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Multiple sclerosis (MS) is a debilitating neuroimmunological and neuro-

degenerative disease.  Despite substantial evidence for polygenic inheritance, the MHC is 

the only region that clearly and consistently demonstrates linkage and association in MS 

studies. The goal of the work presented in this dissertation was to identify additional 

chromosomal regions harboring MS susceptibility genes.  Our studies entailed a new 

genomic convergence approach incorporating information gained from positional 

(linkage and association) and functional (comparative sequence) studies.  In conjunction 

with high-throughput genotyping and powerful new statistical analyses methods, this 

approach identified several regions suggesting the presence of MS loci. 

We began our investigation with a genomic linkage screen that identified seven 

chromosomal regions of interest in a data set of multiplex MS families.  To narrow these 

regions, we developed an approach for more detailed linkage studies that capitalized on 

new methods for rapid and accurate genotyping of SNPs.  In addition to increasing 

marker coverage in each region, we genotyped an expanded data set and devised 

covariate analyses schemes to account for genetic effect in the MHC.  This method 
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continued to provide evidence of linkage to several chromosomal regions and was 

successful in substantially narrowing two regions to only a few Mb.   

We then developed a systematic approach to expedite follow-up association 

studies in the positional candidate regions.  In an attempt to increase the likelihood of 

detecting variants associated with MS, we employed a novel method to select SNPs 

located in multi-species conserved sequences.  Use of this method on chromosome 1q44 

resulted in the identification of four subregions demonstrating significant association with 

MS susceptibility.   

The work presented in this dissertation confirmed several regions warranting 

further investigation for genes conferring susceptibility to MS, including chromosomes 

1q44, 2q35, 9q34, and 18p11.  It is our hope that these studies will result in the discovery 

of several genes associated with MS and that our genomic convergence approach will 

provide researchers with a method for unraveling the genetic heterogeneity of MS and 

other complex genetic diseases. 
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CHAPTER I 

 

INTRODUCTION
*
 

 

Clinical Aspects of MS 

Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by 

demyelination and neurodegeneration within the central nervous system (CNS) (MS 

[MIM 126200]).  As the name of the disease implies, affected individuals exhibit 

hardened (or “sclerotic”) tissue in many (or “multiple”) parts of the brain and spinal cord.  

Demyelination and the resulting formation of this scar tissue in the CNS impair saltatory 

conduction along axons that is necessary for normal functioning of nerve impulses.   

 

MS is a clinically heterogeneous disease that varies according to the location of plaques 

or lesions in the CNS.  Recent pathological studies of lesions suggest that MS is an 

overlapping spectrum of related disorders [(1); (2); (3)].  Common symptoms include 

visual disturbances, loss of balance and coordination, spasticity, sensory disturbances, 

bladder and bowel incontinence, pain, weakness, fatigue, and paralysis.  This debilitating 

disease also causes cognitive impairment in an estimated 45-65% of patients—with 

symptoms ranging from language deficits to bradyphrenia.  Despite the substantial 

impairment and deterioration seen in MS, life span of affected individuals is only slightly 

                                                           
* Chapter adapted from:  
 
Kenealy, S.J., Pericak-Vance, M.A., Haines, J.L. (2003) The genetic epidemiology of 
multiple sclerosis. J Neuroimmunol 143(1-2): 7-12. 
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shortened—creating a significant impact on quality of life for patients and on our nation’s 

health care system. 

 

The disease course of MS varies considerably among affected individuals.  Cases may be 

episodic or progressive, severe or mild, and disseminated or primarily affecting the spinal 

cord and optic nerve.  Although the disease has a broad range of age at onset (85% of 

cases occur between the ages of 14 and 55), initial symptoms typically present in early 

adulthood (between the ages of 20 and 40).  MS occurs two to three times more 

frequently in women than men and is estimated to afflict approximately 400,000 people 

in the United States alone [(4)].  In most Caucasian populations, MS is second only to 

trauma as a cause of acquired neurologic disability arising in early to middle adulthood. 

 

The diagnosis of MS is generally one of exclusion to eliminate conditions that mimic 

symptomology of the disease (e.g. B12 deficiency, AIDS, rheumatoid arthritis, systemic 

lupus erythematosus, Sjögrens syndrome, sarcoidosis, Lyme disease, 

adrenoleukodystrophy, and MELAS) [(5)].  In addition to clinical criteria, magnetic 

resonance imaging (MRI), evoked potential recordings, and cerebrospinal fluid 

examination can be used to confirm clinical diagnosis. 

 

The course of MS is divided into two main subtypes: relapsing-remitting and primary 

progressive.  The relapsing-remitting subtype is more common, characterized by two or 

more separate episodes of worsening symptoms involving different sites of the CNS, 

each lasting at least 24 hours and at least 1 month apart.  Many relapsing-remitting cases 
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cease to remit and exhibit progression of at least one symptom in a slow or step-wise 

manner over at least 6 months.  This course of the disease is referred to as secondary 

progressive MS.  The second major subtype, primary progressive MS, is a less common 

form characterized by slow onset and steadily worsening symptoms involving sites of the 

CNS that do not remit from initial onset. 

 

Though little is known about the underlying etiology, MS is physiologically an 

inflammatory disorder that results from an autoimmune response directed against CNS 

antigens—particularly myelin proteins.  MS exhibits several characteristics common to 

autoimmune disorders—including evidence of environmental risk factors, increased 

frequency in women, partial susceptibility conferred by a human leukocyte antigen 

(HLA)-associated gene, and polygenic inheritance (the basis of the studies presented in 

this dissertation) [(6)].  Though little is known about the genetics of autoimmune 

disorders, the major histocompatibility complex (MHC), and more specifically the class 

II HLA genes, have been identified through candidate and/or genomic screen approaches 

as a genetic factor in several of these diseases.  Class II MHC molecules, such as HLA, 

normally function to bind and present peptide antigens to antigen-specific T cells.  It is 

thought that the dysregulation of this process in MS results in damage to the myelin 

sheath, producing the pathophysiological phenotype seen in the disease. 

 

The clinical heterogeneity and complex etiology of MS have been confounding factors 

for studies of the disease.  Yet despite these factors, it is clear that genes play a vital role 
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in disease susceptibility.  The remainder of this chapter provides an overview of genetic 

studies for MS and a prelude to the research presented in this dissertation. 

 

Genetic Epidemiology of MS  

Epidemiological studies provide strong evidence for both environmental and genetic risk 

factors in MS.  Numerous population and family-based studies have been conducted to 

assess disease prevalence and aggregation in an attempt to identify and elucidate genetic 

contribution to the disease. 

 

Population Prevalence 

Despite the disparity between prevalence rates cited in population-based studies for MS 

(values range from 0.88 to 224 per 100,000), there is a general consensus among 

researchers concerning a few observations [(7); (8)].  One observation is that the 

population prevalence of MS increases with distance from the equator.  It is postulated 

that this distribution can be explained in part by both environmental factors (e.g. diet or 

vitamin D abnormalities) and population-specific genetics.  Another observation is that 

the reported incidence of MS has increased over time.  However, even these general 

conclusions should be cautiously interpreted due to the limited sample sizes in many 

studies, the changes in criteria and diagnosis that have accompanied improvements in 

health care, and the changes in epidemiological methods over time.  Larger 

epidemiological studies will be required to definitively assess the prevalence and 

distribution of the disease. 
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Familial Aggregation 

The involvement of genetic factors in MS has been demonstrated in numerous sibling 

risk, adoption, and twin studies.  A commonly used measure in these studies is recurrence 

risk ratio (λ)—a value generated by comparing recurrence rates in the relatives of MS 

patients to the disease prevalence for the general population (9).  Numerous familial 

aggregation studies have shown that the recurrence risk ratio for MS decreases with the 

degree of relationship between individuals.  For example, studies have reported an 

increased relative risk (λ) of 100-190 in identical twins, 20-40 in full siblings, 7-13 in 

half siblings, and 5.5 in the offspring of an affected parent with MS [(10); (11); (12); 

(13)].  Compared to the general population, these elevated risks suggest a strong but non-

Mendelian inheritance of MS susceptibility.   

 

Twin studies from several populations indicate increased concordance rates among 

monozygotic (25-30%) compared to dizygotic (2-5%) twins with MS [(10); (11); (14)].  

While these data also provide evidence of a strong genetic component to the disease, a 

monozygotic twin concordance rate significantly less than 100% also highlights the 

contribution of gene-environment interactions to MS disease susceptibility.  

 

Evidence for genetically determined familial aggregation is also seen in adoption studies 

documenting an increased risk of MS only in biological relatives of adopted probands 

[(15)].  In addition, studies demonstrating similar risks for half siblings raised together 

and apart suggest the action of genetic rather than environmental factors in the disease 

[(12)].   
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Taken together, these epidemiological studies provide overwhelming evidence in support 

of a strong genetic component in MS.  The data also suggest that, like most common 

complex diseases, MS susceptibility is the result of multiple genes acting either 

independently or interactively in their contribution to overall risk.  The genetic etiology 

of MS may be a mixture of rare variants with strong environmental influences on risk and 

more common variants with modest influences on risk.  Such heterogeneity would be 

similar to that seen in other complex neurodegenerative disorders, such as Alzheimer 

disease and Parkinson disease [(16); (17); (18); (19); (20)]. 

 

Approaches for Gene Identification  

Functional Candidate Gene Studies 

Functional candidate studies assess genes that are selected based on their potential 

biological relevance to a disease.  Because MS is an autoimmune disease characterized 

by demyelination within the CNS, functional candidate genes such as those coding for 

immunoglobulin, cytokines, chemokines, T-cell receptors (TCR), interleukin, myelin 

antigens, and the human leukocyte antigen (HLA) have been investigated.  However, 

with the exception of HLA, no functional candidates have consistently demonstrated 

association with MS.     

 

Association between MS and class I HLA alleles was first reported in 1972 [(21); (22)].  

Subsequent studies demonstrated that class II HLA alleles were more strongly associated 

with the HLA-DR2 haplotype [(23); (24)].  A majority of MS studies have focused on 
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Caucasian populations of northern European descent, where predisposition to MS is 

associated with the HLA-DR2 allele (more specifically, the HLA-DRB1*1501-

DQA1*0102-DQB1*0602 haplotype).  However, studies in additional populations have 

failed to replicate association with a particular allele or haplotype in the MHC (25).  A 

recent study of the MHC was conducted in an African-American MS data set to capitalize 

on the haplotypic diversity and distinct LD patterns in the African-American population.  

A selective association was identified with HLA-DRB1*1501 in the study data set—

suggesting a role for this locus independent of HLA-DQB1*0602 [(25)].  Several 

research groups continue to investigate the contribution of a gene or genes in the MHC to 

MS. 

 

Aside from studies of the MHC, screening for functional candidate genes has been 

largely disappointing.  Despite reports of numerous genes with significant results, most 

candidates have failed to be replicated in independent data sets.  For example, an obvious 

candidate for MS, myelin basic protein (MBP), yielded both positive linkage and 

association results in a genetically isolated population in Finland [(26)].  However, other 

research groups have failed to replicate this result in non-Finnish populations [(27); (28); 

(29); (30); (31); (32); (33)].  Candidate genes identified through functional studies using 

the experimental autoimmune encephalomyelitis (EAE) mouse model for MS have also 

yielded inconsistent results. 

 

Because the strength of the functional candidate gene approach lies in the knowledge of 

gene function, an improved understanding of autoimmunity and advances in the diagnosis 
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of MS will be necessary to improve this approach in the future.  New methodologies, 

such as whole genome gene expression arrays and proteomics, will also add a 

considerable amount of information to aid in the selection of relevant functional 

candidates [(34); (35);(36); (37)].   

 

Genomic Screens 

Genomic screens test for genetic linkage of a trait to polymorphic markers spread 

throughout the genome.  Numerous research groups have conducted genomic linkage 

screens for MS in an attempt to identify regions that harbor MS loci [(38); (39); (40); 

(41); (42); (43); (44); (45); (46); (47); (48); (49)].  However, the lack of replication of 

results from these studies has also been problematic.  For example, while four initial 

genomic screens for MS identified over 70 regions of interest, little overlap is seen 

between these studies [(38); (39); (40); (41)].   

 

The strongest and most consistent finding for linkage in MS studies is chromosome 6p21, 

the location of the MHC containing HLA.  To date, the MHC is the only region that 

clearly and consistently demonstrates linkage and association with the disease.  The 

MHC has been estimated to account for 10-50% of the genetic component of MS 

susceptibility, at least in Caucasians of northern European descent [(50); (24)].  It appears 

that the association with the HLA-DR2 allele explains this linkage signal, although this 

issue has been debated [(24); (51); (6)].  The exact mechanism by which a gene or genes 

in the MHC increase(s) disease risk has yet to be determined.   
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Despite the large number of genome-wide linkage studies that have been conducted, a 

significant proportion of the genetic contribution to MS is still unaccounted for.  Several 

new approaches are being used to address the inadequate power of traditional linkage 

analysis to identify or verify MS loci. 

 

One of the main difficulties in assessing genomic screen data for complex diseases is the 

lack of replication between studies.  Genomic screens are intentionally designed to accept 

high false-positive rates in the interest of maintaining power to detect true loci.  The 

replication of genomic screen results is therefore crucial for verification of genetic 

effects.  As for many complex genetic diseases, replication of results has proved to be a 

formidable task in MS studies.  For example, despite the fact that the MHC has shown the 

strongest genetic effect in MS thus far, not all linkage studies have replicated even this 

finding. 

 

The lack of replication between linkage studies for MS suggests that the existence of 

genes with strong individual effects is unlikely.  In addition, the use of different data sets 

(and data set structures), markers, and statistical approaches must be taken into account 

when comparing the results of both linkage and association studies for the disease. 

 

Another confounding factor in linkage analysis of complex diseases is genetic 

heterogeneity—the presence of different mutations that produce similar disease 

phenotypes.  Underlying genetic heterogeneity in MS likely masks the effects of true loci 

in many linkage studies.  An approach that attempts to overcome loss of power due to 
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heterogeneity utilizes conditional analysis with covariates.  By accounting for regions 

with known linkage (e.g. the MHC) using stratification or weighting schemes, conditional 

analysis can identify additional regions of interest.  Conditional analysis can also provide 

evidence for interactive effects of loci, potentially providing increased power for 

detection of epistatic effects in complex diseases such as MS.  The study design 

presented in this dissertation assesses a novel method for addressing genetic 

heterogeneity and utilizes several conditional analyses methods to investigate linkage 

follow-up regions. 

 

A relatively new approach for positional mapping that minimizes some of the difficulties 

experienced in linkage studies is whole genome screening for linkage disequilibrium 

(LD).  In an attempt to attain a higher degree of resolution than provided by traditional 

linkage analysis, Sawcer et al. conducted the first whole genome association study for 

MS.  Using a DNA pooling scheme to screen 811 microsatellite markers at 0.5 cM 

intervals, this study reported significant association with ten markers, including those 

located at previously reported regions on chromosomes 1p, 6p (the location of HLA), 

17q, and 19q [(52)].  Several additional groups have subsequently published whole 

genome screens for linkage disequilibrium using sample pooling schemes and case-

control approaches [(53); (54); (55); (56); (57); (58); (59); (60); (61); (62); (63); (64); 

(65)].   

 

The obvious disadvantage of whole genome studies for LD is the large number of 

polymorphic markers necessary for sufficient coverage of the genome.  Collaborating  
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scientists from several countries are currently participating in an International HapMap 

Project to document common patterns of variation in the human genome.  This project 

aims to identify single nucleotide polymorphisms (SNPs), haplotype blocks, and 

haplotype tagging SNPS (htSNPs) in order to provide scientists with resources to more 

efficiently investigate variation throughout the genome.  In addition, several new 

genotyping methods and platforms have been developed to allow for high-throughput 

data generation necessary to conduct these studies.  Companies such as Parallele 

Biosciences (the MegaAlleleTM system), Illumina (the Sentrix BeadChip system), and 

Affymetrix (the GeneChip system) currently provide high-throughput genotyping 

products and services for whole genome studies (see Parallele Biosciences, Illumina, and 

Affymetrix websites).  The continued development of cost-effective genotyping methods 

will make whole genome approaches likely candidates for future investigation of genes 

with moderate effects on MS susceptibility. 

 

In conjunction with the International Multiple Sclerosis Genetics Consortium, we 

recently published a high-density linkage screen for MS using the Illumina BeadArray 

linkage mapping panel [(66)].  Preliminary multipoint linkage analyses of 730 multiplex 

families of northern European descent revealed strongest evidence of linkage to 

chromosomes 6p21 (the location of HLA), 5q33, and 17q23.  Ordered subset analyses 

provided additional evidence of linkage to a locus on chromosome 19q13 that acts 

independently of the MHC.  Additional analyses are ongoing to identify homogenous 

subsets and investigate gene-gene interactions. 
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Locational Candidate Gene Studies 

Traditional locational candidate genes are selected from chromosomal regions identified 

through genomic screens or chromosomal abnormalities in affected patients (e.g. 

duplications, deletions, or translocations).  Although locational candidate methods 

initially involved a random screening process, advances in genomic mapping have 

allowed for modified genetic approaches that incorporate positional and candidate gene 

methodologies.  For example, following identification through genomic screens, regions 

of interest can be scanned for functional candidate genes using information from several 

public and private databases.  In conjunction with family-based association methods, this 

approach allows for a more directed investigation of genes. 

 

One example of this approach involves the chromosome 19q13 region.  Despite the fact 

that this region has been identified in several genomic screens, the gene responsible for 

linkage on 19q13 remains to be definitively identified.  One of the candidate genes in this 

region identified through bioinformatics is apolipoprotein E (APOE).  The APOE gene 

codes for a major lipid carrier protein (apoE) in the brain.  The apoE protein has long 

been associated with regeneration of axons and myelin following the formation of lesions 

in the central and peripheral nervous tissue.  Decreased apoE concentrations in 

cerebrospinal fluid (CSF) in MS patients compared to healthy controls have been 

reported, and a corresponding decrease in intrathecal apoE synthesis may influence the 

degree of MS exacerbation over time.  Although studies of APOE have consistently 

shown no effect on MS risk, association of the APOE-4 allele with increased disease 

progression or severity of disease course have been reported and confirmed in multiple 
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studies [(67); (68); (69); (70); (71); (72); (73); (74)].  Investigation of the nearby 

poliovirus receptor related protein 2 (PVRL2) has also revealed association with MS 

disease course, while apolipoprotein C2 (APOC2) and immunoglobulin-like transcript 6 

(ILT6) have demonstrated association with MS susceptibility [(75); (76); (77); (78)].  

Examination of a large well-phenotyped MS data set will be necessary to construct more 

detailed LD maps of the region and identify the gene(s) and polymorphism(s) responsible 

for the genetic effect on chromosome 19q13. 

 

Future Directions in MS Research 

While it is clear that MS is a disease of oligogenic etiology, identifying specific genes has 

been difficult.  With the exception of HLA, linkage analysis and candidate gene 

approaches have demonstrated insufficient power to identify other genes or epigenetic 

factors that modulate MS disease expression.  New approaches and methodologies will 

be necessary to identify the remaining genetic effect in this complex disease. 

 

At the population level, several methods have been used to test candidate genes for an 

effect in MS.  Initial studies primarily used an approach that compared allele frequencies 

for polymorphisms in case versus control groups (“case-control studies”).  However, 

case-control studies are sensitive to sample size, stringency of diagnosis, and appropriate 

matching of controls.  Population admixture in improperly matched controls can lead to 

spurious association results that are indistinguishable from results arising from true 

genetic effects. 
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In an attempt to overcome these confounding factors, family-based association methods 

have been developed.  These approaches require only one affected individual and their 

parents (a “trio”) or one affected individual and at least one of their unaffected siblings (a 

“discordant sib-pair” or “DSP”) to serve as well-matched controls.  The most common 

method of family-based association is the transmission disequilibrium test (TDT) [(79)].  

Variations such as the sibling transmission disequilibrium test (sib-TDT) and pedigree 

disequilibrium test (PDT) have also been developed to allow for sampling of a variety of 

control groups [(80); (81)].  In addition, the genotype pedigree disequilibrium test (geno-

PDT) was developed to test for association with particular genotypes [(82)].  Because our 

data set consists of a variety of a variety of family structures, the PDT was used to assess 

disease-marker disequilibrium.  The PDT is an extension of the TDT that allows for 

analysis of data from related nuclear families and discordant sibships within extended 

pedigrees.  The standard for significance in our PDT analyses was a p value ≤ 0.05.   

 

By tracking the transmission of gametes, the TDT and its variants detect association only 

between linked loci—providing tests of both linkage and association.  These tests use 

nontransmitted alleles as controls, eliminating spurious association results caused by 

population substructure.  Because the power of family-based association methods arises 

from reliance on relatively small intervals of linkage disequilibrium (LD), this approach 

serves as a complimentary method to broader linkage analyses methods using genomic 

screens. 
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These association studies seeking to identify loci of moderate effect in MS will require a 

set of markers present in greater density and with greater ability to detect LD than 

microsatellites.  Because of their frequency, stability, and amenability to automation for 

high-throughput analysis, SNPs are rapidly becoming the standard marker for such 

association studies.  The large number of assays and new high-throughput methods for 

data generation using SNPs allow for the construction of detailed haplotype blocks.  The 

knowledge of regional LD and marker information from several databases can also aid in 

efficient selection of appropriate markers for association studies. 

 

To attain sufficient power for detection of MS loci using current linkage and association 

methods, we have pooled large multiplex, simplex, and case-control data sets with our 

collaborators in the Multiple Sclerosis Genetics Group (MSGG).  These data sets are a 

crucial resource for performing conditional analyses to identify phenotypic and genotypic 

subsets of the disease.  These data sets may also allow for independent replication of 

interesting preliminary findings. 

 

Despite the overwhelming evidence for genetic involvement in MS, much of the genetic 

effect remains to be identified or elucidated.  Recent advances in genotyping and 

statistical analysis methods are providing researchers with the tools necessary to address 

the challenges involved in identifying genes for complex genetic diseases.  The following 

dissertation presents a genomic convergence approach that incorporates a variety of new 

methods and statistical tools to conduct a directed investigation of genetic contribution to 

MS.  This genomic convergence approach led to the investigation of several 
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chromosomal regions, with the most promising evidence of a genetic locus conferring 

susceptibility to MS on chromosome 1q44.  
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CHAPTER II 

 

HYPOTHESIS AND SPECIFIC AIMS 

 

General Hypothesis:  There are genes underlying the susceptibility to multiple sclerosis. 

 

Specific Aims: 

1. Conduct a simulation study using families generated with Genometric 

Analysis Simulation Program (GASP) software to assess the effectiveness of 

using haplotype-based positional mapping to define a minimum candidate 

region for a disease of interest.  Several variables (e.g. sample size, pattern of 

inheritance, and heterogeneity) will be investigated for their effect on the power 

of this approach.  (REFER TO CHAPTER III) 

2. Test candidate genes for association with MS: 

a. Identify and select a genetic interval of interest for MS.  Potential 

intervals of interest will identified by comparing positive results generated 

in genomic screens conducted for MS and other autoimmune disorders. 

(REFER TO CHAPTER IV) 

b. Apply the approach from Specific Aim 1 to the interval of interest 

identified in Specific Aim 2a.  Follow-up with microsatellite markers and 

single nucleotide polymorphisms (SNPs) will be performed prior to 

recombination breakpoint analysis in the selected region of interest. 

(REFER TO CHAPTERS V AND VI) 
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c.  Identify candidate genes in the selected interval of interest.  Candidate 

genes will be identified based on potential biological relevance to MS 

and/or involvement in common physiological pathways of autoimmune 

disorders. (REFER TO CHAPTER VII) 

d.  Select a region and a narrow interval of interest for follow-up with 

SNPs in Specific Aim 3.  (REFER TO CHAPTER VII) 

3.  Measure association between a dense population of SNPs and MS in the 

region of interest identified in Specific Aim 2.   

a.  Prioritize SNP markers for an MS association study in the interval of 

interest based on conservation between human, mouse, rat, and chick 

genome sequences.  The WebMCS tool will be used to identify multi-

species conserved sequences in the chromosomal region of interest by 

integrating comparative information from the orthologous mouse, rat, and 

chick genomic sequences.  Conserved regions will be scanned for SNPs in 

the public databases and selection of SNPs for genotyping in Specific Aim 

3b will be based on several criteria: informativeness, validation, location, 

putative function, and Illumina assay score.  (REFER TO CHAPTER VI) 

b.  Measure association between a dense population of SNPs located in 

conserved regions of interest and a data set of families linked to the 

region.  High-throughput genotyping will be performed on the Illumina 

Bead Array platform for 768 SNPs selected from conserved regions 

identified in Specific Aim 3b.  A data set of ∼200 multiplex families will 

be tested for association with these SNPs using the Pedigree 
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Disequilibrium Test and Haploview.  [SNPs demonstrating the strongest 

evidence for association in the multiplex families will be further tested in 

at least one of several available simplex family data sets.] (REFER TO 

CHAPTER VI) 
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CHAPTER III 

 

HAPLOTYPE-BASED POSITIONAL MAPPING
†
 

 

Introduction 

Numerous genomic screens have been conducted in an attempt to identify putative genes 

for both Mendelian diseases and complex genetic disorders.  Because the typical marker 

interval in a genomic screen is ~ 10 cM, subsequent studies are often required to narrow 

chromosomal regions of interest to a reasonable size for candidate gene or fine mapping 

association studies.  In monogenic disorders, haplotype analysis methods have been 

widely used to identify minimum candidate gene regions.   Techniques for narrowing 

linkage signals in these studies are based on the expectation that affected individuals will 

consistently inherit a relatively small region containing the disease locus.  However, 

extensive heterogeneity, gene-gene interactions, and small family size in typical data sets 

complicate this simple assumption for many complex diseases.  These confounding 

factors make identification of consistently inherited regions in complex diseases 

unlikely—resulting in failure to narrow linkage intervals to a practical size for subsequent 

association studies. 

 

The focus of the study presented in this chapter is the investigation of a methodology 

formulated to address locus heterogeneity.  Locus heterogeneity is the presence of two or 
                                                           
† The GASP simulation project was performed in collaboration with Tricia A. Thornton-

Wells. 
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more loci that lead to the same clinical phenotype in different families.  The implication 

of this heterogeneity in linkage analysis is the reduction of power to detect true signals 

originating from only a subset of families.  One approach that has been used to address 

the statistical difficulties posed by locus heterogeneity is a priori subsetting of families 

using phenotype data.  However, this approach is based on the assumption that multiple 

loci produce different and distinguishable phenotypes and is therefore unlikely to work 

for the complex phenotype and clinical diagnosis of MS.  Better methods for narrowing 

linkage intervals in the presence of locus heterogeneity are clearly needed for studies of 

MS and other complex genetic diseases. 

  

An approach that has been used to narrow linkage intervals for Mendelian diseases is 

consensus haplotyping.  In this approach, genomic screen data is used to reconstruct 

familial haplotypes.  Recombination breakpoint analysis is then performed in all families 

to identify a consensus region(s) that will be further investigated by genotyping 

additional locational or functional candidate markers.  Although this approach has been 

successful in identifying minimum candidate regions for monogenic diseases, the 

approach was not utilized for complex disorders until recently [(83)].   

 

In this recent study, Hutcheson et al. modified the consensus haplotype approach for 

application to an Autism data set.  In order to use the recombination breakpoint method in 

this data set, the authors relaxed the requirement of consistent inheritance of haplotypes 

across all families.  They postulated that for sib-pair data sets, 1/4 of families demonstrate 

sharing between siblings for any given marker by chance alone.  Standard linkage 
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analysis methods cannot distinguish these families linked by chance from families that 

exhibit true linkage.  To estimate the expected proportion of families that are truly linked 

to a given region, the authors performed the calculation shown in Table 1.  In the 

example illustrated in this table, it is assumed that 1/3 of families from a given data set 

carry a risk allele in a particular chromosomal region.  Of the 2/3 of families that do not 

carry this risk allele, 1/4 (or 1/6 of the overall data set) will demonstrate linkage to this 

region by chance alone.  Families demonstrating linkage will therefore account for 1/3 + 

1/6, or 1/2, of the overall data set.  However, of these apparently linked families, only 2/3 

of families actually carry the risk allele.   

 

Table 1.  Calculation for the Expected Proportion of Linked Families [Adapted from 

Hutcheson et al. (83)] 

 

 Susceptibility Allele 

Present 

Susceptibility Allele 

Absent 

Prior Probability 1/3 2/3 

Conditional Probability 1 1/4 

Joint Probability 1/3 1/6 

Posterior Probability 








+ )6/13/1(
3/1

 =  2/3 








+ )6/13/1(
6/1

 = 1/3 

 

 

The results of this calculation suggest that a majority of apparently linked families 

provide consistent localization of the risk allele, and that the proportion of truly linked 

families can be calculated and used to define consistently inherited segments.  For the 
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example provided in Table 1, boundaries for the consistently inherited segment would be 

selected where at least 2/3 of families demonstrate linkage. 

