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 With the exception of ApoE gene, no universally accepted genetic association has 

been identified with the complex Late-onset Alzheimer Disease (LOAD).  A broad region 

of chromosome 10 has engendered continued interest generated from both preliminary 

genetic linkage and candidate gene studies.   

To better examine this region, we applied the genomic convergence approach by 

combining unbiased genetic linkage with candidate gene association studies. We 

genotyped 36 SNPs across 80.2 Mb in 567 multiplex families to narrow the peak region 

of linkage using both covariate and subset analyses. Simultaneously, we examined seven 

functional candidate genes that also fell within the broad area of linkage. Although a two 

point LOD score of 2.69 was obtained in the linkage analysis, the associated candidate 

genes were not under the linkage peak, suggesting a more extensive heterogeneity on 

chromosome10 than previously expected. 

We then converged linkage analysis and gene expression data to identify genes 

that were under linkage peaks and also differentially expressed in AD cases and controls 

based on the rationale that genes showing positive results in multiple studies are more 



likelihood to be involved in AD.  We identified and examined 28 genes on chromosome 

10 for the association with AD.  Both single marker and haplotypic associations were 

tested in overall and eight subsets that were stratified by age, gender, ApoE status and 

clinical diagnosis.  Gene-gene interaction was tested to detect important genes in this 

complex disease.  PTPLA gene showed allelic, genotypic and haplotypic association in 

the overall dataset.  The SORCS1 gene showed very significant association in the female 

dataset (allelic association p=0.00002, a 3-locus haplotype has p=0.00098).  Two SNPs in 

CACNB2 gene showed gene-gene interaction in overall dataset using Multifactor 

Dimensionality Reduction (MDR).  

The work presented in this dissertation applied a multifactorial, multistep 

approach, genomic convergence, which combined linkage analysis, gene expression data, 

and candidate gene association analysis to identify and prioritize candidate susceptibility 

genes for AD.  This study suggests that genetic variations in PTPLA, SORCS1 and 

CACNB2 genes might alter the risk for Alzheimer disease by affecting multiple 

pathways. 
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CHAPTER I 

 

OVERVIEW 

 

Alzheimer disease (AD) is a devastating neurodegenerative disease of elderly 

people and one of the most serious public health problems facing an increasingly aging 

society.  A lot of effort has been put into identifying genes that underlie the etiology of 

Alzheimer disease.  However, like many other common diseases, Alzheimer disease is a 

complex disorder involving multiple genes together with non-genetic factors.  Therefore, 

the likelihood of a single method giving us an answer in dissecting complex disease traits 

is very low.  Thus, I proposed a genomic convergence and peak-wide association 

approach to identify and characterize genes involved in the susceptibility of Alzheimer 

disease.  I converged linkage, gene expression and candidate gene studies to identify a 

subset of genes.  These genes were investigated for association in not only the overall 

data set, but also in more homogeneous subsets, and then main effects and gene-gene 

interactions were examined in each of these subsets. 

The introduction and background for Alzheimer disease is presented in chapter II.  

The clinical aspects and genetic epidemiology of Alzheimer disease are presented.  

Current approaches for genetic analysis of complex diseases, known genes (APP, PS1, 

PS2 for early-onset AD, ApoE for late-onset AD), and the progress and efforts to find 

new susceptibility genes for AD are introduced. 

Chapter III lays out my hypothesis and three specific aims. 
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Numerous studies have tested hundreds of candidate genes and many such genes 

were reported as associating with AD.  However, none of the genes has been universally 

accepted as an AD risk gene except ApoE.  Multiple genomic screens showed evidence 

that chromosome 10 may harbor susceptibility genes for AD.  However, the reported 

linkage region scatters across an 80 Mb region on chromosome 10 and provides an 

impractically large area for a molecular genetic search.  To examine this region in more 

detail, we tested several recently reported candidate genes within this broad region of 

linkage, VR22, LRRTM3, PLAU, TNFRSF6, IDE, CDC2, and LOC439999.  

Simultaneously, we examined the linkage signal in more detail to see if we could narrow 

the peak region of linkage and converge the candidate gene and linkage data.   

Chapter IV presents the linkage analysis approach to identify the minimum 

candidate region for AD on chromosome 10.  Chapter V presents the candidate gene 

studies on the genes VR22, LRRTM3, PLAU, TNFRSF6, and IDE.  There is at least one 

SNP showing association with AD in each gene in at least one of our data sets.  Chapter 

VI details the examination of a separate candidate gene, CDC2, with AD.  Due to the 

property of the SNPs in CDC2, we used a special genotyping method to test for 

association with this gene.  However, our results didn’t show evidence of association 

between CDC2 and AD.  Chapter VII presents the association study of a polymorphism 

rs498055 in gene LOC439999 on chromosome 10.  This SNP was identified from a study 

of 1412 functional SNPs in 667 genes under the previously identified linkage peak on 

chromosome 10.  However, we didn’t confirm this association in three independent 

family-based and one independent case-control datasets. 
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Chapter VIII details the genomic convergence approach to identify candidate 

genes for Alzheimer disease and the genomic analysis of the identified candidate genes. 

Chapter IX presents the comprehensive association analysis of genomic 

convergence genes with AD including allelic, genotypic and haplotypic association in the 

overall and more homogenous subsets.  Genetic variations in PTPLA and SORCS1 

demonstrated association with AD with modest effect size.  The replication of the effect 

of these genes in different study populations and the search for susceptible variants and 

functional studies of these genes are necessary to get a better understanding of the roles 

of the genes in Alzheimer disease. 

Chapter X presents the examination of potential gene-gene interaction involved in 

Alzheimer disease.  Epistasis, or gene-gene interaction, is crucial in detecting 

polymorphisms associated with an increased risk of disease.  In this chapter, we applied 

Multifactor Dimensionality Reduction (MDR) to the 1536 SNPs in genomic convergence 

candidate genes on a population data set (506 cases and 558 controls) to identify potential 

gene-gene interactions involved in Alzheimer disease. 

Chapter XI describes the conclusions and future directions. 
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CHAPTER II 

 

INTRODUCTION AND BACKGROUND 

 

Clinical Aspects of Alzheimer Disease (AD) 

 

Alzheimer Disease 

Although various forms of dementia have always been part of the human 

experience, the efforts toward a systematic description of the clinical-pathologic 

characteristics of the phenomenon gained traction in the late 1890s, roughly paralleling 

advances in histology, light microscopy, neuroanatomy, and other areas of biology 

(Berchtold and Cotman, 1998; Beach, 1987).   

The 1907 report by Alois Alzheimer became the index case for “Alzheimer 

Disease” (Khachaturian, 1985; Khachaturian, 2006).  Alzheimer disease (AD) is the 

leading cause of dementia in the elderly and the most common form of dementia 

occurring after the age of 40 (Rocca et al., 1991; Schoenberg et al., 1987).  It is a 

devastating neurodegenerative disorder of later life with a complex inheritance (Growden, 

1995; Khachaturian, 1985).  Alzheimer disease targets specific brain regions early in its 

course, especially the cholinergic basal forebrain and medial temporal lobe structures 

including the hippocampus, amygdala, and entorhinal cortex (Khachaturian, 1985; Braak 

and Braak, 1995; Braak and Braak, 1997; Nagy et al., 1999; Beach et al., 2000).   

Clinically AD progresses slowly, resulting in memory loss and alterations of 

higher intellectual function and cognitive abilities (Guttman et al., 1999).  Pathologically 
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AD is characterized by neurofibrillary tangles in the neurons of the cerebral cortex and 

hippocampus and the deposition of amyloid within senile plaques and cerebral blood 

vessels (Wisniewski et al., 1993).  Both characteristics are prerequisites for a confirmed 

diagnosis of AD.   

 

Diagnosis of Alzheimer Disease 

Criteria for Alzheimer Disease.  The clinical diagnosis of AD requires both 

physical and neuropsychological examinations.  The standardized AD diagnostic criteria 

was developed by the National Institute of Neurological and Communicative Disorders 

and Stroke and the Alzheimer disease and Related Disorders Association (NINCDS-

ADRDA) (McKhann et al., 1984a), shown in Table 2-1.  These criteria divide patients 

into definite AD, probable AD, and possible AD.  Definite AD is the most accurate 

diagnosis, but it can only be made after death.  It requires that the patient meets the 

criteria for probable AD as well as histopathological evidence of AD by autopsy, which 

is the presence of the plaques and neurofibrillary tangles.  There are several criteria for 

probable AD.  If a patient meets three of these, he/she is diagnosed in this category.  For 

example, the patient has progressive deficits in two or more areas of cognition, including 

memory, which is tested by mini-mental state exam.  The onset should be between the 

ages of 40 and 90 years.  There should be absence of systemic or other brain diseases 

capable of producing a dementia syndrome. A clinical diagnosis of possible AD may be 

made on the basis of the dementia syndrome, in the absence of other neurologic, 

psychiatric or systemic disorders sufficient to cause dementia.  
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Table 2-1 NINCDS-ADRDA criteria for Alzheimer Disease 

Definite AD 
Clinical criteria for probable AD; 
Histopathological evidence obtained from autopsy. 

Probable AD 
Dementia established by Mini-Mental State Exam or Blessed Dementia Scale or 

similar exams and confirmed by neuropsychological tests; 
Deficits in two or more areas of cognition; 
Progressive worsening of memory and other cognitive functions; 
No disturbance of consciousness; 
Onset between ages 40 and 90, most often after age 65; 
Absence of systemic disorders or other brain diseases that account for the symptoms. 

Possible AD 
Atypical onset, presentation, or clinical course of dementia; 
Absence of other disorders sufficient to cause dementia; 
Another illness capable of producing dementia is present but is not considered to be 

the primary cause. 
 

Diagnostic evaluation.  Alzheimer disease is not simply a diagnosis by exclusion.  

Standard methods of examination (medical and family history; neurologic, psychiatric 

and clinical examinations; neuropsychological tests, laboratory studies, and brain 

imaging) are needed to fulfill inclusionary and exclusionary criteria for the diagnosis of 

Alzheimer disease.   

History and physical examination.  Alzheimer disease has typically gradual  

onset.  The symptoms begin with memory loss and extend to other cognitive deficits 

including anomia, constructional apraxia and often anosognosia.  Both medical and 

family histories are important for the diagnosis.  Family history of dementia in a parent or 

other relative is common.  A medical history should be taken from the patient and from 

an informant who is well acquainted with the affected individual.  This is essential to 

establish a history of progressive deterioration and for identifying tasks that the patient 

can no longer perform adequately.  Mental status can be evaluated by Mini-Mental State 
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Examination or Modified Mini-Mental State Examination (3MS) (Folstein et al., 1975; 

Teng and Chui, 1987), that includes questions related to orientation, attention, learning, 

memory, language, and constructional praxis.  The Blessed Dementia Scale (Blessed et 

al., 1968) and other scales are also available for measuring different aspects of the disease. 

Neuropsychological testing.  Neuropsychological tests may provide additional 

information for the diagnosis of dementia, particularly in assessing mild cases, 

medicolegally contested cases, and cases where major lifestyle changes will likely be 

imposed.  They are used primarily to provide confirmatory evidence for the diagnosis of 

dementia.  They are also valuable for determining patterns of impairment, for assessing 

changes in impairment over time and after drug treatment or rehabilitation, and for 

establishing correlations of abnormal performance with laboratory and neuropathologic 

examinations. 

Laboratory assessment.  There are no widely accepted, highly reliable, 

commercially available biomarkers for AD; therefore diagnosis rests on clinical 

recognition and exclusion of potentially contributory medical factors.  The lab tests 

include thyroid, B12, Folate, rapid plasma regain (RPR), electrolytes, complete blood 

count (CBC), comprehensive metabolic panel (CMP), sedimentation rate, et al. Doppler 

test can be used for excluding cerebrovascular disease.   

Brain imaging.  Structural brain imaging with magnetic resonance imaging (MRI) 

or computed tomography (CT) is essential to assess relevant structural pathology such as 

brain tumors, vascular lesions, subdural hematomas, hydrocephalus, and other problems.  

In patients with AD, MRI and CT typically reveal nonspecific, mild to moderate atrophy 

that may be most pronounced in the most symptomatic regions, especially the medial 
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temporal lobe.  Fluorodeoxyglucose (FDG) positron emission tomography (PET) may be 

helpful in distinguishing AD from frontotemporal dementia and other less common forms 

of dementia.  Patients with AD have characteristic and progressive patterns of decline in 

regional glucose metabolism, beginning in posterior locations (the precuneus and 

posterior cingulated, posterior parietal, and temporal cortex), and subsequently affecting 

prefrontal cortex and the whole brain (Hoffman et al., 2000). 

 

Genetic Epidemiology of Alzheimer Disease 

 

Population prevalence 

Epidemiological studies provide strong evidence for both environmental and 

genetic risk factors in AD.  Population and family-based studies have been conducted to 

assess disease prevalence and aggregation in an attempt to identify and elucidate genetic 

contribution to the disease. 

Prevalence studies suggest that the number of persons with Alzheimer disease in 

the United States was 4.5 million in 2000 (Hebert et al., 2003). This number is projected 

to triple over the next 50 years as the population ages.  Owing to the rapid growth of the 

oldest age groups of the US population, the number who are 85 years and older will more 

than quadruple to 8.0 million.  The prevalence of Alzheimer disease increases with 

advancing age.  One percent of 60-year-olds and up to forty percents of 85-year-olds 

have the disease (Evans et al., 1989; Mullan et al., 1994).  Also, the incidence increases 

with aging.  The estimated annual incidence of Alzheimer disease is approximately 2.4 
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per 100,000 people age 40 to 60, 1 per 1,000 person-years in individuals aged 60-64 

years, and 25 per 1,000 person-years in individuals older than 85 years (van Duijn, 1996).  

 

Familial aggregation 

 Genetic factors play a role in the etiology of Alzheimer disease.  Familial 

clustering has long been recognized (Akesson, 1969), and a positive family history of 

dementia is one of the most consistent risk factors (van Duijn et al., 1991).  The gene 

mapping strategies applied to early-onset families have identified three early-onset AD 

loci: APP on chromosome 21 (Goate et al., 1991), PS1 on chromosome 14 (St George-

Hyslop et al., 1992; Sherrington et al., 1995), and PS2 on chromosome 1 (Levy-Lahad et 

al., 1995; Rogaev et al., 1995). 

However, identifying genetic mechanisms for the more common late-onset AD 

(LOAD) has been more elusive.  This is due to several properties specific to AD.  For 

example, diagnostic uncertainty, using life-to-date information of at-risk individuals, 

small effective family size, and incomplete family histories are the factors that hamper 

the family studies of late-onset Alzheimer disease.  Despite these problems, data from the 

risk to relatives, segregation analysis and twin studies have suggested a strong genetic 

influence in LOAD (Bergen, 1994; Bonney, 1984; Breitner and Murphy, 1992; Farrer et 

al., 1991; Rao et al., 1994).   

Studies that examined incidence of disease in relatives of AD probands, using 

survival analysis (Chase et al., 1983; Cupples et al., 1989; Cupples et al., 1991), showed 

that first degree relatives of a patient have higher risk of disease than unrelated 

individuals.  The relationship between risk of disease, age and sex indicated that risk of 
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the disease increases as age increases.  Cumulative risk increases by an average of 1.90 ± 

0.79% per year between the ages of 80 and 90 (Cupples et al., 1991).  The risk of 

developing AD was significantly higher in female relatives than male relatives at all ages.  

By age 93, women have a 13% higher risk than men of developing AD.  The survival 

distribution showed a 39% risk of AD by age 96 years among first-degree relatives, 

which suggested that AD has a strong genetic component (Lautenschlager et al., 1996). 

Segregation analysis is one method to test for the existence of inheritance.  In 

Alzheimer disease, it is limited by changes in the definition of the disorder over time and 

by difficulty in accessing pedigree and medical history information for a 

disproportionately large number of deceased persons.  However, data simulation using 

several computer programs (Bonney, 1984; Farrer et al., 1991; Rao et al., 1994; van 

Duijn et al., 1993; Morton and MacLean, 1974; Bonney, 1986) suggested that the most 

general (unrestricted) genetic model gave a significantly better fit than models in which 

the etiology was sporadic, environmental, or not due to any major gene. Apolipoprotein E 

(ApoE) genotypes have been identified as a significant genetic risk factor for late-onset 

Alzheimer disease.  It was identified through an early use of genomic convergence 

combining linkage analysis results with biological information (Corder et al., 1993; 

Strittmatter et al., 1993).  It is the only universally accepted susceptibility gene for late-

onset AD.  However, studies that stratified AD families by ApoE genotype of the 

probands revealed that there are likely other major genes for the common form of the 

disorder (Rao et al., 1996; Jarvik et al., 1996).  These findings support the computer 

simulations of segregation analysis. 
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Adoption studies have not been done in AD because of its very late age at onset, 

which also makes it impossible to trace the histories of most of biological relatives.  Twin 

studies also have not greatly clarified the role of genes in AD.  However, the concordance 

rates among twins of monozygotic probands with AD are generally higher (22%-83%) 

than between dizygotic twins (0%-50%) (Bergen, 1994; Bergen et al., 1997; Breitner and 

Murphy, 1992; Breitner et al., 1993; Breitner et al., 1995b).  All studies examined small 

numbers of twins, and this may introduce bias. Therefore, caution should be taken in 

interpreting the data, considering the sample size used in these studies.    Nonetheless, the 

concordance rates suggest a strong, but not absolute, genetic influence (Breitner et al., 

1995a; St George-Hyslop et al., 1989; Cook et al., 1981; Nee et al., 1987; Rapoport et al., 

1991). 

Taken together, these epidemiological studies provide evidence in support of a 

strong genetic component in AD.  The data also suggest that, like most common complex 

diseases, AD susceptibility is the result of multiple genetic and non-genetic factors 

(Myers and Goate, 2001). 

 

Genetic Analysis of Alzheimer Disease 

 

Approaches 

Understanding the genetics of AD is critical to developing new treatments.  More 

and more evidence demonstrates that AD is a complex and heterogeneous disease with 

strong genetic and environmental determinants.  It is considered to be complex because 

there is no single (or simple) mode of inheritance that accounts for its heritability.  It is 
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considered to be heterogeneous because mutations and polymorphisms in multiple genes 

are involved together with non-genetic factors and because different individuals with AD 

may have distinct combinations of genetic and non-genetic factors.  Despite these 

complexities, tremendous progress has been made over the past two decades in 

deciphering AD genetics, which has laid the foundation for our current understanding of 

the etiological and pathogenic mechanisms underlying AD and for the development of 

novel approaches for treatment and prevention. As therapeutic strategies become more 

effective and our grasp of AD genetics is strengthened, reliable and comprehensive 

genetic risk profiling will eventually enable systematic early-prediction/early-prevention 

procedures.  

There are three main approaches to finding susceptibility loci: one candidate gene 

studies and two non-candidate gene approaches. In candidate gene studies, genes are 

selected on the basis of the known biology of the disease, and are assessed individually to 

determine whether variants in each candidate are associated with disease. Alternative 

approaches include the genomic screen and whole genome wide association (WGA) 

studies.  These two non-candidate gene approaches do not select genes a priori, but 

instead tests for linkage or association between the disease and polymorphic markers that 

are spaced evenly throughout the genome.  

Genetic linkage analysis is a biologically unbiased method of detecting regions of 

the genome more frequently inherited in common by affected individuals in a family than 

expected by chance.  Linkage analysis uses extended families or affected sibling pairs to 

test for regions of the genome in which there is increased allele sharing between affected 

relatives.  The amount of allele-sharing within and across families is measured in the 
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LOD (logarithm of odds) score.  This is calculated based on the relationship between 

recombinant and non-recombinant alleles at a given marker and across nearby markers 

(Morton, 1995).  Linkage data is analyzed using either parametric methods, which 

specify a mode of transmission, allele frequencies and penetrances of the susceptibility 

locus, or by nonparametric methods, which are for the most part model-free. 

Microsatellite markers and single nucleotide polymorphisms (SNPs) are widely 

applied in genome-wide analyses.  Microsatellite markers are highly polymorphic.  An 

average genome-wide spacing of microsatellite markers at 10 cM or less can generally 

provide sufficient coverage and information content to identify broad regions of linkage 

for more detailed analysis.  Because most SNPs are bi-allelic, a denser SNP map is 

needed to provide the same level of coverage and information content as microsatellites.  

