measurement orderings.

Therefore, the new diagnosis is {C+
1 , R

+
2 }. For v0+

2 occurring next, of our current faults, only R+
2 is

consistent, therefore, our new diagnosis is the intersection of {C+
1 , R

+
2 } and {R+

2 }, which is {R+
2 }. At

this point we obtain a unique fault hypothesis. The only possible measurement deviation remaining

is i0−1 which must still be consistent with {R+
2 }.

Multiple Fault Diagnoser for Continuous Systems

In MFD for continuous systems, the system is defined as S = (F,M,LF,M ), and we can simplify our

representation of a candidate by omitting the mode, i.e., c = Fi where Fi ⊆ F . Therefore, a state

of the diagnoser maps to a set of consistent multiple fault hypotheses, and only one initial state,

s0, is needed in the diagnoser. Since discrete faults only apply to hybrid systems, we also omit the
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Figure 48: Event-based diagnoser for the circuit for mode q0.
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Figure 49: Event-based diagnoser for the circuit for mode q1.

discrete change feature from the signature since it provides no additional information for parametric

faults alone.

Ultimately, we would like to systematically construct a diagnoser for a system S that isolates all

possible candidates of cardinality ≤ l. Further, we would like to show that if S is diagnosable, then

this diagnoser uniquely isolates all such candidates. To do this, we use the D∗f,M constructed in the

previous section, and provide a composition operator to simultaneously compose all the diagnosers

to a global diagnoser that isolates all the valid candidates.

As described in Chapter V, when multiple faults occur together they produce additional traces

that are formed by the interleaving of single fault traces due to masking effects and different times

of individual fault occurrence. In incremental consistency checking, we project out measurements

that have already deviated to obtain the set of consistent candidates for a new observation, i.e., the

hypothesis set. For a diagnoser, the state-based form of the measurement projection operation on

traces is formalized using boundaries and boundary transition functions.

Definition 49 (Boundary). The boundary for a state s and deviated measurements Mi, BMi(s), is

defined as the set of all states δ(λ, s) such that PM−Mi
(λ) = ε.

The boundary for a state s is basically the set of states that may be transitioned to from s via

a trace λ consisting of only events for measurements that have already deviated, i.e., measurements
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corresponding to the events for traces in the history of the state. Using the notion of a boundary,

we define a boundary transition function with respect to a set of deviated measurements.

Definition 50 (Boundary Transition Function). The boundary transition function for an event σ,

state s, and set of deviated measurements Mi, δMi(σ, s), is a transition function that maps σ and s

to some state s′, such that s′ = ∅ if the cardinality of {δ(σ, sB) : sB ∈ BMi
(s)} is not 1, or s′ is the

single element in {δ(σ, sB) : sB ∈ BMi(s)}, otherwise.

In other words, δMi
(σ, s) returns the unique state that can be reached from a boundary state

of s via σ, or ∅ if there are no states that can be reached or if the state is not unique. Because

of the way the D∗{f},M diagnosers are computed, the reachable state will always be unique or null,

because traces with the same set of measurements map to the same state. So, the different histories

of a state in these diagnosers have the same set of measurements. In the following, we denote the

measurements that have deviated in a state s as M(s).

Due to the need for boundaries and boundary transition functions, we define our ∆l composition

as composing all n diagnosers simultaneously, rather than incrementally as in the SFD case. By

selecting l = 1, ∆1 becomes the ∆ composition extended to combine all diagnosers simultaneously.

Definition 51 (∆l Composition). Given the n individual D∗{fi},M = (Si, s0,i,Σi, δi, Ai, Di, Yi) for

each f ∈ F , Dl∗F,M , ∆l(D∗{f1},M ,D
∗
{f2},M , . . . ,D

∗
{fn},M ), where

• s0 = (s0,1, s0,2, . . . , s0,n,∅)

• Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σn

• δ(σ, (si,1, si,2, . . . , si,n, di)) = (si+1,1, si+1,2, . . . , si+1,n, di+1), where

– Mi , M((si,1, si,2, . . . , si,n, di)),

– ∀j, si+1,j = si,j if δMi,j(σ, si,j) = ∅, or δMi,j(σ, si,j) otherwise, and

– di+1 = di ∧l hF,Mi
(σ) 6= ∅

• S is the set of all s reachable through δ from s0

• D is the set of all di in each (si,1, si,2, . . . , si,n, di) ∈ S

• A is the set of all si = (si,1, si,2, . . . , si,n, di) ∈ S where there exists some si,j ∈ si, with some

sB,j ∈ BM(si)(si,j)
1 where sB,j ∈ Aj , such that the c ∈ Yj(sB,j) covers some c′ ∈ Y (si)

1Recall that M(s) denotes the set of measurements that have deviated up to state s.
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• Y ((si,1, si,2, . . . , si,n, di)) = di

Note that in the ∆l composition, states are also indexed by the associated diagnosis. Because

we project out measurements which have already deviated, we may reach the same states in the

individual diagnosers, but obtain different diagnoses depending on which specific deviations were

observed for the measurements. Therefore a state is uniquely identified by both the corresponding

states of the individual diagnosers and the diagnosis.

We now proceed to show that Dl∗F,M isolates all valid candidates, i.e., it accepts all maximal

candidate traces, and the diagnoses of the accepting states contain a candidate that covers the

valid candidate. Recall that for multiple faults in continuous systems, the language of a candidate

consists of all traces where each successive event of the trace is consistent with one of the faults in

the candidate, for the measurements that have not yet deviated.

Theorem 4. The diagnoser Dl∗F,M isolates all candidates of cardinality ≤ l.

Proof. Assume candidate c, with |c| ≤ l, and trace λ = σ1σ2 . . . σk ∈ Lc,M . By definition of Lc,M ,

λ must be consistent with c, so, therefore, hF,Mi
(σi) will always contain some f ∈ c for any σi ∈ λ.

Thus, every time ∧l is used, the resultant diagnosis will contain some c′ that covers c since |c| ≤ l,

by definition of ∧l, and, therefore di will never be empty. So, by definition of δ, there will be a

corresponding state s for λ. So, some c′ will be in Y (s), where c′ covers c. State s corresponds to

some (s1, s2, . . . , sn, d). Since Y (s) contains c′ which covers c there must be some f ∈ c′ where f ∈ c.

So there must be a substate in s that corresponds to D∗f,M where for the boundary of that state,

there are no measurement deviations possible, therefore, it must be an accepting state in D∗f,M . By

definition of A, then, s ∈ A. Since λ was general, Dl∗F,M isolates c. Since c was general, Dl∗F,M isolates

all candidates of cardinality ≤ l.

Further, we can show that if the system S is l-fault diagnosable, then the diagnoser uniquely

isolates all candidates of cardinality ≤ l.

Theorem 5. A system S = (F,M,LF,M ) is l-fault diagnosable if and only if Dl∗F,M uniquely isolates

all c, where |c| ≤ l.

Proof. Assume S is l-fault diagnosable. Assume a c and λ ∈ Lc,M , with |c| ≤ l. Dl∗F,M isolates

c, so must have corresponding accepting state s with c′ ∈ Y (s) where c′ covers c. Since S is

diagnosable, there cannot be a c′′ that does not cover c or that c does not cover where c and c′′ are

not distinguishable, by definition of l-fault diagnosability. So, there cannot be some common prefix

λ that maps to an accepting state that has both a c′ that covers c and a c′′′ that covers c′′. So, Dl∗F,M
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uniquely isolates all c, where |c| ≤ l. Assume Dl∗F,M uniquely isolates all c, where |c| ≤ l. Then each

possible fault trace λ has an accepting state s where c′ ∈ Y (s) and c′ covers c. Thus, there cannot

be some c′′ that does not cover c or that c does not cover, with trace λ′′ that reaches the same state,

otherwise c′′ or some candidate that covers it is in Y (s). Therefore, c and c′′ are distinguishable,

so S is l-fault diagnosable. Thus S is l-fault diagnosable if and only if Dl∗F,M uniquely isolates all c,

where |c| ≤ l.

An implementation of ∆l is given as Algorithm 13. It tracks the given diagnosers and incre-

mentally builds up the composed diagnoser. Starting from a particular state and for a particular

event, the algorithm advances in each given diagnoser from the boundary of each current diagnoser

state. For the diagnosers that are advanced in, their faults are added to the hypothesis set. The

new diagnosis is then created using ∧l, and if the diagnosis is valid, the new state, new transition,

and new diagnosis are updated. To properly index the state, the diagnosis of the state is required,

not just the individual states of the composing diagnosers. Therefore, the new diagnosis is set as a

component to the new state. The state is made an accepting state if there is a current boundary state

in one of the composing diagnosers that is accepting and its candidate is covered by the composed

state’s diagnosis.

Example. Consider F = {C+
1 , R

+
2 } for mode q1. The corresponding diagnoser is shown in Fig. 50a,

for l = 2. It contains the three valid traces for the single faults, which all map to accepting states

identifying the single faults as minimal diagnoses. For example, consider the fault trace i−+
3 v−+

2 i0+1 .

After i−+
3 occurs, the diagnosis is {C+

1 , R
+
2 }, i.e., either C+

1 occurred or R+
2 occurred, and they may

have occurred together but the diagnosis {C+
1 , R

+
2 , C

+
1 R

+
2 } is not minimal. After v−+

2 , R+
2 by itself

is no longer consistent, so the hypothesis set is {C+
1 } and the diagnosis is {C+

1 , C
+
1 R

+
2 }, but we

remove C+
1 R

+
2 to make the diagnosis minimal. After i0+1 , C+

1 is still consistent by itself so remains

the diagnosis. If i0−1 had occurred instead, the hypothesis set would be {R+
2 }, so the resultant

diagnosis would be {C+
1 R

+
2 }, i.e., it must be that both faults occurred together, and R+

2 masked the

effect of C+
1 on i1.

Consider F = {L+
1 , R

+
1 } for mode q1. The corresponding diagnoser is shown in Fig. 50b, for l = 2.

Since the only difference between the two single faults is the deviation of the first measurement, i1,

the diagnoser splits at the first state then has the same behavior, but with different diagnoses. From

this diagnoser, since the minimal diagnoses are all single faults, then this implies that LL+
1 R

+
1 ,M

=

LL+
1 ,M
∪ LR+

1 ,M
, i.e., we can never determine if both faults had to have occurred together. Based
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Algorithm 13 Dl∗F,M ← ∆l(D∗{f1},M ,D
∗
{f2},M , . . . ,D

∗
{fn},M )

S ← ∅
δ ← ∅
D ← ∅
Σ← Σ1 ∪ Σ2 ∪ . . . ∪ Σn
s0 ← (s0,1, s0,2, . . . , s0,n,∅)
Y (s0)← ∅
Spend ← {s0}
while Spend 6= ∅ do
s← pop(Spend)
for all σ ∈ Σ do
h← ∅
for all si ∈ s do

if δM(s)(σ, si) 6= ∅ then
s′i ← δM(s)(σ, si)
h← h ∪ Yi(si)

else
s′i ← si

d← Y (s) ∧l h
if d 6= ∅ then
d′ ∈ s′ ← d
push(Spend, s

′)
S ← S ∪ {s′}
δ(s, σ)← s′

for all s′i ∈ s′ do
if ∃sB ∈ BM(s′)(s

′
i), sB ∈ Ai and c ∈ Yi(sB) covers some c′ ∈ Y (s′) then

A← A ∪ {s′}
break

D ← D ∪ {d}
Y (s′)← d

on our definition of l-fault diagnosability, however, we still consider the system 2-fault diagnosable

for F = {L+
1 , R

+
1 }, because we always obtain a unique minimal diagnosis.

The following example illustrates some diagnosability results for the circuit.

Example. The diagnoser for F = {C+
1 , L

−
1 , R

−
1 } with l = 2 for mode q0 is shown in Fig. 51. The

diagnoser shows that the system for the given F is 2-fault diagnosable. In each accepting state there

is a unique minimal diagnosis. Only two fault traces may arise in which we can be sure that two

faults have occurred together. We can also say the system is 3-fault diagnosable, however since only

two measurements are involved, we will never obtain a minimal diagnosis with a candidate consisting

of three faults.

The diagnoser for F = {C+
1 , L

−
1 , R

+
2 } with l = 2 for mode q1 is shown in Fig. 52. Consider the

trace i−+
3 i+−1 v−+

2 . After i−+
3 , the initial diagnosis is {C+

1 , R
+
2 }. After i+−1 , the hypothesis set is

{L−1 }, so now there will be two consistent double faults, i.e., the diagnosis becomes {C+
1 L
−
1 , L

−
1 R

+
2 }.

After v−+
2 , the hypothesis set is {C+

1 }, so the diagnosis becomes {C+
1 L
−
1 , C

+
1 L
−
1 R

+
2 }, which is pruned

to {C+
1 L
−
1 }, because the candidate {C+

1 , L
−
1 , R

+
2 } violates l = 2 and is covered by another candidate
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Figure 50: Selected diagnosers for mode q1 with l = 2.
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Figure 51: Diagnoser for F = {C+
1 , L

−
1 , R

−
1 } in mode q0 with l = 2.

in the diagnosis. If v0+
2 had occurred instead, then the hypothesis set would be {L−1 , R+

2 }, and

the diagnosis would not change. Therefore, the diagnoser shows us that the system is not 2-fault

diagnosable. In fact, there are two different accepting states where the diagnosis result is ambiguous,

i.e., it is unknown which double fault has occurred. However, the diagnoser does illustrate the traces

that lead to these states, and, further, in both of these states, it is at least certain that L−1 is one of

the faults that occurred.
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Figure 52: Diagnoser for F = {C+
1 , L

−
1 , R

+
2 } in mode q1 with l = 2.
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Diagnoser for Hybrid Systems

We now design diagnosers for hybrid systems, where the system is defined as S = (F, M, Q, LF,M,Q),

and we use the full representation of a candidate, i.e., c = (Fi, qi). In hybrid systems, both controlled

and autonomous mode changes (including discrete faults) may occur. As discussed in Chapter VI,

we analyze nominal autonomous mode changes after fault occurrence the same way we analyze

discrete faults, i.e., we predict their effects and isolate them along with faults. Therefore, F includes

parametric faults, discrete faults, and unpredicted nominal autonomous mode changes. Again, this

is a different approach than Hybrid Transcend, because we maintain only a single reference of

nominal behavior that updates only with controlled mode changes, and assume mode changes do

not cause state resets. It also assumed that we can predict the measurement deviations that will be

produced by autonomous mode changes as we do with discrete faults. We leave diagnoser design for

the more general approach as future work.

Ultimately, we would like to systematically construct a diagnoser for a hybrid system S that

isolates all possible candidates. Further, we would like to show that if S is diagnosable, then this

diagnoser uniquely isolates all candidates. To do this, we use individual diagnosers like the D∗{f},M
constructed previously for continuous systems, but which include the modes in the diagnoses of the

states. We then provide a composition operator to simultaneously compose all the diagnosers to a

global diagnoser that isolates all the valid candidates.

First, we construct a diagnoser, D∗{f},M,q for each single fault f within each mode q from Lf,M,q.

Definition 52 (D∗{f},M,q). Given fault f and mode q for measurements M , with Lf,M,q = (S, s0,

Σ, δ, A), D∗{f},M is defined as (S, s0, Σ, δ, A′, {{(f, q)}}, Y ), where Y (s) = {(f, q)} for all s ∈ S,

and A′ = A if S 6= {s0}, or A′ = {s0} otherwise.

These diagnosers are different from those for continuous systems in two ways. First, the diagnosis

for the states contains the mode. Second, the initial state also is mapped to the fault, and the initial

state may also be an accepting state. The second change is necessary because if our diagnosis

contains a fault, and we change to a mode where the fault has no future effects, this corresponds to

maximal candidate trace for the new mode, and, therefore, must correspond to an accepting state

in the diagnoser.

Example. The extended diagnosers corresponding to the individual faults in the different modes of

the circuit are shown in Fig. 53. Since we must enumerate all possible traces, we need diagnosers for

the faults in both the nominal and the fault modes, e.g., we require both D∗
R+

1 ,q0
and D∗

R+
1 ,qτ0

, but

the diagnosers for the parametric faults in the discrete fault are not shown since the diagnosers for
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the faulty modes are the same as for the nominal mode, only with the mode changed. For example,

D∗
R+

1 ,qτ0
looks just like D∗

R+
1 ,q0

, only with q0 replaced with qτ0 in the diagnoses.

Consider the diagnosers D∗
L+

1 ,q0
and D∗

L+
1 ,q1

. As in the continuous systems case, if the mode is q1,

and L+
1 occurs, then two possible traces can be produced, either i−+,X

1 i0−,X3 v0−,X
2 or, alternatively,

i−+,X
1 v0−,X

2 i0−,X3 . In q0, i3 cannot be affected, so only i−+,X
1 v0−,X

2 is possible. But, if a controlled

mode change occurs, it may change the observed effects. For example, if we start in q1 and see

i−+,X
1 v0−,X

2 , but then the mode is changed to q0, we will not observe the effect on i3 because the

causal link between the fault and the measurement does not exist in the new mode. Therefore, we

will observe no new measurement deviations. If, however, we were in q1, observed i−+,X
1 i0−,X3 , and

changed to q0, we would see v0−,X
2 because in mode q0, L+

1 can still affect v2.

Some differences emerge in the diagnosers for hybrid systems as compared to those for continuous

systems. As described in Chapter VI, in hybrid systems we have to explicitly deal with both

measurement deviation events (in ΣM ) and controlled mode change events (in ΣQ). Since we want

to use the diagnoser to analyze system diagnosability, and since this relates to candidate languages,

mode change events must be included in the diagnoser, because they affect the diagnosis. Recall that

given modes Q = {q0, q1, . . . , qr}, we abstract the mode change events to ΣQ = {σq0 , σq1 , . . . , σqr},

where σqi indicates an event that changes the system to mode qi. The sequence of the commands

should be consistent with the discrete mode behavior of the system, which can be described by the

mode transition function µ. For example, σq1 would probably not be immediately followed by σq1

because the controller has memory, i.e., µ(σq1 , q1) = ∅.

A second important difference is that there may be different possible modes of fault occurrence,

depending on the history of control actions. Consistency of candidates depends on the expected

mode. For example, in the circuit, if the mode is known to be q1 immediately before fault occurrence,

then the stuck-on fault, τ1, should not be considered as a fault candidate, because if it did occur we

would not have seen a deviation, because q1 and qτ1 map to the same mode of the corresponding

junction, i.e., the junction is on for both modes. We must create an initial state in the diagnoser for

each possible mode of fault occurrence.