 

With this modified method, the authors were able to perform recombination breakpoint 

analysis on maternally and paternally derived chromosomes in their Autism data set.  The 

result of this approach was narrowing of a critical region on chromosome 7 from 34 cM 

to 6 cM.  Families linked to the 6 cM region were then used to perform additional 

genotyping and recombination breakpoint analysis—resulting in the identification of a 3 

cM interval that was considerably more amenable for subsequent association studies.  

 

Specific Aim 1 addresses the power of this modified approach to narrow a minimum 

candidate region for a complex disease.  The Genometric Analysis Simulation Program 

(GASP) was used to simulate data sets to assess power and the effect of specified 

variables on this approach.  Studies of simulated data were followed by a “proof-of-

principle” analysis with genotype information from a region demonstrating linkage in our 

MS data set. 

 

Material and Methods 

GASP software was used to generate simulated data sets with several specified 

parameters (see GASP website).  One hundred data sets were generated per disease 

model for nuclear families consisting of two unaffected parents and three offspring (with 

at least two of the offspring being affected) (Figure 1).   
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Figure 1.  GASP Pedigree Examples 

 

Ten biallelic markers with minor allele frequencies of 0.50 were simulated at 10 cM 

intervals along a chromosome to mimic the study design of a traditional genomic screen.  

A disease locus was simulated halfway between two of the markers.  A second unlinked 

disease locus was also simulated to mimic genetic heterogeneity (Figure 2).   

 

Data sets were generated to demonstrate 50% locus heterogeneity (50% locus A; 50% 

locus B) and 25% locus heterogeneity (25 locus A; 75% locus B).  Linkage analyses were 

performed under a recessive disease model with a disease prevalence of 0.10.  Two-point 

LOD scores were calculated in FASTLINK and heterogeneity LOD (HLOD) scores were 

calculated in HOMOG [(84); (85); (86); (87)].   

 

Following linkage analysis of data sets for each disease model, the marker generating the 

highest LOD score was identified.  Families demonstrating linkage to any marker within 

20 cM of this peak LOD score marker were selected for recombination breakpoint 
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analysis.  Haplotypes were constructed for linked families using SIMWALK version 2.9 

[(88)].  Each family was investigated to identify which loci demonstrated sharing on both 

haplotypes in all affected offspring (Table 2).  Blocks of loci demonstrating sharing in at 

least 2/3 of families were used to define the critical region in each data set. 

 

The power of this method was determined by calculating the percentage of data sets that 

included the true disease locus within the identified critical region.  Significant power 

was reached with ≥ 80% of data sets achieving this standard.  The correlation between 

power and size of the critical region was also investigated. 

 

The same recombination breakpoint method, linkage analyses, and power calculations 

were also performed on a set of follow-up markers spaced at 2 cM intervals in the 

selected region to mimic the design of a traditional follow-up study (Figure 2). 

 

Following assessment of the recombination breakpoint method in simulated data sets, the 

method was also applied to an existing data set for MS in the 1q44 region.  MS 

genotyping data was generated as described in Chapter 5.  Families demonstrating 

linkage to any marker in the follow-up region (i.e. within 20 cM of peak LOD score 

marker D1S1634) and containing genotyping data for two unaffected parents and at least 

two affected offspring were selected for recombination breakpoint analyses.  In the data 

set of 91 families linked to the 1q44 region, 57 families demonstrated consistent sharing 

on the paternal alleles in all affected individuals, while 59 families demonstrated 

consistent sharing on the maternal alleles in all affected individuals. 
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Linked Chromosome: 

 

Stage 1 Markers:      Disease Locus A 

         

  1                   2                   3                   4                  5 *         6                  7                 8                 9                 10 
    

Stage 2 Markers:  

                 1  2  3  4  5 * 6  7  8  9 10 
 

 

 

 

 

cM Location:  

 -45                -35                -25                -15                -5                  5                15                25                35               45 
 

 

 

 

Unlinked Chromosome: 

Disease Locus B 

 

* 

 
 

 

Figure 2.  Simulated Markers  Chromosome images were obtained from the Genome Database (see GDB website). 
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Table 2.  Example Data Set  Loci demonstrating sharing on both haplotypes in all affected offspring are denoted by “x”.  
 

Marker # Simulated Family # % Sharing 

 484 746 2225 2534 4218 5311 5841 6225 6250 6335 7492 8955 9785 10046 10610  

1 (@ -45 cM)  x    x x  x   x x x  47 % 

2 (@ -35 cM)  x    x x x x   x x x  53 % 

3 (@ -25 cM)  x   x x x x x   x x x  60 % 

4 (@ -15 cM)  x   x x x x x   x x x  60 % 

5 (@ -5 cM) x  x  x x x x x  x x x x  73 % 

6 (@ +5 cM)   x x x  x x x x x x x x x 80 % 

7 (@ +15 cM)   x x x  x x x x x x x x x 80 % 

8 (@ +25 cM)   x x x  x  x x x  x x x 67 % 

9 (@ +35 cM)   x  x  x  x  x  x x x 53 % 

10 (@ +45 cM)   x  x  x x x    x x x 53 % 

 

 

 

 



  28 

The proportion of families demonstrating sharing among all affected offspring was 

calculated for each marker in the 1q44 region.  The utility of the recombination 

breakpoint method was determined by assessing the ability of this method to narrow the 

linkage interval on chromosome 1q44 compared to other available methods (e.g. 

subsetting, conditional analysis, and ordered subset analysis).  The recombination 

breakpoint method was also performed using microsatellite genotypes to assess the effect 

of more informative markers on the ability to detect sharing in the MS data set (D1S1594, 

D1S547, and D1S1634). 

  

Results 

Plots containing HLOD scores for the 10 cM interval and 2 cM interval simulated data 

sets are provided in Figures 3 and 4, respectively.  In the simulated data, the 

recombination breakpoint method had ~ 75% power to correctly localize the disease 

locus within a 40 cM region and ~ 60% power within a 30 cM region using the 10 cM 

marker interval design.  In contrast, the recombination breakpoint method had only ~ 

20% power to correctly localize a disease locus within a 10 cM region using the 2 cM 

marker interval design. The results of power calculations for identification of the disease 

locus in each disease model and study design are provided in Tables 3 and 4. 

 

Proportions of families demonstrating paternal, maternal, and combined haplotype 

sharing in the MS data set are provided in Figures 5-7, respectively. 
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Figure 3.  HLOD Scores for 10 cM Spaced Markers 
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Figure 4.  HLOD Scores for 2 cM Spaced Markers  
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Table 3.  Power to Identify the Disease Locus (Locus A) in the 10 cM Map  

 

  
 

Heterogeneity Range 

 20 cM 30 cM 40 cM 

50% Locus A; 50% Locus B > 20% > 50% > 75% 

25% Locus A; 75% Locus B > 30% > 55% > 75% 

  
 
 
 

Table 4.  Power to Identify the Disease Locus (Locus A) in the 2 cM Map  

 

 

 

Heterogeneity Range 

 10 cM 16 cM 20 cM 

50% Locus A; 50% Locus B > 10% > 35% > 50% 

25% Locus A; 75% Locus B > 20% > 40% > 60% 
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Linked Families - Paternal Sharing
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Figure 5.  Proportion of Families Demonstrating Sharing in the MS Data Set 

(Paternal Haplotype) 
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Figure 6.  Proportion of Families Demonstrating Sharing in the MS Data Set 

(Maternal Haplotype) 
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Linked Families - Combined Sharing
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Figure 7.  Proportion of Families Demonstrating Sharing in the MS Data Set (on 

both Paternal and Maternal Haplotypes) 

 

Discussion 

The modified consensus haplotyping approach demonstrated only modest power to 

narrow a minimum candidate region in the simulation data.  Perhaps not surprisingly, the 

approach also demonstrated only a modest ability to narrow the minimum candidate 

region on chromosome 1q44 in MS genotyping data.  Given the encouraging results 

generated in the Autism study by Hutcheson et al., these results were rather 

disappointing.  While it is not possible to definitively determine the source of variation 

between studies, one difference between the Hutcheson et al. study design and our study 

design was the use of microsatellite markers rather than SNPs.  To assess whether marker 

type affected the results in our MS data set, we performed the consensus haplotyping 
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approach with genotype data from the original SNPs and three microsatellite markers 

spaced at ~ 10 cM intervals in the 1q44 region.  The inclusion of microsatellite genotypes 

only slightly increased evidence of sharing and failed to further narrow the minimum 

candidate region. 

 

Fortunately, more encouraging results for narrowing minimum candidate regions in the 

MS data set were simultaneously being generated in preliminary analyses of genotyping 

data for Specific Aim 2.  For example, in contrast to the modified haplotype approach, 

ordered subset analysis (OSA) of the 1q44 region in Specific Aim 2b successfully 

narrowed the critical linkage interval to ~ 3.5 Mb for a LOD score cut-off of 3.5 

(corresponding to a – 1.0 LOD score confidence interval) and ~ 7.0 Mb for a LOD score 

cut-off of 2.5 (corresponding to a – 2.0 LOD score confidence interval).  Covariate 

analyses, including OSA, were therefore selected as the method to address genetic 

heterogeneity in studies of the MS data set in Specific Aim 2 (see Chapter 5). 

 

Although the modified haplotype approach failed to demonstrate substantial power to 

identify a minimum candidate region in our studies, this approach should not yet be 

abandoned as a potential method for other studies.  Additional disease models and data 

sets should be assessed to further investigate the utility of this method in addressing 

genetic heterogeneity in complex genetic diseases. 
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CHAPTER IV 

 

A SECOND-GENERATION GENOMIC SCREEN FOR MULTIPLE 

SCLEROSIS
‡
 

 

Abstract 

Multiple sclerosis (MS) is a debilitating neuroimmunological and neurodegenerative 

disorder.  Despite substantial evidence for polygenic inheritance, the MHC is the only 

region that clearly and consistently demonstrates linkage and association in MS studies.  

The goal of this portion of the study was to identify additional chromosomal regions that 

harbor susceptibility genes for MS.  With a panel of 390 microsatellite markers 

genotyped in 245 U.S. and French multiplex families (456 affected relative pairs), this is 

the largest genomic screen for MS conducted to date.  Four regions met both of our 

primary criteria for further interest (HLOD and Z scores > 2.0): 1q (HLOD = 2.17; Z = 

3.38), 6p (HLOD = 4.21; Z = 2.26), 9q (HLOD = 3.55; Z = 2.71), and 16p (HLOD = 

2.64; Z = 2.05).  Two additional regions met only the Z score criterion: 3q (Z = 2.39) and 

5q (Z = 2.17).  Further examination of the data by country (U.S. and France) identified 

one additional region demonstrating suggestive linkage in the U.S. subset (18p: HLOD = 

2.39) and two additional regions generating suggestive linkage in the French subset (1p: 

HLOD = 2.08; and 22q: HLOD = 2.06).  Examination of the data by HLA-DR2 

                                                           
‡ Chapter adapted from: 
 
Kenealy, S.J., Babron, M.C., Bradford, Y., Schnetz-Boutaud, N., Haines, J..L, Rimmler, 
J.B., Schmidt, S., Pericak-Vance, M.A., Barcellos, L.F., Lincoln, R.R., Oksenberg, J.R., 
Hauser, S.L., Clanet, M., Brassat, D., Edan, G., Yaouanq, J., Semana, G., Cournu-Rebeix, 
I., Lyon-Caen, O., Fontaine, B. (The American-French Multiple Sclerosis Genetics 
Group) (2004) A second-generation genomic screen for multiple sclerosis. Am J Hum 
Genet 75(6): 1070-1078. 
 



 

 35 

stratification identified four additional regions demonstrating suggestive linkage: 2q 

(HLOD = 3.09 in the U.S. DR2- families), 6q (HLOD = 3.10 in the French DR2- 

families), 13q (HLOD = 2.32 in all DR2+ families and HLOD = 2.17 in the U.S. DR2+ 

families), and 16q (HLOD = 2.32 in all DR2+ families and HLOD = 2.13 in the U.S. 

DR2+ families).  These data suggest several regions that warrant further investigation in 

the search for MS susceptibility genes. 

 

Material and Methods 

Families 

The data set used in this study consisted of families from a previous genomic screen 

conducted by the MSGG [(39)], 66 subsequently ascertained U.S. families, and 94 French 

families.  The full data set included 245 multiplex families consisting of 587 affected 

individuals, 344 affected sib-pairs, 112 other affected relative pairs, and a total of 1085 

samples (Table 1).   

 

Table 1.  Description of the Data Set  Families were designated HLA-DR2+ if every 
affected individual carried at least one HLA-DR2 allele or HLA-DR2- if no affected 
individuals carried an HLA-DR2 allele.  
 

 
# 

Families 

# 

Affecteds 

#  

ASPs 

# Other 

ARPs 

# HLA-

DR2+ 

Families 

# HLA-

DR2- 

Families 

U.S. 151 383 242 88 83 31 

French 94 204 102 24 28 35 

All 245 587 344 112 111 66 
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U.S. families were ascertained by the University of California at San Francisco (UCSF).  

All U.S. affected family members were examined or had their medical records reviewed 

by a collaborating physician.  Families were extended through all affected first-degree 

relatives if possible.  French families were collected through a national network of 

university and community hospitals and private practitioners.  All French affected family 

members were examined by a clinician from one of three centers (Paris, Rennes, or 

Toulouse). 

 

All protocols were approved by the appropriate Institutional Review Boards and all 

individuals provided informed consent before participating in the study.  Positive family 

histories were investigated by direct contact with other family members, request for 

medical records, and by clinical examination, laboratory testing, or paraclincial studies 

(MRI scanning and evoked-response testing).  Consistent and stringent clinical criteria 

were applied as previously described [(5); (39)].  Individuals were placed into one of four 

categories: definite MS, probable MS, possible MS, and no evidence of MS.  Only 

definite MS individuals were classified as affected individuals in the analyses.   

 

To account for possible heterogeneity, the data were examined for differences by country 

(U.S. vs. France) and HLA-DR2 genotype (HLA-DR2+ vs. HLA-DR2).  Families were 

designated DR2+ if every affected individual carried at least one HLA-DR2 allele or 

DR2- if no affected individuals carried an HLA-DR2 allele (Table 1).  
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Molecular Analysis 

After obtaining informed consent, blood samples were collected from each study 

participant.  Genomic DNA was extracted from blood samples using standard procedures 

as described  elsewhere [(89)].  All DNA samples were coded and stored at 4oC prior to 

use. 

 

Marker primer sequences were obtained from the Genome Database (see GDB website) 

or designed with Primer3 software (see Primer3 website) and synthesized by Invitrogen 

Life Technologies (Carlsbad, CA).  Amplification was performed in a PCR Express 

machine (ThermoHybaid, Needham Heights, MA) with the following conditions: 94°C-4 

min.; 94°C-15 sec., AT-30sec., 72°C-45 sec. (35 cycles); 72°C-4 min.  PCR products 

were denatured for 3 min. at 95°C and run on a 6% polyacrylamide gel (Sequagel-6®from 

National Diagnostics, Atlanta, GA) for ~ 1 hr. at 75 W.  Gels were stained with a 

SybrGold® rinse (Molecular Probes, Eugene, OR) and scanned with the Hitachi 

Biosystems FMBIOII laser scanner (Brisbane, CA).  Genotypes for HLA-DR in the U.S. 

families were determined at UCSF using non-radioactive PCR-SSOP (Dynal, Norway).  

Genotypes for HLA-DR in the French families were determined using reverse dot blot 

hybridization. 

 

Marker order and intermarker distance were determined using linkage reference maps 

(see Marshfield website; deCODE website).  The average intermarker distance for the 

screen was < 10 cM.  The Vanderbilt and Duke laboratories each genotyped a subset of 

markers on the complete set of DNA samples.  Laboratory personnel were blinded to 
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pedigree structure, affection status, and location of quality control samples.  Duplicate 

quality control samples (3 unblinded CEPH individuals and 4 blinded controls) were 

placed both within and across plates and equivalent genotypes were required to ensure 

accurate genotyping.   

 

Allele frequencies were calculated from the genotyped founders in each family.  Hardy-

Weinberg calculations were performed for each marker and Mendelian inconsistencies 

were identified using PedCheck [(90)].  Suspect genotypes were re-read and/or re-run.  

All microsatellites were required to have > 85% of possible genotypes. Verification of 

relationships between pairs of samples within families was performed using RELPAIR 

[(91)].  Markers and samples failing to pass quality control measures were dropped from 

the analyses. 

 

Statistical Analysis 

Both model-based and model-free analyses were performed.  Parametric (model-based) 

analyses were conducted using autosomal dominant and autosomal recessive models with 

disease allele frequencies of 0.01 and 0.20 (respectively) to model a common 

susceptibility allele.  A penetrance value of 0.95 was used for both dominant and 

recessive models and individuals with no evidence of MS were coded as normal for these 

analyses.  Two-point LOD scores were calculated in FASTLINK and heterogeneity LOD 

(HLOD) scores were calculated in HOMOG [(84); (85); (86); (87)].  Two-point HLOD 

scores for the overall data sets, HLA-DR2+ subsets, and HLA-DR2- subsets are provided 

in Figures 1, 2, and 3 (respectively). 
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Multipoint model-free analyses were performed using the “score pairs” option and the 

exponential model in Allegro [(92); (93)].  Multipoint results are given in terms of Z 

scores.  Because the HLA-DR2 allele is known to be associated with MS susceptibility, 

potential interactions between HLA and other regions were tested by calculating 

correlation between pairwise family NPL values in the 236 nuclear families with at least 

one affected sib-pair. 

 

The criterion to consider a chromosomal region as interesting was at least one marker 

with a maximum heterogeneity LOD (HLOD) score > 2.0 or a multipoint Z score > 2.0.  

Because other research groups have advocated using a more liberal criterion to identify 

regions of interest from genomic screens, we also report markers generating HLOD 

and/or Z scores > 1.5 and have made the complete set of HLOD and Z scores available at 

the Vanderbilt Center for Human Genetics website (see CHGR Supplemental Data 

website). 

 

A number of statistical tests were performed on the microsatellite markers, disease 

models, and subsets—raising concern about multiple comparisons.  The level of 

correction necessary to account for these factors is a topic of substantial debate and 

selecting an appropriate level of corrections is not clear.  We therefore have chosen to 

present the results of this study without correction for multiple tests.  To gain some idea 

of a significance level for our data set, we performed a simulation using the observed 

family structures.  The value of the threshold for HLOD scores for a genome-wide type I 
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error of 1% was 1.86 under the hypothesis of no linkage.  The value of the threshold for 

the model-free statistic Z for a genome-wide type I error of 5% was 3.56 under the 

hypothesis of no linkage.   

 

Results 

Overall Analysis 

Four regions met both primary criteria for further interest (HLOD and/or Z scores > 2.0): 

1q (HLOD = 2.17; Z = 3.38), 6p (HLOD = 4.21; Z = 2.26), 9q (HLOD = 3.55; Z = 2.71), 

and 16p (HLOD = 2.64; Z = 2.05) (Tables 2 and 3).  Seven regions (1p, 2q, 6q, 13q, 16q, 

18p, and 22q) generated only HLOD scores > 2.0 and two regions (3q and 5q) generated 

only Z scores > 2.0.  Using a more liberal criterion of HLOD scores > 1.5 identified eight 

additional regions in the two-point analysis (2p, 3p, 3q, 4p, 4q, 7p, 12q, and 15q), while a 

more liberal criterion of Z scores > 1.5 identified three additional regions in the 

multipoint analysis (2p, 10q, and 18p). 

 

Site Stratification 

Further examination of the data by country (U.S. and France) identified three regions 

demonstrating suggestive linkage in the U.S. subset:  6p (HLOD = 3.30), 9q (HLOD = 

2.32), and 18p (HLOD = 2.39) (Table 2).  Two of these three regions were also identified 

in examination of the overall data set as discussed above: 6p and 9q.  Site stratification 

also identified three regions generating suggestive linkage in the French subset alone: 1p 

(HLOD = 2.08), 16p (HLOD = 2.64), and 22q (HLOD = 2.06).   
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HLA-DR2 Stratification 

Further examination of the data identified markers generating suggestive HLOD scores 

after HLA-DR2 stratification in seven regions: 2q (HLOD = 3.09 in the U.S. DR2- 

families), 6p HLOD = 2.24 in all DR2+ families), 6q (HLOD = 3.10 in the French DR2- 

families), 9q (HLOD = 2.05 in all DR2+ families), 13q (HLOD = 2.32 in all DR2+ 

families and HLOD = 2.17 in the U.S. DR2+ families), 16q (HLOD = 2.32 in all DR2+ 

families and HLOD = 2.13 in the U.S. DR2+ families), and 18p (HLOD = 2.25 in all 

DR2- families and HLOD = 2.84 in the U.S. DR2- families) (Table 2).  Four of these 

regions (2q, 6q, 13q, and 16q) were identified only in HLA-DR2 stratified subsets.   

 

Discussion 

Genetic linkage analysis has proven to be successful in locating Mendelian disease genes, 

but whole genome screens have been less successful in locating genes for complex 

genetic diseases such as MS.  Rarely does any region reach a single-stage significance 

level—indicating that a two-stage design requiring confirmation in at least one additional 

data set is necessary to declare linkage.  Whole genome screens for MS have identified 

over 70 regions potentially harboring MS loci.  However, with the singular exception of 

the MHC, there has been a lack of consensus across studies.  Our results hold true with 

this general pattern, but several of the regions identified in this screen do recapitulate 

significant linkage suspected by other groups.  Our large data set and stringent criterion 

for identifying regions of interest (HLOD and/or Z scores > 2.0) suggest several regions 

of linkage for MS. 
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Not surprisingly, a marker in the HLA-DR region on chromosome 6p21 generated the 

highest two-point LOD score (HLOD = 4.21) and one of the highest multipoint LOD 

scores (Z = 2.26) for the entire screen, confirming evidence of a risk factor in this region 

[(39); (40); (41); (46)]. 

 

The strongest evidence of linkage to a non-MHC region in the overall data set was for 

chromosome 9q34 (HLOD = 3.55; Z = 2.71).  The initial Multiple Sclerosis Genetics 

Group (MSGG) screen, MSGG follow-up study, and recent screens in Nordic sib-pairs 

and Turkish families also demonstrate moderate support for 9q, highlighting the need for 

further investigation of this region [(39); (48); (46); (49)]. 

 

Another region of interest from the screen that is supported by several lines of evidence is 

chromosome 1q.  Marker D1S547 in the 1q44 region met the criterion for further interest 

in both two-point and multipoint calculations (HLOD = 2.17; Z = 3.38).  Nearby markers 

have also demonstrated suggestive linkage and/or association in several other MS screens 

that have been conducted in a variety of study populations [(44); (47); (52); (53); (94)].  

Another compelling piece of evidence for chromosome 1q is linkage to this region in the 

autoimmune disorders rheumatoid arthritis and systemic lupus erythematosus, suggesting 

the presence of a gene for general autoimmune processes [(95); (96)].  The 1q region is 

also orthologous to a region that studies suggest contains a risk factor for experimental 

autoimmune encephalomyelitis (EAE) in the rat [(97)]. 
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Chromosome 5q is another region of interest from the screen that is supported by several 

lines of evidence.  Marker D5S816 in the 5q31 region met the multipoint criterion for 

further interest with a Z score of 2.17.  Like chromosome 1q, chromosome 5q has been 

investigated for a risk factor in other inflammatory and autoimmune disorders, including 

Crohn’s disease, type 1 diabetes, celiac disease, and asthma and allergy [(98); (99); (100); 

(101); (102)].  Linkage to the 5q region has also been suggested in another recent 

multiple sclerosis screen and is orthologous to a region suggested to contain a risk factor 

for EAE in the rat [(44); (97)]. 

 

The initial MSGG screen on 52 families identified 19 regions that potentially harbor MS 

susceptibility loci [(39)].  Follow-up of these regions with an expanded data set of 96 

families continued to provide the strongest support for five regions: 6p21, 6q27, 12q23-

24, 16p13, and 19q13 [(48)].  Three of these five regions continue to generate HLOD 

scores > 1.5 in this second-generation genomic screen of 245 families (6p21, 12q24, and 

16p13), providing consistent support for these regions in three of our studies to date. 

  

Although evidence for chromosome 19q13 has been consistently seen in our families, 

there is decreased evidence for this region in the current study.  Despite this decreased 

evidence, 19q13 remains interesting for several reasons.  Outside of the MHC, 19q13 is 

the region most consistently observed for linkage and/or association with MS.  At least 

five genomic screens, including the initial MSGG screen and the present screen (HLOD = 

1.44), demonstrate at least moderate evidence of linkage to 19q13 [(39); (38); (40); (41); 

(45)]. Numerous allelic association studies also provide evidence of a risk locus in this 
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region.  In addition, there is substantial evidence that the ApoE gene in this region 

modulates the severity and/or progression of MS [(67); (72); (68); (71); (70); (73); (74); 

(103)].  Further investigation will be necessary to confirm and identify a specific 19q13 

disease locus. 

 

As suggested in the literature, stratification yielded substantial increases in our linkage 

signals in several defined data sets [(104)].  In addition, four regions yielded HLOD 

scores > 2.0 only when HLA-DR2 stratification was performed: 2q was identified in the 

U.S. DR2- families, 6q was identified in the French DR2- families, and 13q and 16q were 

identified in both the U.S. DR2+ and overall DR2+ families.  Results in the 2q and 6q 

regions suggest effects independent of HLA-DR, while results in the 13q and 16q regions 

suggest potential interactive effects with HLA-DR.  However, formal tests of correlations 

between NPL scores in families with at least one affected sib-pair (n = 236) and NPL 

scores for regions on chromosomes 1, 3, 5, 9, and 16 failed to detect any significant 

correlations. 

 

The next step of investigation is to narrow the regions of interest identified in this screen 

with genotyping data for a denser map of SNP markers.  Several new techniques allow 

for rapid and accurate genotyping of large numbers of SNPs in small regions, thus 

promoting high levels of information extraction from a given data set.  Finer mapping 

studies were performed using these techniques in Specific Aim 2b to further localize 

chromosomal regions 1q, 2q, 9q, 13q, 16q, 18p, and 19q in our MS data set.  Results of 

these studies are presented in Chapter 5. 
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Figure 1.  Two-Point HLOD Scores for the Overall Data Sets   ▲ = U.S. data set (151 families); ● = French data set (94 families); 

■ = combined data sets (245 families); aMarshfield genetic map (see Marshfield website) 
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Figure 2.  Two-Point HLOD Scores for the HLA-DR2+ Subsets  ▲ = U.S. data set (83 families); ● = French data set (28 families); 

■ = combined data sets (111 families); aMarshfield genetic map (see Marshfield website) 
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Figure 3.  Two-Point HLOD Scores for the HLA-DR2- Subsets  ▲ = U.S. data set (31 families); ● = French data set (35 families); 

■ = combined data sets (66 families); aMarshfield genetic map (see Marshfield website) 
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Table 2. Regions with Two-Point HLOD Scores > 2.0  Highest HLOD scores are 
indicated in bold text. 

 

Chromosome 
Location 

(cM)
a
 

Marker Data Set
b
 HLOD score 

1p 45 D1S552 3 2.08
r
 

1q 268 D1S547 1 2.17
r
 

2q 200 D2S1384 7 3.09
d
 

6p 34 D6S1959 4 2.24
r
 

 44 HLA-DR 1, 2 4.21
d, 3.30r 

6q 119 D6S474 8 3.10
r
 

9q 136 D9S282 1, 2, 4 3.55
r, 2.32r, 
2.05r 

13q 6 D13S175 4, 5 2.32
r 
, 2.17r 

16p 8 D16S2622 3 2.64
r
 

16q 100 D16S516 4, 5 2.32
r
, 2.13r 

18p 19 D18S391 2 2.39
d
 

 28 D18S843 6, 7 2.25d, 2.84d 

22q 29 D22S689 3 2.06
r
 

 

aMarshfield genetic map (see Marshfield website) 

b1 = overall; 2 = U.S. only; 3 = French only; 4 = all DR2+ families; 5 = U.S. DR2+ 
families; 6 = all DR2- families; 7 = U.S. DR2- families; 8 = French DR2-families 

 d HLOD scores calculated under a dominant model; 

r HLOD scores calculated under a recessive model 
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Table 3.  Regions with Multipoint Z Scores > 2.0 

 

Chromosome Location (cM)
a
 Marker Z score 

1q 268 D1S547 3.38 

3q 216 D3S2418 2.39 

5q 139 D5S816 2.17 

6p 34 D6S1959 2.26 

9q 136 D9S282 2.71 

16p 8 D16S2622 2.05 
 

aMarshfield genetic map (see Marshfield website) 
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CHAPTER V 
 

EXAMINATION OF SEVEN CANDIDATE REGIONS FOR MULTIPLE 

SCLEROSIS: STRONG EVIDENCE OF LINKAGE TO CHROMOSOME 1Q44
§
 

 

Abstract 

Multiple sclerosis (MS) is a debilitating neuroimmunological and neurodegenerative 

disorder that affects ~ 2.5 million people worldwide.  Genomic screens have identified 

numerous chromosomal regions of interest for MS loci.  However, with the exception of 

the human leukocyte antigen (HLA) locus, studies have failed to consistently identify 

genes that confer disease susceptibility.  An MS data set of 173 multiplex families was 

used to further investigate seven non-HLA regions (1q, 2q, 9q, 13q, 16q, 18p, and 19q) 

identified in a recent genomic screen conducted by the U.S. and French Multiple 

Sclerosis Genetics Groups (see Chapter 4).  Single nucleotide polymorphisms (SNPs) 

were genotyped at ~ 1 Mb intervals extending ≥ 10 Mb to each side of peak genomic 

screen markers.  Parametric two-point analyses identified peak HLOD scores > 2.0 for 

regions 1q44 (HLODs = 2.07 and 2.60) and 19q13 (HLOD = 2.01).  Non-parametric 

multipoint analyses identified a peak LOD* score of 2.99 for the 1q44 region and 

substantially narrowed the linkage peak in this region to ~ 7 Mb (corresponding to a – 1.0 

LOD score confidence interval).  Ordered subset analyses (OSA) identified significant 

LOD score increases in regions 2q35 and 18p11 when ranking families by HLA-DR 

                                                           
§ Chapter adapted from: 
 

Kenealy, S.J., Herrel. L.A., Bradford, Y., Schnetz-Boutaud, N., Oksenberg, J.R., Hauser, 
S.L., Barcellos, L.F., Schmidt, S., Pericak-Vance. M.A., Haines, J.L. (2005) Examination 
of Seven Candidate Regions for Multiple Sclerosis: Strong Evidence of Linkage to 
Chromosome 1q44.  Submitted. 
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status and identified a significant LOD score increase in region 2q35 when ranking 

families by linkage to chromosome 1q44.  The increased evidence of linkage to 1q44 is 

particularly interesting in light of linkage evidence for this region in studies of both 

rheumatoid arthritis and systemic lupus erythematosus.  A more detailed examination of 

the 1q44 region is currently underway. 

