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Chapter 1  

Introduction and Motivation 

 

Peripheral artery disease (PAD) is characterized by platelet activation and 

aggregation on arterial walls, resulting in vessel occlusion and ischemia.3 This condition 

affects 12% of the population in the United States, with this percentage rising to 20% of 

the diabetic or elderly population.4, 5 Although the formation of collateral blood vessels 

around a site of occlusion can decrease the severity of PAD, spontaneous vessel 

formation is insufficient to restore blood flow,4, 6 suggesting a need for pro-angiogenic 

therapies. Relying on a pro-angiogenic therapy alone is risky as other body processes 

are involved in PAD (e.g., thrombosis and inflammation). Inflammation stimulates 

vascular lesion formation and angiogenesis,7-10 as well as the host response to 

biomaterial therapies.11, 12 These facts indicate the unmet need to consider independent 

control of inflammation and angiogenesis for the treatment of PAD. Therefore, we 

developed a biomaterial system that enables controlled, dual delivery of pro-angiogenic 

and anti-inflammatory peptides through engineering an injectable scaffold. The strategic 

goal of this approach is to increase collateral vessel formation without inflammatory 

exacerbation in a PAD model. This goal was accomplished through three aims as 

follows: 

 

Aim 1- The ability of pro-angiogenic and anti-inflammatory peptides (i.e., dual peptide 

delivery) to regulate both processes was studied in a mouse subcutaneous implantation 

model using an implantable biomaterial scaffold system. Porous scaffolds were 
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fabricated from combinatorial, tyrosine-derived polymers. The pores of the scaffolds 

were filled with collagen gel containing functional peptides. This peptide-loaded scaffold 

system was then used to investigate the angiogenic and inflammatory responses 

through a series of in vitro mono-/co-culture and in vivo subcutaneous implantation 

experiments. 

 

Aim 2- A mouse model of hind limb ischemia was used as a preclinical model of PAD to 

evaluate the therapeutic efficacy of dual peptide delivery from a porous, biodegradable, 

and implantable biomaterial scaffold. Laser Doppler Perfusion Imaging (LDPI), Optical 

Coherence Tomography (OCT), fluorescence microangiography, histochemical staining, 

and phagocytosis assays were used to evaluate the therapeutic response to these 

peptide-loaded scaffolds in the model of PAD.  

 

Aim 3- An injectable biomaterial scaffold system was developed from a copolymer of 

polyethylene glycol (PEG) and poly caprolactone (PCL) to deliver peptide treatments 

near the site of vascular occlusion as an efficient, clinically-relevant, and minimally-

invasive format. This injectable scaffold system was characterized in vitro for gelation 

time and biocompatibility before testing in a mouse model of PAD for therapeutic 

efficacy. A mechanism of peptide-mediated regulation of decoupling angiogenesis and 

inflammation was studied using a series of biological tools including PCR, zymography, 

and functional assays. 
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 In chapter one, a detailed background on angiogenesis and inflammation will be 

given, along with an overview of peripheral artery disease. Then each aim will then be 

discussed separately with each aim section consisting of a brief introduction, research 

methods, results, and discussion of findings. Finally a summary of the complete 

dissertation will be discussed to emphasize the significance and future implications of 

this work.  

Ang-1   Angiopoietin-1 

Ang-2   Angiopoietin-2 

ANOVA Analysis of variance 

APC Allophycocyanin, a fluorophore with excitation at 650nm and 
emission at 660nm 

AP-1   Activator protein 

αvβ3 Integrin expressed by platelets 

α5β1 Integrin that binds to ECM and stimulates angiogenesis 

A/J Strain of mice known for slow recovery in hind limb ischemia 

bFGF Basic FGF 

BK   Bradykinin 

BMP  Bone morphogenetic protein 

cDNA Complementary DNA 

CD106 Center of differentiation 106, a.k.a. vascular cell adhesion 
molecule -1 (VCAM) 

c-kit Receptor for SDF expressed on hematopoetic stem cells 

CLI   Critical limb ischemia 

c-Myc A regulator gene that codes for a transcription factor 

CO2 Carbon dioxide 

cPCL   Carboxylated PCL 

DilC12 Lipophilic red fluorescent stain that stains membranes 

DMEM Dulbecco’s modified eagle medium 

DNA Deoxyribonucleic acid 

DT   Desaminotyrosyl-tyrosine 

DTE   Desaminotyrosyl tyrosine ethyl ester 

EC   Endothelial cell 

ECM   Extracellular matrix 

E. coli   Escherichia coli, a gram-negative bacteria 

EGM-2 Endothelial growth medium 

ELISA Enzyme linked immunosorbent assay 

Table 1.1 List of Abbreviations 
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eNOS    Endothelial nitric oxide synthase 

EPCs   Endothelial progenitor cells 

ERK  
   

Extracellular signal-regulated kinases, part of the MAPK/ERK 
pathways that transmits a signal from the cell surface to the 
nucleus 

FBS Fetal bovine serum 

FDA   Federal drug administration 

FGFR2 FGF receptor 

FGF Fibroblast growth factor 

FITC   Fluorescein isothiocyanate 

FoxO4 
   

Foxhead box protein O4,A protein transcription factor that 
regulates MMP-9 

F4/80   A macrophage cell marker 

GM-CSF Granulocyte macrophage-colony stimulating factor 

GPC   Gel permeation chromotography 

HGH   Hepatocyte growth factor 

HIF  Hypoxia-inducible factor 1 

HK   Kininogen, the precurse to BK and inhibitor of angiogenesis 

HPLC High performance liquid chromatography 

H&E   Hematoxylin and eosin 

HUVEC Human umbilical vein endothelial cell 

IACUC  Institutional Animal Care and Use Committee 

ICAM-1  Intercellular adhesion molecule, a.k.a. CD54 

IFN-γ   Interferon gamma 

IHC   immunohistochemistry 

IL  Interleukin: a family of cell signaling molecules 

iPS   Induced pluripotent stem cells 

IVIS In vivo imaging system 

JNK1/2 
   

c-Jun N-terminal kinase, an enzyme required for transcriptional 
activity of AP-1 

KLF4 Kruppel-like factor 4, a stem cell marker 

LDL   Low density lipoprotein 

LDPI   Laser Doppler perfusion imaging 

LEAF Low endotoxin azide-free 

LPS   lipopolysaccharide 

mAECs  Mouse aortic endothelial cells 

MAPK Mitogen activated protein kinase, part of the MAPK/ERK pathways 
that transmits a signal from the cell surface to the nucleus 

MCP-1 Monocyte chemotactic protein-1 

MDMs Monocyte-derived macrophages 

Micro-CT Micro-computed tomography 

MMP   Matrix metalloproteinase 

mPEG Monomeric polyethylene glycol 

NF-κβ   Nuclear factor-kappa beta 

NGF   Nerve growth factor 
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NIH National Institute of Health 

NMR Nuclear magnetic resonance 

OCT   Optical coherence tomography 

PAD   Peripheral artery disease 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDGF   Platelet-derived growth factor 

PDI   Poly dispersity index 

PECAM Platelet endothelial cell adhesion marker 

PEG   Polyethylene glycol 

PLGA Poly(lactic-co-glycolic) acid 

RAW 264.7 Murine macrophage cell line 

rhBFGF  Recombinant human bFGF 

RNA Ribonucleic acid 

ROS   Reactive oxygen species 

RT-qPCR Reverse transcriptase quantitative PCR 

SDF-1α  Stromal cell-derived factor-1 

SDS Sodium dodecyl sulfate 

SEM   Scanning electron microscopy 

SYBR A cyanine nucleic acid dye for PCR 

TACE   TNF-α converting enzyme 

TCPS Tissue cultured polystyrene 

TFA Trifluoroacetic acid 

TGFβ   Transforming growth factor beta 

TIMP Tissue inhibitor of MMPs 

TNF   Tumor necrosis factor 

TNFR  TNF receptor 

Tris-HCL tris(hydroxymethyl)aminomethane)- hydrochloric acid 

VCAM-1  Vascular cell adhesion molecule-1 

VEGF Vascular endothelial growth factor 

VEGFR VEGF receptor 
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Chapter 2  

Background 

 

2.1 Angiogenesis and Inflammation 

The inflammatory response is designed to protect the body from pathogenic 

invasion and foreign materials. However, chronic inflammation has detrimental effects. 

Increased angiogenesis facilitates the influx of inflammatory cells, further exacerbating 

inflammation.1, 13 Inflammatory mediators stimulate the vascular endothelium to undergo 

morphological and functional changes including vasodilation and increased capillary 

permeability.14, 15 A wide range of pathological conditions have been shown to involve 

both inflammatory and angiogenic processes, including cancer, psoriasis, rheumatoid 

arthritis, osteoarthritis, Crohn’s disease, metabolic syndromes (e.g., obesity and 

diabetes), atherosclerosis, and ocular disorders.16-23  Although a few common 

mechanisms have been identified which regulate angiogenesis and inflammation 

together,24-27 the design of effective therapeutics for tissue regeneration hinges on the 

mutual regulation of these two processes. Anti-angiogenic therapies hold the promise of 

reducing the influx of immune cells, but decrease the availability of nutrients. Similarly, 

anti-inflammatory therapies would also prevent effective vascularization. These 

relationships demonstrate that inflammation and angiogenesis are intrinsically linked 

and are challenging to decouple,28-33 indicating an unmet need for successful tissue 

regeneration through independent control of angiogenic and inflammatory responses.  
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Figure 2.1 The role of angiopoietin-1 and angiopoietin-2 
in regulating angiogenesis.  Pericytes produce Ang-1 
which stabilizes ECs by activating Tie-2, inhibiting NF-κβ and 
ICAM and VCAM expression. Ang-2, secreted by ECs stops 
Tie-2 signaling allowing TNF-α mediated promotion of ICAM 
and VCAM. Reprinted by permission from Macmillan 
Publishers Ltd: [Nature Medicine] (Imhof, B.A., and Aurrand-
Lions, M. “Angiogenesis and Inflammation Face Off,” Nat 
Med, 12:171-172), copyright (2006).

1, 2
   

 

Angiogenesis begins when inflammatory cytokines, such as tumor necrosis factor 

(TNF)-α, interleukin (IL)-1 and IL-4, increase the expression of intracellular adhesion 

molecules (ICAM)-1 and vascular cell adhesion molecules (VCAM)-1 on endothelial 

cells. These cell adhesion molecules mediate the recruitment of leukocytes needed for 

angiogenesis by promoting 

leukocyte rolling, activation, 

adhesion, and extravasation to the 

endothelium. Inflammatory 

cytokines also stimulate endothelial 

cells to release matrix 

metalloproteinases (MMPs) which 

degrade the basement membrane, 

thereby promoting the migration of 

endothelial cells to extend new 

vessels.34 Tip cells express 

vascular endothelial growth 

receptor (VEGFR) to guide neighboring endothelial cells to migrate in the direction of 

the new vessel.35 The process of angiogenesis is regulated by angiopoietin-1 and 2 

(Ang-1 and Ang-2, Figure 1). Ang-1 stabilizes blood vessels by activating tyrosine 

kinase receptor Tie-2, which decreases expression of ICAM and VCAM on endothelial 

cells. Conversely, Ang-2 is an antagonist to Ang-1 and promotes angiogenesis by 

increasing the sensitivity of endothelial cells to VEGF and other inflammatory 

cytokines.1 Ang-2 also increases the permeability of endothelial cells, allowing their 
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migration to form new blood vessels. Changes in the levels of Ang-1 and Ang-2 allow 

for the initiation of angiogenesis as needed, followed by the resolution of angiogenesis 

to prevent uncontrolled blood vessel proliferation. Several other mechanisms also 

regulate angiogenesis in a similar manner to Ang-1 and Ang-2. For example, bradykinin 

(BK) promotes angiogenesis, while its precursor, high-molecular weight kininogen (HK), 

inhibits angiogenesis.36  

One of the most potent stimulators of both angiogenesis and inflammation is 

VEGF-A. VEGF-A is produced in response to high levels of hypoxia inducible factor 

(HIF)-1α. Although HIF-1α is constantly produced, it degrades rapidly in the presence of 

O2. Therefore in normoxic conditions HIF-1α is degraded too rapidly to cause significant 

VEGF production.37 HIF-1α is reported to promote both angiogenesis and inflammation 

by increasing lipid deposits in macrophages and production of VEGF, endothelial nitric 

oxide synthase (eNOS), Ang-2, and platelet derived growth factor (PDGF) in endothelial 

cells.38 The binding of VEGF-A to its receptor VEGFR-1 increases the migration and 

attachment of monocytes and macrophages to endothelial cells. Similarly, the binding of 

VEGF-A to VEGFR-2 increases the migration and proliferation of endothelial cells.39  

 

2.2 Regulation of Angiogenesis by MMP-9 

MMPs are calcium and zinc dependent enzymes that cleave the extracellular 

matrix (ECM).40 Overproduction of MMPs is a contributing factor in arthritis, diabetic 

retinopathy, and tumor metastasis, while their underproduction contributes to ischemia 

and poor wound healing 41, 42. MMPs can be regulated by three mechanisms: 

transcription, activation, and production of tissue inhibitors of MMPs (TIMPs)43. There 
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are at least 24 different MMPs, all of which require activation from a zymogen to an 

active form by disturbance of a cysteine residue to uncover the active zinc catalytic 

domain. 44  

Of particular importance for angiogenesis is the gelatinase MMP-9 (gelatinase B) 

which degrades type IV and V collagens.45 In addition to facilitating angiogenesis by 

degrading the basement membrane, MMP-9 cleaves membrane-bound c-kit ligand or 

stem cell factor (SCF) to release c-kit ligand into the circulatory system which recruits 

endothelial progenitors from the bone marrow to areas of ischemia to create new blood 

vessels.46-48 Transcriptional regulation of MMP-9 is mediated by the transcription factors 

nuclear factor kappa beta (NF-κβ), forkhead box protein O4 (FoxO4), and activator 

protein (AP-1).49, 50, 51 Binding of these transcription factors to the promoter regions for 

MMP-9 is stimulated by inflammatory cytokines and growth factors, such as TNF-α, IL-

1α, IL-1β, PDGF and bFGF. These cytokines and growth factors phosphorylate p42/p44 

MAPK upstream of Nf-kβ, or exracellular signal-related kinase (ERK) and c-Jun NH2-

terminal kinase (JNK1/2) upstream of AP-1.52 Through these inflammatory cytokine 

mediated pathways of MMP regulation, angiogenesis and inflammation are highly 

interconnected. 

  

2.3 Regulation of Inflammation by TNF-α 

TNF-α is an inflammatory cytokine that is produced primarily by activated 

macrophages early in the acute phase of inflammatory response, and results in 

recruiting neutrophils to the site of inflammation.53-55 Dysregulation of TNF is implicated 

in numerous pathologies including cancer, diabetes, rheumatoid arthritis, sepsis, and 
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graft rejection.56 Soluble TNF-α is released from the cell surface by a special matrix 

enzyme with both metalloproteinase and disintegrin domains known as TNF-α 

converting enzyme (TACE).57, 58 Soluble or membrane bound form of TNF-α binds to 

TNF receptor 1 (TNFR1) on the cell membrane to induce activation of Nf-κβ, MAPK 

pathways, or death signaling. 58 In particular, NF-κβ signaling in macrophages 

stimulates phagocytosis.59  

 To regulate the signaling of TNF-α, TNF receptors can be shed from the cell 

membrane by MMPs. These soluble TNF receptors may then act as inhibitors of TNF to 

prevent excess levels of this potent cytokine.60 In a similar fashion, antibody-based 

inhibition of TNF-α has been of particular interest as a means of pharmaceutical 

treatments to rheumatoid arthritis, including four currently approved medications: 

etanercept (trademark name Enbrel by Amgen), infliximad (trademark name Remicade 

by Centocor/Shering-Plous/Tanabe Sieyaku), adalimumab (trademark name Humira by 

Abbot), and golimumab (trademark name Simponi by Janssen Biotech), as well as 

several clinical trial medications.58, 61 However systemic use of TNF inhibitors is limited 

and side effects can be severe due to the influence of TNF-α in cancer progression and 

other inflammatory conditions.   

