
AUTOMATING MIDDLEWARE CONFIGURATION AND SPECIALIZATIONS

VIA MODEL-BASED ASPECT-ORIENTED SOFTWARE DEVELOPMENT

By

Dimple Kaul

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May, 2007

Nashville, Tennessee

Approved:

Professor Aniruddha Gokhale

Professor Jeff Gray

Professor Alan Tackett

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Aniruddha Gokhale,

for providing me with this great opportunity to work in his group. Without his

support, guidance and mentorship this thesis would have not been possible. I would

also like to thank Dr. Douglas Schmidt for guiding and giving constructive comments.

During my research work I have collaborated with many colleagues for whom I

have great regard, and I wish to extend my thanks to all those who have guided me

with my work in the Institute of Software Integrated Systems (ISIS) and Advanced

Computing Center for Research and Education (ACCRE) at Vanderbilt University

department.

I am also grateful to my defense committee Dr. Aniruddha Gokhale, Dr. Jeff Gray

and Dr. Alan Tackett for their time and support for reviewing this thesis.

On the personal note I own my loving thanks to my husband Deepak and daughter

Shireen for their understanding, support, and patience. And finally to my parents,

who taught me value of education and who’s best wishes and prayers were always

with me.

Dimple Kaul

Vanderbilt University

May 2007

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

LIST OF ABBREVIATION . viii

Chapter

I. INTRODUCTION . 1

I.1. Our approach . 3
I.2. Thesis Organization . 3

II. PATTERN ORIENTED SOFTWARE ARCHITECTURE MODEL-
ING LANGUAGE . 5

II.1. Challenges for Middleware Provisioning 5
II.2. Designing Visual Tools for Middleware Provisioning 9
II.3. Acceptor-Connector Pattern 16

II.3.1. Metamodel of Acceptor-Connector Pattern 16
II.3.2. Modeling of Acceptor-Connector Pattern 23

II.4. Bridge Pattern . 25
II.4.1. Metamodel of Bridge Pattern 25
II.4.2. Modeling of Bridge Pattern 27

II.5. Feature View in POSAML 28
II.5.1. Metamodel of Feature View 29
II.5.2. Modeling of Feature View 32

III. MIDDLEWARE SPECIALIZATION 34

III.1. Various Specialization Techniques 34
III.2. Overview of Aspect-Oriented Programming 35
III.3. Aspect-Oriented vs. Object-Oriented Programming 37
III.4. Approach to Specialize Middleware via AOP 39
III.5. Reactor Specialization using AOP 40

iii

IV. AUTOMATING GENERATION OF SPECIALIZATION ASPECTS 44

IV.1. Metamodel of Aspect for POSAML 44
IV.2. Modeling of Aspect for POSAML 46

V. CASE STUDY . 51

V.1. Logistical Storage . 51
V.2. Challenges: Crosscutting Concerns in Logistical Storage . . 54
V.3. Solution Approach: Use of Aspect-Oriented Techniques . . . 59
V.4. Scalable Metadata Management Implementation 69

VI. RESULTS AND OBSERVATIONS 70

VI.1. Configuration and Specialization Files Generation 70
VI.2. Latency and Throughput Results 72

VII. RELATED WORK . 76

VIII. SUMMARY AND CONCLUSION 78

BIBLIOGRAPHY . 82

iv

LIST OF TABLES

Table Page

III.1. Difference between AOP and FOP 35

VI.1. Average Percentage Change . 75

v

LIST OF FIGURES

Figure Page

II.1. Middleware Structure . 6

II.2. Middleware Patterns and Pattern Languages 10

II.3. Top-level Metamodel of Middleware Structure 13

II.4. Overview of POSAML . 14

II.5. UML diagram of Acceptor-Connector Pattern 17

II.6. Connector Pattern Dynamics . 18

II.7. Metamodel of Connector Pattern 19

II.8. Acceptor Pattern Dynamics . 20

II.9. Metamodel of Acceptor Pattern . 21

II.10. Model of Acceptor-Connector Pattern 23

II.11. GoF UML diagram of Bridge Pattern 25

II.12. Metamodel of Bridge Pattern . 26

II.13. Model of Bridge Pattern . 28

II.14. POSAML Metamodel: Feature View 30

II.15. POSAML Model: Feature View . 32

III.1. Comparing Object-Oriented and Aspect-Oriented Model 37

III.2. Phases of AOSD for an existing project 38

III.3. Reactor Specialization using AOP 40

III.4. Specialization file for Single threaded reactor 42

III.5. Specialization file for Thread Pool reactor 42

IV.1. Metamodel of Aspect for POSAML 45

vi

IV.2. Modeling of Aspect in POSAML 46

IV.3. Modeling of Aspect constructs in POSAML 47

IV.4. Metamodel of Aspect construct Pointcut 48

IV.5. Example of Pointcut Model . 49

V.1. Identification Based Access Control configuration 67

V.2. Access Control using AOP . 68

VI.1. Select Reactor Latency . 73

VI.2. Select Reactor Throughput . 74

VI.3. Threadpool Reactor Latency . 74

VI.4. Threadpool Reactor Throughput 75

vii

LIST OF ABBREVIATION

ACE Adaptive Communication Environment
ACID Atomicity, Consistency, Isolation, and Durability
AJDT AspectJ Development Tool
AOSD Aspect-Oriented Software Development
AOP Aspect-Oriented Programming
DHT Distributed Hash Table
DRE Distributed, Real-time and Embedded
DSML Domain-Specific Modeling Language
FOP Feature Oriented Programming
GME Generic Modeling Environment
HEP High Energy Physics
IBAC Identity-Based Access Control
IBP Internet Backplane Protocol
IDE Integrated Development Environment
IDL Interface Definition Language
LN Logistical Networking
L-Store Logitical Storage
MDD Model Driven Development
MDE Model Driven Environment
MLS Multi-Level Security
NTFS New Technology File System
OCL Object Constraint Language
OOP Object-Oriented Programming
ORB Object Request Broker
PM Policy Machine
POA Portable Object Adapter
POSA Pattern Oriented Software Architecture
POSAML Pattern Oriented Software Architecture Modeling Language
QoS Quality of Service
RBAC Role-Based Access Control
TAO The ACE ORB

viii

CHAPTER I

INTRODUCTION

Distributed computing infrastructures including general-purpose middleware so-

lutions, such as Java Enterprise Edition (Java EE), CORBA and .NET, and virtual

machines (VMs) have been one of the key enabling technologies responsible for the

rapid and timely growth of a wide variety of network-based applications and appli-

cation families (i.e., product lines) found in multiple domains, such as real-time and

embedded systems [2], enterprise systems and grid computing [17].

First, and the most importantly, for complex distributed applications there are

various functional and non-functional concerns that must be addressed simultane-

ously when provisioning on these middleware platforms. The non-functional provi-

sioning concerns comprise the problem of choosing the right set of configuration and

composition parameters of the middleware platforms and validating that these meet

the QoS requirements of the applications. Secondly, middleware is designed to be

general-purpose, highly flexible and very feature rich i.e., middleware provides a rich

set of capabilities along with configurability to support a wide range of application

classes in many domains. The traditional approaches to middleware provisioning typ-

ically use low-level, non-intuitive, and technology-specific mechanisms, which are not

reusable across multiple middleware technologies. There are multiple software lay-

ers in middleware and these layers provide platform-independent execution semantics

and reusable services (e.g., concurrency management, connection management, data

marshaling, location transparency), which coordinate how application components

are composed and interoperate.

When provisioning middleware, we have seen provisioning require the manual

configuration of XML files [47] that are several thousand lines long. In traditional

1

approaches to provisioning, often the QoS validation phase is decoupled from the con-

figuration phase. Moreover, the validation phase uses processes that do not leverage

decisions made at the configuration phase, which limits the optimizations and fidelity

of the QoS validation phases. There are many applications with stringent Quality

of Service (QoS) demands (e.g., latency, fault tolerance, and throughput) and they

find the feature richness and flexibility to be a source of excessive memory footprint

overhead and a lost opportunity to optimize for significant performance gains. There

is a need for applications to continue to benefit from the elegant, object-oriented de-

signs and interfaces of middleware for maximum reuse and interoperability. On the

other hand, it is necessary for applications to use only the required features of the

middleware and derive maximum benefits in response to their QoS needs.

A solution to these problems is to provide a mechanism that raises the level of

abstraction at which system integrators can provision middleware. Visual aids are

one of the best known techniques to intuitively reason about any system [19]. Visual

tools hold promise for middleware provisioning also. A visual tool for the provision-

ing problem is one that can provide a clean separation of concerns [39] between the

configuration and QoS validation phases, yet unifies the two phases such that deci-

sions at one phase can automate and optimize steps at subsequent phases. Also a

desired capability to address the conflicting requirements is to find a way to auto-

mate middleware specializations which are driven by QoS requirements of applications

and product lines. Research in various advanced programming technologies such as

Aspect-Oriented and Feature-Oriented design methodologies [28, 16, 5] have shown

promise in terms of managing the complexity of large-scale software design through

explicit separation of concerns (SoC) [39].

These qualities largely eliminate the overhead of the trial-and-error, iterative pro-

cess incurred by traditional methodologies. A desired capability is to reason about

2

the application QoS requirements and desired functionality at an intuitive and higher

level of abstraction, and be able to automatically synthesize the low-level middleware

specialization aspects so that Aspect-Oriented Programming (AOP) tools can subse-

quently specialize middleware code.

I.1 Our approach

In our research we combined the power of two important paradigms called Model

Driven Engineering (MDE) [42] and Aspect-Oriented Software Development (AOSD).

In this context we describe our Domain-Specific Modeling Language (DSML) called

Pattern Oriented Software Architecture Modeling Language (POSAML) [11], which

incorporates the notion of middleware building blocks that are viewed as being made

up of software patterns [18,45] for building network-centric software systems. We will

discuss the generative capability of this modeling language to generate middleware

specific artifacts and AOP specialization files containing important constructs of as-

pects i.e., pointcuts and advice. Using this model-driven technique to generate these

artifacts can result into a highly efficient and optimized middleware system by remov-

ing manual steps in configuring and specialization of middleware. We also describe

the use of AOP to automate the middleware specialization [10]. In addition to these

contributions we will present a case study of using AOSD techniques to address var-

ious crosscutting challenges for an application called Logistical Store (L-Store).

I.2 Thesis Organization

The remainder of this thesis is organized as follows: In Chapter II we describe

the pattern language modeling details of the POSAML language; In Chapter III we

describe different middleware specialization techniques mentioned in the literature

3

and pointout the reasons why we used AOP to specialize middleware. It also illus-

trates how we applied AOP to resolve the generality challenges of middleware by

focusing on a subset of the middleware used for specialization [10]; In Chapter IV

describes how we specialized middleware by adding modeling capability to POSAML

to automate specialization of middleware system. In Chapter V,we describe a case

study of how we used AOSD techniques to address various crosscutting challenges;

In Chapter VI we describe the results and analysis of our experiments comparing the

non-specialized and specialized middleware and also the middleware artifacts gener-

ated; In Chapter VII we discuss related research; Finally in Chapter VIII we describe

the conclusion, lessons learned and future work.

4

CHAPTER II

PATTERN ORIENTED SOFTWARE

ARCHITECTURE MODELING LANGUAGE

In this chapter we describe challenges in middleware provisioning and how visual

domain-specific modeling languages provide the solutions to address these challenges.

Middleware provisioning is the activity that comprises the configuration, customiza-

tion of the middleware platform and validating that these meet the QoS needs of the

application under expected workloads.

II.1 Challenges for Middleware Provisioning

The motivation for designing visual tools in middleware provisioning stems from

the non-intuitive, non-reusable, and error-prone nature of traditional approaches.

There are many challenges involved in designing a visual tool and for visual tools

to be effective, they must meet a set of criteria described below and should be able

resolve the challenges arising in meeting these criteria.

Accounting for variability across a range of middleware tech-

nologies:

Figure II.1 illustrates the structure of contemporary middleware technologies. It

depicts multiple layers of middleware each of which addresses specific requirements

and provides reusable functional capabilities. For example, the host infrastructure

middleware provides a uniform layer of abstraction to mask the heterogeneity arising

from different operating systems, hardware and networks; the distributed middleware

5

Figure II.1: Middleware Structure

provides location transparency; common services include directory services, messag-

ing services, and transaction services among others; and domain-specific services in-

clude additional reusable capabilities that are specific to a domain (e.g., avionics or

telecom).

In a networked environment, distributed applications are typically hosted on mul-

tiple heterogeneous middleware platforms. For each host in the deployment envi-

ronment, the middleware stacks on which an application is hosted may need to be

fine-tuned in different ways to meet the different QoS requirements of applications. To

support a wide range of application QoS needs, contemporary middleware technolo-

gies provide several different reusable capabilities that can be individually configured

and composed with each other. This flexibility offered by individual middleware tech-

nologies gives rise to variability that a middleware provisioner faces when provisioning

applications on the platforms.

