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CHAPTER 1

INTRODUCTION

Particle  physics  is  the  study  of  the  elementary  constituents  of  matter  and  their 

interactions.  Elementary  particles  are  those  particles  which  are  not  compositions  of  other 

particles.  It  has  long  been  known  that  current  scientific  understanding  of  these  particles  is 

summarized in a physics model known as the Standard Model. The Standard Model is composed 

of three interactions; electromagnetic, weak, and strong; and twelve elementary particles called 

fermions.  Fermions are  spin  half  particles  which  satisfy  Fermi-Dirac  statistics,  and they are 

divided into two sub-groups, quarks and leptons. Quarks are further divided into six types: up, 

down, charm, strange, top, and bottom. Leptons are also further divided into six types: electrons,  

electron neutrinos, muons, muon neutrinos, taus, and tau neutrinos. (1)

Despite this body of knowledge, there are still open questions in particle physics that go 

beyond the  Standard Model.  One avenue of answering these  questions  is  the  Large  Hadron 

Collider (LHC). The LHC, constructed in Geneva, Switzerland, by the European Organization 

for  Nuclear  Research  (CERN),  is  a  proton-proton  and  heavy  ion  collider  with  a  goal  of 

answering a plethora of unanswered questions in high-energy particle physics, such as searching 

for the Higgs Boson, attempting to understand the nature of space and time at elementary levels  

where  current  theories  break  down,  investigating  the  nature  of  dark  matter,  and  answering 

questions about the existence of extra dimensions.

The LHC is opening a new energy frontier to recreate conditions present in the early 

Universe and understand the physics processes governing fundamental particles. However, the 

discovery potential of the machine is also determined by the rate at which interactions occur. 

Naturally after an experimental apparatus has been running for a given length of time, it comes 

time to  upgrade  the  equipment.  The  upcoming upgrade  is  the  Super  Large  Hadron Collider 

(SLHC). The maximum expected luminosity of the LHC is 1034 cm-2 s-1, but the SLHC has set a 

goal to increase the luminosity by an order of magnitude. (2)
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CHAPTER 2

BACKGROUND

2.1 – Introduction to CMS

The LHC has a total of six experiments studying a diverse range of topics in high-energy 

physics, but the only one this thesis will focus on is the Compact Muon Solenoid (CMS), shown 

in  Figure 1.  The detector consists of several sub-detectors enclosed in different layers: Silicon 

Pixels and Silicon Strips for tracking reconstruction, Electromagnetic and Hadronic Calorimeters 

for energy measurements and three different kinds of muon detectors. The tracker system, the 

electromagnetic  calorimeter  and  a  section  of  the  hadronic  calorimeter  are  enclosed  in  a 

superconducting solenoid magnet.  In  Figure  2,  a  slice  of the  CMS detector  cross section  is 

shown, to illustrate that different types of particles will leave different signatures as they travel 

through the detector. CMS is a general purpose detector, designed to study multiple aspects of 

proton collisions at high energies and answer those unanswered questions in particle physics. (1)

At the center of the detector is the interaction point, where the proton-proton collisions 

occur between two beams from the LHC. Immediately surrounding the interaction point is the 

tracker, which attempts to match tracks of particles from the vertex from which they originally 

emanated. Next is the electromagnetic calorimeter, which measures the energies of electrons and 

photons. Then there is the hadronic calorimeter, which measures the energies of hadrons. Next is  

the magnet, which determines the charge/mass ratio of particles based on the curvature produced 

in their track by a magnetic field. Finally, there is the muon detectors and return yoke, to identify 

muons and measure their momenta. (5)

2



3

Figure 1: Diagram of the CMS Detector
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Figure 2: Cross-sectional slice of the CMS detector



2.2 – Introduction to Phase 1

CERN is carrying out a phased approach for the SLHC upgrade. Phase 1, to be completed 

in 2016, would double the current maximum luminosity, and this would be pushed gradually and 

with minimal interruptions in operations to quadruple the current maximum luminosity. Finally,  

Phase 2 would eventually complete the order of magnitude increase in luminosity. The CMS 

detector  must  be  upgraded in  order  to  handle  the  increased luminosity.  My research project 

focused on upgrades to the tracker, and this will be the primary focus of this thesis.

The Phase 1 upgrade will, in addition to higher luminosities, provide a smaller beam pipe 

at the CMS interaction point. To take advantage of this, the innermost barrel pixel layer can be 

moved closer to the interaction point. The addition of a fourth barrel layer and a third forward 

pixel disk provide an added layer of coverage throughout the central tracking region, as shown in 

Figure 3.

Ideally the detectors would provide at least four hits per track. That fourth hit provides a 

level of redundancy within the pixel  detector  when track seeds are  constructed.  The current 

highest purity track finding requires three hits per seed. Thus any inefficiency within the three 

barrel layers and/or two forward disks greatly reduces the number of tracks reconstructed at that  

rank. Having the possibility of four hits per track also provides an opportunity to construct track 

seeds requiring four hits  per seed.  This can greatly reduce the rate  at  which fake tracks are 

reconstructed.

The Phase 1 forward pixel disks are constructed in an inner and an outer disk. The inner 

radius of the forward disks is also decreased to provide better coverage.  Figure 4 shows the 

configuration  of  the  current  forward  pixel  sensors,  which  can  be  compared  to  the  Phase  1 

forward pixel sensor configuration in Figure 5. (2)
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Figure 3: The four layers of the Phase 1 Barrel Pixel Detector



7

Figure  4:  A “half  cylinder” of the Forward Pixel  detector  showing two half-disks that  were 
installed on one side of the interaction region. Panels made up of plaquettes of siliconsensors are  
visible
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Figure  5: One of the half disks in the Phase 1 Forward Pixel 
Detector



2.3 – Design of a Tracker-Based Trigger

One of the challenges that CMS must meet when running at the SLHC is to upgrade the 

L1 trigger to handle the increased luminosity. The trigger is the set of algorithms designed to  

filter  events  in  the  detector  and  select  for  only  “interesting”  events.  Since  proton-proton 

collisions  result  in  numerous  types  of  events,  some  of  which  have  been  completely  and 

thoroughly studied and others which are too complex to understand, there is no need and not 

enough available computational resources to store every single piece of experimental data from 

the detector. Thus, we have need for a trigger to remove these “boring” results.

