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Prologue

O, thou great pestilence of the fruit bowl. That winged insect that torments both scientist 
and layperson alike. Might the solution to all sort of perplexing medical mysteries lie 
buried inside that translucent membrane of vitteline? Are not your deepest secrets the 
stuff of Nobel Laureates? Nay, though the lance and harpoon be too lofty to smite thee 
and thy great enigmas, might the precise spot of a well focused laser, reveal them?
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Chapter 1

1. Introduction

In this thesis, I present the work I have done towards understanding the 

developmental processes of Drosophila melanogaster, or the fruit fly, focusing 

specifically on the amnioserosa tissue during the process of dorsal closure. Throughout 

this work, my main objective has been to accurately characterize shapes and motions of 

developing cells as well as the spatial patterns of forces underlying these motions. I have 

tried as much as possible to do my work with an eye towards reuse and have publicly 

shared the most important analysis systems and libraries of routines I have developed 

online so that they can be examined and reused by future researchers.

The rest of this introduction is a very brief description of each chapter.

Chapter 2 is a high-level overview of some fundamental concepts and existing 

research that are tantamount to the understanding of subsequent chapters. It begins with a

basic phenomenological introduction to developmental processes and also includes the 

anatomy and life cycle of Drosophila embryos. This chapter also discusses viscoelastic 

materials, image processing as a tool for quantitative biological measurement, 

perspectives on the most appropriate mechanical models for epithelia, and basic 

background on deriving forces from image data, specifically using the technique Video 

Force Microscopy (VFM) developed by our collaborators [1].

Chapter 3 is a critical review of state-of-the art force assessment methods for in 

vivo biological matter, specifically cells in tissues. This chapter covers atomic force 

microscopy, traction force microscopy, magnetic and optical tweezers, laser ablation, and 

force inference.

Next, Chapter 4 describes the image analysis tool I developed called SeedWater 
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Segmenter (SWS). SWS enables segmentation of images of epithelial cells, accurately 

extracting the boundaries of closely packed cells in tissue and tracking cellular regions 

through time. This tool has become a critical building block for the bulk of the work in 

this thesis and has been a foundational tool for the work of many of my fellow students 

both within the Hutson lab and at large. This chapter also describes a brief but important 

result concerning the propagating nature of cellular pulsations in the amnioserosa. This 

work was published as D. N. Mashburn, H. E. Lynch, X. Ma, and M. S. Hutson, 

"Enabling user-guided segmentation and tracking of surface-labeled cells in time-lapse 

image sets of living tissues," Cytometry Part A 81A(5): 409–418, 2012 [2].

Chapter 5 describes the extension of the ideas from Chapter 4 into the third spatial

dimension, including an example 3D+time segmentation of a sheet of epithelial cells 

(Drosophila amnioserosa cells/tissue). In addition, this chapter describes some novel 

algorithms I have developed, both for rasterizing simple geometric shapes in N-

dimension voxel grids and also for N-dimensional sparse matrix handling; each of these 

were foundational components in this SWS4D, a simple but complete system for 

3D+time segmentation.

Chapter 6 describes the application of SWS and SWS4D to data from laser hole 

drilling experiments. This study has provided (and confirmed) some basic insights into 

the mechanics of wound expansion and healing. This also includes the first 3D analysis of

a laser ablation wound and a discussion of my attempts to use force inference on images 

of amnioserosa during dorsal closure and wound healing and why the system is not a 

good fit for network-based force inference.

Chapter 7 is a paper in preparation that describes the details of when and how 

image-based force inference techniques succeed (or fail) in finding an accurate solution. 

2



This chapter uses synthetic data with a known solution to aid in this analysis and is a 

fairly extensive look at these methods' strengths and weaknesses. After careful 

consideration, however, it has been assessed that this work needs further evaluation and 

application to other data sets.

Chapter 8 summarizes the major conclusions from this core work and describes 

some futures directions of inquiry. My hope for this research is that it can be an 

informative component in the larger push to understand the physical underpinnings 

behind biological processes.

Supplement S1 is a section from a larger paper published by our lab: A. K. 

Jayasinghe, S. M. Crews, D. N. Mashburn, and M. S. Hutson, "Apical Oscillations in 

Amnioserosa Cells: Basolateral Coupling and Mechanical Autonomy," Biophysical 

Journal, vol. 105(1): 255–265, Jul. 2013 [3]. This paper examined the role of contractile 

phase on the subsequent expansion of a cell after point ablation. It also showed that CO2 

anesthetization not only causes embryonic tissue to stop contracting but also prevents it 

from recoiling from laser ablations and can even pause the healing process; this effect is 

only temporary and removal of the CO2 restores the embryo's activity. This paper also 

included a section examining the dynamics of pulsations in three dimensions, showing 

that apical contractions lead to basolateral expansion and general preservation of the 

overall volume of the cell. In addition to supporting the work on the pulsation/wound 

expansion study, I also performed the analysis and wrote the majority of this last section 

on volumetric analysis, which is what I have included here.

Supplement S2 describes my model for tissue recoil after laser point ablation. It 

includes a section that follows Timoshenko in describing analytical solutions for the 

stress around a hole in a continuous 2D surface [4]. We used this solution to measure the 

3



relative stress parameters from live images before and after a point ablation; this was 

achieved by applying various displacement fields to warp one of the image to match the 

other (by trial and error). It also includes a section that describes a numerical method for 

computing the forces from a wound given a nonlinear spring constant.

Supplement S3 is a series of still frames illustrating usage of SWS4D, described 

more fully in Chapter 5.
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Chapter 2

2. General Background

2.1. Introduction

Developmental disorders, be they genetic or environmental, are the root cause of 

birth defects in infants. The key developmental processes are also applicable to other 

phenomena and disorders such as cancer (which in one sense is development gone awry). 

Traditionally, developmental processes have been studied using phenomenology and 

genetics, but there are limits to the insights that these can tools alone can provide. At 

some level, gene expression and its coupled biochemical pathways must have some 

physical manifestation; mechanics is often the missing link between a genetic cause and 

its resulting phenotype [5]. By tackling the hard problems of defining the shapes, 

motions, and forces at the cell and tissue levels during developmental processes, we get 

one step closer to understanding these disorders in the detail necessary to identify real 

underlying causes and solutions.

Because of its ubiquity in genetic studies, the large body of previous literature, 

and the ease of experimental accessibility, we are studying these processes in Drosophila 

melanogaster. Embryogenesis is a complex process, and varies greatly between 

organisms, but the general principles of biomechanics apply equally well to all embryos, 

regardless of species.

After gastrulation, the most dramatic motions on the surface of the developing 

embryo occur during the processes of germ band extension, germ band retraction, and 

dorsal closure. Identification of mechanistic underpinnings for these processes has proved

to be extremely formidable. Germ band extension has been widely studied and the 

mechanism of action (intercalation and convergent extension) is fairly well understood 
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[6], [7]. Dorsal closure has also been highly studied, and significant progress has been 

made towards understanding the processes involved [8]–[18], but a number of 

unanswered questions remain surrounding it. Lastly, germ band retraction is only 

beginning to yield details about the underlying mechanisms [19]–[22].

The system in question consists of live and developing tissue, which presents 

some unique challenges in terms of mechanical inquiry. First of all, we go into the 

problem with a distinct lack of information; for instance, we lack knowledge about the 

basic tissue properties like elasticity and viscosity. In fact, we even lack knowledge about

basic structures and connectivity; for instance, we do not know if the basement 

membrane of the epithelial layer is attached to the yolk in some way to produce drag or 

even active force. We also do not know details at the microscopic level, namely which 

proteins are involved (laminin, integrin, etc.) and where they are localized. To add even 

more layers of complication, this heterogeneous material is active and can change its 

properties based on developmental timing or due to chemical and/or mechanical stimuli. 

Furthermore, some tissue properties previously considered passive, like elasticity, have 

now been recognized as resulting from active processes [3].

Two of the most powerful tools we use for studying these complex processes are 

live imaging and laser microsurgery. Live imaging provides detailed information about 

the cells, tissues, and embryo in space and time, including depth (3D) information. Laser 

microsurgery is a widely used method for probing mechanics by generating an 

instantaneous, relatively repeatable perturbation to the system. It is especially important 

for Drosophila studies, because the vitelline membrane renders the embryo inaccessible 

to direct mechanical probing. Laser microsurgery will be compared and contrasted to 

other force assessment methods in Chapter 3.
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A critical component for using both imaging and laser microsurgery for scientific 

inquiry is the extraction of data from time-lapse images. Generating quantitative data is 

the only way to effectively compare experiments with models. Beyond basic analysis 

tools like counting cells or measuring distances and sizes by hand, we need powerful 

tools to tackle difficult image analysis problems. This need has motivated us to build such

tools, specifically software systems to study time-varying cell shapes, cell connectivity, 

and even mechanical stress.

2.2. Drosophila structure and development

As stated above, Drosophila melanogaster, the fruit fly, is used as a model system

for a number of reasons. First and foremost, Drosophila has a short lifespan and 

reproduces readily, which makes it not only amenable to studies at all stages of 

development but also to genetic modifications that require generational tracking, crossing

different strains, etc. Drosophila also has a relatively simple chromosomal structure that 

can be leveraged to link subtle genetic changes to readily observable characteristics such 

as eye color and body shape. Because of this simple structure and its ubiquity in genetic 

research, the Drosophila genome was one of the first to be sequenced among multi-

cellular organisms (2000) [23], second only to the worm C. elegans (1998) [24]. 

Embryonic Drosophila is also a model biomechanical system; over spatial scales of ~100 

μm, its epithelium closely approximates a uniform two dimensional monolayer of cells.

The life cycle and embryonic stages of Drosophila have been characterized and 

refined with considerable care and over a considerable amount of time, especially by 

Bownes [25]–[27], so here I only hope to highlight some key features of interest. Figure 

2.1 shows an overview of these stages.
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Figure 2.1: Stages of fly embryogenesis.
Reproduced with permission from FlyMove [160]
http://flymove.uni-muenster.de/Stages/StgTabelle.html.

The onset of embryogenesis occurs when eggs are fertilized inside adult females. 

Females may then hold on to the eggs for up to an hour or so before laying them, which 

can add some uncertainty as to the exact biological age of any given embryo. The 
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fertilized egg has only three main layers: a tough shell on the outside (the chorion), a thin 

and waxy membrane just inside that (the vitelline), and a yolk that comprises the interior. 

Initially, this egg is actually a single cell, with a single free-floating nucleus in the yolk. 

The initial zygotic (fertilized) nucleus will divide 12 times in succession, resulting in a 

state with 4096 free nuclei. During division, these free nuceli migrate to the surface of the

yolk and afterwards, cell membranes are pulled in between them to create a single layer 

of cells in a process called cellularization (about three hours after fertilization) [28]. The 

cells at the surface then comprise a monolayer surrounding the entire yolk.

After one more cell division cycle, this epidermal tissue undergoes gastrulation, 

an invagination of some of the cells resulting in a small tube within the interior of the 

embryo. The internalized cells will become the gut and other internal organs (endoderm 

and mesoderm); the remaining external cells will become ectoderm. These cells remain a 

monolayer and are largely unaffected by the interior layers.

The next stage of interest is germ band elongation during which the ventral 

portion of the ectoderm, also known as the germ band, becomes extended, while the cells 

on the dorsal side, the presumptive amnioserosa, become bunched up. This process is 

clearly understood to be the result of cell intercalation in the germ band, where cells 

crowd together with motion towards the ventral midline (along the medial-lateral 

direction) and then settle back to isotropic shapes, resulting in extension along the 

proximal-distal axis (on the ventral side) and contraction along the medial-lateral axis [6],

[7]. Because this is on the surface of an ellipsoid, the germ band tissue on the ventral side

wraps around the caudal end of the embryo and compresses the amnioserosa cells on the 

dorsal side along the proximal-distal axis (and thus extending them along the medial-

lateral direction). Towards the end of this process these bunched, dorsal amnioserosa cells
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become obviously differentiated into a distinct tissue. They assist in later developmental 

processes before eventually invaginating and undergoing programmed cell death, or 

apoptosis; thus, amnioserosa cells have no descendents in the adult and serve a purely 

developmental purpose.

After a brief pause, the next stage following germ band elongation is germ band 

retraction (GBR), starting a little over seven hours after fertilization. During GBR, cell-

level forces uncoil the germ band back around the tail end of the embryo, forcing its cells 

to the ventral side of the embryo and leaving the amnoserosa cells on the dorsal side of 

the embryo. Figure 2.2 shows a confocal microscope image from a time series of GBR 

(lateral or side view).

Figure 2.2: Germ band retraction, lateral view.
This is a confocal microscope image of a GFP-cadherin expressing embryo in early germ 
band retraction. The main tissue with smaller cells is the germ band tissue and the tissue 
in the upper central region with larger cells is the amnioserosa.

Once the embryo has fully retracted, dorsal closure begins (about ten hours after 

fertilization). During this process, the germ band cells bordering the amnioserosa move 
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towards the dorsal midline and eventually cover the entire amnioserosa tissue. Dorsal 

closure starts with a series of pulsatile contractions in the amnioserosa cells; these cells 

slowly become more cuboidal as they bunch up and eventually invaginate and apoptose. 

In addition to contraction of amnioserosa cells, two secondary processes occur that drive 

dorsal closure. The first process is the formation of an actin-myosin purse-string around 

the perimeter between the amnioserosa and germ band cells. The second process is 

filopodia-driven zipping that occurs at the proximal and distal (head and tail) ends of the 

amnioserosa tissue. Once this zipping process is complete, the two flanks of the germ 

band fuse together, completely forcing the remaining amnioserosa cells into the embryo's 

interior where they undergo apoptosis. After this, the embryo forms breathing tubes and 

develops into the larval stage where it is able to crawl around. Although my research is 

primarily concerned with the aforementioned processes, there are clearly a myriad of less 

relevant ones occurring simultaneously.

Because of its unique role and singular features, the amnioserosa tissue is of 

particular interest. During the latter two processes (germ band retraction and dorsal 

closure), the amnioserosa undergoes radical shape changes at both the cellular and tissue 

level. At the beginning of germ band retraction, this tissue forms a U-shape over the 

dorsal end and sides of the embryo, with individual cells being stretched out into thin 

filaments with extremely large aspect ratios (roughly 10 or 20 to 1). After retraction the 

cells become very squamous with an average width of about 10-20 µm and an average 

thickness of about 2-3 µm. Despite these extreme shapes, these pancake-shaped cells still 

form a tight two dimensional network. During dorsal closure, these cells become much 

less squamous as they contract in the plane of the epithelium and extend basally (towards 

the interior of the embryo).
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2.3. Microscopic mechanical models

All of these bizarre and interesting processes are driven primarily by one thing: 

cellular contractile forces generated by molecular motors. Since the embryos are small 

(only about 200 µm wide and 500 µm long), the Reynolds number for cells and tissues in 

the system is extremely low, and inertial effects are negligible. What do have great 

significance are the viscous and elastic properties of tissues. All liquids and/or 

suspensions are subject to viscosity, and biological systems are no exception. In fact, 

unlike a simple liquid or suspension, tissue is made up of organelles and fibrils packed 

tightly together within cell membranes. This creates an effective viscosity that can exceed

the viscosity of the medium alone (cytoplasm). If cells were only viscous, however, they 

would be highly uninteresting, only moving in the direction of an applied external force 

with some coefficient of damping. Instead, because cells also have a cytoskeleton made 

up of microtubules and actin filaments, they are capable of both compressive and tensile 

resistance, or elasticity. As discovered recently, these elastic properties in Drosophila 

tissue are actually due to the combined effect of numerous active contractions that require

ATP (adenosine triphosphate), the primary chemical store of cellular metabolic energy 

[3]. Overall, these effects create a system that is both viscoelastic (something between a 

solid and liquid) and capable of active contraction (or extension) in any particular 

direction.

Even without active contractions, materials with passive viscoelasticity can have 

extremely novel and unusual properties. These so-called soft matter systems have been 

the subject of intense scrutiny and research over the past few decades [29], [30], [30]–

[32]. Since viscoelastic materials are neither solid nor liquid, their behavior can be 

difficult to understand. To this end, simple mechanical models have been developed to 
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describe the behavior at the continuum limit of these materials. The core components in 

these models are the spring obeying Hooke's Law and the dashpot (or damper) which 

obeys the velocity-dependent (or viscous) force equation for a Newtonian fluid. 

Describing the properties of an infinitesimal sub-unit can readily elucidate the properties 

of the tissue as a whole. The most basic forms of simple mechanical models are one-

dimensional but they can be extended into two and three dimensions as well.

The Maxwell element consists of a spring and a dashpot connected in series 

(Figure 2.3 ), and in this arrangement the system behaves as a viscoelastic liquid. Over 

very short timescales, this system will respond elastically, returning to its original state 

given a brief enough exposure to force. For medium interval forces, the system will 

deform elastically as well as plastically — once the force is released, it will 

instantaneously return to a state of partial deformation. Given a constant force over a 

longer period of time, the system will deform indefinitely. This steady state flowing 

behavior is what makes this system "liquid-like".

Figure 2.3: Maxwell Element and an example creep response graph (displacement vs. 
time) for a given time varying (step-wise) external force (bottom left).

The other of the basic mechanical model is the Kelvin-Voight model, which 
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consists of a spring and a dashpot connected in parallel (Figure 2.4 ). In this arrangement,

the instantaneous response of the system is the opposite of the Maxwell model: a 

sufficiently brief force will not deform the system at all until the dashpot has time to 

react. Application of constant force will slowly deform the system, producing an 

exponentially decaying deformation; over very long times, the system reaches 

equilibrium. Once that force is released, the system returns to its original state 

exponentially. The time constant for the motion is proportional to the damping coefficient

divided by the spring constant. The steady state equilibrium behavior is what makes this 

system "solid-like".

Figure 2.4: Kelvin-Voight Element and an example creep response graph (displacement 
vs. time) for a given time varying (step-wise) external force (bottom left).

These mechanical circuits are actually completely analogous to electronic circuits,

interchanging voltage, charge, and current for force, position, and velocity. Springs 

correspond to capacitors (storing energy) and dashpots correspond to resistors 

(dissipating energy). Moreover the same equations apply to both types of systems, with a 

series circuit behaving like a resistor and capacitor in parallel, and a parallel circuit 

behaving like a resistor and capacitor in series.
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Much in the same way that complex analog circuits can be constructed out of 

resistors and capacitors, mechanical models with more complex behaviors can be 

constructed out of simpler components. Examples of slightly more general models are the

simple linear system (SLS) and the Burgers model. The SLS is a Kelvin-Voight element 

with a spring added in series, which still behaves as a solid, but with an instantaneous 

elastic response as well as a damped one. The Burgers model is a SLS with a dashpot 

added in series (leading to liquid behavior after long times) [32]. In some of our previous 

studies, we have also used two Kelvin-Voight elements joined in series, maintaining a 

viscoelastic solid character but with two characteristic time constants [31]. These systems

have properties of viscoelastic solids on some time scales and viscoelastic liquids on 

others, a close approximation to the type of behavior that we see when perturbing live 

cells.

Some studies have also shown that biological materials do not clearly exhibit a 

single time constant under creep-stress experiments [33], [34]. Rather, they show that 

biological matter is best described as a power-law material, meaning that the position 

goes as some power of time. This is due to the fact that there are a variety of time scales 

corresponding to different scales in the subcellular cytoskeleton. Rather than describe the 

system with a variety of time constants, it is simpler to just use a power-law description. 

Power-law exponents ranging between zero (completely solid) and one (completely 

liquid) then provide a straightforward numerical value for how much the tissue acts like a

solid versus a liquid.

2.4. Image processing and segmentation

2.4.1. Image processing

Images, so far as they concern the present work, are essentially two-dimensional 
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rectangular arrays of numerical values. Because images have such a straightforward 

mathematical representation, it is easy to perform mathematical operations on them. For 

instance, it is easy to change the maximum brightness in an image by multiplying all the 

values in the array by the same number. In a similar way, some features can be quickly 

identified by cutting off values that are above or below a certain point; this thresholding 

operation results in enhancement of certain regions of an image at the expense of other 

features or noise. Images of the same size can be combined to generate new images by 

applying operations to pixels in the image; for instance, images can be added or 

subtracted from each other to produce sum or difference images. Information from 

surrounding pixels can be combined as well. One simple example of this is background 

subtraction, where the mean value of a region without features is subtracted from the 

entire image to remove an offset. A more complex example would be a Gaussian blur, 

where values in the new image are calculated by sampling pixels in the original image 

with weights that fall off radially with a Gaussian profile. This results in each pixel 

affecting its neighbors in the final image and produces the same effect as optics that are 

out of focus.

Still, though these basic tools can be useful and interesting, they are also limited; 

for instance, thresholding cannot deal with images that have uneven brightness, though 

features clearly remain distinct to the eye. For this reason, more advanced techniques 

have been developed, like contrast-limited histogram enhancement (CLAHE) which 

optimizes each pixel's value based on a histogram of pixels in the surrounding region, 

giving rise to a contrast enhancement that can simultaneously enhance features in bright 

and dark regions within the same image [35].