 

Introduction 

Over 70 genomic regions have been investigated in an attempt to identify MS loci.  

However, the genomic screens identifying these regions have lacked sufficient power to 

identify loci of moderate effect with statistically significant results.  Although it is 

probable that several of the regions identified in genomic screens for MS loci actually 

harbor disease loci, the failure to replicate results in multiple screens or in follow-up 

studies is problematic. 

 

We recently completed the largest genomic screen for MS to date.  In conjunction with 

the French Multiple Sclerosis Genetics Group, we genotyped 361 microsatellite markers 

in 245 multiplex families consisting of 344 affected sib-pairs and 112 other affected 

relative pairs.  In addition to the HLA-DR locus, the strongest signals from the screen 

were generated in regions 1q, 2q, 9q, 13q, 16q, and 18p (HLOD scores and/or Z scores > 

2.0) [(105)] (see Chapter 4).   

 

In the current follow-up study, we further investigated these six non-HLA regions in an 

expanded U.S. data set (containing 29 additional multiplex families) with increased 
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marker coverage.  Although chromosome 19q did not meet the formal criterion for 

further interest in the screen, this region is frequently observed in linkage studies for MS 

and was also investigated.  Additional marker coverage with SNPs was performed to 

increase information extraction and narrow the linkage signals in each follow-up region.   

 

Material and Methods 

Families 

The data set used in this study consisted of U.S. families from our recently published 

genomic screen [(105)] and 29 newly ascertained U.S. families (containing 11 affected 

sib-pairs, 56 discordant sib-pairs, and 23 other affected relative pairs).  The full data set 

contained 173 multiplex families consisting of 451 affected individuals, 251 affected sib-

pairs, and 163 other affected relative pairs (Table 1).   

 

Table 1.  Description of the Data Set  Families were designated HLA-DR2+ if all 
affected individuals carried at least one HLA-DR2 allele or designated HLA-DR2- if no 
affected individuals carried an HLA-DR2 allele.  

 

# Multiplex 

Families 
# Affecteds # ASPs 

# Other 

ARPs 

# HLA-

DR2+ 

Families 

# HLA-

DR2- 

Families 

173 451 251 163 93 36 

 

Families were ascertained by the University of California at San Francisco (UCSF) from 

across the U.S.  All affected family members were examined or had their medical records 
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reviewed by a collaborating physician.  Families were extended through all affected first-

degree relatives when possible.   

 

All protocols were approved by the appropriate Institutional Review Boards and all 

individuals provided informed consent before participating in the study.  Positive family 

histories were investigated by direct contact with other family members, request for 

medical records, and by clinical examination, laboratory testing, or paraclincial studies 

(MRI scanning and evoked-response testing).  Individuals were placed into one of four 

categories: definite MS, probable MS, possible MS, and no evidence of MS.  Consistent 

and stringent clinical criteria were applied as described elsewhere [(5); (39)] and all 

clinically definite MS cases met the Poser criteria [(106)].  Only definite MS cases were 

classified as affected individuals in the analyses. 

 

Molecular Analysis 

After obtaining informed consent, blood samples were collected from each study 

participant.  Genomic DNA was extracted from blood samples using standard procedures 

as described elsewhere [(89)].  All DNA samples were coded and stored at 4oC prior to 

use.   

 

The Celera and Applied Biosystems databases were mined to select SNPs according to 

location relative to other selected SNPs, high minor allele frequency (≥ 0.40), and 

availability of quality assays (see Celera website; ABI website).  SNPs were genotyped at 

~ 1 Mb intervals extending ≥10 Mb to each side of peak markers from the genomic 
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screen.  Additional SNPs were genotyped if linkage curves were unresolved at the edge 

of any follow-up region (for example, 15 additional SNPs were genotyped to resolve 

OSA peaks generated for the HLA-DR LOD score Low to High and chromosome 1 LOD 

score High to Low ranking schemes on chromosome 2q35).  SNP genotyping was 

performed using Assays-On-DemandSM or Assays-by-DesignSM with the ABI PRISM® 

7900HT Sequence Detection System (Applied Biosystems, Foster City, CA).  

Amplification was performed in a 384-well GeneAmp® PCR System 9700 (Applied 

Biosystems, Foster City, CA) or a 384-well DNA Engine Tetrad® 2 Peltier Thermal 

Cycler (MJ Research, Watertown, MA) with the following conditions: 94°C - 10 min; 

92°C - 15 sec, 60°C - 1 min (50 cycles); 4°C - hold.  Genotypes for HLA-DR were 

determined using non-radioactive PCR-SSOP (Dynal Biotech, Brown Deer, WI).   

 

Marker order and intermarker distance were obtained from Celera reference maps and 

verified in dbSNP build 124 (see Celera website; NCBI dbSNP website).  Laboratory 

personnel were blinded to pedigree structure, affected status, and location of quality 

control samples (3 unblinded CEPH individuals and 4 blinded controls).  Duplicate 

quality control samples were placed both within and across plates and equivalent 

genotypes were required to ensure accurate genotyping.   

 

Both affected and unaffected individuals were genotyped to maximize marker 

information content.  Information content was determined using Allegro [(93)].  Allele 

frequencies were calculated from the genotyped founders in each family.  Hardy-

Weinberg calculations were performed for each marker and Mendelian inconsistencies 
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were identified using PedCheck [(90)].  Improbable double recombination events were 

identified using SIMWALK version 2.9 [(88)].  Suspect genotypes were re-read and/or 

re-run.  All SNPs were required to have > 90% of possible genotypes. Verification of 

relationships between pairs of samples within families was performed using RELPAIR 

[(91)].  Markers and samples failing to pass quality control measures were dropped from 

the analyses. 

 

Statistical Analysis 

Both model-based and model-free statistical analyses were performed.  Model-based 

analyses were conducted using autosomal dominant and autosomal recessive models with 

disease allele frequencies of 0.01 and 0.20 (respectively) to model a common 

susceptibility allele.  A penetrance value of 0.95 was used for both dominant and 

recessive models and individuals with no evidence of MS were coded as normal 

individuals for these analyses.  Two-point LOD scores were calculated in FASTLINK 

[(84); (85)] and two-point heterogeneity LOD (HLOD) scores were calculated in 

HOMOG [(86); (87)].   

 

Multipoint LOD scores for the overall data set, HLA subsets, and conditional analyses 

were calculated in Allegro and are reported as LOD* scores [(93)].  Optimal OSA subsets 

were identified using OSA software [(107)].  Corresponding LOD scores for OSA 

subsets were calculated in GENEHUNTER-PLUS and are reported as maxLOD scores 

[(108); (92)].  Statistically significant increases in LOD scores for OSA subsets were 
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identified by p values < 0.05.  A complete list of SNP markers and individual LOD 

scores is available online (see CHGR Supplemental Data website).  

 

Covariate Analysis 

To account for potential locus heterogeneity, analyses were performed incorporating 

HLA-DR status.  In subset analyses, families were selected and designated HLA-DR2+ if 

all affected individuals carried at least one HLA-DR2 allele (93 families) or HLA-DR2- 

if no affected individuals carried an HLA-DR2 allele (36 families) (Table 1).   

 

In conditional analyses, two HLA-DR weighting schemes were used to incorporate 

information arising from linkage and association.  In the first scheme, positive HLA-DR 

LOD scores were used to weight families, while families generating negative HLA-DR 

LOD scores were given a weight of zero (HLA LOD Weighted).  Conversely, 

│negative│ HLA-DR LOD scores were used to weight families, while families 

generating positive HLA-DR LOD scores were given a weight of zero (HLA LOD 

Inverse Weighted).  In the second scheme, each family was given a nominal weight 

(between 0.0 and 1.0) to account for the number of HLA-DR2 alleles in affected 

individuals (HLA-DR2 Allele Weighted) or an inverse nominal weight (1 - [HLA-DR2 

weight]) to account for the absence of HLA-DR2 alleles in affected individuals (HLA-

DR2 Allele Inverse Weighted).   

 

Ordered subset analysis (OSA) was performed to identify homogenous subsets of 

families contributing maximally to linkage in each chromosomal region [(107)].  The 
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OSA method was developed to reduce sample heterogeneity (for increased power to 

detect linkage), generate more distinctive LOD score peaks, and define maximally 

informative data sets for regions of interest.  OSA rank orders families by a trait-related 

covariate (e.g. family-specific LOD scores at a second locus) to identify a subset 

generating maximally increased evidence of linkage relative to the overall sample.  

Statistical significance for this increased evidence of linkage is assessed using a random 

permutation procedure to estimate empirical p values.  Families were ranked by family-

specific LOD scores for HLA-DR (Low to High or High to Low) and family-specific 

HLA-DR2 allele weights (Low to High or High to Low).  Because chromosome 1 

demonstrated compelling evidence of linkage after follow-up genotyping and analysis, 

OSA was also performed for chromosomes 2q, 9q, 13q, 16q, 18p, and 19q with families 

ranked by chromosome 1 LOD* scores (Low to High or High to Low).  OSA analysis 

was also performed for chromosome 1q with families ranked by chromosome 2 LOD* 

scores at the peak location for the chromosome 1 LOD* ranked subset (Low to High or 

High to Low). 

 

Results 

A list of peak two-point, multipoint, and HLA conditional LOD scores for each follow-up 

region is provided in Table 2.  A complete report of linkage analyses for all follow-up 

regions is provided in Appendix C. 

 

Chromosome 1q44 demonstrated the strongest evidence of linkage after follow-up, with 

SNPs replicating linkage peaks < 1 Mb from the peak genomic screen marker for the 
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region (D1S547).  Two-point analysis generated a peak HLOD score of 2.60 in the 

overall data set—greater than the peak HLOD score observed in the genomic screen.  

Multipoint analysis generated a peak multipoint LOD* score of 2.99 in the overall data 

set and substantially narrowed the interval of interest in this region (Figure 1).  Analyses 

conditioning on HLA-DR2 allele weights and HLA-DR LOD scores continued to support 

linkage to this region, but failed to identify a specific HLA-DR subset demonstrating 

evidence of interaction with the 1q44 region.  Analysis of OSA subsets generated peak 

LOD scores greater than multipoint scores for the overall data set and for the HLA-DR 

covariate approaches, with OSA maxLOD scores ranging from 3.47 to 4.54.  However, 

OSA analysis also failed to differentiate specific subsets accounting for the genetic effect 

in this region, as no LOD score increases were statistically significant. 

 

Two-point analysis identified five markers in the 2q35 region with HLOD scores > 1.0, 

all of which were identified in the HLA-DR2- subset.  While chromosome 2q35 did not 

demonstrate substantial evidence of linkage in multipoint calculations for the overall data 

set or HLA conditional analyses, OSA analysis generated a significantly increased 

maxLOD score of 1.86 at ∼ 194 Mb in the HLA-DR LOD score Low to High ranking (15 

families; p = 0.03).  The two-point and OSA analysis subsets are similar to the U.S. HLA 

DR2- subset that identified linkage to 2q35 in the genomic screen.  OSA analysis also 

generated a significantly increased maxLOD score of 2.20 at ∼ 191 Mb in the 

chromosome 1 LOD* score High to Low ranking (22 families; p = 0.01) (Figure 2). 
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Chromosome 9q34 demonstrated modest evidence of linkage in two-point, multipoint, 

and HLA conditional analyses.  OSA analysis increased the peak maxLOD score for this 

region in the HLA-DR LOD Low to High ranking, but with only a trend toward 

significance (maxLOD = 1.81; 91 families; p = 0.09).   

 

Chromosome 13q11 failed to demonstrate any evidence of linkage in the multipoint or 

HLA conditional analyses.  However, the highest two-point (HLOD = 1.36) and OSA 

(maxLOD = 1.08 in the chromosome 1 LOD* Low to High subset; p = 0.09) LOD scores 

for this region were generated adjacent to the peak microsatellite marker for 13q11 in the 

genomic screen.   

 

Chromosome 16q23 generated a peak multipoint LOD* score of 0.51 in the overall data 

set, with a slight increase in the HLA-DR2+ subset (LOD* = 1.00; 93 families) and 

decrease in the HLA-DR2- subset (LOD* = 0.35; 36 families).  However, conditional 

analysis generated the highest LOD* scores in the HLA-LOD Negative (LOD* = 1.00) 

and HLA-DR2 Inverse Weight (LOD* = 0.61) subsets—raising questions about the 

origin of the signal in this region.  OSA analysis generated a peak maxLOD score of 1.83 

in the chromosome 1 LOD* High to Low ranking (34 families; p = 0.14), but did not 

significantly increase LOD scores or differentiate linkage contribution from any of the 

optimal HLA-DR subsets.   

 

Two-point analysis identified 2 markers in the 18p11 region with HLOD scores > 1.0, 

both of which were identified in the HLA-DR2- subset.  Multipoint analysis generated a 
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peak LOD* score of 0.75 in the overall data set, with the HLA DR2- subset generating a 

slightly higher peak (LOD* = 1.01).  Conditional analyses demonstrated the highest 

linkage scores in the HLA-DR2 Inverse Weight subset (LOD* = 1.21), while the OSA 

analysis demonstrated a statistically significant increase in evidence of linkage with a 

maxLOD score of 1.91 in the HLA-DR2- Weight Low to High ranked families (165 

families; p = 0.02) (Figure 3).  These two-point, multipoint, and conditional analyses 

provide consistent evidence of linkage when accounting for the absence of HLA-DR 

effects, and are also consistent with the U.S. HLA-DR2- subset that identified linkage to 

18p11 in the genomic screen.  However, despite a general trend of linkage in families 

without evidence for HLA-DR contribution, no consistent peak location was identified 

for this region.  OSA also generated an increased LOD score with a trend toward 

significance in the chromosome 1 LOD* Low to High subset (maxLOD = 2.14; 126 

families; p = 0.09) (Figure 3).   

 

Chromosome 19q13 generated peak multipoint scores at the same Mb location for the 

overall and HLA-DR2+ subsets (LOD* = 0.86 and LOD* = 0.85, respectively).  HLA 

conditional analyses generated a similar peak score in the HLA-DR Inverse Weight 

subset (LOD* = 0.85).  However, OSA analyses failed to generate even moderate p 

values for any of the ranking strategies. 

 

Discussion 

Traditional follow-up studies of genomic screen results entail genotyping additional 

microsatellite markers located at smaller genetic intervals than the original screen 
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markers.  While this approach can be effective, we chose to follow up our genomic 

screen results with a denser map of SNPs.  With higher throughput capabilities and more 

accurate genotypes, SNPs allowed for expedited genotyping and improved quality control 

of our data.  As suggested by a recent publication, increased information content from 

these markers also provided more thorough coverage of each region and substantially 

increased the effective size of our data set by 35% (Figure 4) [(109)].  Follow-up with 

SNPs located at ∼ 1 Mb intervals resulted in higher quality data, greater information 

extraction, and substantially narrowed linkage peaks in several of our regions of interest.  

 

Although the linkage peaks in several of our follow-up regions were generated near 

linkage peaks from the genomic screen, it is important to consider the potential effects of 

using approximate marker locations in this study.  Given the inaccuracy of interpolating 

genetic distances between SNPs using currently available linkage maps, our study design 

used physical distances as an approximation of genetic distances in the multipoint 

calculations.  The marker order for each region was verified in multiple databases and the 

reported recombination rates for these regions did not substantially deviate from the 

1cM/1Mb paradigm (see deCODE website).  While we therefore determined that using 

physical distances was most appropriate for the current study design, it is important to 

recognize this underlying assumption concerning genetic distances when assessing the 

multipoint linkage results. 

 

The strongest linkage result from this study arises on chromosome 1q44, where the 

multipoint LOD score increased relative to the initial genomic screen.  In addition to the 
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present study, several lines of evidence support chromosome 1q.  Marker D1S547 met 

the criterion for further interest in both two-point and multipoint calculations in our 

recent second-generation genomic screen (HLOD = 2.17; Z = 3.38) [(105)] (see Chapter 

4).  Nearby markers have also demonstrated suggestive linkage and/or association in 

several other MS screens that have been conducted in a variety of study populations 

[(44); (47); (52); (53); (94)].  Another compelling piece of evidence for 1q is linkage to 

this region in studies for the autoimmune diseases rheumatoid arthritis [(95); (110); 

(111)] and systemic lupus erythematosus [(112); (113); (96); (114)], suggesting the 

presence of a gene for general autoimmune processes in this region.  Interestingly, all of 

these markers demonstrating linkage in the MS, rheumatoid arthritis, and systemic lupus 

erythematosus screens are within 6 Mb of the peak marker from our genomic screen and 

follow-up study. 

 

Our follow-up also provides evidence that covariate analysis can be a useful approach for 

identifying subsets, increasing evidence of linkage, and narrowing confidence intervals in 

regions of interest.  Occasional differences in subsets and peak locations identified by the 

conditional analyses in this study indicate that these schemes may vary in their power to 

capture moderate genetic effects or are measuring slightly different biological 

phenomena.  However, the overall consistency suggests that additional information 

gained from conditional analyses may be valuable in future study designs.   

 

The OSA method proved to be especially useful in regions failing to demonstrate 

evidence of linkage in the overall data set.  Although OSA p value thresholds were not 



 

 63 

corrected for multiple testing, this method provided additional evidence for linkage and 

aided in the identification and interpretation of multilocus effects.  The potential for OSA 

was initially illustrated with breast cancer data, where linkage to the chromosome 17q 

region containing BRCA1 was identified when ranking families by mean age of onset 

[(107)].  The OSA method has subsequently been applied to data sets for Alzheimer 

disease, autism, age-related macular degeneration, type 2 diabetes, and prostate cancer 

[(115); (116); (117); (118); (119); (120); (121)].  Modification of OSA and other 

covariate methods to account for multiple loci or other relevant factors would further 

strengthen these approaches.  Further elucidation of the genetic effects in known regions 

of linkage such as HLA-DR and chromosome 1 could also serve as crucial tools in 

unraveling the genetic heterogeneity of MS.   

 

This study confirmed several chromosomal regions warranting further investigation in the 

search for genes conferring susceptibility to MS.  Due to the continued evidence of 

linkage and the consistency of data sets from which these linkage signals arise, we are 

particularly interested in pursuing chromosome regions 1q44, 2q35, 9q34, and 18p11.  A 

more detailed investigation of chromosome 9q34 is presented in Chapter 6.  A more 

detailed investigation of the ∼ 7 Mb interval on chromosome 1q44 is presented in Chapter 

7.   
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Table 2.  Peak LOD Scores 

 

Chromosome 

Region 

Peak Screen 

HLOD Score 

(Kenealy et al. 

2004) 

Peak Follow-

Up HLOD 

Score 

Peak Follow-

Up Multipoint 

LOD* Score 

Peak Follow-

Up HLA 

Conditional 

LOD Score 

1q44 2.17 2.60 2.99 3.01b 

2q35 3.09 0.82 0.00 0.59b 

9q34 3.55 1.89 0.63 0.93d 

13q11 2.32 0.92 0.01 0.14e 

16q23 2.32 1.25 0.51 1.00f 

18p11 2.84 0.93 0.75 1.21d 

19q13 1.44 2.01 0.85 0.86a 

 

Data Sets: a = HLA-DR2+ (93 Families); b = HLA-DR2- (36 Families); c = HLA-DR2 
Allele Weighted (173 Families); d = HLA-DR2 Allele Inverse Weighted (173 Families); 
e = HLA LOD Weighted (173 Families); f = HLA LOD Inverse Weighted (173 Families)  
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Figure 1.  Chromosome 1q Multipoint Analysis   
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Figure 2.  Chromosome 2q OSA Analysis  
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Figure 3.  Chromosome 18p OSA Analysis 
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Figure 4.  Information Content for Markers Genotyped on Chromosome 1q 
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CHAPTER VI 

 

A DIRECTED INVESTIGATION OF CHROMOSOME 9Q34 

 

Introduction 

Several of our studies suggest the presence of a gene for MS susceptibility in the 

chromosome 9q34 region.  The initial Multiple Sclerosis Genetics Group (MSGG) 

genomic screen and follow-up study detected moderate evidence of linkage to 9q34 in 

two-point LOD score analyses (HLOD = 1.13; HLOD = 1.40) [(39); (48)].  In the 

second-generation MSGG genomic screen, 9q34 demonstrated the strongest evidence of 

linkage to a non-MHC region in the overall data set (HLOD = 3.55; Z = 2.71) (see 

Chapter 4).  The follow-up study to the second-generation genomic screen continued to 

provide evidence of linkage to 9q34, with moderate evidence of linkage in two-point, 

multipoint, and HLA conditional analyses.  OSA increased evidence of linkage to this 

region in the HLA-DR LOD Low to High ranking with a trend toward significance 

(maxLOD = 1.81; 91 families; p = 0.09) (see Chapter 5).  Recent genomic screens 

conducted by other research groups in Nordic sib-pairs and Turkish families also 

demonstrate moderate support for 9q34, highlighting the need for further investigation of 

this region [(46); (49)].   

 

In addition to generating consistent evidence of linkage, the follow-up study to the 

second-generation genomic screen also revealed consistent location of linkage peaks at ∼ 
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106.5 Mb.  Because the 9q34 linkage peak was localized and narrow, we further 

investigated the region located under the peak for linkage to and allelic association with 

additional SNP marker coverage.   

 

Material and Methods 

Families 

The data set used in this detailed investigation of chromosome 9q34 included 173 

multiplex families consisting of 451 affected individuals, 251 affected sib-pairs, and 163 

other affected relative pairs (see Chapter 5).   

 

Molecular Analysis 

The Celera and Applied Biosystems databases were mined to select SNPs according to 

location relative to other selected SNPs, high minor allele frequency (≥ 0.40), and 

availability of quality assays (see Celera website; ABI website).  An additional 35 SNPs 

were genotyped under the linkage peak to attain coverage of ~ 1 SNP/30 Kb (Table 1).  

SNP genotyping was performed using Assays-On-DemandSM or Assays-by-DesignSM 

with the ABI PRISM® 7900HT Sequence Detection System (Applied Biosystems, Foster 

City, CA).  Amplification was performed in a 384-well GeneAmp® PCR System 9700 

(Applied Biosystems, Foster City, CA) or a 384-well DNA Engine Tetrad® 2 Peltier 

Thermal Cycler (MJ Research, Watertown, MA) with the following conditions: 94°C - 10 

min; 92°C - 15 sec, 60°C - 1 min (50 cycles); 4°C - hold. 

 



 

 71 

Marker order and intermarker distance were obtained from Celera reference maps and 

verified in dbSNP build 124 (see Celera website; NCBI dbSNP website).  Laboratory 

personnel were blinded to pedigree structure, affected status, and location of quality 

control samples (3 unblinded CEPH individuals and 4 blinded controls).  Duplicate 

quality control samples were placed both within and across plates and equivalent 

genotypes were required to ensure accurate genotyping.   

 

Both affected and unaffected individuals were genotyped to maximize marker 

information content.  Information content was determined using Allegro [(93)].  Allele 

frequencies were calculated from the genotyped founders in each family.  Hardy-

Weinberg calculations were performed for each marker and Mendelian inconsistencies 

were identified using PedCheck [(90)].  Suspect genotypes were re-read and/or re-run.  

All SNPs were required to have > 90% of possible genotypes. Markers and samples 

failing to pass quality control measures were dropped from the analyses. 

 

Statistical Analysis 

Both model-based and model-free analyses were performed.  Model-based analyses were 

conducted using autosomal dominant and autosomal recessive models with disease allele 

frequencies of 0.01 and 0.20 (respectively) to model a common susceptibility allele.  A 

penetrance value of 0.95 was used for both dominant and recessive models and 

individuals with no evidence of MS were coded as normal individuals for these analyses.  

Two-point LOD scores were calculated in FASTLINK [(84); (85)] and two-point 

heterogeneity LOD (HLOD) scores were calculated in HOMOG [(86); (87)].   



 

 72 

Linkage disequilibrium (LD) patterns were constructed using Haploview software (see 

Haploview website).  Computation of LD statistics were performed for all marker pairs 

and haplotype blocks were identified through pairwise r2 values (Figure 1; Figure 2).  

SNPs identified as haplotype tagging for LD blocks (htSNPs) were selected for 

multipoint calculations.   In regions where no SNP (or more than one SNP) was identified 

as an htSNP, SNPs with the highest observed heterozygosity and/or minor allele 

frequency were selected.  Nineteen SNPs were removed from the data set to eliminate 

pairwise r2 values > 0.10 prior to conducting multipoint linkage and association analyses 

(Figure 3). 

 

Multipoint LOD scores for the overall data set, HLA subsets, and conditional analyses 

were calculated in Allegro and are reported as LOD* scores [(93)].  Optimal OSA subsets 

were identified using OSA software [(107)].  Corresponding LOD scores for OSA 

subsets were calculated in GENEHUNTER-PLUS and are reported as maxLOD scores 

[(108); (92)].  Statistically significant increases in LOD scores for OSA subsets were 

identified by p values < 0.05.  Association analyses were performed with PDT and 

Haploview [(81); see Haploview website].  A complete list of SNP markers and 

individual LOD scores is available online (see CHGR Supplemental Data website).  

 

Covariate Analysis 

In subset analyses, families were selected and designated HLA-DR2+ if all affected 

individuals carried at least one HLA-DR2 allele (93 families) or HLA-DR2- if no 

affected individuals carried an HLA-DR2 allele (36 families) (Table 1).   
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In conditional analyses, two HLA-DR weighting schemes were used to incorporate 

information arising from linkage and association.  In the first scheme, positive HLA-DR 

LOD scores were used to weight families, while families generating negative HLA-DR 

LOD scores were given a weight of zero (HLA LOD Weighted).  Conversely, 

│negative│ HLA-DR LOD scores were used to weight families, while families 

generating positive HLA-DR LOD scores were given a weight of zero (HLA LOD 

Inverse Weighted).  In the second scheme, each family was given a nominal weight 

(between 0.0 and 1.0) to account for the number of HLA-DR2 alleles in affected 

individuals (HLA-DR2 Allele Weighted) or an inverse nominal weight (1 - [HLA-DR2 

weight]) to account for the absence of HLA-DR2 alleles in affected individuals (HLA-

DR2 Allele Inverse Weighted).   

 

Ordered subset analysis (OSA) was performed to identify homogenous subsets of 

families contributing maximally to linkage in each chromosomal region [(107)].  Families 

were ranked by family-specific LOD scores for HLA-DR (Low to High or High to Low) 

and family-specific HLA-DR2 allele weights (Low to High or High to Low).  Because 

chromosome 1 demonstrated compelling evidence of linkage after follow-up genotyping 

and analysis, OSA was also performed with families ranked by chromosome 1 LOD* 

scores (Low to High or High to Low).   

 

Results 

Two-point linkage and PDT association analysis results for all SNPs are provided in 

Table 1.  Of the 35 new SNPs, 13 SNPs generated HLOD scores > 1.0 in the overall data 
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set.  With the exception of microsatellite D9S2157, the highest two-point LOD score for 

the region was generated by a  SNP located at ∼ 107 Mb (HLOD = 2.73).  Seven of the 

new SNPs generated HLOD scores > 1.0 in the HLA-DR2+ families (six of which also 

generated HLOD scores > 1.0 in the overall data set), while only one new SNP generated 

an HLOD score > 1.0 in the HLA-DR2- families.  Four new SNPs generated PDT p 

values < 0.05, with the smallest p value being generated by a SNP also located at ∼ 107 

Mb (p value = 0.006). 