There are currently three levels of triggers, with the first level L1 being “quick” and the 

third  level  L3  spending much  more  time  sorting  through  the  data.  When  the  luminosity  is 

upgraded, as  Figure 6 shows and I will explain below, it will “break” the current trigger. We 

would like to get the sophistication of L3 information at L1. So we are motivated to change the  

geometry, such as to Phase 1. Changing the geometry requires studies to be done to make sure 

everything works correctly.

Figure 6 illustrates the single muon rates for various L1 and L3 selections as shown for a 

luminosity of 1034 cm−2s−1. It can be seen that a pT threshold of about 20 GeV/c is required to 

keep the rate below 10 KHz, which is 10% of the maximum L1 rate. If one assumes that the  

trigger rate for a given threshold increases by a factor of 10 if one increases the luminosity by a 

factor of 10, it appears from Figure 6 that the L1 trigger would likely no longer work. Without 

additional  considerations,  simply  increasing  thresholds  to  account  for  a  10-fold  increase  in 

luminosity would inhibit physics studies. And as the figure shows, the rejection curve actually 

flattens out, so that it appears it might not even be possible to obtain the required rejection at the  

SLHC.

This  motivates  the  use  of  tracking  information  in  the  L1  trigger  at  the  SLHC.  The 

momentum of this track, as determined by the pixel tracker, is also used to sharpen the lepton pT 

threshold; the pixel tracker has ten times better resolution than the muon system. Looking at the 

L3 rejection curve in Figure 6, there appears to be hope that requiring tracking information will 

reduce the trigger rates to acceptable levels. The L3 trigger adds tracking information from the 
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pixel tracker, and requires the presence of a track that is spatially matched to the high-pT lepton 

triggered on. However, implementing even this minimal requirement in the L1 trigger introduces 

significant  technological  challenges.  The L3 trigger  data  shown in  Figure  6 uses  the  offline 

tracking algorithm to sharpen the muon pT measurement. Detailed studies are needed using a 

realistic L1 tracking algorithm to check the performance at L1. (2)
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2.4 – Studies of Trigger Stack Layers

Providing trigger  algorithms fast  enough for  use  in  the  CMS L1 trigger  system will  

require a geometry change in at least part of the pixel tracking system. Finding track stubs from 

only high  pT  tracks requires some association of data between different layers.  This in turn 

requires a readout of a fraction of the data off-detector, thereby introducing complications of 

cabling, power, and additional material in the tracking detector. The data rate for the barrel pixel 

system has been estimated to be about 10 Gb/cm2/s. Some reduction in the amount of data to be 

readout would probably be required either on-chip or on-detector. One suggestion of how this 

could  be  achieved  is  via  closely  stacked  sensors  to  create  hit  pairs  before  the  off-detector 

readout. Another possibility is to implement a specialized trigger readout for groups of pixels. An 

additional  and  significant  challenge  is  to  keep  the  amount  of  material  to  a  minimum;  the 

introduction of any additional detector layers or other material would be a serious concern.

A promising L1 tracking trigger strategy has been proposed for SLHC called “Stacked 

Triggers”, illustrated in  Figure 7. The main idea is to use stacks of closely spaced sensors to 

quickly find mini-vectors and reduce, by a factor of 10-100, the data that needs to be readout off-

detector.  This  reduces  power  and  cabling.  Furthermore,  with  an  appropriate  choice  of  the 

separation between the stacked layers and pixel sizes, reconstructed mini-vectors would meet 

suitable minimum pT requirements. This would be done using either one stacked barrel layer, or 

several sets of stacked layers. Two sets of stacked layers would be needed to infer the track pT .

Although the proposed Stacked Trigger is a promising idea, there is a lot of work needed 

to  show that  the  idea can work in  a  real  detector  under  real  conditions.  In  addition  closely 

stacked layers are not ideal for offline track reconstruction. While the pixels of the trigger stacks 

provide  excellent  position  resolution  it  is  not  the  most  efficient  use  of  the  space  available. 

Studies are needed to show that a buildable pixel doublet can be used to produce a workable L1 

trigger  and  to  ensure  that  the  tracking performance  of  the  complete  tracking system is  not 

compromised by the addition of one (or more) trigger pixel doublets. (2)
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Figure 7: Illustration of “Stacked Triggers”



CHAPTER 3

MY WORK ON THE PHASE 1 TRACKER UPGRADE

3.1 – Phase 1 Upgrade

My area of research during the course of 2011, and the topic of this thesis, was looking 

into one area of the Phase 1 upgrade for the SLHC, under the guidance and supervision of Dr.  

Paul Sheldon (Vanderbilt), Dr. Eric Brownson (Fermilab), and the rest of the high-energy physics 

group at Vanderbilt. Then-postdoc Dr. Brownson was leading our efforts on the CMS detector 

upgrades required by the SLHC. He was stationed at the LHC Physics Center (LPC) at Fermilab 

where  he  could  interact  with  other  physicists  working  on  these  upgrades,  in  particular  the 

Tracker Upgrade Simulations Working Group co-led by Harry Cheung of Fermilab.

Upgrading to the SLHC first requires going from the current Standard Geometry to the 

Phase 1 upgrades. The more hostile and challenging environment of the SLHC will require new 

designs for the CMS tracking system. Two distinct phases of upgrade are proposed. The initial 

Phase 1 upgrade would be a replacement of the Pixel Tracking System. This upgrade is driven by 

both the higher multiplicities and occupancies in the tracker and by increased radiation exposure 

of  pixel  detector.  The  extreme intensities  produced  by  the  later  phases  of  LHC accelerator 

upgrades have motivated CMS to explore the possibility of including the tracker in the first level 

trigger.  Dr.  Brownson was performing studies to  help evaluate  the  possible  gains from both 

phases  of  tracker  upgrades.  He  also  became  the  release  manager  for  the  SLHC  upgrade 

simulations.  This  work  provided  an  excellent  introduction  to  CMS  analysis  methods  and 

techniques, and this is one reason why I was brought on-board the project.