6

The visual tool used for middleware provisioning must handle this variability

in the context of application QoS needs, and provide an intuitive user interface to

the middleware provisioner to eliminate provisioning errors. Our approach to re-

solve these challenges is based on abstracting away the implementation-specific and

technology-specific details of contemporary middleware solutions and focus on the

patterns of reuse [18] that form the building blocks of the different layers of mid-

dleware. Section II.2 describes how we leverage and formalize these insights to design

and implement the POSAML visual tool for middleware provisioning.

Need for a unified framework:

Middleware provisioning needs to be guided by the application QoS needs. This

requires that the QoS validation must be performed based on decisions made in the

configuration and customization phase. Thus, the QoS validation phase needs to have

complete knowledge of the configuration decisions. The QoS validation phase requires

systems developers to develop appropriate application testing and middleware bench-

marking code in accordance to the configuration decisions.

These requirements add a new dimension of variability, and dependability to the

challenges described in section II.1. To address these challenges, visual mechanisms

should provide a unified framework that can address the configuration and QoS valida-

tion concerns that arise in middleware provisioning. Such a framework must provide

the means to capture the configuration decisions and make them available in the QoS

validation phase.

Separation of concerns:

As noted earlier, provisioning involves the configuration and the validation phases.

Section II.1 illustrated the variability demonstrated by contemporary middleware

7

technologies and calls for a visual mechanism that provides intuitive user interfaces

to middleware provisioners. Section II.1 discussed the need for a unified framework

since the QoS validation phase is dependent on the configuration phase. Addressing

these challenges requires careful design since any ad hoc design decisions may tangle

the QoS validation activities with the configuration activities defeating the goals of

providing intuitive mechanisms for middleware provisioning.

Although traditional approaches to middleware provisioning decouple the configu-

ration and validation phases, such a decoupling is not useful since the QoS validation

activities do not have any knowledge of the configuration decisions, and these activ-

ities are typically carried out by a different set of actors. To address the need to

decouple the two phases yet meet the earlier challenges discussed requires that the

visual tool provide a clean separation of the QoS validation phase from the configu-

ration phase so that the two concerns do not tangle with each other yet unifies them

at a level that does not impact the user perception.

In addition to the previously discussed challenges, their is one more challenge

of providing a capability to model and automatically synthesize the aspects for mid-

dleware so that there is desired functionality at an intuitive and higher level of abstrac-

tion. There is need to do AOSD modeling for automatic generation of specialization

files. It is very difficult to control and manage features if the specialization files are

hand written. This framework must provide the means to model aspects and its con-

structs so that specialization files can be generated. This challenge and the solution

by adding capability of modeling AOP and synthesis of specialization files to a visual

tool are discussed in detail in chapter IV.

8

II.2 Designing Visual Tools for Middleware Provi-

sioning

Model-Driven Environment (MDE) [36, 23] has gained prominence in assisting

application developers to make the right choices in configuring and composing large

systems. Such model-based solutions can help resolve the variability in middleware

provisioning and QoS validation. In this section we describe a Domain-Specific Mod-

eling Language (DSML) called POSAML (Patterns-oriented Software Architecture

Modeling Language), which enables the modeling of middleware stacks, their configu-

rations and aspects by providing intuitive visual abstractions of middleware building

blocks. Moreover, POSAML provides middleware-specific QoS validation and gener-

ation of specialization files by virtue of plugging in different modeling interpreters.

Variability in Middleware Composition

When deploying complex applications, systems developers must decide the compo-

sition and customization of middleware that hosts the application components. Mid-

dleware composition includes assembling individual but compatible building blocks

of middleware. The building blocks of middleware are most often patterns-based.

Patterns

A software pattern [18] codifies recurring solutions to a particular problem occur-

ring in different contexts, which is embodied as a reusable software building block.

There are several benefits of design patterns to the software community [46]:

• Design patterns offer reusable solutions to common recurring problems.

• Design patterns make communication between designers more efficient by using

common terminology.

9

• Patterns give a high-level of perspective on the problem and on the process of

design and object orientation.

Figure II.2: Middleware Patterns and Pattern Languages

The systems developer chooses a block based on various factors including the

context in which the application will be deployed, the concurrency and distribution

requirements of the application, the end-to-end latency, timeliness requirements for

real-time systems, or throughput for other enterprise systems (e.g., telecommunica-

tions call processing). We refer to this incurred design space variability as middleware

compositional variability.

Figure II.2 illustrates a family of interacting patterns forming a pattern lan-

guage [1] for middleware designed to support such applications. In addition to these

10

patterns there are some software design patterns which are almost part of every soft-

ware system. The middleware can be customized by composing compatible patterns.

For example, event de-multiplexing and dispatching via the Reactor or Proactor pat-

tern can be composed with the concurrent event handling provided by the Leader-

Follower or Active Object pattern. However, an Asynchronous Completion Token

(ACT) pattern works only with asynchronous event de-multiplexing provided by the

Proactor. Thus, a combination of Reactor and ACT is invalid.

Building Block Configuration Variability

Middleware developers provide numerous configuration options to customize the

behavior of individual building blocks. This flexibility further exacerbates the already

incurred variability in design choices that the systems developer is required to make.

Any ad hoc decision affects the time-to-market and also can deliver less-than-desired

performance. Since the impact is on a per building block basis – as opposed to a

composition described in the previous challenge – we refer to this as configuration

dimension variability.

As a concrete example, the Reactor pattern can be configured in many different

ways depending on the event de-multiplexing capabilities provided by the underly-

ing OS and the concurrency requirements of an application. For example, the de-

multiplexing capabilities of a Reactor could be based on the select() or poll()

system calls provided by POSIX-compliant or WaitForMultipleObject() available

on Windows operating system. Moreover, the handling of the event in the Reactor’s

event handler can be managed by a single thread of control or handed over to a pool

of threads depending on the concurrency requirements.

Our research contributions to address the challenges illustrated in previous sec-

tions leverage the fact that standardized middleware are made up of different layers

11

of software performing numerous activities, such as data marshaling, event handling,

brokering, concurrency handling and connection management. In an object-oriented

design of a middleware framework, these capabilities are realized by building blocks

based on proven patterns of software design [18].

Thus a visual representation of these patterns enables systems integrators to view

the middleware stacks at a higher level of abstraction that is independent of any

specific middleware technology. The QoS validation mechanisms associated with the

visual capability subsequently map these abstractions to specific platforms. The

architectural patterns present in contemporary middleware systems are discussed ex-

tensively in the book Pattern Oriented Software Architecture: Patterns for Networked

and Concurrent Systems (POSA) [45]. It enables modeling of the patterns described

in the POSA book as well as some commonly used software design patterns [18].

In addition to pattern modeling, POSAML provides a clean separation of concerns

between the provisioning generation of specialization files and QoS validation phases

within the same unified framework. Besides pattern modeling, POSAML also incor-

porates feature, benchmark and simulation modeling.

The POSAML modeling language has been developed using the Generic Modeling

Environment (GME) [32]. Figure II.3 shows the meta-model for the top-level view

of POSAML. GME is a tool that enables domain experts to develop visual model-

ing languages and generative tools associated with those languages. The modeling

languages in GME are represented as metamodels. A meta-model in GME depicts

a class diagram using UML-like constructs showcasing the elements of the modeling

language and how they are associated with each other. For example, the “model”

element defines an element that can comprise other elements. The “Aspect” ele-

ment describes a specific view provided by the modeling environment. By providing

such views, the modeling environment effectively allows visual separation of concerns.

12

Figure II.3: Top-level Metamodel of Middleware Structure

The “Connection” element describes the type of association between other modeling

elements of the language. The GME environment can be used by application devel-

opers to model examples that conform to the syntax and semantics of the modeling

language captured in the metamodels.

The meta-model illustrated in figure II.3 consists of the visual syntactic and se-

mantic elements that describe individual patterns, and specifies how they can be

connected to each other. This figure also illustrates how the meta-model separates

the concerns of modeling the pattern, its configuration and their compositions, and

system QoS validation.

Figure II.3 shows the meta-model for the top-most view of pattern modeling. This

meta-model consists of the individual pattern models, and specifies how they can be

connected to each other. In addition to this, this meta-model also defines the four

aspects:

1. Pattern Aspect: The pattern aspect is where a system modeler can compose

and model the various patterns in the system. Figure II.4 shows an example

13

where the designer has modeled the Reactor, Acceptor-Connector, Active Ob-

ject and Bridge pattern. In addition to this high-level view, the user can click

on any one of the patterns and model its internals, as shown in the figure.

Section II.3 and section II.4 describes in depth about pattern modeling of the

Acceptor-Connector and Bridge patterns respectively.

Figure II.4: Overview of POSAML

From figure II.4, it can be seen that POSAML follows a hierarchical structure.

At the top-most level one can model inter-pattern relationships and constraints.

14

At the lower level, a designer can go “inside” each pattern to model the partic-

ipants of the pattern and the intra-pattern relationships between them.

2. Feature Aspect: The system designer can set various features of each pattern

in the feature aspect of POSAML. For example, the designer can specify the

“End-points” feature for the Acceptor-Connector Pattern. The features are

written to a configuration files by the Feature interpreter. This configuration file

can be used to change the configuration of the middleware system. Section II.5

discusses the Feature Aspect of POSAML in more detail.

3. Benchmarking Aspect: The designer can select which benchmarking param-

eters to set for the performance analysis of the modeled system. This aspect is

out of scope of this thesis and is described in detailed in [11]

4. Simulation Aspect: The designer can model different simulation parameters

needed to evaluate trade-offs between configurations. This aspect is out of scope

of this thesis.

The rest of the section describes the pattern aspect, which allows a systems en-

gineer to model a middleware building block comprising the individual patterns. We

focus on a subset of the POSA and simple software design patterns describing the vi-

sual modeling elements provided in pattern modeling. In section II.3 and section II.4

we illustrate the use of POSAML to model Acceptor-Connector and Bridge patterns

and section II.5 describes how POSAML provides the provisioning and QoS capabil-

ities by modeling features

15

II.3 Acceptor-Connector Pattern

The Acceptor-Connector pattern pair decouples connection establishment and ser-

vice initialization in a distributed system from subsequent processing performed by

the two end points of a service once they are connected and initialized [40]. This

decoupling is achieved by acceptors, connectors, and service handlers. Connection-

oriented protocols provide reliable delivery of data between two or more end points of

communication [45]. Establishing connection between end points involves two roles:

• Passive role: This type of role initializes end points of communication at a

particular address and waits passively for other end points to connect with it.

• Active role: This type of role actively initiates a connection to one or more end

points that are playing the passive role.

It is important to know the communication role in terms of server and client.

Most often the client plays an active role in connecting with a passive server. Thus,

in the Acceptor-Connector pattern, the acceptor provides the passive role and the

connector plays an active role.

Figure II.3 shows the UML structure of the acceptor and connector pattern. Based

on this structure we designed the Acceptor-Connector meta-model.

II.3.1 Metamodel of Acceptor-Connector Pattern

In order to understand the detailed relationship between various participants of

Acceptor-Connector pattern, we will discuss different phases that are in this pattern.

This pattern is actually composed of two patterns called Acceptor and Connector.

The Connector pattern contains options to have synchronous or asynchronous type of

connection but in POSAML we are supporting only synchronous mode of connection.

16

Figure II.5: UML diagram of Acceptor-Connector Pattern

Now we will discuss about the collaboration between server and client among

different participants of Acceptor and Connector patterns at a very low-level of ab-

straction. Both the Acceptor and Connector pattern meta-model is part of a single

paradigm sheet called Acceptor-Connector. In order to understand the Acceptor-

Connector meta-model and model properly we have simplified it by dividing the

meta-model into two parts. These two parts are shown in figure II.9 and II.7 and

are based on the UML diagram of Acceptor-Connector shown in figure II.3.

In figure II.7 we can see that the root element of this meta-model is Acceptor-

Connector proxy model and it is a proxy of Acceptor-Connector model, which is a part

of our basic paradigm meta model called middleware shown in figure II.3. Acceptor-

Connector model proxy is in equivalence relation with local Acceptor-Connector

model. Dispatcher atom and Reactor atom proxy are equivalent and these are basi-

cally proxies of Reactor atom of Reactor pattern [11]. The Dispatcher atom acts as

event handler for both abstract Acceptor atom and Connector atom.

Now we will discuss meta-model of Connector and Acceptor separately:

17

Collaboration of Connector:

Figure II.6: Connector Pattern Dynamics

The behavior and flow of connector can be seen in figure II.6. The collaboration

between the participants in the synchronous Connector scenario can be divided into

following stages:

1. Connection & Service initialization phase: In figure II.7 a client creates a

Dispatcher atom that handles the events associated with that client. Then it cre-

ates one concrete Connector atom derived from Abstract_Connector atom. It

also activates concrete Service_Handler atom that is derived from Abstract_

Service_Handler atom. This will be in charge of requesting the server peer

service handler for each type of service needed using Activate_Connector con-

nection. For this, then the Connector atom generates an event and sends it on

the Transport_Handle_Connector atom of the server Acceptor of figure II.9 in

charge of the desired service. In return, the Connector atom gets a connection

using End_Point atom that corresponds to the Transport_Handle_Connector

atom of the peer Service_Handler atom. This End Points atom is again equiv-

alent to End_Points atom proxy from the feature meta-model II.5. This atom

18

Abstract_Connector�
Service_Handler�
Abstract_Service_Handler�
Abstract_Service_Handler�
Activate_Connector�
Transport_Handle_Connector�
End_Point�
Transport_Handle_Connector�
Service_Handler�
End_Points�

Figure II.7: Metamodel of Connector Pattern

19

has three attributes like host name, listening port, and the protocol. It can

then register itself to the Dispatcher atom.