 

2.4 Angiogenic and inflammatory responses to biomaterial implants 

Biomedical implants are often rendered ineffective due to inflammatory 

responses, such as fibrous capsule formation.11, 12, 62, 63 Activated macrophages aid in 

host defense by producing reactive oxygen species (ROS) and cytokines, including IL-

1β, IL-6, IL-8, and TNF-α.64-66 For successful integration of implants, it is ideal to have 
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the device surrounded and penetrated by highly vascularized tissue.67 Although many 

biomaterial designs seek to improve host responses by increasing angiogenesis or 

decreasing inflammation, few strategies exist to successfully regulate both processes.  

Angiogenesis and inflammation are interdependent processes that unavoidably 

occur in response to implantation of biomaterial scaffolds.  Several attempts have been 

made to reduce inflammation while promoting angiogenesis to improve integration of 

scaffolds into host tissue. For example, PLGA scaffolds implanted along with a 

subcutaneous pump releasing stromal derived factor (SDF)-1α were found to increase 

angiogenesis while decreasing inflammatory cell recruitment in the scaffolds.68 Similarly, 

injectable keratin biomaterials containing several proteins, including bone morphogenic 

protein (BMP)-4, transforming growth factor beta (TGFβ), and nerve growth factor 

(NGF), promoted cardiac tissue regeneration after myocardial infarction by increasing 

vessel formation while limiting the number of  macrophages infiltrated into the ischemic 

heart muscle.69  In the present study, peptide-loaded, three-dimensional synthetic 

scaffolds were used to enable simultaneous activation of pro-angiogenic and anti-

inflammatory responses. These peptide-loaded scaffolds are advantageous over the 

previous methods that use proteins which may generate unintended side effects or 

require a mechanical pump to deliver growth factors.70-75 The sequence of each peptide 

used in this study (See Table 2.1 for details) was identified to be most effective among 

numerous sequence combinations derived from its corresponding mother protein (i.e. 

laminin or thyposin β4) for pro-angiogenic or anti-inflammatory regulation, indicating 

truncation of the other side functions of the corresponding mother protein.71, 72, 76 

Therefore, these peptides stimulate little to no side effects as compared to other 
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peptides and bioactive molecules that are commonly used,70-75 further supporting 

possible clinical translation of these peptides as PAD therapeutics.  

 

2.5 Peripheral artery disease 

Peripheral artery disease (PAD) is characterized by platelet activation and 

aggregation on the walls of arteries reaching to the extremities. Monocytes bind to 

adhesion molecules on the endothelial lining of blood vessels and are recruited into the 

intima by chemotactic factors, including IL-1β and TNF-α. Monocytes then differentiate 

to macrophages and ingest oxidized low density lipoprotein (LDL) and form foam cells 

with aggressive proliferation and migration of smooth muscle cells, resulting in plague 

formation.2 As the plaque grows and the arterial wall thickens, oxygen diffusion 

decreases. The low levels of oxygen in the plaque prevent the degradation of HIF-1α as 

well as stimulate the increased production of HIF-1α by both endothelial cells and 

macrophages.3, 38  As discussed in a recent review paper by Gao et al., HIF-1α 

production is increased by high levels of ROS, TNF-α, and IL-1β produced by 

inflammatory cells. In turn, HIF-1α increases the accumulation of low density 

lipoproteins (LDL)s by macrophages to form foam cells, increasing the size of the 

plaque and decreasing the levels of oxygen inside the plaque.38 As the plaque grows, 

smooth muscle cells also migrate into intima and deposit ECM fibers.2 The 

macrophages, smooth muscle cells, and endothelial cells in the plaque then undergo 

apoptosis due to the depletion of oxygen and nutrients. As these cells undergo 

apoptosis, the plaque becomes highly susceptible to rupturing or dislodging from the 

blood vessel, resulting in the formation of  a thrombus.38 A thrombus can also form as 
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endothelial cells secrete MMPs which degrade the basement membrane surrounding 

the plaque.2 The thrombus can then break free of the artery wall and travel through the 

vasculature to occlude smaller vessels downstream of the original blockage. The risk of 

thrombosis increases as the plaque grows and forms microvessels. The production of 

ROS and HIF inside the plaque stimulates the formation of microvessels to supply 

nutrients to the cells in the plaque.77  HIF also induces expression of VEGFR1 and 

VEGFR2 which promote angiogenesis to restore blood flow to tissue distal from the 

blockage.38 

 

2.6 Symptoms and treatment strategies for PAD  

Plaque buildup in peripheral arteries limits blood flow to the extremities and can 

result in leg pain and critical limb ischemia (CLI).  Blockages can develop in the arteries 

of the leg including the femoral, politeal, posterior tibial, or dorsalis pedis arteries. 

Approximately 12% of adults in the Unites States have PAD. In the elderly or diabetic 

population, prevalence of PAD increases to 20%.78 Smoking also dramatically increases 

one’s risk of developing PAD.2, 79  

Patients with PAD often present with impaired walking, known as claudication- 

Latin word for “limping.” Classically, claudication presents as an alteration on gait during 

walking due to a cramp that disappears with rest. When the disease progresses to CLI, 

pain can even occur at rest. Besides intermittent claudication, PAD often has little or no 

symptoms until the disease has progressed to CLI.  Without proper treatment, CLI can 

lead to gangrene tissues, requiring amputation.80 Determination of treatment type is 

dependent on the proximity of the site and extent of vessel occlusion, as well as the 
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surgical risk to the patient. Lifestyle changes, such as cessation of smoking, increased 

exercise, weight loss, and dieting can slow down the progression of PAD. However, 

these measures are not adequate for patients with moderate to severe ischemia.2 PAD 

can be treated with minimally invasive procedures such as percutaneous transluminal 

angioplasty, stenting, or cutting of the plaque (i.e., atherectomy).81-83 In more severe 

cases, surgery may be necessary to graft a transplanted artery to bypass the blockage. 

These treatments may need to be repeated since blockages recur frequently after 

angioplasty, stenting, atherectomy, or bypass grafting.2, 83 Such procedures are 

unfortunately not a viable option for patients with widespread atherosclerosis.6 Diabetic 

patients with CLI are also often ineligible for invasive treatments and have a higher risk 

of mortality and morbidy than non-diabetic patients with CLI.2 Amputation is commonly 

required for diabetic PAD patients; however, the three year survival rate after 

amputation is less than 50%, and second amputations may be necessary.2 

Alternatively, oral medications are available, including cholesterol lowering and anti-

platelet medications, but these medications have many systemic side effects.84   

Natural restoration of blood flow to extremities affected by PAD can occur 

through three mechanisms: 1) arteriogenesis, when collateral vessels are enlarged and 

remodeled to support larger volumes of blood; 2) vasculogenesis, when circulating 

endothelial progenitor cells form de novo blood vessels; and 3) angiogenesis, when new 

blood vessels sprout from existing vessels as a result of the migration and proliferation 

of nearby endothelial cells.85 Although arteriogenesis, vasculogenesis, and 

angiogenesis can alleviate symptoms of PAD significantly, spontaneous occurrence of 
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these processes is insufficient to restore blood flow,4, 6 suggesting a need for therapies 

that promote arteriogenesis, vasculogenesis, and angiogenesis.  

The use of stem cells to increase angiogenesis in ischemic tissue is a promising 

new therapeutic method. However, pluripotent stem cells are difficult to obtain in 

sufficient numbers. Pluripotent stem cells are also difficult to convert to endothelial cells 

for the regeneration of blood vessels. Therefore, induced pluripotent stem cells (iPSCs) 

are created by transfection of pluripotent markers c-Myc, KLF4, Oct4, Sox2, Lin28 and 

Nanog with lento- or adenoviral vectors.86 Viral transfection is risky as viral vectors can 

exacerbate inflammatory responses. Although liposomal transfection, cell based 

transfection, and recombinant proteins are non-viral methods, they are inefficient and 

can still elicit an inflammatory response.87, 88 Transfection efficiency can be increased by 

ultrasound microbubble cavitation to create holes in the cell membrane. This technique 

has been used by Taniyama et al. to deliver hepatocyte growth factor (HGH) in a rabbit 

hind limb ischemia model.89 Alternatively, recent work by Margariti induced “partial” 

pluripotency in fibroblasts by short term transfection with pluripotent markers.86 These 

cells never reached “full” pluripotency, but were instead quickly differentiated into fully 

functioning endothelial cells by culturing in VEGF-containing media. These cells did not 

form tumors in vivo, but did form functional capillaries capable of revascularizing 

ischemic muscle in a murine model of hind limb ischemia.  However this partial 

transfection method still has low efficiency (<30% of cells became “partially pluripotent”) 

and requires patients to wait at least 2 weeks between obtaining autologous fibroblasts 

and delivery of the “partially induced” pluripotent stem cell treatment.  
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 Endothelial progenitor cells (EPCs) have also be used to promote angiogenesis 

in ischemic tissues. In a recent study by Kim et al., human peripheral blood cells 

positive for platelet endothelial cell adhesion molecule-1 (PECAM/CD31+) were cultured 

in vitro before injection into the ischemic hind limb of mice.90  Although this technique 

improved perfusion in the ischemic hind limb over 21 days, in vivo analysis of the 

inflammatory response to these EPCs was not performed.  Control of the host 

inflammatory response to transplanted cells poses a major concern for cell-based 

therapies and has not been adequately evaluated in animal studies.  

 Another treatment option for PAD is gene transfer. This method uses viral 

vectors, micelles, or plasmids to deliver genetic materials (DNA or RNA) to alter gene 

expression in a target cell type. Targets of gene therapy to promote angiogenesis in 

PAD include HIF-1α, bFGF, Ang-1, VEGF, ephrin-B2, and tissue kallikrein.91 Gene 

transfer provides several advantages, including cell-type specificity and long-lasting 

expression once induced, and requires only a single injection of genetic material in a 

delivery vehicle. However, gene transfer has low-efficiency; can cause a severe 

inflammatory response; and may result in uncontrollable levels of gene expression.6, 91, 

92 As an alternative to delivery of genetic material, delivering proteins or peptides to a 

target tissue allows for dosage control and results in little immune response. 

Protein/peptide treatments are limited as they have a short half-life in the circulatory 

system, being quickly cleared by the kidneys. Therefore, the use of peptides and 

proteins requires multiple, systemic injections or controlled, local release.88 Without 

sustained release of proteins, little if any improvement has been observed in 

randomized clinical trials of intramuscular injections of recombinant FGF-2.4 In this 
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study, a biomaterial delivery system was engineered to provide controlled, local release 

of pro-angiogenic and anti-inflammatory peptides in a murine model of PAD.  

Pro-angiogenic treatments for PAD that are delivered by IV injection may cause 

unwanted neovascularization in other areas, potentially resulting in tumor growth and 

hemorrhage from leaky new vessels. In addition to these side effects, intravascular 

delivery of pro-angiogenic treatments for PAD may increase the number of microvessels 

in a plaque, however studies show these trends are controversial.6,93 The presence of 

microvessels inside a plaque increases the likelihood of thrombosis.77 Therefore, 

intravascular delivery of pro-angiogenic factors may increase the number of 

microvessels, and in turn, the likelihood of thrombosis. Local delivery of pro-angiogenic 

factors to the ischemic tissue surrounding the occluded blood vessel should avoid this 

complication. Local delivery is also preferable to IV delivery as a higher concentration of 

therapeutics can be achieved at the target site with lower systemic toxicity.2, 94 In a 

phase I clinical trial, gelatin microspheres loaded with bFGF were injected into the 

muscle tissue, resulting in improved perfusion, transcutaneous oxygenation pressure, 

and healing of foot ulcers in 6 patients with CLI.95 Though this strategy is promising, no 

controls were included in this small-scale study. Additionally, growth factors such as 

bFGF are incredibly expensive treatments and the gelatin microspheres used to deliver 

this growth factor may contain residual glutaraldehyde- a highly toxic chemical cross-

linker. Alternatively, the peptides used in this study are less expensive than bFGF and 

can be easily incorporated into more biocompatible polymer delivery systems. 
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2.7 Biomaterial scaffolds as delivery systems 

For successful peptide therapy, localized and sustained release of peptides or 

growth factors is needed and can be achieved with biomaterial scaffolds.96  Biomaterial 

systems can be made of natural or synthetic polymers. A study by Gonçalves, Antunes, 

and Barbosa used natural polymers, chitosan and poly(γ-glutamic acid), to control 

release of SDF-1 for the enhanced recruitment of mesenchymal stem cells to the site of 

ischemia.97  In another study, GM-CSF was incorporated into heparinized collagen and 

chitosan scaffolds to encourage angiogenesis in skin defects.96 Although these natural 

polymer systems are widely used, synthetic polymer systems may provide more 

controlled in vivo degradation characteristics than natural polymer systems. Recently, 

Zhong et al used poly lactic-co-glycolic acid (PLGA) implants to control the release of 

recombinant human basic fibroblast growth factor (rhBFGF) in the ischemic hind limbs 

of mice and showed sustained, local delivery of this growth factor improved 

vascularization.98   

As emphasized in the sections 2.1 and 2.2, relying on a pro-angiogenic therapy 

alone to treat PAD is risky as inflammation plays a role in vascular lesion formation and 

angiogenesis,7-10 as well as host response to biomaterial scaffolds.11, 12 Therapies 

designed to increase angiogenesis may increase inflammatory processes, thereby 

exacerbating plaque formation and the host response to biomaterials.7-10 Therefore, the 

interplay between angiogenesis and inflammation is highly important to consider when 

designing therapies for PAD.  
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2.8 Pro-angiogenic and anti-inflammatory peptides  

 Several ECM protein fragments have been identified as regulators of 

angiogenesis. For instance, peptides from laminin-1 can promote angiogenesis in 

vivo.76 One of the most potent angiogenic sites is the peptide C16 from the γ1 chain 

(Table 2.1).71 This peptide binds to the αvβ3 and α5β1 integrins and increases VEGFR2 

and FGFR2 production.71, 99 C16 has been shown to increase blood vessel formation 

and improve healing of white matter defects in spinal cord injuries100 and accelerate 

healing of skin wounds.101  

 Additionally, the tetrapeptide Ac-SDKP is derived from thymosin β-4 which can 

be found in platelets and wound fluid. Ac-SDKP has been identified as an anti-

inflammatory and anti-fibrotic cytokine which decreases macrophage infiltration and 

TGF-β expression.72 This peptide also has potential pro-angiogenic effects in certain 

disease states,102 indicating it could be an ideal therapeutic to decrease inflammation 

without limiting angiogenesis. Table 2.1 shows the list of peptides investigated in this 

study. 

  

Name Activity Source Sequence 

C16 Pro-
angiogenic 

Laminin-1 Lys-Ala-Phe-Asp-Ile-Thr-Tyr-Val-Arg-Leu-
Lys-Phe 

Ac-
SDKP 

Anti-
inflammatory 

Thymosin 

β-4 
N-acetyl-Ser-Asp-Lys-Pro 

Table 2.1 Sequence and Function of Peptides 
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Chapter 3  

Aim 1: Pro-angiogenic and Anti-inflammatory Regulation by Functional Peptides 

Loaded in Polymeric Scaffolds 

 

This is a copy of an article published in Tissue Engineering Part A © 2013 [copyright 

Mary Ann Liebert, Inc.]; “Pro-angiogenic and anti-inflammatory regulation by functional 

peptides loaded in polymeric implants for soft tissue regeneration” is available online at: 

http://online.liebertpub.com. 

 

3.1 Introduction 

Biomedical implants are often rendered ineffective due to inflammatory 

responses, such as fibrous capsule formation.11, 12, 62, 63 Activated macrophages aid in 

host defense by producing reactive oxygen species and cytokines, including interleukin-

1β (IL-1β), IL-6, IL-8, and tumor necrosis factor alpha (TNF-α).64-66 For successful 

integration of implants, it is ideal to have the device surrounded and penetrated by 

highly vascularized tissue.67 During angiogenesis, the vascular endothelium undergoes 

morphological and functional changes that are stimulated by inflammatory mediators, 

including vasodilation and increased capillary permeability.14, 15 On the other hand, 

inflammation is exacerbated by the activation of angiogenesis.1, 13 These examples 

demonstrate that inflammation and angiogenesis are intrinsically linked and challenging 

to decouple,28-33 indicating an unmet need for successful tissue regeneration through 

independent control of angiogenic and inflammatory responses to biomaterial scaffolds.  
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The goal of this study is to develop a means by which pro-angiogenic and anti-

inflammatory responses to implanted biomaterials can be activated simultaneously for 

regeneration of soft tissues (e.g., blood vessel and cardiac muscle), in particular when 

the regeneration process is hampered by inflammatory diseases (e.g., ischemic tissue 

fibrosis and atherosclerosis).7, 10, 72, 75 To alter the modulus and fibrinogen adsorption of 

porous scaffolds, tyrosine-derived combinatorial polymers103, 104 were cross-linked with 

polyethylene glycol (PEG) dihydrazides,105 and fabricated into porous scaffolds by salt 

leaching.  Pro-angiogenic and/or anti-inflammatory responses were activated by 

embedding functional peptides (Table 2.1) within collagen gel into the pores of scaffolds. 