Detailed studies are being carried out on the Phase 1 upgrade tracking system. The Phase 

1  geometry  contains  a  fourth  barrel  layer  and a  third  forward  disk  in  the  pixel  detector.  A 

significant effort has been made to model the anticipated radiation damage in the tracker. In 

addition to radiation damage the high multiplicities of hits will be difficult to read out within the 
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time between collisions. At an average pile up of 50, the current pixel detector is expected to 

have an inefficiency from 3% to 16%. The details behind pile up aren't particularly necessary, as 

one may just think of it as a measurement of the “junk” left over in the detector from previous or 

current collisions. Track finding is complex and a drop in pixel efficiency can be tempered by 

other  mitigating  factors  within  the  tracker.  For  this  reason,  detailed  analyses  of  tracking 

efficiencies and fake rates for different sources of tracks at high pile up must be made. The track 

seeding, resolutions, b-tagging, electron and photon performance for luminosities up to 1035 cm−2 

s−1 must  also  be  studied.  The  performance  statistics  for  the  Phase  1  &  Phase  2  strawmen 

geometries will be compared to those for the standard CMS geometry.

The current CMS tracker geometry has a battery of packages that can be used to study its  

effectiveness.  The one I  utilized for the topic of this thesis  is the MultiTrack Validator.  The 

MultiTrack Validator is a validation utility and tool used to generate histograms and performance 

plots (e.g. efficiency, fake rates, resolution) by the Tracking Physics Object Group (Tracking 

POG), which are used to test, validate, and debug the track reconstruction chains. It analyzes the  

tracking  performance  by  comparing  every  reconstructed  Track  with  the  corresponding 

TrackingParticle.  It  takes  as  input  one  or  more  ROOT files  containing  previously  produced 

tracks,  and  gives  as  output  a  ROOT  file  containing  a  multitude  of  plots  based  on  the 

reconstruction of the tracks. (6)

For the strawmen geometries, standardized packages must be modified or developed to 

verify tracking and triggering performance. As they are developed, studies are carried out to  

further refine improved strawmen geometries. The number and location in radius of the trigger 

stacks, the stack separation and the pixel size will all be studied to see how well trigger stack 

layers can work. Once completed, the packages will be used as part of an automated package for 

producing validation like plots. The immediate goals of the task are to provide input on the Phase 

1 Pixel Upgrade performance & whether buildable trigger stacks can give sufficient information 

to create a working L1 trigger when running at a luminosity of 1035 cm−2 s−1. If so, we can use the 

parameter space of acceptable trigger stack geometries to inform our longer term task of reaching 

a baseline design for an upgrade tracking system for CMS for the SLHC Phase 2 upgrade. (2)
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3.2 – Upgrade Tools

Beginning work on the Phase 1 upgrades is by no means an easy task, as there is a vast 

infrastructure in place that one must first learn to navigate, and I needed to become intimately 

familiar with the tools, methods, and equipment involved in doing research with CMS. First, I 

had to successfully clear a few significant international bureaucratic hurdles, such as obtaining a 

grid certificate with the proper virtual organization credentials. Next, I needed to acquaint myself 

with several of the software tools in use by high-energy physicists from around the globe. These 

primarily include CMSSW, CRAB, and ROOT, which I will now describe.

I began my research with CMSSW, the CMS software package. My task involved helping 

the group upgrade their analysis software from an aging release of CMSSW (3.6) to a proposed 

future release (4.2) by developing a standard set of tracking efficiency plots used to compare the 

simulation of the proposed upgrades to the CMS detector between the two releases, and I was 

also tasked with varying simulation and reconstruction parameters to study how they change the 

tracking performance of various proposed upgraded tracking detectors. 

However, the power of CMSSW cannot be truly exploited without utilizing the power of 

CRAB. CRAB is the utility that submits and runs CMSSW jobs across a grid of distributed 

computational resources located at various institutions, such as CERN, Fermilab, and Vanderbilt.  

By using CRAB, one is able to access CMS data distributed to CMS aligned centers worldwide 

and exploit their CPU and storage resources. (3)

Results obtained from CRAB and CMSSW cannot be fully appreciated without the use of 

ROOT. ROOT is an analysis package containing built-in functions and user-compiled code to 

produce graphs, histograms, and trees with data objects. ROOT has the benefit of being able to 

generate graphs of CMSSW job results from either the command line, a user-created script, or by 

easily navigating its GUI Object Browser. (4)
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3.3 – Studying Secondary Vertexes

The primary goal of my project, as the title of my thesis would suggest, was to use the 

MultiTrack Validator to study secondary vertexes in the Phase 1 Upgrade. I wanted to make 

comparisons  of  the  parameters  between tracks  originating from primary vertexes  with  those 

originating  from secondary  vertexes.  The  primary  vertex  is  the  one  produced  by  the  initial 

collision of two protons from the LHC beam. Particles from the primary vertex can later decay 

into other particles, and the point at which these tracks split are called secondary vertexes.

Having a  good method for differentiating between primary and secondary vertexes is 

quite important, because in addition to improving the vertex finding for primary vertexes, the 

Phase 1 Tracker Upgrade is expected to contribute to the locating and evaluation of secondary 

vertexes. With increasingly complex physics topologies being searched for, secondary vertexing 

will play an increasing role in searches for new physics. We are very interested in knowing, how 

much will  our  secondary vertex finding efficiency and resolution increase  with the  Phase  1 

Tracker Upgrade? Thus,  we must  have  a  full  understanding of secondary vertexes from our 

simulated and reconstructed tracks before beginning to run actual experiments.

There  are  two  different,  equally  valid  methods available  for  tackling  the  problem of 

searching for new physics: the MultiTrack Validator, as I previously discussed, and B-tagging.

B-tagging is a set of algorithms used to tag b-jets for the purposes of physics analysis.  