We now describe a composition operator, Πl, that simultaneously combines the D∗{f},M,q for each

possible (f, q) pair. To simplify, we describe the composition assuming that the mode immediately

before fault occurrence, q(t−f ), is always known, i.e., RollBack is not needed to generate q(t−f ). We

split the mode set Q into nominal modes QN and fault modes QF .
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Figure 53: Hybrid diagnosers for the individual faults of the circuit.
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Definition 53 (Πl Composition). Given the set of all k (f, q) diagnosers, D = {D∗{f},M,q : f ∈

F, q ∈ Q}, Dl∗F,M,Q , Πl(D), where

• I = {(s0,1, s0,2, . . . , s0,k, q, (∅, q)) : q ∈ QN}

• Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σk ∪ ΣQ

• δ(σ, (si,1, si,2, . . . , si,k, qi, di)) = (si+1,1, si+1,2, . . . , si+1,k, qi+1, di+1), where

– σ ∈ ΣQ

– all si+1,j = si+1,j

– qi+1 = µ(σ, qi)

– di+1 = {(f, µ(σ, q)) : µ(σ, q) 6= ∅ ∧ (f, q) ∈ di}

• δ(σ, (si,1, si,2, . . . , si,k, qi, di)) = (si+1,1, si+1,2, . . . , si+1,k, qi+1, di+1), where

– σ ∈ ΣM

– qi+1 = qi

– Mi = M((si,1, si,2, . . . , si,k, qi, di)),

– si+1,j = si,j if δMi,j(σ, si,j) = ∅, or δMi,j(σ, si,j) otherwise, and

– di+1 = di ∧l hF,Mi(σ) 6= ∅

• S is the set of all s reachable through δ from some s0 ∈ I

• A is the set of all si = (si,1, si,2, . . . , si,k, qi, di) ∈ S where there exists some si,j ∈ si, with

some sB,j ∈ BM(si)(si,j) where sB,j ∈ Aj , such that the c ∈ Yj(sB,j) covers some c′ ∈ Y (si)

• D is the set of all di in each (si,1, si,2, . . . , si,k, qi, di) ∈ S

• Y ((si,1, si,2, . . . , si,k, qi, di)) = di

In the Πl composition, states are not only indexed by the states of the individual diagnosers

and the current diagnosis, but also by the expected mode. This corresponds to the mode that the

controller thinks the system is in. It is independent of the candidates in the current diagnosis,

because it is not changed when an event σ ∈ ΣM is received. Indexing by this mode is important

because it determines which new controller commands would be consistent.

Theorem 6. Dl∗F,M,Q isolates all valid candidates.
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Proof. Assume an initial mode of fault occurrence q0 ∈ Q, a candidate c with |c| ≤ l, and a

trace λ = σ1σ2 . . . σk ∈ Lc,M,q0 . By the definition of a candidate trace, σ1 is a candidate trace

for c′ = (Fi, µ(f, q0)) for f ∈ Fi if σ1 v λ′ ∈ Lf,M,µ(f,q0). Therefore, (f, µ(f, q0)) ∈ hF,Mi
(σ1),

so by definition of ∧l, the resultant diagnosis will contain (f, µ(f, q0)), so by definition of δ, the

corresponding state is in S. Assume λi is a candidate trace for c′ = (Fi, qi) and has a corresponding

state s ∈ S. Then if σi+1 ∈ ΣQ, λiσi+1 is a candidate trace for (Fi, µ(σi+1, qi)) and by definition of δ

has a corresponding state s ∈ S and the associated diagnosis contains (Fi, µ(σi+1, qi)). If σi+1 /∈ ΣQ,

then λiσi+1 is a candidate trace for (Fi, qi) if σi+1 v λ′ ∈ Lf,M,µ(f,q0) and therefore by definition

of a hypothesis set, (Fi, qi) ∈ hF,Mi
(σi+1), so by definition of ∧l, the diagnosis will contain (Fi, qi)

and by definition of δ, will have a corresponding state in S. Therefore, there is a state for any valid

candidate trace. Given a state s ∈ S with a trace that is maximal for c = (Fi, qi), the substate of

s that corresponds to a state in D∗f,M,qi
, for some f ∈ Fi, must have no measurement deviations

possible from its boundary, otherwise the trace would not be maximal, and thus the boundary must

contain an accepting state. So, by definition of A, the state s is accepting. Since c, λ, and q0 were

general, Dl∗F,M,Q isolates all valid candidates by definition of isolation.

Further, we can show that if the system S is diagnosable, then the diagnoser uniquely isolates

all candidates.

Theorem 7. A system S = (F,M,Q,LF,M,Q) is diagnosable if and only if Dl∗F,M,Q uniquely isolates

all valid candidates.

Proof. Assume S is l-fault diagnosable. Assume a c and λ ∈ Lc,M,Q, with |c| ≤ l. Dl∗F,M,Q isolates

c, so must have corresponding accepting state s with c′ ∈ Y (s) where c′ covers c. Since S is

diagnosable, there cannot be a c′′ that does not cover c or that c does not cover where c and c′′

are not distinguishable, by definition of l-fault diagnosability. So, there cannot be some common

prefix λ that maps to an accepting state that has both a c′ that covers c and a c′′′ that covers c′′.

So, Dl∗F,M,Q uniquely isolates all c, where |c| ≤ l. Assume Dl∗F,M,Q uniquely isolates all c, where

|c| ≤ l. Then each possible fault trace λ has an accepting state s where c′ ∈ Y (s) and c′ covers c.

Thus, there cannot be some c′′ that does not cover c or that c does not cover, with trace λ′′ that

reaches the same state, otherwise c′′ or some candidate that covers it is in Y (s). Therefore, c and c′′

are distinguishable, so S is l-fault diagnosable. Thus S is l-fault diagnosable if and only if Dl∗F,M,Q

uniquely isolates all c, where |c| ≤ l.
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Figure 54: Hybrid diagnoser for R+
1 .

An implementation for the Πl composition is given as Algorithm 14. First, it creates all the

initial states. Since the mode events may now introduce cycles into the diagnoser, we include a

visited states list, Svisit. The algorithm operates similar to that for MFD in continuous systems,

except we now also have to perform the step of updating the hypotheses when a mode change event

is received. When this happens, an operation analogous to UpdateHypotheses is performed. The

new diagnosis contains all candidates in the previous diagnosis updated to the new mode via the

mode event. Candidates which cannot be updated to the current mode because the mode change

is not possible are eliminated. If the diagnosis is nonempty, a new state and new transition will be

added.

The following example demonstrates how controlled mode changes affect the diagnoser design.

Example. Consider the R+
1 fault. The diagnoser for F = {R+

1 } only is given in Fig. 54. Both q0

and q1 may be initial expected modes at the time of fault detection. The mode transition function

µ allows σq0 and σq1 to alternate. Starting in a particular mode, a measurement deviation indicates

the occurrence of the fault. Either mode change events or further measurement deviations may

occur. Consider the initial state given by the diagnosis {(∅, q0)} and the trace i0−,X1 v0−,X
2 . This

trace is not a maximal candidate trace for the current candidate, {(R+
1 , q1)} because i3 should still

deviate. Therefore, the corresponding state is not accepting. However, if σq0 occurs next, then the

new state is accepting, because in q0, R+
1 cannot effect i3 since the switch is turned off, so the causal

path is broken.

The following example illustrates the necessity of the discrete change feature in the fault signature

to achieve diagnosability.

138



Algorithm 14 D∗F,M,Q ← Πl(D)
S ← ∅, I ← ∅, A← ∅, δ ← ∅, D ← ∅, Svisit ← ∅
Σ← Σ1 ∪ Σ2 ∪ . . . ∪ Σk ∪ ΣQ
for all q ∈ QN do
s0 ← (s0,1, s0,2, . . . , s0,n, q, (∅, q))
I ← I ∪ {s0}
S ← S ∪ {s0}
Y (s0)← (∅, q)
Spend ← {s0}
Svisit ← Svisit ∪ {s0}

while Spend 6= ∅ do
s← pop(Spend)
for all σ ∈ Σ do

if σ ∈ ΣQ and s /∈ I then
for all si ∈ s do
s′i ∈ s′ ← si

q′ ∈ s′ ← µ(σ, q)
d← ∅
for all (f, q) ∈ Y (s) do

if µ(σ, q) 6= ∅ then
d← d ∪ (f, µ(σ, q))

else
h← ∅
for all si ∈ s do

if δM(s)(σ, si) 6= ∅ then
s′i ∈ s′ ← δM(s)(σ, si)
h← h ∪ Yi(si)

else
s′i ∈ s′ ← si

q′ ∈ s′ ← q ∈ s
d← Y (s) ∧l h

if d 6= ∅ then
if s′ /∈ Svisit then
d′ ∈ s′ ← d
push(Spend, s

′)
Svisit ← Svisit ∪ {s′}
S ← S ∪ {s′}
for all s′i ∈ s′ do

if ∃sB ∈ BM(s′)(s
′
i), sB ∈ Ai and c ∈ Yi(sB) covers some c′ ∈ Y (s′) then

A← A ∪ {s′}
break

D ← D ∪ {d}
Y (s′)← d

δ(s, σ)← s′

Example. Consider the fault set F = {R+
2 , τ0} with an initial mode of q1. The diagnoser is shown

in Fig. 55. Ignoring the discrete change feature (Fig. 55a), the system is not diagnosable, because

there is at least one trace where the diagnoser ends up in an accepting state where the diagnosis

contains multiple candidates. If we use the discrete change feature, then the system is unambiguously

diagnosable (Fig. 55b). Note also that in Fig. 55, the hypothesized mode does not change for the

discrete fault candidate when a mode change event is received, because once the discrete fault has

occurred, the faulted switch is stuck so cannot change modes.
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Figure 55: Hybrid diagnosers for F = {R+
2 , τ0} and initial mode of q1 with l = 1.

As a particular case, consider the trace i−+
3 v0+

2 σq0 . Because R+
2 cannot affect i1 when in mode

q0, this is a maximal candidate trace for (R+
2 , q0) and therefore corresponds to an accepting state. If

it was τ0 that had actually occurred, we would get a deviation in i1, but since we do not know which

fault will occur, we cannot guarantee that the trace will eventually distinguish a unique candidate.

We would have to wait infinitely long to ensure that no further deviation occurs in order to verify

that (R+
2 , q0) is the true candidate.

The following example provides some diagnosability results for the circuit.
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Figure 56: Hybrid diagnoser for F = {C+
1 , R

+
2 , τ0, τ1} with l = 1.

Example. For F = {C+
1 , R

+
2 , τ0, τ1}, the hybrid diagnoser is given in Fig. 56. Although the system

is 1-fault diagnosable in the continuous case, the diagnoser shows that the system is not 1-fault

diagnosable in the hybrid case. Starting in q1, if the trace i−+,X
3 σq0 occurs, both C+

1 and R+
2 are

consistent. Since R+
2 cannot affect the measurements in q0, the trace is maximal for this candidate,

so corresponds to an accepting state. Since we do not know which fault occurred and the diagnoser

has no control over controlled mode changes, we cannot guarantee that the true candidate will

eventually be distinguished. However, the system is 1-fault Q-diagnosable, because we can always

either leave the state by executing controlled mode changes or prevent entrance of the state by

blocking controlled mode changes. From this state, if we issue σq1 , we enter a state from which

the candidates can be distinguished. Once in that state, how v2 deviates will determine the true

candidate, as long as we prevent σq0 from occurring until we see v2 deviate. Alternatively, we can

prevent σq0 from occurring after i−+,X
3 so that we never enter the state, thus ensuring the a deviation

from v2 will be the next event.

The following examples demonstrate the operation of the hybrid diagnoser.

Example. Consider the diagnoser for F = {R+
2 , τ0, τ1} with l = 2 and initial mode q0, shown in

Fig. 57, and the trace i+−,N3 v0+,X
2 i0−,X1 . After i+−,N3 the diagnosis is {(τ1, qτ1)}. After v0+,X

2 , the hy-

pothesis set is {(R+
2 , q1), (R+

2 , qτ1), (τ0, qτ0)}, so the diagnosis is {(R+
2 τ1, qτ1)}. Candidate (τ0τ1, qτ0)

is not included because qτ0 is not possible from qτ1 , and it violates the persistency assumption, since

the two fault events correspond to the same switching component. After i0−,X1 , the hypothesis set

is {(R+
2 , q1), (R+

2 , qτ1)}, so the diagnosis remains {(R+
2 τ1, qτ1)}.
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Figure 57: Diagnoser for F = {R+
2 , τ0, τ1} with l = 2 and initial mode q0.

Consider the diagnoser for F = {R+
2 , τ0, τ1} with l = 2 and initial mode q1, shown in Fig. 58.

Consider the trace i−+,X
3 v0+,X

2 i0−,X1 . After i−+,X
3 , the hypothesis set contains only (R+

2 , q1), so the

diagnosis becomes {(R+
2 , q1)}. After v0+,X

2 , the hypothesis set is {(R+
2 , q1), (R+

2 , qτ1), (τ0, qτ0)}, so

the diagnosis becomes {(R+
2 , q1), (R+

2 τ0, qτ0)}, but is pruned to {(R+
2 , q1)} to make it minimal. After

i0−,X1 the hypothesis set is again {(R+
2 , q1), (R+

2 , qτ1), (τ0, qτ0)}, so the diagnosis does not change.

Consider the diagnoser for F = {R+
2 , τ0, τ1} with l = 2 and initial mode q1, shown in Fig. 58,

and the trace i−+,Z
3 v0+,X

2 σq0i
0−,X
1 . After i−+,Z

3 , the hypothesis set contains only (τ0, qτ0), so the

diagnosis becomes {(τ0, qτ0)}. After v0+,X
2 , the hypothesis set is {(R+

2 , q1), (R+
2 , qτ1), (τ0, qτ0)} and

the diagnosis remains the same. After σq0 , an actual mode change does not occur because q0

is not reachable from qτ0 , so the diagnosis remains the same. After i0−,X1 , the hypothesis set is

{(R+
2 , q1), (R+

2 , qτ1), (τ0, qτ0)} and the diagnosis remains the same.

Online Implementations

The proposed event-based diagnosis framework leads to three different implementations of the event-

based diagnoser that trade off space and time complexity. In general, the more information that is

compiled, the more efficient the diagnoser is, but the more space it requires. If less information is

compiled, the diagnoser requires less space, but becomes less efficient.
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Figure 58: Diagnoser for F = {R+
2 , τ0, τ1} with l = 2 and initial mode q1.

The Global Diagnoser Implementation

Performing online diagnosis with the global diagnoser, Dl∗F,M,Q, has the best time complexity. At

design time, the global diagnoser is constructed based on the fault models. At run-time, all pos-

sibilities are captured by the diagnoser, so the diagnoser needs only to wait for events to occur,

transition to the next state, and output the associated diagnosis. Using appropriate data structures,

these operations can be achieved in constant time.

With a large number of faults and measurements, however, the global diagnoser may have poor

space complexity. Since it must contain all the possible event sequences, it must capture O(|F |T )

traces, where T is the maximum number of traces per fault. This is also the design-time complexity

of constructing the global diagnoser. In the worst case, a fault may have no measurement orderings,

thus T is O((|M |+|Q|)!). Therefore, there would be O(|F |(|M |+|Q|)!) traces and O(|F |(|M |+|Q|)!)

states in the worst case. If T is truly the worst case, however, i.e., a fault allows all possible event

sequences, then the diagnoser would only have O((|M |+ |Q|)!) distinct traces to capture, and thus

O((|M |+ |Q|)!) states.

In SFD for continuous systems, the global diagnoser needs only to represent at most O(|F |T )

traces, so if many temporal orderings exist, then the number of possible fault traces reduces sig-

nificantly, and the global diagnoser will have feasible space requirements. In MFD for continuous

systems, the number of traces increases, because the diagnoser has to represent all the traces of

the single faults as well as the additional traces that may arise when the faults occur together, so
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Figure 59: Pruned diagnoser for the circuit for mode q0 with l = 1.

space requirements increase. Depending on the selection of l, space requirements may or may not be

feasible. In hybrid diagnosis, mode change events are included, and all possible mode changes have

to be accounted for in order to establish diagnosability of the system. If there are a large number

of modes, however, the space requirements for the global diagnoser become a limiting factor. The

diagnoser would be the most time-efficient, but its space-efficiency would explode exponentially.

Space requirements for the global diagnoser can be reduced by pruning of the states. The

diagnoser can be pruned by recursively removing leaf states, i.e., states from which no further

measurement deviation events are possible (but controlled mode changes still might be) that have

the same diagnosis (independent of the mode) as their parent states. Since removal of leaf states may

create more leaf states, the procedure is recursive. For example, Figs. 59 and 60 show the pruned

diagnosers for modes q0 and q1 of the circuit with l = 1, respectively. In many cases, diagnosers with

l > 1 will not be pruned very much, because it is likely that new events may expand the diagnosis,

whereas with single faults, the diagnosis can only reduce as more events occur.

When pruning diagnosers, newly created leaf states are made accepting states. Therefore, ac-

cepting states no longer exclusively correspond to maximal traces, but also to traces for which the

diagnosis can no longer change. Therefore, the leaf states correspond to termination points. When

a leaf state is reached in a pruned diagnoser, it is known that the faults in the candidates of the

diagnosis cannot change for any future measurement deviations or controlled mode changes. So,

fault isolation can be terminated, knowing that the best result has been achieved. Therefore the

pruned global diagnoser provides us with exact points at which fault isolation can safely terminate,

without the use of time limits as discussed in Chapters V and VI.

Another way to reduce the space requirements of the global diagnoser is to employ a distributed

approach, where diagnosers for subsystems have only a subset of the faults and measurements.

This approach will be described in the case study of Chapter VIII within the context of single fault

diagnosis in continuous systems. Extension of the distributed approach to multiple faults and hybrid

systems is left as future work.
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Figure 60: Pruned diagnoser for the circuit for mode q1 with l = 1.

The Subdiagnoser Implementation

In the subdiagnoser implementation, only the individual D∗{f},M,q for each f ∈ F and q ∈ Q are

computed at design time, which is less expensive than computing the global diagnoser. Each fault

may have, in the worst case, O(|M |!) possible fault traces. The worst case total space requirement

is then O(|F ||Q||M |!), because each fault-mode pair may have O(|M |!) traces to capture. Again, if

many temporal orderings exist, then the space complexity may reduce substantially.

In SFD for continuous systems, the global diagnoser will always take up less space, since it

merges common fault traces and prefixes from the individual fault models [86, 133]. For MFD for

continuous systems, the subdiagnoser approach will in most cases have better space complexity than

the global diagnoser, because the additional traces that arise when multiple faults occur are not

explicitly represented, but rather, computed online. In hybrid systems diagnosis, the subdiagnoser

approach can be implemented by generating the necessary subdiagnosers online for the hypothesized

modes. Therefore, only the subdiagnosers that are needed are computed.