However, the high density of available SNPs across the genome, their ease of genotyping, 

high-throughput, and high quality of the resulting genotypes currently make SNPs more 

widely used in genetic studies. 

Genetic linkage study is a powerful method for narrowing down a chromosomal 

candidate region to 10~30 Mb.  Such regions of interest may harbor dozens to hundreds 

of genes, i.e. locational candidate genes, and hundreds or thousands of SNPs.  However, 

the power of linkage analysis decreases in narrowing genetic effects to smaller regions. 

Candidate gene association studies test genes likely to be involved in disease 

etiology that are identified based on the altered physiology or pathology seen in patients 

with the disease. It requires the use of unrelated case-control samples or siblings who are 

discordant or concordant for disease, and tests whether a common and specific allele is 

either present more or less often in cases than controls, or is more frequently transmitted 
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to affected individuals within a family. Therefore, there are two basic frameworks for 

association analysis: case-control and family-based studies.  The case-control approach is 

generally regarded as more powerful and sensitive than family-based tests (Morton and 

Collins, 1998).  However, caution needs to be taken when using a case-control dataset 

because it can produce spurious associations due to population stratification (Ewens and 

Spielman, 1995).  Failure to match cases and controls for the same underlying population, 

ethnicity, and other factors, can lead to false positive or false negative results due to 

admixture and selection or drift between unlinked loci (Weeks and Lathrop, 1995; Lander 

and Schork, 1994; Khoury and Beaty, 1994).  

Association tests depend on the availability of numerous polymorphic markers in 

a given candidate region and the availability of abundant SNPs to make this approach 

viable.  It is estimated that SNPs occur on average every 500-1,000 base pairs and have a 

low mutation rate.  These two properties of SNPs are advantageous in association studies 

(Kruglyak, 1997; Cooper et al., 1985; Li and Sadler, 1991).  To avoid false negative 

results from an association study, it is important to use multiple polymorphisms, and 

consider linkage disequilibrium patterns and haplotype structures to adequately cover the 

gene of interest (Wall, 2001; Conrad et al., 2006; Wall and Pritchard, 2003a). 

Linkage disequilibrium (LD) is the non-random association of alleles at different 

sites. The consideration of LD is becoming more and more important in the discovery of 

genes involved in complex human diseases (Wall and Pritchard, 2003b).  A common 

structure used to represent LD in the human genome is haplotype blocks, defined as sets 

of consecutive sites between which there is little or no evidence of historical 

recombination.  Similar to ApoE, there may be more than one intragenic polymorphism 
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determining the haplotypes conferring disease risk or protection. A single gene may 

cover 1 to >100kb and contain in addition to neutral polymorphisms functional ones with 

or without significant pairwise LD.  Considering this and the high number of theoretically 

possible candidate genes and haplotypes it seems unlikely that one would detect a true 

risk allele for LOAD by genotyping a single SNP of a positional candidate gene.  By 

testing a sufficiently large collection of SNPs within and near a gene, it should be 

possible to define the common haplotypes underlying blocks of LD.  It should also be 

possible to select an optimal reference set of haplotype tagged SNPs (htSNPs) for any 

subsequent genotyping study.  The haplotype structure provides a crisp approach for 

testing the association of genome segments with disease.  Once the haplotype blocks are 

identified, they can be treated as alleles and tested for LD. 

 

Known genes involved in Alzheimer disease 

There are two forms of Alzheimer disease.  If the age-of-onset is less than 60, it is 

early onset AD (EOAD); if the age-of-onset is greater than 60, it is late onset AD 

(LOAD).  Most early onset AD results from the rare Mendelian subform of Alzheimer 

disease that exhibits autosomal dominant inheritance and both locus and allelic 

heterogeneity.  Genetic studies have identified three genes underlying early onset AD.  

This form can be caused by over 120 mutations in three genes encoding β-amyloid 

precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) (Goate et al., 1991; 

Levy-Lahad et al., 1995; Rocchi et al., 2003; Sherrington et al., 1995). These mutations 

all affect APP metabolism such that more Aβ42 peptide, found in senile plaques, is 
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produced.  This underscores the pathogenetic importance of Aβ in the evolution of AD 

(Hardy and Higgins, 1992).   

The discovery of APP as the source of Aβ has led to an extensive characterization 

of the protein and the mechanisms by which the processing leads to the deposition of 

amyloid.  APP is a ubiquitously expressed type 1 membrane glycoprotein (Kang et al., 

1987) and is encoded by a single gene on chromosome 21.  Mapping of the APP gene to 

chromosome 21, together with observation of plaques and tangles in most elderly 

individuals with Down’s syndrome (trisomy 21), suggests an important role for amyloid 

β (Goedert and Spillantini, 2006; Oliver and Holland, 1986).  In the late 1980s, it was 

speculated that mutations in the APP gene would also be found in familial AD, some 

cases of which had been linked to chromosome 21 (Goate et al., 1991; Siemers et al., 

2006; Geling et al., 2002).  Twenty missense mutations gene and gene dosage variation 

have been described in APP. 

Mutations in the APP gene account for only a minority of familial AD cases.  The 

vast majority of all known familial AD mutations have been found in the gene encoding 

presenilin 1 (PS1).  PS1 was mapped to chromosome 14 by linkage studies (St George-

Hyslop et al., 1992).  Positional cloning identified mutations in PS1 that encodes a 

polytopic membrane protein (Pfeifer et al., 2002; Sherrington et al., 1995).  The name of 

the gene is taken from its role in familial pre-senile dementia.  More than 150 reported 

mutations throughout PS1 (McGowan et al., 2006) suggested that this protein is 

important in the pathological events causing AD. 

PS2, a homologue of PS1, was found on chromosome 1 by homology searches of 

databases for amino acid sequences with high similarity to PS1 (Levy-Lahad et al., 1995; 
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Rogaev et al., 1995).  Compared to PS1, 20 mutations have been found in PS2 

(McGowan et al., 2006).  Presenilins are central components of the atypical aspartyl 

protease complexes responsible for the γ–secretase cleavage of APP (Pfeifer et al., 2002; 

Weiner et al., 2000).  Mutations in presenilin increase the ratio of amyloid β42 to 

amyloid β40, and this appears to result from a change in function that manifests itself in 

reduced γ–secretase activity (Gervais et al., 2007).  Studies from 16 major transgenic 

mouse models support the functions of these genes (McGowan et al., 2006). 

In contrast, the vast majority of AD, late-onset Alzheimer disease (LOAD) does 

not show a classical Mendelian inheritance, although epidemiological, family and twin 

studies suggest a significant proportion of LOAD can be attributed to genetic factors 

(Bergen, 1994; Bergen et al., 1997; Bonney, 1984; Breitner and Murphy, 1992; Chase et 

al., 1983; Cupples et al., 1989; Cupples et al., 1991; Farrer et al., 1991).  The only genetic 

locus universally accepted as an important risk factor for late-onset AD is the 

apolipoprotein E (Apo E) locus on chromosome 19 (Pericak-Vance et al., 1991).  ApoE, 

Apolipoprotein E, is a plasma lipoprotein involved in lipid transport and metabolism.  

ApoE, with three common alleles (ApoE-2, ApoE-3, and ApoE-4) that encode three 

different isoforms (ApoE ε2, ApoE ε3, and ApoE ε4, respectively) (Weisgraber et al., 

1982; Rall, Jr. et al., 1982). ApoE ε4 is the risk-promoting allele and acts in a dose-

dependent manner to increase risk and decrease age of onset in both late-onset familial 

and sporadic and early-onset sporadic AD (Corder et al., 1993).  The ApoE ε2 allele is 

the protective (Corder et al., 1994), but its effect in early-onset sporadic AD is 

controversial (Scott et al., 1997).  The ApoE ε3 allele is the neutral (and most common) 

allele in AD. 
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There are several potential roles for ApoE in increasing AD risk.  The ApoE ε4 

allele causes hypercholesterolemia, which increases the production of amyloid β (Sanan 

et al., 1994; Evans et al., 1995; Ma et al., 1994; Castano et al., 1995) and stabilizes 

amyloid β (Rebeck et al., 1993; Rebeck et al., 1995).  The ApoE ε4 allele can also induce 

cerebrovascular pathology and oxidative stress and impair neuronal plasticity (Olichney 

et al., 1996; Poirier et al., 1995; Soininen et al., 1995).  However, more than 50 percent of 

Alzheimer’s disease cases do not carry an ApoE ε 4 allele (Farrer et al., 1997; Jarvik et 

al., 1996; Pericak-Vance and Haines, 1995; Bennett et al., 1995), suggesting that other 

risk factors exist. 

 

The search for new Alzheimer disease susceptibility genes   

Genomic Screens 

To date, five Late-Onset AD genome-wide screens have been reported. In the first 

study, Pericak-Vance and colleagues (Pericak-Vance et al., 1997; Pericak-Vance et al., 

1998) performed a two-stage screen, first genotyping markers at 10-cM intervals in 16 

families, and then examining regions with a LOD score of >1.0 or P<0.05 in an 

additional 38 families. Two years later, this group rescreened the entire genome in 466 

families (Pericak-Vance et al., 2000). These studies used both parametric and 

nonparametric linkage methods. The third study, reported by Kehoe (Kehoe et al., 1999), 

used nonparametric linkage analysis in affected sibling pairs. These investigators 

genotyped 292 affected sibling pairs with markers spaced 20 cM apart. Four years later, 

Myers et al. (Myers et al., 2002) did a full genome screen using 451 affected sibling pairs 

and 328 microsatellite markers.  This was stage II of the Kehoe 1999 genome screen. All 

 18



four of these studies stratified the data by ApoE genotype; however, methods of 

stratification differed between the studies. In the fifth study, Blacker and colleagues 

(Blacker et al., 2003) performed a 9 cM genome screen of 437 families within the 

National Institute of Mental Health (NIMH) sample, using both parametric and non-

parametric linkage analyses.  Various genome screens have implicated chromosomes 2, 9, 

10 and 12 as potential locations of additional AD loci (Kehoe et al., 1999; Pericak-Vance 

et al., 2000).     

In 2000, three laboratories reported significant linkage of LOAD to two regions of 

the long arm of chromosome 10 (Bertram et al., 2000; Ertekin-Taner et al., 2000; Myers 

et al., 2000). Myers et al. followed up "suggestive" (Lander and Kruglyak, 1995) linkage 

results on this chromosome, using an affected sibling pair method, resulting in significant 

linkage near ~ 67 Mb. Using a different methodology, a second study (Ertekin-Taner et 

al., 2000) performed multipoint linkage analyses in five late-onset AD families using Aβ 

plasma levels as a quantitative phenotype and found significant linkage very close to the 

same chromosomal region. The third report (Bertram et al., 2000) was a candidate gene-

driven linkage analysis of 435 families using six genetic markers in a region of 

chromosome 10 that lies ~40 Mb distal to the one implicated by the former two studies. 

A candidate gene of interest in this region encodes the insulin-degrading enzyme (IDE) 

that, together with neprilysin and other proteases, has been previously suggested as 

playing a major role in the degradation and clearance of Aβ in brain (Bertram et al., 2000; 

Selkoe, 2001). Two of the six markers in this region showed significant linkage to AD. In 

addition, one marker, D10S583, displayed significant association with AD through an 
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under-representation of one of its alleles in affecteds versus unaffecteds, possibly 

indicating linkage disequilibrium with a disease-modifying DNA variant nearby.   

Combining all the positive genome screen results in these three papers, however, 

the region of interest on chromosome 10 is still quite broad (approximately 80Mb total) 

and provides an impractically large area for a molecular genetic search. Additional 

studies of linkage and association/linkage disequilibrium are needed to identify a 

minimum candidate region and the putative underlying AD gene(s) in the region.  This 

will also require the identification of sequence variants in the candidate genes in families 

that are strongly linked to this region and those linked to the more proximal region of 

chromosome 10 implicated by the two other linkage studies. Systematic linkage-

disequilibrium mapping using high-throughput SNP genotyping should effectively 

narrow down these candidate gene regions and eventually lead to the identification of 

potentially pathogenic DNA variants in the linked region of this chromosome. 

Candidate gene studies 

Complex disease involves multiple genes.  It is believed that AD susceptibility is 

the result of multiple genes acting either independently or interactively in their 

contribution to overall risk (Pericak-Vance and Haines, 1995).  There are many ways to 

identify genes to be tested as candidates.  The traditional functional candidate gene 

approach assesses genes that are selected based on their potential biological relevance to 

a disease.  Genes involved in the amyloid β (Aβ) generation and clearance, oxidative 

stress, inflammation, and apoptosis have potential roles in the etiology of AD (Citron, 

2004; Forero et al., 2006; Wyss-Coray, 2006). 
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Numerous studies have tested hundreds of candidate genes for involvement in AD.  

Some examples of the candidate genes include α-antichymotrypsin (AACT) (Kamboh et 

al., 1995), low-density lipoprotein receptor-related protein (LRP) (Lendon et al., 1997), 

α2-Macroglobulin (A2M) (Blacker et al., 1998), ubiquitin (Bertram et al., 2005), the HLA 

complex (Curran et al., 1997; Renvoize, 1984; Small et al., 1991), and mitochondrial 

mutations (Shoffner et al., 1993).   

In 2000, Bertram et al. found linkage in a region more downstream of D10S1125 

on chromosome 10 and focused on the insulin-degrading enzyme (IDE) as a possible 

candidate gene (Bertram et al., 2000).  There are other candidate genes on chromosome 

10, such as PLAU (the gene encoding uPA, urokinase-type plasminogen activator), 

TNFRSF6 (FAS receptor), CDC2 (cell division cycle 2), VR22 (also known as α-T 

catenin (CTNNA3)), which have been tested by association analysis.  However, there 

isn’t a single LOAD locus that has been generally replicated in multiple study 

populations and thus generally accepted, except ApoE.  Most associations have not been 

replicated at all and the involvement of these gene in LOAD has been rejected. 

Based on the AlzGene database (http://www.alzgene.org), 875 studies have tested 

355 functional candidate genes representing 1,055 polymorphisms as of August 15, 2006.  

Recently, Bertram and colleagues published a systematic meta-analysis of AD genetic 

association studies based on a ‘data freeze’ of the AlzGene database on December 1, 

2005.  This analysis covered 789 publications reporting on 802 different polymorphisms 

in 277 genes after screening ~23,500 titles and abstracts (Bertram et al., 2007).  They 

analyzed 127 polymorphisms across 69 different putative Alzheimer disease risk genes 

with available genotype data in at least three case-control samples.  In addition to APOE 
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ε4 and four other probably ε4 related effects, they discovered 20 polymorphisms in 13 

genes (ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, PSEN1, 

TF, TFAM and TNF) that yielded significant allelic summary ORs (ranging from 1.11–

1.38 for risk alleles and 0.92–0.67 for protective alleles). 

Genomic convergence 

No single method can give us an answer in dissecting complex disease traits.  A 

combination of methods is the most promising way to understand the etiology of a 

complex disease.  The genome screens identify AD gene locations independent of any 

presumed knowledge of function.  By utilizing linkage analysis, the region of interest can 

be narrowed down.  Database mining using bioinformatics tools can find the functional 

candidate genes in this region.  Therefore, combining the locational candidate gene and 

functional candidate gene approaches is a good way to identify genes of interest. 

Genomic convergence is another approach to narrowing down the large pool of 

candidate genes to a few select choices.  It is a multifactor approach that combines 

different kinds of genetic data analysis to identify and prioritize susceptibility genes for a 

complex disease (Hauser et al., 2003a).  One of the growing problems in the study of 

complex disease is how to prioritize research and make sense of the immense amount of 

data.  The best approach may be to take advantage of the strengths of all available means 

(Noureddine et al., 2005).   

The following dissertation presents a multifactorial, multistep approach, genomic 

convergence, which combines linkage analysis, gene expression analysis, and candidate 

gene association analysis to identify and prioritize candidate susceptibility genes for AD.  
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This genomic convergence approach led to the investigation of several candidate genes, 

with the promising evidence for genes involved in Aβ and Tau pathways. 
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CHAPTER III 

 

HYPOTHESIS AND SPECIFIC AIMS 

 

Hypothesis: Chromosome 10 harbors susceptibility gene(s) involved in Alzheimer 

Disease. 

 

Specific aim 1:  Identify and define the minimum candidate region (MCR) for 

Alzheimer disease (AD) on chromosome 10 using linkage analysis.   

Although multiple lines of evidence suggest linkage between chromosome 10 loci 

and Alzheimer disease, the reported linkage region on chromosome 10 is very broad 

(~80Mb).  After combining results from previous publications, the most consistent region 

will be prioritized and selected.  Genotyping markers in this region will be selected at 2 

Mb spacing and genotyped in 587 multiplex families.  LOD scores will be calculated to 

determine a narrowed peak region.  Considering the likely heterogeneity of AD, ordered 

subset analysis (OSA) will be utilized to obtain a LOD score with a more precise 

localization of a peak.  Stratification of subsets, weighting schemes, and conditional 

analysis will also be used to identify regions of interest masked in the initial analysis.  

Results of these studies will define a minimum candidate region (MCR) on chromosome 

10 most likely to contain a gene related to AD.   
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Specific aim 2:  Genomic analysis of candidate genes for AD.  

  a. Identify candidate genes on chromosome 10 for AD. 

  b. Identify a subset of candidate genes for association analysis. 

  c. Identify and genotype SNPs within each of the genes. 

  d. Test linkage disequilibrium (LD) within genes, confirm and possibly construct 

gene-specific HapMaps. 

Genes under linkage peaks and genes that are differentially expressed between 

AD cases and controls will be converged to select candidate genes for association 

analysis.  After the list of potential candidates is achieved, SNPs within each gene will be 

identified and selected based on several databases (e.g. dbSNP, Ensembl, UCSC, and 

HapMap).  SNP detection and genotyping will be primarily accomplished via the 

Illumina Goldengate Oligo Pool Assay (OPA).  Linkage Disequilibrium (LD) will be 

assessed for the SNPs using the Haploview program and characterized using the r2 

statistic.  The haplotype blocks will be characterized and evaluated.  This will test for the 

existence of the blocks defined by the HapMap project.  If the blocks are not confirmed, 

we will construct our own haplotype map. 

 

Specific aim 3: Test candidate genes for association with AD.   

  a. Association analysis on the entire AD dataset will be done by testing SNPs in the 

candidate genes for association with AD. 

  b. Complete analyses on different subsets likely to be genetically more homogeneous.  

  c. Select the two most interesting candidate genes for follow up. 
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A case-control dataset will be used to test the association between SNPs in the 

candidate genes and risk of AD.  I will perform allelic, genotypic and haplotypic 

association analyses on both the overall dataset and subsets.  The subsets will include 

those identified by age-at-onset, gender, phenotypic subgroups, ApoE genotype, and 

linkage to other known genes.  Epistasis, or gene-gene interaction, will be tested using 

Multifactor Dimensionality Reduction (MDR) and logistic regression to detect potential 

polymorphisms associated with the AD risk. 
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CHAPER IV 

 

IDENTIFICATION OF THE MINIMUM CANDIDATE REGION (MCR) FOR 
ALZHEIMER DISEASE ON CHROMOSOME 10 USING LINKAGE ANALYSIS 

 

Overview of chapter IV- VII 

Numerous studies have tested hundreds of functional candidate genes and many 

such genes were reported as having association with AD.  However, none of the genes 

has been universally accepted as an AD risk gene except ApoE.  Genomic screens have 

shown evidence that chromosome 10 may harbor susceptibility genes for AD.  However, 

the reported linkage region scatters across 80 Mb region on chromosome 10 and provides 

an impractically large area for a molecular genetic search.  To examine this region in 

more detail, we tested several recently reported candidate genes within this broad region 

of linkage: VR22, LRRTM3, PLAU, TNFRSF6, IDE, CDC2, and LOC439999.  

Simultaneously, we examined the linkage signal in more detail to see if we could narrow 

the peak region of linkage and converge the candidate gene and linkage data.  Chapter IV 

presents the linkage analysis to identify the minimum candidate region for AD on 

chromosome 10.  Chapter V presents the candidate gene studies on VR22, LRRTM3, 

PLAU, TNFRSF6, IDE.  There is at least one SNP in each gene showing association with 

AD in at least one of our data sets.  Chapter VI details the examination of the CDC2 gene 

with AD.  Due to the properties of the SNPs in CDC2, we used a special genotyping 

method to characterize the polymorphisms of this gene.  However, our results failed to 

show evidence of association between CDC2 and AD.  Chapter VII presents the 

association study of a polymorphism rs498055 in gene LOC439999 on chromosome 10.  
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This SNP was identified from a study of 1412 potentially functional SNPs in 667 genes 

under previously identified linkage peak on chromosome 10 (Grupe et al., 2006).  