Here, b stands for the bottom quark in a jet produced from a proton-proton collision. B-jets are  

important because they are an important signature for new physics, such as the Higgs Boson. B-

tagging works by associating a single, real number called a discriminator with each jet. B-jets  

will always tend to show higher values of the discriminator, but the details depend on the specific 

algorithm. All algorithms produce a discriminator for each jet to distinguish b-jets from non b-

jets. CMSSW has already implemented several b-tag algorithms, with some exploiting the long 

B hadron lifetime, some exploiting its semi-leptonic decay mode, and some using kinematic 

variables. All of the algorithms require two inputs: the primary vertex (in a sorted collection, the  

first element is used as the signal vertex) and the jets to be tagged and their associated charged 

tracks. (7)(8)
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CHAPTER 4

THE “TIP_INNER” SAGA

Over the course of the spring and summer of 2011, as I've already stated, I utilized the  

MultiTrack  Validator  to  study  a  potential  upgrade  to  the  SLHC,  going  from  the  Standard 

Geometry to Phase 1. At the time of my project, I was using the most up-to-date version of the  

CMSSW  software  package,  CMSSW_4_2_3_SLHC2.  The  primary  focus  of  my  particular 

project was to study how well simulated tracks were reconstructed and investigate if there were 

any statistical differences between tracks originating from primary vertexes, occurring near the 

center, and tracks originating from secondary vertexes, occurring at the fringes.

4.1 – Choosing a test sample and setting parameters

Before beginning work, it was necessary for me to choose a test sample to work with. A 

single,  consistent test  sample was necessary as I needed a standard in order to  make proper  

comparisons.  I  needed  a  sample  with  a  consistently  high  efficiency  when  tracks  were 

reconstructed with the original CMSSW software, so that when making my own modifications to 

the code, a significant drop in efficiency would be a warning sign that the code had a bug. To that 

end, I decided to use the 4-muon sample.

I also needed to choose a standard plot for making my comparisons, so that I would 

always make sure I was comparing the same two variables before diverging out into comparing 

other  variables.  To that  end,  I  selected the  “efficiency vs  ”  set  of  graphs as  my standard,ƞ  

primarily  because  it  was  a  simple  graph  to  select.  Here,  efficiency  is  how well  tracks  are  

reconstructed compared to the Monte Carlo simulated tracks.  is the pseduorapidity, a spatialƞ  

coordinate used in particle physics to describe the angle of a particle relative to the beam axis.  

The  full  details  behind   beyond  it  being  a  spatial  coordinate  are  not  important  for  thisƞ  
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discussion. What is of primary importance is the efficiency, because an increase in efficiency is  

directly tied to the Phase 1 Upgrade.

When working on this sample, it was up to me to choose certain parameters for running 

jobs with CRAB, such as the number of events per job and the number to use for pile-up. At the  

time I began my work, there was a problem with the configuration file, causing up to 50% of 

jobs to fail due to a vertex error. Given this, I needed to keep the numbers low, so I initially  

started using a pile-up of 25, bringing it down from its default value of 50, and kept the pile-up at 

25 for most future jobs.

4.2 – Checking the Beam-Spot

Since the purpose of the project was to see if there was a statistical difference in track 

reconstruction near the center of the beam-pipe vs. much further away, the first thing I needed to 

check was the position of the beam-spot. If the beam was not directly centered along the beam 

pipe, collisions would not happen at the origin, and if they were off-center, this would obviously 

affect the results we wanted. I modified the code to output the position of the beam-spot over  

1000 events  of  the  4-muon sample.  Each event  resulted  in  showing all  tracks  originated  at 

(0,0,0), so that meant we could safely say the beam-spot was perfectly centered.

4.3 – Introducing “tip_inner”

When I  came onboard the project,  the software was written to  represent  the detector 

surrounding the beam pipe as a cylinder. Tracks would originate from the center of the beam pipe 

and travel through the layers of the detector.  The CMSSW software would reconstruct these 

tracks and provide a wide range of statistical information about them as output from jobs ran  

over the test samples. The software was compiled by different people on top of pre-existing 

software just to do the types of analyses they wanted to do. So my job was to look at this code  

and  figure  out  what  I  needed  to  modify  and  how I  needed  to  modify  it  to  study  the  new 

parameters I was interested in and have the intertwined programs continue to work with each 
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other. My parameter of interest was the transverse impact parameter; the default name of this 

parameter in the software packages was “tip”. This is the distance of closest approach of a track 

to the center of the beam pipe, and it is assumed to be where the tracks originate in the beampipe.

My approach to studying the reconstructed tracks originating from near the center or out 

on the fringes was to divide tracks with a “tip” value into two separate zones, meaning I needed 

to divide the original “tip” parameter into an outer transverse impact parameter, “tip_outer”, and 

an inner transverse impact parameter, “tip_inner.” Both are simply two different values for the 

transverse  impact  parameter emerging from the center  of the beam pipe,  with “tip_inner” < 

“tip_outer”.  The “tip_outer” parameter was simply the  former “tip” parameter,  but  renamed. 

Within  “tip_outer”  was  a  second,  inner  transverse  impact  parameter,  named  “tip_inner”. 

Separating “tip” into two separate zones like this enables several ways of studying the results of 

simulations.

First, I could set “tip_inner” = 0 and keep “tip_outer” set at the default value for “tip”, 

which hypothetically would provide the same results as the unmodified code, as I'm considering 

the detector and beam pipe as one entire entity without making separate zones. This was a great  

way to check my modifications for bugs. For studying results close to the center of the beam 

pipe, I could set “tip_inner” to some small value much less than “tip_outer”, with the final value  

being set by experimentally toying with various values and looking at the results, and then focus 

on only the portions of reconstructed tracks falling within “tip_inner”. For studying results at the 

fringes far from the center of the beam pipe, I could keep “tip_inner” set at the value previously 

determined,  and only focus on the portions of reconstructed tracks in  the areas greater  than 

“tip_inner”  and  less  than  “tip_outer”.  I  started  envisioning  this  setup  as  being  similar  to  a  

hollowed-out cylinder, where I could remove reconstructed tracks near the center of the beam 

pipe and only examine those at the fringes.

