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CHAPTER I 

 

INTRODUCTION 

 

Misconceptions can persist over a long period of time and must be overcome (Eryilmaz, 

2002). For example, students have common and persistent misconceptions involving decimal 

magnitude, such as treating decimals the same as whole numbers (e.g., Irwin, 2001; Resnick et 

al., 1989). This is often due to the fact that students who are learning a new topic relate it to their 

prior knowledge in other domains.  While this can be helpful for learning, it can also provide 

barriers for learning if prior knowledge is misapplied to new domains (e.g., Stafylidou & 

Vosniadou, 2004; Vamvakoussi & Vosniadou, 2004).  Unfortunately, these misconceptions can 

become entrenched and adverse to change (McNeil & Alibali, 2005).  One potential way to 

correct misconceptions and improve student learning is through the use of incorrect examples 

(e.g., Huang, Liu, & Shiu, 2008; Siegler, 2002). Past research has shown that presenting students 

with incorrect examples can help students correct their misconceptions and improve their 

knowledge of correct concepts (Eryilmaz, 2002; Huang et al., 2008; Van den Broek & Kendeou, 

2008) and procedures (Durkin & Rittle-Johnson, 2012; Große & Renkl, 2007; Siegler, 2002).   

However, it remains unclear how and when exposure to incorrect examples improves 

learning. One promising reason for why incorrect examples are beneficial is because students are 

comparing them to correct examples. Past research has illustrated that comparison of two correct 

examples can improve learning (e.g., Gentner, Loewenstein, & Thompson, 2003), and the 

specific mechanisms involved in comparison may be especially helpful when using incorrect 

examples.  However, prior knowledge may play a central role in determining when incorrect 
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examples and comparison are helpful (Große & Renkl, 2007; Rittle-Johnson, Star, & Durkin, 

2009).  In the current study, I experimentally evaluated whether comparison of correct and 

incorrect examples benefited students’ knowledge beyond exposure to incorrect and correct 

examples or exposure to only correct examples.  Participants varied in their prior knowledge, so 

the moderating effects of prior knowledge on students’ learning from incorrect examples and 

comparison could be examined.  

First, I discuss past research misconceptions and on the effectiveness of exposing learners 

to incorrect examples.  Next, I describe the importance of comparison and how comparing 

incorrect and correct examples may improve learning.  Then, I describe the target domain of the 

current study, decimal magnitude.  Finally, I describe the current study and my hypotheses. 

 

Misconceptions in Academic Domains 

 Misconceptions can be defined as incorrect or erroneous ideas that contradict accepted 

ideas, and they can form as students attempt to “assimilate…new information into their existing 

conceptual structures” (Stafylidou & Vosniadou, 2004, p. 505).  While the term “misconception” 

is used frequently in research on science learning (e.g., Eryilmaz, 2002), it is not always used in 

research on mathematics learning.  When discussing erroneous ideas, math education researchers 

will often label them as buggy errors or rules (e.g., Carpenter, Franke, Jacobs, Fennema, & 

Empson, 1998; Resnick et al., 1989).  However, the term “misconception” has been used by 

some math education researchers (e.g., Irwin, 2001), and it is used frequently in conceptual 

change research on mathematics learning (e.g., Vamvakoussi & Vosniadou, 2004).  

Consequently, I will use the term “misconception” in this paper because it more accurately 

reflects the persistent misunderstandings students have in the current study that relate to 
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incorrectly understanding concepts as opposed to simply misunderstanding operations or 

notation.  Such misconceptions can become deeply entrenched and difficult to change over time 

(e.g., McNeil & Alibali, 2005). 

 

Effectiveness of Incorrect Examples 

One possible way to help correct misconceptions is by using incorrect examples.  The use 

of incorrect examples has been studied primarily in science domains, and this research can 

provide insight into the possible benefits of incorrect examples.    For example, numerous 

classroom experiments on science learning indicated that exposing students to incorrect 

examples in physics was more effective for overcoming misconceptions than focusing on correct 

concepts alone (Eryilmaz, 2002; Mestre, 1994). Also, students were more likely to revise 

incorrect concepts when using refutation science texts that included both incorrect and correct 

examples than when using texts that only included correct examples (Alvermann & Hague, 1989; 

Diakidoy, Kendeou, & Ioannides, 2003; Van den Broek & Kendeou, 2008).  

Similarly, incorrect examples have been shown to improve students’ mathematical 

knowledge, including both conceptual and procedural knowledge. Conceptual knowledge is 

defined as the ability to recognize and understand key domain concepts.  Procedural knowledge 

is defined as the ability to execute action sequences to solve problems.  These two distinct 

knowledge types have been used frequently in past research (e.g., Canobi, Reeve, & Pattison, 

2003; Große & Renkl, 2006; Hiebert & Wearne, 1996), and while the two types of knowledge 

are related, they are distinct constructs that can be measured separately (Schneider, Rittle-

Johnson, & Star, 2011).  Many tasks may involve both conceptual and procedural knowledge, 

but procedural demands dominate some tasks and conceptual demands dominate others.  
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Generally, procedural knowledge is involved in more familiar tasks, on which students likely 

know a solution procedure.  On the other hand, conceptual knowledge is involved in unfamiliar 

tasks, on which students must transfer knowledge to new problem types that assess underlying 

domain principles.  Incorrect examples can help improve both of these types of knowledge. 

In two studies, students showed improvements in conceptual knowledge for mathematics 

when using incorrect examples (Durkin & Rittle-Johnson, 2012; Huang et al., 2008). For 

instance, sixth-grade students were exposed to incorrect examples when learning about the 

meaning of decimals (e.g., in 5.4, saying the .4 represents 4 ones instead of 4 tenths). These 

students retained correct concepts after a 4-week delay better than students who were not 

presented with incorrect examples (Huang et al., 2008).  Similarly, fourth- and fifth-grade 

students who compared incorrect procedures for placing decimals on number lines to correct 

procedures remembered decimal concepts better than students who only compared correct 

procedures (Durkin & Rittle-Johnson, 2012).  

Exposure to incorrect examples can also improve procedural knowledge in mathematics.  

In a given domain, learners often have and use multiple procedures and ways of thinking at any 

given time. Because of the coexistence of multiple procedures, they often continue to use 

incorrect procedures after correct procedures have been learned (see Siegler, 2002 for a review). 

Having students explain why incorrect procedures are wrong is one way to reduce their use of 

incorrect procedures. Third- and fourth-graders who explained correct and incorrect procedures 

to mathematical equivalence problems (e.g., 3 + 4 + 8 = _ + 8) were able to solve more difficult 

problems than those who only explained correct procedures.  Primarily, this was because they 

generated more generalizable correct procedures that were applicable to a wider range of 

problem types (Siegler, 2002). Similar results have been found for college students learning 



5  

algebra and probability (Curry, 2004; Große & Renkl, 2007) and fourth- and fifth-grade students 

learning decimals (Durkin & Rittle-Johnson, 2012).     

However, students’ prior knowledge may influence the effectiveness of using incorrect 

examples.  Past research suggests that learners with low prior knowledge may learn best from 

correct examples alone, but past findings are not consistent. Learners with low prior knowledge 

often do not have sufficient knowledge to use incorrect examples effectively, nor do they always 

understand why an error is wrong (Große & Renkl, 2007; Stark, Kopp, & Fischer, 2011).  For 

example, college students with low prior knowledge of probability and general mathematics 

learned more from studying correct examples alone than from studying both correct and 

incorrect examples. However, students with sufficient prior knowledge benefited from studying 

the incorrect examples (Große & Renkl, 2007).  In contrast, I found that prior domain knowledge 

did not influence the effectiveness of incorrect examples, and students benefited from incorrect 

examples regardless of prior knowledge (Durkin & Rittle-Johnson, 2012).  In this study, fourth- 

and fifth-grade students learned about decimals by comparing incorrect and correct examples or 

by comparing correct examples only.  Thus, there is limited evidence on the importance of prior 

knowledge when using incorrect examples, and the findings are inconsistent.  This could be due 

to a variety of factors, including the use of different methods. The first study included college 

students studying probability, a domain that involves commonly confused problem types rather 

than strongly held misconceptions (Große & Renkl, 2007). The second study included younger 

students studying decimals, a domain with many prevalent misconceptions. Furthermore, all 

students in this second study received the additional scaffold of comparison.   Also, past studies 

have not measured students’ prior prevalence of misconceptions as a measure of prior 

knowledge.  In domains with persistent misconceptions, the prevalence and strength of students’ 
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prior misconceptions may play an important role in the effectiveness of incorrect examples.  

Thus, it is important to attend to students’ prior knowledge and misconceptions when using 

incorrect examples, and further evidence is needed on this topic. 

In addition to investigating who will benefit from incorrect examples, it is also necessary 

to examine how incorrect examples can benefit learning. Exposure to incorrect examples can 

improve learning, at least under some circumstances, but less is known about how this exposure 

supports knowledge growth. There is little direct evidence, but researchers have offered at least 

three reasons. First, exposure to correct and incorrect examples may improve conceptual 

knowledge because it engages students’ conflicting correct and incorrect concepts.  In studies 

involving incorrect examples, participants are often told when an example is incorrect and asked 

to explain why it is incorrect or to correct the error.  Consequently, students may create a new 

mental representation, or schema, of the material that labels incorrect concepts as wrong.  

Students’ responses during a think-aloud procedure when studying correct and incorrect 

examples supported this idea (Van den Broek & Kendeou, 2008). For example, students with 

misconceptions who saw correct and incorrect examples were more likely to notice and respond 

to conflicting ideas than if they saw correct examples alone.  Second, students may be motivated 

to think more deeply about correct concepts (Durkin & Rittle-Johnson, 2012; Van den Broek & 

Kendeou, 2008; VanLehn, 1999). For example, students who compared correct and incorrect 

examples were twice as likely to correctly identify misconceptions and mention correct concepts 

as students who only compared correct examples (Durkin & Rittle-Johnson, 2012).  Third, 

explaining examples of incorrect procedures may help decrease the strength of incorrect 

procedures, reducing the probability that the procedure will be selected in the future and leading 

students to use more correct procedures (Durkin & Rittle-Johnson, 2012; Siegler, 2002). This 
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may occur in part because studying incorrect procedures can lead people to verbalize more 

thoughts, including explanations of why the procedure is wrong and elaborations of correct 

procedures (Durkin & Rittle-Johnson, 2012; Große & Renkl, 2007). However, the benefits of 

studying incorrect examples may only arise for learners with sufficient prior knowledge to 

generate reasonable explanations (Große & Renkl, 2007).   

In addition to these three potential mechanisms, comparison may be an essential 

mechanism supporting learning from incorrect examples. For instance, direct comparison of 

incorrect examples to correct examples may allow students to more easily identify critical 

attributes of both correct examples and misconceptions. However, most past research has not 

directly supported comparison nor has it evaluated the potential role of spontaneous comparison 

when correct and incorrect examples are presented.  In fact, in most past research, incorrect 

examples were presented alone, and students did not directly compare them to correct examples 

(Curry, 2004; Große & Renkl, 2007; Huang et al., 2008). There are a few exceptions.  In one 

study, an incorrect solution was presented at the same time as a correct solution (Siegler, 2002), 

and in a few studies on refutation science texts, incorrect examples were presented on the same 

page as correct examples and discussed together (Alvermann & Hague, 1989; Diakidoy et al., 

2003; Van den Broek & Kendeou, 2008).  In these cases, direct comparison of the two was not 

explicitly encouraged, and the frequency of spontaneous comparison was not assessed.  While 

students may have spontaneously compared incorrect examples to correct examples, doing so 

would require good metacognitive skills (Richland, Morrison, & Holyoak, 2006).    

In two additional studies, all students compared examples, with some students comparing 

correct and incorrect examples while others compared only correct examples (Durkin & Rittle-

Johnson, 2012, in preparation).  However, due to the fact that all students in these studies 
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compared examples, it is unclear whether comparison was necessary for learning.   Perhaps mere 

exposure to incorrect examples is sufficient for helping students to identify and reduce their 

misconceptions and incorrect procedures.  Yet, it is also possible that comparing incorrect and 

correct examples was an important part of why incorrect examples were beneficial to students in 

these studies. Past research on comparing correct examples suggests that it is. 