2. Service processing phase: When the Dispatcher atom detects an event on the

Transport_Handle_Connector atom of the client Service_Handler atom, it

notifies the handle event method of this Service_Handler atom using Notify_

Connector connection . When the Dispatcher atom detects a ready event on the

client Service_Handler atom, it calls its handle event method. The Service_

Handler atom then gets the results from server. If a client Service_Handler

atom wants to close the service, it generates a close event on its server Service_

Handler atom Handle. Then it is removed from the list of Dispatcher atom by

calling the remove handler method.

Collaboration of Acceptor:

Figure II.8: Acceptor Pattern Dynamics

The behavior and flow of acceptor can be seen in figure II.8. Acceptor component

provides a means for passive connection establishment. The collaboration between

Acceptor and service handler participants are divided into three phases:

20

Transport_Handle_Connector�
Service_Handler�
Service_Handler�
Notify_Connector�
Notify_Connector�
Service_Handler�
Service_Handler�
Service_Handler�
Service_Handler�
Service_Handler�
Service_Handler�

Figure II.9: Metamodel of Acceptor Pattern

21

1. Initialization phase: In figure II.9 we can see the meta-model of the accep-

tor part. The Acceptor atom is derived from Abstract_Acceptor atom. It

acts as a server and initializes a connection passively. When an application

calls the open method on Acceptor atom. This method creates a passive mode

Transport_Handler_Acceptor atom which encapsulates End_Points atom. It

binds to end points i.e., IP address, TCP Port and Protocol and then like a

server it listens to connection requests from peer Connectors. These End_Points

are used by Transport_Handlers using End_Point_Connection connection

proxy obtained from feature view of POSAML. Transport_Handler_Acceptor

is owned by Acceptor by using Owns_Acceptor connection. After this the

open method registers the Acceptor atom object itself to the Dispatcher atom.

The Dispatcher atom is equivalent to the Reactor proxy atom. This Reac-

tor proxy atom and AbstractEvenHandler proxy atom are defined in Reac-

tor pattern in [11] as Reactor atom and AbstractEventHandler atom. Af-

ter this the Dispatcher atom can notify using Notify_Acceptor connection to

Acceptor atom whenever a connection event is coming from a client on the

Transport_Handle_Acceptor atom.

2. Service handler initialization phase: The Dispatcher atom detects some

event on the Transport_Handle_Acceptor atom of some Acceptor. It then

calls the handle event method of this Acceptor atom for it to handle this partic-

ular event. Acceptor atom uses passive mode transport endpoint to create a new

Transport_Handle atom using Create_Connection connection. It next acti-

vates a new Service_Handler atom using Activate_Acceptor connection that

will be in charge of processing the requests of the client. This Service_Handler

stores these new Transport_Handles atom information and registers itself to

the Dispatcher atom.

22

Abstract_Acceptor�
Transport_Handler_Acceptor�
End_Points�
End_Points�
Transport_Handlers�
End_Point_Connection�
Transport_Handler_Acceptor�
Owns_Acceptor�
AbstractEvenHandler�
AbstractEventHandler�
Notify_Acceptor�
Transport_Handle_Acceptor�
Transport_Handle_Acceptor�
Transport_Handle�
Create_Connection�
Service_Handler�
Activate_Acceptor�
Service_Handler�
Transport_Handles�

3. Service processing phase: This stage is about the service use and closure.

After the above two stages, the Dispatcher atom will directly initiate server

client communication using Service_Handler atom. In this stage, exchange of

data between peers can happen directly using already connected Transport_

Handles (using transport endpoints). After the whole process is done, Service_

Handler atom will call the remove handler method of the Dispatcher atom to

make it stop listening on its Transport_Handle for the events he had registered

before.

II.3.2 Modeling of Acceptor-Connector Pattern

Figure II.10: Model of Acceptor-Connector Pattern

A system engineer can model the Acceptor-Connector pattern in POSAML for

the sample application as shown in figure II.10. Various constraints minimize the risk

of choosing a wrong combination of elements in the pattern. Only the correct combi-

nations of connections and features are allowed for a particular pattern. For example,

only the “End Point” feature can be added to the Acceptor-Connector pattern. The

23

Service_Handler�
Transport_Handles�
Transport_Handles�
Service_Handler�
Service_Handler�
Transport_Handle�

middleware provisioner models the following participants of the Acceptor-Connector

pattern:

1. Acceptor: The Acceptor is a factory that implements a passive strategy to

establish a connection and initialize the associated Service Handler. It creates a

passive mode end point transport handle that has necessary end points needed

by the Service Handlers.

2. Connector: A Connector is a factory that implements the active strategy to

establish a connection and initialize the associated Service Handler. It initiates

the connection with a remote Acceptor and has synchronous mode (using the

Reactor pattern) and asynchronous mode (using the Proactor pattern) connec-

tions.

3. Dispatcher: The Dispatcher manages registered Event Handlers. In case of

the Acceptor, the Dispatcher de-multiplexes connection indication events re-

ceived on transport handles. Multiple Acceptors can be registered within the

Dispatcher. For Connector, the Dispatcher de-multiplexes completion events

that arrive in response to connections.

4. Service Handler: A Service Handler is an abstract class that is inherited

from Event Handler. It implements an application service playing the client

role, server role or both roles. It provides a hook method that is called by an

Acceptor or Connector to activate the application service when the connection

is established.

5. Transport End points: These represent a factory that listens for connection

requests to arrive, accepts those connection requests, and creates transport

handles that encapsulate the newly connected transport end points. By using

these end points data can be exchanged by reading or writing to their associated

transport handles. A transport handle encapsulates a transport end point.

24

II.4 Bridge Pattern

The intent of Bridge pattern shown in figure II.11 is to decouple an abstraction

from its implementation so that the two can vary independently [18].

Figure II.11: GoF UML diagram of Bridge Pattern

This pattern is the most commonly used structural design pattern. In terms of the

basic intent of the Bridge Pattern, abstraction refers to how different things relate

to each other, and the implementator is the object that the abstract class and its

derivation use to implant themselves with [46]. The purpose of this pattern is to the

information hiding principle “The designer of every module must select a subset of the

module’s properties as the official information about the module, to be made available

to authors of client modules” [35].

II.4.1 Metamodel of Bridge Pattern

By tailoring bridge pattern II.11, we designed its meta-model as in figure II.12.

Various participants in the bridge meta-model are:

25

Figure II.12: Metamodel of Bridge Pattern

26

• Abstraction: It defines the abstract interface that is used by the client for

interaction with the abstraction. It is also used to maintain implementor ref-

erence. The collaboration between the objects and patterns is such that the

client requests are forwarded by the Abstraction to the implementor through

this reference [18].

• Implementor: It defines the interface for any or all implementation of the Ab-

straction. There is no requirement that the Abstraction interface and the Im-

plementor interface have a one-to-one correspondence. This is one of the main

reasons for the additional flexibility gained from this pattern. Typically the Im-

plementor interface provides only primitive operations, and Abstraction defines

higher-level operations based on these primitives [18].

• Refined Abstraction: It extends the interface defined for Abstraction class.

• ConcreteImplementor: It implements the interface defined by the Implementor

class. In other words, it defines a concrete implementation of the Abstraction.

II.4.2 Modeling of Bridge Pattern

The system modeler can model the Bridge pattern in POSAML. The two main

essential elements that you can model are Abstraction which is responsible for ini-

tiating any operation and Implementation is an object responsible to carry out an

operation.

Figure II.13 shows a sample application of modeling Bridge pattern. In this

model we can see that the abstract base class ACE_Reactor_Impl and concrete im-

plementation of subclasses like ACE_Select_Reactor, ACE_WFMO_Reactor and ACE_

TP_Reactor. In chapter IV we describe how to model specialization aspects for this

27

ACE_Reactor_Impl�
ACE_Select_Reactor�
ACE_WFMO_Reactor�
ACE_TP_Reactor�
ACE_TP_Reactor�

Figure II.13: Model of Bridge Pattern

particular example and how automatic generation of the specialization file is possible

using modeling interpreters [32].

II.5 Feature View in POSAML

A Feature model [9] is defined as an abstraction of a family of systems in a par-

ticular domain capturing commonalities and variability’s among the members of the

family. In POSAML, a feature modeling aspect provides domain-specific artifacts to

model a system, in contrast to using low-level platform-specific artifacts. The fea-

ture modeling capabilities in POSAML provide structural representations of different

possible middleware pattern properties. In our case, the feature modeling comprises

several non-functional and QoS requirements, such as the choice of network trans-

port, listening end points, concurrency requirements, and periodicity of requests, all

represented as higher-level artifacts.

This level of modeling enables system provisioners to select various strategies,

28

resource settings, and factories within the middleware that can be parameterized ac-

cording to user needs by driving the selection process using the visual feature modeling

framework. For example, the designer can specify the “End points” feature for the

Acceptor-Connector Pattern to describe the ports and communication mechanisms

used by the client and server to communicate with each other.

The middleware configuration is accomplished through POSAML’s feature mod-

eling [12, 9] capability, which assists a systems engineer in configuring a variety of

different middleware features (e.g., choosing the pattern and its configuration pa-

rameters). The traditional middleware architectures suffer from insufficient model

level reusability. This model aspect of POSAML brings a way to set behavioral of

middleware. Developing a feature model out of a meta-model involves defining valid

entity and relationships in the schema. All these features are pattern specific. For

example Concurrency, Thread Queue, and Reactor Type are Reactor specific, Active

Object map size is Active Object pattern specific and End points are Acceptor and

Connector pattern specific.

II.5.1 Metamodel of Feature View

This part of the section discusses about the GME meta model of feature aspect

of POSAML shown in figure II.14. Some of the features designed in the meta model

are as following:

1. Concurrency: This feature is important for different middleware to man-

age concurrency and allow long running operations to execute simultaneously

without impeding the progress of other operations. It specifies the concurrency

strategy an ORB uses. Concurrency has Concurrency_Option as attribute and

this attribute has two strategies as menu items. Server concurrency strategies

29

Concurrency_Option�

Figure II.14: POSAML Metamodel: Feature View

found in contemporary middleware solutions, such as the TAO CORBA mid-

dleware [44], support different types of concurrency strategies (1) Reactive :

This is a default concurrency type. It registers the connections transport end

points with Reactor. When events occur, it starts dispatching these events to

the reactive connections in order. In this mechanism, an ORB handles each

request reactively i.e., the ORB runs in one thread and service multiple re-

quests/connections simultaneously using the ACE_Reactor, which uses select

or a similar event demultiplexing mechanism supported by the platform. Its

connections are single-threaded and that is it is scalable but is not a very good

concurrency mechanism. (2) Thread Per Connection : The ORB handles new

connections by spawning a new thread whose job is to service requests coming

from the connection.

2. Reactor Type: This feature is used to specify the kind of reactor used by

30

ACE_Reactor�

the system. For example, depending on the concurrency strategy chosen, the

reactor could be single-threaded or multi-threaded.

It is an advanced resource factory option and if this type of factory is loaded, any

default directives of original resource factory will have no effect. Different strate-

gies can be plugged within the reactor for event demultiplexing. This depends

on whether the reactor is used to demultiplex network events or GUI events.

Reactor_Type has Reactor_Type_Option as attribute and this attribute has

five strategies as different reactor types: (1) Thread pool (tp) : It uses the

ACE_TP_Reactor, a select based thread pool reactor which is the default. (2)

Multi threaded (select mt) : It uses the multi-thread select based reactor. (3)

Single threaded (select st) : It uses single-thread select based reactor. (4) Wait

for multiple objects (wfmo) : It uses WFMO reactor and can be used only

for windows. (5) Message Wait for multiple objects (msg wfmo) : It uses Msg

WFMO reactor. It is used only for Windows.

3. Thread Queue: In the case of concurrent request handling by a reactor, differ-

ent strategies can be selected for handling queued events (e.g., FIFO or LIFO).

Thread Queue has an attribute called Thread_Queue_Options. This attribute

has two options i.e., first-in-first-out (FIFO) and last-in-first-out (LIFO). This

feature applies only to the ACE_TP_Reactor, i.e., when the reactor type is thread

pool. This specifies the order, LIFO, the default, or FIFO, in which waiting

threads are selected to run by the ACE_Select_Reactor_Token. Thread Queue

is also a part of an advance resource factory.

4. End points: This feature applies to the acceptor-connector patterns, which

instructs the system of the listening end points for the server role. The range

of available end points in POSAML include listening ports (e.g., TCP port

31

Reactor_Type�
Reactor_Type_Option�
ACE_TP_Reactor�
Thread_Queue_Options�
ACE_TP_Reactor�
ACE_Select_Reactor_Token�

number), host IP addresses or canonical names, and the protocol used (e.g.,

TCP, UDP, Shared Memory or other custom transports).