The first place for me to add the new “tip_inner” parameter was the file CommonTools /  

RecoAlgos  /  interface  /  RecoTrackSelector.h in  the  CMSSW  software  package.  This 

configuration file was already in place to declare and process the multitude of parameters being 

used in current research on reconstructed tracks, such as the transverse impact paramter from the 

beampipe,  “tip”,  the  longitudinal  impact  parameter  along the  beampipe,  “lip”,  min  and max 

19



rapidity, ptMin, etc. And given this as the parameter file, it was naturally convenient to add my 

“tip_inner” parameter in a similar fashion as the rest.

However,  RecoTrackSelector.h is  only the  file  that  sets  up the  parameters;  numerical 

values  are  assigned  in  a  python  script,  PhysicsTools  /  RecoAlgos  /  python  /  

recoTrackSelector_cfi.py in the CMSSW software package. This use of a Python script to assign 

values was convenient, since every time I modified RecoTrackSelector.h, I needed to recompile 

the software package before running a job, but not so for modifying the Python script. This made 

it convenient for me to experiment with different values for “tip_inner” and observe the results.

It was at this stage that I began to realize adding “tip_inner” to the configuration file was 

going to be a challenge, because the CMSSW software package had been written to depend on a 

multitude of interconnected programs and scripts that were dependent on each other. This meant 

that the configuration file and Python script I just modified would have cascading effects in the 

long term, so I couldn't necessarily trust any immediate results. And since adding a parameter 

was challenging enough, it also meant that I couldn't necessarily change the name of a parameter 

in one spot without completely breaking the software. At this point, for reasons I will discuss 

later, I decided it would be in my best interest, as well as the best interest of the entire CMS 

team, to not change the default “tip” parameter to “tip_outer”, as I had originally planned. And 

since “tip” and “tip_outer” were the same thing (I just wanted to change the name for purposes 

of  clarity),  I  made  the  decision  to  leave  that  parameter  name  unchanged,  even  though  I 

personally still thought of it as “tip_outer” to keep it clear for my own work.

4.4 – A Statistical Problem

Now that I had added “tip_inner” to the configuration files, the next step was to compare 

the results of setting tip_inner=0 with the results of the code without any modifications. My 

purpose in doing so was to check that my modifications and additions to the code had not had 

unintended consequences. It was a reasonable hypothesis to assume that setting tip_inner to be 0 

should be the same as the default code where it was non-existent. Thus, I assumed these two 

cases  should give  exactly  the  same results.  In  Figure  8,  I  show efficiency of reconstructing 
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simulated  tracks  vs  ,  from  running  the  code  over  the  4-muon  sample  for  two  cases:  theƞ  

unmodified default code (black) and my modified code with tip_inner=0 (red). What one should 

immediately notice is that both are slightly different, when my hypothesis was that the black and 

red lines should completely overlap, as they're hypothetically the same thing.

So this was a problem. Did I inadvertently change something, causing the code to run 

differently  with  my  modifications?  Or  was  there  something  else  going  on  of  which  I  was 

previously unaware? If there was an inadvertent change, it seemed very suspicious to me that the  

results would be so close to overlapping.

The next step in my investigation was to see what happened when I ran the default code 

over the same sample two different times. I was currently comparing my modifications to the 
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Figure 8: Efficiency of reconstructed tracks in default code vs. tip_inner=0 



code with the default code, but I realized I had no idea what results looked like from comparing 

results of two different jobs done in the same way and over the same sample. I have shown a plot  

of those results in Figure 9. As one should notice, once again the two results are slightly different 

in that they are close to overlapping, but they don't when I assumed they should. But this one had 

me stumped, because I literally did nothing different between the two jobs, so shouldn't doing the 

same thing always give the same result?

Upon further investigation, I eventually discovered that each time a series of jobs is run, 

CRAB chooses a different seed from a Poisson distribution depending on the numerical value for 

pileup,  which  introduces  a  small  degree  of  randomness  into  the  output.  Thus,  it  would  be 

impossible for me to make direct comparisons over different runs. At most, the closest together a  

result  from  two  different  sets  of  jobs  could  ever  be  is  shown  in  Figure  9.  I  attempted  to 
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Figure 9: Two identical runs over the 4-muon sample



completely remove any notions of pile-up in a feeble attempt to still  be able to make direct 

comparisons, but these efforts proved futile, as the jobs would not run without some value set for 

pile-up. Thus, I would have to force myself to be comfortable with not being able to make direct 

comparisions.

This means my method of comparison must be based on the statistics of the results, not 

the  results  themselves.  Thus,  I  can  only  make  judgements  based  on  whether  results  are 

statistically the same or different. As one may also notice in Figures  8 and  9, the error bars 

overlap for most of the points, which implies they are both statistically the same. Therefore, we  

must accept that we can't make direct comparisons like I had preferred. For the purposes of this 

research project, statistical comparisons would have to suffice.

Fortunately, this also has the implication that my introduction of “tip_inner” into the code 

did not disrupt the overall cohesion of the CMSSW software like I feared upon seeing my first  

result in Figure 8. Based on the results in Figure 9, I judged the comparisons between the default 

code and my modifications to be statistically the same. Given that, I could now proceed further  

with my project.

4.5 – A Purity Problem

When  getting  back  reconstructed  track  collections,  samples  could  be  divided  into 

different categories, like low-purity and high-purity, depending upon extra requirements placed 

upon them. Up until this point, my research had focused on the general tracks (i.e. everything), 

as any time I ran a non-zero tip_inner value on high-purity tracks, the output that came back was  

blank. I was only able to obtain results with a nonzero value for “tip_inner” from keeping the  

general tracks. So my next step was to investigate this.

My  first  method  to  solve  this  problem  was  to  modify  the  file,  CommonTools  /  

RecoAlgos  /  interface  /  TrackingParticleSelector.h,  found  in  the  CMSSW software  package, 

along  with  its  associated  configuration  file,  PhysicsTools  /  RecoAlgos  /  python  /  

trackingParticleSelector_cfi.py. These files were needed for initially setting up the true tracks, as 

opposed to the reconstructed tracks. I had not added the “tip_inner” parameter to these files, 
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which meant the true tracks were not properly being set up for an inner and outer transverse 

impact  parameter,  so  clearly  there  would  be  problems  in  getting  back  an  inner  and  outer 

transverse impact parameter when the tracks were reconstructed. So the next step was to add the 

“tip_inner” parameter to these files, just like I had to the previous files.