2.4.2. Watershed segmentation

16



Because our images are derived from the fluorescent emissions of tagged protein 

molecules, pixels with larger values (brighter) correspond to regions of higher densities 

of fluorescent molecules. The marker that I am primarily concerned with is GFP-

cadherin, which labels membrane-bound cadherin proteins. When using this label, it is 

easy to discern cell boundaries and cell shapes in images.

Because we have clear edge markers, these images are particularly amenable to 

the watershed algorithm for digital identification of boundaries. The watershed algorithm,

true to its name, simulates the action of water accumulation, and identifies regions similar

to the way they are defined for geographical terrain. See Figure 2.5 for more information.

Figure 2.5: Basic idea behind watershed segmentation.
(A-G) show the progression of the watershed algorithm at different time points. (B') is a 
close-up of the corner of (B). Since the algorithm fills outwards from the seed points, 
globally moving from the darkest pixels to the lightest ones, this process is analogous to 
colored pools of water being filled from individual taps within each cell. The rate is 
maintained to keep the water level uniform in all cells at all times. Once two different 
pools meet, they prevent each other from continuing, so the process continues until it 
reaches the brightest values. After this, the regions are identified and the edges are clearly
defined by the boundaries between these watershed basins.
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2.5. Macroscopic tissue models

2.5.1. Foam Model

Biological material is far from homogeneous; it is often pictured as a net of cell 

membranes, with each pocket containing a nucleus and cytoskeleton (and also organelles 

and cytoplasm). Because of this structure, intercellular forces have previously been 

assumed to act mainly along the borders between cells, as is the case with a foam. Our 

collaborators at the University of Waterloo have developed finite element codes that they 

have used to appropriately test these foam models [36]. Their conclusions are that taking 

this foam model without any additions to account for tensions with the cells, simply does 

not match the results we see in our data. The pure 2D foam model predicts no recoil at all

when cutting a cell center, but large recoils when cutting a cell edge. We clearly see large 

recoils from both cell edge and cell center wounds in our experiments, and so this 

realization has led us to move toward the opposite extreme: a homogeneous elastic sheet 

model. This model represents an actin network on the surface of the embryo connecting 

all cells. In fact, estimates from previous work by our group show that only about 25% of

the forces in the tissue are due to tensions along the cell-cell boundaries. The rest is most 

likely coming from this actin sheet.

2.5.2. Finite Element Simulations

As mentioned in the previous section, Brodland et al. have developed finite 

element (FE) codes that treat cells as viscous body elements with force-carrying cell-cell 

interfaces (trusses) [36], [37]. Figure 2.6 summarizes the components of this model and 

the biological mechanism by which each of these arises.
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Figure 2.6: Summary of components in the the Cellular Finite Element Model from 
Brodland et al.
[37]. The cytoplasm of the cell body generates viscous damping and is simulated by two 
orthogonal dashpot networks oriented parallel and perpendicular to the long axis of the 
cell. The edges of the cells are treated as either active or passive truss or tensile elements 
(described above); additionally, they may be programmed with a force-response that 
simulates a spring or viscoelastic element. Thus, the edges can simulate all the behaviors 
of the actin-myosin filaments known to run along the boundaries of the cells. In addition 
to the cytoplasm, the cell also has a "pressure" which is a combination of restorative 
forces generated by true fluid pressure that can build up due to the impermeability of the 
cell membrane as well as in-plane surface tensions generated by the actin-myosin 
network near the apical surface of each cell. Stress is applied to the patch at the boundary 
(with boundary conditions).

Each of these components reacts differently when acted on by a force, and the net 
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motions are calculated by building a large set of all the coupled force equations and time-

stepping the solution with a numerical solver. These models have been proven effective 

in a number of different biological systems [15], [36], [37].

2.6. Force Inference with Video Force Microscopy

Although FE simulations have been proven quite effective at modeling systems, 

the process of generating a simulation to match specific live data is not only tedious but 

also computationally impractical. Recently, Brodland et al. have shown that one can set 

up the finite element equations and alternatively solve the inverse problem to infer the 

forces driving an observed motion [1]. Solving this inverse problem actually takes 

significantly less computational time than a single finite element simulation. Not only 

that, but as we will show in Chapter 7, it is even possible to get error bounds on the 

solutions! This technique, called Video Force Microscopy (VFM) originally used 

information across multiple frames of an image sequence to generate the over-determined

system necessary to solve for the forces using linear least squares. We have since 

determined that two frames are sufficient for a dynamic solution and that solving the 

problem with only a single image is also possible if the system is near static equilibrium. 

Chapter 7 goes into much more detail about VFM and competing force inference methods

[1], [38]–[41].
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Chapter 3

3. A Review of State-of-the-Art in vivo Force Measurement Techniques

3.1. Introduction

Traditionally, developmental biology has been an observational science. Over 

time, scientists have developed a sophisticated understanding of genetic processes 

through many years of discovering and scrutinizing biochemical pathways; these simple 

biochemical reactions are the origin of a vast multitude of physical attributes, behaviors, 

and even developmental processes. Development is unique in that a single copy of an 

organism's genetic code within one cell orchestrates a series of transcriptional, chemical, 

and physical actions with an unrivaled level of sophistication and coordination, resulting 

in a fully developed multi-cellular organism.

Over the past decades, more and more effective observational techniques have 

become available for biological systems, with live imaging being easily one the most 

important. We are now not only able to accurately observe spatial patterns with incredible

fidelity, but also record them over a wide range of temporal scales; coupled with the 

advent (and incredible precision) of molecular fluorescent biosensors, this has led to an 

explosion of information about biological systems. With this modern toolkit, the intricate 

details of developmental patterns, both molecular and structural, are now accessible. 

Moreover, complex developmental processes such as tissue extension, retraction, folding,

and invagination have been mapped with great accuracy. For example, careful 

observation has been able to prove that the process of Germ Band Extension (GBE) in 

Drosophila melanogaster is the result of cell intercalation, a carefully coordinated 

rearrangement of cells. Researchers have even been able to isolate the principal structural

molecules that drive this process [42], [43].
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Despite resounding successes like GBE, however, mysteries still abound about 

developmental biomechanics. The purely genetic/observational viewpoint is insufficient 

for understanding systems that involve delicately balanced forces such as Germ Band 

Retraction (GBR). For these systems, it is necessary to consider not only the motions of 

cells, but also the forces driving these motions. With the combined understanding of both 

the genetic/molecular activity and the physical forces, researchers can also tackle more 

subtle issues, such as environmental perturbations which are the root cause of many birth 

defects. Temperature variation, chemical contamination, physical pressure, and physical 

damage can each have profound effects on development. Combined physical/ 

physiological understanding is key to fully understanding and potentially managing or 

correcting these types of environmental perturbations [5], [44]–[46].

The internal forces that actually drive morphogenetic movements are surprisingly 

difficult to measure, and a number of creative methods have been developed to do so. In 

this chapter, we provide a brief survey of force measurement techniques relevant to 

biological systems in general and their relative strengths and weaknesses for 

developmental mechanics.

3.2. Measuring Forces

Measuring physical forces in developing embryos is a very challenging problem, 

primarily because the key forces are internal to the system and changing continually; 

also, most (if not all) of the system is often inaccessible to standard mechanical probing. 

This is especially true for developing Drosophila, where the vitelline membrane not only 

provides a physical constraint for morphogenetic processes like Germ Band Extension 

and Germ Band Retraction, but also, but also maintains the internal osmolartiy of the 

system and provides a thin extracellular space for signaling molecules.
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Modeling is one way to overcome this problem: models that replicate observed 

behavior can suggest certain underlying patterns of forces. However, in the immortal 

words of Box and Draper, "all models are wrong, but some are useful" [47] — just 

because a model reproduces a particular behavior does not make it correct. Multiple 

models (actually infinite) can be constructed for the exact same patterns of motion. One 

example is in the models of invagination for developing sea urchins [48], [49]. In vivo 

force measurements are the key to truly resolving discrepancies between models.

Force measurement techniques can be broken into two main categories: 

perturbative and non-perturbative. Perturbative measurements rely on the response of the 

tissue to active stimuli, while non-perturbative measurements merely observe the tissue 

using some form of passive probe. The most important perturbative techniques are:

• Direct contact: atomic force microscopy (AFM), micropipette, and parallel 

plate/rod experiments

• Field-based: Magnetic and Optical Tweezers (MT, OT)

• Tissue removal: Laser ablation

and the most important non-perturbative ones are:

• Adhesion to a deformable substrate

• Embedding deformable objects (oil droplets or FRET molecules)

• Force Inference

Perturbative techniques induce highly controlled, reproducible and modifiable changes, 

which are invaluable for hypothesis testing. Non-pertubative methods in general have 

great potential to simultaneously record measurements across multiple locations at once. 

Each technique has strengths and weaknesses, and each has been employed successfully 
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to make insightful measurements, and a number of key studies have relied on 

combinations of techniques.

Direct contact techniques have excellent accuracy since they can be calibrated to 

real units unambiguously and as such have experienced excellent results for single cells 

and cell pairs. However, they suffer because they are only measuring response to external

forces normal to the embryo's surface and the forces of biological systems are primarily 

internal and parallel to the surface; also, many cell-cell contacts are often inaccessible, 

buried inside surface casings or other tissue layers. Magnetic and optical tweezers can 

partly overcome these limitations, but have their own challenges and problems. Laser 

ablation is virtually ubiquitous now as a force assessment tool; although it does provide 

measurements correlated with the internal stresses in tissue, it can at best measure force 

ratios but not true magnitudes. It also destroys the integrity of the tissue in question, 

meaning that subsequent measurements are no longer equivalent to those in unwounded 

tissue. Adhesion to deformable substrates has enjoyed great success on cells and cultured 

monolayers, but has yet to be applied to in vivo embryonic tissue. Embedded deformable 

objects and Force Inference have incredible promise, but are still being actively refined 

and present technical and computational challenges.

3.3. Direct Contact Techniques

The most natural way to measure forces is using a push or a pull with a physical 

object. The gold standard in direct force measurement is using a cantilever-based atomic 

force microscope (AFM). AFM has been used to study everything from tensile strength of

individual cytoskeletal components like actin fibers and microtubules to the creep 

response of single living cells [34], [50]–[53]. Similarly, a micropipette can be used to 

measure contact forces, and Maître et al. have successfully used it to measure the 
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adhesion strength between two cells in contact [54]. Additionally, Harris et al. describe an

experiment to measure the tensile strength of a cultured sheet by stretching it between 

two rods after removing the substrate on which it was grown [55].

Although AFM and related techniques have been quite successful at studying 

molecules, cells, and even cultured epithelia, they struggle for in vivo embryonic tissue 

both due to the inaccessible nature of many embryos and because the forces primarily act 

perpendicular to the plane of the primary forces in the system. When it is applicable, such

as in Xenopus embryos which permit direct contact with cells, the results tend to be either

used to map the surface features of the embryo or report on bulk properties like Young's 

modulus [56]. Daniels et al. describe it particularly well:

Current cell mechanics methods (AFM), micropipette suction, parallel plates, 
magnetic bead twisting, and cell poking... require a direct contact between the cell
surface and the physical probe to extract the rheological parameters that describe 
the mechanical properties of the cell. However, cells in their physiological 
environment are largely inaccessible to mechanical probes because they are often 
organized within an extracellular matrix and buried in soft and solid tissues. 
Furthermore, the developing embryos of many organisms are housed within rigid 
shells, making them inaccessible to physical probes. Therefore, to test the 
fundamental biophysical properties of cells in their physiological milieu, there is a
need to develop a biophysical method that does not require direct contact with the 
cell surface to obtain information about the mechanical state of cells in vivo [57].

3.4. Magnetic Tweezers

Magnetic tweezers (MT) is the application of large magnetic field gradients to 

paramagnetic beads attached to the sample of interest. The beads move towards regions 

with higher intensity fields and by controlling the working distance, magnetic field 

gradient, and bead size, the applied force can be measured very precisely. By controlling 

the direction of the field, potentially using opposed and tunable gradients, it is also 

possible to generate arbitrary-directional forces that can be switched at various times 

within a single experiment. Kollmannsberger and Fabry give an excellent technical 
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overview of a MT setup [58].

MT have been used in single-cell studies for a variety of purposes. A number of 

groups have used MT to study creep response, namely how cells deform over time, and 

have determined that there are multiple time-scales involved in the process [59], [60].

A number of groups have used a variation of MT called magnetic twisting 

cytometry (MTC), pioneered by Wang et al. [61] where two perpendicular fields are used 

to precisely induce torques instead of straight-line motions for the study of rheological 

properties of cells [33], [62].

Since MT relies on embedded magnetic beads, in embryonic studies this can 

present technical difficulties; for instance, placing a bead in one particular location is not 

always practical. Some embryos like Xenopus permit surface placement of beads, but 

inserting a large bead into a small cell is difficult to do without disrupting or destroying 

the cell of interest. One novel solution for Drosophila embryos (which do not permit 

direct access at all) is to quite literally "shotgun" it: inject multiple beads in solution 

during the pre-cellular stages and let cells close around them at random. Using this 

approach, some beads should statistically end up in locations of interest.

Beads can also be concentrated in certain regions using this injection technique by

attracting them with a field gradient before cellularization. This approach has the added 

benefit that it permits bulk force application to tissues. This is the exact approach taken 

by Desprat et al., but using ferrofluid instead of magnetic beads [63]. In their experiment,

they rescued production of Arm in an embryo which was damaged by laser ablation 

during Germ Band Extension, proving that mechanical strain triggers Arm production.

Kumar et al. used bulk injection of 100nm beads to show that nuclear size and 

shape are affected either reversibly or irreversibly by varying levels of added force 
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applied towards the posterior of the embryo during Germ Band Extension [64]. They go 

on to show how this affects patterned gene expression in GBE and GBR as well as 

myosin II localization, confirming and providing a possible mechanism for mechanically 

regulated gene expression. By applying the force from the left or right side instead, they 

were also able to show that there is a handedness in gene expression.

3.5. Optical Tweezers

Optical tweezers (OT), like magnetic tweezers, rely on field-induced forces rather

than contact forces to manipulate microscopic objects. In OT, a focused laser beam 

creates a central region of high photon density that falls off both along the beam path and 

laterally. A transmitting object, like a microsphere, feels photon pressure from internal 

reflections that are balanced at the focal point, but grow the further the object is from the 

center, pulling the object back towards the center. The forces produced by OT and MT are

both very well-defined, however, the maximum force OT can produce is much smaller 

than what MT can. Whereas MT can produce forces of up to 100 nN [58], OT typically 

has peak forces around 100 pN [65].

OT often rely on beads attached to the system of interest, especially for molecular 

studies, but they are also capable of direct manipulation of larger objects without beads; 

this has some nice advantages over MT. In addition, OT can be holographic using an 

SLM to create multiple, independently-controllable spots [66]. OT have had tremendous 

usage in the study of both molecules and cells; Zhang et at presents an excellent 

overview of the uses of OT for single-cell studies [65].

Although OT techniques seem quite promising, they have had very limited use in 

the developmental mechanics community. Recently, however, Bambardekar et al. has 

used OT for detailed force measurements in early-stage Drosophila embryos [67]. They 
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used OT both with beads and by directly manipulating cell-cell interfaces; they showed 

that direct manipulation could acheive roughly 30% of the force on a bead given the same

laser power. By pulling on boundaries with both oscillatory forces and simple pull-and-

release experiments, they precisely determined the interfacial tensions along the 

boundaries (found to be near 100 pN) and show that there are two time scales involved in

the viscoelastic relaxation response. They also include a simple model that can reproduce 

the relative deformations of nearby and distant cell-cell interfaces in response to 

oscillatory behavior, proving that Maxwell and Kelvin-Voigt elements are insufficient to 

reproduce the behavior but that the combined SLS model can; they go on to estimate the 

spring constants and damping coefficient that best fit the experimental data.

3.6. Laser ablation

Laser hole drilling of epithelial tissue is very much akin to the hole-drilling 

method for measuring residual stress in solid mechanics [68]. Drilling a hole removes a 

small (or possibly large) bit of cellular material which results in a deformation response 

of the remaining material away from the hole. For solids, mapping the displacements 

around a hole provides information about the internal stress and elasticity of the system. 

Viscoelastic solids are slightly more complex, exhibiting a time-dependent response 

before reaching a steady state. In biological tissue, there is also normally a healing 

response whereby the tissue reverses the expansion and fills back in the wounded region 

until it restores the continuous epithelium. This all makes hole drilling more complex to 

interpret but also richer in the potential feedback it can provide [31], [69], [70].

Laser ablation for in vivo tissue studies typically relies on short bursts of tightly 

focused UV light to avoid heating surrounding tissue which would lead to collateral 

damage of the potentially interesting nearby tissues [71]. UV is normally transmitted 
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through tissues of interest without interacting, but near a high intensity focal region 

(small, ellipsoidal), multi-photon absorption leads to rapid heating and tissue ablation. 

This also means that it is possible to ablate not only the surface of a biological sample, 

but also within deeper layers [72]. Ablation beams are typically passed through the same 

optics as fluorescent illumination sources, leading to minimal additional setup near the 

sample compared to magnetic tweezers and direct contact techniques [73], [74].

One important aspect of laser ablation is that it necessarily perturbs the system in 

an irreversible way, meaning that repeated measurements of the same animal will not 

necessarily produce results consistent with unwounded animals (even if the wounds heal 

and development continues normally). Also, laser ablation relies on laser-tissue 

interactions which have been shown to be extremely complex [72], [75], [76]. Lastly, 

displacement maps after laser ablation do not provide a direct way to calculate force or 

stress; at best they can determine the ratio of stress to Young's modulus. However, given a

value for Young's modulus (determined using another technique), it is possible to 

calibrate laser ablation more precisely for true force measurement [31].

Despite its shortcomings, laser ablation has the been used very widely for its 

simple, comprehensible effect on the tissue: removal of a small bit of tissue and the stress

that it was carrying. There is no ambiguity about the location of the perturbation, and 

laser ablation can be applied to any tissue regardless of its size, shape, or genetic makeup.

It has become so ubiquitous that it is often used in conjunction with many of the other 

force measurement techniques described in this chapter.

Using laser ablation as a force estimation technique requires detailed 

quantification of temporally varying displacements around the site of the wound. Two 

important time process are involved: fast recoil and a slower healing response. When 
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studying the fast recoil, line scans are an effective method for tracking linear motion of 

nearby cell edges along a line passing through or close to the site of the wound; scanning 

a confocal microscope in only one dimension greatly reduces the time per frame and 

allows for detailed study of the early response. These motions can be built up into a 

1D+time kymograph image, showing the displacements of nearby or distant cell edges 

through time. Fits to these kymographs have revealed a tremendous amount about the 

viscoelastic properties of embyonic cells and tissues [15], [20], [31], [77], [78]. More 

complex patterns of motion can be gleaned from the details in the displacement patterns 

around the site of the wound, and this requires slower live imaging. Many groups have 

successfully gleaned information from the dynamic patterns around wounds [3], [15], 

[18], [20], [31], [70], [79]. Light sheet microscopy has the potential to recording both the 

fast dynamics and the full spatial patterns simultaneously, so future studies doing so are 

likely to reveal interesting features of the wound response that have not been accessible 

before.

Many variations of laser ablation have been used to study tissue. Other than point 

ablations, the most common procedure is the line cut, severing a linear section of tissue 

[73]. Mayer et al. used line cuts to study stress anisotropy in C. Elegans embyos, showing

that cortical flow of actin leads to polarization [80]. Lynch et al. performed stress analysis

in Drosophila embryo during Germ Band Retraction, mapping the stress magnitude and 

direction in different germ band segments and analyzing cell shapes to determine the 

contribution of body stresses and edge tensions on the tissue [21], [81]. Extended cuts can

be created with multiple lines, allowing entire tissues to be damaged or cut free [74], 

[81], [82]. Bonnet et al. used laser light focused into an annulus to instantaneously cut 

free entire sections of epithelial tissue in Drosophila pupae; with this, they were able to 
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estimate stress anisotropy in bulk patches [83]. Jayasinghe et al. have developed a system

for multipoint ablation using a holographic spatial light modulator (SLM) which can be 

used to cut loose a single cell from an epithelium, allowing a number of interesting 

measurements [84], [84]. Hutson et al. have used sequential ablations and modeling to 

show that wounded cells do not immediately lose their integrity, despite the lack of any 

visible structure at the site of the secondary wound during live imaging [20]. Kiehart et 

al. used multiple ablations to continuously disrupt canthi formation during dorsal closure 

[73]. Rauzi et al. used multiple ablations to disrupt Myosin II activity and show that it is 

the main mechanical contributor to junction remodeling [85], [86].

3.7. Traction Force Microscopy and Bed-of-Nails

Force measurement through adhesion to deformable substrates has enjoyed great 

success both for individual cells and cultured layers of cells. Bed-of-nails and traction 

force microscopy (TFM) using polymer gels can each accurately measure forces of 

adhesion at multiple locations in a cell simultaneously [87]–[91]. Maruthamuthu et al. 

has extended TFM to use on cells in contact to measure cell-cell adhesion forces [92] and

Trepat et al. have used it to measure the traction forces for cells in a migrating sheet [93]. 