II.5.2 Modeling of Feature View

Figure II.15: POSAML Model: Feature View

A middleware developer uses the feature aspect of POSAML as a visual tool to

select different pattern-specific features of middleware. In figure II.15 we can see

the how modeler can model various features in this modeling language. A modeler

can model zero or more features using this tool. Once the feature modeling part is

completed, then the next step is to transform pattern-specific features into a con-

figuration file using model interpreters. If features are not selected from the model,

default values of these features will be picked. In order to minimize the risk of choos-

ing wrong connections and options, various constraints. Some of these constraints

are checked using OCL constraint language i.e., checking for non-null references or

proxies and some of them are checked at the time of execution of interpreters, i.e.

when we interpreter a model that time we check if a feature is connected to correct

pattern or not. The selected features set with different options are exported into files

32

using configuration interpreter and are used to configure middleware system . We

will discuss the configuration model interpreter in section VI.1.

33

CHAPTER III

MIDDLEWARE SPECIALIZATION

III.1 Various Specialization Techniques

Chapter I motivated the need for specializing middleware to suit the requirements

of different variants of product lines. Middleware specialization can be achieved by

traditional software design and implementation techniques including code refactoring,

“ahead of time” design or even using component frameworks [20]. But all these tech-

niques illustrate several drawbacks including large memory requirements stemming

from the use of component frameworks, error prone configurations which is usually

attempted manually and large performance overheads. Owing to all these drawbacks

of above specializations, they are not best suited for the product variants of product

lines which may have a specific set of performance requirements.

There are various specialization techniques described in the literature, which can

be leveraged to specialize middleware. For example, Feature-Oriented Programming

(FOP) [13, 12] is an appropriate technique to design and implement program fami-

lies, and which uses incremental and stepwise refinement approaches [13, 38]. FOP

aims to cope with the increasing complexity and increasing lack of reusability and

customizability of contemporary software systems. Aspect-Oriented Programming

(AOP) [26] is another related programming paradigm and has similar goals: It fo-

cuses primarily on separating and encapsulating crosscutting concerns to increase

maintainability, understandability, and customizability. However, it does not focus

explicitly on incremental designs or program families.

Aspect-Oriented Programming can change an existing functionality without refac-

toring of code, addresses concerns with minimum coupling, makes it reusable and

34

implements no hierarchy refinements. These features of AOP can lead to error free

and efficient code. It can prevent code clutter, tangling and scattering and makes it

easy to add new functionality by creating new aspects. New features or behavior can

be added at any stage of development thus relieving the developer of committing to

under/over design. So an unknown functionality which cannot be predicted ahead of

time is not a problem. These characteristics of AOP can be leveraged to create an

implementation that is easier to design, understand, and maintain resulting in higher

productivity, improved quality, and better ability to implement newer features. We

therefore leverage these capabilities of AOP as a middleware specialization technique

for product lines.

AOP FOP
1 Lack of Stepwise Refinement Stepwise Refinement
2 Homogeneous concerns Heterogeneous concerns
3 Non Hierarchy-Conform refinement Hierarchy-Conform refinement
4 Cross cutting modularity Lack crosscutting modularity
5 Excessive method extension Higher level of abstraction
6 Power of quantification Same as OO framework
7 Hard to Implement Simple to Implement
8 Used in Industry Concept in academics
9 Java, C, C++, Perl Only Java

Table III.1: Difference between AOP and FOP

Table III.1 lists various differences between Aspect-Oriented and Feature-Oriented

Programming techniques.

III.2 Overview of Aspect-Oriented Programming

Without causing any intrusive changes to the entire code base, AOP technol-

ogy helps modularize the implementation, and helps reduce dependencies between

35

modules [37]. The currently most used tools are AspectJ [3], AspectC++ [38], As-

pectWorkz, JBoss AOP and Spring AOP. Almost for every programming language

there is an aspect-oriented programming tool. AOP principles supported by such

tools address the challenges of crosscutting concerns which pure OO methods do not.

According to [25] all these tools are built on similar principles, which are Advice,

Aspect, Joinpoint and Pointcut. Using pointcuts and advice, an aspect weaver brings

aspects and components together. An advice defines the code that is defined on these

joinpoints.

1. Advice: This is the code that is applied to, or that crosscuts the existing

code. There are three choices when advice is executed (a) before - advice code

is executed before the original code. It can be used to read/modify parameter

values, (b) after - advice code is executed after a particular control flow or

original code is executed. It can be used read/modify return values. and (c)

around - advice body is executed instead of control flow.

2. Join point: It denotes a position to give advice in an aspect. Different points

in the code where aspects can be woven e.g., class, methods, structures etc.

3. Pointcut: This is the term given to the point of execution in the application at

which crosscutting concern needs to be applied. In our example, a pointcut is

reached when the thread enters a method, and another pointcut is reached when

the thread exits the method. Some of the Join points described by pointcut

expressions are execution (), call (), cflow (), throws () etc.

4. Aspect: The combination of the pointcut and the advice is termed an aspect.

When we are using Aspect-Oriented Programming, we can write aspect code in

aspect files and in most of the cases we do not have to modify primary concern or

main business logic classes. This makes the code flexible, extensible and less error

36

prone. AOP is the best way to specialize ACE middleware because AOP does not

change the original code base. Instead, different specializations can be captured as

aspects in different files and these can then transform the original code base into

specialized form.

III.3 Aspect-Oriented vs. Object-Oriented Progr-

amming

Figure III.1: Comparing Object-Oriented and Aspect-Oriented Model

Aspect-Oriented refactoring [8] offers more expressive power than can be achieved

by object orientation alone. Our experience conducting this research revealed that

aspect-oriented refactoring was often simpler. For example, consider figure III.1,

which shows how in pure OOP the classes and the requirements relationship form a

mesh. This implies that a requirement is dependent on multiple classes and if there

is any change in one requirement it will lead to change in all the classes leading to

unnecessary maintenance complexity. Thus, in pure OOP in order to change any

code using object-oriented process only introduces significant complexity in already

37

existing source code. Using AOP by capturing aspects in separate files, however,

ensures that the actual source code is hardly touched. In AOP every requirement can

be modeled as an aspect. Hence, maintaining and changing of requirements is easier

and maintainable.

Figure III.2: Phases of AOSD for an existing project

Figure III.2 illustrates the different aspect-oriented development phases that can

be applied to already existing software systems. The first phase identifies a list

of various secondary concerns such as transaction control, security, and logging as

described in chapter V. These secondary concerns can be different specialization which

are discussed in the next section. In the next phase, these secondary concerns are

implemented separately using aspect-oriented techniques. Finally, an aspect weaver

weaves these aspects with the object-oriented classes of the already existing project.

In order to achieve the vision of specialized middleware, which comprises removing

generalization, achieving high degree of configuration and optimization of required

features, and validation according to product line-specific needs we need tool-driven

mechanisms that will automate the process. This specialization technique will be

helpful only if features are selectable based solely on the various middleware strategies

or specifications that will fulfill user requirements.

38

III.4 Approach to Specialize Middleware via AOP

In this section we explore the use of Aspect-Oriented Programming (AOP) incor-

porated by the AspectC++ [38] tool to automate the middleware specializations. For

this work we chose the ACE C++ middleware [41] as the platform to demonstrate

our ideas.

Because the size of the aspect code is less and this code is totally isolated from

actual source code, their management is relatively easy, less error prone and easy

to plug and play. All this was possible without making any change to the actual

code base. Source code transformation, i.e., weaving is done based on aspects at

compile time using the AspectC++ compiler (ag++ of version 1.0pre2). This compiler

supports a superset of the C++ language. This language contains constructs to

identify join points in the component code and to specify advice in the form of code

fragments that should be executed or will execute at these join points.

The output of the AspectC++ compiler is plain C++ code, which can be trans-

lated with standard C++ compilers to executable code. The compile time for build-

ing ACE with AspectC++ woven code is slightly more than the non-aspectized code,

however, as shown later this overhead has no impact on the runtime performance.

Also, while building the full functional middleware with selected specializations, the

resulting executable passed all the build verification tests in ACE indicating validity

of aspectized code.

Middleware is often developed as a set of frameworks that can support and is

portable for all the platforms and supports large number of functionalities. This overly

excessive generality of functionalities can be configured using different options, such

as different concurrency models (Thread-per-connection, Thread pool, or Thread-per-

request).

39

III.5 Reactor Specialization using AOP

In this section, we describe our work that illustrates the use of AspectC++ for the

specialization of ACE middleware, in particular we are targeting a class of product

lines that are network centric and must deal with event-driven style of programming.

An OO based event-driven interface in ACE is the Reactor. In particular, for special-

ization we focused on the Reactor pattern within ACE. To add or modify different

features in Reactor implementations, different aspects were defined. These aspects

were defined in different files and for different combinations of these aspect files made

it possible to achieve different middleware specializations.

Figure III.3: Reactor Specialization using AOP

The Reactor framework in ACE implements the Reactor pattern, which decouples

the demultiplexing and dispatching of events from the handling of the events. It was

developed to support different types of alternative concurrency models as show in

figure III.3. ACE middleware framework supports several implementations of Reactor

pattern. (1)ACE_Select_Reactor– single-thread event demultiplexer , (2)ACE_TP_

Reactor– multi-threaded event demultiplexer and (3)ACE_WFMO_Reactor– windows

event demultiplexer. The OOP design philosophy in ACE enables support for all these

40

ACE_Select_Reactor�
ACE_TP_Reactor�
ACE_TP_Reactor�
ACE_WFMO_Reactor�

alternate mechanisms transparently, which is achieved by an elegant class hierarchy

of base and subclasses, and template parameterization.

As proof of concept we will focus on two types of concurrency models i.e., single

threaded and thread-pool reactor. For example, for all types of concurrency models

of reactor implementations, ACE uses the ACE_Reactor_Impl as the abstract base

class which delegates the actual work to its subclasses, e.g., ACE_Select_Reactor (for

single threaded reactor implementation) or ACE_TP_Reactor (for thread pool reactor

implementation) via virtual method calls and Bridge pattern.

The choice of the reactor implementation is chosen via ACE-specific configura-

tion mechanisms. It is assumed that once a particular type of reactor is selected, it

never changes during the lifetime of a system. A product variant may need only one

implementation at run-time. Based on this choice of the reactor implementation, we

use AspectC++ advice whose goal is to eliminate the virtual method call between

the abstract base class and the implementation of the reactor chosen. Thus, the ad-

vice effectively replaces the abstract base class ACE_Reactor_Impl method call by

child class ACE_Select_Reactor or ACE_TP_Reactor method directly. This way the

application specific reactor implementation method is called directly. This special-

ization removes the generality penalty by removing the extra indirection caused by

virtualness.

In the following code snippet we illustrate some of the specializations we imple-

mented using method transformations in the Select and Thread Pool Reactor classes

In the code snippet shown in figure III.4, it shows the single thread implementation

of ACE reactor. Here we are redirecting method purge_pending_notification of

abstract class to the same method name of concrete implementation directly. It

should be noted that this method is called almost 16 times in a single server/client

scenario.

41

ACE_Reactor_Impl�
ACE_Select_Reactor�
ACE_TP_Reactor�
ACE_Reactor_Impl�
ACE_Select_Reactor�
ACE_TP_Reactor�
purge_pending_notification�

/**

* Aspect for Single Threaded specialization

*/

aspect Single_Thread_Aspect

{

/**

* It redirects purge_pending_notifications

* method of ACE_Reactor_Impl to same method

* of ACE_Select_Reactor subclass.

*/

advice call ("% ACE_Reactor_Impl

::purge_pending_notifications(...)"):around ()

{

((ACE_Select_Reactor_Impl *) tjp->target ())->

ACE_Select_Reactor_Impl

::purge_pending_notifications

(*tjp->arg < 0 >(),*tjp->arg < 1 >());

}

}

Figure III.4: Specialization file for Single threaded reactor

/**

* Aspect for Thread Pool specialization

*/

aspect TP_Thread_Aspect

{

/**

* It redirects handle_events method of

* ACE_Reactor_Impl to same method of

* ACE_Select_Reactor subclass.

*/

advice call ("% ACE_Reactor_Impl

::handle_events(int)"):around ()

{

((ACE_TP_Reactor *) tjp->target ())->

ACE_TP_Reactor

::handle_events (*tjp->arg < 0 >());

}

}

Figure III.5: Specialization file for Thread Pool reactor

42

Similar transformations are achieved in the code snippet shown in figure III.5. It

shows that the threadpool implementation for ACE reactor for other method. The

removal of the indirection provides performance gains that are amortized over a large

number of requests. This is expected in event driven services that have to deal with

a large number of client requests.

43

CHAPTER IV

AUTOMATING GENERATION OF

SPECIALIZATION ASPECTS

Visual modeling and Aspect-Oriented Programming Software Development are

two different software engineering paradigms which have been developed indepen-

dently. In this chapter we argue for their integration to address the challenges of

middleware specialization. We added a capability in POSAML to model aspects

and used the modeling interpreter to automate generation of specialization file for

middleware. Automating the generation of using modeling is an important feature

because the solution and the description of a feature will be localized and hence will

be easy to control and manage.