Laminin-1-derived pro-angiogenic C16 peptides promote endothelial cell (EC) adhesion, 

tube formation, and angiogenesis.70, 71 Thymosin β-4-derived anti-inflammatory Ac-

SDKP peptides have been identified to decrease macrophage infiltration and TGF-β 

expression.72-75 Lipopolysaccharide (LPS) was used as a pro-inflammatory control. 

Angiogenic (i.e., migration, tubulogenesis, and perfusion capacity) and inflammatory 

responses (i.e., phagocytosis, cytokine production, and F4/80 expression) were 

investigated through a series of in vitro mono-/co-culture and in vivo implantation 

experiments. 

 

3.2 Materials and Methods 

Fabrication and Characterization of Scaffolds  

Porous scaffolds: Copolymers of x mole % desaminotyrosyl tyrosine ethyl ester 

(DTE) and y mole % desaminotyrosyl-tyrosine (DT) were identified as poly(x%DTE-co-

y%-DTcarbonate) and cross-linked with z mole % polyethylene glycol (PEG; Mw=2000) 
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dihydrazide as previously described.105 In this study, poly(90%DTE-co-

10%DTcarbonate) with varying degrees of cross-linking was used because this polymer 

has been identified to be effective for promoting angiogenesis in a previous study 

(Figure 1A).105 Pores were generated in scaffolds by salt leaching as reported 

previously.105  The pore structure and interconnectivity were visualized by imaging with 

Hitachi S-4200 Scanning Electron Microscope (SEM) (Pleasanton, CA) and optical 

coherence tomography (OCT) (Bioptigen, Research Triangle Park, NC), respectively.  

Peptide loading: Functional molecules (i.e. pro-angiogenic C16, anti-

inflammatory Ac-SDKP, and pro-inflammatory LPS) (Table 2.1) were incorporated into 

the scaffolds by filling the pores with collagen gel (3 mg/ mL; Advance Biomatrix, San 

Diego, CA) containing peptides.71-73, 76. All peptides were obtained from GenScript 

(Piscataway, NJ). To evaluate the stability of the scaffold-collagen gel association, 

scaffolds were filled with collagen solution and imaged before and 7 days post collagen 

gel formation with a variable geometry Skyscan 1172 Microtomograph (Micro-CT) unit 

with a 10W X-ray (45 kV) source (Micro Photonics Inc., Allentown, PA).  

Mechanical testing: Scaffolds were cross-linked with 0, 8, 20, or 40 molar % 

PEG dihydrazide and collagen gel was poured onto the scaffolds, filling the pores. 

Scaffolds were incubated in water for 2 hours before the wet modulus was measured in 

a submersion chamber using an Instron (Model 5D Materials Testing Machine, 

Norwood, MA). The specimens were compressed at a crosshead speed of 0.5 mm/ min 

and the stress vs. strain curve was recorded. The modulus was calculated as the slope 

of the linear portion of the stress-strain curve (n=3). 
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Protein adsorption:  Gold quartz crystals (QSX 301, Q-Sense, Sweden) were 

spin-coated with a mixture 1% weight/volume of backbone polymer and PEG-

dihydrazide (0, 8 or 20%) in tetrahydrofuran as described previously.106 PBS was first 

flowed through each chamber to equilibrate, and fibrinogen (3 mg/ mL, Sigma Aldrich, 

St. Louis, MO) in PBS was then run at a flow rate of 24.2 μL/min for 2 hours. Fibrinogen 

was chosen because this plasma protein is prevalent around an injury site.107, 108  A 

PBS rinse was performed for 1 hour to remove any reversibly adsorbed proteins. The 

Voigt model in Q-Tools (Q-Sense, Biolin Scientific, Västra Frölunda, Sweden) was used 

to model overtones 3-9 to obtain the adsorbed protein mass (μg/ cm2) (n=3) using the 

previously described methods.109, 110 

Peptide Release from Scaffolds 

Scaffolds filled with a mixture of collagen and either Ac-SDKP or C16 peptides, 

or the combination of both peptides (75 µg each peptide) were incubated in PBS at 

37°C. At each time point of 1, 3, 7, or 14 days (n=4), the amount of peptides in the 

collected supernatant was detected by HPLC (Xterra® RP18 column, Waters 

Corporation, Milford, MA) with a flow rate of 1 µL/min at 37°C and 220 nm detection 

wavelength (n=4). A gradient was created starting with 100% mobile phase A (0.1% 

TFA in water for Ac-SDKP, pure water for C16) for 2 minutes and gradually changing to 

95% mobile phase B (90% methanol with 0.1% TFA in water) over 15 minutes. This 

final composition was held for one minute and increased to 100% mobile phase B after 

one additional minute. The amount of released peptide was calculated based on a 

standard curve ranging from 0 to 75 µg/mL using the Breeze™ software (Waters).  

Cell Culture on Scaffolds for In Vitro Cell Assays  
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HUVECs were purchased from Cell Applications (San Diego, CA) and cultured in 

MesoEndo Endothelial Cell Media (Cell Applications).111 Human blood-derived 

monocytes were purchased from Advanced Biotechnologies (Columbia, MD) and 

differentiated into macrophages derived from monocytes (MDMs) as monocytes are 

naturally free-floating, but macrophages are adherent.  Monocytes were seeded at a 

density of 2x107 cells/ 10 mL DMEM (Invitrogen, Carlsbad, CA) with 20% fetal calf 

serum (Intergen, Purchase, NY), 10% human serum (Nabi, Boca Raton, FL), and 5 

ng/mL macrophage colony-stimulating factor (Sigma) for 9 days.112 HUVECs and MDMs 

were used because they are well studied models of angiogenesis and inflammation in 

the tissue remodeling phase, respectively.111, 112 Porous scaffolds with 8% cross-linking 

were punched into 24-well size discs, sterilized under UV for one hour per side, and 

filled with collagen gel either with or without peptides.  

In vitro Angiogenic and Inflammatory Assays with Single Cell Types 

HUVEC migration: HUVECs (2 x 105 cells/ mL media, 1mL media/ scaffold) 

were labeled with Hoechst 33258 nuclear stain (Sigma) and seeded onto the top 

surface of collagen-filled scaffolds with or without C16 peptide (75 μg). HUVEC 

migration from the gel surface into the scaffold pores was imaged at 0 and 72 hour(s) 

post seeding using optical sectioning (3 µm intervals) with a Leica TCS SP2 multi-

photon microscope system (Wetzlar, Germany). The number of migrated cells, as well 

as the number of cells remaining on the surface, were counted using Image J (National 

Institutes of Health, Bethesda, MD), and the ratio of migrating to non-migrating cells 

was determined (n=5). Proliferating cells were quantified by BrdU incorporation 

according to the manufacturer’s protocol (Millipore, Billerica, MA).  
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Tubulogenesis: HUVECs (2 × 105 cells/mL media, 1mL media/scaffold) were 

cultured for 72 hours on collagen-filled scaffolds with C16 peptide (0, 25, 50, or 75 μg). 

The maximum amount of peptides (75 μg) was used according to the results from the 

previous studies. 76, 113   Cells were fixed with 2% paraformaldehyde in PBS and stained 

with ethidium bromide nuclear stain (Invitrogen, Carlsbad, CA). Cells were imaged at 40 

µm into the scaffold with a multi-photon confocal microscope (Leica TCS SP2) and tube 

length, as measured by drawing lines over elongated cord-like structures of cell-cell 

interactive HUVECs in 3D, was measured using Microsuite software (AnalySIS, 

Olympus, Center Valley, PA) (n=5).105 

Phagocytosis: MDMs (1 × 105 cells/mL media, 1mL media/scaffold) were 

cultured for 72 hours on collagen-filled scaffolds in the presence of either pro-

inflammatory LPS (100 ng) or anti-inflammatory Ac-SDKP peptide (0, 25, 50, or 75 μg). 

Cells were treated with green-fluorescent Escherichia coli (E. coli) particles for 2 hours 

according to the manufacturer’s protocol (Vybrant® Phagocytosis assay kit, Invitrogen), 

counter-stained with Hoechst, and imaged with a confocal microscope (Leica TCS 

SP2).114, 115 The green fluorescence intensity was measured and normalized to the 

corresponding cell number using Image J (n=5).   

Co-culture of MDMs and HUVECs  

MDMs (1 x 105 cells/ scaffold) were mixed with collagen, cell culture media, and 

peptides (75 µg) or LPS (100 ng), and this complex was poured into a scaffold and 

incubated for 2-3 hours at 37°C to allow for gelation. HUVECs (2 x 105 cells/mL media, 

1mL media/scaffold) were seeded on top of the scaffold in a 50:50 mixture of MDM 

culture media and HUVEC culture media.  After 72 hours, MDMs were analyzed for 
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phagocytic activity using the Vybrant® Phagocytosis assay kit as described above. 

Samples were fixed and stained for vascular cell adhesion molecule-1 (VCAM-1: a 

marker of endothelial cells) using APC-conjugated anti-human CD106 antibody 

(BioLegend, San Diego, CA).116 Cells were counterstained with Hoechst and counted. 

Tubulogenesis was defined as any three or more VCAM-1-expressing cells joined to 

form a tube, similar to other studies that monitored tubulogensis in 3D.117, 118  Only 

VCAM-1-positive HUVECs were of interest in the co-culture model because this 

specifically identified inflammatory-activated HUVECs, as opposed to labeling all 

HUVECs with an ubiquitous endothelial cell marker.  Cells in the test scaffolds were 

imaged with an Olympus FV 1000 confocal microscope, and images were analyzed for 

tubulogenesis (i.e., the number of tubes formed) and phagocytic activity (i.e., 

fluorescence intensity) (n=8). 

Pro-inflammatory Macrophage Cytokine Secretion 

 MDMs and HUVECs were co-cultured following the above protocol. Media 

samples (12.5 μL/sample) were collected and analyzed for the released amount of pro-

inflammatory cytokines (i.e., IL-1β, IL-8, IL-6, and TNF-α) using BD Human 

Inflammation Cytometric Bead Array and a FACS Calibur flow cytometer (BD 

Biosciences, Franklin Lakes, NJ) according to the supplier protocol (n=4).119    

In Vivo Angiogenesis and Inflammatory Activation in Implanted Collagen-Filled 

Scaffolds 

The Institutional Animal Care and Use Committee (IACUC) at Vanderbilt 

University approved all surgical procedures involving animals. Collagen-filled scaffolds 

containing LPS (100 ng) or peptides (0 or 75 μg) were sandwiched between two 
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nitrocellulose filters with 0.22 µm pore size (Millipore) to constrain nonspecific tissue 

ingrowth into the scaffolds.32 Cell-free scaffolds were implanted subcutaneously into the 

dorsal regions of 129/SvEv mice for 7 days, as an immunocompetent model.120 

Expression of F4/80 membrane-bound antigens on inflammatory cells infiltrated into 

implants was detected by immunohistochemistry of frozen sections (4% 

paraformaldehyde fixed, 4 μm sections) from the harvested scaffolds using Alexa Fluor 

594-conjugated rat anti-mouse F4/80 monoclonal antibodies (Abcam, Cambridge, 

MA).121 The fluorescence intensity was measured and normalized to the corresponding 

total cell number, identified by Hoechst nuclear stain (n=4). To determine angiogenic 

and inflammatory activities, fluorescence microangiography and phagocytosis assay 

were performed. Briefly, heparinized saline (10 mL) containing 0.1 µm fluorospheres 

(Invitrogen) was perfused into vasculature through injection into the left ventricle before 

sacrificing the mice.33, 122  After scaffolds were harvested, vasculature was visualized 

with multi-photon microscopy, and perfusion capacity was quantified by dissolving 

microspheres in xylene and measuring fluorescence intensity with a plate reader 

(Tecan, Männendorf, Switzerland).33, 122  Phagocytic activity was measured with live 

cells on explanted scaffolds using Vybrant® Phagocytosis assay kit (Invitrogen) (n=4). 

The background from scaffolds without fluorescent microangiography or phagocytosis 

assay was measured and subtracted from the values of test samples (12.34 for red 

fluorescence for perfusion capacity, 1.51 for green fluorescence for phagocytosis).   

Statistical Analysis 

In all experiments, analytical results were expressed as means ± standard error 

of the mean. One-way ANOVA was used to determine if statistical differences existed 
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between groups. Comparisons of individual sample groups were performed using 

Tukey’s range tests. For all experiments, p < 0.05 was considered statistically 

significant. 

3.3 Results 

Properties of Collagen-filled, PEG-Crosslinked Poly(x%DTE-co-y%-DTcarbonate) 

Scaffolds  

 To support cell growth and host tissue integration, a 3D scaffold requires features 

that facilitate the delivery of essential nutrients and oxygen to cells, as well as the 

removal of metabolic waste products generated by cells in the scaffold.123 Therefore, 

poly(x%DTE-co-y%DTcarbonate) polymers were cross-linked with PEG-dihydrazide 

(Figure 3.1A) in a salt bed, and following a salt-leaching procedure, the resulting 

scaffolds exhibited interconnected macroporous and microporous architecture to 

facilitate this nutrient and waste exchange (Figure 3.1B).124 To further encourage cell 

attachment, these synthetic scaffolds were filled with collagen, as evidenced by micro-

CT (Figure 3.1C).  
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Figure 3.1 Scaffold Characterization. A. Chemical structure of backbone polymer and 

polyethylene glycol (PEG)-dihydrazide cross-linkers. B. Left: Scanning electron microscopy (SEM) 

image of pore architecture in a scaffold. Scale bar = 150 μm. Right: Optical coherence tomography 

(OCT) image of pore interconnectivity (2 mm x 2 mm x 2mm scan), indicating highly porous 

structure with a high degree of pore interconnectivity. Blue = pores, yellow = scaffold. C. Micro 

computed tomography (CT) scan images showing the entire surface of the scaffold (diameter=0.6 

cm) without (left) and with (right) collagen gel at 7 days after gelation, proving the stability of 

collagen gel in the scaffold. White area = pores; black area = collagen gel or biomaterial scaffold. 

D. Young’s modulus obtained from compression testing of wet, collagen-filled scaffolds. E. Protein 

adsorption on scaffolds, as measured by the thickness of adsorbed fibrinogen layer measured 

using quartz crystal microbalance with dissipation (QCM-D). (D-E) *p < 0.05 vs. 0% PEG cross-

linker (n=3). 
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 The physical properties of the scaffold can be tuned by varying the concentration 

of the PEG dihydrazide cross-linker. Collagen-filled polymeric scaffolds containing 0-40 

mol% PEG cross-linker were hydrated prior to measurement of wet modulus (Figure 

3.1D). In particular, scaffolds containing 0% or 40% cross-linker exhibited wet moduli of 

≤ 10 kPa, and the highest modulus was measured for scaffolds containing 8% cross-

linker (0.088 ± 0.01 MPa). These trends are likely due to increased water absorption 

into the scaffolds as the PEG content increases. PEG has also generally been shown to 

discourage non-specific protein adsorption,125 and as expected, increased PEG content 

also correlated with decreased fibrinogen deposition onto the scaffolds (Figure 3.1E). 

Because collagen-filled polymeric scaffolds with 8% PEG exhibited mechanical 

properties similar to those of native soft tissue (~0.1 MPa),126, 127  as well as moderate 

levels of protein adsorption (~10 nm), this scaffold composition was used for 

subsequent biological experiments. 

