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CHAPTER I 

 

INTRODUCTION 

 

From birth, humans make full use of their senses to learn about their environment. 

Visual, auditory, olfactory, gustatory, and haptic sensations are invaluable entry points 

for babies to learn about the world. Infants focus in an object or a being and analyze it; 

they study its shape, color, pattern, and texture; they use touch to sense temperature and 

texture; smell to know the aroma; and taste to flavor [Lamb 2002]. Furthermore, humans 

integrate multiple sensory features at a time to dynamically and fully learn about their 

environment [Pfeifer 1997].  

An observe-grasp-reach behavior is typically demonstrated by human babies that 

are beginning to acquaint themselves with their surroundings.  Similarly, when a baby 

hears a sound, it immediately looks at the corresponding area (perhaps to identify the 

source) [Irie 1995]. This is exemplary of a set of behaviors that empowers newborns to 

familiarize themselves with the outside world and to learn the effects of their own 

actions. 

 

Problem Statement 

One goal of research in humanoid robotics is to produce systems that can interact 

autonomously with people to perform useful tasks.  That goal inspired the work reported 

herein.  The objective of this work was to implement fundamental sensory-coupled 

actions on the Vanderbilt Humanoid, ISAC (ISAC is an anthropomorphic robot found in 
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the Cognitive Robotics Laboratory at Vanderbilt University. A more detailed description 

is presented in chapter two) [Kawamura 1995], to construct tasks from sequences of these 

actions, and to evaluate the results. Ultimately, the goal of this work is to enable ISAC to 

acquire new behaviors and to perform new tasks  

 

Sensory Motor Coordination 

 Robots, like humans are capable to learn and interact with the outside world by 

making use of sensory information. Evidently, the extent and quality of data present in a 

robot will vary depending on the quality of its hardware and software resources. 

Nonetheless, sensory motor coordination is essential for the robot to learn basic behaviors 

to interact with people and its environment. 

This thesis will specialize in two specific sensory inputs: vision and audio. 

Making use of these two inputs a series of basic behaviors were implemented involving 

camera-head motions and reach-and-grasp motions. 

 

Goals 

The goal of the project is to produce a specific set of coordinated reactions to a 

specific set of data input from the outside world. Once these basic behaviors are well 

established further progress can be accomplished. Firstly, a set of more complex 

sequences of reactions can be coupled to produce basic behaviors. Secondly, once 

coordinated motion occurs, the robot will be empowered to further learn about its 

surroundings. For instance, visually the robot would be able to examine the shape, color, 

and pattern of a target and associate these characteristics to that object. Similarly, with 
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sound, if an object emits a specific sound, the robot could associate the latter with the 

object. 

 

Organization of This Paper 

 The remainder of this paper will examine the hardware and software systems 

used, sensory motor coordination integration, and future work. Chapter 2, RESEARCH 

TESTBED, will describe the software architecture and the humanoid robot composition 

used for this work. Chapter 3, SENSORS, will provide an explanation of the different 

sensors used to gather data from the surroundings. Chapter 4, MOTION, will discuss the 

different components of ISAC that perform articulated motion. Chapter 5, RESEARCH 

INTERESTS, will convey the goals of the thesis. Chapter 6, AGENTS, will present agent 

functionality and goals. Chapter 7, DEMONSTRATIONS, will detail the different 

behaviors achieved by the robot. Chapter 8, CONCLUSIONS AND FUTURE WORK 

will present final thoughts and potential future work corresponding to sensory motor 

coordination behaviors in the ISAC humanoid robot. 
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CHAPTER II 

 

RESEARCH TEST BED 

 

 The hardware and software resources used for this research are described in this 

chapter. It is important to understand the underpinnings of both hardware and software to 

have an appropriate sense of the potential, capabilities, and limitations of the systems. In 

doing so, more effective work can be accomplished. 

 

The ISAC Robot 

 The humanoid robot ISAC stands for Intelligent Soft Arm Control. The robot was 

originally created to assist handicapped people. The goal was for the arm to be compliant 

to ensure the security of the users around the robot [Kawamura 1995]. 

 The safe behavior of the arm is attributed to its compliant nature. The arm is 

created by joining pairs of agonist/antagonist artificial muscles [Northrup 2001, pp. 73]. 

These are created from rubbertuators, which are very much like rubber balloons and 

operate through gas pressure. At its inception, ISAC consisted of one soft-arm, one 

camera, and a voice system that included speech and speech recognition. 

 Later, ISAC was given a second arm and along with it a more anthropomorphic 

shape. Today, ISAC includes a color stereovision system, two independent pan-tilt units, 

two microphones, an infrared sensor, two soft arms, two pneumatic hands, and speech 

recognition and text to speech capabilities.  
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 Currently, the arm employs a non-linear controller [Northrup 2001] inspired on a 

biological system. The hands are composed of a motored thumb and forefinger, and 

pneumatic distal fingers. This allows for a better grip in the hand. Additionally, the 

camera control works through a neural network that provides the fixation point for both 

cameras [Srikaew 2000, pp. 82-85]. 

 

 

Figure 1. The humanoid robot ISAC. 
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The IMA Architecture 

The intelligent machine architecture encompasses a high and low level of 

abstraction. At the former level, the architecture consists of a multi-agent system and a 

multi-agent network. The multi-agent system seeks to model the robot, the tasks it 

performs, and the environment. The multi-agent network has two functions: first, it 

controls the robot, and secondly, it is serves as a model for the robot system itself. At the 

lower level of abstraction, the agent implementation is based on component-object 

software. Hence, a relationship exists between the distributed agent level and the 

component-object network. The description borrows heavily from Pack [Pack 1997, 

2002]. 

The higher-level model is named the Robot-Environment model. The agent-based 

decomposition of this level empowers the architecture to ease the complexity of system 

integration, particularly by emphasizing encapsulation, reusability, and explicit 

connections between the agents.  The lower level model represents the higher level of 

abstraction and its relationships by a network of software modules denominated 

component objects that have an established protocol of communication. Consequently, 

the IMA is a system of parallel executing software agents formed from simpler and 

reusable component objects. This architecture is characterized by reusability, 

extensibility, handling of complexity, parallelism, scalability, reactivity, and robustness. 

The agent-based system can then serve as a model and a controller for the robot through 

the representation of lower level explicit software modules that manage the development 

of software reuse. The Robot-Environment model describes the robot in different sets of 

resources: 
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• Physical Resources: arms, head, hand, etc. 

• Skill Resources: visual tracking, grasping, etc. 

• Behavior Resources: collision avoidance, homing, etc. 

• Task Resources: finding objects, moving head, etc. 

• Environmental agents: representations of the outside world. 

All of these sets are dynamically connected by relationships. Inputs are modified 

through the computational processes created by these relationships to produce the 

outputs. In the Agent-Object model, the creation of agents is achieved by combining 

reusable subcomponents and their parameters. It is then through these relationships and 

reusable subcomponents that the architecture minimizes its dependence on the internal 

representations of the system. Figure 2 demonstrates the above description.  

The robustness of operation to an evolving system is strong. The network of 

agents remains unaltered by the changes undertaken in the software modules. The agent 

level controls the overall architecture yet it remains unaffected by alterations in the 

mechanisms that manipulate the inputs and outputs. The high level model provides a shell 

around the implementation level. It isolates the system from changes within an agent. 

There is great flexibility and operability in that the isolation allows the user to use 

different mechanisms without changing the overall structure of the system. Additionally, 

many component mechanisms can be defined at both run-time and design-time allowing 

for a dynamic configuration. The user is able to refine the performance of the system by 

executing and correcting faults at run-time. 
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Figure 2. IMA Development Process [Pack 2003, pp.  55]. 

 

Robot-Environment Model 

Agents can be said to play the role of actors and servers. The former uses other 

agents as resources and has a thread of execution, and the latter provides resources to 

other agents as well. It is in the robotics domain that agents provide information to other 

agents to trigger events. The model of action and communication leads to a different view 

of design and a more loosely coupled system. 
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Agents 

IMA agents are defined by the following set of properties: 

• Autonomous 

o Agents control their own subcomponents. 

o Agents are strongly encapsulated. Hence, their inner mechanisms 

do not affect other agent functionality. 

o Agents support interaction with other agents through relationships. 

• Proactive 

o Agents act locally based on their inner modules, resources, and 

received data from other agents. 

o Each agent is designed to make a decision or selection based on a 

state machine or some other process. 

• Reactive 

o Agents respond to changes in the environment. 

o Agents run continuously checking inputs, updating their state, and 

creating outputs. 

• Connected 

o Each agent models one concept. So to achieve complex behaviors 

interaction with many agents is necessary.  

o Connections can transfer simple data like numerical values, or data 

represented in forms that are more complex. 

• Resource Limitation  
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o All real systems suffer some degree of limitation. 

o The system must be able to identify these and adjust accordingly. 

o Relationships between agents contain several aspects that allow for 

this detection and adjustment mechanisms. 

One final aspect of IMA is that it is asynchronous. By having asynchronous 

agents, it is easier to simplify the system at a higher level of abstraction – here 

synchronization issues become negligible. Each local agent makes its own action 

decisions based on current data. 

 

Relationships 

 Relationships capture interactions amongst agents in two specific ways: 

• Software interactions: function signatures, sequences, and method calls. 

• Structural Interactions: spread activations, motion schemas, etc. 

In addition, the communication between agents includes an arbitration mechanism 

that gives priority to certain agents. IMA relationships represent a variety of arbitrations 

relationships such as: actuator arbitration, sensory arbitration, goal arbitration, and 

context arbitration. 

Therefore, by the encapsulation of agents the user can evolve individual agents or 

components in their respective levels of abstraction and further system capability through 

new relationships without negatively affective system performance. 
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Agent-Object Model 

Agents are concurrently executing modules to achieve a desired goal. They are 

linked to each other and have at least one thread of execution, some of them having 

access to hardware. They are also independent decision making modules made out of 

components that make up the internal representation of the former. Similarly, the agent’s 

overall state is a result of the state of the inner modules and their relationships. An 

agent’s decision could be a command to a hardware resource, a computation, or a 

communication event. 

 A model of an IMA agent will now be introduced. This model will provide 

information on how to implement agents from reusable components. It will allow for 

explicit representations of software configuration and on-line modification of agent 

systems. The model consists of four basic factors in providing robot control: 

• Agents: provide concurrency, scooping, and decision-making; they are decision 

objects. 

• Relationships: provide interaction protocols and connection ports, they are 

protocol objects. 

• Representations: provide communication, complex information, encapsulation; 

they are state objects. 

• Activities and Actions: provide algorithms, computations, decision process’; they 

are functional objects. 

The model relies in the concept of reusable components to ensure evolutionary 

growth of the system. The components can be used with different configurations and for 

different purposes. By simply editing some decision rules, the components can serve 
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different uses. No new modules need to be built. Integration occurs at a fine level of 

granularity. 

Agents are implemented through a set of components that follow typical design 

patters in object-oriented systems. They are now presented here and visualized in figure 

3. 

Agent Managers 

• They provide the platform on which the agents are built.  

• The main feature highlights a set of on-line interactive tools that allow agent 

implementation and development.  

Agent Engines and Activations 

• They conduct the action selection process for individual agents and the invocation 

of other agents.  

• Agent execution occurs in a parallel or sequential ways. 

• The Engine is based on a Finite State Machine concept. 

• Engines and activities are replaceable and upgradeable.  

• The current state machine is set in a hierarchical arrangement. 

Agent Representations 

o They serve as invocation mechanisms that perform computations, tasks, 

and state updates. 