This capability of POSAML to specify or model different AOP constructs like

aspects, pointcuts, and advice is used to generate specialization files. These spe-

cialization files, in turn are used to optimize middleware system. Modeling of AOP

design is similar as that of normal OO design and the only difference is the way the

variables are constrained. For every secondary concern an aspect can be modeled and

specialization files can be generated.

IV.1 Metamodel of Aspect for POSAML

Figure IV.1 shows the metamodel of the Aspects for POSAML. In this metamodel

AspectFeature model is the specialization aspect feature we want to model. For ev-

ery feature or specialization we can have an AspectFeature. It has an attribute

for specifying the type of aspect. There are some fixed types of aspects, like Log-

ging, VerifyAccess and RemoveVirtualness. While modeling aspects in our modeling

44

AspectFeature�
AspectFeature�

Figure IV.1: Metamodel of Aspect for POSAML

45

tool we can select one of these types of aspects or generate our own aspect feature.

These types of aspects would provide more flexibility for our future work. Every

AspectFeature has an Advice atom and a Pointcut model. A Pointcut model can

be connected to an Advice atom. An advice can have only one pointcut and an aspect

can have multiple advice. Multiple joinpoints can be linked together using different

logical operators to form a pointcut. The detailed description of modeling a pointcut

is discussed in section IV.2.

IV.2 Modeling of Aspect for POSAML

Figure IV.2: Modeling of Aspect in POSAML

Figure IV.2 shows an example of how we can model the bridge pattern with the

different specialization or aspect features. In this example we have modeled abstract

base class ACE_Reactor_Impl with its concrete implementation of subclasses like

ACE_Select_Reactor, ACE_WFMO_Reactor and ACE_TP_Reactor. It also shows two

modeled specialization aspects; these aspects are named as Single_Thread_Aspect

and TP_Thread_Aspect. Single_Thread_Aspect specialization is for single threaded

46

AspectFeature�
Advice�
Pointcut�
Pointcut�
Advice�
ACE_Reactor_Impl�
ACE_Select_Reactor�
ACE_WFMO_Reactor�
ACE_TP_Reactor�
Single_Thread_Aspect�
TP_Thread_Aspect�
Single_Thread_Aspect�

implementation of Reactor and TP_Thread_Aspect specialization is for threadpool

implementation of Reactor as discussed in section III.5.

Modeling of constructs

Figure IV.3: Modeling of Aspect constructs in POSAML

Delving deeper into the model reveals that the modeled aspect contains different

constructs. Some of these constructs are advice and pointcut. In order to model

aspects, we have to model these constructs also. These constructs vary according to

the functionality of the feature. An aspect can have more than one advice and each

advice has a pointcut connected to it as shown in figure IV.2. Advice has only one

attribute to define advice code and this attribute is variable for all other features.

There is a constraint that a particular advice can have only one pointcut at a time.

In case we want to have more than one pointcut for an advice, we can design that

while modeling pointcut.

Metamodel and Model of Pointcut

Figure IV.4 shows the meta-model of pointcut. The pointcuts can be designed

by having different set of joinpoints having different logical operator relationships

(AND, OR) between them. This modeling tool provides the capability to design very

47

TP_Thread_Aspect�

Figure IV.4: Metamodel of Aspect construct Pointcut

48

complex pointcuts. In figure IV.5, we have given a sample model of pointcut. In

this example there are eight separate joinpoints (a, b, c, d, e, f, g, h) with different

joinpoint equations. For ever joinpoint we can set two attributes (1) Type of joinpoint

i.e., call, execute (2) Equation of the joinpoint.

Figure IV.5: Example of Pointcut Model

There are four sets in the model. Two of the sets are for the joinpoint i.e., Join-

PointSetAND and JoinPointSetOR and two are for pointcut sets i.e., PointcutSetAND

and PointcutSetOR. These are there to manage the logical operation relationship be-

tween different joinpoint and pointcut sets.

The joinpoint equations combine according to needed logical operator relation-

ship between them by linking these individual joinpoints to JoinPointSetAND or

JoinPointSetOR sets. These sets have logical operation between themselves, giving

us main joinpoints. These main joinpoints according to logical operation between

them are linked to PointcutSetAND or PointcutSetOR. These sets again have logical

operation between them and supplies the main pointcut expression.

49

The relationship between different joinpoints and sets and pointcuts are resolved

by an associated modeling interpreter. It parses through the model and gets the

relationship with the different joinpoints and pointcuts to form a final pointcut. The

automatic generation of aspect or specialization files is done by these modeling in-

terpreters. It parses through the model and gathers all the information to build an

aspect file. It internally forms a final pointcut, gets information about the advice

and aspect code etc and then generates aspect files. The generated files have As-

pectC++ code as shown in figure III.4 and figure III.5. These files are saved by the

AspectFeature model name in the directory pointed.

As illustrated in chapter III we proved how we could use these specialization files

to optimize a middleware system. By combining both approaches of modeling and

AOP we can get better control on the design of an application to be changed. To

integrate POSAML and the new capability of modeling AOP we needed a technique

to model aspect-oriented constructs in our modeling tool. Using AOP compilers these

specializations or aspects are woven into the target application code at the joinpoints.

50

CHAPTER V

CASE STUDY

This chapter presents a case study illustrating how using AOSD [24] is useful to

resolve the tangled concerns for a distributed storage management system for a High

performance computing (HPC) application called L-Store [51]. Such applications

require huge data storage in the order of tera to peta bytes over a span ranging from

a few seconds to weeks or even years for their correct operation. This huge data is

stored at geographically distributed sites. It leverages use of enabling technologies

such as Logistical Networking (LN) [6] and the Internet Backplane Protocol (IBP) [4].

LN provides new capabilities to schedule data movement and storage on a global scale

while IBP provides a middleware for managing remote storage and data objects of

varying sizes. They mask the distribution of the storage and instead provide a single

file system abstraction to applications.

To elucidate these design challenges better, we first outline our L-Store meta-

data management system architecture. We then illustrate how different crosscutting

concerns make the design of such systems complex.

V.1 Logistical Storage

Logistical storage (L-Store) is a Java based distributed file system providing a

virtualization of a single file system to the applications that use it. It is used for

storing arbitrary sized data objects. L-Store was created primarily to assist campus

researchers who have accumulated large datasets like High Energy Physics (HEP)

pile up sample and image process, remote data mining applications, for areas such

as weather simulation. It stores metadata information of stored files in a database

51

server for relatively smaller sized metadata but has the ability to leverage the Chord

Distributed Hash Table (DHT) architecture for scalability.

L-Store has the ability to transfer huge amounts of data for storing and access

between remote labs and between different data centers. It provides real-time data

transfer across geographically isolated data stores. L-Store is a conceptually designed

complete virtual file system. It uses the Internet Backplane Protocol (IBP) as the

underlying abstraction of distributed storage, distributed hash tables (DHT) as a

scalable mechanism for managing distributed metadata and software agent technology

for implementing a distributed architecture.

In Internet Backplane Protocol (IBP) [4] exnodes are the pointers to allocations.

IBP is a service that allows users to store data in the network. IBP allows allocations

up to 4 GB in size. When you request an allocation, a depot (which is an IBP server)

returns a capability (or key). It is safer to use these capabilities than ftp or http for

file distribution since the allocation key provides a secure access to the files. Unlike

ftp and http, the key does not reveal details about the underlying file system. The

IBP protocol transfers data between IBP depots by treating the entire data as a big

chunk and transferring individual smaller slices. IBP provides fault tolerance and

recovery features in a transparent fashion. This protocol is used by L-Store for the

storage of files distributed across different storage sites.

In order to manage distributed data and to provide a single file system abstraction,

L-Store is required to maintain metadata information for the distributed data. With

increasing number of files that store these large distributed data sets, the correspond-

ing amount of metadata also increases. With an explosion in the size of the metadata

itself, the problem of metadata management must be resolved for applications like

L-Store.

When the amount of metadata is relatively small, L-Store manages it on a single

52

metadata server and was using Postgresql database server to store metadata. This

kind of metadata management cannot scale to large sized systems. In order to make

data more scalable we are leverage the Chord distributed hash table architecture [50].

During our research we worked on the two versions of L-Store, one was database

based metadata server and other was using DHT architecture.

After understanding the design and implementation of these two versions of L-

Store it revealed scope for some secondary design concerns for L-Store, such as trans-

action management, logging, and exception handling which was tangled across the

code. Some new concerns like connection pooling and security that needed to be

added were found to be crosscutting with respect to the primary design concern of

L-Store. The primary sources of these crosscutting concerns stemmed from the need

to assure transactional and persistence control, connection pooling, authentication

and authorization, and exception handling and logging, which are deemed orthogonal

to the primary goals of L-Store.

To improve the maintainability, extensibility, and portability of code, we resolved

these sources of code tangling using aspect-oriented programming. To remove the

crosscutting nature of these concerns better, we first outline our L-Store metadata

management system architecture. We then illustrate how different crosscutting con-

cerns make the design of such systems complex.

Our experience with the design and implementation of the L-Store metadata stor-

age management system revealed a number of sources of crosscutting concerns that

affect the maintainability, flexibility, extensibility and in some cases even performance.

Below we describe the crosscutting concerns and how they manifest themselves in the

L-Store architecture and then we describe how we resolved these design challenges.

53

V.2 Challenges: Crosscutting Concerns in Logis-

tical Storage

Maintaining persistence in transactions

Maintaining correct transaction control and persistence is vital for database or

any system consistency. A transaction is a logical unit of work that may include any

number of database updates. During normal behavior, the issue of transaction consis-

tency arises only in a few cases, such as before any transactions have been executed,

between the completion of a successful transaction and before the next transaction

begins, when the application terminates normally, or the database is closed. However,

in the case of failures, without proper rollback mechanisms, transaction processing

can result in inconsistent data.

L-Store internally maintains database tables for access control management and

other functionalities it provides. There are some tables to store the IBP exnodes, exn-

ode mappings, user to exnode mappings, protected rights of exnodes, among others.

L-Store database transactions are executed during application operations, such as an

upload of a file, which requires L-Store to update the corresponding metadata infor-

mation stored across different database tables. For example, database entries that

may need to be updated based on an application action include updates to the exnode,

exnode mappings and some access control related tables like protected objects and

protected rights. Thus, during this transaction if any exception is raised or an er-

ror occurs, and the transaction is aborted, there is a need to rollback the partially

executed transaction. If not handled, a user may see inconsistencies such as a file

being listed as available but cannot be accessed. This can prove to be a bottleneck

for the application if it is not responsible to handle these failures. Handling these

database transaction failures is a crosscutting concern since each different operation

54

supported by L-Store will require handling these cases in order to maintain consis-

tency of metadata. Thus, it is necessary to make transactions persistent so that

rollbacks or other failure handling can be seamlessly implemented.

Conventional connection pooling methods

As alluded to earlier, L-Store stores some meta data for the metadata manage-

ment. Connection management is an important parameter that dictates resulting

performance.

For metadata management, connection management involves a number of steps.

First, the connection to the server is established over the network. Next, the user

trying to connect is authenticated with the server. Finally, a connection is established

and operations are performed. Once all activities are performed, the connection is

closed resulting in the connection and server resources being freed.

Owing to all these steps, connection management can be a bottleneck for appli-

cations using L-Store, whose main objective is to provide real time access to large

quantities of distributed storage virtualized as a single file system. Thus, it is impor-

tant to optimize connection management in L-Store.

Connection Pooling is a process of obtaining and managing connections faster

in an application. Conventional database connection pooling maintains a pool of

connections in which a connection is allocated to an application when it requests a

new connection and this connection is returned to the pool once the application closes

the connection. This type of connection pooling is available only for databases. For

L-Store we moved from database version of metadata management to DHT version,

so keeping connection pooling the same for both versions was a challenge. In addition

to this there are several conventional database connection pooling drivers like JDBC

2.0 which provide a rich set of features to the applications. They provide a standard

55

way of creating and disposing database connections. They reduce time to obtain

new database connections but may cause extra memory and resource constraints.

Moreover, the feature richness can become excessive for many applications since they

must use all the functionality provided by these drivers even when they do not need

them. Even if there is an option to configure some of these drivers, it is very difficult

to configure them and then to test them.

In many application scenarios that use L-Store there is a need to bypass some

features so that performance can be improved. In the current set of database drivers,

this is not feasible and in most cases these standardized drivers may have to be

replaced with proprietary drivers, which is not an acceptable alternative since the

cost of developing and maintaining the code base increases. There may be times

during the lifecycle of L-Store that the connection pooling feature may have to be

toggled on and off. With conventional pooling it may require changing most of the

modules that use pooling [31]. These database connection pooling drivers provide a

good database connection pooling solution for the application, but the application

becomes tightly coupled to the database driver for resource pooling. The tangling

between the resource pooling and database connectivity concern is thus a big challenge

needing resolution.

Authentication and authorization feature

Security is important in any software system. It is particularly an important

challenge for distributed systems and by nature it tends to crosscut other design issues

in any application. It consists of many components like authentication, authorization,

auditing, and cryptography. In L-Store there is significant sharing and storing of data

across geographical distributed locations. In order to provide secure access and proper

protection to the data and resources there should be a security aspect for L-Store.

56

In order to provide security in L-Store based application we focused on the two main

components – authentication and authorization.