In online diagnosis, each subdiagnoser is traced simultaneously. The hypothesis set, h, is formed

when new events occur, as described in Chapter V for continuous systems and Chapter VI for

hybrid systems. This operation has time complexity O(|F ||Q|), since it must check at worst each

fault model for consistency. The current diagnosis is formed using the ∧l operator, which is a function

of the size of the hypothesis set and the size of the current diagnosis. At worst, the hypothesis set

contains O(|F ||Q|) elements, and the diagnosis contains O((|F ||Q|)l) elements, so the ∧l operation

takes O((|F ||Q|)l) time. In practice, time complexity is reduced because diagnoses are pruned to be

minimal, so the size of the diagnosis stays small [39]. The online composition of the fault models

corresponds to constructing the path of the diagnoser for the particular fault trace observed. Single

fault information along with controlled mode change information is composed online to obtain the

interleaved traces, so we do not need to pre-compute all possible traces.
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The Diagnoser-free Implementation

If each fault has many measurement orderings, then using either the global diagnoser or subdiagnoser

approach may be both space-efficient and time-efficient for continuous systems. If few orderings are

available, then the diagnosers approach size O(|M + Q|!), therefore, these approaches may not be

feasible given the space requirements of the system. The third implementation computes only the

fault signatures and relative measurement orderings for each fault online when fault isolation begins.

This case corresponds to directly using the fault isolation algorithms of Chapter V and VI online.

In diagnosis with this approach, we form the hypothesis set corresponding to the current mea-

surement deviation by looking through the fault signatures and measurement orderings, and this

requires O(|F ||Q||M |2) time in the worst case. We then compute the new diagnosis, which takes

O((|F ||Q|)l) time. Therefore, this approach has the worst time complexity because nothing is com-

piled at design time. Everything is computed at run-time, so the space requirements are minimal,

because only the relevant path of the global diagnoser is being constructed online, and signatures

and orderings are only computed as needed. Therefore, for hybrid systems, this is the best solution

for systems with a large number of modes, since the global diagnoser becomes very large when the

number of modes increases. This also allows us to exploit one of the main advantages of hybrid bond

graphs, i.e., avoiding pre-enumeration of system modes. However, in order to verify diagnosability

properties, the global diagnoser must still be computed.

Summary

Our event-based approach to diagnoser design can be viewed as a compilation strategy. Offline, event-

based fault models are converted into diagnosers, which are then composed into global diagnosers.

The global diagnosers are very time-efficient, although for multiple faults and especially for hybrid

systems, can have very large space requirements. The diagnosers provide diagnosability analysis of

systems, and show whether unique isolation of faults can be achieved, and if not, what particular

traces yield ambiguous diagnosis results. For hybrid systems, they also show which controlled mode

changes should be prevented or executed during fault isolation to avoid ambiguities when possible.

Because of the sometimes poor space complexity of the global diagnosers, a spectrum of diagnoser

implementations is presented that ranges from no compilation to full compilation, and the trade-offs

between the approaches were discussed.

Though diagnosis using ordered event sequences is performed similarly in DES approaches and

our approach, the main contrast between them is the abstraction used to generate the DES models.
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Most of the traditional DES approaches assume models created by human experts, so the DES model

and all its faulty behavior is assumed to be given [5, 6, 8, 62–66]. As opposed to quantization-based

abstractions [68, 69], we perform a qualitative abstraction with respect to nominal behavior, and

therefore the quality of the abstraction is not affected by fault magnitude or time of fault occurrence.

Measurement deviations directly indicate the presence of a fault, so our diagnosers track only faulty

behavior, whereas diagnosers in DES approaches also track the nominal behavior (e.g., see Fig. 4

of Chapter II). The individual fault diagnosers generated by our approach are similar to chronicles

and the specification diagnosers of [63]. The global diagnoser bears resemblance to those in [5, 6].

Our approach is also similar to timed failure propagation graphs (TFPGs), which include additional

information such as time bounds on symptom appearance [101, 135, 136]. Since time bounds are

used, diagnosability is, in general, increased, although how to systematically generate a TFPG for

a dynamic system is not addressed. Our approach represents one way to generate the some of the

information needed for a TFPG for a dynamic system.

Because we are working in an event-based framework, the notions of fault traces, fault languages,

distinguishability, and diagnosability bear a resemblance to those defined in the DES framework.

The notion of a fault trace is similar to the notion of a fault signature defined for DES in [137],

where it is defined as a string (of finite or infinite length) that contains a fault event. Diagnosability

can then be defined in terms of ensuring no two faults have the same signature (in our case, the

same trace). This is the situation in any modeling framework, because in general, faults can only be

distinguished if they manifest in different ways, in whatever way that is represented by the model.

Our approach separates out the fault effects and analyzes them separately.

Our notion of distinguishability is equivalent to that of strong discriminability in [134], and,

therefore, our notion of diagnosability is similar to strong diagnosability in [134], except we establish

diagnosability only in terms of minimal candidates. Single faults are treated the same as multiple

faults in the definition of [134], so with fault masking, diagnosability will almost never be achieved

under that definition. Also, no event-based information is used in [134]. Our definition of diagnos-

ability for hybrid systems is also similar to the approach presented in [138], because events in the

form of mode changes are taken into account. The approach uses analytical redundancy relations

but does not use any temporal orderings between symptom appearance as in the ARR approach

of [25,26], therefore our formulation of diagnosability is more general.
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CHAPTER VIII

CASE STUDY: DISTRIBUTED DIAGNOSIS IN MOBILE ROBOT FORMATIONS

Autonomous multi-robot teams can perform a wide range of collaborative tasks in manufacturing,

surveillance, and space exploration. In many cases, the execution of the task requires formation

control [139–142], and the success of the overall operation depends on each robot operating in an

error-free manner. Faults in one robot can propagate to other robots over communication links, and

this can cause problems in maintaining the formation required to execute the desired tasks (e.g.,

collaboratively moving a load [95]). Degradations and faults must be detected and isolated early

to allow for reconfiguration and continued operation, and this can be achieved only if diagnostic

mechanisms are incorporated into multi-robot systems [143]. However, the diagnosis of robot forma-

tions is a difficult problem. A global, centralized model is usually needed to capture the interactions

that govern the propagation of fault effects between robots, but centralized approaches have many

weaknesses. Specifically, these approaches (i) create a single point of failure, (ii) do not scale well

as formation size increases, (iii) do not exploit the computational resources available on each robot,

and (iv) incur large communication overhead.

Due to the problems with centralized approaches, we employ our diagnosis approach in a dis-

tributed fashion to formations of mobile robots, where each robot has a local diagnoser. Most work

in diagnosis of mobile robots has concentrated on the single-robot case. A survey of such methods

can be found in [144]. Transcend is applied in the single-robot case for diagnosis of actuator faults

using fault signatures derived from a simplified bond graph model [145]. The parity relation ap-

proach is applied to nonlinear single-robot systems in [93]. Particle filtering techniques are employed

in single-robot diagnosis also [31,146]. Fault detection in mobile robots is addressed in by developing

a technique which accounts for both kinematic and dynamic behaviors in order to generate better

residuals in spite of parametric uncertainty [147]. Sensor fault detection and identification using

multiple model adaptive estimation based on a bank of Kalman filters is developed in [148], and

extended by using a neural network to detect and identify both sensor and mechanical failures based

on the output of the filter bank in [149].

Multi-agent and distributed diagnosis have been explored previously as well, but has not been

directly applied to mobile robots. Distributed systems are diagnosed using an agent framework where

some failures are diagnosed locally, and others require coordination between the agents in [150]. Local
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diagnosers construct local diagnoses such that they are consistent with global diagnoses, sacrificing

diagnostic precision for gains in computational complexity in [151]. The problem of addressing

coordination failures in multi-robot teams is addressed in [152, 153]. Our approach deals with

process faults, whereas coordination failures are better described as logical faults, which are at a

higher level. Such approaches, however, can be considered as complementary to our work.

In this case study, we apply our diagnosis methods to single fault diagnosis in mobile robot

formations, where the formations can be modeled as continuous systems. Due to the problems with

a centralized approach, we apply the distributed Transcend methodology [40], but extend it to

incorporate relative measurement orderings. The distributed approach enables each robot to, us-

ing a local diagnoser, individually determine a globally correct local diagnosis with a small set of

measurements, therefore avoiding the need for a centralized diagnosis coordinator. Our approach

employs an extended bond graph model that comprehensively models the physical components, sen-

sors, and actuators, as well as the communication processes among the robots. Interactions between

the robots cause fault effects to propagate across robot boundaries, and, therefore, require addi-

tional discriminatory power to isolate all the faults of interest. Relative measurement orderings are

key to solving this problem [28, 95]. A formal diagnosability analysis for single, persistent faults

in robot formations shows that a combination of fault signatures and relative measurement order-

ings increases the discriminatory power of the measurements and facilitates more efficient diagnoses.

In contrast to a centralized diagnosis approach, our solution scales well to large formations, mini-

mizes the communication costs associated with fault isolation, takes advantage of the computational

resources available on each robot, and avoids the need for a centralized coordinator for the local

diagnoses. Experimental results a four-robot formation system demonstrates the effectiveness of this

approach. The results illustrate the advantages of the method, namely (i) scalability, (ii) increasing

the discriminatory power of the measurements, and (iii) improving the efficiency of the distributed

diagnosis approach (see also [28,95]).

Our approach is applicable to rigid formations of mobile robots. In rigid formations there is a

strong coupling between the dynamics of the robot behaviors, which is exploited by our algorithm

to improve the discriminatory power of the measurements and the efficiency of the diagnosers. The

approach may not offer advantages for collaborative multi-robot applications that do not exhibit

coupling between the dynamic behavior of individual robots. Specifically, for applications where

faults do not propagate between the mobile robots, our method can be still applied but will naturally

result in independent diagnosers for each robot.
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The chapter is organized as follows. We first present our modeling methodology. We then

describe the multi-robot diagnosis problem, and presents the computational architecture of the

diagnosis scheme. We then present the theoretical results in applying our approach to formation

diagnosis. We next demonstrate the effectiveness of the approach using experimental results for a

four-robot formation, followed by a summary of the case study.

Modeling Formations of Mobile Robots

In this case study, we develop diagnostic solutions for formations of robots that employ leader-based

control schemes of the type described in [139,140]. The approach assumes that there exists a single

global leader, for the purposes of control, who follows a known, planned trajectory. The remaining

robots in the formation, i.e., the followers, must maintain their positions with respect to the global

leader and/or other followers (local leaders). Correct behavior is defined with respect to a global

objective. The global objective of the system is to maintain the overall formation while pursuing the

planned trajectory and executing predefined tasks, e.g., collecting information or pushing a load.

Each follower robot implements two control laws, governing its translational and rotational ve-

locities. These laws are functions of a robot’s local information and information generated by its

leaders. Therefore, the approach is scalable to a large number of robots without a corresponding

increase in algorithm complexity. The formation model of [139,140] is also general enough to model

any type of rigid formation, since each robot’s position is defined with respect to other robots in

the formation. We adopt this formation modeling and control approach in our work, and apply our

diagnosis framework to these robot configurations.

The control algorithms in [139,140] assume a kinematic model of the robot, given the translational

and rotational velocities as inputs. We develop a bond graph model of the system that captures

both the kinematic and dynamic behavior of the robot under nominal and faulty system operation.

The formation control mechanisms are explicitly built into the bond graph model for diagnosis, and,

therefore, our approach can be used with any control scheme that ensures the robot team is in a

rigid formation.

Each robot includes a local controller that regulates the velocities of its two wheels. The sensor

suite includes motor encoders to measure wheel velocity and a gyroscope to measure heading. A

distributed controller coordinates the formation by determining the desired velocities for each robot

based on local and remote sensor measurements, communicated via a wireless network. In the

remainder of the section, we present the model of the multi-robot system used for diagnosis.
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Figure 61: Bond graph model of a single robot.

Modeling a Single Mobile Robot

Each robot is modeled using a bond graph. The bond graph for a single robot is shown in Fig. 61. A

single robot consists of left and right wheel drive subsystems, a chassis, a gyroscope, and two motor

encoders. The 1-junctions represent the common velocity points, e.g., the rotational velocity of the

left wheel, ωL, the rotational velocity of the right wheel, ωR, the forward velocity of the robot,

v, and the rotational velocity of the robot, ω. The 0-junctions represent common force points,

e.g., the forces on the left and right sides of the robot, FL and FR. The wheel subsystems include

modulated sources of effort (MSeL and MSeR) that model the actuator torque outputs that directly

feed the wheels, and inertial elements that model wheel mass and inertia, mw. Resistive elements

(with parameters RL and RR) model energy dissipation (i.e., friction) in the wheels. Transformers

model the transformations between linear and rotational velocities. The robot body subsystem

includes inertia components that model robot mass, Mc, and rotational inertia, Jc. The capacitive

components (with parameters KL and KR) model the mechanical stiffness of the robot system.
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Sensor models in the bond graph are derived from the kinematic relationships between the robot

velocities and the measurements. Each robot includes a gyroscope and two motor encoders. The

gyroscope computes the heading, θ(t), using a kinematic equation based on the rotational velocity,

ω(t), of the robot body, i.e., θ̇(t) = ω. The equations for the optical encoder measurements involve a

gain transforming the wheels’ rotational velocities to their linear velocities, i.e., vL(t) = GEL ωL(t)

and vR(t) = GER ωR(t), where GEL and GER are the encoder gains for the left and right wheels,

respectively. These are used to calculate the measured translational velocity, v, of the robot. In the

bond graph of Fig. 61, v is represented by the flow variable f36, associated with bond 36.

The sensors are modeled in the bond graph as modulated sources of flow that encapsulate the

measurement equations for vL, vR, and θ. For the gyroscope, the flow source is the rotational

velocity of the robot, ω, represented in the model as f20. The measured variable, the heading, is

e29 (the effort variable associated with bond 29), which is the integral of ω plus the sensor bias (if

any). For the case of the optical encoders, the flow is the rotational velocity of a wheel (ωL and ωR)

passed through a gain, so the measured variables are f25 and f28.

Position information is calculated in the bond graph using velocity and heading information.

These are also modeled using modulated sources of flow. The x and y coordinates are described by:

ẋ(t) =
vL(t) + vR(t)

2
cos θ(t),

ẏ(t) =
vL(t) + vR(t)

2
sin θ(t).

The modulated sources of flow provide these quantities, which are integrated to obtain the coordinate

positions of the robot, e33 for the x coordinate, and e35 for the y coordinate.

Local controllers are also modeled in the bond graph. The input to the robots are the motor

torques modeled as modulated sources of effort, which encapsulate the wheel control equations.

In our model, each wheel has an accompanying PID controller. For example, the equation of the

controller for the left wheel is given by:

τ = Kp(vL − vLd) +Ki

∫ t

0

(vL − vLd)dt+Kd
d(vL − vLd)

dt
,

where τ is the torque applied by the motor, Kp, Ki, and Kd are the controller gains, and vLd is the

reference velocity provided by the formation controller described in the next subsection. The torque

for the left (right) wheel is represented in the bond graph by the modulated source of effort MSeL

(MSeR). The PID controller is represented in the bond graph by the function CL(·) (CR(·)) that
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Figure 62: Control variables in robot formations.

modulates the torque. The edges from the observed velocities to the wheel sources represent the

control links for the PID controllers. Other controller types can be modeled similarly.

Modeling Leader-based Formations

Following the approach in [139], we model a formation as a tuple F = (S, C), where S is a set

of shape variables defining the formation structure, and C is a control graph showing the control

strategies for each robot and dependencies on their neighbors. The shape variables S consist of

relative bearings and separations between robots. Control laws maintain either the relative heading

and separation of a follower to its leader (separation-bearing control, or SBC), or the separations of

a follower from two leaders (separation-separation control, or SSC). In this way, formations can be

constructed by defining for each robot its control strategy, shape variables, and leaders.

Definition 54 (Control Graph). A control graph C is a directed, acyclic graph, where each robot,

Ri, defines a vertex. A directed edge (Ri, Rj) implies that Ri is a local leader to Rj , i.e., Rj

maintains its position with respect to Ri.

As in [139], we restrict a control graph with the following constraints: (i) The formation leader,

R1, has no incoming edges and at least one outgoing edge, and (ii) all other robots have at least one

and no more than two incoming edges. If a robot has exactly one incoming edge, then it employs

the SBC strategy, otherwise it has two incoming edges and it employs the SSC strategy. In general,

a robot with three or more incoming edges is over-constrained for planar formations, so this is

disallowed.

We denote by lji the separation between Rj and Ri and by bji the relative bearing from Rj to

Ri as measured from Ri’s axis of symmetry to the line connecting the center of Rj ’s wheel axis with

the point d units from the center of Ri’s wheel axis, as shown in Fig. 62. A subscript d denotes a

desired value, and a subscript i indicates a variable associated with Ri.
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With local leader Rj , the SBC control equations [140] for the follower, Ri, describe the desired

rotational velocity ωdi and linear velocity vdi, and are given as follows.

ωdi =
cos γj
d
{αblji(bdji − bji)− vj sin bji + ljiωj +

ρji sin γj}

vdi = ρji − dωdi tan γj ,

where

ρji =
αl(ldji − lji) + vj cos bji

cos γj
,

γj = θj + bji − θi,

and αl and αb are control gains for the separation and bearing, respectively.

With local leaders Rj and Rk, the SSC control equations [140] for the follower, Ri, are given as

follows.

ωdi =
1

d sin (γj − γk)
{αlj(ldji − lji) cos γk +

vj cos bji cos γk −

αlk(ldki − lki) cos γj −

vk cos bki cos γj}

vdi =
αlj(ldji − lji) + vj cos bji − dωdi sin γj

cos γj
,

where αlj and αlk are control gains for separations from Rj and Rk, respectively.

The formation control outputs vdi and ωdi can be decoupled into individual left and right wheel

velocities to serve as inputs to the wheels’ PID controllers as vLdi = vdi−rωdi and vRdi = vdi+rωdi,

where r is half the wheel base (see Fig. 62).

Fig. 63 shows an example formation structure. R1 is the leader, and moves in a pre-defined

trajectory. R2 employs SBC, so it only maintains its separation and bearing with respect to R1.

R3 uses SSC, maintaining its separation from R1 and R2. R5 and R6 also utilize SSC, and R4 uses

SBC.

The distributed control algorithm is modeled in the bond graph in the same manner as the local

PID control. Because heading, position, and velocity measurements are required for the control,
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Figure 63: Example formation of six robots.

signals are introduced from each robot’s x, y, θ, and v measurements to its own wheel sources, and

also to the wheel sources of each follower to represent the communication between the robots. For

example, following the formation in Fig. 63, signal edges are constructed from v2 (f36,2) of R2 to

MSeL,3 (e1,3) and MSeR,3 (e17,3) of R3 because CL,3(·) and CR,3(·) take v2 as an argument. The

multi-robot bond graph is derived from the composition of single robot bond graphs with these

signal edges included.