However, we didn’t see the association in our independent three family and one case-

control datasets. 

 

Introduction 

Alzheimer disease (AD, MIM#104300) is a progressive neurodegenerative 

disorder of later life with a complex etiology and a strong genetic component.  Mutations 

in three genes encoding the β-amyloid precursor protein (APP, OMIM#104760), 

presenilin 1 (PS1, OMIM#104311), and presenilin 2 (PS2, OMIM#600759) genes cause 

the rare early-onset AD (EOAD).  ApoE is the only gene universally accepted as an 

important risk factor for late-onset AD (LOAD).  However, more than 50 percent of 

Alzheimer disease cases do not carry an ApoE ε4 allele, suggesting that other genetic risk 

factors exist (Farrer et al., 1997; Jarvik et al., 1996; Pericak-Vance and Haines, 1995; 

Bennett et al., 1995).  

Numerous studies have tested hundreds of functional candidate genes and many 

genes for AD have reported positive associations in at least one study group (Bertram et 

al., 2007).  However, there is no single locus that has been sufficiently replicated to be 

widely accepted as an AD risk gene, except ApoE.  Genome screening is an alternative 

approach that identifies AD gene locations independent of any presumed knowledge of 

function.  These have suggested that the loci for late-onset AD lie on several 

chromosomes, including chromosomes 9, 10, and 12 (Pericak-Vance et al., 1997; Kehoe 

et al., 1999; Myers et al., 2002; Blacker et al., 2003).  Perhaps the most interesting region 
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is chromosome 10 since two independent linkage studies identified the same 

chromosome region using different methods (Myers et al., 2000; Ertekin-Taner et al., 

2000), and a candidate gene driven linkage analysis found a linked region at 113 cM on 

chromosome 10q, near insulin-degrading enzyme (IDE) (Bertram et al., 2000).  Recently, 

the microsatellite marker D10S1208 (63.3 cM) was linked to Alzheimer disease among 

families with affected mothers (Bassett et al., 2002; Bassett et al., 2005).   

The multiple reports of chromosome 10 linkage point to linkage peaks scattered 

across an 80Mb region and provide an impractically large area for a molecular genetic 

search.  All the notable differences in the location of the linkage signals call attention to 

the potential for locus heterogeneity and highlight the need for strategies to increase 

homogeneity.  One strategy is to examine phenotypic or genotypic subgroups, e.g., based 

on ApoE genotype.  Another strategy is to apply new statistical techniques, such as 

Ordered Subset Analysis (OSA).  We performed a linkage study at 2 Mb spacing across 

this 80 Mb region to identify a minimum candidate region on chromosome 10. 

 

Materials and methods 

 

Study populations 

We used a family sample consisting of 730 pedigrees with a total of 567 multiplex 

families with a total of 922 affected sibpairs (ASP) (Table 4-1).  All subjects are late-

onset AD (LOAD) patients (minimum age at onset (AAO) ≥ 60 years).   
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Table 4-1 Study populations for Alzheimer Disease 
 

 Family Overall NIMH NCRAD CAP 
Total family     

Total pedigrees 730 352 154 224 
Affected individuals 1521 807 315 390 
Unaffected individuals 974 331 162 481 
Discordant Sib Pairs (DSP) 1337 629 269 439 
Independent Discordant Sib Pairs 674 283 129 262 
Pedigrees with at least one DSP 406 165 75 166 
Affected Relative Pairs (ARP) 188 66 26 96 
Pedigrees with at least one ARP 64 31 11 22 

Multiplex family     
Total pedigrees 567 352 122 96 
Affected Sib Pairs (ASP) 922 517 190 225 
Independent Affected Sib Pairs 707 418 150 139 
Pedigrees with at least one ASP 534 331 118 85 

 
NIMH = National Institute of Mental Health repository; NCRAD= National Cell 
Repository for Alzheimer Disease at Indiana University; CAP = Collaborative 
Alzheimer Project 

 

All individuals included in this study are Caucasian.  Written consent was 

obtained from all participants in agreement with protocols approved by the institutional 

review board at each contributing center.  AD was diagnosed according to the NINCDS-

ADRDA criteria (McKhann et al., 1984b).  All controls had results within the normal 

range in the Mini-Mental State Exam (MMSE) or Modified Mini-Mental State Exam 

(3MS).  Samples were ascertained by the following centers: the NCRAD repository at 

Indiana University (NCRAD); the Collaborative Alzheimer Project (CAP), including 

Duke and Vanderbilt Universities and University of California at Los Angeles; and the 

National Institute of Mental Health repository (NIMH).  All data sets were independent.  

Age at onset was recorded as that age at which the first symptoms were noted by the 

participant or a family member.  If the affected individuals were early in the disease 

process, we included their report of age-at-onset as part of the determination.  If the 
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disease was more advanced, we only used information as collected from multiple family 

members (such as, spouse and children).  Mean ± SD of age-at-onset (AAO) in affected 

individuals in the family-based sample was 72.9±6.4 years.  The mean age-at-exam 

(AAE) ± SD was 80.1±7.1 and 69.9±11.2 in affected and unaffected individuals, 

respectively.  The AD affected group was 67.3% female, while the unaffected group was 

56.2% female. 

 

SNP selection and genotyping 

Following informed consent, blood samples were collected from each individual.  

Genomic DNA was obtained from the repositories (NIMH, NCRAD) or extracted from 

whole blood (CAP) by use of the Puregene system (Gentra Systems, Minneapolis, MN).  

All samples were coded and stored at 4oC until used.   

A map of the chromosome 10 region and previously reported candidate genes is 

shown in Figure 4-1.   
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Figure 4-1 The position of previously reported candidate genes and 36 genotyped 

SNPs for linkage analysis on chromosome 10 
The physical location (Mb) of 36 SNPs for linkage analysis according to NCBI build 

35 are shown in the middle; the lower panel shows the DECODE genomic map location 
(cM) of linked markers shown in the literature.  Upper panel shows the candidate genes 
within this region. 

 

NCBI (http://www.ncbi.nih.gov), Ensembl (http://www.ensembl.org) and Applied 

Biosystems web sites (http://home.appliedbiosystems.com) were mined to select SNPs 

according to their location relative to other selected SNPs, high minor allele frequency (≥ 

0.25), and availability of quality assays.  We carefully selected 36 SNPs at 2 Mb spacing 

for linkage analysis (Figure 4-1).   

SNP genotyping was performed using Assays-On-Demand™ or Assays-By-

Design™ with the ABI PRISM® 7900HT Sequence Detection System (Applied 

Biosystems, Foster City, CA).  Amplification was performed in a 384-well DNA Engine 

Tetrad® 2 Peltier Thermal Cycler (MJ Research, Waltham, MA) with the following 

conditions: 94°C-10 min; 92°C-15 sec, 60°C-1 min (50 cycles); 4°C-hold.  Systematic 

genotyping errors were minimized by use of a system of quality control (QC) checks with 

duplicated samples (Rimmler et al., 1998).  Linkage disequilibrium (LD) and deviations 
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from Hardy-Weinberg equilibrium (HWE) were assessed using Haploview (Barrett et al., 

2005).  

 

Statistical methods 

Two-point linkage analyses 

Two-point heterogeneity LOD score (HLOD) analyses were computed using 

FASTLINK and HOMOG (Ott, 1999). Because the mode of inheritance for AD is 

unknown, affected-only parametric analyses were performed using both autosomal 

dominant and autosomal recessive models with disease allele frequencies of 0.001 and 

0.20, respectively, to model the susceptibility allele. Greenberg & Hodge (Greenberg et 

al., 1998) suggested a critical factor in LOD-score analysis is the Mode of inheritance 

(MOI) at the linked locus, not that of the disease or trait per se. Thus, a limited set of 

simple genetic models in LOD-score analysis can work well in testing for linkage. If a 

signal is picked up in either one of the models (most typically dominant and recessive), 

there is increased power to detect true linkage using this approach. 

Because it is likely that there is genetic heterogeneity in Alzheimer disease, we 

applied Ordered Subset Analysis (OSA) (Hauser et al., 2004) in our linkage analysis to 

test for a subset of linked families.  In OSA, the statistical significance of increased 

evidence for linkage in a subset of the data relative to evidence for linkage in the entire 

sample is assessed via random permutation of the order of inclusion of the families to 

estimate empirical p values.  Since the ApoE ε4 allele is the only known risk allele for 

AD, we used the ApoE LOD score (at theta=0) and ApoE weight (the proportion of 

affecteds within a family who carry at least one ApoE ε4 allele) as covariates to order 
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families from low to high and high to low.  A locus on chromosome 12 has been 

suggested to be linked with AD (Liang et al., 2005; Mayeux et al., 2002), so the linked 

marker D12S368 was also used as a covariate to order families in OSA analysis.  The 

same parametric models were applied to D12S368.  OSA was also performed using mean 

age of onset as a covariate. 

Multipoint linkage analyses 

Multipoint LOD scores were calculated by MERLIN (Abecasis et al., 2002) and 

OSA multipoint LOD scores were calculated using the four covariates as described above.  

Conditional linkage analysis using ApoE as a covariate was done in Allegro 

(Gudbjartsson et al., 2000).  The analysis was weighted by the proportion of affecteds 

within a family who carry at least one ApoE ε4 allele and by proportion of affecteds 

within a family who don’t carry the ApoE ε4 allele (inverse ApoE- ε4 weighted).  There 

is no linkage disequilibrium (LD) between 34 out of the 36 linkage analysis SNPs and 

very low LD between the other two linkage SNPs (rs1935 and rs7089698, r2=0.46).  We 

used the LD option of MERLIN to perform the multipoint linkage analysis to take the LD 

into account.  An r2>0.1 was used as criteria to define SNPs in LD.  In the OSA 

multipoint analysis, we excluded the SNP (rs7089698) in LD with the other SNP (rs1935) 

as it had the lower minor allele frequency.   

Family-based association analysis 

Family based association analysis was conducted using the pedigree 

disequilibrium test (PDT, for allelic effect) and Genotype-PDT (GenoPDT, for genotypic 

effect) for single-locus tests to assess association between genotypes and risk of AD in 

the family data (Martin et al., 2000b; Martin et al., 2002).  
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Results 

 

Two-point linkage analyses 

36 SNPs evenly spaced across the 80.2 Mb region on chromosome 10 were 

genotyped in 567 multiplex families (922 affected sib pairs).  The reliability of duplicate 

genotyping across plates was >99% and the average genotyping efficiency was 98%.  All 

analyses were applied to the overall data set and three stratified subsets (autopsy-

confirmed, ApoE ε4+, ApoE ε4-).   

Using the 36 linkage SNPs panel, we conducted both FASTLINK/HOMOG two-

point analyses and OSA two-point analyses using different covariates.  In the overall data 

set, only SNP rs11816558 generated a LOD>1.0 (LOD=1.31, Figure 4-2 A).   

Several SNPs yielded LOD >1.0 in the subsets.  SNPs rs6482044 and rs870801 

had LOD=1.29 and 1.05, respectively, in autopsy subset (Figure 4-2 B); rs6482044 had 

LOD=1.41 in the ApoE ε4-positive subset (Figure 4-2 C); rs3750686 had LOD=1.54 in 

ApoE ε4-negative subset (Figure 4-2 D).   
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Figure 4-2 Original two-point (FASTLINK, shown in dots) and multipoint (MERLIN, shown in line) LOD scores 

in overall and three subsets 
A. Overall data set B. Autopsy-confirmed subset C. ApoE ε4-positive subset D. ApoE ε4-negative subset 
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In the OSA analysis using the ApoE_LOD score as a covariate, a two point LOD 

score of 2.69 was obtained at SNP rs1890739 at 45.1 Mb (p=0.03 in 21% families, low to 

high), rs1319013 at 33.6 Mb generated LOD=2.50, and rs11816558 at 84.7Mb generated 

LOD=1.70 (Figure 4-3).  

 

SNP rs14327 (51.7 Mb) generated a two point LOD score of 1.94 in 13% of 

families when the families were ordered from low to high using covariate of the linkage 

signal on chromosome 12, p=0.009 (Figure 4-4 A). An OSA two point LOD score of 2.30 

was generated in 93% of families when the families were ordered from low to high using 

the same covariate (Figure 4-4D), however, the permutation p value was not significant 

(p=0.22). 
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Figure 4-3 Two-point analyses in the overall data set 

Ordered subset two point analysis in the overall data set obtained a two point LOD 
score of 2.69 at 45.1 Mb (p=0.03 in 21% families) using ApoE_LOD score to order 
families from low to high. 

2.69 
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Figure 4-4 Two point and multipoint linkage analyses using the D12S368 LOD score as a covariate to order 

families from low to high in the overall and three subsets 
A. Overall data set B. Autopsy-confirmed subset C. ApoE ε4-positive subset D. ApoE ε4-negative subset 
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Multipoint linkage analyses 

Multipoint analysis using the 36 linkage SNP panel on the overall data set didn’t 

show any suggestive LOD scores, shown as the line of overall multipoint analysis in 

Figure 4-2A.  When we applied the ApoE LOD score as covariate to order families from 

low to high in Ordered Subset Analysis, the highest LOD score was 1.85 (rs10826594).  

Other SNPs, rs1023207 and rs1319013, also had LOD scores higher than 1.0 (Figure 4-5 

A).  SNP rs14327 (51.7 Mb) had LOD of 1.03 using the same covariate in OSA (Figure 

4-5 A).  There is no SNP showing linkage with the disease in the ApoE ε4+ subset 

(Figure 4-5 C).  However, rs1806797 (48.3 Mb) showed a peak LOD score of 1.52 in 

ApoE ε4- subset when we applied D12S368 as a covariate to order families from low to 

high in OSA (Figure 4-5 D).  In the autopsy-confirmed subset, there was no effect of the 

number of ApoE ε4 alleles as a covariate.  However, a peak of LOD=1.91 was generated 

at 49.7 Mb between rs7097397 and rs14327 in OSA multipoint analysis when the 

covariate ApoE LOD score ranked families from low to high (Figure 4-5B).   
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Figure 4-5 Multipoint analyses using covariates to order families from low to high in the overall and three 

subsets 
A. Overall data set B. Autopsy-confirmed subset C. ApoE ε4-positive subset D. ApoE ε4-negative subset 
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This peak was also seen in the ApoE ε4- subset with LOD=1.52 around 49Mb 

between rs1806797 and rs7097397 when the families were ordered from low to high by 

the peak linkage signal on chromosome 12 (D12S368 LOD score) (Liang et al., 2005) 

with p=0.04 (Figure 4-6). 
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Figure 4-6 OSA multipoint analyses (D12S368 LOD Low to High) 

 
The peak LOD=1.52 around 49 Mb between rs1806797 and rs7097397 was 

seen in the ApoEε4- subset when the families were ordered from low to high by the 
peak linkage signal on chromosome 12 (D12S368 LOD score). 

In the ApoE ε4- subset, SNP rs3750686 at 87.2 Mb generated a parametric two 

point LOD score of 1.54.  This SNP also had a two point LOD of 2.30 in the OSA 

analysis using the linkage signal on chromosome 12 from low to high as a covariate 
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(Figure 4-4 D).  Thus families that are not linked to ApoE or the locus on chromosome 12 

have suggestive LOD scores around 49.7Mb on chromosome 10. 

When we used the covariates to order families from high to low (families with 

higher LOD scores at the covariate were weighted more than the families with lower 

LOD scores at that covariate), a peak LOD of 1.16 was seen in overall data set 

(rs1439042, 80 Mb, Figure 4-7A).  When the LOD score of marker D12S368 was used as 

a covariate to order families from high to low, the ApoE ε4-negative subset showed a 

peak at SNP rs701865 (95 Mb) with LOD=1.32 (Figure 4-7D).  The autopsy-confirmed 

subset showed a peak at SNP rs1227047 (73Mb) with LOD=1.64 (Figure 4-7B).  Thus a 

locus around 80 Mb might interact with the locus on chromosome 12 or the ApoE locus.  

We also performed analyses to look at the data in different prospects with the 

combinations of covariates and subsets, see appendix (Figure A.1-A.6). 
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Figure 4-7 Multipoint analyses using covariates to order families from high to low in the overall and subsets 

A. Overall data set B. Autopsy-confirmed subset C. ApoE ε4-positive subset D. ApoE ε4-negative subset 
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Discussion 

In 2000, three groups reported significant linkage of LOAD to two regions of the 

long arm of chromosome 10 (Bertram et al., 2000; Ertekin-Taner et al., 2000; Myers et al., 

2000). One study (Myers et al., 2000) followed up "suggestive" (Lander and Kruglyak, 

1995) linkage results on this chromosome using an affected sibpair method resulting in 

significant linkage near ~ 58 Mb. Using a different methodology, a second study 

(Ertekin-Taner et al., 2000) performed multipoint linkage analyses in five late-onset AD 

families using Aβ plasma levels as a quantitative phenotype and found significant linkage 

very close to the same chromosomal region. The third report (Bertram et al., 2000) was a 

candidate gene-driven linkage analysis of 435 families using six genetic markers in a 

region of chromosome 10 that lies ~40 Mb distal to the one implicated by the former two 

studies. The candidate gene of interest encodes the insulin-degrading enzyme (IDE) that, 

together with neprilysin and other proteases, has been previously suggested to play a 

major role in the degradation and clearance of Aβ in brain (Selkoe, 2001). Two of the six 

markers in this region showed significant linkage to AD. In addition, one marker, 

D10S583, displayed modest evidence for linkage disequilibrium with AD and one of its 

alleles using a diallelic test (p=0.04 after correction for multiple testing). Across this 

broad region on chromosome 10q, there are many candidate genes.   

We hypothesized that locus heterogeneity might be one reason for the inconsistent 

linkage results.  To increase homogeneity, we stratified our linkage data set by autopsy 
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confirmation and ApoE status.  We also applied the OSA method that has potential to 

find a more homogeneous subset by incorporating covariates into analysis. 

Our data suggest that applying covariates to the analysis increases the 

homogeneity in the data set.  Before the covariate ApoE_LOD score was used in the 

analysis, the highest two point LOD score was 1.31.  However, we found a major linkage 

peak and a minor linkage peak in the overall data set after we applied the ApoE_LOD 

score as covariate.  One is between 40 and 60 Mb with peak LOD of 2.69, at SNP 

rs1890739 (45.1 Mb); the other one is between 80 and 100 Mb with peak LOD of 1.70, at 

SNP rs11816558 (84.7 Mb), as shown in the Figure 4-3.   The p values for the increases 

of LOD scores were 0.03 and 0.43 with 21% and 94% of the families, respectively.  

Furthermore, by combining subsetting with covariate analysis we were able to decrease 

the heterogeneity and refine the linkage peak.  Without applying covariates, the 

multipoint analysis in overall data set failed to identify any SNP with a LOD>1.0.  

However, in the autopsy-confirmed subset, the single peak is located between 40 and 60 

Mb when we used ApoE LOD score as covariate to order families from low to high 

(Figure 4-6).  The peak LOD is 1.91, at SNP rs7097397 (49.7 Mb).  These data suggest 

that the families without ApoE ε4 alleles may have a gene at this location that is linked to 

the disease.  When we use D12S368, a surrogate for linkage to chromosome 12, as a 

covariate to order families from low to high, we also see the peak between 40 and 60 Mb 

in the autopsy confirmed and ApoE ε4- subsets.  Analysis using ApoE and D12S368 

LOD scores greatly increased evidence of linkage in areas showing no linkage in the 
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overall analyses.  For example, rs1890739 at 45.1 Mb reached LOD of 2.69 among 21% 

of families by using the covariate of ApoE_LOD score to order families from low to high 

in OSA, whereas the same SNP showed a LOD of 0.35 when all families were analyzed 

together. 