Authentication is a process that verifies that a user’s credentials are valid at the

time of login or in subsequent sessions. Authorization determines if the authenticated

users have permission to access some system resource. For example user ’A’ cannot

download a file which has been uploaded by user ’B’ unless user ’A’ has been permitted

to do so.

Using conventional methods of providing security including different API’s like

OpenSSL, x.509 and JAAS leads to changing multiple modules in the code base of

the application. The access control of L-Store was designed based on the entity

relation of the various database tables.

To add security to the architecture would have forced a change to a large number

of modules in our code base. After analyzing our design we found out that the

authentication part was straightforward and was not really an orthogonal concern.

L-Store’s core functionality was designed in such a way that it was better to use

an object-oriented approach to implement this feature. However, after designing au-

thorization we found that it was going to affect all the important modules of L-Store

and it was really an orthogonal concern. There were many file related functionalities

like upload, download, list, make directory, remove directory and stat among others,

which needed verifying of access control. These challenges stem from the conven-

tional object-oriented design of applications, which are tailored to meet the primary

concerns. It is difficult to accommodate secondary concerns such as authorization

seamlessly in the same object-oriented design framework and leads to a scattering

of decisions [31] i.e., the decision for operations to be checked against permissions

is scattered throughout the system, and therefore any modifications to it can cause

invasive changes.

57

Lack of consistency in exception handling

Exception handling and logging are an integral part of almost every application.

Making applications exception safe is the responsibility of the application developer.

Logging may be necessary for accounting or debugging. Often times, however, appli-

cation developers ignore these secondary concerns and concentrate on the core design

challenges of the application. The secondary concerns, such as exception handling

and logging, become an afterthought in the design of complex systems [33].

We observed that the design of L-Store suffered from the same weaknesses. Various

logging techniques and toolkits can be used for logging. For any logging toolkit, such

as log4j [22], developers are still required to write log statements wherever logging is

needed. Similar arguments hold for exception handling. Logging and exceptions are

interrelated to each other. Logging of exceptions is an important part of the system.

Whenever an exception is thrown, applications need to log it so that system failures

and problems can be recorded and monitored. This type of logging is also called

tracing or monitoring.

Logging and exception handling are fundamentally secondary concerns that cross-

cut the application code base. Due to code tangling, any changes to the logging or

exception handling policy will affect large portions of the code base requiring most

often manual changes.

In section V.3 we have shown another example of RequestHandler and there you

can see that exception handling has been done. This type of inconsistency can result

in many problems.

58

V.3 Solution Approach: Use of Aspect-Oriented

Techniques

We used Aspect-Oriented programming to provide an elegant solution to address

the outlined crosscutting concerns in L-Store. AOP is an advanced programming tech-

nique used to separate crosscutting concerns in a modularized fashion. For example,

since authorization is to be uniformly implemented in all the units of application,

it is better to use aspect oriented techniques so that any changes to authorization

are done at one place. In the future if this application may expand or change access

control functionality it will be very easy if we make it a separate concern.

In traditional object-oriented programming languages if we add this type of con-

cern on top of existing system core functionality we have to convert these secondary

concerns into a class and then use them in primary concerns. These classes would not

be reusable and they cannot be inherited and refined properly. They will ultimately

be scattered across the program and will be very difficult to manage and work with.

Since access control is a feature which tends to change with the evolution of an

application, it is always a good idea to use aspects to design it. We can easily modify

and understand security very clearly.

AOP provides many powerful techniques to enhance code but sometimes it creates

problems because it does not directly affect source code. Reading through code and

understanding it becomes difficult but then even comprehension of object-oriented

programming is also difficult often times. Also, we have to make sure that the code

added or the changes made by AOP to the application should be orthogonal in na-

ture. But, sometimes aspects can be deeply crosscutting, and this happens when the

application state, structure and the logic influence the aspect code in such a way that

the aspect is only applicable in one specific application context [52].

59

Applying AOP Technologies to L-Store Design

Section V.2 described various secondary and crosscutting concerns that make de-

signing complex systems, such as L-Store challenging. In this section we illustrate

how we resolved these challenges using AOP techniques. While addressing these

secondary concerns we took care of the changeability and extensibility issues of the

code. L-Store is a Java based application; hence, we used the AspectJ [3] to resolve

the challenges. In the remainder of this section we first briefly describe AspectJ and

then show how we used AspectJ to resolve the challenges outlined earlier.

AspectJ

AspectJ [26] is a general purpose aspect-oriented extension to Java. The aspect-

oriented constructs support the separate definition of crosscutting concerns that af-

fect several units of a system. This separation of concerns allows better modularity,

avoiding tangled code and code spread over several units thereby improving system

maintainability. AOP [27] does for crosscutting concerns what OOP has done for ob-

ject encapsulation and inheritance by providing language extensions and mechanisms

that explicitly capture crosscutting structure. This makes it possible to program

crosscutting concerns in a modular way and achieve the usual benefits of improved

modularity: simpler code that is easier to develop and maintain, and that has greater

potential for reuse. We have applied AspectJ to resolve the crosscutting concerns in

L-Store. We used the AspectJ Development Tool (AJDT) on the Eclipse IDE for our

R&D.

Transaction Control and Persistence

L-Store is a Java based distributed file storage application. This application needs

to store file information, i.e., Metadata information of the stored files into database

60

server. This metadata server is used by a large number of users and is designed to

support millions of transactions. As we described in Section V.2, because of the lack

of persistence there could be loss of updates, inconsistency of data and dirty reads.

It is essential for a database transaction to be persistent and all database dependent

applications to guarantee the ACID properties [14], i.e., atomicity of operations, data

consistency, isolation when performing operations, and data durability even if the

system fails.

To address these challenges, there was a need to make some modifications to some

part of the original L-Store core code to implement transaction control. Originally

in every operation provided by L-Store, there was a call to a database connect and

release. The coupling with the primary concern was such that in order to provide

transaction control we had to modify some of the methods which ended up establishing

and releasing connection to the database. In the code snippet below we show parts

of the original L-Store code before the secondary concerns were modularized.

1: public void HandleRequest() throws Exception {

2: String parent = br.readLine();

3: String newDir = br.readLine();

4:

5: try {

6: Connection dbConn = null;

7: dbConn = DbUtil.getDBConnection();

8: DbLstore.insert_directory(dbConn, parent, newDir);

9: bw.write(LStoreRequests.ALL_OK);

10: bw.write(LStoreRequests.EOR);

11: bw.flush();

12:

13: } catch (SQLException sqle) {

14: throw new Exception ("Error creating directory: " + sqle);

15:

16: } finally {

17: DbUtil.releaseDBConnection(dbConn);

18: }

61

In the above code snippet we see that for every method there is a separate

getDBConnection() method call (line 7). This method call is used to create a

database connection and here it is used in insert_directory method (line 8) and

then releaseDBConnection (line 17) is called. The modularization of transaction

control as an aspect is required for lines 7 through line 17 since otherwise any inter-

mediate failures will result in inconsistencies. To avoid this database inconsistency

for every call to the database we introduced an aspect called transaction control is

shown in the code snippet below.

1: /**

2: * This aspect is for transaction control

3: * of database connection

4: */

5: public aspect TransactionControl {

6:

7: /**

8: * On call of methods that match this pointcut

9: */

10: pointcut transactionMethod (Connection conn)

11: :call(public static * *.*.*.DbLstore.*(..))

12: && args(conn, ..);

13:

14:

15: /**

16: * Placeholder for transaction policies

17: */

18: Object around(Connection conn):transactionMethod(conn){

19:

20: Object res = null;

21: try{

22: conn = DbUtil.getDBConnection();

23: res = proceed(conn);

24: commitTransaction(conn);

25: DbUtil.releaseDBConnection(conn);

26: } catch(SQLException qle){

27: rollbackTransaction(conn);

28: System.out.println ("Rolled back transaction");

62

getDBConnection()�
insert_directory�
releaseDBConnection�

29:

30: }

31: return res;

32: }

33: }

In the above code snippet line 5 shows the TransactionControl aspect cre-

ated to handle transaction control of the database. Line 10 is the pointcut named

transactionMethod. It picks out the set of join points i.e., the well defined points

in the program flow where the database connection is required. It will pick all the

methods of DbLstore library having arguments as database connection. DbLstore

is a database library used by L-Store application for database related connections.

Whenever these methods of DbLStore library are called, we need a database connec-

tion.

Whenever any functionality or method needs storage connection, it is called from

the main business logic. Using a proper pointcut definition it is detected by the aspect.

And the advice in the aspect provides the necessary connection. For example, this

aspect code (line 22) will establish a database connection. This database connection

is passed on to the methods of DbLstore using ‘proceed(conn)’ (line 23) where ‘conn’

is the database connection. This database connection is used in the method being

called and then if everything is fine it will commit the transaction (line 24) and then

release the database connection (line25).

If any kind of failure or any exception is raised it is caught in the same ad-

vice and the database transaction is rolled back (line 27). This common algorithm

is modularized into an aspect and woven into the code base automatically by the

AspectJ weaver. In TransactionControl aspect, rollbackTransactions() and

commitTransaction() are the methods that invokes the java.sql.Connection.

commit() and java.sql.Connection.rollback() methods.

63

TransactionControl�
transactionMethod�
DbLstore�
TransactionControl�
rollbackTransactions()�
commitTransaction()�
java.sql.Connection.commit()�
java.sql.Connection.commit()�

Another approach to transaction control can be through implementing three ad-

vice instructions i.e., to start, successfully terminate, and abort transactions. The

first one is a ‘before’ advice that starts a transaction just before the execution of any

transactional method. It will be similar to initialization of database. The second one

uses the “after returning” advice when a method returns with success and in this

case we can commit the transaction. The third one uses the “after throwing” advice,

which is called when some exception is raised due to some failure. In this step we can

rollback the transaction. This type of implementation is given in detail in [48].

Connection Pooling

In order to make connection pooling more optimized and portable we used AspectJ

to add a connection pooling feature. As discussed in Section V.2 there are various

constraints in bypassing traditional database connection pooling drivers when not re-

quired, and these issues can be overcome by using aspectized connection pooling [31].

In this approach, if the metadata management is done using a pre-existing driver-

supported connection pooling mechanism, it will act as the secondary pooling strategy

because AspectJ will override the default connection pooling strategy. This type of

connection pooling is easy to use. Connection pooling functionality generated by As-

pectJ is customized according to the needs of an application and can be independent

of the storage mechanism used. Using AspectJ we can provide connection pooling for

only those modules where the benefits of improved speed outweighs the cost of extra

space [31]. This implementation of connection pooling is based on [31]. The advan-

tage of this scheme is that only selected clients will be impacted by the new strategy,

which can be driven by modifying a pointcut to select any number of packages and

classes in an application. At any time, if the specialized strategy is not needed, an

advice can nullify the effect.

64

Two types of pointcuts are designed in this case:

Connection creation: This pointcut (see code snippet below) is used to capture

all the join points where an L-Store primary concern needs a connection from the pool

instead of creating a new one.

1: pointcut connectionCreation()

2: : call(public static Connection org.lstore.util.DbUtil.getDBConnection());

Connection destruction: This pointcut (see code snippet below) is used to

capture all the join points where the connection is returned to the pool of connections

instead of destroying it.

1: pointcut connectionRelease

2: (Connection connection)

3: : call(public void org.lstore.util.DbUtil.releaseDBConnection(Connection))&& target(connection);

The above two pointcuts will be used in the following manner. First, we create

an advice for the connection pooling logic for any connection to use it from a pool

instead of creating a new one. This advice is called connectionCreation and is

shown below.

1: Connection around()

2: : connectionCreation() {

3:

4: Connection connection = null;

5: try{

6: connection = connPool.getPoolConnection();

7: if (connection == null) {

8: connection = proceed();

9: connPool.registerPoolConnection(connection);

10:

11: }

12: }catch(SQLException e){

13: //Handle exception

14: }

15: return connection;

16: }

65

connectionCreation�

The next advice is to put the connection back to the pool after using it, as seen

in the pointcut connectionRelease below. In this connection release aspect we use

the “around” advice indicating the condition when the aspect must be applied.

We could have also used “before” advice as well. But in the “around” advice

it is easy to add exception handling. If we want to have exception handling using

“before” advice we have to add an additional “after” advice. The original body of

the method is the same as the body of the advice with special handling for “proceed”

in the “around” advice.

Whenever core methods or the transaction control aspect try to release any con-

nection this advice will try to put the connection into the connection pool and on

failure, it will use “proceed” to release connection.

1: void around(Connection connection)

2: : connectionRelease(connection) {

3:

4: if (!connPool.putPoolConnection(connection))

5: proceed(connection);

6: }

Authentication and Authorization:

Section V.2 describes how security is a one of the major crosscutting concern

which can be addressed by aspect-oriented techniques very well. For authentication

we did not use any AOSD techniques so we do not discuss this issue, however, aspects

were required for authorization.

We implemented a very basic preliminary access control. To authorize users and

to keep track of what are the users’ rights we decided to use the Policy Machine

model. A Policy Machine model (PM) [15] is a standardized access control mechanism

and requires changes only in its configuration in the enforcement of arbitrary and

organization specific attributes-based access control policies. Some of the enforceable

66

connectionRelease�

policies are combinations of different access control policy instances like Role-Based

Access Control (RBAC) [29], Multi-Level Security (MLS) [34] and Identity-Based

Access Control (IBAC).