Modeling Faults

We consider a set of parametric faults in the actuators and sensors for the robots, shown in Table 7

with the corresponding parameters in the bond graph model (a superscript of + or - indicates the

direction of change of the parameter value). Actuator (motor) faults are modeled as changes in the

effort sources. A saturation fault in an actuator limits the maximum wheel velocity. Sensor bias is

modeled as an additive fault, and is represented by a change in the effort source at the measured

value (nominally the effort is 0). For example, a bias in the gyroscope manifests as an abrupt,

constant value added to the true measurement value. Sensor failures are modeled as multiplicative

faults and are parameterized by a change in the sensors’ transformer gains. For the optical encoders,

the nominal value of GEL (or GER) is rw, the wheel radius. A fault in the encoder is modeled as a

reduction in gain, i.e., its value reduces to a number in the interval [0, rw). This corresponds to a

percentage of the encoder counts that are missed (at least 10%).
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Table 7: Fault Parameters in the Robot Models

Fault Description

MSe−L Left actuator saturation/failure
MSe−R Right actuator saturation/failure
G−EL Left encoder (partial) failure
G−ER Right encoder (partial) failure
B+
gyro Positive gyroscope bias

B−gyro Negative gyroscope bias

Problem Formulation

If a system is globally diagnosable, then a centralized diagnoser can be constructed that can uniquely

isolate all faults, as shown in Chapter VII. Such an approach, however, results in a very large diag-

noser that becomes a single point of failure. The single point of failure can be avoided by replicating

the centralized diagnoser on each robot, however, this will be inefficient for large formations. In addi-

tion, the diagnosers on each robot will perform unnecessary computations involving fault hypotheses

that are not relevant to the particular robot. We instead take a distributed approach, where each

local diagnoser isolates faults in its subsystem using local measurements and some remote measure-

ments, if required. Since accessing remote measurements is expensive, our design goal is to find the

minimum number of remote measurements that makes each subsystem globally diagnosable. The

design approach ensures that a local diagnosis will be globally correct, because exactly one robot

isolates the true fault and knows no remote faults could have occurred. Since the local diagnosers

achieve a global diagnosis, this avoids the need for a centralized diagnosis coordinator [40].

Our distributed diagnosis algorithm considers a finite set of abrupt, persistent faults, and applies

to single fault diagnosis for continuous systems. We denote the complete set of system faults as F ,

and the complete set of measurements as M . For a system of n robots, associated with each robot

Ri is a set of local faults Fi and a set of local measurements Mi, such that

F =
⋃

1≤i≤n

Fi and M =
⋃

1≤i≤n

Mi.

In distributed diagnosis, our objective is to design n diagnosers Di , DFi,M+
i

, one for each robot

Ri, so that Di can diagnose all faults in Fi using M+
i , where M+

i , Mi∪Mci, and Mci are additional

measurements from other robots. The design goal is to find the minimum set Mci ⊆ M such that

each fault f ∈ Fi can be uniquely isolated within the fault set F using M+
i . That is, unique isolation

in a local diagnoser corresponds to unique isolation in the global diagnoser. If Mci = ∅, then we say

that the diagnoser Di is independent of the other diagnosers. Otherwise, to obtain globally correct
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Algorithm 15 Distributed Diagnoser Design
Input: local fault sets Fi, local measurement sets Mi, fault signatures, ordering sets, k subsystems
for subsystem i ∈ 1, . . . , k do

identify set F ′i ⊆ Fi such that f ∈ F ′i cannot be completely distinguished using Mi

for f ∈ F ′i do
identify minimum set of communicated measurements to globally diagnose f
add this set to the local measurement set

diagnoses for the faults in Fi, Di must use additional measurements, so it is not independent. We

will show in later that some robots’ diagnosers will be independent.

The measurement set M+
i allows Di to distinguish uniquely every fault f ∈ Fi from the fault set

Fi (local faults), and from F−Fi (remote faults). Our design ensures that the effects observed on M+
i

can only be explained by a single fault flocal ∈ Fi or some (unknown) fault fremote ∈ F −Fi [28,40].

Each robot Ri knows only the effects of faults in Fi on measurements in M+
i . Therefore, if there is

no f ∈ Fi which matches the observations, the fault is guaranteed to be remote. Under the single

fault assumption, agreement between individual diagnosers is reached implicitly. If f ∈ F occurs, it

will belong to exactly one Fi thus exactly one robot, Ri, will achieve the diagnosis {f} and all other

robots will eventually achieve the (empty) diagnosis ∅. Therefore, the global diagnosis is simply

{f}. Practically, we do not have to wait for all other robots to complete their diagnostic tasks. A

robot Ri may conclude that its diagnosis {f} is the global diagnosis if one of three conditions holds:

(i) all measurements in M+
i have deviated, so by design no other fault could have occurred, (ii) all

other robots have reached the diagnosis ∅, thus leaving only {f}, or (iii) measurement deviation

information allows the robot to conclude a remote fault could not have occurred.

The distributed diagnoser design algorithm generates the distributed diagnoser by minimizing

the number of shared measurements between subsystems. For each subsystem, if a fault is not

globally diagnosable using local measurements, it searches neighboring subsystems for a minimal

set of additional measurements to make the fault globally diagnosable. The pseudocode is given

as Algorithm 15, and extends the algorithm in [40, 41] using orderings. In the worst case, all

combinations of measurements are considered, so the algorithm is exponential. From a practical

viewpoint, since the diagnosers are built offline, their design time complexity is not of much concern.

Given each Fi, the distributed design algorithm determines the corresponding M+
i that each

local diagnoser needs to have. Therefore, for robot Ri, we will obtain DFi,M+
i

. To do this, we obtain

the fault models for each f ∈ Fi using M+
i , i.e., Lf,M+

i
. From these, we obtain each D{f},M+

i
and

then compose these using the ∆ composition described in Chapter VII.
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Figure 64: Diagnosis architecture for R3

Distributed Diagnosis Architecture

The diagnosis architecture for the multi-robot system consists of distributed version of the same

components as in the centralized case (Fig. 10). Fig. 64 illustrates the architecture for R3 in the

given six-robot formation. A robot Ri (e.g., R3) receives communicated inputs uji (u13 and u23) from

each local leader Rj (R1 and R2). The local observers compute the output estimates, ẑi, (ẑ3) given

the input ui (u3), the local measurements zi (z3), and communicated state information, x̂ji (x̂13

and x̂23), from each leader Rj (R1 and R2) as necessary. It also outputs relevant state information,

x̂ik (x̂36) to each follower Rk (R6). The fault detectors for each robot compute the residuals of the

measurements as differences between actual and predicted values, ri (r3). If a fault is detected, the

symbol generator computes qualitative values as events, σi (σ3), i.e., fault signatures, for the changes

in measurement values. Each local diagnoser uses these signatures and communicated events σji (σ13

and σ23) from each required robot Rj (R1 and R2) to isolate the fault. The local diagnoser also

outputs some of its own signatures, σik (σ36), required by the diagnoser design for other diagnosers

Dk (D6) to use. We assume the communication delay is within one sample period.

We extend our traditional observer scheme to multi-robot systems by using a distributed, de-

centralized, extended Kalman filter (DDEKF) [154]. This method creates local observers for each

robot, which share relevant observations and estimates. Each DDEKF produces estimates of the

local state vector using local observations, local estimates, and required shared observations and

estimates.
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The DDEKF estimate update equations are given by:

ẑi(k) = Ci(k)x̂i(k|k)

x̂i(k|k) = Pi(k|k){P+
i (k|k − 1)x̂i(k|k − 1) +

n∑
j=1

P+
i (k|zj(k))x̂i(k|zj(k))]}

Pi(k|k) = [P+
i (k|k − 1) +

n∑
j=1

P+
i (k|zj(k))]+,

where Ci is the local output matrix, Pi the local covariance matrix, n the number of subsystems,

and + indicates the generalized matrix inverse.

Distributed Diagnosers for Robot Formations

The formation system is defined by the global bond graph model. The set of faults for Ri is the set

Fi = {MSe−L,i, MSe−R,i, G
−
EL,i, G

−
ER,i, B

+
gyro,i, B

−
gyro,i}, and the set of measurements is Mi = {vL,i,

vR,i. The complete fault set for the n robots is F = ∪i = 1nFi and the complete measurement set

is M = ∪i = 1nMi.

The TCG of the entire system is derived systematically from the global system bond graph

model. It consists of a TCG for each robot, with additional edges between the robot TCG models

that convey the measurements required by the formation control. These additional edges start at

the local or remote measurement vertex and end at the effort source vertices representing actuator

torque. For example, an edge is required from f36,2 of R2’s TCG (v2) to e1,3 of R3’s TCG (τL3)

because R3’s control requires v2 as an input. This represents the fact that the torque τL3 is causally

influenced by v2. The labels on these edges include a dt specifier to indicate a time delay due to the

system dynamics. The sign of the label depends on whether a change in the measurement will cause

a direct or inverse change on the control output. Because the control is nonlinear, the direction

of change will depend on the robot’s position. The effects of x, y, and θ depend on position, but

the control output change due to a fault transient will always initially change in the same direction

as the communicated velocity measurements. These edges capture the qualitative effects of the

measurements in the transient dynamics of the robot’s motion. Therefore, the global system TCG

not only captures fault propagation within a single robot but also from one robot to another through

the leader-follower interactions.
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Figure 65: TCG for a single robot of the multi-robot system.

Fault Propagation Graph

The effects of a fault in a single robot may propagate to other robots in the system through the

control links, and we take this into account in constructing the global TCG. For example, in Fig. 63,

if an actuator fault occurs in R2, it cannot maintain its separation and bearing with respect to

R1. Because R1 will continue on its predefined trajectory, R3 will lose its ability to maintain its
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pre-specified separation to both R1 and R2. Therefore, the fault in R2 has now propagated to R3.

Since R3 can no longer act as a leader to its followers, the formation will not be maintained, and

the fault will further propagate to R6. On the other hand, R4 can still maintain its separation and

bearing with respect to R2, and thus R5 can also maintain its separations to R2 and R4. Depending

on the situation and control strategy employed, faults will, therefore, propagate to some parts of the

system and not others. To make the overall diagnosis process more efficient, we can remove causal

links between the robots where faults do not propagate, and still generate correct diagnosis results.

The reduced interactions between the robots are captured in the form of a fault propagation graph

that is derived from the control graph.

Definition 55 (Fault Propagation Graph). A fault propagation graph G is a directed, acyclic graph,

where each robot, Ri, defines a vertex of the graph. A directed edge (Ri, Rj) implies that faults may

propagate from Ri to Rj . We denote the parents of a robot Ri in G as Par(Ri) and the ancestors

as Anc(Ri).

Fig. 66 shows the fault propagation graph for the six-robot formation. To improve the efficiency

of diagnosis, the fault propagation graph is constructed as a subset of the formation control graph.

An edge (Ri, Rj) in a formation control graph C is not included in the corresponding graph G, if

Rj has only one incoming edge. Faults do not propagate to robots with single incoming edges,

i.e., robots that have a single leader, because that robot can maintain its position relative to its

leader for any arbitrary trajectory if it is not faulty itself. In the example formation illustrated in

Fig. 63, edges (R1, R2) and (R2, R4) are removed because R2 and R4 have single leaders. An edge

(Ri, Rj) from the control graph C is also removed if Rj has another edge (Rk, Rj) and Rk has a

single incoming edge (Ri, Rk). Faults also do not propagate along these edges, because a fault in

Ri would not propagate to Rk, and since Rj depends on both Ri and Rk, it will not exhibit faulty

behavior if Ri does. In the example, edges (R1, R3) and (R2, R5) are removed. A simple algorithm

can be constructed to find and remove all such edges. Note that only robots employing SBC can

become source vertices, i.e., have no incoming edges, through this procedure.

The fault propagation graph describes whether to treat control information as inputs (through

which faults do not propagate) or remote measurements (through which faults do propagate). The

fault detection model can, therefore, be simplified with respect to G. An absent link from Ri and

Rj in G indicates that Rj does not require estimates from Ri to produce its local estimates.
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Figure 66: Fault propagation graph for the formation of six robots.

Diagnosability Analysis

An important prerequisite for distributed diagnoser design is to determine whether the system is

diagnosable, i.e., all faults of interest can be uniquely isolated with the given measurement set. A

fault f1 will be distinguished from another fault f2 if, during the isolation process, a measurement

deviation occurs that matches the fault signature for f1 but not f2.

Table 8 shows the fault signatures for faults and measurements of two robots, R2 and R3,

in the six-robot formation. The signatures are generated from the system TCG, with only the

magnitude change (discontinuity) symbol and the first non-zero direction of change symbol shown.

A * symbol indicates an indeterminate effect, i.e., there are at least two paths of the same order

that propagate + and - effects, and, therefore, the sign of the change cannot be computed using

qualitative propagation. Some of the effects of these faults are determined by the robot’s position,

since the controller inputs are functions of separations and bearings, which are functions of position.

Such effects are denoted by a 0*. A 00 indicates that a fault has no effect on the corresponding

measurement because there is no path to it.

From the signatures, it is clear that not all faults can be distinguished. If some fault f occurs

in R2, one of R2’s measurements will deviate. Because, faults in R3 do not propagate to R2’s

measurements, the fault f cannot belong to R3. This is indicated by the absence of a causal path

from R3 to R2 and qualified by the 00 symbols in the lower left segment of Table 8. However,

if an actuator fault occurs in R3, deviations could match those of one of R2’s faults. Since R2’s

measurements will never deviate if one of these faults occurs, we would have to wait infinitely long

before we can be certain the fault does not belong to R2. For example, if MSe−L3 occurs, its effects

on R3’s measurements could manifest as 0- on vL3, 0- on vR3, 0- on v3, and 0+ on θ3, which can

be explained by any of the faults for R2. In general, we cannot distinguish between actuator faults
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Table 8: Fault Signatures for R2 and R3 in the Six-robot Formation

Fault vL2 vR2 v2 θ2 vL3 vR3 v3 θ3
MSe−L,2 0- 0* 0- 0+ 0* 0* 0- 0*

MSe−R,2 0* 0- 0- 0- 0* 0* 0- 0*

G−EL,2 -+ 0* -+ 0- 0* 0* 0- 0*

G−ER,2 0* -+ -+ 0+ 0* 0* 0- 0*

B+
gyro,2 0+ 0- 0* +- 0* 0* 0* 0*

B−gyro,2 0- 0+ 0* -+ 0* 0* 0* 0*

MSe−L,3 00 00 00 00 0- 0* 0- 0+

MSe−R,3 00 00 00 00 0* 0- 0- 0-

G−EL,3 00 00 00 00 -+ 0* -+ 0-

G−ER,3 00 00 00 00 0* -+ -+ 0+

B+
gyro,3 00 00 00 00 0+ 0- 0* +-

B−gyro,3 00 00 00 00 0- 0+ 0* -+

occurring on different robots in the formation. Therefore, using the given measurement set and

the fault signature approach, the system is not globally diagnosable. This motivates the need for

employing additional discriminatory information to achieve global diagnosability.

Using relative measurement orderings in addition to fault signatures, actuator faults can be

globally distinguished. From the global TCG model, it follows that an actuator fault will appear

first in the velocity measurement of that wheel and then in other measurements. Taking the example

from Table 8, if MSe−L,3 occurs, it will manifest first in vL3. Since none of R2’s measurements have

yet deviated, we know that the fault is local to R3. Using relative measurement orderings, actuator

faults occurring on different robots can be distinguished.

Table 9 shows the relative measurement orderings for the fault parameters of R2, for measure-

ments associated with R2, R3, and R6 in the six-robot formation. Orderings implied by transitivity

are omitted from the table. As evidenced by Table 9, faults manifest first in their associated mea-

surement before other measurements in the system (e.g., actuator and encoder faults manifest first

in velocity measurements of that wheel).

Because faults cannot propagate in the opposite direction, faults in R3 and R6 will both have

orderings in the format of mi ≺f mj , where mi is a local measurement, f is a local fault, and mj is

a measurement of R2. If a fault occurs in R2, either v2 or θ2 will deviate before any measurement

in R3. Therefore, to distinguish between R2’s faults and R3’s faults, one of these measurements will

be useful. Which one is useful depends on whether the fault is an actuator or encoder fault (where

v2 is useful) or a gyroscope fault (where θ2 is useful). This results in the following lemma.

Lemma 4. Faults appearing in a parent Rp ∈ Par(Ri) in G can be distinguished from faults ap-

pearing in Ri using orderings for both vp and θp and local measurements of Ri.
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Table 9: Relative Measurement Orderings for R2 in the Six-robot Formation for Measurements of
R2, R3, and R6

Faults Relative Measurement Orderings

MSeL,2, GEL,2 vL2 ≺ vR2, vL2 ≺ θ2, v2 ≺ vR2, v2 ≺ θ2,
vL2 ≺ vL3, vL2 ≺ vR3, vL2 ≺ v3, v2 ≺ vL3, v2 ≺ vR3, v2 ≺ v3,
v3 ≺ θ3, v3 ≺ v6,
vL2 ≺ vL6, vL2 ≺ vR6, vL2 ≺ v6,
v2 ≺ vL6, v2 ≺ vR6, v2 ≺ v6,
v6 ≺ θ6

MSeR,2, GER,2 vR2 ≺ vL2, vR2 ≺ θ2, v2 ≺ vR2, v2 ≺ θ2,
vR2 ≺ vL3, vR2 ≺ vR3, vR2 ≺ v3, v2 ≺ vL3, v2 ≺ vR3, v2 ≺ v3,
v3 ≺ θ3, v3 ≺ v6,
vR2 ≺ vL6, vR2 ≺ vR6, vR2 ≺ v6,
v2 ≺ vL6, v2 ≺ vR6, v2 ≺ v6,
v6 ≺ θ6

B+
gyro,2, B

−
gyro,2 θ2 ≺ vL2, θ2 ≺ vR2, θ2 ≺ v2

θ2 ≺ vL3, θ2 ≺ vR3, θ2 ≺ v3,
v3 ≺ θ3, v3 ≺ v6,
θ2 ≺ vL6, θ2 ≺ vR6, θ2 ≺ v6,
v6 ≺ θ6

Proof. Given Rp ∈ Par(Ri), all fi of Ri do not manifest in Rp, because there is no causal path from

Ri to Rp since G is acyclic. So, we have the orderings mi ≺fi vp and mi ≺fi θp for each fi of Ri.

From the TCG analysis, each fault fp of Rp passes through either vp or θp before any measurement

of Ri, thus resulting in either vp ≺fp mi or θp ≺fp mi for all mi of Ri (Theorem 1). Therefore, the

ordering sets will always conflict and we can use this information to distinguish among the faults.