 

Because Haploview revealed that several SNPs were in LD and therefore threatened to 

artificially inflate multipoint linkage and association results, 19 SNPs were eliminated 

from the data set prior to conducting multipoint analyses (Figure 1; Figure 3).  These 19 

SNPs represented the minimum possible number of markers that could be removed to 

eliminate all pairwise r2 values > 0.10.  When possible, these eliminated SNPs also 

represented the least informative marker in each pairwise combination. 

 

Multipoint analysis results are provided in Figures 4-6.  The addition of 16 SNPs 

increased the maximum LOD* score in the overall data set from 0.63 to 2.16.  The 

maximum LOD* scores in the HLA-DR2+ was also increased, from 0.16 to 1.41.  In the 

conditional analysis, the HLA-DR2 Allele Inverse Weighted scheme increased the 

maximum LOD* score from 0.93 to 2.89.  And while OSA increased maxLOD scores for 

all ranking schemes, only ranking of families by HLA-DR2 Weight from Low to High 

generated a p value < 0.05 (maxLOD = 2.48; p = 0.04).   
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Discussion 

Additional marker coverage under the 9q34 linkage peak increased evidence of a MS risk 

factor in both two-point and multipoint analyses.  Although covariate analyses continued 

to yield results in data sets reflecting both the presence and absence of HLA effects, the 

consistent increase in evidence of linkage is encouraging.   The ∼ 1 Mb region 

investigated with increased marker coverage contains several interesting genes, including 

tuberous sclerosis 1 (TSC1), ABO blood group (ABO), and dopamine beta-hydroxylase 

(DBH) (see Celera website).  Further investigation of this narrow region of interest is 

currently underway. 
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Table 1.  Chromosome 9q Analysis Results  Microsatellites are indicated in yellow.  New SNPs are indicated in grey.  Markers 
generating LOD scores > 1.0 are indicated in bold text.   
 

SNP ID 

(Celera) 

SNP ID 

(dbSNP) 
Mb (Celera) Mb (dbSNP) Gene MAF All HLA All HLA None PDTSum PDTAve PDTGeno 

hCV1899341 rs3810928 87.463072 113.895331 AMBP 0.48 0.12 0.00 0.00 0.294 0.336 0.490 

hCV3022586 rs1061494 88.494049 114.926134 TNC 0.42 0.00 0.02 0.00 0.390 0.703 0.152 

hCV7593836 rs971037 89.314153 115.746096 EST-YD1 0.47 0.00 0.00 0.00 0.807 0.152 0.786 

hCV1979634 rs10733620 90.172104 116.604046 ASTN2 0.44 0.00 0.05 0.00 0.615 0.353 0.625 

hCV11722141 rs1927911 91.117821 117.549608 TLR4 0.24 0.72 1.00 0.09 0.223 0.292 0.431 

D9S934  91.743400   9 alleles 0.21 0.15 0.07 N/A N/A N/A 

hCV1920588 rs1324623 92.767997 119.199751 DBCCR1 0.31 0.14 0.03 0.79 0.541 0.974 0.728 

hCV1219009 rs3747850 94.713428 121.144482 GSN 0.49 0.01 0.00 0.02 0.115 0.134 0.208 

hCV11884087 rs4679 95.562902 121.994167 NDUFA8 0.43 0.25 0.14 0.21 0.184 0.889 0.422 

hCV58657 rs12686320 96.805159 123.236485 KIAA1608 0.37 0.13 0.10 0.20 0.910 0.423 0.520 

hCV8780788 rs1042486 97.430687 123.862987 LHX2 0.44 0.00 0.00 0.02 0.430 0.428 0.643 

D9S282  97.456102   9 alleles 0.39 0.05 0.36 N/A N/A N/A 

hCV302240 rs501963 98.610850 125.042470 RAB9P40 0.43 1.94 0.31 1.47 0.066 0.736 0.109 

hCV8782473 N/A 99.379990 125.805096 PBX3 0.30 0.00 0.11 0.01 0.268 0.249 0.453 

hCV2700890 rs874799 100.376610 126.801559 RALGPS1A 0.46 0.42 0.10 0.00 1.000 0.937 0.151 

hCV580692 rs514024 101.154940 127.583624 SH2D3C 0.40 0.00 0.00 0.00 0.948 0.831 0.193 

hCV16180096 rs2273866 102.354750 128.782445 KIAA1094 0.38 0.00 0.01 0.06 0.958 0.822 0.359 

hCV3180154 rs2296793 103.236092 129.664612 DYT1 0.25 1.05 0.01 1.81 0.909 0.300 0.619 

hCV2605168 rs1056171 104.299288 130.790555 ABL1 0.50 0.04 0.00 0.12 0.074 0.208 0.141 

hCV8782344 rs1056899 105.681837 132.169455 KIAA0625 0.29 0.32 0.21 0.05 0.180 0.476 0.455 

hCV32127084 rs7466085 106.130138 132.617936 N/A 0.49 0.55 0.14 0.00 0.893 0.933 0.826 

hCV28004010 rs4962076 106.146282 132.634162 C9orf98/FLJ32704 0.20 0.36 0.01 0.46 0.222 0.996 0.560 

hCV2980152 rs11243900 106.165871 132.653751 C9orf98/FLJ32704 0.41 0.55 0.05 0.68 0.784 0.651 0.699 

hCV32127137 N/A 106.188696 132.676575 C9orf98/FLJ32704 0.17 0.41 0.51 0.00 0.136 0.127 0.212 

hCV2535170 rs215156 106.205198 132.693075 C9orf98/hCG2033140 0.36 0.72 1.00 0.01 0.756 0.411 0.389 

hCV1435374 rs4962218 106.264384 132.737397 C9orf98/FLJ32704 0.43 0.84 0.54 0.14 0.537 0.833 0.809 

hCV2567972 rs214636 106.277080 132.764897 C9orf98/FLJ32704 0.43 1.26 0.31 0.41 0.617 0.942 0.910 

hCV2536665 N/A 106.317774 132.805587 TSC1 0.46 0.93 0.55 0.36 0.272 0.988 0.591 
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hCV1247472 rs12551192 106.361322 132.849135 TSC1 0.24 0.08 0.06 0.23 0.825 0.937 0.974 

hCV2253563 rs633153 106.404371 132.892186 GFI1B 0.45 1.44 1.39 0.01 0.913 0.651 0.996 

hCV7582593 rs944204 106.416022 132.903834 GFI1B 0.46 0.26 0.08 0.05 0.130 0.021 0.042 

hCV2535358 rs623489 106.445727 132.933551 GTF3C5 0.38 0.06 0.10 0.08 1.000 0.765 0.796 

hCV2279860 rs685959 106.496869 132.984725 CEL 0.44 0.35 0.32 0.22 0.392 0.930 0.555 

hCV2535450 rs886017 106.515825 133.003654 RALGDS 0.50 0.80 0.08 0.63 0.652 0.527 0.720 

hCV2535940 rs671050 106.543639 133.031520 RALGDS 0.29 0.10 0.03 0.04 0.064 0.206 0.152 

hCV2535973 rs2073927 106.573021 133.060900 GBGT1/RALGDS 0.47 1.17 1.34 0.11 0.808 0.228 0.090 

D9S2157  106.577163   11 alleles 2.86 2.16 0.28 N/A N/A N/A 

hCV2980279 rs9411461 106.582405 133.070281 FS/GBGT1 0.41 1.98 1.19 0.04 0.279 0.769 0.491 

hCV2980256 rs10901243 106.619735 133.107929 OBP2B 0.36 2.14 1.40 0.00 0.188 0.695 0.081 

hCV27224742 N/A 106.630889 133.119083 OBP2B 0.22 1.50 0.20 0.18 0.609 0.026 0.756 

hCV3183098 rs2073824 106.674547 133.162187 ABO 0.34 0.43 0.69 0.00 0.940 0.907 0.600 

hCV3183164 rs529565 106.691406 133.179054 ABO 0.36 0.32 0.24 0.00 0.619 0.198 0.842 

hCV3183233 rs120858 106.751315 133.230364 SURF5/SURF6 0.49 1.87 0.80 0.00 0.542 0.705 0.610 

hCV3183190 rs1179037 106.788988 133.268063 SURF4 0.50 1.49 0.97 0.03 0.891 0.442 0.967 

hCV8784811 rs943623 106.817940 133.296925 XPMC2H 0.48 1.32 0.90 0.08 0.874 0.312 0.860 

hCV11572323 rs3118663 106.832326 133.311307 XPMC2H/ADAMTS13 0.50 1.53 0.58 0.16 0.680 0.391 0.665 

hCV3183371 rs652600 106.861602 133.340571 ADAMTS13 0.29 1.02 0.50 0.18 0.929 0.801 0.862 

hCV8784809 rs1055432 106.874832 133.353793 ADAMTS13 0.34 0.31 0.32 0.03 0.374 0.795 0.540 

hCV2536686 N/A 106.955316 133.436844 ADAMTSL2 0.24 0.17 0.00 0.30 0.745 0.793 0.248 

hCV1247496 rs1105633 106.974470 133.456326 ADAMTSL2 0.44 1.80 0.99 0.29 0.244 0.088 0.538 

hCV2971472 rs1029372 107.025317 133.507996 N/A 0.48 0.77 0.27 0.77 0.667 0.714 0.741 

hCV2535803 rs2519148 107.041440 133.524120 DBH 0.47 2.18 1.47 0.04 0.029 0.006 0.079 

hCV2535694 rs1611122 107.055817 133.538486 DBH 0.47 2.73 1.36 1.05 0.776 0.786 0.965 

hCV2535675 rs2073837 107.069808 133.552482 DBH/SARDH 0.30 0.71 0.70 0.00 0.869 0.795 0.985 

hCV11572672 rs1076149 107.095531 133.579210 SARDH 0.36 0.69 0.78 0.00 0.799 0.756 0.760 

hCV2540688 rs495464 107.120467 133.603202 SARDH 0.43 0.17 0.20 0.00 0.788 0.923 0.925 

hCV2537353 rs916620 107.143594 133.626304 SARDH 0.34 1.59 0.47 0.60 0.199 0.029 0.254 

hCV12020823 rs1980852 107.936116 134.647976 hCG1814720 0.42 1.12 0.09 1.41 0.608 0.787 0.422 

hCV3241385 rs968569 108.910258 135.619073 MGC29761/MRPS2 0.49 0.92 0.88 0.25 0.893 0.596 0.374 

hCV12019285 rs6563 109.903628 136.665021 NOTCH1 0.47 0.40 0.54 0.22 0.295 0.656 0.105 

hCV469299 rs11137268 110.905166 137.656213 FLJ31318 0.42 0.10 0.03 0.07 0.528 0.897 0.815 

hCV247127 rs2229948 111.537898 138.284713 CACNA1B 0.26 0.00 0.00 0.01 0.255 0.080 0.532 
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Figure 1.  Chromosome 9q34 Haploview LD Plot – Before SNP Elimination  The plot 
is shown before SNPs were removed to eliminate LD between markers to be used in 
multipoint analyses. 
 

 

 

Figure 2.  Chromosome 9q34 Haploview Haplotype Plot  Two haplotype blocks with a 
multilocus D’ of 0.07 were identified in the MS data set.  Population frequencies are 
shown to the right of each haplotype and htSNPs are indicated by triangular pointers. 
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Figure 3.  Chromosome 9q34 Haploview LD Plot – After SNP Elimination  The plot 
is shown after SNPs were removed to eliminate linkage disequilibrium between markers 
to be used in multipoint analyses.
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Figure 4.  Chromosome 9q Multipoint Linkage Plot 
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Figure 5.  Chromosome 9q Multipoint Linkage Plot – HLA Conditional Analysis 
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Figure 6.  Chromosome 9q Multipoint Linkage Plot – Ordered Subset Analysis  
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CHAPTER VII 

 

A DIRECTED INVESTIGATION OF CHROMOSOME 1Q44
**
 

 

Abstract 

Genomic linkage screens have served as the workhorse of genetic studies for complex 

diseases over the past decade.  Despite the success of these screens in identifying regions 

of interest for MS, the thorough follow-up of candidate genes in all regions of linkage 

from a typical screen is prohibitive in terms of both time and cost—and has ultimately 

failed to identify MS susceptibility genes outside of the MHC.  In addition to the 

prohibitive scale of these studies, it is likely that the candidate gene approach has been 

hampered by the incomplete identification and characterization of genes or regulatory 

elements that are directly related to disease pathophysiology.  In this study, we employed 

a novel approach to investigate genetic association on the scale of a linkage peak for MS.  

We hypothesized that focusing on SNPs located in evolutionarily conserved regions 

would increase the likelihood of detecting variants that are associated with MS.  This 

approach entailed the identification of multi-species conserved sequences and the 

development of a system to prioritize SNP selection.  Use of this new approach on 

chromosome 1q44 resulted in the identification of four subregions demonstrating 

significant association with MS susceptibility.   

 

                                                           
** Chapter adapted from: 
 
R03 Grant Submission:  A Conserved Sequence Approach for MS Association Studies 
(Dr. Douglas P. Mortlock and Shannon J. Kenealy)      
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Introduction 

Chromosome 1q44 was selected for investigation in this study based on several lines of 

evidence.  Marker D1S547 in this region met the criterion for further interest in both two-

point and multipoint calculations in the MSGG genomic screen (HLOD = 2.17; Z score = 

3.38) [(105)] (see Chapter 4).  Follow-up studies continued to demonstrate evidence of 

linkage in this region and narrowed the interval of interest to ~ 7.0 Mb (corresponding to 

a – 2.0 LOD score confidence interval) (Figure 1) (see Chapter 5).  Markers in the 1q44 

region have also demonstrated suggestive linkage and/or association in several other 

genomic screens conducted in a variety of MS study populations [(44); (47); (52); (53); 

(94)].  Another compelling piece of evidence is linkage to this region in studies for the 

autoimmune diseases rheumatoid arthritis and systemic lupus erythematosus, suggesting 

the presence of a gene involved in general autoimmune processes [(95); (110); (111); 

(112); (113); (96); (114)].  Interestingly, all of the markers demonstrating linkage in the 

MS, rheumatoid arthritis, and systemic lupus erythematosus screens are within a few Mb 

of the peak markers from the MSGG genomic screen and follow-up study. 

 

As discussed in Chapter 5, follow-up of candidate regions identified in the MSGG 

genomic screen entailed genotyping SNPs at ~ 1 Mb intervals flanking ≥ 10 Mb on each 

side of peak screen markers in an expanded U.S. data set (Kenealy et al., manuscript 

submitted).  Analyses in the 1q44 region in the follow-up study not only continued to 

demonstrate evidence for linkage (LOD = 2.99 in multipoint calculations for the overall 

data set), but also demonstrated a substantially narrowed linkage interval [(122); (123); 

Kenealy et al., manuscript submitted].  This narrowed interval is ~ 3.5 Mb for a LOD 
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score cut-off of 3.5 (corresponding to a – 1.0 LOD score confidence interval) and ~ 7.0 

Mb for a LOD score cut-off of 2.5 (corresponding to a – 2.0 LOD score confidence 

interval) (Figure 1). 
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Figure 1. Multipoint Linkage Analyses for Chromosome 1q  Original multipoint 
calculations are represented by the solid curve.  Multipoint calculations for an OSA 
subset identified by ranking families for HLA effects are represented by the dashed 
curve.  Multipoint calculations for an OSA subset identified by ranking families for 
chromosome 2 effects are represented by the dotted curve.  Cut-offs corresponding to – 
1.0 and – 2.0 LOD score confidence intervals are indicated by the two horizontal lines. 
 

Despite the success of linkage analysis in substantially narrowing the region of interest 

on chromosome 1q44, the power of linkage studies to detect moderate genetic effects in 

small chromosomal regions is limited.  This study therefore focused on finer mapping of 

the 1q44 region with allelic association methods testing for linkage disequilibrium (LD).   
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The number of assays necessary to thoroughly investigate association in genomic screen 

regions can be prohibitively large.  Even in the narrowed region on 1q44, large-scale 

genotyping is required to conduct a thorough association study.  Traditional approaches 

have attempted to reduce the amount of genotyping in these studies by testing only 

markers located in candidate genes.  However, even the narrowed interval of ~ 3.5 Mb on 

1q44 contains 28 known or predicted genes reported in the Celera and public databases, 

several of which could serve as candidate genes based on their proposed function (e.g. 

involvement in autoimmunity, viral susceptibility, oxidative stress/mitochondrial 

function, or neuronal processes) or based on their tissue expression patterns (e.g. in brain 

and spinal cord).  A brief description of a few of these candidate genes is provided in 

Table 1.  In addition, many of the remaining genes in this region have undergone little or 

no functional characterization, which would likely result in failure to select these genes 

for investigation in candidate gene studies despite their potential involvement in disease.   

 

In this study, we employed a novel approach that incorporates evidence from positional 

and functional approaches to expedite follow-up studies in candidate regions.  The utility 

of combining positional and functional approaches is evident in several recent studies for 

complex genetic disorders.  The emerging concept of genomic convergence suggests that 

parallel investigations of genetic linkage, association, and expression data will speed 

disease gene discovery [(124)].  Recent application of this process to prioritize candidate 

genes on chromosome 10 in Alzheimer disease and Parkinson disease led to the 

successful identification of two genes significantly associated with these diseases [(125)]. 
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Table 1.  Functional Candidate Genes in the ~ 3.5 Mb Region on Chromosome 1q44 

 
 

Gene Name / Protein Name / Celera ID Gene Symbol Tissue Expression Comments 

hCG2038857 N/A macaque brain homology to neural cadherin-like cell adhesion genes 

cholinergic receptor, muscarinic 3 CHRM3 human brain role in neurogenesis 

formin 2-like protein FMN2 human brain, spinal 
cord N/A 

gremlin 2 / protein related to DAC and 
cerberus PDRC human brain mapped to neurons and spinal cord in mouse; role in TGFβ signaling 

regulator of G-protein signaling 7 RGS7 human brain upregulated in spinal cord injury; role in neuronal excitability 

fumarate hydratase FH N/A mitochondrial precursor 

kynurenine 3-monooxygenase KMO N/A role in oxidoreductase activity 

opsin 3 (encephalopsin, panopsin) OPN3 human brain, spinal 
cord, thymus N/A 

choroideremia-like / Rab escort protein 2 CHML human thymus role in neurophysiology, regulation of balance 

hCG2042651 N/A N/A homology to dopa decarboxylase 

exonuclease 1 EXO1 human thymus role in DNA binding/repair, response to endogenous stimulus 

beclin 1-like protein N/A N/A role in antiviral host defense 

hCG2041433 N/A N/A homology to  FRG1 gene (expressed in brain, lymphocytes) 
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Our study utilized conserved sequence approaches to identify potentially functional 

sequences on chromosome 1q44.  These conserved sequence approaches have several 

potential advantages over more traditional approaches that focus solely on SNPs located 

in coding regions.  For example, since noncoding regulatory elements that control 

neighboring genes can be dispersed across large areas devoid of coding sequences, 

conserved elements may help discriminate functional regions within large noncoding 

areas that do not share LD with coding markers [(126); (127); (128)].  Conservation can 

also indicate coding regions that lack strong annotation support, such as alternatively 

spliced exons, RNA genes, “novel” genes with no homology to other gene families, or 

genes expressed at very low levels such that transcriptional evidence is lacking.  Finally, 

by using conservation to prioritize SNPs, the odds may be increased that “functional” 

SNPs impacting the phenotype in question will actually be genotyped.  For example, 

variation in transcriptional levels for key genes might play a significant role in disease 

risk.  SNPs in noncoding cis-regulatory sequences (e.g. enhancers, repressors, or 

chromatin structural regulators) might contribute to the genetic component of this process 

by modulating transcriptional output. 

 

There are currently several publicly available tools to detect evolutionarily conserved 

sequences across large genomic regions by performing sequence alignments [(129); 

(130)].  However, simple pairwise sequence comparisons have drawbacks for use as a 

systematic approach in the prioritization of conserved regions.  For example, in a 

relatively large region, sequence alignment between any two mammalian species can 

provide too much aligning sequence, resulting in the identification of large amounts of 
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sequences that are not preserved as a result of selective processes, and are thus not likely 

to be functional [(131)].  Conversely, sequence alignment between more divergent 

species (e.g. between human and fugu) can provide too little information, resulting in the 

identification of only highly conserved protein-coding regions, while virtually all 

noncoding regions fail to be detected.   

 

To minimize these drawbacks, new methods of alignment that compare sequences from 

multiple species have been developed. These new multi-species conservation methods 

have significant promise for detecting functionally conserved genomic sequences.  A 

recent study showed that human sequences that are likely to be functional can be detected 

with improved sensitivity and specificity by comparing sequence from three or more 

vertebrate species [(132)].  These new methods may therefore have the ability to greatly 

increase the signal-to-noise ratio for detecting conserved sequences.   

 

An algorithm for detecting multi-species conserved sequences (MCS) was recently 

optimized for scoring multi-species alignment data across large genomic regions [(133)].  

This algorithm allows MCS scores to be assigned across any human genomic region that 

has been aligned with sequences from multiple species.  A major advantage of MCS 

analysis is that it assigns a score to every 50-base pair region of human sequence that can 

be aligned to any of the comparison species.  Regions that show similarity across many 

species or have stronger percent identity in pairwise matches receive relatively higher 

scores.   
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Our collaborator, Dr. Elliott Margulies, has performed MCS analysis across the entire 

human genome and made this analysis available online through the National Human 

Genome Research Institute (NHGRI) website and the University of California Santa Cruz 

(UCSC) genome browser (see NHGRI WebMCS website; UCSC website).  This analysis 

incorporates mouse, rat and chick genome sequence alignment data to assign MCS scores 

to 50-base pair windows across the human genome.  Alignment results allow for 

prioritization of all sequences that fall above a defined threshold in a region of interest 

(e.g. the top 5% scoring 50-base pair sequences from a defined region) (Figures 2 and 3).  

 

In this study, we formulated a systematic approach to expedite the follow-up of positional 

candidate regions identified through linkage studies.  This approach incorporated MCS 

analysis (as a tool to prioritize selection of SNP markers), current high-throughput 

genotyping techniques, and powerful statistical analysis methods.  The application of this 

novel genomic convergence approach to a linked region on chromosome 1q44 resulted in 

the identification of four subregions demonstrating evidence of association with 

susceptibility to MS.   

 

Material and Methods 

Families 

The data set used in this detailed investigation of chromosome 1q44 focused on the 91 

families demonstrating evidence of linkage to this region in the studies presented in 

Chapter 5 [(105); Kenealy et al., manuscript submitted].  The data set included 

individuals from the 91 linked families that were most informative for analyses of allelic 
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association.  In addition, at least one trio or discordant sib-pair (DSP) from each of the 

unlinked families from the studies presented in Chapter 5 was included in the study.  A 

total of 1012 MS samples and 44 controls (2 CEPH controls and 2 blinded interplate 

controls per 96-well plate) were genotyped.   

 

Molecular Analysis 

SNPs were selected as markers for this study because of their evolutionary stability (and 

therefore likelihood to preserve LD information), abundant location throughout the 

genome, and amenability to high-throughput genotyping.  In addition, SNPs are thought 

to be the source of many risk variants for complex genetic diseases. 

 

The Illumina BeadArray™ platform was selected for rapid and accurate SNP genotyping 

of samples.  This platform was comparatively high-throughput and cost-effective for 

genotyping of our large data set.  The Illumina system also provided automated outputs 

that eased transfer between data generation and the PEDIGENE® database system used in 

the statistical analyses.  Assays were synthesized by Illumina and samples were 

individually genotyped by our collaborators at the Duke Genomics Resource Laboratory 

Core.   

 

The web-based WebMCS tool was used to identify multi-species conserved sequences in 

the ~ 7.0 Mb region through alignment of mouse, rat, and chick sequence to human 

chromosome 1q44 sequence ([(133)]; see NHGRI WebMCS website; UCSC website).  
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SNPS located in 5% MCS sequences were identified through the overlap of the 5% MCS 

output and SNP output from the UCSC website (see UCSC website).   

 

An Illumina custom SNP panel was designed to genotype 768 SNPs (consisting of two 

oligo pool assays of 384 SNPs).  Selection of SNPs in conserved regions was based on 

informativeness (with preference given to SNPs with high minor allele frequencies), 

validation (with preference given to SNPs confirmed by multiple lines of evidence), 

location (with preference given to SNPs located at regular intervals), putative function 

(with preference given to SNPs in coding, splice site, and mRNA UTR regions), and 

scores provided by Illumina (with preference given to SNPs generating scores > 0.60).  

Illumina scores were determined by an algorithm weighing a series of factors to predict 

the success of each locus within an oligo pool assay.  Scores ranged between 0 and 1, 

with Illumina recommending selection of SNPs generating scores > 0.60.   

 

Quality Control 

All samples were quantified using a TaqMan® RNase P Detection kit and were 

concentrated or diluted to yield a final concentration of 50 ng/ul (Applied Biosystems, 

Foster City, CA).  Genotyping of the 768 SNPs required < 500 ng total DNA per sample.   

 

Duplicate quality controls samples were placed both within and across PCR plates and 

equivalent genotypes were required for all quality control samples to ensure accurate 

genotyping.  Hardy-Weinberg calculations were performed for each marker and 

Mendelian inconsistencies were identified using PedCheck ([(134)]; [(90)]).  Suspect 

samples and genotypes were dropped from the analyses.  All SNPs were required to have 
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> 95% of possible genotypes.  Verification of relationships between pairs of samples 

within families was performed using RELPAIR [(91)].   

 

Statistical Analysis 

SNP genotypes were analyzed for LD using Haploview software [(137)].  Data was 

analyzed with the pedigree disequilibrium test (PDT) for individual effects and 

Haploview for multilocus effects [(81)].  The PDT and Haploview are both powerful 

methods and are complimentary to each other.  The PDT uses marker genotype data from 

DSPs or affected individuals and their parents (provided that both parents have been 

genotyped).  The PDT can utilize information from related DSPs and/or parents and 

affected offspring from extended pedigrees.  The tests provided by the PDT are 

independent of linkage, and can therefore extract additional information from the families 

used in linkage analysis—making this a robust method for single locus analyses [(135)].  

Haploview was performed to simultaneously examine multiple SNPs and construct LD 

plots of the region.  Measures of LD generated in Haploview are reported in terms of p 

values [(137)]. 

 

Statistical Power Calculations 

Because very little is known about the underlying genetics of MS, it is difficult to 

determine the power of genetic analyses for the disease.  With this caveat in mind, the 

MSGG performed simulations to test the power of the PDT to detect genetic effects.  

PDT power calculations were performed using an alpha value = 0.05 and a disease allele 

frequencies of 0.04 and 0.10 (corresponding to λs values = 1.25 and 1.75, respectively).  
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Assuming that the marker allele being tested is the disease susceptibility allele, the PDT 

was found to have good power to identify a locus with as few as 150 DSPs, even when 

the allele confers only a small genetic effect for the disease.  Additional simulations were 

performed for the more likely scenario that the SNP allele being tested is in LD with the 

disease susceptibility allele.  Not surprisingly, power was found to decrease with the 

degree of association.  For a sibling recurrence risk (λs) of 1.25, the PDT provides 

reasonable power when association is only 60% of its maximal value for 150 DSPs.  With 

a sample size of 400 DSPs (less than the number available in our data set), the PDT 

provides 80% power with as little as 40% of maximal association.  In addition to DSPs, 

our data set also includes many trios.  Studies have shown that trios are at least as 

powerful as DSPs under most conditions [(135)].   

 

Because multilocus tests generally incorporate more information than single locus tests, 

we expected the power of Haploview to be similar or greater than the power of the PDT.  

In order to assess the power of multilocus association statistics, we performed 

calculations using the PBAT software package [(136)].  The PBAT program was used to 

determine power for a range of genetic models in our available data sets (Table 2).  

PBAT power calculations were performed using an alpha value = 0.05 and disease allele 

frequencies of 0.2 and 0.01 (to model common susceptibility alleles for autosomal 

dominant and autosomal recessive disease models, respectively).  As with the PDT, 

family based association tests were found to have good power to identify a locus in any 

of our multiplex or simplex data sets when assuming the marker allele being tested is the 

susceptibility allele, even when the susceptibility allele confers only a small genetic 



 

 95 

effect for the disease.  When assessing the more likely scenario that the SNP allele being 

tested is in LD with the disease susceptibility allele, we again detected reasonable power 

in the multiplex data set when association is only 40% of its maximal value and marker 

allele frequencies are as low as 0.05 (under both disease models).  Reasonable power was 

also seen for comparable scenarios in the simplex data sets, with the African-American 

simplex data set demonstrating slightly reduced power compared to the U.S and U.K 

simplex data sets.  As expected, power was found to decrease with the degree of 

association and with the level of marker informativeness in each data set. 

 

Table 2.  Available Data Sets 

 

Family Type # Families # Affecteds # Unaffecteds 

Multiplex 192 492 881 

Simplex (U.S.) 593 593 1305 

Simplex (U.K) 1000 1000 2000 

Simplex (Af-Am) 489 489 339 
 

 
Results 

A preliminary assessment of the 1q44 region was performed using tools available through 

Celera and several public databases (see Celera website; UCSC website; Ensembl 

website; NCBI website).  Database mining of the ∼ 7.0 Mb region revealed 42 known or 

predicted genes and 24,977 SNPs (Table 1; Table 3). 