Although these techniques have undeniable value for in vivo experiments, researchers 

have yet to apply them to in vivo studies of intact embryos because they currently rely on 

basement contact with a synthetic substrate.

3.8. Embedded deformable objects

Embedded objects provide a simple way to track a variety of motions in cells. 

Fluorescently tagged proteins are by far the most common type of trackable object in 

cells, but are rarely used for that purpose because resolving individual molecules requires

super-resolution imaging [94]; more often, the fluorescence signal is measured in 
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aggregate instead. Injected fluorescent polymer beads, on the other hand, can be large 

enough that normal microscopy can easily distinguish individual beads. The spherical 

shape of beads also gives them very well-defined drag coefficients, making them ideal for

rheological measurements, such as measuring tissue elasticity or viscosity [57], [95], 

[96].

Deformable embedded objects offer a unique variation on this technique: by 

placing objects with known stress-strain relationships in series with biological structural 

elemements, internal forces in cells and tissues can be measured. Campas et al. describe 

the use of cellular-scale deformable objects (oil droplets) embedded between cells [97] 

and numerous studies have been performed using FRET (Förster/Fluorescent Resonant 

Energy Transfer) molecules embedded in key structural proteins [98]–[100]. Additionally,

since extensive work has gone into understanding the effect of cytoskeletal forces on 

nuclear shape, the nucleus itself can be used as a force reporter [101]–[104].

Campas et al. used cell-sized droplets of fluorocarbon oil functionalized with 

ligands (integrin or cadherin) to measure the forces between cells in 3D in mouse 

mesenchymal cell aggregates and in living mouse embryos (near an incisor tooth bud). 

Forces are computed by carefully observing an oil droplet's shape and using the local 

curvature of the surface and solving Laplace's equation over the system. One important 

conclusion from their work is in showing that maximal cell tension produced in cell 

aggregates and in vivo are roughly equivalent for mammalian mesenchymal cells in living

dental mesenchyme (around 1.5 nN/μm2) [97].

FRET is dipole-dipole mediated nonradiative transfer of energy from a molecular 

donor chromophore to an acceptor; fluorescently exciting the donor leads to an 

(attenuated) emission from the acceptor [98]. Since the strength of dipole-dipole 
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interactions are inversely proportional to the 6th power of distance, this energy transfer is 

highly dependent on the distance between the donor and acceptor, making the FRET 

signal (from the acceptor) a sort of molecular ruler [105]. Additionally, inserting a 

"molecular spring" (a protein that elastically unfolds under tension with some stress-

strain relationship) between donor and acceptor produces a complex capable of 

registering force as well. When placed between the load-bearing structural molecules 

(e.g., actin, microtubules, integrin, or cadherin), FRET molecules can visually display the

magnitude of strain (and therefore force) at each location in a system, allowing forces to 

be registered as a dynamic three dimensional visual field. For this reason, FRET has 

incredible potential for revolutionizing biomechanical measurements at the molecular and

cellular scales. Cost et al. provide an excellent overview of FRET techniques in general 

[98] and Cai et al. has used FRET successfully for in vivo studies of the role cadherin 

plays in developing Drosophila oocytes (specifically how it affects cell sorting in nurse 

cells and border cells) using a cadherin-bound FRET reporter from Grashoff et al. [100], 

[106]. Using this system, they show that the fronts of migrating clusters have higher 

tensions than the backs.

Despite FRET's advantages, it has a number of shortcomings as a force probe. 

Because the signal goes as the inverse 6th power of distance, it has a very limited range 

of action. This means that a suitable linker molecule must be chosen as a force probe for 

the given interaction and then encoded genetically. Also, chromophores are often highly 

sensitive to environmentl factors like pH, so an additional control is usually required for 

calibration. Also, it remains to be seen how accurately FRET (a relatively noisy 

ensenmble molecular reporter) can be tuned to make detailed force measurements — by 

and large at present it is used to assess the location of high force regions rather than make

33



precise measurments.

3.9. Force Inference

One of the chief disadvantages of mechanical modeling is the ad-hoc nature of 

setting the model parameters. Force inference (FI) flips this process around: rather than 

require manually tuning initial conditions and model parameters to get results similar to 

experiments, FI uses an experimental data set as the initial state and calculates the model 

parameters (forces) for it given a set of assumptions. The field is burgeoning and 

extremely active at the moment.

We are aware of four major approaches to Force Inference at this time: Video 

Force Microscopy (VFM) from Brodland et al. [1], Mechanical Inference (MI) from 

Chiou et al. [38], Bayesian Force Inference (BFI) from Ishihara et al. [39], [40], and 

Cellular Force Interence Toolkit (CellFIT) from Brodland et al. [41]. VFM, MI, and BFI 

all work on the same basic premise: a 2D polygonal representation of cell networks using

3-way cell junctions as nodes (and possibly additional points along the boundaries 

between cells). CellFIT, on the other hand, treats each cell-cell boundary as a single 

tensile element under a pressure differential; this can be approximated by a circular arc. 

Figure 2 from Brodland et al. 2014, shows the force balance that this implies [41].

All FI techniques have inherent numerical instabilities that make them uncertain 

for some types of measurements; for instance, the accuracy of the relative ratios of 

tensions or pressures between cells separated by many cells has yet to be established. 

Also, FI necessarily relies on simplifying assumptions about the tissue of interest, so it is 

up to the researcher to assess the accuracy of these at the moment. Future versions of FI 

are likely to exploit this property explicitly to help researchers discover information about

the tissue anyway, such as which assumptions are violated and potential reasons why.
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3.10. Conclusions

Force analysis on living embryos is a difficult problem, and each of the possible 

techniques has different strengths and weaknesses: magnetic tweezers can produce large, 

arbitrary directional forces capable of stalling large-scale developmental processes, but 

have a difficult time discerning localized forces because it is difficult to embed 

nanoparticles in specific locations. Laser ablation has incredible positional accuracy for 

force assessment, but it does not directly measure forces and is a one-off procedure not 

suitable for continuous or distributed measurement of forces. Optical tweezers provide a 

nice way to make small, localized perturbations to cells, but these are always small in 

magnitude and not suitable for certain types of measurements. Also, a number of the 

techniques mentioned here do not measure forces, but rather mechanical properties like 

elasticity or viscosity, and care must be taken in evaluating exactly what is being 

measured in each case.

Of all the techniques, FI (and CellFIT in particular) probably holds the most 

promise as a potential technique for widespread use, because it requires only imaging and

no additional equipment. However, it is still relatively young and needs validation across 

more systems as well as further refinements and enhancements.

The most powerful technique in the future is likely to be FRET-based force 

measurement. It combines the in-plane nature of laser ablation studies with the 

distributed measurement ability of FI techniques. Still, it too is in its infancy and will 

require more testing; also, it relies on genetically modified animals, so it will not be as 

straightforward to use in new systems.

All the listed techniques can and have been combined with live imaging and with 

each other. For instance, Desprat et al. used magnetic tweezers to rescue an embryo 
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damaged by laser ablation [63]. FI can easily be combined with laser ablation; we fully 

expect laser ablation, optical tweezers, and FRET-based imaging to help inform and 

calibrate future FI techniques.
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Chapter 4

4. Enabling user-guided segmentation and tracking of surface-labeled cells in time-lapse 
image sets of living tissues

Portions of this chapter were published in D.N. Mashburn, H.E. Lynch, X.Ma, and

M.S. Hutson, Cytometry Part A, vol. 81A, no. 5, pp. 409–418, 2012 [2].

4.1. Introduction

In studying embryonic development and morphogenesis, one often needs to track 

the morphological changes of individual cells in living tissues. This requires the 

collection of time-lapse movies of labeled cells, segmentation of each image frame into 

individual cells, and tracking cell identity across frames. Collecting the image sets using 

confocal or multiphoton fluorescence is now routine [107], but image segmentation and 

cell tracking represent substantial analysis bottlenecks. A number of algorithms and tools 

have been proposed for automated and/or manual segmentation and tracking of surface-

labeled cells ( [108]–[118], reviewed in depth in [119], [120]), but few can segment and 

track tens to hundreds of close-packed cells over hundreds of image frames with an 

accuracy that correctly segments all cells distinguishable by the human eye. Automated 

methods, such as CellCognition and CellProfiler [108], [110], [111], [113], are fast but do

not attain the needed accuracy. Manual interactive tools like TrakEM2 and ITK-SNAP 

can attain the needed accuracy but are prohibitively slow [115]–[118]. The only currently 

available tool that is both interactive and capable of segmenting and tracking packed cells

in tissue is Packing Analyzer [109]; unfortunately it is still quite slow.

Our approach to solving the segmentation and tracking problem is based on the 

premise that users know their data best; they may be able to interpret and use image 

features that are not accounted for in any a priori algorithm design. Thus, we have 
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designed a system that combines a parameter-less and fast watershed algorithm with a 

suite of manual intervention tools that allows users with little to no specialized 

knowledge about image processing to efficiently segment images with near-perfect 

accuracy based on simple user interactions.

In general, the segmentation and tracking process can be broken into three steps: 

object identification, boundary generation, and object tracking (i.e., maintaining a 

consistent ID on the cell through time). Each step can be performed either manually or 

automatically. For example, object identification has been performed by manually 

clicking on an image to generate a "seed" for each cell [114]–[116] or by automatically 

finding such seeds using the minima of a Gaussian-filtered image or taking a threshold 

[110], [117], [118]. Boundary generation has been performed manually by drawing a 

perimeter [110], [115] or automatically via seed-based space-filling algorithms like a 

watershed or level set method [113], [117], [118]. Likewise, object tracking can be 

applied as a manual post-processing step or as an automated post-process technique, e.g., 

using maximal overlap of segmented regions in different frames to map ID's from one 

frame to the next [111], [112], [120]. Object tracking has also been automated in-process 

by using the region centroids from one frame to generate seeds for space-filling 

algorithms applied to the next frame [113].

Our approach provides an initial automated guess at the seed positions (based on 

minima of a Gaussian-filtered image or the region centroids from segmentation of a 

previous frame) and uses an automated watershed algorithm to generate the region 

boundaries. Manual intervention comes through the use of in-process tools to add, delete, 

group and move seeds. As each change is made, the watershed algorithm automatically 

redraws the region boundaries. This process is repeated as necessary – automating the 
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tedious process of finding the exact boundary locations, but allowing user control of 

object identification, segmentation, and tracking to any level of user-desired accuracy. 

Here we show applications of this method to time-lapse image sets of morphogenesis and

wound healing in Drosophila embryos.

4.2. Materials and Methods

4.2.1. Sample Preparation and Imaging

The primary strain of Drosophila melanogaster used in this study is ubi-DE-Cad-

GFP (Kyoto Drosophila Genetic Resource Center), which ubiquitously expresses a 

cadherin-GFP fusion that labels epithelial cell junctions [121]. Fly embryos were 

dechorionated and prepared for live imaging as described previously [31]. Time-lapse 

image sets were captured on a Zeiss LSM410 laser-scanning confocal microscope 

(inverted) with a 40x 1.3 NA oil-immersion objective. Cellular ablations were performed 

with the 3rd harmonic (355 nm) of a Q-switched Nd:YAG laser (Continuum Minilite II, 

Santa Clara, CA) [31].

4.2.2. Segmentation Algorithms

Our segmentation and tracking system is based on a watershed approach. 

Initiation of watershed segmentation requires an initial set of starting pixels or seeds. 

Each seed has a unique identifier value that denotes the segmented region to which it will

contribute. This allows multiple seeds for each region. The algorithm then fills the space 

by expanding the regions around each seed, starting with the darkest pixels first and 

slowly raising the "water" level. This process continues until the regions meet at 

boundaries and all pixels are assigned a value [122]–[124]. We chose a watershed 

approach for three reasons: 1) it does a fairly good and consistent job of determining cell 

boundaries based on the bright lines of our GFP-cadherin fluorescence images; 2) it has 
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the flexibility to use different numbers of seeds for each cell – one for most, but two or 

more for cells that are difficult to segment; and 3) it has no user-selectable parameters. 

This last point means that the user does not need previous image processing expertise to 

guide parameter selection.

To initialize the watershed segmentation and tracking procedure for an xyt (or xyz)

image stack, we select seeds for the first xy-image based on the local minima after 

application of a Gaussian filter. This does require a user-selectable parameter – the width 

of the Gaussian kernel – but it is easy to manually vary this parameter until one obtains a 

reasonable compromise between under- and over-segmentation as in Figure 4.1 . A 

Gaussian filter is not used to identify seeds for subsequent images. Instead, once the user 

is satisfied with the segmentation of image frame j, the centroid of each cell in frame j is 

used as a seed for frame j+ 1 (using the same identifier value). This approach 

advantageously and automatically provides in-process cell tracking [113].

Although the automated parts of this process yield generally reasonable results, 

there are obvious instances of incorrect segmentation. In fact, our time-lapse image sets 

contain frequent situations (such as sudden motion, movement of cells into or out of the 

imaging plane, or unusually bright regions internal to a cell) in which it is difficult or 

perhaps impossible for any automatic algorithm to properly segment the cells (Figure 

4.1 ). We have thus chosen to develop a general-purpose framework and a suite of tools 

that enable a user to make these difficult decisions efficiently and directly. Although 

improved algorithms can tune segmentation for specific cases, our approach should be 

more flexible and more generally applicable.

Our novel approach to a hybrid of manual and automatic segmentation is not to 

adjust the final cell boundaries, but to directly adjust the seeds themselves. By doing so, 
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we have a method that is robust, flexible, and easy to use. With a specified set of seeds, 

boundary generation by the watershed algorithm is fast and requires no user-selectable 

parameters, so incremental adjustment of the seeds and thus changes to the segmentation 

can be evaluated in real time. These features have also allowed us to create a simple save 

and load functionality that allows segmentation to be readjusted or completed at a later 

date. With this approach, if a user makes detailed changes to one section of an image, 

these changes will not have to be thrown out if coarse changes are later made in another 

section (as would be the case with some types of post-processing correction schemes 

based on manual image correction).

The seed manipulation tools we have developed are based on the ability to 

quickly add, delete, group and move seeds. There are one-click functions to "Add Seed", 

"Delete Seed" and expand regions with "Extra Seeds". This last feature allows the user to 

add secondary seeds for a cell, which the watershed algorithm then uses to expand that 

cell's boundaries. These extra seeds do not normally propagate in the tracking system, but

normal tracking can be bypassed to copy all seeds (including extras) directly from the 

previous frame. This can be very useful with strangely shaped objects like thin curves or 

rings. There are also simple mouse/keyboard combinations to "Change Value" or "Swap 

Values" that change the identifier value associated with each cell. Finally, there is a 

"Lasso" tool that provides the ability to select individual seeds or groups of seeds 

(regardless of identifier value) which can then be moved or deleted en masse.

4.2.3. Technical Implementation

For the core watershed algorithm, we used the function cwatershed from the 

python package Mahotas [124], which is part of the larger PythonVision project for 

computer vision. This watershed function is an implementation of the standard ordered-
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queue, heap-based watershed algorithm [122]. To facilitate GUI interactions, we 

developed a Python program using the packages WxPython and Matplotlib. We also 

made heavy use of numpy, scipy, and the Python Imaging Library. Ultra high 

performance functions were implemented in Cython. The complete program, known as 

SeedWater Segmenter (SWS), is available for download under a BSD license at Google 

Code (http://code.google.com/p/seedwater/).

Completely manual vector segmentation was performed using Inkscape 

(www.inkscape.org) to generate an SVG file and a custom Python program to extract the 

SVG/XML data and convert it to polygons for accurate geometric comparisons using the 

python package "shapely."

4.3. Results

Embryonic epithelial tissues in Drosophila are characterized by connected sheets 

of cells wrapped over a curved surface with yolk beneath. Two main cell types make up 

the tissues: epidermis cells and amnioserosa cells, each with very different average sizes 

(Figure 4.1 A). These tissues undergo a number of morphological changes during 

embryonic development including extreme cell shape changes, cell rearrangements, bulk 

tissue motion and cell death. In studying these changes and the forces underlying them, 

researchers often use laser microsurgery to ablate one or more cells, creating artificial 

(and sometimes very large) perturbations to the remaining cells [31], [73], [74]. Each of 

the above creates problems when segmenting and tracking cells in time-lapse images of 

living embryos. We have designed our segmentation and tracking software so that it 

provides the user with tools that can handle these difficulties. Below, we start with an 

image that has an initial set of automatically generated seeds and show that our manual 

correction tools are sufficient to correct common segmentation errors easily and 
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effectively.

Figure 4.1: Common segmentation difficulties in confocal images of living, cadherin-
GFP stained fruit fly embryos.
The large cells on the right of the image are amnioserosa cells; the smaller ones at the left
are epidermal. (A) is an unsegmented image and (B) is the same image with an overlay of
seeds (small green squares) generated automatically by application of a Gaussian filter (σ 
= 2.5 μm) and segment outlines (red lines) generated by a watershed algorithm. The 
numbered arrows point to several common errors in automatic segmentation. (1) An 
object obscures the view of the cell edge. (2) A single cell is divided between two seeds, 
i.e., oversegmentation. (3) Two cells share a single seed, i.e., undersegmentation. (4) A 
region that shoud be part of the image background instead receives seeds and is assigned 
as cells. (5) An area of epidermis cells that is very badly mis-segmented because the 
Gaussian filter is too large for these smaller cells. The user must decide if segmentation 
of this region should be completely reworked manually or skipped altogether. A smaller 
Gaussian filter (σ = 0.625 instead of 2.5) will effectively generate seeds for these smaller 
cells, but at the expense of severely oversegmenting the amnioserosa cells (into ~10 
segments each, not shown). (6) Sub-cellular regions are misassigned. One can often 
determine which cells these regions belong to based on other images in the time-lapse set.

In the first round of manual intervention, we add and remove seeds to correctly 

identify the location of all the cells in the image, assisting the Gaussian technique 

manually. By right-clicking to delete seeds and left-clicking to add seeds, this process 

proceeds very quickly (Figure 4.2 ). Also, because of our centroid-based tracking system, 

adding and deleting entire cells becomes largely unnecessary after the first frame. Note 
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that the user must typically make some decisions regarding which partially-visible cells 

are worth segmenting. The tools for adding and deleting cells allow the user to make such

decisions on the first frame and yet revisit these decisions later as cells enter or leave the 

viewing area.

Although add and delete are important tools in identifying which regions are cells,

the user also needs the ability to decide which sub-regions belong to which cells (see 

Figure 4.1 , arrow #6). Advantageously, the watershed algorithm allows for more than 

one seed of each value to be present in a single cell. This "extra seed" feature gives us the

ability to use manual seed intervention not only to identify each cell, but also to define 

which sub-regions belong in which cell. By placing an extra seed in a subregion, it is very

easy to identify that sub-region as part of a particular cell (Figure 4.3 A-E).

This model works very well for most problem cases, but after segmenting a 

number of data sets, we realize that some boundaries simply "misbehave" unless extra 

seeds are placed essentially along the whole boundary. This can happen for boundaries 

that are particularly discontinuous, have a low signal-to-noise ratio or have unusual 

image topology (such as a gradient that makes one watershed region likely to invade 

another). To quickly handle such problem cases, we implemented a tool that inserts 

freehand lines of seeds. With this tool, the user can essentially draw the boundary in 

directly (Figure 3F-G).

This seed model is simple, intuitive and easy to teach to new users. It benefits 

from the consistency and speed of the watershed algorithm, yet still allows users to 

correct the segmentation as much as is needed.
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Figure 4.2: Adding and deleting seeds manually.
(A) Initial automatic segmentation of an image (σ = 2.5 μm). Over-segmented regions 
with unwanted seeds are circled. The upper circled region highlights a cell at the edge of 
the imaging plane with a poorly defined boundary. The lower-left circled region has two 
seeds dividing a single cell. (B) Segmentation after manual removal of unwanted seeds. 
(C) Segmentation after manual addition of seeds to correct under-segmented regions 
(cyan fill). Seeds were added for sixteen cells around the margins of the tissue. These 
cells had been considered part of the background by the automatic algorithm. Seeds were 
also added for three internal cells that had not automatically received their own seeds.
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Figure 4.3: Adding multiple extra seeds to correct mis-segmentation of cellular 
subregions.
The middle column shows seeds (green) and outline overlays (red) on an original image; 
the right column shows a false-colored cell ID map. (A) Unsegmented image. (B, C) 
Initial segmentation. The subregion just to the right of the central seed is misassigned to 
an adjacent cell (blue). The upper left boundary of the central cell (pink) is also not 
satisfactory. (D, E) By adding a single extra seed, the originally misassigned subregion is 
reassigned to the appropriate cell (pink instead of blue). For the user, this is a two-click 
process: a left-click on the region that needs to be expanded followed by a right click to 
place the extra seed. A zoom in of the upper left corner is shown to the left of (D) with 
and without overlays. (F, G) The upper left boundary of the central cell (pink) is 
improved by adding a polyline of extra seeds (green). For the user, creating a line of 
seeds works as above except multiple right clicks are used. A line segment of seeds is 
added between each successive right-click location. The result is a slight, but clear 
improvement in the overlap of the watershed boundary and the imaged cell-cell 
boundary. A zoom in of the upper left corner is shown to the left of (F) with and without 
overlays. This more clearly shows the subtle change in the boundary. The precise location
was determined by visually tracking its motion in previous and subsequent frames of the 
image stack (not shown).
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We also tried several preprocessing filters including denoise, Gaussian blur, 

unsharp mask, and CLAHE [35] to see if we could reduce the subsequent need for 

manual intervention. Filtered and unfiltered image sets generally yield a similar number 

of errors in cell identification, but filtered images tend to yield artifacts during boundary 

generation. The one exception was CLAHE filtering, which enhances poorly lit regions 

for easier viewing and watershed segmentation without compromising the shapes of 

boundaries that already segmented well. We thus determined that it was preferable to 

segment unfiltered or CLAHE-filtered images – giving the truest possible representation 

of cell morphology.