It is important to note that we cannot derive orderings comparing a left or right velocity of R3

to a left or right velocity of R6. This is because the path to a left or right velocity measurement of

R6 could go through either the left or right velocity of R3, and we don’t know which path is faster.

Thus, if an actuator fault occurs in R2, R3’s left and right velocity measurements are useless to

distinguish between local and remote actuator faults. However, we do have the ordering v3 ≺ v6 for

all of R2’s faults. Thus we can use v3 to distinguish between actuator faults in R1 and R6. The

ordering v3 ≺ v6 essentially says that either vL3 or vR3 will deviate before any measurements of R6,

since remote faults affect the velocity measurement first (v6 ≺ θ6 for all remote faults). It does not

matter which of vL3 or vR3 deviates first, only knowing that one will deviate is helpful. So although

v2 provides no extra discriminatory information in terms of fault signatures, it is helpful in terms of

measurement orderings. This results in the following lemma.
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Lemma 5. Faults appearing in an ancestor Ra ∈ Anc(Ri) in G such that Ra ∈ Anc(Rp) and

Rp ∈ Par(Ri), can be distinguished from faults appearing in Ri using orderings for vp and local

measurements of Ri.

Proof. Given Rp ∈ Par(Ri), and Ra ∈ Anc(Rp), all fi of Ri do not manifest in Rp, because there

is no causal path from Ri to Rp since G is acyclic. So, we have the ordering mi ≺fi vp for each fi of

Ri. From the TCG analysis, each fault fa of Ra passes through vp before any measurement of Ri,

thus resulting in vp ≺fa mi for all mi of Ri (Theorem 1). Therefore the ordering sets will always

conflict, and we can distinguish the faults.

The following theorem shows how local and remote faults can be discriminated.

Theorem 8. A fault is local if and only if a local measurement deviates before a remote measurement.

Proof. If a fault is local, a local measurement will deviate before any remote measurement because for

every local fault there is some set of local measurements that deviate before every other measurement.

If a local measurement deviates before a remote measurement, the fault must be local because for

all non-local faults, the fault will manifest in a parent (if the fault originated in an ancestor) before

the local robot (Lemmas 4 and 5), or in a child before the local robot (because faults in a child never

manifest in their parents).

Distributed Diagnoser Design

For the formation system, the subsystems are the individual robots. The diagnoser for Ri is respon-

sible for diagnosing faults in the set Fi = {MSe−L,i, MSe−R,i, G
−
EL,i, G

−
ER,i, B

+
gyro,i, B

−
gyro,i} using

measurements Mi = {vL,i, vR,i, vi, θi}, i.e., each robot is responsible for diagnosing faults in its

components using its local measurements.

Running the algorithm shows that each robot must be communicated the velocity and heading

measurements of its parents in the fault propagation graph. This ensures that each robot has

enough information to produce an independent, globally correct diagnosis. From Lemma 4, each

robot will need both v and θ measurements of each parent in the fault propagation graph, in order

to distinguish between local faults and those appearing in the parents. From Lemma 5, these

measurements are enough to distinguish between local faults and those appearing in the ancestors

in the fault propagation graph, therefore, these are the minimal communicated measurements.
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Table 10: Distributed Diagnoser Design for the Six-robot Formation

Robot Fault Set Measurement Set

R1 {MSe−L,1,MSe−R,1, G
−
EL,1, {vL,1, vR,1, θ1}

G−ER,1, B
+
gyro,1, B

−
gyro,1}

R2 {MSe−L,2,MSe−R,2, G
−
EL,2, {vL,2, vR,2, θ2}

G−ER,2, B
+
gyro,2, B

−
gyro,2}

R3 {MSe−L,3,MSe−R,3, G
−
EL,3, {vL,3, vR,3, θ3, v2, θ2}

G−ER,3, B
+
gyro,3, B

−
gyro,3}

R4 {MSe−L,4,MSe−R,4, G
−
EL,4, {vL,4, vR,4, θ4}

G−ER,4, B
+
gyro,4, B

−
gyro,4}

R5 {MSe−L,5,MSe−R,5, G
−
EL,5, {vL,5, vR,5, θ5, v4, θ4}

G−ER,5, B
+
gyro,5, B

−
gyro,5}

R6 {MSe−L,6,MSe−R,6, G
−
EL,6, {vL,6, vR,6, θ6, v3, θ3,

G−ER,6, B
+
gyro,6, B

−
gyro,6} v5, θ5}

Additionally, the local v measurement is not necessary to distinguish local and remote faults

because vL and vR provide the same information in this respect1. Essentially, the discriminatory

information that the remote v and θ measurements provide is that if a remote fault occurs, it will

manifest in one of the remote v or θ measurements before any local measurement, thus allowing the

diagnosers to distinguish between local and remote faults.

Table 10 illustrates the individual fault and measurement sets for the diagnosers in the six-robot

formation. It is important to note that not all robots require remote measurements to determine a

globally correct local diagnosis. Some of the robots (R1, R2, and R4) require only local measure-

ments, i.e., these diagnosers are independent. This is the case when the robot is a source vertex in

the fault propagation graph, and occurs because the fault effects of other robots cannot propagate

to it. Therefore, any fault effects it observes are known to be caused by a local fault.

The pruned distributed diagnoser for Ri is given in Fig. 67. When a fault trace is observed that

it does not accept, an empty diagnosis is returned. For example, in the six-robot formation, R3

requires v2 and θ2. If a fault in R2 occurs, then v2 or θ2 will be observed as the first deviation. But,

D3 does not accept either of those as the first event, therefore determining that the fault is remote.

These results easily extend to arbitrary formations that satisfy the constraints of [139,140]. The

fault propagation graph G can be derived from the control graph C. The diagnoser design is direct

from G since each robot needs the velocity and heading measurements of each parent in G.
1Alternatively, v could be kept and vL and vR dropped, because the system would still be diagnosable. However,

we opt to keep vL and vR instead so that we do not have to wait for θ to deviate in order to distinguish between
faults of the left and right wheels.
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Figure 67: Pruned diagnoser for Ri

Scalability

The scalability of the approach can be characterized using two metrics, the size of the diagnoser

and the number of communicated measurements, quantifying the computational and communication

requirements, respectively. Let F represent the complete fault set, M the complete measurement set,

and n the number of robots. Also, let Fi be the fault set of Ri, and M+
i be the measurement set for

Ri determined by the distributed diagnoser design algorithm. In a centralized approach, the central

diagnoser must diagnose all faults in F using measurements in M . The size of the diagnoser is then

SC = |F ||M | + |F ||M |2 so that it can store both signatures and orderings for each fault. In the

replicated centralized diagnoser approach, each diagnoser is of size SC , resulting in nSC space. In

the proposed distributed approach, however, Ri must only diagnose faults in Fi using measurements

in M+
i , resulting in space complexity Si = |Fi||Mi| + |Fi||M+

i |2. The total space required for

all individual distributed diagnosers will always be less than that of a centralized diagnoser, i.e.,∑
i Si < SC if not all measurements are communicated. The reason is that some of the information

is discarded because it is not useful in the local diagnosers. For example, we don’t need to store

anywhere the effects of R2’s faults on R1’s measurements, because none of R1’s measurements are

needed to diagnose R2’s faults. Diagnoser size directly relates to diagnostic efficiency. The smaller

the diagnoser size, the smaller the number of faults and measurements to consider, and thus the

greater its computational efficiency.

The number of communicated measurements characterize the communication overhead incurred

by the distributed algorithm. In a centralized approach, each robot must communicate its measure-

ments to the centralized diagnoser, resulting in a total of |M | communicated measurements. In a

replicated centralized diagnoser approach, each robot would have to communicate its measurements

to all other robots, resulting in a total of
∑
i(n − 1)|Mi| communicated measurements. In our dis-

tributed approach, however, communication is minimized by the diagnoser design algorithm. From

Lemmas 4 and 5, only the velocity (v) and heading (θ) measurements are required from each parent

in the fault propagation graph. Therefore, at most two measurements must be communicated to

each robot (except the formation leader) from each local leader (at most two), resulting in at most
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Figure 68: Experimental setup.

4(n − 1) communicated measurements for the worst case. Hence, the number of communicated

measurements required per robot is independent of formation size. The total number of communi-

cated measurements for all robots is linear in the formation size, so, like the centralized case, the

approach scales linearly with large formations. In the six-robot example used throughout the paper,

there are 4 edges in G, resulting in a total of 8 communicated measurements for the distributed

approach. For a centralized approach, since each robot has 3 measurements in its measurement set,

18 measurements must be communicated.

Experimental Results

The effectiveness of the distributed detection and isolation algorithms is demonstrated in a laboratory

setting with four ActivMedia Pioneer 3-DX mobile robots moving in the formation illustrated in

Fig. 68. For the DDEKF, each follower must know the position estimates of x, y, θ, and v for each

local leader. Each robot observes its own wheel velocities and heading, i.e., the local measurements

are zi = [vLi vRi θi]T for Ri. The robots communicate over an 802.11b wireless ad-hoc network.

Fig. 69 shows the nominal trajectories of the robots moving at a pre-specified speed of 0.1 m/s.

The experiment is run for 40 s. The top plot shows the robot trajectories, with their starting and

ending locations drawn. The lower left plot shows the robot velocities, and the lower right plot

shows their headings. All the robots maintain the shape variables, so the formation is maintained.

All faults listed in Table 7 were introduced through software. The sampling period of the distributed

controllers and diagnosers was 0.1 s. At the selected sampling rate, the packet loss was negligible

(measured less than 0.1%). Since communication is expected at the selected sampling rate, persistent

errors in the network links can be easily diagnosed by software (viewed as additional diagnosers)

and are not considered here.
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Figure 69: Nominal system behavior.

For this four-robot formation, the fault propagation graph includes only the edges (R2, R3),

(R2, R4), and (R3, R4). Therefore, R3 requires measurements from R2 (v2 and θ2), and R4 requires

measurements from both R2 and R3 (v2, θ2, v3, and θ3). R1 and R2 are source vertices so they

require only local measurements.

In the following, we illustrate our approach for an actuator fault of the left wheel of R2 (MSe−R,2)

at a magnitude of 0.05 m/s, i.e., the wheel velocity saturates at half the desired speed. Fig. 70 shows

the faulty trajectories for the robots, and Table 11 traces the diagnosis steps. Initially, the diagnosers

assume empty fault sets. The fault is injected at t = 20.0 s. It causes the left wheel to slow down,

therefore, the heading deviates, and the right wheel begins to speed up to keep its separation with

R1. R3 and R4 begin to slow down to maintain their positions with respect to R2. A deviation in

vL,2 at 20.4 s triggers R2’s fault isolation procedure. Six steps later the deviation is determined not

to be discontinuous, i.e., the change in the measurement is smooth, not abrupt.

R2 starts with its entire fault set, F2, as the set of possible candidates. As predicted, vL,2 is the

first deviation, so based on orderings, the fault set is reduced to the faults of the left wheel. The

change of vL,2 matches the fault signature of 0-, thus isolating the fault to be MSe−L,2. By design,

this is guaranteed to be the globally unique fault, so recovery actions may commence and the other

robots notified. Only one measurement deviation was needed to obtain a global diagnosis, so this
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Figure 70: System behavior with MSe−R,2 occurring with 0.05 m/s magnitude.

Table 11: Diagnosis Trace for Left Actuator Fault of R2

Time Event R1 R2 R3 R4

20.0 Fault injected (R2) ∅ ∅ ∅ ∅
20.4 Fault detected (R2) ∅ F2 F3 F4

vL2 deviates ∅ {MSe−L,2, G
−
EL,2} ∅ ∅

20.7 θ2 deviates ∅ {MSe−L,2, G
−
EL,2} ∅ ∅

21.0 vL2 0- determined ∅ {MSe−L,2} ∅ ∅
Diagnosis (R2) ∅ MSe−L,2 ∅ ∅

demonstrates the efficiency of using relative measurement orderings in fault isolation. Because a

communicated remote measurement (v2) has deviated before any local measurements, R3 and R4

can eliminate all their local faults and determine a remote fault has occurred. R1 does not observe

a deviation in any of its local measurements so it does not produce a diagnosis.

We illustrate our approach now for an encoder fault of the right wheel of R2 (G−ER,2) at a

magnitude of 30%, i.e., the encoder misses 30% of its counts. Fig. 71 shows the faulty trajectories

for the robots, and Table 12 traces the diagnosis steps. Initially, the diagnosers assume empty

fault sets. The fault is injected at t = 20.0 s. It causes an abrupt decrease in the right velocity

measurement, causing the right wheel to speed up. Therefore, the heading deviates, and the left

wheel begins to slow down to keep its separation with R1. R3 and R4 begin to speed up to maintain
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Figure 71: System behavior with G−ER,2 occurring with 30% magnitude.

their positions with respect to R2. A deviation in vR,2 at 20.1 s triggers R2’s fault isolation procedure.

Six steps later the deviation is labelled as discontinuous.

R2 starts with its entire fault set, F2, as its set of possible candidates. As predicted, vR,2 is the

first deviation, so based on orderings, the fault set is reduced to only faults of the right wheel. The

change of vR,2 matches the fault signature of -+, thus isolating the fault to be G−ER,2. Again, by

design, this is guaranteed to be the globally unique fault. For this example too, only one measurement

deviation was needed to obtain a global diagnosis, so this demonstrates the efficiency of using relative

measurement orderings in fault isolation. Because a communicated remote measurement (v2) has

deviated before any local measurements, R3 and R4 can eliminate all their local faults and determine

a remote fault has occurred. R1 does not observe a deviation in any of its local measurements so it

does not produce a diagnosis.

All faults of interest, listed in Table 7, were successfully isolated using the distributed diagnoser.

The summary of the diagnosis results is shown in Table 13. Due to the high discriminatory power

the combination of fault signatures and relative measurement orderings provide, all faults could

be isolated with only a single measurement deviating. The magnitude of the fault and its time

of injection are shown, along with all measurement deviations observed until a global diagnosis is

known. All faults were injected at 20 s. Beside each measurement deviation is the time of detection
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Table 12: Diagnosis Trace for Right Encoder Fault of R2

Time Event R1 R2 R3 R4

20.0 Fault injected (R2) ∅ ∅ ∅ ∅
20.1 Fault detected (R2) ∅ F2 F3 F4

vR2 deviates ∅ {MSe−R,2, G
−
ER,2} ∅ ∅

20.4 vR4 deviates ∅ {MSe−R,2, G
−
ER,2} ∅ ∅

20.5 vL2 deviates ∅ {MSe−R,2, G
−
ER,2} ∅ ∅

20.6 θ2 deviates ∅ {MSe−R,2, G
−
ER,2} ∅ ∅

20.7 vL2 -+ determined ∅ {G−ER,2} ∅ ∅
Diagnosis (R2) ∅ G−ER,2 ∅ ∅

Table 13: Diagnosis Results for the Four-robot Formation

Fault Magnitude Diagnosis Trace

MSe−L,2 90 mm/s vL2 0- 20.4-21.0 s

MSe−L,2 70 mm/s vL2 0- 20.3-20.9 s

MSe−L,2 50 mm/s vL2 0- 20.4-21.0 s

G−ER,2 10% vR2 -+ 20.1-20.6 s

G−ER,2 30% vR2 -+ 20.1-20.7 s

G−ER,2 50% vR2 -+ 20.0-20.0 s

B+
gyro,2 0.08 rad θ2 +- 20.1-20.1 s

B+
gyro,2 0.1 rad θ2 +- 20.1-20.1 s

B−gyro,2 -0.08 rad θ2 -+ 20.1-20.1 s
B−gyro,2 -0.1 rad θ2 -+ 20.0-20.0 s
MSe−L,3 50 mm/s vL3 0- 20.4-21.0 s

MSe−R,3 50 mm/s vR3 0- 20.3-20.9 s

followed by the time at which it was determined whether or not a discontinuity occurred. The

approach is applicable for smaller fault magnitudes, as long as the fault detector is appropriately

tuned. If the fault detector and symbol generation work correctly, then by construction the fault

isolation will always execute correctly. The fault detector was tuned for the laboratory setting

and the fault magnitudes under consideration. Multiple experiments were performed to achieve

reliable fault detection, and, therefore, no false positives occurred. Because the fault magnitudes

were sufficiently large compared to the system noise, false negatives did not occur either.

Summary

In this case study we described an approach for distributed diagnosis in formations of mobile robots.

We derived the system model encompassing the plant, sensors, actuators, communication, and con-

trol. The DDEKF scheme was applied for distributed estimation and tracking of nominal system

behavior, and the Z-test was used for robust fault detection. The qualitative fault isolation scheme

combined the use of fault signatures and relative measurement orderings, increasing the discrimina-
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tory power of the measurement sets. Measurement orderings were shown to be necessary to ensure

diagnosability in the formation systems studied in this paper. Using both signatures and orderings,

diagnosers can require fewer measurements, and diagnosis results are achieved faster. Distributed

diagnosers were designed from a global system model, and the diagnosis scheme was shown to scale

well with formation size. The design was such that each local diagnosis was globally correct, thus cir-

cumventing the need for a centralized coordinator. Experimental results demonstrated the validity

and usefulness of the approach.

In contrast to previous work in mobile robot diagnosis, our approach can be applied efficiently

to diagnosis of process, sensor, and actuator faults in robot formations in a distributed fashion

by employing relative measurement orderings. In addition to easily handling multiplicative faults,

our approach qualifies residuals with a richer feature set than parity relations approaches and in-

corporates temporal information, resulting in increased discriminatory power of the measurements.

Quantitative techniques, like particle filtering, do not scale well with the number of possible faults

and are difficult to distribute among multiple robots with limited computational resources. We use

qualitative fault isolation instead which is very efficient but currently is limited to abrupt faults. To

deal with parametric uncertainty, we incorporate model uncertainty as a parameter in our fault de-

tection scheme and apply a statistical test on the residuals to robustly detect faults. We use a single

distributed Kalman filter as opposed to using a bank of Kalman filters, which requires a Kalman

filter for each fault and is not efficient for distributed systems with a large number of faults. None of

the previous approaches explicitly use any temporal measurement deviation information to resolve

ambiguities in the diagnosis results. Relative measurement orderings distinguish among faults based

on event orderings, where the events are measurement deviations. The technique, therefore, has

some similarities to discrete-event diagnosis approaches in [5, 6, 62], and decentralized approaches

in [155]. In contrast to other distributed diagnosis approaches, we formulate distributed diagnosis

as a design problem, creating local diagnosers which are guaranteed to have enough information

such that no coordination needs to occur, thus local diagnosis results correspond to global diagnosis

results.
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CHAPTER IX

CASE STUDY: ADVANCED DIAGNOSTICS AND PROGNOSTICS TESTBED

Fault diagnosis is crucial for ensuring the safe operation of complex engineering systems. Faults and

degradations need to be quickly identified so that corrective actions can be taken, and catastrophic

situations avoided. Most real-world, embedded systems are hybrid in nature. In such systems,

a discrete abstraction may be adequate for model-based diagnosis [4]. Purely discrete techniques,

however, are inadequate for systems that combine complex continuous and discrete behaviors [16,97].