 

The Role of Comparison 

Given the potentially significant role of comparison in learning from incorrect examples, 

it is important to consider the benefits of comparison in learning.  However, past research on 

comparison has primarily focused on comparing correct examples. Based on this work, 

comparison is often lauded as an effective and important learning process in cognitive science 

(Gentner et al., 2003; Gick & Holyoak, 1983) and in mathematics education (NCTM, 2000; 

Silver, Ghousseini, Gosen, Charalambous, & Strawhun, 2005). Comparing two correct examples 

can help people recognize more abstract, high-level commonalities between them (e.g., 

Kotovsky & Gentner, 1996) and increase conceptual and procedural knowledge (e.g., Rittle-

Johnson & Star, 2009). For example, comparing two correct solution procedures improved 

students’ knowledge of equation-solving and estimation procedures more than studying the same 

examples one at a time (Rittle-Johnson & Star, 2007; Rittle-Johnson et al., 2009; Star & Rittle-

Johnson, 2009). In the domain of estimation, comparison also improved students’ conceptual 

knowledge more than viewing examples sequentially (Star & Rittle-Johnson, 2009).  Further, 

explicit prompts to compare greatly improve the benefits of studying multiple correct examples 

(Catrambone & Holyoak, 1989; Gentner et al., 2003).  For example, college students who were 

explicitly told to compare two problems that differed in surface features but could be solved 
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using the same procedure were more likely to notice the convergent procedure than students who 

were not prompted to compare (Catrambone & Holyoak, 1989). Together, these studies suggest 

that students benefit from comparison, especially when explicitly prompted to compare. 

One of the primary benefits of comparison is that it allows learners to see the underlying 

structure of both examples (e.g., Loewenstein, Thompson, & Gentner, 1999). Students often 

focus on unimportant, surface features that are not relevant to the target concepts and procedures 

(Gentner, 1989).  For example, when solving word problems, students often focus on the cover 

story as opposed to the underlying structure of the problems (Catrambone & Holyoak, 1989).  

Making direct comparisons between two examples can lead to structural alignment that 

highlights the shared relational structure between two examples for students (Gentner, 1983).  In 

turn, this can facilitate students’ transfer of knowledge to novel problems with the same 

underlying structure, but different surface features. Thus, comparisons can lead to students 

noticing important, deep structural aspects of examples instead of merely noticing surface 

features, and students can then more easily identify meaningful similarities and differences 

(Loewenstein et al., 1999). 

 

Comparison and Incorrect Examples 

For the same reasons comparing correct examples can improve learning, comparison may 

improve learning when comparing incorrect and correct examples.  When comparing incorrect 

and correct examples, alignment of examples could help students recognize important structural 

features of incorrect and correct examples. In addition, detecting the differences between correct 

and incorrect examples may help students accurately update schemas of correct concepts and 

create schemas for misconceptions (VanLehn, 1999).  For example, comparing incorrect and 
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correct examples of the placement of decimals on a number line may allow students to update 

their schema of decimal magnitude.  By aligning the incorrect and correct examples, students can 

go beyond noticing surface features, such as the total number of digits in the decimal, and focus 

on relevant structural features, such as the digit in the highest place value.  While exposure to 

incorrect examples can help students identify misconceptions, it may not help them understand 

why these misconceptions are incorrect. Comparing incorrect examples to correct ones may push 

students to understand misconceptions more deeply and how they differ from correct concepts, 

and may encourage students to discuss correct concepts more frequently (Durkin & Rittle-

Johnson, 2012).  This should lead to deeper conceptual knowledge. 

In addition to helping students update their concepts, comparing incorrect and correct 

examples can help students reduce competition from incorrect procedures. By comparing 

incorrect and correct examples, students may be more likely to notice important, meaningful 

differences between the procedures illustrated in the two examples. This may help students 

update their knowledge of what characteristics of a procedure are important for future success on 

problems.  For example, after comparing incorrect and correct examples of how to place a 

decimal less than 1 on a number line, students may notice that procedures that focus on the tenths 

place are more successful than procedures that focus on how many digits a decimal has. This 

comparison may prompt them to encode the value of the digit in the tenths place and select a 

correct procedure instead of an incorrect one. 

While comparison can be beneficial for learning, prior knowledge is important when 

considering the effectiveness of comparison.  Sufficient domain knowledge may be required in 

order to benefit from comparison (Rittle-Johnson et al., 2009).  For example, middle school 

students learning algebra benefited from comparing multiple solution methods if they were 
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familiar with one of the target solution methods, but not if they were not (i.e., had low prior 

knowledge).  Students with low prior knowledge benefited more from viewing these methods 

sequentially (Rittle-Johnson et al., 2009).  This is possibly due to the fact that if students have 

low prior knowledge, the concepts and procedures illustrated in examples they compare are often 

unfamiliar.  It is difficult for students to align two unfamiliar examples because this unfamiliarity 

makes it hard for students to recognize the aspects to which they should attend (Gentner et al., 

2003; Rittle-Johnson et al., 2009; Schwartz & Bransford, 1998).  This can make it hard for 

students to understand the importance of similarities and differences between examples.  

Consequently, comparison may be too overwhelming to significantly improve learning.   

Overall, comparison is an important learning mechanism that can improve students’ 

conceptual and procedural knowledge.  Comparison may be particularly useful for students when 

using incorrect examples because it may help students recognize the underlying structure of 

examples, correctly update their schemas, and reduce competition between correct and incorrect 

procedures.  However, students may need sufficient prior knowledge to benefit from comparison.  

Consequently, more evidence is needed on the role of prior knowledge and comparison, 

particularly when learning from incorrect examples. 

 

Target Domain - Decimals 

I evaluated the effects of incorrect examples and comparison in the domain of decimal 

fractions, commonly referred to as decimals (Resnick et al., 1989).  It is important for students to 

master decimals to improve their learning in more advanced mathematics.  For instance, 

mastering decimals is important for later algebra proficiency (National Mathematics Advisory 
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Panel, 2008) and for more advanced mathematical tasks involving decimals (Hiebert & Wearne, 

1985).  

Unfortunately, students and adults often have difficulty understanding decimals. For 

instance, 67% of fourth-graders could not solve a problem correctly that involved placing 1.7 on 

a number line from 0 to 3 (National Center for Education Statistics, 2011).  Not only are 

decimals difficult for students to master, they can also be difficult for adults.  For example, half 

of preservice teachers failed to get 75% of a test on decimals correct on their first try (Putt, 

1995).  Thus, students and adults struggle with the domain of decimals. 

 Such difficulties with decimals often stem from common and persistent misconceptions 

involving decimal magnitude (e.g., Desmet, Gregoire, & Mussolin, 2010; Glasgow et al., 2000; 

Irwin, 2001; Kouba, Carpenter, & Swafford, 1989; Putt, 1995; Resnick et al., 1989; Rittle-

Johnson, Siegler, & Alibali, 2001; Sackur-Grisvard & Leonard, 1985; Stacey et al., 2001).  This 

makes decimals an ideal domain for studying incorrect examples. Three common misconceptions 

are: 1) the whole number misconception, 2) the role of zero misconception, and 3) the fraction 

misconception.  First, the whole number misconception involves thinking of decimals as if they 

are whole numbers (e.g. thinking 0.25 is greater than 0.7 because 25 is greater than 7).  Students 

incorrectly apply their generally strong knowledge about whole numbers to decimals.  Second, a 

related misconception specifically involves the role of zero, which is different for whole and 

decimal numbers. When a zero is in the tenths place, students often ignore it and treat the 

following digit as if it is in the tenths place (e.g. students will think 0.07 is the same as 0.7). In 

addition, students will assume that adding a zero on the end of a decimal increases its magnitude 

(e.g. 0.320 is greater than 0.32). Again, students are incorrectly applying knowledge about whole 

numbers to decimals (e.g. 320 is bigger than 32).  A third common misconception is to think of 
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decimals like common fractions and assume that longer decimals are smaller because they 

contain smaller parts, just as a fraction with the same numerator and larger denominator than 

another fraction is smaller because it contains smaller parts (e.g., 0.784 must be less than 0.3 

because 1/784 has smaller parts than 1/3). These misconceptions are the ones most frequently 

held by students in the United States (Resnick et al., 1989; Sackur-Grisvard & Leonard, 1985), 

so they were the focus of the current study. 

To teach students about decimals, I used a number line task.  Number line tasks are a 

useful way to teach students about decimal magnitude (e.g., National Mathematics Advisory 

Panel, 2008; Rittle-Johnson et al., 2001).  Placing decimals on a number line can help students 

better understand magnitude relations and create links between decimal concepts and procedures 

(National Mathematics Advisory Panel, 2008).  In addition, this was a novel task for many 

students in the current study because most students had not been exposed to placing decimals on 

number lines yet. Therefore, I focused on children learning to place decimals on number lines 

during the intervention, a task that should engage their concepts of decimal magnitude and allow 

them to generate procedures for completing the task.   

In summary, decimals are important for students to master, but students often have 

trouble understanding decimals.  This is frequently due to commonly held misconceptions, which 

need to be overcome.  The persistent nature of misconceptions in this domain makes it ideal for 

studying the effectiveness of incorrect examples and comparison. 

 

Current Study 

In the current study, students compared correct and incorrect examples (Incorrect-

Compare condition), studied correct and incorrect examples sequentially (Incorrect-Sequential 
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condition), or studied only correct examples sequentially (Correct-Sequential condition).  

Examining the differences between these groups, I was able to test the effects of studying 

incorrect examples and the effects of comparing incorrect examples to correct ones.  I was also 

able to explore the role of prior knowledge, including misconceptions, when learning from 

incorrect examples and comparison. 

Aspects of the current study’s design merit discussion.  First, this study was conducted in 

classrooms.  This allowed me to examine the effects of comparing incorrect and correct 

examples in a classroom setting.  All past empirical work on mathematics learning from studying 

correct and incorrect examples has been done using brief, one-on-one tutoring (e.g., Durkin & 

Rittle-Johnson, 2012; Große & Renkl, 2007; Siegler, 2002).  Second, students were randomly 

assigned to one of the three conditions within their classrooms.  This resulted in each classroom 

containing students in all conditions to minimize classroom affecting the impact of condition.  

Third, students studied examples and generated explanations with a partner.  Students worked 

with a partner rather than by themselves because students learn more working with a partner than 

working alone, especially when encouraged to explain (Fuchs et al., 1997; Johnson & Johnson, 

1994).  Also, students were prompted for explanations throughout the intervention.  Generating 

self-explanations has been shown to improve learning compared to students who do not spend 

time generating explanations, so all students in the current study generated explanations (e.g., 

Chi, de Leeuw, Chiu, & LaVancher, 1994).  Fourth, practice problems were also completed at 

regular intervals throughout the packet. The combination of worked examples and practice 

problems was used during the intervention because this combination can improve learning in a 

variety of domains beyond solving practice problems alone (see Atkinson, Renkl, & Merrill, 
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2003 for a review).  These basic design features have been used successfully in past research on 

comparison of correct examples in mathematics classes (e.g., Rittle-Johnson et al., 2009).  

 

Hypotheses 

In the current study, I hypothesized that students in the Incorrect-Compare condition 

would have higher procedural and conceptual knowledge than students in the Incorrect-

Sequential condition based on past research illustrating the benefits of comparison (e.g., Rittle-

Johnson & Star, 2007).  I hypothesized that students in the Incorrect-Sequential condition would 

have higher conceptual and procedural knowledge than students in the Correct-Sequential 

condition based on past research emphasizing the benefits of studying incorrect examples (e.g., 

Durkin & Rittle-Johnson, 2012).  I expected this to be true immediately after the intervention and 

after a delay, in part due to a reduction in misconception errors.  

 I also explored the potential moderating role of prior knowledge.  Recall that some past 

work has suggested that students with low prior knowledge may have trouble with incorrect 

examples (Große & Renkl, 2007) and with comparison (Rittle-Johnson et al., 2009), making the 

combination of incorrect examples and comparison difficult.  In the current study, I used several 

measures of prior knowledge, including accuracy at pretest and the prevalence of students’ prior 

misconceptions.  I did not have strong hypotheses on prior knowledge due to mixed results in 

past research.   
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CHAPTER II 

 

METHOD 

 

This was a classroom-based study that examined whether comparison of correct and 

incorrect examples benefited students’ learning beyond simply being exposed to incorrect 

examples or being exposed to only correct examples.  Students were prompted to compare 

incorrect and correct examples, to study incorrect and correct examples sequentially, or to study 

only correct examples sequentially.  Students studied and discussed packets of worked examples 

with a partner in their math class for approximately 2 hours.   