 

A graphical display of the UCSC genome browser output, including tracks for 

chromosomal bands, known genes (based on information from the SWISS-PROT, 
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TrEMBL, mRNA, and RefSeq databases), Ensembl genes, GenBank mRNAs, and 

regions generating 5% MCS scores, is provided in Figure 2 (see UCSC website).  An 

example of text output for 5% MCS regions in the UCSC genome browser is provided in 

Table 4.  A detailed classification of SNPs located in the 1q44 region is provided in Table 

3. 

 
Previous analyses suggest that the top ∼ 4-7% of MCS scores are very likely to indicate 

regions undergoing evolutionary selection [(133)].  This threshold also detects the vast 

majority of coding exons, while still detecting many noncoding regions.  We therefore 

selected SNPs from the top 5% MCS-scoring regions from the ~ 7.0 Mb positional 

candidate region on chromosome 1q44.  An overview of this output revealed 900 SNPs 

located in 5% MCS sequences from this region and indicated that in addition to detecting 

many coding exons, numerous 5% MCS regions are indeed within intronic and intergenic 

areas (Table 3). 

 

Several SNPs located in 5% MCS regions were not selected for the study due to the 

nature of the variation (e.g. insertion/deletions or multiple mutation events leading to > 2 

alleles) and/or the failure to generate an Illumina score > 0.60.  Because elimination of 

these SNPs resulted in the identification of less than 768 SNPs in conserved regions, 

additional SNPs were selected from non-conserved regions with a similar prioritization 

scheme.  Average spacing of the 768 SNPs in the ∼ 7.0 Mb region on 1q44 region was < 

10 kb—allowing for coverage of the region that is appropriate for observed patterns of 

LD in Caucasian populations. 
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Table 3.  Classification of SNPs in the ∼∼∼∼ 7.0 Mb Region on Chromosome 1q44.  SNP 
classifications and heterozygosity information were obtained from dbSNP build 124 (see 
NCBI dbSNP website).  Heterozygosity information was not available for all SNPs.   
 

Location / Classification # SNPs 

∼ 7.0 Mb Region 24977 

5% MCS Sequences 900 

Heterozygosity > 0.10 4548 

Heterozygosity > 0.20 3799 

Heterozygosity > 0.30 3051 

Heterozygosity > 0.40 2152 

Heterozygosity > 0.50 12 

Coding Synonymous 39 

Coding Nonsynonymous 72 

Intronic 10133 

Splice Site 2 

mRNA UTR 1743 
 
 

 

 

Figure 2.  UCSC Genome Browser for the ~ 7.0 Mb Region on Chromosome 1q44 
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Table 4.  Example of Coordinates for the 5% MCS Output in the UCSC Genome 

Browser  Base pair positions are shown for a small fraction of conserved regions 
identified using the multi-species conserved sequence algorithm in the 1q44 region.  The 
output for conserved sequence intervals was combined with SNP location information to 
identify markers to be tested for association with MS. 
 
 

chrom chromStart chromEnd name 

chr1 236909187 236909248 mcs 
chr1 236909280 236909322 mcs 
chr1 236912128 236912326 mcs 
chr1 236912334 236912361 mcs 
chr1 236913252 236913283 mcs 
chr1 236916559 236916585 mcs 
chr1 236916710 236916743 mcs 
chr1 236916769 236916805 mcs 
chr1 236917352 236917387 mcs 
chr1 236917448 236917483 mcs 
chr1 236918129 236918161 mcs 
chr1 236918164 236918206 mcs 
chr1 236922118 236922160 mcs 
chr1 236922217 236922243 mcs 
chr1 236922475 236922504 mcs 
chr1 236922509 236922535 mcs 

 

 



 

 99 

Extensive quality control measures were taken to ensure consistent quality of DNA 

samples and SNPs.  Of the 1012 MS samples genotyped in the study, twelve samples 

were eliminated from the analyses as a result of poor sample quality or Mendelian 

inconsistencies [(90)].  Of the 768 SNPs genotyped in the study, 189 SNPs were 

eliminated from the analyses.  Seventeen of these SNPs failed to sufficiently amplify or 

cluster, while 172 SNPs were monomorphic (and therefore uninformative) in our MS 

data set.  Of the remaining 574 SNPs, five SNPs demonstrated genotyping efficiencies 

between 90% and 95%.  Of the 569 SNPs with genotyping efficiencies > 95%, only five 

SNPs fell below the predetermined HWE threshold of p values < 0.001.  Given the 

apparent quality of genotyping (e.g. strong signals and tight clustering) for these SNPs, 

all five SNPs were included in the analyses.  The average genotyping efficiency for the 

569 analyzed SNPs was 99.6%.  A complete list of SNPs passing all quality control 

measures is provided in Appendix D. 

 

Haploview identified 124 LD blocks for the overall data set using the “solid spine” 

criteria (Figure 3).  P values < 0.05 were generated for 39 LD blocks, with the most 

significant block generating a p value of 0.0011.  Haploview identified 129 LD blocks for 

the subset of linked families only.  P values < 0.05 were generated for 31 LD blocks, with 

the same block from the overall data set generating a p value of 0.0011.  This block 

demonstrating association in the overall data set and linked subset contains 2 SNPs 

spanning a region containing the opsin 3 (OPN3) and opioid binding protein/cell 

adhesion molecule-like (OPCML) genes. 
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Figure 3.  Haploview Plot and Representative Haploview Blocks for Chromosome 1q44 
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Single marker analyses performed with the TDT and PDT identified four subregions 

containing clusters of five or more SNPs demonstrating p values < 0.05 (Table 5).  The 

first region contains five SNPs spanning ∼ 43 Kb and includes the cardiac ryanodine 

receptor 2 (RYR2) gene involved in calcium signaling.   

 

The second region contains fourteen SNPs spanning ∼ 55 Kb and includes the formin 2 

(FMN2) gene involved in cytoskeletal formation and a gremlin homology (PDRC) gene 

that functions as a BMP antagonist.  In addition to the clusters of SNPs generating p 

values < 0.05, this second region also contains a haplotype block generating a p value < 

0.05.   

 

The third region contains twelve SNPs spanning ∼ 163 K and includes the regulator of G 

protein signaling 7 (RGS7) gene.  Significant p values in this region were generated only 

in the subset of linked families, providing consistent evidence of linkage and association 

to markers in this subregion in a subset of families.   

 

The fourth region contains eight SNPs spanning ∼ 48 K and includes a putative WD 

repeat domain 64 (WDR64) gene with homology to genes that coordinate protein 

complex assembly.  Two of the SNPs in this region that generated p values < 0.05 are 

classified as coding non-synonymous SNPs (see NCBI dbSNP website).   
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Table 5.  1q44 Subregions with Interesting Single Marker Association Results 

 

Region Size # SNPs 

# 5% 

MCS 

SNPs 

Gene(s) / 

Putative 

Gene(s) 

Gene Function Comments 

1 ~ 43 Kb 5 2 RYR2 calcium signaling N/A 
2 ~ 55 Kb 14 11 FMN2 cytoskeletal formation p < 0.05 for haplotype 
    PDRC BMP antagonist  
3 ~ 163 Kb 12 7 RGS7 G protein signaling p < 0.05 only in linked families 

4 ~ 48 Kb 8 4 WDR64 protein complex assembly p < 0.05 for 2 coding 
non-synonymous SNPs 
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Discussion 

The approach employed in this study utilized a novel method for identification and 

prioritization of markers to be genotyped in a genetic association study of a positional 

region of interest.  By combining locational and putative functional information, this 

method aimed to speed the process of identifying an MS susceptibility gene on 

chromosome 1q44.   

 

The use of WebMCS in this study revealed several interesting observations.   For 

example, a substantial portion of multi-species conserved sequences on chromosome 

1q44 are located in noncoding regions.  This observation highlights the importance of the 

MCS tool in detecting potentially functional sequences from relatively large genomic 

regions (e.g. several Mb) without arbitrary consideration of gene annotation.  Preliminary 

results in our data set suggest that WebMCS could be a powerful for predicting functional 

information for genetic association studies. 

 

We believe that this novel approach for follow-up of linkage studies increased the 

likelihood of successfully identifying a genetic factor in the 1q44 region.  The discovery 

of a gene conferring susceptibility to MS in one of the subregions identified in this study 

would suggest that this approach could serve as a model for locational candidate studies 

in MS and other complex diseases. 

 

Future Directions 

SNPs demonstrating significant association results in this study (p values < 0.05) will be   
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selected for additional genotyping in ∼ 600 U.S. simplex families (Table 2).  Genotyping 

of the simplex families will be performed using the ABI TaqMan® 7900HT system in 

conjunction with TaqMan® Assays-on-DemandSM (when available) or TaqMan® Assays-

by-DesignSM.  The simplex families will be analyzed separately from the multiplex 

families to allow for replication of results in an independent data set.  

 

SNPs continuing to demonstrate significant association results in the ∼ 600 simplex 

families (p values < 0.05) will also be tested in the U.K. simplex and African-American 

simplex data sets.  In addition to serving as an additional data set, the African-American 

samples will also provide a unique opportunity to assess ethnic-specific LD patterns in 

the 1q44 region.   

 

Availability of these independent data sets translates to considerable power for detecting 

genetic effects and replicating positive results.  The large size of these data sets also 

allows for conditional analyses that can potentially increase the power to detect genetic 

effects by identifying homogenous subsets.  Identification of subsets can also reduce time 

and cost for detailed follow-up studies.  Potential covariates for studies in these data sets 

include HLA-DR2 genotype, age at onset, progression, clinical subset, and family type.  

Empiric p values will be used to determine whether increased signals generated in subsets 

are statistically significant.   

 

Several other phenomena of interest can also be investigated with the MCS tool.  For 

example, the tool can be used to assess the distribution of conserved SNPs in exons 
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versus introns, as well as the distribution of SNPs in conserved versus non-conserved 

regions.  In addition, we are interested in investigating the relationship between 5% MCS 

regions and SNPs demonstrating association.  For example, preliminary analyses of the 

four subregions demonstrating association with MS indicate that 62% of SNPs generating 

p values < 0.05 are located in 5% MCS sequences.  We plan to utilize the MCS tool to 

investigate these and other phenomena to maximally characterize the architecture of the 

chromosome 1q44 region. 
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CHAPTER VIII 

 

CONCLUSIONS 

 

Despite overwhelming evidence for a strong genetic component in MS, identification of 

genes conferring disease susceptibility has largely eluded researchers.  With the 

exception of the MHC (containing HLA), traditional linkage analysis and candidate gene 

approaches have demonstrated insufficient power to identify genes or epigenetic factors 

that modulate MS disease risk.  The failure of these studies highlights the need for new 

approaches and methodologies to identify the remaining genetic effect in MS. 

 

Studies suggest that, like most common complex diseases, MS susceptibility is the result 

of multiple genes acting either independently or interactively in their contribution to 

overall risk.  In addition to this complex etiology, clinical heterogeneity is likely to be a 

confounding factor in studies of MS.  Fortunately, recent advances in bioinformatics, 

genotyping technologies, and statistical analysis methods are providing researchers with 

the tools necessary to address a variety of challenges involved in identifying genes for 

complex genetic diseases.   

 

The goal of the work presented in this dissertation was to identify non-MHC loci that 

harbor MS susceptibility genes.  Our studies entailed a new genomic convergence 

approach incorporating information gained from positional (linkage and association) and 

functional (comparative sequence) studies.  In conjunction with high-throughput 



 

 107 

genotyping and powerful new statistical analyses methods, this approach was used to 

conduct a directed investigation of the genetic contribution to MS.  The following aims 

were undertaken in our genomic convergence approach to investigate the genetic 

susceptibility of MS: 

 

Specific Aim 1: Conduct a simulation study using families generated with 

Genometric Analysis Simulation Program (GASP) software to assess the 

effectiveness of using haplotype-based positional mapping to define a minimum 

candidate region for a disease of interest.   

 

Several variables (e.g. sample size, pattern of inheritance, and heterogeneity) were 

investigated for their effect on the power of the haplotype-based positional mapping 

approach.  The modified consensus haplotyping approach in Specific Aim 1 

demonstrated only modest power to narrow a minimum candidate region in the 

simulation data.  Perhaps not surprisingly, the approach also demonstrated only a modest 

ability to narrow the minimum candidate region on chromosome 1q44 in MS genotyping 

data.  Fortunately, more encouraging results for narrowing minimum candidate regions in 

the MS data set were simultaneously being generated in preliminary analyses of 

genotyping data for Specific Aim 2.  Covariate analyses, including OSA, were therefore 

selected as the method to address genetic heterogeneity in studies of the MS data set in 

Specific Aim 2 (see Chapter 5). 

 

Specific Aim 2: Test candidate genes for association with MS: 
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a.  Identify and select a genetic interval of interest for MS.   

 

We began our investigation with a genomic linkage screen that identified seven 

chromosomal regions of interest in a data set of multiplex MS families:  1q, 2q, 9q, 13q, 

16q, 18p, and 19q.  To narrow these regions, we developed an approach for more detailed 

linkage studies that capitalized on new methods for rapid and accurate genotyping of 

SNPs.  In addition to increasing marker coverage in each region, we genotyped an 

expanded data set and devised covariate analyses schemes to account for genetic effect in 

the MHC (see Specific Aim 2b).   

 

b.  Apply the approach from Specific Aim 1 to the interval of interest identified in 

Specific Aim 2a.   

 

As mentioned in the discussion of Specific Aim 1, covariate analyses were selected as the 

preferred method to address genetic heterogeneity in our data set.  We developed subset, 

conditional, and ordered subset analyses schemes to account for genetic effect of HLA-

DR and linkage to chromosome 1q.  These follow-up analyses continued to provide 

evidence of linkage to several chromosomal regions, with particularly compelling 

evidence for chromosomal regions 1q44, 2q35, 9q34, and 18p11.  

 

c.  Identify candidate genes in the selected interval of interest.   
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Chromosome 1q44 was selected as the interval of interest for more detailed follow-up 

studies based on several lines of evidence, including continued evidence of linkage in 

Specific Aim 2b, evidence of linkage and/or association in other genomic screens 

conducted in a variety of MS study populations, and evidence of linkage to the region in 

studies of other autoimmune diseases.  Although we identified candidate genes in the 

region based on their potential biological relevance to MS, we performed a detailed 

investigation of the 1q44 region using a novel approach detailed in Specific Aim 3. 

 

d.  Select a region and a narrow interval of interest for follow-up with SNPs in 

Specific Aim 3.  

 

As mentioned in the discussion of Specific Aim 2c, chromosome 1q44 was selected for 

detailed follow-up studies in Specific Aim 3. 

 

Specific Aim 3: Measure association between a dense population of SNPs and MS in 

the region of interest identified in Specific Aim 2.   

a.  Prioritize SNP markers for an MS association study in the interval of interest 

based on conservation between human, mouse, rat, and chick genome sequences.   

 

We developed a systematic approach to expedite follow-up association studies for the 

positional candidate region on chromosome 1q44.  In an attempt to increase the 

likelihood of detecting variants associated with MS, we developed and employed a novel 

method to identify and prioritize SNPs located in multi-species conserved sequences.   
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b.  Measure association between a dense population of SNPs located in conserved 

regions of interest and a data set of families linked to the region.   

 

Use of the method developed in Specific Aim 3a on chromosome 1q44 data resulted in 

the identification of four subregions demonstrating significant association with MS 

susceptibility.  These regions contain several known or putative genes: ryanodine 

receptor 2 (RYR2), formin 2 (FMN2), regulator of G protein signaling 7 (RGS7), a 

putative WD repeat domain 64 (WDR64) gene, and a gremlin homology (PDRC) gene.  

Additional studies of the 1q44 region are currently underway. 

 

The specific aims in this dissertation entailed a novel method for identification of genes 

underlying the susceptibility to MS.  Use of these methods confirmed support for several 

chromosomal regions that warrant further investigation.  It is our hope that the studies 

presented in this dissertation will result in the discovery of several genes associated with 

MS and that our genomic convergence approach will provide researchers with a method 

for unraveling the genetic heterogeneity of MS and other complex genetic diseases. 
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APPENDIX A 

 

General Methods 

 

Microsatellite Genotyping (Genomic Screen): 

 

Primer Selection: 

 

Obtain primer sequences for the desired microsatellite marker from the Genome Database 

(http://www.gdb.org/).  If sequences are unavailable, design primers with Primer3 

software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi).  Order synthesized 

custom oligos from Operon (http://www.operon.com/).   

 

Primer Design: 

 

Use Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) to 

design primers for the desired microsatellite marker: 

 

Obtain genomic sequence containing the desired microsatellite marker from the 

NCBI (http://www.ncbi.nih.gov/) or Celera 

(http://www.celeradiscoverysystem.com/index.cfm) website.  Download FASTA-

formatted sequence or add the symbol “>” to the beginning of the sequence (e.g. 

>ATCG). 
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Mask the FASTA-formatted sequence for repetitive DNA elements using 

RepMasker software (http://www.repeatmasker.org/).   

 

Paste masked sequence into the Primer3 sequence window and specify targeted 

and/or excluded regions.  

 

Change “Product Size Range” to include appropriate product size. 

Change “Primer Size” to range from 18-24 bp (optimal: 21 bp). 

Change “Primer Tm” to range from 55°C - 65°C (optimal: 60°C). 

Change “Maximal Tm Difference” to 5°C. 

Change “Primer GC%” to range from 40% - 60% (optimal: 50%). 

 

Click on “Pick Primers” and retrieve forward and reverse primer sequences. 

 

BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) the forward and reverse primer 

sequences to verify specificity of binding to the desired locus.   

 

Helpful Hints:  If Primer3 fails to return potential primer sets, ease constraints 

(e.g. widen ranges for “Primer Tm” and “Primer GC%”).  If BLAST indicates 

binding to multiple loci (with high specificity), select a different primer set.  

When genotyping more than one microsatellite marker, consider designing 

primers for different product sizes to allow for multiplex reactions. 



 

 113 

 

Polymerase Chain Reaction (PCR): 

 

In each well of a 96-well PCR plate, combine 1.0 µL patient DNA (@ 0.02 µg/µl) with 

9.0 µL PCR mix (shown below).  Amplify DNA with the appropriate PCR program on 

the Hybaid PCR Express Thermal Cycler or the MJ Research PTC-225® Peltier Thermal 

Cycler.   

 

PCR Mix (96 rxns. @ 10 µL/rxn.): 

 

880 µL GIBCO BRL® PCR SuperMix* 

50 µL forward primer (@ 0.10 µg/µL) 

50 µL reverse primer (@ 0.10 µg/µL) 

 

*22 mM Tris-HCl (pH 8.4), 55 mM KCl, 1.65 mM MgCl2, 220 µM dGTP,    

  220 µM dATP, 220 µM dTTP, 220 µM dCTP, 22 U recombinant Taq  

  DNA Polymerase/ml, stabilizers 

 

Annealing Temperature (AT) Calculation: 

 

(A + T) × 2 = X 

(G + C) × 4 = Y 

X + Y = Z 



 

 114 

Z – 5 = Annealing Temperature (AT) 

 

PCR Program: 

 

94°C –  4 min. 

 

94°C – 15 sec. 

AT    – 30sec.   35 cycles 

72°C – 45 sec.  

 

72°C – 4 min. 

4°C – ∞ (HOLD) 

 

Gel Electrophoresis: 

 

Size fractionate PCR products on a 6% denaturing polyacrylamide gel.  

 

Glass Plate Preparation: 

 

Spray one side of a long glass plate with TexClean™100.  Remove 

TexClean™100 (and any adhered gel) with a razorblade.  Spray the plate with 

ethanol and wipe clean with a KimWipe®. 
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Spray one side of a notched glass plate with ethanol and wipe clean with a 

KimWipe®. 

 

Place the long plate on a gel slider with the clean side facing up.  Place one plastic 

spacer on each side of the plate and secure the spacers at the top and middle of the 

plate with four plastic clips. 

 

Place the notched plate on top of the long plate with the clean side facing down 

and overlapping the bottom of the long plate by one inch. 

 

Gel Preparation: 

 

6% Denaturing Polyacrylamide Gel: 

 

75 mL National Diagnostics SequaGel® 6 Monomer Solution* *** 

15 mL National Diagnostics SequaGel® 6 Complete Buffer** 

 

750 µL 10% Ammonium Persulfate 

 

* 6 M urea, acrylamide, bis-acrylamide (19:1) 

** 1X TBE (89 mM Tris Base, 89 mM Boric Acid, 2 mM EDTA, pH 8.3), 

TEMED 
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*** Combine SequaGel® 6 Monomer Solution and SequaGel® 6 Complete 

Buffer in the Monomer Solution bottle and invert several times.  The 

combined solution can be stored in the Monomer Solution bottle for 

extended periods of time. 

 

Stir the gel mix with the tip of a 60 cc plastic syringe (without creating bubbles).  

Draw mix into the syringe and start dispensing mix onto the edge of the notched 

plate.  Continue to dispense mix while sliding the notched plate toward the top of 

the long plate.  Remove clips when necessary and continue to dispense mix until 

the edges of the plates are flush. 

 

Replace the four plastic clips on the sides of the plates.  Insert plastic molding 

combs ½” into the space between the top of the plates to make a straight edge in 

the gel.  Secure the molding combs with several metal clamps, with one metal 

clamp securing the position where the combs meet. 

 

After the gel has polymerized (~ 20 min.), remove all clips and clamps from the 

plates. 

 

Once a month (or as needed): 
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Spray the notched plate with a small amount of Acrylease™ Plate Coating.  Buff 

Acrylease™ evenly over the notched plate with a KimWipe®.  Remove excess 

Acrylease™ with ethanol and a KimWipe®. 

 

Gel Rig Setup: 

 

Place the plates in an electrophoresis rig.  Secure the sides of the plates with 

plastic clips and the top of the plates with a plastic bar.  Fill the top and bottom 

reservoirs with 1X TBE buffer.  Place a loading spacer in the gap at the top of the 

gel and flush wells with an eyedropper.   

 

Gel Loading: 

 

Add 5 µL loading dye to each 10 µL PCR reaction.  Denature PCR products for 3 

min. @ 95°C.  Load 2.5 µL of each sample on the 6% denaturing polyacrylamide 

gel with a 12-channel pipette.  Run gel for ~1 hr. @ 75 W.  

 

Loading Dye (10 mL): 

 

9.5 mL formamide 

500 µL 0.5 M EDTA 

0.0012 g BromoPhenol Blue powder 
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SYBR® Gold Nucleic Acid Gel Stain (50 mL): 

 

5 µL SYBR® Gold (10,000X concentrate in DMSO) 

50 mL 1X TBE 

 

Helpful Hint:  Store SYBR® Gold dilution @ 4ºC for no longer 

than one week. 

 

Separate the glass plates with a plastic plate splitter (the gel should remain on the long 

plate).  Pour one 50 mL tube of diluted SYBR® Gold solution onto the gel.  Let the 

SYBR® Gold solution sit on the gel for 5-10 minutes.  Gently rinse the SYBR® Gold 

solution from the gel with H2O and wipe the outside of the long glass plate dry.  Scan the 

plate/gel on the Hitachi Biosystems FMBIOII laser scanner and print the image for 

genotyping. 

 

SNP Genotyping (Genomic Screen Follow-Up): 

 

Select SNPs from the Celera (http://www.celeradiscoverysystem.com/index.cfm) or 

Applied Biosystems (http://www.appliedbiosystems.com/) websites and order the 

corresponding Assays-On-DemandSM or Assays-by-DesignSM.  

 

Assays-On-DemandSM: 

 



 

 119 

PCR Mix: 

 

1.0 µL  patient DNA (@ 0.05 µg/µl) 

 

2.5 µL   TaqMan® Universal PCR Master Mix, No AmpErase® UNG (2X) 

0.25 µL 20X TaqMan® SNP Genotyping Assay Mix 

1.25 µL  Milli-Q® H2O 

 

Helpful Hints:  Protect fluorescent tags in the Assay Mix from light by wrapping 

each tube in aluminum foil.  Minimize freeze-thaw cycles for the Assay Mix by 

simultaneously running multiple plates of DNA samples for each assay (or aliquot 

the assays in multiple tubes after the initial thaw).  

 

Allelic Discrimination PCR Program: 

 

95°C – 10 min. 

 

92°C – 15 sec.  50 cycles 

60°C – 1 min. 

 

4°C – ∞ (HOLD) 
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Helpful Hint:  SNP Genotyping Assay Mix can be diluted ≥ 4X for most assays 

(assess assay strength in the first PCR run and dilute mix for subsequent reactions 

accordingly). 

 

Assays-by-DesignSM: 

 

PCR Mix: 

 

1.0 µL  patient DNA (@ 0.05 µg/µl) 

 

2.5 µL  TaqMan® Universal PCR Master Mix, No AmpErase® UNG (2X) 

0.125 µL  40X TaqMan® SNP Genotyping Assay Mix 

1.375 µL  Milli-Q® H2O 

 

Helpful Hints:  Keep fluorescent tags in the Assay Mix protected from light by 

wrapping each tube in aluminum foil.  Minimize freeze-thaw cycles for the Assay 

Mix by simultaneously running multiple plates of DNA samples for each assay 

(or aliquot the assays in multiple tubes after the initial thaw). 

 

Allelic Discrimination PCR Program: 

 

95°C – 10 min. 
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92°C – 15 sec.  50 cycles 

60°C – 1 min. 

 

4°C – ∞ (HOLD) 

 

Helpful Hint:  SNP Genotyping Assay Mix can be diluted ≥ 4X for most assays 

(assess assay strength in the first PCR run and dilute mix for subsequent reactions 

accordingly). 

 

Perform PCR amplification of Assays-On-DemandSM or Assays-by-DesignSM in a 384-

well GeneAmp® PCR System 9700 (Applied Biosystems) or a 384-well DNA Engine 

Tetrad® 2 Peltier Thermal Cycler (MJ Research).   

 

Launch SDS 2.1 software on a computer connected to the ABI PRISM® 7900HT 

Sequence Detection System (Applied Biosystems).  Designate the appropriate allele for 

each fluorescently tagged reporter dye (e.g. A for VIC, G for FAM).  Place a PCR plate 

in the scanner and perform an endpoint read.  Genotype samples using the 95% 

confidence interval function.  Export genotyping data from the results table to a text 

document to be used in statistical analysis.  

 

Other Reagents/Dilutions/Kits: 

 

1X TBE Buffer (National Diagnostics): 
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 89 mM Tris Base 

 89 mM Boric Acid (pH 8.3) 

 2 mM EDTA 

  

Puregene™ DNA Hydration Solution: 

 

10 mM Tris Base 

1 mM EDTA 

 

Milli-Q® H2O (Millipore) 

 

TaqMan® RNase P Detection Reagents Kit (Applied Biosystems) 

 

General Methods of Collaborators: 

 

HLA Genotyping (Genomic Screen): 

 

Genotypes for HLA-DR in U.S. families were determined at UCSF using non-radioactive 
PCR-SSOP (Dynal Biotech).   