Hybrid models have to be employed for correct tracking and diagnosis.

The Advanced Diagnostics and Prognostics Testbed (ADAPT) [42,43], deployed at NASA Ames

Research Center, is functionally representative of a spacecraft’s electrical power system. Over fifty

relays and circuit breakers configure the system into different modes of operation. Therefore, the

system behavior is naturally hybrid. Parametric faults, such as changes in resistance and inductance

values, can occur in the components. Discrete faults, such as relays becoming stuck, may also occur.

Therefore, ADAPT serves as a challenging testbed to verify diagnosis methodologies. ADAPT also

allows the injection of certain faults into the hardware, and emulates sensor faults through software

spoofing. Further, a simulation testbed of ADAPT has been developed, called Virtual ADAPT,

which allows for a richer set of faults to be studied [42,43].

We demonstrate and experimentally verify our diagnosis approach on ADAPT. We consider a

subset of ADAPT that includes a single battery discharging to two DC loads, to experimentally

validate our approach. We present hybrid bond graph models of ADAPT components, provide

experimental results on ADAPT, and provide detailed simulation experiments investigating the

effects of sensor noise and different fault magnitudes on our diagnosis scheme. Some simulation and

experimental results have been reported in [36,37,86,133], and preliminary component models have

appeared in [116].

First, we present the hybrid bond graph models for the components of the selected configuration,

and describe the considered set of faults. Then, we present a formal diagnosability analysis for the

system for the selected set of measurements. We next provide simulation results using the Virtual

ADAPT simulation testbed. We then describe experimental results obtained from running the

diagnoser on the ADAPT hardware.
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Figure 72: Schematic diagram of ADAPT.

Modeling Electrical Distribution Systems

We demonstrate the proposed diagnosis framework with experiments conducted on the Advanced

Diagnostics and Prognostics Testbed (ADAPT) deployed at NASA Ames Research Center [42, 43].

A schematic is shown in Fig. 72. The testbed is functionally representative of a spacecraft’s electrical

power system, and consists of three subsystems: (i) power generation, which includes two battery

chargers, (ii) power storage, which consists of three sets of lead-acid batteries, and (iii) power

distribution, which consists of a number of relays and circuit breakers, as well as two inverters and

various DC and AC loads.

We consider a subset of ADAPT to demonstrate our approach, which includes a lead-acid battery,

two relays, and two DC loads. The electrical circuit equivalent is shown in Fig. 73, and the overall

component-based HBG model of the system is shown in Fig. 74. The battery supplies voltage to

the relays through a parallel connection, which in turn supply power to the two DC loads. ADAPT

contains many sensors, but we choose the minimal set of sensors that our algorithms require. The

selected measurements are the battery voltage, VB(t), and the currents through the relays, IL1(t) and

IL2(t), i.e., M = {IL1, IL2, VB}. Sensors are also available that observe the state of the switching

components, however, to better illustrate the diagnostic power of our approach, we omit them,

otherwise diagnosis of discrete faults becomes trivial. In the remainder of the section, we describe

the different component models.
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Figure 73: Electrical circuit equivalent for the battery system.

Figure 74: Component-based HBG model of the DC subsystem.

Component Modeling

The battery model describes an electric circuit equivalent based on the model presented in [156,157].

One set of batteries is abstracted to a single battery in the model, so provides a nominal 24 Volts and

is rated at 100 Ah. The charge-holding capacity of the battery is modeled by a large capacitance,

C0. The resistance parameters, R1, R2, and R3 are nonlinear functions of battery temperature, θ

(which is a function of ambient temperature θa and power dissipated through the battery resistances

PB), discharge current, i(t), state of charge, SOC, and depth of charge, DOC (which are functions

of i(t) and the charge in C0, q(t)). The equations describing these parameters are given in Table 14

(details can be found in [156]).

The component-oriented bond graph model is given in Fig. 75a. Due to the nonlinearities,

the resistances R1, R2, and R2, are modulated elements, denoted by the M in the element type.

The parameters vary according to the equations given in Table 14. Essentially, C0 acts as a large

capacitance with a voltage proportional to the amount of charge in the battery. When discharging,

the R − C pairs subtract from this voltage and produce the nonlinear curve in the battery output
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(a) Battery (b) Relay

(c) Load 1 (d) Load 2

Figure 75: HBG models of the DC loads.

voltage. The Rp resistance models parasitic reactions due to gas emission and other sources of

internal energy loss. The variable e13 represents the output voltage of the battery.

Relays act as series connections that turn on or off, therefore, they can be modeled by controlled 1-

junctions. When off, the junctions inhibit the transfer of energy, and thus disconnect the components

attached to the junction. The HBG model is given in Fig. 75b, and the CSPEC given in Fig. 18a

can be used for the relays. The flow f2 can be used to obtain the current through the switching

element.

The HBG models for Loads 1 and 2 are given in Figs. 75c and 75d, respectively. Load 1 is simply

a resistance, and Load 2 consists of a resistance in parallel with a resistor, inductor, and capacitor

in series.

The system parameters were identified using data from different experiments conducted on

ADAPT. The identified parameters are given in Table 15.
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Table 14: Supplementary Battery Equations

Parameter Equation

Battery heat power PB = iRp(t)vRp(t) +

3∑
j=1

|iRj (t)vRj (t)|

Battery temperature θ̇(t) = 1
Cθ

(
PB −

θ(t)− θa
Rθ

)
State of charge SOC = 1− Qmax − q(t)

C∗0

(
1− θ

θf

)ε
Depth of charge DOC = 1− Qmax − q(t)

KcC∗0

(
1− θ

θf

)ε
(

1 + (Kc − 1)

(
i(t)

I∗

)δ)
R1 R1 = R10 +A11SOC
R2 R2 = −R20 ln(DOC)

R3 R3 =
R30 expA31(1− SOC)

1 + expA32i(t)

Table 15: Identified System Parameters for the ADAPT Subsystem

Component Parameters

Battery θa = 22◦C Cθ = 615.3 Wh/◦C
Rθ = 0.01◦C/W C0 = 106360 F
C1 = 51.079 F C2 = 51.216 F
C3 = 567.56 F R10 = 0.05582 Ω
A11 = −0.025025 R20 = 0.001847 Ω
R30 = 0.3579 Ω A31 = −2.5315
A32 = 0.22208 Rp = 500 Ω
Qmax = 2765360 C Kc = 1.33
C∗0 = 270720 Ah θf = −35◦C
ε = 0.642 I∗ = 5 A
δ = 0.61

Load 1 RL1 = 11.8 Ω
Load 2 RL2A = 27.696 Ω RL2B = 209.92 Ω

CL2 = 0.48678 F LL2 = 1.9986 H

Modeling Faults

The complete set of faults is given in Table 16. Common battery faults include loss of charge and

resistance increases brought about by battery use and age, which manifest as a side effect of the chem-

ical reactions. Loss of charge is represented by a capacitance decrease, C−0 , and an increase in internal

losses by R+
1 . Faults can occur in the system loads, and these are represented by increases or de-

creases in their resistance values, RL1 and RL2A. For the sensors, we consider bias faults, which pro-

duce abrupt changes in the measured values manifesting as constant offsets. Sensor faults are labeled

by the measured quantity they represent, e.g., V +
B represents a bias fault in the battery voltage sen-

sor. We represent discrete faults in Sw1 and Sw2 by fault events α and β, respectively, where a sub-

script of 0 indicates a stuck-off fault, and a subscript of 1 indicates a stuck-on fault. The complete set

of faults is defined as F = {C−0 , R+
1 , R

+
L1, R

−
L1, R

+
L2A, R

−
L2A, V

+
B , V

−
B , I

+
L1, I

−
L1, I

+
L2, I

−
L2, α0, α1, β0, β1}.
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Table 16: Faults in the ADAPT Model

Fault Description

C−0 Battery capacity decrease
R+

1 Battery resistance increase
R+
L1 Load 1 resistance increase

R−L1 Load 1 resistance decrease
R+
L2A Load 2 resistance increase

R−L2A Load 2 resistance decrease
V +
B Positive bias in VB(t) sensor
V −B Negative bias in VB(t) sensor
I+
L1 Positive bias in IL1(t) sensor
I−L1 Negative bias in IL1(t) sensor
I+
L2 Positive bias in IL2(t) sensor
I−L2 Negative bias in IL2(t) sensor
α0 Sw1 stuck-off
α1 Sw1 stuck-on
β0 Sw2 stuck-off
β1 Sw2 stuck-on

The selected set of faults comprises a varied set of faults in both sensors, actuators, and the physical

process, as well as both parametric and discrete faults. Therefore, the selected faults are represen-

tative enough to demonstrate our diagnosis approach.

ADAPT consists of three operator roles, a User, which simulates a crew member, an Observer,

which logs all system data, and an Antagonist, which injects faults into the system. Through

the Antagonist functionality, various faults can be injected through software. Sensor faults can

be injected through online spoofing capabilities. Discrete faults can be injected by blocking con-

trol commands or injecting spurious commands. Additionally, faults can be injected manually by

changing settings of the loads or switching components on or off. With this combined functionality,

we can inject {R+
L1, R

−
L1, V

+
B , V

−
B , I

+
L1, I

−
L1, I

+
L2, I

−
L2, α0, α1, β0, β1} on the testbed. The remaining

faults, {C−0 , R+
1 , R

+
L2A, R

−
L2A, }, must be injected in the simulation testbed and therefore can only

be studied in simulation.

Diagnosability Analysis

Each relay has four CSPEC states, with two nominal states, on and off, and two fault states, stuck-

on and stuck-off. Therefore, there are 16 possible system modes, which consists of 4 nominal modes

and 12 fault modes. We denote the system mode as qij , where i is the mode of Sw1, and j is the

mode of Sw2. For example, q1β0 is the mode where Sw1 is on and Sw2 is stuck off. We define the

complete set of modes as Q = QN ∪ QF , with the set of nominal modes given as QN = {q00, q01,

. . . , q11}, and the set of fault modes given as QF = {qα00, qα01, qα10, qα11, q0β0 , q0β1 , q1β0 , q1β1 ,

qα0β0 , qα0β1 , qα1β0 , qα1β1}. We allow controlled mode events that switch the system from any one
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Table 17: Fault Signatures and Relative Measurement Orderings for the ADAPT Subsystem

Fault VB IL1 IL2 Measurement Orderings

(V +
B , q∗∗) +0,X 00,X 00,X VB ≺ IL1, VB ≺ IL2

(V −B , q∗∗) -0,X 00,X 00,X VB ≺ IL1, VB ≺ IL2

(I+
L1, q∗∗) 00,X +0,X 00,X IL1 ≺ VB , IL1 ≺ IL2

(I−L1, q∗∗) 00,X -0,X 00,X IL1 ≺ VB , IL1 ≺ IL2

(I+
L2, q∗∗) 00,X 00,X +0,X IL1 ≺ VB , IL2 ≺ IL1

(I−L2, q∗∗) 00,X 00,X -0,X IL1 ≺ VB , IL2 ≺ IL1

(C−0 , q11) +-,X +-,X +-,X ∅
(R+

1 , q11) 0-,X 0-,X 0-,X ∅
(R+

L1, q11) 0*,X -+,X 0*,X IL1 ≺ VB , IL1 ≺ IL2

(R−L1, q11) 0*,X +-,X 0*,X IL1 ≺ VB , IL1 ≺ IL2

(R+
L2A, q11) 0*,X 0*,X -+,X IL2 ≺ VB , IL2 ≺ IL1

(R−L2A, q11) 0*,X 0*,X +-,X IL2 ≺ VB , IL2 ≺ IL1

(α0, qα01) 0*,X -*,Z 0*,X IL1 ≺ VB , IL1 ≺ IL2

(α1, qα11) 0*,X +*,N 0*,X IL1 ≺ VB , IL1 ≺ IL2

(β0, q1β0) 0*,X 0*,X -*,Z IL2 ≺ VB , IL2 ≺ IL1

(β1, q1β1) 0*,X 0*,X +*,N IL2 ≺ VB , IL2 ≺ IL1

controlled mode to another, i.e., ΣQ = {σq00 , σq01 , . . . , σq11}. We only restrict the occurrence of

controlled mode changes by not allowing controlled mode changes to the current expected controlled

mode, e.g., σq01 is not allowed if the expected mode is q01. We also restrict discrete faults to only

occurring from expected modes where a deviation would be produced, e.g., α1 would not produce

any deviations if it occurred in a mode where Sw1 was already on. With F , M , and Q defined, we

can now perform diagnosability analysis of the system.

The fault signatures and relative measurement orderings for the above faults are given in Ta-

ble 17 for selected modes (q∗∗ indicates the signatures and orderings are valid for any mode). The

nonlinearities in the battery introduce ambiguity in the qualitative signatures, and this is denoted

by the * symbol. For parametric faults for which prediction yields +*,X or -*,X, only +-,X and -+,X

are possible, because ++,X and --,X imply an unstable system. For example, for R+
L1, the prediction

for IL1 is -*,X, but we can restrict the signature to -+,X, as shown in Table 17. A signature of

0*, however, may manifest as 0+ or 0-. All possible effects must be included in the fault models.

Also note that since the sensors are not part of feedback loops in the system, sensor faults affect

only the measurement provided by the sensor. The other measurements are not affected, and so the

corresponding fault signatures are denoted by 00, indicating no change in the measurement from

expected behavior.

Example. Selected fault models for ADAPT are shown in Fig. 76. Consider the fault model

LC−0 ,q11 , shown in Fig. 76a. No orderings can be derived, since discontinuities are produced on all

measurements, and so if all measurements deviate at the same time they can be taken in any order.
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Figure 76: Selected fault models for ADAPT.

Therefore the fault model must account for all possible orders of measurement deviations. Any

sequence variation of the fault trace V +−
B I+−

L1 I
+−
L2 is accepted.

Since controlled mode changes occur infrequently and almost all faults produce discontinuities,

we take nback = 0, i.e., the true mode of fault occurrence, i.e., the mode immediately before the fault

occurs, is the expected mode of the system at the time of fault detection. Given any one mode, the

system is 1-fault diagnosable for that mode. After at most two measurement deviations, a unique

candidate can be isolated. However, over all modes, the system is not diagnosable. Fig. 77 gives a

partial diagnoser for the system that illustrates this property, with F = {C−0 , R−L1} and initial mode

q11 with σq01 being the only controlled mode change event. We can see that if I+−,X
L1 σq01 occurs, we

reach an accepting state that corresponds to a diagnosis with multiple candidates. After that event,

both C−0 and R+
L1 are consistent. Since the state is accepting, it is possible that no new measurement

deviations will occur to distinguish the faults. In mode q01, R−L1 cannot produce changes on the

measurements, i.e., the fault model for (RL1, q01) consists of a single accepting state, with no events.

So, the trace is a maximal candidate trace for (R−L1, q01). If R+
L1 is the true fault in this scenario,

we would have to wait infinitely long to verify it. Therefore, the system is not diagnosable.
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Figure 77: Hybrid diagnoser for F = {C−0 , R−L1} and initial mode q11 with l = 1.

We can see, however, that the system is, in fact, Q-diagnosable. If we prevent σq01 from occurring,

or change back to q11 if it does occur, more measurements will deviate and we can distinguish the

candidate uniquely. The diagnoser shows for which observed traces controlled mode changes should

be blocked or executed to improve distinguishability.

The diagnosability analysis also reveals that the discrete change feature is necessary to distinguish

certain pairs of faults. This is illustrated in Fig. 78, with mode change events removed for clarity.

Without the discrete change feature (Fig. 78a), we may reach an accepting state when, for example,

I−0
L1 is observed, signifying that if we do not observe any future measurement deviations, we cannot

obtain a unique diagnosis. Or, if I−+
L1 is observed, we cannot distinguish between the load fault and

the discrete fault. However, with the discrete change feature (Fig. 78b), we can differentiate between

the faults with a single measurement deviation. The discrete change feature significantly increases

the diagnosability of the system, and enables quick diagnosis of discrete faults.

Since the system is not 1-fault diagnosable, it is not 2-fault diagnosable. Even if we disallow

controlled mode changes during isolation, however, it is still not 2-fault diagnosable. For example, if

the trace I+−,X
L1 I+−,X

L2 V 0−,X
B is observed in mode q11, it could be attributed to many candidates. The

path of the diagnoser corresponding to this trace is shown in Fig. 79. After I+−,X
L1 , the (truncated)

hypothesis set and diagnosis are both {(C−0 , q11), (R−L1, q11)}. After I+−,X
L2 , the hypothesis set is

{(C−0 , q11), (R−L2A, q11)}, so the minimal diagnosis is {(C−0 , q11), (R−L1R
−
L2A, q11)}. After V 0−,X

B , the

hypothesis set {(R−1 , q11), (R+
L1, q11), (R−L1, q11), (R+

L2A, q11), (R−L2A, q11)), (α0, qα01), (β0, q1β0)}, due

to the ambiguity for the VB measurement, which results in the minimal diagnosis shown in the figure.

Example. To illustrate what happens for multiple discrete faults, we provide a partial diagnoser

with F = {α1, β1} for initial mode q00 and l = 2, shown in Fig. 80. Controlled mode changes are

omitted for clarity and space. Consider the fault trace I+−,N
L1 I+−,N

L2 V 0+,X
B . After I+−,N

L1 , the hypoth-

esis set is {(α1, qα10), (α1, qα11))} and the initial diagnosis is only {(α1, qα10)} since the initial mode
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Figure 78: Hybrid diagnoser for F = {I+
L1, I

−
L1, R

+
L1, α0, } with initial mode q11 and l = 1.

was q00. After I+−,N
L2 , the hypothesis set is {(β1, q0β1), (β1, q1β1), (β1, qα1β1)}, so the new diagnosis

is {(α1β1, qα1β1)}. After V 0+,X
B , the hypothesis set is {(α1, qα10), (α1, qα11), (β1, q0β1), (β1, q1β1)}, so

the diagnosis remains the same. Note that in online diagnosis, the hypothesis sets would contain

only candidates whose modes can be reached with no event or an unobservable fault event from the

current candidates.