 

Participants  

All 378 students from 9 fourth-grade and 9 fifth-grade classrooms at three public, 

suburban schools participated.  The fourth-grade classrooms were from the two elementary 

schools that fed into a middle school that contained the fifth-grade classrooms.  Thirty-six 

students were dropped from the analysis: 31 students because they were absent for at least 1 day 

of the intervention, 4 students because they were unable to use our materials due to very 

significant learning disabilities, and 1 student because he was absent for every assessment.  Of 

the remaining 342 students, 185 were in fourth-grade, 157 were in fifth-grade, 53% were female, 

95% were Caucasian (2% African-American, 2% Hispanic, and 1% Asian), and the mean age 

was 10.17 years (range 8.83 -12.83 years).  At one elementary school, 31% of students were 

eligible for free or reduced lunch, at the other elementary school, 79% of students were eligible, 

and at the middle school, 47% of students were eligible.  Out of a total of 13 teachers, the mean 
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number of years teaching was 16 years, with a mean of 13 years of experience teaching 

elementary or middle school math in particular.   

Teacher reports provided more details about the teachers and their classrooms.  All 

teachers of the participating classes used their respective grade’s version of Pearson Education’s 

enVision Math textbook. In addition, previous exposure to decimals was limited, although 

varied; 7 teachers reported spending a few days on decimals, 4 had spent a few weeks, and 2 had 

not previously covered decimals.  Students’ experience with placing decimals on number lines 

also varied.  Six teachers reported that none of their students had experience placing decimals on 

number lines, 2 teachers reported a few of their students could do so, and 4 teachers reported that 

some of their students could do so.  

 

Design 

A pretest-intervention-posttest design was used followed by a retention test administered 

3 weeks after the posttest. For the intervention, students were randomly assigned a partner in 

their class, and then each pair of students was randomly assigned to one of three intervention 

conditions:  the Incorrect-Compare condition (n = 116, 58 groups), the Incorrect-Sequential 

condition (n = 117, 57 groups), or the Correct-Sequential condition (n = 109, 55 groups). When 

there was an odd number of students in a classroom, students formed groups of three.  There 

were 5 such groups in the current study.  Students in the Incorrect-Compare condition studied 

sets of two worked examples of the same problem (one incorrect and one correct) on each page 

followed by questions that encouraged comparison of these two different solution methods for 

the same problem.  Each example was labeled as correct or incorrect.  Prompts encouraged 

students to discuss why one example was correct while the other was incorrect and to find 
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similarities and differences between the examples. Students in the Incorrect-Sequential condition 

studied the same worked examples, but each page only contained one worked example and one 

question that encouraged reflection on that example.  Each example was labeled as correct or 

incorrect.  Students in the Correct-Sequential condition studied only correct worked examples, 

and each page only contained one worked example and one question that encouraged reflection 

on that example (see Figure 1).  Each example was labeled as correct.  All students completed 

the intervention over the course of two class periods, which were each about one hour long. 

 

A.  Incorrect-Compare Condition 

Correct 
 
 
 
 
Incorrect 
 
 
 
 
1. Why is Alex's thinking correct but Morgan's is not? 
2. What has Alex figured out in this problem that Morgan needs to know? 

 
B.  Incorrect-Sequential Condition 

Correct 
 
 
 
1. Why is Alex’s thinking correct? 

 
Incorrect 

 

 
2.  Why is Morgan’s thinking incorrect? 

Figure 1:  Sample intervention packet pages for each condition 

 
Alex said, “9 tenths is __ out of 10 
tenths. Because the line is divided 
into 10 tenths, I counted over to 9 
tenths.” 

Morgan said, "9 is a small number. 
So I'm going to put 0.9 close to  
zero / the middle / one ." 0 10.9 

 
Alex said, “9 tenths is __ out of 10 
tenths. Because the line is divided 
into 10 tenths, I counted over to 9 
tenths.” 

Separate Page 

Morgan said, "9 is a small number. 
So I'm going to put 0.9 close to  
zero / the middle / one ." 0 10.9 

0 10.9 

0 10.9 
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0 10.9 

C.  Correct-Sequential Condition 

Correct 
 
 
 
 

1. Why is Alex’s thinking correct? 

 
Correct 

 
 

2.  Why is Morgan’s thinking correct? 

Figure 1 continued:  Sample intervention packet pages for each condition 

 

Materials 
 

Introductory Lessons 

All students received brief lessons after the pretest and at the beginning of each 

intervention day (see Appendix A).  After students completed the pretest, a researcher and the 

classroom teacher modeled how students should work with their partners based on a previous 

lesson used in past studies that involved partner work (e.g., Rittle-Johnson et al., 2009).  On the 

first intervention day, students were reminded about the meaning of different decimal place 

values with instruction adapted from a lesson in the Everyday Mathematics curriculum (Bell et 

al., 2004).  On the second intervention day, students were told to attend to the labels on each 

number line, as the number lines might go from 0 to 1 or from 0 to 10.  Most students had some 

previous experience with basic decimal concepts, and the purpose of these brief lessons was to 

activate students’ prior knowledge of terminology and of what different place values mean.   

Morgan said, "I know 9 tenths is 
only one tenth smaller than 1.  So I 
marked 0.9 a little before / after 1." 
 

 
Alex said, “9 tenths is __ out of 10 
tenths. Because the line is divided 
into 10 tenths, I counted over to 9 
tenths.” 

Separate Page 

0 10.9 
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Intervention Packet 

 Each intervention packet contained 36 worked examples of decimal number line problems 

presented with 36 corresponding questions (18 on each day of the intervention).  Each worked 

example illustrated where a hypothetical student, Alex or Morgan, placed a decimal on a number 

line and an explanation of his or her procedure (see Figure 1). On 30 of the worked examples the 

number line went from 0 to 1, and on 6 of the worked examples the number line when from 0 to 

10.  I added these 0 to 10 number lines to aid in the ability to transfer knowledge learned from 

using the 0 to 1 number line because my past study illustrated that students had great difficulty 

transferring this knowledge (Durkin & Rittle-Johnson, 2012).  The numbers used in the worked 

examples were the same in all conditions.  On the first 12 worked examples, the tenths were 

marked on the number line, since tenths marks help students learn about decimal magnitude 

(Rittle-Johnson et al., 2001). On the remaining 24 worked examples, the tenths were not marked 

since fading of instructional supports has been shown to improve the robustness of student 

learning (Atkinson et al., 2003). To encourage students to carefully read and process the 

examples, the worked examples also required students to fill in blanks and circle correct words to 

make the statements true (see Figure 1).  It was not expected that all students would complete all 

examples on each day, and the packets were designed so that later examples repeated ideas that 

were illustrated in earlier examples.  Consequently, students who did not complete the entire 

packet were still exposed to all the different problem features and ideas.  In addition, the 

explanation prompts paired with each worked example were designed to elicit discussion about 

the worked example.  In the Incorrect-Compare condition these prompts focused on students’ 

comprehension of the examples and comparison between the correct and incorrect ideas.  In the 

Incorrect-Sequential condition, the prompts focused on students’ comprehension of the examples 
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and discussion of correct and incorrect ideas separately.  In the Correct-Sequential condition, the 

prompts focused on students’ comprehension of the examples and discussion of correct ideas. 

 The three demonstrated correct procedures were based on procedures students have 

reported using in past research (Irwin, 2001; Rittle-Johnson et al., 2001). The first procedure 

targeted the number of tenths in a decimal by putting the value near where that number of tenths 

would go (e.g., For 0.280, estimating where 2 tenths would go, and then moving the mark over a 

little more). The second procedure involved imagining that the number line was divided into the 

number of pieces specified by the smallest place value and positioning the decimals based on this 

(e.g., For 0.280, imagine dividing the number line into 1000 pieces and estimating where 280 

would be placed). The third correct procedure involved using benchmarks; the location was 

approximated based on knowledge of the decimal’s magnitude in relation to 0, 0.5, and 1.  The 

three demonstrated incorrect procedures corresponded to the three most common decimal 

misconceptions in the U.S. - the whole number misconception, the role of zero misconception, 

and the fraction misconception (e.g., Desmet et al., 2010; Irwin, 2001; Resnick et al., 1989).  

The packets also contained 25 practice problems spread throughout that asked students to place a 

slash on a number line where the decimal would be located (13 on the first day, 12 on the second 

day).  On 8 practice problems, students were asked to give written explanations of how they got 

their answers so that I could code their procedure use. After completing the first four practice 

problems each day, students were told to stop and wait for an experimenter or teacher to check 

their answers.  Students were given feedback as to whether their placement was correct or not. If 

their placement was incorrect, students were told to try again.  If their placement was still 

incorrect after the second attempt, students were told to move on in the packet.   Feedback was 

provided because feedback has been shown to improve learning with worked examples and 
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practice questions (Krause, Stark, & Mandl, 2009).  Students were given a second opportunity to 

try problems they solved incorrectly to improve learning from the practice problems.  If students 

did not solve the problems correctly after the second attempt, they were told to move on and 

were not shown the correct answer. 

 

Assessment 

An assessment was administered to students as a pretest, posttest, and retention test. This 

assessment measured procedural and conceptual knowledge of decimals and was modified and 

expanded from a past assessment that was shown to be reliable (Durkin & Rittle-Johnson, 2012). 

Sample items of each knowledge type are shown in Table 1 (see Appendix B for the complete 

assessment). The decimals varied in number of digits (tenths, hundredths, thousandths, and ten 

thousandths), magnitude (greater than or less than 0.5), and whether a zero was included.  

Procedural knowledge items could be solved through the use or adaptation of a step-by-

step solution procedure illustrated during the intervention.  While students had not yet seen these 

solution procedures at pretest, I categorized these items as procedural knowledge at all 

assessment points for simplicity.  The procedural items included four familiar problem type 

items, three recognizable problem type items, and eleven novel problem type items. Target 

values were specifically chosen to make it easy to recognize misconception errors. On the 

familiar problem type, students needed to place a decimal on a number line from 0 to 1, similar 

to the problems they completed during the intervention, with new values. On the recognizable 

problems, students needed to place a decimal on a number line from 0 to 10 in relation to another 

number marked on the number line (e.g., place 3.8 in relation to 3.52).  Students had limited 

exposure to this type of problem during the intervention as only 6 worked examples contained 
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this 0 to 10 number line.  Most students were exposed to at least a couple of these worked 

examples during the intervention, but a few students did not get to these problems in the packet 

and therefore had no exposure to them.  There were three novel problem types.  One kind of 

novel problem type involved placing a number in the ten thousandths place on a number line 

from 0 to 1.  On another kind of novel problem type, students needed to identify from a list 

which decimal was already marked on a number line from 0 to 1. Thus, students were asked to 

do the reverse of what they had done during the intervention.  On the third kind of novel problem 

type, students needed to identify from a list which decimal was already marked on a number 

from 0 to 10 in relation to another marked number.  Internal consistency on this measure across 

item types was good (α = .82, .85, and .87 at pretest, posttest, and retention test, respectively).  

The conceptual items were designed to measure students’ understanding of fundamental 

decimal concepts independent of the number line and the three types of items were based on past 

assessments (see Table 1; Irwin, 2001; Rittle-Johnson et al., 2001). Magnitude comparison items 

assessed students’ understanding of the size of various decimals (Irwin, 2001; Resnick et al., 

1989). The density items evaluated students’ understanding that there are an infinite number of 

decimals that can come between any two numbers (e.g. between 0.5 and 0.6) (Irwin, 2001; 

Resnick et al., 1989; Rittle-Johnson et al., 2001). The role of zero items evaluated students’ 

understanding of when a zero made a difference in a decimal’s magnitude (Irwin, 2001; Rittle-

Johnson et al., 2001). Each item was designed to contain an answer choice that fit a 

misconception error. Internal consistency on this measure across item types was also good (α = 

.88, .90, and .91 at pretest, posttest, and retention test, respectively).  
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Table 1:  Sample Assessment Items 
 Example Item Scoring 

Procedural 
Items 

(familiar) 
(n = 4)  

Mark about where 0.9 goes on the number line. 
 
 
                                                                         

1 point for each 
if within one tenth of the correct 

placement in either direction on the 
number line 

Procedural 
Items 

(recognizable) 
(n = 3) 

The number line now goes from 0 to 10. 3.52 is 
marked. Mark where 3.8 goes. 
 
 
 

1 point for each 
if properly placed as greater or less 
than the marked number and within 
one tenth of the correct placement

Procedural 
Items  

(novel 1)  
(n = 4) 

Mark about where 0.3481 goes on the number line. 
 