Agent Resources 

• Resources available to agents include: data repositories, algorithms, and links to 

the states of other components. 

• They can be evaluated, invoked, and updated within an agent. 
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• Components can be simple and complex. 

Agent Component Managers 

• They are wrappers for component-objects. 

• They handle object persistence and provide a visual representation of the internal 

state of a component allowing the agents performance to be updated. 

Relationship Components 

• They encapsulate the connections between agents. 

• Connections range from simple data-flow to multi-way data arbitration 

mechanisms. 

• These components are encapsulated relationships that isolate the agents from 

changes in the relationships amongst themselves. 

 

Code Development Framework 

 In this section of the IMA description, abstract concepts are presented as a 

conceptual guide to develop IMA agents. The purpose is to encourage the developer to 

think in terms of large scale, more reusable components, rather than a simple algorithm or 

monolithic program. The abstractions of representations, mechanisms, and policies 

reduce the amount of any “hidden” interactions between components and force them to 

be explicit.  

 

 



 14 
 

 

 

Figure 3. IMA Agent Internal Structure [Pack 2003, pp.  66]. 
 

 For an architecture to be useful, it needs to make the work of the developer easier, 

faster, and more productive. With this in mind, a set of base classes written in C++ was 

created to reduce the effort needed to follow the constraints of the architecture. The code 

framework created provides a starting point to the agent-object model from a more 

traditional programming language. These base classes provide most of the common 

functionality required to create these agents. They typical functionality is now listed: 

IMA Component 
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• It is the generic class for an agent component. It requires minimal naming, 

persistence, and linking. 

Mechanism 

• It adds the invocation mechanism feature to the base class. It also provides a 

standardized way to invoke the mechanism. 

Representation 

• It adds proxy and source functionality and interfaces that support communication 

between a sender source and proxy representations. 

• Representations encapsulate communication across sources and proxy’s.   

• Mechanisms can be aggregated because this level of communication is 

encapsulated.  

Policy 

• This class has a scheduled thread of execution based in the operating system. 

• The class allows sequencing and decision-making processes’ to occur.  

• They invoke mechanisms in the agent state or external agents in which they are 

found. 

Agent Manager 

• It provides a platform for agent timing services, persistence management, and 

event dispatching.  

• The manager also takes care of the agent locator and the agent shell. This allows 

components to bridge the gap with the outside world. 
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Personal Review 

Through my personal experience with IMA I have discovered this architecture to 

be of great utility in working with robotic systems that demand a multi-agent system that 

is strongly encapsulated, scalable, modular, and reusable. 

The key to use the full of potential of the IMA the developer must be strongly 

familiarized with the inner workings of the architecture, its user interface, its state 

machine structure, and its communication protocol. Those that have used the IMA 

architecture to develop have criticized the architecture and labeled it as complex and 

slow. In my opinion, complexity and speed issues can be solved with a good 

understanding of the system. Evidently, there are down sides to the architecture and I will 

provide my view of these later on. 

 If the developer has a clear conceptual model of the process to be implemented, 

IMAs strong encapsulation and scalability provide ample flexibility to design a precise 

system. The robustness and efficiency of the system will then be a reflection of the 

quality of the programmed algorithms. Poor programming skills will be evident at the 

Robot-Environment level. Similarly, for the system to be quick to react and respond, 

proper parameters need to be established. Speed can be influenced by several factors, 

such as: the length and complexity of a calculation, the specified period of a given state 

in a state machine, and the number of event calls within a state. After much 

experimentation, many of the challenges described above were overcome. This most 

demanding challenge of the system is learning and becoming familiarized with it. 

Acquainting myself with IMA took many hours of hard work.  
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 A list of recommendations for improvement would include: a more user-friendly 

GUI; more reliable communication amongst agents - at times agents do not recognize 

certain calls; finally, the state machine is designed to operate in a sequential manner – 

and limits the functionality of the system. A distributed-parallel organization for the state 

machine would allow agents to run simultaneously and thus have multiple processes 

running in the humanoid. An improved version of IMA could be very useful in our 

continued efforts to research humanoid robotics.  
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CHAPTER III 

 

SENSORS 

 

 For the purposes of this research, two main sensory inputs were sought – vision 

and audio. Two stereoscopic color cameras and two high fidelity microphones act as 

entry points from the environment to the robots data structures. Audio signals serve to 

direct the robots attention to an area of activity. Visual information goes further and 

indicates the specific location (given by pan and tilt angles) of a given target. 

 

Vision 

 The primary sensory modality of humans is vision. Similarly, for humanoid 

robots, vision represents the most important sensory modality as well. Vision recognition 

of the environment is necessary for the robot to analyze its environment and perform 

intelligent motion behaviors. Robotic vision has been a very challenging field to 

scientists. The goal of this thesis is to direct the attention of the camera-head towards the 

object of interest through pan and tilt commands. A description of the hardware and 

software tools will follow. The latter will include an explanation of simple yet useful 

tools used to perform color segmentation and motion detection.  

 

Cameras 

 Two Sony XC999 cigar cameras were used for the camera-head of to achieve 

stereoscopic vision. The camera is an ultra-compact and lightweight, one piece, cigar 
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camera with 0.5 inches of a colored CCD array. A CCD array is described as a charge-

coupled device array. The latter contains light sensitive diodes that sweep across an 

image and generate a series of digital signals that are converted to pixel values. CCD 

cameras are characterized for low noise to signal ratios. The camera also features 

hyperHAD technology, which outputs pictures of high digital quality with a power 

requirement of 12VDC. Additionally, RGB signals and illumination levels can be 

adjusted externally [Sony XCC 2004]. 

 

Color Models 

 Before delving into the theoretical underpinnings of color vision, it is important to 

clarify the goal of the work done in image processing. A simple but efficient image tools 

was designed by Barile [1997] for the humanoid robot ISAC. It was desirable to direct 

the focus of attention of the robot to specific objects in the environment. To do this, 

objects were detected quickly and robustly by using color segmentation. Incoming 

images from the cameras are compared against predetermined color models to determine 

if there is a match. Post-processing on the segmented blobs leads to the detection of 

contiguous regions of similar chromaticity. The center of mass is then calculated and 

chosen as the focus of attention. Once a point has been chosen, camera movement 

algorithms can be chosen to direct the camera head to the appropriate location in space. 

Color images are dependent on different chromaticity and brightness variables. Thus, 

color segmentation techniques must account for two factors to achieve appropriate 

results. 
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 Colors can be described in a variety of different spaces. Each color space model 

exploits different properties of the visual field, and thus their uses vary according to the 

needs of the user. A brief exposition of the color space models will be presented next: 

RGB Color Space 

• This model expresses color as a linear additive relationship between the three 

primary colors known as red, green, and blue, and white light. 

• The three primary colors are based on a Cartesian coordinate system.  

• Each color can be determined with a vector representation of these colors. 

• There are a few disadvantages to the model: 

o  The spectral power distribution of the RGB model varies depending on 

the type of hardware used. The spectral power distribution can be 

described as the characterization of light by assigning a measure of power 

at every wavelength in the visible spectrum [Spectral Power Distribution 

2004]. 

o The RGB space provides a single measurement that contains information 

for both chromaticity and illumination; this lack of distinction makes this 

model inadequate for image processing. 

In view of this problem, the CIE (Commission Internationale de L’Eclairage) 

established a new color model with a new set of standard primaries known as the CIE 

1931. 

CIE XYZ 

• This model separates both luminance and chromaticity into two components: 

o Luminance component = Y. 
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o Two chromaticity components = X and Z. 

• This is a standardized model, which renders it independent from hardware-based 

materials. 

•  The spectral power distributions of the primaries X, Y, and Z, were established at 

5nm intervals between the wavelengths of 360nm and 830nm. 

• RGB to XYZ conversions are possible: 

 

Table 1. RGB to XYZ color space conversions [Barile 1997, pp.  9]. 
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• The luminance value of the CIE space is intended to reflect the luminous 

efficiency of the human eye. 

• CIE reveals perceptual non-uniformity. In other words, changes in the wavelength 

of the colors do not result in an equal change in the color perceived. 

Next, a description of normalized color spaces is presented. Normalized color spaces 

help to reduce color representations from three to two dimensions and helps to recover 

the true chromaticity in RGB or XYZ models regardless of the intensity of the illuminant. 

Normalized Color Spaces 

• In general, there are two methods of normalization: 

o The L1 normalization process allows scaled RGB values to lie on a plane 

where their maximum value is equal to one.  
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o This implies that only two of the three values are needed to know the 

complete model. Commonly, red and green values are used, since the 

human eye is not significantly influenced by the blue color. 

o The Euclidean distance between two normalized points depends on two 

angles. One found in between two adjacent lines - θ, and the other one 

found between the first line and the x-axis, θ1. See figure 4. 

 

 

Figure 4. L1 norm model [Barile 1997, pp.  10] 
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• The L2 normalization differs from the first one in that the values here are scaled 

onto a spherical line rather than linear model. 

o The Euclidean distance is a function of the angle between the lines. As 

opposed to the first technique, the Euclidean distance is a function of the 

angle made by the two lines that meet the points in space. This makes the 

L2 norm model useful for color segmentation methods that depend on 

color differences. See figure 5. 

 

 

Figure 5. L2 norm model [Barile 1997, pp.  10] 

 

CIE  L* u* v*  

• The L* u* v* color space was designed to overcome problems of perceptual non-

uniformity present in the other color spaces.  

• In this model, differences in wavelength size are equally perceivable by changes 

in color. 

• Light is represented in terms of luminosity – L, and chromaticity – u and v.   

• The topology of the L* u* v* color space is illustrated in the figure 6. 



 24 
 

• L*u*v* values can be calculated from non-linear transformations from the CIE 

XYZ space. It also depends on a white point (Xn, Yn, Zn): 
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Similarly, a separate related to color must be described. It is termed color 

constancy, and it describes the adaptive behavior seen in humans, whereby the colors 

perceived in environments that are illuminated by difference sources still look the same 

way. Actually, the wavelengths of the reflected colors from objects under different 

illuminants do change, but the brain uses an adaptation process that allows the human to 

perceive the same chromaticity. This behavior is of much value to robotic systems. It 

provides robustness to changes in the source of the illuminant, especially for those 

systems that do image processing through color techniques.  

 The outside world to the robot is dynamic and ever changing. Different visual 

effects are always present and the visual system of the robot needs to overcome the 
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unstructured nature of the environment. The algorithm that was implemented to produce 

color models for given image data was designed with an unstructured environment in 

mind. A simple reduction technique is used; it minimizes the effects of changes in 

brightness. It does so by converting RGB images to the XYZ color model. 

 

Color Segmentation 

 Color segmentation is a technique used in image processing to reduce the amount 

of information to analyze from the environment. In using this technique, one must make 

sure that the segmented regions represent a specific feature in the environment based on a 

standard criterion. Segmenting by color can involve different techniques such as: 

histogram modeling techniques, clustering, and neighborhood algorithms (region growing 

and split-and-merge techniques). The color segmenting software implemented for ISAC 

utilized histogram-modeling techniques.  

 Commonly, histogram modeling is performed on a priori data models from which 

statistical models can be obtained. For ISAC the model is based on probability ellipses, 

which perform statistical analyses on single colored objects.  

 The algorithm requires a predetermined segmented color to perform the statistical 

model on the data. Hence, the color segmentation is done beforehand. A choice of color 

space can be made by the developer. RGB, RG-normalized, and L*u*v* models are 

available. Finally, the algorithm creates a statistical model on the data and stores it in a 

knowledge base for later use.  