4.3.1. Tracking

Once all cells have been identified and the segmentation has been adjusted to 

associate all subregions with the correct cell, the next step is to generate seeds for the 

next frame. Rather than finding these seeds using the same Gaussian minima approach as 

the first frame, we generate subsequent seeds from the centroids of each cell in the 

previous frame (Figure 4.4 ). This has the added advantage of automatic tracking because

the seed value will be the same in the second frame as in the first.
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Figure 4.4: Cell tracking when the frame-to-frame movements of cells are large.
(A-C) Complete manually assisted segmentation of a cluster of amnioserosa cells. The 
segmentation overlay shows seeds (green squares) and segment outlines (red lines). (B) is
a close-up of the boxed region and (C) is the corresponding false-colored cell ID map. 
(D-F) Automatic tracking and segmentation of the next frame after laser ablation of a 
central cell and with a large time interval between frames (70 seconds). The large time 
interval exaggerates cell motion between frames and causes the centroid-based algorithm 
to track cells improperly in some regions, especially near the bottom middle of the image 
(zoomed region in E, F). The errors are clearly discernable in (F) compared to (C). Note 
that even in this relatively extreme case, the automatic tracking performs very well for 
most cells in the image, particularly outside the boxed region. Tracking generally works 
well unless the cell moves over half its diameter. (G-I) Corrected tracking and 
segmentation after using the "Lasso" and "Move Seeds" tools. The "Lasso" tool works by
clicking to form a polygon that encircles multiple seeds. These seeds are then moved 
using the arrow keys to position them properly. This seed adjustment process is quite fast 
(a few seconds) by starting with bulk motion and then adjusting individual seeds as 
needed.

In rare cases, a cell may move so much from one frame to the next that the 

previous centroid no longer falls within the cell's next boundary. This is easy to correct by

simply selecting the seed point and moving it to a more appropriate location. In fact, if 

there is bulk motion, seeds can be "lassoed" and moved in bulk (Figure 4.4 ). In addition, 

if two seeds switched cells, their identifier values can be swapped with "Swap Values"; 
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and if a seed was assigned an incorrect ID (which can happen if it is deleted and re-

inserted) then "Change Value" can directly change the assigned ID. In practice, these 

tracking problems occur infrequently and are relatively simple to fix.

4.3.2. Robustness to Noise

To analyze the resilience of our watershed algorithm to additive and multiplicative

noise, we segmented an artificial image of two "cells" separated by a single, central 

bright line (100 pixels long, 1 pixel wide, and with a brightness S above the background).

Automatic watershed segmentation is largely unaffected by noise up to S, begins to fail 

more often than it succeeds when the noise is 2S (signal-to-noise ratio or SNR = 0.5), and

almost always fails for SNR = 0.25. At this latter level, a Gaussian filter can rescue about 

40% of the segmentations. These results hold for both additive and multiplicative noise. 

Despite the automatic segmentation failures, users can distinguish the appropriate 

boundary down to SNR ~ 0.25. Thus, the SNR-range of 0.25-1 is the real "sweet spot" for

a semi-automatic routine like SWS, especially if the noise is spatially varied within this 

range. We find similar results when the central dividing line has a Gaussian profile (with 

Δ = 1 pixel).

4.3.3. Speed

We chose a watershed algorithm because it is robust and extremely fast, lending 

itself to highly responsive interactivity. Upon a change in the seeds, our segmentation 

program must process a GUI event, update the seed data, re-run the watershed algorithm, 

and redraw the frame. Nevertheless, all of this is completed in approximately half a 

second on a typical desktop PC. This short lag means that the user can interactively 

perform hundreds of operations in a matter of a few of minutes.

To measure the speed and impact of manual intervention on a real image set, we 
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timed how long it took to segment a typical 190-frame xyt stack with approximately 64 

cells per frame (62 cells appeared in all frames; 3 cells appeared in just a subset) (Figure 

5A-B). First, to illustrate how quickly SWS converges on a solution, we performed 

minimal tracking and generally let the algorithm do the work automatically. During this 

"minimal tracking" phase, we inspected the intermediate segmentations, but only to 

ensure that each seed stayed within the proper region to maintain ID consistency through 

time; we ignored any problems with borders and sub-regions. This process took 50 

minutes (about 16 s per frame). The initial segmentation was then improved by three 

more rounds of manual intervention, completing segmentation to user-desired accuracy in

approximately 6 hours (under 2 minutes per frame). Figure 4.5 A-B shows how the 

overall user-defined segmentation accuracy improved with time, albeit with diminishing 

returns. After the first pass segmentation, manual intervention changed the cellular 

assignment of only 1.4% of the pixels in the entire image set, but in so doing, it changed 

the borders of 12% of the cells. As shown in Figure 4.5 C, the errors were distributed 

very non-uniformly over the segmented cell population, with just a few cells having very 

large errors. We found that the most time consuming part of manual intervention was 

simply inspecting the current segmentation to see if it was satisfactory. When errors were 

identified, the corrections were implemented very quickly.
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Figure 4.5: Comparison of segmentation speed and accuracy for a typical data set: 190 
frames with an average of 64 cells per frame.
(A, B) Improved accuracy versus time spent on manual intervention using SWS. Both 
graphs represent the same data; (B) simply has a tighter zoom in the y-axis to more 
clearly show the data after 50 minutes. Intermediate segmentations were saved after each 
change in watershed borders or at least every 60 s. The accuracy at each intermediate 
time point was assessed based on either the percentage of pixels whose assignment 
matched the final segmentation or the percentage of cells whose boundaries matched the 
final segmentation. The "first pass" segmentation was performed with minimal tracking, 
generally letting the algorithms do the work automatically (50 min), achieving a pixel-
based accuracy of 98.6% and a cell-based accuracy of 88%. We then performed three 
more rounds of manual intervention and adjustment that improved the segmentation and 
tracking to user-desired accuracy in approximately six hours (~ 2 min per frame). The 
efficacy of manual intervention will vary with user experience and imaging quality, but 
this set is representative. The diminishing returns of continued manual intervention are 
most evident in the pixel-based comparison, but even this is somewhat linear over large 
time periods because we made successive passes through the entire stack. (C) 
Distribution of errors over all segmented cells for selected intermediate segmentations 
and other techniques. Errors are defined as deviations from the final SWS segmentation. 
The x-axis is a normalized list of cell indices sorted from largest to smallest relative error.
The y-axis is the number of erroneous pixels for each cell divided by the average area of 
all cells. We compared a "Hands Off" SWS segmentation with no user intervention and a 
"First Pass" SWS segmentation with minimal manual tracking assistance. For 
comparison, we include a 3D watershed segmentation, and SWS on an CLAHE-filtered 
image set. (D) Distribution of errors over all segmented cells in comparison to a "gold 
standard" manual segmentation using a vector editor. These comparisons are limited to 
five evenly spaced frames (every 47th of the full data set). Absolute errors are thus 
compared for SWS segmentation, Packing Analyzer, and 3D watershed segmentation. As 
a baseline, we include errors induced by pixelating the vector segmentation.
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4.3.4. Segmentation Quality

To place the performance of SWS in context, we compare its final segmentation 

to several automatic segmentation and tracking methods (Figure 5C). First, we compare 

to a completely automatic watershed segmentation and tracking (SWS in a "hands off" 

mode). This process took less than four minutes and correctly segmented 45% of the 

cells, but the rest were fairly bad. In fact, over 20% were half wrong or worse and about 

6% were essentially all wrong, i.e., completely outside their proper boundary. This 

highlights the improvement achieved simply by supervising the tracking in our "first 

pass" segmentation above. Second, we compare to a 3D watershed algorithm. This 

process used only the initial seeds in the first frame and segmented the entire image set in

only 90 s. It was much more effective than "hands off" SWS, but not nearly as accurate as

semi-automatic tracking. With a 3D watershed, almost one fourth of cells had an error 

>15%. This poorly segmenting subset could be reduced to one tenth of the cells using 

CLAHE pre-filtering. This is just shy of the performance of semi-automatic tracking. As 

a final comparison, we pre-filtered with CLAHE and used the exact same seeds as in the 

final SWS set. Although we expected this pre-filter to slightly improve edge delineation, 

we instead found that the small changes introduced by CLAHE pre-filtering did not 

always work well with our manually corrected seeds. This caused a small number of 

regions to fill improperly, leading to large errors in a few cells (Figure 4.5 C).

To get an absolute measure of SWS performance, we created a "gold standard" 

based on an expert's manual segmentation using a vector editor. This manual 

segmentation took over an hour per frame. We thus restrict the gold standard comparison 

to just five image frames (every 47th from the 190-frame set).
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As a baseline, simply pixelating the vector segmentation leads to a fairly uniform 

error distribution with a per-cell average of 1.7%; any pixel-based segmentation of this 

image set will have at least this minimum error. In comparison, the final SWS 

segmentation had an average error of 3.7%. A handful of cells had 10-20% errors, but the 

overwhelming majority had errors just below the average (Figure 4.5 D). Close 

inspection revealed that these errors were largely just ambiguity in the exact boundary 

location. We also tried pre-filtering with CLAHE and readjusting the seeds to correct 

some of the CLAHE-induced errors, but this eventually yielded results virtually identical 

to the unfiltered SWS version. We also compared the performance of another semi-

automatic routine, Packing Analyzer (3), but did not attempt to use its tracking system. 

This process took about five min per frame and yielded results similar to the SWS 

segmentation (4.7% error). Finally, we performed 3D watershed segmentation on this 

five-frame subset. Although 3D watershed performed surprisingly well on the full data 

set, it performed very poorly in this subset: 7 of every 10 cells had errors > 30%. This 

breakdown is expected because the cell boundaries now move substantially between 

frames (much more than the typical boundary width). A summary of our results on the 

accuracy and speed of various segmentation methods is presented in Table 4.1 .
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- - -
1.40% 5.60% 88.00%

28.10% 48.50% 45.00%
19.90% 27.10% 1.40%
9.70% 14.70% 1.00%
1.30% 2.10% 6.80%

- -
- 1.70% 0.00%

3.70% 14.30%
3.80% 16.30%
4.70% 26.60%

65.00% 100.00%

Comparison to SWS
(190  frames)

Approx.
Time

Per  Frame

Pixel-based
%Dissimilarity

%Cells with
Dissimilarity

>5%

%Identical
Cells

Final SWS (reference) 110s
First Pass SWS 16s
“HandsOff”  SWS 1.25s
3D Watershed 0.5s
3D w/CLAHE 0.5s
SWS w/CLAHE  uncorrected 110s

Comparison  to  manual
Vector  segmentation

(5 frames)

Approx.
Time

Per  Frame

Pixel-based
%Dissimilarity

%Cells  with
Dissimilarity

>5%
Vector Segmentation 2hours
Pixelation of  VectorSegment.
Final SWS 110s
SWS  w/CLAHE corrected 110s
Packing Analyzer 300s
3D Watershed 0.5s

Table 4.1: Speed and accuracy of various segmentation methods.
The first six rows compare to the final SWS segmentation and include all 190 frames of 
the image stack, as in Fig. 5A-C. The final six rows compare to a manual vector 
segmentation (gold standard) and include only five representative frames (#1, 48, 95, 
142, 189), as in Fig. 5D.

4.3.5. Measuring Cell Shape Oscillations

As a demonstration of SWS performance, we use it here to investigate cell shape 

oscillations in the amnioserosa [13]–[15], [125]. Prior work has shown that these cells 

undergo cyclical changes in apical area with a period of 230 ± 76 s [13]. Adjacent cells 

have a tendency to oscillate out of phase, but they can also quickly switch between in-

phase and out-of-phase oscillations. When the cells are visualized with a cell-boundary 

marker like GFP-armadillo (a β-catenin like protein) and viewed as oscillations in apical 

cell area, there is no evidence for long-range, wave-like propagation [13]. On the other 

hand, when these same cells are visualized with a different fluorescent marker – GFP-

moesin, which highlights concentrations of filamentous actin [73] – one can clearly 
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discern wave-like propagation of f-actin accumulations that are correlated with sub-

cellular contractions [31]. To address this discrepancy, we performed SWS segmentation 

of a time-lapse image set of GFP-cadherin-labeled amnioserosa cells (66 cells over 63 

image frames spanning 1300 s). We then calculated the autocorrelation functions of both 

cell area and triple-junction velocity (triple junctions were defined as points that touch 

three or more cells). Both functions showed clear oscillatory behavior; first minima at 

144 s for cell area and 123 s for triple-junction velocity; subsequent maxima at 267 s in 

both cases. We then used the triple-junction velocities to calculate a time-and-space pair 

correlation function (Figure 4.6 ). The Δ=0 line of this function is the velocity 

autocorrelation and clearly shows the peaks described above. In addition, a density plot 

of the pair correlation function shows that the extrema move to longer time delays τ at 

larger spatial separations Δ, i.e., the correlations and anti-correlations propagate. Their 

propagation speed of 0.14 µm/s is close to that observed previously for apical 

accumulations of f-actin, 0.2 µm/s [31]. The propagation is however limited and decays 

within 30 µm (about one and a half cells). Thus, one can observe contraction waves in the

amnioserosa using just cell boundary labeling, if one uses a sub-cellular analysis based on

triple-junction velocities and one has a complete and accurate segmentation that allows 

averaging over a large number of triple-junction pairs. The apparent discrepancy in 

previous observations results from whether one chooses to monitor the oscillations with 

cellular or sub-cellular resolution.
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Figure 4.6: Time-and-space pair correlation function of triple-junction velocities for a 
data set with 66 segmented cells.
The x-axis is the time separation between points (τ) and the y-axis is the distance between
points (Δ). Correlations are normalized so that the peak at (0,0) has a value of 1. The Δ=0
axis (autocorrelation function) is plotted above the density plot, and the τ=0 axis 
(distance correlation) is plotted to the left. Dashed lines in these two plots represent zero 
correlation. The minima and maxima of the autocorrelation appear as dark and bright 
spots on the Δ=0 axis of the density plot with the first of each occurring at 123 and 267 s, 
respectively. In the full pair correlation function (density plot), the extrema move to 
longer time delays as the distance between the pair increases. This wave-like propagation 
is demarcated by the angled dashed line, which has a slope and thus velocity of 0.14 
μm/s.

4.4. Discussion

Image segmentation and the quantitative measurement of cell morphology are 

invaluable in the attempt to link physical and biological processes [5], [126]. 

Segmentation is a very wide field and a large number of approaches have been previously

implemented. These range from direct drawing of segmentation boundaries to automatic 

registration of an entire image stack [119]. Before designing our own segmentation tool, 
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we examined several similar tools including ITK-SNAP [118], FIJI's TrakEM2 [115], 

CellProfiler [110], and Packing Analyzer [109]; none of these was able to segment our 

typical (and thus imperfect) time-lapse image sequences with the speed and accuracy we 

desired. ITK-SNAP, FIJI's TrakEM2, and the more recent V3D [127] have tools for direct

3D segmentation of structures. These work very well for the smooth and continuous 

boundaries of 3D xyz structures in MRI images but have difficulty with some of our cells 

as 3D xyt structures. These 3D tools either lack the ability to reliably generate non-

overlapping regions (because they are focused on single anatomical structures) or provide

insufficient manual adjustments. The other tools perform 2D segmentation that can then 

be repeatedly applied to a sequence of images. Some focus on high segmentation 

accuracy for a small number of cells (e.g., fast marching tool and pen tool of FIJI's 

TrackEM2 [115] or the interactive tools of Intelligent Scissors [128]–[130]); others focus 

on speed and sacrifice some accuracy for high-throughput analysis of large numbers of 

cells (CellProfiler [110]). The tool designed to handle image segmentation tasks most 

similar to ours is Packing Analyzer. It is also a hybrid manual/automatic system [109], but

is parameter-based and implements post-process correction and tracking. Packing 

Analyzer works well with many of our best data sets, but is not as efficient nor as flexible

as needed for our more difficult data sets.

SWS fills a niche as a user tool for extremely accurate tracking of cells in living 

tissues when image quality suffers sporadic, but typical problems. By using a simple 

seeded watershed approach, it gives users a readily understandable way to manipulate 

segmentation results, save their progress, and even redo and undo changes. Furthermore, 

because it is a parameter-less system, users with no prior experience in image 

segmentation can get up to speed in minutes with very little instruction. SWS's approach 
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is based on a simple and useful paradigm – manual segmentation correction using direct 

seed manipulation. It is easy to use and understand, but also powerful and efficient.

SWS is presently a stand-alone tool, but it also has potential as a post-processing 

engine. For instance, one could use an alternative segmentation to generate seed points, 

load these seeds to initialize SWS, and then use its manual correction tools to improve the

quality of the final segmentation. In this way, SWS can also be a powerful tool for 

'rescuing" imperfect segmentations of existing image sets. The key concept could also be 

integrated into existing tools like ImageJ, ITK, or V3D, combining efficient manual 

correction with powerful visualization and analysis tools.

We have considered creating a fully 3D version of SWS using a 3D watershed 

algorithm, but interactivity would suffer. Compared to 2D, a 3D watershed segmentation 

is slow, purely based on a linear increase in computation time with the number of frames 

to be segmented. This could potentially be alleviated on a massively parallel architecture. 

There are also artifacts created in 3D watersheds of time-lapse images: some cells fall 

into two different xyt watersheds, one giving way to the other in time; other xyt 

watersheds split into parallel time branches, creating separated regions with a single ID.

Other possible future improvements include tools to aid in visualization and 

identification of segmentation errors. Decision-making is often the most time-consuming 

part of segmentation, so it could be beneficial to visually flag cells that have large shape 

changes, little overlap with the previous frame, or discontinuities in the paths of centroids

or triple-junctions. One can imagine providing a library of user-selectable (and user-

expandable) routines for flagging suspicious segmentations. We see this as the direction 

in which segmentation efficiency can be most rapidly improved.
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Chapter 5

5. Interactive 4D (xyzt) segmentation of epithelial cells in time-lapse confocal image 
stacks

5.1. Introduction

Segmentation is in general a hard problem, which is also very domain-specific. 

Automatic segmentation methods can be extremely useful and quite effective for 

statistical purposes, but always have corner cases that fail to properly segment (faint 

edges, noisy images, etc.). For some systems, these corner cases can even come to 

dominate the final segmentation. When studying the details of cell shape and motion, this

can be unacceptable. In our previous paper, we described a system called SeedWater 

Segmenter (SWS) designed to facilitate manual corrections to automatic segmentation in 

a way that minimizes user time and effort [2]. Its major innovation was allowing a user to

place multiple watershed seeds for each region  enabling a user to improve a coarse ‒

initial segmentation to a highly accurate one simply by adding and deleting seed pixels.

The basic concept of seeded watershed extrapolates quite easily from 2D images 

to 3D image stacks and has been used on numerous occasions before [116], [131]–[133]; 

however, to our knowledge, there is not an existing solution for highly connected tissues 

in 3D space that allows quickly defining multiple distributed regions, each with multiple 

seeds. In reevaluating the user interactions needed for 3D+time, we decided a number of 

things:

1. Viewing had to be simple, dynamic, and fast. Since volumetric rendering was too 

slow and difficult to quickly comprehend, we settled on displaying three 

perpendicular cut planes that could be traversed quickly and easily.

2. Showing outlines for every cell on all cut planes was distracting and too 
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computationally intensive, and mono-color seeds (green in SWS) failed to convey 

the necessary separation of regions. We thus chose to color seeds with the same 

color map as the final segmentation, lending a rough idea of regional separation. 

This is reasonable to interpret, especially in combination with the outlines for a 

single cell on the three cut planes.

3. Although region centroids act as a good predictor for future cell locations in fast 2D

image sets, 3D sets often require so much elapsed time that cells can shift 

significantly between time points. Furthermore, automated tracking (such as is 

found in SWS) adds very little time savings overall given the amount of data each 

cell represents in 3D; editing time vastly outweighs simple tracking. For these 

reasons, the frame-by-frame nature of SWS was too restricting in 3D where one 

rarely wants to segment every cell but does need to view and segment a few cells 

through time.

4. Watershed in 3D is too slow to run after every user interaction. Instead, the user 

should be able to make a few modifications before choosing to update the 

segmentation manually.

This all led us to a remarkably simple paradigm: drawing colored lines and planes 

anywhere in 4D space. In this system, tracking is achieved by simply drawing a 4D line 

through the center of a given cell. Given linear motion, a line beginning at t=0 and ending

at t=tfinal requires only 2 clicks to achieve instant tracking, and more complex motions can

be easily broken down into piecewise linear steps.