 
 

1 point for each 
if within one tenth of the correct 

placement in either direction on the 
number line 

Procedural 
Items  

(novel 2)  
(n = 4) 

 

What number tells about where the slash is on the 
number line? 
a) 0.76         b) 0.3         c) 0.08         d) 0.401 

 
 

                                                                                        

1 point for each 
correct answer 

 

Procedural 
Items  

(novel 3)  
(n = 3) 

 

One number is already marked on the number line. 
What number tells about where the unmarked 
dashed slash is on the number line? 
a) 6.173          b) 6.8          c) 6.05          d) 0.45 

   
 

                                                                                        

1 point for each 
correct answer 

 

Conceptual 
Items 

(magnitude) 
(n = 10) 

Circle the number that is greater:     
0.87      0.835  
 

1 point for each correct answer 

Conceptual 
Items 

(density) 
(n = 5) 

Write a decimal that comes between  
0.5 and 0.6. 

1 point for each correct answer 

Conceptual 
Items 

(role of zero) 
(n = 5) 

Circle all the numbers that are worth the same 
amount as 0.51: 
         0.5100      0.051      0.510      51 

1 point for each correct answer 

0 1

0 1

0 10

0 103.52 

6.20

0 1
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 The assessment was created so that incorrect response patterns indicated different 

misconceptions.  On multiple choice questions, each incorrect answer choice was designed to fit 

a particular misconception.  On number line problems, a variety of decimals were selected to 

include instances where students could make errors based on each particular misconception type.  

This allowed incorrect answers to be easily categorized as fitting the whole number 

misconception, role of zero misconception, or fraction misconception. 

Three additional measures were included to assess the strength of students’ 

misconceptions.  Confidence ratings were added to five items spread throughout the assessment: 

1 conceptual item and 5 procedural items.  These confidence rating items asked students how 

sure they were that they answered the item correctly on a scale from 1 (Not at all sure) to 5 (Very 

sure).  These ratings helped determine whether students truly had misconceptions or were just 

randomly guessing, and were used to categorize students’ answers.  These kinds of ratings have 

not often been used in past research on misconceptions in math, but they have been used to 

evaluate misconceptions in physics (e.g., Murray, Schultz, Brown, & Clement, 1990) and in 

psychology (e.g., Taylor & Kowalski, 2004) with college students.  In one study, confidence 

ratings were used to assess children’s adherence to incorrect strategies when solving 

mathematical equivalence problems (McNeil & Alibali, 2005).  Second, a “hidden decimal task” 

was used to determine how students generally thought of magnitude problems (Irwin, 2001; 

Resnick et al., 1989).  This item asked students to identify whether 0.     or 0.               was 

greater (the boxes represent numbers covered by pieces of paper) and why their answer was 

correct.  The students could select 0.    , 0.              , or “Can’t tell” for their answer.  The correct 

answer was “Can’t tell” but knowing which way students answered illustrated the 

misconceptions they had when solving such problems.  Third, students were asked to describe a 
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general rule for how they can tell which decimal is bigger when making magnitude comparisons.  

However, the responses on this item were generally very low quality (e.g., “I looked at the 

numbers.”), so this task was not included in any further analyses. 

 

Procedure 

On Day 1, students were given 35 minutes to complete the pretest within their math 

classrooms.  On Days 2 and 3, all students received brief introductory lessons at the beginning of 

each class period. Upon completion of the lesson, students worked with their partner on their 

intervention packets.  The class periods on Day 2 and 3 ranged from 55 minutes to 75 minutes, 

depending on the length of the students’ regular math instruction.  On Day 3, students started on 

the second half of the packet, regardless of where they had finished working on Day 2.  This 

exposed most students to all the different problem types featured in the intervention.  On Day 4, 

students completed a posttest that was isomorphic to the pretest. Finally, students completed the 

retention test 21 or 22 days after the posttest. 

 

Coding 

 

Assessment 

Answers to items were scored for accuracy according to the criteria outlined in Table 1.  

When possible, assessment items were also coded for the three misconception errors previously 

described, and this is outlined in Table 2.  There were 23 items on which a whole number 

misconception could be detected, 17 items on which a role of zero misconception could be 

detected, and 16 items on which a fraction misconception could be detected.  The proportion of 
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misconception errors was calculated by dividing the number of misconception errors made by 

the total possible number of misconception errors of that type (see Table 2). 

Table 2:  Assessment Misconception Coding 
 

Item Type Example Item(s) Whole Number Role of Zero Fraction 

Procedural 
Mark on 

number line 
from 0-1 

Mark about where 0.9 
goes on the number 
line.  
 
Mark about where 
0.3481 goes on the 
number line. 

Incorrectly placed 
tenths near 0, 

hundredths in the 
middle, or thousandths 
near 1 (e.g., placing 0.9 
on the first third of the 

line) 

  Decimal with a zero 
in the tenths placed as 

if the zero was not 
there  

 (e.g., placing 0.07 at 
0.7) 

Incorrectly placed 
tenths near 1, 

hundredths in the 
middle, or 

thousandths near 
0 (e.g., placing 
0.3 on the last 

third of the line)

Procedural 
Mark on 

number line 
from 0-10 

 

The number line now 
goes from 0 to 10.  
3.52 is marked.  
Mark where 3.8 goes. 
 
4.35 is marked. 
Mark where 4.842 goes. 

Placed within one 
whole of the already 

marked decimal on the 
wrong side viewed as 
whole numbers (e.g., 
placing 3.8 between 

2.52 and 3.52) 

  A decimal with a 
zero in the tenths 

placed as  
if the zero was not 
there (e.g., placing 
9.05 on the wrong 

side of 9.2 as if it was 
9.5) 

Placed within one 
whole of the 

already marked 
decimal on the 

wrong side 
viewed as 

fractions (e.g., 
placing 4.842 

between 4.25 and 
4.35) 

Procedural 
Choose 
correct 
decimal 

 

What number tells 
about where the slash is 
on the number line?  
0.76   0.3   0.08   0.401     
with slash at 0.76              

One answer was 
designed to be chosen if 

viewed as whole 
numbers  

(e.g., 0.401) 

One answer was 
designed to be chosen 

if ignored zero in 
tenths place (e.g., 

0.08) 

One answer was 
designed to be 

chosen if viewed 
as fractions 

Conceptual 
Magnitude 
 

Circle the decimal that 
is greater:     
0.87      0.835 
0.3        0.92 

Incorrectly circling an 
answer that is greater if 

viewed as whole 
numbers (e.g., circling 

0.835) 

Incorrectly circling an 
answer that is greater 

if the zero in the 
tenths is ignored 

Incorrectly 
circling an answer 

that is greater if 
viewed as 

fractions (e.g., 
circling 0.3) 

Conceptual 
Density 

 

Write a decimal that 
comes between  
0.14 and 0.148. 

An incorrect answer 
between the given 
numbers viewed as 

whole numbers 
(e.g., 0.16) 

Not applicable  Not applicable 

Conceptual 
Role of 

Zero 
 

Circle all the numbers 
that are worth the same 
amount as 0.51: 
0.5100      0.051      
0.510        51 

Ignoring the “0.” and 
treating the decimal  
like a whole number  

(e.g., circling 51) 

Circling one or more 
of the incorrect 
answer choices 

Not applicable 
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In addition to scoring accuracy, students’ confidence ratings were scored from five Likert 

scale items on the assessment (on a scale from 1 to 5).  These confidence ratings were then 

categorized as high confidence (3-“Somewhat sure” or above) or low confidence (2-“A little 

sure” or below).  Students’ mean confidence level on each assessment was calculated.  Also, 

items with a confidence scale were categorized as a high confidence error, a low confidence 

error, a high confidence correct response, or a low confidence correct response.  Then the mean 

proportion of each of these types of responses occurring was calculated for each student.  For 

example, if a student always chose 4 as their confidence level and got 3 of these items right and 2 

of these items wrong, they would have mean proportions of .60 for high confidence correct 

responses, .40 for high confidence errors, .00 for low confidence correct responses, and .00 for 

low confidence errors. 

 

Intervention  

Several pieces of information were calculated and coded from the intervention including 

students’ written explanations, students’ completion of explanations and practice problems, and 

students’ accuracy when filling in blanks within the worked examples. 

   

Data Analysis 

 

Missing Data  

There was a small amount of missing data at each of the assessment time points.  At 

pretest 5% of the data was missing, at posttest 3% of the data was missing, and at retention test 

6% of the data was missing.  This missing data was all due to students being absent from school 
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on the day of the assessment.  I did not impute this missing data as simulation studies have 

shown that it does not matter how you handle missing data when the proportion missing is this 

low (Schafer & Graham, 2002). 

 

Multilevel Models 

 Because students worked with a partner, their performance may not be independent of 

each other, and multilevel modeling must be used.  I calculated intra-class correlations, 

controlling for the predictor variables, to test for non-independence in posttest and retention test 

scores between partners (Kenny, Kashy, & Cook, 2006).  Intra-class correlations ranged from 

0.01 to 0.24, and there were significant intra-class correlations on many measures.  

Consequently, I used multilevel linear models to account for this non-independence in the data 

and specified the use of restricted maximum likelihood estimation (REML) (Kenny et al., 2006).  

I used a two-level model. The first level of the model, the individual level, measured the 

effect of the prevalence of the individual’s pretest misconceptions.  Pretest accuracy was not 

included as a predictor in the model because its high correlation with prior misconceptions led to 

multicollinearity problems.  The prevalence of pretest misconceptions was mean centered in the 

model.  The second level of the model, the dyad level, measured the effect of experimental 

condition and grade level. Grade level was contrast coded so that Grade 4 was coded as -1 and 

Grade 5 was coded as 1.  I specified the Incorrect-Sequential condition as the referent condition 

because this allowed me to test both the effect of seeing incorrect examples relative to only 

seeing correct ones and the effect of using comparison with incorrect examples relative to seeing 

such examples sequentially.  This resulted in the effect of condition being captured by two 

variables.  One variable indicated the difference between the Correct-Sequential and Incorrect-
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Sequential conditions, and the other variable indicated the difference between the Incorrect-

Compare and Incorrect-Sequential conditions.  To test the difference between the Correct-

Sequential and Incorrect-Compare conditions, a Wald test (similar to an incremental F test) was 

used to examine whether the parameter estimates for these conditions were significantly different 

from one another. Separate models were run to evaluate the data from the posttest and retention 

test because standard multi-level models do not accommodate multiple outcome measures in the 

same model.  Also, similar past studies have indicated differences in the effect of incorrect 

examples on an immediate posttest and a delayed retention test (Durkin & Rittle-Johnson, 2012, 

in preparation).   

In preliminary analyses, I explored several measures of prior knowledge, including 

pretest accuracy and prevalence of misconception errors at pretest.  I examined whether pretest 

accuracy or prevalence of misconception errors at pretest was a more powerful moderator of 

condition effects. These two measures were highly correlated (r = -0.79); however, the 

prevalence of misconception errors was a more consistent moderator variable across time points 

and knowledge types.  Thus, I used the prevalence of misconception errors at pretest to examine 

the effect of prior knowledge on outcomes.  I used the prevalence of misconception errors rather 

than accuracy at pretest because strong misconceptions can play an important role in learning, 

particularly in a domain with such widespread misconceptions (Stafylidou & Vosniadou, 2004).  

To test for whether prior misconception errors moderated the effects of condition, I included two 

cross-level interaction terms between the prevalence of misconceptions at pretest and each 

condition indicator variable.  
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CHAPTER III 

 

RESULTS 

 

First, I overview students’ knowledge at pretest.  Next, I report the effects of condition 

and prior misconceptions at posttest and retention test.  To help understand effects of condition, I 

follow this with an exploration of how condition affected performance during the intervention. 