When an image is classified, every pixel value is analyzed in the image to 

determine if it fits the model. If true, then that pixel location is segmented. Image 
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preprocessing (downsampling and blurring) is available to the user to reduce the amount 

of information and noise.  Post processing is also done in the form of a morphological 

opening – that is an erosion followed by a dilation with a 3x3 pixel cross. The operation 

aids in overcoming effects from spurious pixels from the background, highly textured 

surfaces and camera noise.  

 

Probability Ellipse Model 

The color histogram of a green disc under fluorescent light in the normalized rg 

and L*u*v* color spaces is illustrated in figure 6. 

 

Figure 6. Histograms under fluorescent lighting: (left) Normalized rg color space, (right) L*u*v* 
color space [Barile 1997, pp.  23]. 
 

 It is evident that for each color space, the presence of the pixel values is clustered 

around a specific region in space. This property can be used by modeling the data as a 

two-dimensional joint normal distribution, or probability ellipse. Given N samples from 

two random variables X and Y, the expected values are given by: 
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 The expected values correspond to the mean value of the data set. The moment 

matrix, Λ , for the variables X and Y is given by: 
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Where,  
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Where, 2
xσ and 2

yσ are the variances of X and Y. There is also a correlation coefficient, ρ , 

is a measure of how closely related the two variables are and is defined by: 
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λ
ρ
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Where, xσ and yσ are the standard deviations of X and Y respectively. 

 

Figure 7. Geometry of the probability ellipse [Barile 1997, pp.  25]. 
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 The parameters , , , ,x y x yµ µ σ σ and ,ρ are used to find the probability ellipse with 

uniform distribution inside and zero distribution outside. The equation for the ellipse is: 
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 In figure 7, the center of the ellipse is found at ( , )x yµ µ . The parameter ? is the 

number of standard deviations captured by the ellipse. The long side of the ellipse is 

equivalent to ,xλσ  while the short side is equal to .yλσ  The angle of rotation of the 

ellipse about the center, a is defined by:  

 1 2 2 2 2 2 21
tan (2 ) ( )

2 y x x y y x
x y

α σ σ ρσ σ σ σ
ρσ σ

−   = − ± + −    
 (3.18) 

 Hence, we can model the color of interest through this statistical procedure in a 

two dimensional color space.  

 Pixel classification checks to see if the pixel value falls within the ellipse’s 

boundary. The user would choose a value for the standard deviation, ?, and then do a 

pixelwise computation to find the pixel value: 
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If, 1,a ≤ the pixel is part of the ellipse and it is segmented. 
 
 

Focus of Attention 

 Once all the segmentation and post processing has been done, the algorithm finds 

the center of mass of the set of all foreground pixels. This is a simple procedure and is 

defined as: 
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Where, N is the total number of foreground pixels. This is a simple and quick 

method to find the center of mass. Although, it makes the assumption that only one object 

is being analyzed. If more than one object is segmented, the FOA will be somewhere 

between the objects. 

 

Motion Detection 

 The motion detection algorithm is a simple frame-differencing algorithm. 

Consecutive image frames are used to subtract the luminance values for each image. By 

using a predetermined value, the differences in luminance values are compared to the 

threshold. If the result is greater than the threshold, it represents a pixel that did not 

change in value, and thus is part of the moving object. All such pixels are segmented and 

later used to determine the center of mass of the blob. Preprocessing techniques like 

blurring and down sampling are used to reduce the amount of noise in the image. It is 

important to note that this is a simple and not very robust technique when coupled with 

the pan-tilt units. As soon as the head unit moves, noise is introduced in the image. 

However, the threshold value along with the specific type of motion allow for a fair 

tracking behavior of the camera head. 
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Audio 

 In this section, an introduction to auditory hardware and software modules will be 

purported. The bulk of this work specialized in finding an auditory cue as sensory input 

for the robot to detect the presence of activity in the environment. 

 

Microphones 

 The MXL microphone is characterized by its pre-amp circuitry and a balanced 

transistor output for maximum frequency response. It has high sensitivity and low 

distortion recording capabilities. The frequency range captured by the microphone is 

between 20 kHz and 30 kHz. The microphone needs 48V of phantom power and it is 

known for its performance and reliability. The microphone is shown in the image below.  

 

 

Figure 8. MXL Microphone [MXL 2004] 

 

Sonic Localization 

 Sonic localization in humans is possible through a binaural mechanism. The dual 

sound receptors provides audio cues in the horizontal plane and in the vertical plane [Irie 

1995, pp.  15]. For ISAC, a simple but efficient sonic localization algorithm was sought. 
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Using two microphones, the direction of sound can be easily computed in the horizontal 

plane.   

 The algorithm was based on the premise of comparing the sound energy ratio 

between the right and the left audio channels for selected space locations. A sound 

intensity envelope was collected and filtered for both channels. The sum of the squares 

for each signal was computed and used as a measure of energy. The ratio between both 

channels was compared at eleven different locations: 

 

 
Table 2. Sonic Partitioning. 

 
-90 -60 -45 -30 -15 0 15 30 45 60 90 

 

The values of the ratios give clues as to the direction of the signal. The values are 

used as a reference for future measurements and used to determine the location of 

incoming signals. The standard ratio values can be calibrated at any time, thus providing 

an easy was to adjust the system to different noise conditions. 

 Once an incoming signal is received, the ratio of both channels is computed and 

by means of linear interpolation, a single angle interval is selected as the direction of the 

sound cue. The latter is presented as a pan angle that can be utilized by other agents in the 

system. 
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CHAPTER IV 

 

MOTION 

 

 Once the robot possesses knowledge about its environment, behavioral responses 

can take place. This is similar to psycho-physiological tests where behavioral responses 

to low-level inputs are examined. Hence, when the appropriate image processing 

techniques have taken place, a spatial location is retrieved and passed to the pan-tilt unit 

to produce the appropriate motion. Furthermore, when the pan-tilt unit fixates on the 

desired object a Cartesian location in space can be calculated from the angles of the 

cameras. This position is used to command the arm to articulate its motion towards the 

gazed target and perform a reach-and-grasp behavior. 

 

Eyes 

 The visual system of the robot is implemented through both the hardware and the 

software. The hardware cameras allow the robot catch images of the outside world. This 

single sensory input is the most significant of all sensory input and thus provides the most 

information. The images then needed to be analyzed as was described in the sensors 

section. Yet, for the information to be of true value to the robot, it needs to be 

corresponded with meaningful movement on the robots part.  
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Pan-Tilt Unit 

 The pan-tilt unit is a high-speed and accurate positioning camera, reaching speeds 

of up to 300 degrees/second. Two separate and independent pan-tilt units are connected 

to a 1400MHz computer via two RS-232 connections. 

 

 

Figure 9. Pan-Tilt Unit [Direct Perception 2004] 

 

Head Controller 

 The camera head controller is the agent component that deals with the pan-tilt unit 

motion. The controller should allow the following properties to take place: 

• The pan and tilt motions for each individual camera should be precise and 

available for all agents in the system. 

• Each pan and tilt motion should be independently controlled. 

• Velocity and acceleration should be controllable. 

 

The pan-tilt units used on ISAC react quickly and precisely to inputs from the 

head controller. The left pan and tilt motions are controlled by the first RS-232 port, 

while the right pan and tilt motions are controlled by the second port. In both units, the 
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velocity and acceleration are controlled. The information contained within this section 

was largely produced by Atit Srikaew [Srikaew 2000]. 

 

Saccades 

 Saccades are typical eye movements that help focus the object of attention unto 

the fovea. Similarly, the purpose of a saccadic motion in a visual system is to move the 

gaze of the controller to a point inside the fovea. The saccade function in the system was 

created by making use of two modules: the saccade map trainer and the saccade 

command generator. The advantage for using a neural net as a mapping trainer is that no 

camera calibration is needed and it can be done in a fast and accurate way. It is important 

to recognize the fact that the original neural network was implemented for a different 

head configuration. At the time of the hardware modification, it was deemed acceptable 

to keep the output of the network for the new configuration due to the similarities 

between the old and the new structure. Training with the new head will be part of future 

work. Nonetheless, the description of the current model is presented below. 

 The map trainer provides an adequate transformation for the saccade command 

generator to issue accurate commands to the pan-tilt unit. The training is done off-line by 

using a back-propagation learning algorithm. Each pan-tilt unit is trained individually. 

The inputs to the neural net are the ?x and ?y position of the gazed target, whilst the 

output nodes are those corresponding to the pan and tilt motions respectively. A hidden 

middle layer that contains 25 hidden neurodes is used and is governed by a bipolar 

hyperbolic tangent sigmoid function. See figure 10 below for a diagrammatic 

representation of the neural net. 
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Figure 10. Feedforward Neural Network for Saccade Training [Srikaew 2000, pp.  X; this figure 
has been modified to reflect updates in the system]. 

 

 By using sample input-target pairs shown in figure 11a and a sum-square error of 

0.02, the resulting map shown in figure 11b was obtained: 

 

 

Figure 11a and 11b. Saccade Map Training [Srikaew 2000, pp.  102]. 
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 The saccade command generator uses the map to produce motor commands 

corresponding to target-position inputs. A standard feed-forward network is used to 

calculate the output values, which are sent to the Eye Motion Center to control the 

camera head. See figure 12. 

 

 

Figure 12. Implementation of Saccade Control [Srikaew 2000, pp.  X; this figure has been 
modified to reflect updates in the system]. 

 

Post saccade processing was performed to correct the neural weights in the 

network to minimize the error of the transformation. 

 

Smooth Pursuit 

 Smooth pursuits are designed to keep a target in the fovea. The eye movement 

utilizes two parameters to perform its motion: target position and target velocity. The 

latter is used to predict the future position of the camera and allow for a smoother 

trajectory in the camera head. See figure 13. 
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Figure 13: Positional vector and velocity vector used for smooth pursuit control [Srikaew 2000, 
pp.  88]. 
 

 Two concentric regions of different radii are defined as: the fovea with a radius of 

F pixels, and the dead zone with a radius of D pixels, where, F > D. See figure 14. 

Smooth pursuit’s also known as proportional tracking motions occurs when the target is 

located outside the dead zone but inside the fovea. If at any time the target exits the 

fovea, a saccade is used to reach the target. 
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Figure 14. Definition of Fovea and Dead Zone Area in Image Plane [Srikaew 2000, pp.  86] 

 

 The positional vector is the distance of the target from the center of the fovea and 

is defined as: 

 ( , ) ( , )x yp p p x y
→

= = ∆ ∆  (4.1) 

 2 2P x y= ∆ + ∆
ur

 (4.2) 

The velocity is described equally:  

 ( , )x yv v v
→

=  (4.3) 

 2 2
x yv v v= +

r
 (4.4) 

Where, the units are in pixels per time unit. 
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 It follows that the motor commands , , , ,PL PR TL TRm m m m can be calculated by 

making use of the distance of the target and constant gains , , , ,PL PR TL TRκ κ κ κ for the left 

pan, right pan, left tilt, and right tilt motors. 

 *PL PL Lm xκ= ∆  (4.5) 

 *PR PR Rm xκ= ∆  (4.6) 

 *TL TL Lm yκ= ∆  (4.7) 

 *TR TR Rm yκ= ∆  (4.8) 

Where, the L and R subscripts describe the left and right images respectively. 