Unfortunately, this idea turned into a dead end. All jobs I ran with the modifications to 

TrackingParticleSelector.h still  resulted in the high-purity tracks coming back blank, with the 

general tracks still giving similar results as before. I used the “python -i” command to double-

check that the scripts were recognizing the new “tip_inner” paramter, and they were. The next 

step was  setting signalonlytp to false, but this was also a dead end.

Clearly, all of this indicated to me that there was a major problem in adding the new 

“tip_inner” parameter to the established code that went beyond just a few minor bugs. In order to 

solve this, I would need to figure out exactly how the original “tip” parameter had been coded so 

that I could replicate its results.

4.6 – Tip Tracking

As I previously mentioned, I ran into a few problems when attempting to rename the 

original  “tip”  parameter  to  “tip_outer”.  This  was  most  evident  when  attempting  to  extract 

information  after  modifying  TrackingParticleSelector.h by  running  “cmsRun 

Harvesting_cfg.py”. Everything worked as expected when I kept the parameter as “tip”, but it all  

fell apart when I attempted to change it to “tip_outer”.

After  a  brief  investigation,  I  discovered  that  when  running  the  Python  script 

“Harvesting_cfg.py”, it called another connected script that required the variable name to remain 

“tip” as was the default. And this script called another script, which called another script, etc., all 

of  which  required  the  default  name.  I  eventually  backtracked  everything  to  a  file  called 

Validation / RecoEgamma / python / tkConvValidator_cfi.py in the CMSSW software package. I 

continued on and tracked “tip” to Validation / RecoEgamma / python / tpSelection_cfi.py, which 

seemed to enable “cmsRun Harvesting_cfg.py” to now work when I modified the name of “tip 
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there.” It seems that “tip” is given a value of 3.5 in the default cfg file, but that gets modified to  

120 to match the Reco file in the two Python files noted here.

Next, Figure 10 shows a piece of code that I found in Validation / RecoTrack / plugins /  

MultiTrackValidator.cc and Validation / RecoMuon / plugins / MuonTrackValidator.h. This call to 

“tpSelector = TrackingParticleSelector(...)” is set up for all the original parameters, but as one 

can see, this clearly breaks because it does not contain a reference to “tip_inner” after I modified  

TrackingParticleSelector.h since this call now no longer pointed to the correct parameters. Thus, 

I added a new line “pset.getParameter<double>("tip_innerTP"),” to the above code in the correct 

spot to match my modifications to  TrackingParticleSelector.h. I attempted to run CRAB jobs 

with the  edited Validation  files,  but  I  get  back the  error  “Error  occurred while  creating for 

module  of  type  'MultiTrackValidator'  with  label  'trackValidator'”  and  “MissingParameter: 

Parameter 'tip_inner' not found” in the output files. There was no indication what file is trying to 

be called at this instance, so this left another mystery to be solved.

tpSelector = TrackingParticleSelector(pset.getParameter<double>("ptMinTP"),

pset.getParameter<double>("minRapidityTP"),

pset.getParameter<double>("maxRapidityTP"),

pset.getParameter<double>("tipTP"),

pset.getParameter<double>("lipTP"),

pset.getParameter<int>("minHitTP"),

pset.getParameter<bool>("signalOnlyTP"),

pset.getParameter<bool>("chargedOnlyTP"),

pset.getParameter<bool>("stableOnlyTP"),

pset.getParameter<std::vector<int> 
>("pdgIdTP"));

Figure 10: Example of code where I needed to add the new “tip_inner” parameter
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My next approach was to hard-code “tip_inner” into RecoIter_Fullsim_Phase1_cfg.py, as 

I discovered certain configuration files weren't recognizing the Python scripts where I originally 

added “tip_inner” since they had their own set of the same original parameters. My first result 

with “tip_inner” set to 0 worked with my modified  MultiTrackValidator.cc, which indicated I 

was finally starting to get somewhere. I next compared tip_inner=0 with tip_inner=2 for new 

modifications to MultiTrackValidator.cc. I was testing to see if this gets nonzero tip_inner values 

recognized for anything but the general track. However, CRAB jobs were still flatlining for the 

nonzero “tip_inner”, and now even the general tracks were flatlining for nonzero “tip_inner” 

values. This at least indicated some progress as I was getting consistent results for all tracks.

But  this  started  making  me  wonder,  were  my  jobs  really  failing  for  all  non-zero 

“tip_inner” values, or just the values I had selected? By default, the original software had, in 

different places, programmed “tip” to values of 3.5 and 120, so I was selecting my “tip_inner” 

parameters to be less than that. Thus I decided to make a comparison, which I show in Figure 11, 

between results with the 4-muon sample on the boundary between “tip_inner” being greater than 

0 (black and red) and greater than or equal to 0 (green) for the general tracks. As one can see,  

nearly all the error bars overlap for both cases, so I can conclude they are statistically the same. 