 

Pretest Knowledge 

At pretest, students had variable conceptual and procedural knowledge, and misconception 

errors were prevalent (see Table 3).  On average, students were accurate on about 31% of 

conceptual knowledge items and 22% of procedural knowledge items.  Students were also 

making errors based on misconceptions about 32% of the time.  A histogram of the distribution 

of the prevalence of misconception errors indicated wide variability (see Figure 2). Importantly, 

there were no significant differences between conditions in terms of conceptual and procedural 

knowledge scores and prevalence of misconception errors at pretest (p’s > 0.500).   
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Table 3:  Performance on Outcome Measures By Condition 
 

 Pretest 
 

Posttest 
 

Retention Test 

Outcome M SD 
 

M SD 
 

M SD 
Percent Correct      
Conceptual Knowledge       

Incorrect-Compare 30 (22) 
 

34 (26) 
 

38 (28) 

Incorrect-Sequential 31 (21) 
 

37 (27) 
 

42 (29) 

Correct-Sequential 31 (23) 
 

37 (25) 
 

40 (27) 
Procedural Knowledge     

Incorrect-Compare 22 (18) 
 

34 (24) 
 

35 (24) 

Incorrect-Sequential 22 (21) 
 

37 (24) 
 

38 (28) 

Correct-Sequential 22 (21) 
 

36 (26) 
 

37 (26) 
Percent Misconception Errors       
Whole Number         

Incorrect-Compare 43 (16) 
 

42 (21) 
 

39 (23) 

Incorrect-Sequential 41 (18) 
 

38 (21) 
 

37 (23) 

Correct-Sequential 41 (18) 
 

38 (20) 
 

37 (22) 
Role of Zero         

Incorrect-Compare 45 (16)  45 (20) 
 

41 (21) 

Incorrect-Sequential 46 (17)  43 (21) 
 

40 (21) 

Correct-Sequential 45 (14)  42 (19) 
 

40 (19) 
Fraction         

Incorrect-Compare 10 (11)  12 (14) 
 

12 (16) 

Incorrect-Sequential 10 (11)  12 (15) 
 

12 (14) 

Correct-Sequential 11 (11)  12 (12) 
 

12 (12) 

Overall      
 

  

Incorrect-Compare 33 (10)  33 (13) 
 

31 (14) 

Incorrect-Sequential 32 (11)  31 (13) 
 

30 (15) 

Correct-Sequential 32 (10)  31 (13) 
 

30 (14) 
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Figure 2:  Histogram of the Prevalence of Prior Misconception Errors 

 

In addition to the prevalence of misconceptions, several other measures were used to 

assess students’ misconceptions.  First, I examined students’ confidence in their responses at 

pretest using the results from the confidence scales.  Overall, when making errors, students were 

almost as likely to express high confidence (37% of the time) as low confidence (45% of the 

Overall Prior Misconception Errors
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time).  When answering correctly, students expressed low confidence 7% of the time and high 

confidence 11% of the time. This suggests that many errors may not reflect deeply held 

misconceptions. On the “hidden decimal” task, overall students were answering correctly 33% of 

the time, displaying a whole number misconception 53% of the time, and displaying a fraction 

misconception 12% of the time.  Thus misconceptions, particularly the whole number 

misconception, were prevalent at pretest, with varied confidence when making errors. 

 

Effects of Condition and Prior Misconceptions on Conceptual Knowledge 

 Inspection of means suggested that condition did not impact performance on conceptual 

items (see Table 3).  Indeed, accuracy did not improve much; accuracy at posttest was about 

36%, which was a 5% increase from the pretest.  Accuracy at retention test was about 40%, 

which was a 9% increase from the pretest and a 4% increase from the posttest.   

The benefits of comparison or incorrect examples might depend on students’ prior 

knowledge.  To explore this possibility, my analysis models included condition by prior 

misconception errors interaction terms.  The two-level linear models included a dummy coded 

variable for being in the Correct-Sequential condition, a dummy coded variable for being in the 

Incorrect-Compare condition, prevalence of prior misconception errors, grade, and the 

interactions between the conditions and prior misconceptions. Table 4 displays the results for the 

dependent variables, including conceptual knowledge at posttest and retention test (columns 1 

and 2), procedural knowledge at posttest and retention test (columns 3 and 4), and the prevalence 

of misconceptions at posttest and retention test (columns 5 and 6).  These models confirmed that 

there were no main effects for condition on any measure, but that prior misconceptions 

moderated the effect of condition on several outcomes.  I discuss each outcome in turn. 
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Table 4:  Parameter Estimates for Outcomes 
 
Variable Posttest 

Conceptual 

Retention 

Conceptual 

Posttest 

Procedural 

Retention 

Procedural 

Posttest 

Misconceptions 

Retention 

Misconceptions 

Intercept 38.04 (1.63)*** 41.53 (1.73)*** 38.07 (2.11)*** 37.35 (2.03)*** 30.70 (0.87)*** 29.86 (0.91)*** 

Condition (reference = Incorrect-Sequential)     

Correct-Sequential 0.23 (2.34) -0.54 (2.48) -1.19 (3.02) -0.09 (2.90) -0.51 (1.25) -0.53 (1.31) 

Incorrect-Compare -2.25 (2.34) -1.95 (2.48) -2.51 (3.00) -0.09 (2.89) 1.27 (1.25) -0.15 (1.31) 

Condition*Prior Misconceptions       

Correct-Sequential 0.43 (0.22) τ 0.21 (0.23) 0.22 (0.26) 0.29 (0.25) -0.13 (0.12)  -0.07 (0.12) 

Incorrect-Compare -0.02 (0.23) 0.002 (0.24) 0.45 (0.28)  0.54 (0.27)* 0.05 (0.12) 0.12 (0.13)

Prior Misconceptions -1.50 (0.16)*** -1.40 (0.16)*** -1.13 (0.18)*** -1.28 (0.17)*** 0.76 (0.08)*** 0.66 (0.08)*** 

Grade 10.20 (1.03)*** 12.84 (1.09)*** 9.63 (1.31)*** 10.80 (1.26)*** -4.55 (0.55)*** -5.77 (0.57)*** 

 
Note. Unstandardized coefficients are shown with standard errors in parentheses. Frequency of prior misconception errors was grand 
mean centered and grade was contrasted coded as -1 and +1. 
τp ≤ .06, *p < .05, **p < .01, ***p < .00
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Posttest 

At posttest, the effect of condition on conceptual knowledge somewhat depended on the 

prevalence of students’ prior misconception errors (see Table 4, column 1). In particular, 

students with infrequent misconceptions benefited more from the Incorrect-Sequential than the 

Correct-Sequential condition.  Then as the frequency of misconceptions increased, the Correct-

Sequential condition became more effective (β = 0.43, p = .053), although this effect was 

marginal. For each point increase in the frequency of prior misconception errors, students did 

about a half percentage point better in the Correct-Sequential condition relative to the Incorrect-

Sequential condition.  The prevalence of prior misconception errors also moderated the 

difference between the Correct-Sequential and Incorrect-Compare conditions.  Post-hoc Wald 

tests suggested that students who had infrequent prior misconception errors tended to benefit 

more from the Incorrect-Compare condition than the Correct-Sequential condition, although this 

effect was marginal (χ2 = 5.05, p = .080).  Students in the Incorrect-Compare and Incorrect-

Sequential conditions performed similarly, regardless of prior knowledge (β = -0.02, p = .916).  

Also, exploratory analyses indicated that the interactions between conditions and prior 

misconception errors were stronger for fourth-grade students than fifth-grade students.   

To better understand how prior misconception errors moderated the effect of condition, 

regression lines were created for each condition using the parameter estimates in Table 4 (see 

Figure 3a).  Students with infrequent prior misconception errors (i.e., higher prior knowledge) 

are shown on the left side of the graph, with students with frequent prior misconception errors 

(i.e., lower prior knowledge) are shown on the right side.  Descriptively, students with infrequent 

prior misconception errors performed best in the Incorrect-Sequential condition, while students 

with frequent prior misconception errors performed a bit better in the Correct-Sequential 
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condition. I also conducted an analysis of the region of significance to identify the upper and 

lower bounds of the moderator at which the conditions were significantly different (Preacher, 

Curran, & Bauer, 2006).  This preliminary analysis of the region of significance indicated that 

the frequency of prior misconception errors did not ever fall within the region of significance, 

and the simple slopes tests were not significant for the the minimum, mean, or maximum values 

of the moderator (p’s > .07).  Students in the Incorrect-Compare condition performed very 

similarly to those in the Incorrect-Sequential condition.   

To further interpret this interaction, I categorized students’ prevalence of prior 

misconception errors into quartiles.  The prevalence of prior misconception errors ranged from 0 

to 28.4% for the first quartile, 28.5 to 34.7% for the second quartile, 34.9 to 39.3% for the third 

quartile, and 39.4 to 50.9% for the fourth quartile.  I then ran the same model, without the prior 

misconceptions variable and interaction terms, for students in the first quartile and the fourth 

quartile separately.  When running the model with students in the first quartile (i.e., the students 

with infrequent prior misconception errors), students were scoring about 9 points better in the 

Incorrect-Sequential condition than in the Correct-Sequential condition, although this difference 

was not significant (β = -9.28, p = .132).  When running the model with students in the fourth 

quartile (i.e., the students with frequent prior misconception errors), students were scoring about 

4 points better in the Correct-Sequential condition than in the Incorrect-Sequential condition, 

although this difference was not significant (β = 3.92, p = .304).  To summarize, students with 

infrequent prior misconception errors seemed to benefit slightly from viewing incorrect 

examples; however, this effect was only marginal and very small.  
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  Condition by Prior Misconception Errors Interactions for Conceptual Knowledge on  
a) Posttest and b) Retention Test 
 
Note: The x-axis has been relabeled from the original mean centered values to the raw values for ease of 
interpretation.  The regression equation for predicting conceptual knowledge at posttest was: Y’ = 38.04 – 
1.50*PriorMisconceptions + 0.23*CorrectSequential – 2.25*IncorrectCompare + 
0.43*CorrectSequential*PriorMisconceptions – 0.02*IncorrectCompare*PriorMisconceptions.  At retention it was: 
Y’ = 41.53 – 1.40*PriorMisconceptions – 0.54*CorrectSequential – 1.95*IncorrectCompare + 
0.21*CorrectSequential*PriorMisconceptions + 0.002*IncorrectCompare*PriorMisconceptions.  
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Retention Test 

Students completed a retention test three weeks after the intervention. There were no 

effects for condition nor did prior misconception errors moderate the effects of condition (see 

Table 4, column 2).  For consistency across outcomes, regression lines were created for each 

condition using the parameter estimates in Table 4 (see Figure 3b).  The pattern of findings was 

the same at retention test as at posttest, but differences based on condition were very small across 

prior levels of misconception errors. 

 

Effects of Condition and Prior Misconceptions on Procedural Knowledge 

 In addition to assessing students’ conceptual knowledge, I also assessed their procedural 

knowledge.  Inspection of means again suggested that condition did not have a significant impact 

on accuracy (see Table 3).  There were modest gains over time.  Accuracy at posttest was about 

36%, which was a 14% increase from the pretest.  Accuracy at retention test was about 37%, 

which was a 15% increase from the pretest.   

 

Posttest 

At posttest, there were no main effects for condition, nor did prior misconception errors 

moderate the effect of condition (see Table 4, column 3).   For consistency across outcomes, 

regression lines were created for each condition using the parameter estimates in Table 4.  A 

graph of these regression lines illustrates that students with infrequent prior misconception errors 

seemed to perform best in the Incorrect-Sequential condition, although not significantly so, with 

few differences between conditions for students who had frequent prior misconception errors 

(Figure 4a).  
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a)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Condition by Prior Misconception Errors Interactions for Procedural Knowledge on  
a) Posttest and b) Retention Test 
 
Note: The x-axis has been relabeled from the original mean centered values to the raw values for ease of 
interpretation.  The regression equation for predicting conceptual knowledge at posttest was: Y’ = 38.07 – 
1.13*PriorMisconceptions – 1.19*CorrectSequential – 2.51*IncorrectCompare + 
0.22*CorrectSequential*PriorMisconceptions + 0.45*IncorrectCompare*PriorMisconceptions.  At retention it was: 
Y’ = 37.35 – 1.28*PriorMisconceptions – 0.09*CorrectSequential – 0.09*IncorrectCompare + 
0.29*CorrectSequential*PriorMisconceptions + 0.54*IncorrectCompare*PriorMisconceptions.  
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Retention Test 

At retention test, the effect of condition on procedural knowledge was moderated by the 

prevalence of students’ prior misconception errors (see Table 4, column 4). In particular, 

students with infrequent prior misconception errors benefited more from the Incorrect-Sequential 

than the Incorrect-Compare condition.  Then as the frequency of misconception errors increased, 

the Incorrect-Compare condition became more effective (β = 0.54, p = .046). For each point 

increase in the frequency of prior misconception errors, students did a half percentage point 

better in the Incorrect-Compare condition relative to the Incorrect-Sequential condition.  

Relative to the Correct-Sequential condition, the effects for the Incorrect-Sequential condition 

were similar, but even more modest.  Students who had infrequent prior misconception errors 

also benefited more from the Incorrect-Sequential condition than the Correct-Sequential 

condition, with the Correct-Sequential condition becoming more effective as the frequency of 

prior misconception errors increased, but this was not significant (β = 0.29, p = .254).  In 

addition, post-hoc Wald tests indicated that there were no differences between the Correct-

Sequential and the Incorrect-Compare conditions, nor did prior misconception errors moderate 

the effect of condition (χ2 < 0.01, p = .999 and χ2 = 4.08, p = .130, respectively).  Also, 

exploratory analyses indicated that the interactions between conditions and prior misconception 

errors were stronger for fourth-grade students than fifth-grade students.   