 

 To predict target position, let ? t be the time interval between consecutive image 

frames, let v
r

be the velocity of the target at time t, so the position of the target at the next 

frame t + ?t be: 

 *t t t xx x v t+∆∆ = + ∆  (4.9) 

 *t t t yy y v t+ ∆∆ = + ∆  (4.10) 

This produces a smooth motion in the camera head when it tracks a given target. 

 

The camera head controller is an open loop controller and receives no feedback. 

Object trajectories vary dynamically with the environment making it hard to estimate the 

exact trajectory. Overshoots in the camera head may occur; to lessen this effect a low-

pass filter is used to reduce the overshoots. See figure 15. 
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Figure 15. Low pass filter for smooth pursuit [Srikaew 2000, pp.  105]. 

 

 The filter is applied to each motor command before it is sent to the pan-tilt unit. 

Let tm be the current motor command, and 1tm − be the previous motor command. The 

low-pass filter signal, m, is determined by: 

 1(1 )t tm m mα α −= × + − ×  (4.11) 

Where, α is a filter constant and 0 1α≤ ≤ . If 1,α =  .tm m= Hence, the filter’s 

effect is negligible. The value of a was determined empirically to obtain the best 

performance in the camera head. 

 

System Integration 

The visual system combines all the modules contained vision sensing, and eye 

motion. The images provided by the cameras are captured by a device that encapsulates 

all frame grabber functionalities. Then, objects can be extracted from the environment by 

means of color segmentation of motion detection. The center of mass of the segmented 

blobs is calculated and used to provide target motion information and target position 

information. The former yields a velocity signal later used by the smooth pursuit module, 
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while the latter yields a target position used by the saccade module. Both eye movements, 

experience a slight delay that accounts for the movement of the camera. Yet, data streams 

are passed as quickly as possible to keep the camera head on target. Saccades and smooth 

pursuit’s behave similarly to each other. These behaviors can be executed independently 

or in conjunction.  

 

 

Figure 16. System Integration for Visual system [Srikaew 2000, pp.  116; this figure has been 
modified to reflect updates in the system]. 
 

Pneumatic Arms 

The humanoid robot, ISAC, is actuated by pneumatic “artificial muscles”. These 

were first developed by J. L. McKibben in the 1950’s as orthotics for polio patients 

[Klute, 1999]. Klute and Hannaford [1998] describe them as actuators made from an 

inflatable, tubular inner bladder sheathed with a nylon double helix weave that shortens 
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lengthwise when expanded radially [1998]. Those two main components are clamped 

with fittings at both ends, one of which contains an air intake. The nylon sheath holds 

constant the volume of the gas within the rubber tube. Therefore, as they are inflated, the 

actuators contract along the axis of the tube. Similarly, as they deflate they expand along 

the axis. If one end is fixed, the other will move a load in an approximately linear fashion 

[Daerden 2002]. The arms exhibit compliance as a direct result of two factors: a 

pneumatic actuator operates on the basis of gas compressibility, and its inner bladder is 

elastic. Even if the gas pressure remains unchanged, an applied force that changes the 

length produces a spring-like behavior in the rubber material of the bladder which 

enhances the compliance of the actuator beyond the compressibility of the gas. Because 

of their constituent materials, McKibben air muscles are lightweight and have a 

characteristically high force to weight ratio. Other significant features include direct 

hands-on connections, easy replacement, and safety due to their natural compliance 

[Klute 1998, Daerden 2002]. 

 At its inception, ISAC used “Rubbertuators” — McKibben air muscles produced 

by the Bridgestone Corporation. The Rubbertuators have since been replaced with UK’s 

Shadow Robot Company air muscles. These new arms produce less hysteresis and 

require less power consumption than the original Bridgestone actuators. 

 

 

Figure 17. Shadow’s Rubbertuators [Shadow Air Muscles 2004] 
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 ISACs arms have six degrees of freedom: a base that rotates about the vertical 

axis, a shoulder that rotates about the horizontal axis; and an elbow and wrist that rotate 

both around the x- and y- axes. 

 Each joint has a pair of air muscles that act as opposing muscles. They are defined 

as agonist and antagonist muscles – they need to be coupled to produce motion in two 

directions. As one actuator pushes a load, the other one will act to stop it, by balancing 

the pressure in the arms the desired position can be achieved. The control loop and model 

will be explained next. 

 

Control 

This section will include a complete description of the control mechanisms for the 

soft arms of the humanoid robot ISAC. Hardware details will be discussed first, secondly 

they the control loop paradigm is presented, followed by the controller model and 

implementation, and finalized by the arbitration loop. 

 

Hardware Details 

The air flow necessary for the artificial arms to work runs through a compressor 

and an air dryer to ensure the purity of the air - rubbertuators and valves are susceptible 

to impurities in the air [Alford 1999].  

 Physical angles in the arm are computed by converting encoder angles by the 

following equation: 
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( )RawEncoder EncoderOffset

PhysicalAngle
EncoderGain

−
=  (4.12) 

Most angles in the system deal with logical angles as opposed to physical angles. 

The joint space angles and the physical angles differ by virtue of the geometry of the 

robot. The following equations are used to map between these two forms: 

 L1 = p1 (4.13) 

 L2 = p2  (4.14) 

 L3 = 0.5(p3 + p4)  (4.15) 

 L4 = p3 - p4  (4.16) 

 L5 = 0.5(p5 + p6)  (4.17) 

 L6 = p5 - p6  (4.18) 

The equations can be rearranged to solve for the physical angles:  

 p3 = L3 + 0.5 * L4  (4.19) 

 p4 = L3 - 0.5 * L4  (4.20) 

 p5 = L5 + 0.5 * L6  (4.21) 

 p6 = L5 - 0.5 * L6  (4.22) 

Forward and inverse kinematics can be used to move the arm to desired positions.  

The control loop is described next. 

 

Control Loop 

The control loop is explained in the CIS Technical report [1999]. Figure 18 shows 

these steps that are delineated below: 

• Position commands are introduced via the “Desired Logical Angles” component. 



 45 
 

• The commands are filtered with a first order IIR low-pass digital filter.  

• The filtered angles are converted by the sampler mechanism to “Desired Physical 

Angles.” 

• The desired and actual physical angles are used to compute the pressure output. 

• The sampler then drives the servo valves which control the pressure in the 

artificial muscles. 

 

 

Figure 18. Soft Arm Agent Control Loop [Alford 1999, 2.2] 

 

Controller 

 The most recent controller for ISAC was developed by S. Northrup in 2001. 

Northrup’s motivation for creating a new controller was to design a humanoid robot 

whose arm movements were smooth and safe, particularly for fast goal-directed motion. 
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These improvements would enhance the overall experience for humans when interacting 

with ISAC [pp. 7-9]. 

 Northrup’s controller was biologically inspired. Before the control paradigm is 

presented, a brief description of human arm EMG activation levels is given [pp. 72]. 

Based on Yamazaki’s work [Yamazaki 1995] it was shown that for quick arm motions, 

there is reciprocal activation in antagonistic muscles that is usually followed by co-

activation of the muscles when the movement terminates. Reciprocal activation is also 

known as triphasic activation and it describes the agonist-antagonist-agonist sequence of 

EMG signals in the muscle. It is important to decompose motion into horizontal and 

vertical planes. EMG activation levels differ since different forces are at work. For 

instance, in the horizontal plane, once motion ceases the EMG signal disappears; but 

according to Flanders [1996] in the vertical plane, a triphasic pattern is superimposed 

with tonic activation (activation levels are needed for quasi-static postural control) 

patterns. Flanders also outlined a method to decompose the signal into its tonic and 

phasic components, allowing the phasic portion of the signal to be analyzed. Since ISACs 

arm structure is based on antagonistic artificial muscles and the goal is to articulate reach 

motions in both the horizontal and the sagital plane, ISACs arms can be activated and 

controlled in a manner similar to those in humans. 

 Hence, ISACs arms are modeled after the tonic-plus-phasic control paradigm. 

EMG signals in humans are similar to those of pressure in McKibben actuators. As force 

increases in muscles, EMG activation increases, and the length of muscle decreases. In 

McKibben actuators, when force increases, pressure increases likewise, whilst the length 

of the rubber decreases. Hence, a mapping of the reaching motions and the pressure 
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levels of the rubbertuators is needed. The mapping and model was developed through 

experimentation by (a) evaluating the tonic activation levels for postural control, and (b) 

evaluating the phasic activation level for reaching movements in the vertical plane was 

superimposed [Northrup 2001, pp.  73-76]. Thus an open loop architecture that models 

the tonic and phasic signals as time sequences for the arm to perform reaching motions 

was implemented and is shown in figure 19.  

 

Figure 19. Open loop control architecture for controlling the reaching movement’s of 
ISACs arms [Northrup 2001, pp.  76]. 
 

 Reaching motions may employ a variety of sensory modalities for motor control – 

amongst those, visual and proprioceptive feedbacks are present in ISAC.  However, if the 

desired motion is a fast-directed movement toward a target, there is not enough time for 

visual or proprioceptive feedback loops to be effective [pp. 74]. Thus, a feedforward 

control technique was chosen to overcome this problem. Northrup stated, “the research 

conducted for (his) this dissertation is a novel approach to the problem of reaching in a 

vertical plane with a nonlinear actuated robot arm” [pp.75]. To successfully implement 

the feedforward tonic-plus-phasic control paradigm, proprioceptive feedback needed to 

be incorporated [p. 84]. Based on the biological motor control hierarchy presented by 
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Crawford [1998] and shown below (figure 20) for simplicity it was shown that the long-

loop error feedback lasts around 100 milliseconds. 

 

Figure 20. Motor Control Hierarchy [Crawford 1998, pp. 7]. 

 

 Northrup referenced the error efferent signals after the feedback could occur. The 

controller compared the actual motion with the programmed one and if the difference 

exceeded an empirically calculated threshold, the feedback error controller would adjust 
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the motion. A block diagram of the final controller is shown below in figure 21. In it 

Xstart , Xgoal, are the initial and final goal positions, Reaching Time is the duration of the 

movement, and Load Size is the weight of the grasped object. For a given set of 

parameters, a motor program is known and is sent to the artificial muscles as a time 

sequence of the sum of the phasic and tonic activation levels. Also, after one hundred 

milliseconds the feedback loop was activated, see figure 21. 

 

  
Figure 21. Block Diagram of Tonic-plus-Phasic Plus Feedback Controller [Northrup 2001, pp. 
85]. 

 
 

Arbitration Loop 

 The arm as mentioned earlier can be articulated by providing goal positions in 

joint space or Cartesian space form. Cartesian commands are converted to the desired 

Cartesian position by means of an IMA object component called “CartArb.” This location 

is converted to angles by inverse kinematics. The values are sent to the “KinLink” 



 50 
 

component. This in turn is used to compute the desired logical angles, which are used by 

the control loop, see figure 22.  

 

 

Figure 22. Soft Arm Arbitration Loop [Alford 1999, 2.3]. 

 

Similarly, the joint space angles can be converted to a Cartesian position by 

means of forward kinematics. Both Cartesian and logical angles can be sent to other 

agents through IMA relationships. 

 

Hand 

 ISAC’s hand has undergone changes to increase its control. The hand is a hybrid 

design that consists of a motored power thumb and forefinger and pneumatic distal 

fingers. The hand was implemented J. Christopher, and this description borrows from his 

work [Christopher 1998] and is shown in figure 23. 
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Figure 23. ISACs Hand. 
 

The motored thumb and forefinger are driven by mechanical nuts. Also, the rest 

of the fingers use pneumatic actuators for additional control and increased number of 

degrees of freedom. A PC controller card specifies the desired pressure on gas valves that 

either open or close the hand. 