This implies that there are indeed some cases where non-zero tip_inner values are allowed.
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With this new discovery in mind, I wanted to see if I could place a limit on just how 

much greater than 0 that “tip_inner” could be before all the results flatlined at 0. In Figure 12, I 

compare  7  samples  of  100  events  for  various  small  values  of  tip_inner,  changing  order  of 

magnitude from 0.0 to 0.1. One should first immediately notice that for all results that did not  

flatline, they are all statistically similar.  Only the two samples for 0.1 and 0.01 flatlined. This 

implied to  me that  a  value  of 0.01 was an  upper  bound on the  maximum allowed value  of 

tip_inner, and perhaps this meant I could only pick up on tracks that were reconstructed very, 

very close to the center. And perhaps the default values of 3.5 and 120 set for “tip” were absurdly 

large upper bounds put in place by the original programmers, which would also explain why the 

values vary by approximately 2 orders of magnitude.
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Figure 11: Comparison of tip_inner greater than 0 with greater than or equal to 0



I decided to test my suspicions on how the value for “tip” was initially set by altering my 

scripts to set the tip_inner selection to be <= instead of >= and then look for differences in the 

output. I compared 4 samples altering the value of tip from 0.1, 3.5, 60, & 120, and my results 

are shown in  Figure 13. As one will notice, again there were no statistical differences, which 

provided further evidence that I was correct in my suspicions. It was important to constrain a 

“real” upper bound on “tip” so that I could be more accurate in setting “tip_inner” and also better 

understand what the results from adding “tip_inner” would actually mean.
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Figure 12: Looking at tip_inner for small values



After discussing my findings with Dr. Brownson, my suspicions about “tip” having an 

absurdly large upper bound seemed to be justified. However, he also pointed out to me another 

possibility. The beam has some smearing involved, which seemed to be around the same value I 

found where events were occurring. This makes it harder to separate the primary vertexes from 

the secondary vertexes, which was the primary motivation behind this entire project. Thus, things 

were starting to look grim for this particular direction of research. However, I was still holding 

out hope as I attempted to make a few last, desperate moves...
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Figure 13: Comparing various values of “tip” to look for any statistical differences



4.7 – I Want My MTV

It was starting to look more and more likely that the MultiTrack Validator was not going 

to  be  useful  for  finding secondary  vertexes  in  the  Phase  1  Upgrade.  But  I  wasn't  ready to  

completely give up just yet.

My next method involved attempting to try to hardcode “tip_inner” values directly into 

*.h files in order to bypass needing configuration files. But I kept getting errors when trying to  

compile. When hardcoded inside the main function, the errors imply I couldn't do that. When 

hardcoded outside the main function, errors keep referring to multiple definitions of the tip_inner 

parameter in the file, even though there shouldn't be any other definitions. I even changed the 

variable name to test this and got back the same error. I had no idea what this was about, though I 

suspected this  was because  header files can't  have variables declared in them. Regardless,  I  

decided to just live with needing the configuration files, but I needed to find a way to make them 

“cleaner”.

I reconfigured my setup for “tip_inner” so that the value for it was solely contained in a 

single parameter file, PhysicsTools / RecoAlgos / python / tip_cfi.py. I also added “tip_outer” to 

this file, so that I could set a single value for “tip” for everything. This method seemed better 

than hardcoding, since I wouldn't have to recompile everything every time I wanted to run the 

script. I now only had one place to change “tip_inner” and “tip” for each run. I set “tip” to be 

equal to “tip_outer” in all of the other parameter files I could find that set a value for “tip”. Once 

the  new parameter  was  in  place,  I  initiated  another  set  of  CRAB jobs  to  test  out  the  new 

parameter file. However, once again, this failed to produce any meaningful results.

I discussed these latest findings with Dr. Brownson, and I learned that apparently the 4-

muon sample I had been using this entire time might not have been the best choice for a test  

sample. Apparently the 4-muon sample doesn't produce many secondary vertexes, which is one 

possible reason for why I was not seeing tracks outside a small “tip_inner”. Instead, I should be  

using the TTBar sample. However, I tried that for 100 events, and found for “tip_inner” >= 0.1  

and tip_outer <=3.5, I could only reconstruct events for the general tracks, not the high-purity 

tracks.
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If you haven't been paying attention, that is the same problem I had been facing this entire 

time with the 4-muon test sample. This lead me to conclude there was an inherent problem in 

configuring the software to introduce “tip_inner”, rather than a problem with any specific test 

sample.  I  had  exhausted  nearly  every  idea  and  option  at  my  disposal  to  create  the  new 

“tip_inner” parameter, but all my efforts were proving to be futile. I was finally forced to admit  

the inevitable...

4.8 – The Kobayashi Maru

I was in a no-win scenario. This particular project was a dead end in the wrong direction. 

The MultiTrack Validator simply cannot be used effectively to distinguish primary and secondary 

vertexes in the Phase 1 Upgrade. The software just is not set up properly to be configured for it.

I  strongly suspect the  primary problem is  inherent  in  how the code is  set  up.  In  my 

opinion, it seems the software was configured for a specific, pre-determined set of parameters, 

and the entire CMSSW software package was constructed around that. It is not designed to have 

new parameters, like “tip_inner” inserted into it. It essentially feels like the software scripts were 

written by various scientists for the specific jobs they wanted to do, so there is unfortunately no 

single unifying script. Everything has become a hodge-podge of scripts that were “good enough” 

at the time they were originally created and needed. And this idea is consistent with the notion 

that  high-energy particle  physics research is  a  fast-paced field,  where  the  software  needs  to  

primarily be “usable” instead of “pretty”.

The main problem, and what I suspect is the problem that made this project into a dead 

end, is that all of the scripts in the CMSSW software package are too heavily interconnected and 

dependent on each other. Remember Figure 10 that showed a sample of code from Validation /  

RecoTrack  /  plugins  /  MultiTrackValidator.cc?  Other  scripts  in  the  software  package,  like 

Common Tools / RecoAlgos / interface / TrackingParticleSelector.h, rely on that set of code for 

taking  in  the  necessary  parameters  in  a  specified  order.  It  also  seems to  rely  on  the  code 

remaining unchanged  from how it  was  initially  written.  So  when  I  modify  one  script,  e.g. 

MultiTrackValidator.cc, to add “tip_inner”, the software doesn't work properly because the other 
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script, e.g. TrackingParticleSelector.h, breaks because it is unable to interpret the input. Or vice 

versa. When I modify both scripts to add “tip_inner”, the software still doesn't work properly,  

presumably because another unidentified third script somewhere else was relying on those two 

first scripts to remain static.

With such a high level of dependency on each script to be written in a certain way and in 

a specific order, it becomes a nearly impossible task to track down each and every script that  

needs  to  be  modified to  make the  software  work properly if  one  wants to  introduce a  new 

parameter. For example, I found one place where I needed to insert “tip_inner”, but doing so 

caused an error in compiling the code, but if I fixed it so it could compile, the script wouldn't run 

properly. I eventually found a work-around, as there was no way to tell which of the hundreds of 

scripts in the CMSSW software was responsible  for this “damned if you do, damned if you 

don't” scenario. But even with the work-around, the jobs still would not run correctly.

