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CHAPTER I 

INTRODUCTION 

Embedded systems are a class of computer based systems that cover a broad 

range of applications.  Embedded systems typically meet some or all of the following 

descriptions: 

- designed to perform a dedicated task (not a general purpose computer) 

- tight coupling to the physical environment using sensor and actuators 

- hard or soft real-time requirements 

- limited system resources (CPU, memory, power, etc) 

There is an ever increasing concern about security threats as embedded systems are 

moving towards networked applications [3]. Model based approaches have proven to be 

effective techniques for embedded systems design [14]. However, existing modeling 

tools were not designed to meet the current and future security challenges of networked 

embedded systems. In this thesis, we propose a framework to incorporate security 

modeling into embedded system design.  This thesis presents a security analysis tool that 

can easily integrate with existing tool chains to create co-design environments that 

concurrently addresses security, functionality and system architecture aspects of 

embedded systems. 

Security Threats to Embedded Systems 

Embedded systems play a crucial role in critical infrastructure, which is essential 

to national security, success and economic health [3], [4].  Under the Clinton 
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Administration, the Presidential Decision Directive 63 [1] outlined the importance of 

cybersecurity on critical infrastructure.  In 2003, the Bush Administration followed suit 

and released The National Strategy for the Physical Protection of Critical Infrastructure 

and Key Assets [2].  Until recently, the computer systems that oversee and control critical 

infrastructure relied on “security by obscurity” [5].  These systems were one of a kind, 

proprietary designs that were secure because details of their design were not freely 

accessible.  The recent trend is to build these systems out of commercial off the shelf 

(COTS) components such as Ethernet, Windows, PLCs and standard web services.  This 

shift opens up these systems to the same sorts of threats that standard desktop PCs face.  

It is clear that there is increasing concern of the security threats on these kinds of 

embedded systems [5],[7].  Successful attacks have been reported on the US Power Grid 

[8] and the sewer system of Australia’s Maroochy Shire Council [9]. Other incidents such 

as a worm infection [12] have affected the Davis-Besse Nuclear Power Plant and CSX 

Railroad Corp. [9].  To understand the importance of security issues in embedded system 

design, let’s look at two examples of these security breaches.   

In January 2003, the Davis-Besse Nuclear Power Plant [9] had been offline for 

almost a year for repair and maintenance when the Slammer worm brought down safety 

systems in the plant.  The Safety Parameter Display System, which monitors safety 

factors such as core temperature and radiation sensors, was brought down for five hours 

and the Plant Process Computer, another monitoring system, was down for six hours.  

This attack was possible because there was a T1 line directly connecting the plant to an 

unsecured network of a contractor.  This allowed the Slammer worm to bypass the plant’s 

firewall and quickly bring down these safety systems.  This breach was an undirected 
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attack by a worm, yet still caused significant damage.  What is even more concerning is a 

directed attack by an intelligent attacker with malicious intent. 

One such example of an insider attack occurred at the Maroochy Shire Council 

waste water plant in Australia [9].  Vitek Boden had worked for a contractor that 

commissioned a SCADA system at the plant over a period of two years.  After the 

contract was up, Boden positioned himself for a consultant position at the plant and was 

rejected.   Using a stolen laptop computer and off the shelf wireless transmitter from his 

car he was able to control the entire system and release 264,000 gallons of sewage over 

46 break in attempts.   

To address such security threats, we need to evaluate how these systems are built 

and identify what can be done to prevent future threats.  Next, we look at the current state 

of embedded software design process in regards to security design methods.  

Current State of Embedded System Design 

Model Integrated Computing (MIC) [13] is gaining wide recognition in the field 

of embedded software design.  Models represent embedded software, its deployment 

platform and its interactions with the physical environment.  Models facilitate formal 

analysis, verification, validation and generation of embedded systems [14].  Hence, this 

approach is superior to traditional manual software development process.  Although, 

there is modeling tool support for analysis of functionality, performance, power 

consumption, safety, etc., currently available tools incorporate little if any support for 

security modeling.  As a result, security is looked at only once the complete system has 

been built.  At best, this approach of addressing security in the last stages of development 

is inefficient taking large amounts of effort to achieve only modest improvements in 
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security.  Engineers designing embedded systems usually do not have the experience to 

address security issues and in many cases are not even aware of the issues [17].  Fixing 

security vulnerabilities involves releasing patches, which can introduce new problems 

such as viruses [18] or security vulnerabilities [19].  Still, systems designed without 

security in mind are intrinsically insecure.  Patches can fix specific security 

vulnerabilities, but do not address poor system architecture.   

Many times vulnerabilities are only discovered once they have been exploited.   

To address unknown threats, systems can be isolated in private corporate networks using 

firewalls and intrusion detection systems.  But such perimeter defenses, even if they are 

flawless, cannot protect against insider attacks [20].  In light of this situation, we 

advocate modeling environments that incorporate security into the early design phase of 

embedded systems.  

Model based approaches have the advantage of executable specifications.  Once 

the system is implemented the models can serve as documentation of the system 

architecture.  This could have helped prevented the worm attack on the Davis-Besse 

plant.  The T1 line through which the worm entered could have been flagged by model 

analysis tool as an unsecured entry point into the facility. 

One of the few modeling languages with security extensions is UML.   Currently 

available extensions to UML provide: access control [21] [22], fair exchange, 

assumptions about confidentiality and integrity [23].  There are existing tools that can 

guarantee some security properties using automated proof verifiers [23].  However, 

UML-based Model-driven Security is not sufficient for design and analysis of embedded 

systems.  We strongly believe that embedded system design can benefit from Domain-
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Specific Modeling Languages (DSML) as opposed to the one-size-fits-all approach of 

UML.  For example, there is no concept of hardware in UML which makes it ill suited 

for embedded systems with their diverse hardware architectures.  In many embedded 

applications system resources are scarce.  Added overhead for security can have drastic 

effects on performance.  An ideal embedded software development environment will 

allow the engineer at design time to analyze security and performance tradeoffs based on 

the hardware platform.   

Problem Statement 

MIC can meet the challenges of designing secure embedded systems. A key 

advantage of the model based approach is the abstraction of the application domain.  This 

abstraction is facilitated through the use of DSMLs.  A DSML provides a system 

designer a set of concepts that are specifically tailored for a certain application domain. 

In our case, the domain is networked embedded real-time systems, such as process 

control systems, automotive, avionics and robotics systems. A DSML with the proper 

level of abstraction hides the inconsequential details of a system while allowing the 

engineer to shift focus to more important aspects.  There are many examples of DSMLs 

developed for embedded system design in different domains [MILAN [24], SMoLES 

[26], AADL [24]].  We propose an extension mechanism for DSMLs that adds security 

concepts similar to UML extensions [21].  By extending embedded system DSMLs, we 

can add tool support for security analysis, validation, verification and generation.  These 

security tools will extend the large tool chains that already exist for embedded system 

design. 
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CHAPTER II 

BACKGROUND AND LITERATURE SURVEY 

MLS: Multi Level Security 

Multi Level Security is an approach to enabling computer systems to handle and 

process data with differing levels of sensitivity.  The Trusted Computer System 

Evaluation Criteria (TCSEC) [27] is a Department of Defense standard that sets the 

criteria for evaluating MLS systems.  A MLS system implements some sort of access 

control mechanism that defines what users have access to which data.  There are two 

types of access control defined by TCSEC: Discretionary Access Control (DAC) and 

Mandatory Access Control (MAC).  DAC protects information on a need-to-know basis.  

Users are permitted access to objects based on their group identity and are able to pass 

this permission on to other users at their discretion.  MAC protects information by 

assigning clearances to users which define what the sensitivity level of information they 

are allowed to access.  The clearances signed to users under MAC are strictly enforced; 

permissions can not be delegated at a user’s discretion.  Two models for enforcing MAC 

are the Bell-LaPadula and Biba model which are discussed below. 