We have used this software to accurately segment and track dozens of Drosophila 

cells in 3D through time, and have used it to measure temporal changes in cell shape and 
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volume [3].

5.2. Implementation Details

The system we have implemented, called SWS4D, gives a user the ability to view 

cut planes, define seeds, and see watershed results. Figure 5.1 shows the core of this 

interface, using sample data from a time series z-stack of cells in tissue (4D/xyzt). This 

data is displayed using a "tri-panel" view (left side) showing three perpendicular cut 

planes (xy, xz, and yz) passing through a single point in xyzt space; the coordinates of this 

reference point are shown by four slider bars (below) as well as a red cursor at that 

location in xyz space. The largest panel of the three shows the traditional 2D xy image. 

The other panels show the perpendicular slices as viewed from the side but "folded" 

down alongside the xy pane; in other words, the x or y axes thus stay aligned with the 

main panel. This left view just discussed above is referred to as the "data view"; seeds 

have been drawn in by hand on this view (pink and purple). The resulting segmentation is

shown on the right in the "watershed view" using the same cut planes.
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Figure 5.1: Core user interface of SWS4D.
Sample xyzt data, a time series z-stack of cells in tissue, is displayed using the SWS4D 
software. Two cells have been colored in on the xy panel of the data view (left) and the 
resulting segmentation (generated by running the watershed algorithm) are shown on the 
watershed view (right). The core controls are shown at the bottom: slider bars to select 
the cut planes, a text box to control the ID (and color) of the seeds to draw, and a button 
to run the watershed algorithm and display the segmentation results. The axes are also 
labeled here for clarity (in white).

Seeds are added by selecting an ID number from the lower box and clicking on 

any of the three panels (xy, xz, or yz). Multiple seeds can be created by clicking in 

multiple places or by dragging, making this analogous to a pencil tool in traditional 

drawing software; this simplest form of interaction is referred to as "doodling". This 

mode also supports pixel-wise erasing by setting the current seed ID to zero (pixels 

without a seed ID have a value of 0 and are not displayed). Similarly, the ID of 1 is 

reserved for background regions and is always displayed in white; however, the 

background is actually equivalent to any other regions sans this convention. Both of these

conventions are the same as those used in the original SWS (as are the colors associated 
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with a given cell ID).

Despite this already being a complete system for drawing seeds (and its 

effectiveness in this particular case), click-and-drag drawing is limited to a single 

perpendicular plane of the stack and is also very tedious. To overcome this, we 

implemented a tool for drawing poly-lines in 4D space, connecting the currently clicked 

point to the last clicked point with a series of voxels. This not only makes it easier to 

reason about the resulting connectivity, but also yields automatic temporal tracking via 

lines drawn through time as well as space. These lines are implemented using an N-

dimensional (ND) variation on existing 2D and 3D Bresenham line rasterization 

algorithms [134]–[138].

Although this line tool allows for effective demarcation of cells and sub-cellular 

regions, some features are still insidiously hard to segment because the 3D watershed 

algorithm can easily "flow" around such lines. To properly segment difficult cell-cell 

interfaces in 4D, one needs a way to make "dams" of planar elements. We thus 

implemented tools for drawing triangular plane sections based on further extrapolation of 

our ND Bresenham line algorithm. Just as lines can be drawn either straight or oblique in 

any dimension, triangles can accurately fill between any arbitrary three points; this novel 

"ND Bresenham Triangle" algorithm is described in detail in the "Algorithms and 

Mathematics" section below. Figure 5.2 summarizes the basic line and plane seed 

drawing tools available in SWS4D.

63



Figure 5.2: Sample Lines and Triangles using the ND Bresenham algorithms.
All endpoints are plotted in blue and voxels generated by the algorithm are shown in red. 
(A) Simple 45 degree diagonal line in two dimensions. (B) Example of a line drawn with 
the classic 2D Bresenham line algorithm. (C) Simple voxel line with 45 degree azimuth 
and elevation. (D) Example of a line drawn with the ND Bresenham line algorithm in 3D.
Notice how this line forms a minimal connection between the endpoints, just as in the 2D
case. (E) Sample 2D triangle rasterized with the classic 2D triangle graphics algorithm 
which fills in all the pixels between three Bresenham lines. (F) Simple plane with (1,1,1) 
normal. (G,H) Example triangles rasterized with the ND Bresenham triangle algorithm in 
3D. (I) Example of an ND triangle in 4D. The four panels represent t=0 to t=3 where t is 
the 4th dimension in this system. Notice how these 3D components fit back together into 
a solid triangle if this is viewed as a single 3D projection (the same as G).

The triangle algorithm can easily rasterize triangles in higher dimensions as well, 

but 4D is the maximum needed for our use case. Although triangles cutting obliquely 

through all four dimensions of a time-lapse z-stack are rarely useful, simpler patterns, 

like cutting through z and t values at a fixed x-y location can quickly mark the same x-y 
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point across a large number of times and z planes with a single triangle!

In addition, just as poly-lines can be chained together using the last end point as 

the next starting point, triangular sections can be chained together using the previous two 

points and an additional point to make a new triangle. After some practice, this simple 

feature can be used to draw arbitrary filled 2D polygons and even to define complex 3D 

surfaces (e.g., ellipsoidal sections). The key to defining a strip is to alternate between 

either side while advancing forward, building up the strip in a truss-like pattern. Figure 

5.3 shows an example usage of this rasterizing technique for a simple 2D strip and a 

polygonal shape. 3D manifolds can also be generated fairly quickly using this technique 

by creating small, adjoining strips. Although this process is reasonably effective given 

how simple this interaction is, the process could definitely be further improved with a 

dedicated tool for this purpose. This is not usually necessary for small cells, but is 

important for segmenting more extended objects and will be discussed again below.

Figure 5.3: Bresenham triangles can be patterned into any curved strip.
(A-C) show the original click pattern, all the reconstructed lines, and the resulting filled 
strip. (D and E) show the click pattern and resulting filled shape for a complex shape (an 
acorn in this case). In this way, moving back and forth can rasterize any arbitrary shape. 
Also, by moving around in 3D (or 4D) space, even more complex manifolds can be 
created in this same fashion.

With the addition of "line" and "triangle" mouse interactions, SWS4D is much 
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more effective for complex cell segmentation tasks; "triangle" is easily the most useful of

the three seed drawing tools and can do anything that "doodle" or "line" can do just as 

easily. There are also non-drawing interactions called "print" and "move" for inspection 

and navigation respectively. Clicking in print mode displays that location's 3D 

coordinates and image brightness (or region ID for the watershed view on the right). 

Clicking anywhere in move mode changes the cursor position to that location, thereby 

affecting the views of the two opposing cut planes; as with the slider bars, moving the 

cursor on the data view also moves the cursor on the watershed view and vice-versa. 

Figure 5.4 shows the full SWS4D interface including a more completely segmented data 

set.
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Figure 5.4: Full SWS4D user interface.
In addition to previously described features from Figure 5.1 , this also showcases the blue
outlines on the three cut planes for the current watershed region, the "Mouse Interaction" 
selection box to define click actions (doodle, line, plane, print, or move), slider bars to 
control the relative brightness of the raw data and overlays, options for alternate 
segmentation modes (described below), and buttons to save and load seeds and 
segmentation results. This also shows what a more completed segmentation looks like in 
SWS4D.

Note how on the data view (left) the current watershed region is outlined in blue 

on all three cut planes. This aids in identifying existing regions to add further seeds (and 

conversely helps identify regions that have not been initialized yet); this is especially 

important for identifying contentious subregions that have been misidentified by a coarse 

segmentation.

Our biological system of interest, the Drosophila strain, Resille 117, gives 
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relatively poor definition of cells' basal surfaces. Segmenting even a simple epithelium 

requires a good bit of time delineating both the basal surface and the boundaries between 

adjacent cells. This is extremely tedious and makes it easy to lose track of cells and 

boundaries in 4 dimensions. The optimal solution is thus to separate these concerns: first 

define the apical and basal surfaces by segmenting the whole tissue as a group and then 

identify boundaries between individual cells. The former "whole tissue" region creates an

impervious "masking" barrier to keep background outside and cells inside. We use the 

following 3-step process for segmenting cells in 4D:

1. Identify the cells of interest by drawing a line through the 3D center of each cell 

through time and putting in a few background seeds wherever needed. This 

provides a rough visualization of the location of the cells of interest.

2. Use SWS4D in "tissue segmentation" (or mask) mode to segment the bulk tissue 

from the background along both the apical and basal surfaces.

3. Go back to "cell segmentation" (or normal) mode and clean up the segmentation of 

each cell-cell interface.

The segmentation using the mask is compared to the one without in Figure 5.5 .
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Figure 5.5: Result of applying a mask to a segmentation.
(A) shows the segmentation from Figure 5.4 and (B) shows the segmentation using the 
same seeds, but applying masked segmentation. Notice how the white interior pixels are 
eliminated when background is excluded using the mask. This is especially noticeable in 
the xz cross section (top) between the left-most two cells (light green and pale purple).

This process is still time-consuming but is much simpler than without the mask. It

also provides a depth of user control far beyond previously described tools.

The data set used in Figure 5.5 was completely segmented over all 37 time 

frames. For more details about the interactive steps in the the segmentation process, see 

Supplement S3 below.

5.3. Algorithms and Mathematics

5.3.1. N-Dimensional Line and Triangle Rasterization

5.3.1.1. ND Bresenham Algorithm

The N-dimensional (ND) integer-based line drawing algorithm we used to draw 

generic 4D lines was extrapolated from the standard 2D Bresenham algorithm and its 

existing variations in 3D [134]–[139]. As with the 2D Bresenham algorithm, the ND 
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Bresenham Algorithm (NDBA) procedure involves identifying the "long" dimension 

(component of the line's vector with greatest absolute value) and stepping one unit at a 

time in that dimension (pixel by pixel). For each integer value in the long dimension, a 

value is chosen in the other dimensions based on the usual delta arithmetic prescribed by 

Bresenham's algorithm to maintain at least corner connections between the hyper-voxels. 

The implementation we created actually returns the list of coordinates for each pixel in 

the line; the line is then drawn by blitting these coordinates to the seed array.

5.3.1.2. ND Bresenham Triangle Algorithm

Similar procedures are used for the more complex ND integer-based triangle 

drawing algorithm (ND Bresenham Triangle Algorithm or NDBTA). Such plane elements

are built up using a series of ND lines (using the NDBA); as with the line drawing 

algorithm, the most important consideration is ordering the dimensions correctly. This 

process is more complex for a 2D plane than a 1D line, because it requires identifying 

two dimensions: what we refer to as the scan and line dimensions. To simplify the 

drawing process, we limit each line to a fixed and distinct value in the scan dimension, 

ensuring that lines effectively "scan" the entire triangular plane; another way to think 

about this is that each line is drawn in a separate (N-1) dimensional subspace defined by a

fixed value in the scan dimension. The secondary dimension, called the line dimension, is

the same thing as the long dimension that is used in the NDBA; this is the dimension that 

will be incremented sequentially, leaving the values in the other (N-2) dimensions to be 

chosen via the delta arithmetic as each line is drawn. The optimal rasterization of the 

triangular plane is created by properly choosing these dimensions to avoid gaps.

Other algorithms exist to rasterize planar polygons [140], but we could not find 

one that used a minimal number of voxels, could operate over arbitrary dimensions, and 
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used integer arithmetic for the main rasterization process. A similar method was also 

described briefly in Dimitrov et al. 2004, but we could not determine the exact procedure 

described [138].

5.3.1.2.1. Relative Dimension of Steepest Slope

To explain how to choose the scan and line dimensions described above, we must 

introduce the concept of the relative dimension of steepest slope (or RDSS) for an 

arbitrary, unbounded 2D plane in an ND space. This plane can be defined by three points 

(p0, p1, p2) where pi=(xi, yi, zi, ...). The parametric equations for this plane are:

(5.1)

where s and t are parametric variables with 0≤(s-t)≤1. So, (p0, p1, p2) can be described in 

the (s, t) space as simply ((0, 0), (1, 0), (0, 1)).

For a given dimension A in the ND hyperspace (one of x, y, z, ...), then for any 

fixed value of A, the equations of the 2D plane simplify to a line with an (N-1) 

dimensional vector (unless A0=A1=A2, in which case the plane is flat in that dimension, a 

case we explicitly exclude for this analysis). The component of this (N-1) dimensional 

vector that has the greatest absolute value is what we define as A's relative dimension of 

steepest slope (RDSS).

To derive this quantity, we start by fixing A to a constant value, so that ΔA=0. 

From Equation 5.1 , we can derive the constraint:

(5.2)

which relates Δs to Δt, defining the line. This can be written equivalently as:

(5.3)
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For convenience, we define this quantity as Δw:

(5.4)

Now, for each other dimension B, we want some well-defined quantity that can tell us 

how quickly B grows as the parameters are adjusted: i.e.some kind of slope. Although we 

could use ΔB/Δs or ΔB/Δt, a convenient approach is to use ΔB/Δw. Again, our eventual 

goal is to identify which choice for B produces the largest value for this slope.

We can define ΔB just as we did ΔA:

(5.5)

Now, since Δs and Δt are related to Δw by Equation 5.4 , multiplying Equation 5.5 by (A1-

A0)(A2-A0) allows us to perform simple substitutions to eliminate Δs and Δt:

(5.6)

Now we can compute ΔB/Δw:

(5.7)

From this, we see that the absolute value of ΔB/Δw will be an greatest when the 

expression:

(5.8)

is maximized. This expression can be rearranged even more elegantly as:

(5.9)

The RDSS for dimension A is, therefore, the dimension B that maximizes this expression.

5.3.1.2.2. Computing RDSS values

Our first task in rasterizing the triangle is choosing the scan dimension, but first, 

we need the RDSS for each dimension. The exact computational procedure is this:
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1. Given are three points (p0, p1, p2), each with N integer coordinates (xi, yi, zi, ...).

2. Form a matrix from the three points where each row is a coordinate dimension and 

each column is a separate point:

(5.10)

3. Calculate the Nx3 "diff" matrix:

(5.11)

4. Calculate the NxN "pseudo-slope" matrix with entries like Equation 5.9 :

(5.12)

5. For each row in this matrix, find the column(s) (other dimension(s)) with the maximum

absolute value; return these column/dimension numbers as a list.

5.3.1.2.3. Final Algorithm

Once we have the RDSS values, the procedure for rasterizing the triangle is fairly 

straightforward:

1. Find the most common value among all the RDSS values, and use this as the "scan"

dimension (x').

2. Given this scan dimension, choose the "line" dimension (y') as the scan dimension's

RDSS.

3. Form a list of all the triangle's border points using the NDBA between p0, p1, and p2.

4. Sort all the border points so that they go first along the scan dimension (x') and 
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secondarily along the line dimension (y').

5. Scan over values of x' (move through planes in the scan dimension); within this 

plane, choose points with the most extreme y' coordinates, and use the NDBA to get

the points between them. Collect all the points together and return this as the result

This will rasterize the triangle in N-dimensions, and has been tested in a number of cases;

for some examples results, see Figure 5.2 .

5.3.2. Undo Implementation

The original SeedWater Segmenter implements UNDO in a very crude way; two 

copies of the seed information are stored, one for the current state and one for the 

previous state. Calling UNDO simply swaps these states. This approach is impractical for 

SWS4D because the time required for copying seed information adds significant 

overhead after every modification. This approach also uses double the necessary memory.

SWS4D instead uses an undo scheme based on true inverse operations. Since all 

seed drawing operations (point, line, and plane) involve changing the seed values for a 

specified set of points, the inverse operation is just returning those same points to their 

previous values. Storing this data is significantly less costly in both time and memory 

usage, enabling the implementation of an unlimited-depth UNDO/REDO system.

5.3.3. ND Sparse Array Implementation

To handle much larger 3D datasets, we manage array handling more consistently 

by storing seeds as sparse matrices both in memory and on disk. None of the existing 

sparse matrix file formats met our needs in both space/time efficiency and 

simplicity/transparency, mostly because we needed to manipulate ND sparse matrices and

most existing systems only deal with 1D or 2D sparse matrices. To enable this 
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functionality, we have two related formats. The simpler of the two is a nested list of of 2D

sparse matrices. This works well in memory, but is not efficient to store on disk. The 

second format consists of three separate data structures:

• rcd matrix (row, column, data): a giant 3 column matrix specifying every nonzero 

voxel's location in XY space (row/column) and its value (data)

• nnzs (number of non-zeros): an (N-2)-dimensional array that holds the number of 

non-zero elements in each 2D sparse matrix

• shape: the length of the full ND array along each dimension

It is clear that this second 3-part data structure readily admits storage in a compact binary 

form on disk. The theoretical underpinnings and language used in this format come from 

the python package "scipy.sparse" which also provides the implementation of the 2D 

sparse matrices used, particularly the "coo" or coordinate form of sparse matrices. This 

additionally led to the name for our main nested list format: CooHD, or "higher-

dimensional coordinate-form sparse matrix".

Constructing a CooHD from the rcd/nnz/shape format just requires chunking the 

large rcd matrix data into a pieces and placing them into a list-of-list structure using 

information from the shape and the nnzs. The reverse process is similarly simple.

This process saves an immense amount of space and i/o time for the seeds, but 

cannot work for watershed segmentation results where the resulting ND arrays have few 

if any zeros values. Our solution to this problem is to continue to store the watershed 

array as a dense array in memory but to store it as a difference format (CooDiff) on disk 

(and we have actually tested this in-memory as well). To convert a dense 2D matrix with 

lots of common-value regions to a compressed sparse matrix with the same information, 
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we just store the first line and then the difference between each subsequent line and the 

previous one. This generates a large number of zero entries and means the sparse matrices

will use less space than the dense matrices. Other compression schemes could work well 

in this scenario as well, but this method is simple and very fast.

5.4. Software Package Information

Like its 2D+time counterpart, SWS4D is built using python and the standard 

numerical packages, numpy and scipy, as well as the computer vision library mahotas, 

which includes the watershed implementation [124].

The rasterization procedures NDBA and NDBTA described above are 

implemented as the functions BresenhamLine and BresenhamTriangle in the np_utils 

package, which is a collection of supplemental utility functions, mostly for numerical 

data.

The sparse array handling is implemented as a separate package called coo_utils. 

The actual file format saved by this package is a 3-file system, where all three files share 

the same base name: the shape is stored in a simple plain text format; the rcd and nnzs 

matrices are stored as *_rcd.npy and *_nnzs.npy respectively, with both using the numpy 

binary format.

The UI for SWS4D is written using Enthought's Traits and Mayavi packages and 

is quite dense; the main class for SWS4D is less than 500 lines of code (LOC); the 

underlying base classes only total to about 300 LOC. In the original SWS, the equivalent 

classes were about 3000 LOC; however, to be fair, SWS also has a lot more features, 

including keyboard support and data processing.

Our original unoptimized, dense-array version of SWS4D 

(SWS4D_Uncompressed.py) is also contained in the source code, but for informational 
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purposes only. The code is shorter (around 200 LOC) and more legible without sparse-to-

dense conversions, but offers no practical advantages for the user, and is no longer 

maintained.

To deal with exceptionally large datasets, we also implemented a version of 

SWS4D that can load data as needed for a 3D stack at a given time 

(SWS_LoadAsNeeded.py). There is a space/time tradeoff here, because this version 

incurs significant delays when changing the time dimension of the image view. As a 

workaround to this, we decided to update the xy view dynamically (pulling individual 

frames directly off the disk), but let the xz and yz views freeze until a refresh operation is 

initiated (such as moving in x or y after moving in t). Although not ideal, this allows for 

use on data sets that otherwise could not be loaded at all.

SWS4D is more than just a program; it is really a python module and an 

interactive dialog for specialized array editing. As such, it is perfectly usable on the 

python command line or in Python scripts. These modes of operation provide the most 

general and flexible way to use SWS4D, as data passed into such a script can be in any 

format as long as the proper transforms are done before passing it to SWS4D. On the 

other hand, for those who would rather have a stand-along programwe have written a 

script that looks for a directory of hierarchical tif/gif images or image stacks: 

SWS4D_Generic.py. If the image files are the right format and extension and located 

properly in the directory, this script is a complete and consistent way to run SWS4D.

5.5. Comparisons with other techniques

Numerous other tools exist which use variations on these themes, each with 

different strengths and target applications, ranging from fully automatic to semi-

automatic (manually guided) [114], [116], [118], [127], [141]–[144].

77



All the existing manually guided 3D segmentation techniques we could find are 

object-by-object. Not only does this require segmenting each cell-cell interface twice, but

boundaries have the potential to cross each other, necessitating some kind of post-

processing to maintain consistency. McCullough et al. describe a prototypical example of

this in which each individual cell is segmented using two or more control points (one 

body point and one of more surface points) [114]. Many very similar tools exist, both 

stand-alone and within larger software systems [115], [116], [118], [127], [142]–[148].

Automated 3D segmentation of cells is an extensive field of its own, but 

surprisingly few tools are focused on segmenting and tracking multiple, tightly connected

regions in 3D+time. Pipeline-oriented systems such as CellSegm and TrakEM2 could be 

suitable this kinds of processing [115], [148]. In addition, recent segmentation algorithms

have been created for studying developing plants [145], [146]; fluorescently labeled cell 

walls produce images that are very similar to membrane-labeled embryonic animals. 