 

Genotypes for HLA-DR in French families were determined using reverse dot 

blot hybridization. 
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APPENDIX B 

 
 

Seven Candidate Regions for MS – SNP Information 
 

 
 
Table 1.  Chromosome 1q SNPs 
 
 

Celera ID Public ID Celera Mb Location Mb Interval Gene MAF SNP Type SNP 

hCV1650709 rs734551 205.263268 1.114235 DISC1 0.48 Intronic [A/G] 

hCV2798667 N/A 206.377503 0.698733 MGC13186 0.50 Intronic [A/G] 

hCV8690690 rs701237 207.076236 0.985738 KCNK1 0.36 Intronic [C/G] 

hCV2711850 rs564212 208.061974 0.896874 hCG1813648 0.40 Intronic [C/T] 

hCV695532 rs423026 208.958848 0.971200 GNG4 0.49 Intronic [C/G] 

hCV7540624 rs1266380 209.930048 1.004790 LGALS8 0.47 Intronic [A/G] 

hCV16123987 rs2805432 210.934838 0.937254 RYR2 0.50 Intronic [A/G] 

hCV401377 rs1557132 211.872092 1.251360 hCG23440 0.50 Intronic [T/C] 

hCV2050524 rs2278644 213.123452 0.903277 hCG1984146 0.38 Intergenic/Unknown [A/C] 

hCV12008520 rs1934338 214.026729 1.004684 FLJ21195 0.47 Intronic [C/G] 

hCV605574 rs671989 215.031413 0.763360 CHML 0.48 Intronic [A/G] 

hCV26589316 N/A 215.794773 0.950948 hCG1989348  0.50 UTR3 [A/C] 

hCV16244390 rs2490395 216.745721 1.438506 hCG16602 0.42 Intronic [A/G] 

hCV9487525 rs1566661 218.184227 0.807586 hCG1660865 0.45 Missense Mutation [A/C] 

hCV11669158 N/A 218.991813 1.067830 FLJ10157 0.41 Intronic [T/G] 

hCV15761414 rs3007406 220.059643 0.999964 FLJ23001 0.42 Intronic [A/G] 

hCV11669332 N/A 221.059607 0.737545 hCG1646765 0.48 Intronic [C/T] 

hCV12010310 rs2039824 221.797152   hCG1724360 0.36 Silent Mutation [C/T] 

        

D1S1594 214.036133 - 214.036253     Microsatellite   

D1S547 215.010921 - 215.011224     Microsatellite   

D1S1634 215.585528 - 215.585699     Microsatellite   
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Table 2.  Chromosome 2q SNPs 
 
 

Celera ID Public ID Celera Mb Location Mb Interval Gene MAF SNP Type SNP 

hCV11827407 rs1982131 172.460711 1.103740 PDE11A 0.46 Intronic [A/G] 

hCV2152432 rs2847 173.564451 1.180400 SESTD1 0.43 Intergenic/Unknown [C/T] 

hCV31157131  rs13391691 174.744851 1.002856 N/A N/A Intergenic/Unknown [G/T] 

hCV1051244 rs720453 175.747707 0.964938 N/A 0.49 Intergenic/Unknown [C/G] 

hCV2074867 rs2128043 176.712645 0.885402 PDE1A 0.47 Intronic [A/G] 

hCV1543267 rs2952363 177.598047 1.050445 LOC129401/NUP35 0.45 Intronic [G/T] 

hCV426462 rs10497643 178.648492 1.112739 N/A 0.44 Intergenic/Unknown [C/T] 

hCV7617345 rs889909 179.761231 1.057397 N/A 0.33 Intergenic/Unknown [G/T] 

hCV11518651 rs10177153 180.818628 0.984987 N/A 0.36 Intergenic/Unknown [C/T] 

hCV1590313 rs1528233 181.803615 0.898701 CALCRL 0.42 Intergenic/Unknown [A/G] 

hCV474783 rs11692963 182.702316 0.772323 N/A 0.39 Intergenic/Unknown [A/C] 

hCV1729153 rs3134646 183.474639 1.140407 COL3A1 0.50 Intergenic/Unknown [A/G] 

hCV2831378 rs785260 184.615046 0.815149 N/A 0.49 Intergenic/Unknown [A/C] 

hCV22274194 rs3771300 185.430195 1.200225 STAT1;GLS 0.43 Intronic [T/G] 

hCV16207964 rs2356955 186.630420 0.405657 TMEFF2 0.45 Intronic [A/C] 

hCV541573 rs717621 187.036077 0.862366 N/A 0.49 Intergenic/Unknown [A/T] 

hCV11950973 rs726129 187.898443 0.936343 N/A 0.39 Intergenic/Unknown [C/G] 

hCV1346631 rs4591357 188.834786 0.871059 hCG2038662 N/A Intronic [A/G] 

hCV8744355   rs1019845 189.705845 0.777310 Unknown 0.44 Intergenic/Unknown [A/G] 

hCV7620124 rs1551838 190.483155 1.129796 DNAH7 0.44 Intronic [C/T] 

hCV1291059    N/A 191.612951 1.093056 LOC91526 0.48 Intergenic/Unknown [C/T] 

hCV2123977 rs1064213 192.706007 1.187134 PLCL1 0.41 Missense Mutation [A/G] 

hCV2153217   rs2881208 193.893141 0.637732 hCG20092 0.35 Intergenic/Unknown [C/T] 

hCV3230597 rs1124639 194.530873 0.864581 FLJ38973 0.50 Intergenic/Unknown [C/T] 

hCV1223380    N/A 195.395454 1.122969 hCG1811467 0.46 Intergenic/Unknown [C/T] 

hCV347110    rs759419 196.518423 0.974936 ALS2CR7 0.48 Intergenic/Unknown [A/G] 

hCV8761981 rs3845802 197.493359 0.984214 LOC130026/WDR12/ALS2CR14 0.41 Intergenic/Unknown [G/T] 

hCV2821059  rs926169 198.477573 1.203750 CTLA4 0.41 Intronic [G/T] 

hCV1572836 N/A 199.681323 0.818677 ALS2CR19 0.48 Intergenic/Unknown [C/T] 
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hCV2186447    rs1045043 200.500000 1.172078 NRP2 0.43 Intergenic/Unknown [C/G] 

hCV2772287 rs2287508 201.672078 0.731708 CPO 0.41 Intergenic/Unknown [C/T] 

hCV3090677   N/A 202.403786 0.880599 FZD5 0.43 Intergenic/Unknown [A/C] 

hCV1737148 N/A 203.284385 1.158995 hCG2041988 0.47 Intergenic/Unknown [A/G] 

hCV2668266     rs731953 204.443380 0.817609 hCG1821192/hCG2040260 0.50 Intergenic/Unknown [G/T] 

hCV2034024 rs2887914 205.260989 1.202672 CPS1/PRO0132 0.45 Intronic [A/C] 

hCV8835839   rs714393 206.463661 1.179599 ERBB4 0.50 Intronic [C/T] 

hCV1861868   rs1871946 207.643260 0.977608 ZNFN1A2 0.45 Intronic [C/T] 

hCV1552068 rs2372109 208.620868   hCG1648127 0.41 Intergenic/Unknown [A/G] 

        

GATA149B10 193.459832 - 193.459963     Microsatellite   

D2S1384 198.981939 - 198.982084     Microsatellite   

D2S1365 205.839346 - 205.839546     Microsatellite   
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Table 3.  Chromosome 9q SNPs 
 
 

Celera ID Public ID Celera Mb Location Mb Interval Gene MAF SNP Type SNP 

hCV1899341 rs3810928 87.463072 1.030977 AMBP 0.47 Missense Mutation [C/T] 

hCV3022586 rs1061494 88.494049 0.820104 TNC 0.50 Missense Mutation [C/T] 

hCV7593836 N/A 89.314153 0.857951 EST-YD1 0.44 Intronic [A/T] 

hCV1979634 N/A 90.172104 0.945717 ASTN2 0.49 Intronic [C/T] 

hCV11722141 rs1927911 91.117821 1.650176 TLR4 0.31 Intronic [A/G] 

hCV1920588 rs1324623 92.767997 1.945431 DBCCR1 0.37 Intronic [G/T] 

hCV1219009 rs3747850 94.713428 0.849474 GSN 0.50 Intronic [G/T] 

hCV11884087 rs4679 95.562902 1.242257 NDUFA8 0.40 Silent Mutation [T/C] 

hCV58657 N/A 96.805159 0.625528 KIAA1608 0.39 Intronic [C/T] 

hCV8780788 rs1042486 97.430687 1.180163 LHX2 0.46 Silent Mutation [C/G] 

hCV302240 rs501963 98.610850 0.769140 RAB9P40 0.48 UTR5/Intronic [A/G] 

hCV8782473 rs2302748 99.379990 0.996620 PBX3 0.48 Intronic [C/T] 

hCV2700890 rs2874799 100.376610 0.778330 RALGPS1A 0.46 Intronic [C/G] 

hCV580692 rs514024 101.154940 1.199810 SH2D3C 0.45 Silent Mutation [A/G] 

hCV16180096 N/A 102.354750 0.881342 hCG30598 0.40 Missense Mutation [A/G] 

hCV3180154 rs2296793 103.236092 1.063196 DYT1 0.21 Silent Mutation [A/G] 

hCV2605168 rs1056171 104.299288 1.382549 ABL1 0.46 Silent Mutation [A/G] 

hCV8782344 N/A 105.681837 0.448301 KIAA0625 0.33 Missense Mutation [C/T] 

hCV32127084 rs7466085 106.130138 0.016144 N/A 0.46 Intergenic/Unknown [A/G] 

hCV28004010 rs4962076 106.146282 0.019589 C9orf98/FLJ32704 0.24 Intronic [C/G] 

hCV2980152 rs11243900 106.165871 0.022825 C9orf98/FLJ32704 0.39 Intronic [A/G] 

hCV32127137 N/A 106.188696 0.016502 C9orf98/FLJ32704 0.21 Intronic N/A 

hCV2535170 rs215156 106.205198 0.059186 hCG2033140/C9orf98 N/A Intronic [A/G] 

hCV1435374 rs4962218 106.264384 0.012696 C9orf98/FLJ32704 0.49 Intronic [A/G] 

hCV2567972 rs214636 106.277080 0.040694 C9orf98/FLJ32704 0.49 Intronic [A/G] 

hCV2536665 rs2809245 106.317774 0.043548 TSC1 0.47 Intronic [C/T] 

hCV1247472 rs12551192 106.361322 0.043049 TSC1 0.23 Intronic [A/G] 

hCV2253563 rs633153 106.404371 0.011651 GFI1B 0.39 Intronic [C/T] 

hCV7582593 rs944204 106.416022 0.029705 GFI1B 0.45 Intergenic/Unknown [C/G] 

hCV2535358 rs623489 106.445727 0.051142 GTF3C5 0.33 Intergenic/Unknown [C/T] 
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hCV2279860 rs685959 106.496869 0.018956 CEL 0.43 Intergenic/Unknown [C/T] 

hCV2535450 rs886017 106.515825 0.027814 RALGDS 0.48 Silent/UTR3 [A/G] 

hCV2535940 rs671050 106.543639 0.029382 RALGDS 0.35 Intronic [C/T] 

hCV2535973 rs2073927 106.573021 0.009384 GBGT1/RALGDS 0.36 Intronic [A/G] 

hCV2980279 rs9411461 106.582405 0.037330 FS/GBGT1 0.36 Intergenic/Unknown [C/G] 

hCV2980256 rs10901243 106.619735 0.011154 OBP2B 0.30 Intergenic/Unknown [C/G] 

hCV27224742 N/A 106.630889 0.043658 OBP2B 0.23 Intergenic/Unknown [C/T] 

hCV3183098 rs2073824 106.674547 0.016859 ABO 0.38 Intronic [A/G] 

hCV3183164 rs529565 106.691406 0.059909 ABO 0.22 Intronic [C/T] 

hCV3183233 rs120858 106.751315 0.037673 SURF5/SURF6 0.48 Intronic [A/G] 

hCV3183190 N/A 106.788988 0.028952 SURF4 0.48 Intronic [A/G] 

hCV8784811 rs943623 106.817940 0.014386 XPMC2H/C9orf96 0.48 Intronic/UTR [G/T] 

hCV11572323 rs3118663 106.832326 0.029276 XPMC2H/ADAMTS13 0.48 Intronic [A/G] 

hCV3183371 rs652600 106.861602 0.013230 ADAMTS13 0.44 Intronic [A/G] 

hCV8784809 rs1055432 106.874832 0.080484 ADAMTS13/C9orf7 0.36 Silent Mutation [A/G] 

hCV2536686 N/A 106.955316 0.019154 ADAMTSL2 0.24 Intronic [C/G] 

hCV1247496 rs1105633 106.974470 0.050847 ADAMTSL2/KIAA0605 0.47 Intronic [C/T] 

hCV2971472 rs1029372 107.025317 0.016123 N/A 0.40 Intergenic/Unknown [A/G] 

hCV2535803 rs2519148 107.041440 0.014377 DBH 0.48 Intergenic/Unknown [A/G] 

hCV2535694 rs1611122 107.055817 0.013991 DBH 0.47 Intronic [G/C] 

hCV2535675 rs2073837 107.069808 0.025723 DBH/SARDH 0.24 Intronic [A/G] 

hCV11572672 rs1076149 107.095531 0.024936 SARDH 0.34 Intronic [A/T] 

hCV2540688 rs495464 107.120467 0.023127 SARDH 0.42 Intronic [A/T] 

hCV2537353 rs916620 107.143594 0.792522 SARDH 0.41 Intronic [C/T] 

hCV12020823 rs1980852 107.936116 0.974142 hCG1814720 0.50 Intergenic/Unknown [A/G] 

hCV3241385 rs968569 108.910258 0.993370 MGC29761/MRPS2 0.49 Intronic [G/T] 

hCV12019285 rs6563 109.903628 1.001538 NOTCH1 0.49 UTR3 [A/G] 

hCV469299 N/A 110.905166 0.632732 FLJ31318 0.43 Intronic [A/G] 

hCV247127 rs2229948 111.537898   CACNA1B 0.33 UTR3/Silent [A/G] 

        

D9S934 91.7434 - 91.743612     Microsatellite   

D9S282 97.456102 - 97.456335     Microsatellite   

D9S2157 106.577163 - 106.577430     Microsatellite   
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Table 4.  Chromosome 13q SNPs 
 
 

Celera ID Public ID Celera Mb Location Mb Interval Gene MAF SNP Type SNP 

hCV3077848 rs1107987 0.815377 1.047867 TUBA2 0.44 Intronic [T/C] 

hCV1813046 rs945367 1.863244 0.866118 GJB6 0.44 Intronic [A/T] 

hCV9183986 N/A 2.729362 0.664500 hCG1642913/1648309 0.40 Intergenic/Unknown [C/T] 

hCV2728143 rs1120978 3.393862 1.467574 hCG2019553 N/A Intronic [T/G] 

hCV2702334 N/A 4.861436 1.049561 SGCG 0.50 Intronic [A/C] 

hCV265808 rs2096083 5.910997 1.170791 SPATA13 0.48 Intronic [A/G] 

hCV3126647 rs1924773 7.081788 0.818030 N/A 0.47 Intergenic/Unknown [G/T] 

hCV1906833 N/A 7.899818 1.166212 CDK8 0.44 Intronic [A/G] 

hCV8692413 rs1467591 9.066030 0.994051 GTF3A 0.49 Intergenic/Unknown [A/G] 

hCV1926749 N/A 10.060081 0.861621 FLT1 0.42 Intronic [C/G] 

hCV2731686 rs1023166 10.921702 0.978440 hCG29154 0.42 Intronic [C/T] 

hCV2539773 rs594411 11.900142   MGC2599 0.44 Intronic [A/T] 

        

D13S175 1.910207 - 1.910357     Microsatellite   

D13S629 11.667772 - 11.668212     Microsatellite   

 



 

 129 

Table 5.  Chromosome 16q SNPs 
 
 

Celera ID Public ID Celera Mb Location Mb Interval Gene MAF SNP Type SNP 

hCV2847280 N/A 53.348581 1.106331 CDH1 0.49 Intronic [G/T] 

hCV1430596 N/A 54.454912 1.206670 WWP2 0.44 Intronic [G/T] 

hCV11513151 N/A 55.661582 0.787548 N/A 0.43 Intergenic/Unknown [G/T] 

hCV11439127 rs1050363 56.449130 0.946085 FLJ20511/DHX38 0.48 Silent Mutation [C/T] 

hCV2191548 N/A 57.395215 1.144460 ATBF1 0.42 Intronic [A/G] 

hCV2850553 rs3325 58.539675 1.093499 N/A 0.45 Intergenic/Unknown [A/G] 

hCV2845735 rs3743607 59.633174 0.978347 CFDP1 0.42 Intronic [C/T] 

hCV7606101   rs1559330 60.611521 0.928785 CASPR4 0.48 Intergenic/Unknown [C/T] 

hCV2852259 rs2343039 61.540306 0.902992 HSRG1 0.44 Intronic [G/T] 

hCV11517904 rs2287972 62.443298 1.027547  N/A 0.44 Intronic [C/T] 

hCV8902185 rs1111230 63.470845 1.087958 N/A 0.49 Intergenic/Unknown [A/G] 

hCV1877093 N/A 64.558803 1.047647 hCG2040751 0.47 Intergenic/Unknown [A/C] 

hCV489829  N/A 65.606450 0.796298 BCMO1 0.45 Intronic [A/T] 

hCV1396200     rs4398102 66.402748 1.018372 HSD17B2 0.48 Intronic [C/G] 

hCV8092354  N/A 67.421120 1.001453 CDH13 0.46 Intronic [A/G] 

hCV1519129  rs2875857 68.422573 0.991637 MBTPS1 0.44 Intronic [A/C] 

hCV1430791 rs2291967 69.414210 0.841532 KIAA0513 0.50 Intronic [G/T] 

hCV3189974 rs2280378 70.255742 1.141016 ICSBP1 0.47 Intronic [A/G] 

hCV2925928     N/A 71.396758 0.995638 N/A 0.49 Intergenic/Unknown [G/T] 

hCV219649 N/A 72.392396   BANP 0.42 Intronic [C/G] 

        

D16S752 55.650714 - 55.650824     Microsatellite   

D16S516 63.423868 - 63.424034     Microsatellite   

D16S539 ~ 70.689000     Microsatellite   
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Table 6.  Chromosome 18p SNPs 
 
 

Celera ID Public ID Celera Mb Location Mb Interval Gene MAF SNP Type SNP 

hCV1367907 rs585578 0.079384 0.711168 USP14/THOC1 0.31 Intronic [A/G] 

hCV3013161 rs1608446 0.790552 0.968134 ADCYAP1 0.42 Intergenic/Unknown [A/G] 

hCV3235262 rs313021 1.758686 1.002189 N/A 0.46 Intergenic/Unknown [A/G] 

hCV3011859 rs598866 2.760875 1.105338 EMILIN-2 0.49 Intronic [A/G] 

hCV8121217 N/A 3.866213 1.251059 DLGAP1 0.40 Intronic [G/T] 

hCV11205167 N/A 5.117272 0.742332 MGC17515 0.49 Intergenic/Unknown [T/C] 

hCV1367564 rs736632 5.859604 1.144583 FLJ35936 0.45 Intronic [C/T] 

hCV3086198 rs2089760 7.004187 0.893609 LAMA1 0.47 Intergenic/Unknown [C/T] 

hCV1464431 N/A 7.897796 1.105522 PTPRM 0.50 Intronic [A/G] 

hCV7495855 rs977581 9.003318 0.845495 NDUFV2 0.41 Intronic [G/T] 

hCV612923 rs29062 9.848813 1.516311 VAPA 0.42 Intergenic/Unknown [C/T] 

hCV1637378 rs1026390 11.365124 0.794660 N/A 0.32 Intergenic/Unknown [A/G] 

hCV460143 rs4797665 12.159784 1.099948 CIDEA 0.40 Intergenic/Unknown [A/G] 

hCV8116885 rs872906 13.259732 0.721377 C18orf1 0.48 Intronic [A/G] 

hCV3047081 N/A 13.981109 1.478146 LOC162655 0.48 Intronic N/A 

hCV15827884 rs2127958 15.459255 0.581561 ROCK1 0.50 Intronic [C/T] 

hCV16100206   rs2847129 16.040816 0.945723 ABHD3 0.42 Intronic [A/G] 

hCV194412 N/A 16.986539 0.948744 hCG1643126 0.46 Intergenic/Unknown [A/T] 

hCV3204015 N/A 17.935283 0.970774 MIC1/NPC1 0.48 Intronic [A/G] 

hCV2019690    rs600958 18.906057 1.101806 hCG1643857 0.47 Intergenic/Unknown [C/T] 

hCV3253578 rs273756 20.007863 0.991459 hCG1656949 0.48 Intergenic/Unknown [C/T] 

hCV3004492 rs2438414 20.999322 0.838445 hCG38480 0.50 Intronic [C/T] 

hCV7492337   rs1467233 21.837767 1.206412 N/A 0.39 Intergenic/Unknown [G/T] 

hCV3117911 rs1354417 23.044179 0.734262 hCG1641502 0.49 UTR3 [A/G] 

hCV11732665 N/A 23.778441   N/A 0.48 Intergenic/Unknown [C/G] 

        

GATA166D05 1.998573-1.998875     Microsatellite   

D18S967 6.481905 - 6.482138     Microsatellite   

D18S843 8.498119 - 8.498307     Microsatellite   

D18S869 16.891612 - 16.891797     Microsatellite   
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Table 7.  Chromosome 19q SNPs 
 
 

Celera ID Public ID Celera Mb Location Mb Interval Gene MAF SNP Type SNP 

hCV7610932 rs1035478 30.009929 0.944687 SLC7A9 0.49 Intronic [C/T] 

hCV2592102  rs285694 30.954616 1.282101 CHST8 0.50 Intronic [C/G] 

hCV25473593 N/A 32.236717 0.753525 KIAA1533/SCN1B/HPN 0.46 Intronic [A/T] 

hCV3111700 rs120960 32.990242 1.173085 SNX26 0.45 Intronic [A/G] 

hCV1277048  rs826285 34.163327 1.019939 N/A 0.41 Intergenic/Unknown [A/T] 

hCV1135244 rs953370 35.183266 0.815493 NYD-SP11 0.41 UTR3 [C/T] 

hCV11507800 rs3745859 35.998759 1.028455 ACTN4/M9 0.48 Silent Mutation [C/T] 

hCV2275630 rs374185 37.027214 1.029339 CLC 0.42 Missense Mutation [A/G] 

hCV11465156 rs1870087 38.056553 1.009044 hCG20793 0.49 Intronic [G/T] 

hCV8597405 N/A 39.065597 1.401557 CEACAM6 0.42 Missense Mutation [G/T] 

hCV11975183 rs2024096 40.467154 0.753944 PSG5 0.38 Intergenic/Unknown [C/G] 

hCV2652664 rs417699 41.221098 0.987082 ZNF45 0.49 Nonsense Mutation [A/G] 

hCV3084818 rs760136 42.208180 0.935342 APOE 0.50 Intronic [A/G] 

hCV2884324 N/A 43.143522 0.875981 SPK 0.45 Intronic [A/G] 

hCV3168164 N/A 44.019503 1.039866 STRN4/PKD2 0.34 Intronic [A/G] 

hCV1996744 rs3786780 45.059369 1.013716 EHD2/GLTSCR2 0.50 Intronic [G/C] 

hCV2405293 rs602662 46.073085 1.041268 FUT2 0.47 Silent Mutation [A/G] 

hCV1844598 N/A 47.114353 0.888870 TSKS/CPT1C/PTOV1 0.49 Intronic [C/T] 

hCV1655600 rs1673028 48.003223 1.049302 MYBPC2 0.40 Intronic [C/T] 

hCV3057052    N/A 49.052525 1.149116 SIGLECL1 0.45 Missense Mutation [A/G] 

hCV3098516 rs619872 50.201641 1.128286 ZNF83 0.47 Intronic [C/G] 

hCV1997401 N/A 51.329927 0.950010 N/A 0.47 Intergenic/Unknown [C/G] 

hCV2996831 rs270790 52.279937 0.758504 KIR3DL7 0.45 Missense Mutation [A/G] 

hCV8879227 rs7478 53.038441 0.958148 KLP1/HSPC189 0.48 UTR3 [A/T] 

hCV2658107 rs3760849 53.996589 0.917267 FLJ14011 0.42 Missense Mutation [C/T] 

hCV11701198 N/A 54.913856 1.076198 ZNF304/ZNF547 0.49 UTR3 [A/G] 

hCV1116794 rs1465789 55.990054   ZNF132 0.48 Missense Mutation [A/G] 

        

D19S587 31.922494 - 31.922640     Microsatellite   

D19S211 40.184511 - 40.184704     Microsatellite   
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D19S402 49.220919 - 49.221226     Microsatellite   
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APPENDIX C 

 

Seven Candidate Regions for MS – Analysis Results 

 

Table 1.  Chromosome 1q Analysis 
 

      MLOD PDT 

SNP ID 
(Celera) 

SNP ID 
(dbSNP) 

Mb (Celera) Mb (dbSNP) Gene MAF All HLA All HLA None PDTSum PDTAve PDTGeno 

hCV1650709 rs734551 205.263268 228.301168 DISC1 0.46 0.00 0.03 0.02 0.648 0.700 0.740 

hCV2798667 rs6665073 206.377503 229.413857 MGC13186 0.38 0.00 0.00 1.15 0.974 0.888 0.038 

hCV8690690 rs701237 207.076236 230.112722 KCNK1 0.34 0.05 0.05 1.13 0.468 0.398 0.526 

hCV2711850 rs564212 208.061974 231.098456 hCG1813648 0.38 0.74 0.87 0.52 0.739 0.562 0.841 

hCV695532 rs423026 208.958848 232.041597 GNG4 0.49 0.02 0.01 0.58 0.786 0.705 0.132 

hCV7540624 rs1266380 209.930048 233.007791 LGALS8 0.46 1.55 0.67 1.73 0.604 0.978 0.717 

hCV16123987 rs2805432 210.934838 234.011263 RYR3 0.47 2.60 2.00 1.51 0.844 0.321 0.369 

hCV401377 rs1557132 211.872092 234.944276 hCG23440 0.33 0.76 0.66 0.31 0.394 0.063 0.139 

hCV2050524 rs2278644 213.123452 236.193833 hCG1984146 0.47 0.96 0.85 0.13 0.273 0.640 0.371 

D1S1594  214.025   7 alleles 0.98 0.28 0.79 0.458 0.592 0.401 

hCV12008520 rs1934338 214.026729 237.09664 FLJ21195 0.44 1.47 0.65 1.80 1.000 0.760 0.760 

D1S547  215.010921   14 alleles 2.07 0.11 1.89 0.152 0.145 0.225 

hCV605574 rs671989 215.031413 238.10244 CHML 0.48 1.82 0.65 0.76 1.000 0.857 0.879 

D1S1634  ~215.575   22 alleles 2.67 1.24 1.06 0.412 0.643 0.183 

hCV26589316 N/A 215.794773 N/A hCG1989348 0.44 1.09 0.41 0.13 0.860 0.769 0.393 

hCV16244390 rs2490395 216.745721 239.784963 hCG16602 0.47 0.73 0.14 0.45 0.219 0.525 0.250 

hCV9487525 rs1566661 218.184227 241.220314 hCG1660865 0.49 0.56 0.06 0.76 0.816 0.449 0.588 

hCV11669158 rs9919234 218.991813 242.030031 FLJ10157 0.44 0.92 0.30 0.60 0.454 0.676 0.164 

hCV15761414 rs3007406 220.059643 243.098399 FLJ23001 0.42 1.12 0.45 0.02 0.254 0.001 0.456 

hCV11669332 rs6676750 221.059607 244.086851 hCG1646765 0.47 1.29 0.70 0.01 0.884 0.619 0.547 

hCV12010310 rs2039824 221.797152 244.838678 hCG1724360 0.40 0.24 0.00 0.92 0.688 0.497 0.953 
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Figure 1.   Chromosome 1q Multipoint Linkage Plot 



 

 135 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

204 206 208 210 212 214 216 218 220 222 224

Mb Location (Celera)

L
O
D
* 
S
c
o
re

HLA-DR2 Allele Weighted HLA-DR2 Allele Inverse Weighted HLA LOD Weighted HLA LOD Inverse Weighted

 
 
 

 

 

Figure 2.   Chromosome 1q Multipoint Linkage Plot – HLA Conditional Analysis 
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Figure 3.   Chromosome 1q Multipoint Linkage Plot – Ordered Subset Analysis   

The scale of the y-axis was changed from 3.0 to 5.0 to accommodate higher LOD scores.   
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Table 2.  Chromosome 2q Analysis 
 
 

      MLOD PDT 

SNP ID     
(Celera) 

SNP ID 
(dbSNP) 

Mb (Celera) Mb (dbSNP) Gene MAF All HLA All HLA None PDTSum PDTAve PDTGeno 

hCV11827407 rs1982131 172.460711 178.683378 PDE11A 0.46 0.45 0.00 0.73 0.200 0.467 0.303 

hCV2152432 rs2847 173.564451 179.795560 SESTD1 0.37 1.21 0.15 1.62 0.271 0.392 0.046 

hCV31157131 rs13391691 174.744851 180.976047 N/A 0.38 0.06 0.00 0.00 0.241 0.796 0.519 

hCV1051244 rs720453 175.747707 181.977337 N/A 0.46 0.00 0.00 0.00 0.321 0.625 0.622 

hCV2074867 rs2128043 176.712645 182.942406 PDE1A 0.43 0.00 0.00 0.00 0.163 0.226 0.520 

hCV1543267 rs2952363 177.598047 183.827451 LOC129401/NUP35 0.43 0.14 0.00 0.07 0.089 0.097 0.264 

hCV426462 rs10497643 178.648492 184.878288 N/A 0.47 0.05 0.00 0.02 0.775 0.760 0.968 

hCV7617345 rs889909 179.761231 185.990986 N/A 0.44 0.15 0.03 0.01 0.242 0.259 0.467 

hCV11518651 rs10177153 180.818628 187.048301 N/A 0.34 0.20 0.14 0.00 0.427 0.810 0.204 

hCV1590313 rs1528233 181.803615 188.032751 CALCRL 0.34 0.01 0.00 0.03 0.448 0.513 0.641 

hCV474783 rs11692963 182.702316 188.932082 N/A 0.50 0.46 0.00 1.03 0.792 0.568 0.320 

hCV1729153 rs3134646 183.474639 189.705349 COL3A1 0.48 0.00 0.00 0.42 0.268 0.862 0.375 

hCV2831378 rs785260 184.615046 190.845519 N/A 0.48 0.00 0.00 0.16 0.335 0.540 0.486 

hCV22274194 rs3771300 185.430195 191.661102 STAT1;GLS 0.50 0.04 0.00 0.17 0.608 0.374 0.860 

hCV16207964 rs2356955 186.630420 192.860529 TMEFF2 0.48 0.51 0.00 1.42 0.728 0.485 0.358 

hCV541573 rs717621 187.036077 193.266456 N/A 0.49 0.03 0.00 0.80 0.746 0.866 0.880 

hCV11950973 rs726129 187.898443 194.129216 N/A 0.33 0.00 0.00 0.16 0.752 0.508 0.007 

hCV1346631 rs4591357 188.834786 195.073110 hCG2038662 0.28 0.00 0.00 0.05 0.310 0.942 0.576 

hCV8744355 rs1019845 189.705845 195.774199 Unknown 0.45 0.02 0.00 0.21 0.828 0.942 0.310 

hCV7620124 rs1551838 190.483155 196.552819 DNAH7 0.40 0.14 0.05 0.21 0.825 0.346 0.935 

hCV1291059 rs10931768 191.612951 197.682576 LOC91526 0.45 0.03 0.00 0.29 0.244 0.371 0.140 

hCV2123977 rs1064213 192.706007 198.775746 PLCL1 0.46 0.16 0.00 0.52 0.543 0.869 0.618 