To address the crosscutting challenges with authorization, as a proof of concept,

we started with the basic idea of Identification Based Access Control (IBAC) policy

in L-Store. In the future we plan to implement the entire PM. IBAC is a very

straightforward access control mechanism where the owner of the resource can set

access control. Most of the file systems like Unix and NTFS use this type of access

control. For authorization, most of the access control was done using proper entity

relation between database tables. The database table relationship is designed in such

way that it follows IBAC. In figure V.1 we can see that a user can have read or write

permissions for files. If the user is the owner of the directory by default it can upload,

stat, list or download file. If a user is not the owner of the file it cannot perform all

these operations. A user can grant permissions to any other user to access file for

either read or write. For this secondary concern we had to add some code directly

into core code. The following are the code snippets showing some part of code to

check permissions of the user logged in. This aspect was called every time a user

performs some system call like make directory, add user, change permission, grant

permissions of object.

Figure V.1: Identification Based Access Control configuration

1: Object around(BaseTransaction tran)

2: :execution(public * org.lstore.core.

3: BaseTransaction.perform(..)) && this(tran){

4:

67

5: try {

6: if(verifyAccess(tran))

7: return proceed(tran);

8:

9: } catch(Exception ex) {

10: ex.printStackTrace();

11: }

12: return LStoreRequests.createBasicReply(false);

13: }

14:

In this code snippet we see an advice which is called on execution of the “perform”

method of any transaction. For all transactions we verify access rights (line 6) and if

the user is authorized, the transaction proceeds with the actual functionality but if

the authorization fails, a reply (line 12) to the client is sent indicating unauthorized

access. As a side effect of addressing these challenges exception handling is also

addressed as in the verifyAccess method (line 6) or in proceed (line 7) which is the

call for original functionality.

Figure V.2: Access Control using AOP

In figure V.2 we show how aspects intercept different types of transactions for

verifying access of user for different read and write functionalities. In this figure we

see that there are various modules like upload make directory, list, stat, and remove

directory etc. When a user tries to execute any of the functionalities, the user needs to

be authorized. Instead of checking permission in each and every module individually,

we used AOP to verify access at base transaction level.

68

verifyAccess�

Logging and Exception Handling

Logging and Exception Handling are the most common example uses of aspects.

They are an inherent crosscutting concern and tend to spread across entire application

code. Exception handling was already provided in L-Store but everywhere these ex-

ceptions were implemented differently and inconsistently since they were implemented

by different people at different stages of development.

In order to generalize all the exceptions we used softened exception handling of

AspectJ. For exceptions which are not handled those exceptions are caught by using

‘after throwing’ advice. We also created some aspects to trace, profile and debug

application code.

V.4 Scalable Metadata Management Implementa-

tion

In order to make the metadata server more scalable and secure and not to be a

single point of failure we move to Chord Distributed Hash table implementation for

distributing the metadata on multiple servers. Chord supports a single operation:

given a key, it maps the key onto a node. In our case the “key” is a hash of the

directory and file name. A client only needs to know a Chord node on the ring to

perform a key lookup. For this type of distributed file storage system we designed and

implemented secondary concerns like security, transaction control, and logging. There

were many changes in the main business logic code but there were very few changes

to the aspects already implemented for the database version of L-Store. More details

of the L-Store distributed file system metadata server architecture is given in [51].

69

CHAPTER VI

RESULTS AND OBSERVATIONS

VI.1 Configuration and Specialization Files Gen-

eration

A unified framework should provide the mechanisms for the decisions made at

configuration time to be available at QoS validation time, and enable the synthesis of

validation artifacts. In a MDE framework, such capabilities are realized via generative

programming capabilities. Within the GME DSML development environment, in

particular, these capabilities are realized by GME model interpreters, which traverse

the graphical hierarchy of a model. The POSAML meta-model is a middleware-

independent modeling language. By leveraging the GME environment’s capabilities,

different middleware-specific interpreters can be plugged in. The following describes

model interpreters that we have developed as a part of our visual tool:

Interpreter to generate Configuration Files

This interpreter is used to generate two artifacts which are required to configure

middleware. One of the generated artifacts is a service configuration file which is used

to set QoS related configuration policies by middleware for different applications. It

has different options that control the behavior of strategies and resources used by

middleware framework. This file allows an application to configure service objects

statically and dynamically configuring middleware. For different configuration we

have different options. These Options [43] in service configuration file can represent

either the components provided by middleware framework or customized components

70

developed by users. If this configuration file is not available, ACE/TAO middleware

framework selects all default configurations.

Following are the different factories that can be configured:

1. Advance Resource Factories: This factory controls the creation of con-

figurable resources used by ACE/TAO’s ORB core. The resource factory is

responsible for constructing and providing access to various resources used by

the ORB irrespective of whether they perform client or server roles.

2. Server Strategy factory: This factory creates various strategies of special

utility to the ORB that is useful for controlling the behavior of servers. This

factory is responsible for creating strategies useful for server objects like the con-

currency strategy and the request demultiplexing strategies used by the POA.

3. Client Strategy factory: This factory creates various strategies of special

utility to the ORB, useful for controlling the behavior of clients. This factory is

responsible for creating strategies useful for clients such as request multiplexing

strategies, wait strategies, connect strategies.

The service configuration file will contain strategies like this:

static Advanced_Resource_Factory "-ORBReactorType tp -ORBReactorThreadQueue LIFO"

static Server_Strategy_Factory "-ORBConcurrency reactive"

and the other configuration file generated is a script file. This script file has inputs

to run any application like Naming service or a benchmarking evaluation tool with

proper end points like listening ports, protocol and host name. These endpoints are

also used by Acceptor-Connector pattern for different transport handles.

benchmark_test -ORBEndpoint iiop://127.0.0.1:9000

71

The middleware provisioner is shielded from these details since the interpreters

automate the task of generating the platform-specific details.

Interpreter to generate Specialization Files

This interpreter is used to generate specialization files which are required to spe-

cialize middleware. The code snippet shown in figure III.4 and figure III.5 is the

specialized aspect code. These specialization files are used for the two different spe-

cializations discussed in section VI.2 and section VI.2. Different types of specializa-

tions can be captured as aspects in different files and can be used transform original

code into a specialized form according to our requirements.

VI.2 Latency and Throughput Results

This section describes results of our experiment comparing the performance of

the original ACE reactor pattern with the specialized version. We collected empirical

data that compared the specialized version of ACE with the original version along dif-

ferent dimensions including latency and throughput. We used the ACE middleware’s

performance test suite to conduct these performance tests and study the impact of

AOP on latency and round trip throughput changes.

For our experiment we used Red Hat Linux 9 with kernel version 2.4.20-8 operating

system with CPU speed 2.7GHz, memory of 1GB RAM and 1MB of cache size. For

testing our specialized and non-specialized middleware system we used $ACE_ROOT/

TAO/performance-tests/Latency/* testing programs and for all test cases we used

Real-Time scheduling class.

Our experiments illustrate that the refactored middleware framework showed a

significant improvement running the ACE performance tests. To demonstrate the

72

$ACE_ROOT/TAO/performance-tests/Latency/*�
$ACE_ROOT/TAO/performance-tests/Latency/*�

benefits of implementing AOP for ACE middleware framework we discuss two spe-

cializations of ACE concurrency models in the reactor and illustrate the improvements

in performance i.e., latency and throughput.

Single Threaded Reactor

In this case we use AOP to remove the virtual table indirection by bypassing the

virtualness of abstract base class methods of reactor and calling the child class meth-

ods directly assuming that in this case the application is using only single threaded

reactor. After applying specialization of AOP to the single threaded implementation

of reactor, improvements in latency and throughput were observed.

(a) Average (b) Standard Deviation

Figure VI.1: Select Reactor Latency

Figure VI.1 and shows improved average and standard deviation end-to-end la-

tency. Figures VI.2 shows the increase in the average and standard deviation in

throughput after specialization.

Thread-Pool Reactor

In this case we use AOP to remove the virtual table indirection by bypassing

the virtualness of abstract base class methods of reactor and calling the child class

73

(a) Average (b) Standard Deviation

Figure VI.2: Select Reactor Throughput

(a) Average (b) Standard Deviation

Figure VI.3: Threadpool Reactor Latency

74

(a) Average (b) Standard Deviation

Figure VI.4: Threadpool Reactor Throughput

methods directly assuming that in this case application is using only thread-pool

threaded reactor.

After applying specialization of AOP to the thread-pool implementation of reactor,

improvements to latency and throughput were observed. Figure VI.3 shows improved

average and standard deviation end-to-end latency. Figure VI.4 shows increase in the

average and standard deviation in throughput after specialization.

Reactor Select ThreadPool
Latency -3% -4%

Throughput 2% 3%

Table VI.1: Average Percentage Change

Table VI.1 lists out the percentage decrease of latency and increase in throughput

in select and thread pool reactor implementation.

75

CHAPTER VII

RELATED WORK

One of the tools developed specifically for middleware specialization is Feature-

Oriented Customizer (FOCUS) [30]. It is a domain-specific modeling tool that has

been developed to automate specialization of middleware. In this specialization tool

code is annotated with specialization rules and middleware developer has to select

suitable specialization rules. Its transformation engine is a Perl based tool which

selects the appropriate specialization files and transforms it into changed source code

file. Then using general middleware compiler, executable code is generated. In this

tool join-points need to be identified and the source code changed manually to insert

in these join-points (hooks). Correctness of the transformation has to be validated

externally. It is expected that the FOCUS approach will be used by middleware

developers and not system developers.

Skeletons and Templates are alternatives to achieve separation of concern between

the core functionality and secondary concerns. One main difference between skele-

tons [49] and reusable AOP modules is related to how secondary concerns and core

functionality are composed together to yield an application. In the former approach,

the core functionality must be decomposed into code fragments to fill the hooks pro-

vided by the skeleton/template. In the AOP approaches, this composition is based

on joinpoints, which results in less invasive changes to the core functionality.

In paper [21] authors discuss the generation of aspect oriented code (AspectJ [3])

skeletons from a UML model. Their approach offers a mapping between the structure

of the model and the structure of the resulting program. The skeletons, however,

cannot be executed, as the actual behavior is not modeled. Our work differs from this

because we generate fully executable specialization aspect code from the POSAML

76

model. One can make code alteration at modeling level i.e., expressive power of

aspects can be defined at modeling level.

There has been some research related to aspect-oriented design model [53,7] which

discuss creation of UML metamodels to integrate aspect-oriented ideas and concepts

into design phase of software engineering.

77

CHAPTER VIII

SUMMARY AND CONCLUSION

Distributed systems implemented with standardized middleware present several

challenges with respect to the accidental complexities associated with provisioning

(i.e., configuration and QoS validation) and specialization of middleware. In cur-

rent practice, these challenges are solved through low-level, non intuitive and non

reusable means. The manual nature of these techniques is error prone and tedious,

and prohibits a system provisioner from rapidly exploring various design alternatives.

To address these challenges, our research work presents POSAML, which is a visual

modeling language that addresses the provisioning, and approach to express special-

ization requirement problem at a higher-level of abstraction. It also presents our work

related to use of aspect-oriented programming technique to specialize middleware.

We have found that POSAML allows various provisioning scenarios to be explored

in a rapid manner that is middleware-independent. The concerns that are separated

among the various aspects in POSAML provide an ability to evolve the configuration

in a manner that isolates the effect to a single design change. When a choice is

made for a pattern, POSAML removes all of the inconsistent choices among other

patterns. This allows the provisioner to work with a narrowed search space and

ignore all incompatible configurations. Furthermore, model interpreters associated

with POSAML assist in generating the artifacts needed to perform QoS validation.

Model-Driven Engineering and Aspect-Oriented Programming approaches are con-

sidered to be very useful paradigms. Their approaches are considered to be two com-

plementary solutions which have almost similar goals. There are some areas where

they can work together and in some areas they compete.

Our initial results of specializations indicated that the performance of the system

78

improved with increase in number of specialization. If there are very few opportunities

for specialization, the use of POSAML and AOP is probably not desirable, however

with more opportunities for specialization across multiple layers of the middleware,

the automation capabilities are desirable.

Lessons Learned

During our research work we applied POSAML to model several case studies im-

plemented in the ACE/TAO middleware. Although our experience in using POSAML

to configure and provision these case studies has been positive, there are still a few

limitations that remain. For example, our generative techniques are applied only for

the TAO middleware i.e., configuration and QoS validation are specific to this mid-

dleware only. The limitations for adding capabilities of modeling aspect to POSAML

are that the designer needs to be AOP aware since for applying aspect constructs like

advice, pointcuts and joinpoints, the model designer needs to know AOP.

While working on the case study we discussed in chapter V we noticed that there

are many concerns like logging and exception handling which are perfect examples of

concerns that can be cleanly separated out from the primary concerns, and plugged

into the fabric of the application code base. There are however other secondary

concerns that cannot be cleanly separated out from the core logic because of the tight

integration with the core functionality. For example for security and transaction

control we had to modify the system code to some extent.