MARS-ALT in particular has the potential to be useful on animal images, albeit 

imperfectly since animal cells can have a much wider variety of shapes due to the 

increased flexibility of animal cell membranes [146].

The only automatic tool capable of truly rivaling SWS4D in segmenting epithelial

cells in 3D+time with poorly defined membranes is EDGE4D [147]. this segmentation 

scheme uses innovative image processing tricks to solve some of the same problems 

described above such as poor basement membrane definition. EDGE4D and SWS4D 

complement each other: SWS4D allows for fine-grained control for studying a few very 

cells in great detail and EDGE4D is capable of segmenting large numbers of cells 

effectively over large datasets without any manual action. Depending on the 

requirements, one or the other might do a better job, and a more subtle solution 
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combining these approaches could also be possible.

5.6. Advice on 2D vs. 3D segmentation

SWS4D segmentation has a number of advantages over the 2D+time SWS, but 

that does not mean that it is a replacement for SWS. Both have different target 

applications and different strengths and weaknesses. First, SWS4D is not capable of on-

the-fly updates to the watershed segmentation after every user interaction. It is thus not 

ideal for data handled readily by SWS. In the future, a proper parallel 3D watershed 

algorithm and a multicore system or sufficiently powerful GPU could overcome this 

limitation [149]. Second, SWS4D only displays one cell outline at a time, making the full

cell network more difficult to visualize quickly. This is not so much a software limitation 

as a user one; 3D systems have so much complexity that instant recognition of the 

network is nearly impossible anyway. SWS4D does provide volumetric watershed and 

plane projections views to display a fairly complete overview of the network with the 

single-cell outline as an essential tool for characterizing finer details. Third, SWS has a 

number of seed-based user interactions besides drawing that are not included in SWS4D 

— selection, movement, swapping, and deletion — but these are less important in 3D and

could be implemented in future versions. Finally, we have also lost automatic tracking at 

the expense of generic 4D drawing. For the use case examined here, tracking is of little 

help; the time taken to identify each cell through time (by drawing a 4D line through each

one) is minuscule compared to the time needed to perform the full segmentation.

5.7. Conclusion

We implemented a watershed-based drawing program for segmenting cells in 4D. 

We overcame two major hurdles in this process: the need for multi-dimensional voxel 

plane drawing and the need for separation between bulk tissue segmentation and cell-cell 
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interface segmentation. We have maintained a number of the advantages of our previous 

software, SeedWater Segmenter, notably in-process segmentation and tracking (as 

opposed to post-process correction) and using a space-filling algorithm to capture the 

properties of densely packed cells in tissue. In addition, we have surpassed SWS's 

abilities by being able to work effectively with 3D+time data, seamlessly work on 

orthogonal (xz/yz) views of data, work with seeds in separate colors, "erase" by drawing 

0-value seeds, and optionally load image data dynamically to cut down on memory 

usage.

Despite these advances, SWS4D is far from a silver bullet. Although the 

watershed algorithm is quite effective in certain circumstances, other methods (like 

intelligent scissors, GrowCut, or numerous others) can be more effective and/or faster for 

many tasks, particularly in medical imaging [116], [128], [133], [150]. It is also possible 

that one or more of these techniques could also be implemented in SWS4D as an 

enhancement.

We have designed SWS4D to be a simple and effective way to perform 3D 

watershed segmentation over existing data sets. We see its value as three-fold. First, it 

provides a convenient way to interactively test and explore the 3D watershed method, 

helping users evaluate whether it will be effective in their situation. Second, it provides 

tools necessary to perform detailed segmentations for situations that are not amenable to 

automation, either due to unusual/inconsistent image features or user expertise; it is 

particularly effective at simultaneous segmentation of adjacent regions such as cells in 

epithelial tissue. Third, it introduces a number of new algorithms (most notably the 

NDBTA for rasterizing higher-dimensional triangles), many of which could be useful in 

other applications.

80



Chapter 6

6. Description of wound dynamics through segmentation in 2D and 3D

6.1. Introduction

As discussed in Chapter 3, laser wounding provides an excellent way to measure 

many properties of epithelial tissues and their constituent cells. Laser ablation releases 

forces in tissue, leading to a fast recoil (<30 s) of the remaining tissue away from the site 

of the ablation, followed by a short, quasi-equilibrium state and a slower healing response

(~30 min). These processes are easily captured with live imaging, although the fastest 

aspects of the recoil require imaging at time intervals around 10-20 ms [31], which is not 

achievable with single point, full frame laser scanning confocal microscopy since that is 

limited to >1 s acqusition times for 512x512 pixel images; the traditional work-around 

has been scanning along single lines to track movement of cell-cell interfaces accurately 

in 1D instead [15], [20], [31]. Still, basic information about the recoil processes can be 

obtained even for very slow imaging (~10 s per frame), and in the future, newer 

techniques like spinning disk confocal now make it possible for researchers to image in 

two dimensions at close to these rates (~30 ms per frame). Irrespective of acquistion time,

generating quantitative data from live images of either recoil or healing processes 

requires accurately identifying cell boundaries, which is effectively accomplished 

through image segmentation.

The patterns of displacement illustrate a lot about the underlying mechanics, and 

numerous groups have used them effectively to estimate relative forces and inform 

theoretical mechanical models for epithelial tissue structure [3], [15], [18], [20], [31], 

[70], [79]. In addition, ablation activates a host of biochemical pathways that lead to 

repair, making this a fruitful avenue of study [9], [10], [18], [69], [79]. However, there is 
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much we still don't know about both the recoil and healing processes and the interplay 

between the two. In fact, we are still missing quite a bit of basic information, such as the 

role that the third dimension plays for wound healing in epithelia. This work seeks to help

address these questions.

Using our previously developed tools, SeedWater Segmenter (SWS) and SWS4D 

[2] (described in Chapter 4 and Chapter 5), we have segmented live images of laser 

wounding events, recording both the recoil and healing response of the tissue. In addition 

to traditional single plane imaging studies using cadherin-GFP to identify lateral cell-cell 

boundaries, we have also analyzed a laser wounding event in three-dimensions using 

embryos expressing the Resille-117 membrane marker; this additionally identifies the 

apical and basal membranes and has allowed us to access depth information about cells 

during the healing process. This work both confirms and expands upon previous findings 

in this area.

6.2. Materials and Methods

The primary strain of Drosophila melanogaster used in this study is ubi-DE-Cad-

GFP [121] (Kyoto Drosophila Genetic Resource Center). This strain ubiquitously 

expresses a cadherin-GFP chimera that labels epithelial cell junctions. Additional 

experiments were performed using Resille(117-2)-GFP [151] (gift from J. Zallen, Sloan-

Kettering Institute, New York, NY). For imaging and ablation, fly embryos were 

dechorionated in a 50% bleach solution, immersed in halocarbon oil 27 (Sigma-Aldrich, 

St Louis, MO), and sandwiched between a cover glass and an oxygen-permeable 

membrane (YSI, Yellow Spring, OH) [71]. Images were captured on a Zeiss LSM410 

laser-scanning confocal microscope (inverted) with a 40×, 1.3 NA oil-immersion 

objective and 488 nm excitation. The scanning times were 8 s per frame with 2 s delays 

82



between frames (10 s total intervals) for cadherin-GFP single-frame imaging and 4 s per 

frame with 2 s delays between frames (6 s total intervals) for Resille-117 imaging. 

Images were collected at a resolution of 0.31 μm/pixel, and image stacks were collected 

with 21 frames at 0.5 μm offsets in z (10.5 μm total depth and ~133 s total interval 

between stacks).

6.2.1. Laser Microsurgery

Ablations were performed with the third harmonic (355 nm) of a Q-switched 

Nd:YAG laser (5 ns pulsewidth, Continuum Minilite II, Santa Clara, CA). This laser was 

coupled into the Zeiss LSM410 with independent beam steering for simultaneous 

ablation and imaging [25]. The pulse energy was just high enough (2–3× threshold) to 

ensure consistent single- pulse ablation.

6.2.2. Image Analysis

We used ImageJ (National Institutes of Health, Bethesda, MD) software for basic 

image-processing tasks. To measure the areas and volumes of cells, we used SeedWater 

Segmenter [2] and SWS4D, custom watershed-based segmentation software.

6.3. Results

We recorded time-lapse images for 5 cadherin-GFP embryos from a few seconds 

before the ablation until the wound was essentially closed or imaging became too noisy to

accurately assess cell-cell boundaries (between 15 minutes and two hours). We also 

recorded imaging data for a Resille-117 embryo, collecting two 10.5 μm z-stacks, 

followed by 19 time-lapse images surrounding the ablation event, and then followed by 

five more z-stacks. We used this protocol to capture depth information before and after 

the wound as well as information about the recoil event. By combining these two studies, 

we have been able to assess how ablated tissue responds both laterally and axially, giving 
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a more detailed picture of this process.

After images were collected, they were segmented by hand using SWS and 

SWS4D to identify which image regions corresponded to each cell to high accuracy, 

paying special attention to the cells targeted by ablation and surrounding the ablation site.

Once the segmentation was completed, we analyzed the following metrics:

• Area: computed from the number of pixels

• Perimeter: computed using the region boundary

• Aspect Ratio: computed using moments of inertia

• Radial Aspect Ratio: computed using moments and the centroid of ablated cell(s)

Area is the simplest metric to compute from a segmented image, since it is just the 

number of pixels in the cell times the squared length of one pixel. Perimeter is slightly 

more complicated, since the step-wise boundary of a rasterized region overestimates 

diagonal lengths. To effectively compute perimeter, we therefore use a combination of a 

border-crawling algorithm and a length-correcting estimation algorithm [152], [153]. 

Aspect ratio is a measure of the relative elongation of a cell, computed as the square root 

of the ratio of the principle moments of inertia of the cell's pixel region. Radial aspect 

ratio is a measure of how surviving cells stretch in response to the wound. Using the 

centroid of the ablated cell(s) as the reference center, radial aspect ratio is calculated as 

the square root of the ratio of the radial to the tangential moment of inertia. This measures

the relative elongation in the radial direction away from the site of the wound.

In addition to segmentation, we also converted the segmented tissues into a "cell 

network": a set of 3-way cell junctions (triple junctions) connected by 2-cell boundaries 

(edges). We used this network to group cells into nth-nearest-neighbor "rings" around the 
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wounded region; ring 1 cells (wound nearest-neighbors) are adjacent to the wounded 

region, ring 2 cells (second nearest-neighbors) border ring 1 cells but not the wounded 

region, etc. By binning cells into these rings, measures like area and radial aspect become

much more meaningful. Figure 6.1 shows these values for one of our data sets. The 

reported areas are normalized such that the mean value before the ablation is equal to 1 to

accentuate the trends of these cells.

Figure 6.1: Normalized areas and mean radial aspect ratios vs. time for the wounded 
region and successive rings of nearest-neighboring cells.
Areas are normalized by the mean value before ablation. Colored thumbnails of the 
segmented data set at various points in time are shown along the top of the plot as a 
guide.
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A number of trends are evident here. First, it is clear that the area of the wounded 

cell increases during the recoil process, pauses, and then shrinks, approaching zero. The 

surrounding ring (ring 1) simultaneously shrinks in area while becoming elongated 

tangentially, suggesting that it is being stretched out as the wound opens. Ring 2 shows 

similar effects, but they are less pronounced. The outer rings do not seem to react to the 

wound in any significant way, although there is a moderate reaction in the radial aspect 

due to the recoil from the ablation. The main point of interest for the outer rings is that 

they show an overall trend towards cells shrinking over time, which is a natural 

consequence of dorsal closure. Interestingly, the ring 1 cells do not rebound in area but do

show a strong reversal in radial aspect ratio as the cells close in around the wound; these 

cells form rosettes, each extending towards the wound to reform the epithelium. This 

corroborates the findings of Meghana et al. [18].

We also analyzed the lengths of individual cell-cell interfaces in the cell networks 

using a modified version of the perimeter-estimation algorithm. By binning these values, 

we computed the lengths of all cell edges radiating out from the wounded region (spokes)

and the the perimeter around the outside of ring 1. The wound perimeter and these 

measures are shown in Figure 6.2 
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Figure 6.2: Normalized lengths of wound perimeter, radial contours, and first nearest-
neighbor outer perimeter.
Lengths are normalized by the mean value before ablation. Thumbnails of the segmented 
data set are shown at along the top, colored according to ring.

The countour lengths show very similar trends to the areas and aspect ratios. The 

perimeter of the wound matches closely with the area, which is expected since it stays 

nearly circular the entire time. The spoke lengths follow a similar trend to the radial 

aspect ratio of the first ring of cells, which is again unsurprising since these features are 

highly corrolated due to the geometry. One interesting point is that there was a neighbor 

exchange after about 15 minutes which caused this measure to spike due to the addition 

of a new contour. Even without this, the trend would still remain. Last, the perimeter of 

ring 1 does not show a strong trend but does behave similarly to ring 1 area, which makes

sense; the ring 1 perimeter should behave like the sum of areas of the wounded region 

and ring 1, and these oppose each other, leading to a muted effect.
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For image stacks, we computed volumes and projected apical areas, which 

correspond to the areas measured for time-lapse sets. We also computed mean thickness 

as the ratio of volume to area. Figure 6.3 A shows the trends for these measures binned by

groups given in the key (Figure 6.3 C). Figure 6.3 B shows the binned areas for the time-

lapse taken around the time of ablation (set as t=0), and in between z-stacks. The time 

during which the imaging for Figure 6.3 B took place is marked on Figure 6.3 A with 

gray hashes.

Figure 6.3: Mean-normalized volume, area, and average thickness of cells from the 
Resille-117 embryo.
(A) Volume, projected area, and average thickness for cells in z-stacks. Hashes denote the
time during which time-lapse images were being collected near the ablation time (t=0). 
(B) Area for cells in time lapse before and after ablation. (C) Key for which cells are in 
each category; blue for the wounded cell, green for nearest-neighbor ring, and red for 
cells distant from the ablation. The areas in (B) roughly correspond to those in the middle
panel of (A), but are not exactly the same since the projected area takes into account 
planes other than the apical one.
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The trends in volume are very clear, with the undamaged cells maintaining their 

volume and the wounded cell losing volume. The projected apical area is very similar to 

that of the cadherin-GFP embryos, showing a large boost in wound area and showing an 

eventual decrease in ring 1 area. Interesting, the ring 1 area actually grows for ~30 s 

before it shrinks. The average thickness (z direction) can be computed as the volume 

divided by the projected area; these trends are equally interesting, showing that the 

volume of the wounded regions thickens a great deal during recoil. The nearest neighbors

thicken similarly, around 50%, and stay that way throughout this experiment.

Since we know that the wound grows in depth and shrinks in area, we also looked

at the cross-sectional area with depth. Figure 6.4 shows these profiles which clearly 

elicidate the difference between the more squamous cell before ablation and the more 

columnar cell afterwards.
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Figure 6.4: Wounded region and neighboring cells' occupation at different depths and 
times.
At each time point (left to right), the area (in 100 μm2 increments) vs. z depth is plotted 
for both the wounded cell (blue) and the nearest neighbors (red, normalized by the 
number of cells). This clearly illustrates that the wound goes from wide and short to very 
tall and narrow, extended deeper into many more z-frames. The surrounding ring of cells 
also becomes taller and thinner as it recoils awat from the ablation site. Notice how the 
wounded cell loses overall volume over time while the neighbors do not.

6.4. Conclusions

In this paper, we have corroborated the results from Meghana et al. [18] about the 
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nature of the first ring of cells around a laser ablation wound, namely that surviving cells 

surrounding a wound stretch tangentially into rings during recoil and rearrange during the

healing process to become radially oriented, forming a rosette pattern as the epithelium 

reforms around the wound. Additionally, we have shown that wounded cells get pushed 

basally into the interior of the embryo and that surrounding cells lose apical area, stretch 

into a ring, and thicken in the z direction.

This analysis provides a foundation for future research into laser ablation studies; 

combining and refining these types of image-based metrics will be key in identifying 

further details about the mechanical nature of wound response and development.
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Chapter 7

7. Errors in Force Inference Techniques

7.1. Introduction

Force inference (FI) methods extract cell geometries from experimental images 

and then solve an inverse problem to find a map of forces that would yield the observed 

cell shapes [1], [38]–[40]. These methods are the inverse of traditional forward modeling 

techniques, like the cell-level finite element (FE) method [37], which instead take forces 

as inputs and incrementally displace nodes in a polygon network until the system 

equillibrates. Although such forward modeling is certainly effective at uncovering 

patterns occurring in real systems, matching a simulation to a specific scenario requires a 

highly user-involved iterative process. FI techniques automate this process completely 

and typically require less computation time than a single forward simulation.

Although FI techniques have great potential and have proven quite effective in 

limited circumstances, a number of open issues remain. First, curvatures of cell-cell 

interfaces have thus far been assumed to be small [1], [38]–[40], but we routinely study 

systems where these edges are highly curved (Figure 7.1 A). Also, the effects of random 

positional noise and image resolution on FI quality have not been examined 

systematically over a wide range of perturbations; these are especially important because 

all real-world data will necessarily be limited by one or both of them. The present study 

addresses FI's effects both from large edge curvatures and random noise or image 

resolution.

As stated above, FI is the inverse problem to the finite element (FE) method. FE 

models map input forces to individual nodes in a given network and then calculate the 

displacements necessary to move the system to a state of either static or dynamic 
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(viscous) equilibrium. FI techniques, instead, start with the final positional patterns (and 

optionally displacements), symbolically set up the equations of force balance and infer 

the originating tensions and pressures acting on these nodes to some close approximation 

by assuming the system is in equilibrium. Figure 7.1 B and C show a mesh and a map of 

tensions (γ) and pressures (σ) resulting from application of FI on this mesh, in this case 

reproducing the original FE values with great fidelity (not pictured). As a rule, FI 

solutions are not guaranteed to find perfect equilibrium, and some residual force vector 

may remain at each node. If there are exactly the same number of equations and 

unknowns, the problem becomes a simple matrix inversion, but this is rarely the case and 

only occurs arbitrarily. More often, the system will instead be either under- or over-

determined depending on the number of equations and the number of unknown pressures 

and tensions. The number of equations is directly dependent on (2x) the number of nodes 

in the polygonal mesh that FI is acting on; the number of unknown pressures and tensions

depends on the mesh topology, but can also be affected by any additional assumptions or 

constraints. Because there are a number of reasonable assumptions as well as different 

mathematical inversion methods, FI must be seen as a class of solutions rather than a 

single clear-cut algorithm.
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Figure 7.1: Overview of Video Force Microscopy.
(A) Representative image with highly curved edges. (B) Test mesh, produced by a Finite 
Element (FE) simulation (C) Result of VFM on the mesh in (B), shown as a combined 
map of edge tensions (γ) and body pressures (σ). Blue is outward stress, white is no 
stress, and red is inward stress. (D) Example VFM result for a mesh perturbed both by 
node re-interpolation and by Gaussian positional noise. (E) Example meshes with varying
amounts of noise applied to the mesh in (A); the region shown is marked with a small 
box in (A). Original and perturbed meshes are shown in white and black respectively. 
Standard deviation of the noise is shown in each panel as a percentage of the mean cell 
radius (0.5% to 5% from top to bottom).
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So far in this discussion, we have taken the mesh as a given, but when applying FI

to a real image, the process of creating a mesh leads to additional ambiguities. Figure 7.1 

A is an image of a Drosophila embryo during dorsal closure, a system of great interest 

mechanically and one with highly curved cell-cell interfaces (edges). It is obvious that 

any mesh created from this image should include the 3-way cell-cell interface points 

(triple junctions), but the edges in between are more complex to represent in a model. The

simplest solution is to draw a straight line between each triple junction, but for curved 

edges, this can easily misrepresent the angles, which are immensely important for FI. 

Another solution is to represent each edge with a piecewise linear fit, a solution which 

mimics the types of meshes used in FE models. Figure 7.1 B is a representative example 

of such a mesh produced using a FE simulation and chosen to mimic large curvatures 

using intermediate nodes. It is the starting point for the rest of the analysis presented here.

Applying VFM to this mesh produces values for edge tensions (γ) and body pressures (σ) 

as shown in Figure 7.1 C; these match closely to those from the original FE simulation 

(not pictured). Tensions and pressures are each represented with a color scale ranging 

from blue (expanding/outward stress) to white (no stress) to red (contractile/inward 

stress), but the scales are independent of each other as depicted in the colorbars below. 

VFM is able to determine the relative levels of stress in this case, and there is a clear 

distinction between the stress in the vertical edges compared to the horizontal ones.

Obviously, noise and image resolution will affect the precise placement of any 

nodes (Figure 7.1 E), but more importantly, there is no prescribed number of nodes to 

include. Although the triple junctions are well defined geometrically as points where 

three cells meet, there is usually no information to aid the placement of any additional 

nodes along cell-cell interface boundaries (edges), meaning that a valid representative 
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mesh could contain no intermediate nodes or an unlimited number of them. Some FI 

techniques ignore intermediate nodes, but this limits the accuracy to which they can 

model highly curved edges. On the other hand, Chiou et al. have shown that adding more 

equations leads to greater sensitivity to error [38]; this can also be observed in Figure 7.1 

E by looking at how the angles around short and long edges respond to noise. In general, 

this is an open problem for FI.