Controlled Release of Peptides from Scaffolds  

 Scaffolds were loaded with either 75 µg of the pro-angiogenic peptide C16 or the 

anti-inflammatory peptide Ac-SDKP (Figure 3.2A), or the combination of the two 

peptides (75 µg each peptide) (Figure 3.2B). Cumulative release of these peptides into 

the surrounding medium was assessed by HPLC. Only slight differences were observed 

in the release profiles of scaffolds loaded with a single type of peptides (Figure 3.2A) or 

both types of peptides in combination (Figure 3.2B). Despite significant differences in 

the sizes of these two peptides, both exhibited similar release profiles, with a burst 

release occurring within the first 3 days of the study period, resulting in a loss of ~40% 

of the total peptide content within each scaffold. This was followed by little change in 
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release up to the 14 day time point, when the study was concluded. At this extended 

time point, the larger peptide (C16) exhibited slightly elevated release from the scaffolds 

relative to smaller peptide (Ac-SDKP).  Subsequent biological experiments were 

conducted for up to 3-7 days in order to exploit the portion of the release curve where 

the two peptides exhibit similar release kinetics.  
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Figure 3.2 Cumulative release of peptides from scaffolds. Collagen-filled scaffolds were loaded with 75 
μg of either Ac-SDKP or C16 peptides (A), or the combination of both peptides (75 μg each peptide) (B). 
After gelation, PBS was added on top of the gel-filled scaffolds and left to incubate at 37°C until collected   

at either 1, 3, 7, or 14 days after gelation. PBS releasate samples were then analyzed by HPLC to quantify 
the amount of released peptide, as determined by fitting to a standard curve (n=4 per time point). 
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Pro-Angiogenic Effect of C16 Peptide on HUVEC Migration and Tubulogenesis 

within Scaffolds  

 To validate the pro-angiogenic effects of the C16 peptide, HUVECs were seeded 

onto the top surface of collagen-filled scaffolds, with or without peptides embedded in 

the collagen gel. Within 72 hours, scaffolds containing C16 exhibited enhanced 

migration of the HUVECs into the scaffold (Figure 3.3A-C). In addition, the C16 peptide 

also enhanced the ability of HUVECs to form tubes as observed by confocal microscopy 

(Figure 3.3D). At the highest dose of C16 employed (75 μg/scaffold), HUVECs formed 

2.5-fold longer tubes than did HUVECs cultured in scaffolds in the absence of peptide. 

Therefore, in all further experiments, a dose of 75 µg/scaffold of C16 was used. 
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Figure 3.3 Peptide characterization. A-B. HUVEC migration into scaffolds. Cell nuclei (blue) and 

proliferating cells with BrdU incorporation (green). A. Z-sectional projection of HUVEC migration from the 

surface (red line). White scale bar=120 μm. B. Effect of C16 peptide (75 μg/scaffold) on HUVEC migration at 

72 hours. Ratio of migrated versus non-migrated HUVECs was defined as the number of cells migrated a 

distance > 0um into the scaffolds divided by the number of cells remaining at the surface. C. Representative 

images of HUVECs that have migrated 80μm into the scaffold after 72 hours. Scale bar=100 μm D. 

Tubulogenesis (as measured by total tube length) of HUVECs around 40 μm into the scaffold in response to 

varying doses of pro-angiogenic C16 peptide. Ethidium bromide stained HUVECs with (right) and without 

(right) C16 shown in top images. White arrows indicate points of tube formation. Scale bar=100 μm. E. MDM 

phagocytic activity. Macrophages (blue) and phagocytized E. coli particles (green) shown in the top images. 

The phagocytic activity presented by the green fluorescence intensity normalized to cell number in the bottom 

graph). Scale bar = 100 μm. B,D,E) *p < 0.05 vs. all the other conditions in same graph (n=5). 
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Anti-Inflammatory Effect of Ac-SDKP Peptide on MDM Activation  

 To characterize the dose-dependent anti-inflammatory effects of the Ac-SDKP 

peptide on MDMs, MDM phagocytosis of green fluorescent E. coli particles was used as 

a surrogate measure of inflammatory activity (Figure 3.3E).128 Strong phagocytic activity 

was detected in MDMs treated with the pro-inflammatory molecule LPS, but an opposite 

effect was observed in MDMs incubated with Ac-SDKP. Further, the phagocytic activity 

inversely correlated with the concentration of Ac-SDKP, suggesting that the peptide 

exerts anti-inflammatory effects on MDMs, which is consistent with prior observations by 

other groups.129 Minimal phagocytosis was quantified at the 75 μg/scaffold dose of Ac-

SDKP, and therefore, this dosage was used in all further experiments involving this 

peptide. 

Elucidating Interplay of Inflammation and Angiogenesis In Vitro Through 

MDM/HUVEC Co-Culture Studies  

 In light of the strong effects of C16 and Ac-SDKP on HUVEC-mediated 

tubulogenesis and macrophage activation, respectively, in vitro co-culture studies were 

conducted involving both cell types on the scaffolds containing either or both of these 

peptides. In these studies, MDM phagocytosis (Figure 3.4A) and HUVEC tubulogenesis 

(Figure 3.4B) were visualized through Vybrant phagocytosis assay kit (as described for 

the single-cell MDM experiments), and VCAM-1 staining, chosen as a marker of 

inflammatory-activated endothelial cells to simultaneously verify the interactions 

between the MDMs and HUVECs and quantify tube formation.116, 130 
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 Both LPS and pro-angiogenic C16 treatment resulted in a significant upregulation 

of phagocytic and tubulogenic activities, relative to untreated co-cultures. These results 

were unexpected because previous evidence suggested that C16 suppresses leukocyte 

 
Figure 3.4 In vitro co-culture of MDMs and HUVECs in scaffolds. A. Representative images of phagocytic 

macrophages (green, left) and HUVECs stained for VCAM-1 (red, right) as an indicator of inflammatory-

stimulated tubulogenesis in C16 containing scaffolds. Scale bar = 50 μm. B. Macrophage phagocytic activity 

as measured by average green fluorescence intensity per image field. C. Tubulogenesis of HUVECs as 

measured by the number of tube formations per image field. (B-C) *p < 0.05 compared to no peptide 

treatment; # p < 0.05 between groups connected by lines (n=8). 
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migration and activation.131 Co-cultures treated with anti-inflammatory Ac-SDKP 

exhibited decreased phagocytosis and tubulogenesis relative to untreated co-cultures, 

which is notable given previous evidence showing that Ac-SDKP stimulates endothelial 

cell proliferation and tubulogenesis in vitro.102, 132 Interestingly, the inclusion of both 

peptides in the scaffolds led to divergent effects: MDM phagocytic activity was 

comparable to levels following treatment with Ac-SDKP alone, whereas HUVEC 

tubulogenesis was similar to levels following treatment with C16 alone. Our results 

suggest that the scaffold system developed here enables independent control of 

inflammation and angiogenesis by decoupling interactions between the two cell types 

from exogenous stimuli provided through the synthetic substrate and peptides. 

 To provide potential mechanistic insight into this decoupled regulation, the levels 

of secreted pro-inflammatory cytokines (i.e., IL-1β, IL-6, IL-8, and TNF-α) were 

measured in the co-culture supernatants (Figure 3.5). Following treatment with C16, 

cytokine secretion increased significantly in comparison to untreated co-cultures. 

However, treatment with Ac-SDKP resulted in decreased cytokine secretion. Co-

delivery of both Ac-SDKP and C16 maintained a secretion profile similar to treatment 

with Ac-SDKP alone and significantly lower than the untreated co-cultures. These 

results suggest that the reduced production of pro-inflammatory cytokines resulted in a 

reduction of phagocytic activity. However, due to the limited scope of cytokines 

measured, different cell signals might also involve the maintenance of high tubulogenic 

activity in the presence of both C16 and Ac-SDKP. 
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Angiogenesis and Inflammatory Activation In Vivo on Collagen-filled Scaffolds  

 To determine if the in vitro results could be recapitulated in vivo, cell-free 

scaffolds were implanted subcutaneously into the dorsal regions of immunocompetent 

129/SvEv mice for 7 days. At this time point, LPS-loaded scaffolds elicited a significant 

level of macrophage infiltration relative to unloaded scaffolds, as identified by F4/80+ (a 

mouse macrophage marker) staining of frozen sections (Figure 3.6A-B).133 

 

Figure 3.5 Pro-inflammatory cytokine secretion. A. IL-1β, B. IL-6, C. IL-8, D. TNF-α cytokine release from 

a co-culture of HUVECs and MDMs in peptide-loaded scaffolds as measured by BD Cytometric Bead Array. 

*p < 0.05 compared to no peptide treatment; # p<0.05 between groups connected by lines (n=4). 
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Macrophages were also visualized in high number in C16-loaded scaffolds. In contrast, 

the presence of Ac-SDKP significantly reduced the number of macrophages in the 

scaffold, and co-delivery of C16 with Ac-SDKP maintained this low level of macrophage 

infiltration. 

 Tubulogenesis and macrophage activity were also quantified in the scaffolds 

indirectly by using measurements of perfusion capacity and phagocytosis, respectively 

(Figures 3.6C-E). Consistent with measurements in vitro, C16 enhanced blood vessel 

formation and macrophage activity on the scaffolds, while Ac-SDKP diminished both 

responses in comparison to the scaffolds without peptide loading. Co-delivery of both 

peptides increased blood vessel formation (Figure 3.6D) while simultaneously 

decreasing macrophage activation compared to no peptide treatment (Figure 3.6E). 

Therefore, these results verified in vitro observations in a more biologically complex, 

heterogeneous in vivo environment. 
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Figure 3.6 In vivo implantation of scaffolds. (A) F4/80-positive macrophages (red) with cell nuclei (blue) 
infiltrated into implanted peptide-loaded scaffolds. Scale bar = 100 μm. (B) Quantification of F4/80 expression 
normalized to the corresponding cell number. (C) Blood vessel formation (red) visualized by fluorescent 
microangiography, and macrophages phagocytosing E. coli particles (yellow-green) in scaffold implants. Scale 
bar: 100 mm. (D) Vessel perfusion capacity as measured by red fluorescence intensity of perfused 
microspheres extracted from scaffolds. (E) Phagocytic activity (fluorescence intensity per image field). (B, D, 
E) *p < 0.05 compared to no peptide treatment; #p < 0.05 between groups connected by lines. (n = 4). 
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3.4 Discussion 

Angiogenesis and inflammation are interdependent processes that unavoidably 

occur in response to implantation of biomaterial scaffolds.  Several attempts have been 

made to reduce inflammation while promoting angiogenesis to improve integration of 

scaffolds into host tissue, such as PLGA scaffolds implanted with a stromal derived 

factor (SDF)-1α-releasing pump 68 and injectable keratin biomaterials to promote 

cardiac tissue regeneration after myocardial infarction.69  In the present study, a new 

method was developed for controlling the host response to biomaterial implants by 

simultaneously activating pro-angiogenic and anti-inflammatory responses using 

peptide-loaded, three-dimensional synthetic scaffolds.  This method is advantageous 

over previous methods that require a pump or release growth factors which have 

unintended side effects.70-75 The peptides used in this study stimulate little to no side 

effects as compared to growth factors and bioactive molecules that are commonly used, 

70-75 further supporting their relevance for clinical applications.   

Because inflammation and angiogenesis are highly interdependent, effective 

decoupling of their activities has been a staggering challenge to the fields of tissue 

engineering and regenerative medicine, and mechanistic insights into this relationship 

are undoubtedly needed for translation of novel therapies to the clinic.  Through a series 

of in vitro and in vivo experiments employing bioactive peptides, the model system was 

shown here to actively control angiogenic and inflammatory activities in a user-specified 

manner, allowing for elucidation of novel aspects of this relationship and providing clues 

for further modulating the responses.  Specifically, this study reveals a new method for 

promoting angiogenesis while discouraging inflammation through simultaneous co-
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treatment with two peptides, pro-angiogenic C16 and anti-inflammatory Ac-SDKP, 

thereby providing a crucial step for improving tissue engineering strategies. 

The tunable polymer scaffolds used in this study proved to be a useful platform 

for investigating soft tissues for several reasons: (1) scaffold mechanical properties 

were within the range of soft tissues that contact blood (~0.1 MPa), such as the 

vasculature and heart muscle,134, 135 (2) the level of protein adsorption to the scaffold 

facilitated cell attachment without causing over-accumulation of proteins,106 and (3) pore 

interconnectivity promoted cell growth and migration into the scaffold while maintaining 

efficient oxygen and nutrient transport.136-139  The successful incorporation of bioactive 

peptides into the scaffold, achieved via embedding in collagen gel, provided a means 

for controlled peptide release. All in vitro tests were conducted with cell-seeded 

scaffolds for 3 days, which exposed the cultured cells to a burst release of peptides. All 

in vivo tests were conducted for 7 days which, according to the in vitro peptide release 

in Figure 3.2, likely exposed the host tissue to a similar amount of peptides as released 

over 3 days in in vitro studies.  The longer, seven day time point for in vivo experiments 

was chosen to allow for substantial cell infiltration, in accordance with previous studies 

that have shown blood vessel ingrowth into implanted scaffolds at 7 days post 

implantation.32, 33  

Previous studies with laminin-derived peptides, such as pro-angiogenic C16, 

revealed increased EC attachment, aortic ring sprouting, and melanoma cell 

migration.70, 76, 140  The present study demonstrated that the angiogenic activities of 

HUVECs were dependent upon the dose of C16 peptide (Figure 3.3B-D), and that the 

phagocytic activities of MDMs correlated inversely with the dose of anti-inflammatory 
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Ac-SDKP peptide (Figure 3.3E).  The use of these two peptides, as well as the pro-

inflammatory molecule LPS, revealed a high degree of interdependence between 

angiogenesis and inflammation in the co-culture system. For example, LPS stimulated 

the phagocytic activity of the MDMs as well as tubulogenic activity of HUVECs (Figure 

3.4B-C), indicating a pro-angiogenic response to the inflammatory stimulus. Similarly, 

pro-angiogenic C16 stimulated not only EC tube formation but also MDM phagocytosis, 

both of which were comparable to pro-inflammatory LPS treatment, indicating that 

angiogenic stimulation also influences inflammation.  Conversely, anti-inflammatory Ac-

SDKP decreased both EC tube formation and MDM phagocytosis (Figure 3.4B-C). 

These results explain why pro-angiogenic therapies alone often promote unintentional 

inflammatory activation.30, 32, 33, 141, 142 Interestingly, simultaneous co-treatment with the 

two peptides activated angiogenesis but suppressed the inflammatory response both in 

vitro (Figure 3.4) and in vivo (Figure 3.6), suggesting a potential solution to decoupling 

inflammation and angiogenesis.   

In addition to monitoring tubulogenic and phagocytic activities, the secretion of 

cytokines by macrophages in the in vitro co-culture was measured in order to elucidate 

the role of macrophages in modulating angiogenesis and inflammation (Figure 3.5).  

During the foreign body response, macrophages secrete IL-1β, IL-6, IL-8, and TNF-α to 

recruit additional macrophages to the implant site and aid in the degradation of foreign 

material.65, 143, 144 Secretion of pro-inflammatory cytokines followed a profile similar to 

that of phagocytic activity in vitro (Figure 3.4) and F4/80 expression in vivo (Figure 3.6).  

Specifically, treatment with the pro-angiogenic C16 peptide stimulated an increase in 

cytokine secretion relative to control, but anti-inflammatory Ac-SDKP treatment 
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diminished this response, and simultaneous co-treatment with the two peptides did not 

statistically change the cytokine levels as compared to Ac-SDKP treatment alone 

(Figure 3.5).  The low levels of pro-inflammatory cytokines as observed from the co-

treatment might direct a mechanism to reduce inflammatory responses while 

maintaining pro-angiogenic responses. In vivo experiments confirmed the trends found 

from the in vitro experiments in terms of angiogenic and inflammatory activities with the 

use of functional peptides, and verified that the co-treatment of pro-angiogenic and anti-

inflammatory peptides optimized host responses by increasing angiogenesis while 

decreasing inflammation.  
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Chapter 4  

Aim 2: Regulation of Angiogenesis and Inflammation in a model of Peripheral 

Artery Disease Using Peptide-loaded Implantable Polymer Scaffolds  

 

Outline of work. The scope of this chapter will be combined with chapter 5 to form a 

manuscript. 