 

Air Passages

Cylinder Piston

Chamber

 

Figure 24.  Pneumatic Cylinder [Alford 1999, 4.2]. 
 

Additionally, the hand possess proximity sensor to gain timing and position data. 

These sensors allow for more informed grasping decisions. The photoelectric sensors are 

placed in the palm of the robot. This allows the robot to sense the workspace environment 

for all grasping situations. Two sensors are used in the palm; one measures distances of 

100mm and the other measures distances of 10mm. See figure below.  
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Figure 25. Photoelectric Sensors [Alford 1999, 4.5]. 
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CHAPTER V 

 

RESEARCH: SENSORY-MOTOR CONTROL 

 

The research focus of this thesis is based on sensory motor coordination. The 

theory behind sensory motor coordination, from now on referred to as SMC, is reported.  

As described by Cambron and Peters [2000], at its foundation, sensory motor 

coordination is the basis for behaviors for all animals. It behaves as a feeback loop 

through which an animal learns the environment producing a change in both. Motion in 

animals is produced by a contraction of the muscles, which is triggered by 

electrochemical signals that originate in the motor neuron circuits. Motion causes the 

environment to move with respect to the animal which results in changes in its sensory 

input. The sensory organs transduce energy from the environment into electrochemical 

signals that are carried by the circuitry of sensory neurons to produce a spatio-temporal 

representation of the world. There is an intimate relationship between the sensory signals 

and the motor signals, giving rise to the sense-act paradigm.  

 Similarly, SMC is useful for robots to experience and modify their environment. 

In machines, each sensor is modelled as an independent agent or module and yields basic 

motor reactions typically called “reflex reactions.” These reactions can be sequential or 

concurrent, each behavior can be activated or inhibited on the basis of the task and the 

context of the environment. Complex behaviors in turn are produced by combining 

several meta-level behaviors.  
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 There is evidence to suggest that SMC serves as a foundation for higher level 

learning. The basic information obtained from the environment can be used to deliberate 

based on some goal a sequence of tasks to execute. As demonstrated by Peters et al. 

[2004], robots can learn from their own experience by constructing models of the 

dynamics of its own SMC data. Teleoperation is the means to data acquisition. In 1997, 

Pfeifer reported that both sensory and concurrent motor data could be represented by a 

vector-time series formed by clusters in a sensory motor state-space. Where, the locus of 

each cluster in the state-space would be equivalent to a meta-level behavior, giving rise to 

categorization of the environment for specific SMC events. When a robot performs a task 

and its SMC vector time-series is recorded, a smooth space-state trajectory is seen, 

partitioned by a series of jumps or clusters of information that demarcate different meta-

level behaviors. 

 Peters et al. [2004], then showed that by learning a set ot trajectories that cover 

the extreme points of the workspace, the task can then be executed autonomously by the 

robot under many conditions. Even in new situations, the superposition of basic behaviors 

is used to give rise to the new task.  

 It is with this research interest, that the task of putting together a functioning 

humanoid robot was done. By using ISAC to emulate human reactions to sensory 

information, two results may be achieved: to learn more about the environment and react 

to it in a human-like fashion, and to through experience yield autonomous behaviors. A 

description of the demonstrations implemented for ISAC now follows. 
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CHAPTER VI 

 

AGENTS 

 

 As described earlier, the IMA architecture allows for the implementation of 

multiple agents. Each agent is composed of multiple components that provide the agents 

with specific functionality. A total of six agents were used: the Sound Agent, the Camera 

Agent, the Head Agent, the Hand Agent, the Arm Agent, and the Trajectory Agent. The 

function of each agent and its main components will now be presented. 

 

Sound Agent 

 The Sound Agent is used to find the direction of the sonic cues provided when an 

agent in the environment emits any kind of noise. There is a predetermined threshold 

value, used to avoid any noise values from being detected. The agent’s main functionality 

within the scope of this work is to present the direction of the sound cue. The cue is 

presented in the form of a pan angle, with the purpose that the camera head can respond 

to this representation in a natural way. The angles are provided in intervals of 15 degrees 

starting from the center. Angles in the clockwise direction are negative, while those in the 

counter-clockwise direction are positive, see table 3. 

The angles are presented in an array-like form such that the pan angle is the third 

element of an array-like structure. An image of this is shown in figure 26. 
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Table 3. Sound Localization Angles. 
 

Direction Angle 

Clockwise -90 

Clockwise … 

Clockwise -15 

Center 0 

Counter-clockwise 15 

Counter-clockwise … 

Counter-clockwise 90 

 

 

Figure 26. Sound Agent. 
 
 

 Appended in table 4, a description of each of the components in the agent is 

provided. 
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Table 4. Sound Agent Components 
 

Component Name Component Type Purpose 

CommandCom Command Communicator Sends events to other 
agents. 

Current Direction Vector Signal Reports current sound cue 
direction 

Direction History Vector Signal Reports past sound cue 
directions. 

Direction Queue Text Queue Reports angle and time in 
text (for SES). 

SME State Machine Engine Finite State Machine 
SMRep State Machine Representation Interface to State Machine. 

 

Camera Agent 

 The Camera Agent is used independently for both the right and the left cameras. 

The first function of the agent is to catch the images coming in from the cameras. This is 

shown in figure 27; depending on the desired function the color segmentation or motion 

detection techniques can be selected. Currently only one of these can be utilized at any 

one time. If segmentation takes place, the center of mass of the blob is calculated and 

returned as the relative position in the window. 

 

  

Figure 27. Camera Agent. 
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Appended in table 5, a description of each of the components in the agent is 

provided. 

 

Table 5. Camera Agent Components. 
 

Component Name Component Type Purpose 

Color Segmenter Mechanism Segments according to 
color model. 

Detect Motion Mechanism Segments according to 
motion. 

Frame_grabber Mechanism 
Catches image from camera 
and sends it to a window in 

the GUI. 

Output Mechanism Repository for processed 
image. 

Centroid Vector Signal Displays location of 
segmented object. 

Image Mechanism Repository for caught 
images. 

Noise Filter Intel IPL Filters input image. 
SME State Machine Engine Finite State Machine 

SMRep State Machine 
Representation Interface to State Machine. 

 
 

Head Agent 

 The head agent serves as the “brain” of these sensory-motor demonstrations. First, 

it will be described in the context of its relationship to the sound and Camera Agents, and 

then in the context of its relationship with the motor agents. The head agent receives the 

focus of attention from both of the Camera Agents. This is done through a simple proxy 

connection. The focus of attention in the cameras is then used in an attention network that 

provides a single fixation point in the form of camera coordinates. A side note is of 

consideration. ISAC underwent a recent pan-tilt unit change. The older unit worked under 

a slightly different set of coordinates, that is: [Left Verge, Right Verge, Pan, and Tilt]. 
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The head agent has been revamped to handle the older set or the current set for the two 

independent pan-tilt units: [Left Pan, Left Tilt, Right Pan, and Right Tilt]. At any time an 

incoming set of data in the older form appears, the data is converted to the new form. 

Once the fixation point is acquired, there are several ways to move the head, either 

through direct mapping, or through saccadic or smooth pursuit movements. The choice of 

movement is determined by the user in advance, and is then established in the finite state 

machine of the agent. Additionally, by using the angle information obtained from 

sampling the pan-tilt units, the depth of the agent in the environment can be calculated in 

Cartesian coordinates. The latter serves as the transition point to the motor segment of the 

discussion. The Cartesian coordinate of the gazed target is the goal for all the motor 

activities that take place. The depth estimation information is passed to the Trajectory 

Agent. Essentially, the latter uses the coordinate to create its path in space, which is 

articulated by the Right Arm Agent. An image of the Head Agent is seen below. 

 

 

Figure 28. Head Agent. 
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Appended in table 6, a description of each of the components in the agent is 

provided. 

 
Table 6. Head Agent Components. 

 
Component Name Component Type Purpose 

3DOutput Vector Signal Displays Cartesian location. 

CommandCom Command Communicator Sends events to other 
agents. 

Depth Estimator Mechanism Calculates depth of object. 

EyeMotionControl Mechanism 
Calculates fixating point 

from incoming eye 
movements inputs. 

Head Command Mechanism 
For former head format. 
Tells the pan-tilt unit to 

move. 

Head Sample Mechanism For former head format. 
Sample the pan-tilt unit. 

L-Centroid Vector Signal Incoming position of object 
from left camera 

Motion Link Motion Link Links agent to the arm 
agent. 

PTHeadCommand Mechanism 
For current head format. 
Tells the pan-tilt unit to 

move. 

PTHeadSample Mechanism For current head format. 
Sample the pan-tilt unit. 

PTSaccade Mechanism Performs saccade 
calculations. 

PTSmoothPursuit Mechanism Performs Smooth Pursuit 
calculations. 

R_Centroid Vector Signal Displays positions from 
right camera. 

SME State Machine Engine Finite State Machine 

SMRep State Machine 
Representation Interface to State Machine. 

TargetVelVectory Dynamic Vector Calculates velocity of 
target. 

VisualInputRep Mechanism Performs neural net 
calculation. 
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Hand Agent 

 The Hand Agent in line with its hardware properties has two different grasps 

mechanisms, a fast grab and a slower but more precise grab. The former does not use the 

motored fingers, whereas the latter does. The choice of grasp is selectable and can be 

registered in the finite state machine. Additionally, the hand contains proximity sensors 

that indicate the presence of a nearby object or obstacle. This information is used to 

prevent false (empty) grasps. Typically, the hand is called to use at the completion of an 

arm trajectory. The agent interface is shown below. 

 

 

Figure 29. Right Hand Agent. 
 

Appended in table 7, a description of each of the components in the agent is 

provided. 

 

Right Arm Agent 

The Arm Agent contains components that control the arm and perform the 

kinematic manipulations to articulate the appropriate motion in the arm. 
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Table 7. Hand Agent Components. 

 
Component Name Component Type Purpose 

Current Position Vector Signal Displays actual logical 
angles. 

DIO Mechanism Reports the digital 
input/output signal. 

Desired Position Mechanism Displays logical angles. 
Encoder Vector Signal Displays encoder values. 

GenEngine General Engine Runs the sampler 
mechanism. 

SME State Machine Engine Finite State Machine 

SMRep State Machine 
Representation 

Interface to State Machine. 

SampIndPressure Mechanism Controller for hand. 
VecEval Mechanism Measures for proximity of 

objects in hand. 
 

Goal locations can be passed to the arm in two forms: Cartesian coordinates and 

joint angles. In the work presented here, all goal locations were specified in Cartesian 

coordinate form. See figure 30. 

 

 

Figure 30. Right Arm Agent. 
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Appended in table 8, a description of each of the components in the agent is 

provided. 

 
Table 8. Right Arm Agent Components[Northrup 2001, pp. 161] 

 
Component Name Component Type Purpose 

CartArb Arbitration Allow Cart command to 
arm from other agents. 

CartLink Motion Link Cart command to input, 
activation, & feedback. 

CmdArb Arbitration 
Allow Logical Angle 

command. To arm from 
agents. 

DesLosAngles Vector Signal Transmit desired logical 
angle data. 

DesPhysAngles Vector Signal Transmit desired physical 
angle data. 

DesXYZPos Vector Signal Transmit desired Cartesian 
position data. 

DesXYZPosToFile Mechanism Record desired Cartesian 
position to data. 

Engine  General Engine Allows automatic 
mechanism activation. 

Fkin Mechanism Compute forward 
kinematics. 

Filter Mechanism Infinite impulse response 
filter for des los angles. 