Table 18 shows the size of the diagnosers for l = 1, l = 2, and l = 3 for the system, for all

faults and all modes. As discussed in Chapter VII, the complexity is bounded by the number

of measurements and the number of modes. With 3 measurements and 8 nominal modes, there

are 29 possible events. The upper bound is (8 + 3)!, which is approximately 4 × 107. Due to

the constraints imposed by relative measurement orderings and the mode transition structure, the

diagnosers, although large, are still well below this upper bound. The increase in complexity from

l = 2 to l = 3 is not as large as that for l = 1 to l = 2, because distinguishability decreases when

candidate cardinality increases, and therefore there are more event sequences that can be explained

by candidates of smaller cardinality. In other words, there are proportionately less new traces added
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Figure 80: Hybrid diagnoser for F = {α1, β1} and initial mode q00 with l = 2.

when going from l = 2 to l = 3 then from l = 1 to l = 2. It is also clear from these results that

the global diagnoser implementation is not as feasible for hybrid systems due to the large space

requirements, however, they are needed to determine diagnosability of the system.

The pruned versions of the diagnosers also show considerable improvements over the nonpruned

versions. The reduction is greater for the l = 1 diagnoser, because unique diagnoses are obtained

earlier. With multiple faults, it is very likely that a new measurement deviation will bring about a

new minimal diagnosis, whereas with single faults, diagnoses only become smaller, so once a unique

diagnosis is known, future events from that state are unnecessary. The proportion of the states that

are accepting also increases with pruning, because pruning increases the proportion of leaf states,

and leaf states in the pruned diagnoser all become accepting states.

Simulation Results

The accuracy of our diagnosis approach is critically dependent on the fault detection and symbol

generation processes. Due to model imperfections and sensor noise, the fault detectors have to be
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Table 18: Diagnoser Design Results for the ADAPT Subsystem

Parameter
D1∗
F,M,Q D2∗

F,M,Q D3∗
F,M,Q

Not Pruned Pruned Not Pruned Pruned Not Pruned Pruned

States 488 83 4,748 2,658 12,119 7,707
Accepting States 350 75 4,308 2,587 11,679 7,632
Events 29 29 29 29 29 29
Transitions 1,784 262 17,518 8,892 43,667 24,651

tuned to minimize missed detections (false negatives), and false alarms (false positives). A trade-off

exists between these two, because a more sensitive fault detector will get more false positives, but

fewer false negatives. Similarly, a less sensitive fault detector will get more false negatives, but less

false positives. In our experiments, the fault detectors were empirically tuned to the highest possible

sensitivity that avoided false alarms for the observed levels of noise under nominal conditions. To

study the performance of the diagnosis algorithms under different fault and noise conditions, we

need to perform a large number of experiments. In addition to experiments from the actual testbed,

we ran simulation experiments on the Virtual ADAPT testbed [42,43,109]. Simulation also allows

us to introduce faults that cannot be injected into the actual system in a safe manner.

In the following simulation experiments, we considered different fault magnitudes and different

levels of sensor noise to investigate the robustness and sensitivity of our fault detection and isolation

scheme. We used a zero-mean Gaussian noise model, and the noise level was reflected in the variance.

The three noise levels (N0, N1, N2) reflect no noise, the observed noise magnitudes of the testbed,

and double the observed noise. These values were selected as 0, 4 × 10−4, and 8 × 10−4 for the

voltage sensor, and 0, 4× 10−5, and 8× 10−5 for the current sensors.

The diagnosis results are summarized in Table 19. For the sensor faults, the magnitude is given

as an additive bias in V or A. For the parametric faults, the faulty parameter value is given by its

nominal value multiplied by the given factor, e.g., a factor of 1.10 increases RL1 by 10% of its nominal

value of 11.8 Ω. Since discrete faults do not have magnitude, we investigate two possibilities for each,

whether the switch became stuck (i.e., ignored a switching command), or switched unexpectedly

(i.e., it switched without a switching command). Ten experiments were performed for each fault,

magnitude, and noise level. The table presents the average results over these runs. In each of the

scenarios, the time of fault injection, tf , was set at 500.0 s. The times for detection and isolation

are denoted by td and ti, respectively. In some cases the true fault cannot be uniquely isolated, so

ti represents the time at which the fault candidate list stopped reducing. We report on the average

times to detect and isolate, the average size of the final fault candidate list Fn, and the percentage

of times the true fault was in Fn.
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Table 19: ADAPT Experiments with Different Fault Magnitudes and Noise Levels

Fault Magnitude
td − tf (s) ti − tf (s) |Fn| f ∈ Fn (%)

N0 N1 N2 N0 N1 N2 N0 N1 N2 N0 N1 N2

V +
B

+ 0.10 0.50 1.20 1.95 0.50 1.20 3.65 2.00 1.40 1.80 100 70 80

+ 0.20 0.00 0.40 0.80 0.00 0.40 1.45 2.00 2.00 1.90 100 100 90

+ 0.40 0.00 0.00 0.35 0.00 0.00 1.65 2.00 2.00 1.80 100 100 80

V −B

− 0.10 0.50 1.25 1.80 17.00 17.75 18.30 1.00 1.00 1.00 100 100 100

− 0.20 0.00 0.50 0.95 16.50 17.00 21.00 1.00 1.00 0.90 100 100 80

− 0.40 0.00 0.05 0.30 16.50 16.55 14.8 1.00 1.00 1.00 100 100 80

I+
L1

+ 0.10 0.50 0.20 0.45 0.50 0.20 0.45 3.00 3.00 3.00 100 100 100

+ 0.20 0.00 0.00 0.00 0.00 0.00 0.00 3.00 3.00 3.00 100 100 100

+ 0.40 0.00 0.00 0.00 0.00 0.00 0.00 3.00 3.00 3.00 100 100 100

I−L1

− 0.10 0.00 0.35 0.50 17.50 17.85 18.00 2.00 2.00 2.00 100 100 100

− 0.20 0.00 0.00 0.00 17.50 17.50 17.50 2.00 2.00 2.00 100 100 100

− 0.40 0.00 0.00 0.00 17.50 17.50 17.50 2.00 2.00 2.00 100 100 100

I+
L2

+ 0.10 0.50 0.20 0.45 18.00 17.70 17.95 3.00 3.00 3.00 100 100 100

+ 0.20 0.00 0.00 0.00 17.50 17.50 17.50 3.00 3.00 3.00 100 100 100

+ 0.40 0.00 0.00 0.00 17.50 17.50 17.50 3.00 3.00 3.00 100 100 100

I−L2

− 0.10 0.00 0.35 0.50 17.50 17.85 18.00 2.00 2.00 2.00 100 100 100

− 0.20 0.00 0.00 0.00 17.50 17.50 17.50 2.00 2.00 2.00 100 100 100

− 0.40 0.00 0.00 0.00 17.50 17.50 17.50 2.00 2.00 2.00 100 100 100

C−0

× 0.99 0.00 0.45 0.60 2.00 2.80 13.00 1.00 1.00 1.00 100 100 100

× 0.98 0.00 0.00 0.10 1.00 1.00 1.05 1.00 1.00 1.00 100 100 100

× 0.96 0.00 0.00 0.00 0.50 0.50 0.55 1.00 1.00 1.00 100 100 100

R+
1

× 2.00 2.00 4.05 7.20 4.50 15.25 22.05 1.00 1.00 1.00 100 60 30

× 2.20 2.00 3.55 5.00 4.50 10.65 17.50 1.00 1.00 1.00 100 100 90

× 2.40 2.00 3.05 4.75 4.00 8.25 11.75 1.00 1.00 1.00 100 100 100

R+
L1

× 1.05 0.50 0.30 0.50 18.00 17.80 18.00 2.00 2.00 2.00 100 100 100

× 1.10 0.00 0.00 0.00 17.50 17.50 17.50 2.00 2.00 2.00 100 100 100

× 1.20 0.00 0.00 0.00 8.50 17.50 17.50 1.00 2.00 2.00 100 100 100

R−L1

× 0.95 0.00 0.05 0.40 0.00 0.05 0.4 3.00 3.00 3.00 100 100 100

× 0.90 0.00 0.00 0.00 0.00 0.00 0.00 3.00 3.00 3.00 100 100 100

× 0.80 0.00 0.00 0.00 3.50 0.00 0.00 1.00 3.00 3.00 100 100 100

R+
L2A

× 1.05 1.00 0.95 1.40 18.50 18.45 18.90 2.00 2.00 2.00 100 100 100

× 1.10 0.50 0.50 0.50 18.00 18.00 18.00 2.00 2.00 2.00 100 100 100

× 1.20 0.00 0.00 0.10 17.50 17.50 17.60 2.00 2.00 2.00 100 100 100

R−L2A

× 0.95 1.00 0.90 0.95 18.50 18.40 18.45 3.00 3.00 3.00 100 100 100

× 0.90 0.50 0.15 0.45 18.00 17.65 17.95 3.00 3.00 3.00 100 100 100

× 0.80 0.00 0.00 0.00 17.50 17.50 17.50 3.00 3.00 3.00 100 100 100

α0
stuck 2.00 2.00 2.00 5.00 5.00 5.00 1.00 1.00 1.00 100 100 100

unexpected 0.00 0.00 0.00 3.00 3.00 3.00 1.00 1.00 1.00 100 100 100

α1
stuck 2.00 2.00 2.00 2.00 2.70 4.60 1.00 1.00 1.00 100 100 100

unexpected 0.00 0.00 0.00 1.50 2.75 3.00 1.00 1.00 1.00 100 100 100

β0
stuck 2.00 2.00 2.00 5.00 5.00 5.00 1.00 1.00 1.00 100 100 100

unexpected 0.00 0.00 0.00 3.00 3.00 3.00 1.00 1.00 1.00 100 100 100

β1
stuck 2.00 2.00 2.00 2.50 5.00 5.00 1.00 1.00 1.00 100 100 100

unexpected 0.00 0.00 0.00 3.00 3.00 3.00 1.00 1.00 1.00 100 100 100
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Figure 81: Average time to detect for R+
1 with varying noise variance and fault magnitude.

The results show that the sensor noise and fault magnitude can have a significant effect on

time to fault detection. Fig. 81 shows the average time to detect as a function of the variance in

the sensor noise and the fault magnitude for R+
1 . For smaller fault magnitudes and a lower signal

to noise ratio, it takes longer for the effects of the fault to be identified in relation to the noise

band. Therefore, reliable detection takes longer. As shown in Table 19, faults are detected faster

when magnitudes are larger, because a shorter interval is needed to determine that the mean of the

residual is statistically outside of the computed signal variance. Fault detection times also improve

with lower noise, because the deviations caused by a fault are more clearly differentiated from the

noise. Similar results were obtained for the other faults.

Sensor noise and fault magnitude can also affect the isolation results. If an incorrect symbol is

generated, then the true fault may be eliminated as a candidate. This situation is shown well by the

experiments with R+
1 . Fig. 82 shows the isolation rates for this fault as a function of fault magnitude

and sensor noise. When the fault magnitude was large enough, the symbols were correctly generated

and the fault correctly isolated, even for the highest levels of noise. However, as fault magnitude

decreased and noise increased, the wrong fault was sometimes isolated. R+
1 produces a first-order

change on the voltage. If this change is detected early, then the transient can be observed and the

signature correctly computed as 0-. If the change is detected after the initial transient, when the

voltage has already reached a steady state, then the slope is observed to be zero, so -0 is computed,

thus isolating V −B as the fault. The incorrect signature was more likely to be computed when the

fault magnitude was low and sensor noise was high, because detection of the change in VB(t) is more
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Figure 82: Isolation rate for R+
1 with varying noise variance and fault magnitude. The fault is

considered successfully isolated if it is in the final list of faults returned by the diagnoser.

likely to occur after the transient. Knowledge of expected fault magnitudes and noise levels can help

tune the fault detector parameters to correctly compute these features. For the other faults, this

problem did not occur except for a few cases with V +
B and V −B when high noise caused the slope

computation to be + or - instead of 0, which can be viewed as a false alarm in the slope computation.

We have also performed simulation experiments for multiple faults. As an example, consider α0

occurring at 500.0 s followed by β0 at 501.0 s. The measured and estimated outputs are shown in

Fig. 83. In this case, it is easy to determine that both faults have occurred. At 500.0 s, a fault is de-

tected by an decrease in IL1(t), so the initial diagnosis is {(R+
1 , q11), (R+

L1, q11), (I−L1, q11), (α0, qα01)}.

At 501.0 s, a decrease is detected in IL2(t), so the new minimal diagnosis is {(R+
1 , q11), (R+

L1, q11),

(α0, qα01)}. At 501.5 s, an increase in VB(t) is detected, so the new minimal diagnosis is {(R+
L1, q11),

(α0, qα01)}. At 503.0 s, the symbol generator determines that IL1(t) went to zero, so the minimal

diagnosis is now {(α0, qα01)}. At 503.5 s, the slope of VB(t) is computed as +, therefore the full

signature of VB(t) is known to be 0+. At 504.0 s, the symbol generator determines that IL2(t) also

went to zero, so now α0 by itself is no longer consistent, and this results in a new minimal diagnosis

of {(α0β0, qα0β0)}. At this point, a unique double fault is known, so for l = 2, fault isolation can

terminate. The symbol generator later determines that VB(t) exhibited no discrete change, and com-

putes a 0 slope for the currents, classifying the changes as discontinuities, for which the diagnosis is

still consistent.
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Figure 83: α0 fault at 500.0 s and β0 fault at 501.0 s.

To illustrate the issues in multiple fault diagnosis, we consider R−L1 and RL2A− occurring together

at 500.0 s, and omit the sensor noise. We varied the fault magnitude of each, and observed how

fault masking affected the diagnosis results. Fig. 84 illustrates the role of fault magnitude. Unless

one of the fault magnitudes was very small, the diagnoser correctly determined that both faults had

occurred. In this case, faults in the loads only noticeably affect the current in the other load if their

magnitude is large. For example, Fig. 85 shows the plots for when RL1 decreased by 80%, and RL2A

decreased by only 2.5%. In this case, the increase in IL2(t) due to R−L2A is visible, but too small to

be detected. The decrease in IL2(t) due to R−L1 masks the change, and therefore only R−L1 is isolated.

If the compensation is not great enough, then the increase on IL2(t) due to R−L2A is detected along

with the increase on IL1(t) due to R−L1, therefore, both faults are isolated. For the case where RL1

decreased by only 1%, and RL2A decreased by 80%, the change in IL1(t) due to R−L1 is compensated

for by R−L2A, and therefore only R−L2A is isolated.

Experimental Results

We have performed online experiments on the ADAPT testbed for single fault diagnosis, i.e., l = 1.

In online experiments, we have to cope with model uncertainty in addition to sensor noise. To

demonstrate the diagnosis approach, we show the results obtained for load faults, switch faults, and

a sensor fault. The measurements were sampled at 2 Hz for all the experiments. The mean window,

W1, was selected as 5 samples, the slope window, W2, as 15 samples, and the discrete change

window W3, as 5 samples. Because not all symbols are available immediately (e.g., the discrete

change symbol is available only after 5 samples), we trace multiple paths in the diagnoser until all

symbols for a measurement are known, and then stop tracing paths that become inconsistent.

The nominal behavior of the system in shown in Fig. 86. As shown in the figure, the system

parameters are fairly accurate, and the observer tracks well. For the parametric faults, Load 1 is
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Figure 84: Role of fault magnitude in multiple fault isolation.

first brought online, followed by Load 2, and the fault is injected in mode q11. For discrete faults,

we investigate faults in Sw1, so the fault is injected in mode q11 or q01.

For the first experiment, a 33% decrease in the Load 1 resistance, R−L1, is manually injected

at 653.0 s in mode q11, by abruptly changing the resistance setting on the load. The measured

and estimated outputs are shown in Fig. 87. A partial diagnoser is given in Fig. 88. The de-

crease in resistance increases the current drawn by the load abruptly, and this change is detected

at 653.5 s. Since the slope of the change is not yet known, the possible fault hypotheses are
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Figure 85: R−L1 at 80% and R−L2A at 2.5% occurring simultaneously at 500.0 s.
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Figure 86: Nominal system operation.
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Figure 87: R−L1 fault, where RL1 decreases by 33%.

{(C−0 , q11), (R−L1, q11), (I+
L1, q11)}. Faults R+

L2A and R−L2A are not included, because even though

they may cause the current to increase, measurement orderings predict that IL2 would have devi-

ated first instead. Also, α1 is not included, because if it were to occur in q11, we would not have

observed a deviation. At 655.0 s, a decrease is detected in VB(t). Since I+
L1 cannot affect VB(t),

it is dropped. C−0 is also dropped because it would have increased, and not decreased, the battery

voltage. Therefore the fault is isolated as R−L1.

For a second scenario, a 100% increase in the Load 1 resistance, R+
L1, is manually injected

at 439.5 s in mode q11. The measured and estimated outputs are shown in Fig. 89. A partial

diagnoser is given in Fig. 90. The increase in resistance causes a discontinuous drop in the current,

detected at 440.0 s. Since the slope has not yet been computed, the possible fault candidates are

{(R+
1 , q11), (R+

L1, q11), (I−L1, q11), (α0, qα01)}. At 441.0 s, an increase is detected in VB(t). Since I−L1

cannot affect VB(t), it is dropped. R+
1 is also dropped because it would have decreased, and not

increased, the battery voltage. At 442.5 s, the it is determined that no discrete change in IL1(t)

occurred, so R+
L1 is isolated as the true fault.
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Figure 88: Partial diagnoser for isolating R−L1.
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Figure 89: R+
L1 fault, where RL1 increases by 100%.

In a third experiment, a positive bias of 0.5 V is injected into the voltage sensor at 400.0 s in

q11 by spoofing the real sensor data in software. The measured and estimated outputs are shown in

Fig. 91. A partial diagnoser is shown in Fig. 92. The symbol generator reports an increase in battery

voltage at 400.0 s. The fault candidates generated are {(V +
B , q11), (C−0 , q11)}, since no other fault

can cause an increase in VB(t) as the first deviation. At 402.5 s, the change in VB(t) is determined

to not be discrete, but this does not change the current diagnosis. At 407.5 s, the slope is computed

to be 0, which means that either the slope is zero or very small, but the change in VB(t) is now

regarded as a discontinuity. The diagnosis, however, remains {(V +
B , q11), (C−0 , q11)}. Because no

further measurements deviate, C−0 cannot be eliminated. If we assume that discontinuities appear

at the point of fault occurrence, however, then the fact that the other measurements are still nominal

can allow us to reject C−0 and isolate V +
B .

We now turn our attention to discrete faults. In the first experiment, we investigate an unex-

pected switch fault. At 375.5 s, Sw1 turns off without a command, so the expected mode is q11

but the actual mode is qα01. The measured and estimated outputs are shown in Fig. 93. The

partial diagnoser of Fig. 90 applies to this case also. As a result of the fault, IL1(t) goes imme-
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Figure 91: V +
B fault with bias of 0.5.

diately to zero, and VB(t) increases as a result of less current being drawn. The fault is detected

at 376.0 s, and the symbol generator reports a decrease in IL1(t). The initial fault hypotheses are

then {(R+
1 , q11), (R+

L1, q11), (I−L1, q11), (α0, qα01)}. At 376.5 s, the increase in VB(t) is detected, so

the diagnosis reduces to {(R+
L1, q11), (α0, qα01)}. At 378.5 s, the symbol generator determines that

I−L1 went to zero, and therefore α0 is isolated as the true fault.