Our results show evidence for linkage to an LOAD gene on chromosome 10 (near 

45.1 Mb) and this locus is independent of the chromosome 12 locus and ApoE gene.  We 

also see a minor linkage peak between 80-100 Mb.  Further studies on the candidate 

genes around 45 Mb location and possible roles of the functional candidate genes on 

chromosome 10 in AD pathology will hopefully lead to a better understanding of the 

etiology of Alzheimer disease. 
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CHAPTER V 

 

EXAMINATION OF FIVE CANDIDATE GENES FOR ALZHEIMER DISEASE 

 

Introduction 

Other than the ApoE locus on Chromosome 19, there is no single locus that has 

been consistently replicated as a genetic risk factor for AD.  Recently, five candidate 

genes within the broad region of linkage on chromosome 10 have been reported as 

associated with Alzheimer disease.  These genes, VR22 (also known as CTNNA3, 

OMIM#607667), LRRTM3 (OMIM#610869), PLAU (OMIM#191840), TNFRSF6 

(OMIM#134637) and IDE (OMIM#146680) (Bertram et al., 2000; Ertekin-Taner et al., 

2003; Feuk et al., 2000; Finckh et al., 2003; Martin et al., 2005), may all be relevant to 

the Alzheimer disease pathophysiological process based on their function.  Thus we 

examined these genes in more detail by performing both family-based and case-control 

association studies. 

 

Materials and methods 

 

Study populations 

We used a case-control sample consisting of 483 unrelated cases with probable or 

definite AD and 879 unrelated cognitively normal elderly controls who were either the 
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spouses of AD patients or subjects recruited from the outpatient clinics of the 

participating institutions.  Cases and controls were collected through the Center for 

Human Genetics Research (CHGR) at Vanderbilt University and the Center for Human 

Genetics (CHG) at Duke University.  All individuals included in this study are Caucasian.  

Written consent was obtained from all participants in agreement with protocols approved 

by the institutional review boards at each contributing center.  AD was diagnosed 

according to the NINCDS-ADRDA criteria (McKhann et al., 1984b).  Controls had no 

obvious signs of cognitive or neurological impairment when enrolled in the study as 

determined by personal interview by clinical personnel of the Vanderbilt CHGR and 

Duke CHG.  All controls had results within the normal range in the Mini-Mental State 

Exam (MMSE) or Modified Mini-Mental State Exam (3MS).  Age at onset was recorded 

as that age at which the first symptoms were noted by the participant or a family member.  

If the affected individuals were early in the disease process, we included their report of 

age-at-onset as part of the determination.  If the disease was more advanced, we only 

used information as collected from multiple family members (such as, spouse and 

children).  Mean ± SD (standard deviation) of age at onset (AAO) in cases was 71.8±6.0 

years. The control group’s mean age at examination (AAE) ± SD was 72.0±6.3 years, 

while the case group’s mean AAE ± SD was 76.5±6.53 years.  The AD cases were 63.3% 

female, while the controls were 58.5% female.   

Our independent family data set consists of 730 pedigrees with a total of 1337 

affected discordant sib pairs (DSP) with a total of 1521 late-onset AD (LOAD) patients 
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(minimum age at onset (AAO) ≥ 60 years) and 974 unaffected individuals.  Samples were 

ascertained by the following centers: the NCRAD repository at Indiana University 

(NCRAD); the Collaborative Alzheimer Project (CAP), including Duke and Vanderbilt 

Universities and University of California at Los Angeles; and the National Institute of 

Mental Health repository (NIMH).  Age at onset was recorded as that age at which the 

first symptoms were noted by the participant or a family member.  If the affected 

individuals were early in the disease process, we included their report of age-at-onset as 

part of the determination.  If the disease was more advanced, we only used information as 

collected from multiple family members (such as, spouse and children).  Mean ± SD of 

age-at-onset (AAO) in affected individuals in the family-based sample was 72.9±6.4 

years.  The mean age-at-exam (AAE) ± SD was 80.1±7.1 and 69.9±11.2 in affected and 

unaffected individuals, respectively.  The AD affected group was 67.3% female, while 

the unaffected group was 56.2% female. 

 

SNP selection and genotyping 

Following informed consent, blood samples were collected from each individual.  

Genomic DNA was obtained from the repositories (NIMH, NCRAD) or extracted from 

whole blood (CAP) by use of the Puregene system (Gentra Systems, Minneapolis, MN).  

All samples were coded and stored at 4oC until used.  

NCBI (http://www.ncbi.nih.gov), Ensembl (http://www.ensembl.org) and Applied 

Biosystems web sites (http://home.appliedbiosystems.com) were mined to select SNPs 
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according to location relative to other selected SNPs, high minor allele frequency, and 

availability of quality assays.  First, we selected the SNPs that showed association in 

previous reports.  Second, any known functional SNPs were included.  Third, HapMap 

data were mined to select TagSNPs using Haploview (Barrett et al., 2005).  Finally, SNPs 

with high heterozygosity and available high quality assays were used to fill any 

remaining large genomic gaps.  Fifty SNPs in five genes were selected (Table 5-1).   
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Table 5-1 Genotyped SNPs in five candidate genes 

SNP Alternative ID Location 
(bp)* 

Allele 
variation Function 

VR22    
RS1786927 HCV1380042 67,352,267 A>G Intron 
RS2126750 HCV3096510 67,507,709 A>T Intron 
RS7911820 HCV3096479 (4825) 67,534,145 G>T Intron 
RS12357560 4783 67,534,187 C>T Intron 
RS7070570 10P0002VR22 (4360) 67,534,610 A>G Intron 
RS7074454 CV3096478 67,534,965 C>T Intron 
RS10822719 HCV3096477 67,535,076 C>T Intron 
RS6480140 CV11295092 67,538,887 A>C Intron 
RS922347 HCV8934629 67,652,964 C>T Intron 
RS4463744 HCV378461 67,778,486 A>T Intron 
RS2441718 HCV11848786 67,806,967 A>G Intron 
RS2939947 HCV26676598 67,808,364 A>G Intron 
RS2456737 HCV16158312 67,825,340 A>G Intron 
RS997225 HCV8040922 67,952,976 A>G Intron 
RS4746606 HCV1635544 68,061,108 C>T Intron 
RS7909676 HCV8040157 68,104,803 A>C Intron 
RS11593235 HCV1903928 68,546,044 C>T Intron 
RS10997591 HCV1853797 68,671,884 C>T Intron 
RS7903421 HCV29243978 68,951,738 A>G boundary 
RS3096244 HCV1395441 69,080,192 C>T Intron 

LRRTM3    
RS1001016 HCV8934595 68,347,044 C>G Promoter 
RS12769870 HCV1974488 68,347,401 A>G Promoter 
RS1925583 HCV11735884 68,349,950 G>T Promoter 
RS2394314 HCV26813816 68,350,254 A>G Promoter 
RS10762122 HCV1974468 68,386,380 C>T Intron 
RS942780 HCV8934576 68,406,547 A>G Intron 
RS1925617 HCV11735825 68,434,823 G>T Intron 
RS1925622 HCV1974419 68,439,644 A>G Intron 
RS1925632 HCV11735814 68,469,620 A>C Intron 
RS1952060 HCV11735812 68,472,940 C>T Intron 
RS2147886 HCV1903965 68,488,649 A>G Intron 
RS2251000 HCV1903957 68,494,777 A>G Intron 
RS2764807 HCV16064467 68,498,938 A>G Intron 
RS10762136 HCV1903945 68,513,538 A>C Intron 

 51



 

 

 

Table 5-1 Genotyped SNPs in five candidate genes (cont’d) 

SNP Alternative ID Location 
(bp)* 

Allele 
variation Function 

PLAU    
RS1916341 HCV11458608 75,341,168 A>C Exon 
RS2227564 HCV26165616 75,343,107 C>T Coding exon 
RS2227566 HCV3155395 75,343,737 C>T boundary 
RS2227568 HCV26165619 75,343,885 C>T Coding exon 
RS4065 HCV3155393 75,346,470 C>T Exon 

TNFRSF6    
RS1800682 HCV9578811 90,739,943 C>T Promoter 
RS1324551 HCV9578820 90,741,496 A>G Intron 
RS2031612 HCV8984582 90,756,960 A>G Intron 
RS2296600 HCV16184452 90,760,419 C>G boundary 

IDE    
RS2251101 HCV27104906 (IDE-7) 94,201,284 C>T 3' UTR 

RS2251101 
HCV27104906 
 (IDE-7(2))  94,201,284 C>T 3' UTR 

RS7076966 HCV1819856 94,315,491 C>T Intron 
RS4646954 HCV1819861 94,323,807 A>G Exon 
RS3758505 HCV1819863 94,324,758 G>T Promoter 
RS7099761 HCV31982773 (IDEU-4) 94,325,779 A>G Promoter 
RS1544210 HCV7480091 (HHEX-2) 94,477,781 A>G unknown 

* SNP locations were based on NCBI build 35 
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SNP genotyping was performed using Assays-On-Demand™ or Assays-By-

Design™ with the ABI PRISM® 7900HT Sequence Detection System (Applied 

Biosystems, Foster City, CA).  Amplification was performed in a 384-well DNA Engine 

Tetrad® 2 Peltier Thermal Cycler (MJ Research, Waltham, MA) with the following 

conditions: 94°C-10 min; 92°C-15 sec, 60°C-1 min (50 cycles); 4°C-hold.  Systematic 

genotyping errors were minimized by use of a system of quality control (QC) checks with 

duplicated samples (Rimmler et al., 1998).  Linkage disequilibrium (LD) and deviations 

from Hardy-Weinberg equilibrium (HWE) were assessed using Haploview (Barrett et al., 

2005).  

 

Statistical methods 

Association analyses 

Case-control association analyses for single alleles and for genotypes were 

conducted using logistic regression (SAS Institute, Cary, N.C., USA, version 8.1).  We 

tested three different models.  Model I assumed an additive effect on the log scale for the 

alleles (e.g., if A is the minor allele, having no A alleles=0, having one A allele=1, 

having two A alleles=2). Model II dichotomized genotype according different alleles 

(having allele A =0, not having allele A =1).  Model III categorized genotypes into three 

groups using the most frequent genotype as a reference genotype and other groups were 

compared with the reference group separately.  Statistical significance was declared at 

α=0.05.   
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To adjust for potential confounders, we included gender and age at examination 

(AAE) as covariates in the regression analysis.  In addition, we included ApoE status in 

the model to exclude its possible confounding effect.  We considered ApoE status as 3 

categories; those that have two ApoE ε4 alleles, those that have at least one ApoE ε4 

allele and those that have no ApoE ε4 allele.  We analyzed the data using models with 

and without covariates because the data set had 7.4% missing data after we adjusted for 

the confounders. 

Haplotype analyses in the case-control data set were conducted using haplo.stats 

(Schaid et al., 2002).  An EM algorithm is used to generate haplotype frequency 

estimates under the null hypothesis.  We estimated haplotype frequencies and tested 

association of each haplotype with a frequency of at least 1% in our case-control data set 

with age and gender adjusted score statistics.  Haplotype logistic regression was modeled 

using a GLM algorithm including age and gender as covariates.  The most frequent 

haplotype occurring in a similar percentage of cases and controls was selected as the 

baseline haplotype.  To evaluate the association of subsets of alleles from the full 

haplotype, a sliding window of three SNPs was used and the global score statistics were 

reported. 

Family based association analysis was conducted using the pedigree 

disequilibrium test (PDT, for allelic effect) and Genotype-PDT (GenoPDT, for genotypic 

effect) for single-locus tests to assess association between genotypes and risk of AD in 
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the family data (Martin et al., 2000b; Martin et al., 2002).  The Haplotype Family Based 

Association Test (Horvath et al., 2001) was used for haplotype analysis in family data set.   

Linkage analysis in candidate genes 

Two-point and multipoint linkage analyses were performed as previously 

described (Chapter IV).  Because LD between SNPs within the five candidate genes is 

high, we used r2>0.1 as criteria in MERLIN to define SNPs in LD to be able to perform 

the multipoint linkage analysis in candidate genes. 

 

Results 

 

Candidate gene association analyses 

We selected a number of representative SNPs in the five candidate genes, VR22 

(N = 20 SNPs), LRRTM3 (N = 14 SNPs), PLAU (N = 5 SNPs), TNFRSF6 (N= 4 SNPs) 

and IDE (N = 7 SNPs) on chromosome 10, respectively (Table 5-1).  The SNPs that 

showed nominal association with the disease using logistic regression are listed in Table 

5-2.  The complete sets of results are in the Appendix (Table A-1 to A-13).  For Table A-

1, the results were based on χ2 analysis of allele distribution. 
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Table 5-2 Candidate genes and SNPs showing association in at least one data set 

Case-control 1 Family2
Gene SNP Allele 

variation
Nucleotide
position* P OR (95%CI) P  

VR22 RS7911820 G>T 67,534,145 0.27a 0.91 (0.77, 1.08) 0.03g 
 RS7070570 A>G 67,534,610 0.06e 1.69 (0.97, 2.95) 0.03h 
 RS7074454 C>T 67,534,965 0.14f 0.64 (0.35, 1.16) 0.01g 
 RS2441718 A>G 67,806,967 0.03c 1.29 (1.02, 1.62) 0.03g 
 RS2456737 A>G 67,825,340 0.03c 1.33(1.04, 1.72) 0.05h 
 RS7909676 A>C 68,104,803 0.33c 1.14 (0.88, 1.48) 0.00h 
 RS3096244 C>T 69,080,192 0.15b 1.16 (0.95, 1.42) 0.05g 

LRRTM3 RS12769870 A>G 68,347,401 0.01e 0.70 (0.53, 0.92)) 0.08h 
 RS2394314 A>G 68,350,254 0.04d 0.72 (0.54, 0.98) 0.14h 
 RS10762122 C>T 68,386,380 0.02b 1.24 (1.02, 1.50) 0.09 h 
 RS942780 A>G 68,406,547 0.48d 1.11 (0.83, 1.48) 0.03h 
 RS1925617 G>T 68,434,823 0.17c 0.82 (0.61, 1.09) 0.00h 
 RS1925622 A>G 68,439,644 0.48e 0.90 (0.66, 1.22) 0.01h 
 RS1952060 C>T 68,492,940 0.24c 0.86 (0.67, 1.11) 0.00h 

PLAU RS1916341 A>C 75,341,168 0.20e 0.85 (0.66, 1.09) 0.02g 
 RS2227566 C>T 75,343,737 0.35d 0.87(0.65, 1.16) 0.01g 
 RS2227568 C>T 75,343,885 0.11b 0.80 (0.61,1.05) 0.01h 
 RS4065 C>T 75,346,470 0.22e 0.85 (0.67, 1.10) 0.02g 

TNFRSF6 RS1800682 C>T 90,739,943 0.27d 1.19 (0.87, 1.61) 0.03h 
 RS2031612 A>G 90,756,960 0.02a 1.23 (1.04, 1.46) 0.87g 
 RS2296600 C>G 90,760,419 0.02a 0.82 (0.69, 0.97) 0.26h 

IDE RS7099761 A>G 94,325,779 0.50e 0.91 (0.68, 1.20) 0.02g 
*The map location is from NCBI dbSNP, build 35. 
** SNPs showing association (P<0.05) are bold and italic and those showing 
association in both case-control and family-based data sets are shaded. 
1. We tested a total of 6 models for case-control data set and only most significant 
results are shown in the table. 
a) model I with genotype-only; b) model I with both genotype and covariates; c) 
model II with genotype-only; d) model II with both genotype and covariates; e) 
model III with genotype-only; f) model III with both genotype and covariates;  
2. We applied two methods to the family-based association test and only most 
significant results are shown in the table. 

g) PDT; h) geno-PDT 
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There is at least one SNP showing association in each of these five candidate 

genes, VR22 (N = 7 SNPs), LRRTM3 (N = 7 SNPs), PLAU (N = 4 SNPs), TNFRSF6 

(N= 3 SNPs) and IDE (N = 1 SNP), in case-control, family-based, or both data sets.   

SNPs rs2441718 and rs2456737 in VR22 showed association in both family-based and 

case-control data sets, with an odds ratio (OR) in the case-control data set of 1.29 (95% 

CI=1.02-1.62, p=0.03) and 1.33 (95% CI=1.04-1.72, p=0.03), respectively, when we used 

the common allele to dichotomize genotypes.  However, the association went away after 

we adjusted for the confounders (age, gender and ApoE status).  SNP rs2031612 in 

TNFRSF6 showed association in the case-control data set with an OR of 1.23 (95% 

CI=1.04-1.46, p=0.02 with the common allele A under an additive model).  SNP 

rs10762122 in LRRTM3 also showed association in the case-control data set after we 

adjusted for confounders, with an OR of 1.24 (95% CI=1.02-1.50, p=0.02 with the 

common allele T).  The complete sets of results are in the appendix. 

Using haplo.stats to calculate age and gender adjusted score statistics, two 

haplotypes in PLAU were associated with AD in the overall case-control data set.  All 

five genotyped SNPs (rs1916341, rs2227564, rs2227566, rs2227568, and rs4065) in 

PLAU were used to define the haplotype.  The haplotype GTCCC was associated with 

AD at p=0.01 and haplotype GCCTC had p=0.02 for their global score statistics.  These 

two haplotypes remained significant when we applied FDR for multiple comparisons.  

The most frequent haplotype TCTCT was used as the referent haplotype (p=0.43).  

Haplotype GTCCC was also borderline significant (p=0.05) in the logistic regression 
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after taking into account age and gender.  A sliding window analysis (n=3) across the five 

genotyped SNPs in PLAU generated three haplotypes and all of those three were 

significant (p<0.05 for age and gender adjusted score statistics).    Haplotype analyses on 

the other candidate genes didn’t show any significant results at p<0.05 (data not shown).  

Although we also see a significant effect for PLAU haplotypes in the family-based data 

set, the association is in the opposite direction.  The most common haplotype, TCTCT, 

was significantly associated with AD (P=0.008) in the haplotype FBAT analysis, while 

the haplotype GTCCC was not associated with AD (p=0.70).  Haplotype GCCTC had a 

marginal effect (P=0.05). 

 

Linkage analysis in candidate genes 

We did linkage analyses on the SNPs in the five candidate genes. With these 

SNPs, we applied the same approaches as for the SNPs in the linkage panel on the overall 

data set.  Two SNPs (rs7070570 and rs2441718) in VR22 had LOD>1.0 (1.30 and 1.02, 

respectively) in FASTLINK/HOMOG two-point analyses.  In the OSA analysis using the 

ApoE_LOD score as a covariate, a two point LOD score of 2.30 was obtained at SNP 

rs2456737 in VR22 (p=0.05 in 51% families, high to low).  A two point LOD score of 

1.62 was obtained at SNP rs942780 in LRRTM3 (p=0.02 in 22% families, low to high). 

We also performed multipoint analysis using SNPs in the candidate genes on 

overall data set.   Since there is high LD between SNPs in genes, we used r2 >0.1 to 

define SNPs in LD in program MERLIN.  Only one SNP (rs2456737) in VR22 had a 
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LOD score of 1.05 (data not shown).  This SNP also showed association in both case-

control and family-based data sets (p<0.05). 

 

Genomic convergence of association and linkage analyses 

Combined with the linkage analysis results from the previous chapter, both the 

linkage and association studies gave us suggestive results, shown in Figure 5-1.  However, 

these results did not converge.   
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Figure 5-1 Overall suggestive linkage and association data on chromosome 10 
Triangles are –log10 (p) from the candidate gene association study.  The dashes are 
two-point LOD score in Ordered Subset Analysis (OSA) from the linkage study. 

 

The linkage study revealed a major peak between 40-60 Mb (LOD=2.69) and a 

minor peak between 80-100 Mb (LOD=1.70).  In the association analysis, VR22 (67.8 
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Mb), L

ssion 

Across this broad region of linkage on chromosome 10q, there are many 

nes that may be involved in AD pathophysiology.  In our study, we focused 

on VR2

RRTM3 (68.3 Mb) and PLAU (75.3 Mb) showed evidence of association.  VR22 

showed association in both the family and case-control data sets.  LRRTM3 demonstrated 

association in the case-control data set after adjusting for confounders, and this gene 

survived both Bonferroni and FDR correction for multiple comparisons in the family data 

set.  PLAU showed haplotypic association in both the family and case-control data sets.  

The SNPs in TNFRSF6 remained associated after FDR correction for multiple testing 

(q=0.2).  Only TNFRSF6 (90.7 Mb) falls near one of the observed linkage peaks (80-100 

Mb). 