GATA149B10  193.459832   7 alleles 0.00 0.00 0.00 0.527 0.129 0.431 

hCV2153217 rs2881208 193.893141 199.963114 hCG20092 0.37 0.87 0.05 1.18 0.275 0.882 0.124 

hCV3230597 rs1124639 194.530873 200.601250 FLJ38973 0.49 0.00 0.00 0.41 0.264 0.478 0.459 

hCV1223380 rs11683632 195.395454 201.466080 hCG1811467 0.45 0.17 0.01 0.10 0.154 0.040 0.395 

hCV347110 rs759419 196.518423 202.592153 ALS2CR7 0.47 0.53 0.00 1.48 0.248 0.053 0.607 

hCV8761981 rs3845802 197.493359 203.566178 WDR12/ALS2CR14 0.44 0.00 0.00 0.00 0.300 0.736 0.127 

hCV2821059 rs926169 198.477573 204.548258 CTLA4 0.39 0.08 0.00 0.10 0.100 0.273 0.289 
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D2S1384  198.981939   10 alleles 0.00 0.00 1.12 0.354 0.799 0.436 

hCV1572836 rs7557452 199.681323 205.751906 ALS2CR19 0.44 0.00 0.00 0.08 0.731 0.838 0.853 

hCV2186447 rs15994 200.500000 206.487802 NRP2 0.36 0.08 0.00 0.28 0.814 0.637 0.734 

hCV2772287 rs2287508 201.672078 207.736124 CPO 0.49 0.31 0.00 0.55 0.642 0.451 0.907 

hCV3090677 rs4675713 202.403786 208.467414 FZD5 0.45 0.18 0.00 0.18 0.339 0.408 0.596 

hCV1737148 rs12151408 203.284385 209.342065 hCG2041988 0.42 0.07 0.00 1.02 0.246 0.158 0.298 

hCV2668266 rs731953 204.443380 210.501076 hCG2040260 0.41 0.13 0.04 0.69 0.978 0.646 0.992 

hCV2034024 rs2887914 205.260989 211.318613 CPS1/PRO0132 0.44 0.05 0.00 0.76 0.225 0.687 0.534 

D2S1365  205.839346   10 alleles 0.00 0.00 0.65 0.652 0.606 0.718 

hCV8835839 rs714393 206.463661 212.524224 ERBB4 0.47 0.07 0.00 0.12 0.904 0.858 0.250 

hCV1861868 rs1871946 207.643260 213.704913 ZNFN1A2 0.42 0.00 0.00 0.01 0.238 0.162 0.367 

hCV1552068 rs2372109 208.620868 214.678290 N/A 0.41 0.02 0.00 1.68 0.518 0.277 0.209 
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Figure 4.   Chromosome 2q Multipoint Linkage Plot 
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Figure 5.   Chromosome 2q Multipoint Linkage Plot – HLA Conditional Analysis 



 

 141 

 
 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

171 176 181 186 191 196 201 206

Mb Location (Celera)

m
a
x
L
O
D
 S
c
o
re
s

HLA LOD Hi-Lo (3 fams, p=0.42) HLA LOD Lo-Hi (9 fams, p=0.05) HLA-DR2 Weight Hi-Lo (10 fams, p=0.15)

HLA-DR2 Weight Lo-Hi (61, p=0.34) Chr 01 LOD* Hi-Lo (22 fams, p=0.005) Chr 01 LOD* Lo-Hi (3 fams, p=0.85)

 
 

 

 

Figure 6.   Chromosome 2q Multipoint Linkage Plot – Ordered Subset Analysis  
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Table 3.  Chromosome 9q Analysis 
 
 

      MLOD PDT 

SNP ID 
(Celera) 

SNP ID 
(dbSNP) 

Mb (Celera) Mb (dbSNP) Gene MAF All HLA All HLA None PDTSum PDTAve PDTGeno 

hCV1899341 rs3810928 87.463072 113.895331 AMBP 0.48 0.07 0.00 0.00 0.169 0.667 0.401 

hCV3022586 rs1061494 88.494049 114.926134 TNC 0.40 0.00 0.02 0.00 0.254 0.291 0.531 

hCV7593836 rs971037 89.314153 115.746096 EST-YD1 0.42 0.00 0.00 0.00 0.812 0.231 0.772 

hCV1979634 rs10733620 90.172104 116.604046 ASTN2 0.38 0.00 0.02 0.00 0.476 0.790 0.416 

hCV11722141 rs1927911 91.117821 117.549608 TLR4 0.23 0.70 0.96 0.09 0.152 0.108 0.451 

D9S934  91.743400   9 alleles 0.23 0.17 0.07 0.135 0.443 0.336 

hCV1920588 rs1324623 92.767997 119.199751 DBCCR1 0.35 0.15 0.03 0.77 0.679 0.927 0.940 

hCV1219009 rs3747850 94.713428 121.144482 GSN 0.49 0.00 0.00 0.02 0.686 0.157 0.696 

hCV11884087 rs4679 95.562902 121.994167 NDUFA8 0.42 0.25 0.14 0.21 0.317 0.421 0.130 

hCV58657 rs12686320 96.805159 123.236485 KIAA1608 0.37 0.12 0.06 0.20 0.124 0.420 0.393 

hCV8780788 rs1042486 97.430687 123.862987 LHX2 0.48 0.00 0.00 0.02 0.079 0.003 0.293 

D9S282  97.456102   9 alleles 0.25 0.00 0.35 0.377 0.631 0.745 

hCV302240 rs501963 98.610850 125.04247 RAB9P40 0.42 1.89 0.28 1.47 0.214 0.315 0.216 

hCV8782473 N/A 99.379990 125.805096 PBX3 0.29 0.00 0.11 0.01 0.039 0.346 0.132 

hCV2700890 rs874799 100.376610 126.801559 RALGPS1A 0.49 0.38 0.07 0.00 0.593 0.470 0.219 

hCV580692 rs514024 101.154940 127.583624 SH2D3C 4 alleles 0.00 0.00 0.00 0.905 0.921 0.397 

hCV16180096 rs2273866 102.354750 128.782445 KIAA1094 0.39 0.00 0.00 0.06 0.771 0.684 0.866 

hCV3180154 rs2296793 103.236092 129.664612 DYT1 0.25 0.95 0.00 1.81 0.571 0.516 0.140 

hCV2605168 rs1056171 104.299288 130.790555 ABL1 0.48 0.02 0.00 0.12 0.096 0.757 0.187 

hCV8782344 rs1056899 105.681837 132.169455 KIAA0625 0.29 0.26 0.14 0.05 0.125 0.488 0.365 

D9S2157  106.577163   11 alleles 2.65 1.84 0.28 0.115 0.658 0.157 

hCV3183190 rs1179037 106.788988 133.268063 SURF4 0.46 1.48 0.98 0.02 0.623 0.224 0.879 

hCV12020823 rs1980852 107.936116 134.647976 hCG1814720 0.39 1.07 0.07 1.43 0.088 0.181 0.300 

hCV3241385 rs968569 108.910258 135.619073 MGC29761/MRPS2 0.49 0.83 0.75 0.26 0.282 0.608 0.449 

hCV12019285 rs6563 109.903628 136.665021 NOTCH1 0.47 0.40 0.53 0.22 0.410 0.150 0.680 



 

 143 

hCV469299 rs11137268 110.905166 137.656213 FLJ31318 0.41 0.07 0.02 0.07 0.334 0.682 0.634 

hCV247127 rs2229948 111.537898 138.284713 CACNA1B 0.29 0.00 0.00 0.01 0.359 0.187 0.169 
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Figure 7.   Chromosome 9q Multipoint Linkage Plot 
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Figure 8.   Chromosome 9q Multipoint Linkage Plot – HLA Conditional Analysis 
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Figure 9.   Chromosome 9q Multipoint Linkage Plot – Ordered Subset Analysis  
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Table 4.  Chromosome 13q Analysis 
 
 

      MLOD PDT 

SNP ID 
(Celera) 

SNP ID 
(dbSNP) 

Mb (Celera) Mb (dbSNP) Gene MAF All HLA All HLA None PDTSum PDTAve PDTGeno 

hCV3077848 rs491873 0.815377 18.651438 TUBA2 0.41 0.68 0.60 0.20 0.634 0.963 0.579 

hCV1813046 rs945367 1.863244 19.699425 GJB6 0.46 0.92 1.36 0.01 0.529 0.281 0.486 

D13S175  1.910207   10 alleles 0.30 0.19 0.03 0.500 0.553 0.386 

hCV9183986 rs9509528 3.393862 20.565388 hCG1642913 0.38 0.00 0.02 0.00 0.608 0.820 0.476 

hCV2728143 rs1120978 3.393862 21.769874 hCG2019553 0.36 0.16 0.01 0.00 0.461 0.865 0.800 

hCV2702334 rs1536723 4.861436 22.696431 SGCG 0.49 0.10 0.44 0.00 0.673 0.637 0.855 

hCV265808 rs2096083 5.910997 23.746336 SPATA13 0.45 0.00 0.00 0.00 0.132 0.412 0.241 

hCV3126647 rs1924773 7.081788 24.915624 N/A 0.49 0.00 0.00 0.00 0.588 0.588 0.609 

hCV1906833 rs9512166 7.899818 25.729717 CDK8 0.43 0.00 0.00 0.00 0.603 0.164 0.567 

hCV8692413 rs1467591 9.066030 26.895352 GTF3A 0.46 0.03 0.02 0.28 0.365 0.624 0.890 

hCV1926749 rs9551468 10.060081 27.883316 FLT1 0.47 0.00 0.00 0.00 0.146 0.044 0.091 

hCV2731686 rs1023166 10.921702 28.743810 hCG29154 0.46 0.00 0.00 0.00 0.773 0.452 0.269 

D13S629  11.667772   13 alleles 0.00 0.00 0.10 0.806 0.715 0.509 

hCV2539773 rs594411 11.900142 29.728600 MGC2599 0.32 0.00 0.00 0.00 0.642 0.692 0.876 
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Figure 10.   Chromosome 13q Multipoint Linkage Plot  
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Figure 11.   Chromosome 13q Multipoint Linkage Plot – HLA Conditional Analysis 
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Figure 12.   Chromosome 13q Multipoint Linkage Plot – Ordered Subset Analysis  
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Table 5.  Chromosome 16q Analysis 
 
 

      MLOD PDT 

SNP ID 
(Celera) 

SNP ID 
(dbSNP) 

Mb (Celera) Mb (dbSNP) Gene MAF All HLA All HLA None PDTSum PDTAve PDTGeno 

hCV2847280 rs10431923 53.348581 67.396764 CDH1 0.50 0.02 0.08 0.00 0.587 0.663 0.702 

hCV1430596 rs8049373 54.454912 68.497206 WWP2 0.38 0.04 0.33 0.22 0.048 0.109 0.180 

D16S752  55.650714   7 alleles 0.00 0.34 0.00 0.863 0.978 0.636 

hCV11513151 N/A 55.661582 69.903551 N/A 0.41 0.00 0.10 0.02 0.537 0.691 0.504 

hCV11439127 rs1050363 56.449130 70.692515 FLJ20511/DHX38 0.47 0.00 0.08 0.00 0.664 0.347 0.209 

hCV2191548 rs11641701 57.395215 71.636713 ATBF1 0.36 0.25 0.33 0.00 0.725 0.749 0.929 

hCV2850553 rs3325 58.539675 72.783903 N/A 0.46 0.55 0.03 0.01 0.167 0.381 0.396 

hCV2845735 rs3743607 59.633174 73.896356 CFDP1 0.38 0.20 1.39 0.01 0.143 0.869 0.187 

hCV7606101 rs1559330 60.611521 74.866582 CASPR4 0.39 0.00 0.00 0.48 0.062 0.217 0.170 

hCV2852259 rs2343039 61.540306 75.80028 HSRG1 0.48 0.20 0.00 0.03 0.694 0.082 0.842 

hCV11517904 rs2287972 62.443298 76.701108 N/A 0.49 0.03 0.00 0.03 0.682 0.570 0.530 

D16S516  63.423868   9 alleles 1.32 1.37 0.30 0.749 0.484 0.273 

hCV8902185 rs1111230 63.470845 77.728638 N/A 0.49 0.34 0.28 0.28 0.318 0.877 0.107 

hCV1877093 N/A 64.558803 78.817454 hCG2040751 0.48 0.99 1.24 0.11 0.495 0.533 0.831 

hCV489829 rs7192170 65.606450 79.866614 BCMO1 0.45 1.25 1.47 0.40 0.439 0.202 0.192 

hCV1396200 rs4398102 66.402748 80.661587 HSD17B2 0.45 0.85 0.56 0.32 0.482 0.671 0.711 

hCV8092354 N/A 67.421120 816.81126 CDH13 0.49 0.00 0.00 0.87 0.793 0.732 0.641 

hCV1519129 rs2875857 68.422573 82.678157 MBTPS1 0.45 0.00 0.00 0.08 0.949 0.580 0.572 

hCV1430791 rs2291967 69.414210 83.669503 KIAA0513 0.47 0.16 0.31 0.00 0.324 0.249 0.668 

hCV3189974 rs2280378 70.255742 84.510246 ICSBP1 0.44 0.00 0.00 0.56 0.691 0.104 0.498 

D16S539  ~70.689000   7 alleles 0.00 0.00 0.03 0.953 0.897 0.891 

hCV2925928 rs11646219 71.396758 85.654078 N/A 0.46 0.00 0.03 0.02 0.947 0.594 0.948 

hCV219649 rs12931579 72.392396 86.659431 BANP 0.36 0.00 0.02 0.02 0.975 0.420 0.960 
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Figure 13.   Chromosome 16q Multipoint Linkage Plot 
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Figure 14.   Chromosome 16q Multipoint Linkage Plot – HLA Conditional Analysis  
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Figure 15.   Chromosome 16q Multipoint Linkage Plot – Ordered Subset Analysis  
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Table 6.  Chromosome 18p Analysis 

 
 

      MLOD PDT 

SNP ID (Celera) 
SNP ID 
(dbSNP) 

Mb (Celera) 
Mb 

(dbSNP) 
Gene MAF All HLA All HLA None PDTSum PDTAve PDTGeno 

hCV1367907 rs585578 0.079384 194232 USP14/THOC1 0.34 0.25 0.00 0.99 0.129 0.778 0.261 

hCV3013161 rs1608446 0.790552 905946 ADCYAP1 0.35 0.00 0.00 0.74 0.829 0.268 0.359 

hCV3235262 rs313021 1.758686 1873794 N/A 0.36 0.00 0.00 0.44 0.764 0.442 0.747 

GATA166D05  1.998573   8 alleles 0.20 0.11 0.67 0.845 0.570 0.562 

hCV3011859 rs598866 2.760875 2875437 EMILIN-2 0.45 0.00 0.00 0.14 0.117 0.146 0.269 

hCV8121217 rs11664127 3.866213 3972406 DLGAP1 0.43 0.09 0.12 0.06 0.863 0.458 0.856 

hCV11205167 rs9963665 5.117272 5222843 MGC17515 0.47 0.00 0.00 0.75 0.501 0.460 0.207 

hCV1367564 rs736632 5.859604 5963728 FLJ35936 0.50 0.30 0.00 1.40 0.294 0.339 0.630 

D18S967  6.481905   5 alleles 0.14 0.00 0.28 0.238 0.183 0.701 

hCV3086198 rs2089760 7.004187 7108955 LAMA1 0.49 0.00 0.00 0.75 0.890 0.746 0.927 

hCV1464431 N/A 7.897796 8003798 PTPRM 0.42 0.00 0.00 0.89 0.561 0.812 0.873 

D18S843  8.498119   6 alleles 0.38 0.00 2.84 0.593 0.358 0.815 

hCV7495855 rs977581 9.003318 9109035 NDUFV2 0.39 0.20 0.20 0.47 0.237 0.465 0.157 

hCV612923 rs29062 9.848813 9955338 VAPA 0.45 0.74 0.07 0.49 0.793 0.690 0.784 

hCV1637378 rs1026390 11.365124 11473169 N/A 0.41 0.89 0.49 0.67 0.014 0.045 0.027 

hCV460143 rs4797665 12.159784 12269553 CIDEA 0.50 0.07 0.00 0.07 0.241 0.504 0.265 

hCV8116885 rs872906 13.259732 13367699 C18orf1 0.40 0.00 0.00 0.69 0.813 0.875 0.978 

hCV3047081 rs9956386 13.981109 14088926 LOC162655 0.50 0.00 0.00 0.00 0.106 0.364 0.064 

hCV15827884 rs2127958 15.459255 16907608 ROCK1 0.43 0.49 0.00 0.74 0.562 0.962 0.608 

hCV16100206 rs2847129 16.040816 17488816 ABHD3 0.34 0.93 0.00 1.62 0.506 0.792 0.519 

D18S869  16.891612   9 alleles 0.21 0.01 0.34 0.659 0.602 0.932 

hCV194412 rs11082010 16.986539 18426403 hCG1643126 0.50 0.36 0.15 0.25 0.843 0.969 0.962 

hCV3204015 rs6507720 17.935283 19373289 MIC1/NPC1 0.48 0.12 0.00 0.20 0.077 0.117 0.188 

hCV2019690 rs600958 18.906057 20345021 hCG1643857 0.49 0.53 0.00 0.49 0.588 0.293 0.557 

hCV3253578 rs273756 20.007863 21447335 hCG1656949 0.49 0.28 0.51 0.05 0.772 0.906 0.968 
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hCV3004492 rs2438414 20.999322 22442676 hCG38480 0.45 0.11 0.00 0.60 0.459 0.363 0.680 

hCV7492337 rs1467233 21.837767 23281358 N/A 0.29 0.06 0.00 0.01 0.615 0.895 0.878 

hCV3117911 rs1354417 23.044179 24486928 hCG1641502 0.48 0.29 0.09 0.32 0.443 0.539 0.065 

hCV11732665 rs12605279 23.778441 25226212 N/A 0.48 0.18 0.09 0.20 0.126 0.179 0.207 
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Figure 16.   Chromosome 18p Multipoint Linkage Plot 
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Figure 17.   Chromosome 18p Multipoint Linkage Plot – HLA Conditional Analysis 
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Figure 18.   Chromosome 18p Multipoint Linkage Plot – Ordered Subset Analysis  
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Table 7.  Chromosome 19q Analysis 
 
 

      MLOD PDT 

SNP ID 
(Celera) 

SNP ID 
(dbSNP) 

Mb (Celera) Mb (dbSNP) Gene MAF All HLA All HLA None PDTSum PDTAve PDTGeno 

hCV7610932 rs1035478 30.009929 38008163 SLC7A9 0.46 0.01 0.21 0.00 0.727 0.734 0.492 

hCV2592102 rs285694 30.954616 38952829 CHST8 0.46 0.09 0.22 0.03 0.619 0.413 0.887 

D19S587  31.922494   7 alleles 0.00 0.07 0.00 0.425 0.271 0.235 

hCV25473593 rs8100085 32.236717 40214959 SCN1B/HPN 0.35 0.00 0.08 0.00 0.076 0.042 0.069 

hCV3111700 rs120960 32.99024 40968607 SNX26 0.43 0.84 0.45 0.25 0.114 0.378 0.064 

hCV1277048 rs826285 34.163327 42070872 N/A 0.49 0.20 0.00 0.25 0.772 0.274 0.049 

hCV1135244 rs953370 35.183266 43074168 NYD-SP11 0.38 1.35 0.55 0.43 0.650 0.131 0.900 

hCV11507800 rs3745859 35.998759 43888585 ACTN4/M9 0.45 0.22 0.59 0.06 0.927 0.974 0.167 

hCV2275630 rs17608 37.027214 44917485 CLC 0.34 0.65 0.17 0.42 0.627 0.657 0.885 

hCV11465156 rs1870087 38.056553 45947971 hCG20793 0.48 0.08 0.22 0.14 0.324 0.814 0.527 

hCV8597405 N/A 39.065597 46957728 CEACAM6 0.43 0.08 0.04 0.11 0.798 0.628 0.693 

D19S211  40.184511   12 alleles 1.79 0.70 0.97 0.520 0.558 0.269 

hCV11975183 rs2024096 40.467154 48358401 PSG5 0.43 0.28 0.30 0.21 0.977 0.307 0.091 

hCV2652664 rs417699 41.221098 49109415 ZNF45 0.50 0.21 0.47 0.05 0.074 0.282 0.069 

hCV3084818 rs760136 42.208180 50095698 APOE 0.43 0.00 0.27 0.09 0.680 0.720 0.797 

APOE N/A 42.216263 N/A APOE 3 alleles 0.47 0.47 0.22 0.836 0.835 0.792 

hCV2884324 rs7256192 43.143522 51030332 SPK 0.35 0.23 0.18 0.75 0.465 0.808 0.486 

hCV3168164 rs10425791 44.019503 51907814 STRN4/PKD2 0.34 0.59 0.50 0.00 0.617 0.872 0.849 

hCV1996744 rs3786780 45.059369 52945479 EHD2/GLTSCR2 0.48 1.46 0.58 0.55 0.727 0.417 0.794 

hCV2405293 rs602662 46.073085 53898797 FUT2 0.50 0.62 0.99 0.16 0.495 0.694 0.384 

hCV1844598 rs6509443 47.114353 54936708 TSKS/CPT1C 0.46 0.00 0.00 0.01 0.273 0.175 0.568 

hCV1655600 rs1673028 48.003223 55644865 MYBPC2 0.38 0.68 0.36 0.90 0.440 0.666 0.720 

hCV3057052 rs11668530 49.052525 56693297 SIGLECL1 0.47 0.05 0.10 0.00 0.360 0.641 0.366 

D19S402  49.220919   18 alleles 0.11 0.16 0.00 0.100 0.042 0.629 

hCV3098516 rs619872 50.201641 57844212 ZNF83 0.48 0.62 0.64 0.08 0.689 0.773 0.931 

hCV1997401 rs3848580 51.329927 58980658 N/A 0.49 2.01 0.94 0.19 0.899 0.434 0.295 

hCV2996831 rs270790 52.279937 59931035 KIR3DL7 0.47 0.93 0.49 0.08 0.066 0.570 0.287 

hCV8879227 rs7478 53.038441 60690323 KLP1/HSPC189 0.40 0.71 1.42 0.29 0.764 0.834 0.741 
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hCV2658107 rs3760849 53.996589 61645397 FLJ14011 0.47 1.79 0.85 1.23 0.980 0.996 0.994 

hCV11701198 rs7250521 54.913856 62564959 ZNF304/ZNF547 0.49 0.11 0.60 0.04 0.248 0.060 0.496 

hCV1116794 rs1465789 55.990054 63637868 ZNF132 0.44 0.11 0.36 0.00 0.680 0.113 0.912 
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Figure 19.   Chromosome 19q Multipoint Linkage Plot 
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Figure 20.   Chromosome 19q Multipoint Linkage Plot – HLA Conditional Analysis 
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Figure 21.   Chromosome 19q Multipoint Linkage Plot – Ordered Subset Analysis 
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APPENDIX D 

Table 1.  Illumina SNPs – Chromosome 1q44 

 
Public ID NCBI Mb Location* Mb Interval MAF 

rs12123449 234.248599 0.015288 0.155 

rs12129023 234.263887 0.005178 0.199 

rs9428368 234.269065 0.020787 0.204 

rs6428989 234.289852 0.013481 0.043 

rs7551672 234.303333 0.015427 0.082 

rs1933129 234.318760 0.018620 0.062 

rs10737813 234.337380 0.023289 0.411 

rs2038889 234.360669 0.000258 0.354 

rs1337799 234.360927 0.027230 0.011 

rs792553 234.388157 0.010004 0.005 

rs1765887 234.398161 0.007570 0.130 

rs12401834 234.405731 0.010575 0.381 

rs618083 234.416306 0.002998 0.490 

rs2152884 234.419304 0.015122 0.230 

rs1362841 234.434426 0.029776 0.358 

rs961121 234.464202 0.010572 0.048 

rs2275287 234.474774 0.026137 0.297 

rs7532774 234.500911 0.009542 0.424 

rs10737814 234.510453 0.027948 0.355 

rs6429005 234.538401 0.013662 0.430 

rs2050656 234.552063 0.009242 0.148 

rs4336842 234.561305 0.019197 0.211 

rs10925388 234.580502 0.001262 0.166 

rs10925391 234.581764 0.010761 0.247 

rs10754602 234.592525 0.014849 0.442 

rs4531285 234.607374 0.000164 0.314 

rs12138118 234.607538 0.008906 0.005 

rs4465196 234.616444 0.000098 0.309 

rs4659791 234.616542 0.000174 0.309 

rs4659792 234.616716 0.042190 0.309 

rs3765097 234.658906 0.006173 0.434 

rs2127153 234.665079 0.001929 0.499 

rs1478913 234.667008 0.005695 0.500 

rs12094480 234.672703 0.009513 0.011 

rs10495396 234.682216 0.017571 0.492 

rs2010032 234.699787 0.004473 0.460 

rs2805422 234.704260 0.007029 0.335 

rs2618702 234.711289 0.003731 0.308 

rs3766841 234.715020 0.001161 0.201 
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rs4336838 234.716181 0.000223 0.002 

rs2618651 234.716404 0.017935 0.304 

rs2805446 234.734339 0.018607 0.199 

rs2253273 234.752946 0.013930 0.038 

rs722581 234.766876 0.021286 0.339 

rs7554494 234.788162 0.002559 0.438 

rs1478914 234.790721 0.001605 0.409 

rs1564272 234.792326 0.001381 0.253 

rs2779427 234.793707 0.000806 0.005 

rs2805409 234.794513 0.002038 0.433 

rs2618714 234.796551 0.001625 0.434 

rs1478915 234.798176 0.000343 0.433 

rs12136895 234.798519 0.000151 0.256 

rs1478916 234.798670 0.000092 0.402 

rs3766869 234.798762 0.009140 0.011 

rs12137565 234.807902 0.006674 0.386 

rs1717783 234.814576 0.004657 0.355 

rs3766871 234.819233 0.000825 0.025 

rs596502 234.820058 0.035874 0.167 

rs684923 234.855932 0.003927 0.435 

rs3766881 234.859859 0.023491 0.243 

rs12121446 234.883350 0.009040 0.059 

rs12074235 234.892390 0.009772 0.065 

rs12079834 234.902162 0.010898 0.276 

rs12127746 234.913060 0.034696 0.090 

rs2819771 234.947756 0.000972 0.392 

rs12057693 234.948728 0.008569 0.319 

rs10495401 234.957297 0.002358 0.430 

rs6670609 234.959655 0.008134 0.024 

rs12080621 234.967789 0.001581 0.001 

rs10802632 234.969370 0.000631 0.355 

rs12404009 234.970001 0.018112 0.055 

rs790889 234.988113 0.010197 0.334 

rs790901 234.998310 0.000148 0.285 

rs790900 234.998458 0.010628 0.291 

rs2794828 235.009086 0.004752 0.225 

rs790882 235.013838 0.022594 0.219 

rs4659819 235.036432 0.000388 0.479 

rs12025731 235.036820 0.000166 0.482 

rs790897 235.036986 0.000240 0.005 

rs12725752 235.037226 0.001010 0.007 

rs12594 235.038236 0.017883 0.322 

rs1890672 235.056119 0.015957 0.287 

rs12092452 235.072076 0.015676 0.009 

rs2487789 235.087752 0.020633 0.373 
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rs559849 235.108385 0.036913 0.235 