 

4.1 Introduction 

Peripheral artery disease (PAD) develops as arteries leading to the extremities 

become activated by inflammatory signals and accumulate plaques which limit blood 

flow to distal tissues. 80 million people in the United States suffer from PAD- ranging 

from symptoms of intermittent pain when walking (claudication) to critical limb ischemia 

(CLI).4, 5 Although surgical interventions can alleviate symptoms, these measures are 

not an option for over 50% of patients due to age, diabetes, or widespread blockages.4 

Recent developments in PAD treatments have focused on the use of pro-angiogenic 

growth factors. However, these treatments have only provided modest, if any, significant 

improvement in physiological outcomes in clinical trials.  Many other processes are 

involved in PAD besides angiogenesis, most importantly inflammation. Inflammation 

stimulates vascular lesion formation and angiogenesis,7-10 as well as the host response 

to biomaterial therapies.11, 12 For these reasons, independent control of inflammation 

and angiogenesis may be beneficial for the treatment of PAD. In our previous study, we 

developed a biomaterial system that enables controlled, dual delivery of pro-angiogenic 

C16 and anti-inflammatory Ac-SDKP peptides via an implantable polymer scaffold.145  In 
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the current work we demonstrate the ability of a peptide-loaded polymer scaffold system 

to successfully increase collateral vessel formation without inflammatory exacerbation in 

a PAD model of murine hind limb ischemia. This scaffold system was fabricated from a 

combinatorial polymer library of polyethylene glycol (PEG), poly-ε-caprolactone (PCL), 

and carboxylated PCL (cPCL). PCL is a hydrophobic, slowly degrading polymer which is 

well-studied for creating tissue engineering scaffolds.146 PEG is a hydrophilic polymer 

which causes repulsion of proteins and cells.147 This repellent effect of PEG decreases 

significantly in the presence of the negative charge generated from the free carboxyl 

group of cPCL.32 The ratio of these polymers can be altered to tune the tissue infiltration 

and peptide-release. To evaluate the therapeutic potential of these peptide-loaded 

scaffolds, non-invasive imaging of perfusion, ex vivo angiogenesis and phagocytosis 

assays, and histological staining of tissue samples were performed. 

 

4.2 Materials and Methods 

Fabrication and Characterization of Implantable Scaffolds 

 For this study, scaffolds were fabricated from a terpolymer of 8%PEG-82%PCL-

10%cPCL (%: molar ratio) through chemical cross-linking with 8% PEG dihydrazide.148 

Pores were generated in the scaffolds by salt leaching and then filled with collagen gel 

containing peptides (75 μg peptides/ scaffold or 100ng/ scaffold LPS as a pro-

inflammatory molecule, Table 2.1). The porous structure of the scaffolds was 

characterized by SEM (Figure 4.1B). In vitro peptide release kinetics from peptide-

loaded scaffolds were measured by HPLC as previously described.145 Briefly, 

supernatant from peptide-loaded scaffolds was collected after 1, 3, 7, or 14 days for 
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HPLC analysis (n=4 per time point) and the amount of peptide was quantified against a 

standard curve. 

Mouse Model of Hind Limb Ischemia 

All animal experiments were approved by the Vanderbilt Institutional Animal Care 

and Use Committee (IACUC). Wild type A/J mice were used to develop a model of 

PAD.149 After applying isoflurane anesthesia, removing hair, and disinfecting the leg, an 

incision approximately 1 cm long was made from the knee toward the thigh. Under a 

dissection microscope, subcutaneous fat tissue and the femoral sheath was gently 

pulled to either side of the incision. The femoral nerve was separated from the femoral 

artery and vein. Silk suture was tied around the femoral artery and vein at two locations: 

one ligation below the epigastric artery and a second ligation around the artery and vein 

at a distal location just proximal to the deep femoral branch. The femoral artery and vein 

were then cut between these two sutures. A biomaterial scaffold (6 mm in diameter) 

containing one of the test groups of functional molecules (75 μg each peptide, 1 ng 

LPS, Table 2.1) was placed on top of the occlusion site, and the wound was closed with 

non-degradable sutures. As controls, femoral artery ligation surgery was performed on 

animals without any scaffolds or peptide treatment or with peptide in PBS injections into 

the subcutaneous tissue adjacent to femoral artery ligations. The left hind limb 

(unoperated) was also imaged as a surgical control.   

Non-invasive Imaging of Ischemia 

LDPI: Laser Doppler Perfusion Imaging (LDPI) was performed on the footpad 

region of the hind limb of the mice using a Periscan PIM II device. This technique 

images surface perfusion by measuring Doppler changes in the reflectance of light due 
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to blood flow. During imaging, ambient light and temperature were carefully controlled to 

avoid background variations in LDPI measurements.150 Three scans were performed 

per mouse at each time point: day 0, 3, 7 and 14 after femoral artery ligation and 

scaffold implantation (n=6 mice per treatment). The perfusion ratio was calculated by 

normalizing the average perfusion value of the ischemic footpad (right) to the average 

perfusion value of the control, un-operated footpad (left) using Image J (NIH).   

Optical Coherence Tomography: Doppler OCT was used to non-invasively 

image blood vessels in the ischemic gastrocnemius muscle of mice on days 1 and 13 

after femoral artery ligation, as described in a seminal paper by Poole et al.151 This 

technique detects changes in the phase of light due to flowing blood, in a similar 

manner to acoustic Doppler.  This system uses an 860 nm wavelength laser with a 51 

nm bandwidth and has an axial resolution of 4.6 μm and lateral resolution of 25 μm. 

Prior to imaging, mice were anesthetized and hair on the hind limb was removed. To 

track the imaged area over time, glass microscope slides were marked with the 

placement of the mouse during imaging day 1 and used to correctly position the mouse 

leg during imaging on day 13.  To avoid bulk motion artifacts, OCT scans of the calf 

muscle were performed between breaths of the mouse. Six scans were performed per 

mouse at each time point and perfusion was quantified by calculating the ratio of the 

number of blood vessel pixels per scan over the total imaged area per scan (n=6 mice 

per time point).   

Angiogenesis and Phagocytosis Assays 

Fourteen days after femoral artery ligation, mice were sacrificed and tissue and 

scaffolds were harvested for analysis. Immediately before sacrificing the mice, 
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functional fluorescence microangiography was performed to visualize angiogenesis in 

the implanted peptide-loaded scaffolds, as described previously.145 As a result of 

fluorescence microangiography, only the functional capillaries with a perfusion capacity, 

including those in the implanted scaffolds, show red fluorescence in the mouse body.  

Excised scaffolds were imaged using an Olympus FV100 confocal microscope. For 

quantification of vessel perfusion capacity, the red fluorescence intensity was quantified 

using Image J software (n=6 images per mouse, n=6 mice per treatment).33, 122 

A phagocytosis assay was performed in harvested scaffolds using Vybrant 

Phagocytosis Assay kit according to manufacturer’s protocol.114, 145 Green fluorescence 

from internalized E. coli particles in excised scaffolds was visualized through confocal 

imaging and green quantified using Image J (n=6 images per mouse, n=6 mice per 

treatment). 

Histological Analysis of Angiogenesis and Inflammation  

After sacrificing mice, ischemic muscle samples were prepared for histological 

analysis as described elsewhere.152 Briefly, hind limbs were detached and placed in 

methanol overnight after removal of skin. Adductor muscle samples adjacent to the 

scaffolds were cut from the limb and placed in 10% phosphate buffered formalin for 24 

hours, embedded in paraffin, sectioned (5 μm sections), mounted on slides, and stained 

with biotinylated rat anti-mouse F4/80 antibodies by the Vanderbilt Translational 

Pathology Shared Resource Core. Immunohistochemical (IHC) staining to identify 

activated inflammatory cells by F4/80 expression121 was quantified by normalizing the 

total F4/80 positive area (indicated by brown staining) to the total cell number 

(determined by hematoxylin nuclear staining) using Image J.  
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Statistics 

In all experiments, analytical results were expressed as means ± standard error 

of the mean. One-way ANOVA was used to determine if statistical differences existed 

between groups. Comparisons of individual sample groups were performed using 

Tukey’s range tests. For all experiments, p < 0.05 was considered statistically 

significant. 

 

4.3 Results 

Characterization of Implantable PEG-PCL based scaffolds 

We successfully fabricated scaffolds comprised of 8%PEG-82%PCL-10%cPCL 

with a highly interconnected porous structure as visualized by SEM (Figure 4.1). 148 This 

particular polymer composition was chosen because our previous study demonstrated 

that mechanical properties and protein adsorption were effectively balanced by this 

composition toward generation of soft tissues.145, 153  
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Peptides were loaded into these scaffolds by embedding in collagen gel. These 

collagen-filled scaffolds released ~30% of the loaded C16 peptide in the first 24 hours, 

followed by release of ~60% of the peptide by day 7 (Figure 4.2). Ac-SDKP was 

released more slowly than C16 from the from the collagen-filled scaffolds, but in a 

similar profile, with 14.5% of the peptide release in the first 24 hours, and 30.3% 

released within 7 days. Little change in peptide release was observed with either 

peptide between day 7 and day 14.  

 

 Figure 4.1 Implantable Scaffold Fabrication and Characterization. A) Synthesis schematic of 

combinatorial polymers for implantable scaffold fabrication. B) SEM of porous structure of implantable 

scaffolds after salt leaching. Scale bar = 200 μm. 
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Perfusion Recovery with Peptide-loaded Scaffolds 

To evaluate ability of these peptide loaded-scaffolds to regulate angiogenesis 

and inflammation in PAD, a mouse model of hind limb ischemia was used. The A/J 

mouse strain was chosen due to its prolonged time course recovery from hind limb 

ischemia, which is necessary to test differences in treatments over time in a relevant 

model to human PAD.154 LDPI and OCT imaging were used to monitor perfusion to the  

ischemic hind limb over the course of 14 days. These methods are advantageous over 

traditional imaging methods such as MRI and CT as they can be performed non-

invasively in vivo and do not require a contrast agent.150, 155 

 LDPI measurements were taken of the foot pads of the mouse hind limbs on 1, 3 

7, and 14 days after femoral artery ligation. This technique is non-invasive and semi-

quantitative, with its ease of use making LDPI the gold standard for measuring recovery 

from hind limb ischemia. To quantify perfusion recovery in the ischemic hind limb, the 

 

 
Figure 4.2 Peptide Release From Scaffolds. Collagen-filled scaffolds were loaded with 75 µg of either 

Ac-SDKP or C16 peptides. After gelation, PBS was added on top of the peptide and collagen-filled 

scaffolds and incubated at 37°C until collected either 1, 3, 7, or 14 days after gelation. PBS releasate 

samples were then analyzed by HPLC to quantify the amount of released peptides, as determined by 

fitting to a standard curve. (n=4 per time point) *p<0.05 vs Ac-SDKP at same time point. 
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perfusion in the right foot, in which the femoral artery and vein were ligated, was 

compared to perfusion in the left foot, which was left un-operated as an internal control. 

Without peptide or scaffold treatment, perfusion in the ischemic right foot slightly 

increased over the course of 14 days, indicating slight spontaneous recovery of function 

to the hind limb (Figure 4.3). However, mice treated with scaffolds loaded with pro-

angiogenic C16 and implanted at the site of femoral artery ligations increased perfusion 

by 40% compared to mice treated with scaffolds without peptide. Anti-inflammatory Ac-

SDKP loaded scaffolds did not increase perfusion compared to no peptide treatment. 

Interestingly, the combination C16 and Ac-SDKP loaded scaffolds restored perfusion 

more effectively than any other treatment over the 14 day time course, with 50% higher 

perfusion than scaffolds without peptide treatment, suggesting a synergistic increase in 

tissue recovery with the dual peptide treatment.  
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Doppler OCT was also used to non-invasively image perfusion in the hind limb. 

This technique is more sensitive than LDPI, with a higher resolution; however it is also 

depth limited. While LDPI could only accurately measure surface perfusion (within 200 

μm) in the footpad, OCT can be used to image blood vessels up to 2 mm in depth of the 

ischemic calf muscle. An increase in both the number and size of blood vessels in the 

ischemic calf muscle from 1 day to 13 days post-surgery with all treatment conditions 

 

Figure 4.3 Laser Dopper Perfusion Imaging (LDPI) of perfusion recovery. A) LDPI images of ischemic 

(right) and control (left) hind limbs after femoral artery ligation and scaffold implantation with and without peptide 

treatments. As controls, peptides were intramuscularly injected in PBS without scaffolds. B) Perfusion was 

quantified as the ratio of right to left foot at each time point. Dashed lines represent peptides in PBS injections 

without scaffolds; solid lines represent peptide-loaded scaffold treatments. n=6 mice per condition. *p<0.05 vs 

no peptide treatment with scaffolds at day 14. 
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was observed in OCT scans (Figure 4.4).   Quantification of OCT scans revealed a 

similar trend to LDPI measurements: treatment with C16 alone or the combination of 

C16 and Ac-SDKP resulted in an greater than 2 fold increase in the total area of vessels 

over the time course compared to treatment with Ac-SDKP or no treatment (Figure 4.4). 

No significant difference was observed between C16 alone and the co-treatment of C16 

and Ac-SDKP, indicating the ability of this combined treatment to promote blood vessel 

formation. 
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 Figure 4.4 Optical Coherence Tomography (OCT) imaging of blood vessel formation. A) Doppler OCT B 

scans were taken of the calf muscle of mice after femoral artery ligation and peptide-loaded scaffold 

implantation. Blood vessels appear bright white or black (depending on direction of blood flow) with noise 

shifted above or below the region of interest. B-scans show the surface of the skin at the top of the image and 

increase in depth into the calf muscle until signal can no longer be accurately detected at the bottom of the 

image. Scans are 2 mm in depth and 4mm in width. B) Quantification of vessel formation was performed by 

dividing the total area of vessels in each image by the total imaged area. All groups are with implanted 

scaffolds. n=6 mice per condition. *p<0.05 vs. no peptide on day 13 after femoral artery ligation and scaffold 

implantation.  
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Regulation of Macrophage Recruitment with Peptide-loaded Scaffolds 

To further investigate inflammatory responses to our peptide-loaded scaffolds, 

we sectioned and stained the adductor muscle tissue adjacent to the scaffolds with 

mouse macrophage marker F4/80. Treatment with pro-angiogenic C16 or pro-

inflammatory LPS (as a positive inflammatory control) increased the infiltration of 

macrophages into the thigh muscle adjacent to the peptide-loaded scaffolds 2 or 3 fold, 

respectively, as compared to no peptide treatment (Figure 4.5). Ac-SDKP loaded 

scaffolds decreased macrophage infiltration by 72% compared to scaffolds with no 

peptide treatment, while the combination of C16 and Ac-SDKP decreased macrophage 

infiltration by over 50%, to levels similar to tissue without scaffolds or peptides. 

 

Figure 4.5 Macrophage infiltrations in ischemic muscle. A) Sections of adductor muscle tissue 

adjacent to peptide-loaded implants  or peptide-loaded PBS injections were stained with rat anti-mouse 

biotinylated F4/80 antibodies (a macrophage marker), as visualized by brown color in images. Nuclei 

were counterstained blue with hemalum. B) F4/80 staining was quantified by calculating the area of 

positively stained pixels divided by the total number of cells per image as measured by hematoxylin 

nuclear stain. n=4 mice per condition. Scale bar = 100 μm.  
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Angiogenesis and Phagocytosis in Peptide-loaded Scaffolds 

Fluorescence microangiography and a Vybrant phagocytosis assay were used to 

quantify angiogenesis and phagocytic activities in the scaffolds implanted at the site of 

femoral artery ligations. We chose to measure phagocytosis because it is a crucial and 

potent indicator of inflammatory cell activation.156 Quantification of perfusion capacity 

and phagocytic activity directly correlated with results obtained from peptide-loaded 

scaffolds in the subcutaneous model, which confirms our previous work.145 Specifically, 

C16-loaded scaffolds enhanced angiogenesis and macrophage activity in the ischemic 

hind limb, while Ac-SDKP-loaded scaffolds reduced both responses in comparison to 

scaffolds without peptide loading (Figure 4.6). Only slight increases were observed in 

angiogenesis with PBS injections of C16 peptides compared to PBS alone, while 

scaffold-mediated C16 peptide delivery increased angiogenesis almost 2 fold versus 

scaffolds without peptides. Unfortunately, implantation of scaffolds created an 

inflammatory response, with higher phagocytic activity than no scaffold controls. 