 

Discu

candidate ge

2 (α-catenin), LRRTM3, PLAU, TNFRSF6 and IDE.  VR22 is a large (1.8 Mb) 

gene located at 67.3 Mb that encodes alpha-T catenin, which is a binding partner of beta 

catenin. This makes VR22 an attractive candidate gene because beta catenin interacts 

with presenilin 1, which has many mutations that elevate Aβ42 and can cause early onset 

familial AD.  LRRTM3 is a nested gene in an intron of VR22 which also has plausible 

biological function of promoting APP processing by β-secretase (BACE1). Ertekin-Taner 

et al. reported two intronic SNPs in VR22 showing highly significant association 

(P=0.0001 and 0.0006) with plasma Aβ42 in 10 extended LOAD families (Ertekin-Taner 

et al., 2003).  Martin et al. suggested significant evidence of association between VR22 
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and AD in both the families and the unrelated cases and controls, and that the effect is 

dependent on ApoE status (Martin et al., 2005).   

PLAU encodes urokinase-type plasminogen activator (uPA) which converts 

plasminogen to plasmin. Plasmin is involved in the processing of amyloid precursor 

protein

 

(AD) p

esults are not strikingly significant, especially in 

conside

 and degrades secreted and aggregated amyloid-beta, a hallmark of Alzheimer 

disease (AD).  Finckh et al. found a coding SNP in PLAU showing association 

(P=0.00039) in 347 patients with LOAD and 291 control subjects (Finckh et al., 2003).   

The TNFRSF6 gene encodes FAS, a cell-surface receptor involved in apoptosis 

initiation. Elevated levels of FAS have been reported in the brains of Alzheimer's disease

atients (Feuk et al., 2000).  Despite these tantalizing reports, none of the 

associations to these genes has been widely replicated in multiple studies and thus 

generally accepted as an AD risk gene.   

Although we found that there is at least one SNP in each gene showing 

association with Alzheimer disease, the r

ration of the problem of multiple comparisons.  We adjusted for multiple 

comparisons in both the family and case-control data sets by the number of genotyped 

SNPs in each gene.  Using the overly conservative Bonferroni correction, none of the 50 

genotyped SNPs was significant at global p<0.05 in the case-control data set.  The only 

SNP remaining significant after Bonferroni correction was SNP (rs1952060) in LRRTM3 

within the family data set.  When we genotype a lot of SNPs that are not independent 

with each other in a gene, Bonferroni correction is too conservative for detecting a 
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positive result.  Perhaps a more appropriate approach is to control for the false discovery 

rate.  When we applied a false discovery rate of q=20%, three SNPs in LRRTM3 

(rs1925617, rs1925622 and rs1952060) and one SNP (rs2227568) in PLAU remained 

significant in the family data set.  In the case-control data set, two SNPs (rs2031612 and 

rs2296600) in TNFRSF6 were significant. 

PLAU is the only gene showing haplotypic association with AD in both the 

family-based and case-control data sets.  Although the associated haplotype is different 

betwee

s by genotyping 12 

more S

es.  They may also reflect 

n two data sets, considering the strong single marker effect (one SNP survived 

FDR multiple comparison correction), these results remain very interesting.  More 

detailed examination of this gene is needed to explore its role in AD. 

Martin et al., 2005 tested 11 SNPs in VR22 and LRRTM3 in an overlapping data 

set, and we included them in our SNP list.  We extended their analyse

NPs in VR22 and 11 more SNPs in LRRTM3.  These additional SNPs were 

selected because they were functional SNPs or tag SNPs or filled large genomic gaps.  

Although the overlap with Martin et al.’s data set is extensive, the current data set 

includes more updated clinical information.  We found the same associated SNPs 

(rs7911820 and rs7074454 in VR22; rs1925617 in LRRTM3) at p<0.05 in the family-

based data set, but also identified two SNPs (rs2441718 and rs2456737 in VR22) 

showing association in both family and case-control data sets. 

The inconsistencies between our study and other groups’ findings may reflect 

differences in the samples, study designs or analytical techniqu
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heterog

association in both case-control 

and fam

eneity within the samples or more complicated genetic mechanisms such as the 

interplay of genetic and epigenetic factors.  Also, we selected several SNPs in each gene 

based on the previous reports, spacing and heterozygosity.  But the genes haven’t been 

exhaustively examined.  There is a possibility that association could be found if we 

genotype all tagSNPs to cover each haplotype block and do an exhaustive test of these 

tagSNPs in these genes.  In addition, the candidate gene selection strategy is biased by 

the known biological function and the function of most genes is poorly understood.  This 

prompted us to combine linkage and candidate gene association studies to try to locate 

the susceptibility genes underlying Alzheimer disease.   

However, the linkage analysis did not converge with the candidate gene 

association studies, in which VR22 (67.8 Mb) showed 

ily-based data sets (Figure 5-1).  Since we applied linkage and candidate gene 

association approaches simultaneously, we could not predict the results in advance.  Our 

results support the role of the tested candidate genes in AD, but it is also important to 

study the candidate genes around the 45 Mb location.  Our results suggest a more 

complicated heterogeneity background on chromosome 10 with LOAD.  Further 

experiments on the possible roles of the genes on chromosome 10 in AD pathology will 

hopefully lead to a better understanding of the etiology of Alzheimer disease. 
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CHAPTER VI 

 

GENETICS OF CDC2 LOCUS IN ALZHEIMER DISEASE 

 

Introduction 

Alzheimer disease (AD) is the most common form of dementia among the elderly.  

This progressive neurodegenerative disorder accounts for more than half of all cases of 

dementia among people over 65 years of age (Francis et al., 1999).  Clinically AD is 

slowly progressive, resulting in memory loss and alterations of higher intellectual 

function and cognitive abilities (Guttman et al., 1999).  Pathologically, AD is 

characterized by neurofibrillary tangles in the neurons of the cerebral cortex and 

hippocampus and the deposition of amyloid within senile plaques and cerebral blood 

vessels (Wisniewski et al., 1993). 

Alzheimer disease is a complex neurodegenerative disorder resulting from 

multiple genetic and nongenetic factors (Myers and Goate, 2001).  The only well-

established genetic susceptibility factor for non-mendelian late-onset AD is the ε4 allele 

of the apolipoprotein E (APOE) gene (Corder et al., 1993). However, the presence of the 

APOE-4 allele is neither necessary nor sufficient to cause AD, indicating that additional 

genetic or non-genetic factors influencing AD risk are yet to be identified.  To discover 

additional susceptibility genes, genome scans were initiated resulting in the identification 

of genomic regions of interest, predominantly on chromosomes 2, 9, 10, 12 and 15 (Liang 
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et al., 2005; Mayeux et al., 2002; Myers et al., 2002; Pericak-Vance et al., 2000).  In 2000, 

three quite different approaches led to convincing evidence that there is at least one other 

susceptibility gene for Alzheimer disease on chromosome 10q. Two linkage studies gave 

strong evidence of a locus at almost exactly the same location (D10S1225): one using 

plasma levels of the amyloid beta brain-deposited fragment of the amyloid precursor 

protein as a continuous phenotype, and the other using a categorical disease phenotype. A 

third candidate gene linkage and association analysis approach interestingly found a 

maximum signal ~35–60cM distal to the previous studies (D10S583). (Bertram et al., 

2000; Myers et al., 2000; Ertekin-Taner et al., 2000).  

Some of the over 240 genes in the broad region spanned by these results may be 

considered as positional candidates because they are also hypothesized to interfere with 

AD-related biochemical pathways.  

The cell division cycle 2 (CDC2) gene is located within this linkage peak (2 Mb 

from the marker D10S1225) and is thought to be one of the main candidate kinases 

involved in the abnormal phosphorylation of tau, which is in the hallmark neurofibrillary 

tangles of AD. CDC2 is also designated as CDK1 or p34CDC2 and its neuron-specific 

form is CDK5.  CDC2 is involved in the critical event at the point of convergence of the 

mitosis and neurodegeneration pathways in the AD.  Therefore, CDC2 is a reasonable 

positional and functional candidate for association with AD.  Johansson et al. (Johansson 

et al., 2003) reported that a variation in CDC2 gene is associated with AD at odds ratio of 

1.78 (95% CI 1.18-2.68) using a data set of 272 Caucasian AD cases and 160 controls.   
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To test whether allelic variation in this potentially important candidate gene 

confers susceptibility to AD risk, we genotyped six single nucleotide polymorphisms 

(SNPs) across CDC2 in two independent samples; family-based and case-control. Our 

data suggest a lack of association of the variations in CDC2 gene with AD. 

 

Materials and methods 

 

Study populations 

Family sample 

We used a total of 1337 affected discordant sib pairs (DSP) defined by 1521 late-

onset AD (LOAD) patients (minimum age at onset (AAO) ≥ 60 years) and 974 

unaffected individuals in these families, as described in the previous chapters.  Family 

data was ascertained by the following centers: the NCRAD repository at Indiana 

University (NCRAD); the Collaborative Alzheimer Project (CAP), including Duke and 

Vanderbilt Universities and University of California at Los Angeles; and the National 

Institute of Mental Health repository (NIMH).  All participants were Caucasian 

Americans. Written consent was obtained from all participants in agreement with 

protocols approved by the institutional review board at each contributing center.  AD was 

diagnosed according to the NINCDS-ADRDA criteria (McKhann et al., 1984b).  Age-at-

onset (AAO) was recorded as that age at which the first symptoms were noted by the 

participant or a family member.  Mean AAO ± SD (standard deviation) in affected 
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individuals in the family-based sample was 72.9±6.4 years.  The mean age-at 

examination (AAE) ± SD was 80.1±7.1 and 69.9±11.2 in affected and unaffected 

individuals, respectively.  The AD affected group was 67.3% female, while the 

unaffected group was 56.2% female. 

Case-control sample 

Our case-control sample consists of 745 unrelated cases with probable or definite 

AD and 998 unrelated cognitively normal elderly controls who were either the spouses of 

AD patients or subjects recruited from the outpatient clinics of the participating 

institutions.  Cases and controls were collected through the Center for Human Genetics 

Research (CHGR) at Vanderbilt University and the Center for Human Genetics (CHG) at 

Duke University.  Criteria for AD diagnosis and screening of unaffected relatives were 

the same as described above.  Controls had no obvious signs of cognitive or neurological 

impairment when enrolled in the study as determined by personal interview by clinical 

personnel of Vanderbilt CHGR and Duke CHG.  All individuals included in this study 

were Caucasian.  The control group’s mean AAE ± SD was 72.0±6.3 years, while the 

case group’s mean AAE ± SD was 76.5±6.53 years.  The AD cases were 63.3% of female, 

while the controls were 58.5% female. 
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SNP and genotyping 

Following informed consent, blood samples were collected from each individual.  

Genomic DNA was obtained from the repositories (NIMH, NCRAD) or extracted from 

whole blood (CAP) by use of the Puregene system (Gentra Systems, Minneapolis, MN).  

All samples were coded and stored at 4oC until used.   

A map of the CDC2 region and SNPs studied is shown in Figure 6-1.   
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Figure 6-1 Gene structure and relevant features of CDC2 and surrounding 

sequences   
The relevant SNPs are labeled with the dbSNP rs number. The distances between SNPs 

are shown in base pairs. 

The CDC2 gene structure and transcript information were extracted from the 

Ensembl database (http://www.ensembl.org) according to the NCBI human genome 

sequence assembly build 35.  An insertion/deletion SNP (rs3212319) which was 

associated with AD by Johansson et al. was selected.  Two other adjacent SNPs that were 

discovered by that same group were also selected. Applied Biosystems 

(http://home.appliedbiosystems.com) web sites were mined to select all available SNPs 

 68

http://www.ensembl.org/
http://home.appliedbiosystems.com/


according to location relative to other selected SNPs, high minor allele frequency (≥ 

0.25), and availability of quality assays during the time when we did the genotyping.  

SNP genotyping was performed using Assays-On-Demand™ or Assay-By-DesignTM 

with the ABI PRISM® 7900HT Sequence Detection System (Applied Biosystems, Foster 

City, CA).  Amplification was performed in a 384-well DNA Engine Tetrad® 2 Peltier 

Thermal Cycler (MJ Research, Waltham, MA) with the following conditions: 94°C-10 

min; 92°C-15 sec, 60°C-1 min (50 cycles); 4°C-hold.   

SNPs rs2456777 and rs2456778 reside right next to each other ([A/G], [A/T]), 

and a standard Taqman probe cannot detect adjacent SNPs.  Thus we defined the most 

common haplotypes by sequencing 20 CEPH individuals.  The two most common 

haplotypes for these two SNPs are AA and GT, allowing us to develop a single assay to 

test for the haplotype.  Then we designed probes and primers oriented 5’ to 3’.  The 

probes are aagaaatttttAA/GTtttcctgtttt and forward primer is 5’-

AAAGGTAACATATATGTAACAATGAGATTACATTTA-3’, reverse primer is 5’-

TGGGAGTGCCCAAAGCTCTA-3’.  We used a Taqman assay for the genotyping.  For 

those individuals with uncertain haplotype status, sequencing was performed to obtain the 

genotype.  The forward primer is 5’-GAACTAGCAACTAAGAAACCACTTTTCC-3’ 

and reverse primer is 5’-CCTTACCGAGAGCAAATCCA-3’.  The genotypes were 

transcribed to be consistent with the TaqMan output file.  Systematic genotyping errors 

were minimized by use of a system of quality control (QC) checks with duplicated 

samples (Rimmler et al., 1998).     
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Statistical methods 

Descriptive analyses 

We tested for deviations from Hardy-Weinberg equilibrium (HWE) using the 

program Genetic Data Analysis (GDA) (Zaykin et al., 1995). The linkage disequilibrium 

(LD) measures D’ and r2 was calculated using the GOLD program (Abecasis and 

Cookson, 2000). 

Association analyses 

Case-control association analyses for single alleles and for genotypes were 

conducted using logistic regression (SAS Institute, Cary, N.C., USA, version 8.1).  We 

tested three different models.  The first is an allele-based model that assumes an additive 

effect on the log scale for the alleles (e.g., having no A alleles=0, having one A allele=1, 

having two A alleles=2). The second is an allele-based model that dichotomizes 

genotypes according to different alleles (having allele=0, not having allele=1).  The third 

is a genotype-based model where the most frequent genotype served as a reference 

genotype and other two genotypes were compared with the reference separately.  

Statistical significance was declared at α=0.05.   

To adjust for potential confounders, we included gender and age at examination 

(AAE) as covariates in the regression analysis.  In addition, we considered ApoE status as 

two different models: “ApoE 4_2” model which breaks the analysis into 2 parts; those 

that have no ApoE 4 allele and those that have at least one ApoE 4 allele and the 
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“ApoE_3” model which breaks the analysis into 3 parts; those that have both ApoE 4 

alleles, those that have at least one ApoE 4 allele and those that have no ApoE 4 allele.  

Age-at-onset (AAO) was also analyzed as a dependent variable using a 

generalized liner model (GLM) to test the association between the age-at-onset and the 

gene and four models were used.  Geno_linear is the model where different genotypes 

were considered as a linear progression; Geno_group is the model where genotypes were 

put into groups without linear progression; Geno_A and Geno_B are the models to group 

the genotypes into 2 groups according to the two alleles (A and B) of the SNP (one is the 

homozygote of one of the two alleles; the heterozygote and homozygote of the other 

allele were in the 2nd group).  ApoE status and gender were used as covariates. 

Family based association analysis was conducted using the pedigree 

disequilibrium test (PDT, for allelic effect) and Genotype-PDT (GenoPDT, for genotypic 

effect) for single-locus tests to assess association between genotypes and risk of AD in 

the family data (Martin et al., 2000b; Martin et al., 2002).  

 Linkage analysis of family data set 

Two-point heterogeneity LOD score (HLOD) analyses were computed using 

FASTLINK and HOMOG (Ott, 1999). Because the mode of inheritance for AD is 

unknown, affected-only parametric analyses were performed using both autosomal 

dominant and autosomal recessive models with disease allele frequencies of 0.001 and 

0.20, respectively, to model the susceptibility allele. Because it is likely that there is 

genetic heterogeneity in Alzheimer disease, we applied Ordered Subset Analysis (OSA) 
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(Hauser et al., 2004) in our linkage analysis to test for a set of families in which the LOD 

score in a particular region is higher than in the overall data set.  The statistical 

significance of the increased evidence for linkage relative to evidence for linkage in the 

entire sample is assessed via random permutation of the order of inclusion of the families 

to estimate empirical p values.  Families were ranked based on APOE LOD score at 

theta=0 (low to high or high to low) and family-specific APOE-4 allele weights (low to 

high or high to low).  OSA analysis was also performed using mean age of onset as 

covariate (low to high or high to low) to test for a subset generating a significantly 

increased LOD score relative to the overall sample. 

 

Power calculation 

The PS Power and Sample Size calculations program (Dupont and Plummer, Jr., 

1990) was used to calculate the power to detect a CDC2 association given the 745 cases 

and 998 controls sample.  We used the odds ratio of 1.78 and the probability of exposure 

in controls of 0.35 as given in the original report of association (Johansson et al., 2003). 

 

 

 

 

 

 

 72



 73

Results 

 

Family-based analyses 

CDC2 SNP allele and genotype frequencies for family-based data set are listed in 

Table 6-1.  The LD measure (D’ and r2) between SNPs are shown in Table 6-2.  There 

was no significant evidence for deviation from HWE for any SNP (Table 6-3).  The PDT 

was conducted in the overall family sample (Table 6-3).  None of these tests indicated 

association between these six SNPs and Alzheimer disease. 



 
Table 6-1 CDC2 SNP allele and genotype frequencies for family-based data set 

 

SNP Location 
(Mb) variation allele Allele 

frequency genotype Affected 
(frequency) 

Unaffected 
(frequency) 

A 0.70 AA 676 (0.48) 403 (0.47) 
G 0.30 AG 623 (0.44) 366 (0.43) RS7919724 62,165,848 A/G 
  GG 117 (0.08) 86 (0.10) 

C 0.66 CC 632 (0.45) 373 (0.44) 
T 0.34 CT 628 (0.44) 383 (0.45) RS2448341 62,205,963 C/T 
  TT 157 (0.11) 99 (0.12) 

A 0.43 AA 281 (0.20) 164 (0.19) 
G 0.57 AG 647 (0.47) 427 (0.49) RS2448347 62,215,148 A/G 
  GG 462 (0.33) 282 (0.32) 

C 0.68 CC 701 (0.47) 409 (0.45) 
- 0.32 C- 632 (0.43) 392 (0.44) RS3212319 62,221,822 C/- 
  -- 156 (0.10) 101 (0.11) 

AA/AA 100 (0.07) 46 (0.05) 
AA/GT 497 (0.34) 299 (0.33) 
AA/AT 5 (0) 4 (0) 
GT/GT 836 (0.58) 540 (0.60) 
GT/AT 14 (0.01) 5 (0.01) 

RS2456777 
RS2456778 

62,221,895 
62,221,896 

A/G 
A/T 

AA 
GT 
AT 
GA 

0.25 
0.74 
0.01 

0 
AT/AT 0 (0) 0 (0) 
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 Linkage analysis Association analysis HWE (p value) 

SNP (rs#) Dominant model 
HLOD score 

Recessive model 
HLOD score 

Pedigree disequilibrium test 
(PDT) p value Affected Unaffected 

RS7919724 0.00 0.00 0.49 0.37 0.66 
RS2448341 0.02 0.11 0.90 0.87 0.82 
RS2448347 0.00 0.06 0.19 0.12 0.47 
RS3212319 0.08 0.04 0.60 0.46 0.72 
RS2456777 
RS2456778 0.00 0.00 0.42 0.18 0.20 
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Table 6-2 Linkage disequilibrium between SNPs in CDC2 (D’ and r2 *) 

 rs7919724 rs2448341 rs2448347 rs3212139 rs2456777, rs2456778 
rs7919724  0.52  0.49 0.39 0.53 
rs2448341 0.24  0.61 0.54 0.65 
rs2448347 0.14 0.30  0.71 0.73 
rs3212139 0.03 0.07 0.14  0.73 

 
* D’ is shown in the upper right half (shaded), and r2 is shown in the lower left half.  Because r2 is only defined for bi-allelic markers 

in GOLD, there isn’t r2 value for the rs2456777/rs2456778 haplotype. 

Table 6-3 Linkage and association results for family-based sample 
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In the linkage analysis, the highest two-point heterogeneity LOD score (HLOD) 

was generated at SNP rs2448341 (0.11) under recessive model and allowing for 

heterogeneity.  The OSA method also did not reveal any evidence of linkage in any 

subset of the data using either ApoE or mean age of onset as the covariate (data not 

shown). 

 

Case-control analyses 

Table 6-4 shows both allelic and genotypic association and the adjusted odds 

ratios in the overall dataset of cases and controls.  The highest odds ratio (OR) of 1.38 

(95% CI = 0.79 -- 2.43; p=0.26) was generated by the rs2456777/rs2456778 haplotype 

when we used the most frequent genotype (GT/GT) as the baseline to compare with the 

haplotypes that do not contain the GT haplotype.  Age-at-onset, gender and ApoE status 

were included in the logistic regression as covariates.  None of these results are 

significant.  SNP rs2448341 had a marginal effect on Age-at-onset when the genotype 

was the only risk factor in the model (p=0.01, Table 6-5), but the effect became non-

significant after the models were adjusted by covariates of ApoE status and gender (Table 

6-5). 



 

Table 6-4 Allelic and genotypic association for case-control samples 

 Allelic Association Genotypic Association 

SNP (RS #) Allele CasesControls Odds 
ratio 95% CI p-

value genotype Odds 
ratio 95% CI p-

value
A 693 928 GG vs AA 1.10 (0.69,1.73) 0.69RS7919724 G 331 464 0.96 (0.80,1.13) 0.60 AG vs AA 0.89 (0.67,1.20) 0.45
C 660 897 TT vs CT 1.27 (0.84,1.92) 0.27RS2448341 T 376 509 1.00 (0.85,1.19) 0.96 CC vs CT 1.07 (0.80,1.44) 0.65
A 468 644 GG vs AG 1.25 (0.91,1.72) 0.16RS2448347 G 568 756 1.03 (0.88,1.21) 0.69 AA vs AG 1.22 (0.85,1.73) 0.28
C 767 1076 C- vs CC 0.82 (0.62,1.09) 0.18RS3212319 - 502 327 0.92 (0.77,1.08) 0.29 -- vs CC 0.83 (0.53,1.31) 0.42

AA 245 305 AA/AA,AA/AT,AT/AT vs 
GT/GT 1.38 (0.79,2.43) 0.26

GT 799 1106 AA/GT,GT/ATvs GT/GT 1.10 (0.81,1.48) 0.53
RS2456777 
RS2456778 

AT 4 3 

- - 0.31 
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 Models: genotype only Models: genotype and covariates (ApoE status and gender)

SNP (RS #) Geno_linear Geno_group Geno_A Geno_B Geno_linear Geno_group Geno_A Geno_B 

RS7919724 0.26 0.53 0.47 0.28 0.39 0.65 0.55 0.43 

RS2448341 0.01 0.04 0.11 0.02 0.08 0.24 0.12 0.18 

RS2448347 0.94 0.95 0.93 0.80 0.66 0.87 0.74 0.68 

RS3212319 0.84 0.72 0.67 0.61 0.44 0.47 0.99 0.31 

RS2456777 

RS2456778 
N/A 0.39 N/A N/A N/A 0.46 N/A N/A 
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Table 6-5 Association of Age-at-onset and CDC2 gene in case-control samples 

 
* P values in the generalized linear model are shown in the table.  The rs2456777/rs2456778 haplotype has more than two alleles 
and was applied to the Geno_group model only. 

 



Discussion 

CDC2 is thought to be one of the main candidate kinases involved in paired 

helical filaments (PHFs)-tau formation (Baumann et al., 1993).  Previously, it has been 

shown that the occurrence of hyperphosphorylated tau correlates with cell division, 

differentiation and mitosis.  The selective accumulation of CDC2 in neurofibrillary 

tangles (NFTs)-bearing neurons indicates that a mitotic post-translational mechanism 

might contribute to the PHF-tau formation in AD (Vincent et al., 1997).  Johansson et al. 

reported that an insertion/deletion polymorphism influences cerebrospinal fluid (CSF) 

total tau protein levels (Johansson et al., 2005) using continuous traits analysis.   

We have conducted a comprehensive analysis of the association between six 

CDC2 gene polymorphisms spanning the entire length of the gene and the disease risk in 

both case-control and family-based samples.  Johansson et al. sequenced all coding exons, 

flanking intronic sequences and the promoter region in 10 AD cases and 10 controls and 

found 3 ploymorphisms (EX6+7I/D (rs3212319), rs2456777 and rs2456778), all within 

74 bp of each other.  We genotyped these three SNPs and three additional SNPs to cover 

the region.  These SNPs demonstrated LD with each other (D’ varies from 0.39 ~ 0.73).  

Although the CDC2 locus is an obvious functional and positional candidate locus for AD, 

the detailed genetic study presented here did not find evidence for association with 

Alzheimer disease.  Our study has the advantage of having both a large set of unrelated 

cases and controls and a large, well-characterized family sample.  To explore our 

statistical power to detect allele frequency differences between cases and controls, we 

estimated the power of our datasets.  Given the odds ratio of 1.78 (95% CI 1.18-2.68) and 

the probability of exposure of 0.35 in controls (Johansson et al., 2003), we had 99% 
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power to detect the disease-associated variation.  Given our sample size, we still had 80% 

power to detect the variation even when the OR=1.38. 

Although these six SNPs are in LD with each other, there are no obvious LD 

blocks.  We cannot exclude the possibility that there are variants (rare or common) 

associated with AD in regulatory elements outside the CDC2 coding region and that are 

not in strong LD with any of the SNPs that we have genotyped.  The detection of such 

alleles, particularly when they are of low frequency, remains a challenge for molecular 

genetic studies.  However, even if this is the case, it does not explain the discrepancy of 

our results with the earlier report.  Although the gene showed the effect on age-at onset at 

p=0.01, the effect became non-significant after the confounders were considered. 

In conclusion, we did not find the association with CDC2 polymorphisms in our 

large case-control and family datasets and this suggests that the variations in the CDC2 

gene do not have a significant effect on the risk of LOAD.  Although CDC2 may be 

pathophysiologically related to AD, the contribution of common genetic variants of this 

gene to the risk for developing AD is likely to be low in Caucasian Americans.   
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CHAPTER VII 

 

EXAMINATION OF THE ASSOCIATION BETWEEN RS498055 IN 
LOC439999 GENE ON CHROMOSOME 10 AND ALZHEIMER DISEASE 

 

Introduction 

SNP rs498055 in the predicted gene LOC439999 on chromosome 10 was 

identified by Grupe et al. (Grupe et al., 2006) as strongly associated with late-onset 

Alzheimer disease (AD, MIM#104300).  This SNP falls within a chromosomal region 

that has been implicated in several non-overlapping data sets and in studies that applied 

different analytical approaches, including linkage analysis using affected sib pairs, a 

genome screen using amyloid β levels as a quantitative trait, and a candidate gene-driven 

linkage analysis (Bertram et al., 2000; Blacker et al., 2003; Ertekin-Taner et al., 2000; 

Farrer et al., 2003; Kehoe et al., 1999; Myers et al., 2000). 

Grupe and colleagues (Grupe et al., 2006) performed a screen of 1412 gene-based 

SNPs in 667 genes under the previously identified linkage peaks spanning 80 Mb of DNA 

on chromosome 10 using multiple case-control data sets.  69 SNPs reached significance 

(p<0.05) in the exploratory set.  Although 5 out of 69 significant SNPs were replicated in 

at least one of the validation sample sets at p<0.05, only one SNP, rs498055 in 

LOC439999 (a homologue of RPS3A), was consistently significantly associated with 

Alzheimer disease, being significant in four out of six case-control replication sets (allelic 

p=0.0001 for a meta-analysis of all six samples, OR=1.3~1.4).  Their conclusion was that 

variants in this RPS3A homologue, described above, were associated with late-onset 
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Alzheimer disease and that variants in this gene, or other functional variants close to it 

were likely to play a role in the pathogenesis of AD. 

To independently evaluate this interesting candidate SNP, we designed an 

experiment using four independent data sets, three family-based and one case-control.   

 

Materials and methods 

 

Study populations 

Four independent data sets were used in this study: (1) Families from the National 

Institute of Mental Health repository (NIMH) consisting of 1104 subjects from 349 

pedigrees including 331 multiplex families, 488 affected sibling pairs, and 582 discordant 

sibling pairs.  (2) Families from the Collaborative Alzheimer Project (CAP), which 

includes Duke and Vanderbilt Universities and University of California at Los Angeles, 

consisting of 755 subjects from 189 pedigrees including 84 multiplex families, 184 

affected sibling pairs, and 370 discordant sibling pairs.  (3) Families from the NCRAD 

repository at Indiana University (NCRAD) consisting of 470 subjects from 136 pedigrees 

including 100 multiplex families, 165 affected sibling pairs, and 216 discordant sibling 

pairs.  (4) Sporadic cases and controls ascertained by Duke and Vanderbilt University 

consisting of 587 cases and 1101 controls that had substantial clinical information.   

Our NIMH and NCRAD data sets overlapped with one of the data sets used by 

Grupe et al.  They generated a case-control series by selecting one case per family from 

the genetic linkage sample (which included NIMH and NCRAD samples, (Myers et al., 

2002)) and matching each of them to an equal number of white, nondemented controls 

 82



collected in St. Louis.  But our family-based datasets used unaffected sibpairs and the 

family-based association was tested. 

All the cases were late-onset AD (LOAD) patients (minimum age at onset (AAO) 

≥ 60 years).  AD was diagnosed according to the NINCDS-ADRDA criteria (McKhann et 

al., 1984b).  Controls had no obvious signs of cognitive or neurological impairment when 

enrolled in the study as determined by personal interview by clinical personnel.  All the 

age-matched controls had results within the normal range in the Mini-Mental State Exam 

(MMSE; ≥26) or Modified Mini-Mental State Exam (3MS; ≥85).  All participants were 

Caucasian Americans.   

Age at onset was recorded as that age at which the first symptoms were noted by 

the participant or a family member.  Mean AAO ± SD (standard deviation) in affected 

individuals in the family-based sample was 72.9±6.4 years.  The mean age-at examination 

(AAE) ± SD was 80.1±7.1 and 69.9±11.2 in affected and unaffected individuals, 

respectively.  The control group’s mean AAE ± SD was 72.0±6.3 years, while the case 

group’s mean AAE ± SD was 76.5±6.53 years.   

 

Genotyping 

We designed specific probes to detect rs498055 using Taqman technology (Assay-

by-Design) and genotyping was done on the four data sets. Systematic genotyping errors 

were minimized by use of a system of quality control (QC) checks with duplicated 

samples (Rimmler et al., 1998).  The deviations from Hardy-Weinberg equilibrium (HWE) 

were assessed using Haploview (Barrett et al., 2005). 
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Family-based data set analysis 

Family based association analysis was conducted using the pedigree 

disequilibrium test (PDT, for allelic effect) and Genotype-PDT (GenoPDT, for genotypic 

effect) for single-locus tests to assess association between genotypes and risk of AD in 

the family data (Martin et al., 2000b; Martin et al., 2002).  Two-point heterogeneity LOD 

scores (HLODs) were computed using FASTLINK and HOMOG (Ott, 1999). Because 

the mode of inheritance for AD is unknown, affected-only parametric analyses were 

performed using both autosomal dominant and autosomal recessive models with disease 

allele frequencies of 0.001 and 0.20, respectively, to model the susceptibility allele.  We 

applied Ordered Subset Analysis (OSA) (Hauser et al., 2004) to our linkage analysis for 

the combined data set to see if a specific subset of families might be linked.  Families 

were ranked based on ApoE LOD score at theta=0 (low to high or high to low) and 

family-specific APOE-4 allele weights (low to high or high to low).  OSA analysis was 

also performed using mean age of onset as covariate (low to high or high to low) to test 

for a subset generating a significantly increased LOD score relative to the overall sample. 

 

Case-control data set analysis 

Case-control association analyses for single alleles and for genotypes were 

conducted using logistic regression (SAS Institute, Cary, N.C., USA, version 8.1).  

Statistical significance was declared at α=0.05.  Gender, age, and ApoE status were used 

as covariates in the model to adjust for confounders. 

 

 

 84



Results 

The reliability of duplicate genotyping across plates was >99% and the average 

genotyping efficiency was 95%.  Genotypes for affecteds and unaffecteds did not violate 

Hardy-Weinberg Equilibrium.     

Family based association was conducted using the pedigree disequilibrium test 

(PDT) for single-marker tests (Martin et al., 2000b) and genotype-PDT (GenoPDT).  

None of the three family samples nor the combined samples showed association in either 

allelic or genotypic association tests at p<0.05 (Table 7-1). 

Two-point heterogeneity LOD scores (HLODs) were computed using FASTLINK 

and HOMOG (Ott, 1999). However, none of the data sets gave LOD scores >1.0 (Table 

7-1).   

 

Table 7-1 Association and linkage results for family-based sample 

 
Association 

analysis 
p value 

Linkage analysis 2-
point HLOD 

HWE  
p value data set 

PDT Geno-
PDT Dominant Recessive Affected Unaffected

NIMH 0.495 0.791 0.11 0.07  0.897 0.495 
CAP 0.957 0.452 0.00 0.02  0.710 0.348 

NCRAD 0.289 0.623 0.00 0.00  0.807 0.333 
Combined 0.356 0.660 0.00 0.00  0.998 0.617 

NIMH = National Institute of Mental Health repository; CAP = Collaborative 
Alzheimer Project; NCRAD = NCRAD repository at Indiana University; HWE = Hardy-
Weinberg Equilibrium 
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In the Ordered Subset Analysis, there is no evidence indicating linkage no matter 

what covariates were applied.  The highest LOD score was 0.82 (using mean age-of-onset 

as a covariate to order families from low to high, 5% of the families, the p value for the 

increase of the LOD score was 0.06). 

Case-control association analyses were conducted for both single alleles and 

genotypes.  The allelic association (OR=0.95) was not significant with p=0.52, 95% CI of 

0.81-1.11.  Analysis of genotypic association did not show significant result either (Table 

7-2).   

 

Table 7-2 Allelic and genotypic association for case-control samples 

association case control total Freq. test OR 95% CI P 
allelic         

G 450 893 1343 0.49 G vs. T 0.95 0.81-1.11 0.52
T 486 917 1403 0.51     

genotypic         
GG 109 225 334 0.24 GG vs. TT 0.90 0.66-1.24 0.53
GT 232 443 675 0.49 GT vs. TT 0.98 0.75-1.28 0.87
TT 124 237 364 0.27     

 

 

The chi-square test for trend was p=0.80, χ2=0.44.  To adjust for potential 

confounders, we included gender and age at examination (AAE), and ApoE status (ApoE 

4-positive and ApoE 4-negative) as covariates in the regression analysis.  However, none 

of these tests revealed any evidence of association between this SNP and AD (all p>0.53).  

It is worth noting that we see an under-representation of G allele of rs498055 in our data 

set, which is in opposite direction of Grupe’s finding but consistent with another recent 

report (Bertram et al., 2006).  
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Discussion 

We have conducted a comprehensive analysis of the association between 

rs498055 and Alzheimer disease risk in both case-control and family-based samples.  Our 

study has the advantage of having both a large set of unrelated cases and controls and 

three well-characterized family samples.  In one of the family samples (NIMH), a large 

proportion of subjects overlapped with one of the data sets used in the initial study 

identifying linkage to this region (Myers et al., 2002).  This makes it suitable to detect 

true effect under linkage peak.  Grupe et al. also used this data set, but study design was 

different from ours.  They selected one case per family and matched the cases with an 

unrelated controls collected in St.Louis.  Although it is not easy to calculate the exact 

overlap between our data set and that of Grupe et al., there were more discordant sibpairs 

in our data set and we used the family-based association test and eliminated the possible 

population substructure in the data set. 

The discrepancy of our results with the earlier report could be explained by 

several reasons.  First, the LD patterns around the SNP rs498055 may be different among 

different sample populations.  However, we found no evidence of a difference between 

our data sets and the HapMap data.   

Second, our power could be low.  Although the frequency of the risk allele of 

rs498055 is high (46.5% in control population), its estimated effect size is small 

(OR=1.26, 95%CI (1.02-1.54), and the initial report failed to find replication in two small 

case-control series (183 cases/127 controls; 160 cases/106 controls) (Grupe et al., 2006).  

They claimed that the power to detect the effect in these two small samples was low (40% 

and 36% respectively).  In their recent response to a paper which failed to replicate this 
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SNP (Bertram et al., 2006), they estimated that 360 cases and 360 controls were needed to 

achieve 80% power in replication study to detect this small risk effect (Grupe et al., 2006).  

Our case-control data set has 587 cases and 1101 controls. Using the QUANTO program 

(http://hydra.usc.edu/gxe), we explored our statistical power to detect allele frequency 

differences between cases and controls.  With one-sided test, we have 94% power to 

detect the disease-associated variation given the odds ratio of 1.26 (95% CI 1.02-1.54) 

and the probability of exposure of 0.46 in controls under the additive model.  The power 

is 64% and 61% under dominant and recessive model, respectively. 

Third, there could be a difference in the underlying samples. However, both cases 

and controls in our data sets are well characterized using standard criteria similar to that 

of the original report.  Furthermore, all of our AD patients were late-onset AD with age-

of-onset greater than 60.  Fourth, our negative results may be due to chance alone.  

However, our lack of replication in any of four data sets argues against this.   

Our results are consistent with the Bertram et al. findings that used family-based 

association tests to examine the effect of this SNP in two family data sets.  Thus we 

conclude that RS498055 is not associated with an increased risk of LOAD. 
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CHAPTER VIII 

 

GENOMIC CONVERGENCE TO IDENTIFY CANDIDATE GENES FOR 
ALZHEIMER DISEASE 

 

Introduction 

A promising solution to the growing data flood from the latest genomic 

technologies (e.g. Genome-wide association) is genomic convergence.  Genomic 

convergence is a multifactor approach used in genetic research that combines different 

data analysis results from different data types to identify and prioritize susceptibility 

genes for a complex disease (Hauser et al., 2003b).  Examples of such data types include 

genetic linkage data, association data, gene expression data, and biological function. 

Our previous linkage and candidate gene studies suggested a more extensive 

heterogeneous genetic background on chromosome 10 for AD than we previously 

appreciated.  Rare and common polymorphisms in multiple genes can be involved 

together with non-genetic factors in this complex disease.  Therefore, combining different 

sources of data is important to selecting and prioritizing candidate genes.  

In the present study, gene expression levels in the brain tissue from AD patients 

and controls were compared using the Serial Analysis of Gene Expression (SAGE) 

method (Y-J Li, personal communication).  We used this Alzheimer disease gene 

expression study by SAGE (Li et al., 2006) as one of the important sources of data, 

combined with previously identified linkage data, to select candidate genes that modify 

the risk for AD.   
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SAGE is a powerful method for profiling transcripts expressed in a given tissue 

(Velculescu et al., 1995) and provides expression data for thousands of gene products 

without a priori knowledge of their function.  In this technique, mRNAs are isolated and 

transcribed into cDNAs that are cleaved into short fragments called “tags” by restriction 

enzymes.  The tags are extracted and linked together into long concatamers and 

sequenced.  The output of SAGE is a list of short sequence tags and the number of times 

it is observed, which reflects the abundance of the respective mRNA level in the tissue. 

Our collaborators at Duke University Center for Human Genetics (CHG) 

performed the SAGE analysis.  We chose brain samples from AD cases (ApoE 4/4, ApoE 

3/4 and ApoE 3/3 genotypes) and controls (ApoE 3/3 genotypes) to establish SAGE 

libraries to analyze the differential gene expression between AD cases and controls.  

Then we converged our linkage screen results with the gene expression data to identify 

genes that are under the linkage peak and differentially expressed between patients and 

controls.  The LD structure of each genomic convergence genes was assessed. 

 

Materials and methods 

 

Human brain samples 

Human brain tissues were collected in the Kathleen Price Bryan Brain Bank, at 

the Duke University Alzheimer Disease Research Center, and the Brain Bank of the 

Center for Human Genetics (CHG), Duke University Medical Center, following a rapid 

autopsy protocol (Hulette et al., 1997). The hippocampus is heavily involved in the 

neuropathology of AD and was selected for both neuropathological and molecular 
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analysis (Markesbery, 1997).  In this study, the hippocampus was dissected at the time of 

autopsy and post-mortem delay times ranged from 1:10 to 4:15 hours (Xu et al., 2005b). 

Two brain tissue samples for each of the three ApoE genotypes for AD cases (ApoE 4/4, 

ApoE 3/4, and ApoE 3/3) and controls (ApoE 3/3) were used.  The pathological diagnosis 

of AD was established according to CERAD criteria (Mirra et al., 1991), and the degree 

of AD pathological changes was staged according to Braak (Braak and Braak, 1991). The 

AD patients used in this study had pathological changes at the Braak and Braak (B&B) 

stage IV and V (B&B stage IV and V), and the controls were cognitively and 

pathologically normal with B&B stage I.   

 

Construction of SAGE libraries 

RNA was isolated using a standard protocol (Invitrogen) and SAGE libraries were 

constructed as described by Velculescu et al (Velculescu et al., 1995). Six SAGE libraries 

were generated.  Four of those were based on the short tag (14 bp, AD ApoE 4/4, ApoE 

3/4, ApoE 3/3 and control ApoE 3/3).  Two libraries were based on the long tag (21-22 

bp, AD ApoE 3/3 and control ApoE 3/3).  Briefly, cDNA was reverse transcribed from 

mRNA and cut into short fragments (called “tags”) by NlaIII and BsmFI restriction 

enzymes (New England Biolab, Beverly, MA).  The tags were then concatamerized into 

long chain and transformed in competent Electromax DH10B cells (Invitrogen).  

Individual SAGE library clones were selected and PCR amplified using 96-well format 

Qiagen Real minipreps, and sequenced with ABI 3700 capillary sequencer using BigDye 

chemistry (Li et al., 2006). 
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SAGE data analysis 

The number of times a tag observed in tissue was extracted from each library and 

compared between the AD and control samples using eSAGE software to form a 

compared ShortSAGE database.  Chi-square and Fisher exact tests, as previously 

described (Hauser et al., 2003b), were used to test differences in expression levels 

between AD and control for each tag in each compared SAGE data set.  The SAGE tags 

were compared to the UniGene to interpret the SAGE results.  

 

Gene selection 

SAGE revealed 222 unique tags that were differentially expressed at p<0.05 

among different libraries.  A False Discovery Rate (FDR) was applied to the SAGE data 

to correct for multiple comparisons.  However, there were 77 unique tags showing 

significance above the FDR threshold.  So we set p<10-10 as the cutoff to select genes 

whose expression levels were highly significantly different between AD cases and 

controls.  Then previous linkage study results, shown in Table 8-1, were converged with 

gene expression data so that only differentially expressed genes that were also under 

linkage peaks in previous linkage screens were selected for the next step association 

analysis. 

 

Table 8-1 Summary of linkage study results on chromosome 10 

Chr. Location Linkage region (Mb) Peak LOD score Dataset Group 
10p 5-25 3.00 50ca/50co Zubenko et.al
10q 45-75 4.10 451 ASPs Myers, et. al 
10q 40-60 2.69 922 ASPs Current study
10q 80-100 1.70 922 ASPs Current study
10q 90-120 3.80 435 ASPs Bertram et.al 
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SNP selection 

When we selected SNPs as genetic markers, several criteria were applied.  At first, 

we flanked the gene by 10kb on each side to include potential regulatory regions. Only 

tagSNPs were selected with the restriction that the linkage disequilibrium r2 between 

selected SNPs should be less than 0.7. The web-based program, SNPselector (Xu et al., 

2005a), was used to automatically search available SNPs through the Ensembl and UCSC 

databases.  It prioritizes these SNPs on their tagging for linkage disequilibrium based on 

the LD bin algorithm in LD select (Carlson et al., 2004) using HapMap data, SNP allele 

frequencies and source, function, regulatory potential and repeat status.  Because we used 

the Illumina Goldengate genotyping method, we only selected SNPs with Illumina 

SNPscore greater than 0.6 to ensure the genotyping quality.  The Illumina SNPscore 

reflects the ability to design a successful Oligo Pool Assay.  The possible reasons for 

design failure of a SNP include melting temperature (Tm) exceeding assay limit, SNP in 

duplicated/repetitive region, the presence of another SNP within 60 bps, tri- or quad-

allelic SNPs and insertion/deletion SNPs (www.illumina.com). 

Minor allele frequency (MAF) is another important criterion as higher MAF SNPs 

are more informative, but we also want to include more coding SNPs, and these tend to 

have low MAF.  Therefore, MAF greater than 20% was used as the cutoff for selecting 

the intronic SNPs.  SNPs in conserved regions of eight-genome alignment 

(Human/chimp/mouse/rat/dog/chicken/fugu/zebra_fish, based on UCSC database), 

conserved transcription factor binding sites (TFBSs) in the human/mouse/rat alignment, 

CpG island, and microRNA genes were selected if the MAFs were greater than 10%. 

Coding SNPs were selected when the MAF was greater than 1%.  With these criteria, 
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there were still many SNPs to choose from.  Therefore, SNPs were selected at the 1 

SNP/10 kb spacing.  The gene TNFRSF6 showed significant results in linkage, candidate 

gene studies and SAGE gene expression analysis (Bertram et al., 2000; Feuk et al., 2000).  

Therefore, more weight was given to it by genotyping one SNP per five kilobases.   

 

Genotyping  

Selected 667 SNPs on chromosome 10 were genotyped as part of the 1536 SNPs 

multiplex panel using Illumina GoldenGate Oligo Pool Assay (OPA) on an Illumina 

BeadStation 500 GX (Illumina Inc., San Diego, CA).  The GoldenGate assay uses an 

allele-specific primer extension (ASPE) gapped ligation assay, in which query oligos 

annealed to the solid-phase genomic DNA were extended and ligated to form an 

amplifiable substrate for a subsequent universal primer polymerase chain reaction (PCR).  

The amplified substrates were then hybridized and detected by a universal array.  DNA 

samples from cases and controls were randomly sorted and duplicated samples were 

implemented across plates for genotyping quality control. 

 

Hardy-Weinberg Equilibrium (HWE) and linkage disequilibrium test 

We tested all SNPs for consistency with HWE in Haploview program (Barrett et 

al., 2005).  Haplotype blocks were assessed on AD cases using the default algorithm of 

95% confidence intervals on D’ (Gabriel et al., 2002) in Haploview.  A block was created 

if 95% of informative (e.g. non-inconclusive) comparisons are in “strong LD”.  TagSNPs 

were selected at different linkage disequilibrium levels using the Tagger option 
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incorporated in Haploview for the future haplotypic association test and gene-gene 

interaction test. 

 

Results 

 

Genomic convergence identified genes 

SAGE analysis revealed 41 unigenes on chromosome 10 that were differentially 

expressed between AD cases and controls with p<10-10.  28 of those genes were under 

previously identified linkage peaks (Bertram et al., 2000; Myers et al., 2002; Pericak-

Vance et al., 2000; Zubenko et al., 1998).  The genomic size of the genes ranged from 10 

kb to 1.3 Mb.  The number of exons ranged from 2 to 38.  According to the size of the 

gene, we genotyped 2~124 SNPs in the genes to cover the genes at an average spacing of 

1 SNP/10kb.  Table 8-2 shows the gene description, size and number of genotyped SNPs. 

 



* Gene location was based on NCBI build 35

Gene Description Position* Size (bp) Exons Genotyped snps 
ACTR1A ARP1 actin-related protein 1 homolog A, centractin alpha (yeast) 104,228,976 23,482 11 3 
BA108L7.2 sideroflexin 3 (SFXN3) 102,780,981 10,007 12 5 
CACNB2 Calcium channel, voltage-dependent, beta 2 subunit 18,469,672 400,372 14 41 
CAMK1D Calcium/calmodulin-dependent protein kinase ID 12,431,487 486,064 11 39 
CNNM2 Cyclin M2 104,668,061 160,273 8 15 
CUL2 Cullin 2 35,337,485 82,091 22 8 
CWF19L1 CWF19-like 1, cell cycle control (S. pombe) 101,982,045 35,382 14 3 
EIF4EBP2 Eukaryotic translation initiation factor 4E binding protein 2 71,833,928 19,747 3 15 
EPC1 Enhancer of polycomb homolog 1 (Drosophila) 32,596,731 110,954 15 11 
HELLS Helicase, lymphoid-specific 96,295,537 68,115 22 6 
HNRPH3 heterogeneous nuclear ribonucleoprotein H3 69,760,937 12,017 4 2 
IFIT3 Interferon-induced protein with tetratricopeptide repeats 3 91,077,733 12,534 2 2 
MAWBP MAWD binding protein 69,712,423 50,260 10 7 
NT5C2 5'-nucleotidase, cytosolic II 104,837,764 105,281 17 9 
PDZK7 PDZ domain-containing protein 7 102,757,576 23,304 15 2 
PNLIP Pancreatic lipase 118,295,433 21,924 13 5 
PNLIPRP1 Pancreatic lipase-related protein 1 118,339,925 18,752 13 3 
PPP3CB Protein phosphatase 3 catalytic subunit, beta isoform  74,866,192 59,573 14 7 
PRKG1 Protein kinase, cGMP-dependent, type I 52,421,124 1,306,992 18 124 
PTPLA Protein tyrosine phosphatase-like, member a 17,671,964 27,418 7 2 
RPS24 Ribosomal protein S24 79,463,608 21,087 7 5 
SORBS1 Sorbin and SH3 domain containing 1 97,061,518 249,643 31 64 
SORCS1 Sortilin-related VPS10 domain containing receptor 1 108,323,411 590,863 27 54 
SVIL Supervillin 29,786,273 279,443 38 97 
TCF7L2 transcription factor 7-like 2 114,700,201 217,226 8 38 
TNFRSF6 Tumor necrosis factor receptor superfamily member 6 90,740,394 25,128 9 26 
TXNL2 Thioredoxin-like 2 131,824,655 43,975 12 3 
USP54 ubiquitin specific protease 54 74,927,302 19,979 5 1 

Table 8-2 Genomic convergence identified genes on chromosome 10 
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Quality control of genotyped SNPs 
 

667 SNPs in 28 genes from chromosome 10 convergence region were genotyped 

using the Illumina GoldenGate genotyping assay.  Other 869 SNPs were in the genes on 

other chromosomes identified using genomic convergence by collaborators at Duke. 

Quality-control was performed using test of HWE and Illumina assay quality control 

criteria. In the GoldenGate assay, there were built in controls that measure allele-specific 

extension, PCR uniformity, extension gap, gender, first hybridization controls, second 

hybridization controls, and contamination detection controls. These control oligos (with 

the exception of second hybridization controls) are designed to human specific genomic 

DNA sequences.  Each oligonucleotide (bead type) represents a specific SNP locus. Since 

each bead type is present an average of 30 times on each array, each Goldengate 

genotyping call is thus the result of the mean intensity of all 30 replicates. The 

consistency among duplicates also serves as a quality control criterion.   

Table 8-3 shows the distribution of the quality control results of the 667 SNPs in 

the AD control group.  70 SNPs were dropped from the analysis because of 

monomorphism, out of HWE, or assay problems.  Specifically, 58 SNPs failed Illumina 

quality control criteria, 10 SNPs were monomorphic and 2 SNPs were out of HWE in 

controls at p<10-5 (Bonferroni correction for 667 markers at p=0.05).  If we apply a False 

Discovery Rate (q=5%) to correct for multiple tests, these two SNPs were also excluded.  

In total, there were 597 SNPs that remained in the final analyses (Table 8-3). 
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Table 8-3 Quality control of 667 genotyped SNPs in the AD control group 

 
 Count Analyzed 
Genotyped 667 
Failed Illumina_QC 58 
MAF=0 10 
Hardy-Weinberg Equilibrium (HWE) p<10-5 2 597 
0.001 < HWEp < 0.01 13  
0.01   < HWEp < 0.05 28  
0.001 < MAF  < 0.005 1  

 

Figure 8-1 shows the distribution of the genotyped SNPs.  80% are intronic SNPs, 

17% are functional SNPs (exon, promoter, UTR, exon/intron boundary, et al.) and the 

other 3% are from the 5’-upstream and 3’-downstream regions. 
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Figure 8-1 Functional classification of genotyped SNPs 
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Linkage Disequilibrium patterns of the 28 genes in the overall data set 
 
The 597 SNPs were distributed across 28 genes.  Linkage disequilibrium within genes 

was tested and Table 8-4 shows the number of blocks and tag SNPs in each gene.  Genes 

with fewer than 4 genotyped SNPs were not analyzed for haplotype blocks.  Tag SNPs 

were evaluated at four different linkage disequilibrium level (r2>0.8, 0.7, 0.64, and 0.5).  

 

Table 8-4 Haplotype blocks and tag SNPs in each gene 

# tag SNPs 
gene Size 

(bp) 
# 

exons

# 
genotyped 

SNPs 

# 
blocks r2>0.8 r2>0.7 r2>0.64 r2>0.5 

USP54 19,979 5 1 - - - - - 
HNRPH3 12,017 4 2 - - - - - 
IFIT3 12,534 2 2 - - - - - 
PDZK7 23,304 15 2 - - - - - 
PTPLA 27,418 7 2 - - - - - 
ACTR1A 23,482 11 3 - - - - - 
CWF19L1 35,382 14 3 - - - - - 
PNLIPRP1 18,752 13 3 - - - - - 
TXNL2 43,975 12 3 - - - - - 
BA108L7.2 10,007 12 5 1 5 4 4 4 
PNLIP 21,924 13 5 1 2 2 2 2 
RPS24 21,087 7 5 1 2 2 2 2 
HELLS 68,115 22 6 1 1 1 1 1 
MAWBP 50,260 10 7 1 6 5 5 4 
PPP3CB 59,573 14 7 1 5 5 4 4 
CUL2 82,091 22 8 1 3 3 3 3 
NT5C2 105,281 17 9 1 3 2 2 2 
EPC1 110,954 15 11 1 4 4 4 4 
CNNM2 160,273 8 15 1 4 4 3 2 
EIF4EBP2 19,747 3 15 3 11 11 9 7 
TNFRSF6 25,128 9 26 2 10 9 9 8 
TCF7L2 217,226 8 38 10 29 27 26 25 
CAMK1D 486,064 11 39 9 36 35 35 30 
CACNB2 400,372 14 41 8 37 36 36 31 
SORCS1 590,863 27 54 14 38 34 30 20 
SORBS1 249,643 31 64 14 48 40 37 32 
SVIL 279,443 38 97 17 54 47 45 37 
PRKG1 1,306,992 18 124 30 90 79 76 64 
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Example of haplotype blocks in genes 
 
1. Nine genes were genotyped by 1-3 SNPs, so the haplotype block structure was not 

assessed.  These genes are USP54, HNRPH3, IFIT3, PDZK7, PTPLA, ACTR1A, 

ACTR1A, CWF19L1, and TXNL2. 

 

2. Ten genes have only 1 haplotype block.  An example of such gene (HELLS) is 

given in Figure 8-2.  The other genes are BA108L7.2, PNLIP, RPS24, MAWBP, 

PPP3CB, CUL2, NT5C2, EPC1, and CNNM2.  

 

 
 

Figure 8-2 Example of the linkage disequilibrium structure of genes 
with one haplotype block (eg. HELLS) 
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3. 26 SNPs were genotyped in TNFRSF6 and there are 2 haplotype blocks in the 

gene (Figure 8-3). 

 

 

 
 

Figure 8-3 Linkage disequilibrium structure of TNFRSF6 gene 
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4. 15 SNPs were genotyped in EIF4EBP2 and there are 3 haplotype blocks in the 

gene, Figure 8-4. 

 

 
 

Figure 8-4 Linkage disequilibrium structure of EIF4EBP2 gene 
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5. 7 other genes have more than 8 haplotype blocks.  Figure 8-5 shows an example 

(SORCS1). Other genes are TCF7L2, CAMK1D, CACNB2, SORBS1, SVIL, and 

PRKG1. 

 

 

 
 

Figure 8-5 Example of linkage disequilibrium structure of genes with more than 
eight haplotype blocks (eg. SORCS1) 

 

 

Discussion 

While both linkage and expression analyses are powerful methods when applied 

individually, the number of possible genes they present as candidates for AD or any 

complex disorder remains extremely large.  Thus, focusing and prioritizing effort on 

jointly identified candidate genes is a key to success using these techniques (Hauser et al., 

2003b).  By converging these two sources of data, Hauser and colleagues successfully 

identified candidate genes for Parkinson’s disease.  Similarly, Li et al. (Li et al., 2003) 

identified the glutathione S-transferase omega-1 (GSTO1) as a gene that modifies the 
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age-at-onset of Alzheimer disease and Parkinson’s disease by converging linkage and 

Serial Analysis of Gene Expression (SAGE) data. 

The general goal of the technique is similar to a DNA microarray approach. 

Unlike microarray technology, which is limited to a finite number of known gene 

sequences arrayed on a chip, SAGE can in theory detect all genes expressed in a tissue 

sample.  In addition, SAGE provides more quantitative information than microarray 

analysis.  Because the mRNA sequences do not need to be known a priori, genes or gene 

variants that are not known can be discovered.  SAGE is a sequence-based sampling 

technique and as such observations are not based on hybridization, which gives more 

qualitative, analog values.  However, due to the difficulty of library preparation, 

sequencing cost, time and labor, the total number of SAGE libraries produced for a study 

is generally small.  Large-scale studies do not typically use SAGE. 

We compared six SAGE libraries, and evaluated the gene expression level 

between AD cases and controls.  222 unique tags on chromosome 10 were differentially 

expressed at nominal p<0.05.  Seventy-seven of those tags representing seventy-seven 

unigenes were significantly different between AD cases and controls after FDR 

correction for multiple testing.  Forty-one of these genes were highly significantly 

different at p<10-10.  Interestingly, when we compared the direction of gene expression 

between AD and controls, we found that all but one gene were up-regulated in AD the 

ApoE 4/4 and ApoE 3/4 samples compared to the ApoE 3/3 samples.  It is possible that 

the ApoE ε4 allele elevates the expression of other genes.  The only down-regulated gene 

was BA108L7.2 encoding sideroflexin 3.  The difference for this gene was found when 

we compared the long tag SAGE library for AD to control ApoE 3/3 samples.   
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In the genomic convergence approach, it was suggested that whether a gene was 

over- or under-expressed in the disease tissue was not important (Li et al., 2003).  Rather, 

importance is placed on whether a gene has any significant difference in expression 

levels, suggesting it has the potential to be involved in the disease process.  Genes 

demonstrating expression changes between the cases and controls may be involved in the 

primary or secondary pathways of the disease.    One of the great challenges with 

expression analyses is the sheer number of genes demonstrating differences and the 

complex interactions that lead to these differences.  In our approach, 28 candidate genes 

with significant expression differences between AD cases and controls and within 

previously determined linkage regions have an increased likelihood to alter the risk for 

AD.  These ‘converged’ genes were then tested for their association with AD.   

These twenty-eight genes varied in genomic size, number of exons and hyplotype 

blocks.  The smallest gene was BA108L7.2 that was 10kb and 12 exons.  The biggest 

gene was PRKG1 (protein kinase, cGMP-dependent, type 1) that was 1.3 Mb with 18 

exons.  To cover this gene at a 1SNP/10kb resolution, 124 SNPs were genotyped.  The 

haplotype structures were assessed based on our genotyping data and the haplotype 

blocks varied by genes.  We did not evaluate nine genes in which there were less than 

four genotyped SNPs (USP54, HNRPH3, IFIT3, PDZK7, PTPLA, ACTR1A, ACTR1A, 

CWF19L1, and TXNL2).  Ten genes (BA108L7.2, HELLS, PNLIP, RPS24, MAWBP, 

PPP3CB, CUL2, NT5C2, EPC1, and CNNM2) had one single haplotype block across the 

genotyped SNPs with different number of TagSNPs based on different LD levels.  The 

biggest gene, PRKG1, had 30 haplotype blocks based on 124 genotyped SNPs.  There 

were 64 TagSNPs even at r2>0.5 level. 
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The LD structures of the genes were similar to the HapMap data.  The number of 

LD blocks for the small genes were same between our data and HapMap data.  The level 

of LD between the two data sources was also close.  Because the numbers of the 

genotyped SNPs across medium- to large-size genes were different between our data (a 

1SNP/10kb spacing was used) and HapMap data (large amount of SNPs were genotyped), 

the number of LD blocks and LD levels were different.  For example, 1113 SNPs were 

genotyped in SORCS1 gene (590.9 kb) and 25 blocks were defined in HapMap data.  In 

our data set, we genotyped 54 SNPs and defined 14 haplotype blocks.  This might be due 

to the high LD between HapMap SNPs.  When we selected SNPs, we applied an LD bin 

algorithm based on HapMap data, in order to capture more LD blocks using fewer SNPs.  