To better understand how prior misconception errors moderated the effect of condition, 

regression lines were created for each condition using the parameter estimates in Table 4.  As 

shown in Figure 4b, students with infrequent prior misconception errors performed best in the 

Incorrect-Sequential condition, while students with frequent prior misconception errors 

performed a bit better in the Incorrect-Compare condition. However, condition differences were 
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very slight for students with frequent misconception errors. A preliminary analysis of the region 

of significance indicated that the frequency of prior misconception errors only fell within the 

region of significance for students with infrequent prior misconception errors.  The simple slopes 

test was marginally significant for the minimum value of the moderator (p = .057), but not for 

the mean or maximum values of the moderator (p = .976 and p = .083, respectively). 

To further interpret this interaction, I categorized students’ prevalence of prior 

misconception errors into quartiles as before.  I then ran the same model, without prior 

misconception errors and interaction terms, for students in the first quartile and the fourth 

quartile separately.  When running the model with students in the first quartile (i.e., the students 

with infrequent prior misconception errors), students were scoring about 11 points higher in the 

Incorrect-Sequential condition than in the Incorrect-Compare condition, although this difference 

was not significant (β = -10.56, p = .121).  When running the model with students in the fourth 

quartile (i.e., the students with frequent prior misconception errors), students were scoring about 

4 points better in the Incorrect-Compare condition than in the Incorrect-Sequential condition, 

although this difference was not significant (β = 3.74, p = .540).  To summarize, students with 

infrequent prior misconception errors seemed to benefit from viewing incorrect and correct 

examples sequentially; however, this effect was very small and unreliable across time points.  

 

Effects of Condition and Prior Misconceptions on Later Misconceptions 

 As previously mentioned, I wanted to assess students’ misconceptions on the post and 

retention tests in addition to assessing their conceptual and procedural knowledge.  This was 

accomplished by measuring the prevalence of misconception errors students made.  I also 

included two new misconception measures.  First, the strength of misconception errors was 
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assessed by examining students’ confidence on a subset of items. Second, data from the “hidden 

decimal” task was used to examine students’ misconceptions when generally considering 

decimal magnitude. 

 

Prevalence of Misconceptions 

Inspection of means suggested that the overall prevalence of misconceptions did not 

change much over time, and condition did not impact the prevalence of misconceptions (see 

Table 3).  At posttest, students were making misconception errors about 32% of the time, which 

was similar to the pretest.  At retention test, students were making misconception errors about 

30% of the time, which was a 2% decrease from the pretest and the posttest. 

To explore whether prior knowledge moderated the effects of condition, the dependent 

variables were now the overall prevalence of misconception errors at posttest and at retention 

test.  The overall prevalence of misconception errors was used instead of dividing these errors 

into conceptual and procedural errors because the pattern of results was the same across both 

types of misconception errors.   

There were no main effects for any condition on the prevalence of misconception errors 

made at posttest or retention test.  Prior misconception errors also did not moderate the effects of 

condition at either time point (Table 4). A similar pattern of results was found when looking 

specifically at whole number, role of zero, and fraction misconception errors separately. 

These findings suggest that the previously reported conditions by prior misconception 

errors interactions for conceptual and procedural knowledge were not being driven by 

differences in the rates of misconception errors.  The prevalence of misconception errors was 

similar across conditions, regardless of the prevalence of prior misconception errors.  
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Consequently, the previously reported interactions were due to differences in the frequency of 

random errors students were making.  Random errors were incorrect responses that did not fit a 

particular misconception type (e.g., placing 0.9 in the middle of the number line from 0 to 1). 

 

Strength of Misconceptions 

In addition to measuring the prevalence of misconception errors on the assessment, I also 

wanted to more preciously measure the strength of students’ misconceptions.  To accomplish 

this, I classified students’ answers on each of the five confidence scale items, as previously 

mentioned.  I then calculated the mean percentage of how often students’ answers fell into each 

of these 4 categories (see Table 5). 

 

Table 5:  Percentage of Each Confidence Response Type 
 

 Pretest 
 

Posttest 
 

Retention Test 

Outcome M SD 
 

M SD 
 

M SD 

Percent of Each Response Type 
 

  
 

  

High Confidence Error 37 (29) 
 

40 (31) 
 

38 (32) 

Low Confidence Error 45 (32) 
 

30 (30) 
 

29 (31) 

Low Confidence Correct 07 (11) 
 

08 (13) 
 

08 (14) 

High Confidence Correct 11 (19) 
 

22 (28) 
 

24 (32) 

Percent of Students Making Each Response at Least Half of the Time 

High Confidence Error 32  
 

36  
 

35  

Low Confidence Error 46  
 

29  
 

26  

Low Confidence Correct < 1  
 

1  
 

2  

High Confidence Correct 5  
 

16  
 

20  
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These results indicated that after the intervention, students overall were decreasing their 

amount of low confidence errors and increasing their amount of high confidence correct answers.  

However, the percentage of high confidence errors and low confidence correct answers did not 

change much over time.  Examining the percentage of students who gave each response type at 

least half of the time at pretest, posttest, and retention test, resulted in similar findings (Table 5).  

This suggests that the intervention was not correcting strongly held misconceptions (i.e., high 

confidence in errors), and instead the intervention helped decrease guessing (i.e., low confidence 

in errors).   

The “hidden decimal” task was also designed to uncover what misconceptions students 

might have when comparing decimals’ magnitudes.  On average, students did not often solve this 

task correctly at posttest or retention test, and they frequently made whole number misconception 

errors (Table 6). 
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Table 6:  Percentage of Response Types on Hidden Decimal Task 
 

 

Posttest 

Correct 

Posttest 

Whole Number 

Misconception 

Posttest 

Fraction 

Misconception 

Retention 

Correct 

Retention 

Whole Number 

Misconception 

Retention 

Fraction 

Misconception 

Condition M       SD M       SD M       SD M       SD M       SD M       SD 

Overall 35       (48) 51       (50) 15       (35) 41       (49) 41       (49) 18       (39) 

Incorrect-Sequential 33       (47) 53       (50) 14       (35) 39       (49) 41       (49) 19       (40) 

Correct-Sequential 38       (49) 46       (50) 16       (37) 44       (50) 37       (48) 18       (39) 

Incorrect-Compare 34       (48) 53       (50) 13       (34) 38       (49) 44       (50) 17       (38) 
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Effect of Condition on Intervention Activities 

To help understand how condition may have impacted learning, I examined students’ 

work during the intervention.  As previously mentioned, students studied packets of worked 

examples, answered explanation prompts about the examples, and solved practice problems.  

 

Amount of Material Completed 

Students spent most of their time during the intervention studying and explaining worked 

examples with a partner and solving practice problems. The percentage of materials completed is 

presented in Table 7. Overall, the amount of material completed differed between conditions.  In 

particular, students in the Incorrect-Compare condition completed less of the intervention than 

the other two conditions, which did not differ from one another.  Also, the frequency of prior 

misconception errors did not moderate the effect of condition for the amount of material 

completed. 

In addition to these tasks, students were also asked to fill-in blanks in the worked 

examples during the intervention to ensure that they were processing the worked examples.  

These blanks were meant to be easy for students to complete; however, students only filled-in the 

blanks correctly 74% of the time, and this did not vary much by condition (Ms = 73%, 74%, and 

75% of blanks filled-in correctly for the Incorrect-Sequential, Correct-Sequential, and Incorrect-

Compare conditions, respectively).  This was perhaps due to students’ low prior knowledge, and 

indicates that students had some difficulty comprehending the intervention materials. 
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Table 7:  Percentage of Intervention Completed By Condition 
 

 Explanation Prompts Practice Problems 

Condition M SD M SD 

Overall 65.53 (22.73) 55.79 (22.62) 

Incorrect-Sequential 70.94 (21.17) 60.75 (23.12) 

Correct-Sequential 69.62 (21.53) 59.82 (23.01) 

Incorrect-Compare 56.23** (22.62) 47.00** (22.34) 

     
** Differed from other two conditions at the p < .005 level. 

 

Summary 

Before the study began, students had varied, but limited, knowledge of decimals and 

prevalent misconceptions.  Condition had minimal impact on learning, but there were some 

modest effects of condition that depended on students’ levels of prior misconception errors. 

Students with relatively infrequent misconceptions prior to the intervention performed best in the 

Incorrect-Sequential condition.  For these students, being in the Incorrect-Sequential condition 

led to slightly better conceptual knowledge than being in the Correct-Sequential condition and 

better procedural knowledge than being in the Incorrect-Compare condition.  However, these 

effects were small and were not reliable at both posttest and retention test. As the frequency of 

students’ misconception errors increased, differences between conditions decreased with few 

detectable differences of condition for students making frequent prior misconception errors.  

Analyses of misconception errors at posttest and retention test suggested that misconceptions 

were not changing much after the intervention, regardless of condition and prior misconception 

errors.  Initial analyses of performance during the intervention have not provided many 
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explanatory clues, although there is some indication that students were struggling to comprehend 

some of the examples across conditions.   
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CHAPTER IV 

 

DISCUSSION 

 

Students learned about decimal magnitude under one of three conditions: comparing 

incorrect and correct examples, seeing incorrect and correct examples sequentially, or seeing 

only correct examples sequentially.  Overall, condition did not have a substantial impact on 

conceptual knowledge, procedural knowledge, or misconceptions.  However, prior knowledge 

did moderate the impact of condition.  Students with infrequent misconception errors prior to the 

intervention seemed to perform best in the Incorrect-Sequential condition, although these effects 

were small and unreliable.  However, students with frequent misconception errors seemed to 

perform more similarly across conditions.  In this discussion, I integrate these results with 

findings from past research, discuss the assessment and correction of misconceptions, and 

suggest future directions for research in this area. 

 

Integrating with Past Research on Incorrect Examples and Comparison 

 In the current study, the prevalence of prior misconception errors was an important factor 

for learning from incorrect examples. There were no significant effects of condition on any of the 

outcome measures, and knowledge growth was fairly limited across conditions.  For example, 

although low confidence errors diminished after the intervention, high confidence errors did not.  

It is important to note that past research on incorrect examples and prior knowledge has 

not focused on the prevalence of misconceptions as a measure of prior knowledge (e.g., Durkin 

& Rittle-Johnson, 2012; Große & Renkl, 2007).  However, it is necessary to assess the 
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prevalence and strength of misconceptions beyond assessing accuracy because low accuracy 

does not necessarily mean that students have strongly held misconceptions (McNeil & Alibali, 

2005).  Therefore, measuring the prevalence and strength of misconceptions is crucial because 

prior misconceptions seem to play an important role in determining when students are best 

prepared to learn from incorrect examples and comparison.   

For students with frequent prior misconception errors, condition did not matter much for 

performance.  This was possibly due to these students’ lack of prior knowledge.  If these students 

did not have sufficient prior knowledge to process the worked examples and give high quality 

explanations, then the manipulations of what kinds of examples were presented (incorrect versus 

correct) and how they were presented (compared vs. sequentially) would most likely not 

influence performance.  Past work on using incorrect examples with novices in science domains 

has indicated that students learn best when presented with incorrect examples early in the 

learning process (e.g., Alvermann & Hague, 1989; Diakidoy et al., 2003; Eryilmaz, 2002).  Yet 

in these studies, students were often participating in a structured discussion led by an instructor 

or using a refutation text in the context of a larger lesson.  In the current study, students were 

provided with limited instruction from the researchers and spent most of their time explaining 

examples and solving practice problems with a partner in their classroom.  Consequently, 

students with frequent misconceptions might learn more from incorrect examples if they were 

used in a more structured, extensive lesson, or if they were used in a more individualized, one-

on-one tutoring setting.  This additional guidance may be necessary for students with frequent 

misconceptions to make the most of learning with incorrect examples.  This would be consistent 

with evidence that suggests that lower knowledge students benefit from strong external guidance 

(Kalyuga, 2007).    
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However, when students had infrequent prior misconception errors, condition did 

influence performance, although not always consistently or reliably between assessment points 

and knowledge types.  In particular, the Incorrect-Sequential condition was better for students 

who did not have frequent misconceptions. For these students, studying incorrect and correct 

examples sequentially emerged as more effective than comparing them and slightly more 

effective than studying only correct examples sequentially. This led to two implications for these 

students:  1) it was somewhat better to see incorrect and correct examples, but 2) it was better to 

study these examples sequentially rather than comparing them. 