However, the incorporation of Ac-SDKP peptides in the scaffolds abated this 

inflammatory response, lessening the phagocytic activity to levels comparable to PBS 

only. Co-delivery of both Ac-SDKP and C16 peptides increased perfusion capacity 1.7 

fold versus scaffolds without peptides, while reducing phagocytosis to levels similar to 

no scaffold controls, confirming our previous finding in this PAD model. 
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4. 4 Discussion 

PAD is a complicated disease that leaves over 50% of patients with no viable 

treatment option. Angiogenic growth factors have been explored as possible 

therapeutics for PAD, with limited results. For example, in a recent phase I clinical trial 

by Marui et al., gelatin microspheres loaded with bFGF improved perfusion, 

transcutaneous oxygenation pressure, and healing of foot ulcers in 6 patients with CLI.95 

 
Figure 4.6 Angiogenesis and phagocytosis assay in implantable scaffolds.  Blood vessel formation 

(red) visualized by fluorescent microangiography, and macrophages phagocytosing E.coli particles (yellow-

green) in tissue with peptide and PBS injections (A) or with implanted polymer scaffolds (B). Scale bar=50 

μm. C) Vessel perfusion capacity as measured by red fluorescence intensity of perfused microspheres 

extracted from scaffolds. D) Phagocytic activity (fluorescence intensity per image field). (C, D) *p < 0.05 

compared to no peptide treatment in the same group (no scaffold or with scaffold). 
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Though this strategy is promising, no controls were included in this small-scale study. 

Other randomized clinical trials of bFGF administration in patients with PAD have not 

demonstrated improvement versus placebo controls.4 Additionally, PAD treatments are 

complicated by the interplay between angiogenesis and inflammation in this disease 

pathology. Although several pre-clinical treatment strategies have focused on 

maximizing angiogenesis and arteriogenesis to restore flow to ischemic tissues- 

including gene transfer and cell delivery approaches,4 these strategies overlook the 

importance of inflammation in regulating angiogenic responses. Inflammatory cues 

activate the vascular endothelium, enabling the diapedesis of macrophages into the 

intima where they accumulate cholesterol to form plaques. For this reason inflammation 

should be minimized in PAD treatments; however some level of inflammation is needed 

for the initiation of angiogenesis to promote collateral vessel formation and restore 

blood flow to ischemic tissues. It is important to consider that growth factors such as 

bFGF are incredibly expensive treatments and the gelatin microspheres used to delivery 

this growth factor in the study by Marui et al., may contain residual glutaraldyhyde from 

the chemical crosslinking process, raising a significant safety concern. Alternatively, in 

the current study we used highly biocompatible polymer delivery systems consisting of 

PEG and PCL which can be tuned for peptide release without the need for chemical 

crosslinking. In this study we used proangiogenic C16 and anti-inflammatory Ac-SDKP 

peptides which are less expensive than bFGF and take into consideration controlling 

both the angiogenic and inflammatory components of PAD. The incorporation of this 

dual peptide treatment into an implantable polymer scaffold proved to promote recovery 
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of ischemic hind limbs in a mouse model of PAD while minimizing inflammatory 

responses.  

Implanted polymer scaffolds provide an effective method for delivering functional 

peptides to the site of ischemia. Scaffolds were fabricated from biocompatible, 

biodegradable, combinatorial polymers made of PEG, PCL, and cPCL (Figure 4.1). 153, 

157 These scaffolds can be used to control release of peptides and serve as a synthetic 

ECM for cell attachment and growth.153, 157 Without loading in scaffolds, peptides 

injected in PBS did not significantly alter any of the measured outcomes, indicating the 

need for scaffolds to sustain release of peptides to the tissue. When incorporated into 

polymer scaffolds, anti-inflammatory Ac-SDKP decreased phagocytic activity and 

macrophage infiltration, successfully minimizing the host inflammatory response to the 

implanted scaffold and avoiding potential aggravation of inflammatory activated 

endothelium in occluded blood vessels. However, Ac-SDKP treatment alone slightly 

decreased angiogenesis or perfusion in the hind limb, suggesting the treatment of Ac-

SDKP alone is not suitable for restoring function to ischemic limbs affected by PAD. 

Pro-angiogenic C16 loaded scaffolds increased angiogenesis and perfusion to the 

ischemic hind limb; however they also resulted in increased phagocytic activity and 

macrophage infiltration compared to no peptide treatment. This high level of 

inflammatory response is concerning when considering translating these therapies to 

human patients with inflamed arteries. Therefore, a pro-angiogenic treatment without 

inflammatory exacerbation was sought. Scaffolds loaded with C16+Ac-SDKP resulted in 

increased blood perfusion to the ischemic hind limb, as evaluated by LDPI, OCT, and 

fluorescent microangiography, as well as limited inflammatory response as evaluated by 
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Vybrant phagocytosis and F4/80 staining. The treatment with pro-angiogenic C16 in 

combination with anti-inflammatory Ac-SDKP provided optimal collateral angiogenesis 

without detrimental inflammation, suggesting an ideal treatment for PAD by regulating 

angiogenesis and inflammation independently.  

Although this study suggests an exciting new treatment for PAD that considers 

both the angiogenic and inflammatory responses involved in this disease progression, 

the scaffold peptide delivery system and mouse model used in this study pose 

significant limitations. The mouse model of hind limb ischemia does not accurately 

represent human PAD patients.  Although the mice naturally recovered some level of 

perfusion and function to the ischemic hind limb even without treatments, humans with 

PAD do not naturally recover once arteries are blocked. Instead, their condition normally 

worsens as plaques grow and hypoxia in the tissue becomes more severe with time.  To 

adjust for the needs of human patients with PAD, the peptide release can be tuned by 

altering the polymer composition of the scaffold.    

Another limitation of this study is the method of implanting scaffolds with 

therapeutics. To create the ischemic state in the hind limb of mice, surgery is required, 

providing an opportunity to implant peptide-loaded scaffolds. In human patients with 

PAD, surgery or other invasive measures should be avoided to prevent further damage 

to tissues, making the implantation of these peptide-loaded scaffolds inadvisable. Thus, 

to translate these peptide treatments to the clinic, the following work focused on 

developing injectable polymers to deliver these peptides in a minimally-invasive format 

while maintaining site specificity. Also a potential mechanism decoupling the two host 

responses was investigated.  
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Chapter 5  

Aim 3: Minimally-Invasive Pro-Angiogenic and Anti-inflammatory Treatment for 

PAD 

 

Outline of work. The scope of this chapter will be combined with Chapter 4 to form a 

manuscript. 

 

5.1 Introduction 

Cardiovascular disease is the leading cause of death in the United States, and 

responsible for one-quarter of all deaths.158 One of the most common cardiovascular 

diseases is PAD. A number of PAD patients have comorbidities which prevent them 

from being eligible for surgical interventions. Two FDA approved medications exist for 

PAD – pentoxyiflyine and cilostazol – and several treatment strategies are currently in 

clinical trials, including gene, cell-based, and peptide/protein therapies.91 To avoid the 

need for surgery, many of these therapies are designed to promote the compensatory 

growth of blood vessels.  

In the previous chapter, pro-angiogenic and anti-inflammatory peptides were 

incorporated into implantable polymer scaffold systems to treat PAD. The combination 

of two peptides: anti-inflammatory Ac-SDKP and pro-angiogenic C16 resulted in 

increased collateral vessel formation while limiting inflammatory response; however, 

surgery is required to implant polymer scaffolds. Surgery should be avoided in patients 

with PAD as the lack of blood flow and other contributing factors (such as diabetes and 

advanced age) compromise the wound healing ability of these patients.  
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For this study, minimally-invasive, injectable polymer scaffolds were used to 

deliver the therapeutic peptides, thereby minimizing surgical injuries expected from 

scaffold implantation. These injectable polymers exist as a solution at room temperature 

but become a hydrogel scaffold when exposed to the increased temperature inside the 

body.  Peptides can be mixed with this polymer at room temperature.  Upon injection, 

the hydrogel formation stabilizes the peptides at the site of injection, thus allowing site-

specific targeting of peptide therapeutics with minimal systemic side effects. 159, 160The 

injectable polymer scaffold system was evaluated for gelation time and biocompatibility 

in vitro before transitioning to in vivo experiments to evaluate the regulation of 

angiogenesis and inflammation in a murine model of PAD.  

To elucidate a mechanism of peptide-mediated decoupling of angiogenesis and 

inflammation, we investigated the roles of MMP-9 and TNF-α in modulating 

angiogenesis and inflammation. MMP-9 promotes angiogenesis by degrading collagen 

in the basement membrane. Although TNF-α is known to upregulate MMP-9 expression 

through the transcription factor NF-κβ,161, 162 many other signaling pathways regulating 

MMP-9 expression and activation exist.163 For example, other inflammatory cytokines- 

including IL-1α and IL-1β- can regulate Nf- κβ upstream of MMP-9.52, 163, 164 

Alternatively, growth factors can also regulate MMP-9 expression through the 

transcription factor AP-1.165 In this study we elucidated the role of TNF-α in controlling 

inflammation independent of MMP-9 mediated regulation of angiogenesis. 

 

5.2 Materials and Methods 

Chemicals and Reagents for Injectable Polymer Scaffold  
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ε-caprolactone was purchased from Alfa Aesar (Ward Hill, MA, USA). Tin (II) 

ethyl hexanoate (Sn(Oct)2), monomethoxypoly(ethylene glycol) (mPEG) (Mn= 750Da), 

anhydrous tetrahydrofuran (THF), anhydrous toluene, dichloromethane, and diethyl 

ether were purchased from Sigma- Aldrich (St. Louis, MO, USA). ε-caprolactone was 

dried and distilled over CaH2 immediately before polymerization. Tin (II) ethyl hexanoate 

was distilled under high vacuum.  

Synthesis of Injectable Polymer Scaffolds 

 This new class of polymer library is presented as 21%PEG-79%PCL (individual mole 

percentage) (Figure 5.1). Previous studies show that these combinatorial polymers 

provide tunable degradation, mechanical, and thermal properties.157, 166 PEG-PCL was 

synthesized by ring opening polymerization of ε-caprolactone according to previously 

published methods.157, 167 Briefly, caprolactone (100x10-3 mol, 11.4 g, 10.96 mL), 

Sn(Oct)2 (100x10-6 mol, 40 mg), and mPEG (750Da, 100x10-6 mol, 0.75 g) were placed 

in a previously flame dried, 100 mL round bottom flask with dry toluene and degassed 

for 30 min with two freeze-pump-thaw cycles (10-15 minutes each). The reaction was 

immersed in an oil bath at 140°C and stirred to react under nitrogen for 4 hours. The 

polymerization was stopped by cooling to 25°C and the resulting polymer was dissolved 

in chloroform and precipitated into diethyl ether to recover PEG-co-PCL polymer. The 

number average and mole average molecular weight (Mn and Mw, respectively) were 

determined by gel permeation chromatography (GPC) and the structure of the PEG-

PCL polymer was verified by NMR. 
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Injectable polymers were dissolved in H2O to form a 13% polymer by weight solution at 

25°C and then incubated at 37° C and observed every 10 seconds until a stable gel 

formed to determine the gelation time (Figure 5.1).  

In Vitro Biocompatibility Assay  

HUVECs (ATCC) were seeded at a density of 1x105 cells/ mL in MesoEndo 

media (Cell Applications) on top of pre-gelled injectable polymer scaffolds and cultured 

for 1 or 3 days at 37°C with 5% CO2 and stained with LIVE/DEAD® Viability/Cytotoxicity 

Kit (Invitrogen) according to supplier’s protocol (n=4 per condition).   

In Vitro Peptide Uptake 

 mCAECs or RAW 264.7 cells were incubated with DilC12 (BD Biosciences) for 2 

hours; washed two times with PBS; and seeded 3x105 cells/ mL on pre-gelled injectable 

polymer scaffolds loaded with FITC-tagged Ac-SDKP or C16 peptides (75 μg peptide/ 

mL media, GenScript). After 72 hours, cells were washed with PBS and imaged using 

Zeiss LSM 710 confocal microscope for visualization of peptide uptake (n=4 per 

treatment).  

Mouse Model of PAD 

All animal experiments were performed according to protocols approved by the 

Vanderbilt Institutional Animal Care and Use Committee (IACUC). Femoral artery 

ligations were performed as described in Chapter 4.2 except injectable polymer 

scaffolds were used in place of implantable polymer scaffolds. A 13% by weight solution 

of injectable polymers in H2O was mixed with 75 µg Ac-SDKP, C16, or the combination 

of Ac-SDKP and C16 at 25°C. In order to control the hydrogel size considering the 

possibility that the hydrogel size may change inflammatory responses, a single, 10 µL 
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bulk injection or ten, 1 µL injections of peptide-loaded polymer were made into the thigh 

muscle adjacent to the femoral artery ligations. LDPI, OCT, fluorescent 

microangiography, Vybrant phagocytosis assay, and F4/80 staining were used to 

evaluate the angiogenic and inflammatory therapeutic effect of peptide-loaded injectable 

polymer scaffolds in a model of hind limb ischemia, as described in Chapter 4.2 (n=6 

mice per treatment).  

In Vivo Peptide Release from Injectable Scaffolds 

A 13% by weight solution of injectable polymers in H2O was mixed with 75 µg of 

FITC-labeled SDKP (GenScript) at 25°C. A single, 10 µL bulk injection or ten, 1 µL 

injections of peptide-loaded polymer were made into the thigh muscle adjacent to the 

femoral artery ligations. After 7 days, mice were sacrificed by CO2 inhalation and death 

was verified by cervical dislocation. The skin on the ischemic hind limb was removed 

and the adductor muscle was imaged on an IVIS 200 preclinical in vivo imaging system 

(Perkin Elmer, Waltham, MA) to visualize peptide retention in the tissue (n=4 mice per 

treatment).  

Cell Culture  

 RAW 264.7 macrophages (ATCC) were cultured in DMEM (Gibco) supplemented 

with 10% FBS and 1% penicillin/streptomycin. Mouse aortic endothelial cells (mAECs) 

were a generous gift from the Ambra Pozzi lab at Vanderbilt University Medical Center.  

mAECs were cultured in EGM-2 Basal Media supplemented with BulletKit (Lonza, 

Allendale, NJ) and 10units/ mL IFN-γ (Sigma). RAW 264.7 mouse macrophage cells 

(Simga) were cultured in DMEM with 10% FBS and 1% penicillin/streptomycin. For cell 

culture studies with peptides, 75µg/ mL of Ac-SDKP or C16 peptides was used. For 
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inhibition studies, 5 µM of MMP-9 inhibitor-1 (CTK8G1150; AG-L-66085, Santa Cruz 

Biotechnology, Dallas, TX)168 or 5 µg/ mL of LEAF Purified Mouse TNF-α antibody 

(BioLegend) was used.169 

Gene Expression 

 mAECs or RAW 264.7 cells were seeded at a density of 3x105 cells/mL on TCPS 

with 75 μg/ mL of Ac-SDKP, C16, or the combination of C16 and Ac-SDKP peptides. 

After 3 days, RNA was extracted from homogenized tissue using Trizol reagent and 

RNA easy columns. After dissolving RNA in RNase-free water, the concentration and 

purity of isolated RNA was measured using TECAN plate reader Nanoquant (company 

info). At least 1.2 µg of RNA was reverse transcribed using iScriptReverse transcription 

Supermix for RT-qPCR on a BioRad thermocycler (company info). 50 ng/well cDNA was 

then amplified using SYBR green Supermix and fluorescence signal was measured on 

a BioRAD real time PCR machine. TGFβ1 forward: GCTGAACCAAGGAGACGGAA, 

reverse: AGAAGTTGGCATGGTAGCCC. NF-κβ forward: 

ATGTAGTTGCCACGCACAGA, reverse: GGGGACAGCGACACCTTTTA. TIMP1 

forward: AGACACACCAGAGATACCATGA, reverse: GAGGACCTGATCCGTCCACA. 

FGF-1 forward: TCTGAAGAGTGGGCGTAGGA, reverse: 

GGCTATTTGGGGCCATCGTA. FGF-2: MMP-9: TTGAGTCCGGCAGACAATCC, 

reverse: CCTTATCCACGCGAATGACG. MMP-2 forward: 

GAGTTGGCAGTGCAATACCT, reverse: GCCGTCCTTCTCAAAGTTGT. TNF-α: 

forward: ACGGCATGGATCTCAAAGAC, reverse: AGATAGCAAATCGGCTGACG. 

VEGF forward: ATGCGGATCAAACCTCACCA, reverse: 

CCGCTCTGAACAAGGCTCAC. GAPDH forward: TGAAGCAGGCATCTGAGGG, 
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reverse: CGAAGGTGGAAGAGTGGGAG. TIMP-2 forward: 

CTCGCTGGACGTTGGAGGAA, reverse: CACGCGCAAGAACCATCACT.  Expression 

was calculated using the 2-Cq method and normalized to GAPDH expression (n=8).  