Even when I could get the software to compile successfully and tell me that my new 

“tip_inner”  parameter  is  being  recognized,  there's  still  no  guarantee  that  it's  actually being 

recognized. It could just mean that one set of scripts is recognizing it, but another set of scripts  

that are connected further along the chain won't recognize “tip_inner” once jobs are actually 

running because my initial methods to check could only probe a maximum number of degrees of 

separation.  I  make the  analogy that  attempting to  track everything down is  like playing the 

classic arcade game of Whac-A-Mole. I could fix errors caused by one script not being modified,  

only to have that fix reveal another error in a different script that couldn't be previously revealed 

when the first script wasn't working correctly.

And in the end, I'm forced to  admit,  this  just  is not an efficient  or effective way of 

proceeding on this project. But, perhaps there is another way...
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CHAPTER 5

HOW I LEARNED TO STOP WORRYING AND LOVE B-TAGGING

Having concluded that the MultiTrack Validator was the wrong approach to the project, 

Dr. Brownson and I concluded that a better approach would be to switch to B-tagging. However, 

by the time the project had advanced to this point, it was now the end of the summer of 2011. 

This meant that Dr. Brownson's post-doc term with the Vanderbilt HEP group had ended, which 

unfortunately forced an end to this particular project. However, I was able to begin looking into a 

few rudimentary ideas for making the switch to use the new coding routines of B-tagging, which 

I will now describe.

The first hurdle I had to overcome was learning how much different B-tagging was from 

the MultiTrack Validator. I initially thought both could be treated as validation packages, as the 

initial script just required me to run recbtag_validation_cfg.py instead of Harvesting_cfg.py. 

However, I quickly learned there were major differences between B-tagging and the MTV, such 

as completely different results for ROOT files.

Dr. Brownson and I outlined a plan of attack for using B-tagging. First, I should begin by 

primarily looking at two variables in the outputted ROOT files, flightdistance2dsigall and sigb 

and figure out what they actually physically represent. Looking into a path named 

IPTag_GLOBAL, we suspected flightdistance2D may be filled with resolution of the secondary 

vertex as one of the parameters. Though we had we no concrete evidence of that, just a hunch.

However, I never got a chance to really look into this. I started attempting to run jobs, but 

kept getting back the error message: 

cms::Exception going through module CastorDigiProducer/simCastorDigis run: 1 
lumi: 666685 event: 1901
If you wish to continue processing events after a ProductNotFound exception,
add "SkipEvent = cms.untracked.vstring('ProductNotFound')" to the "options" 

PSet in the configuration.
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My task after that was to track down what this error meant and where I needed to add the 

suggested line. I followed the lead to SimCalorimetry / CastorSim / data / CastorDigiReco.py, 

but it did not work. After conferring with Dr. Brownson, I discovered I needed to add the line 

“pdigi.remove(simCastorDigis)” to the end of SLHCUpgradeSimulations / Geometry / python /  

Digi_stdgeom_cff.py and the lines “process.DigiToRaw.remove(process.castorRawData)”, 

“process.DigiToRaw.remove(process.siPixelRawData)”, and 

“process.RawToDigi.remove(process.siPixelDigis)” to  SLHCUpgradeSimulations / Geometry /  

test / RecoFull_Fullsim_stdgeom_cfg.py. I still don't fully understand why the error told me to 

add a line that did no good, but I wasn't questioning it since all my CRAB jobs ran successfully 

after following the advice of Dr. Brownson.

Of course, “ran successfully” and “worked successfully” are not necessarily the same 

thing, as I learned when actually trying to retrieve output from certain CRAB jobs and the output 

kept coming back as corrupt even though the jobs ran successfully and did not crash. What I 

ended up discovering was that generating the results of these CRAB jobs produced excessively 

large output files that were bumping up against my disk quota. For example, a 2000 event sample 

ended up being 21 GB in size. Obviously, this isn't an efficient or effective way when the 

research would require me to study multiple files similar to this. It is clear that much additional 

work will be required before a complete understanding of this phenomenon occurs.

But that is the point where this research project stops. Literally. 

34



CHAPTER 6

FOR FURTHER STUDY

As it so often goes with scientific research, wrong turns do happen. I still learned a lot 

from  my  time  spent  on  this  research  project  about  high-energy  particle  physics,  the  inner 

workings  of  Fermilab,  CMS,  SLHC  upgrades,  the  various  software  packages  used  in  such 

research, etc. And in that regard, I fully believe this project was a successful and worthwhile 

endeavor. But it is hoped that this study will stimulate further investigations in this field.

In conclusion, my findings show that the MultiTrack Validator is NOT useful for studying 

secondary vertexes in the Phase 1 upgrade. I presume it would be possible to somehow add 

“tip_inner” as I originally intended—after all, some collective of scientists originally wrote the 

CMSSW software package and made all  the default  parameters work cohesively—but future 

physicists should be warned that modifying that software for a new parameter is no easy task. If  

you still wish to do it, the main advice I can offer is that you should be prepared to essentially 

rewrite the entire CMSSW software from the ground up.

It is my sincerest wish that this thesis serve as a warning to all who read it that B-tagging 

is the best a more suitable way to approach this goal. If someone wishes to continue this project 

from where  I  left  off,  I  strongly  recommend proceeding in  the  direction  of  B-tagging,  as  I  

outlined in Chapter 5. I wasn't able to make it work, but I suspect that's only because I spent a 

mere few weeks looking into B-tagging. I simply was not able to devote the necessary amount of 

time to it as I was to the MultiTrack Validator. The next problem that needs to be overcome is 

figuring out why I was getting such absurdly large output files and/or find a work-around for it.  

Of course, I'm sure there will still be more unforeseen problems ahead pursuing this path, but I  

won't be going along for the ride.

But to any high-energy particle physicists pursuing this goal in the future: good luck and 

godspeed.
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