Bell-LaPadula and Biba Security Models 

The two traditional models for dealing with information flow in systems are the 

Bell-LaPadula model [28] and the Biba model [29].  Both of these models enforce an 

access control scheme that defines the rights of a subject to access information.  The Bell-

LaPadula security model deals with confidentiality of information in computer systems.  
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The Biba model deals with integrity of information in computer systems.  Both models 

view a system as a set of subjects and objects.  Subjects can be human users or software 

processes and objects can be data or files stored on the system.  Subjects and objects are 

assigned a security level and a compartment which define what information a given 

subject is permitted to access.  Below are the concepts that Bell-LaPadula originally 

defined and then were used by Biba: 

},,,{ 21 nSSSS L=  Set of all Subjects in system 

},,,{ 21 mOOOO L=  Set of all Objects in system 

},,,{ 21 qCCCC L=  
Set of Security Levels (i.e. 

Classified, Secret, Top Secret) 

},,,{ 21 qKKKK L=  
Set of Compartments (i.e. NATO, 

FBI, CIA) 

Figure 1 Bell-LaPadula Concepts 

A security designation is a pair (Security Level, Set of Compartments).  Each 

subject in a system is assigned a security designation and each object is assigned a 

security designation.  The set of all security levels is an ordered set that can be evaluated 

as an inequality (i.e. Top Secret > Secret).  Compartments are an unordered set.  Under 

Bell-LaPaduala a subject, S1, is only allowed access to an object, O1, if the security 

designation of S1 dominates the security designation of O1.  Domination is defined as: 

(C1, K1) dominates (C2, K2) 

If and only if 

C1 ≥ C2 and K1 ⊇  K2 

Bell-LaPadula defines two security properties, the Simple Security Property and 

the * (star) Property.  When enforced, these two properties guarantee the confidentiality 
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of objects in the system.  These two properties define what rights a particular subject has 

to read or write an object.   The Simple Security Property states that a subject may read 

information from an object only if the subject’s security designation dominates the 

object’s security designation.  The * Property states that a subject may write information 

to an object only if the object’s security designation dominates the subject’s security 

designation.   

One of the main criticisms of Bell-LaPadula as a security model is that it only 

addresses confidentiality of information.  In response to this weakness the Biba model 

was defined to address integrity of information.  Confidentiality deals with the secrecy of 

information while integrity deals with which information is trustworthy.  The Biba also 

enforces a Simple Security Property and a * Property.  The Biba version of the Simple 

Security Property states that a subject may read information from an object only if the 

object’s security designation dominates the subject’s security designation. The Biba 

version of the * Property states that a subject may write information to an object only if 

the subjects’s security designation dominates the objects’s security designation.   

RBAC: Role Based Access Control 

RBAC is form of access control in computer based systems.  RBAC is used as a 

method for efficiently managing the assignment of permissions between subjects and 

resources.  Subjects (human users or processes) are assigned permissions which define 

what actions the subject is permitted to perform on a resource.    
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Figure 2 Role Based Access Control Diagram 

Figure 2 shows the basic role based access control scheme.  In a computer system there 

are resources such as a file or memory segment.  For each resource there is a resource to 

action mapping that specifies what actions are possible on that given resource.  Actions 

can be such things as read, write and execute.  A subject is assigned one or more roles 

through the subject assignment mapping.  Roles are given permissions to perform actions 

on resources through the permission mapping.  This subject then inherits from its 

assigned roles any permissions that the roles have.  A subject may want to perform an 

action on a certain resource.  The advantage of RBAC is that the permission mapping 

does not directly map actions to subjects.  Mapping actions directly to subjects results in 

state explosion.  By using a role to indirectly map actions to subjects, state explosion is 

avoided.  Often, it is feasible to use a small number of roles for a large number of 

subjects.  This minimizes the number of mappings that need to be made when a new 

subject is created. 

MILS: Multiple Independent Levels of Security  

The TCSEC served as the official DoD standard for secure computer systems 

from 1983 until 2005 when it was replaced by the Common Criteria [30].  Under TCSEC 

systems are classified in one of four divisions: D, C, B, and A. Where the divisions have 

Permission 

Assignment 

Resource 

Action 

Subject 

Assignment 

Subject Resource Role Action 
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subdivisions that are labeled as follows: D, C1, C2, B1, B2, B3, and A1.  These divisions 

were replaced by what Common Criteria defines as Evaluation Assurance Levels (EAL).  

There are seven EALs which are labeled as EAL1 through EAL7 with EAL7 being the 

highest assurance level.  For full descriptions of the assurance levels refer to the Common 

Criteria [30] and TSCEC [27] specifications.  The highest levels of assurance (A1 under 

TCSEC and EAL7 under Common Criteria) require formal verification of security 

properties to be certified.  The cost of evaluating and certifying software to these 

assurance levels can be prohibitive.  The MILS architecture aims to reduce the size and 

complexity of the code that must be evaluated at the higher assurance levels.  The MILS 

approach used a partition kernel [10] as a means to isolate security critical code from non 

security critical code.  By isolating the security critical code in a separate partition, the 

effort is only needed to verify the code in the security critical partition.  Effort is not 

wasted on verifying non security critical code.  The concept of a partition kernel was first 

introduced by John Rushby [10].  Partition kernels provide a mechanism to guarantee 

safety and security in computer based applications.   In systems where both trusted and 

untrusted processes are running, measures need to be taken to guarantee that the untrusted 

processes do not comprise the trusted processes.  A partitioning kernel guarantees that 

processes running in separate partitions are separated both spatially and temporally.     

UMLsec 

 The Unified Modeling Language (UML) [11] is a widely used standard with 

many tools supporting the language.  One of the key features of UML is that it is general 

and expressive enough to capture models in a wide variety of domains.  However, this 

expressiveness also means that it is not tailored to any specific domain.  To overcome this 
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generality there is a standardized UML extension mechanism that allows users to specify 

extensions through use of stereotypes, tagged values and constraints.  UML Tool 

developers must specify how UML will be used (i.e. naming of stereotypes) so that 

domain concepts can be expressed and their tools understand the models.  This 

specification of a UML extension is referred to as a UML profile.  UMLsec is a security 

verification framework built by Jan Jürjens [23] using these extension mechanisms.  

UMLsec enables secure system development by specifying security requirements of a 

system.  These security requirements are concepts like secrecy, integrity, and 

authenticity.  By using automated theorem provers, system diagrams are verified against 

the specified requirements.   

Survey of Embedded System DSMLs 

The MIC approach uses DSMLs to provide the system modeler with a layer of 

abstraction that is suited for their specific application domain.  A DSML is a five tuple L 

= <C, A, S, MS, MC> where: 

- C:  the concrete syntax describes the notation for representing models 

(whether textual or visual) 

- A:  the abstract syntax describes the set of all valid models in the DSML 

- S:  the semantic domain describes the meaning of a model, usually in terms of 

a mathematical domain 

- MS: the semantic mapping maps abstract syntax to the semantic domain 

- MC: the parsing of concrete syntax is based on the abstract syntax 

In MIC, DSMLs are defined by UML class diagram style metamodels where the concrete 

syntax of the metamodel defines the abstract syntax of the DSML.  The metamodel 
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consists of the UML-like class diagram along with OCL constraints on classes.  This 

abstract syntax describes the set of all valid models in the DSML.   

The Object Constraint Language (OCL) is a language for defining well-

formedness rules for DSMLs.  Often a class diagram is not expressive enough to define a 

modeling language.  For example, a containment relationship in a class diagram specifies 

that one object can be contained by another.  However, the containment relationship in 

and of itself is not sufficient in all cases.  Perhaps there is a scenario when containment 

can only be allowed if a certain condition is met (i.e. a document can only be contained in 

a hard drive if that hard drive is larger than the document size).  OCL allows rules to be 

defined that place conditions on associations defined in the class diagram. 