FilteredDesLosAngles Vector Signal Transmit filtered des log 
angle data. 

ForceData Vector Signal Transmit force-torque 
sensor data. 

Homer Mechanism Homing mechanism. 

Ikin Mechanism Computes inverse 
kinematics. 

KinLink Mechanism Transmit data as part of 
arbitration. 

LogicalAngles Vector Signal Transmit logical angle data. 
Phasic Controller Mechanism Controller for ISACs arms. 
PhysAngleToFile Mechanism Record physical angle data. 

PhysAngles Vector Signal Transmit physical angle 
data. 

Press Vector Signal 
Transmit pressure delta. 
(Either 6 delta-P or 12 
individual pressures. 
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PressToFile Mechanism Record pressure data. 
Pressure Bias Vector Signal Transmit pressure data. 

SMRep Mechanism State machine mechanism. 

SampIndPressures Interface to State Machine. 

Soft Arm Sampler. 
Input/Output of physical 
data from and to ISAC’s 

arm. 

State3_PhysAngleToFile Interface to State Machine. Record physical angle data 
during state 3. 

State3_PressToFile Interface to State Machine. Record pressure data during 
state 3. 

Sate3_XYZToFile Interface to State Machine. Record Cartesian position 
data during state 3. 

XYZPos Vector Signal Transmit Cartesian position 
data. 

XYZPosToFile Mechanism Record Cartesian position 
data. 

 
 

Trajectory Agent 

 The trajectory agent is used to generate and play the exact trajectories for the arm. 

The arm motions are implemented based on a starting and ending points (intermediate 

points for specific routing can be used as well); the requested duration of trajectory; and 

the parameter type (either joint angles or Cartesian coordinates).  For the experiments 

described here, the starting point always was the home position of the arm, and the final 

point was obtained from the depth estimation component of the Head Agent. Hence a 

Cartesian based trajectory was created from the home position to the location of the 

desired object. The duration of the motion was established at two seconds. The number of 

trajectories varied depending on the task and goal. An iterative motion where the arm 

repeatedly reaches to the desired object could easily be generated. The agent is shown in 

figure 31. 
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Figure 31. Trajectory Agent. 
 

Appended in table 9, a description of each of the components in the agent is 

provided. 

By implementing these six autonomous agents and meaningfully interconnecting 

them a wide variety of sensory-motor behaviors can be achieved. An effort to produce a 

wide range of behaviors with different representations of cognition is presented in the 

next chapter.
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Table 9. Trajectory Agent Components. 
 

Component Name Component Type Purpose 
ArmLink MotionLink Links agent with arm. 

Bar_Gaze_Loc Mechanism Starting point for first 
trajectory. 

Bar_Gaze_VS Vector Signal Point displayed. 
Bar_Segway_Loc Mechanism Starting point for second 

trajectory. 
Bar_Segway_VS Vector Signal Point displayed. 
CheckHandVec Mechanism Proximity sensor. 

CmdCom Command Communicator Sends events to other 
agents. 

Gen_Traj Mechanism Generates trajectories given 
starting- and end- points. 

Home_Loc Mechanism End point for last trajectory. 
Home_VS Vector Signal Displays final position 
Play_Traj Mechanism Moves arm wrt trajectory. 

SME State Machine Engine Finite State Machine 

SMRep State Machine 
Representation Interface to State Machine. 

VSVQ Mechanism Transformation from vector 
signal to vector queue. 

ViaPoints Vector Queue Intermediate points in a 
trajectory. 
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CHAPTER VII 

 

DEMONSTRATIONS 

 

Five different demonstrations were implemented with the goal of conveying 

cognitive behaviors in the humanoid robot at the Cognitive Robotics Lab at Vanderbilt 

University. The demonstrations begin with a low degree of difficulty and increase with 

each consecutive routine. As stated before, the objective is for the robot to learn about its 

world and to interact with it in a meaningful way. 

 

Goals 

 The goal of the demonstrations is to produce basic behaviors by achieving sensory 

fusion and articulating basic motion in the robot. The latter is better defined in terms of 

human reactions. Humans possess a number of natural responses to stimuli in their 

environment – all of which can be affected by the attention factor in the human. When a 

sudden noise is heard by the ear, the human tends to look at the area of activity and tries 

to find the source of the sound. Sometimes this behavior can be accompanied by a desire 

to reach-and-grasp action to further analyze the source. 

 

Implementation 

 With this in mind, five different demonstrations were implemented to show each 

of the building blocks for these instinctive behaviors. These are now presented in the 

following list: 
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Table 10.  Description of demonstrations. 
 
Demonstration Description 
Audio + Head Motion Audio cues followed by camera-head motion. 

Audio + Head Motion (Color) One audio cue followed by camera-head motion 
and gazing through color segmentation. 

Audio + Head Motion (Motion) An audio cue followed by camera-head motion and 
gazing through motion detection. 

Audio + Head Motion + Arm 
An audio cue followed by camera-head motion and 
gazing through color segmentation. This then 
triggers a single reach motion. 

Audio + Head Motion + Arm 
An audio cue followed by camera-head motion and 
gazing through color segmentation. This then 
triggers a smooth reach-and-grasp motion. 

 

 Seven different IMA agents were used to produce the behaviors. Each 

demonstration required a different number of agents, ranging from two for the simplest 

performance, to seven for the most complex. Each agent has specific functionality and 

normally shares information with other agents.  

 The first demonstration displays a relationship between sonic cues and attention. 

Two agents were active in this demonstration: the Head Agent and the Sound Agent. The 

Sound Agent was designed to output the angle of a given sonic cue at intervals of 15 

degrees. The data was passed to the Head Agent through an array-based representation, 

where the pan angle was in the third element of the array. The scenario was set so that at 

any point in time a given audio cue was received, the pan-tilt unit would pan to the 

appropriate direction. This behavior was set to occur continuously. 

 The second demonstration was based on the same principle. However, the aim 

was to involve vision and achieve a gazing behavior from the cameras. Four agents 

participated for this second display: the Sound Agent, the Head Agent, and two Camera 

Agents. Color segmentation was used as the image processing technique to retrieve 
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information from the environment. Specifically, the color segmentation component was 

loaded with a model to find skin tones; hence, the camera-head fixated on the face of the 

person in front of it. An important step to note here is the transition for the pan-tilt unit in 

following commands from the Sound Agent to commands from the Camera Agents. A 

simplistic time-based event could have been used to change the mode of the pan-tilt unit 

after some time, yet this principle would not have been consistent with the desire to 

emulate human conduct. Humans turn and seek simultaneously. Hence, in an effort to 

assimilate the human system closer, an agent dispatch command was used. Whenever an 

audio cue was sensed successfully and the pan-tilt unit turned towards it, an event would 

be triggered causing the Head Agent state machine to shift triggering two additional 

events: 1) the Camera Agents are sent a command to initiate color segmentation, and 2) 

the pan-tilt unit begins tracking of the point of attention. The camera-head can fixate on 

any element of the environment that fits to the color model assigned. As mentioned 

before, this color model is trained with specific data to empower the cameras to detect a 

desired color. At this point, the camera-head will track the desired target in an 

uninterrupted fashion.  

 The third demonstration is similar to the one above. The difference is found on 

the gazing technique. Instead of using color segmentation to find a target in the 

environment, a motion detection technique is used. The latter will return the image 

position of the center of mass of a moving blob. Ideally, a robotic vision system would 

emulate that of the human being and simultaneously perform a number of image 

processing techniques. However, that is one limitation in our system, and thus two 

separate exhibitions were done to show these differences. 
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 The fourth run includes a more attractive behavior: reaching. Thus, an extra agent 

is needed for the control of the arm. The building blocks for this performance to take 

place are the same as the ones in the second demonstration. It is now fitting to mention 

the capability of the Head Agent to calculate the Cartesian coordinates. When the pan-tilt 

unit fixates on an object, the Depth Estimator component outputs an x, y, and z location. 

This Cartesian coordinate data is directly linked to the Arm Agent; hence, the arm moves 

at the same time the coordinates are calculated. The motion of the arm is characterized by 

a single rapid motion to the indicated point.  

 Finally, the fifth demonstration was implemented. This one is particularly 

characterized by a smooth trajectory for the arm and a grasp behavior. Two additional 

agents are used for this implementation – that is the Trajectory Agent and the Hand 

Agent. The capacity of the Trajectory Agent allows the arm to undergo a complex motion 

within its workspace. An endless number of movements can be produced through this 

agent. These motions are linear and are created based on starting and ending points. The 

points can be arbitrary or can be obtained through either the Depth Estimator component 

mentioned above, or the location of the arm through the XYZPosition component, which 

fulfills the same purpose as the Depth Estimator object – a Barney doll was used as a 

goal. In this demonstration, a complex motion consisting of four basic motions was 

utilized. The first motion began at the home position of the arm and then moved a few 

centimeters forward. The second motion continued from that current location to the 

coordinates given by the Depth Estimator component. At this point, the Barney doll is 

within reach of the hand. At this point, the state machine commands the hand to check 

through its proximity sensors the presence of an object. If true, a command is sent to the 
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Hand Agent to tell it to close its grip. After completion, the third motion resumes, taking 

Barney to the first starting point and then releasing him there. Finally, the arm is 

commanded to finish its motion at its home position.  

 

Limitations 

The inherent limitations of the demonstrations lie in the fact that they are reactive 

demonstrations. Any behaviors exemplified by ISAC are fixed responses to sensory 

input. Since the system lacks higher-level commands or dynamic attention points, ISAC 

can only perform single sequential tasks – turn to a given noise, fixate on a predetermined 

color object, and perform a reach-and-grasp motion on the seen object.  

The system at this cannot convey an adaptive behavior based on higher-level commands. 

It is not able to distinguish between desirable sounds and noise, it cannot autonomously 

gaze at different objects based on a change in the scenario, nor can it decide if it should 

hinder a reach-and-grasp motion if it were not appropriate. 

Finally, a complete integration and cooperation of auditory and visual sensory 

information is not in place. The humanoid cannot simultaneously use information from 

both inputs to paint a picture of the environment; rather, a sequential input string takes 

place, where auditory inputs trigger visual inputs, which in turn trigger articulate motion 

in the arm.  

Enhancing the system through further development and integration with higher 

levels of abstraction will be discussed in the FUTURE WORK section of this thesis. 
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CHPATER VIII 

 

CONCLUSIONS  

 

 The humanoid robot successfully utilized entry data from the environment to 

articulate motion in a reflexive manner. ISAC reliably detected the presence of agents in 

the world and displayed sensory-coupled reactions that assimilate those of a human baby. 

In the presence of noise in the environment, the robot was able to pan towards them in 

search of objects of interest. This reflex action sets the stage for a meaningful interaction 

between the machine and the human. When humans address the robot, the latter 

immediately turns toward the direction of speech empowering the robot to learn more 

about the human through voice commands and later on through visual cues. Similarly, the 

robot through experience can strengthen the associations between the given auditory 

information and the panning motion. Additionally, when the robot was directed to 

recognize objects whether through color or motion features, the humanoid effectively 

panned, fixated, and tracked its goal objects. Hence, once vision is at work with a point of 

attention potential salient features of the object of interest become available – color, 

motion, texture, shape, size, and emotion. In doing so, the robot has been empowered to 

analyze these features and gain understanding of its world. By using information from 

audio and vision, associations between specific sounds and visual features can start to 

occur. Finally, vision allows reach-grasp behaviors to occur. In reaching and grasping, 

the robot gains the ability to fetch and bring objects to a fixation point for further 

analysis. This type of interaction necessarily influences the environment, and dynamic 
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and continuous associations between motor, visual, and auditory cues can be learned and 

provide a deeper understanding of associations in the environment to the robot. The 

ground work has now been set to allow ISAC to develop more complex interactions with 

its world, whether it is by coupling with higher level agents, learning through its own 

sensory-motor vector space representations, or reacting to sensory information. 