To assess how FI responds to the number and location of intermediate nodes, we 

replaced all the intermediate nodes in Figure 7.1 B/C with new ones; Figure 7.1 D shows 

the VFM results for one such mesh. This mesh has been perturbed both by node re-

interpolation and by additive Gaussian positional noise. First, all the intermediate nodes 

in the mesh were removed, leaving only the triple junctions. Next, new nodes were 

placed at some even interval along each cell edge; in this case 95 total nodes were added. 

Finally, all the nodes were shifted by isotropic gaussian noise with a standard deviation of

2% of the mean cell radius. Note that although the mesh is still quite similar to Figure 7.1

B, the slight differences, particularly in the angles, create a clear change in pressures and 

tensions calculated by VFM.

Different levels of positional noise have a clear effect on the quality of VFM 

results. Figure 7.1 E illustrates how much various amounts of noise perturb the sample 

mesh, showing a zoomed view of a small region in Figure 7.1 A (delineated by a small 

box). In order to accentuate the differences, the original mesh is drawn in white with the 

perturbed mesh drawn over it in black. The text in center of each example is the standard 

deviation of the noise as a percentage of the mean cell radius, from 0.5% at the top to 5% 

at the bottom. Notice how significantly the angles can change with only 5% noise; also 

note how the smaller the edges, the more sensitive they are to angular noise. Increasing 
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the number of nodes will make the system more sensitive to coordinate noise, while 

decreasing the number of nodes will make the system more robust, but less accurate. The 

most accurate representation will thus be a compromise between these two competing 

effects; this mesh used in Figure 7.1 D was actually the best compromise for 2% 

coordinate noise case.

The use of FI techniques for biological systems has received a lot of attention 

recently and significant progress has been made in understanding and improving them 

starting with the introduction of Video Force Microscopy (VFM) in 2010 [1]. Currently, 

three of the most advanced techniques are VFM method, the Mechanical Inverse (MI) 

method from Chiou et. al., and Bayesian force inference (BFI) from Ishihara et. al. [1], 

[38]–[40].

VFM requires an over-determined system and solves the system with simple 

linear least squares; it also requires a small number of assumptions to constrain the solver

from finding trivial solutions (all forces zero). In order to produce over-determined 

systems it is often necessary to include some intermediate nodes along the edges; as 

stated above, this also has the added benefit of improving the accuracy of the geometric 

depiction of systems with large curvatures. Of the three methods, VFM is most nearly the

true inverse of the FE model in Chen et al.; in fact, we have been able to show that 

running VFM directly on the output of a forward model can reproduce the inputs exactly 

in most cases, leading to zero residuals in the force balance equations.

MI approaches FI in essentially the same way as VFM, but (1) explicitly ignores 

viscous damping, (2) introduces the idea of solving “open” systems where the outer 

boundary is excluded from the system, (3) uses straight-line edges, explicitly excluding 

all intermediate nodes and (4) often adds the assumption that all pressures are constant 
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[38]. Because open systems frequently become under-determined, the Moore-Penrose 

pseudo-inverse solver must be used in place of traditional least squares; this chooses the 

solution vector (from the infinite number of possibilities) which has minimum Euclidean 

(L2) norm. The pseudo-inverse is actually a more general way to solve these systems 

because it performs linear least squares in over-determined situations. Their assumptions 

are advantageous in situations when they are valid (static equilibrium, small amounts or 

curvature, and relative constant pressures) because of a decrease in noise sensitivity, as 

shown in Chiou et al. [38].

BFI is another variation on the ideas behind MI and VFM, but uses a Bayesian 

solver for the inversion and includes the prior assumption that all tensions should be 

Gaussian-distrubuted around a target value [39]. Like MI, it ignores viscous damping and

applies to open systems without internal nodes, but unlike MI, it is able to very accurately

handle cases with significant pressure variation.

All of these techniques have had successes but clearly also miss certain expected 

features in some cases. We have undertaken a study to explicitly look at why these 

failures occur, and specifically how FI is affected by varying amounts of noise, varying 

image resolution, and varying numbers of interior nodes in a system with large 

curvatures.

7.2. Results and Discussion

Obviously, to do accurate assessments, we need to study a system with known 

“gold standard” target forces, so it is reasonable to use the output mesh from a FE 

simulation (like Figure 7.1 B) as the input to our various FI trials. We must be careful 

when doing this, however, because doing so without qualification may simply “prove” 

that our method gives back perfect results; Somersalo and Kapio refer to this application 
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of an inverse technique to the output of its own forward model as an "inverse crime" 

[154]. Adding noise is one way to circumvent this, but to further distance the inverse 

from the forward model, we also intentionally chose a FE model that was undergoing 

viscous damping and was therefore out of static equilibrium. In addition, for each trial, 

we also remove the original mesh's interior nodes and replace them with a completely 

different set distributed at some even interval. Doing this provides a more accurate sense 

of the real effectiveness of FI, particularly for VFM, which is the direct inverse of the FE 

simulation.

Our first study investigated the effects of Gaussian positional noise on VFM while

varying numbers of intermediate nodes. We started with a single test mesh from a FE 

simulation, depicted in Figure 7.1 B, modifying the mesh before each trial. The results of 

this study are presented in Figure 7.2 which shows correlations with the gold standard 

solution. Examples of positional noise are pictured in Figure 7.1 E, characterized by the 

distribution's standard deviation measured as a percentage of the mean cell radius (square

root of the mean cell area divided by π). For each noise level, 20 trials were averaged 

together to get each data point (standard deviations of the trials are shown as an envelope 

around each curve). The left panels show the dependence of the correlation on the 

number of intermediate nodes in the re-interpolated mesh, with the best case for each 

noise level marked with a dot. The middle panel shows the same thing as the left panel, 

but for Bayesian Inference instead of VFM. The right panels show the dependence of the 

correlation on the level of Gaussian noise in the best case for each curve in the left; the 

plot markers correspond between all the panels.
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Figure 7.2: Effect of Noise on VFM.
Log-log plot of gold standard correlations for all trials in the noise study. Each data point 
plotted represents the mean value of 20 random trials and standard deviations are shown 
as confidence intervals (shaded regions). Correlations were calculated against known 
values from a finite element model. Left panels show tension (γ) and pressure (σ) 
correlation vs. number of total added internal nodes (number of nodes minus number of 
triple junction nodes, N-NTJ); each curve has a particular amount of added Gaussian 
positional noise, with the standard deviation denoted by a ratio of the mean cell radius in 
the legend. The unmodified mesh solution is plotted as a black star and can be taken as 
the theoretical minimum error for this mesh. Importantly, for a given noise level, there is 
an optimal number of internal nodes (on average, about the same as the number edges, 
147). These minima are denoted with a dot and are plotted in the right panel vs. the noise 
level to make the trend clearer. The central panel shows the same results but for Bayesian 
Force Inference instead of VFM. Because the standard way to use BFI does not include 
internal nodes, we present this solution as well (left of the hashes).
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When measuring the correlations between the edge tensions (γ) or the cell 

pressures (σ) with respect to their gold standard values, this looked only at errors in the 

patterns and ignored problems with scale and offset, parameters which are not well-

constrained by FI, especially MI and BFI. In our study, the solutions are essential 

uncorrelated with the correct values with noise in the range of 20-50% rcell; these meshes 

also look extremely jagged, so this is not surprising (not pictured). The solution of VFM 

on the unmodified mesh (original nodes, no noise) is pictured on the graph as a star; this 

can be considered something of a theoretical upper limit for the correlation in this case 

because as stated above, this example will not reach near-zero errors because the system 

is not actually in static equilibrium.

Overall, the trends we observed in the results of the study were not unexpected; 

larger amounts of noise tended to increase the error in the output with 50% correlation 

occurring at about 10% noise in the best case. We expect noise levels in our image (such 

as Figure 1A) to be on the level of about 1-10%, so this means that for our images, we 

can expect some information out of VFM, but nothing near perfection, and the image 

quality will make a great deal of difference. The other interesting point is that the number

of nodes always has an optimal value; this value is relatively close to the number of 

points in the original mesh.

Since in normal cases, FI will not have the advantage of known solutions, we also

considered a number of methods to assess solution quality internally. The simplest 

measure by far is the condition number of the matrix to be inverted (GT·G), which is the 

ratio of the largest and smallest singular values in a singular value decomposition. This 
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provides a quick, rough measure of the sensitivity of the system to noise. Other important

metrics in evaluating a FI solutions can be derived from the force residuals. The residuals

directly measure the unbalanced forces on the nodes of the mesh, and can be easily 

calculated by multiplying the original matrix "G" by the vector of tension and pressure 

solutions and then subtracting any non-zero input forces (if the system was assumed to be

non-equilibrium). Globally, these can be collected into a sum of squared residuals, which 

is the very measure that a least-squares solver minimizes; also, the mean of squared 

residuals can be a more general way to evaluate between meshes with different numbers 

of nodes. Residuals can also be used to calculate the "standard errors" for each individual 

tension and pressure being solved for. Standard errors are the square roots of the 

diagonals of the variance-covariance matrix, which, in turn, is just G-1 times the sum of 

squared residuals divided by (#equations - #unknowns). These provide a direct measure 

of the confidence interval for each tension and pressure, and can show at which locations 

in the mesh that the solution can be assumed to be accurate and where it cannot. For our 

test case, the standard errors follow the same basic trends as the gold standard errors, 

given relatively low noise (< ~10%) and reasonable numbers of internal nodes (< ~300). 

Figure 7.3 shows these internally computed standard errors for VFM.
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Figure 7.3: Standard Errors reported by VFM for the Noise Study.
This is a log-log plot of the internally computed RMS errors for VFM from all trials in 
the noise study.

In addition to the noise study, we also looked at the effects of image resolution 

directly, because many of our images (such as Figure 7.1 A) are more affected by 

rasterization than by pure Gaussian noise. To do this, we still needed a gold standard 

reference for comparison, and since the FE output is a floating point mesh, we first had to

actually draw the lines of this mesh onto an image. By scaling mesh coordinates before 

drawing, we created smaller or larger images (and conversely, larger and smaller pixel 
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sizes relative to the mean cell radius). We tried this both with and without spline 

interpolation, and the latter performed better, avoiding sharp corners except at triple 

junctions. Next, we segmented these images as if from live data, producing a watershed 

image and then a crude outline mesh with right-angle boundaries [2]. After that, applying 

the intermediate node replacement procedure (as described above) created a smooth 

mesh, and then the coordinates were re-scaled to match back up with the original mesh as

closely as possible. As in the noise study, we varied the number of intermediate nodes to 

adjust between fewer equations and better fit to the geometry.

The results of this image re-meshing are in Figure 7.4 , which has the same format

as Figure 7.2 , but we only conducted one trial for each data point since there was no 

randomness. The trends in this case are very similar to the noise study, with the same 

maximum correlation occurring with a number of intermediate nodes similar to the 

original mesh and larger relative pixel sizes leading to smaller correlations (larger errors).

Interestingly, the correlation never drops below 0.5 in this case, suggesting that 

rasterization may be less important than pure noise. The sample dataset in Figure 7.1 A, 

for reference, has a mean cell radius of about 30 pixels, making the relative pixel size 

around 3%. With this in mind, we could expect reasonable insight from FI in this case, 

just as we concluded from the noise study.
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Figure 7.4: Effect of Rasterization on VFM.
Log-log plot of gold standard correlations for all trials in the rasterization study in the 
same style as Figure 7.2 . There is a strong trend toward lower correlation with larger 
relative pixel sizes (lower resolution), just as there was with larger amounts of noise. The 
same trend with added internal nodes is present here as well, making it clear that this is 
an effect that will be observed in any curved system and is not an artifact of the mesh 
interpolation.

We also looked at the different FI techniques and found that VFM on the 

unmodified mesh got closest to the gold standard solution with correlations of 0.994 and 

0.996 for γ and σ respectively (plotted as black stars in Figure 7.2 and Figure 7.4 ). We 
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also tried VFM with viscous damping forces included, but this did not significantly 

change the correlations at all.

MI and BFI performed moderately in this case when used as described in Chiou 

2012 and Ishihara 2012; MI did not calculate pressures and had a correlation of 0.924 in 

the tensions, and BFI had correlations of 0.835 and 0.097 for γ and σ. However, if 

internal nodes were used, the results for BFI were quite similar to VFM's (0.980 and 

0.990). Interestingly, MI did almost identically whether internal nodes were used or not, 

but if the outer boundary was not included, the results became uncorrelated (-0.289). We 

also tried another variation of VFM where all line segments along each cell-cell interface 

were constrained to have a common value, (VFM with common edge tensions). This 

method had correlations of 0.834 and 0.679 (γ and σ) which seems surprisingly poor 

considering that the only difference was a constraint on internal tension variation.

In summary, FI techniques can be effective under the right circumstances, but 

current approaches are very sensitive to noise and other types of perturbations. The 

dependence on the number of internal nodes is critical to understanding how FI performs 

when trying to match large curvatures. Our initial assumption was that more nodes would

create higher accuracy, but this is clearly balanced out by greater sensitivity to noise. 

Interestingly, as more nodes (or greater amounts of noise) are added, a common radial 

pattern emerges for all of the VFM solutions; an example of this is depicted inside the 

box in Figure 7.5 (corresponding to 2% coordinate noise added to the original mesh). To 

better understand this pattern, we decided to look at the most poorly constrained modes, 

which mathematically would be the eigenvectors of the geometry matrix with the 

smallest corresponding eigenvalues. The smallest 9 modes are presented in Figure 7.5 

and it is clear that the radial pattern could be composed from these modes.
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Figure 7.5: Poorly Constrained Modes of the Solution.
A VFM result from a noisy (2% rcell) simulation (upper left, boxed) and the eigenvectors 
of the geometry matrix that correspond to the smallest eigenvalues; these are the modes 
of the system that are the least constrained and most sensitive to noise. Interestingly, the 
modes 1 and 7 are the x and y gradient modes, 2-4 are bubble modes along x, and 9 is 
something of a "quadrupole" mode. We assert that the patterns on these in unconstrained 
modes could lead easily to radial gradient pattern that consistently emerges as more 
internal nodes are added to the set or more noise is added to the system (as in the boxed 
panel).
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Chapter 8

8. Conclusions and Future Directions

Through the course of this research, we have reached some valuable conclusions:

• Amnioserosa cells, which were known to be pulsatile, have been shown to support 

wave propagation, though it is highly damped.

• The volume of amnioserosa cells is essentially constant during both cellular 

oscillations and during wound expansion — so long as the cell remains undamaged.

• Apical contractions seen in two dimensional images have a corresponding 

basolateral expansion This expansion is nearly prismatic but not exactly so; cell-

cell boundaries are often askew from the apical-basal axis of the tissue.

• Force inference is a viable technique given the proper domain, and although it is 

very sensitive, it can be used to glean valuable insights.

In addition, we have also created a system that essentially solves the segmentation 

problem for cells in tissue so long as there are discernable boundaries. Because this 

system avoids specialized algorithms, it is flexible enough for any small-scale 

segmentation tasks and has been foundational not only for my work, but also for larger 

studies by our research group:

• Analyzing the dependence of wound expansion rate on the cellular pulsation cycle 

[3].

• Identifying cell orientation and aspect ratio in germ band retaction [81].

• Analyzing the highly extended shapes of amnioserosa cells during germ band 

retraction.

The 3D+time segmentation tool, while having fewer use cases, is equally simple and 
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flexible to use for small tasks in that domain.

This research has focused on two major phenomena in Drosophila amnioserosa: 

cellular pulsations and recoil patterns from laser point ablation. Both of these are easily 

captured with live imaging, and both are intimately related to the underlying internal 

forces in the epithelia: pulsations represent the natural cyclical variations in force in the 

tissue and recoil patterns provide a more fundamental measure of the strain at one point 

in space and time. Both processes are approachable with force inference (FI), which 

could potentially provide a rich map of mechanics in both space and time.

Studying natural pulsations with FI seems like a simple problem, but it turns out 

that techniques like VFM and even the newer CellFIT cannot adequately account for 

subcellular activity, especially in situations where cell-cell boundaries are long and 

crenulated (not simply a straight line or arc). FI also struggles with wounds, because the 

missing tissue is not simply an absent body pressure, but a hole in the apical network of 

the epithelium.

Clearly, FI will have to evolve to deal with these types of systems, which might 

be better modeled by a continuous, actively contracting sheet than a foam-style network 

of cell edges and cell bodies. The passive mechanics of such a system are well-

established, with analytical solutions available even for hole drilling experiments. These 

analytical solutions are re-derived in Supplement S2, and the rest of this supplement 

describes preliminary work to analyze the ablation recoil patterns in Drosophila assuming

this continuum model, potentially with nonlinear or viscoelastic properties.

Likewise, for pulsation studies, the obvious way to describe the changes in a sheet

from one state to a later state is using a deformation field. We have tried large-scale 

automatic image registration using spline warps (UnwarpJ), but this did not yield quality 
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results for cadherin-GFP labeled amnioserosa cells because the cell interiors slack 

brightness variations, preventing effective image registration. Nonetheless, the cell edge 

positions are information rich and should be fertile ground for force inference techniques.

Since we can now easily generate a segmentation from an image using SeedWater

Segmenter, it is possible to get basic registration between images based on the triple 

junctions. Figure 8.1 shows the synthesis of segmentation and warping ideas to extract as 

much information as possible from time-lapse image pairs.
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Figure 8.1: Registering the motion of a cell-cell boundary from one frame to another.
A and B (left) show the original data for an individual cell-cell boundary extracted from 
two frames of a larger time series. This edge undergoes an extremely subtle motion from 
one frame to the next, and the shape of the edge and brightness variation along the edge 
can both be used to build a highly accurate picture of this motion. The two right panels 
show the deformation field (fine yellow arrows) that maps A to B or B to A, using 
magenta and green color channels to show the two images simultaneously. The bottom 
panel shows the reconstruction for the B to A map, showing the original image for A in 
the magenta channel and the reconstruction (A') generated from B in the green channel. 
The relatively uniform (and nearly white) color along the cell edges show that this 
process was extremely accurate.

In theory, if one had a displacement map for all the edges in a larger image, the 

interior could be approximately inferred by interpolation. Doing so could possibly not 

only answer the question of whether cellular pulsations occur in subcellular regions 
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(which we currently presume but cannot yet prove), but would even allow this 

phenomenon to be studied over wide spatial scales.

This work has been part of a long line of research trying to bridge the gap 

between physics and biology. Specifically, this contribution is a continuation of reserach 

designed to probe emryonic mechanics in novel ways, create stable and comprehensible 

computational tools and software, and build creative methods for data extraction and 

inference.
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Supplement 1

S1. Three-dimensional shape changes associated with apical contraction cycles

Portions of this chapter were published in A.K. Jayasinghe, S.M. Crews, D.N. 

Mashburn, M.S. Hutson. "Apical Oscillations in Amnioserosa Cells: Basolateral 

Coupling and Mechanical Autonomy." Biophysical Journal, vol. 105, pp. 255-265, 2013 

[3].

Although both the experiments and their matching simulations in Jayasinghe et al.

imply pulsations of amnioserosa cells that are strongly mechanically autonomous, this 

autonomy requires what seems like a very strange mechanical situation: epithelial cells 

with a net internal force that is directed outwards, i.e., an in-plane compressive stress. 

Two possible sources of this outward force are pressurization of the cell's cytoplasm or 

coupling between the apical and basal surfaces of the cell. We thus imaged the three-

dimensional structure of pulsing amnioserosa cells using the Resille(117–2)-GFP strain 

[151], [155], which fluorescently labels all cell borders. These cells undergo apical 

oscillations, albeit with smaller amplitudes and more variable periods. Despite these 

differences, Resille-GFP enables segmentation of the entire cell volume and analysis of 

volumetric measures such as cytoplasmic flow or the relationship between apical and 

basal contraction.

Three-dimensional reconstructions show that these cells are not rigidly prismatic 

in shape. Instead, there are considerable dynamic changes in the basolateral portion of the

cell (Figure S1.1 ), including wedging of the cell walls, formation of bulges, and rippling 

of the basal surface.
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Figure S1.1: Three-dimensional dynamic changes in amnioserosa cell shape.
(A–C) Three views are shown for each time point: an xy view of the apical area (bottom 
right); an xz cross-section (top); and a yz cross-section (left). (Darker/red shading) Extent 
of one cell. The rougher, outermost surface in each cross-section corresponds to the basal 
surface. A common scale bar is shown in panel C. (D) Changes in apical area and average
cell thickness are anticorrelated: mean area versus thickness cross-correlation (green, 
solid, N=6); mean auto- correlation of apical area (purple, dotted). The full set of apical 
area and thickness versus time graphs is compiled in Figure S1.2 B. One of the cells in 
Figure S1.2 B was excluded from the mean correlation functions because its 
autocorrelation function showed no evidence of oscillation.

To determine whether these complex basolateral dynamics are related to the apical
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area oscillations, we calculated cross-correlations between cells' apical area and average 

thickness. Apical area was defined as the in-plane area of a cell at the z position of its 

adherens junctions. This z position was calculated by hand, selecting a starting value for 

each cell and then correcting for drift by subtracting off the average z motion of all cells. 