rs2499602 235.145298 0.000092 0.434 

rs2451615 235.145390 0.001825 0.433 

rs960292 235.147215 0.000063 0.003 

rs960291 235.147278 0.002353 0.003 

rs902333 235.149631 0.000853 0.257 

rs2499595 235.150484 0.002158 0.434 

rs2451609 235.152642 0.000332 0.441 

rs2499589 235.152974 0.000510 0.441 

rs902332 235.153484 0.000077 0.443 

rs902331 235.153561 0.001013 0.438 

rs1565426 235.154574 0.000337 0.441 

rs2499586 235.154911 0.000481 0.441 

rs2248471 235.155392 0.007367 0.440 

rs6663760 235.162759 0.003609 0.484 

rs747520 235.166368 0.000570 0.038 

rs902329 235.166938 0.036076 0.485 

rs1017981 235.203014 0.025645 0.477 

rs6672409 235.228659 0.024936 0.475 

rs12087117 235.253595 0.017424 0.008 

rs1338920 235.271019 0.004227 0.264 

rs2487084 235.275246 0.025440 0.228 

rs1417275 235.300686 0.010502 0.059 

rs1796942 235.311188 0.016991 0.061 

rs10495405 235.328179 0.020877 0.057 

rs1416385 235.349056 0.026408 0.178 

rs6413954 235.375464 0.028795 0.178 

rs922694 235.404259 0.023532 0.467 

rs10737820 235.427791 0.026128 0.364 

rs7542189 235.453919 0.026538 0.458 

rs10495407 235.480457 0.026955 0.352 

rs12077136 235.507412 0.046080 0.014 

rs7538546 235.553492 0.030964 0.057 

rs10802681 235.584456 0.015777 0.398 

rs6698025 235.600233 0.026334 0.313 

rs7547119 235.626567 0.012794 0.181 

rs1342079 235.639361 0.028715 0.203 

rs7550966 235.668076 0.007026 0.238 

rs12029859 235.675102 0.003772 0.172 

rs10754638 235.678874 0.006375 0.323 

rs1054888 235.685249 0.000190 0.322 

rs1557131 235.685439 0.003813 0.328 

rs2153613 235.689252 0.002846 0.287 

rs10495411 235.692098 0.021207 0.236 

rs2893644 235.713305 0.023489 0.270 
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rs10495417 235.736794 0.023513 0.095 

rs526612 235.760307 0.039373 0.092 

rs586565 235.799680 0.018731 0.260 

rs632407 235.818411 0.000266 0.048 

rs574819 235.818677 0.029249 0.228 

rs12078080 235.847926 0.031089 0.005 

rs2174076 235.879015 0.015580 0.479 

rs2653912 235.894595 0.029094 0.203 

rs4659885 235.923689 0.011706 0.376 

rs10158346 235.935395 0.036815 0.402 

rs2841417 235.972210 0.031538 0.317 

rs2689163 236.003748 0.000069 0.461 

rs10925763 236.003817 0.024552 0.177 

rs12406780 236.028369 0.025955 0.096 

rs2689138 236.054324 0.033304 0.151 

rs9428749 236.087628 0.010558 0.145 

rs9428417 236.098186 0.022665 0.146 

rs1915251 236.120851 0.031388 0.332 

rs1915258 236.152239 0.004818 0.007 

rs9428788 236.157057 0.013787 0.143 

rs2139665 236.170844 0.045584 0.325 

rs1915245 236.216428 0.046472 0.481 

rs1912230 236.262900 0.026992 0.074 

rs6682504 236.289892 0.005997 0.288 

rs2353429 236.295889 0.020839 0.236 

rs10495440 236.316728 0.019517 0.194 

rs6685861 236.336245 0.026161 0.345 

rs7526587 236.362406 0.024535 0.329 

rs967290 236.386941 0.031835 0.304 

rs7521497 236.418776 0.014143 0.315 

rs1339737 236.432919 0.024999 0.332 

rs10925857 236.457918 0.012074 0.158 

rs12405815 236.469992 0.002402 0.026 

rs2820033 236.472394 0.028922 0.158 

rs4579742 236.501316 0.018836 0.154 

rs12042304 236.520152 0.012831 0.138 

rs6661899 236.532983 0.007081 0.323 

rs9428828 236.540064 0.055605 0.254 

rs6429136 236.595669 0.001073 0.114 

rs6675386 236.596742 0.031919 0.114 

rs7548324 236.628661 0.024676 0.303 

rs6681143 236.653337 0.019867 0.016 

rs10754671 236.673204 0.024732 0.469 

rs10399730 236.697936 0.022079 0.007 

rs1782356 236.720015 0.005149 0.438 
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rs1782351 236.725164 0.006829 0.443 

rs1218671 236.731993 0.005537 0.378 

rs6676678 236.737530 0.002743 0.409 

rs9287229 236.740273 0.009860 0.413 

rs1416379 236.750133 0.004675 0.083 

rs10925915 236.754808 0.012588 0.414 

rs1984207 236.767396 0.027715 0.414 

rs10754674 236.795111 0.003230 0.075 

rs997538 236.798341 0.026023 0.080 

rs6697471 236.824364 0.016709 0.234 

rs12096150 236.841073 0.026735 0.051 

rs2355232 236.867808 0.028318 0.358 

rs7523711 236.896126 0.000311 0.017 

rs12028626 236.896437 0.003437 0.062 

rs6429153 236.899874 0.023153 0.489 

rs12047255 236.923027 0.001377 0.062 

rs7511970 236.924404 0.000361 0.451 

rs6694220 236.924765 0.007386 0.462 

rs10429918 236.932151 0.011512 0.062 

rs10925964 236.943663 0.002565 0.450 

rs1019881 236.946228 0.004863 0.469 

rs10802802 236.951091 0.018975 0.447 

rs654209 236.970066 0.010979 0.253 

rs485412 236.981045 0.022604 0.262 

rs569474 237.003649 0.007342 0.468 

rs552634 237.010991 0.000724 0.222 

rs10925980 237.011715 0.003440 0.261 

rs6690809 237.015155 0.021283 0.486 

rs576386 237.036438 0.003336 0.422 

rs7548522 237.039774 0.047283 0.062 

rs536477 237.087057 0.009565 0.405 

rs10495448 237.096622 0.000085 0.302 

rs12068071 237.096707 0.004308 0.019 

rs6684778 237.101015 0.001769 0.091 

rs10802816 237.102784 0.005625 0.063 

rs7520974 237.108409 0.003343 0.430 

rs3738435 237.111752 0.000341 0.169 

rs2067481 237.112093 0.024031 0.018 

rs7531091 237.136124 0.013568 0.283 

rs12563039 237.149692 0.027359 0.487 

rs4233479 237.177051 0.000069 0.195 

rs12133285 237.177120 0.000280 0.336 

rs4659558 237.177400 0.004324 0.086 

rs1381525 237.181724 0.021146 0.492 

rs7512434 237.202870 0.016548 0.318 
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rs10436944 237.219418 0.005533 0.433 

rs2066299 237.224951 0.018002 0.463 

rs9887796 237.242953 0.019587 0.265 

rs12069776 237.262540 0.000228 0.174 

rs12095464 237.262768 0.001322 0.172 

rs12094054 237.264090 0.017084 0.175 

rs9287230 237.281174 0.046428 0.154 

rs3738434 237.327602 0.000263 0.038 

rs3738433 237.327865 0.002536 0.076 

rs7524136 237.330401 0.014070 0.070 

rs7537876 237.344471 0.002545 0.444 

rs12073759 237.347016 0.000250 0.002 

rs12069275 237.347266 0.000337 0.005 

rs12071494 237.347603 0.000935 0.008 

rs2355833 237.348538 0.000433 0.326 

rs12087179 237.348971 0.000070 0.002 

rs1539200 237.349041 0.000069 0.345 

rs1471089 237.349110 0.000239 0.196 

rs12127949 237.349349 0.007768 0.347 

rs10495459 237.357117 0.025300 0.449 

rs3765588 237.382417 0.021973 0.190 

rs1456661 237.404390 0.001093 0.304 

rs10802846 237.405483 0.006295 0.366 

rs10926166 237.411778 0.012155 0.387 

rs6429189 237.423933 0.024199 0.239 

rs1456654 237.448132 0.000180 0.370 

rs1456655 237.448312 0.001409 0.368 

rs1456658 237.449721 0.012186 0.367 

rs4659951 237.461907 0.000679 0.381 

rs10926182 237.462586 0.000521 0.346 

rs10926184 237.463107 0.000405 0.345 

rs10802850 237.463512 0.021420 0.346 

rs7554349 237.484932 0.000386 0.147 

rs7531591 237.485318 0.000136 0.122 

rs2045349 237.485454 0.029399 0.267 

rs1379074 237.514853 0.004681 0.165 

rs4433380 237.519534 0.009162 0.096 

rs10495463 237.528696 0.004016 0.469 

rs10157903 237.532712 0.000851 0.366 

rs6677726 237.533563 0.000320 0.085 

rs3795677 237.533883 0.000968 0.281 

rs3795680 237.534851 0.003563 0.288 

rs10157874 237.538414 0.007861 0.478 

rs4659963 237.546275 0.014842 0.413 

rs1932589 237.561117 0.011201 0.484 
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rs12089062 237.572318 0.034699 0.243 

rs4659971 237.607017 0.005042 0.351 

rs12028974 237.612059 0.006231 0.169 

rs9661317 237.618290 0.009554 0.007 

rs1414660 237.627844 0.012404 0.190 

rs10926254 237.640248 0.002170 0.336 

rs2356386 237.642418 0.000363 0.093 

rs2356387 237.642781 0.000242 0.263 

rs9728292 237.643023 0.000127 0.213 

rs9728305 237.643150 0.000167 0.289 

rs12143600 237.643317 0.005728 0.080 

rs12065307 237.649045 0.002358 0.144 

rs945512 237.651403 0.002603 0.247 

rs12064827 237.654006 0.000850 0.187 

rs10802871 237.654856 0.019840 0.297 

rs12064536 237.674696 0.000125 0.001 

rs9727156 237.674821 0.003899 0.392 
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rs3748538 237.735151 0.002212 0.346 

rs2185283 237.737363 0.009893 0.346 

rs10495471 237.747256 0.001844 0.127 

rs6429210 237.749100 0.003969 0.425 

rs11588607 237.753069 0.001305 0.332 

rs11582912 237.754374 0.003236 0.330 

rs7411138 237.757610 0.010297 0.098 

rs7528086 237.767907 0.014188 0.023 

rs4453026 237.782095 0.014298 0.266 

rs10495472 237.796393 0.001605 0.103 

rs1934342 237.797998 0.013939 0.276 

rs6686630 237.811937 0.001372 0.447 

rs10495473 237.813309 0.001123 0.288 

rs7544440 237.814432 0.001820 0.438 

rs3748533 237.816252 0.025013 0.189 

rs2185288 237.841265 0.014235 0.114 

rs6429216 237.855500 0.026697 0.460 

rs6702786 237.882197 0.010129 0.133 
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rs10926334 237.892326 0.007457 0.078 

rs7546208 237.899783 0.004062 0.432 

rs10754715 237.903845 0.010191 0.277 

rs12097614 237.914036 0.003391 0.001 

rs10495474 237.917427 0.001984 0.338 

rs6676703 237.919411 0.001438 0.014 

rs6683045 237.920849 0.006946 0.299 

rs7518789 237.927795 0.042389 0.056 

rs11586149 237.970184 0.002669 0.166 

rs717791 237.972853 0.001741 0.268 

rs6677808 237.974594 0.000627 0.030 

rs6695843 237.975221 0.000765 0.031 

rs4568818 237.975986 0.029396 0.390 

rs4603122 238.005382 0.010980 0.313 

rs2275742 238.016362 0.004590 0.347 

rs3738068 238.020952 0.003374 0.186 

rs4659581 238.024326 0.003115 0.186 

rs10926365 238.027441 0.005279 0.388 

rs12410838 238.032720 0.013399 0.087 

rs1977840 238.046119 0.005934 0.221 

rs785976 238.052053 0.034708 0.148 

rs377116 238.086761 0.022072 0.453 

rs261806 238.108833 0.020024 0.453 

rs422256 238.128857 0.002445 0.438 

rs195778 238.131302 0.005423 0.381 

rs261861 238.136725 0.023765 0.478 

rs2502436 238.160490 0.015595 0.124 

rs3893178 238.176085 0.014024 0.457 

rs10802917 238.190109 0.012815 0.482 

rs670659 238.202924 0.009202 0.340 

rs628208 238.212126 0.029018 0.429 

rs538423 238.241144 0.010260 0.389 

rs4660027 238.251404 0.052631 0.348 

rs12083715 238.304035 0.023559 0.002 

rs4634894 238.327594 0.007023 0.409 

rs7548582 238.334617 0.000320 0.001 

rs7550998 238.334937 0.026719 0.001 

rs10465612 238.361656 0.005919 0.407 

rs6665888 238.367575 0.015865 0.384 

rs4391653 238.383440 0.025430 0.256 

rs2177113 238.408870 0.012178 0.080 

rs4233483 238.421048 0.018699 0.327 

rs2815848 238.439747 0.035870 0.410 

rs10926448 238.475617 0.003615 0.189 

rs10926450 238.479232 0.001589 0.469 



 

 173 

rs4659596 238.480821 0.014835 0.469 

rs6697953 238.495656 0.026137 0.264 

rs12121748 238.521793 0.003126 0.016 

rs1341468 238.524919 0.007031 0.407 

rs4659598 238.531950 0.022162 0.225 

rs4660068 238.554112 0.006135 0.232 

rs4659599 238.560247 0.001090 0.015 

rs1891130 238.561337 0.005334 0.025 

rs1341463 238.566671 0.000954 0.235 

rs10926467 238.567625 0.023874 0.125 

rs1557078 238.591499 0.010700 0.477 

rs10802960 238.602199 0.012497 0.407 

rs9428505 238.614696 0.022546 0.138 

rs3014554 238.637242 0.015798 0.284 

rs1954202 238.653040 0.022629 0.239 

rs6696900 238.675669 0.003016 0.001 

rs10926494 238.678685 0.027974 0.325 

rs2185626 238.706659 0.011525 0.413 

rs2275162 238.718184 0.008151 0.027 

rs4660100 238.726335 0.010606 0.269 

rs3819976 238.736941 0.010240 0.025 

rs11805494 238.747181 0.006102 0.404 

rs12410855 238.753283 0.017920 0.390 

rs2275163 238.771203 0.022213 0.305 

rs2273711 238.793416 0.003081 0.010 

rs1053230 238.796497 0.000219 0.237 

rs1053221 238.796716 0.001982 0.138 

rs3765809 238.798698 0.001082 0.170 

rs1053183 238.799780 0.009077 0.199 

rs2273712 238.808857 0.013074 0.010 

rs3753221 238.821931 0.017849 0.240 

rs3737604 238.839780 0.002766 0.318 

rs581510 238.842546 0.020785 0.282 

rs7416113 238.863331 0.014795 0.241 

rs6661311 238.878126 0.012070 0.342 

rs7527828 238.890196 0.016172 0.386 

rs12117802 238.906368 0.042472 0.322 

rs7418599 238.948840 0.000126 0.382 

rs10802990 238.948966 0.004857 0.459 

rs6669629 238.953823 0.000634 0.208 

rs6429302 238.954457 0.012570 0.161 

rs7551270 238.967027 0.003664 0.208 

rs12095445 238.970691 0.017224 0.159 

rs953597 238.987915 0.000444 0.315 

rs2051064 238.988359 0.004119 0.484 
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rs12074374 238.992478 0.001972 0.169 

rs6429314 238.994450 0.007368 0.378 

rs1342866 239.001818 0.027591 0.164 

rs10489351 239.029409 0.023773 0.200 

rs1635517 239.053182 0.000352 0.410 

rs4149852 239.053534 0.000169 0.079 

rs1776176 239.053703 0.000106 0.492 

rs2073490 239.053809 0.022722 0.201 

rs4149963 239.076531 0.006919 0.072 

rs1047840 239.083450 0.000063 0.383 

rs12122770 239.083513 0.000181 0.006 

rs1776148 239.083694 0.002730 0.356 

rs1635498 239.086424 0.007346 0.009 

rs4150018 239.093770 0.023969 0.436 

rs5009401 239.117739 0.002782 0.459 

rs7512631 239.120521 0.000126 0.001 

rs7555402 239.120647 0.006102 0.462 

rs7517808 239.126749 0.012103 0.219 

rs3844254 239.138852 0.031222 0.066 

rs10158939 239.170074 0.040752 0.326 

rs12124966 239.210826 0.012015 0.213 

rs6663013 239.222841 0.008295 0.468 

rs6672510 239.231136 0.037673 0.343 

rs316839 239.268809 0.000764 0.051 

rs12134852 239.269573 0.006942 0.047 

rs1393299 239.276515 0.002161 0.433 

rs316894 239.278676 0.023684 0.046 

rs316822 239.302360 0.028067 0.439 

rs12408396 239.330427 0.023208 0.259 

rs421625 239.353635 0.021824 0.178 

rs12405001 239.375459 0.023121 0.009 

rs2841902 239.398580 0.018338 0.122 

rs10803034 239.416918 0.003348 0.101 

rs4589096 239.420266 0.003713 0.142 

rs3863747 239.423979 0.054399 0.240 

rs1439523 239.478378 0.000830 0.030 

rs977112 239.479208 0.006281 0.030 

rs12568231 239.485489 0.004014 0.032 

rs12138275 239.489503 0.003164 0.136 

rs2153844 239.492667 0.007038 0.435 

rs2580237 239.499705 0.005897 0.492 

rs2580223 239.505602 0.003843 0.412 

rs2809985 239.509445 0.002559 0.405 

rs2810006 239.512004 0.000195 0.263 

rs2810007 239.512199 0.000877 0.377 
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rs924775 239.513076 0.015651 0.183 

rs1503793 239.528727 0.001035 0.295 

rs7550063 239.529762 0.004911 0.295 

rs6657483 239.534673 0.003428 0.304 

rs2036493 239.538101 0.000769 0.325 

rs1553442 239.538870 0.000483 0.042 

rs1039529 239.539353 0.000281 0.413 

rs2654875 239.539634 0.000948 0.378 

rs1394060 239.540582 0.016479 0.326 

rs2810035 239.557061 0.001269 0.398 

rs2810038 239.558330 0.007264 0.404 

rs2654867 239.565594 0.000070 0.225 

rs1473576 239.565664 0.000089 0.371 

rs1473575 239.565753 0.000314 0.367 

rs1473574 239.566067 0.009125 0.370 

rs10926747 239.575192 0.004791 0.443 

rs6429357 239.579983 0.002459 0.498 

rs905586 239.582442 0.004866 0.450 

rs3964039 239.587308 0.000542 0.255 

rs1503792 239.587850 0.000797 0.458 

rs1548160 239.588647 0.011589 0.459 

rs10803047 239.600236 0.001789 0.290 

rs6695046 239.602025 0.004642 0.291 

rs2809987 239.606667 0.008097 0.446 

rs1553435 239.614764 0.005530 0.220 

rs2654892 239.620294 0.004008 0.219 

rs2654897 239.624302 0.004954 0.325 

rs2810005 239.629256 0.000153 0.403 

rs2654902 239.629409 0.002713 0.326 

rs1503803 239.632122 0.001992 0.334 

rs2810008 239.634114 0.019053 0.295 

rs12403816 239.653167 0.004091 0.467 

rs12121644 239.657258 0.000282 0.033 

rs7551410 239.657540 0.000139 0.435 

rs1005007 239.657679 0.019716 0.444 

rs7544211 239.677395 0.014186 0.116 

rs1938338 239.691581 0.041639 0.235 

rs6659974 239.733220 0.013504 0.287 

rs4658491 239.746724 0.000617 0.011 

rs1938336 239.747341 0.006333 0.262 

rs6681770 239.753674 0.000780 0.205 

rs1333701 239.754454 0.002433 0.136 

rs12084486 239.756887 0.001431 0.421 

rs2184185 239.758318 0.006778 0.421 

rs9804068 239.765096 0.001810 0.284 
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rs12091230 239.766906 0.005891 0.002 

rs1475727 239.772797 0.012538 0.119 

rs4658847 239.785335 0.018243 0.070 

rs10926825 239.803578 0.010578 0.379 

rs1981064 239.814156 0.022060 0.462 

rs914940 239.836216 0.054357 0.427 

rs7542171 239.890573 0.002792 0.001 

rs2095262 239.893365 0.013135 0.299 

rs2780784 239.906500 0.038168 0.382 

rs2027040 239.944668 0.002902 0.430 

rs10926880 239.947570 0.003868 0.001 

rs4658862 239.951438 0.016451 0.447 

rs7549075 239.967889 0.013428 0.448 

rs4639742 239.981317 0.000157 0.007 

rs4233436 239.981474 0.014380 0.381 

rs10926905 239.995854 0.018773 0.329 

rs2502333 240.014627 0.053109 0.224 

rs1081093 240.067736 0.013682 0.419 

rs1985630 240.081418 0.136759 0.260 

rs4658536 240.218177 0.041188 0.140 

rs3766666 240.259365 0.016408 0.008 

rs3766664 240.275773 0.033483 0.437 

rs2789173 240.309256 0.017981 0.337 

rs7518350 240.327237 0.010618 0.402 

rs4658547 240.337855 0.018158 0.124 

rs7548435 240.356013 0.003647 0.016 

rs4658552 240.359660 0.003589 0.401 

rs3904683 240.363249 0.034430 0.399 

rs6682448 240.397679 0.011198 0.360 
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rs2275155 240.440631 0.019140 0.333 
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rs7551067 240.553303 0.010609 0.151 

rs11810833 240.563912 0.019482 0.175 

rs9428573 240.583394 0.015136 0.002 

rs12042298 240.598530 0.001633 0.244 

rs884808 240.600163 0.003960 0.250 

rs3006927 240.604123 0.004628 0.126 

rs9428576 240.608751 0.005873 0.479 
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rs2291409 240.678921 0.029538 0.324 
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rs12124113 240.851090 0.012112 0.153 

rs1545654 240.863202 0.043065 0.124 

rs6672195 240.906267 0.031290 0.324 

rs4518884 240.937557 0.023730 0.322 

rs12094774 240.961287 0.009104 0.047 

rs3008657 240.970391 0.024195 0.324 
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rs2206 241.015434 0.022606 0.408 
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rs525234 241.041407 0.001364 0.326 

rs559080 241.042771 0.000209 0.298 

rs471567 241.042980 0.004146 0.422 

rs524489 241.047126 0.001387 0.435 

rs579388 241.048513 0.004324 0.375 

rs990794 241.052837 0.006493 0.260 

rs472276 241.059330 0.002312 0.397 

rs519449 241.061642 0.000873 0.287 

rs10927093 241.062515 0.003420 0.196 

rs989993 241.065935 0.001819 0.041 
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rs500202 241.068065 0.002050 0.456 

rs484459 241.070115 0.000078 0.295 
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rs511659 241.081112 0.001828 0.281 
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rs495843 241.084579 0.001135 0.486 
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rs960091 241.086202 0.002354 0.183 
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APPENDIX E 

 
Study Subjects 

 

DNA Samples 

To date, the Multiple Sclerosis Genetics Group (MSGG) has collected a data set of 192 

multiplex families.  The MSGG currently has over 200 families ascertained and awaiting 

follow-up.  The MSGG has also collected a large data set of 593 simplex families with 

either: a.) at least one affected and both parents or b.) at least one affected and one 

unaffected sibling that can be used for family-based association studies.  The MSGG also 

has access to independent data sets containing 489 African-American simplex families 

and 1,000 U.K. parent-child trios that could serve as independent data sets for 

confirmation of findings (Table 1). 

 

Table 1.  Available Data Sets 

Family Type # Families # Affecteds # Unaffecteds 

Multiplex 192 492 881 

Simplex (U.S.) 593 593 1305 

Simplex (U.K) 1000 1000 2000 

Simplex (Af-Am) 489 489 339 
 

 

Detailed clinical data was collected for each individual enrolled in the MSGG studies.  

Each affected individual underwent a detailed medical history, MRI, and lab tests to rule 

out other forms of neurological disability.  A majority of families in the data set exhibit 

the relapsing-remitting form of MS (93% of multiplex families and 70% of simplex 
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families).  With the exception of the 489 African-American simplex families, all of the 

available data sets are Caucasian.   

 

Human Subjects 

The discussion below describes the approach that the MSGG uses in collection of MS 

families. 

 

Risks to Human Subjects 

Involvement and Characteristics of Human Subjects:  Subjects participating in the study 

either have MS or are related to a person or persons known to have MS.  Taking part in 

MSGG studies is entirely voluntary.  Every effort is made to encourage participation of 

minorities in MSGG research activities, but they constitute a small portion of the overall 

data set, given the lower frequency of MS in minority populations.  The MSGG is 

specifically targeting African-American individuals for collection; these samples are 

being examined as part of separate proposals and will potentially be used as a 

confirmation data set for future association studies.  The gender and ethnic distributions 

of the data set are provided in the Inclusion Enrollment Report. 

 

Sources of Research Material:  This information was collected for research purposes 

only, and will only be accessed in a coded and confidential manner.  The vast majority of 

the data set has been collected in the United States and the information and samples have 

been collected under separately funded proposals by MSGG members at UCSF.  We also 
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have access to 1,000 parent-child trios collected by MSGG collaborators in the United 

Kingdom. 

 

Potential Risks:  The physical risks of participating in the MSGG studies are minimal, 

and arise primarily from phlebotomy.  These risks included bruising around the site of 

phlebotomy, and the possibility of passing out from the site of blood.  All blood 

collection was performed by trained personnel who took all necessary precautions to 

ameliorate such problems.  There is a small psychological risk from an individual 

identifying themselves as part of a family with MS.  This is unlikely since most family 

members participating in these studies are already aware of MS in their family.  There is 

also a small theoretical risk for social and legal discrimination towards individuals who 

are at risk for a medical disorder or have a medical disorder/condition such as MS in their 

family. 

 

Protection of Human Subjects 

Recruitment and Informed Consent:  Informed consent was obtained from all participants 

prior to enrollment in the MSGG studies.  Each participant read the Informed Consent 

Form, and was given an opportunity to address any questions with the study site senior 

investigators.  If the participant was visually impaired and unable to read the form, study 

personnel read the form aloud.  Participants were given the opportunity to ask questions 

before signing the informed consent.  For cognitively impaired individuals, consent was 

obtained from a family member and/or legal guardian according to local, state, or federal 

law.  Every effort was made to explain the study to the participant to the best of their 
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understanding.  A signed consent form is stored with research records, and kept 

completely separate from any clinical medical records.  Any participant may refuse to 

participate and may withdraw consent and discontinue participation in the study at any 

time without affecting their present or future care. 

 

Database core facilities maintain and update pedigree data information.  Study participant 

confidentiality is maintained through the use of numerically coded samples.  In addition 

to its role in managing the pedigree data, the core facility also databases all genetic 

marker data.  This is done via the PEDIGENE® system to specifically suit genetic 

research study needs.  Multiple security measures are in place to protect data—including 

data encryption, firewalls, restricted access to the network, and multiple levels of 

password protection. 

 

There is a theoretical risk for discrimination towards individuals who are at risk for a 

medical disorder or have a medical disorder/condition in their family.  Potential 

discrimination may include barriers to insurability, employability, or other unidentified 

adverse effects.  Extensive efforts are made to protect all research subjects from 

prejudice, discrimination, or uses of this information that will adversely affect them.  

Specifically, clinical and research information with respect to this study is maintained in 

a research file separate from hospital medical records and will not be placed in the 

official medical record.  Access to information generated as a result of the research study 

is prohibited and consequently is unavailable to the patient, health care providers, 
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insurance carriers, employers, or any member of the participant’s family.  A certificate of 

confidentiality has been obtained by the MSGG for MS studies. 

 

The collection of patient samples is for research purposes only.  Therefore, no results 

from our studies will be given to the participants.  It is possible that these studies will 

identify information about the participant that was previously unknown (e.g. disease 

status, risk, or non-paternity).  Such incidental findings are not shared with anyone 

related to the participant unless the incidental finding is life-threatening.   

 

Potential Benefits 

Although there is likely to be no direct benefit of this research to the participants, the 

information generated as part of these studies may help us to better understand the 

etiology and expression of MS.  Participants may benefit from knowing that their 

participation may help us to better understand MS and may eventually lead to better 

treatments for themselves and/or others.  The risks of participation are minimal and the 

potential benefits to society are substantial. 

 

Importance of the Knowledge to be Gained 

Identifying one or more genes for MS risk or disease expression may provide improved 

diagnosis and better discrimination of the subtypes of MS.  The genes may also provide 

substrates for more effective treatments (e.g. better pharmacological agents) or better 

targeting of current treatments to those most likely to respond. 
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Inclusion of Women and Minorities 

MS occurs in women more often than in men (∼ 2.5:1) and is more common in Caucasian 

populations (particularly of northern European descent) than in other minority 

populations.  Our study population consists of more females than males and includes a 

substantial number of non-Caucasian samples.  Approximate gender and ethnic 

distributions of samples to be used in this study are shown in the Inclusion Enrollment 

Report.  For this study, we will concentrate our efforts on the Caucasian data set, which 

represents the vast majority of all collected samples.  Any findings identified through this 

proposal will specifically be tested in the African-American data set, and any other 

minority data set (e.g. Hispanics) of sufficient size to be scientifically valid. 

 

Inclusion of Children 

Multiple sclerosis is a disease of young to mid-adult life.  Few individuals under the age 

of 18 are affected with the disease and therefore few such individuals are included in our 

studies.  The incidence of MS increases after the age of 18, so individuals between the 

ages of 18 and 21 (still considered children by NIH definition) are to be included if they 

are affected.  Unaffected children under the age of 18 will not be included.  Affected 

children over the age of 10 will be included.  It is unlikely that sufficient numbers of 

affected children will be included to make specific statements about any differences in 

their genetic risk. 
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