 

Future Work 

 The breadth of research for this field of study is vast and unknown in many of its 

branches. Future research takes many directions and all of them need to be explored. The 

proficiency of all software systems can be vastly enhanced in an attempt to resemble 

those of the human system. At the base of all these, is the current software architecture 

used. Although scalable, encapsulated, and flexible, it still falls short in allowing for 

multiple fast parallel systems to act and interact together. Regarding the sensory part, the 

auditory system in the humanoid ought to be capable of detecting sound at a fine-grained 

level. Along with sound detection, its natural companion would be speech recognition 

and speech emission. In emulating humans, language comprehension and communication 

is essential for interaction. Of course, the visual system, one of the hardest to develop, 

calls out for much improvement in attempting to be more human in nature. The arm 

boasts a capable controller yet it lacks the adaptive nature that a human has. If the 

trajectory is to be changed at mid-flight, the current controller would not be able to 

change on the fly. An adaptive controller is necessary to modulate the actuator motion. 

Finally, the current hand (which was made in house) is unreliable and provides little 

functionality. It breaks down often and performs abrupt grasps with no measure of 
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goodness of grab. A dexterous and sensitive hand is desired, UK’s Shadow Robot 

Company [Shadow 2004] possesses a very dexterous hand. Such hand would enhance the 

robot’s world experience by being able to easily grasp-and-release, push-and-pull, and 

have tactile sensations. 

 Another branch for future work concerns the robot’s own sensory-motor 

experience. Extensive research is currently being performed at Vanderbilt University’s 

Center for Intelligent System. The work of Campbell [2003], Ao, [2003], and Peters et al. 

[2004] represent efforts to more clearly understand the nature of the vector-space 

representations of sensory-motor coupled data. By properly understanding the clustering 

of data in the vector space, superposition of clusters can lead to effective execution of 

complex behaviors that would interact with the world in a natural way. 

 Finally, the additions of attention and higher level commands guided by decision-

making systems would push the robot to a cognitive state where intelligence can be 

explored and developed. Efforts to reproduce cognition are also being pursued at the 

Center for Intelligent Systems [Kawamura et al. 2004] and others such as Fitzpatrick 

[2003], Scassellati [2000] and this area of study promises to be a breakthrough in the 

field of robotics. The study of humanoid robotics and all of its challenges is truly an 

interesting field to study. Technological advancement will come in the future and 

exciting breakthroughs will drive the effort to develop cognitive robots closer to reality.  
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APPENDIX A 

 

STATE MACHINE’S 

 

Sound Agent State Machine 

State 0: (No Comment) 
Timeout: 10000, Period:100 
 
Activities 
 
Transitions 
  Next State: 2, activate 
    Event: 2, 2 
  Next State: 1, activate 
    Event: 1, 1 
 
 
State 1: Report Sound Cue in Sensory Egosphere form. 
Timeout: 10000, Period:400 
 
Activities 
  Trigger 0: CommandCom(2,0), listen 
 
Transitions 
  Next State: 2, deactivate 
    Event: 2, 2 
  Next State: 0, deactivate 
    Event: 1, -1 
 
 
State 2: Report Sound Cue in LV RV P T form. 
Timeout: 1000, Period:100 
 
Activities 
  Trigger 0: CommandCom(2,1), Retrieve angle in LRPT form 
 
Transitions 
  Next State: 0, deactivate 
Event: 1, -1 

 

 

Camera Agent State Machine 

State 0: (Catch image) 
Timeout: 500, Period:100 
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Activities 
  Trigger 0: LFrame_graber(1,0), Catch image 
 
Transitions 
  Next State: 1, Do color segmentation 
    Event: -1, -1 
 
 
State 1: (Do color segmentation) 
Timeout: 1000, Period:100 
 
Activities 
  Trigger 0: LFrame_graber(1,0), Catch image 
  Trigger 1: ColorSegmenter(0,0), Do color segmentation 
 
 

Head Agent 

State 0: (Homing Position) 
Timeout: 100, Period:100 
 
Activities 
  Trigger 0: EyeMotionControl(300,0), Send to home position 
 
Transitions 
  Next State: 1, Throw queue to start sound agent 
    Event: 0, 1 
 
 
State 1: (Throw queue to start sound agent) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 0: CommandCom(2,0), Throw queue to start sound agent 
 
Transitions 
  Next State: 2, Move towards sound queue 
    Event: -1, -1 
 
 
State 2: (Move towards sound queue) 
Timeout: 2500, Period:100 
 
Activities 
  Trigger 0: PTControl(6,0), Move towards sound queue 
 
Transitions 
  Next State: 3, Throw event to start cameras and smooth pursuit 
    Event: 2, 3 
 
 
State 3: (Throw event to start cameras and smooth pursuit) 
Timeout: 200, Period:100 
 
Activities 
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  Trigger 6: CommandCom(2,3), Throw event 100, 100 to start arm 
  Trigger 5: DepthEstimator(3,1), Display x,y,z,depth 
  Trigger 3: EyeMotionControl(301,0), Smooth pursuit to target 
  Trigger 4: EyeMotionControl(400,0), Display motor positions 
  Trigger 2: EyeMotionControl(101,0), Sample motor positions 

 

Hand Agent 

State 0: ((null)) 
Timeout: 1000, Period:90 
 
Activities 
 
Transitions 
  Next State: 1, (null) 
    Event: 1, 1 
  Next State: 3, (null) 
    Event: 1, 3 
  Next State: 2, (null) 
    Event: 1, 2 
  Next State: 4, (null) 
    Event: 1, 4 
 
 
State 1: ((null)) 
Timeout: 100, Period:90 
 
Activities 
  Trigger 1: HandInterface(1,0), (null) 
 
Transitions 
  Next State: 0, (null) 
    Event: 1, -1 
  Next State: 0, (null) 
    Event: -1, -1 
 
 
State 2: ((null)) 
Timeout: 5000, Period:100 
 
Activities 
  Trigger 0: VecEval(0,0), (null) 
 
Transitions 
  Next State: 0, (null) 
    Event: 1, -1 
  Next State: 3, (null) 
    Event: 1, 3 
 
 
State 3: ((null)) 
Timeout: 200, Period:100 
 
Activities 
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  Trigger 0: HandInterface(3,0), (null) 
 
Transitions 
  Next State: 0, (null) 
    Event: -1, -1 
 
 
State 4: ((null)) 
Timeout: 10000, Period:100 
 
Activities 
  Trigger 0: PhSen(4,0), (null) 
 
Transitions 
  Next State: 0, (null) 
    Event: 1, -1 
  Next State: 5, (null) 
    Event: 169, 5 
 
 
State 5: ((null)) 
Timeout: 4000, Period:1000 
 
Activities 
  Trigger 0: HandInterface(3,0), (null) 
 
Transitions 
  Next State: 6, (null) 
    Event: -1, -1 
 
 
State 6: ((null)) 
Timeout: 4000, Period:1000 
 
Activities 
  Trigger 0: HandInterface(1,0), (null) 
 
Transitions 
  Next State: 4, (null) 
    Event: -1, -1 

 

Right Arm Agent 

State 0: (Initialize and home) 
Timeout: 10000, Period:100 
 
Activities 
  Trigger 3: SampIndPressures(0,0), Hardware I/O 
  Trigger 2: Homer(0,0), Compute Homing Pressures 
  Trigger 1: SampIndPressures(1,0), Disable Z-Masking 
  Trigger 0: PhasicController(1,1), Read Data File 
 
Transitions 
  Next State: 1, Manual event 
    Event: 1, 1 
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  Next State: 1, Hardcoded event from Homer 
    Event: -2, -2 
  Next State: 2, Manual event 
    Event: 1, 2 
 
 
State 1: (Go to initial angles) 
Timeout: 10000, Period:60 
 
Activities 
  Trigger 2: SampIndPressures(0,0), Hardware I/O 
  Trigger 3: PhasicController(0,0), Control Law 
  Trigger 1: SampIndPressures(5,1), Output "home" angles 
  Trigger 0: SampIndPressures(2,0), Enable Z-Masking 
 
Transitions 
  Next State: 2, Hardcoded event from sampler (when home reached) 
    Event: 2, 2 
  Next State: 2, Timeout 
    Event: -1, -1 
 
 
State 2: (Compute initial cartesian position) 
Timeout: 5000, Period:100 
 
Activities 
  Trigger 0: FKin(2,0), Forward kinematics 
  Trigger 2: IKin(3,0), Inverse kinematics  
  Trigger 3: CmdArb(3,0), Inform current pos 
  Trigger 1: CartArb(3,0), Inform client agents of current cartesian pos 
 
Transitions 
  Next State: 3, Timeout 
    Event: -1, -1 
 
 
State 3: (Non-Linear Controller, closed-loop) 
Timeout: 10000, Period:75 
 
Activities 
  Trigger 2: CmdArb(0,1), Arbitrate Angle Commands 
  Trigger 8: State3_XYZPosToFile(2,1), No Comment 
  Trigger 11: PhasicController(1,2), Read Current Pressures 
  Trigger 5: IKin(3,0), calc inverse kinematics 
  Trigger 7: DesXYZPosToFile(2,1), No Comment 
  Trigger 4: CartArb(0,1), CartArb 
  Trigger 3: FKin(2,0), calc forward kinematics 
  Trigger 1: SampIndPressures(6,0), Hardware I/O with 12 Pressures 
  Trigger 10: State3_PhysAngleToFile(2,1), No Comment 
  Trigger 6: Filter(0,0), IIR Filter on des log angles 
  Trigger 9: State3_PressToFile(2,1), No Comment 
  Trigger 0: PhasicController(0,1), Non-Linear Control Law (12 
pressures) 
 
Transitions 
  Next State: 5, Manual Transition to state 5 
    Event: 3, 5 
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  Next State: 1, (null) 
    Event: 1, 1 
  Next State: 4, Manual Transition to state 4 
    Event: 3, 4 
 
 
State 4: (Phasic Controller) 
Timeout: 10000, Period:20 
 
Activities 
  Trigger 4: CmdArb(0,1), Arbitrate angle commands 
  Trigger 10: XYZPosToFile(2,1), No Comment 
  Trigger 1: PhasicController(1,2), Read Current Pressures 
  Trigger 5: FKin(2,0), compute forward kinematics 
  Trigger 6: CartArb(0,1), No Comment 
  Trigger 3: SampIndPressures(6,0), use 12 individual pressures to 
control arm 
  Trigger 9: PhysAngleToFile(2,1), No Comment 
  Trigger 2: PhasicController(1,0), Compute Pressures 
  Trigger 7: IKin(3,0), compute inverse kinematics 
  Trigger 11: PressToFile(2,1), No Comment 
  Trigger 8: Filter(0,0), IIR on des logical angles 
 
Transitions 
  Next State: 5, Manual Transition 
    Event: 4, 5 
  Next State: 5, hardcoded event from PhasicController, end of movement 
    Event: -100, -100 
  Next State: 3, Manual Transition 
    Event: 4, 3 
 
 
State 5: (Phasic Controller Reset) 
Timeout: 1000, Period:100 
 
Activities 
  Trigger 0: PhasicController(1,3), Reset counter, phasic move flag, 
dispatch (-100,-300) 
 
Transitions 
  Next State: 3, Manual Transition 
    Event: 5, 3 
  Next State: 3, Hardcoded event from PhasicController 
    Event: -100, -300 

 

Trajectory Agent 

State 0: (Initialization) 
Timeout: 500, Period:100 
 
Activities 
  Trigger 0: Bar_Segway_Loc(2,0), Load "Barney's" position from file 
  Trigger 1: CmdCom(2,1), Throw event so that the hand opens up 
 
Transitions 
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  Next State: 10, Go to Ready 
    Event: 100, 100 
 
 
State 10: (Initialization) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 1: VSVQ1(1,0), Pass x,y,z location from VS to VQ for 1st 
trajectory 
 
Transitions 
  Next State: 11, Generate the trajectory motion 
    Event: -1, -1 
 
 
State 11: (Generate the 1st trajectory after event is thrown by the 
user!) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 1: ArmLink(0,3), Reset Cmd and Arb vectors 
  Trigger 0: Gen_Traj_1(0,0), Generate the trajectory file based on the 
starting and final points 
 
Transitions 
  Next State: 20, Throw event 100,100 to Initialize trajectory player 
    Event: -1, -1 
 
 
State 20: (Initialize Trajectory Player) 
Timeout: 100, Period:100 
 
Activities 
  Trigger 0: Play_Traj_1(1,0), Initialize the trajectory player 
 
Transitions 
  Next State: 21, Play the trajectory file 
    Event: -1, -1 
 
 
State 21: (Play the 1st trajectory) 
Timeout: 6000, Period:100 
 
Activities 
  Trigger 0: Play_Traj_1(0,0), Play the trajectory file and reach 
towards Barney 
 
Transitions 
  Next State: 50, Load data for 2nd trajectory 
    Event: -1, -1 
 
 
State 30: (Wait for palm sensor to check for the presence of Barney) 
Timeout: 100, Period:100 
 
Activities 
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  Trigger 0: CheckHandVec(0,0), Check for the presence of Barney to 
later close the hand 
 
Transitions 
  Next State: 40, Close hand 
    Event: -1, -1 
 
 
State 40: (Close hand) 
Timeout: 500, Period:100 
 
Activities 
  Trigger 0: CmdCom(2,0), Throw event to the hand agent to close the 
hand 
  Trigger 1: CheckHandVec(0,0), Check until hand is closed 
  Trigger 2: ArmLink(0,3), Reset Cmd and Arb vectors 
 
Transitions 
  Next State: 70, Load information to generate the 2nd trajectory motion 
    Event: -1, -1 
 
 
State 50: (Load the location for the gazing point) 
Timeout: 500, Period:100 
 
Activities 
  Trigger 0: Bar_Gaze_Loc(2,0), Load the x,y,z location from the file to 
gaze at Barney 
 
Transitions 
  Next State: 51, Pass the information from the VS to the VQ 
    Event: -1, -1 
 
 
State 51: (Load information to generate 2nd trajectory motion) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 1: VSVQ2(1,0), Pass x,y,z location from VS to VQ for 2nd 
trajectory 
 
Transitions 
  Next State: 60, Generate the 2nd trajectory motion 
    Event: -1, -1 
 
 
State 60: (Generate 2nd trajectory motion) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 1: ArmLink(0,3), Reset the Cmd and Arb vectors 
  Trigger 0: Gen_Traj_2(0,0), Generate the 2nd trajectory motion 
 
Transitions 
  Next State: 61, Throw event 200,200 to move arm up for ISAC to gaze 
    Event: -1, -1 
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State 61: (Initialize the 2nd trajectory motion) 
Timeout: 100, Period:100 
 
Activities 
  Trigger 0: Play_Traj_2(1,0), Initialize the trajectory motion to move 
next 
 
Transitions 
  Next State: 62, Play the file 
    Event: -1, -1 
 
 
State 62: (Move arm up for ISAC to gaze) 
Timeout: 4000, Period:100 
 
Activities 
  Trigger 0: Play_Traj_2(0,0), Move arm up for ISAC to gaze 
 
Transitions 
  Next State: 30, Pause and clear ML 
    Event: -1, -1 
 
 
State 70: (Pause and clear ML (ISAC should gaze)) 
Timeout: 1000, Period:100 
 
Activities 
  Trigger 0: ArmLink(0,3), Reset Cmd and Arb vectors 
 
Transitions 
  Next State: 80, Load x,y,z information to release Barney 
    Event: -1, -1 
 
 
State 80: (Load x,y,z information to release Barney) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 0: VSVQ1(1,0), Pass x,y,z data from VS to VQ 
 
Transitions 
  Next State: 81, Generate the release trajectory 
    Event: -1, -1 
 
 
State 81: (Generate the release trajectory) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 0: Gen_Traj_1(0,0), Generate the 3rd trajectory in which 
Barney is released 
  Trigger 1: ArmLink(3,0), Reset Cmd and Arb vectors 
 
Transitions 
  Next State: 82, Initialize the trajectory player 
    Event: -1, -1 
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State 82: (Initialize the trajectory player) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 0: Play_Traj_1(1,0), Initialize the trajectory player 
 
Transitions 
  Next State: 83, Play the trajectory file to release Barney 
    Event: -1, -1 
 
 
State 83: (Play the trajectory) 
Timeout: 3100, Period:1000 
 
Activities 
  Trigger 0: Play_Traj_1(0,0), Play the trajectory 
 
Transitions 
  Next State: 90, Load data to go to home position 
    Event: -1, -1 
 
 
State 84: (Open hand) 
Timeout: 1000, Period:100 
 
Activities 
  Trigger 0: CmdCom(2,1), Throw event to RightHand agent to open the 
hand 
 
Transitions 
  Next State: 90, Open hand 
    Event: -1, -1 
 
 
State 90: (Load x,y,z information to go home) 
Timeout: 200, Period:100 
 
Activities 
  Trigger 0: Home_Loc(2,0), Load the x,y,z location where Barney is to 
be released 
 
Transitions 
  Next State: 91, Pass data from VS to VQ 
    Event: -1, -1 
 
 
State 91: (Load the data from the VS to the VQ) 
Timeout: 1000, Period:100 
 
Activities 
  Trigger 0: VSVQ3(1,0), Pass data from VS to VQ 
 
Transitions 
  Next State: 92, Generate the release trajectory 
    Event: -1, -1 
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State 92: (Generate the release motion trajectory) 
Timeout: 500, Period:100 
 
Activities 
  Trigger 0: Gen_Traj_3(0,0), Generate the release motion trajectory  
  Trigger 1: ArmLink(3,0), Reset the Cmd and Arb vectors 
 
Transitions 
  Next State: 93, Initialize the trajectory player 
    Event: -1, -1 
 
 
State 93: (Initialize the trajectory player) 
Timeout: 100, Period:100 
 
Activities 
  Trigger 0: Play_Traj_3(1,0), Initialize the trajectory player 
 
Transitions 
  Next State: 94, Throw event 300,300 to play trajectory and release 
Barney 
    Event: -1, -1 
 
 
State 94: (Play trajectory and release Barney) 
Timeout: 6000, Period:100 
 
Activities 
  Trigger 0: Play_Traj_3(0,0), Play trajectory and release Barney 
 
Transitions 
  Next State: 0, Open the hand and finish the demo 
    Event: -1, -1 
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APPENDIX B 

 

DEPTH ESTIMATION 

 

 Finding the Cartesian coordinates and the depth of a given object given 

stereoscopic vision is an invaluable resource to allow other parts of the robot to interact 

with the environment. In particular, a grasp-reach behavior is only possible if the 

Cartesian coordinates in space are available.  

 The diagram shown below represents the camera head structure. The left and the 

right camera are placed on a base of length - a. The left camera and the right camera 

make angles θL and θR with the horizontal respectively. The goal target is shown as – P 

and the depth to the target is represented by – d. 

  

 

Figure 32. Camera Head Structure. 
 

To find d, the Cosine Law was used: 
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However, t is unknown and the Sine Law was used to find it: 
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Since two separate and independent Pan-Tilt units were used, a single tilt value is 

computed by finding the average of both tilt values. Since there is an element of height 

involved in the model, the depth increases proportionally to the tilt. Pythagoras Theorem 

is used to find the new depth – d_t:  

 

 2 2 2_d t d h= +  (B.3) 

 
Similarly, the Cartesian coordinates of a goal target (assumed to be a point in 

space) were computed based on figure 33. 

The established set of coordinates has X coming out of the plane, Y, horizontal to 

the plane, and Z, vertical to the plane. 
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Figure 33. Cartesian Coordinate Model. 
 

From the above diagram, we can obtain the following equations: 

 

 
_ *d d t Cos tiltφ=

 (B.4) 

 _ *z d t Sin tiltφ=  (B.5) 

 

 Referring to the Camera Head Structure figure, X and Y are: 

 

 sinx t Rθ=  (B.6) 

 
 y tCos Rθ=  (B.7) 

 
In this way, the Cartesian coordinates and the depth of the target are computed by 

the Depth Estimation component. The data is available to any receiving agent.
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APPENDIX C 

 

CONVERSION OF A SINGULAR PAN ANGLE 

 

The ISAC humanoid’s head structure was modified recently. Previously, a 

singular pan motion controlled both color cameras. At the time, any agents that needed to 

communicate with the Head Agent had to do so through a singular pan angle. After the 

modifications took place, two independent pan-tilt units were operating as the head. 

Thus, a conversion from a singular pan angle to two pan angles had to be computed.  

 

The model used to develop the computations is based on the following diagram: 

 

 

 

Figure 34. Singular Pan Angle Conversion 
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Note: Clockwise rotations represent negative angles and counterclockwise rotations 

represent positive angles. 

 

 Based on this model, you can get θR and θL: 

 

 arctan[ ]
Cos VSin P Sin V

R
Cos VCos P
θ θ θ

θ
θ θ

+ =  
 

 (C.1) 

 
arctan[ ]Cos VSin P Sin VL

Cos VCos P
θ θ θθ

θ θ
− =  

 

 (C.2) 

 
Solving for the pan angle, the following equations results: 

 

 
1

arctan[ (tan tan )]
2

p L Rθ θ θ= +  (C.3) 

 
?P is given by the agent, but ?V has to be predetermined. The value was calculated 

empirically and established at 15 degrees.  

This calculation was implemented as an IMA mechanism and is used any time an 

agent reports to the head with a singular pan angle. 

 Finally, as a precautionary note, the hardware structure requires a switch between 

?L and ?R, since the left and right sides of the robot were given when looking towards the 

robot, not away from it.  
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APPENDIX D 

 

COM AND DCOM 

 

The following description is based on Olivares overview [2003]. The IMA 

software platform uses the Component-Object Model (COM) and Distributed COM 

(DCOM) to provide communication between agents. COM allows objects to interact even 

if they are running in different computers. Objects can be linked together without the 

need to compile. Hence, developers do not worry about communication issues. 

 COM’s protocol allows compiled objects to operate across process boundaries 

without accessing the source code.  By using COM and DCOM, a developer writes 

objects that can be linked to other objects at run time – even with objects in other 

computers. The communication is possible because of COM’s compilers, which place 

header-like information in the resulting binary files. At runtime, COM sends function 

calls to their appropriate process by using Microsoft Remote Procedure Calls (RPC). 

COM does not significantly affect performance on the system.  

 A proficient and detailed description can be found under Microsoft’s Developers 

Network website at: http://msdn.microsoft.com/library/default.asp.
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