Some of the limitations of aspect-oriented programming we learned during this

work is that it can sometimes increase the complexity in the design of the basic

architecture since factoring out some secondary concerns is hard due to the need for

minor but invasive changes in existing code base.

79

The problem is even more prominent when the modularization of secondary con-

cerns and additional development of primary concerns goes on in parallel. In our case

we had to deal with a situation where application developers were restructuring the

code base as we were modularizing the secondary concerns, which impacted our effort

since it affected the conditions when the aspects were to be woven in. For some devel-

opers who do not know about the structure of the code base, it becomes very difficult

to fix software defects by just reviewing or inspecting code. One more limitation

which is a very well known problem is that you can not add code or functionality at

any arbitrary location. There has to be a well defined joinpoint for every change. This

limitation sometimes is fixed by making minor modification to the primary concern.

Irrespective of all these limitations AOSD helps in the overall reduction of code

tangling and increases the separation of concerns. It makes development time faster

and reduces code size. It is always easy to fine grain your secondary concerns when

it is decoupled from main business logic. It is easy to plug in and out aspects, this

feature helps in making customized applications.

Future Work

The research work illustrated in this thesis is a first step towards customization,

configuration, and QoS validation of middleware systems using modeling tools and

automating generation of specialization using model based aspect-oriented software

development. This modeling tool is at preliminary stage and does not cover all the

desired features. We plan to pursue development and improvement of this tool, in

many ways.

There is still need to work on this tool to enhance its features. Currently very

few patterns can be modeled using POSAML. We plan to add more patterns that are

required to build to form middleware system. Only very limited number of features

80

can be modeled, we need to add more number of features so that middleware system

is fully configurable.

An automated code generation for other languages like AspectJ is planned. It

should very easy to add different model interpreter or code generator rules to do

specified work. But, current interpreter is very strongly coupled with one aspect

language i.e., AspectC++, and we plan to make it more generalized. We intend to

improve and extend this aspect modeling. For the generation of aspect code, all rules

are not covered. Only main important features are designed in detail. We need to

develop all the AOP rules for this tool.

81

BIBLIOGRAPHY

[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press,
New York, NY, 1977.

[2] Shahzad Aslam-Mir. Experiences with Real-time embedded CORBA in Tele-
com. In OMG’s First Workshop on Real-time and Embedded Distributed Object
Computing, Falls Church, VA., July 2000. Object Management Group.

[3] AspectJ Team. The AspectJ programming guide. Version 1.5.3. Available from
http://eclipse.org/aspectj, 2006.

[4] Alessandro Bassi, Micah Beck, Terry Moore, James S. Plank, Martin Swany,
Rich Wolski, and Graham Fagg. The internet backplane protocol: A study in
resource sharing. Future Generation Computing Systems, 19(4):551–561, May
2003.

[5] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-wise Refinement. IEEE
Transactions on Software Engineering, 30(6):355–371, June 2004.

[6] Micah Beck, Ying Ding, Terry Moore, and James S. Plank. Transnet ar-
chitecture and logistical networking for distributed storage, September 2004.
Available from: http://loci.cs.utk.edu/publications/2004_Transnet_

Architecture.php.

[7] Christina Chavez and Carlos Lucena. A metamodel for aspect-oriented model-
ing. In Omar Aldawud, Grady Booch, Siobhán Clarke, Tzilla Elrad, Bill Har-
rison, Mohamed Kandi, and Alfred Strohmeier, editors, Workshop on Aspect-
Oriented Modeling with UML (AOSD-2002), March 2002. Available from:
http://lglwww.epfl.ch/workshops/aosd-uml/Allsubs/aspUML.pdf.

[8] Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware. In Karl
Lieberherr, editor, Proc. 3rd Int’ Conf. on Aspect-Oriented Software Develop-
ment (AOSD-2004), pages 56–65. ACM Press, March 2004.

[9] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, Reading, Massachusetts, 2000.

[10] Dimple Kaul and Aniruddha Gokhale. Middleware Specialization using Aspect
Oriented Programming. In Proceedings of the 44th Annual Southeast Conference,
Melbourne, FL, April 2006. ACM.

[11] Dimple Kaul and Arundhati Kogekar and Aniruddha Gokhale and Jeff Gray and
Swapna Gokhale. Managing Variability in Middleware Provisioning Using Visual

82

http://eclipse.org/aspectj�
http://loci.cs.utk.edu/publications/2004_Transnet_Architecture.php�
http://loci.cs.utk.edu/publications/2004_Transnet_Architecture.php�
http://lglwww.epfl.ch/workshops/aosd-uml/Allsubs/aspUML.pdf�

Modeling Languages. In Proceedings of the Hawaii International Conference
on System Sciences HICSS-40 (2007), Visual Interactions in Software Artifacts
Minitrack, Software Technology Track, Big Island, Hawaii, Jan 2007.

[12] Don Batory. Multi-Level Models in Model Driven Development, Product-Lines,
and Metaprogramming. IBM Systems Journal, 45(3), 2006.

[13] Don Batory and Jacob Neal Sarvela and Axel Rauschmeyer. Scaling Step-Wise
Refinement. In International Conference on Software Engineering, pages 187–
197, Portland, OR, May 2003.

[14] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of database systems
(2nd ed.). Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA,
1994.

[15] David F. Ferraiolo, Serban Gavrila, Vincent Hu, and D. Richard Kuhn. Com-
posing and combining policies under the policy machine. In SACMAT ’05: Pro-
ceedings of the tenth ACM symposium on Access control models and technologies,
pages 11–20, New York, NY, USA, 2005. ACM Press.

[16] Robert Filman, Tzilla Elrad, Mehmet Aksit, and Siobhan Clarke. Aspect-
Oriented Software Development. Addison-Wesley, Reading, Massachusetts, 2004.

[17] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Harper Collins, 1999.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

[19] Holger Giese, Ingolf H. Kruger, and Kendra M. L. Cooper. Workshop on Visual
Modeling for Software Intensive Systems. Procedings of 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC’05), page 4,
2005.

[20] Wasif Gilani, Nabeel Hasan Naqvi, and Olaf Spinczyk. On adaptable middleware
product lines. In ARM ’04: Proceedings of the 3rd workshop on Adaptive and
reflective middleware, pages 207–213, New York, NY, USA, 2004. ACM Press.

[21] Iris Groher and Stefan Schulze. Generating aspect code from UML models. In
Omar Aldawud, Mohamed Kandé, Grady Booch, Bill Harrison, Dominik Stein,
Jeff Gray, Siobhán Clarke, Aida Zakaria Santeon, Peri Tarr, and Faisal Akkawi,
editors, The 4th AOSD Modeling With UML Workshop, San Francisco, CA, Oct
2003.

[22] Jakarta Log4J Homepage. Web Page. Available from: http://jakarta.apache.
org/log4j/.

83

http://jakarta.apache.org/log4j/�
http://jakarta.apache.org/log4j/�

[23] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-
Integrated Development of Embedded Software. Proceedings of the IEEE,
91(1):145–164, January 2003.

[24] Dimple Kaul, Aniruddha Gokhale, Alan Tackett, Larry Dawson, and Kelly Mc-
Cauley. ” applying aspect oriented programming to distributed storage meta-
data management ”. In Workshop on Best Practices in Applying Aspect-Oriented
Software Development (BPAOSD’07) at the Sixth International Conference on
Aspect-Oriented Software Development (AOSD’07), Vancouver, Canada, March
2007. AOSD.

[25] Mik Kersten. Aop@work: Aop tools comparison. part 1. Technical report,
University of British Columbia, 2005. Available from: www-106.ibm.com/

developerworks/java/library/j-aopwork1.

[26] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William Griswold. Getting started with aspectj. Commun. ACM, 44(10):59–65,
2001.

[27] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In ECOOP ’01: Proceedings of
the 15th European Conference on Object-Oriented Programming, pages 327–353,
London, UK, 2001. Springer-Verlag.

[28] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In Proceedings of the 11th European Conference on Object-
Oriented Programming, pages 220–242, June 1997.

[29] Grzegorz Kolaczek. Specification and verification of constraints in role based
access control for enterprise security system. In International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises, pages 190–195,
2003.

[30] Arvind S. Krishna, Aniruddha Gokhale, Douglas C. Schmidt, Venkatesh Prasad
Ranganath, John Hatcliff, and Douglas C. Schmidt. Model-driven Middleware
Specialization Techniques for Software Product-line Architectures in Distributed
Real-time and Embedded Systems. In Proceedings of the MODELS 2005 work-
shop on MDD for Software Product-lines, Half Moon Bay, Jamaica, October
2005.

[31] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming,
chapter 13. Manning Publications Co., Greenwich, CT, USA, 2003.

[32] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai. Composing Domain-Specific Design En-
vironments. IEEE Computer, pages 44–51, November 2001.

84

www-106.ibm.com/developerworks/java/library/j-aopwork1�
www-106.ibm.com/developerworks/java/library/j-aopwork1�

[33] Martin Lippert and Cristina Videira Lopes. A study on exception detecton
and handling using aspect-oriented programming. In Proceedings of the 22nd
International Conference on Software Engineering, pages 418–427. ACM Press,
2000.

[34] M. D. McIlroy and J. A. Reeds. Multilevel security with fewer fetters. In Proc.
Spring 1988 EUUG Conf., pages 117–122, London, April 1988. European Unix
Users Group. also in Proc. UNIX Security Workshop, Usenix Assoc., Portland,
August 1988, 24-31.

[35] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice
Hall, Englewood Cliffs, NJ, 1997.

[36] Object Management Group. Model Driven Architecture (MDA), OMG Document
ormsc/2001-07-01 edition, July 2001.

[37] Olaf Spinczyk and Andreas Gal and Wolfgang Schröder-Preikschat. AspectC++:
An Aspect-Oriented Extension to C++. In Proceedings of the 40th International
Conference on Technology of Object-Oriented Languages and Systems (TOOLS
Pacific 2002), February 2002.

[38] Olaf Spinczyk and Daniel Lohmann. Aspect-Oriented Programming with C++
and AspectC++. In Tutorial at Aspect Oriented Software Development (AOSD),
2005.

[39] P. Tarr and H. Ossher and W. Harrison and S.M. Sutton. N Degrees of Separa-
tion: Multi-Dimensional Separation of Concerns. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 107–119, May 1999.

[40] D. C. Schmidt. Acceptor-connector: An object creational pattern for connect-
ing and initializing communication services. In Pattern Languages of Program
Design, 1995.

[41] Douglas C. Schmidt. ACE: an Object-Oriented Framework for Developing Dis-
tributed Applications. In Proceedings of the 6th USENIX C++ Technical Con-
ference, Cambridge, Massachusetts, April 1994. USENIX Association.

[42] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):41–47,
2006.

[43] Douglas C. Schmidt. Options for tao components. In The TAO Documentation,
Vanderbilt University. Available from: http://www.cs.wustl.edu/~schmidt/

ACE_wrappers/TAO/docs/Options.html.

[44] Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale, Nanbor Wang, and
Christopher Gill. TAO: A Pattern-Oriented Object Request Broker for Dis-
tributed Real-time and Embedded Systems. IEEE Distributed Systems Online,
3(2), February 2002.

85

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/TAO/docs/Options.html�
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/TAO/docs/Options.html�

[45] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley & Sons, New York, 2000.

[46] Alan Shalloway and James R. Trott. Design Patterns Explained. Software Pat-
terns Series. Addison-Wesley, 2002.

[47] David C. Sharp. Reducing Avionics Software Cost Through Component Based
Product Line Development. In Proceedings of the 10th Annual Software Tech-
nology Conference, April 1998.

[48] S. Soares, E. Laureano, and P. Borba. Implementing distribution and persistence
aspects with aspectj, 2002.

[49] Joao L. Sobral, Miguel P. Monteiro, and Carlos A. Cunha. Aspect-oriented
support for modular parallel computing. In Yvonne Coady, David H. Lorenz,
Olaf Spinczyk, and Eric Wohlstadter, editors, Proceedings of the Fifth AOSD
Workshop on Aspects, Components, and Patterns for Infrastructure Software,
pages 37–41, Bonn, Germany, Mar 2006. Published as University of Virginia
Computer Science Technical Report CS–2006–01.

[50] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM ’01 Conference, San Diego, California,
August 2001.

[51] Alan Tackett, Bobby Brown, Laurence Dawson, Santiago de Ledesma, Dimple
Kaul, Kelly McCaulley, and Surya Pathak. Qos issues with the l-store distributed
file system, Oct 2006.

[52] B. Vanhaute, B. De Win, and B. De Decker. Building frameworks in aspectj,
2001.

[53] Christina von Flach G. Chavez and Carlos J. P. de Lucena. Design-level
support for aspect-oriented software development. In Kris De Volder, Mau-
rice Glandrup, Siobhán Clarke, and Robert Filman, editors, Workshop on Ad-
vanced Separation of Concerns in Object-Oriented Systems (OOPSLA 2001),
October 2001. Available from: http://www.cs.ubc.ca/{\mathaccent"707E\

relax}kdvolder/Workshops/OOPSLA2001/submissions/27-chavez.pdf.

86

http://www.cs.ubc.ca/{mathaccent �
http://www.cs.ubc.ca/{mathaccent �

