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Chapter I

Introduction

The recent growth in efforts to design, control, and understand large decentralized groups of robots is

fueled by the increasing availability, capability, and efficiency of robotic platforms (Kolling et al., 2016).

The field of swarm robotics seeks to coordinate large groups of locally sensing and communicating robots in

order to produce behaviors that are robust to population attrition, scalable to different population sizes, and

flexible to changing environmental conditions (Şahin, 2005). Decision making is a universal capability that is

routinely accomplished in social animal groups (Conradt and Roper, 2005) and has been intensely studied in

swarm robotics (Brambilla et al., 2013). Common to numerous recent studies is the requirement that robotic

collectives solve the best-of-n problem, in which the group chooses the best option from a finite set of n

options (Valentini et al., 2017). Whether the collective chooses between aggregation sites (Arvin et al., 2014;

Campo et al., 2011) or future actions (Parker and Zhang, 2009, 2010), its decisions are often influenced by

environmental features (e.g., distance) that alter robot interactions and bias the collective towards options that

are the easiest to find, evaluate, and reach, but may not be the optimal choice (Valentini, 2017). Collectives

that must make decisions, despite biasing environmental factors are likely to be inaccurate and inefficient

(Valentini, 2017). This dissertation develops a biologically-inspired collective action selection strategy that

enables a robotic collective to choose and implement its best action, despite the presence of environmental

bias. The strategy is evaluated for its ability to act independently and as a contributing member of a human-

collective team in trials featuring the human supervision of multiple collectives each simultaneously solving

a best-of-n problem.

The majority of existing collective best-of-n strategies either make decisions in specific scenarios that

exclude environmental bias (e.g., Hamann et al., 2012; Garnier et al., 2009), or rely on environmental bias

in order to discover the shortest paths (Scheidler et al., 2016; Schmickl and Crailsheim, 2008) or the closest

sites (Reina et al., 2014). Only two studies (Reina et al., 2015b; Campo et al., 2010) make decisions favoring

options based on quality, despite the influence of environmental features (Valentini et al., 2017). Future

systems that are unable to overcome bias caused by environmental features will not generalize to the terrain

and will require either perfect prior knowledge of the deployment site or direct human supervision and control

in order to achieve predictable success. An example of the environmental bias problem is a site selection

scenario in which the collective must choose the best site to initiate a collective construction task (e.g., as

proposed by Parker and Zhang, 2009). A collective that is unable to compensate for travel cost will be biased

to choose whichever acceptable site is closest, even if better sites are within range (as demonstrated by Reina

1



et al. (2015b)). This dissertation proposes the use of cost sensitive control states to enable collectives to

compensate for existing bias and to make quality decisions within a maximum exploration range.

Few robotic collective studies combine best-of-n decision making with collective behavior changes.

Sometimes achieving consensus, or a majority of support, for the best option is sufficient for accomplish-

ing the desired task (e.g., Campo et al., 2011; Schmickl and Crailsheim, 2008). Often, it is more desirable to

permit the collective to make a decision and alter its behavior in response to the decision event (e.g., Parker

and Zhang, 2010; Wessnitzer and Melhuish, 2003). Transitioning between decision making activities and

action implementation is challenging for robotic collectives, due to the limited sensing capability of the col-

lective’s individuals and the collective’s dynamic communication network. Individuals must estimate when

the collective has reached a decision and when it is ready to initiate the chosen task. The quorum sensing

process is used by many biological collectives to detect changes in collective state (e.g., Seeley, 2010; Hamar

and Dove, 2012; Mallon et al., 2014), which permits individuals to estimate collective state based on re-

cent direct or indirect information exchanges with neighboring individuals. Although biological collectives

accomplish action selection when their members are dispersed over a wide area (Mallon et al., 2001; See-

ley, 2010), robotic collective studies that enable collective action selection have assumed either a connected

network (Wessnitzer and Melhuish, 2003), or a random network enclosed within a small arena (Parker and

Zhang, 2010). Robot dispersion is likely to increase population attrition, as robots that are unaware of a deci-

sion will be left behind when the collective initiates its chosen action. This dissertation proposes a model that

requires sequential quorum sensing to permit individuals to estimate when the collective is ready to transition

from decision making to action implementation and from implementation back to a decision making state.

The collective is assumed to be dispersed in a wide area and its individuals interact periodically within a

shared deliberation area (i.e., a honeybee hive) that is smaller than the collective’s total area.

Human-Swarm Interaction (HSI) research has enabled a single human operator to control large numbers

of robots in one, or more, artificial swarms by interacting with the group as a single entity (Brown et al.,

2016; Kolling et al., 2016). Humans are usually required to make all group behavior decisions for the artifi-

cial swarm, which assumes the human maintains global environmental knowledge. Very few studies consider

the likely scenario that the human does not have perfect knowledge and must delegate portions of the decision

making process to the artificial swarm (Crandall et al., 2017). Humans routinely choose the best of a set of

available actions for the swarm to perform (e.g., alter behavior Kolling et al., 2013 or investigate a location

Walker et al., 2013). Swarms in current HSI studies; however, are unable to make independent best-of-n deci-

sions, even though examples exist in biology (Seeley, 2010; Mallon et al., 2001) and swarm robotics (Valen-

tini, 2017; Reina et al., 2015b). This dissertation evaluates collective action selection in human-collective

teams and evaluates the effectiveness of specific control mechanisms and visualization techniques.
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I.1 Research Questions

This dissertation focuses on the question: How can independent robotic collectives and human-collective

teams make action selection decisions in dynamic environments? The solution to this problem requires ad-

dressing a number of subordinate research questions, that include:

R1: How can a collective make efficient and accurate decisions when the problem space is subject to nega-
tive environmental bias?

R2: How can well-mixing dynamics be adjusted to improve collective decision accuracy and efficiency?

R3: How responsive are collective best-of-n decision making processes to changes in option values?

R4: How can a collective transition between decision making and task implementation behaviors?

R5: What mechanisms permit efficient human control over robotic collective action selection?

R6: What visualization techniques improve human-collective interaction during collective action selection?

I.2 Outline

Chapter II reviews current research from three relevant areas: collective animal behavior, robotic collective

decision making, and Human-Swarm Interaction. Collective animal behavior continues to inspire advances

in robotic collective decision making, which in turn offers opportunities for future human-interaction and

control protocols. Chapter III presents the formal problem, solution approaches to the first four research

questions (R1 through R4), and simulation based experimental results. Chapter IV describes solution ap-

proaches to the remaining research questions (R5 and R6) and the results of a human subjects experiment

with an interface evaluating the collective action selection algorithm in human-collective targeting scenar-

ios. Specific visualization techniques and interaction mechanisms are evaluated for their ability to enable

human control and understanding of the collective’s decision making behavior. Chapter V summarizes this

dissertation’s contributions and discusses remaining open areas related to this research.
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Chapter II

Literature Review

Biological collective behaviors have inspired the development of scalable and robust decision making strate-

gies in decentralized robotic collectives. This chapter reviews biological sources of inspiration, before re-

viewing the state of the art in robotic collective decision-making and Human-Swarm Interaction.

II.1 Biological Collective Decision Making

Natural phenomena, such as flocking birds and foraging insects, emerge from local interactions of individuals

with their environment and neighbors (Bonabeau et al., 1999; Sumpter, 2010). Individuals make decisions

that are influenced by stimuli thresholds and regulatory feedback systems, which causes the emergence of

intelligent group responses to the environment (Couzin, 2009; Sasaki and Pratt, 2012). Resource scarcity

drives these behaviors to balance the energy required to make a decision against the benefit of the outcome.

The majority of collective animal behavior has been categorized into two processes: combined and con-

sensus decision making (Conradt and Roper, 2005). Combined decisions require individuals to determine

when their estimate of local stimuli exceeds their response threshold for conducting a specific activity (Wil-

son, 1984; Bonabeau et al., 1999; Sumpter, 2010). Individuals do not actively coordinate their activities,

but coordination emerges from the combination of individual responses to available stimuli (Bonabeau et al.,

1999, 1998). Consensus decisions occur when a group must choose a single action from the available actions

and incur either a cost in energy to achieve the consensus, or a compromise cost in which individual interests

are ceded to those of the group (Conradt and Roper, 2005). Social insect foraging, task allocation, resource

distribution and collective construction are examples of combined decisions (Bonabeau et al., 1999). Con-

sensus decisions include flocking, small group hunting and grazing, group navigation, and future nest site

selection (Couzin et al., 2005; Seeley et al., 1991; Young et al., 2013).

II.1.1 Combined Decisions

Individual behaviors in combined and consensus decision making processes are the result of nonlinear re-

sponses to local stimuli that are affected by regulatory feedback (Sumpter, 2010). Even individuals with high

response thresholds, which bias them against a specific task, will perform the task if their estimate of the

associated stimuli exceeds their higher response threshold. This phenomenon was demonstrated by Wilson

(1984) with Pheidole pubiventris colonies, which are divided between workers of significantly different size

and task thresholds. The larger ants serve as guards, while the smaller ants perform all other behaviors, in-
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cluding brood rearing, queen care, and foraging. After the smaller ants were removed during an experiment,

the larger ants rapidly assumed all colony duties, which indicates the collective’s decentralized capacity to

maintain a stable state despite changing conditions (Wilson, 1984).

Although combined decisions do not require active behavior coordination, individuals must share infor-

mation using either indirect or direct interactions (Conradt and Roper, 2005). Individuals indirectly interact

by altering the environment in a way that influences the decisions of the next individual, which is a com-

munication technique referred to as stigmergy (Bonabeau et al., 1999). Ant corpse management provides

an example of stigmergy-based communication (Theraulaz et al., 2003), in which ants tend to place corpses

together. When an ant places a corpse in a location, it increases the probability that the next ant will place

its load next to the first, which causes corpses to be collected in increasingly larger piles. Pheromone laying

is another common indirect communication method and serves as a volatile, global memory in foraging and

construction problems (Bonabeau et al., 1999; Sumpter, 2010). Individuals directly communicate through

physical contact and deliberate information transfers. Examples of direct communication include the famous

honeybee waggle dance used to communicate foraging site locations to other bees (Seeley, 1995) and the

tandem runs Temnothorax rugatulus ants use to lead foragers to potential sites (Shaffer et al., 2013).

Combined decisions are the least costly of the collective decision making processes and often solve prob-

lems of distribution, allocation, regulation, and synchronization (Sumpter, 2010). These decision making

behaviors permit the collective to reach and maintain stable states, which are necessary for collective survival

in dynamic environments (Şahin, 2005). Combined decisions are important, but many problems facing social

animal groups require a single unified response.

II.1.2 Consensus Decisions

Consensus decision making requires individuals to actively coordinate their behaviors in order to enable the

collective to converge to a single action (Conradt and Roper, 2005). Bird flocking and fish schooling are

classic examples and emerge from individuals’ effort to balance personal requirements (e.g., nourishment),

with the security of remaining in a cohesive group (Sumpter, 2010; Couzin et al., 2002; Attanasi et al., 2014).

Shared consensus decisions are those made by several members of the group, while unshared decisions are

made by a dominant individual (Conradt and Roper, 2009). The latter are efficient for small group decisions

and individuals assume a leadership role as a result of their assertiveness and location within the existing

dominance hierarchy (Conradt and Roper, 2009). This chapter focuses on shared consensus decisions, which

enable large groups to make decisions without relying on specific individuals. Both continuous and discrete

consensus decisions are common in animal groups (Valentini, 2017). Continuous consensus decisions require

the group to achieve consensus for one of an infinite number of options, while the discrete consensus decisions
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require the group to choose from a finite set of options. Collective solutions of the best-of-n problem are a

special type of discrete consensus achievement that ensures the option chosen is also of the highest value to

the group.

II.1.2.1 Continuous Consensus Achievement in Animal Groups

A transformational model of bird flocking behavior, developed by Reynolds (1987) and inspired by existing

fish schooling research (Aoki, 1982) demonstrated that simple repulsion and attraction rules enabled the birds

to accomplish complex coordinated movements. This model was extended by Couzin et al. (2002) to incor-

porate zones of repulsion, orientation, and attraction and accurately recreated distinct collective movement

states observed in fish schools. Individual fish respond nonlinearly to changes in their neighbor’s behaviors

(Couzin et al., 2005). When the number of peers altering their behavior exceeded a predetermined threshold,

the probability of an individual adopting the same behavior greatly increased, similar to the individual stimuli

responses described in Chapter II.1.1. This response mechanism effectively reduces the impact of individual

error on collective consensus decisions and increases the probability that a group will make decisions in favor

of the majority opinion (Ward et al., 2008).

Several communication models for continuous consensus achievement have been proposed for swarm

movement. The metric model places an individual’s neighbors in repulsion, orientation, and attraction zones

(e.g., Couzin et al. 2002; Reynolds, 1987; Aoki, 1982) in which agents respond to neighbors in these zones

defined by straight line distances. The topological model restricts agent interactions to a fixed number of

neighbors, regardless of distance between neighbors and has been demonstrated to improve accuracy over the

metric model in simulating biological swarm movement (Ballerini et al., 2008; Abaid et al., 2015). Another

model, developed by Ginelli and Chaté (2010), restricted agent alignment to neighbors within the agent’s

current region of a Voronoi diagram. A visual model that uses agent sensory information to define agent

neighbors was shown to outperform the other three models in accounting for fish movement. (Strandburg-

Peshkin et al., 2013). The visual model was extended in order to account for oscillations in relative speed

between fish that further improves movement coordination (Swain et al., 2015). Although simulated and

experimental data with biological agents increasingly supports the visual model, communication methods for

artificial swarms remains an area of open research (Strandburg-Peshkin et al., 2013; Haque et al., 2016).

II.1.2.2 Discrete Consensus Achievement in Animal Groups

Animal groups often choose between a finite set of available options. When environmental features restrict a

flocking group to a limited number of possible headings, the decision strategy described in Chapter II.1.2.1

supports a discrete choice. A model of group decisions during animal movement demonstrated the effect of
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different individual heading preferences within a group (Couzin et al., 2005). When heading preferences are

close, the group effectively averages them, but when the preferred headings are different, the group commits

to the option with the greater support. This decision capability was analyzed by Hartnett et al. (2016) using

a physical spin system model. The model favored majority opinions; however, the number of uninformed

individuals and the degree of collective information pooling increased the probability that a minority group

with a strong opinion altered the collective’s decision.

Information pooling is a primary component of biological solutions to the collective best-of-n problem, in

which the benefit of the decision to the entire group is incorporated into the decision process and a consensus

choice is made (Golman et al., 2015; Valentini, 2017). These decision making strategies require a significant

investment of energy, which makes them rare in nature, as such, these types of strategies have only been

studied extensively in two species (Franks et al., 2002; Sasaki and Pratt, 2012; Seeley, 2010). The Temnotho-

rax albipennis ant and the Apis mellifera honeybee solve the best-of-n problem when they emigrate to a new

location. Potential future sites are evaluated by scouting members of each collective. Site quality determines

the strength of scout recruitment efforts and often the likelihood of the site’s selection by the group (Franks

et al., 2002). The consequence of selecting the wrong site is a severe drop in the collective’s chances of sur-

vival, which has resulted in a decision making process with negligible conflict of interest between individuals

(Seeley, 2010). Despite the insects’ aligned intent, they face significant challenges. First, individual insects

are unable to do better than guess randomly after comparing multiple sites (Sasaki and Pratt, 2012), which

means collective decisions do not rely on direct site comparisons by individuals. Second, individuals are

unable to observe the collective’s global state during the decision making process. Individuals estimate the

collective state, based on local observations, but the decision process must prevent incorrect estimates from

causing the group to emigrate to a site prematurely.

II.1.2.3 Apis mellifera Honeybee Nest Site Selection

The Apis mellifera nest site selection process, as detailed by Seeley and collaborators (1978, 2010, 2012),

continues to influence numerous fields. Future nest sites must be selected to optimize honey production,

which guarantees colony survival throughout the winter (Seeley, 2010). The ideal nest sites are 6.5 meters

above the ground with a cavity volume of 40 liters and have a southern facing 15cm2 entrance near their base

(Seeley and Morse, 1978). The honeybees identify dozens of alternative nest sites in a wide geographic area

(150km2), evaluate each according to these metrics, and choose the best site within a limited amount of time.

Every spring, healthy honeybee colonies emit at least one swarm of roughly 15,000 workers with their

queen (Seeley, 2010). The swarm converges temporarily at a location near the original hive, while 3-5 percent

of its members, the honeybee scouts, explore for potential nest sites. Scouts that discover acceptable sites
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return to the swarm and recruit other scouts using a “waggle dance” to communicate their site’s location

(Seeley, 2010). The number and duration of the scout’s dances depends upon the quality of its site and affects

its probability of recruiting other bees (Seeley, 2010). Recruited scouts travel to the site and evaluate it in

order to determine their own recruiting strength. The scouts also inhibit other scouts that are recruiting for

different sites. Inhibition signals, called stop signals, cause the recipient to eventually cease recruitment and

inhibition. Inhibition accelerates the dismissal of poor quality sites and shortens the debate length (Seeley

et al., 2012). During the scouts’ deliberation, the remainder of the swarm ensures the queen’s survival and

awaits a decision.

Scouts that detect the presence of twenty to thirty peers investigating their site estimate that the swarm has

reached a decision and alters their behavior to prepare the swarm to emigrate (Seeley, 2010). A quorum of

this size is highly unlikely unless more than half of all scouts have assessed and support the site. Honeybees

have optimized their decision making process in order to minimize the time spent as an unprotected swarm,

while maximizing the likelihood of finding the best possible site. Quorum sensing enables the collective to

balance the speed and accuracy of this decision making process (Franks et al., 2002; Seeley, 2010).

High quality nest sites induce higher probability of recruiting and more inhibition of competing sites,

which increases support for high quality sites until one site reaches a quorum and scouts begin signaling

for movement (Seeley, 2010; Seeley et al., 2012). Analysis of the honeybee nest site selection process has

revealed it to be value-sensitive, which means that the ability to distinguish between sites depends upon

the difference in site values and the mean site value (Pais et al., 2013). Value-sensitivity also enables the

collective to delay committing to poor sites, which allows them to quickly converge to a higher quality site if

one is discovered early enough in the decision process (Passino, 2010; Pais et al., 2013).

II.1.2.4 Temnothorax albipennis Ant Nest Site Selection

The Temnothorax albipennis ant conducts an emigration process that is executed without colony pheromone

trails, reliably selects the best of available future nest sites, and depends upon quorum sensing, nest site

quality estimation, and feedback systems (Mallon et al., 2001). The ants form colonies in tiny rock crevasses

and frequently emigrate when the current nest site becomes uninhabitable. The scouting population, which

makes up a full third of the colony, assesses potential nest sites for capacity, cavity height, entrance size,

and interior light level (Mallon et al., 2001; Sasaki and Pratt, 2013). The ants face a similar problem to the

honeybees and must choose the best site from several within a search space based on the described metrics.

Ant colony scouts begin exploring for a new site when the current site becomes overcrowded or is dam-

aged (e.g., exposed due to environmental change). Upon locating an acceptable site, a scout recruits other

scouts after a delay period that is inversely proportional to the site’s quality. The delay period prevents
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mediocre sites from being chosen before other sites have been considered (Pratt et al., 2002). Scouts recruit

one peer at a time by performing a tandem run, in which the informed scout leads its recruit to the discovered

site, at which the recruit performs an individual assessment (Mallon et al., 2001). Tandem runs continue until

a scout detects a quorum of peers at the site. Upon sensing a quorum, a scouting ant is believed to identify

the new location as its home and immediately changes its recruiting strategy from tandem runs to transports

(Pratt et al., 2002). Scouts physically pick up other ants and carry them to the new site during transports,

which is significantly faster than tandem runs (Mallon et al., 2001). As a collective, the ants deliberate and

emigrate simultaneously (Franks et al., 2002). Although the presence of transports indicate a colony decision,

multiple quorum detections occasionally result in transports to multiple alternative sites (Mallon et al., 2001).

Multiple simultaneous quorums are not disastrous to the T. albipennis ants. The Temnothorax curvispinosus

ants, which have an identical nest site selection process to T. albipennis ants, adjust the required quorum num-

ber, depending on the circumstances of the colony’s emigration (Pratt and Sumpter, 2006). If the colony is

exposed due to the sudden loss of its protective roof, the ants are more likely to sense multiple quorums and

move the original colony to many sites, only to retrieve all distributed ants and bring them to the chosen nest

site later. Emigrations initiated due to overcrowding at the original site are less likely to result in dispersal to

multiple new sites. Multiple quorums potentially enhance the survival of the colony when emigration occurs,

while the original colony is vulnerable (Pratt and Sumpter, 2006).

II.1.2.5 Nest Site Selection Process Comparison

The collective best-of-n decision making processes of Temnothorax albipennis and Apis mellifera have been

tailored by evolution to efficiently solve the nest site selection problem given the capabilities, limitations, life

cycle, and environment of each species. Six common components of these decision strategies exist (Franks

et al., 2002): information gathering, evaluation, deliberation, consensus building, choice and implementation.

Both species delegate the decision making processes to a subset of dedicated individuals that explore for

future sites and select the best one available. Site quality positively influences recruitment, which accelerates

the growth of support for optimal sites over mediocre sites. When only mediocre sites are discovered, one of

them is eventually chosen, unless an optimal site is discovered early enough in the decision making process

(Pais et al., 2013). Quorum sensing enables both species to recognize when a decision has been reached

and initiate emigration behaviors (Franks et al., 2002; Sumpter and Pratt, 2009). Site comparisons occur as

a result of the relative number of supporting agents, rather than requiring individuals to compare available

value estimates (Seeley and Morse, 1978; Mallon et al., 2001).

Several important differences exist between theses emigration strategies (Franks et al., 2002). Honeybees

create expensive and immobile honeycomb within their colonies and are unable to recover from multiple
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simultaneous migrations, like the T. albipennis ants. Honeybees search a large area for nest sites, whereas

T. albipennis ants may find several sites within a meter of their original nest (Mallon et al., 2001; Seeley,

2010). The process duration also differs between the species. The honeybee process lasts two to four days,

while the T. albipennis ants complete their emigration within a few hours. Additionally, the T. albipennis

ants implement their emigration concurrently with their deliberation, while the honeybees initiate emigration

only after a decision is reached (Seeley, 1982; Franks et al., 2002). Finally, site quality affects scouts from

each species differently. T. albipennis ant scouts delay initial recruiting based on site quality, but do not stop

recruiting after the delay, although they may switch site allegiance (Franks et al., 2002; Pratt et al., 2002).

Site quality does not induce a delay in the honeybees, but does influence the vigor of the honeybee scouts’

recruiting and inhibition efforts (Seeley, 2010; Seeley et al., 2012).

Early efforts to develop similar decision making processes in robotic collectives have identified challenges

associated with interaction rates and distances between target sites (Reina et al., 2015a). All steps of the nest

site selection process are tuned to each other by evolution. The recruiting behaviors and quorum sensing

strategies implicitly depend on scout movement and site discovery rates and have been developed through a

long evolutionary process. Generalizing these techniques requires discovering the underlying relationships

between these behaviors and the environment in order to decouple the decision making process from any one

specific environment. This challenge is an example of the “inverse problem” (Berman et al., 2007), which is

defined as the difficulty of developing individual behaviors that produce desired collective results.

II.2 Robotic Collective Decision Making

The decision making processes described in Chapter II.1 have inspired significant research into the devel-

opment of similar behaviors in robotic swarms (Brambilla et al., 2013; Kolling et al., 2016; Valentini et al.,

2017). Robotic swarms are large groups (> 50) of robots with limited sensing, communication, and com-

putation capabilities whose interactions cause the emergence of a group behavior (Şahin, 2005; Hayes and

Adams, 2014). Recent robotic swarms demonstrate emergent behaviors that scale well with changes in group

population, react flexibly to dynamic environments, and are robust to the effects of robot attrition (Brambilla

et al., 2013). These characteristics make swarm robotics a reasonable approach to solving future problems

in numerous domains including: medical (Mermoud et al., 2010), military (Wessnitzer and Melhuish, 2003;

Coppin and Legras, 2012), transportation (Campo et al., 2010), and space exploration (Kolling et al., 2016;

Truszkowski et al., 2004). A recent survey segregates swarm robotics into three primary behaviors (Bram-

billa et al., 2013), which include decision making (e.g., combined decisions (Krieger and Billeter, 2000) and

consensus decisions (Montes de Oca et al., 2011)), spatial organization (e.g., pattern formation (Spears et al.,

2004) and aggregation (Campo et al., 2011)), or navigation (e.g., flocking (Reynolds, 1987)).
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This dissertation draws an important distinction, in terms of human-collective interaction, between swarms

and collectives. A swarm is a decentralized group whose individual decisions are based on distributed indi-

vidual preference and local information, which is common in coordinated movement in biological groups

(Couzin et al., 2002). Swarm behaviors include consensus decision strategies (see Chapter II.1.2) that result

in the group’s selection of one option from either an infinite (e.g., continuous consensus achievement) or

a finite (e.g., discrete consensus achievement) set. A collective consists of individuals whose decisions are

biased to favor the needs of the group, which is facilitated by information pooling within a shared space, or

decision-making hub (Valentini, 2017). Collective behaviors include combined decision (see Chapter II.1.1)

and best-of-n decisions similar to the emigration behaviors described in Chapters II.1.2.3 through II.1.2.5.

The development of best-of-n strategies in robotic collectives is an area of intense recent study (Wessnitzer

and Melhuish, 2003; Parker and Zhang, 2009; Scheidler et al., 2016; Valentini, 2017; Reina et al., 2015b).

These strategies are analogous to individual decision making and action selection (Barron et al., 2015; Para-

suraman et al., 2000) when used to choose the best action for execution. Collective decision making is

facilitated by a combination of information pooling within the collective’s shared space, or decision making

hub, and robot behavior modulation that drives the system to favor one action (Valentini, 2017). Collective

action selection is either implicit or explicit, as shown in Figure II.1. Implicit action selection accomplishes

the chosen action during the decision process (Campo et al., 2011; Montes de Oca et al., 2011; Scheidler

et al., 2016), while explicit action selection includes decision detection in the consensus achievement process

in order to enable the collective to execute a chosen action after the decision (Wessnitzer and Melhuish, 2003;

Parker and Zhang, 2009, 2010). Explicit action selection enables robotic collectives to choose future actions

and break up complex missions into sequences of decisions and tasks (Parker and Zhang, 2010).

Concurrently with the research into the design, performance, and implementation of robotic collectives

(Brambilla et al., 2013), the field of Human-Swarm Interaction has emerged to examine the challenges to hu-

man control and interaction that impede practical robotic swarm deployment. The Human-Swarm Interaction

research has only recently begun to examine human interaction with robotic collectives capable of implicit

and explicit action selection (Coppin and Legras, 2012; Crandall et al., 2017). The human’s role, in most

human-swarm interactions, has focused on influencing the overall swarm’s behavior, often via influencing

individual swarm members (Kolling et al., 2016). Recent research suggests that human-collective teams alter

this relationship by permitting the human to share control with the collective during decision making, which

is particularly useful when neither the human, nor the collective, has access to global information regarding

the environment (Crandall et al., 2017). Collective action selection strategies offer two advantages over typ-

ical human-swarm interaction. First, collectives use decision strategies that can augment human-collective

decision making, or be used to make decisions in the absence of human influence. Second, robots in the
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Figure II.1: Implicit collective action selection occurs as a collective converges to one of a set of activities,
while explicit collective action selection requires an activity to be chosen prior to execution.

collectives attempt to uniformly share information, which extends the reach and duration of human influence.

Collectives also introduce new challenges related to their complex decision dynamics (Valentini, 2017; Reina

et al., 2015b) and their increased information requirements necessary to achieve transparency (Chen et al.,

2017).

II.2.1 Implicit Action Selection in Robotic Collectives

Implicit action selection is accomplished using collective best-of-n strategies in which the collective is re-

quired to converge to one of its current actions. Common approaches to the development of these systems

include ad hoc (e.g., Campo et al., 2011; Campo et al., 2010) and opinion-based (e.g., Montes de Oca et al.,

2011; Reina et al., 2014; Reina et al., 2015b; Valentini et al., 2014; Valentini et al., 2015) approaches. The

former often define simple behaviors that cause the collective to converge to a specific location (Campo et al.,

2011; Hamann et al., 2012; Arvin et al., 2014) or path within the environment (Schmickl and Crailsheim,

2008). Ad hoc approaches accomplish implicit action selection, since convergence results in the execution

of the desired action. Opinion-based solutions are more general and require robots to disseminate inter-

nal opinions corresponding to options available to the collective (Valentini, 2017). This chapter focuses on

opinion-based best-of-n strategies, since they apply to numerous behaviors and uniquely enable both implicit

and explicit collective action selection.

A general opinion-based collective best-of-n model, developed by Valentini (2017), consists of three com-
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ponents: exploration and dissemination control states, individual decision making mechanisms, and modula-

tion of positive feedback. Exploring robots identify and evaluate the available options, while disseminating

robots share opinions with neighboring robots within the disseminating state. Disseminating robots commu-

nicate opinions to other disseminating robots within a decision making hub. Restricting communication to

a decision making hub eases the challenges of ensuring that collective opinions are well-mixed, meaning the

probability of any two disseminating robots interacting is approximately equal (Kampen, 2007; Valentini,

2017). Individual decision making mechanisms determine how robots alter their opinions. Finally, positive

feedback modulation biases the deliberation between options towards the best available option (Valentini,

2017). Positive feedback modulation is either direct or indirect. Direct feedback modulation requires individ-

ual robots to change behavior, based on option value in order to bias the collective towards the best option.

Indirect feedback modulation relies on environmental features to bias the decision process (Valentini, 2017).

The general model (Valentini, 2017) easily describes previous successful approaches to implicit action

selection (Montes de Oca et al., 2011; Scheidler et al., 2016; Valentini et al., 2014, 2015). Indirect modulation

in collectives has been used to generate convergence to the shortest available path (Montes de Oca et al., 2011;

Scheidler et al., 2016). Selective foraging problems, in which the collective must choose the best available

site, have been solved using both indirect and direct modulation (Valentini et al., 2014, 2015; Reina et al.,

2014). A comparison of collective best-of-n strategies, conducted by Valentini, Hamann, and Dorigo (2014;

2015), demonstrated that the selected decision strategy had a significant effect on convergence time (Valentini

et al., 2015). The majority rule model, in which agents adopt the most supported opinion of their neighbors,

was shown to be faster, but less accurate than the voter model, in which robots adopt the opinion of a random

neighbor (Valentini et al., 2015). Further, increasing the size of the robot’s neighborhood, by increasing its

communication range, reduced decision time and accuracy (Valentini et al., 2015). While the influence of

option cost (e.g., distance) and value on collective decision making strategies have been investigated, very

little research has examined scenarios in which the environmental cost of preferable options is greater than

the cost of those that are mediocre (Valentini, 2017).

A similar modular design for collective best-of-n decisions was developed by Reina et al. (2015b) and

adopted directly from the emigration strategy of the Apis mellifera honeybee (see Chapter II.1.2.3). The

honeybee nest site selection process was chosen, because it incorporates discovery of new options during de-

liberation and is value-sensitive (Reina et al., 2015b). Similar to Valentini’s modular approach, Reina et al.’s

(2015b) design restricts information dissemination to a decision making hub. The model includes the four

state transitions exhibited during honeybee nest site selection: discovery, abandonment, recruitment, and in-

hibition (Reina et al., 2015b). Support for collective options increase as options are discovered by robots

and as robots are recruited to evaluate the available options. Site support decreases as robots favoring a site
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spontaneously abandon it, or when a robot favoring a site is inhibited during dissemination and transitions

to the opinion-neutral state. While implementations of Valentini’s model have achieved a stable equilibrium

at consensus for available options (Valentini et al., 2014, 2015; Valentini, 2017), Reina et al.’s (2015b) de-

sign achieves equilibrium when the discovery and recruitment rates are balanced with the abandonment and

inhibition rates, which results in a stable majority favoring the highest valued option (Pais et al., 2013).

Both design strategies are the first modular approaches to opinion-based collective best-of-n decision

making that are generally applicable to numerous scenarios. Several open questions remain that directly affect

future use of these decision making processes for human-collective teams. First, three factors bias collective

decision making accuracy and decision time: option discovery, option cost, and option value (Passino, 2010;

Reina et al., 2015b). These factors refer to the timing of an option’s identification by the collective, the

energy, or resources required to evaluate the option, and the evaluated quality of the option, respectively

(Valentini, 2017; Reina et al., 2015b). Depending upon the system’s goals, one, or more of these factors

is likely to be preferable to the other two. Collective decision making processes are biased in favor of the

options that are discovered early or have a low cost, even when the system’s intent is to favor options of

the highest quality (Reina et al., 2015b; Cody and Adams, 2017b; Crandall et al., 2017; Valentini et al.,

2017). This dissertation proposes the term disparity resilience to describe a collective’s indifference to one

biasing factor when favoring another. Cost disparity resilience, in a scenario requiring the collective to choose

between options based on value alone, is the difference between option costs that the collective will effectively

ignore when making a decision based on option value. Human operators interacting with collective best-of-

n strategies will need to understand the collective’s disparity resilience in order to predict the conditions

that will require human intervention in order to avoid inaccurate decisions due to one or more undesirable

biases. Only a few recent studies demonstrate methods of improving collective disparity resilience (Reina

et al., 2015b; Cody and Adams, 2017b; Valentini, 2017). Reducing the frequency of robot opinion exchanges

improved, but did not eliminate the cost and discovery disparity resilience (Reina et al., 2015b). Another

proposed approach penalizes rapidly discovered options with dissemination delays (Cody and Adams, 2017b)

and nearby options with lower dissemination frequencies (Cody and Adams, 2017b; Valentini, 2017). Second,

option biasing factors are expected to change during the decision process in realistic problem domains. This

problem was explored in ad hoc approaches (Schmickl and Crailsheim, 2008; Campo et al., 2011) and for

task completion decisions (Parker and Zhang, 2010), but not within the context of general best-of-n problems.

Collective vigilance toward changes in an option’s desired metric (e.g., value) establishes the collective’s

responsiveness to the environment and to changes introduced by a human, but has not been fully examined.

Finally, the chosen decision strategy used by individual members of the collective affects decision time and

decision accuracy (Valentini et al., 2015). The implications of accuracy and timing effects of decision making
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strategies suggest a trade-off between the chosen decision making strategy and a human’s workload. The

human is likely to increasingly intervene as collective performance decreases.

II.2.2 Explicit Action Selection in Robotic Collectives

Few robotic studies have explored explicit action selection (Wessnitzer and Melhuish, 2003; Parker and

Zhang, 2009, 2011), which combines collective best-of-n strategies with decision detection mechanisms sim-

ilar to the emigration behaviors described in Chapters II.1.2.3 through II.1.2.5. Collectives that make future

behavior decisions are able to synchronize the completion of a sequence of distinct tasks (Parker and Zhang,

2010) or alter behavior in response to a drastic environmental change (Wessnitzer and Melhuish, 2003). Ex-

plicit action selection enables collective decisions related to future actions and collective task sequencing.

The primary components of an explicit collective action selection strategy include: 1) discrete consensus

achievement strategy, 2) quorum detection, and 3) transition from deliberation to execution.

The first robotic collective capable of explicit action selection required a predatory robotic collective to

hunt and disable two different prey robots in sequence (Wessnitzer and Melhuish, 2003). The predatory col-

lective used a majority-rule consensus process to target one of the prey robots. Once the collective surrounded

the target, the target was artificially immobilized. Robots detecting that the prey had stopped moving emitted

a hormone-inspired message that propagated through the swarm, increasing in strength when received by

robots that also detected the immobilized prey. The message contained a timer that enabled the collective’s

synchronized target switching. The algorithm’s effectiveness was demonstrated in simulations with robot

collectives with up to 50 robots and hardware experiments with five robots. Although explicit action selec-

tion was achieved, the predatory collective randomly selected its target without considering either an intrinsic

target value or environmental cost.

The first explicit action selection experiment to consider intrinsic option values was directly inspired

by the Apis mellifera honeybee (Seeley, 1982; Seeley and Buhrman, 2001) and Temnothorax albipennis ant

(Mallon et al., 2001) emigration strategies (Parker and Zhang, 2009). During the consensus achievement

process, robots used a queue of voting messages to monitor the number of recently encountered robots that

shared their opinion. Robots detected a quorum when the ratio of agreeing votes was greater than or equal to

the given threshold, called the quorum threshold. Robots that sensed a quorum immediately transitioned to a

committed state and began transmitting commit messages. Recipients of commit messages acknowledged the

message when the recipient joined the committed population, otherwise the robot was silent. Finally, com-

mitted robots transitioned to a finished state when they failed to receive acknowledgments after a predefined

timer expired. Simulations and experiments with up to 15 robots achieved 80% accuracy in choosing the

better of the two available options and reached a consensus in every trial. Increasing the quorum threshold
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decreased the probability of a falsely detected quorum, increased decision accuracy, and increased decision

time.

One challenge that the approach faced was large convergence times when the collective had to choose

between options of equal value (Parker and Zhang, 2011). Choosing between equally valued options is a

common challenge and a critical ability for collectives, which is called symmetry breaking (Hamann et al.,

2012). Without centralized coordination, a collective is unable to simply make a random selection between

available options. Biological and artificial collectives break symmetry when their positive feedback mecha-

nisms amplify errors in option assessments and interactions, which drives a random decision between equally

valued options (Hamann et al., 2012). A frustration mechanism was introduced that increased a robot’s re-

cruitment probability every time the robot failed to recruit a neighbor, due to the neighbor already sharing the

first robot’s opinion (Parker and Zhang, 2011). Analysis of the frustrated model revealed that this mechanism

was sufficient to enable the collective to break symmetry when necessary.

The previously described decision making strategy was also used as a mechanism for solving the unary

decision problem, in which a collective executing a task decides when the current task is complete and tran-

sitions to the next task (Parker and Zhang, 2010). The collective used quorum detection to decide between

continuing the current task or initiating the next task (Parker and Zhang, 2010). Quorum detection noise was

identified as an important consideration in determining an appropriate quorum threshold for the collective

(Parker and Zhang, 2009, 2010). Duplicate quorum detection interactions and poor population mixing con-

tribute to quorum detection noise (Parker and Zhang, 2010). The proposed solutions to the problem included

selecting quorum thresholds and queue lengths sufficient to account for duplicated information, or delay agent

interactions in order to reduce the likelihood of quorum detection noise (Parker and Zhang, 2010). Methods

of determining the probability of quorum detection noise, or the necessary delay period were not defined, or

evaluated.

These initial investigations of collective explicit action selection offer numerous directions for future re-

search, with and without human interaction. First, it is unclear what mechanisms ensure quorum accuracy,

which compares the quorum threshold to the actual percentage of the population supporting a chosen action

when a decision is detected. False quorum detections, which result from poor quorum accuracy, reduce de-

cision accuracy (Parker and Zhang, 2009) and risk fragmenting the collective when simultaneous quorum

detections occur for competing options (Cody and Adams, 2017a). Although false quorum detection proba-

bility is low (Parker and Zhang, 2009), the probability of such an outcome increases with population size and

robot interaction frequency (Cody and Adams, 2017a; Parker and Zhang, 2010). Both sources of biological

inspiration for Parker and Zhang’s strategy occasionally fragment, which results in either a costly recovery

process (Pratt and Sumpter, 2006) or irreparable dispersion (Seeley, 2010). Mechanisms to resist and recover
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Topic Research Question

Implicit Action
Selection

How can disparity resilience be improved in collective best-of-n decisions?

How responsive are implicit action selection strategies to changes in option
quality?

How do different individual decision techniques affect implicit action selec-
tion performance?

How does environmental bias influence the maximum number of options in
collective action selection problem?

Explicit Action
Selection

How can the probability of collective fragmentation be reduced?

What mechanisms enable collectives to recover from fragmentation?

What effect do quorum detection noise reduction strategies have on collective
decision speed?

How effective is explicit collective action selection when the collective must
move between decisions?

Table II.1: Open research questions for robotic collective action selection strategies.

from collective fragmentation remain an open area of research. Poor quorum accuracy and fragmenting are

critical concerns to future human-collective interactions. False quorum sensing reduces the ability of the

human to predict when the collective will alter behavior or make a decision. Inadvertent collective fragmen-

tation will require the human to manage different groups, which will increase the human’s workload and

potentially detract from the human-collective’s original task.

A similar problem arises when using explicit action selection in task sequencing (Parker and Zhang,

2011). Neglect benevolence is the concept that swarm performance often improves if human input is delayed

(Walker et al., 2012a), which also applies to explicit action selection. This dissertation proposes that a trade-

off exists between the speed of a collective’s transition from action deliberation to action execution and the

likelihood that the collective fragments. Collective fragmentation is more likely when the collective rapidly

transitions from deliberation to execution prior to all robots being informed of the collective’s decision. Future

human-collective teams must respect the collective’s instability during this transition and delay human input

in order to avoid losing robots or fragmenting the collective prior to execution.
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II.2.3 Summary

Robotic collective decision making enables large decentralized groups of relatively simple systems to respond

to changes within the collective’s environment. These decision behaviors, which include combined (e.g., task

allocation) and either continuous (e.g., flocking) or discrete (e.g., nest site selection) decision making, remain

active research areas in the field of robotic collectives. This review examined the state of the art for implicit

and explicit action selection in robotic collectives. Several open research questions for each of these behaviors

are summarized in Table II.1.

Most implicit action selection strategies focus on decisions between a limited number of statically valued

options, without any consideration of negative environmental bias (Valentini et al., 2017). Understanding

disparity resilience in implicit action selection strategies will enable future collectives to prioritize and reduce

the relative influence of biasing environmental factors. This capability is particularly important when the

collective is subject to human supervision and its priorities must be adjusted based on changing requirements.

Opinion-based models have not been evaluated under conditions of dynamically changing option qualities.

The vigilance of implicit action selection strategies to changing option qualities is important to understand,

since robotic collectives must be able to operate under changing conditions. Different individual decision

making techniques (e.g., majority rule (Castellano et al., 2009)) affect decision speed and accuracy (Valentini

et al., 2015), but have not been compared in scenarios for which options are discovered during decision

making. Finally, implicit action selection strategies have only been evaluated with a small number of available

options (Valentini et al., 2017). Since collectives have a finite population size, there is an expected limit to

the number of options the collective is able to reasonably consider at a given time. Some research into this

problem has been conducted (Reina et al., 2017), but this limit is expected to also be affected by the existing

environmental bias. The number of options a collective is capable of handling will likely change depending

upon the actual cost of the available options.

Research related to explicit collective action selection remains limited, but current efforts have revealed

numerous areas that require further investigation. Quorum thresholds and quorum detecting mechanisms

control the speed and accuracy of decisions; however, false quorum detection has the potential to fragment

the collective. Collective fragmentation has been observed in biological collectives (Seeley, 2010; Pratt and

Sumpter, 2006), but has not been evaluated in robotic collectives. The possibility of collective fragmentation

limits the use of the quorum threshold to control decision speed and accuracy, since lowering the quorum

threshold is expected to increase the probability of collective fragmentation. Future investigation of mech-

anisms to recover from and reduce the likelihood of collective fragmentation is necessary to mitigate this

risk. Reducing quorum detection noise is another open research area. Increasing the period between robot
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interactions (Parker and Zhang, 2010), or using agent identification to discard duplicate messages (Hamar

and Dove, 2012) have each been proposed, but not evaluated in explicit action selection research. Finally,

existing explicit collective action selection strategies have not been evaluated in a series of decisions, or in

situations that require the collective to change its location (Parker and Zhang, 2010). Collectives that change

location between decisions are more likely to fragment by leaving portions of the collective behind. De-

sign and evaluation of systems capable of sequential decisions will establish whether these systems can be

expected to operate for long periods of time and in large areas.

II.3 Human Interaction with Collective Decision-Making and Action Selection

Defining human-collective interaction requires exploring collective autonomy, transparency, and control. Two

existing studies consider human-collective interaction in task allocation (Coppin and Legras, 2012) and site

selection (Crandall et al., 2017), but several of the strategies described in Chapters II.2.1 and II.2.2 have yet

to be considered for human interaction with a collective. Considerably more work has been conducted in

swarm autonomy (Walker et al., 2013; Coppin and Legras, 2012), transparency (Walker et al., 2016; Adams

et al., 2018) and control (Kolling et al., 2016), which serves as a starting point for identifying the unique chal-

lenges of human-collective interaction. Collectives make group decisions about current (see Chapter II.2.1)

and future (see Chapter II.2.2) behaviors based on often unobservable and complex collective decision mak-

ing dynamics. The advantage of collective decision making processes is that when humans and collectives

have similar assessment requirements for the available options, the collective is capable of recommending

solutions to the human or making independent decisions. The complex dynamics of collective action selec-

tion strategies introduce the need to provide human operators with transparency into the collective reasoning

(Adams et al., 2018; Chen et al., 2017) and control mechanisms in order to interact with both the physical

(Kolling et al., 2016) and decision making (Crandall et al., 2017) behaviors.

II.3.1 Collective Autonomy

Relatively little research has investigated levels of autonomy in human interaction with collectives (Adams

et al., 2018; Crandall et al., 2017; Coppin and Legras, 2012). The levels of autonomy (Sheridan and Verplank,

1978) were intended to describe the independence of a computer teamed with a human, which range from

the lowest level in which the human makes all decisions, to the highest level in which the computer makes all

decisions. Other levels of autonomy have been proposed (e.g., Proud et al., 2003) and researchers have since

examined different autonomy levels for specific decision making functions (e.g., Parasuraman et al., 2000;

Endsley and Kaber, 1999) as well as methods of adaptable autonomy (e.g., Coppin and Legras, 2012). The

following open research questions are considered:
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- What levels of autonomy are available for human interaction with collective action selection?

- What collective action selection features enable low, intermediate, and high levels of autonomy for

adaptive human-collective interaction?

- What evaluation criteria assist designers in determining an appropriate level of autonomy for different

collective action selection strategies?

The initial focus is on the first two questions by identifying the possible levels of autonomy for collective

action selection and comparing these to the limited existing human-collective interaction research. The last

question is answered by examining the known limitations of collective action selection strategies described in

Chapters II.2.1 and II.2.2 in order to recommend evaluation criteria to enable humans to determine appropriate

levels of autonomy.

II.3.1.1 Existing Research in Swarm and Collective Autonomy

Human operators in existing human-swarm interaction research often rely on highly independent swarm

behaviors in order to search (Walker et al., 2012a; Goodrich et al., 2011; Walker et al., 2013), cover (Kira

and Potter, 2009; Jung and Goodrich, 2013; Jung et al., 2013), or traverse (Nagavalli et al., 2017) an area.

These analyses require the human to interpret information from the swarm and make decisions about the

swarm’s current and future behavior, including which target to choose (Goodrich et al., 2011), formation

to adopt (Kira and Potter, 2009), or path to take (Nagavalli et al., 2017). Some human-swarm interaction

research has begun to examine different levels of autonomy in human-swarm teams (Kolling et al., 2016).

One proposed approach permitted the human to switch between high and low levels of robot autonomy in

order to accomplish a target search (Walker et al., 2013). At high autonomy, robots independently approached

targets and avoided obstacles or other robots. At low autonomy, humans selected robots in the swarm and

directed them to travel to a specific location. Humans that used a mixture of high and low individual autonomy

achieved the highest performance levels (Walker et al., 2013). High individual robot autonomy allows humans

to issue sequences of commands to the swarm as long as the human respects neglect benevolence (see Chapter

II.2.2) and delays input of new commands in order to improve the swarm’s performance (Walker et al., 2012a).

Assuming that optimal human input times are calculated separately (Walker et al., 2012a), a recent algorithm

determines the optimal command sequence to transition a swarm from an initial state to a desired goal state

(Nagavalli et al., 2017). Future use of the algorithm is expected to assist humans in determining the order and

timing of their control. One of the disadvantages of current human-swarm interaction studies is that humans

must independently make all decisions about the swarm’s future activity, often choosing from a finite set of

available options.
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Existing human-collective interaction research has demonstrated potential benefits of shared-control, in

which the human and the collective each participate in the decision making process that affects the collective’s

current and future behaviors (Coppin and Legras, 2012; Crandall et al., 2017). Only two studies examine hu-

man interaction with collective decision making strategies (Coppin and Legras, 2012; Crandall et al., 2017).

The first provides an interface to coordinate collaborative task allocation for human-collective defense of a

simulated military installation (Coppin and Legras, 2012). The robotic collective and a group of humans

shared a virtual pheromone map that ensured perceived environmental changes were rapidly shared with all

team members. Global access to the virtual pheromone map enabled the humans and robots to make individ-

ual decisions about future tasks that implicitly considered all information available to the human-collective

team. Human interaction was unnecessary for routine patrolling, but did improve the human-collective team’s

performance during the more difficult task of intercepting simulated intruders. An autonomy spectrum was

introduced in order to describe multiple autonomy levels for each robot task and provide pathways connect-

ing these levels to give humans the ability to quickly alter the system’s autonomy during complex missions

(Coppin and Legras, 2012). Task allocation is a combined decision making strategy (see Chapter II.1.1). Un-

like best-of-n decisions, the collective decision results in a desirable distribution of robots executing various

missions, rather than executing the same task.

The second study (Crandall et al., 2017) introduced the concept of shared control in human-collective

teams making best-of-n decisions. The authors designed and evaluated a simulated hub-based colony using

a honeybee nest site selection behavior (Nevai et al., 2010). Quorum detection and commitment mechanisms

were used to transition the swarm from deliberation to execution following a decision, similar to Parker and

Zhang’s (2009) approach. It was suggested that a trade-off exists between the system’s fault-tolerance and

direct human control (e.g., increasing human control decreases system fault tolerance). A variety of control

mechanisms and a preliminary user interface design were proposed. Unlike the robotic collective best-of-

n studies in Chapters II.2.1 and II.2.2, Crandall et al. (2017) evaluated the collective in an environment

containing obstacles, traps, and rough terrain. The collective made accurate decisions in many cases, but

struggled to choose the best site available when a mediocre site was closer to the collective’s decision making

hub, which is consistent with previous observations of similar strategies (Valentini et al., 2017; Reina et al.,

2015b). Methods were proposed to overcome the collective’s limitations and inject global information into

the human-collective decision making process, but the proposed mechanisms and interface have not been

evaluated.
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Function Level of Autonomy Action Selection Features

Acquire Low: Human directs exploration and
evaluation of options.

Alter collective environment,
individual exploration and
evaluation behavior, and introduce
or eliminate available options.

High: Collective identifies and evaluates
options.

Analyze Low: Human compares the identified op-
tions and reduces those considered.

Alter exploration activities. Alter
direct (option-based) and indirect
(environment-based) modulation.

High: Collective compares options, re-
ducing the available set and con-
verging to a single option.

Decide Low: Human makes a decision for the
collective.

(Explicit Only) Alter quorum
threshold, trigger individual robot
quorum detection, extend/reduce
decision dissemination.

High: Collective makes an independent
decision.

Implement Low: Human initiates chosen activity. (Explicit Only) Expedite, delay,
and initiate collective transition to
execution.High: Collective initiates chosen activity.

Table II.2: A summary of the different levels of collective autonomy and mechanisms that permit human
control of a collective for each decision-making function described by Parasuraman et al. (2000).

II.3.1.2 Collective Action Selection Autonomy

The shared control approach (Crandall et al., 2017) is applicable to a wide variety of the previously described

implicit and explicit action selection strategies. These strategies offer different levels of autonomy for the

decision making functions: information acquisition, information analysis, decision and action selection, and

action implementation (Parasuraman et al., 2000). Table II.2 summarizes the decision making functions,

descriptions of collective autonomy levels, and features of collective action selection that permit different

levels of human-collective interaction. Information acquisition is the gathering and filtering of sensory data,

while information analysis integrates and interprets the acquired information and performs predictive analysis

of various available actions, which results in a final set of options (Parasuraman et al., 2000). The decision and

action selection function is the choice of one of the available actions identified during information analysis,

while action implementation is the chosen action’s initiation and completion (Parasuraman et al., 2000).

Implicit and explicit collective action selection strategies complete each of these decision making functions

in different ways. Features of each collective action selection behavior enable the human to adapt collective

levels of autonomy, which has been shown to improve performance (Walker et al., 2013; Coppin and Legras,
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2012).

The exploration and dissemination states in collective best-of-n strategies provide capabilities that are

similar to information acquisition and analysis. Exploring robots interpret raw sensory data in order to iden-

tify and evaluate options, which provides rudimentary assessment of each option’s value to the collective’s

actions (Valentini, 2017). The disseminating state in collective best-of-n strategies performs limited informa-

tion analysis by comparing available options, promoting further evaluation of the most valuable options, and

convergence to the best one. Although very few collective decision strategy studies consider more than two

options (Valentini et al., 2017), the biological processes that inspire these strategies often reduce the number

of available options to the most promising set (Seeley, 2010; Mallon et al., 2001). Implicit action selection

accomplishes decision and action implementation concurrently with information acquisition and analysis.

Exploring robots identify and execute available actions, while disseminating robots compare these actions in

order to drive convergence to the best action. Human interaction with implicit action selection is; therefore,

limited to these two functions even though all four decision making functions are accomplished.

Features of implicit collective action selection permit a variety of low to high levels of autonomy for in-

formation acquisition and analysis. At a low level of information acquisition autonomy, as indicated in Table

II.2, the human directly controls the collective’s available options, search space, option values, option costs,

and search behaviors. The influence of these types of control decrease as more responsibility is shifted to the

collective at higher levels of autonomy. Human influence during information analysis alters individual robot

direct and indirect behavior modulation (see Chapter II.2.1) in order to alter the collective’s comparison of

available options. The identification and development of disparity resilience mechanisms in collective action

selection strategies will enable humans to adjust actively the relative importance of discovery time, option

cost, and option value in decision making strategies (see Chapter II.2.1). Further, manipulating the robots’

rate of transition between exploration and dissemination enables the human-collective team to prioritize be-

tween information acquisition and analysis.

Explicit collective action selection separates information acquisition and analysis from the decision and

action implementation functions. Individual robots initiate a collective decision when they detect that an

available option has gained enough support, according to the collective’s decision detection strategy (e.g., a

change in the environment (Wessnitzer and Melhuish, 2003; Parker and Zhang, 2010) or quorum detection

(Parker and Zhang, 2009)). Existing explicit collective action selection studies require the robots detecting

that a decision has been reached to disseminate this information throughout the collective (e.g., using a

decision message (Wessnitzer and Melhuish, 2003) or a separate decision state (Parker and Zhang, 2009)).

Once the collective has reached a decision, it transitions to execution, which has been accomplished using

timers (Wessnitzer and Melhuish, 2003; Parker and Zhang, 2009; Crandall et al., 2017), although sequential
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quorum detecting states are also possible (Parker and Zhang, 2010; Cody and Adams, 2017a).

The decision detection mechanisms characteristic of explicit action selection strategies control the du-

ration of the first two decision making functions (see Chapter II.2.2). Introducing controls to manipulate

decision detection mechanisms enables the human to initiate, delay, or expedite the collective information

acquisition and analysis, which provides human control over the speed and accuracy of the decision making

process (Parker and Zhang, 2009). Explicit action selection also permits manipulation of the collective’s deci-

sion function. At low autonomy levels, the human decides between the options identified during information

analysis without input from the collective. As the level of autonomy increases, the computer system nar-

rows the number of options considered by the human (Sheridan and Verplank, 1978). Providing intermediate

autonomy levels to the decision function in collectives will either be accomplished by reducing the options

during information analysis or by altering the decision detection mechanism, possibly by lowering the quo-

rum threshold, in order to permit agents to detect the desired level of support for a variety of options that

the human considers in the final decision. The decision dissemination process is another possible mechanism

that when used by the human provides an increase or decrease in the speed of transition between reaching a

decision and executing that decision. Finally, different autonomy levels exist for the initiation of the chosen

action. At low autonomy, the collective waits for a signal from the human to initiate the chosen action. At

higher autonomy levels, the collective delays execution, which provides the human with time to intervene

prior to execution or implements the action independent of human input.

Determining the appropriate level of autonomy for human interaction with collective action selection de-

pends upon the collective best-of-n strategy, the types of options considered, and features of the collective’s

environment. Human operators will need to exert more control over the collective’s behavior when the collec-

tive is likely to make an incorrect decision, or waste an excessive amount of resources or time when making

a decision. Collective best-of-n decision making strategies are subject to the existing trade-off between de-

cision speed and decision accuracy (Valentini et al., 2015) and the existence of undesirable biases (e.g., the

distance from the decision making hub to a site (Reina et al., 2015b)). Finally, collective vigilance describes

the collective’s responsiveness to changes in the environment and human input (see Chapter II.2.1). A hu-

man who understands the strategy’s expected decision speed, accuracy, disparity resilience, and vigilance

will be better prepared to make decisions about appropriate levels of collective autonomy and intervene in

order to improve the human-collective team’s performance. Existing honeybee nest site selection inspired

models (Crandall et al., 2017; Reina et al., 2015b) have limited resilience to distance and discovery time

disparity, which means they are more likely to pick a closer mediocre site than a more distant optimal one

(Crandall et al., 2017; Nevai et al., 2010). An informed human operator will reduce collective autonomy

when a promising option is discovered late in the decision process or a promising option exists at the edge of
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the collective’s search space. Similarly, understanding the collective’s vigilance to environmental change or

human input informs the human as to how much effort is required to alter the collective’s decision process,

when a change is deemed necessary. Greater collective vigilance implies that the collective responds rapidly

to environmental changes and needs little human input to adjust to these changes. Lower vigilance means

the human must increase the control exerted in order to overcome the collective’s inertia to change. These

metrics are only useful if the human receives enough information from the collective to understand the col-

lective’s state, its estimate of the environment, and its evaluation of available options. Providing information

about the collective action selection process to the human is largely an open research area that is described

further in Chapter II.3.2, but it critically influences human autonomy decisions and future performance of

human-collective teams.

II.3.2 Collective Transparency

Human operators must understand the robot’s current and future performance, reasoning, and intent in order

to determine an appropriate level of trust (Chen et al., 2016). The ability of an interface to support a human’s

understanding of autonomous robots is known as transparency (Chen et al., 2017). Swarm transparency con-

sists of assisting the human to understand the swarm’s current and future physical states, which is challenging

when communication limitations restrict the information the human receives from the swarm (Adams et al.,

2018). The following questions address the challenges of collective transparency:

- What are the sources of uncertainty for collective action selection?

- How do decision making hubs improve collective action selection transparency?

- What visualization techniques improve collective action selection transparency?

- What are the communication requirements for collective action selection transparency?

- What techniques enable understanding of collective reasoning and past decisions?

Collective transparency extends swarm transparency to include intent, current and future collective decision

making states, and explanations for past decisions (Adams et al., 2018). Additionally, collective explicit

action selection introduces the need for human operators to understand sudden collective behavior changes.

Collective decision making dynamics are complex and influenced by robot and environmental features that

are not necessarily visible to the human (see Chapters II.2.1 and II.2.2). While collective information pooling

behaviors can ease collective physical and decision making state estimation (Crandall et al., 2017), exploiting

this behavior to best provide transparency remains an open research question.
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The presented questions are examined by identifying known challenges in achieving swarm transparency

and applying the presented topics to collective action selection transparency. Sources of uncertainty for

human-collective interaction are introduced, which is used to frame directions for possible research in reduc-

ing uncertainty and improving transparency for collective action selection.

II.3.2.1 Sources of Uncertainty in Collective Action Selection

Both swarms and collectives are characterized by global behaviors that emerge from local interactions, which

presents two immediate challenges to transparency. First, it is very unlikely that humans will receive physi-

cal state or command acknowledgment from every individual robot in either a swarm or a collective, so the

emergent system state must be estimated from available information (Adams et al., 2018). Second, even with

100% complete information, humans have a limited ability to perceive emergent behavior in spatial swarms

(Seiffert et al., 2015). Three different types of uncertainty exist in human-swarm interaction: physical, vir-

tual, and compound (Hayes and Adams, 2014). Physical uncertainty includes the limitations humans face

when interpreting noisy information about swarm behaviors. Human visual perception of biological swarm

movements can distinguish swarm movements from random movements, even under noisy conditions, but

this perception capability is less reliable than human perception of rigid body motion under similar condi-

tions (Seiffert et al., 2015). Virtual state uncertainty represents the unobservable aspects of the swarm state,

including leadership and information flow at the swarm and individual swarm member level. Finally, com-

pound uncertainty is the simultaneous presence of both virtual and physical sources of uncertainty (Hayes

and Adams, 2014).

Collective action selection requires extending the human-swarm interaction sources of uncertainty. Phys-

ical uncertainty in swarms is often reduced by exploiting the fact that robots are directly influenced by their

neighbors (e.g., flocking (Goodrich et al., 2011; Walker et al., 2014) and incorporation of pattern formation

(Kira and Potter, 2009)). Individual robots in collective action selection are less influenced by neighbor’s

proximity than by their internal states or opinions, which result in heterogeneous behaviors throughout the

collective (Reina et al., 2015b; Scheidler et al., 2016). No human-collective studies have examined human

perception of collective action selection, which means that predicting the required information to enable a

human to understand the collective’s physical state remains an open research question. It is expected that due

to heterogeneous behaviors in collectives, humans will need more information from the collective’s mem-

bers and environment than is necessary for spatial swarms in order to understand the collective’s physical

state. Virtual uncertainty in collectives depends upon the human’s ability to infer the collective’s support

for various options through observation. Perceiving the collective’s decision making state will also depend

upon how much of the environment and the collective’s population is available to the human, either through
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direct observation or as viewed on an interface. Perception of the collective’s state in a collective shortest

path problem (Scheidler et al., 2016) requires the human to have access to the available paths and the relative

number of robots traveling those paths over time. Acquiring this information through physical observation

entails observing a large portion of the collective’s space. Finally, compound uncertainty for collective ac-

tion selection is complicated by the susceptibility of the decision processes to undesirable biases that alter

individual and collective performance, either by changing collective opinion away from a desired choice, or

by altering the time required for the collective to make a decision (see Chapter II.2.1). An example of the

effect of environmental bias on collective action selection is a simple site selection scenario in which the

human is unaware that an optimal site is partially occluded by an obstacle. Prior research showed that the

collective is expected to either select the optimal site after a longer than expected convergence time or choose

a suboptimal site (Reina et al., 2015b; Cody and Adams, 2017b). Finally, explicit action selection introduces

collective behavior transitions, caused by internal robot state changes, that are not easily inferred from the

physical states of the robots.

II.3.2.2 Reducing Uncertainty in Collective Action Selection

The two collective studies described in Chapter II.3.1 offer approaches to reducing uncertainty and providing

transparency for human-collective interaction. The task allocation study (Coppin and Legras, 2012) estab-

lished transparency with strong assumptions regarding the system’s communication capabilities. Physical

robot states and the virtual pheromone levels affecting individual decision making were readily visible to

humans due to the universally shared virtual pheromone map (Coppin and Legras, 2012). Human perception

of collective performance was error prone, even with near-perfect shared information between the humans

and the collective (Coppin and Legras, 2012).

The site selection interface restricts human communication to a concentrated decision making hub (Cran-

dall et al., 2017). This approach is advantageous if the robot interactions are well-mixed (see Chapter II.2.1)

and restricted to the hub, as sampling the states and opinions of robots within the hub will enable an estimate

of the collective’s overall exploration and decision making behaviors (Crandall et al., 2017). Further, if the

hub is smaller than the collective search space, the communication requirements throughout the collective’s

search space are reduced. A radial display, focused on the decision making hub, was proposed to provide

information about the relative distribution of the robots within the environment as well as values of known

options (Crandall et al., 2017). This information provides the human with estimates of the collective’s cur-

rent state and indicates projected states for individual robots. The use of the decision making hub to enhance

collective transparency introduces a well known trade-off between the number of observable robots and the

length of observation time required to make an accurate state estimation (Brown et al., 2016). State estima-
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tion accuracy is limited by the size of the decision making hub and the expected number of robots within the

hub at any given time. Increasing the size of the hub and the available robots decreases the time to determine

a state estimation, increases the estimation’s accuracy, and increases the communication requirements neces-

sary to receive information from the hub. While the interface is promising, it does not readily apply to action

selection strategies with mobile collectives (e.g., collective target tracking (Wessnitzer and Melhuish, 2003))

or those whose decision making hubs are similar in size to the collective’s search space (Parker and Zhang,

2009, 2010).

Each of these strategies requires representations of the collective location within the environment, along

with a similar abstraction of the relative support for each of the collective’s options. A recent study evaluated

different visualization techniques with flocking, dispersing, and aggregating swarms and determined that hu-

mans were equally capable of understanding current and future swarm state using either a full representation

of the swarm (e.g., consisting of all individual member positions) or a combination of an enclosing ellipse

with a center point (Walker et al., 2016). Collective action selection transparency is likely to benefit from

a similar enclosing ellipse, along with an overlaid visual representation of the collective’s decision making

state (e.g., a collective opinion centroid that moves between available opinions).

The previously described approaches to reducing uncertainty in collective action selection primarily ad-

dress the system’s current physical and decision making states, but offer little information about the rationale

for a given state, projected future states, and reasoning behind prior decisions. Implicit and explicit action

selection offer different possible solutions. An individual robot in collective implicit action selection does

not necessarily know that it is executing the best available action or have any other information regarding

the collective’s decision making state. A simple classifier has been shown to be effective for determining

spatial swarm states from limited observation of a small number of individual robots (Brown et al., 2016). A

similar approach, in which a collective’s population is sampled based on their location in the environment,

is likely to improve the collective’s physical and decision making state estimates when robot behaviors be-

tween options are observably different. Although explicit action selection is more complicated than implicit

action selection, due to its collective behavior transitions (Adams et al., 2018), its use of decision detection

mechanisms provides individual robots with basic estimates of collective state (Parker and Zhang, 2009).

Under the assumption of well-mixed robot interactions, a sampling of quorum information from robots will

provide an estimate of option strength for the current decision. Once a decision is detected, information re-

garding the decision is communicated throughout the collective in order to prepare it to transition behaviors,

which provides individual robots with information regarding the previous decision outcome. This informa-

tion is valuable, in that it offers the ability to estimate option comparison and decision trends, but it does not

capture information related to a collective’s failure to select a particular option. Running estimates of cost
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and discovery time disparity between options will likely provide some insight into these situations, but this

capability is not described by current collective action selection strategies. The degree to which individual

robot behaviors and capabilities, as well as communication requirements must be altered in order to achieve

reasonable running estimates of collective disparity resilience remains an open research question.

II.3.3 Collective Control

Control mechanisms are the focus of several human-swarm interaction evaluations, as indicated by recent

surveys (Coppin and Legras, 2012; Kolling et al., 2016), but have only recently been applied to human

interaction with collective action selection strategies (Crandall et al., 2017). Interactions with physical robot

states, such as reducing or increasing robot exploration behaviors, are likely to be similar to mechanisms

used to control spatial swarm behaviors (e.g., placing attracting or repelling beacons (Kolling et al., 2013;

Crandall et al., 2017) or adjust exploration parameters (Kira and Potter, 2009; Crandall et al., 2017)). The

collective decision strategies rely on positive feedback mechanisms that are related to the strength of available

opinions and the existing bias within the environment (Valentini, 2017). The strength of the positive feedback;

therefore, differs depending upon which option the human intends to promote or reduce within the collective.

Several open research questions remain for human control over collective action selection:

- What control mechanisms enable human control over the collective action selection’s physical and

decision making states?

- How do communication considerations alter control mechanisms for collective action selection?

- How does the concept of neglect benevolence apply to collective action selection?

A recent human-swarm interaction survey provides a description of the current control mechanisms used

to enable humans to influence spatial swarm behaviors (Kolling et al., 2016). Some of these mechanisms

have been recently considered, though not evaluated, for human-interaction with collective action selection

in a site selection scenario (Crandall et al., 2017). The existing human-swarm and human-collective control

mechanisms are applied to the collective action selection strategies described in Chapters II.2.1 and II.2.2.

Consideration is given to the practical use of the proposed mechanisms, which depends upon human under-

standing of the collective’s underlying dynamics and the communication requirements for implementing the

desired controls. Finally, the concept of neglect benevolence is applied to collective action selection in order

to identify risks associated with poorly timed human input. Table II.3 provides a summary of the existing

spatial swarm control mechanisms that are considered for application to future interaction with collective

action selection strategies.
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Control Swarm Description Collective Action Selection

Parameter Setting Adjust parameter values to change
swarm behavior.

Adjust exploration and dissemina-
tion ∗, quorum sensing, and dispar-
ity resilience parameters.

Behavior/Algorithm
Selection

Direct execution of preprogrammed
behaviors.

Direct exploration, alter option sup-
port, alter decision detection.

Environment
Influence

Adjust features in the environment
to cause behavior change.

Alter collective search space and
modify option evaluation ∗.

Playbook Develop and validate a plan com-
posed of human-robot understood
plays (not yet implemented with
swarms).

Switch collective behaviors ∗; en-
able and disable considered com-
plex behaviors.

Leader Selection Exerts influence through proxy
swarm members, or unique external
agents.

Guide exploration; manipulate de-
liberation; human-operator as col-
lective member.

Table II.3: A combination of control strategies for swarms (Kolling et al., 2016) and collectives (Crandall
et al., 2017; Coppin and Legras, 2012) are extended to the collective implicit and explicit action selection
strategies. Each control strategy considered in the current site selection study is identified by the ∗ symbol.

II.3.3.1 Parameter Setting

Both spatial swarm and collective action selection behaviors typically emerge as a result of complex in-

teractions between individual robots (Brown et al., 2016). Humans with the ability to manipulate various

parameters can influence group behaviors by altering how the robots interact with each other and the environ-

ment (Kolling et al., 2016). This control mechanism is most effective when the human has global access to

the spatial swarm (Kira and Potter, 2009), but it is typically of limited use when the human lacks global ac-

cess to the swarm (Kolling et al., 2016) or lacks understanding of the underlying system dynamics (Crandall

et al., 2017). The use of parameter settings in collective action selection scenarios requires that the human

understand the collective’s physical and decision making behavior dynamics. Parameter setting was proposed

for site selection scenarios in order to control the robot’s direction of exploration when leaving the decision

making hub and the transition rate between exploration and dissemination states (Crandall et al., 2017). The

advantage of the decision making hub is that every robot periodically returns to the hub during the decision

making process associated with most collective action selection strategies (see Chapter II.2.1). Parameter ad-

justments that are persistently transmitted to the decision making hub are likely, but not guaranteed, to affect

the parameters of most robots within the collective. Several other parameters for consideration include ran-

dom walk parameters for exploration (e.g., range and duration), disseminating state modulation parameters
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(e.g., option evaluation criteria), and quorum threshold values, which determine the duration and accuracy of

the decision process in explicit action selection strategies. Additionally, if the human can manipulate a col-

lective’s disparity resilience (see Chapter II.2.1), it is possible to dynamically adjust the collective’s decision

making priorities between option value, option cost, and option discovery. Adjusting any of the described

parameters changes how the collective explores its environment and compares the discovered options, but

there are two primary disadvantages to this approach. First, humans are required to understand the under-

lying system dynamics in order to effectively alter parameters (Crandall et al., 2017). Second, if parameter

adjustments are not applied to the entire collective, then heterogeneous behaviors are introduced. These dis-

advantages are a primary reason that parameter adjustment is often limited to system design (Kolling et al.,

2016).

II.3.3.2 Behavior and Algorithm Selection

Behavior and algorithm selection is a control mechanism that requires humans to select a subset of members

within the swarm, or collective, and direct them to either change their behaviors or alter the algorithm used

for interaction with robots and the environment (Coppin and Legras, 2012; Kolling et al., 2016). This control

mechanism is common in swarm interactions, although it is typically reserved for scenarios in which the

human desires to change the behavior of a subset of the swarm (Kolling et al., 2013; Walker et al., 2013).

Behavior selection can potentially be very useful in collective action selection (e.g., different sites or paths).

The information pooling that occurs during collective action selection means that if agents are commanded

to support a known option, investigate a location for possible options, or abandon an option, the influence

on the collective decision strategy is likely to expand beyond the selected individual agents. One example of

this type of interaction is the introduction of a new path in a collective shortest path problem. A new path

discovered late in a collective action selection scenario is unlikely to be chosen by the collective (Scheidler

et al., 2016). The human can encourage the collective to select the new path by commanding robots, possibly

within the decision making hub, to abandon their current path and investigate the new path. A combination of

these activities reduces the strength of the collective’s support for the former path and exploits the system’s

positive feedback to promote the new path. This mechanism still requires the human to understand the

collective’s decision making dynamics, but it does not introduce inconsistent parameters and is unlikely to

require the human to interact with most of the collective’s individuals.

II.3.3.3 Environmental Control

Environmental control mechanisms refer to any physical or virtual manipulation of environmental features

that cause a swarm, or collective, to react in a predictable manner (Kolling et al., 2016). Examples of envi-
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ronmental control include the use of virtual pheromones to alter individual behavior decisions (Coppin and

Legras, 2012) and the placement of beacons to cause behavior changes to robots within a beacon’s range

(Kolling et al., 2013). The use of attracting and repelling environmental controls was recently recommended

as a means of encouraging and discouraging exploration in certain areas of the collective’s environment

(Crandall et al., 2017). These strategies are often persistent (Kolling et al., 2013) or semi-persistent (Crandall

et al., 2017; Coppin and Legras, 2012), which potentially reduces the number of human interactions required

to result in the desired behavior. Physical changes to the collective’s environment requires either a human

or another robot to travel to a specific location and alter it in a desired manner. This type of interaction can

be useful when humans are in close proximity to the collective (Alboul et al., 2008), but it is often undesir-

able to require physical adjustment to the environment when remotely controlling a collective (Kolling et al.,

2016). Virtual environment manipulation introduces the challenge of distributing and sharing virtual environ-

ment information and is often achieved using global access to an environmental map (Kira and Potter, 2009;

Coppin and Legras, 2012). Available communication latency, bandwidth and range are likely to restrict the

human-collective team’s ability to globally share this type of information. These challenges increase the like-

lihood that individual robots will operate with outdated environmental information. While it is conceivable

that the human-collective interface can provide virtual environment updates to the robots entering or exiting

the decision-making hub, the limitations of this approach’s effectiveness and communication requirements

have not been evaluated.

II.3.3.4 Playbook

Playbook control consists of a set of plays shared by the human and robotic team members that represent plans

for achieving goals during deployment (Miller et al., 2005; Miller, 2012). Playbook’s success in tournament

style games, such as RoboFlag (Campbell et al., 2003; Parasuraman et al., 2003; Chamberlain et al., 2003)

has inspired its development for swarms (Coppin and Legras, 2012; Crandall et al., 2017), although it has

not yet been implemented for collectives. This control mechanism was developed in order to enable a human

to build, validate, and use a set of plans to alter the behavior of a multi-robot team. Playbook has also been

considered to facilitate collective switching between implicit action selection behaviors (e.g., site selection)

and other typical spatial swarm behaviors (Crandall et al., 2017). Alternatively, Playbook enables a human

to describe complex actions that are provided to the collective as an available set of plays for consideration

by the human-collective team. This approach can potentially enable very complex collective actions, but also

aggravates the existing challenges of human interaction with explicit collective action selection by introducing

numerous collective behavior transitions.
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II.3.3.5 Leader Selection

Leader selection refers to the human’s interaction with one, or more, robots to exert influence over the swarm

or collective (Kolling et al., 2016). Leader selection mechanisms have been developed that use unique exter-

nal robots (e.g., Goodrich et al., 2011) or selected members of the swarm (e.g., Penders, 2007). These control

mechanisms rely on direct interaction between leaders and individual robots in order to influence nearby

robots to respond in predictable ways (Walker et al., 2014; Goodrich et al., 2011; Jung and Goodrich, 2013;

Jung et al., 2013). Two human-collective interaction opportunities exist for this type of control mechanism.

First, during exploration, the use of human controlled leaders can be beneficial in directing and guiding ex-

ploration behaviors. Second, leader selection strategies can enable human controlled robots to exert greater

influence over decision making. This control mechanism requires human control throughout the collective

area (Kolling et al., 2016). Despite this disadvantage, the control mechanism can be beneficial in heteroge-

neous collectives and is similar in concept to the unique agents proposed in spatial swarm scenarios (Goodrich

et al., 2011). Special agents with different interaction parameters were used to influence spatial swarm behav-

iors according to the human’s intent. These unique agents either repelled or attracted nearby robots, which

enabled the human to guide the swarm’s behavior. Applying this concept to the dissemination state enables

humans to exert greater influence over the decision strategy, without necessarily overriding the collective’s

decision making process. An excellent example of the usefulness of this approach is a large human-collective

team in which humans exert control at two levels. At the collective level, the human influences the collective’s

overall exploration and decision making processes. At the individual level, humans control either members

of the collective or more capable individual robots, and participate in the collective decision making pro-

cess. Human controlled robots can be given greater priority in the decision process, although this approach

introduces heterogeneous decision influence that must be evaluated.

II.3.3.6 Neglect Benevolence

Human-swarm teams often perform better when humans respect the swarm’s neglect benevolence and delay

input in order to permit the swarm to stabilize in response to a prior command (Walker et al., 2012a). Prior

research has demonstrated the importance of neglect benevolence in human-interaction with spatial swarms

(Walker et al., 2012b,a) and methods have been proposed for calculating optimal human input times to ac-

count for this phenomenon (Walker et al., 2012a). This concept has yet to be applied to collective action

selection. Typically, neglect benevolence implies that the human input disrupts the swarm’s current behavior

(e.g., when a flocking swarm receives a new heading (Walker et al., 2012b)) and the swarm requires time to

stabilize prior to receiving the next command (Kolling et al., 2016). Stable states in collective best-of-n strate-

gies are achieved when a majority opinion (e.g., Reina et al., 2015b) or consensus (e.g., Valentini et al., 2015)
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exists that supports one of the options available to the collective. Delaying human input when the collective

is deliberating between known options is unlikely to be beneficial. Collective support for individual available

options increases over time as a result of the decision strategy’s direct and indirect modulation mechanisms

(see Chapter II.2.1). A human who intends to alter the collective’s chosen option will only have a larger popu-

lation of robots supporting an undesirable option if influence is delayed during the collective’s deliberation of

options. Despite the apparent absence of neglect benevolence during collective deliberation, this dissertation

proposes two opportunities for examining neglect benevolence in collective action selection. First, strategies

that find options within an environment during decision making (e.g., Parker and Zhang, 2009; Reina et al.,

2015b) are likely to perform better if the human does not increase or decrease collective support for options

too early in the discovery process. A human who increases support prematurely for an option reduces the

number of robots available for exploration and increases the challenge of altering the collective’s decision, if

a better option is discovered later. Decreasing option support too soon introduces the problem of rebuilding

support if it is found to be the best available option after all. The second application of neglect benevolence is

specific to collective behavior transitions in explicit action selection strategies. Once a collective has reached

a decision and begins transitioning to a new behavior, the collective is unstable and the robot population is

split between deliberation and action implementation states. Human input during this period is likely to cause

the collective to fragment in a manner similar to that described for spatial swarms (Walker et al., 2012a), as

deliberating robots are left behind by those that have been induced to implement the action too soon.

II.3.4 Complex Organizations

Collective action selection strategies are readily applicable to large heterogeneous and composite organi-

zations for two primary reasons. First, they require a population of dedicated individual robots to explore

the collective search space and conduct lengthy deliberations between available options (see Chapter II.2.1),

which often deviates from the collective’s primary task, as in the biological decision processes (see Chapter

II.1.2). Future systems will likely benefit from a similar heterogeneous population, although research into

collective and swarm heterogeneity is limited (Dorigo et al., 2013; O’Grady et al., 2009; Ducatelle et al.,

2011; Kengyel et al., 2015). Second, implicit and explicit action selection are capable of high levels of auton-

omy that will enable humans to monitor and influence larger organizations comprised of multiple collectives,

which has been proposed and evaluated in highly autonomous spatial swarm behaviors (Brown et al., 2016),

but has yet to be evaluated in human-collective interaction. The following questions are considered:

- What is the effect of heterogeneity on collective action selection strategies?

- How can collective action selection be incorporated as the interactive decision making component of a
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larger heterogeneous organization?

- What challenges exist for human control of multiple collectives conducting action selection within a

shared space?

Prior work with heterogeneous robotic swarms and human interaction with multiple swarms is considered

and applied to challenges for future human-collective teams. The effect of heterogeneity on collective best-

of-n decisions and human-collective interaction is considered. Finally, human control of multiple collectives

conducting action selection is discussed.

II.3.4.1 Heterogeneous Collective Action Selection

Most robotic swarm studies assume a homogeneous swarm population, which ensures the swarm’s behavior

is robust to individual robot failure, but ignores the potential performance benefit of more diverse populations

(Kengyel et al., 2015; Dorigo et al., 2013). A few studies have examined physical and behavioral hetero-

geneity in swarm robotics (Dorigo et al., 2013). The former refers to collectives composed of robots with

different sensing, mobility, and interaction capabilities (e.g., O’Grady et al., 2009; Ducatelle et al., 2011),

while the latter involves physically homogeneous robots that exhibit different behaviors (e.g., Kengyel et al.,

2015). Evaluation of heterogeneity in collective action selection is important, since it can enable incorpo-

rating different robotic capabilities, and because human control mechanisms, such as leader selection (see

Chapter II.3.3), can induce heterogeneous behaviors.

Behavioral heterogeneity within the population of robots conducting consensus achievement has been

evaluated in flocking (Ferrante et al., 2012), aggregation (Kengyel et al., 2015), and collective best-of-n de-

cision making (Reina et al., 2015b) using homogeneous robots that differ in their execution of one or more

behaviors. The aggregation study examined different robot mobility patterns to improve the collective’s abil-

ity to achieve consensus supporting the best aggregation site (Kengyel et al., 2015). Another study examined

heterogeneous flocking, where all robots executed two of three flocking behaviors, but only a subset of the

swarm’s population were capable of aligning with their neighbors (Stranieri et al., 2011). Finally, behavioral

heterogeneity was examined in a site selection scenario in which individual robots used heterogeneous, ran-

domly distributed site acceptance thresholds to determine whether a site was acceptable or not (Reina et al.,

2015b). The heterogeneous model was compared to a homogeneous model in which all robots shared the

same site acceptance threshold. Both models achieved similar accuracy in a number of scenarios, but the

homogeneous model outperformed the heterogeneous model when choosing between an optimal site with a

higher cost than a mediocre site.

Physical heterogeneity is expected to be important to future human-collective action selection. The intro-
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duction of robots with differing sensing, mobility, and interaction capabilities into the decision making pro-

cess was briefly considered in Chapter II.3.3.5 by proposing the addition of more capable, human-controlled

individual robots. Additionally, complex collective search spaces, such as those with portions of the envi-

ronment that are either difficult to navigate or highly structured, are likely to require robots with differing

mobility and sensing capabilities. Either scenario introduces similar problems to those demonstrated by the

heterogeneous site selection study (Reina et al., 2015b). Naturally, faster robots with greater interaction capa-

bilities will bias the system, perhaps intentionally, towards their supported option. Overcoming cost disparity

becomes easier if the more capable robots identify higher cost optimal options, but the opposite is true if the

same option is discovered only by less capable agents. Improving a human-collective’s disparity resilience

in these situations requires that control mechanisms and transparency techniques account for heterogeneous

robot influence.

Explicit action selection in biological colonies is often allocated to a group of scouting insects that ex-

plore for options and deliberate between them, while the majority of the collective continues colony activities

(Seeley, 2010; Mallon et al., 2001). Researchers have reproduced behaviors similar to Apis mellifera hon-

eybees and Temnothorax albipennis ants (see Chapters II.1.2.3 and II.1.2.4), but have yet to employ these

strategies as a means of coordinating the activities of a larger heterogeneous collective. The interaction of

physically and behaviorally distinct swarms of robots that cooperate to accomplish complex tasks has been

examined in one series of studies (Dorigo et al., 2013; O’Grady et al., 2009; Pinciroli et al., 2010; Mathews

et al., 2012; Pinciroli et al., 2009; Ducatelle et al., 2011). The Swarmanoid concept (Dorigo et al., 2013)

consists of distinct swarms of ground, air, and manipulator robots that are evaluated for complex tasks. Most

Swarmanoid studies use aerial robots, called eye-bots, to inform and guide ground robots, called foot-bots,

in completing a collective task, such as aggregation (O’Grady et al., 2009), foraging (Pinciroli et al., 2009),

and coordinated movement (Pinciroli et al., 2010). While the eye-bots guided the foot-bots’ behaviors, they

also responded to changes in the foot-bot behaviors, which resulted in mutual adaptation between these dis-

tinct groups (Pinciroli et al., 2010). One study used eye-bots to prioritize foraging behaviors of foot-bots in

different areas through the use of parameter setting techniques, similar to those described for human-swarm

control in Chapter II.3.3.1 (O’Grady et al., 2009). Foot-bots aggregated to locations defined by stationary

eye-bot locations. Meanwhile, each eye-bot controlled its individual quota of foot-bots at its location by

altering the aggregation parameters of the foot-bots within its communication range (O’Grady et al., 2009).

The extension of this concept to collective action selection is straightforward. A group of distinct, decision

making systems either constantly monitors the behavior of the rest of the collective, or emerges as a result

of an environmental cue and begins the collective action selection process that will ultimately alter the entire

collective’s behavior in a manner similar to honeybee nest site emigrations (Seeley, 2010).
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Increasing the complexity of collective behaviors by introducing distinct behavioral or physical subgroups

of robots presents several implications to human-collective interaction. First, human control mechanisms

already induce heterogeneity into the system. Leader selection strategies (see Chapter II.3.3.5) introduce dis-

tinct agents that often have unique movement and interaction capabilities (e.g., Goodrich et al., 2011; Jung

and Goodrich, 2013). Parameter setting control mechanisms that alter a portion of the collective (e.g., robots

in a decision making hub (Crandall et al., 2017) or near an environmental beacon (Kolling et al., 2013)) intro-

duce heterogeneous parameters that result in distinct behavior groups within the collective. Second, human

interaction with heterogeneous collectives requires that different collective behaviors be transparent to the

human and receptive to the human’s commands. Third, the calculation of optimal human input time (Walker

et al., 2012a) necessary to prevent undesirable, unstable collective states (e.g., fracturing) must account for

interactions between the decision making group and the remainder of the collective. Fourth, the added com-

plexity of heterogeneity is expected to increase the human’s workload (Kolling et al., 2016), who must exert

additional effort to understand and interact with disparate behaviors.

II.3.4.2 Multiple Collectives

Highly autonomous swarm and collective behaviors provide an opportunity for large groups of decentralized

robots to be controlled by a single human, if the underlying dynamics of the groups’ behaviors possess stable

attractors (Brown et al., 2016). Human-swarm interaction researchers have frequently demonstrated that

humans are capable of controlling a single swarm (e.g., Walker et al., 2012b; Goodrich et al., 2011; Goodrich

et al., 2012). Multiple swarms that use highly autonomous behaviors, such as flocking (Couzin et al., 2002)

can be controlled by a single human with intermittent observation and influence over each swarm (Brown

et al., 2016). The high levels of autonomy in collective action selection strategies (see Chapter II.3.1) are

expected to enable similar human control over numerous collectives.

Two immediate advantages exist for human supervision of multiple collective action selection processes.

First, multiple collectives in the same search space enables concurrent best-of-n decision processes to identify

multiple valuable options within the environment. Second, individual collectives can be designed with a

specific maximum range that reduces the influence of cost and discovery disparity on the collective’s decisions

(see Chapter II.2.1). Increasing the number of collectives within a human-collective team also introduces

numerous problems that have yet to be explored. The possibility of collective fragmentation, as a result

of either false quorum detection (see Chapter II.2.2) or poorly timed human input (see Chapter II.3.3.6)

becomes more problematic, especially if the human must recover from the simultaneous fragmentation of

multiple collectives. Redundant selection of a single site, which results in two collectives moving to the same

site and greatly increasing congestion, is another problem that must be examined.
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II.3.5 Summary

This chapter examined collective best-of-n decision making strategies in biological and robotic collectives and

applied these behaviors to the existing state of the art in human-swarm interaction. Prior work has indicated

that human-collective shared control informs human decisions and promotes the development of fault tolerant

Topic Research Question

Autonomy What levels of autonomy are available for human interaction with collective
action selection?

What collective action selection features enable low, intermediate, and high
levels of autonomy for adaptive human-collective interaction?

What evaluation criteria assist designers in determining an appropriate level of
autonomy for different collective action selection strategies?

Transparency What are the sources of uncertainty for collective action selection?

How does the presence of decision making hubs improve collective action se-
lection transparency?

What visualization techniques enable improved collective action selection
transparency?

What are the communication requirements for collective action selection trans-
parency?

What techniques enable human operators to understand collective reasoning
and past decisions?

Control What control mechanisms enable human control over the collective action se-
lection’s physical and decision making states?

How do communication considerations alter available control mechanisms for
collective action selection?

How does neglect benevolence apply to collective action selection?

Complex
Organization

What is the effect of heterogeneity on collective action selection strategies?

How can collective action selection be incorporated as the interactive decision
making component of a larger heterogeneous organization?

What challenges exist for human control of multiple collectives conducting
action selection within a shared space?

Table II.4: Open research questions for human interaction with collective action selection strategies.
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team operation (Crandall et al., 2017). This chapter extends the discussion in order to identify open research

questions associated with collective action selection strategies for human-collective teams. These questions,

summarized in Table II.4, address challenges inherent to the autonomy, transparency, and control of single,

multiple, and heterogeneous collectives in future human-collective teams.

Collective action selection strategies are capable of operating at several different levels of autonomy

(see Chapter II.3.1), with many possible mechanisms of injecting human influence (see Chapter II.3.3), but

the human’s choice of the appropriate level of autonomy and amount of input into the collective’s decision

making process depends upon the human’s understanding of the collective’s behavior (see Chapter II.3.2).

The field of human-swarm interaction has focused more on exerting human control over the swarm, rather

than on improving swarm transparency (Kolling et al., 2016), although recent results have narrowed this

gap (e.g., Adams et al., 2018; Walker et al., 2016). Arguably, transparency in human-collective interaction

is more important than in human-swarm interaction, since collective action selection strategies are most

beneficial when the human is able to delegate some of the human-collective decision making functions to

the collective. Humans will need to rely on the collective’s decision making capability when the human is

either unable to attend to every aspect of the decision making process, or has insufficient information about

the collective’s state and environment (Crandall et al., 2017). Human-collective performance will suffer if the

human is unable to trust the collective to accomplish some, or all, of the team’s decision making functions

(Chen et al., 2016). During human-collective interaction, the human must be able to quickly determine the

presence, cause, and resolution of a deviation between the collective’s expected and desired future states.

Future human-collective interaction research must focus on improving the human’s understanding of the

collective’s decision making process and limitations. This capability enables the human to make informed

choices regarding appropriate levels of autonomy, the type of control to exert, and the amount of influence to

introduce.

Determining the collective’s expected future state requires the human to understand the collective’s cur-

rent state and expected performance. Challenges associated with estimating, communicating, and portraying

the collective’s current physical and decision making states were summarized in Chapter II.3.2.2. Establish-

ing collective action selection performance expectations and portraying these to the human remain important

directions of future research. As discussed in Chapter II.2.1, collective best-of-n decision strategies differ

in their expected accuracy and decision time (Valentini et al., 2014, 2015), as well as in their resilience to

undesirable biases (Reina et al., 2015b, 2016; Cody and Adams, 2017b). Currently, there are very few com-

parison studies that offer insight into performance differences between collective best-of-n decision strategies

(Valentini et al., 2015) or into collective disparity resilience (Reina et al., 2015b; Cody and Adams, 2017b).

The human will require estimates of expected performance, based on these metrics, as well as the current
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biases within the collective’s environment. A human who understands the collective’s expected performance

and the biases currently influencing the collective will be able to estimate expected future collective states and

the cause of deviation from a desired state. This understanding can inform the human’s decision to adjust the

collective’s level of autonomy or exert control over the collective process. Collective action selection strate-

gies that use decision making hubs are likely to ease the challenges of transparency by enabling the interface

to sample information from robots within the hub (Crandall et al., 2017), depending upon communication

constraints (e.g., bandwidth, range, and latency). Understandably, increasing the information requirements

from the collective introduces new challenges that must be examined in future studies. The quality of in-

terface estimates depends upon the mixing of the robot population within the hub, the size of the hub, the

robots’ sensing ability, and the available communication structure.

Resolving a difference between future desired and expected collective states requires the human to un-

derstand the likely effect of the timing, type, and strength that available control mechanisms will have on

the collective’s decision making process. Providing the human with feedback related to the expected effect

of human input is a problem that is common to human interaction with swarms (Kolling et al., 2016) and

collectives. Complicating this feedback is the direct and indirect behavior modulation that determines robot

state transition rates between states supporting various options. These modulations, which result from biases

within the environment and the dissemination activities of subgroups of the collective population (see Chap-

ter II.2.1) increase the difficulty of determining how much human control is necessary to alter support for an

available option or neutralize an undesirable bias affecting the system. Predictive displays that provide the

expected affect of human control inputs, similar to those used in human-swarm interaction in coordinated

movement tasks (Walker et al., 2012b; Nagavalli et al., 2017), will provide the human with effective options.

Providing collective transparency to the human in scenarios with multiple or heterogeneous collectives

becomes both difficult and critical, since the human is expected to have less ability to focus on any one

collective for an extended time period. The transparency requirements for making autonomy and control

decisions were briefly discussed, but future work must establish the most efficient means of collecting and

visualizing information about each collective’s expected performance and possible response options in order

to alter each collective behavior in a desired way.
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Chapter III

Robotic Collective Action Selection

A novel approach is presented for robotic collective action selection, in which a collective chooses the best

option within a search space despite existing environmental bias, implements an action associated with the

choice, and returns to a decision making state. The approach integrates a value-sensitive decision making

process and permits the collective to operate from a centralized decision making hub. Value-sensitivity en-

ables the collective to delay making a decision between unacceptable options (Pais et al., 2013). The decision

making hub serves three important purposes. First, restricting robot interactions to a hub improves opinion

mixing within the population. Second, the collective operates without being confined to an enclosing arena

(e.g., Parker and Zhang, 2009; Valentini et al., 2014; Mermoud et al., 2014), and finally the hub provides

human operators access to the collective, which is explored in Chapter IV.

This chapter focuses on the proposed explicit collective action selection process, which seeks to address

the first four research questions presented in Chapter I.

R1: How can a collective make efficient and accurate decisions when the problem space is subject to nega-
tive environmental bias?

R2: How can well-mixing dynamics be adjusted to improve collective decision accuracy and efficiency?

R3: How responsive are collective best-of-n decision making processes to changes in option values?

R4: How can a collective transition between decision making and task implementation behaviors?

Two existing models, which are inspired by Apis mellifera honeybee (Seeley et al., 2012) and Temnothorax

albipennis ant (Mallon et al., 2001) emigration, are combined and extended (Parker and Zhang, 2010; Reina

et al., 2015b). The first model is referred to as the original model and represents Reina et al.’s (2015b)

collective best-of-n decision making model. The original model accepts option discovery during the decision

making process, makes value-sensitive decisions, and relies on the use of a decision making hub. The model

faces its hardest decisions when it must choose a higher cost, optimally valued option over a mediocre option

with lower cost. These problems are important, but under evaluated in collective decision making strategies

(Valentini et al., 2017). Additionally, the original model does not detect when a decision has been reached

or alter the collective’s behavior. The second primary influence is Parker and Zhang’s (2009; 2010; 2011)

quorum detection-based model that enables collective behavior transitions, but does not use a value-sensitive

decision making process or a decision making hub.

The chapter begins with a formal definition of the collective action selection problem, followed by an

introduction to the collective and individual behavior models that address the four research questions. Finally,

41



the results of four experiments comparing the new model performance to the original model are presented

and discussed.

III.1 Formal Problem Definition

The formal definition merges features of the problems addressed by Reina et al. (2015b) and Parker and

Zhang (2009). The agent descriptions are similar to those used by Kouvaros and Lomuscio (2016), which

described agent states for a majority voting collective best-of-n decision making model (Valentini et al.,

2015).

A single collective action selection problem requires a collective to find a set of options located within

the environment, identify the best single option according to a given value function, and execute an action

associated with the chosen option. This problem restricts the number of actions to the number of available

options within the environment. Action execution is either implicit or explicit. Implicit collective action

selection problems are those in which the collective must choose between the actions used to assess the

available options (e.g., converge to the shortest path). Explicit collective action selection problems are those

in which the collective chooses an action associated with an option that is not in the set of its assessment

actions.

Definition 1. Collective Action Selection Problem: Each collective action selection problem is a tuple

CAS = 〈Φ,A,Act〉

• Φ = {φ1, ..,φn} is a set of n options located within an environment.

• A = {a1, ..,aN} is a collective comprised of N agents.

• Act = Actassess
⋃

Actchoose is the set of required agent actions, where Actassess is the set of option assess-

ment actions and Actchoose is the set of actions the collective is choosing between. When Actchoose *

Actassess, the problem is an explicit action selection problem. When Actchoose ⊆ Actassess, the problem

is an implicit action selection problem.

The set of options, Φ, contains the observable features within the environment (e.g., paths, sites, re-

sources, or environmental conditions) associated with Actchoose. Options are assumed to be distinguishable

from each other and from the remaining environmental features.

Definition 2. Option: Each individual option is a tuple φi = 〈 fi,vi,costi, loci〉∀i ∈ {1, ..,n}, where

• fi ∈ {true, f alse} is true, if the option has been identified by an agent and f alse otherwise.

• vi ∈ [0,1] is the value of φi.
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• costi ∈ [0,1] is the cost required to find and assess φi (e.g., time and resources).

• loci ∈ Rdim uniquely identifies φi (e.g., location), where dim is the necessary dimension.

• φ0 denotes the absence of an option, where φ0 = 〈 f0 = f alse, v0 = 0, cost0 = 0, loci = /0).

The definition of an option is intended to be broadly applicable to a variety of different alternatives (e.g.,

paths or resources), the experiments in this dissertation focus on the comparison between sites, which are

specific locations in the environment identified by a location in either two or three dimensional space.

Definition 3. Site: A site is a type of option that is assumed to be uniquely identified by its location, loci ∈

Rdim, where dim represents the dimensions, two or three, and is dependent on the intended search space.

Individual agents within the collective are assumed to be capable of finding and assessing options, main-

taining an opinion associated with an option φi ∈Φ f ound , interacting with neighboring agents, and executing

an action associated with an option. Agents alter internal state as a result of interactions with neighboring

agents, or as a result of assessing or abandoning options in the environment.

Definition 4. Agent: Each agent, for m ∈ {1, ..,N}, is a tuple, am = 〈h,s,checkQ, tI , tL〉 where

• h : φi→ vmi ∈ [0,1] maps an option to its estimated value for am; h(φ0) = 0.

• Qm = {q1, ..qk} is a queue of neighbor opinions of length k ∈ N, where q j ∈ {true, f alse}∀ j ∈ {1..k}

A true value represents an interaction with an agreeing agent.

• s ∈ S = {〈φi,vmi,Qm, l,actm〉 : vmi ∈ [0,1], l ∈ {true, f alse},actm ∈ Act}, defines a local state where

l ∈ {true, f alse} represents that the agent is latent (true) or interactive ( f alse).

• checkQ : Qm→{true, f alse} determines the presence of a quorum for am’s current state.

• tL : S×Φ is a latent transition function, where tL(s,φ j) = s′ ∀ j ∈ {0, ..,n}.

• tI : S× Sneighbor → S is an interactive transition function, where Sneighbor contains the states of am’s

neighboring agents and tI(s,Sneighbor) = s′.

A collective solves an action selection problem by choosing from among the available options and execut-

ing an action associated with the selected option. The quality of the decision made by the collective depends

upon the value of the chosen option.

Definition 5. Decision: A decision occurs when an acceptable majority of the agents complete an action,

acti ∈ Actchoose associated with a single available option, φi, defined by |Aacti | ≥ N−δ , where Aacti is the set

of agents performing acti, and δ is the acceptable loss of agents during the decision problem.
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There are five types of decisions. The most desirable outcome occurs when the collective executes the

action associated with the highest valued option available. A collective that fails to find the optimal option

is expected to select the best of the options that are discovered. Decisions are incorrect if the highest valued

option found is not chosen. The collective fails if a decision is not made within a predefined time period.

Finally, it is possible for collectives to split by selecting and executing two different options. Each decision

is formally defined in Definitions 6 through 10.

Definition 6. Optimal Decision: An optimal decision arises when the implemented action is associated with

φi and i = argmax
j∈{1,..,n}

v j.

Definition 7. Correct Decision: A correct decision is reached when the implemented action is associated

with φi and vi = max
φ j∈Φ f ound v j, where φ j ∈Φ f ound ⇐⇒ f j = true.

Definition 8. Incorrect Decision: An incorrect decision is reached when the implemented action is associ-

ated with φi and vi < max
φ j∈Φ f ound v j.

Definition 9. Failed Decision: A failed decision occurs when less than an acceptable majority executes an

action associated with one of the available options (|Aact j | < N − δ ∀ j ∈ {1, ..,n}) after a maximum time

limit.

Definition 10. Split Decision: A split decision represents a frustrated state during explicit collective action

selection in which multiple actions are executed, defined by ∑
i∈{1,..,n}

|Aacti |= N
∧
|Aacti | 6= N ∀i ∈ {1, ..,n}.

III.2 Decision Making and Collective Action Selection Dynamics

The collective is a homogeneous group that pools information within a shared hub in a manner similar to

decisions made in social insect colonies (e.g., Seeley, 2010; Mallon et al., 2001). Individual robots are

cooperative, which means that there is negligible conflict of interest between them (Conradt and Roper,

2005). The values of different options are not directly compared and individuals are required to independently

assess the values of the options before changing their opinion (Parker and Zhang, 2009; Reina et al., 2015b;

Seeley et al., 2012). Indirect option comparisons serve two important purposes. First, option assessments

are assumed to be error prone and direct comparisons propagate errors within the collective. Second, direct

value comparisons have the potential to lead to indefinite frustrated states by reducing the ability of the

collective to break symmetry when choosing between multiple equally valued options (see Chapter II.2.2).

The presented solution causes symmetry breaking scenarios to happen more frequently than in the original

model. A collective using the original model that must choose between two equally valued sites, φA and

φB, in which costA < costB, will choose φA, since the cost difference reduces the problem difficulty. The
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presented model reduces environmental bias, which causes symmetry breaking decision problems to arise

between equally valued options with disparate costs.

III.2.1 Collective Best-of-n Macroscopic Model

A strength of Reina et al.’s model is its linkage between the macroscopic model of the collective and the

emergent behavior resulting from interactions between the individual robots. The macroscopic model is a

deliberative process derived from a recent value-sensitive honeybee nest site selection strategy (Pais et al.,

2013; Seeley et al., 2012). All robots in the collective are either part of the uncommitted population (ΨU ),

which does not favor any option, φ0, or part of the favoring population (ΨFi ) that supports option φi. The

agents periodically transition between interactive and latent states. Agents are interactive while in the decision

making hub and communicate only with other interactive agents. Latent agents do not interact with other

agents or travel outside the hub to either explore or evaluate options. Equations III.1 and III.2 describe these

populations.

Ψ̇
delib
Fi

= RγiΨU +RρiΨFiΨU −RαiΨFi −∑
j 6=i

Ri,σ j ΨFiΨFj ,

ΨU = 1− ∑
m∈{1..n}

ΨFm .

(III.1)

(III.2)

Robots are initially in the uncommitted population (ΨU ) and search the set of options, Φ. Population ΨFi

favors φi and increases as uncommitted robots discover φi, at rate Rγi , or as uncommitted robots are recruited

by robots that favor option φi, at rate Rρi . ΨFi decreases as its robots abandon φi at rate Rαi . ΨFi also decreases

when its members are inhibited by robots committed to φ j 6=i, at rate Rσ j . The superscript delib in the growth

of the population, Ψ̇delib
Fi

, indicates the change in the population of favoring agents due to this deliberative

process.

The transition rates in Equation III.1 must be adjusted to account for the portions of the populations that

are latent and interactive. Latent favoring and uncommitted robots are the only populations that transition

states as a result of abandonment (Rαi ) or discovery (Rγi ), respectively. Interactive favoring robots attempt to

recruit interactive uncommitted robots (Rρi ) and inhibit interactive robots that favor φ j 6=i. Uncommitted and

favoring agents become interactive at rates RI
U = τ̄−1 and RI

Fi
= τ

−1
i , respectively, where τ̄ is the expected

average round trip time between the decision making hub and all options φ j ∈Φ f ound and τi is the round trip

time to a specific option. The collective is assumed to not possess any information about options φ j /∈Φ f ound ,

which means τ̄ is either an estimate or chosen by the designer to control agent interaction rates.

The option specific interaction rate is used for the favoring agents in order to demonstrate the impact of

different option locations on the collective’s decision making strategy. The original model assigns all robot

interactive and latent transition rates to RI
U and RL, respectively, where RL is equal to 9RI

U in order to ensure
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that approximately ten percent of the population is interactive at a given time (Reina et al., 2015b). Increasing

the distance between φi and the decision making hub; however, lowers the interaction rate for ΨFi in relation

to options that are closer to the hub. The ratios rL
U , rI

U , rL
Fi

and rI
Fi

determine the portions of the populations

in the uncommitted latent (UL), uncommitted interactive (U I), favoring latent (FL
i ), and favoring interactive

(F I
i ) populations, respectively. The ratios are determined by the following

rL
U =

RL

RL +RI
U

; rI
U =

RI
U

RL +RI
U
,

rL
Fi
=

RL

RL +RI
Fi

; rI
Fi
=

RI
Fi

RL +RI
Fi

.

(III.3)

(III.4)

The ratios in Equations III.3 and III.4 are used to limit the transition rates between the populations shown in

Equation III.1. The resulting adjusted transition rates for Equation III.1 are determined as follows

Rρi = rI
Fi

rI
U ρi; Ri,σ j = rI

Fi
rI

Fj
σ j,

Rγi = rL
U γi; Rαi = rL

Fi
αi.

(III.5)

(III.6)

Equation III.5 limits the recruitment and inhibition interactions to the interactive portions of the uncommitted

and favoring populations. Equation III.6 limits discovery and abandonment to the latent portions of the

population. As φi increases in distance from the decision making hub, less of its favoring population is

available to interact with other populations; thus, making that option more vulnerable to option abandonment

than the closer options. The primary transitions in the original model are defined by the four primary agent

transitions: recruitment (ρi), inhibition (σi), discovery (γi), and abandonment (αi). The values of each of

these transition strengths are adopted from prior work (Reina et al., 2015b; Cody and Adams, 2017b) and are

described by

ρi = σi = vi; αi = αv−1
i ,

γi = vig(di) =
viµeξ di

di
.

(III.7)

(III.8)

Equation III.7 shows that the recruitment (ρi) and inhibition (σi) strengths are equal to option value (vi).

Abandonment strength (αi) is inversely proportional to vi, where α is the minimum abandonment rate (set

to 5% per traveled meter (Reina et al., 2015b)). Equation III.8 shows that option discovery (γi) decays with

distance di from the collective’s deliberation area, where µ and ξ are 0.058 and -0.29, respectively. The

values of µ and ξ were determined by fitting a curve to discovery data obtained from running simulations of

the agent’s exploration behavior within the environment, which is similar to prior work (Reina et al., 2015b;

Cody and Adams, 2017b) and is described in Chapter III.3.
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Figure III.1: The behavior of the original model is presented in a series of decisions in which φB has a greater
value than φA, but a higher cost due to its greater distance. The dashed lines represent the decision boundaries
for different value resolutions (V R).

The model behavior provided in Fig. III.1 demonstrates a series of decision problems between two op-

tions, A and B. The value of each option (vA and vB) are within the range [0.5,1.0], while the distances are

fixed at dA = 1.0m and dB = 2.5m. Fig. III.1 demonstrates the effect of environmental bias, which is demon-

strated using different option distances from the collective’s decision making hub. The dashed lines indicate

the decision boundary for different system value resolutions (Reina et al., 2015b).

Value resolution, V R, describes the sensitivity of the decision making model to both the difference be-

tween the values of the considered options and the magnitude of these values (Reina et al., 2015b; Pais et al.,

2013). This property describes the minimum distinguishable difference between two options required for re-

liable collective selection of the higher valued option. Resolution is calculated using the following equation:

V R = |vmin−vmax|
vmax

, (III.9)

where the values vmin and vmax are set by the designer and are used to evaluate the system’s ability to dis-

tinguish between options. A lower resolution value indicates the collective is increasingly able to choose

reliably the higher valued option, even when the difference between the options is low.

Fig. III.1 demonstrates that φB is unlikely to be selected, even when vB is much higher than vA, due to
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Figure III.2: The effect of environmental bias on the decision making process is shown under conditions of
dynamic option value changes. The collective favors φA due to its lower cost, even though φB becomes the
optimally valued option later in the decision making process.

φB’s low discovery rate and higher round trip time. If the system only requires a resolution value greater

than 0.3, the behavior shown in Fig. III.1 is considered acceptable. The macroscopic model assumes that the

underlying system is infinite and well-mixed (Kampen, 2007; Reina et al., 2015b), which is unlikely to be

true for robotic option selection trials, unless the individual agent behaviors have been carefully designed to

encourage population mixing (Reina et al., 2016). Research questions R1 and R2 are addressed in Chapter

III.2.2, which introduces model extensions that reduce environmental bias and attempt to move the decision

boundary in Fig. III.1 to the V R = 0 line.

Negative environmental bias also impacts the collective best-of-n model’s responsiveness to changes in

the option value, as shown in Figure III.2. The collective chooses between options A and B, which have

values vA = 0.7 and vB = 0.5, respectively, at the start of each decision problem. At a specific time, shown on

the x-axis, vB becomes vF
B . Three boundaries are shown. When dA = dB = 1.5m, the collective is unable to

select φB, if its value changes after 50 seconds (s). The collective is less likely to choose φB when it is located

further away than φA, which is shown by the boundary at 1.8 meters (m). The collective is significantly more

responsive when φB is located closer to the deliberation area than φA, which is shown by the boundary at

1.2m. Research question R3 is examined in Chapter III.3.2, in which the ability of both the original collective

best-of-n model and the model extensions described in Chapter III.2.2 are evaluated for their responsiveness

to changes in the option value during the decision making process.
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(a) Original Model (Reina et al., 2015b) (b) Extended Model

Figure III.3: A comparison of Reina et al.’s (2015b) original individual agent model and the extended model.
Extensions shown in Fig. (b) are indicated by shaded control states and dashed transitions.

III.2.2 Bias Reducing Model Extensions

Two extensions are presented to reduce environmental bias. The first extension, interaction delay, addresses

research question R1 by imposing semi-latent control states with exit probabilities that are determined by

the option’s distance to the collective’s deliberation area. The second extension, interaction frequency mod-

ulation, addresses R2 by increasing individual robot interaction attempts in relation to the location of the

considered option. The extensions modulate robot interaction activities in order to reduce environmental bias

by compensating for disparate discovery times and round trip travel times for options in the environment.

The original and extended models are presented in Figs. III.3a and III.3b, respectively. Shaded control

states and dashed transitions indicate the extensions in Fig. III.3b. Robots in both models are uncommitted

(U∗) or favoring (F∗i ), and are either interactive or latent, as indicated by the I and L superscripts, respectively.

State transitions are stochastic, with probabilities indicated by P∗, that are equal to the rates transition rates

described in Chapter III.2.1.

According to the original model, in Fig. III.3a, uncommitted, latent agents (UL) explore the environment

and transition to an interactive favoring state (F I
i ) after discovering φi with probability Pγi and returning to the

decision making hub. Favoring interactive agents supporting φi recruit uncommitted interactive agents (U I)

with probability, Pρi . Interactive agents in state F I
i return to an uncommitted state when inhibited by agents

in state F I
j 6=i with probability Pσ j . Finally, latent favoring agents (FL

i ) travel from the decision making hub to

φi in order to reassess vi and potentially abandon φi with probability Pαi . Agent interactions only occur just

before agents transition from interactive to latent states in order to ensure that each agent’s set of neighbors

changes frequently between interactions (Reina et al., 2015b).
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The interaction frequency modulation extension is indicated in Fig. III.3b using the superscript, M, in the

inhibition (PM
σ j

) and recruitment (PM
ρi

) transitions. The purpose of this extension is to address the discrepancy

in transition rates between interactive and latent states for agents favoring options that are located at different

distances from the collective’s decision making hub (see Chapter III.2.1). Agents that favor options closer

to the decision making hub interact more frequently than agents supporting options further from the hub.

Interaction frequency modulation increases agent interaction attempts by Mi = r(di/dmax), where dmax is the

maximum range of the collective’s robots and r is chosen to be the ratio of the expected maximum round trip

time (determined by dmax) to the minimum round trip time (determined by the dimensions of the decision

making hub).

The second extension introduces the control states FD
i and FR

i in order to impose delays on favoring agents

supporting options with lower discovery and round trip travel times, respectively. Uncommitted latent agents

that discover φi enter a delaying control state (FD
i ), which they exit with probability PDi , in order to reduce

the effect of disparate discovery times on the decision making process. Favoring latent agents that return to

the nest transition to state FR
i , which slows the agent’s transition to the interactive state. Exit probabilities for

the control states are determined by

PDi =
ρi

g(dmax)−1−g(di)−1 ,

PRi =
ρi

τmax− τi
,

where τmax is 2dmax, or the maximum round trip time. Further, it is assumed that di < dmax∀i ∈ {1..n}.

Both states are semi-latent, which means robots in these states do not initiate either recruitment or inhibition

interactions, but are vulnerable to inhibition by other robots. The experimental results presented in Chapters

III.3.1 and III.3.2 indicate that these extensions reduce bias (R1), improve decision efficiency (R2), and enable

uniform responsiveness to dynamic option value changes (R3).

The presented solution to the issue of negative environmental bias assumes individual agents are able

to travel at a constant velocity within the collective’s search space. When this assumption is valid (e.g., in

simple environments), the presented solution directly addresses the decision bias induced by disparate option

distances to the collective’s decision making hub. The approach does not; however, address several realistic

sources of environmental bias that are not homogeneous throughout the search space. Obstacles and structures

are expected to impose uneven travel delays that depend on the option location and the path the individual

agent took to reach the option. Rough terrain, slope, and vegetation are additional sources of environmental

bias that vary across a realistic search space and are unlikely to be known to the entire collective. Finally,

several sources of environmental bias are likely to change over time. Wind speed, current, and collective
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congestion each will bias collective decisions in more difficult scenarios. The presented solution approach

assumes the collective is limited to a circular search space that is centered on the collective decision making

hub, with a radius that represents the maximum distance between the hub and an acceptable option. Individual

agents compare the distance between their current option and the collective decision making hub to the

maximum distance and alter their interaction rates in order to reduce the effect of the option’s distance on the

collective decision making process. The approach is readily modified to accommodate more difficult terrain,

where agents can adjust their interaction behavior based on their actual, rather than ideal, travel time to their

supported option. Comparison of the agent’s travel time to a maximum travel time parameter enables similar

functionality without relying on a homogeneous search space.

III.2.3 Explicit Collective Action Selection

Explicit action selection requires the collective to recognize when it has made a best-of-n decision and transi-

tion to task implementation. After which, the collective must return to an information gathering state in order

to choose and implement its next action. The presented approach extends the collective best-of-n decision

strategy from Chapters III.2.2 and III.2.2 with Parker and Zhang’s (2010) task sequencing framework (see

Chapter II.2.2). The original task sequencing framework evaluated a collective conducting area clearing ac-

tivities. The robots were required to determine when the task was complete and transition to the next task as a

group. A voting based quorum detection mechanism was used by individual robots to estimate the collective’s

task completion. A robot that sensed the task was completed began querying neighbors to determine if its

neighbors agreed that the collective’s task was complete. Each robot maintained a queue of voting messages

and entered a committed state, once a threshold of agreeing messages in the queue was received. Once in

the committed state, robots sent commitment messages to neighbors. Robots that received a commitment

message responded with an acknowledgment for the first message and ignored subsequent messages. Finally,

robots initiated timers on receipt of an acknowledgment and transitioned to the next task if the timer expired

(Parker and Zhang, 2010).

The presented approach introduces three important changes to the task sequencing framework. First, the

collective uses a best-of-n strategy to choose each action prior to execution, rather than knowing the sequence

in advance. Second, the collective is dispersed in a wide area and only communicates within the decision

making hub. Unlike in Parker and Zhang’s 2010 research, the collective risks making a decision while some

robots are outside the hub. When the chosen task requires the collective to move, robots that are outside the

decision making hub when a decision is reached risk being left behind. Finally, the presented approach is

intended to be used in large (> 50) groups of agents, which increases the likelihood of quorum estimation

noise resulting from duplicate messages in agent queues and from fluctuations in the representation of options
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Figure III.4: A high level overview of the presented approach to explicit collective action selection. The col-
lective chooses and executes actions in sequence. Solid lines indicate spontaneous transitions, while dashed
lines indicate transitions that require the receiving population to interact with the losing population.

within a given agent’s neighborhood of peer agents, when it attempts to interact (see Chapter II.2.2).

A visual representation of the presented approach is provided in Figure III.4, which shows the collective

deliberating between actions, choosing an action, executing and completing the action, and finally transi-

tioning to the next decision. Solid lines represent spontaneous transitions between states, while dashed lines

represent transitions that require the receiving population to interact with the losing population. The interac-

tion between the populations is described by the following system of ordinary differential equations:

Ψ̇Fp,i = Ψ̇
delib
Fp,i
− rI

Fi
ΨFp,i

[
ωFp,i + ∑

m∈{1,..,n}

(
ΨCp,m +ΨIp,m

)]
,

Ψ̇Cp,i = ωFp,ir
I
Fi

ΨFp,i +ΨCp,i

[
rI
U ΨUp −ωCp,i + ∑

m∈{1,..,n}

(
rI
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)]
,
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[
rI
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rI
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kT
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(
rI

FmΨFp,m +ΨCp,i

)]
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(
ωIp,i +

rI
U

kT

)
−ηp,iΨXp,i

Ψ̇Dp,i = ηp,iΨXp,i −ΨDp,i

(
ωDp,i + rI

U ΨUp+1

)
Ψ̇Up = ΨDp−1,i

(
ωDp−1,i + rI

U ΨUp

)
− Ψ̇

delib
Fp,i
− rI

U ΨUp

(
ΨCp,i +ΨIp,i
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(III.10)

(III.11)

(III.12)

(III.13)

(III.14)

(III.15)

The collective is a population of agents, Ψ = 1, which is initially uncommitted, ΨUp = 1, and initiates

a collective action selection problem, CASp, where p ∈ N identifies a specific decision. Equation III.10

represents that the population favoring φi ∈ Φ f ound increases according to the deliberative process, Ψ̇delib
Fp,i

(see Equation III.1), where np is the number of available options for CASp. All interactions with the favoring

and uncommitted population are limited to the interactive portions of each population, as described by the

ratios rI
U and rI

Fi
, respectively (see Equation III.4). Population ΨFi senses a quorum supporting action i

at rate rI
Fi

ωFp,i and transitions to the committed population, ΨCp,i . Equation III.11 allows ΨCp,i to increase

by committing the uncommitted and favoring populations to action i through interactions. The committed

population transitions to initiation, ΨIp,i , after sensing a quorum of committed agents, at rate ωCp,i , which

ensures that enough of the population has stopped deliberating and is ready to initiate a task. The initiating
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population, as shown in Equation III.12, increases through interactions with the committed and deliberating

populations in order to transition those populations to the initiating state. The initiating population begins

execution, ΨXp,i , after either sensing a quorum of initiating agents, at rate ωIp,i , or after a timeout period,

rI
U /kT , where k is the length of the message queue agents use to test that a quorum exists and T is the quorum

threshold (not shown in Figure III.4). Initiating agents that do not receive any messages in a period of time

defined by rI
U
−1, add their own vote to their voting queue. After at most kT periods the individual agent

transitions. The executing population ΨXp,i enters the completed, or “Done”, population, ΨDp,i at the rate

of action completion, ηp,i. Finally, the completed population transitions to the uncommitted state for the

next action selection problem, CASp+1, upon sensing a quorum at rate ωDp,i and through interaction with the

uncommitted population ΨUp+1 .

Equations III.14 and III.15 assume agents ignore messages from previous decisions, which is a simplify-

ing assumption similar to that in prior work (Parker and Zhang, 2010). The reason for this assumption is to

prevent uncommitted agents in the next decision process ΨUp+1 from interacting with populations in earlier

decision states (e.g., ΨIp,i ) and initiating the previous selected action a second time. Agents in the ΨUp+1

population are likely to be in the vicinity of agents in population ΦIp,i in two different scenarios. The first

scenario occurs when the collective decides between actions that are executed within or near the collective’s

current decision making hub. The second scenario occurs when the collective moves its decision making hub

after every decision and chooses to occupy a previous location a second time.

The quorum sensing rate, ωs ∀ s ∈ {Fp,i,Cp,i, Ip,i,Dp,i}, depends upon the applied quorum detection rule.

The following set of equations determine the parameter values:

ω
M
s =

k

∑
j=dkTe

k

j

Ψ
j
s (1−Ψs)

k− j ,

ω
K
s = Ψ

k
s .

(III.16)

(III.17)

The quorum sensing rate, ωs, is determined by one of two functions, each of which depend upon the size of

the applicable population that is sensing for the quorum, Ψs, and the length of the queue of messages, k = 15,

retained by the agents (Parker and Zhang, 2009). A majority queue rule, ωM
s , represents the probability that

at least dkTe votes in the queue match s, where T is the threshold value equal to 0.75 (Parker and Zhang,

2009). The k-unanimity rule requires all k votes to match s, which is equivalent to the majority rule when

T = 1 (Scheidler et al., 2016).

The collective behavior for a set of single decision scenarios using the system described by Equations

III.10 through III.15 is presented in Fig. III.5. The collective is predicted to unanimously implement an

53



Figure III.5: The proposed model predicts that when φA and φB are equidistant, the collective will select
the higher valued option (e.g., select φA when vA > vB). Split decisions are more likely along the vA = vB
boundary for the k-unanimity rule and between the dashed lines for the majority rule.

action associated with the higher quality option, φB, in most scenarios, but it is possible for the collective to

split between competing options. Split decisions are more likely in the light blue area along the line vA = vB

for the k-unanimity rule and between the dashed lines for the majority rule. Although the stochastic nature

of the underlying population is sufficient to enable a majority favoring one option, even when options are

equally valued (Reina et al., 2015b; Pais et al., 2013), dual commitment is possible given the probability

that agents will sense a false quorum (Parker and Zhang, 2009). Quorum threshold controls the speed and

accuracy of the decision making process (Parker and Zhang, 2009). While Figure III.5 indicates that the

stricter quorum sensing mechanism improves accuracy, it is expected to cause prohibitively long decision

times for the collective. An examination of quorum detection techniques using the majority and k-unanimity

thresholds as well as different voting message frequencies, described in Chapter III.2.3.1, and are examined

in an experiment described in Chapter III.3.3.

III.2.3.1 Explicit Action Selection Individual Model

The individual behavior model for explicit collective action selection is an extension of the collective best-of-n

process described in Chapters III.2.1 and III.2.2. Individual agents exist in one of six states during a decision

problem, which correspond to the populations described in Chapter III.2.3: Up, Fp,i, Cp,i, Ip,i, Xp,i, Dp,i.

Quorum detection is necessary for initial agent transitions to the committed (Cp,i), initiating (Ip,i), executing

(Xp,i), and completed (Di) states. Individual agents maintain a queue of the last k messages received. A

quorum is detected when the ratio of messages that match the agent’s state to the total messages in the queue

exceed a given threshold, T .
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Queue message length, like quorum thresholds, control the speed and accuracy of the decision making

process (Campo et al., 2011; Parker and Zhang, 2011). The primary difference between the parameters is

that as queue lengths increase, agent quorum detection is influenced by older information (Parker and Zhang,

2010). The presented approach considers two different types of queues, persistent and episodic, in order to

investigate this phenomenon (see Chapter III.3.3). Persistent queues are maintained by agents throughout the

decision problem, without regard to an agent’s change in state. Episodic queues are cleared each time an

agent transitions to a new state. Due to these frequent state changes, voting messages must be received more

often than regular interaction messages in order to provide agents an opportunity to sense a quorum prior to

changing state. Voting messages are sent by favoring interactive agents with a frequency of rPL, where r > 1.

The individual behavior model is shown in Figure III.6. Agents in the uncommitted and favoring states

behave according to the collective best-of-n strategy, described in Chapter III.2.1 and are only interactive

within the decision making hub. A favoring agent (Fp,i) spontaneously transitions to the committed state

(Cp,i) after detecting a quorum of support for φi with probability PωFp,i
. Committed agents remain within

the nest area and they commit deliberating agents that they encounter. Committed agents spontaneously

transition to the initiating state, Ip,i, with probability PωCp,i
. The initiating population interacts with agents in

the previous three states, causing them to enter the initiation state. Agents transition to the execution state,

Xp,i after detecting a quorum, with probability PωIp,i
. Agents in state Ip,i add their own vote to their queue with

probability PI
U if no messages have been received, which ensures that most initiating agents start executing

action i with a probability of PI
U/kT . This mechanism is particularly important when the chosen task requires

the collective to change the location of its decision making hub. Without resorting to a special broadcast

message, the synchronous initiation of action execution is not guaranteed and a small number of agents are

expected to be left in the original hub when the rest of the agents move to the new location. The self voting

mechanism used by agents in state Ip,i, prevent initiating agents from remaining in the original location for

extended periods of time, while they attempt to detect a quorum. Agents complete acti with probability Pηp,i

and spontaneously transition to the completed state, Dp,i. Finally, once completed agents detect a quorum,

they transition to the next decision state’s uncommitted population, Up+1.

The presented behavior model does not solve the problem of duplicate quorum detection messages. Sev-

eral existing collective decision making approaches assume anonymous messaging between individual robots,

which is intended to reduce the complexity of individual agents and avoid requiring that individuals have

unique identifiers (Parker and Zhang, 2009, 2010; Reina et al., 2015b). The use of autonomous messaging

during quorum detection implies that individual robots are unable to distinguish between duplicate and orig-

inal messages received from neighboring robots. Duplicate messages during quorum sensing reduces the

accuracy of each individual’s estimate of the collective state. Although it was not evaluated in their research,
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Figure III.6: The individual behavior model for the presented approach to explicit collective action selection.
Solid lines are spontaneous transitions between states, while dashed lines require interactions between agents
in the receiving and losing states. The term PL

∗ is used for convenience to represent the latent transition
probabilities for both Up and Fp,i.

Parker and Zhang (2010) recommended that agents delay between interactions in order to reduce the chances

of receiving duplicate messages. The drawback to this approach is that extending time between interactions

increases the collective’s decision making time. Another solution includes additional information in voting

messages, such as sending agent identification in order to prevent or limit duplicate messages (Hamar and

Dove, 2012).

Three different approaches to the problem of duplicate quorum voting messages are considered and eval-

uated. First, individuals perform no message filtering, but increase the period between interactions in order to

reduce the likelihood of receiving duplicate messages. Second, individuals use weak voting message filtering

and generate a random number in the range [0,k−1] each time they enter the interactive state and include this

number in their voting messages. Agents receiving this message ignore messages with values already in the

queue during the current interactive period. Finally, individuals use strong voting message filtering and gen-

erate a random interaction identifier each time they enter the interactive state and duplicates are ignored. The

effectiveness of the individual behavior model in general, and the effectiveness of each of these approaches

is the purpose of the experiment described in Chapter III.3.4, which addresses the fourth, and final, research

question for independent explicit collective action selection in robotic collectives.

III.3 Simulated Robotic Collective Experiments

Four evaluations were conducted in order to analyze the effectiveness of the solutions for addressing research

questions R1-R4. The experiments consisted of unique models, metrics, and environments that are described

in Chapters III.3.1 through III.3.4. Robot models were implemented in Java in order to permit interaction

with a variety of simulation environments. Processing, an open-source programming environment, was used

for all experiments (Reas and Fry, 2014).

The options considered in all experiments were sites (see Definition 3) located within a two dimensional

environment. Both sites and agents in these experiments were represented as point masses. The robot agent
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Figure III.7: The two dimensional, point-mass simulation environment during a decision problem in which
the optimal site, B, is further from the decision making hub than site A. The central box is the decision making
hub where agents interact.

characteristics were based on the e-puck robot, using local communication through infrared sensors (Mon-

dada et al., 2009). The simulated robots have a sensory range and communication range of 12.8cm, a constant

speed of 10cm/s, and move through the environment using a correlated random walk, when not traveling be-

tween the nest area and a known site (Reina et al., 2015a; Codling et al., 2008). Agents travel directly to and

from the nest area and known locations in straight lines using perfect odometry, as in prior work (Reina et al.,

2015a). Agents perform instantaneous site evaluations when they are within range of a site.

III.3.1 Experimental Analysis of Models with Static Site Values

The purpose of the static site values experiment was to determine whether the interaction frequency modula-

tion and interaction delay extensions to the original model (see Chapter III.2.2) address research questions R1

and R2. Two hypotheses were examined. The first hypothesis, H1, was that interaction delays improve col-

lective decision accuracy over the original model. The second hypothesis, H2, was that interaction frequency

modulation improves decision time and accuracy in the presence of environmental bias.
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Table III.1: Evaluated Models

Model Description
M0 Reina et al.’s (2015b) Original model
M1 M0 with interaction frequency modulation
M2 M0 with interaction delay
M3 M1 and M2 combined

III.3.1.1 Experimental Design

The simulation environment, shown in Fig. III.7, consisted of a 3.5× 3.5m two dimensional, obstacle free

search space with a central 0.7×0.7m nest area (where 1 pixel = 1cm). Agents were allowed to pass through

the boundaries in order to prevent wall boundary interactions from improving site discovery probabilities. All

probabilities were adjusted to account for five simulation iterations per second. The random walk behavior

and the simulation environment affected the discovery rate parameters, µ and ξ , as previously discussed (see

Equation III.7 in Chapter III.2.1). These parameter values were determined by fitting a curve to discovery

time data for 1000 simulations in which agents used the correlated random walk to explore the environment

for sites located at different distances from the decision making hub ([0.5,3.5]m, at 0.5m increments).

The primary independent variable was the evaluated model, as summarized in Table III.1. The original

model was Reina et al.’s (2015b) model. Model M1 extended M0 with interaction frequency modulation.

Model M2 extended M0 with interaction delays. Finally, Model M3 combining both extensions with M0. The

secondary independent variables included the collective population size, N ∈ {50,100,500}, the distance

between the nest area and each of two sites, di ∈ [0.5,3.5]m, in 0.5m increments, and the value of each site,

vi ∈ {0.6,1.0}, incremented by 0.1. Each primary independent variable was paired with each combination

of secondary independent variables and evaluated via 25 trials. Each trial was a decision problem in which

the agents started within the nest area and explored the arena for two sites. The sites were detected when an

agent was within sensory range.

The metrics for evaluating the performance of these extensions were success rate, decision time, and

effectivity (Reina et al., 2015b). Success rate represented the percentage of trials for each combination

of the secondary independent variables in which the collective achieved a quorum of support (T = 0.75)

for the highest valued site. When sites were equally valued, an accurate decision was one in which either

site was selected. Decision time was the length of time required to achieve a quorum for a site within the

arena, whether the decision was accurate or not. Finally, effectivity was the percentage of total trials in

which a quorum was reached prior to a maximum time limit. The imposed time limit was 12,000 seconds

(approximately 3.3hrs).
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Table III.2: Success Rate (SR) and Decision Time (DT )

Model Statistic SR (%) DT (min)

M0

Mean (SD) 0.72 (0.42) 15.2 (23.0)
Median 1.0 7.67

Min (Max) 0 (1.0) 1.81 (199.3)

M1

Mean (SD) 0.711 (0.407) 10.5(13.33)
Median 1.0 7.00

Min (Max) 0 (1.0) 1.98 (199.2)

M2

Mean (SD) 0.877 (0.24) 25.38 (25.9)
Median 1.0 17.0

Min (Max) 0 (1.0) 4.46 (199.9)

M3

Mean (SD) 0.875 (0.20) 16.5(13.4)
Median 0.96 13.42

Min (Max) 0.0 (1.0) 4.31 (199.3)

III.3.1.2 Results

The descriptive statistics for the success rates and decision times achieved by the models are provided in

Table III.2. M2 made the most accurate and slowest decisions, while M1 was the fasted and least accurate. The

interaction frequency modulation mechanism in M3 improved its decision time, while maintaining a success

rate comparable to M2. The minimum (Min) and maximum (Max) success rates, in Table III.2 demonstrate

that each model failed (0) or succeeded (1.0) every trial for at least one problem scenario. Trials that resulted

in failed decisions, meaning that the collective did not reach a 75% majority within the imposed time limit,

represented 3.5% of the total trials and were omitted from Table III.2. Model M2 achieved an effectivity of

0.93, which means that it did not make a decision in 7% of its total trials. M0, M3, and M1 achieved effectivity

rates of 0.96, 0.98, and 0.99, respectively.

A Kruskal-Wallis test indicated a significant effect across the four models for success rate, χ2(3,N =

157500) = 4534.6, p < 0.001, and decision time, χ2(3,N = 157500) = 29739, p < 0.001. Significant effects

were also observed between all models in pairwise comparisons using a Tukey and Kramer (Nemenyi) test

for success rate (p < 0.001) and decision time (p < 0.001).

Site location, value, and population influenced the success rates of all models. The effective resolution

boundaries by model and collective size are provided in Fig. III.8. Lower effective resolution boundaries

indicate higher success rates. Increasing the differences in site distances from the decision making hub (x-

axis), for all population sizes significantly reduced the success rates of M0 and M1, which were unable to

select the optimal site when sites differed in distance by 1.5m or more. M2 and M3 were more resilient to

differences in site locations. Increases in population size improved M2’s success rate the most, but had little

impact on the success rates of the remaining models.

The skewed distributions for model decision times, as shown in Fig. III.9, demonstrate the challenge of
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(a) Effective resolution (50 agents).

(b) Effective resolution (100 agents).

(c) Effective resolution (500 agents).

Figure III.8: The four models compared by success rate according to population size and differences between
site distances from the decision making hub. Each model’s effective resolution boundary is presented, in
which lower lines indicate higher success rates at different site distances.
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(a) Decision time for 50 agents (Outliers > 80min: M0-638, M1-88, M2-1334, M3-168).

(b) Decision time for 100 agents (Outliers > 80min: M0-332, M1-70, M2-390, M3-89).

(c) Decision time for 500 agents (Outliers > 80min: M0-142, M1-101, M2-52, M3-56).

Figure III.9: The four models compared by decision times according to population size and differences
between site distances from the decision making hub. The slowest 3,460 (2.1% of total trials) trials are
omitted due to Decision Times that exceeded 80min in order to facilitate viewing the primary results.
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predicting convergence time during collective site selection. The figures portray trials that completed prior

to the imposed time limit. M1 made the fastest decisions for all population sizes. Increasing difference in

distance between the sites and the decision making hub improved the decision time of both M0 and M1, as

each model rapidly converged to the closer site despite that site’s value. M2 and M3 decision times were

resilient to differences in site distances from the decision making hub. Increasing the collective population

size resulted in a modest decrease in decision times for all models.

III.3.1.3 Discussion

The results indicate that incorporating interaction delay, in models M2 and M3, reduced environmental bias

caused by distance for value-sensitive collective site selection problems. The results support hypotheses H1

and partially supported H2, but the evaluation of each individual extension deviated slightly from expecta-

tions. Interaction delays, as anticipated, improved success rate, at the cost of decision time and decreased

effectivity. Interaction frequency modulation improved decision time as expected, but did not significantly

affect success rate. The design decision to limit interaction frequency via the latency probability reduced

the relative influence of site location for each population’s frequency calculations. Additionally, the models

implementing interaction delays (M2 and M3) experienced fluctuations related to spatial differences between

sites. The interaction delay extension included discovery probability estimates based on a population size of

50 agents, which biased the models in favor of sites that were further away in several scenarios with greater

populations. This bias was more noticeable in the combined model (M3) and caused a slight reduction in its

success rates overall.

While the presented results must be supported with future robotic experiments, their implications to

robotic collective decision making are significant. First, combining different behavior modulation techniques

is an effective means of improving accuracy without incurring costly decision time penalties. Second, value

resolution is at least partially dependent on the environmental bias (e.g., distance). The combined model

reduced this influence in an ideal setting, but future systems must be evaluated throughout the search range

to provide reasonable accuracy guarantees. Third, although M3, the combined model, achieved comparable

overall decision speed to the original model, M3 is expected to face more symmetry breaking scenarios and

perform more slowly than the original model when the closer site is superior to the further site. Due to the

combined model’s relative indifference to site placement, it faces a symmetry breaking scenario any time

two equal sites are within range, resulting in a decision time greater than the original model (Reina et al.,

2016; Hamann et al., 2012). The original model is more susceptible to environmental bias and only faces a

symmetry breaking scenario when its considered sites are equidistant to the decision making hub and equally

valued.
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The static site values experiment demonstrated that the interaction delay and interaction frequency mod-

ulation extensions provide partial solutions to research questions R1 and R2. Interaction delays partially

addressed R1 by reducing the influence of discovery and travel cost associated with sites in the collective’s

search space, which enabled models M2 and M3 to make decisions based primarily on site value in more

scenarios than in the other two models. Two important points are necessary. First, interaction delays only ad-

dress environmental factors that influence the time associated with site discovery and travel time between the

decision making hub and the site. Other costs, such as additional energy requirements (e.g., to travel through

difficult terrain) do not necessarily affect either of the evaluated costs and are; therefore, not addressed by

interaction delays. Second, this experiment, and the rest of the experiments in this dissertation, do not con-

sider differing assessment times between sites, which has been discussed in prior studies (e.g., Valentini et al.,

2014). While adding assessment cost to the interaction delay extension is expected to be straightforward, it

was not evaluated or incorporated into the model. Interaction frequency modulation partially addressed R2

by improving the decision times with only modest effects on the decision accuracy of both M1 and M3, when

compared to M0 and M2, respectively. The benefit gained by interaction frequency modulation; however, was

observed to decrease as the population of agents increased.

Static site values are common in studies examining opinion-based collective best-of-n approaches, but do

not address the effect of changing site values during the decision making process. Predictable responses to

changes in site values are particularly important for explicit collective action selection, since the collective

risks executing the wrong action if it does not react to a sudden value change. Option values are likely to

change as a result of changes in the environment and changes in priority when the collective is operating as

part of a human-collective team. The dynamic site values experiment examines the same set of models for

their responsiveness to changing site values.

III.3.2 Experimental Analysis of Models with Dynamic Site Values

The most difficult problems faced by the original model in the static site value experiment (see Chapter

III.3.1) were problems in which the optimal site was located further from the decision making hub than a

closer site with a lower value. The dynamic site values experiment was designed to address research question

R3 by evaluating the original and extended collective best-of-n models in scenarios that are subject to site

value change during the decision making process. The hypothesis, H3, was that the decision making process

will be more uniformly responsive to site value changes when the effect of environmental bias is reduced.
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III.3.2.1 Experimental Design

The experimental design was based on the same simulation arena, evaluated decision making models, and

individual agent behavior parameters as was used in the static site values experiment (Chapter III.3.1.1). Sites

had an associated initial value, vi, and a final value vF
i that they assume at time tF in order to simulate a drastic

change in site value during the decision making process. The decision problems were designed to require the

collective to make decisions in the presence of environmental bias and site value changes.

The primary independent variable was the evaluated model. The secondary independent variables were

the agent population size (N ∈ {100,300,500}), site initial quality (vi ∈ [0.5,1.0], incremented by 0.1), site

final quality (vF
i ∈ [0.5,1.0]), site distances (dA = 1.5m and dB ∈ {1.0,1.5,2.0}m), and quality change time

(tF ∈ [0,200]s incremented by 25s). Scenarios were defined by the cost, in terms of distance, of the optimal

site (dopt ) and the mediocre (dmed) site. Low, moderate, and high cost scenarios were those in which dopt <

dmed , dopt = dmed , and dopt > dmed , respectively. Each pairing of secondary and primary independent variables

were evaluated for 50 site selection decisions. Three metrics were considered: success rate - the percentage

of trials in which the collective chose the best site according to the site’s final values (vF
i ), response time - the

period of time between tF and a correct decision, and total decision time.

III.3.2.2 Results

The descriptive statistics for Success Rate (SR), Decision Time (DT ), and Response Time (RT ) are provided

in Table III.3. M0 performed as expected and achieved slightly lower success rates than in prior work by

Reina et al. (2015b) due to the introduction of dynamic value changes. M1 was observed to have the fastest

decision and response times of all the models, and achieved a similar success rate to M0. M2 made the slowest,

most accurate decisions. M3 achieved a similar success rate to M2 with decision times that were within one

Table III.3: Descriptive Statistics by Model and Metric

Model Statistic SR DT RT

M0

Mean (SD) 0.76 (0.42) 8.91 (4.11) 7.05 (4.0)
Median 1.0 8.2 6.5

Min (Max) 0 (1.0) 3.05 (50.53) 0.11 (44.97)

M1

Mean (SD) 0.76 (0.43) 7.99 (3.59) 6.14 (3.5)
Median 1.0 7.35 5.71

Min (Max) 0 (1.0) 2.81 (51.07) 0.03 (49.4)

M2

Mean (SD) 0.93 (0.26) 10.94 (4.36) 9.3 (4.2)
Median 1.0 10.01 8.66

Min (Max) 0 (1.0) 4.4 (60.8) 2.0 (58.3)

M3

Mean (SD) 0.90 (0.3) 9.26 (3.1) 7.6 (3.02)
Median 1.0 8.54 7.17

Min (Max) 0.0 (1.0) 3.99 (39.15) 1.21 (36.23)
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minute of M0’s decision times. Interaction frequency modulation for M1 and M3 improved decision times for

both models without significantly affecting success rate, as compared to M0 and M2, respectively. Interaction

delays increased decision time, response time, and success rate for M2 and M3 over the other models.

A Kruskal-Wallis test indicated a significant effect across the four models for success rate (SR), χ2(3,N =

172800) = 7601.2, p< 0.001, decision time (DT ), χ2(3,N = 172800) = 15532, p< 0.001, and response time

(RT ), χ2(3,N = 80528) = 8642.9, p < 0.001. Pairwise comparisons using a Tukey and Kramer (Nemenyi)

test revealed a significant effect for success rate (p < 0.001) when comparing the first two models, M0 and

M1, to the interaction delay models, M2 and M3. The same test revealed a significant effect between all

models for decision time (p < 0.001) and response time (p < 0.001).

A detailed comparison of the influence of optimal site cost and the time of the site value change (tF ) on

each model’s performance is provided in Fig. III.10. Fig. III.10a demonstrates the influence of both tF and

optimal site cost on the success rates of the models. M1 and M2 are omitted, as no significant effects were ob-

served between those models and M0 and M3. M0 achieved the highest accuracy when responding to changes

during the low cost scenario for all values of tF . M3 achieved similar success rates to M0 for the same sce-

nario for tF <= 50s, but was less likely to choose the optimal site, as tF increased. The models’ success rates

were similar for the moderate scenario and decayed as tF increased. The most notable difference between

the models was their performance in the high cost scenario. M0 achieved a success rate of approximately 0.6

when no value change occurred (tF = 0) and its success rate dropped rapidly as tF increased. M3’s success

rates in the high and moderate cost scenarios were nearly equal.

Decision times for different optimal site costs are shown in Fig. III.10b. M0’s and M1’s decision times

increased as optimal site cost increased. Lower decisions times were achieved for the easier decisions (low

cost) and higher decision times for more difficult, high cost decisions. M2 was the slowest model overall. M3

was slower in the low cost scenario, but achieved comparable decisions times to those of M0 in the moderate

and high cost scenarios.

The mean response times for all models in the low cost and high cost scenarios as tF increases are

displayed in Figs. III.10c and III.10d, respectively. M0 and M1 responded rapidly when the closer site

became the optimal site as a result of a value change at time tF . Response times for M0 and M1 in the high

cost scenario, as shown in Fig. III.10d, were much higher than in the low cost scenario. M2 and M3 were

slower to respond to changes in site value in the low cost scenario, but responded consistently regardless of

the optimal site’s distance to the collective deliberation area.
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(a) Success Rate for Low-L, Moderate-M and High-H Cost Sce-
narios

(b) Decision Time for Low-L, Moderate-M and High-H Cost
Scenarios

(c) Response Time for Low Cost Scenario: dopt < dmed (d) Response Time for High Cost Scenario: dopt > dmed

Figure III.10: A detailed comparison of the models according to success rate (a), decision time (b), and
response time (c and d). Note: Fig. III.10b omits the slowest 1026 trials (0.6% of total trials) with Decision
Times exceeding 1600s (M0-260, M1-140, M2-554, M3-72) in order to facilitate viewing the primary results.

III.3.2.3 Discussion

The results provide further support for hypothesis H1 (see Chapter III.3.1) by showing that combining fre-

quency modulation and interaction delays improves site selection accuracy in decision problems influenced

by negative environmental bias. While, the evaluated models were less accurate, in general, when site values

changed later in the decision making process, they demonstrated different behavior patterns in response to

dynamic site value changes. The original model’s accuracy and response time was strongly influenced by en-

vironmental bias and depended upon the locations of the considered sites. Nearby sites had higher discovery

rates, because they were easier to locate. Robots supporting nearby sites had shorter latency periods, which
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increased the frequency of their recruitment and inhibition attempts. Optimal sites in high cost scenarios were

harder to find and had longer latency periods than closer sites, which resulted in lower effective recruitment

rates and lower success rates.

Hypothesis H3, which predicted uniform responsiveness to site value changes by the bias reducing models

was supported. The model combining both extensions maintained consistent response times, decision times,

and success rates that were independent of the evaluated optimal site cost. This consistency resulted in

modest decision time improvements and significant success rate improvements during the high optimal site

cost scenarios that challenged the original model. Interaction frequency modulation only reduced decision

times modestly and had a negligible effect on decision accuracy. While improved decision times are beneficial

and enabled the model with both extensions to achieve decision times close to the original model, increasing

interaction frequency with site cost was expected to improve success rate more than was observed.

The models with interaction delays (M2 and M3) experienced slightly reduced performance in the low

optimal site cost scenario, which exposes an important trade-off associated with this extension. The semi-

latent control states that enable interaction delays have exit probabilities dependent on a designer-specified

maximum search range. Interaction delays were effective in permitting the collective to choose high cost

optimal sites, but the delays also slightly slowed the collective’s response to changes in the values of the closer

sites. Increasing the collective’s maximum range is expected to further reduce the collective’s responsiveness

to value changes for sites close to the deliberation area.

Consistent performance, despite the existence of a biasing factor, indicates the model’s ability to ignore

aspects of the environment when choosing a site. Collectives that are incorporated into larger efforts, par-

ticularly under the supervision of human operators, will be influenced by a variety of environmental biases

that will alter the collective’s behavior based on its location and the relative locations of the sites it considers.

When the collective must make decisions despite a particular environmental bias, the collective’s inability

to ignore the bias will reduce its performance and increase the challenge of supervising entities, including

humans, to predict and understand the collective’s expected behavior.

The dynamic site values experiment demonstrates the difficulty of answering research question R3, since

collective responsiveness to site changes depends upon the values and locations of the sites considered, the

differences between the considered site values and the timing of a change in site value during the decision

making process. The original model, M0, responded to site changes differently depending upon the location

of the sites with respect to the decision making hub. The original model strongly favored closer sites and

responded quickly for scenarios in which the closer site changed value, but the original model was much

less responsive to value changes with sites located further from the decision making hub. The models that

incorporated interaction delays (M2 and M3) were consistent in their response, regardless of the location
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of the sites. Consistent performance in the collective best-of-n decision process is important for predicting

collective decision times and accuracy in a variety of scenarios. Future human-collective teams that attempt to

solve best-of-n problems will need to share decision making tasks when neither the human, nor the collective

has global knowledge of the environment (Crandall et al., 2017). The consistency exhibited by the interaction

delay models (M2 and M3) is expected to improve the ability for the human operator to predict the collective’s

future state and reduce the need for the human to intervene in the event of collective decision errors.

Both the static and dynamic site value experiments evaluated implicit collective action selection scenar-

ios, but did not evaluate each model’s ability to detect when a decision has been reached and respond to that

decision. Only explicit collective action selection enables a collective to recommended future behavior de-

cisions to the human-collective team, without simultaneously implementing these decisions. The remaining

two robotic collective experiments address research question R4, by examining these models with quorum de-

tection extensions that enabled explicit collective action selection in single (see Chapter III.3.3) and multiple

sequential (see Chapter III.3.4) decision scenarios.

III.3.3 Experimental Analysis of Quorum Detection

The quorum detection mechanism described in Chapter III.2.3 is only effective if it enables individual agents

to estimate the presence of a quorum with reasonable accuracy. The purpose of the quorum detection ex-

periment is to address research question R4 by evaluating the collective action selection process’s (Chapter

III.2.3) ability to respond to site selection by halting the deliberation process. The majority and k-unanimity

quorum detection mechanisms are combined with the persistent and episodic queuing techniques described

in Chapter III.2.3 and are evaluated against the original model (Reina et al., 2015b). Two hypotheses are

evaluated. The first hypothesis, H4.1, is that the episodic models will be faster and less accurate than the per-

sistent models. The second hypothesis, H4.2, is that the unanimous threshold models, called the k-unanimity

models, will be slower and more accurate than the models using majority quorum thresholds.

III.3.3.1 Experimental Design

Five models, which are summarized in Table III.4, were evaluated in a series of equidistant site experiments.

The first model, M0, was Reina et al.’s (2015b) original model used in the static and dynamic site value

experiments. Model M4 extended M0 with a persistent quorum detection mechanism and majority quorum

rule with a threshold T = 0.75 (see Chapter III.2.3). Model M4E was M4 with an episodic queue that was

cleared each time agents changed state. Model M5 used a persistent queue with a strict, k-unanimity, threshold

(T = 1.0). Finally, Model M5E was M5 with an episodic queue. The arena, shown in Fig. III.11, was similar

to the prior experiments, (see Chapter III.3.1 and III.3.2). Agent movement, sensory, and communication

68



Figure III.11: A screenshot of a trial in which the collective must choose between an optimal and mediocre
site. The collective has just detected a quorum for site B, indicated by the dark blue agents in the central
decision making hub.

capabilities were identical to previous experiments. The secondary independent variables included site value,

in the range [0.7,1.0], incremented by 0.1, and collective population, in the range [100,500], incremented

by 100. Each model was evaluated for 50 trials of each combination of secondary independent variables in

two site decision problems, where the sites were equidistant, placed at 2m from the nest area, as shown in

Fig. III.11. The evaluation metrics were success rate, decision time, quorum accuracy, and split decision rate.

Success rate was the ratio of accurate decisions to total decisions for each problem scenario (Reina et al.,

2015b). Decision time was the time required for the collective to sense a 75% majority opinion (Reina et al.,

2015b). Quorum accuracy was the ratio of the population percentage supporting a site at the time a quorum

was sensed to the desired 75% threshold. Finally, the split decision rate was the ratio of split decisions to

total decisions for each problem scenario. M0 was evaluated using success rate and decision time, which were

Table III.4: Evaluated Models
Model Description
M0 Original model
M4 Majority Quorum with Persistent Queue
M4E Majority Quorum with Episodic Queue
M5 k-Unanimity Quorum with Persistent Queue
M5E k-Unanimity Quorum with Episodic Queue
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externally observed, but the remaining metrics were not applicable to the model, as it did not sense collective

decisions.

III.3.3.2 Results

The descriptive statistics for success rate, decision time, and quorum accuracy are presented in Table III.5.

The 0.3% of trials ending in a split decision are omitted from the table, but are presented in Fig. III.12(d). All

evaluated models achieved similar mean, median, standard deviation (SD), minimum (Min), and maximum

(Max) success rate values. The persistent models (M4 and M5) resulted in longer decision times and higher

quorum accuracies than the episodic models (M4E and M5E ). M4 achieved the highest quorum accuracy, while

M5E made the fastest decisions with the lowest quorum accuracy.

A Kruskal-Wallis test did not find significant effects for success rate. Significant effects were observed

for decision time, χ2(4,N = 20000) = 2210.5, p < 0.001 and quorum accuracy, χ2(4,N = 20000) = 2789,

p < 0.001. Pairwise comparisons using a Tukey and Kramer (Nemenyi) test revealed significant effects for

decision time (p < 0.01) and quorum accuracy (p < 0.001) between all models.

A detailed comparison of model performance with respect to collective population size is presented for

success rate (Fig. III.12(a)), decision time (Fig. III.12(b)), quorum accuracy (Fig. III.12(c)), and split

decision rate (Fig. III.12(d)). Success rates for all models improved as collective population increased,

although success rates leveled off when the collective population reached 400 agents. The evaluated queue

length is the expected cause of this observation.

The persistent quorum sensing models were significantly slower to sense a decision than the episodic

models, as shown in Fig. III.12(b), although all models improved with an increase in population size.

Table III.5: Descriptive Statistics: Success Rate (SR), Decision Time (DT ), and Quorum Accuracy (QA).
Model Statistic SR (%) DT (minutes) QA

M0

Mean (SD) 0.898 (0.10) 16.01 (10.1)
N/AMedian 0.92 13.28

Min (Max) 0.62 (1.0) 6.5 (134.9)

M4

Mean (SD) 0.881 (0.11) 15.3(3.3) 0.99 (0.19)
Median 0.92 14.4 1.04

Min (Max) 0.56 (1.0) 9.7 (37.4) 0.17 (1.3)

M4E

Mean (SD) 0.876 (0.10) 9.3 (4.2) 0.56 (0.11)
Median 0.90 8.13 0.56

Min (Max) 0.64 (1.0) 3.1 (50.7) 0.13 (0.93)

M5

Mean (SD) 0.889 (0.10) 19.2(6.6) 1.2(0.1)
Median 0.92 18.0 1.15

Min (Max) 0.64 (1.0) 10.78 (92.81) 0.56 (1.29)

M5E

Mean (SD) 0.890 (0.11) 14.4(6.9) 0.91(0.10)
Median 0.91 12.5 0.92

Min (Max) 0.6 (1.0) 4.68 (69.3) 0.44 (1.17)
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(a) Success Rate (b) Decision Time

(c) Quorum Accuracy (d) Split Decision Rate

Figure III.12: The performance of the five evaluated models are compared based on success rate a and
decision time (b) across the evaluated population sizes. All models except M0 are also compared by quorum
accuracy (c) and (d) across the evaluated population sizes.

Episodic queues resulted in decreases of 40% and 25% in decision time for the majority rule and k-unanimity

rule, respectively, without a reduction in success rates.

M4E ’s low decision time was due to its tendency to sense a quorum far before the other models, as shown

in Fig. III.12(c). The remaining models sensed a quorum very near to when the majority opinion reached

the 75% threshold, and were not influenced by increasing the collective population size. M5E exceeded

expectations by achieving fast decision times with corresponding high quorum accuracy.

Split decision rates proved to be an important discriminator between the quorum sensing models. While

Figs. III.12(a-c) ignore the 0.3% of overall decisions that resulted in split decisions, Fig. III.12(d) demon-

strates that all split decisions occurred with the majority rule models, M4 and M4E . Split decisions increased
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with population size for both models, indicating that there is an increasing likelihood of agents sensing a false

quorum after receiving most of their messages from a minority of the population. Models M5 and M5E did

not experience a single split decision during the experiment.

The highest performing quorum sensing models were M4 and M5E . Both models made and detected site

selections with near optimal quorum accuracy and decision times comparable to the original model (M0).

M4E experienced a 43% drop in quorum accuracy compared to M4, while M5E was just 23% lower than M5

for the same frequency. Further, M4 enabled detection of the desired threshold (T = 0.75), while experiencing

a low percentage of split decisions. M5E avoided split decisions and achieved similar decision times to M4.

III.3.3.3 Discussion

The results demonstrate that both the majority and k-unanimity quorum detection rules enable the collective

to achieve value-sensitive consensus decisions in collective site selection problems. The results also indicate

that Parker and Zhang’s (2009) quorum sensing mechanism is applicable to a large collective restricted to

communication in a decision making hub. Finally, the performance of the persistent majority rule and episodic

k-unanimity rule quorum mechanisms demonstrate that collective decision detection does not necessarily

increase the decision time of Reina et al.’s underlying model.

The first hypothesis, H4.1, which stated that persistent queues were expected to be more accurate and

slower than episodic queues was only partially supported. Both episodic models were faster than the persis-

tent models, but each was significantly more accurate than expected. While reduced decision speed is often

desirable, collective commitment to an opinion ahead of achieving a true majority is expected to be detrimen-

tal in scenarios with dynamically changing site values. A key attribute of the underlying decision strategy is

its value-sensitivity, which is the collective’s ability to remain in a deliberative state in the presence of poor

quality sites, until acceptable sites are discovered (Pais et al., 2013). Early quorum detection increases the

probability that the collective commits to a poor site, which reduces the system’s value-sensitivity.

The results also partially supported hypothesis H4.2 which stated the majority rule models were expected

to be faster and less accurate than the k-unanimity rule models. The majority rule models achieved shorter

decision times with similar decision accuracy when compared to the k-unanimity rule models, but they were

also more likely to result in a split decision. Split decisions were primarily a problem due to the current

absorbing commitment states. An alternative solution is to permit competition between the commitment

states, achieved through application of a consensus decision strategy, such as the k-unanimity rule (Scheidler

et al., 2016). Examination of this secondary consensus process will establish if the decision time gained by a

less stringent quorum detection rule is truly advantageous.

The quorum detection experiment begins to address research question R4 by evaluating the collective’s
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ability to make a best-of-n decision and transition its behavior based on quorum detection (e.g., stop deliber-

ating between available sites). This experiment indicates that the presented solution enables the collective to

simultaneously solve the best-of-n problem and sense a quorum without reducing the accuracy of the initial

decision in the evaluated cases. A comparison between the decision times of the lower quorum threshold

models (M4 and M4E ) to the higher threshold models (M5 and M5E ) demonstrates clearly that increasing quo-

rum threshold values increased decision time and decreased the probability that the collective splits for the

evaluated population sizes. The former result is not surprising (Parker and Zhang, 2009), but simultaneous

quorum detection is a potentially catastrophic problem in scenarios that require the collective to move the

location of the decision making hub after a decision. Split decisions under these conditions result in the

collective fragmenting as portions of it attempt to set up different decision making hubs in new locations.

The difference in performance between the models using persistent (M4 and M5) and episodic (M4E and

M5E ) queues demonstrated that rapid quorum detection did not necessarily reduce decision accuracy, but did

influence quorum accuracy.

Addressing the remainder of R4 requires that the collective be evaluated as it completes multiple decisions

in a row. Sequential decisions require several different behavior changes, as the collective commits to an

action, initiates the action, and completes the action. Split decisions during sequential decision making are

likely to occur when the collective simultaneously detects quorums for multiple actions, as demonstrated in

this experiment, or when the collective transitions to a new behavior and leaves individual robots behind in a

previous state within the decision making process.

III.3.4 Experimental Analysis of Sequential Action Selection

The explicit collective action selection model (Chapter III.2.3) requires the collective to alternate action

decisions and executions in a sequence of problems. The quorum sensing evaluation indicated that increasing

the frequency of agent voting messages decreased quorum accuracy, but that effective quorum detection was

possible at the higher frequency with an increased quorum threshold. The purpose of the sequential decisions

experiment was to address research question R4 by evaluating the presented explicit collective action selection

approach in scenarios that required the completion of a sequence of action selection problems. Four different

models were evaluated and distinguished by the use of bias reduction mechanisms and the use of either a

persistent or episodic voting queue. Additionally, the models were tested in four different quorum noise

scenarios in order to evaluate the effectiveness of different noise reduction techniques. The first hypothesis,

H4.3, was that the persistent queue techniques enable more sequential decision making than the episodic

models. The second hypothesis, H4.4, was that quorum noise reduction techniques improve the speed and

completion rate of all evaluated models.
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Figure III.13: An example of the beginning of the first of four decisions the collective made during a sequen-
tial trial. The collective chose each site in a sequence determined by its collective best-of-n model.

III.3.4.1 Experimental Design

The arena dimensions and agent capabilities for the sequential action selection experiment were identical

to the previously presented experiments; however, the collective search space contained four sites. Unlike

prior experiments, a single arrangement of sites and values, shown in Figure III.13, was used to evaluate the

collective’s ability to complete a sequence of action selections. The sites were located on four corners of

a square, with each site located 1.25m from the initial, central location of the collective’s decision making

hub. The sites had static values in the range [0.7,1.0], arranged as shown in Figure III.13. The collective was

required to choose each site in a sequence determined by its collective best-of-n model. The first decision

required the collective to choose the best of four sites, detect its decision, and move its decision making hub

to the chosen site. The second decision required the collective to choose between the remaining three sites,

which was repeated for the last two decisions. Due to the arrangement of sites in a square, the distances

between the sites and the collective decision making hub were always within the set {1.25,1.8,2.5}m.

Table III.6: Evaluated Models
Model Description
M4 Action Selection with Persistent Queue
M4E Action Selection with Episodic Queue
M6 M4 with Bias Reduction
M6E M4E with Bias Reduction

74



The primary independent variable was the evaluated model. The four evaluated models are listed in Table

III.6. Models M4 and M4E were identical to those used in the quorum detection experiment (see Chapter

III.3.3) and used persistent and episodic queues, respectively. Model M6 and M6E added interaction delay

and interaction frequency modulation to M4 and M4E , respectively. The secondary independent variables

were the collective population size, N ∈ {100,300,500}, quorum thresholds T ∈ {0.8,1.0}, and four different

quorum noise scenarios. Each primary independent variable was paired with each combination of secondary

independent variables and evaluated via 50 trials. Quorum detection is susceptible to noise that results from

duplicate messages being received from neighboring agents, as described in Chapter III.2.3. The baseline,

unfiltered quorum noise scenario (UQ) made no attempt to filter quorum messages and individuals were

susceptible to receiving duplicate messages. The delayed interaction scenario (DI) reduced agent interaction

probabilities by half in order to evaluate Parker and Zhang’s (2010) recommendation that increasing delays

between interactions passively reduces the likelihood of duplicate messages. The weak quorum filtering

scenario (WQ) required agents to generate a message identifier in the range [0,k−1] each time they became

interactive and include the identifier in voting messages. Agents that received a message with an identifier that

was already in its queue dropped the new message. Finally, the strong quorum message filtering scenario (SQ)

required agents to generate a random 32-bit number each interaction period and ignore duplicate messages.

The metrics were success rate, action completion time, quorum accuracy, and trial completion rate. Suc-

cess rate, as in prior experiments, was the ratio of accurate decisions to the total decisions made by the

collective. Action completion time was the time required for the collective to choose a site, move to the site,

and achieve a quorum at the new location. Quorum accuracy was the ratio of the actual number of agents in a

particular quorum sensing state at the time quorum was detected to the optimal number of agents determined

by the product of the quorum threshold T and the agent population N. Finally, trial completion rate was the

ratio of completed trials to the total trials. Collectives that failed to complete the required four decisions were

considered to have failed the trial. Failed trials occurred when the collective was either unable to make its

last decision within six simulated hours, or if the collective split during the trial. Split collectives occurred if

the collective either committed simultaneously to two different sites or if the collective left agents behind at

a prior nest location.

III.3.4.2 Results: Unfiltered Quorum Noise Scenario (UQ)

Each model was compared according to the descriptive statistics for success rate (SR), action completion

time (AT ), quorum accuracy (QA), and trial completion rate (TC). The descriptive statistics for the unfiltered

queue scenario in which agents do not filter quorum messages and do not delay between interactions, are

provided in Table III.7. MUQ
6 and MUQ

6E achieved the highest success rates, which indicates that when these
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Table III.7: Unfiltered Queue (UQ): Descriptive Statistics by Model and Metric.
Model Statistic SR AT QA TC

MUQ
4

Mean (SD) 0.64 (0.48) 11.79 (3.81) 0.82 (0.34) 0.8 (0.4)
Median 1 11.54 0.91 1

Min (Max) 0 (1) 5.5 (54.26) 0.01 (1.24) 0 (1)

MUQ
4E

Mean (SD) 0.6 (0.49) 3.15 (1.77) 0.19 (0.11) 0 (0)
Median 1 2.52 0.16 0

Min (Max) 0 (1) 0 (12.18) 0 (0.58) 0 (0)

MUQ
6

Mean (SD) 0.92 (0.27) 20.78 (6.85) 0.92 (0.14) 0.63 (0.48)
Median 1 19.06 0.93 1

Min (Max) 0 (1) 0 (120.4) 0.36 (1.18) 0 (1)

MUQ
6E

Mean (SD) 0.83 (0.38) 8.86 (4.72) 0.28 (0.08) 0.02 (0.13)
Median 1 7.72 0.29 0

Min (Max) 0 (1) 0 (47.37) 0 (0.52) 0 (1)

models made decisions, the decisions were likely to be accurate. The action completion times achieved by

MUQ
4E and MUQ

6E were very low, indicating that each of these models made fast decisions, but also fragmented

during the trial. MUQ
4E did not complete any trials and MUQ

6E completed only a negligible number of trials.

MUQ
6 was the slowest and most accurate model, but MUQ

4 achieved the highest trial completion rate of all the

models.

A Kruskal-Wallis test indicated significant effects for success rate, χ2(3,N = 13155) = 1027, p < 0.001,

action completion time, χ2(3,N = 13155) = 8298.1, p < 0.001, quorum accuracy, χ2(3,N = 13155) =

8893, p < 0.001 and trial completion χ2(3,N = 4500) = 2245.1, p < 0.001. Pairwise comparisons using

a Tukey and Kramer (Nemenyi) test revealed significant effects for action completion time (p < 0.001) and

quorum accuracy (p < 0.001) between all models. No significant effects were observed for success rate

between models MUQ
4 and MUQ

4E , but significant effects were observed in pairwise comparisons between the

rest of the models (p < 0.001). Finally, no significant effects were observed for trial completion between the

episodic models, MUQ
4E and MUQ

6E , although the remaining pairwise comparisons between the models revealed

significant effects for trial completion (p < 0.001).

The models in scenario UQ are compared in Figure III.14 for success rate (Fig. III.14a), action completion

time (Fig. III.14b), quorum accuracy (Fig. III.14c), and trial completion (Fig. III.14d). Models MUQ
6

and MUQ
6E had higher success rates for each decision when compared to models MUQ

4 and MUQ
4E , indicating

each model’s resilience to site distance from the decision making hub. Model MUQ
4 consistently faced a

difficult decision after choosing its first site and was usually unable to choose the higher valued site that was

further from its decision making hub than the other sites. Model MUQ
4E ’s apparent accuracy in the second

decision resulted from making poor first decisions and facing an easier second decision. MUQ
4E failed to

make a fourth decision for every single trial, which is indicated by the model’s missing data point. The
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(a) Success Rate (b) Action Completion Time

(c) Quorum Accuracy (d) Trial Completion Rate

Figure III.14: UQ (Unfiltered Queue): The models are compared by success rate (Fig. a), action completion
time (Fig. b), quorum accuracy (Fig. c), and trial completion rate (Fig. d). Note: Fig. (b) cuts off the
slowest 254 trials (3% of the total trials) with Action Completion Times exceeding 2000s (M4-21,M4E -0,M6-
218,M6E -15) in order to facilitate viewing the primary results.

action completion times differed significantly between the models, as shown in Fig. III.14b, with the models

performing differently between the first decision and the remaining decisions. MUQ
4 and MUQ

4E made rapid

first decisions, but made slower decisions for the remainder of the trial, with MUQ
4E clearly making the fastest

decisions over all. The interaction delay models were each slower with the first decision, but made faster

decisions for the remaining decisions in each trial. MUQ
6E achieved faster action completion times, when it

made decisions, than MUQ
4 . The persistent queue models, MUQ

4 and MUQ
6 achieved much higher quorum

accuracy than the remaining models in scenario UQ. The quorum accuracy of MUQ
4 tended to increase as it

progressed through the trials, while MUQ
6 was noticeably more stable. Finally, the trial completion rates for
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each model are presented in Fig. III.14d. The episodic queue models (MUQ
4E and MUQ

6E ) successfully completed

a majority of the first two decisions, but were unable to complete the remainder of the site decisions for most

trials. The persistent queue models consistently made three decisions, with MUQ
4 completing significantly

more trials than MUQ
6 .

III.3.4.3 Results: Delayed Interaction Scenario (DI)

The Delayed Interaction scenario (DI) descriptive statistics are presented in Table III.8. Longer interaction

times resulted in increased success rates, action completion times, and quorum accuracies across all four

models. The trial completion rates for the persistent queue models (MDI
4 and MDI

6 ) were slightly higher

than the completion rates for MUQ
4 and MUQ

6 in the unfiltered queue scenario (UQ). The models otherwise

performed similarly to the UQ scenario. MDI
6 and MDI

6E achieved the highest accuracy. The episodic queue

models (MDI
4E and MDI

6E ) made faster decisions than the persistent queue models (MDI
4 and MDI

6 ), but also failed

to complete trials. The results indicate that increasing the delay period alone improved both quorum accuracy

and trial completion, which supports the unevaluated recommendations from prior work (Parker and Zhang,

2010). The small action completion time increase observed between MUQ
6 and MDI

6 indicate that the model

imposed delays during the UQ scenario that approached those used during the DI scenario.

A Kruskal-Wallis test indicated significant effects for success rate, χ2(3,N = 11718) = 963.34, p <

0.001, action completion time, χ2(3,N = 11718)= 6684.1, p< 0.001, quorum accuracy, χ2(3,N = 11718)=

8178.8, p < 0.001 and trial completion χ2(3,N = 2037) = 2037, p < 0.001. Pairwise comparisons using a

Tukey and Kramer (Nemenyi) test revealed significant effects for action completion time (p< 0.001), quorum

accuracy (p < 0.001), and trial completion (p < 0.001) between all models. Significant effects for success

rate were not observed between the interaction delay models (MDI
6 and MDI

6E ), but significant effects were

observed in the remaining pairwise comparisons (p < 0.001).

Table III.8: Delayed Interaction (DI): Descriptive Statistics by Model and Metric.
Model Statistic SR AT (min) QA TC

MDI
4

Mean (SD) 0.66 (0.47) 14.68 (4.33) 1.04 (0.2) 0.9 (0.3)
Median 1 13.65 1.13 1

Min (Max) 0 (1) 6.98 (59.74) 0.12 (1.24) 0 (1)

MDI
4E

Mean (SD) 0.64 (0.48) 4.8 (1.96) 0.31 (0.12) 0 (0)
Median 1 4.5 0.3 0

Min (Max) 0 (1) 0 (15.07) 0 (0.64) 0 (0)

MDI
6

Mean (SD) 0.92 (0.27) 20.97 (6.2) 0.93 (0.15) 0.71 (0.45)
Median 1 19.53 0.94 1

Min (Max) 0 (1) 0 (66.04) 0.44 (1.24) 0 (1)

MDI
6E

Mean (SD) 0.87 (0.34) 11.06 (5.53) 0.37 (0.09) 0.01 (0.1)
Median 1 9.69 0.38 0

Min (Max) 0 (1) 0 (44.57) 0 (0.62) 0 (1)
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(a) Success Rate (b) Action Completion Time

(c) Quorum Accuracy (d) Trial Completion Rate

Figure III.15: DI (Delayed Interaction): The models are compared by success rate (Fig. a), action completion
time (Fig. b), quorum accuracy (Fig. c), and trial completion rate (Fig. d). Note: Fig. (b) cuts off the slowest
256 trials (3% of the total trials) with Action Completion Times exceeding 2000s (M4-35,M4E -0,M6-292,M6E -
29) in order to facilitate viewing the primary results.

The behavior of the four DI scenario models is presented in Fig. III.15. Success rates and action comple-

tion times increased overall, as shown in Figs. III.15a and III.15b, respectively. Quorum accuracy improved

for the MDI
4 , MDI

4E , and MDI
6E models over the UQ models, MUQ

4 , MUQ
4E , and MUQ

6E , respectively (see Figure

III.14c). Model MDI
6 achieved similar quorum accuracy to MUQ

6 (see Figure III.14c). The quorum accuracy

improved the most between MUQ
4 and MDI

4 when compared to the other models. MDI
4 maintained a mean 80%

quorum accuracy, or greater, for every decision. Doubling the delay period between interactions modestly

improved the completion rates for the two persistent queue models (MDI
4 and MDI

6 ), when compared to MUQ
4

and MUQ
6 , but the adjustment did not noticeably improve the completion rates for the remaining models.
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Table III.9: Weak Quorum Filtering (WQ): Descriptive Statistics by Model and Metric.
Model Statistic SR AT QA TC

MWQ
4

Mean (SD) 0.67 (0.47) 16.91 (5.54) 1.05 (0.27) 0.97 (0.17)
Median 1 16.06 1.19 1

Min (Max) 0 (1) 6.7 (61.02) 0.12 (1.25) 0 (1)

MWQ
4E

Mean (SD) 0.63 (0.48) 6.04 (2.41) 0.52 (0.23) 0.88 (0.32)
Median 1 5.88 0.53 1

Min (Max) 0 (1) 0 (47.89) 0 (1.04) 0 (1)

MWQ
6

Mean (SD) 0.92 (0.27) 27.89 (7.45) 1.09 (0.08) 0.95 (0.21)
Median 1 26.16 1.11 1

Min (Max) 0 (1) 13.82 (107.7) 0.58 (1.23) 0 (1)

MWQ
6E

Mean (SD) 0.91 (0.29) 12.51 (5.75) 0.49 (0.12) 0.77 (0.42)
Median 1 10.98 0.5 1

Min (Max) 0 (1) 3.32 (63.23) 0 (0.89) 0 (1)

III.3.4.4 Results: Weak Quorum Filtering Scenario (WQ)

The Weak Quorum Filtering (WQ) scenario required individual agents to send interaction identifiers (in the

range [0,k− 1]) with queue messages and to ignore received messages with identifiers that matched those

already in the queue. The descriptive statistics are presented in Table III.9. The model success rates were

similar to those recorded for the UQ (see Fig. III.14a) and DI (see Fig. III.15a) scenarios, which indicates that

even when false quorums are detected as a result of duplicated messages, the collective frequently committed

early to the site that it ultimately selected. Action completion times across the models were slower overall,

with the persistent queue models (MWQ
4 and MWQ

6 ) experiencing the largest increase in action completion

time. Quorum accuracy and trial completion also increased for all models. This scenario was the first in

which the episodic queue models (MWQ
4E and MWQ

6E ) completed a majority of their trials.

A Kruskal-Wallis test indicated significant effects for success rate, χ2(3,N = 17158) = 1637.4, p <

0.001, action completion time, χ2(3,N = 17158) = 11574, p< 0.001, quorum accuracy, χ2(3,N = 17158) =

11601, p < 0.001 and trial completion χ2(3,N = 4423) = 316.94, p < 0.001. Pairwise comparisons using a

Tukey and Kramer (Nemenyi) test revealed significant effects for action completion time (p< 0.001) between

all models. Significant effects for success rate were not observed in pairwise comparisons between MWQ
6

and MWQ
6E , or between MWQ

4 and MWQ
4E , although significant effects were observed in the remaining model

comparisons (p < 0.001). The analysis revealed significant effects for quorum accuracy between MWQ
4 and

MWQ
6 (p < 0.01) and in all other model comparisons (p < 0.001). Finally, significant effects were observed

for trial completion between MWQ
4 and MWQ

4E (p < 0.05) and between MWQ
6E and all other models (p < 0.001).

The addition of weak queue filtering notably improved the ability of the episodic queue models (MWQ
4E and

MWQ
6E ) to make sequential decisions, as shown in Fig. III.16. The models achieved success rates (Fig. III.16a)

similar to the UQ and DI models with the exception of MWQ
4E , which, like MWQ

4 , struggled during the second
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(a) Success Rate (b) Action Completion Time

(c) Quorum Accuracy (d) Trial Completion Rate

Figure III.16: WQ (Weak Filtered Queue): The models are compared by success rate (Fig. a), action com-
pletion time (Fig. b), quorum accuracy (Fig. c), and trial completion rate (Fig. d). Note: Fig. (b) cuts off the
slowest 1381 trials (15% of the total trials) with Action Completion Times exceeding 2000s (M4-203,M4E -
7,M6-1113,M6E -58) in order to facilitate viewing the primary results.

decision. Action completion times (Fig. III.16b) were higher for all the WQ models, indicating that the use

of weak filtering increased the length of time required to detect a quorum. Quorum accuracy, shown in Fig.

III.16c, improved for the episodic queue models (MWQ
4E and MWQ

6E ), as well as for MWQ
6 , but MWQ

4 ’s quorum

accuracy for its first decision was slightly lower than the corresponding DI scenario model. All four models

completed a majority of the trials, as shown in Fig. III.16d, with the episodic queue models completing at

least three decisions in almost every trial.
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Table III.10: Strong Quorum Filtering (SQ): Descriptive Statistics by Model and Metric.
Model Statistic SR AT QA TC

MSQ
4

Mean (SD) 0.64 (0.48) 11.74 (3.52) 0.83 (0.35) 0.97 (0.18)
Median 1 11.56 0.92 1

Min (Max) 0 (1) 5.54 (38.55) 0.01 (1.24) 0 (1)

MSQ
4E

Mean (SD) 0.6 (0.49) 5.3 (2.16) 0.45 (0.19) 0.96 (0.2)
Median 1 5.02 0.46 1

Min (Max) 0 (1) 1.48 (20.47) 0.01 (0.95) 0 (1)

MSQ
6

Mean (SD) 0.92 (0.27) 21.29 (6.39) 0.94 (0.17) 0.96 (0.19)
Median 1 19.53 0.98 1

Min (Max) 0 (1) 9.86 (71) 0.02 (1.21) 0 (1)

MSQ
6E

Mean (SD) 0.91 (0.29) 10.85 (5.17) 0.41 (0.11) 0.95 (0.22)
Median 1 9.35 0.42 1

Min (Max) 0 (1) 2.84 (68.35) 0 (0.79) 0 (1)

III.3.4.5 Results: Strong Filtered Quorum Noise Scenario (SQ)

The use of strong queue filtering was intended to eliminate false quorum detection that results from duplica-

tive messages. The descriptive statistics for the SQ models are provided in Table III.10. The models’ success

rates were consistent with the UQ, DI, and WQ scenarios. Action completion times for the persistent queue

models (MSQ
4 and MSQ

6 ) were similar to those of achieved by MUQ
4 and MUQ

6 (see Fig. III.14b). Both episodic

models made rapid decisions, with MSQ
4E achieving the fastest action completion times of the SQ models. Quo-

rum accuracies decreased for the episodic models when compared to the weak filtering scenario, although

both MSQ
4E and MSQ

6E completed nearly as many trials as the persistent queue models. Trial completion was

reasonably high for all models.

A Kruskal-Wallis test indicated significant effects for success rate, χ2(3,N = 14830) = 1883.8, p <

0.001, action completion time, χ2(3,N = 14830) = 9460.8, p < 0.001, and quorum accuracy, χ2(3,N =

14830) = 6937.5, p < 0.001. No significant effect was observed for trial completion. Pairwise comparisons

using a Tukey and Kramer (Nemenyi) test revealed significant effects for action completion time (p < 0.001)

and quorum accuracy (p < 0.001) between all models. Significant effects were observed for success rate

between the interaction delay models (MSQ
6 and MSQ

6E ) and the remaining models (p < 0.001).

A detailed comparison of the SQ models is provided in Fig. III.17. Success rates for each model by

decision were similar to the WQ scenario. The SQ models’ action completion times were faster than the

WQ models (see Fig. III.16b), with the persistent queue models achieving action completion times similar

to the UQ scenario (see Fig. III.14b). The use of strong filtering enabled the episodic queue models to

achieve similar accuracy and trial completion rates to the persistent models, with approximately half the

mean decision time. All models completed three decisions in nearly every trial, with a slight decrease in

completion rate for the fourth decision.
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(a) Success Rate (b) Action Completion Time

(c) Quorum Accuracy (d) Trial Completion Rate

Figure III.17: Strong Quorum Filtering (SQ): The models are compared by success rate (Fig. a), action
completion time (Fig. b), quorum accuracy (Fig. c), and trial completion rate (Fig. d). Note: Fig. (b) cuts off
the slowest 328 trials (3% of the total trials) with Action Completion Times exceeding 2000s (M4-26,M4E -
1,M6-261,M6E -40) in order to facilitate viewing the primary results.

III.3.4.6 Discussion

The results indicated that the persistent queue models (M∗4 and M∗6 ) were resilient to quorum detection noise,

where the superscript ∗ indicates all evaluated versions of the models. The episodic queue models (M∗4E

and M∗6E ), were significantly less resilient and did not complete trials without quorum noise filtering. Noise

mitigation dramatically improved the ability of all models to complete multiple sequential decisions. Addi-

tionally, the results reinforced the results from the static site value experiment, as M∗6 and M∗6E were more

accurate, but slower than M∗4 and M∗4E , respectively. Both of the initial hypotheses were partially supported.

Hypothesis H4.3, which predicted higher trial completion for the persistent queue models (M∗4 and M∗6 )
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was supported by the UQ, DI, and WQ scenarios, but not for the SQ scenario. The persistent queue models

achieved high quorum accuracy for each decision, even in the unfiltered scenarios with normal (UQ) and

delayed (DI) interaction periods. The episodic queue models were unable to make sequential decisions until

queue filtering mechanisms were introduced. Greatly reducing the duplicate messages in the SQ scenario

enabled the episodic queue models to achieve the same success and trial completion rates as the persistent

models, but in significantly less time. A comparison of action completion times between of the episodic

models in the unfiltered scenarios (UQ and DI) and the strong filtered scenario (SQ) showed that the episodic

models required more time to complete actions in the strong filtering scenario. This observation exposes a

weakness in the model when applied to situations that require the collective to move decision making hubs

following decisions. Agents arriving at a new location support the same action execution. The absence

of disagreeing agents at the new decision making hub location causes the agents’ completed state quorum

detection mechanism to serve as a timer that is regulated by the rate the queue is filled and the agents’

quorum detecting threshold. Strong filtering slowed the rate that the queues received messages after agents

arrived at the new decision making hub location; thus, preventing an early transition from the completed state

the uncommitted state at the start of the collective’s next decision.

The prior observation explains why the second hypothesis, H4.4, which stated noise reduction techniques

will improve the speed and completion rates of the models, is also only partially supported. The weak filtering

queue scenario, WQ, resulted in all models having improved completion rates, but longer action completion

times. Filtering queue messages by a small number of message identifiers reduced the computational require-

ments for the individual robots, but increased the probability that individual robots drop original messages

with identifiers matching messages already in their queue. This design choice limited the pool of message

identifiers to the queue length, k. After the agents transitioned to the new decision making hub, the weak

queue filtering mechanism slowed the agents’ transition from the completed state to the new decision mak-

ing state enough to greatly improve the completion rate of the episodic models, but not enough to make the

models reliable.

Split decisions are a significant problem that impede the reliable deployment of robotic collectives in

situations requiring the collective to move their decision making hubs. Even though all models achieved

high completion rates when using strong queue filtering, the remaining 3-5% failure rate is unacceptable

for long sequences of collective action selections. A trivial solution assumes agents know the collective’s

population size and delay transitioning to a new decision until the agents estimate that an acceptable portion

of the collective has arrived at the new location. This undesirable solution eliminates both the algorithm’s

scalability to different population sizes and prevents graceful degradation in the event of losing agents. One

can either explicitly use timers based on expected action completion times to regulate transitions between

84



decisions, or lengthen agent quorum detection queues. Increasing the queue length is predicted to further

reduce, but not eliminate, the probability of the collective splitting. The splitting problem is less of an issue

when the collective is not required to change decision making hub locations, since the completed agents will

be in contact with agents that have not completed the desired task and be better able to estimate when the

population is ready to transition, as evaluated in prior work (Parker and Zhang, 2010).

The sequential action selection experiment directly addressed research question R4 by evaluating the

presented models in scenarios requiring multiple sequential decisions. The persistent queue models (M∗4 and

M∗6 ) solved multiple collective action selection problems in sequence, even when the collective’s individual

robots were unable to filter quorum messages. The addition of weak (WQ) and strong (SQ) filtering enabled

all evaluated models to consistently complete four action selections in sequence.

III.4 Summary

Novel implicit and explicit collective action selection models were introduced and evaluated in a series of

four simulation experiments. The implicit action selection model extended an existing collective best-of-n

decision making model in order reduce the influence of negative environmental bias during decision making.

Interaction delays attempted to reduce the influence of disparate discovery times and travel times between

sites in the collective’s environment. Interaction frequency modulation adjusted individual interaction rates

in order to compensate for distance between sites and the collective’s decision making hub. The explicit

action selection model enabled the collective to choose and execute actions in sequence. The presented set

of site selection experiments evaluated each model’s effectiveness. A summary of the research questions and

evaluated hypotheses is provided in Table III.11.

Two experiments addressed research questions R1-R3 for collective site selection. The first experiment

assessed the implicit action selection model for site selection with statically valued sites located at different

distances to the collective’s decision making hub. The interaction delay extension significantly improved the

collective’s decision accuracy, when the collective was required to choose sites based on their value, despite

existing environmental bias due to site distance, which supported hypothesis H1. The experimental results

partially supported H2. The interaction frequency modulation, which increased agent interaction attempts

with the distance between the agent’s supported site and the collective’s decision making hub, did not improve

decision accuracy, but did reduce decision time. The dynamic site values experiment addressed research

question R3 by evaluating the extensions for site selection subject to environmental bias and dynamically

changing site values. The experiment supported hypothesis H3 by demonstrating that the bias reducing model

enabled consistent response to changes in site value during the decision making process. The response time

for the original model varied significantly depending upon the location of the collective’s considered options.
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Table III.11: Summary of Hypotheses.

Question Hypothesis Experiment Supported

R1 H1 Interaction delays will improve collective decision
accuracy over the original model.

Static Site Value Yes

R2 H2 Interaction frequency modulation will improve
decision time and accuracy in the presence of en-
vironmental bias.

Static Site Value Partially

R3 H3 Bias reduction causes uniform response to dy-
namic site value changes.

Dynamic Site Value Yes

R4 H4.1 Episodic queuing techniques are faster and less
accurate than persistent queuing techniques.

Quorum Detection Partially

H4.2 Unanimous quorum thresholds cause slower,
more accurate decisions.

Quorum Detection Partially

H4.3 Persistent queuing techniques are more reliable
than episodic queuing techniques in sequential de-
cisions.

Sequential Action
Selection

Yes

H4.4 Quorum noise reduction improves model speed
and completion rate.

Sequential Action
Selection

Partially

The quorum detection and sequential decision experiments addressed research question R4 by evaluat-

ing the presented explicit collective action selection model for situations in which the collective chose and

executed actions associated with a specific site. The quorum detection experiment required the collective

to commit to a single site and stop deliberation. Majority and unanimous quorum thresholds were evalu-

ated with persistent and episodic queuing techniques. The evaluated models consistently committed to the

higher valued of the available sites, detected each decision, and stopped deliberation. The use of the persis-

tent queue techniques caused slow decisions with high accuracy during quorum detection, while the episodic

queue technique enabled faster quorum detection, but decision accuracy was close to the other models, which

partially supported hypothesis H4.1. The experiment’s second hypothesis, H4.2, was also partially supported

by the experiment since unanimous quorum threshold models made slower decisions than the majority quo-

rum threshold models, but both achieved similar accuracies. Only unanimous quorum thresholds were shown

to prevent rare split decisions resulting from the collective committing to multiple sites simultaneously in the

evaluated scenarios.

The sequential action selection experiment examined four versions of the explicit action selection model

in scenarios requiring the collective to make a sequence of site selections. The models were distinguished by
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the presence or absence of the bias reducing extensions and the use of either persistent or episodic queues.

Further, duplicate quorum detection messages were mitigated using increased delays between agent interac-

tions and either weak or strong queue filtering. Hypothesis H4.3 was supported, which demonstrated that the

persistent queue models were able to complete a majority of the decision sequences, while episodic queues

were only able to complete decision sequences with the addition of quorum noise filtering mechanisms. The

introduction of quorum noise filtering did improve model completion rates, but not model speeds, which par-

tially supports H4.4. Split decisions caused the collective to fail to complete a sequence of decisions, which

resulted from individual agents being left behind by the collective during movement to a new decision making

hub.

The experimental results indicate that the implicit and explicit collective action selection models pre-

sented in this chapter provide reasonable approaches to two existing problems in collective decision making.

First, most existing collective decision making models are inapplicable to scenarios subject to negative bias,

since the collective’s local environment alters the collective’s decision outcome and speed. While the pre-

sented mechanisms are only applicable to environmental bias that causes disparate discovery and travel times

between available options, the results in this chapter indicate that the presented models are resilient to dif-

ferent static and dynamic situations. The second problem is that of explicit action selection. Decoupling

the actions a collective uses to assess available options from the actions the collective executes after a deci-

sion enables the collective to make decisions about what future action it will take. Prior work (see Chapter

II.2.2) evaluated collective behavior transitions, but did not require the collective to choose its action prior

to implementation. The results supported the presented explicit action selection model’s ability to make and

act on decisions; however, executing actions that move the collective’s decision making hub were shown to

split the collective in an unacceptable number of decisions. The use of high quorum thresholds and quorum

noise mitigation reduced the probability of splitting, but did not eliminate the problem. Despite the discussed

limitations of the models, each model offers the ability for humans and collectives to share decision making

responsibilities in future human-collective teams. The use of explicit action selection in human-collective

teams provides the ability for the collective to offer possible future action options to the human, which is a

capability that is largely absent from the human-swarm interaction research.
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Chapter IV

Human-Collective Team Action Selection

A novel approach to human-collective interaction is presented that also provides a framework for human

supervision and control over explicit collective action selection (see Chapter III). The approach considers a

subset of the collective autonomy, control, and transparency considerations introduced in Chapter II.3. The

approach shares decision making between the human and the collective (Crandall et al., 2017; Coppin and

Legras, 2012), while enabling the collective to operate at either a high or low level of autonomy, depending

upon the human’s choice of control and understanding of the collective. This chapter focuses on the last two

research questions presented in Chapter I:

R5: What mechanisms permit efficient human control over robotic collective action selection?

R6: What visualization techniques improve human-collective interaction during collective action selection?

The chapter begins with a description of the interaction mechanisms and visualization techniques featured

in the presented approach. A detailed description of the developed interface is then presented. Finally, a

human subjects evaluation was conducted in order to analyze the interface’s ability to provide the human with

transparency into the collective’s actions as well as the human’s ability to influence the collective decision

making algorithms (see Chapter III) in multiple-collective, multiple target scenarios.

IV.1 Human-Collective Interface

Requirements for the interface design focused on enabling a human to rapidly estimate the collectives’ action

selection processes, determine appropriate controls to use, and implement the controls. After these require-

ments are explained, the interface’s simulated situation, control mechanisms, and visualization techniques are

described.

IV.1.1 Interface Requirements

Three design requirements related to collective autonomy, control, and transparency (see Chapter II.3) guided

the interface’s development. First, the interface must enable the human to reduce or increase the collectives’

levels of autonomy throughout the explicit collective action selection process. The collectives initially operate

at high levels of autonomy and independently discover options, analyze options, select options and execute

actions associated with each chosen option (see Table II.2). Using a set of control mechanisms, the human

must be able to reduce the collective’s autonomy in each of these decision making functions, as needed.

Second, human interaction must be limited to the decision making hub. This requirement avoids assuming
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global communication capability, which eliminates from consideration existing control mechanisms, such as

parameter setting and environmental controls (see Chapter II.3.3). Behavior selection controls, which enable

the human to transition robots between internal states, are used as a means of simultaneously altering the

collectives’ levels of autonomy and guiding decision outcomes. Finally, the interface must enable the human

to rapidly observe the collectives’ decision making processes. Interaction with multiple collectives requires

that the human be able to quickly determine if interventions into the collectives’ decision making processes

are needed and which controls to employ.

IV.1.2 Detailed Situation

The purpose of the developed interface was to enable human interaction with multiple collectives in an ex-

panded version of the sequential action selection experiment described in Chapter III.3.4. A team comprised

of a single human and four robotic collectives operated within an approximately 2 km2 urban environment.

Each collective consisted of a group of 200 simulated Unmanned Aerial Vehicles (UAVs) that were limited

to a 500m exploration radius from the collective’s central decision making hub. Robots behaved according

to the individual model, as described in Chapter III.2.3.1, which enabled the collective to perform explicit

action selection within its coverage area.

The team completed a series of targeting selection decisions in which each collective was required to

choose the best target within its 500m search range, move its decision making hub to the chosen target, and

initiate the collective’s next target selection decision. Targets represented locations that the collectives as-

sessed for future occupation. The targets were located in the environment and were invisible until discovered.

The collectives’ individual robots discovered a target and performed noisy (10%) assessments of the target’s

value when the robots were within sensory range of the target. After an individual robot discovered a tar-

get and returned to the collective’s decision making hub, the target was added to the map and visible to the

human. Once a target was occupied by a collective, the target was removed from the map and no longer

discoverable. Collectives were able to find, evaluate, and occupy any target on the map that was within their

search ranges, which made it possible for multiple collectives to consider the same target during a decision.

After a collective moved, its next decision included all targets in range from the collective’s new location.

Interactions between the individual robots and between the robots and the human were restricted to the

collectives’ decision making hubs. The human was assumed to have access to intermittent satellite imagery

(simulated using the Google API) and relied on communication with robots within the collectives’ decision

making hub to persistently sense the environment. The human monitored the collectives’ decision making

processes and was able to issue requests to the appropriate collective in order to ensure each collective chose

and moved to the highest valued target within range of the collective’s robots. Additionally, the human was
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instructed to prevent multiple collectives from choosing and occupying the same target site. Rarely, two

collectives moved to the same location (0.6% of all decisions), which caused the second collective to reach

the target to automatically return to its previous position and initiated a new target selection decision.

The human-collective interaction assumed a larger set of individual robot capabilities than those used

in the algorithm based evaluations (see Chapters III.3.1-III.3.4), which based individual robot movement

and communication capabilities on the e-Puck (Mondada et al., 2009) robotic platform. Collective best-of-n

studies typically use simple robots, such as Kilobots and e-Puck robots (Rubenstein et al., 2012; Mondada

et al., 2009; Valentini et al., 2015), that have been optimized for laboratory research. Both Kilobots and

e-Puck robots operate for long periods of time between battery charges (e.g., 2 hours for the e-Puck and

several hours for the kilobot) and are capable of short range (< 25cm) peer to peer communication. Each

capability is central to many biologically-inspired collective decision making strategies (Rubenstein et al.,

2012; Mondada et al., 2009; Haque et al., 2016), but are difficult to recreate in UAV collectives. UAV peer-

to-peer communication is complicated by the UAVs’ high mobility (Sahingoz, 2014; Majumdar, 2015). Many

commercial rotor wing UAVs are capable of speeds of 60km/h, but have limited flight times of approximately

25 minutes (e.g., Marketer, 2017). Despite these challenges, the simulated agents were assumed to have

emergent capabilities and moved at 60km/h for at least an hour of flight time and communicated via 30m

peer-to-peer transmissions (e.g., optical transmissions (Kaadan et al., 2014)). A simplifying assumption was

that robots moved at constant speed, which is similar to assumptions made in the algorithms evaluations

(Chapter III.3), but notably deviates from practical UAV movement.

IV.1.3 Interface Visualization

The interface visualization needed to enable the human to rapidly estimate the state of the collectives’ action

selection processes, based on information received from individual robots within the collectives’ decision

making hubs. A screenshot of the developed interface is provided in Fig. IV.1. The interface was divided into

four subareas. A visual representation of the four collectives’ hubs and the respective discovered targets were

geo-located on the map. The human used the Collective Requests area to change behavior states of agents

within a collective’s decision making hub using three requests described in Chapter IV.1.4. The Collective

Assignments area provided a summary of active and inactive requests sent to the respective collectives. Fi-

nally, the System Messages area provided text alerts of the collectives’ activities (e.g., finding targets) and

feedback if the human made a mistake while issuing a request (Chapter IV.1.4).

Four collectives and sixteen targets are shown on the map in Fig. IV.1. The collectives were represented

by white boxes identified by a Roman numeral, while the targets were represented by the green and blue

boxes identified using an integer value. Left clicking on a hub or a target selected it as the designated object
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of the human’s collective request (see Chapter IV.1.4). Left clicking on a hub also highlighted the discovered

targets that the collective supported (with a white outline) and targets that were in range of the collective,

but were not being supported (with a yellow outline). Right clicking on targets revealed an estimate of each

collectives’ support for the target, as shown with Target 1. Right clicking on a hub revealed a detail flag, as

shown with Collective III, with an estimate of the number of robots in one of four states: uncommitted (U),

favoring a target (F), committed to a target (C), or executing a move to a target (X).

Each collective’s hub symbol contained four lettered quadrants representing each of the four robot states.

Robots in the uncommitted state, U , either explored the environment looking for targets, or were within the

decision making hub and available to be recruited by other robots. The number of robots that favored a target,

F , were either periodically reassessing that target’s value, or interacting with other agents within the decision

making hub. The letter C represented the agents that had committed to executing a movement to a particular

target after either detecting a quorum of support for that target or interacting with another committed robot.

Finally, robots that were executing a movement, X , traveled from one decision making hub location to the

target location chosen by the collective. The initiating and complete states of the individual behavior model

(see Chapter III.2.3.1) were not presented directly to the human, but were aggregated into the committed

and executing states, respectively. The opacity of each lettered quadrant indicated the relative percentage of

agents in a particular state. Collective I in the figure is predominantly uncommitted (the U quadrant is more

opaque and brighter than the other three quadrants).

Targets were represented by the blue and green boxes. A target’s value estimate was more opaque and

brighter green when it was higher. Newly discovered targets were not assigned a value by the interface until

the interface received more than one report of the target’s value. Early in the decision process, target values

fluctuated as a result of the agent’s noisy estimates of target value. The bottom half of each target symbol

provided an indication of the agent support for that target with more opaque, brighter blue representing a

higher level of support. When multiple collectives supported the same target, the blue color represented the

collective with the highest level of support. The target detail flag (available by right clicking on the target)

provided an estimate of support for each collective that supported the target. A centrally located target that

was supported by all four collectives, for example, displayed each collective’s support on its detail flag.

Finally, the interface attempted to alert the human to a collective’s expected commitment and execution of

movement to a chosen target. Collectives committed to targets when individual robots detected a majority of

support for the specific target. A commitment resulted in the collective’s transition to an execution state; thus,

the interface provided an indication when a collective was likely to select a particular target by highlighting

the target in blue when the collective’s support exceeded 30%. The alert was intended to allow the human to

intervene and stop the collective’s decision, using an Abandon request, which is described in Chapter IV.1.4.
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If the human did not modify the collective’s decision, the target was highlighted with a green outline as robots

began to execute the move to the new location. Finally, once a majority of the robots had left the current hub

for the target, which became the new decision making hub, the hub representation moved from its current

position to the chosen target’s location, which indicated the start of the next decision cycle for that collective.

Targets that were discovered by the collective previously remained on the map and the interface continued

displaying the targets’ previous values. The collective’s next decision cycle included any targets on the map

that were within range of the collective’s new hub.

IV.1.4 Collective Controls

The human had the ability to select from three different behavior selection controls in order to alter the

collectives’ states via the robots within the decision making hubs. The collectives responded to human input,

while executing the collective best-of-n decision making process. Once a collective committed to a target, it

did not respond to human input until the collective initiated its next decision cycle.

Investigate requested that ten robots within a decision making hub transition from an uncommitted (U)

state to a favoring (F) state supporting the human’s chosen target, which subsequently increased support for

the target within the collective. The number of contacted robots was calculated at the start of the experiment

and based on 5% of the total population (10 robots in the evaluated scenario). Issuing the Investigate request

required the human to specify the collective hub and the target to be investigated. The human was only

aware of targets that the collectives had discovered and did not have any other additional information (e.g.,

intelligence reports). Once the request was committed, a record of the request appeared in the Collective

Assignments area. The assignment remained Active (green), while the interface attempted to command agents

within the decision making hub to make the transition. Robots that received the command responded with

an acknowledgment. The assignment became Inactive (red), when the interface received acknowledgments

from ten agents. Investigate requests for targets outside the collective’s search range were ignored and an

error message was displayed in the System Messages area.

The Abandon request reduced the collective’s support for a specific target by transitioning robots in the

hub that favored (F) a specific target to an uncommitted state (U). Issuing the Abandon request required

the human to specify the collective hub and the target to be abandoned. Abandon requests remained active

throughout the decision cycle, which means that the interface persistently attempted to transition all robots

in the hub that supported the specified target to the uncommitted state. Unlike the Investigate request, the

human had the ability to cancel an Abandon request (using the “Cancel Assignment” button). Abandon

requests for newly discovered targets that had yet to be assigned a value (or green color) were ignored and an

error message was displayed in the System Messages area.
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Decide transitioned agents that already supported a target to commit (C) to that target, which resulted

in the same effect as agents detecting a quorum of support. The decide request remained active, while the

interface attempted to command ten robots to commit; however, once the first commanded robot committed,

it immediately began communicating the commitment to other robots within the collective’s decision making

hub. The decide requests were limited to targets that had at least 30% of the collective’s support or higher.

Decide requests for targets with less than 30% support from the selected collective were ignored and resulted

in an error message.

These requests enabled the human to influence the algorithm’s behavior by altering, accelerating, or de-

laying the collectives’ target selections and action executions. A notable absence from the presented approach

was the ability for the human to suggest locations for investigation (e.g., Crandall et al., 2017) and to receive

additional environmental information from the collective. These and several additional interactions require

further investigation and are discussed in Chapter V.

IV.2 Human-Collective Site Selection Experiment

The purpose of the human-collective site selection experiment was to evaluate the presented human-collective

interaction approach in a simple scenario that required multiple site selections that were subject to environ-

mental bias. The goal of the experiment was twofold. First, different collective action selection behaviors

were evaluated for effectiveness in a human-collective decision making scenario. Second, the presented

human-collective interaction approach was evaluated in order to determine its ability to enable the partici-

pant to influence, understand, and control robotic collective action selection. Four hypotheses were tested.

Hypothesis H5.1 was that the presented behavior selection control mechanisms enable users to control col-

lective action selection in robotic collectives. Hypothesis H5.2 predicted that the bias reducing models will

reduce users’ workload by requiring less human input to make accurate targeting decisions. Hypothesis H5.3

predicted that human input improves the accuracy and decision times for the collective action selection mod-

els. Finally, hypothesis H6 was that the presented visualization techniques were sufficient to enable users to

interact with the collective and understand collective behavior.

IV.2.1 Experimental Design

The mixed design experiment consisted of three twenty minute targeting trials that paired a participant with

one of three collective action selection behaviors. Each trial required participants to supervise and influence

between 12 and 16 target selection decisions made by four robotic collectives simultaneously in a simulated

environment. The variance in the number of target selection decisions represents the minimum and maximum

number of target selection decisions that the participants completed within the time limit. Target selection
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decisions were made when the collective, with or without human user input, achieved a majority of support

for a target, moved its decision making hub to the chosen location, and initiated the next targeting decision.

Collectives were required to make two target selection decisions in sequence. The target selection decisions

were distinguished by difficulty. Hard decisions occurred when the optimal target was located further from

the collective decision making hub than other closer, mediocre targets. Easy decisions occurred when the

optimal and mediocre targets were equidistant from the collective’s decision making hub, or the optimal

targets were located closer to the decision making hub than the mediocre targets.

The evaluated models were the primary independent variable and are summarized in Table IV.1. The first

two models, MSQ
4E and MSQ

6E , were the strong quorum filtering models used in the sequential action selection

experiment (see Chapter III.3.4). These particular models were selected, because they successfully and more

quickly completed sequences of decisions in the sequential action selection experiment, than the other eval-

uated models. Model MSQ
4E performed basic explicit action selection (see Chapter III.2.3). The MSQ

6E model

extended MSQ
4E with the bias reduction mechanisms, described in Chapter III.2.2, in order to compensate for

sites that were located at different distances from the collective’s decision making hub. The final evaluated

model, M7, explored for evaluated targets in the environment, but did not use a collective best-of-n decision

making strategy. M7 was included in order to establish participants’ baseline performance when using a low

autonomy collective for comparison with participant’s performance with the higher autonomy collective de-

cision making algorithms. The secondary independent variables included the locations of the targets with

respect to each collective’s decision making hub, the targets’ values, and the decision difficulty (e.g., easy or

hard). All target values were static.

At the start of each trial, the four collectives were positioned 600m apart in a square formation, centered

within the environment, which purposely overlapped the collective search spaces. Each collective’s starting

location had four targets that were randomly located at distances within the set {150,250,350}m. The values

assigned to the targets were within the set {0.7,0.8,0.9,1.0}. Target values were assigned to targets based

on initial decision problem difficulty. Easy initial problems were arranged with the optimal site value (1.0)

closest to the collective decision making hub (e.g., at distance of 150m), while hard initial problems were

arranged with the optimal site value (1.0) furthest from the decision making hub (e.g., at a distance of 350m).

Table IV.1: Evaluated Models

Model Description

MSQ
4E Action selection with Episodic, Strong Filtered Queue

MSQ
6E MSQ

4E with Bias Reduction

M7 Exploration Only Model
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Three trials were conducted, where a single trial corresponded with one of the collective action selection

models. The first two trials were assigned, such that half the participants completed the evaluation with MSQ
4E

followed by MSQ
6E , and the other half completed the MSQ

6E model first. The baseline model M7 was expected to

benefit from learning effects related to the problem, interface, and collective behavior when compared to the

primary models; thus, it was placed last in the sequence.

A number of objective metrics were gathered. The collectives’ actions and decision making states were

recorded automatically by the interface software, as were the participants’ request and observation activities

conducted via the interface. Participant requests included attempts to influence a collective’s decision making

process using the previously described Investigate, Abandon, and Decide requests. The recorded participant

observation activities included opening detail flags and examining targets supported by the collective. Finally,

the participants were required to respond to twelve real-time situational awareness probes during each trial,

at a rate of approximately one question per minute.

Situational Awareness (SA) is a participant’s understanding of the current and future state of the envi-

ronment (Endsley, 1995). Probing questions have been used in prior research in order to determine a par-

ticipant’s situational awareness in critical tasks (Humphrey, 2009). The probes were designed to determine

the participant’s situational awareness according to Endsley’s (1995) three levels of situational awareness:

perception, comprehension, and projection. Perception (Level 1) questions determined the participants’ abil-

ity to perceive the targets and collectives as well as attributes associated with each (e.g., “Which collective

is investigating Target 1?”). Comprehension (Level 2) questions determined participants’ understanding of

perceived elements in relation to collective decisions (e.g., “Which target is the best choice for Collective

III?”). Finally, projection (Level 3) questions determined participants’ ability to estimate the system’s future

state based on their perception and comprehension of the current state (e.g., “Which collective will make

the next selection?”). Participants were asked four Level 1, five Level 2, and three Level 3 SA probes for

each model. The SA probes consisted of question templates that asked similar questions, but due to human

influence on the collectives, specific collectives and targets in the questions varied. The Level 1 question,

“Which Collective is investigating Target ?”, for example, was completed with an applicable target number

during the trial, before asking the SA probe.

The objective metrics that were used to compare the performance of the human-collective teams across

the models included: Success Rate (SR), Decision Time (DT ), Request Frequency (RF), and Intervention

Frequency (IV ). Success rate was the ratio of the correct decisions, made by either the human or the collective,

to the total number of decisions made by the human-collective team. A correct decision occurred when the

collective executed an action associated with the highest valued site found by the collective (see Definition

7). Decision Time was the time from the start of a collective decision to the successful completion of the
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collective’s chosen action, with or without human input. Request Frequency was the number of requests, per

minute, issued by the participants during the decisions. Each participant input was associated with a specific

collective, target, and time. Requests for each individual collective were associated with specific decisions,

if the requests were sent to the collective between the start and finish of a decision problem. The request

frequency was the ratio of the number of requests each collective received to each collective’s decision times.

Finally, the intervention rate was the ratio of the participants’ interventions to the total number of decisions

made by the human-collective team. An intervention was defined as an Abandonment request issued to a

collective after the collective had achieved 20% or higher support for a particular target. This action indicated

that the participant was required to override the collective’s independent decision making process.

Additional objective metrics were used to compare the participants’ observation activities and situational

awareness between trials. Observation Frequency (OF) was the number of observation actions, per minute

made by the participants during decisions. Observation actions included opening detail flags and examining

the collectives’ targets. The correct Situational Awareness probe response ratio (SA) was the ratio of correctly

answered situational awareness probe questions to the total number of questions asked within a trial. Probe

responses were correct if the participant answered the question correctly. Probe responses were incorrect

either due to an incorrect response, or if the participant failed to respond after one minute. Questions were

read clearly two times in succession, to ensure the participant heard the question, but were not read a third

time. The term SAO corresponds to the overall correct probe responses, while SA1, SA2, and SA3 were used

to refer to level one, two, or three situational awareness probes, respectively.

Several sources of subjective data were collected. Prior to beginning the experiment, participants com-

pleted a demographic questionnaire and Vandenberg and Kuse’s (1978) Mental Rotations Test (MRT). The

demographic questionnaire gathered basic information related to sex, age, education level, and familiarity

with office workstation systems. The MRT is a ten minute pencil and paper test that assessed each par-

ticipant’s spatial abilities and is distributed by Peters et al. (1995). After each trial, the participants com-

pleted the NASA Task Load Index (NASA-TLX), which determined perceived workload; the 3-D Situation

Awareness Rating Technique (Selcon et al., 1991); and a post-trial questionnaire focused on the perceived

performance and the responsiveness of the collective during the trial. Finally, the participants completed

a post-experimental questionnaire, which requested participants to compare the three algorithms based on

overall performance. The post-experimental questionnaire required rank ordering the models based on the

model’s responsiveness to the participants’ requests, the participants’ ability to make accurate decisions with

the collective, and the participants’ perceived understanding of the model.

Each participant began the experiment by completing the informed consent paperwork, the demographic

questionnaire, and the MRT-A. Once these items were completed, participants received a scripted introduc-
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tion to the experiment and the simulator (5 minutes). Participants were permitted to ask questions during the

introduction and prior to the initiation of the initial trial. Each participant conducted a total of three trials

(one trial for each evaluated model). Prior to each trial, the participants conducted 5 minute training ses-

sions consisting of two collectives, with one collective required to solve an easy problem and one collective

required to solve a hard problem. The collectives implemented the same action selection model as the col-

lectives in the trial. Problem difficulty was not discussed with the participants. After the training session, the

trial was conducted during which four collectives were supervised making simultaneous action selections.

Trials consisted of two ten minute sections, distinguished by either hard or easy initial collective decisions.

Following a collective’s first target selection decision and the occupation of the collective’s first chosen target

site, the collective’s next decision was either easy or hard depending upon the collective’s location relative

to the remaining targets. Each trial section ended when the participant (or the collectives) had completed

eight target selection decision problems (two decisions per collective), or more than ten minutes had elapsed.

Between trial sections, the collectives were reset to their initial locations, all targets from the previous part

of the trial were removed, and the map was populated with targets from the the next trial section. The order

of the hard and easy trial sections was counterbalanced across participants. Participants responded to the

situational awareness probes at increments of approximately one probe per minute. At the end each trial, the

participant completed the post-trial questionnaire, the NASA-TLX, and the 3-D SART. After completing all

trials and associated post-trial data collection, the participant completed the post-experiment questionnaire.

Twenty-eight participants from the Vanderbilt University campus and surrounding area completed the

experiment. The 15 females and 13 males were predominantly in the 18 to 30 year age range, although

four participants were between the ages of 31 and 50. The participants had completed high school and most

(13 participants) had either completed or were completing (11) an undergraduate degree. The MRT-A has a

minimum score of 0 and a maximum possible score of 24. The participants’ MRT-A scores resulted in a 10.9

mean score, with a standard deviation of ±5.5, a median score of 10, and minimum and maximum scores of

1 and 24, respectively. These results were virtually identical to the results obtained by Peters et al. (1995),

who reported a 10.8 mean score, with a standard deviation of ±5 in a study comprised of 636 participants.

IV.2.2 Objective Results: Performance

The descriptive statistics for Success Rate (SR), Decision Time (DT ), Request Frequency (RF), and Inter-

vention Frequency (IV ) are presented in Table IV.2. The highest success times, decision times, and request

frequencies were observed for the M7 model. The lowest success rates and fastest decision times occurred

when using the MSQ
4E model. The bias reducing model, MSQ

6E enabled a success rate that approached the success

rate for the M7 model, but required less time and approximately half the requests. Intervention frequency was
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Table IV.2: Descriptive Statistics by Model and Objective Performance Metric.
Model Statistic SR DT RF IV

MSQ
4E

Mean (SD) 0.79 (0.41) 3.24 (1.65) 0.87 (0.61) 0.38 (0.49)
Median 1 2.75 0.79 0

Min (Max) 0 (1) 1.16 (10.32) 0 (2.72) 0 (1)

MSQ
6E

Mean (SD) 0.89 (0.32) 4.08 (1.38) 0.91 (0.57) 0.18 (0.38)
Median 1 3.72 0.81 0

Min (Max) 0 (1) 1.83 (9.94) 0 (2.92) 0 (1)

M7

Mean (SD) 0.93 (0.25) 5.17 (2.16) 1.68 (0.76) 0.16 (0.37)
Median 1 4.66 1.62 0

Min (Max) 0 (1) 1.48 (13.25) 0.37 (4.15) 0 (1)

highest when using the MSQ
4E model, which indicates that participants were required to alter the collective’s

behavior more than twice as often in order to achieve accurate results compared to the remaining models.

Interestingly, the intervention frequencies for MSQ
6E and M7 were nearly identical, suggesting participants

intervened in order to alter the MSQ
6E collective’s behavior at roughly the same rate as with M7.

A Kruskal-Wallis test indicated significant effects for success rate, χ2(2,N = 1258) = 37.726, p < 0.001,

decision time, χ2(2,N = 1258) = 217.98, p < 0.001, request frequency, χ2(2,N = 1258) = 277.95, p <

0.001 and intervention frequency χ2(2,N = 1612) = 83.276, p< 0.001. Pairwise comparisons using a Tukey

and Kramer (Nemenyi) test revealed significant effects for success rate between MSQ
4E and MSQ

6E (p = 0.0458)

and between MSQ
4E and M7 (p < 0.01). Significant effects for success rate were not observed between MSQ

6E

and M7. Significant effects for decision time were observed for all model comparisons (p < 0.001). Signif-

icant effects for request frequency was observed in both pairwise comparisons with M7 (p < 0.001), but no

significant effects were observed between MSQ
4E and MSQ

6E . Finally, pairwise comparisons revealed significant

effects for intervention frequency between MSQ
4E and both MSQ

6E and M7 (p < 0.001), but no significant effects

were observed between MSQ
6E and M7.

A comparison of each model’s performance by problem difficulty is provided in Fig. IV.2. Easier deci-

sions, which were not subject to negative bias, resulted in high success rates across all models, as shown in

Fig. IV.2a. Difficult problems were influenced by negative bias, which resulted in MSQ
4E having the lowest

success rates. M7 achieved the highest success rate, although it was not significantly higher than MSQ
6E ’s suc-

cess rate. Decision times, shown in Fig. IV.2b, increased for all models between the easier and more difficult

problems, with model M7 performing the slowest overall. Model MSQ
4E was clearly the fastest model when

making easy decisions, indicating that its decision process was accelerated when optimal sites were closer to

the collective decision making hub. MSQ
6E was slower than MSQ

4E in easy problems, but both models’ decision

times were nearly identical during hard problems, even though MSQ
6E was significantly more accurate. Request

frequency was similar for both MSQ
4E and MSQ

6E in both problem difficulty levels, which was unexpected. Fur-
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(a) Success Rate (b) Decision Time

(c) Request Frequency (d) Intervention Frequency

Figure IV.2: The performance of the evaluated collective action selection models in human-collective target-
ing trials. The models are compared based on success rate (a), decision time (b), request frequency (c), and
intervention frequency (d).

ther analysis revealed that MSQ
4E ’s request frequency was weakly correlated with its success overall, r = 0.216,

p < 0.001, and moderately correlated for difficult problems, r = 0.439, p < 0.001. No correlation was ob-

served between request frequency and success rate MSQ
6E , which indicates MSQ

4E was more reliant on participant

actions in order to make correct decisions. M7 was expected to require the highest number of requests in or-

der to complete a decision, since it did not include a collective best-of-n process. Finally, the intervention

rates, shown in Fig. IV.2d indicate the rate, per decision, that participants changed a collective’s behavior by

abandoning a site the collective had identified and favored independently. Participants were more likely to

be required to abandon sites supported by MSQ
4E in order to make accurate decisions, when compared to the

MSQ
6E model. Difficult problems required participants to abandon MSQ

4E ’s selected sites for the largest num-
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Table IV.3: Descriptive Statistics by Model for Request Types per Decision and Request Types per Minute.
Number of Requests per Decision Number Requests per Minute

Model Statistic Investigate Abandon Decide Investigate Abandon Decide

MSQ
4E

Mean (SD) 1.81 (1.97) 0.72 (1.06) 0.33 (0.48) 0.55 (0.51) 0.19 (0.27) 0.11 (0.18)
Median 1 0 0 0.45 0 0

Min (Max) 0 (12) 0 (7) 0 (2) 0 (2.56) 0 (1.8) 0 (0.8)

MSQ
6E

Mean (SD) 2.31 (2.09) 0.7 (1.06) 0.53 (0.51) 0.58 (0.5) 0.16 (0.25) 0.15 (0.16)
Median 2 0 1 0.43 0 0.15

Min (Max) 0 (13) 0 (6) 0 (2) 0 (2.63) 0 (1.2) 0 (0.55)

M7

Mean (SD) 4.99 (2.46) 1.53 (1.69) 1.04 (0.25) 1.13 (0.74) 0.27 (0.28) 0.24 (0.12)
Median 5 1 1 1.01 0.22 0.21

Min (Max) 0 (14) 0 (10) 1 (4) 0 (3.54) 0 (1.11) 0.08 (1.15)

ber of decision problems. Corrections were necessary in some instances for the MSQ
6E model during difficult

decisions, but the model maintained a low median intervention rate. The median intervention rate for the

baseline model, M7, was higher than anticipated, suggesting that the participants supported one site early in

the decision process and were required to abandon the site after finding another higher valued site.

The descriptive statistics for the Investigate, Abandon, and Decide requests per decision and per minute

for each model are provided in Table IV.3. The requests used for the M7 model provide an estimate of the

number of requests participants used per decision in the absence of a collective best-of-n process. The results

indicate that participants issued Investigate and Decide requests more often per decision for the MSQ
6E model,

than for the MSQ
4E model. The number of Abandon requests used per decision was roughly the same. The prior

comparison of decision times (see Fig. IV.2) revealed that the MSQ
6E model was slower than the MSQ

4E model

during easy decision problems, but that the models had similar decision times for hard decision problems.

The right side of Table IV.3 presents the use of the different requests by minute. The per minute use of the

Investigate and Abandon requests was similar between models MSQ
6E and MSQ

4E . Decide requests were only

used once per decision.

Kruskal-Wallis tests were used to determine significant effects for the number and type of request per

decision (left side of Table IV.3). The test indicated significant effects for the Investigate requests per decision,

χ2 (2,N = 1258) = 381.75, p < 0.001, Abandon requests per decision, χ2 (2,N = 1258) = 73.654, p <

0.001, and Decide requests per decision, χ2 (2,N = 1258) = 419.59, p < 0.001. Pairwise comparisons using

a Tukey and Kramer (Nemenyi) test revealed significant effects for the per decision number of Investigate

requests and Decide requests between all models (p < 0.001). The pairwise comparisons revealed significant

effects for the number of Abandon requests per decision between M7 and MSQ
4E (p < 0.001) and between M7

and MSQ
6E (p < 0.001).

Analysis of the number of requests per minute (right side of Table IV.3) produced different results than

those observed for requests per decision. A Kruskal-Wallis test indicated significant effects for the Investigate
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requests per minute, χ2 (2,N = 1258) = 197, p < 0.001, the Abandon requests per minute, χ2 (2,N =

1258) = 43.713, p < 0.001, and the Decide requests per minute, χ2 (2,N = 1258) = 191.42, p < 0.001. The

results of the pairwise comparisons using a Tukey and Kramer (Nemenyi) test did not identify any significant

effects between models MSQ
4E and MSQ

6E for either the Investigate or Abandon requests per minute. The test

revealed significant effects between both models and the baseline model (M7) for Investigate requests per

minute (p < 0.001) and Abandon requests per minute (p < 0.001). Finally, the test indicated significant

effects in all pairwise comparisons for the number of Decide requests per minute (p < 0.001).

Further analysis reveals weak correlations between the request frequency and success of the MSQ
4E model

over all decisions for the Investigate request, r = 0.139, p < 0.001, and the Abandon request, r = 0.1076,

p = 0.0256. When only hard problems were analyzed for MSQ
4E , the correlations were moderately stronger

between success rate and the Abandon frequency, r = 0.3365, p < 0.001, and between success rate and the

Investigate frequency, r = 0.2749, p < 0.001. No correlations were observed for either requests or decision

difficulties for the MSQ
6E model. Additionally, correlations did not exist between request frequencies and

success rates in the easy decision problems for either model. This additional analysis suggests that the

participants’ use of the Investigate and Abandon requests influenced model MSQ
4E ’s success rate, but was less

important for success with model MSQ
6E .

Although not presented in the primary data, the strong quorum filtering mechanism (Chapter III.3.4.5)

greatly reduced the occurrence of split decisions when compared to prior results without quorum noise re-

duction (see Table III.7). During the human-collective trials 0.05% (6 of the 1,258 targeting decisions) caused

split decisions to occur. While this percentage is small, the trials occurred in an idealized situation that did not

require more than two decisions to occur in sequence. Prolonged use of the collective action selection strategy

in real-world systems will need to better address the prevention and recovery from collective splitting.

IV.2.3 Objective Results: Independent Collective Performance

Each of the trials used during the human subjects evaluation were also conducted with the collectives in-

dependent of the participants, in order to determine the effect of human interaction on the collectives’ per-

formance. The descriptive statistics for the independent collectives’ performance according to Success Rate

Table IV.4: Independent Collective Performance Descriptive Statistics by Model and Metric.
Model Statistic SR DT

C4E

Mean (SD) 0.5 (0.5) 2.86 (1.28)
Median 1 2.55

Min (Max) 0 (1) 1.05 (13.48)

C6E

Mean (SD) 0.72 (0.45) 5.21 (2.05)
Median 1 4.76

Min (Max) 0 (1) 1.65 (20.28)
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(a) Success Rate (b) Decision Time

Figure IV.3: The independent collective performance compared to the human-collective performance, ac-
cording to Success Rate (a) and decision time (b).

(SR) and Decision Time (DT ) are presented in Table IV.4. The collective models CSQ
4E and CSQ

6E represent

independent collectives implementing models MSQ
4E and MSQ

6E , respectively. Consistent with the human sub-

jects evaluation, the bias reducing model, CSQ
6E , achieved higher accuracy and slower decision times when

compared to CSQ
4E . A Kruskal-Wallis test indicated significant effects between the models for success rate,

χ2(1,N = 44784) = 2233.9, p < 0.001 and decision time χ2(1,N = 44784) = 18285, p < 0.001.

The performance of the independent collectives is compared to the performance of the human-collective

teams in Fig. IV.3. The independent collectives made accurate decisions in approximately 80% of the easy

problems, as shown in Fig. IV.3a. During difficult decision problems, CSQ
4E was unable to reliably make accu-

rate decisions. Model CSQ
6E , which incorporated the bias reducing mechanisms, achieved an independent suc-

cess rate during difficult problems that was comparable to the success rate achieved by the human-collective

team without bias reduction, indicated by the success rate of MSQ
4E . Comparing the success rates of CSQ

4E and

CSQ
6E to the human-collective success rates (MSQ

4E and MSQ
6E ) indicates that the participant interactions improved

collective success rates for both evaluated behaviors. Model CSQ
4E made faster decisions than CSQ

6E during easy

and difficult problems, as shown in Fig. IV.3b. Human interaction with these behavior improved decision

times during easy problems, as indicated by the decision times achieved by MSQ
4E and MSQ

6E . During difficult

decision problems, participant interaction improved the decision times of the bias reduction model (MSQ
6E ),

but increased the decision time of the non-bias reducing model (MSQ
4E ). The increased decision time of MSQ

4E

compared to the independent collective (CSQ
4E ) is indicative of the participants’ need to intervene in order to

achieve accurate decisions with the non-bias reducing model.
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Table IV.5: Descriptive Statistics by Model and Objective Situational Awareness Metric.
Model Statistic OF SA Probe SA1 SA2 SA3

MSQ
4E

Mean (SD) 0.66 (0.68) 0.85 (0.19) 0.86 (0.26) 0.86 (0.26) 0.8 (0.37)
Median 0.54 0.83 1 1 1

Min (Max) 0 (3.85) 0 (1) 0 (1) 0 (1) 0 (1)

MSQ
6E

Mean (SD) 0.64 (0.54) 0.9 (0.14) 0.91 (0.17) 0.88 (0.21) 0.9 (0.3)
Median 0.54 1 1 1 1

Min (Max) 0 (2.66) 0.33 (1) 0.5 (1) 0.5 (1) 0 (1)

M7

Mean (SD) 0.57 (0.48) 0.94 (0.1) 0.94 (0.19) 0.91 (0.2) 0.97 (0.12)
Median 0.48 1 1 1 1

Min (Max) 0 (2.42) 0.67 (1) 0 (1) 0 (1) 0.5 (1)

IV.2.4 Objective Results: Situational Awareness

The descriptive statistics for the Observation Frequency (OF) and the correct Situational Awareness probe

response ratio (SA) are presented in Table IV.5. The observation frequencies were similar for all models,

although the M7 model required slightly less frequent observations. The SA probe correct response ratio was

high for all models, although participants were noticeably more likely to respond incorrectly to the SA probes

when using model MSQ
4E overall (SAO), and for each situation awareness level (SA1, SA2, and SA3).

A Kruskal-Wallis test did not identify any significant effects for observation frequency, or for SA probe

response. The chosen objective measurements of the participants’ situational awareness were largely indiffer-

ent to the models. The lack of significance in observation frequency is only somewhat unexpected, since the

experimenter observed that participants tended to establish an observation routine quickly that did not appear

to vary between trials. The slight differences in correct probing question responses between the models are

not conclusive since there were no significant effects between models MSQ
4E and MSQ

6E . The higher response

rate for the M7 model suggests either that the participant benefited from controlling the collective, or by the

third trial, the participant was more familiar with the interface in general.

IV.2.5 Subjective Results

This experiment considered several sources of subjective data. The first set of subjective results are the par-

ticipants’ reported workload (NASA-TLX) and situational awareness (3D SART). The NASA-TLX weighted

score provided perceived workload where each of the workload components (e.g., mental demand, effort, and

frustration) were weighted according to each component’s relative value. The 3D SART score (SART ) for

situational awareness is calculated using the perceived Situational Understanding (SU), Demands on Atten-

tional Resources (DAR), and Supply of Attentional Resources (SAR), according to the following equation:

SART Score = SU − (DAR− SAR). The descriptive statistics are presented in Table IV.6. The participants’

perceived workloads with each model were similar, although model MSQ
4E was slightly higher than the other

models. The participants’ reported situational awareness (SART Score) was also similar across all models,
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Table IV.6: Descriptive Statistics by Model and Subjective Metrics.
Model Statistic NASA-TLX SART Score SU DAR SAR

MSQ
4E

Mean (SD) 58.31 (17.63) 6.05 (2.22) 5.74 (0.99) 4.98 (1.2) 5.28 (1.45)
Median 60.67 6 6 5 6

Min (Max) 9 (89.33) 1 (13) 3 (7) 1 (7) 2 (7)

MSQ
6E

Mean (SD) 57.06 (16.47) 6.75 (2.23) 6.08 (0.89) 5.04 (1.19) 5.71 (1.06)
Median 56.83 7 6 5 6

Min (Max) 5.67 (83.33) 3 (13) 4 (7) 1 (6) 3 (7)

M7

Mean (SD) 50.63 (17.56) 6.38 (1.99) 6.09 (0.96) 5.07 (1.41) 5.36 (1.3)
Median 54.17 6 6 5 5

Min (Max) 9.33 (80.33) 4 (11) 4 (7) 1 (7) 3 (7)

although situational awareness with model MSQ
6E was slightly higher than the other models, due primarily to

MSQ
6E ’s higher reported supply of attentional resources (SAR) when compared to models MSQ

4E and M7. The

Kruskal-Wallis test did not identify any significant effects for workload, situational awareness, or any of the

three components of the 3D SART score. The participants’ 3D SART scores were consistent with the correct

SA probe response ratios (see Table IV.5).

The post-trail questionnaires required Lickert scale responses, on a scale of 1 (worst) to 7 (best) regard-

ing: collective responsiveness to requests (e.g., Investigate, Abandon, or Decide), the collective’s independent

target selection ability (Performance), and ease of understanding the collective (Understanding). The descrip-

tive statistics are presented in Table IV.7. The post-trial questionnaire responses indicate that participants’

perceived that the collectives responded similarly to each type of request. The results for the Investigate and

Abandon commands for models MSQ
4E and MSQ

6E correspond to the objective results (see Table IV.3), which in-

dicated that both commands were used equally. The MSQ
4E model was perceived to be slightly more responsive

to Decide requests than MSQ
6E , although the request was used more frequently in MSQ

6E (Table IV.3). Perceived

model performance was observed to be slightly lower for MSQ
4E , which corresponds with the model’s lower

success rate (Table IV.2). Finally, model understanding was lowest for model MSQ
4E , slightly higher for model

MSQ
6E , and the highest for the baseline model M7. A Kruskal-Wallis test indicated significant effects for model

Table IV.7: Descriptive Statistics by Model and Post-Trial Questionnaire Metrics.
Model Statistic Investigate Abandon Decide Performance Understanding

M4E

Mean (SD) 5.07 (1.25) 6.04 (1.35) 5.71 (1.94) 5.11 (0.99) 5.39 (1.31)
Median 5 6 7 5 5.5

Min (Max) 2 (7) 1 (7) 1 (7) 3 (7) 2 (7)

M6E

Mean (SD) 4.75 (1.53) 6.18 (1.42) 5.57 (1.99) 5.54 (1.29) 5.82 (1.16)
Median 5 7 6 6 6

Min (Max) 2 (7) 1 (7) 1 (7) 3 (7) 3 (7)

M7

Mean (SD) 5.18 (1.68) 5.29 (1.76) 6.54 (0.92) 5.75 (1.43) 5.93 (1.46)
Median 5.5 5.5 7 6 7

Min (Max) 1 (7) 1 (7) 4 (7) 2 (7) 3 (7)

105



understanding, χ2(2,N = 84) = 6.7985, p = 0.0334, but did not indicate significance for the remaining met-

rics. Pairwise comparisons using a Tukey and Kramer (Nemenyi) test indicated significant effects for trial

understanding between model MSQ
4E and model M7 (p = 0.034).

The post-experiment questionnaire required participants to rank order the models, on a scale from one

(best) to three (worst). The rankings were mutually exclusive. The descriptive statistics for the post-

experiment rankings are presented in Table IV.8. Lower values indicate that a model was perceived to re-

spond more quickly to participant requests (Responsiveness), enabled more accurate target selections (Per-

formance), or were easier for the participant to understand (Comprehension). The participants’ subjective

comparisons between the MSQ
4E and MSQ

6E were virtually equivalent across the metrics. The largest notice-

able difference between the models was that the participants consistently indicated that M7 was the easiest

model to understand, but was the least responsive to their requests. While M7 was expected to be easier to

understand, since the participants controlled all aspect’s of the model’s decision making process, the model’s

perceived responsiveness was lower than expected. A Kruskal-Wallis test did not identify any significant

effects for the post-experiment rankings.

Table IV.8: Descriptive Statistics by Model and Post-Experiment Questionnaire Metrics.
Model Statistic Responsiveness Performance Comprehension

MSQ
4E

Mean (SD) 2.04 (0.84) 2.11 (0.83) 2.18 (0.82)
Median 2 2 2

Min (Max) 1 (3) 1 (3) 1 (3)

MSQ
6E

Mean (SD) 1.82 (0.61) 2.11 (0.74) 2.07 (0.72)
Median 2 2 2

Min (Max) 1 (3) 1 (3) 1 (3)

M7

Mean (SD) 2.11 (0.96) 1.71 (0.85) 1.68 (0.86)
Median 2.5 1 1

Min (Max) 1 (3) 1 (3) 1 (3)

Finally, the results of the Mental Rotation Tests (MRT-A), were compared to the collective success rates

(see Chapter IV.2.2) in order to determine the existence of a correlation between spatial abilities and per-

formance with collective action selection. Participant’s MRT-A scores were compared to success rates for

each model and each problem difficulty (easy and hard). A correlation was only observed in two pairs of

variables. There was a positive correlation between MRT-A scores and overall success with MSQ
4E , r = 0.453,

p < 0.05, and a stronger correlation between MRT-A scores and MSQ
4E ’s success for the hard decision prob-

lems, r = 0.532, p < 0.01. These findings suggest that participants with higher spatial awareness were more

capable of making accurate target selections with the MSQ
4E model, than those participants with lower scores.

The absence of a correlation between the MRT-A scores and the MSQ
6E model suggests that model MSQ

6E required

less assistance from the human operator in making an accurate target selection decision.
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IV.2.6 Discussion

The results of the human-collective site selection experiment were mixed. While the objective performance

measures indicated specific advantages across the evaluated models, these advantages were less visible in the

subjective measures overall. A clear example of the deviation between the objective and subjective measures

was the nearly identical perceived performance between the MSQ
4E and MSQ

6E models in the post-trial question-

naires, despite the former model’s significantly faster decision times and the latter model’s higher success

rates.

The results supported hypothesis H5.1, which predicted that the presented behavior selection control

mechanisms enable humans to exert a variety of levels of control over the collective action selection pro-

cess. The relatively high success rates achieved by all the models supports the hypothesis and is clearest in

the success rates for the MSQ
4E model. Although this model achieved lower success rates than models MSQ

6E

and M7, MSQ
4E ’s performance during difficult decisions was quite a bit higher than in similar decisions in the

previous static, dynamic, and sequential site selection experiments (see Chapter III.3). One likely explana-

tion for the MSQ
4E model’s higher success rate is the intervention rate, which indicated that the operator was

often, although not always, able to prevent the collective from choosing a suboptimal target. This observation

is further confirmed by the increased performance in both success rate and decision times when comparing

the independent collective performance (CSQ
4E ) to the performance of the human-collective team (MSQ

4E ) in

Fig. IV.3. Using the provided controls, the participants were clearly able to overcome the non-bias reducing

model’s poor independent success rate and make accurate team decisions.

Hypothesis H5.2, which stated that the bias reducing model (MSQ
6E ) was expected to lower participant

workload compared to the model lacking bias reduction mechanisms (MSQ
4E ) was only partially supported.

The similar request frequencies observed for models MSQ
4E and MSQ

6E suggest that the bias reducing model did

not reduce the frequency of user input to the collectives; however, the higher intervention rate observed for

MSQ
4E indicates a difference in participants’ strategies when using each model. Model MSQ

6E required fewer

interventions to achieve a higher success rate, compared to the MSQ
4E model. Although many of the subjective

results were not significantly different between the two models, participants using MSQ
6E were slightly more

accurate in their responses to the situation awareness probes. Additionally, spatial abilities, as measured with

the MRT-A, were moderately correlated with MSQ
4E ’s success rate, but not with MSQ

6E ’s success rate. This ob-

servation suggests that more participant engagement when using the MSQ
4E model, which did not include the

bias reducing mechanisms, although this phenomenon requires further investigation. The strongest subjec-

tive measure that refutes hypothesis H5.2 is the nearly equal perceived workload between the MSQ
4E and MSQ

6E

models. One of the challenges imposed by the experimental design was the inability to categorize most sub-
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jective measures between hard and easy target selection problems. The objective measures differed between

the problem difficulties, but workload estimates, situational awareness measures, and participant evaluations

of each collective were not directly associated with problem difficulty. Finally, the results partially supported

hypothesis H5.3, which predicted that the collective action selection models benefit from human interaction in

terms of improved success rates and reduced decision times. The success rates of the independent collectives

(CSQ
4E and CSQ

6E ) were lower than those achieved by the human-collective teams (MSQ
4E and MSQ

6E ) for both easy

and difficult problems. Decision times generally improved as a result of the human interaction; however,

the decision time of the non-bias reducing model increased with human interaction, as the participants were

required to slow the collective’s decision making process in order to make accurate decisions.

The fourth hypothesis, H6, predicts that the visualization techniques, consisting of the collective state

estimations and target information, are sufficient to enable participant understanding and interaction. The

subjective results indicated that the hypothesis was supported; however, the technique must be compared to

other visualization techniques in order for its benefit to be fully evaluated (e.g., a full representation of the col-

lective (Walker et al., 2016) or a radial display centered on the decision making hub (Crandall et al., 2017)).

Participants with all models achieved a high accuracy when responding to the situational awareness probes,

indicating that the participants either already knew, or quickly determined their responses through interac-

tions with the interface. Most trials resulted in high success rates, despite the participant’s divided attention

between four collectives, that changed locations during the trials. Although not conclusive, this observa-

tion indicates that the presented visualization techniques were at least sufficient to enable the participants to

accomplish the evaluated task.

IV.3 Summary

This chapter introduced and evaluated new control mechanisms and visualization techniques for use in future

human-collective action selection scenarios. Behavior selection control mechanisms were chosen because

they were easily adapted to existing states in the individual action selection model (see Chapter III.2.3.1) and

readily accessible through interaction with the collectives’ decision making hubs. The presented visualization

technique included a simple display that presented an estimate of the collectives’ decision making process,

the collectives’ supported options (e.g., targets), and alerts to expected collective transitions between deliber-

ation and action execution. The results of a human-collective site selection experiment indicated that both the

presented control mechanisms and visualization techniques were effective. The experiment supported further

investigation of the benefits to the human operator of interacting with discrete consensus achievement strate-

gies with and without mechanisms for reducing environmental bias. The hypotheses tested in this chapter are

summarized in Table IV.9.
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Table IV.9: Summary of Research Questions and Hypotheses.

Question Hypothesis Experiment Supported

R5 H5.1 Behavior selection mechanisms enable effective
human guidance and control over explicit collec-
tive action selection.

Human-Collective
Site Selection

Yes

H5.2 Environmental bias reduction will reduce human
workload during human interaction with collec-
tive action selection.

Human-Collective
Site Selection

Partially

H5.3 Human input improves the accuracy and decision
times for the collective action selection models

Human-Collective
Site Selection

Partially

R6 H6 The presented visualization techniques is suffi-
cient to enable human understanding and interac-
tion with collective action selection.

Human-Collective
Site Selection

Yes

The human-collective site selection experiment provided partial answers to research questions R5 and

R6 by evaluating participants’ ability to accomplish sequences of target selection decisions with multiple

collectives using the presented control mechanisms and visualization techniques. Research question R5 was

intended to determine effective control mechanisms for human-collective action selection decisions. The

presented behavior control mechanisms were readily applicable to the collective action selection process and

permitted the participants to manipulate multiple collectives’ levels of autonomy and decision process simul-

taneously via interactions with the collectives’ decision making hubs. The fact that the participants were

successful, overall, in working with the collectives to make accurate decisions suggests that the behavior

selection mechanisms are effective, but answering R5 requires further investigation in order to compare the

presented control mechanisms with other existing control mechanisms (e.g., leader selection). The second

research question, R6 was also partially addressed. Currently, the only other visualization technique pro-

posed for use in human-collective best-of-n decisions is a radial display centered on the decision making hub

(Crandall et al., 2017). While the radial display has potential use in both implicit and explicit action selection

in human-collective teams, the technique has yet to be evaluated. The visualization technique presented in

this dissertation was demonstrated to enable a human to control multiple decision processes simultaneously,

which strongly supports its use in future human-collective teams. A comparison study between these existing

approaches and other emergent approaches is an important area for future work.
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Chapter V

Conclusion

A novel decentralized action selection strategy was developed that permits a robotic collective to choose

and implement its best available action, respond to human input, and compensate for negative environmental

bias. The strategy addressed three common problems that impede the use of robotic collectives in dynamic

environments. First, new mechanisms reduced the influence of environmental bias, which prevents existing

collective decision making strategies from choosing options based solely on value, despite differences in

options’ locations. Second, while existing collective task sequencing strategies have transitioned between

a series of known actions, the new strategy combines this approach with collective best-of-n decisions to

facilitate sequential action selection and execution. Finally, methods of human interaction with collectives

capable of independent decisions are emergent, but untested. This dissertation introduced and evaluated new

control mechanisms and visualization techniques that facilitated human-collective interaction for multiple

collectives making simultaneous best-of-n decisions.

The developed action selection strategy consisted of a novel collective behavior model that guided the

development of a variety of individual behavior models. The strategy restricted individual robot interactions

to a decision making hub, which has been shown to improve collective information pooling and decision

accuracy in biologically-inspired collective decision making strategies. The individual behavior models were

distinguished by the use of two environmental bias reducing mechanisms, two quorum detection mechanisms,

and three quorum noise reduction mechanisms.

A series of site selection experiments evaluated the effectiveness of the different mechanisms in achieving

the desired emergent behaviors described by the collective model. Collectives of individuals using the bias

reduction mechanisms made slower decisions, when compared to existing collective best-of-n models, but

were better able to compensate for negative environmental bias. When required to choose options based on

value, the bias reduction models compensated for option distance to the decision making hub and chose the

highest valued option despite its location, while existing strategies frequently chose the closer option regard-

less of its value. Both the existing models and the bias reducing models were capable of breaking symmetry,

meaning that each made random decisions when faced with equally valued options. The existing strate-

gies only face symmetry breaking scenarios between equally valued, equidistant options. The bias reduction

model; however, causes symmetry breaking to occur whenever two equally valued options are anywhere

within the collective’s search space. The quorum detection mechanisms enabled the collective to transition

to action execution after making an action decision and return to a decision making state, once the action was
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completed. Quorum noise reduction mechanisms improved the collective’s ability to complete sequences of

actions without the collective making split decisions, as a result of individuals making inaccurate estimates

of the collective’s decision making process and prematurely initiating collective behavior transitions.

A new human-collective interaction approach permitted humans to supervise and control multiple collec-

tive action selection processes simultaneously via a simulation study. Behavior selection mechanisms were

introduced that permitted humans to alter the behavior states of robots within the collectives’ decision mak-

ing hubs, as a means of altering collective decisions. Visualization techniques that presented estimates of the

collective decision making process were shown to be sufficient for enabling humans to maintain situational

awareness over multiple collectives during the experiment. The provided behavior selection control mecha-

nisms allowed the humans to interact with the collectives’ decision making processes by directing agents to

support options, abandon options, or commit to executing an option. Humans interacted with action selection

strategies that either reduced environmental bias, or did not. While the human-collective teams were signif-

icantly more accurate with the bias reducing strategy, the participants perceived little difference in workload

or responsiveness between the strategies.

This dissertation developed two important capabilities that previously did not exist for robotic collective

decision making. First, the demonstrated bias reducing mechanisms increase collective decision making re-

silience to undesirable environmental features. This capability will enable future robotic collectives to control

the relative importance of option cost and value during decision making. Second, the presented action se-

lection model and human-interaction methods permit the collective to participate in decisions regarding the

collective’s future behavior, which previously was limited to the direction of a human with assumed global

awareness. The combination of these capabilities provides humans with the ability to influence a collective’s

consideration of the option value and cost during decision making and delegate decision making functions to

the collective. These capabilities are applicable to environmental monitoring and space exploration, which

will require collectives to cover wide areas, be robust to individual agent failure, prioritize information trans-

missions to human supervisors, and to make independent autonomous collective behavior decisions.

V.1 Contributions

Several novel contributions are presented for the fields of robotic collective decision making and Human-

Swarm/Collective Interaction. The primary contributions are the explicit collective action selection strategy,

an interaction delay mechanism, and the human-collective control and visualization techniques. The sec-

ondary contributions include an interaction frequency modulation mechanism and a novel quorum detection

technique that, with the use of quorum noise reduction, increased the speed of the collective action selection

process.
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V.1.1 Primary Contributions

The first primary contribution is a novel explicit collective action selection strategy that combines collective

best-of-n decision making with task sequencing to facilitate sequential collective behavior decisions. Exist-

ing collective decision strategies either stop after a single decision is detected (e.g., Parker and Zhang, 2009),

or execute a known sequence of tasks (e.g., Parker and Zhang, 2010; Wessnitzer and Melhuish, 2003). The

developed approach permits the collective to decide which of the available set of options in the environment

to act on between executed tasks. A value-sensitive collective best-of-n decision strategy was extended with

a quorum detection mechanism that retains the collective’s decision making behavior, but enables the col-

lective to detect when a decision has been reached (Cody and Adams, 2017a). A series of quorum detecting

states further extends the model in order for the collective to transition successively through action initia-

tion, execution, and back to a decision making state (Cody and Adams, 2018b). Enabling a collective to

make decisions about future behaviors provides a level of autonomy that was not previously accessible to the

field of Human-Swarm/Collective Interaction, which usually treats the human as the sole decision maker in

a human-swarm team. Shared decision-making has been proposed (e.g., Crandall et al., 2017), but explicit

action selection allows the collective to perform assessment activities and inform human decision making

about future actions.

The second primary contribution is the interaction delay mechanism, which reduces negative environ-

mental bias that was identified as an important challenge for robotic collective decision making. Collectives

are often limited to local communication and sensing capabilities, a desirable feature that permits collective

behavior algorithms to scale to large populations and environmental areas. Unfortunately, local interaction

limitations require robots to execute movements in order to pool information and evaluate available options.

Decisions that compare environmental options located at different distances from the collective’s decision

making hub result in higher interaction rates that bias decisions towards closer options. Interaction delays,

which required robots to delay between interactive periods based on the option’s distance to the hub, en-

abled existing collective best-of-n strategies to make decisions based on option value, despite environmental

bias, that were not previously possible. The delays imposed longer decision times, that were mitigated by

interaction frequency modulation (Cody and Adams, 2017b). Experiments also identified that negative envi-

ronmental bias strongly influences the ability of existing collective best-of-n strategies to respond to dynamic

changes in option value (Cody and Adams, 2018c). Without interaction delays, collectives responded quickly

to value changes that occurred with options close to the decision making hub. Value changes to options that

were further from the decision making hub; however, required much more time to reach make decisions,

which were often incorrect. The developed interaction delay mechanism enabled the collective to respond
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uniformly with high accuracy and consistent decision time in the same scenarios.

The final primary contribution is the set of collective control and visualization techniques developed

for supporting human-collective action selection decisions, which are the first techniques presented for this

purpose. One challenge of interacting with collective decision strategies is that the decisions are driven by

information that is not accessible (i.e., visible) to the human. The developed visualization technique provided

the human with an estimate of the state of the collective decision making process using a combination of

agent state summaries and informative target site symbols. This technique allowed the human participants

to effectively and successfully interact with multiple simultaneous collective action selection processes. The

developed behavior selection control mechanisms provided the human with the ability to direct robots to

successfully change states within the collective action selection process. The Investigate command allowed

the human to increase the evaluations of a chosen option, which usually increased the collective’s support

for the option. The Abandon command resulted in the opposite effect and reduced option support. Finally,

the human used the Decide command in order to trigger a faster decision and accelerate the execution of a

specific action. Through a combination of these behavior selection controls and the described visualization

technique, the human participants were able to successfully guide and control the decision making process

(Cody and Adams, 2018a).

V.1.2 Secondary Contributions

The first secondary contribution was the interaction frequency modulation mechanism. This mechanism,

which increased robot interaction attempts with option distance to the decision making hub, was shown to

enable faster decisions without significantly altering accuracy. Collective decision making strategies typically

assume that the probability of any two agents interacting is approximately equal, which is often not the

case in real-world systems (Reina et al., 2016). Collective best-of-n strategies, as previously described,

often favor closer sites with higher interaction rates. While the mechanism’s original purpose to counteract

this bias was not fully realized in this dissertation, the mechanism significantly increased interaction rates,

mitigated long decision times caused by interaction delays (see Chapter V.1.1), and increased the speed of

the original collective best-of-n model (Cody and Adams, 2017b). These results suggest similar modification

to interaction rates in future collective best-of-n decision making strategies.

The last secondary contribution was the episodic queue mechanism for quorum detection. Persistent

queues, in which agents retained a queue of a specified length regardless of their internal state, have been

evaluated in similar decision strategies (Parker and Zhang, 2009). Within the developed collective action

selection strategy, these queues resulted in long, but accurate collective action selections. Episodic queues

were cleared each time the agents changed state and were replenished more frequently than typical agent
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interactions. The episodic queues resulted in rapid decision times, comparable decision accuracy, though

less accurate quorum detections, when compared to the persistent queue mechanisms (Cody and Adams,

2017a). When combined with quorum noise reduction, which reduces duplicate messages during quorum

estimation, the episodic queues enabled faster sequences of collective action selections than the persistent

queuing technique (Cody and Adams, 2018b).

V.2 Future Work

The developed collective action selection strategy and human-collective interaction techniques offer several

areas of future work including greater exploration of the models’ large parameter space, greater theoretical

analysis, extensions to the presented models, and additional control and visualization techniques supporting

future human-collective interaction.

V.2.1 Parameter Space Exploration

A weakness to the experimental results presented in Chapters III.3 and IV.2 are that the models were only

examined within a small portion of their large available parameter space. These parameters include those

associated with robot interactions, transitions between states, voting message frequency, voting queue length,

communication range, and agent movement. Robot interaction rates were fixed to maintain an approximately

10% interactive population; however, exploration of time-changing latency transition periods are expected

to improve decision speed. Additionally, the use of time changing inhibition rates has been proposed as a

possible mechanism used by honeybees to alter decision times (Pais et al., 2013). The decision accuracies

achieved by the episodic queue models, despite the models’ lower quorum accuracies (see Chapter III.3.3),

suggest that it is possible to shorten the collective best-of-n decision making strategy by lowering the quorum

threshold below the evaluated value (T = 0.75), without reducing decision accuracy. Communication range

and movement parameters affect the distribution of opinions within the search space, which causes the col-

lective behavior to deviate significantly from the predictive model (Reina et al., 2016). Agent movement and

sensing models also determine expected site discovery times, which are known to affect decision accuracy

when sites are not equidistant to the nest area (Reina et al., 2015b; Cody and Adams, 2017b).

The interaction delay mechanism makes strong assumptions about the probability of site discovery within

the environment. Round trip travel times and discovery rates were approximated assuming constant, homo-

geneous movement throughout the collective’s area. Numerous factors, including robot malfunction, robot

congestion, terrain slope, current or wind changes, and obstacles will impose heterogeneous movements

within future environments and have not been thoroughly evaluated in opinion-based site selection scenar-

ios. These factors have been considered in ad-hoc studies (e.g., Schmickl and Crailsheim, 2008) and in a
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human-collective interaction proposal (Crandall et al., 2017). One solution to these problems is to increase

the collective’s interaction delays in order to allow for unexpected difficulties in discovering or traveling to

sites within the search space. Such an approach must consider the likelihood that travel times to specific sites

will be generally consistent during the decision making scenarios, which determines the effectiveness of the

delays. Additionally, increasing interaction delays more than necessary will reverse the environmental bias

and encourage the selection of sites with higher costs, which is clearly undesirable.

V.2.2 Further Theoretical Analysis

Further theoretical analysis of the presented models is required to provide performance guarantees for a

variety of the previously discussed parameter values and decision scenarios. Both the value-sensitive decision

strategy and collective action selection are areas of continuing research. Analysis of the decision strategy has

revealed the critical role of inhibition in breaking deadlock between two equally valued sites (Seeley et al.,

2012) and in controlling the minimum distinguishable difference between site values (Pais et al., 2013). The

limitations of the collective decision making strategy, in terms of its number of sites, number of agents,

decision making hub size, and collective search area remain open areas of research. Reina et al. (2017)

recently extended the value-sensitive decision model in order to analyze problems with three, or more sites.

The work revealed that the ratio of interactive transitions (e.g., recruiting and inhibition) to spontaneous

transitions (e.g., abandonment and discovery) is critical to maintaining the desired collective behavior in

more complex problems (Reina et al., 2017).

V.2.3 Model Extensions

Several directions for future work exist for the collective and individual behavior models. The quorum de-

tection mechanism for problems in which the collective must alter decision making hub locations was inad-

equate for reliably sensing the end of the completion of the collective’s movement. The effectiveness of the

sequential action selections (see Chapters III.3.4.2-III.3.4.5) largely resulted from slowing down the quorum

detection mechanisms in order to prevent agents from being left behind and causing the collective to split.

Solutions to this problem include the use of decentralized population or density estimates. Another area of

future work is to combine a collective conducting action selection with collectives performing other tasks

(e.g., foraging) and use one collective to manage behavior transitions in the other in a manner similar to

honeybee scouts during nest site selection (Seeley, 2010). A final future work extension is to associate more

than one action to each available option, which will enable more robust responses in complex environments.
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V.2.4 Human-Collective Interaction Extensions

While the human-collective site selection experiment demonstrated the potential of future human-collective

action selection, additional control and visualization techniques require further investigation. First, control

mechanisms were not developed to enable the human operator to alter the search space for the collectives,

although this has been proposed (Crandall et al., 2017). Such an addition permits greater use of the human’s

reasoning in the decision process by enabling the system to respond to other sources of information (e.g.,

intelligence reports and additional imagery). Second, the interface was assumed to have reliable communica-

tion with each of the decision making hubs. A more detailed simulation of the communication between the

human and decision making hubs, as well as between the robots themselves, enables further investigation of

the effects of communication latency and congestion, which were not examined in this dissertation. Third,

mechanisms that enable the human to increase or decrease the importance of option values in relation to

option locations are needed to make the system more practical. Finally, the use of heterogeneous collective

populations, as discussed in Chapter II.3.4, has yet to be explored in human-collective decision strategies.
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