The goal of the MIC approach is to provide the system modeler a modeling 

environment that is highly tailored to their application domain.  This approach is 

preferable to a modeling environment that is targeted to a large variety of domains.  This 

gain in generality is often at the sacrifice of usability.  The advantage of using a DSML is 

that the modeling environment is tailored to a specific domain, allowing the modeling 

language to achieve the best balance between power and usability.  There have been 

several DSMLs developed using the Generic Modeling Environment (GME) [14][15] that 

are targeted toward modeling, simulation, analysis, and generation of embedded systems.  

GME is a metaprogrammable tool which facilitates the graphical implementation of 

DSMLs through the use of metamodels.  GME has a framework for tool developers to 

design interpreters for a DSML.  Interpreters are executable code that have access to a 

model.  Interpreters are capable of such activities as traversing models, modifying 



 13 

models, providing feedback to modelers or generating code.  The embedded system 

DSMLs described in this thesis have been implemented in GME. 

SMoLES: Simple Modeling Language for Embedded Systems  

The Simple Modeling Language for Embedded Systems (SMoLES) was designed 

to have a concise syntax that allows constructing embedded systems from components 

[26]. The components are assumed to be concurrently executing objects that 

communicate and synchronize with each other. Furthermore, objects can perform 

blocking I/O operations in which they wait for the result, while other objects can execute. 

Communication between components means passing data from a source component to a 

destination component, which is then enabled to run in order to process the data. In 

addition to data triggering, periodic timers can also trigger the components.  The 

language consists of components and assemblies.  Components are the elementary 

building blocks, and contain input and output ports, which are used to receive/send data 

tokens from/to other components.  Assemblies contain components, and describe how 

they are interconnected.  Like components, assemblies can have their own input and 

output ports, and assemblies can contain other assemblies.  Assemblies are organized into 

a hierarchy.  The various components and assemblies in the hierarchy communicate with 

each other through the dataflows, as specified by the designer.  SMoLES has a code 

generation utility that will interpret the model and output C++ code that will execute on 

top of a small custom dataflow kernel.  Figure 3 shows a example model in the SMoLES 

DSML.   
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Figure 3 Example SMoLES Model 

AADL: Architecture Analysis and Design Language 

The Architecture Analysis and Design Language [25] is targeted toward avionics 

and automotive embedded applications, however it is suited for any embedded 

application with real-time requirements.  The goal of AADL is to have a common 

language that can model both the software and hardware architecture of a system.  This 

allows the system designer to analyze the interaction between software and hardware 

before the system is built.  This approach of analyzing the system early in the 

development process greatly reduces project overhead including cost and time.  

Embedded systems are especially sensitive to complex interactions between hardware 

and software if they have real-time requirements.  AADL provides the ability to assure 

such things as schedulability, power consumption, safety and fault tolerance.   

AADL views a system in terms of system components, hardware components and 

software components.  These components are defined with type and implementation 

component declarations.  A component type declaration specifies the component 

interface.  The interface of the component defines the externally observable attributes 

such as ports that are connection points with other components.  A component 



 15 

implementation declaration specifies a component’s internal structure (i.e. the 

subcomponents and how the subcomponents are interconnected).  The system component 

as its name suggests is the top level component of an embedded system.  The root level of 

an AADL model must be a system.  Systems can contain other subsystems. 

The top level software component is a process.  A process component represents a 

protected address space whose boundaries are enforced at runtime. Processes can contain 

threads and thread groups.  Process components are contained by system components.  

Thread components represent a schedulable unit that can execute concurrently.  Thread 

groups are used for grouping data, threads and thread groups inside of processes.  Data 

components represent data in source text and subprogram components represent a 

callable piece of source code.  Both data and subprograms are contained by processes, 

threads and thread groups.   

 

Figure 4 AADL Software Components 

Figure 5 shows the types of hardware components available in AADL.  The hardware 

topology can be modeled by defining memory, processors and devices interconnected by 

buses.  All hardware components can be contained inside system components.  Memory 
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components can also be contained inside a processor to represent a cache or contained in 

another memory component.  

 

Figure 5 AADL Hardware Components 

Figure 6 shows an example of an AADL model.  Components have features that define 

how they interface with other components.  In this particular example, Pilot_Display is a 

device and the other components are processes.  Each of these components has input and 

output ports that accept incoming and outgoing connection from other system 

components. 

 

Figure 6 Example: AADL Model 

AADL components also have properties.  The component view of the system is a 

graphical representation of the system architecture.  However, components also have 

textual properties that describe the given component.  These properties describe the 

components and how they interact.  Some examples of component properties are: 

- clock speed for a processor component 
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- attribute classifying threads as periodic, aperiodic or sporadic 

- worst case execution time of a subprogram 

- maximum latency over a port connection 

The system architecture along with the properties of components allows the system to be 

analyzed for such things as schedulability, power consumption, safety, etc. 

Summary of Background and Literature Survey 

Multilevel secure systems describe access control mechanisms (MAC and DAC) 

to protect access to sensitive information.  MILS provides an architecture for reducing the 

effort required to verify MLS system to the higher assurance levels.  UMLsec provides 

UML extensions that facilitate the automated verification of system security properties, 

such as those properties of MLS systems described in this chapter.  However, the 

UMLsec extensions are not tailored to any specific domain.  DSMLs provide modelers 

with concepts suited to their application domain.  Both, AADL and SMoLES are 

examples of DSMLs that have been successfully used to design embedded systems.  

However, these DSMLs are not meant to capture concepts from the security domain.  

There needs to be security specific extensions to DSMLs able to capture security 

concepts such as those concepts in UMLsec.  These security specific extensions can be 

integrated with languages such as AADL and SMoLES to capture and analyze the 

security properties of embedded systems.   
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CHAPTER III 

METAMODEL COMPOSITION 

The goal is to create security extensions to existing embedded system design 

languages that can be reusable.  The mechanism that enables this reuse is metamodel 

composition.  Metamodel composition can be described by the following equation: 

CBA DSMLDSMLDSML ⇒o  

This composition is specified by defining how two DSMLs (DSMLA and DSMLB) are 

joined together to form a common DSML (DSMLC).  The resulting DSML will have 

properties of both the original DSMLs.  If there are two different DSMLs that support the 

design of embedded systems, where models in the two DSMLs are able to capture 

properties related to different aspects of the system then it would be advantageous to 

compose these two languages.   

 

Figure 7 Metamodel Composition 



 19 

Figure 7 shows an example of two composed DSMLs where models in DSMLA capture 

some security related properties of embedded systems and models in DSMLB capture 

some schedulability related properties of embedded systems.  If a system designer wants 

to analyze a system for both security and schedulability he/she would have to create two 

systems models, one in DSMLA and one in DSMLB.  For small, trivial examples this may 

be feasible, but for real world applications these systems are on a much larger scale, 

many times with of thousands of components.  It is not feasible to have two separate 

models of such large systems.  It would be difficult to ensure that both models are 

congruent with each other, since changes to security properties can have effects to 

schedulability and vice versa.  The solution to this is to compose DSMLA and DSMLB to 

form a common DSML where a single model can capture both security and 

schedulability properties.  This forms a codesign environment where a single model with 

multiple aspects can be analyzed.  This proves to be useful since embedded system 

properties such as security, schedulability, power consumption, functionality, etc. are 

often tightly coupled with each other.  By creating this codesign environment, there is a 

common interface where tradeoffs can be made between, as in this example, security and 

schedulability. 

GME Mechanisms for Metamodel Composition 

GME supports the composition [15] of metamodels such that two existing 

languages can be combined to form a new language with the properties of both the 

original languages.  The user can import a read-only copy of a metamodel using the GME 

library function.  The power of this is that users can create libraries of metamodels where 

changes in the original metamodel propagate to anywhere that the metamodel is used.  
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This library feature can be used to either compose or extend a metamodel.  GME supports 

several operators that enable the composition of metamodels.  The user can create proxies 

(or references) to classes in the library metamodel and then use one of these operators to 

specify how the metamodels are composed.  The first operator is the class equivalence 

operator.  This represents the full union between two class objects.  The inheritance 

operator is a directional operator that defines a parent-child relationship between two 

classes.  The child object has all the attributes and associations of the parent in addition to 

any refinements to the child object.  For cases when finer grained inheritance operations 

are necessary there are two more specialized inheritance operators: Implementation 

Inheritance and Interface Inheritance.  The Implementation Inheritance operator defines a 

parent-child relationship where the child inherits all the attributes of the parent class and 

all the containment relationships where the parent acts as the container.  The Interface 

Inheritance operator defines a parent-child relationship where the child does not inherit 

any of the attributes and inherits all the association attributes except those containment 

associations where the parent acts as the container.  Figure 8 shows these composition 

operators [15]. 

 

Figure 8 GME Metamodel Composition Operators 

Described above are the mechanisms available in GME that are used to compose 

metamodels.  The following chapters will look at two example DSMLs that will be 

composed.  A DSML that captures security properties is composed with a DSML for 
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embedded system design.  More in depth information about metamodel composition 

using GME can be found in [16].   
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CHAPTER IV 

SECURITY MODEL ANALYSIS LANGUAGE 

This chapter will demonstrate a process for integrating security analysis into 

existing tool chains to create a security co-design environment.  The approach taken is to 

create a single common DSML that is used to capture and analyze security properties of 

systems, and only those.  The advantage of this approach is that the effort needed develop 

the security analysis tool is only spent once.  Then this tool can be incorporated into 

existing embedded systems languages with minimal effort.  By defining mappings from 

an embedded system DSML onto the security analysis DSML, it is possible to analyze 

the security properties of the embedded system model.  Figure 9 illustrates the process of 

defining mappings from one or more DSMLs onto a language supporting security 

analysis and feeding the analysis results back to the DSML.   

 

Figure 9 Mappings from DSMLs to SMAL enable security analysis of the DSMLs 

Security Model Analysis Language (SMAL), enables a user to model and analyze 

security related properties of embedded systems.  (Note that while SMAL is technically a 

DSML, from this point out the term DSML will only be used in reference to a language 

SMAL 
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for embedded systems design to which we wish to add security analysis capabilities.)  

The purpose of this analysis tool is to identify points in the system model that violate 

certain security requirements and provide useful feedback to the modeler. SMAL allows 

such violations to be identified and remedied at design time before they can be exploited.  

Currently, SMAL supports two types of analyses: information flow analysis and threat 

model analysis.  These model analyses and the SMAL metamodel are detailed in the 

following sections.   

Information Flow Analysis 

To analyze the Bell-LaPadula and Biba models, SMAL views a system as a set of 

partitions, a set of data objects contained in each partition and the dataflows inside and 

across the partitions.  Figure 10 shows a screen shot of a SMAL model with Partitions, 

InformationFlows and Data models.   

  

Figure 10 Partitions and dataflows in SMAL 
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Dataflows are represented as connections between input and output ports on a partition.  

In SMAL, Partitions are the subjects and are assigned a SecurityLevel and Compartment 

attributes.  A data object inherits the SecurityLevel and Compartment classification of its 

containing partition.  SMAL allows the SecurityLevel to be an integer value and the 

Compartment to be a string value.  Our analysis tool treats each data object as the root 

node in a tree search algorithm.  The tool will traverse the dataflow paths originating 

from a data object and verify that each partition through which that data object flows has 

a SecurityLevel and Compartment that permit that partition to access the data object.  

Bell-LaPadula does not allow information to flow to a lower SecurityLevel, while Biba 

does not allow information to flow to a higher SecurityLevel.  When composed, these two 

models only allow information to flow between partitions with the same SecurityLevel.  

Applying both models is too restrictive in a system where the designer does not need to 

restrict access to all data objects.  There may be some data objects that have a 

confidentiality requirement but no integrity requirement and vice versa.  To provide a less 

restrictive model, data objects in SMAL are assigned two Boolean attributes, 

confidentiality and integrity.  The flow of every data object is evaluated based on the 

settings of these attributes.  When confidentiality is true, the Bell-LaPadula model is 

enforced and when integrity is true, the Biba model is enforced on the flow of that data 

object between partitions.   

Threat Model Analysis 

In a distributed system, partitions may reside on multiple nodes and data is 

transferred between these nodes over some communication channel.  The information 

flow analysis addresses the movement of data explicitly defined in the system model but 
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does not address man-in-the-middle attacks on the physical channel.  To prevent such 

attack, the communication channel must be encrypted.  Adversary modeling in SMAL 

enables the analysis tool to identify vulnerable channels and determine which encryption 

algorithms can be used to protect data being transmitted on that channel.  Figure 11 

illustrates the adversary model.  In each System there is an EncryptionAlgorithms library 

that contains the set of all encryption algorithms that can be used to encrypt a channel.  

Each System also contains a set of Adversary models that define which encryption 

algorithms are vulnerable in the context of that adversary.  Each Adversary contains a set 

of Susceptibility references.  Each reference refers to an EncryptionAlgorithm that is 

defined in the EncryptionAlgorithms library.  The Susceptibility reference represents that 

the EncryptionAlgorithm is susceptible to attack by the containing Adversary.  This 

reference has an attribute, MaxKeySize, which means that the referenced 

EncryptionAlgorithm is susceptible to that adversary if the strength of its encryption is 

not greater than MaxKeySize.  Together, the EncryptionAlgorithm library and Adversary 

models allow our analysis tool to determine which algorithms are safe to use to encrypt 

information flows.  Each InformationFlow in SMAL has an attribute, 

AnticipatedAdversary, which identifies the Adversary model associated with that 

InformationFlow.  Each InformationFlow in SMAL also has an EncryptionAlgorithm and 

KeySize attribute.  For each Information Flow in the System, the analysis tool checks the 

EncryptionAlgorithm and KeySize attribute against the set of encryption algorithms that 

are susceptible to the adversary model specified by AnticipatedAdversary. 
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Figure 11 Encryption algorithms library and adversary models in SMAL 
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SMAL Metamodel 

Figure 12 shows the metamodel of SMAL which is implemented in GME using 

the MetaGME paradigm.   

 

Figure 12 SMAL Metamodel 
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Short descriptions of the metamodel concepts used in SMAL are shown in Figure 

13.  For more in depth reading about these metamodeling concepts refer to [15]. 

<<FCO>> FCOs are abstract classes that serve as a base class for 

other classes (model, atom, connection, set, reference) in 

a metamodel. 

<<Model>> By model we mean an object that represents something in 

the world. Models have internal structure and can contain 

other FCOs. 

<<Atom>> Atoms (or atomic parts) are simple modeling objects that 

do not have internal structure (i.e. they do not contain 

other objects), although they can have attributes.  Atoms 

can be used to represent entities, which are indivisible, 

and exist in the context of their parent model. 

<<Connection>> Connections are associations between two objects in a 

model.  They are visualized as a line connecting the two 

objects.   

<<Reference>> References are parts that are similar in concept to pointers 

found in various programming languages. 

Figure 13 MetaGME Concepts 

In SMAL, System models are contained in the root folder.  Each System model 

can contain Partion models, InformationFlow connections, Adversary models and 

EncryptionAlgorithms models.  Several of the classes in the SMAL metamodel have an 



 29 

ID and a Path attribute field.  These attributes support the transformation of models from 

an embedded system DSML to the SMAL paradigm.  All objects in a GME model have 

an id number that uniquely identifies that object within the model and all objects have a 

path relative to the root folder.  During the transformation process, this path and id 

information is lost.  The id and path of an object in the SMAL model will not be the same 

id and path of that object in the corresponding DSML model.  To preserve this 

information the path and unique id of each object in the DSML model are written to the 

attribute fields of the corresponding SMAL objects during the model transformation.   

The portion of the SMAL metamodel that supports information flow analysis 

includes: System models, Partition models, InformationFlow connections, Data atoms 

and Port atoms. Partitions models have an integer attribute for SecurityLevel and a string 

attribute for Compartment.  These attributes support the information flow analysis.  The  

Partitions can contain Data atoms, Port atoms and InformationFlow connections.  Data 

atoms have boolean attributes for Confidentiality and Integrity requirements.   The 

InformationFlow connections can connect Data atoms to Port atoms or Port atoms to Port 

atoms.  These InformationFlow connections can be between and across partitions. 

To support the adversary analysis more classes are added to the metamodel.  The 

additional portions of the SMAL metamodel needed to support adversary analysis 

include: Adversary models, EncryptionAlgorithms models, EncryptionAlgorithm atoms, 

and Susceptibility references.  The System model can contain Adversary models and 

EncryptionAlgorithms models.  The EncryptionAlgorithms models can contain 

EncryptionAlgorithm atoms.  The Adversary models can contain Susceptibility 

references, which reference EncryptionAlgorithm atoms.  The Susceptibility reference 
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contains an integer attribute for MaxKeySize.  InformationFlow connections have a string 

attribute for the AnticipatedAdversary and Algorithm as well as an integer attribute for 

KeySize. 

Formalization of Analysis as OCL Constraints 

Figure 14 shows the well-formedness rules for SMAL.  There are three 

constraints: Biba, BLP and Compartment which call the functions BibaViolation, 

BLPviolation and CompartmentViolation respectively. These three constraints capture 

the essence of the information flow analysis.  The other constraint (Adversary) and 

constraint functions (getMKS and SusceptibleAlgorithm) capture the essence of the 

adversary analysis which is discussed in the next section.   

 

Figure 14 Constraints associated with Data in SMAL Metamodel 

Figure 15 shows the OCL statements that formalize the information flow analysis 

and Figure 16 shows the OCL statements that formalize the adversary analysis.  These 

have been written in a simplified form for readability purposes.  The full version of these 

constraints can be found in Appendix A. 
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Constraint Biba 

data.Integrity implies not data.BibaViolation() 
 

Constraint Function BibaViolation 

data.dstInformationFlow()->iterate(port; violation = false |  
     if(data.parent().SecurityLevel < port.parent().SecurityLevel) then 
          true 
     else 
          violation || port.BibaViolation() 
     endif 
) 
 

Constraint BLP 

data.Confidentiality implies not data.BLPviolation() 
 

Constraint Function BLPviolation 

data.dstInformationFlow()->iterate( port; violation = false |  
     if(data.parent().SecurityLevel > port.parent().SecurityLevel) then 
          true 
     else 
          violation || port.BLPviolation() 
     endif 
) 
 

Constraint Compartment 

data.Confidentiality || data.Integrity implies not 
data.CompartmentViolation() 
 

Constraint Function CompartmentViolation  
data.dstInformationFlow()->iterate( port; violation = false |  
     if(data.parent().Compartment <> port.parent().Compartment) then 
          true 
     else 
          violation || port.CompartmentViolation() 
     endif 
)   

Figure 15 OCL constraints for information flow analysis 

 

Constraint Adversary 

data.Confidentiality || data.Integrity implies 
not data.SusceptibleAlgorithm() 
 

Constraint Function SusceptibleAlgorithm 

if (data.srcInformationFlow()->iterate(conn; violation = false | 
     if( conn.AnticipatedAdversary <> "") then 
            let MKS = conn.getMKS(conn.src()) in 
            let KS = conn.KeySize in 
            MKS >= KS        
     else 
          violation 
     endif 
)) then 
          true 
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else 
          data.dst().exists(t | t.SusceptibleAlgorithm()) 
endif 
 

Constraint Function getMKS(source) 
source.parent().parent().modelParts(Adversary)->iterate(a; 
MKS = 0 | 
     if (a.name = InformationFlow.AnticipatedAdversary) then 
          a.referenceParts(Susceptibility).any(a | a.name = 

    self.EncryptionAlgorithm).MaxKeySize 
     else 
          MKS 
     endif 
) 

Figure 16 OCL constraints for adversary analysis 

 These constraints specified above are enforced on SMAL models using the OCL 

constraint checker built into GME.  However, these rules have also been implemented in 

a C++ interpreter.  This provides several advantages over OCL constraints, which were 

written for formalization purposes.  For large models the interpreter will execute much 

faster than the OCL constraints can be evaluated.  The interpreter is able to provide much 

more useful feedback messages to the user when there is an error in the model.  The OCL 

constraints will only return that a particular data object is vulnerable, but do not identify 

where in the model this vulnerability occurs.  The interpreter identifies the information 

flow that causes the vulnerability.  For this reason, the interpreter can identify more 

vulnerabilities than the OCL constraints.  The algorithm used in the OCL constraints is a 

tree search algorithm that stops executing and returns a warning when the first 

vulnerability is found.  The algorithm used in the interpreter is a tree search algorithm 

that will traverse the entire tree and return a warning for each vulnerability.  For example, 

if a data object has a confidentiality requirement that is violated at multiple points in the 

model, then the OCL constraint will only return one message, while the C++ interpreter 
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will return a message for each point that violates the Bell-LaPadula Model.  The 

interpreter will output the results to an XML file which can be read from outside the 

SMAL environment.  This enables SMAL to serve as a tool to analyze and provide 

feedback about information flows in other DSMLs.  Figure 17 shows pseudo code that 

represents the logic used in the BON interpreter. 

Figure 17 Pseudo code representation of the C++ interpreter logic 

main() 
{ for all data 
  TreeSearch(data,data) 
} 
 
TreeSearch(rootnode,node) 
{ if rootnode.integrity 
 { 
  if node.SecurityLevel > rootnode.SecurityLevel 
   Message(Biba Model Security Level Violation)  
  if node.Compartment is not subset of rootnode.SecurityLevel 
   Message(Biba Model Comparment Violation) 
 } 
 

if rootnode.confidentiality 
 { 
  if rootnode.SecurityLevel > node.SecurityLevel 
   Message(Bell-Lapadula Model Security Level Violation)  
  if rootnode.Compartment is not subset of node.SecurityLevel 
   Message(Bell-Lapadula Model Comparment Violation) 
 } 
 
 if rootnode.integrity or rootnode.confidentiality 
 { 
  for each node.children 
  { 
   conn = node.getConnectionTo(child) 
   aa = conn.AnticipatedAdverary 
   ks = conn.KeySize 
   alg = conn.EncryptionAlgorithm 
   if aa contains reference to alg and  
     

 }  
} 
 

 for all node.children 
  TreeSearch(rootnode,child)  
} 
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Integrating Security Analysis with Existing Tool Chains 

Although there is modeling tool support for analysis of functionality, 

performance, power consumption, safety, etc.,  currently available tools incorporate little 

if any support for security modeling. As a result, security is only addressed once the 

complete system has been built.  We want to leverage the work behind existing tool 

chains by incorporating security analysis in the system design process.  SMAL was 

created to be a reusable tool that can be integrated with multiple tool chains, thus 

reducing the effort that would be required to develop custom security analysis for each 

tool chain. 

When adding these security specific concepts to a DSML, it is important to 

consider what they mean in the context of the entire tool chain.  Often the design flow 

includes other tools for such things as functionality, schedulability, power consumption 

and safety analysis.  The division between these different types of analyses is not always 

clear-cut.  Many times decisions made based on one type of analysis can have an impact 

on the outcome of other types of analysis.  One such example in the context of SMAL is 

the use of encryption algorithms.  The decision to encrypt a communication channel 

could have a major effect on the schedulability of the system.  Also, if there is a code 

generator for the DSML, it must be modified to support these security properties (i.e. 

linking to encryption libraries, enforcing the partition model, etc.).  The tool developer 

who is integrating SMAL capabilities to a DSML, must address concerns such as making 

these other tools aware of the impact the security properties will have on the system.  

Figure 18 shows a typical design flow for performing security analysis with an embedded 
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system DSML.  The portions of this design flow that include the transformation to a 

SMAL model, the security analysis and the result feedback form an automated process.   

 

Figure 18 Typical embedded system design flow with SMAL 

Model Transformation to the SMAL Paradigm 

In general, model transformation is a one way function with the domain being the 

set of all valid models in the original DSML and the range being the set of all valid 

models in the destination DSML.  By defining a transformation that maps models of an 

embedded system DSML onto SMAL, we can perform information flow analysis and 

threat model analysis on the embedded systems models.  This prevents the repeated effort 

of developing interpreters that analyze security properties for multiple DSMLs.  Only the 

interpreter that analyzes SMAL models needs to be developed.   

GME is integrated with the Graph Rewriting and Transformation language 

(GReAT) [32].  GReAT is built on top of an execution engine (GReAT-E) which can 
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translate models based on transformation rules specified by GReAT.  This mapping 

specification needs to be created only once for a given DSML and then any valid models 

for that DSML can be automatically transformed into a corresponding SMAL model.  

This is achieved with the code generator for GReAT models.  Once the transformation 

rules have been defined the code generator will create a Visual Studio project that 

compiles to an executable file.  This .exe file can be run from the Windows command 

line. 

Modifying Embedded System DSMLs to Support SMAL 

In order to define such a transformation, the original DSML must be able to 

capture those security properties that are need for SMAL to provide a useful analysis.  In 

other words, for information flow analysis, the DSML must be able to model the concepts 

such as data object, dataflow, partition, security level, compartment, confidentiality and 

integrity requirements and for threat model analysis the DSML must be able to model the 

concepts such as encryption algorithm library, encryption algorithm, adversary model, 

susceptible encryption algorithm, encrypted channel and channel adversary.  Typically, 

the DSML will not have all of the concepts needed to create such a transformation.  For 

example, take a DSML built on the synchronous dataflow model of computation [31].  

This DSML would have the concepts such as data objects and dataflow, but none of the 

other security specific concepts.  It would be the responsibility of a tool designer to add 

the ability to capture these security specific concepts in a DSML.  The process of 

extending a DSML to capture security related properties is not as difficult as it might 

seem.  One of the powerful concepts of the MIC approach is easy composition of 

metamodels to form new languages.  By composing the metamodel of a DSML with 
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concepts from SMAL, it is relatively easy to form these security specific extensions to an 

existing language. The tool designer can then create the transformation rules that map 

models in the DSML onto models in SMAL.   

Feedback Analysis Results  

Since SMAL is only capable of capturing those concepts which are relevant to 

security analysis, it is not possible to define a transformation from SMAL back onto the 

original DSML.  Those concepts which are unique to the original domain are lost in the 

translation from the DSML to SMAL.  In order for SMAL to provide useful feedback to 

the user, it is necessary to have the path and id attributes which belong to partition, 

information flow, data object, ports, adversary model and encryption algorithm in SMAL.  

Path and id store the path and the unique id of an object in the original DSML.  In GME, 

hyperlinks to objects are created using this unique id.  For each error message from the 

SMAL model analysis, one or more hyperlinks point the specific object that caused the 

security violation.  When a SMAL model is analyzed and security violations are 

identified and the results are output to an XML file.  There is a separate interpreter that 

will read in the XML file and output the results to GME console.  Figure 19 shows an 

example XML file that shows analysis results and Figure 20 shows the console error 

message corresponding to the XML file. 
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Figure 19 Example security analysis results XML file 

 

Figure 20 Example console error message 

This allows the results to be displayed to the console of the GME instance which 

has the open DSML model.  The results will be fed back to the user of the original DSML 

in the form of an error messages along with hyperlinks that identify at which point in the 

original model there is a security violation.  Using this approach, a user of a DSML will 

never have to view the SMAL model.  To form this automated feedback process there are 

three interpreters that are involved: 1) DSML to SMAL Transformation, 2) SMAL 

Integrity Requirement Violated -- 

/SimpleSystem/PartitionB/Assembly_B1 has 

an integrity requirement which is violated 

by the information flow connecting 

/SimpleSystem/PartitionB/Port_B2 to 

/SimpleSystem/PartitionC/Port_C1. 

<?xml version="1.0" ?> 

<root> 

 <System name="SimpleSystem" ID="putGUID"> 

  <result type="Integrity"> 

   <data ID=“0062-00000002">/Flow Analysis/PartitionA/Data_A1</data>  

   <src ID="0062-00000007">/Flow Analysis/PartitionB/Port_B3</src> 

   <dst ID=" 0062-00000013”>/Flow Analysis/PartitionC/Port_C1</dst> 

  </result> 

  </System> 

</root> 
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analysis interpreter and 3) security results interpreter.  The second and third interpreters 

have been developed for use with SMAL.  When integrating SMAL with an existing 

DSML it is up to the tool developer to develop the transformation interpreter and link it 

to the other interpreters.  The transformation interpreter should generate a SMAL model 

from a DSML model, invoke the analysis interpreter on the SMAL model and then 

invoke the security results interpreter that will read in the XML results file.  By linking 

together these interpreters the use will only have to invoke one interpreter from the 

DSML environment and the rest of the process will be automated.   
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CHAPTER V 

CASE STUDY: INTEGRATING SECURITY ANALYSIS TO AN EXISTING 

EMBEDDED SYSTEM LANGUAGE 

As a proof of concept, we have integrated SMAL with an existing tool for the 

design of embedded systems, SMoLES [26]. SMoLES alone does not address security 

concerns.  We show how to add the capability for capturing security specific properties to 

SMoLES.  Models in SMoLES are enriched with these concepts and we created a 

mapping from SMoLES models to objects in SMAL.  This mapping allows the creation 

of a transformation from SMoLES models to SMAL models.  The following sections 

show how results from the analysis of a SMAL model can feed back warnings of security 

violations in terms of SMoLES models so that the user can correct them accordingly. 

Integrating SMAL with SMoLES 

Since SMoLES does not capture any security properties, we must add the 

appropriate concepts, so that we can create security aware models.  We call this extended 

language SMoLES_SEC.  SMoLES_SEC allows the modeler to capture the security 

properties required to perform the two types of analysis that SMAL supports, the 

information flow analysis and threat model analysis.   

First, we address those concepts necessary to perform the information flow 

analysis.  SMoLES already has the concept of dataflows but none of the other concepts 

used in SMAL.  Assemblies in SMoLES are close to the concept of a partition in SMAL.  

Figure 21 shows the portion of the SMoLES metamodel that defines the Assembly. 
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Figure 21 SMoLES Assembly metamodel 

One possible approach to add security concepts to SMoLES would be to add the security 

level and compartment attributes to assemblies.  However, assemblies are hierarchical 

whereas partitions in SMAL are not.  In the root folder of a SMoLES_SEC model will be 

a Systems folder which can contain one or more System models.  So, we introduce the 

idea of partition to SMoLES_SEC.  Partitions will have input and output ports which can 

be connected by dataflow connections.  Like in SMAL, partitions will have security level 

and compartment attributes that define their access rights in the context of the Bell-

LaPadula and Biba models.  A System model contains the SMoLES_SEC Partition 

models.  Assemblies are contained by partitions and inherit the security level and 

compartment of the containing partition.  SMoLES has the concept of dataflow; however 

it has no first class object that is a data object.  Currently, we assign the confidentiality 

and integrity attributes to an assembly in SMoLES_SEC and evaluate these attributes 

against the dataflows originating from that assembly.  Although a more useful and correct 
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approach would be to assign confidentiality and integrity attributes to SMoLES 

components.  Assemblies are modeling level concepts for usability of the modeling 

language.  They are simply containers used to group components together and have no 

meaning in terms of generated code.  The simply group Figure 22 shows the 

SMoLES_SEC metamodel with Partition, System and Systems as the security specific 

extensions to the SMOLES language. 