For students with infrequent prior misconception errors, being exposed to incorrect and 

correct examples was slightly more beneficial than being exposed to only correct examples.  This 

replicated past findings that higher knowledge students perform best when studying incorrect and 

correct examples (Große & Renkl, 2007).  In the current study, the presence of incorrect 

examples particularly improved these students’ conceptual knowledge. Students with infrequent 

misconceptions, and higher prior knowledge, may have been able to identify the critical features 

of correct and incorrect examples and identify their previous errors as incorrect (VanLehn, 

1999).  Importantly, these features may have been illustrating essential domain principles.  This 

may also have helped these students reduce competition between conflicting misconceptions and 

correct concepts (Van den Broek & Kendeou, 2008).   

This finding contradicts past work that suggests all students, regardless of prior 

knowledge, benefit from studying incorrect and correct examples relative to only correct 

examples (Durkin & Rittle-Johnson, 2012).  The students in both the current and previous study 

had similar prior knowledge, with similar accuracy and misconception error rates.  However, in 

the prior study, all students compared examples, and it is possible that results similar to the 
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current study’s findings would have emerged if students had studied examples sequentially.  

Additionally, when students must compare examples, it is possible that all students can glean 

more information from comparing incorrect and correct examples than from comparing only 

correct ones. 

Although the presence of incorrect examples was slightly beneficial for students with 

infrequent prior misconception errors, there was no benefit of comparison. In fact, sequentially 

viewing incorrect and correct examples was better than comparing them. This was contrary to 

what might be predicted from past research on comparison (Rittle-Johnson et al., 2009).  

Students need sufficient prior knowledge to learn from comparison; however, what constitutes 

sufficient prior knowledge is unclear (Rittle-Johnson et al., 2009).  Indeed, past research 

examining prior knowledge does not often elaborate on what exactly distinguishes high and low 

knowledge learners.  It is possible that most of the current sample did not have sufficient prior 

knowledge, which may have led to comparison being too overwhelming, even for students with 

infrequent prior misconceptions.  If this was the case, then one would expect that these students 

would learn better from studying examples sequentially rather than comparing them.  These 

students still had some misconceptions at pretest and did not have very high pretest accuracy.  As 

a result, these students were possibly struggling to properly align examples.  As previously 

mentioned, it is difficult for students to align two unfamiliar examples (e.g., Gentner et al., 

2003), and comparison is thought to be beneficial because it can help learners align examples to 

see their underlying structure (e.g., Loewenstein et al., 1999).  If these students were struggling 

to align examples, then they may not have been able to take advantage of comparison.  The 

completion rate of the intervention materials supports this idea because students who compared 

completed less of the intervention.  In addition, comparison may not have been as useful for 
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students as originally anticipated due to students being unprepared to learn from the current 

design.  Students spent most of their time working with a partner, with limited guided 

instruction.  Consequently, students in the Incorrect-Compare condition could have possibly 

performed better if they were better scaffolded to make meaningful comparisons.  Also, for 

students with infrequent prior misconception errors, viewing these examples sequentially may 

have been particularly helpful for procedural knowledge because it allowed students the chance 

to focus on one procedure at time.  This could have made it easier for students to process and 

understand the procedure presented in the worked example because their working memory was 

not overwhelmed with unfamiliar information from two different sources.  If students were 

overwhelmed by comparison, they may not have been able to notice the critical features of the 

illustrated correct and incorrect procedures.  Finally, students who studied examples sequentially 

were able to complete more of the intervention materials, so they were exposed to more correct 

and incorrect procedures during the intervention than students who compared.  This exposure to 

a greater number of procedures may have improved these students’ procedural knowledge. 

 Overall, condition had minimal impact on performance at posttest and retention test.  

This points to the difficulty in supporting conceptual change when students have misconceptions.  

When misconceptions were infrequent, sequential study of incorrect and correct examples was 

best for students’ performance.  However, even these benefits were not consistent across posttest 

and retention test, and knowledge did not change much for students overall. 

 

Assessing and Correcting Misconceptions 

The current study also illustrates methods for assessing misconceptions and measuring 

their strength.  Past research has generally focused on two ways of diagnosing misconceptions in 
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mathematics domains: 1) through interview techniques, asking individual students their thoughts 

about problems (e.g., Resnick et al., 1989) and 2) by classifying particular errors on an 

assessment as being associated with particular misconceptions (e.g., Siegler, 2002).  While 

interview techniques are useful for extensively investigating individual students’ misconceptions, 

they are difficult to do on a larger scale in a classroom full of students.  Also, results from 

interview data can make it difficult to quantify differences between students and look for 

interactions with condition.  The alternative of categorizing students’ errors as misconceptions 

on an assessment is easier to implement on a larger scale, but it does not distinguish between 

strong misconceptions and guesses.  Consequently, providing additional measures to assess the 

strength of students’ misconceptions, such as confidence scales, can create a more complete 

picture of students’ strong, prevalent misconceptions prior to an intervention or lesson.   

While confidence scales have been used in past research to see if students differed in 

overall confidence (e.g., Taylor & Kowalski, 2004), they have rarely been used to specifically 

target the strength of students’ misconceptions.  Such scales can provide insight on the impact of 

educational interventions on changing students’ misconceptions.  In the current study, students’ 

low confidence errors, which were most likely from guessing, decreased after our intervention, 

but students’ high confidence errors, which were most likely strong  misconceptions, did not 

decrease.  This suggests that the intervention was helpful for students who knew they did not 

understand much about decimals, but the intervention did not correct strongly held 

misconceptions.  In addition, the “hidden decimal” task indicated that students were often 

displaying a whole number misconception when providing a general rule for decimal magnitude 

comparisons.  The rate of making a whole number misconception error during the “hidden 

decimal” task was somewhat higher than the rate at which students made whole number 
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misconception errors on the rest of the assessment.  This suggests that the “hidden decimal” task 

is providing different information about the misconceptions students hold.  Such insights have 

important implications for constraints on when different instructional practices may be effective. 

Essentially, misconceptions are difficult to change, as illustrated by past research on 

conceptual change (e.g., Vlassis, 2004).  Repeatedly, conceptual change has been shown to be a 

gradual process, and students’ strongly held misconceptions require extended instruction and 

time to be overcome (Vamvakoussi & Vosniadou, 2004; Vlassis, 2004).  This may have been 

particularly true in the current study because the intervention was only during two classroom 

lessons, which is a short period of time.  In addition, even when students do recognize their 

misconceptions as incorrect, this does not necessarily result in an understanding of the correct 

concepts (Van Dooren, Bock, Hessels, Janssens, & Verschaffel, 2004).  This lack of 

understanding can lead students to use different incorrect ideas (Van Dooren, Bock, Hessels, 

Janssens, & Verschaffel, 2004), and they often revert back to misconceptions.  In the current 

study, students needed to infer correct ideas from examples, with little instruction provided on 

correct ideas.  As a result, it was most likely difficult for students, especially those with frequent 

misconceptions, to extrapolate the important correct ideas from the examples.  Additional 

instructional supports could help students pull such correct ideas from worked examples.  For 

example, providing students with more feedback on their explanations during the intervention 

could have encouraged greater knowledge change (e.g., Aleven & Koedinger, 2002).  In 

addition, providing opportunities for structured conceptual change discussions, led by an 

instructor, may have also improved knowledge change during the intervention (Eryilmaz, 2002). 
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 Future Directions 

Given the unexpected results, it is clear that further research needs to be conducted to 

investigate the role of prior knowledge when learning from incorrect examples and comparison, 

and the circumstances under which these instructional practices may be most beneficial for 

students.  Past work did not provide clear evidence for the effect of prior knowledge, and the 

current study had mixed results as well.  Consequently, several next steps should be taken to 

further our understanding of when incorrect examples and comparison may be most beneficial. 

An immediate next step is to explore measures of students’ activities during the 

intervention, such as the quality of students’ written explanations and their relation to outcome 

measures.  I predict these data will show that students in the Incorrect-Compare condition 

compared more than students in the other two conditions, but that the rate of comparison will be 

less than expected.  I also predict that the prevalence of prior misconception errors will moderate 

the effect of condition for different explanation features.  For example, students with infrequent 

prior misconception errors may be more likely to talk about correct concepts in the Incorrect-

Sequential condition relative to other conditions.  In addition, I will examine how explanation 

features might predict outcome measures, and I predict talking about correct concepts will 

significantly predict outcomes based on past work (Durkin & Rittle-Johnson, 2012). 

There are several other steps that could be taken in future research as well.  First, the 

prevalence and strength of misconceptions were important factors in the current study, and future 

work should incorporate similar measures of misconceptions to assess students’ readiness to 

learn from certain instructional practices.  Also, incorrect examples and comparison may have 

different effects on learning if students are provided with more instructional guidance.  Providing 

students, especially those with strong misconceptions, with more direct instruction or scaffolding 
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during the intervention may improve their ability to process and compare worked examples.  By 

increasing students’ knowledge about the domain before the intervention, it might be possible to 

make comparison less overwhelming and increase attention to important, structural similarities 

and differences.  This attention to critical features of correct and incorrect examples, as opposed 

to less important surface features, may be particularly important to fully benefit from learning 

with incorrect examples.  In addition, more carefully scaffolded explanation prompts could 

encourage students studying incorrect examples to spend more time correctly discussing 

misconceptions, which should improve their attention to critical features of incorrect and correct 

examples (e.g., Van den Broek & Kendeou, 2008).  Consequently, increased supports for 

students could improve learning from incorrect examples and from comparison.   

 

Conclusion 

In conclusion, the prevalence of students’ prior misconception errors impacted how much 

they learned from correct and incorrect examples and from comparison.  Students with 

infrequent prior misconception errors performed best after viewing correct and incorrect 

examples sequentially.  Students with frequent prior misconception errors performed similarly 

across conditions.  Consequently, students’ prior misconceptions and knowledge must be 

considered when using these instructional strategies.  Future research should examine potential 

scaffolds that could improve learning with incorrect examples and comparison.
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Appendix A 

Introductory Lessons from the Intervention 

Pretest Day Lesson: Modeling of Partner Work (3 minutes) 

 
Clip digital recorder (labeled with your name) to your shirt/pants and turn it on to tape your 
lesson. 
 
This week you are going to be working with a partner and studying examples, so I want to show 
you how you and your partner should work together.  When you see a blank in the example, you 
need to fill it in, and when you see words underlined, you need to circle one of the words.  Let’s 
look at one example. 
 
Put the following up on overhead #1, with the answer to the question covered: 
 
 
 
 
 
 

1. Why did Alex divide the line into 10 pieces? 
 
Here you see how a student named Alex placed a number on the number line. Let’s imagine that 
my partner _______ and I are going to try to understand how Alex solved this problem. 
 
First, ___________ and I should look at Alex’s solution, and try to see what Alex did, and finish 
labeling Alex’s steps.  
 
(During this section, gesture to the appropriate parts of the example.) 
 
I: Let’s see, ___________. Here Alex has to place 25 hundredths on the number line that goes 
from 0 to 1.  What did Alex do? It says Alex thought of the line divided into blank pieces. But 
how many pieces did Alex break the line into? 
 
Partner: I think Alex divided the line into 10 pieces. So we should write “10” in the blank.  
[Write 10 in the blank.] Then what did Alex do? It says Alex counted over 2 pieces and 
then put 25 hundredths a little before or after 2.  Do you think Alex put it before or after 
2? 
 
I: It looks like Alex put 0.25 a little after 2.  So we should circle the word “after”. [Circle 
“after”.] 
 
Next, ___________ and I need to answer the questions that are below Alex’s solution. 
 

Alex said, “I need to put 0.25 on the 
number line.  First, I divided the line 
into __ pieces.  Then, I counted over 2 
pieces.  And I put my mark for 0.25 a 
little before/after  2 tenths.” 

0 10.25
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I: It says, Why did Alex divide the line into 10 pieces? Hmmm. What do you think, ___________? 
 
Partner: I think Alex did that because the number line goes from 0 to 1. 
 
I: Oh, I see where you’re heading. So Alex divided the line to figure out where 2 tenths would be. 
 
Partner:  Yes, and then Alex just marked 25 hundredths a little over to the right. 
  
Then we would write our answer below the question. [Reveal answer below question.] So this is 
how you and your partner will be working together. You’ll have a packet of problems to work 
on, and you’ll need to work together to figure out how problems are solved and to answer 
questions like ___________ and I did. Sometimes you’ll also be asked to solve some problems 
on your own. 
 
Tomorrow we’ll be randomly pairing you with a partner, and you will work together just like 
this. 
 
Does anyone have any questions? OK, we’ll see you tomorrow. [Can turn off digital recorder.] 
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Day 1 Lesson: Reminder about place value (5 minutes) 

 
Clip digital recorder (labeled with your name) to your shirt/pants and turn it on to tape your 
lesson. 
 