Average thickness was defined as the ratio of a cell's total volume to its maximum 

projected area in the xy plane. We analyzed each of seven cells over a time span of 1100 s.

Autocorrelations of the apical areas showed that six of these seven cells were oscillating 

(periods of 320, 300, 380, 400, 460, and 260 s), but the small amplitudes and variable 

periods lead to an average autocorrelation (of these six) with only a weak and broad 

secondary peak (Figure S1.1 D, dashed). Despite these weak oscillations, the cross-

correlations showed a clear anticorrelation between apical area and average cell thickness

both in the average correlation function (Figure S1.1 D, solid) and in the individual zero-

delay correlation coefficients: -0.97, -0.93, -0.81, -0.80, -0.79, -0.70, and 0.53. The one 

exceptional cell was oscillating weakly, so we have no explanation for its discrepant 

behavior. On the whole, these results suggest that volume pushed away from the apical 

surface during a constricted phase of the cycle is collected in the basolateral domain and 

returned to the apical domain in the next half cycle. Such pressurized flow of cytoplasm 

is a plausible source for the cell-internal compressive stress. To insure that this 

observation was not dependent on our exact choice of apical and basal metrics, we 

performed similar cross-correlation analysis for volume above and below the adherens 

plane, as well as apical plane volume versus remaining cell volume. All three analyses 

yielded similar results and are compiled in Figure S1.2 along with the individual traces of

these cell metrics.
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Figure S1.2: Correlations of volumetric measurements for seven individual amnioserosa 
cells.
(Caption continued on next page)
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(A-B) Apical area and average cell thickness. (C-D) Volume above and below the apical 
plane. (E-F) Apical plane volume (apical area times z spacing) and remaining volume 
(total volume minus apical plane volume). A, C, and E show the mean auto-correlation of
the apical measure (purple, dotted) and the cross-correlation of the two respective 
measures (green, solid). Shaded regions are ± one standard deviation (based on N = 6). B,
D, and F show the full set of graphs for each cell with the zero-delay value of the cross-
correlation show in the lower right corner of each subpanel. The rows (individual cells) 
are sorted so the cross-correlations of area and cell thickness (left column) are ordered 
from most negative to most positive. In each graph, the apical measure is solid blue and 
the other measure is dashed red. The cell shown in the top row of B, D, and F showed no 
evidence of oscillations in its auto-correlation and was excluded from the means in A, C, 
and E. The approximate periods of apical area oscillations in the remaining cells were 
320, 300, 380, 400, 460 and 260 s, respectively from top to bottom. A and B show that 
there is a strong anti-correlation between apical area and cell thickness, implying that 
contractions in the apical xy-plane result in an extrusion in z and vice-versa. C and D 
show that as volume in the apical region of the cell shrinks, this volume generally moves 
to the basal portion of the cell and vice-versa. E and F show a weak anti-correlation 
between volume in just the adherens-level plane and that in the rest of the cell; however, 
the standard deviation in this last cross-correlation is large enough that the weak anti-
correlation is not significantly different from zero.

Our data cannot distinguish whether the return of cytoplasm to the apical surface 

is a passive response to basolateral pressure built up during the previous apical 

contraction or is actively driven by a basal actomyosin contraction. Nonetheless, it is 

instructive to estimate the order of magnitude for the pressure differences needed to drive

such flows. One can do so using either considerations of Poiseuille flow [156] or the 

classic Stefan solution for axisymmetric squeezing flow [157], [158]. Using the latter, the

maximum pressure difference in a cylinder undergoing creeping flow deformation is

(S1.1)

where η is viscosity, H is cylinder half-height, and R is radius. Using appropriate 

dimensions for amnioserosa cells (H ~3 μm, R ~10 μm) and a viscosity estimate from sea

urchin embryos (η ~10 Pa s⋅  [159]), the very slow rates observed for oscillatory cell 
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thickness change (Ḣ < 0.02 μm/s) imply a maximum pressure difference of ~0.1 Pa, 

equivalent to a pressure gradient ~0.1 kPa/cm. This is on the low end of pressure 

gradients observed in other cytoplasmic flows, e.g., hyphal growth in fungi is driven by 

pressure gradients of 0.05–10 kPa/cm [156]. Although we cannot rule out a basal 

actomyosin contraction as contributing to the return of fluid to the apical surface, the 

small values of these pressure gradients suggest such contraction is not needed.
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Supplement 2

S2. Spring Network Models of Embryonic Tissue

S2.1. Epithelial elastic sheet model

The simple elastic sheet model for epithelial tissue permits the use of known 

analytical solutions for elastic hole drilling. This model uses standard assumptions from 

mechanical engineering: linear elasticity, small deformations, small displacements, and 

an infinitely large sheet. The general case is for a circular hole drilled at the origin of an 

elastic sheet under uniform, anisotropic stress (different stresses in the x and y directions),

resulting in a release of tension and a new equillibrium configuration. We have used this 

analytical model to compute the relative displacements between the cut solution and the 

original stressed solution. This was then fed into an image warping algorithm where the 

parameters were manually tuned to match up with in vivo laser hole drilling experiments 

we performed in Drosophila melanogaster amnioserosa tissue.

S2.2. Derivation of Relative Displacements After Hole Drilling

In order to solve the analytical equations, we first solve for a completely uniaxial 

stress (one axis has zero stress) and then calculate the biaxial solution by superposition. 

Below we follow this derivation from Timoshenko [4], [29]. Using the summation 

convention with comma derivatives and starting with body force vector ρbi, acceleration 

vector ai, and stress tensor σij, Newton's Second Law for continuum mechanics is:

(S2.1)

for any contiguous region of space, R. V, A, and ni are volume, surface area, and outward 

surface normal respectively. To transform middle term, we use Gauss' Law:

(S2.2)
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With this, Equation S2.1 simplifies to:

(S2.3)

and then just:

(S2.4)

In the absence of body forces and at equilibrium, bi and ai are zero, so:

(S2.5)

For 2D problems,

(S2.6)

and by symmetry,

(S2.7)

This means that the equilibrium stresses equations come out as:

(S2.8)

Next, we use the standard definitions for normal and shear strains:

(S2.9)

And relate stresses and strains using the standard equations of linear elasticity:

(S2.10)

where ν is Poisson's ratio and E is Young's Modulus

Now we can derive the compatibility condition, a simple derivative relationship 
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between normal strain and shear strain based on their definitions in terms of 

displacement:

(S2.11)

Using the compatibility condition and the equilibrium stress relations, we can derive the 

equation:

(S2.12)

This equation and the equilibrium stress equations now form a complete system of 

differential equations that we can solve. In solving these equations, it is simplest to define

a stress function, a function whose derivatives are the normal and shear stresses:

(S2.13)

This leads to a fourth-order differential equation:

(S2.14)

Our problem, however, is in polar coordinates, so without going into the details of the 

complex derivation of the elastic sheet with hole, I first want to simply take the solution 

without a hole obtained by nothing more than a simple change in basis. We start with σx 

but no stress in the y direction and no shear. Next, we use a coordinate transformation and

obtain:

(S2.15)

Without going into details, we can then solve the polar form of the stress function with a 

hole of radius R0 to obtain:
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(S2.16)

We can then obtain the stresses for the hole situation by taking derivatives. Then, 

subtracting the solution without the hole (obtained either by coordinate transformation or 

using the hole solution with R0=0) we obtain the relaxed stresses:

(S2.17)

By solving for the displacements using the equations above (and some known solutions 

for integrals), we obtain:

(S2.18)

and:

(S2.19)

with:

(S2.20)

We can add back σy which yields a solution that is rotated 90 degrees from the x solution. 

The combined result is:

(S2.21)

We can also easily add a rigid body solution, too, which is important for its use in the 

warping algorithm:
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(S2.22)

S2.3. Results of the Warping Algorithm

As stated above, the warping algorithm we developed allows us to transform an 

image of the embryo after the cut into an approximately similar arrangement as before the

cut. Figure S2.1 shows the transformation of a cell edge cut and a cell center cut. The 

agreement is very good except near the hole. Once we have aligned the displacement 

field, we can compute values for the strains.

Figure S2.1: Warps for Cell Edge Cut and Cell Center Cut.
The original (uncut) image is shown in magenta and the warped cut image is shown in 
green. Where the two overlap, the colors combine to make white. The estimated hole is 
blacked out by a circle. The agreement of the image produced by the warping algorithm 
with the original is remarkable. However, it is obvious that the algorithm tends to over-
warp the area near the hole. This is especially clear in part B with its strange artifacts 
(green).

When we assume the hole is 30 pixels in radius and the tissue has a Poisson ratio 

of 0.33, we can get the ratio of stress to E, and the values for the two experiments 

123



pictured in Figure S2.1 are 1.26 and 2.43 respectively. The strains we get directly from 

the displacement field, and they are 0.8 and 1.6 respectively (zero being completely 

relaxed). The anisotropy is almost negligible, at values of 0.01 and 0.02.

S2.4. One Dimensional Model

As clean and simple as the analytical model is, it has some major flaws and leaves

some questions unanswered. The main discrepancy between the analytical model and 

experiments is that the model predicts too much deformation near the hole as compared 

to the rest of the tissue. Also, since it is an analytical solution, there is no way to add 

complexity without making the problem intractable. In attempting to reconcile the model 

and experiments, three important points came to light:

1. The solution makes a small deformation approximation that could possibly lead to 

an error.

2. There could be some nonlinearity in the elasticity of the tissue (x3 term in the 

restoring force).

3. The dynamic viscoelastic/viscoplastic behavior of the tissue might lead to a 

significant difference from simple linear elasticity.

Of these, the first two are most easily tested, and the simplest model to form insight into 

this system is a simple 1D picture. In this scenario, we have a rubber band tied to another 

rubber band such that there are four rubber lines (springs) coming out of the knot. When 

we stretch the two sets of springs in opposite directions until they become stiff, this 

creates strain hardening, with a negative x3 coefficient (same direction as the linear 

Hookean term). If we cut one of the springs, it causes there to be a release of tension in 

the opposite two springs and an increase in tension of the adjacent spring (Figure S2.2 , 
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Figure S2.3 , and Figure S2.4 ).

Figure S2.2: Spring Diagram.
This figure shows a graphical solution to the coupled spring equations. The black bar 
represents the origin, the red bar represents the massless attachment point for the four 
springs. The colored dots represent the equilibrium positions of the springs, and the 
respective colored bars and wavy lines are added purely for visual appeal. Springs are 
offset vertically for visualization only. All springs have the same spring constant and the 
nonlinear term varies between the models. (A) Purple spring is uncut, so the system is in 
perfect equilibrium no matter what the nonlinear constant is. (B) Linear solution with 
spring cut. The dotted line shows this position for reference. (C) Nonlinear solution with 
“hard” springs. Note that equilibrium now favors the individual spring (right) rather than 
the pair. (D) Nonlinear solution with “soft” springs. Notice now that the solution favors 
the pair of springs (left)
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Figure S2.3: Force v. Displacement Curve for linear and nonlinear springs.
The central curve is for a pure Hookean spring. The upper curve has a nonlinear constant 
of 0.2 (strain hardening) and the lower curve has a nonlinear constant of -0.2 (strain 
softening). These curves correspond to Figure S2.2 C, Figure S2.2 B, and Figure S2.2 D 
respectively (top to bottom).

Figure S2.4: Equilibrium Position v Nonlinear Constant.
This is shows the dependence of the equilibrium position on the nonlinear constant. The 
blue curve is the reference linear solution. For positive nonlinear constant, the system is 
strain hardened. For negative nonlinear constants, the system is strain softened. The 
asymptote represents the point where the nonlinear term overtakes the linear one, 
destabilizing the system and making it come apart.

This is analogous to what we see when we drill a hole. What we are doing is 
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destroying the radial component of the elasticity within the hole radius, thereby 

increasing the tangential tension around the hole, but releasing radial tension. This is just 

a loose analogy (see Figure S2.5 ).

Figure S2.5: Connection to 2D Experiments.
This figure shows a schematic picture of the connection between this four-spring/ rubber 
band model and the experiments we have done. The cut spring represents the radial 
spring that gets destroyed and the adjacent spring represents the surrounding theta springs
that gain extra tension. The two opposite springs (effectively one spring with twice the 
spring constant) represent the surrounding radial springs that lose tension. This figure 
also highlights the looseness of this analogy.

The beauty of this model is that it allows the exploration of the effects of strain 

hardening and strain softening while still being simple to model and analyze. In fact, even

implementing this simple model was rather complex because it required the use of a 

nonlinear polynomial solver. In summary, with equal starting conditions for the four 

springs (same relaxed lengths, stretched lengths, and spring constants) a third order 

nonlinear term added a noticeable change that can be summarized as follows:

• When the nonlinear term was positive (strain hardening), the knot was pulled more 
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toward the single spring after the cut.

• When the nonlinear term was negative (strain softening), the knot was pulled more 

toward the pair of springs after the cut. See Figure S2.2 , Figure S2.3 , and Figure 

S2.4 > for details.

Although this result was an interesting proof of concept, this model is not complete 

enough to be useful in discerning the discrepancy in our data. For one thing, the analogy 

is very loose and so no quantitative analysis is possible. Second, certain competing factor 

cannot be distinguished from one another. For instance it is possible by adjusting the 

equilibrium lengths and the nonlinear factor to create scenarios that would be 

indistinguishable from these simple cutting experiments (see Figure S2.6 ). The main 

problem is that tracking only a single point of data lacks enough information to determine

these quantities.
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Figure S2.6: Simple Model Cannot Distinguish Between Competing Factors.
Simply making a cut and watching the motion of a single point cannot distinguish 
between greater nonlinearity (A and B) and different equilibrium lengths (C and D). From
the outside, there is no way to distinguish these situations.

S2.5. Radial spring networks and nonlinear behavior

What we really need is a quantitative way to characterize the entire 2D 

displacement field and relate it to either a linear or nonlinear solution.

In order to better investigate this matter, we developed a discretized, radially 

symmetric model based on a polar decomposition of the elasticity into radial and 

tangential elements. One major advantage to this model is, unlike the analytical model, it 

does not include a small deformation approximation. Another major advantage is that this
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model in numerical, so it is possible (though much more computationally demanding) to 

add the same nonlinearity as in the rubber band model.

In order to properly model this system, we first have to describe the effect of 

radial forces on radial position. To do this, we define effective radial and tangential spring

constant based on a rectangular approximation. Figure S2.7 shows a schematic version of

this discretization into rings (though it fails to properly show the radial symmetry and 

continuous nature of each separate ring). Figure S2.8 then shows a linearized version of 

this with effective spring constants labeled as symbols.

Figure S2.7: Polar Decomposition of 2D Sheet.
Schematic representation of the radially symmetric (1D) model. Black dots are the nodes 
in the model. "Hoop" springs represent the tangential component of the elasticity. 
"Spokes" springs (which really should be pictured as a continuum around each ring) 
represent the radial components of the elasticity. Another way to picture this is as two 
sheets glued together, one cut into rings and one cut into very thin pie slices.

130



Figure S2.8: Linearized Spring Network.
This is the same set of springs as in the ring diagram. The nodes r1-r4 are the same as the 
black dots. The longer springs (top) are the same as the hoop springs and the shorter 
springs (bottom) are the same as the spoke springs. The spring constants for the radial 
and tangential rings are derived from a rectangular approximation. Especially for the 
tangential springs, a conversion must be made between internal tension and force 
delivered at the nodes.

S2.5.1. Effective Spring Constants

In order to calculate the effective spring constants for the rings in either the radial 

or tangential direction, I first assumed that the springs were independent in the r and θ 

directions, meaning that I am assuming a Poisson ratio of zero. Next, I used the fact that 

the radial and tangential springs could be approximated as rectangular, each with the 

same elastic modulus. The formula relating spring constants and elastic modulus is linear 

with the area of the material (thickness, t0 * unit depth) and inversely proportional to 
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length:

(S2.24)

For a radial spring, the length is

(S2.25)

and the effective thickness is the circumference of the average radius circle

(S2.26)

This leads to an effective spring constant of:

(S2.27)

Here I have used the initial values for the nodes because the spring constant depends only

on the initial values of the nodes.

The θ spring is slightly more complex. It requires first knowing its effective 

length (circumference of the circle) and width (thickness):

(S2.28)

It also requires converting from internal spring tension to radial force. This conversion, 

which can be easily obtained via a polygon method with the number of sides tending to 

infinity, yields:

(S2.29)

It is intriguing that forms of of these two types of elements are so similar.

S2.5.2. Model Construction

In order to construct the model, we first need to describe the forces for each 

spring. These are given by:
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(S2.30)

We can then simply add (or subtract) the forces at each node due to each attached spring 

and use Newton's Second Law to set this sum equal to zero (except at the outside). If we 

then rearrange the sums and factor out the separate Δrn's so that we can write the solution 

as a matrix. An example matrix is given below. This matrix describes the spring network 

pictured in Figure S2.8 . Spring constants are then calculated via the formulas derived in 

part (i) above. Solving the linear system is no more complicated than inverting this 

matrix and multiplying by the right hand side.

(S2.31)

In Figure S2.9 , the result from a simulation run with 20 nodes is pictured. Only 10 nodes

are shown as the outer half of the model is there to better approximate the infinite 

continuum of the analytical model and minimize end effects. Figure S2.10 shows the 

computed stresses from the same simulation before and after the cut, making it a good 

comparison to the rubber band model. In Figure S2.11 , taking the same initial 

parameters, good agreement is shown between the analytical solution and this simple 

harmonic network model.
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Figure S2.9: Radial Spring Network Solutions.
This figure shows a solution of the radially symmetric simple harmonic model with 
simple elasticity. The blue line is a simple y=x line to show the unstressed positions of 
every point. The red line is the stressed positions of every point. The green line is the 
positions after a cut. In order to minimize end effects, the model is run with twice the 
pictured length, which more closely approximates the infinite continuum used in the 
analytical model.
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Figure S2.10: Computed stress on each node before and after the cut.
After computing the forces due to each radial and tangential ring element, it is possible to
work out the stresses on the springs. As would be expected, before the cut, all the springs 
are in equilibrium, and since the force was chosen appropriately, the value is one. Radial 
springs are pictured in red and tangential springs are pictured in blue. The springs are 
interlaced with radial springs centered between nodes and tangential springs centered on 
nodes (see Figure S2.7 ). After the cut we see the tension created in the theta springs and 
the tension released in the radial springs, just as with the rubber band model.
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Figure S2.11: Comparison of Polar Spring Network and Analytical Model.
The agreement between the Radial Spring Network model (red dots) and the analytical 
model (green line) run with radial symmetry, a poisson ratio of zero, and the equivalent 
elastic modulus and initial stress is remarkably good. Other than an end effect (probably 
attributable to the finite nature of the model) the models are very similar. The top graph 
shows the agreement in position and the bottom graph shows the agreement in 
displacement. As before, the blue line at the top is just y=x for reference.

Adding in nonlinearity is a bit more complicated, as no matrix construction is 

possible. The forces have the forms:

(S2.32)
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Where nonlin is the nonlinear factor and the (2π)2 factor in the tangential spring is a 

constant that comes out of the conversion between tension and radial force.

Since it is impossible to construct a linear matrix for the nonlinear solution, I 

simply constructed a set of polynomials and fed them into a preexisting nonlinear solver. 

I originally attempted to use Mathematica's NSolve, but quickly discovered that as it 

generates not only the one real solution, but also all complex solutions, making it 

painstakingly slow to use. For the models presented here, I rewrote the program in 

Python and used the nonlinear solver in the python module Sympy (a simpler, real-only 

iterative solver) to construct the nonlinear solutions. I used the linear solution as an initial

guess to speed up the solver further. Figure S2.12 shows the same data as Figure S2.9 

plus many equivalent nonlinear solutions. Our hope is that by comparing these nonlinear 

curves with our experimental data, we will be able to characterize this nonlinearity factor 

in Drosophila tissue.
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Figure S2.12: Family of Cuts with different nonlinear factors.
The solid blue and red lines as well as the thick green line are the same as in Figure S2.9 .
The other curves represent the same simulation but with varying nonlinear factors. The 
force is carefully adjusted so that all the stretched, uncut solutions match precisely with 
the red line (to within one part in a thousand). Nonlinear factors outside the range 
pictured here led to instabilities in the solution and are not pictured. We hope to use this 
model to compare the experimental data and determine what, if any, nonlinear factor is 
observed in our hole drilling data.

138



Supplement 3

S3. Segmenting a wound in 3D+time

Here, we present some sample images from SWS4D while in action.

Figure S3.1: Initial view after opening SWS4D.
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Figure S3.2: Same dataset after segmentation is finished.

Figure S3.3: Example of changing the contrast using the Vmin/Vmax sliders.
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Figure S3.4: Example of changing the current cell to ID 5, which also changes the 
outlined cell.

Figure S3.5: Sample use of Tissue Segmentation.
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Figure S3.6: Updated segmentation using the Tissue Segmentation from Figure S3.5 as a 
mask.

Figure S3.7: Example of changing the Z-index to go deeper into the tissue.
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