  

Figure 22 SMoLES_SEC Partition metamodel 

Next, we address the concepts necessary to perform the threat model analysis.  

SMoLES has no concept of encryption algorithms or adversary modeling.  We add these 

concepts to SMoLES_SEC and define them in the same way that they are defined for 

SMAL.  The SMoLES_SEC threat modeling is similar to the threat modeling in SMAL.  
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In each system, there is an encryption algorithms library with a set of encryption 

algorithms.  Each system contains a set of adversaries and each adversary contains a set 

of Susceptibility references.  Susceptibility references points to an encryption algorithm 

which represents that the encryption algorithm is vulnerable to the adversary which 

contains the reference.  Each encryption algorithm has an attribute, MaxKeySize. Data 

encrypted with a key size that is less than or equal to MaxKeySize is vulnerable to attack.  

Figure 23 shows the metamodel for the SMoLES_SEC adversary. 

  

Figure 23 SMoLES_SEC adversary metamodel 

We do not associate an encryption algorithm and adversary model directly with dataflows 

as it is done in SMAL. Rather, SMoLES_SEC can model a deployment diagram where 

nodes, which represent the execution platform, are connected to other nodes through a 

link (or bus).  A node can be viewed as a set that contain partitions that execute on that 

node.  Likewise, a link can be viewed as a set that contains the dataflows that are 

transmitted over that link.  Each link in SMoLES_SEC has an attribute, 
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AnticipatedAdversary, which identifies the adversary model associated with that link.  

Each link in SMoLES_SEC also has an EncryptionAlgorithm and KeySize attribute.  

Dataflows inherit the AnticipatedAdversary, KeySize and EncryptionAlgorithm of the link 

that they are transmitted across.  Figure 24 shows the SMoLES_SEC deployment 

diagram metamodel.   

  

Figure 24 SMoLES_SEC deployment diagram metamodel 

The effect that these extensions for SMoLES_SEC have on tools that were written 

for the SMoLES language must be examined.  SMoLES has an interpreter that will 

generate C++ code from models.  This interpreter is unaware of encryption algorithms 

and their meaning in the context of SMoLES_SEC.  There are two solutions to this 

problem.  Either we define a transformation that will map SMoLES_SEC models back 

onto SMoLES models or we port this code generator to work with the SMoLES_SEC 
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environment.  In our case we choose to port the code generator to the SMoLE_SEC 

environment.  To do this we will need to make some slight modifications to the code 

generator, such as placing the code in separate partitions and linking to a library of 

encryption algorithms. 

 Model transformation from SMoLES_SEC to SMAL 

Now that the appropriate concepts have been added to extend SMoLE_SEC, we 

are able to define a model transformation that maps SMoLES_SEC models to 

corresponding models in SMAL.  Once we have defined these rules, the process of 

converting SMoLES_SEC models to SMAL models will be automated.  The GReAT 

model transformation tool allows us to define these rules.   

 

Figure 25 SMoLES_SEC to SMAL Transformation 

Figure 25 shows the high level view of the transformation.  These are nine rules 

that define how a SMoLES_SEC model maps into a SMAL model.  The rules are as 

follows: 

1) FindSystems – finds the Systems folders in the SMoLES_SEC root folder 

and passes the Systems folders out along with the RootFolder of the new 

SMAL model. 
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2) CreateAnalysis – creates a new SMAL SecurityAnalysis model for each 

SMoLES_SEC System model.   

3) CreateAdversary – for every SMoLES_SEC Adversary a corresponding 

SMAL Adversary model is created. 

4) CreateAlgorithms – for every SMoLES_SEC EncryptionAlgorithms model a 

corresponding SMAL EncryptionAlgorithms model is created. 

5) CreateAlgorithm – for every SMoLE_SEC EncryptionAlgorithm a 

corresponding SMAL EncryptionAlgorithm is created in the 

EncryptionAlgorithms model created in step 4. 

6) VulnerableAlgorithm – for every reference to SMoLES_SEC 

EncryptionAlgorithm in the SMoLES_SEC Adversary a corresponding 

reference to a SMAL EncryptionAlgorithm in a SMAL Adversary is created. 

7) CreatePartitions – for every SMoLES_SEC Partition model a corresponding 

SMAL Partition model is created with the same SecurityLevel and 

Compartment Attributes. 

8) CreatePortsAndConnections – for every SMoLES_SEC Dataflow that 

connects Ports on a Partition corresponding SMAL InformationFlow and 

SMAL Ports are created.  

9) AdversaryMapping – the value of the AdversaryModel attribute for every 

SMoLES_SEC Link is passes to the SMAL InformationFlows that correspond 

to a SMoLES_SEC Dataflow contained by that Link. 
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Feedback Analysis Results to SMoLES_SEC 

In the previous sections, the security extensions to the SMoLES language and the 

model transformation from the resulting SMoLES_SEC to SMAL were described.  The 

next step to integrate security analysis with the SMoLES language is to automate the 

process of providing analysis results to the modeler.  This feedback automation was 

discussed in Chapter III.  There are three interpreters that are involved: 1) DSML to 

SMAL Transformation, 2) SMAL analysis interpreter and 3) security results interpreter.  

The second and third interpreters have been developed for use with SMAL.  When 

integrating SMAL with an existing DSML it is up to the tool developer to develop the 

transformation interpreter and link it to the other interpreters. 

Figure 26 shows how the design flow presented in Figure 18 is used to integrate 

the security concepts in SMAL with the SMoLES language. 

 

Figure 26 Design Flow: Integrating SMAL with SMoLES 
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This allows the results to be displayed to the console window of the GME 

instance which has the open DSML model.  The results will be fed back to the user of the 

original DSML in the form of an error messages along with hyperlinks that identify at 

which point in the original model there is a security violation.  Using this approach, a 

user of a DSML will never have to view the SMAL model.  The transformation 

interpreter should generate a SMAL model from a DSML model, invoke the analysis 

interpreter on the SMAL model and then invoke the security results interpreter that will 

read in the XML results file.  By linking together these interpreters the user will only 

have to invoke one interpreter from the DSML environment and the rest of the process 

will be automated.  

We have written a small script that can be invoked from the SMoLES_SEC 

environment.  This allows the user of the SMoLES_SEC environment to transform their 

model into a SMAL model in one step, run the information flow and threat model 

analysis on the SMAL model and receive the analysis results.  The user will never view 

the resulting SMAL model.  The analysis on the SMAL model is done in the background. 

 

Example application in SMoLES_SEC  

An example SMoLES_SEC model is shown in Figure 27.  This is a generic 

application that demonstrates the capabilities of the security analysis.  Real applications 

of this tool will be too large to cover in the scope of this thesis.  There are four partitions 

in the system.  Partitions A, B, and D have a security level of 1 and PartitionC has a 

security level of 2.  This means that data objects with a confidentiality requirement may 

not flow from PartitionC and those data object with an integrity requirement may not 
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flow to PartitionC.  In this example, we do not consider partitions with different 

compartment classifications.  PartitionB contains an Assembly_B1 that has an integrity 

requirement but no confidentiality requirement.  Since this assembly is in PartitionB it 

inherits the security level of 1.  Figure 28 shows the deployment diagram.  Nodes 1, 2, 

and 3 are connected by a common link.  Components in PartitionA and PartitionB 

execute on Node1.  Components in PartitionC execute on Node2 and Components in 

PartitionD execute on Node3.  All dataflows transfer data across the Link, except the 

dataflow connecting PartitionA and PartitionB which reside on the same node.  Figure 29 

shows the threat model of this system.  The AnticipatedAdversary model of Link is the 

Internet_Adversary. 