We’re going to be learning about decimals for the next two days, and you are going to be 
working with a partner a lot.  So let’s start by reviewing some things about decimals. 
 
Show overhead #2 with place value chart. 

5, 749.123 

 
Decimals are numbers that represent a part of a whole.  Here is the number five thousand seven 
hundred forty-nine and one hundred twenty three thousandths broken into its place values: 
 
You have 5 thousands, 7 hundreds, 4 tens, 9 ones and 1 tenth, 2 hundredths and 3 thousandths. 
[Point to place value table as you label it.] 
Each place value is 10 times greater than the place value to its right.  So 10 is ten times as much 
as 1, 1 is ten times as much as 0.1, and 0.1 is ten times as much as 0.01. [Point to the relevant 
columns as you speak.] 
 
Let’s do an example in the tenths place.   
Put up overhead #3 with box divided into 10 pieces. 

   0.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
How would you say this number?  [Point to the 0.3 written on the overhead.] 
 

1,000s 100s 10s 1s . 0.1s 0.01s 0.001s 
Thousands Hundreds Tens Ones . Tenths Hundredths Thousandths 

5 7 4 9 . 1 2 3 
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[If a student says “3 tenths” tell them that’s correct.  If a student says “zero point three”, tell 
them that’s correct but there is a better way to say it and see if they can say the other way.  If no 
student says “3 tenths”, then just tell the class it is “3 tenths”.] 
 
When a number is in the tenths, it means that it’s out of a whole divided into 10 pieces.  So 3 
tenths is 3 out of 10 pieces.  [Point to the tenths rectangle.] 
This rectangle is a whole divided into 10 pieces.  Each piece is 1 tenth [point to one section], so 3 
of those pieces are colored in to show 3 tenths. 
 
Now, let’s do an example in the hundredths place.  
Put up overhead #4 with box divided into 100 pieces.  
 
        0.12 

          

          

          

          

          

          

          

          

          

          

 
How would you say this number? [Point to the 0.12 written on the overhead.] 
 
[If a student says “12 hundredths” tell them that’s correct.  If a student says “zero point twelve 
or zero point one two”, tell them that’s correct but there is a better way to say it and see if they 
can say the other way.  If no student says “12 hundredths”, then just tell the class it is “12 
hundredths”.] 
 
For hundredths, a whole is divided into 100 pieces. 
You can think of 12 hundredths as 12 out of 100 pieces.  [Point to the hundredths rectangle.] 
This rectangle is a whole divided into 100 pieces. I took the last rectangle that was divided into 
tenths and divided each tenth into 10 pieces [point to first tenth], to get 100 pieces.   Each piece 
is one hundredth [point to one hundredth box], so 12 of those pieces are colored in to show 12 
hundredths. 
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Now, let’s do an example in the thousandths place.  
 
    0.127 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Put up overhead #5 with box divided into 1000 pieces.  
 
How would you say this number? [Point to the 0.127 written on the overhead.] 
 
[If a student says “127 thousandths” tell them that’s correct.  If a student says “zero point one 
hundred twenty seven or zero point one two seven”, tell them there’s a better way to say it and 
see if they can say the other way.  If no student says “127 thousandths”, then just tell the class it 
is “127 thousandths”.] 
 
For thousandths, a whole is divided into 1000 pieces. 
You can think of 127 thousandths as 127 out of 1000 pieces.  [Point to the thousandths 
rectangle.] 
This rectangle is a whole divided into 1000 pieces. I took the last rectangle that was divided into 
hundredths and divided each hundredth into 10 pieces [point to first hundredth], to get 1000 
pieces. Each piece is one thousandth [point to one thousandth], so 127 of those pieces are 
colored in to show 127 thousandths. 
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Today, you’ll see decimals in the tenths, hundredths, and thousandths.  Remember, you’ll be 
working with a partner just like we showed you yesterday, and you’ll be looking at examples like 
these.  [Put up overhead #1 from the Pretest Day.  It looks like this:] 
 
 
 
 
 
 

1. Why did Alex divide the line into 10 pieces? 
 
 
You’ll be working with your partner to fill in blanks, circle the correct word when things are 
underlined, and answer questions.  Please work until you get to the stop sign in your packet, and 
then raise your hand so we can check your answers. 
 
Does anyone have any questions? OK – then we are ready to begin. [Can turn off digital 
recorder.] 
  

Alex said, “I need to put 0.25 on the 
number line.  First, I divided the line 
into __ pieces.  Then, I counted over 2 
pieces.  And I put my mark for 0.25 a 
little before/after  2 tenths.” 

0 10.25 
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Day 2 Number lines to 10 (3 minutes) 
 
Turn on digital recorder to tape the lesson. 
Nice work yesterday.  Today, we’ll start with a reminder about number lines. 
 
Put up overhead #6 with 2 number lines (one from 0 to 1 and one from 0 to 10). 
 

 
What’s different about these two number lines? 
 
(Let the students come up with differences, and students should come up with the difference that 
one ends at 1 and the other ends at 10.  If no student mentions this, you can say that difference.) 
 
Yesterday, you saw number lines that went from 0 to 1.  So all the decimals you placed on the 
number line were greater than 0 and less than 1.  Today you’re going to see some decimals that 
are greater than 1.  For these decimals, the number line will go from 0 to 10.  Pay attention to 
each number line to see if it goes to 1 or to 10. 
 
Any questions? 
 
Can turn off digital recorder.  

0 10

0 1
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Day 2 Wrap-up lesson (3 minutes) (do at end of 2nd intervention day) 
Turn on digital recorder to tape the lesson. 
 
Everyone has done a great job with the work we’ve been doing for the past couple days. 
Tomorrow, we are going to give you a test to see if the work you’ve been doing has made sense 
to you. Today, I wanted to go over some of the things that you may have noticed as you’ve been 
looking at problems.  
 
Put up summary overhead #7. 
 
• You can’t think of decimals the same way you think of whole numbers. 

Decimals and whole numbers are different, and you can’t treat them the same way.   
 

• You need to pay attention to place values. 
With decimals, it is very important to pay attention to which number is in each place value.  
You saw numbers that had values in the tenths, hundredths, and thousandths.  Looking at the 
number in each place will help you figure out how big the decimal is.   
 

• In fact, there are at least three different ways you can think about how big a decimal is.  
1) Look at how many tenths it has. 

You can see how many tenths a decimal has to figure out where it goes on a number 
line. 
 

2) Look at what number it is out of. 
You can think of the decimal out of 10, 100, or 1000 pieces to estimate where the 
decimal goes on a number line. 
 

3) See if it is near other numbers you know, like a half. 
If you know a decimal is near another number you know, like one half, you can place 
the decimal on a number line near that number. 

 
 
Thank you again for working so hard today, and we’ll see you tomorrow. 
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Appendix B 

Assessment 

For each pair, circle the decimal that is greater: 
 
1)  0.24  0.049 
 
2) 0.3  0.92 
 
3) 0.561  0.17 
 
4)  0.87  0.835 
 
5)  0.429  0.7 
 
 

6)   How sure are you that you solved the 5 problems above correctly?  
  Circle a number from 1 to 5. 
 

 1        2    3   4          5 
Not at all sure        A little sure        Somewhat sure         Sure        Very sure 

 
 
Write a number that comes between: 
 
7) 0.3 and 1.0  ______ 
 
8) 0.5 and 0.52   ______ 
 
9) 0.5 and 0.6   ______ 
 
10) 0.76 and 0.77  ______ 
 
11) 0.14 and 0.148  ______ 
 
 
12)   Circle all the numbers that are worth the same amount as 0.51 
 

a) 0.5100 
b) 0.051 
c) 0.510 
d) 51 
e) none of the above 
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13)   Circle all the numbers that are worth the same amount as 0.04 
 

a) 0.4 
b) 0.40 
c) 0.004 
d) 4 
e) none of the above 

  
14)  Circle the number that is greater than 0.36 
 

a) 0.4 
b) 0.360 
c) 0.2 
d) 0.279 

 
15) Circle the number that is less than 0.52 
 

a) 0.6 
b) 0.5 
c) 0.567 
d) 1.4 
 

16)   Circle the number nearest to 0.675 
 

a) 0.98 
b) 0.5 
c) 0.7 
d) 700 

 
17)   Circle the number nearest to 0.18 
 

a) 0.02 
b)  0.1 
c) 0.2 
d) 20 
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Circle the answer that goes in the blank. 
 
18)   0.4 is _______________  0.004 
 

a) greater than 
b) less than 
c) the same as 
 

19)   0.26 is ______________ 0.260 
 

a) greater than 
b) less than 
c) the same as 

 
20)   0.8 is _______________  0.08 
 

a) greater than 
b) less than 
c) the same as 

 
21)   Clare weighs four packages.  They weigh 0.714, 0.32, 0.6 and 0.79 grams.  Put the four 

decimals in order from least to greatest. 
 
 
Least   ___________ ___________ ___________ ___________   Greatest 



70  

Mark about where each decimal goes on the number line with a slash (/). 
 
 
22)   0.3 
 
 
 
 
 
 
 
23)   0.256 
 
 
 
 
 
 

23a)   How did you decide where to put your slash? 
 

 
 
 
 
 
 
 
24)   0.07 
 
 
 
 
 
 
 
25)   0.83 
 
 
 
 
 
 
 

25a)   How sure are you that you solved this problem correctly? Circle a number from 1 to 5. 
 

         1          2     3     4            5 
Not at all sure        A little sure        Somewhat sure         Sure        Very sure 

0 1

0 1

0 1

0 1



71  

What number tells about where the slash is on the number line? Circle the answer. 
 
26)       a) 0.76 

b) 0.3 
c) 0.08 
d) 0.401 

 
 
 
 
 
 
27)      a) 0.214 

b) 0.84 
c) 0.489 
d) 0.05 

 
 
 
 
 
 

27a)   How sure are you that you solved this problem correctly? Circle a number from 1 to 5. 
 

         1          2     3     4            5 
Not at all sure        A little sure        Somewhat sure         Sure        Very sure 

 
 
28)      a) 0.534 

b) 0.5 
c) 0.032 
d) 0.80 

 
 
 
 
 

 
29)      a) 0.189 

b) 0.4 
c) 0.05 
d) 0.87 

 
 
 
 
  

0 1

0 1

0 1

0 1
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Mark about where each decimal goes on the number line with a slash (/). 
 
30)   0.3826 
 
 
 
 
 
 
 
 
 
 
 
31)   0.0851 
 
 
 
 
 
 
 
 
 
 
  
32)   0.1473 
 
 
 
 
 
 
 
 
 
 
 
33)   0.7649 
 
 
 
 
 
 

0 1

0 1

0 1

0 1
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Now the number line goes from 0 to 10 
One number is already marked on the number line.  Mark about where the other number goes on 
the number line with a slash (/). 
 
 
 
34) 3.52 is marked. Mark where 3.8 goes. 
 
 
 
 
 
 

 
34a)   How sure are you that you solved this problem correctly? Circle a number from 1 to 5. 
 

         1          2     3     4            5 
Not at all sure        A little sure        Somewhat sure         Sure        Very sure 

 
 
 
 
35) 9.2 is marked. Mark where 9.05 goes. 
 
 
 
 
 
 
 

35a)   How did you decide where to put your slash? 
 
 
 
 
 
 
 
 
36) 4.35 is marked. Mark where 4.842 goes. 
 
 
 
 
 
 

0 10 3.52

0 10  4.35

0 10 9.2 
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Now the number line goes from 0 to 10 
One number is already marked on the number line. What number tells about where the unmarked 
dashed slash is on the number line? Circle the answer. 
 
 
37)       a) 6.173 

b) 6.8 
c) 6.05 
d) 0.45 

 
 
 
 
 
 
 
 
 
38)       a) 2.814 

b) 0.2 
c) 2.9 
d) 2.09 

 
 
 
 
 
 
 
 
 
39)       a) 8.147 

b) 8.6 
c) 0.8 
d) 8.510 

 
 
 
 
 

 
 
39a)   How sure are you that you solved this problem correctly? Circle a number from 1 to 5. 
 

         1          2     3     4            5 
Not at all sure        A little sure        Somewhat sure         Sure        Very sure 

  

0 106.20

0 102.743 

0 108.51 



75  

40)  If you have two decimals, how can you figure out which decimal is bigger? 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
41)  Which of these numbers is greater?  
 

a)  0.   b)  0.   c)  Can’t tell 
 

 
Explain your reasoning: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42)  Please circle one:  I am a …. 

a) Boy  b)  Girl  

Please wait for directions before answering the 
last question. 
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