In the second experiment, we investigate a stuck switch fault. At 414.0 s, Sw1 is commanded

off but remains on. The measured and estimated outputs are shown in Fig. 94. Therefore, the

estimated system mode is q01 but the actual system mode is qα11, and ÎL1(t) goes to zero, while

IL1(t) remains nonzero. A partial diagnoser is given in Fig. 95. The fault is detected at 416.0 s, and

the symbol generator reports that IL1(t) has increased. Because the expected mode is q01, the only

reason for the current to deviate is due to a discrete fault or a sensor fault, so the fault hypotheses

are {(I−L1, q01), (α1, qα11)}. At 418.5 s, the symbol generator reports IL1(t) went to a nonzero value

with respect to the estimate of zero. Because we consider only sensor bias, and not failure, α1 is

isolated as the true fault.
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Figure 92: Partial diagnoser for isolating V +
B .
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Figure 93: Sw1 turns off.
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Figure 94: Sw1 gets stuck on.

In a third experiment, we investigate another unexpected switch fault, where Sw1 turns on by

itself. At 417.5 s, the discrete fault is injected in mode q01, and the actual system mode becomes qα11.

This fault is the same as in the previous case, only it manifests in the measurements immediately,

rather than only when a switching command is issued. The measured and estimated outputs are

shown in Fig. 96. A partial diagnoser is given in Fig. 97. This case is treated similarly to the previous

case. As a result of the fault, the estimated Load 1 current remains zero, but the measured current
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Figure 95: Partial diagnoser for isolating α1.
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Figure 96: Sw1 turns on.
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Figure 97: Partial diagnoser for isolating α1.

goes to a nonzero value. The fault is detected at 417.5 s, and the symbol generator reports that

IL1(t) increases with respect to nominal. Because Load 1 is not expected to be on, the diagnosis

is only {(I−L1, q01), (α1, qα11)}. At 419.0 s, the symbol generator reports an increase in VB(t), thus

eliminating the sensor fault as a candidate and isolating α1 as the fault.
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Summary

We presented a case study for hybrid systems diagnosis on the ADAPT system. Theoretical results

demonstrated the diagnosability properties of the system. Detailed simulation experiments examined

the effects of fault magnitude and sensor noise on the robustness of the approach. Experimental

results provided a demonstration of the approach on the ADAPT hardware.

From the results, it is clear that correct symbol generation plays a crucial role in our diagnosis

methods. Diagnosers are designed assuming ideal symbol generation, so if this cannot be achieved,

then correct candidates may be dropped, or incorrect candidates retained. With improved symbol

generation, especially in discontinuity detection, and in computing the slope, which is difficult to

tune empirically, diagnosis results will be improved. One way to alleviate the problem is to employ

additional sensors that, if present, lead to faster diagnosis, so that additional symbols like the slope

may not be necessary to achieve a unique candidate.

The results also demonstrate how controlled mode changes during fault isolation can adversely

affect the diagnosis results. From analyzing the diagnoser, we can identify these situations, and use

them to block or execute controller actions to avoid them, so that unique candidates can be isolated.

Further, they show that the additional symbol introduced for discrete faults, the discrete change

feature, is necessary to quickly discriminate discrete from parametric faults, and is very powerful for

the type of systems we deal with.
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CHAPTER X

CONCLUSIONS

We have presented an approach for multiple fault diagnosis in hybrid systems that extends the

Transcend and Hybrid Transcend in many important ways. The approach takes advantage of

temporal information in the measurement deviations to enhance fault isolation and systematically

construct event-based fault models and diagnosers, which can be used to verify diagnosability of the

system and provide particular traces for which ambiguities will arise. We also demonstrated and

evaluated the approach on two case studies, a robot formation system and an electrical distribution

system.

Summary of Contributions

Our contributions have focused on enhancements to qualitative fault isolation, systematic construc-

tion of event-based diagnosers for hybrid systems, and experimental validation of our approach.

1. Relative Measurement Orderings. We introduced the notion of relative measurement

orderings, which define predicted temporal orders of measurement deviations due to faults. We

provided an extension of the prediction algorithm in Transcend that computes measurement

orderings, based on a sound theory of how they appear in systems. In conjunction with

fault signatures, measurement orderings allow us to define event-based fault models, where the

events are measurement deviations. The fault models are used in the derivation of event-based

diagnosers, and form the basis for definitions of distinguishability and diagnosability in our

framework.

Using the case studies, we showed that relative measurement orderings increase the discrim-

inatory ability of the diagnosis algorithms. Therefore, systems which may not have been

diagnosable before may now become diagnosable. Further, fewer measurements are needed to

deviate before a unique candidate is isolated, so diagnoses are achieved faster. We also showed

that relative measurement orderings are critical to correctly defining the behaviors that result

from the interactions of multiple faults. If not considered, then it is possible that physically

incorrect combinations may be considered during isolation, which decreases the diagnostic

precision.
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2. Discrete Faults. We extended fault isolation from only parametric faults, defined by unan-

ticipated changes in a system parameter value, to discrete faults, defined by unanticipated

changes in the mode of a switching component. This required extensions to the hybrid bond

graph modeling language and the temporal causal graph to incorporate discrete faults and

their analysis. We extended the hypothesis generation algorithms of Transcend to identify

discrete faults as possible causes of faulty behavior, and the prediction algorithm to predict

the effects of discrete faults.

We also enhanced fault signatures to include an additional symbol for a special case of disconti-

nuity that is useful in distinguishing between parametric and discrete faults. Through the case

studies, we showed that this symbol is necessary to distinguish between some parametric and

discrete faults. We also provided a method to compute this new feature from the estimated

and measured outputs.

3. Multiple Faults. We extended fault isolation to multiple faults under a best effort paradigm.

We showed how fault masking limits the discriminatory ability of the diagnosis algorithms, and

the justification for the use of minimal diagnoses within continuous and hybrid systems. We

illustrated how the effects of multiple faults can be formed in a consistent manner from the

individual faults, for which relative measurement orderings are necessary. We use the principle

of minimality and a limit on candidate cardinality in our diagnoses to improve efficiency.

We also provided simulation results that demonstrated the effect of fault magnitude on the

quality of the diagnosis results when multiple faults occurred. This helps to further demon-

strate the usefulness of minimal diagnoses and the uncertainty that cannot be avoided using

only qualitative information for fault isolation.

4. Event-based Diagnosability Analysis and Diagnoser Design. We provided a formal,

event-based framework for hybrid systems diagnosis based on the qualitative fault isolation

algorithms we presented. Under this framework, we provided algorithms for the systematic

construction of event-based diagnosers that track system events and provide associated fault

hypotheses in an efficient manner. Because space complexity can be an issue, we also provided

a spectrum of implementations and a pruning method which, as shown in the ADAPT case

study, can reduce the size of the diagnosers considerably.

Using our notions of fault traces and languages, we defined distinguishability and diagnosability

under our framework. Diagnosability can be automatically verified using the event-based
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diagnosers. If the system is not diagnosable, then the diagnosers can also identify which traces

lead to ambiguous diagnosis results, and if possible, how these traces can be avoiding by

permitting or prohibiting certain controlled mode changes.

5. Experimental Case Study for Robot Formations. We provided a case study for robot

formations to illustrate our diagnosis approach for single fault diagnosis in continuous systems.

The formation study helped to demonstrate the necessity of relative measurement orderings

in practical systems, because without them, formation systems are not diagnosable. Because

formations are inherently distributed, we applied an extension of the distributed Transcend

approach [40,41] to incorporate orderings.

We developed bond graph models for mobile robots, and used a well-accepted formation control

strategy to link the robots. Other formation control strategies can also be used with our

approach, as long as there is a tight coupling between the robots and it allows the propagation

of faults between robots to be modeled. Theoretical results verified the scalability of the

approach as the number of robots increases, and experimental results validate the approach

on an actual robot formation.

6. Experimental Case Study for Electrical Power Distribution Systems

We also provided a case study to the Advanced Diagnostics and Prognostics Testbed. Since

ADAPT is modeled as a hybrid system, it best illustrates the advantages of our diagnosis

approach. We focused on a particular subset of ADAPT that includes a highly nonlinear

battery, two relays, and two DC loads. Therefore both hybrid and nonlinear behaviors are

present.

We analyzed the diagnosability of ADAPT, and provided some partial event-based diagnosers

to illustrate the results. We performed extensive diagnosis experiments in simulation in order

to study the robustness of our approach with respect to fault magnitude and sensor noise.

We also provided some simulations for multiple faults to examine the role of fault masking

within ADAPT when multiple faults occur. Experimental results demonstrated our approach

on the actual system, and illustrated the importance of relative measurement orderings and

the additional qualitative symbol in diagnosing system faults.
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Discussion

In Chapter II, we described previous work in model-based diagnosis. As discussed, model-based

solutions are best when an appropriate model of the system can be developed. The models can be

used as a basis for diagnosis and be used to show analytical properties of the system. In our approach,

we use hybrid bond graphs to model the system. From the HBG model, we can automatically

derive a hybrid observer and a temporal causal graph. Note that in general, both observers and

temporal causal graphs can be generated from other hybrid system models, however, HBGs provide

a means for automatic generation. Using the TCG, we can derive fault signatures and measurement

orderings, which comprise the diagnostic information of our approach. Signatures and orderings can

be derived from other types of models, but there are systematic procedures to generate them from

TCGs. Diagnosis uses signatures and orderings within a consistency-based framework to isolate

faults. In model-based diagnosis strategies, the observed output is checked for consistency with

predicted output in order to derive fault candidates. In our approach, we can efficiently extract

from our hybrid system models the information we need for diagnosis, and reasoning using this

information is very efficient.

Using signatures and orderings, we can derive event-based fault models, which are then used to

systematically create event-based diagnosers. Like discrete-event system approaches, we model faults

as unobservable events, and construct offline diagnosers that trace observable events and map them

back to fault hypotheses. Essentially, diagnostic information contained within the system model is

compiled into a diagnoser. The result is an online diagnoser, which is both time- and space-efficient

for continuous systems. For hybrid systems, the compiled diagnoser is still time-efficient, but its

space-efficiency is poor and so is useful for offline analysis only. Using our event-based diagnosers,

we can define notions of diagnosability that turn out to be similar to those in DES approaches,

namely, we must ensure that if a fault occurs, there will be an observable sequence of events that

eventually identifies the true fault.

A key advantage to our method is that it is one of the few approaches for hybrid systems

diagnosis that can effectively handle both parametric and discrete faults within a common modeling

and diagnosis framework. Purely-estimation based approaches can do this, but require that the fault

magnitudes are known a priori, which is infeasible in general. We allow parametric faults to be of any

magnitude, and fault identification strategies can then be used to determine the magnitude [14,45].
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Future Directions

Our approach does have some limitations, and these provide directions for future research. One

limitation is that our event-based diagnosers are designed based on ideal symbol generation, i.e., the

full signature is known at the point of the first deviation. If symbol generation is not ideal, then the

diagnosability analysis of the system may not be correct. We observed this with the ADAPT system,

e.g., when a sensor fault occurred we could not differentiate it from a battery capacitance fault,

because our symbol generation method cannot verify whether the slope of a residual is truly zero or

is just very small, since noise is present. So, even though the two faults are distinguishable according

to the diagnoser, we could not distinguish them in practice. Additional temporal information can

be used to distinguish further, since the capacitance fault will cause other measurement deviations

fairly soon after detection. Such timing information is used in timed DES methods and timed failure

propagation graphs [7, 8, 101].

Another problem with nonideal symbol generation arises in multiple fault diagnosis. Since sym-

bol generation takes place over a window of samples, new faults may occur within those windows

and affect the results provided by symbol generation, and this may affect fault isolation. True dis-

continuity detection is also not present, because only deviations in which the computed mean and

slope have different symbols are classified as discontinuities. So, discontinuities of the form ++ and

-- are not allowed, however, some sensor faults may produce these signatures, so these signatures

should also be considered. Since classification of discontinuities relies on calculation of the slope,

the diagnoser can only use the fact that a deviation is a discontinuity after the slope is computed.

Therefore, the sooner a discontinuity can be detected, the faster fault isolation will be. Better sym-

bol generation procedures are necessary to compute discontinuities in signals within Transcend

based on analysis of the change in the signal at the time of fault detection.

In hybrid systems diagnosis, we assumed only a subset of autonomous mode changes that act as

discrete faults. This class of mode changes is sufficient for the ADAPT system, but is not applicable

to all systems. With this assumption, we were able to simplify the extension of Hybrid Transcend

to an approach which uses a single reference of nominal behavior, and isolating both parametric

faults and unpredicted autonomous mode changes based on the deviations they produce from that

reference. As future work, we can apply our methods to the multiple-reference approach of Hybrid

Transcend, which will also allow us to deal with a richer class of autonomous mode changes, such

as those that cause state resets.
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Another limitation is that we assume parametric faults have abrupt profiles. Faults may also be

incipient or have arbitrary profiles. Also, both parametric and discrete faults may be intermittent,

whereas we assumed all faults are persistent. In order to deal with these types of fault profiles, a

tighter integration with quantitative methods is necessary, because fault isolation based on qualita-

tive information alone becomes limited. For example, qualitative fault isolation for multiple faults

can only be a best effort paradigm, because fault masking means that effects due to masked faults

may be missed. In estimation-based diagnosis approaches for hybrid systems, fault isolation is per-

formed using only quantitative information. The problem with these approaches, however, is that

there are many possible modes to track, and fault modes have low probability so are typically missed.

A recent trend has been to incorporate this style of diagnosis with reasoners (e.g., [14]) in order to

avoid these problems and focus estimation only on those modes consistent with the observed faulty

behavior. Recent work using Transcend in this type of framework has been presented in [78],

and the contributions of this dissertation made to qualitative fault isolation in the Transcend

framework makes Transcend a better reasoner for this type of integrated diagnosis approach. This

approach integrates well with the multiple-reference approach used for hybrid diagnosis by Hybrid

Transcend.

In hybrid systems, quantitative methods may need to keep track of multiple possible modes when

a fault is detected. In our framework, we assume that we have the correct system mode up to the

point of fault occurrence, after which unpredicted autonomous mode changes, such as discrete faults,

may occur, along with controlled mode changes. We perform diagnosis over measurement deviations

with respect to a particular reference mode, determined by issuing only the controlled mode change

commands. Therefore, each candidate represents which parametric faults and which unpredicted

mode changes may have occurred with respect to the reference mode. The approach can be extended

by having multiple references, each made based on hypothesized mode changes induced by discrete

faults or other unpredicted autonomous mode changes, and performing qualitative diagnosis in each

mode. This would also enable the approach to take advantage of sensors which monitor the states

of autonomously switching components, such as circuit breakers. Assuming the sensor is correct

produces one possible mode hypothesis in which the mode has changed, and assuming it is faulty

produces another in which the mode has not changed. These extensions should also be more tightly

integrated with quantitative methods to ensure that modes that do not track well can be dropped

from consideration.

Fault identification has been presented for the Transcend framework previously for single,

abrupt, parametric faults in continuous and hybrid systems [14, 45]. The approach is based on
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parameter estimation based on the isolated fault. The parameter estimation simulates the system

behavior for different fault magnitudes after fault detection and matches it to the observed faulty

behavior. Error signals are generated for selected parameter values to converge onto correct param-

eter values. Accounting for discrete faults in this approach is easy, because only a single simulation

where the discrete fault is applied is needed to generate an error signal. Identifying multiple faults

using this approach does not work, however, because the fault identification operates only after fault

isolation has completed, and the times of fault occurrence for the different faults are not known.

If fault identification becomes merged with isolation, then both aspects become improved by the

other. Fault isolation generates only consistent candidates, and fault identification provides the

diagnoser with which candidates are unlikely and can be dropped. The diagnosis problem becomes

an estimation problem, but can be improved with the use of a reasoner.
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APPENDIX A

FACT: FAULT ADAPTIVE CONTROL TECHNOLOGY

Most of the work presented in this dissertation has been implemented as part of the Fault Adaptive

Control Technology (FACT) tool suite [158]. FACT consists of three main parts, (i) a modeling

paradigm, (ii) model translators, and (iii) runtime diagnosers. Diagnosis in FACT uses both tem-

poral causal graphs and timed failure propagation graphs (TFPGs) [135]. We omit discussion of the

TFPG aspects of FACT.

Modeling Paradigm

FACT is based on principles of model-integrated computing (MIC), and utilizes the Generic Modeling

Environment [159]. The modeling paradigm of FACT allows for graphical modeling of component-

based hybrid systems using hybrid bond graphs [117]. The modeling environment contains bond

graph elements and interface elements. Currently, the language assumes that CSPECs have two

nominal states, one for the on mode, and one for the off mode of a junction, and two nominal

transitions going from on to off. Nominal transitions between the states are specified by guards that

are functions of system variables and inputs. To model discrete faults, we allow junctions to be

marked as fault candidates. Within the diagnoser, these are then mapped back to common inputs

controlling the junctions. Discrete faults are associated with these inputs and stuck-on and stuck-off

modes assumed for the controlled junctions. We have also extended the modeling paradigm to allow

sensor components to be marked as fault candidates, and the diagnoser assumes abrupt profiles for

the sensor faults.

Model Translators

Using the principles of MIC, model translators, or interpreters, are available that transform the HBG

model constructed in the modeling framework into some useful form. One of these forms is a flat

model representation. The corresponding interpreter has been modified to include the additional

information required for discrete faults and sensor faults. A second interpreter creates simulation

models of the HBGs for Matlab Simulink R© [160], and has been presented in [108, 109, 116]. The

simulations allow for simulation of both nominal and faulty data. The interpreter has been extended

to build into the simulations injection of discrete faults and sensor faults.
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Diagnosers

The diagnoser implements the Transcend and Hybrid Transcend algorithms for system tracking,

fault detection, symbol generation, fault isolation, and fault identification. Symbol generation has

been extended to include the additional symbol used for distinguishing discrete and parametric faults,

as described in Chapter III. The TCGs have been updated as described in Chapter IV to include

discrete faults and generic sensor models, for sensor faults with abrupt profiles. Fault isolation has

been updated by including isolation of sensor faults and discrete faults, and by including relative

measurement orderings, based on the algorithms presented in Chapter V and VI. In addition, the

procedures described for constructing event-based diagnosers in Chapter VII have been implemented

and were used to automatically generate the diagnoser figures for this dissertation.
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[69] J. Lunze and J. Shröder, “Sensor and actuator fault diagnosis of systems with discrete inputs
and outputs,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 2,
pp. 1096–1107, Apr. 2004.
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