 

Figure 27 SMoLES_SEC example application: Partitions and dataflows 

 

Figure 28 SMoLES_SEC example application: deployment diagram 
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Figure 29 SMoLES_SEC example application: threat model 

First, we will invoke the information flow analysis on this model.  Figure 30 

shows the error message that we receive for the information flow analysis.  The assembly 

in PartitionB has an integrity requirement, so the dataflows originating from this 

assembly are evaluated with the Biba model.  There is a dataflow that connects PartitionB 

to PartitionC which represents data objects moving from a low security level to a high 

security level.  This dataflow violates the Biba model.  There are a several possible 

solutions to this error.  It is up to the system modeler to determine which solution is 

appropriate in the context of their system.  For this example, we determine that the 

PartitionB can be classified at a security level of 2.  When this change is made to the 

model the security analysis tool does not return any errors. 
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Figure 30 Error message - information flow analysis 

Next, we invoke the threat model analysis.  Figure 31a shows the error message 

we receive.  There is an adversary associated with the link, so the channel must be 

encrypted.  The error message warns that Link must be encrypted, so we set the 

encryption attributes on Link to 256 bit RSA.  Internet_Adversary is capable of breaking 

RSA with a key size of 256 bits or less.  The error message in Figure 31b shows the error 

message we receive.  To fix this error message we increase the key size used to encrypt 

Link to 512 bits.  This fixes the security violation the threat model analysis no longer 

returns any error messages. 

 

Integrity Requirement Violated -- 

/SimpleSystem/PartitionB/Assembly_B1 has an 

integrity requirement which is violated by 

the information flow connecting 

/SimpleSystem/PartitionB/Port_B2 to 

/SimpleSystem/PartitionC/Port_C1. 
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Figure 31 Error messages - threat model analysis 

 

a) Connection not encrypted -- The 

connection at path: 

/SimpleSystem/Link is vulnerable. 

Please specify an encryption 

algorithm.  

b) Vulnerable Encryption Algorithm -- 

The connection at path: 

/SimpleSystem/Link is vulnerable. 

The adversary knows RSA up to a key 

size of 256 bits. Please specify a 

larger key size or change the 

algorithm. 



 53 

CHAPTER VI 

EVALUATION OF SECURITY ANALYSIS TOOLCHAIN 

There have been two methods for identifying vulnerabilities in a SMAL model 

presented.  The first method was analyzing the SMAL model with OCL constraints.  The 

second method analyzed the SMAL model with a C++ interpreter.  To compare the 

performance of both methods, a SMAL model was analyzed with them on a laptop with a 

1.73 GHz Pentium M and 512 MB RAM.  The model had 320 partitions, 128 data 

objects, 1214 data flows and 1024 ports.  This model is large enough that it is not feasible 

to analyze the security properties manually yet small enough that the analysis will finish 

in a reasonable amount of time.  Analyzing the model with the OCL constraints took 60 

seconds.  The BON interpreter took 85 seconds to analyze and write the results to the 

XML file.  It took 92 seconds to read in the XML file and write the results to the GME 

console.  The BON interpreter took 25 seconds longer to analyze the model than the OCL 

constraints.  However, the C++ interpreter identified 4288 vulnerabilities compared to the 

OCL constraints which only returned 308 vulnerabilities.  This difference in number of 

results is due to the fact that the OCL constraints only return one of each type of result 

per data object.  The BON interpreter will return a result for each vulnerability.   
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CHAPTER VII 

FUTURE WORK AND CONCLUSION 

SMAL currently supports modeling of access control policies in the context of the 

Bell-LaPadula and Biba models.  These access control policies are not sufficient for the 

needs of all applications.  We would like for SMAL to have the expressiveness to model 

other types of access control schemes.  Another area that needs to be addressed is how to 

more tightly integrate the security analysis with the other analysis tools available for a 

DSML.  This would allow the designer to look at tradeoffs made based on security 

properties such as analyzing the tradeoffs between security and performance.  We have 

shown how SMAL can be integrated with SMoLES which is a dataflow based language.  

This leads to a simple mapping from SMoLES to SMAL.  There needs to be work done 

to look at how security analysis can be integrated with other classes of DSML such as 

those based on control flow. 

 Model driven security approaches have been successfully used in various 

industrial, governmental and financial applications.  Model-Integrated Computing has 

proven to be a valuable tool in embedded systems design process.  We have demonstrated 

a security analysis tool that is capable of analyzing the flow of data objects through a 

system and identifying points in a distributed system that are vulnerable to attack.  We 

have outlined a method for composing this type of security tool with existing tool chains 

for DSMLs.  This approach leverages the development efforts that have gone into design 

of tool suites for existing embedded system DSMLs.  Creating a separate analysis 

language for security properties allows reuse of this tool for multiple DSMLs.  The 
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example application shown is a proof of concept that demonstrates the potential of 

integrating security modeling capabilities with existing languages. 
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APPENDIX A 

The formalization of SMAL information flow and adversary analysis as OCL 

constraints is presented in this appendix.  First the constraints related to information flow 

analysis (Bell-LaPadula and Biba) are given.  Then the constraints related to adversary 

analysis are given. 

context meta::Data inv Biba: 
self.Integrity implies not self.BibaViolation() 
 
context gme::Atom::BibaViolation: ocl::Boolean defmethod BibaViolation:  
self.connectedFCOs("dst",meta::InformationFlow)->iterate( port: 
meta::Port; violation = false |  
     if(self.parent().oclAsType(meta::Partition).SecurityLevel < 
port.parent().oclAsType(meta::Partition).SecurityLevel) then 
          true 
     else 
          violation || port.BibaViolation() 
     endif 
) 
 
context meta::Data inv BLP: 
self.Confidentiality implies not self.BLPviolation() 
 
context gme::Atom::BLPviolation: ocl::Boolean defmethod BLPviolation:  
self.connectedFCOs("dst",meta::InformationFlow)->iterate( port: 
meta::Port; violation = false |  
     if(self.parent().oclAsType(meta::Partition).SecurityLevel > 
port.parent().oclAsType(meta::Partition).SecurityLevel) then 
          true 
     else 
          violation || port.BLPviolation() 
     endif 
) 
 
context meta::Data inv Compartment: 
self.Confidentiality || self.Integrity implies not 
self.CompartmentViolation() 
 
context gme::Atom::CompartmentViolation: ocl::Boolean defmethod 
CompartmentViolation:  
self.connectedFCOs("dst",meta::InformationFlow)->iterate( port: 
meta::Port; violation = false |  
     if(self.parent().oclAsType(meta::Partition).Compartment <> 
port.parent().oclAsType(meta::Partition).Compartment) then 
          true 
     else 
          violation || port.CompartmentViolation() 
     endif 
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)   

 

context meta::Data inv Adversary: 
self.Confidentiality || self.Integrity implies 
not self.SusceptibleAlgorithm() 
 
context gme::Atom::SusceptibleAlgorithm: ocl::Boolean defmethod 
Susceptible Algorithm: 
if 
(self.attachingConnections("src",meta::InformationFlow)->iterate(conn: 
meta::InformationFlow; violation = false | 
     if( conn.AnticipatedAdversary <> "") then 
            let MKS = 
conn.getMKS(conn.connectionPoint("src").target().oclAsType(gme::Atom)) 
in 
            let KS = conn.KeySize in 
            MKS >= KS        
     else 
          violation 
     endif 
)) then 
          true 
else 
          self.connectedFCOs("dst").exists(t | 
t.oclAsType(gme::Atom).SusceptibleAlgorithm()) 
endif 
 
context::metaInformationFlow::getMKS(source: gme::Atom): ocl::Integer 
defmethod getMKS: 
source.parent().parent().oclAsType(meta::System).modelParts(meta::Adver
sary)->iterate(a; 
MKS = 0 | 
     if (a.name = self.AnticipatedAdversary) then 
          a.referenceParts(meta::Susceptibility).any(a | a.name = 
self.EncryptionAlgorithm).oclAsType(meta::Susceptibility).MaxKeySize 
     else 
          MKS 
     endif 
) 
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