MMP-9 Activity 

 After 72 hours culture in serum-free media, culture media from mAECs or RAW 

264.7 cells (3x105 cells/ mL, with/without peptides or TNF-α/ MMP-9 inhibitors) was 

collected and the protein from the media was concentrated using 10 kDa ultrafiltration 

filters (Millipore, Billerica, MA). Concentrated protein samples were incubated with non-

reducing buffer at a ratio of 1:1 (0.15M Tris-HCL, 20% glycerol, 0.06% bromophenyl 

blue and 5% (w/v) sodium dodecyl sulfate (SDS); pH6.8). 9.5 µg total protein per lane 

were loaded onto a 7.5% polyacrylamide gel containing 0.1% (w/v) gelatin (Sigma). 

Gels were washed 4 times in dH2O containing 3.3% (v/v) Triton X-100 for 10 minutes 

per wash to remove SDS, followed by 12-48 hour incubation in reaction buffer (50 mM 

Tris, 13 mmol CaCl2, 0.05% Brij-35 in dH2O; pH 7.3) at 37 °C under constant gentle 

shaking. After incubation, gels were placed in fixative (30% methanol, 10% acetic acid, 

and 60% dH2O) for 1 hour before staining with 4 parts Coomassie brilliant blue R-250 

(Sigma) and 1 part methanol for 12 hours. Gels were destained in 25% methanol for 1 

hr. The gelatinolytic activity of pro-MMP-9 was determined by densitometry of the 

97KDa white band on a blue background using ImageJ (n=4 per treatment). MMP-9 

expression was then normalized to the expression from the no inhibitor, no peptide 

treated group. 
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Phagocytic Activity 

 Vybrant phagocytosis assays were used to evaluate the inflammatory activity of 

RAW 264.7 cells, as described in Chapter 3.2.170 RAW 264.7 cells (3x105 cells/ mL) 

were cultured with Ac-SDKP, C16, or the combination of C16 and Ac-SDKP peptides 

(75 µg/mL) in the presence or absence of TNF-α inhibitor or MMP-9 inhibitor for 72 

hours. Cells were then incubated with green fluorescent E. coli particles for 2 hours 

before quenching extracellular fluorescence with trypan blue and imaged using a Nikon 

Eclipse Ti microscope (n=4 per treatment).  

Tubulogenesis 

mAECs (3x105 cells/ mL) were cultured on growth factor reduced matrigel (200 

µL, BD Biosciences) for 6 hours before imaging for tube formation using a Nikon Eclipse 

Ti microscope (n=4 per treatment). 

ELISA 

To verify TNF-α inhibition with antibodies, an ELISA was performed using Mouse 

TNF-α ELISA MAXTM Deluxe (Biolegend) according to supplier’s protocol. Secreted 

TNF-α in RAW 264.7 cell culture supernatant was measured by reading absorbance at 

450nm using a TECAN M1000 plate reader and quantified against a standard curve 

(n=4 per treatment).  

Statistics 

To determine if statistical significance existed between groups, one-way ANOVA 

was performed between groups followed by Tukey’s range tests for comparisons 

between groups. For all experiments, p < 0.05 was considered statistically significant 

and results were presented as means ± standard error of the mean. 
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5.3 Results 

Injectable Polymer Scaffold Fabrication and Characterization 

The injectable co-polymer was synthesized from 21% PEG-79% PCL by reacting 

ε-caprolactone with mpEG using tin(II) ethyl hexanoate as a catalyst (Figure 5.1A). The 

resulting polymer has a weight average molecular weight of 6299Da and number 

average molecular weight (Mn) of 5404 with a poly dispersity index (PDI) of 1.16 as 

verified by GPC (Figure 5.1B). The polymer structure was verified by 1H NMR spectra: 

1H NMR (CDCl3) = d 4.06 (t, 3H,-OCH2), 3.65 (s, 4H, -OCH2), 2.31(t, 2H, -CH2), 1.66 

(m, 2H,-CH2), 1.37 (m, 4H, -CH2) ppm (Figure 5.1C). This polymer formulation easily 

mixed with peptides at 25°C and formed a stable gel scaffold at 37°C within 15 seconds 

(Figure 5.1D).  
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Cell Viability with Injectable Polymer Scaffolds 

To measure cell viability with injectable polymer scaffolds, HCAECs were 

cultured on top of pre-gelled polymer scaffolds and stained for live and dead cells using 

calcein AM and ethidium homodimer, respectively. In live cells calcein AM is cleaved by 

esterastes to fluoresce green. In dead cells ethidium homodimer is able to enter the cell 

through the damaged cell membrane where it fluoresces red upon interacting with DNA. 

Figure 5.1 Injectable polymer scaffold synthesis and characterization. A) A co-polymer of 21% 
polyetheylene glycol (PEG) and 79% poly-ε-caprolactone (PCL) was synthesized by ring opening 
polymerization with tin (II) ethyl hexanoate (Sn(Oct)2) catalyst. B) Molecular weight (Mw and Mn) 
and polydispersity index (PDI) were determined by gel permeation chromotography (GPC). C) The 
injectable polymer scaffold was a liquid at room temperature (25°C, left) and formed a stable gel at 
body temperature (37°C, right). 
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Live cells do not allow ethidium homodimer to cross the cell membrane. As seen in 

Figure 5.2, HCAECs maintained viability with few dead cells when cultured on injectable 

polymers for three days. It is important to note that some red fluorescence is detectable 

from the polymer itself, and it is not necessarily indicative of dead cells. 

 

Peptide Uptake by Macrophages and Endothelial Cells 

 Mouse endothelial cells (mAECs) and macrophages (RAW 264.7 cells) were 

used to measure cellular uptake of peptides. To track peptides, C16 and Ac-SDKP were 

fluorescently tagged with fluorescein isothiocyanate (FITC). Both cell types internalized 

Ac-SDKP and C16 peptides as visualized by green fluorescence, however C16 was 

Figure 5.2 Biocompatibility of injectable polymer scaffolds. Human coronary artery endothelial 

cells (HCAECs) were cultured on top of pre-gelled injectable polymer scaffolds. Live cells were 

stained by calcein AM (green, top row) and dead cells were stained by ethidium homodimer (red, 

middle row). The injectable polymer scaffolds exhibit some red autofluorescence (left column) that 

is not indicative of dead cells. Images are representative of n=4 biological replicates. Scale bar = 

50 μm.  
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confined in punctuate, distinct staining, while Ac-SDKP was diffusely stained throughout 

the cells (Figure 5.3). 

 

In Vivo Peptide Release from Injectable Polymer Scaffolds 

 Injectable polymer scaffolds were also tested for the PAD therapeutic efficiency 

in a mouse model of hind limb ischemia. When polymer solutions were injected at the 

site of femoral artery ligation they rapidly formed a stable gel (Figure 5.4A). Even after 

14 days, the 10 µL bulk injectable polymer scaffold was still visible without significant 

change in size. To measure peptide release from these injectable polymers in vivo, 

FITC-tagged Ac-SDKP was mixed with polymer solutions before injection. After seven 

days, the single 10 µL bulk injection of polymer scaffold retained over 10X more of the 

peptides than multiple 1µL injections (Figure 5.4B-C).    

 

Figure 5.3 Peptide Uptake by Macrophages and Endothelial Cells. RAW 264.7 macrophages 

or mouse aortic endothelial cells (mAECs) were prelabeled with DilC12 (red, top row) and cultured 

with FITC-labeled Ac-SDKP or C16 (green, middle row) for 72 hours. Images are representative of 

n=4 biological replicates. Scale bar = 20 μm. 
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Macrophage Recruitment with Peptide-loaded Injectable Polymer Scaffolds 

 The inflammatory response to injectable polymers was quantified by the same 

method as with implantable scaffolds in Chapter 4.  Macrophage staining by F4/80 

antibodies revealed a high number of infiltrated macrophages with the bulk injection of 

polymer (Figure 5.5). Although the incorporation of C16 and Ac-SDKP peptides reduced 

this response by 70% (Figure 5.5), the level of macrophage infiltration with co-peptide 

treatment via a bulk injectable polymer scaffold was still higher than with control PBS 

 

Figure 5.4 In Vivo Peptide Release from Injectable Polymer Scaffolds. A) Injectable polymer 

scaffold immediately after surgery (day 0, left), or after 14 days (right). B) FITC-tagged Ac-SDKP 

was mixed with injectable polymers at 25°C before injecting either a single bulk 10 μL injection 

(right), or ten individual 1 μL injections into the muscle around the site of femoral artery ligations. 

After 7 days, the skin was removed from the thigh muscle and imaged using a fluorescence in vivo 

imaging system (IVIS). Areas with high fluorescent intensity are colored yellowed in the images. C) 

Fluorescence intensity of peptides that remained in the tissue after 7 days was quantified using 

IVIS software.  *p<0.05 vs 1 μL polymer scaffold injections. 
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injections as observed in Figure 4.4. Multiple 1 µL polymer scaffold injections with the 

combination of C16 and Ac-SDKP peptides decreased the macrophage response to a 

similar level to PBS injections without polymer. These results are promising for the 

attenuation of the inflammatory response with multiple small volume injections of 

peptide-loaded polymer.  

 Macrophage recruitment also followed similar trends when the peptide-loaded 

implantable polymer scaffolds were compared to the peptide-loaded injectable polymer 

scaffolds, with C16 augmenting macrophage infiltration while Ac-SDKP diminished 

macrophage infiltration (Figure 5.5). The minimal amount of macrophage infiltration 

observed with Ac-SDKP alone was preserved with the co-peptide treatment of C16 and 

Ac-SDKP, suggesting an exemplary therapeutic strategy for PAD. 
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Perfusion Recovery and Phagocytosis with Injectable Polymer Scaffolds 

 Inflammatory activation, as quantified by a Vybrant phagocytosis assay, was 

highest with bulk injection of polymers, and was attenuated remarkably with multiple, 

low volume injections of polymer scaffolds. With multiple small volume injections 

phagocytosis decreased and perfusion capacity increased, indicating the improved 

therapeutic efficiency of these peptides when delivered via multiple small volume 

injections versus a single bulk injection.  

 

Figure 5.5 Macrophage infiltrations in ischemic muscle. A) Sections of adductor muscle tissue 

adjacent to peptide-loaded injectable polymer scaffolds were stained with rat anti-mouse 

biotinylated F4/80 antibodies (a macrophage marker), as visualized by brown color in images. 

Nuclei were counterstained blue with hemalum. B) F4/80 staining was quantified by calculating the 

area of positively stained pixels divided by the total number of cells per image as measured by 

hematoxylin nuclear stain. n=4 mice per condition. Scale bar =100 μm. *p<0.05 vs. bulk injection 

with no peptide, †p<0.05 vs groups connected by lines. 
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 According to the results from LDPI, OCT, fluorescent microangiography, and 

Vybrant phagocytosis assays, the perfusion recovery and inflammatory activation with 

multiple 1 μL injections of peptide-loaded injectable polymer scaffolds were similar to 

the trends seen with implantable polymer scaffolds in Chapter 4. Specifically, C16 and 

C16 in combination with Ac-SDKP restored perfusion in the hind limb to the highest 

levels of all treatments tested (Figure 5.6, 5.7, 5.8). Ac-SDKP decreased perfusion 

compared to no peptide treatment (Figure 5.6, 5.7, 5.8). Phagocytic activity also 

 

Figure 5.6 Laser Dopper Perfusion Imaging (LDPI) of perfusion recovery. A) LDPI images of 

ischemic (right) and control (left) hind limbs after femoral artery ligation and polymer injection with 

and without peptide treatments. B) Perfusion was quantified as the ratio of right to left foot at each 

time point. Dashed lines represent bulk (10 μL) polymer scaffold injections, solid lines represent 

ten, individual 1 μL polymer scaffold injections. n=6 mice per condition. *p<0.05 vs no peptide 

treatment with scaffolds at day 14. 
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increased with C16 compared to no peptide treatment whereas Ac-SDKP decreased 

phagocytic activity (Figure 5.7). The combination of C16 and Ac-SDKP maintained the 

low levels of phagocytic activity observed with Ac-SDKP treatment alone.  

 

 

Figure 5.7 Angiogenesis and phagocytosis assay in injectable scaffolds.  A) Blood vessel 

formation (red) visualized by fluorescent microangiography, and macrophages phagocytosing 

E.coli particles (yellow-green) in tissue with peptide-loaded injectable polymer scaffolds. Scale bar 

= 50 μm. B) Vessel perfusion capacity as measured by red fluorescence intensity of perfused 

microspheres extracted from scaffolds. C) Phagocytic activity (fluorescence intensity per image 

field). (B,C) *p < 0.05 compared to no peptide treatment in same group (Bulk injection or 1μL 

injections of polymer scaffold). *p<0.05 vs bulk injection with no peptide, †p<0.05 vs groups 

connected by lines. 
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In Vitro Evaluation of Angiogenesis and Inflammation by Gene Expression 

 Since the therapeutic efficiency of these peptides was verified using injectable 

polymers, we sought to elucidate a mechanism of uncoupling angiogenesis and 

inflammation. First, we analyzed gene expression in mAECs, as a model of 

angiogenesis, and RAW 264.7 macrophages, as a model of inflammation and for 

several angiogenic genes: MMP-9, TIMP-1, MMP-2, TIMP-2, VEGF, FGF-1, and FGF-2, 

and inflammatory genes: NF-κβ and TNF-α. Among the genes investigated, MMP-9, 

TIMP-1, and TNF-α showed significant changes in their expression levels in response to 

peptide treatments (Figure 5.9). Compared to no peptide treatment, MMP-9 expression 

in mAECs increased with C16 or co-treatment (both C16 and Ac-SDKP) over 2-fold, 

 

Figure 5.8  Optical Coherence Tomography (OCT) imaging of blood vessel formation. A) 

Maximum intensity projections of 3D Doppler OCT scans were taken of the calf muscle of mice 

after femoral artery ligation and peptide-polymer scaffolds (ten, 1 μL intramuscular injections 

around the site of femoral artery ligation). n=6 mice per condition. *p<0.05 vs. no peptide on day 13 

after femoral artery ligation and scaffold implantation. Scale bar = 1mm. 
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while expression decreased with Ac-SDKP treatment over 50% (Figure 5.9A), following 

trends similar to angiogenesis in vivo with peptide treatments. Expression of TIMP-1, an 

inhibitor of MMP-9, showed the opposite trend to MMP-9 expression in response to the 

peptide treatments: C16 and the combination of C16 and Ac-SDKP decreased TIMP-1 

expression significantly (Figure 5.9B). In RAW 264.7 macrophages, no significant 

differences were detected in MMP-9 or TIMP-1 expression (Figure 5.9 D, E). These 

results illustrate the influence of MMP-9 on angiogenic processes within endothelial 

cells, while not having a significant effect on inflammatory cells or inflammatory 

processes. Expression of TNF-α, however, directly correlated with inflammatory 

activation as observed in vivo, with C16 increasing TNF-α expression, while Ac-SDKP 

and the combined peptide treatment decreased TNF-α expression in comparison to no 

peptide treatment (Figure 5.9C, F). 
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TNF-α and MMP-9 Inhibition 

To further investigate these mechanistic insights, inhibitors of TNF-α and MMP-9 

were used in cell culture studies. To verify TNF-α inhibition, an ELISA assay was 

performed. The use of TNF-α antibodies as natural TNF-α inhibitors successfully 

abrogated soluble, free TNF-α (Figure 5.10A). Without TNF-α inhibitor, Ac-SDKP and 

the combination peptide–treated macrophages secreted the least amounts of TNF-α 

(Figure 5.10A). To investigate if TNF-α influenced MMP-9 activity, zymography for 

 

Figure 5.9 In Vitro Evaluation of Angiogenesis and Inflammation by Gene Expression. Mouse 

aortic endothelial cells (mAECs) or RAW 264.7 macrophages were cultured with 75 μg/ mL of Ac-

SDKP, C16, or the combination of C16 and Ac-SDKP peptides for 72 hours before isolating RNA 

and quantitative RT-PCR investigation. Gene expression of matrix metalloproteinase-9 (MMP-9) 

(A,D), tissue inhibitor-1 (TIMP-1), the inhibitor of MMP-9 (B, E), and tumor necrosis factor-α (TNF-

α) (C, F) in mAECs (A, B,C) and RAW 264.7 macrophages (D, E, F). Expression was normalized 

to GAPDH. (n=8) *p<0.05 vs no peptide †p<0.05 between groups connected by lines. 
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active MMP-9 was performed. No differences were detected in the MMP-9 activities 

between the no inhibitor and TNF-α inhibitor-treated groups of macrophages (Figure 

5.10B-C). Regardless of TNF-α inhibition, significantly higher levels of MMP-9 activity 

were observed in macrophages treated with C16 and with the combination C16 and Ac-

SDKP compared to macrophages without peptide treatment. These results indicate that 

TNF-α inhibition did not influence MMP-9 activity in the peptide treatment conditions. 

When phagocytic activities were measured using Vybrant phagocytosis assay, TNF-α 

inhibition minimized the macrophage phagocytic activity (Figure 5.11), indicating TNF-

α’s major role in regulating inflammatory responses through a MMP-9-independent 

mechanism.  
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Figure 5.10 Macrophage response to TNF-α inhibition. RAW 264.7 macrophages were cultured 

with 75 μg/ mL of Ac-SDKP, C16, or the combination of C16 and Ac-SDKP peptides for 72 hours 

with TNF-α antibodies as soluble TNF-α inhibitors (5 µg/ mL). A) TNF-α activity in cell culture 

supernatants was measured by ELISA. B) MMP-9 activity was measured by zymography. C) MMP-

9 activity was quantified by densiometry using Image J and normalized to the average activity of no 

peptide and no inhibitor treatment. *p<0.05 vs no peptide in same condition (no inhibition or TNF-α 

inhibition). †p<0.05 between groups connected by lines. ‡p<0.05 vs no inhibition with same 

peptide treatment. 
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MMP-9 activity was also investigated using a molecular inhibitor of MMP-9.168 In 

endothelial cells, MMP-9 inhibition was verified by the attenuation of MMP-9 activity as 

measured by zymography (Figure 5.12A-B). While TNF-α inhibition did not significantly 

influence MMP-9 activity or tubulogenesis in endothelial cells, these activities were 

significantly reduced when C16 and MMP-9 inhibitor were co-treated (Figure 5.12A-C). 

Without TNF-α inhibitors, peptide treatments followed similar trends to angiogenesis in 

vivo. Particularly, C16 or the co-treatment of C16 and Ac-SDKP augmented MMP-9 

 

Figure 5.11 Phagocytic Activity of RAW 264.7 macrophages with TNF-α inhibition. A) RAW 

264.7 macrophages were cultured with peptides (75 μg/ mL) and TNF-α antibodies (5 µg/ mL) as 

an inhibitor of TNF-α for 72 hours. Phagocytic activity of macrophages was observed by incubating 

with E. coli particles (green). B) Phagocytic activity was quantified by the green fluorescence 

intensity. Scale bar = 100 μm. *p < 0.05 vs. no peptide treatment in same condition (no inhibition or 

TNF-α inhibition), †p<0.05 between groups connected by lines (n=5).  
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activity and tubulogenesis, while these effects were diminished with Ac-SDKP treatment 

(Figure 5.12). MMP-9 inhibition reduced these activities significantly to similar levels of 

Ac-SDKP treatment. These results indicate that angiogenesis was regulated by MMP-9 

independently of TNF-α.  

 

 

5.4 Discussion  

We first demonstrated the use of combined peptide therapy using an injectable 

polymer scaffold system to treat PAD in a mouse model of hind-limb ischemia. Although 

 

Figure 5.12 mAECs response to TNF-α and MMP-9 inhibition. A-B) Mouse aortic endothelial 

cells (mAECs) were cultured with 75 μg/ mL of Ac-SDKP, C16, or the combination of C16 and Ac-

SDKP peptides for 72 hours with MMP-9 inhibitors (5 μM) or TNF-α antibodies as soluble TNF-α 

inhibitors (5 µg/ mL). A) MMP-9 activity was measured by zymography. B) MMP-9 activity was 

quantified by densiometry using Image J and normalized to the average activity of no peptide and 

no inhibitor treatment. C) mAECs were cultured on growth factor reduced matrigel for 6 hours 

before imaging tube formation. *p<0.05 vs no peptide in same condition (no inhibition or TNF-α 

inhibition). †p<0.05 between groups connected by lines. ‡p<0.05 vs no inhibition with same 

peptide treatment. Scale bar = 100 μm.  
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several surgical and non-surgical treatments are available for patients with PAD, there 

is an unmet need to restore blood flow to ischemic tissues while avoiding detrimental 

inflammation and other side effects in a minimally-invasive format for the 50% of 

patients with PAD that are ineligible for surgical interventions. While other studies have 

used VEGF, FGF, PDGF, GM-CSF, MCP-1, or bFGF in animal models of PAD, only 

bFGF has been used thus far in clinical trials. The first of these trials showed no 

adverse effects in the short term study,171 however the second trial by Cooper et al. in 

2001 found no positive effects with bFGF treatment and reported the negative side 

effect of severe proteinuria (excess proteins excreted in urine).172 For these reasons the 

study was terminated prematurely. The third clinical trial did report increased peak 

walking time without increased incidence of death or cardiac events in patients treated 

with bFGF, but also noted the high incidence of proteinuria.173  

Biomaterial systems have also been used to control the delivery of bFGF via 

gelatin microspheres in a phase 1 clinical trial.95 While this preliminary study 

demonstrated promising results of improved perfusion and transcutaneous oxygen 

pressure with bFGF-loaded gelatin microspheres, no controls were used in this study to 

verify these findings. In addition, the synthesis of the gelatin microspheres required the 

use of glutaraldehyde - a highly cytotoxic crosslinking agent.174, 175 The injectable 

polymer system used in our study avoids toxic agents and costly proteins such as bFGF 

and instead utilizes biocompatible polymer systems and inexpensive peptides. 

The sol-gel transition of the injectable polymer scaffolds used in this study allows 

peptides to be easily mixed into the polymer solution, and then at the target site, the 

peptides are stably encapsulated in a gel, keeping them in close proximity to the site of 



88 
 

injury. The rapid sol-gel transition observed with the 21%PEG-79% PCL polymer 

minimizes the flow of injectable scaffold and a loss of peptides. Peptides were used for 

this study in lieu of growth factors due to their lower cost.  Our study design did not 

allow us to determine whether changes in the dose and duration or repeated 

administration enhanced the therapeutic benefit of Ac-SDKP and C16. Further 

optimization of the dose and time course of delivery of these peptides may greatly 

improve the observed therapeutic effect.  

Nonetheless, the potential of this therapeutic strategy to control angiogenesis 

and inflammation in the case of PAD is evident in this study. In accordance with our 

previous studies in Chapter 3 and 4, a direct correlation was observed between 

angiogenesis and inflammation in response to peptide treatments. Specifically, C16 

increased angiogenesis while also increasing inflammation, whereas Ac-SDKP 

decreased both responses. Intriguingly, the combination of C16 and Ac-SDKP 

increased angiogenesis while decreasing inflammation, suggesting the peptide 

combination is an ideal treatment for PAD. 

 As compared to our previous work in Chapter 4, injectable polymer scaffolds 

resulted in greater effects on angiogenesis and inflammation than peptides delivered in 

PBS, indicating the need of our injectable polymer scaffolds to retain peptides at the site 

of ischemia for improved therapeutic efficiency. However, peptide delivery via a single 

bulk injection of polymer scaffold did not alter angiogenesis or inflammation as 

significantly as multiple, small volume injections of polymer scaffold (ten, 1 μL 

injections). Small volume polymer injections may have released peptides more rapidly 

due to the increased surface area to volume ratio, as evident by IVIS imaging of peptide 
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release (Figure 5.4). The PBS injection may release peptides too quickly to have effects 

on angiogenesis or inflammation. Multiple small volume injections of polymer scaffold 

provide the ideal time course for peptide release in this model.  

The site-specific delivery of these peptides prevents unintended vascularization 

or inflammatory reduction in other tissues - such as retinal neovascularization or 

reduction of alveolar macrophage activity.176   At the site of ischemia, however, blood 

flow is increased, fibrosis and detrimental inflammation (as measured by phagocytic 

activity) are minimized, and tissue necrosis is prevented by our minimally-invasive, site-

specific delivery of the therapeutic peptides. 

We found that the regulation of inflammation was mediated by TNF-α secretion, 

while the regulation of angiogenesis was mediated by MMP-9 activity. We also 

demonstrated that the regulation of inflammation through TNF-α was independent of 

MMP-9 mediated angiogenesis. These findings are consistent with a recent study by 

Camargo et al. which proved independent modulation of TNF-α without affecting NF- 

κβ, a transcription factor for MMP-9.177 Many other factors are known to regulate MMP-9 

besides TNF-α, including the inflammatory cytokines IL-1β and IL-1α.52, 163, 164 In fact, in 

a pivotal study by Bond et al., IL-1β was proven to be more a potent promoter of MMP-9 

than TNF-α. TNF-α did not significantly stimulate MMP-9 activity without the synergistic 

effects of PDGF or bFGF, indicating the need for combined cytokines and growth 

factors to stimulate maximal MMP-9 secretion. However IL-1α alone did stimulate low 

levels of MMP-9 activity, and even higher levels when combined with PDGF or bFGF. 

TNF-α and IL-1α activate Nf-κβ whereas bFGF and PDGF activate the ERK-1/ERK-2 

MAPK pathway resulting in activation of AP-1, another transcription factor of MMP-9. As 
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explained by the authors, their results indicate that both AP-1 and NF- κβ are required 

for MMP-9 activation. The binding regions of these promoters are proximal to each 

other, allowing for interaction. Therefore multiple signal transduction pathways are 

needed for MMP-9 expression, with either TNF-α or IL-β required for Nf-κβ activation. In 

our study, inflammation was modulated independently of angiogenesis. MMP-9 

expression was maintained during inhibition of TNF-α, possibly due to alternate 

mechanisms of NF-κβ activation by IL-1 and/or AP-1 stimulation by PDGF or bFGF. 

Future work will investigate the influence NF- κβ, AP-1, IL-1, PDGF, and bFGF on our 

pro-angiogenic and anti-inflammatory peptide effects. The independent control of 

angiogenesis and inflammation should contribute to clinical translation of our approach 

as an optimal PAD treatment.  

 

 

  



91 
 

Chapter 6  

Significance and Future Directions 

 

6.1 Summary and Significance 

When atherosclerotic plaques block blood flow to extremities, this condition is 

called PAD. In the United States, 12% of the population suffers from PAD- ranging from 

symptoms of intermittent pain when walking (claudication) to critical limb ischemia 

(CLI).4, 5 Although surgical interventions can restore blood flow in some cases, these 

measures are not an option for over 50% of patients due to age, diabetes, or the 

presence of multiple blockages.4 With only 2 FDA-approved medications for PAD, 

pentoxyiflyine and cilostazol, neither of which provide more than modest improvement in 

patients with critical limb ischemia,91  therapies designed to promote the compensatory 

growth of blood vessels are of particular importance to avoid surgical interventions. In 

mature adults, blood vessel growth occurs by two processes: angiogenesis and 

arteriogenesis. Angiogenesis is the formation of new capillaries as triggered by hypoxia. 

Arteriogenesis on the other hand, is the remodeling of existing vessels to accommodate 

greater blood flow and is triggered by fluid sheer stress among other physical forces.178 

Both processes involve inflammatory activity to release chemokines, growth factors, and 

proteases to stimulate vascular growth. Therefore, strategies designed to increase 

angiogenesis/arteriogenesis should also consider inflammatory responses.  

Clinically-relevant tissue engineering strategies require angiogenesis at the site 

of implantation to enhance integration of scaffolds with host tissue, and desire a 

reduction of the inflammatory response in order to expedite healing time.  This study 
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employed a model 3D scaffold system with embedded peptides to reveal the 

interdependence of these two processes as well as establishing that angiogenesis can 

be promoted while attenuating macrophage infiltration in vivo through simultaneous co-

treatment with pro-angiogenic C16 and anti-inflammatory Ac-SDKP peptides.  This 

finding has strong implications for developing novel therapies that aim to effectively 

control these responses through relatively simple techniques.  Several studies have 

investigated the unintentional inflammatory response that coincides with pro-angiogenic 

therapies30, 32, 33, 141, 142 and this study suggests a potential method for regulating both 

responses.  The dual peptide delivery system used here provides a potential means to 

optimize the two host responses in a user-specified manner for regeneration of soft 

tissues. 

The completion of Aims 1 and 2 provided an optimized peptide treatment for 

PAD. These used well-controlled and well-defined implantable biomaterial scaffold 

models to deliver peptide treatments; however, implantable peptide-delivery systems 

are not practical for treatment of PAD as additional surgery for implantation will damage 

the diseased leg further. In Aim 3 injectable polymer scaffolds provided a means for 

peptide delivery without invasive surgery. Through this format, therapeutic delivery 

could be tuned to the time course of disease progression by controlling the volume of 

polymer scaffold injections.  

This study also elucidated the roles of TNF-α and MMP-9 in peptide-mediated 

regulation of angiogenesis and inflammation. TNF-α was proven to regulate the 

inflammatory response, while MMP-9 regulated the angiogenic response in the context 

of the co-treatment of the peptides. A significant finding of this work is that TNF-α 
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mediated regulation of inflammation was independent of MMP-9 mediated regulation of 

angiogenesis. While this finding was surprising in light of the known interaction between 

TNF-α and MMP-9, other signaling factors such as through IL-1β, PDGF, and FGF 

might regulate MMP-9 via alternative mechanisms. The independent regulation of 

angiogenesis and inflammation via the combination of Ac-SDKP and C16 peptides may 

provide an ideal therapeutic to deal with the complex nature of PAD. 

 

6.2 Future Directions 

To adjust the therapeutic benefit of these peptide-loaded scaffolds, the polymer 

composition could be adjusted (for example, increasing the PCL content and decreasing 

the PEG content) to further tune the peptide release from the scaffolds, as well as the 

angiogenic and inflammatory response. Also to more efficiently and effectively regulate 

angiogenesis and inflammation, more knowledge is needed of the time course of 

angiogenesis and inflammation in mouse models of hind limb ischemia. Optimizing the 

release of these peptides to correspond with the initial inflammatory response and 

subsequent angiogenic response may greatly improve the recovery of ischemic tissues. 

For example, using two different combinations of polymer formulations: one with bulk 

release of anti-inflammatory Ac-SDKP within the first 24 hours, and a second 

formulation to steadily release C16 over 3-7 days, may target the timed delivery of these 

molecules to best influence inflammation and angiogenesis in this mouse model of hind 

limb ischemia.  

A significant limitation of this work is the difference between the mouse model of 

hind limb ischemia and human presentation of PAD. In humans, PAD develops slowly 
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with gradual growth of the plaque. Also multiple plaques are likely in different locations 

in the vasculature. Multiple blockages reduce the ability to form collateral vessels to 

restore flow. In addition, the presence of widespread plaques makes site-specific 

delivery of peptides difficult. Future work will focus on controlling the rates of release of 

therapeutics to adapt to physiologically-relevant time courses in humans. One possible 

method to control the release of these peptides is the use of dual pH and temperature 

sensitive microparticles.179 These microparticles have proven to be effective for 

delivering therapeutics to ischemic tissues, which by nature have a lower pH than 

normoxic, healthy tissue. 

Current clinical trials using angiogenic growth factors have mixed results. 

Minimally-invasive therapies aimed at increasing the growth of blood vessels to 

compensate for the decrease in blood flow due to a vessel blockage are exciting options 

to avoid surgical interventions. While pro-angiogenic growth factors may be successful 

in recovering function to patients with mild or intermittent claudication, these treatments 

may not recover perfusion or function to the affected limbs in patients with severe or 

advanced PAD. The strength of this work includes the combined use of pro-angiogenic 

factors with anti-inflammatory factors. With this dual therapy approach, patient 

outcomes may be significantly improved to avoid surgical interventions and amputation. 

The attenuation of TNF-α observed with the co-treatment of C16 and Ac-SDKP may 

further benefit patients with PAD as TNF-α is directly involved in the progression of 

atherosclerotic plaques.180, 181  

To our knowledge, this peptide-loaded injectable polymer scaffold system 

uniquely employs a dual peptide therapy previous untested in a model of PAD and 
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suggests a possible minimally-invasive treatment format. By regulating pathways 

involved in inflammation and angiogenesis independently, dual peptide treatment may 

significantly improve recovery of ischemic tissues in patients with PAD. Although this 

treatment alone may not to be sufficient to recover limb function in patients with CLI, in 

combination with minimally-invasive bypass grafting, stenting, or other procedures or 

therapies this peptide-polymer delivery system may be useful in a clinical setting.  
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