Another potential explanation for the difference of the haplotype blocks between our data 

and HapMap data is that we used genotyping data from AD cases to generate the LD 

structure.  It is likely that the haplotype structures we observed here were Alzheimer 

disease haplotypes.  Our data could provide useful information for genotyping or 

haplotyping of these genes in Caucasian AD population. 
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CHAPTER IX 

 

ASSOCIATION ANALYSIS OF GENOMIC CONVERGENCE GENES FOR 
ALZHEIMER DISEASE 

 

Introduction 

We applied the genomic convergence approach to identify twenty-eight genes that 

were under linkage peaks and also significantly differentially expressed between AD 

cases and controls using a SAGE analysis, as described in chapter VIII.  These genes 

were genotyped and examined for association with AD.  We used genetic association 

analysis as our approach because it overcomes the limited power of linkage analysis to 

detect moderate effects in small regions (Cardon and Bell, 2001; Risch and Merikangas, 

1996; Risch, 2000; Tabor et al., 2002).   

The Linkage analysis approach for mapping genes aims to identify a genetic 

marker that is physically connected on the same chromosome with disease locus at a 

distance that is measured at less than a 50% recombination rate.  A marker is linked with 

the disease locus when it fails to be transmitted to offspring independently from the 

disease locus.  Due to the late onset of the Alzheimer disease (so that is usually 

impossible to genotype parents), genotyping affected sibpairs is an appropriate design to 

map the genes altering the risk of Alzheimer disease.  If the two affecteds in the sibpair 

have inherited the same region of the chromosome from each parent, the region is more 

likely to be involved in the disease than if each sibling inherits different regions.  

However, there is one significant limitation of linkage mapping approach—the resolution 

is low.  The linked region could be 10-30 megabases long in complex diseases and there 
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are generally a number of locational candidate genes in the area.  Another limitation is 

that the linkage analysis approach is most powerful to detect regions involved in 

monogenic ‘Mendelian’ and highly-penetrant (generally rare due to negative selection) 

diseases (Jimenez-Sanchez et al., 2001; Pritchard, 2001; Reich and Lander, 2001).  

However, linkage analysis of common, multifactorial diseases has been limited by the 

lack of clear genetic segregation of any DNA variants in multigenerational family 

material, and by the modest contribution to disease made by individual genetic variants 

(Altmuller et al., 2001; Cardon and Bell, 2001). 

Association analysis, or linkage disequilibrium mapping, is the other approach for 

mapping genes that either cause or increase susceptibility to human disease.  It is a 

nonparametric approach to look for a significantly increased or decreased frequency of a 

marker allele, genotype, or haplotype with a disease trait over what would be expected by 

chance if there were no association between marker and phenotype.  Therefore the 

resolution is much higher (Collins, 1995; Lander and Schork, 1994; Risch and 

Merikangas, 1996).  With the Human Genome Project, HapMap project and the high-

throughput technology to genotype hundreds of thousands of alleles in parallel, 

association studies play a critical role in the analysis of complex traits.  However, 

association analysis, using population based case-control data, is sensitive to population 

substructure that family-based studies are not as sensitive to.  In addition, many different 

mutations in a gene might lead to a disease.  Allelic heterogeneity might dilute the effect 

of each mutation by the presence of the others in a population-based association studies.  

However, to detect low-penetrance alleles in complex disease, association studies, 

especially the genome-wide association studies supported by the high-throughput 
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techniques are becoming more widespread.  In this study, both allelic and genotypic 

association tests were applied for single-locus analysis to look for a significantly 

increased or decreased frequency of a SNP allele with disease status.   

Most of the genome falls into segments of strong LD, within which variants are 

strongly correlated with each other, and most regions of chromosomes carry one of only a 

few possible haplotypes (Daly et al., 2001; Gabriel et al., 2002; Patil et al., 2001).  

Although the disease-predisposing alleles are typically unmeasured, we can use 

correlated marker genotypes as surrogates, which is the indirect gene mapping method.  

In this method, haplotypes may be better markers than single SNPs because haplotypes 

provide greater coverage than any single SNP. Statistical analysis based on haplotypes 

may be more efficient than separate analysis of individual markers in both simulation 

(Morris and Kaplan, 2002) and empirical studies (Drysdale et al., 2000; Martin et al., 

2000a).  To exploit the potential greater power of haplotype analysis, we also analyzed 

the haplotypic effect of the markers in AD in addition to the single marker association. 

In addition, we did data simulation based on ninety genetic models before all the 

association analyses to evaluate the power of our current data set that contained 508 cases 

and 556 controls. 

 

 

 

 

 

 

 109



Materials and methods 

 

Study populations 

Case-control data set 

The case-control data set had 1064 individuals (506 cases and 558 controls, Table 

9-1) with substantial clinical information.  The samples were collected by the Center for 

Human Genetics Research (CHGR) at Vanderbilt University and the Center for Human 

Genetics (CHG) at Duke University.  The criteria were same as previously described 

(Liang et al. 2007).  The cases were all late onset Alzheimer disease (minimum age at 

onset (AAO) ≥ 60 years), with average age-of-onset ± standard deviation of 72.5±6.3 

years (Table 9-1).  The average age-of-exam ± standard deviation was 75.9±12.1 and 

74.3±5.9 years in cases and controls, respectively.  61.5% of the cases were females in 

cases and 60.4% of the controls were females.  All controls were ascertained in the same 

catchment area as cases.  Following informed consent, blood samples were collected 

from each individual.  Genomic DNA was extracted from whole blood by use of the 

Puregene system (Gentra Systems, Minneapolis, MN).  All samples were coded and 

stored at 4oC until used.   
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Table 9-1 Alzheimer disease case control data set 

 Case Control 
Sample size (N) 506 558 

Gender Female 
Male 

311 (61.5%) 
195 (38.5%) 

337 (60.4%) 
221 (39.6%) 

Age-of-Onset 
All 

Female 
Male 

72.5±6.3 
72.8±6.6 
72.1±5.9 

N/A 
N/A 
N/A 

Age-of-Exam 
All 

Female 
Male 

75.9±12.1 
75.8±14.1 
76.2±8.1 

74.3±5.9 
73.5±5.7 
75.5±6.0 

 

Alzheimer disease is a heterogeneous complex disease.  To increase the 

homogeneity of the data set, the overall data set was subsetted according to four variables: 

Gender, ApoE status, Age-of-Onset and Diagnosis criteria.  The distribution is shown in 

Table 9-2. 

 

Table 9-2 Overall and subsets of study populations for Alzheimer disease 

 Case Control Total 
Female 311 337 648 Gender Male 195 221 416 

Positive (≥1 ApoE ε4 allele) 323 131 454 ApoE Negative (no ApoE ε4 allele) 152 415 567 
60-75 348 335 683 Age-of-onset 

(Age-of-exam in ctrl) ≥76 158 223 381 
Definite & probable AD 310 N/A Diagnosis criteria Possible AD 196 558 N/A 

 

Family-based data set 

We also used independent family-based data sets as the validation sets to confirm 

any significant association identified in the case-control data set.  All individuals 

included in this study were Caucasian late-onset AD (LOAD) patients (minimum age at 

onset (AAO) ≥ 60 years).  Written consent was obtained from all participants in 
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agreement with protocols approved by the institutional review board at each contributing 

center.  AD was diagnosed according to the NINCDS-ADRDA criteria (McKhann et al., 

1984b).  All controls had results within the normal range in the Mini-Mental State Exam 

(MMSE) or Modified Mini-Mental State Exam (3MS).  Samples were ascertained by the 

following centers: the NCRAD repository at Indiana University (NCRAD); the 

Collaborative Alzheimer Project (CAP), including Duke and Vanderbilt Universities and 

University of California at Los Angeles; and the National Institute of Mental Health 

repository (NIMH).  These family-based data sets were same as the data sets used in the 

previous studies.  Table 9-3 shows the distribution of these three family-based data sets.  

Age at onset was recorded as that age at which the first symptoms were noted by the 

participant or a family member.  If the affected individuals were early in the disease 

process, we included their report of age-at-onset as part of the determination.  If the 

disease was more advanced, we only used information as collected from multiple family 

members (such as, spouse and children).   

 

Table 9-3 Family-based data sets for Alzheimer disease 

Family Combined NIMH NCRAD CAP 

Total pedigrees 730 352 154 224 

Affected individuals 1521 807 315 390 

Unaffected individuals 974 331 162 481 

Discordant Sib Pairs (DSP) 1337 629 269 439 

Independent Discordant Sib Pairs 674 283 129 262 

Pedigrees with at least one DSP 406 165 75 166 
NIMH: the National Institute of Mental Health repository; NCRAD: the National Cell 
Repository for Alzheimer Disease at Indiana University; CAP: the Collaborative 
Alzheimer Project 
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Power study 

Genetic models 

We set up genetic models in which two disease loci underlie the phenotype, so 

that the models reflect the heterogeneity and complexity of complex disease better than 

single locus models.  We simulated disease alleles as either minor alleles or major alleles, 

with allele frequencies for the disease locus (A) being 0.1 or 0.2 or 0.6.  Allele 

frequencies for the disease locus (B) were 0.3 or 0.4 or 0.6.  The combinations of the two 

disease loci in the models were A/B=0.1/0.4; 0.2/0.3; and 0.6/0.6.  The 0.1/0.4 

combination represented the cases in which one underlying disease allele was rare, the 

other was common.  The 0.2/0.3 combination represented two common disease alleles 

and the 0.6/0.6 combination represented the case in which the two disease alleles were 

major alleles.  The effect sizes of two disease loci were controlled by joint odds ratio (OR) 

of the two loci which varied from 1.1 to 2.0.  Three inheritance models (dominant, 

recessive and additive) were applied to the simulation.  Table 9-4 summarizes the 

parameters for the ninety genetic models.  The prevalence of the disease was set as 10% 

to mimic the prevalence based on the age distribution of our current Alzheimer case-

control data set. 
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Table 9-4 Genetic models 
 

model Inheritance Model A allele freq B allele freq prevalence OR 

1~10 Dominant 0.1 0.4 0.1 1.1~2.0

11~20 Dominant 0.2 0.3 0.1 1.1~2.0

21~30 Dominant 0.6 0.6 0.1 1.1~2.0

31~40 Recessive 0.1 0.4 0.1 1.1~2.0

41~50 Recessive 0.2 0.3 0.1 1.1~2.0

51~60 Recessive 0.6 0.6 0.1 1.1~2.0
61~70 Additive 0.1 0.4 0.1 1.1~2.0
71~80 Additive 0.2 0.3 0.1 1.1~2.0

81~90 Additive 0.6 0.6 0.1 1.1~2.0
 

 

Penetrance calculation 

Penetrance was calculated assuming that the prevalence of a disease was the sum 

of the number of people under exposure (e.g. have the risk allele(s)) who developed the 

disease and the number of people having the disease but not under the exposure.  It is 

shown as the formula below. 

 

Prevalence = risk in population *geno.freqnon-exposed + penetrance * geno.freqexposed 

 

Table 9-5 shows the genotype frequencies for each of the nine genotypes for 2-

disease locus model. Letters A and B stand for the two risk alleles; letters a and b stand 

for the two non-risk alleles. The letter ‘q’ is the allele frequency of the disease allele.   

q1 = allele frequency of allele A; p1 = allele frequency of allele a; 

q2 = allele frequency of allele B; p2 = allele frequency of allele b. 
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Table 9-5 Genotype frequency table for 2-disease loci models 

 AA Aa aa 

BB q1
2*q2

2 2p1q1*q2
2 p1

2*q2
2 

Bb q1
2*2p2q2 2p1q1*2p2q2 p1

2*2p2q2 

bb q1
2*p2

2 p2
2*2p1q1 p1

2*p2
2 
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In Table 9-6, x is the penetrance of the risk allele.  The penetrance for each 

genotype (value in each cell) varies according to different inheritance models.  The 

variable ‘a’ is the risk of getting Alzheimer disease in the general population without 

either one of the two disease loci.  It is the baseline value of getting disease due to non-

genetic risk factors. 

 
 

Table 9-6 Penetrances for three inheritance models 
 
Dominant model: 

 AA Aa aa 

BB 2x+a 2x+a x+a 

Bb 2x+a 2x+a x+a 

bb x+a x+a a 
 
Recessive model: 

 AA Aa aa 

BB 2x+a x+a x+a 

Bb x+a a a 

bb x+a a a 
 
 
Additive model: 

 AA Aa aa 
BB 2x+a 1.5x+a x+a 

Bb 1.5x+a x+a x/2+a 

bb x+a x/2+a a 
 

 

Given the notation of A and B being the disease alleles, the non-exposed and 

exposed genotypes are the following according to different inheritance models.  In the 

dominant model, the non-exposed genotype is aabb; the exposed genotypes are AABB, 
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AABb, AAbb, AaBB, AaBb, Aabb, aaBB, and aaBb.  In the recessive model, the non-

exposed genotypes are AaBb, Aabb, aaBb, and aabb; the exposed genotypes are AABB, 

AABb, AAbb, AaBB, and aaBB.  In the additive model, the non-exposed and exposed 

genotypes are same as dominant model with different penetrance for each genotype. 

We set up the genetic models by controlling joint Odds Ratio (OR) as the joint 

effect size of the two disease alleles.  The following is an example of joint OR of 2.0 for 

two disease alleles: 

We assumed that we have ascertained 1,000 cases and 1,000 controls from the 

population.  Given a certain combination of two disease allele frequencies, the numbers 

of people for each of the nine possible genotypes are known. However, the penetrances 

for different genotypes are not same.  These can be calculated according to different 

inheritance models (Table 9-6).  With this logic in mind, we applied a reverse process to 

calculate at which penetrance level, certain OR (e.g. 2.0) can be given under three 

inheritance models.  The penetrance was then used in the data simulation using 

genomeSIM program.  Tables 9-7, 9-8 and 9-9 show the joint and marginal ORs at 

different allele frequencies in three inheritance models. 
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Table 9-7 Marginal ORs at different joint ORs and disease allele frequencies in the 
dominant model 

 
Joint OR Allele 

frequency 2.00 1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.10 
A=0.1 1.59 1.55 1.50 1.46 1.40 1.35 1.29 1.23 1.16 1.08 
B=0.4 1.75 1.68 1.61 1.54 1.47 1.40 1.32 1.25 1.17 1.08 

           
A=0.2 1.59 1.54 1.50 1.45 1.39 1.34 1.28 1.21 1.15 1.08 
B=0.3 1.63 1.58 1.53 1.47 1.41 1.35 1.29 1.22 1.15 1.08 

           
A=0.6 1.40 1.38 1.34 1.31 1.28 1.24 1.20 1.15 1.11 1.06 
B=0.6 1.40 1.38 1.34 1.31 1.28 1.24 1.20 1.15 1.11 1.06 

 

 
Table 9-8 Marginal ORs at different joint ORs and disease allele frequencies in the 

recessive model 
 

Joint OR Allele 
frequency 2.00 1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.10 

A=0.1 1.89 1.81 1.72 1.64 1.55 1.47 1.38 1.29 1.19 1.10 
B=0.4 1.98 1.88 1.79 1.69 1.59 1.49 1.39 1.30 1.20 1.10 

           
A=0.2 1.91 1.82 1.74 1.65 1.56 1.47 1.38 1.29 1.19 1.10 
B=0.3 1.94 1.85 1.76 1.67 1.57 1.48 1.38 1.29 1.19 1.10 

           
A=0.6 1.66 1.60 1.55 1.49 1.43 1.36 1.30 1.23 1.16 1.08 
B=0.6 1.66 1.60 1.55 1.49 1.43 1.36 1.30 1.23 1.16 1.08 

 

 

Table 9-9 Marginal ORs at different joint ORs and disease allele frequencies in the 
additive model 

 
Joint OR Allele 

frequency 2.00 1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.10 
A=0.1 1.51 1.47 1.43 1.39 1.35 1.30 1.25 1.20 1.14 1.07 
B=0.4 1.79 1.72 1.64 1.57 1.49 1.42 1.34 1.26 1.17 1.09 

           
A=0.2 1.57 1.52 1.48 1.43 1.38 1.32 1.27 1.21 1.14 1.07 
B=0.3 1.65 1.60 1.54 1.49 1.42 1.36 1.30 1.23 1.15 1.08 

           
A=0.6 1.40 1.38 1.34 1.31 1.28 1.24 1.20 1.15 1.11 1.06 
B=0.6 1.40 1.38 1.34 1.31 1.28 1.24 1.20 1.15 1.11 1.06 
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Table 9-10 summarizes the genetic models used in the power study and the 

criteria we normally use in the association study. 

 

Table 9-10 Parameters for genetic models 

Sample Size  500 cases, 500 controls 

Markers  600 

Replicates  1000 

2 disease loci (A/B): 0.1/0.4,0.2/0.3, 0.6/0.6 

Dominant, recessive, additive inheritance models 

Prevalence = 10% 
Models 

OR=1.1~2.0 

Calculation  0.1= risk in pop. * geno.freqnon-exposed + penetrance * geno.freqexposed 

Test χ2 (p = 0.05) 

1-stage power Pick up locus A, B, A or B, A and B 

 
 

Data simulation 

genomeSIM (Dudek et al., 2006) is a data simulation package for the simulation 

of large-scale genomic data in population based case-control samples. It allows for single 

SNP and gene-gene interaction models to be associated with disease risk. genomeSIM 

utilizes two different methods to generate data sets. An initial population can be 

generated on the basis of allele frequencies of the SNPs and then further generations are 

created by crossing the members of successive generations. The simulator assigns 

affection status only after a specified number of generations. Alternatively, the simulator 

can construct a case-control data set by generating individuals as above, assigning 
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affection status, and selecting cases and controls until the data set is complete.  I used the 

second function of the genomeSIM to generate my data set.  genomeSIM uses a 

penetrance table to assign the affection status of individuals. To determine status, the 

simulator determines the genotype of the individual at the disease SNPs. The simulation 

then determines the penetrance for that genotype and generates a random number to 

determine if this individual is affected. The penetrance table represents the disease model 

being simulated.  

600 markers including the two disease loci were simulated assuming they were 

independent and there was no genotyping error.  1000 replicates for each genetic model 

were simulated and a χ2 test for trend was used to compare genotype frequencies between 

cases and controls at every marker to evaluate the power of picking up either one of the 

two disease loci based on p value = 0.05. 

 

Statistical methods 

Association analysis in case-control data set 

In the case-control data set, allelic association for single SNP was tested using the 

χ2 test in Haploview (Barrett et al., 2005).  Genotypic association was assessed by a 2 x 3 

contingency table likelihood ratio test in SAS program (SAS Institute, 2003).  Haplotype 

analysis for each gene was conducted using haplo.stats (Schaid et al., 2002).  To save 

calculation time and satisfy computer memory limit, small genes (with less than 8 

genotyped SNPs in the gene) were analyzed using individuals with less than 50% missing 

genotypes.  Genes of medium size (with 8 to 26 genotyped SNPs) were analyzed using 

only individuals who had complete genotypes on all analyzed loci in that gene.  There are 
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seven big genes that were genotyped for 38 to 124 SNPs.  They were analyzed on 

individuals without any missing genotypes and only tagSNPs with r2<0.5 were used.  In 

addition, the tagSNPs were separated into groups of 10 with 2 SNPs overlapping across 

the groups.  We estimated haplotype frequencies and tested association of each haplotype 

with a frequency of at least 1% in our case-control data set with age and gender adjusted 

score statistics.  Haplotype logistic regression was modeled using a GLM algorithm 

including age and gender as covariates.  The most frequent haplotype occurring in the 

similar percentage of cases and controls was selected as baseline haplotype.  To evaluate 

the association of subsets of alleles from the full haplotype, a sliding window of three 

SNPs was used and the global score statistics were calculated. 

Conditional analyses were conducted by dividing the case-control data set by age, 

gender and ApoE status.  Then the difference in allele frequency between cases and 

controls was tested by a χ2 test or Fisher’s exact test when applicable (e.g. cell size <5).  

We also applied logistic regression to estimate the effects of the SNPs showing the most 

significant results across different analyses after controlling for age, gender and ApoE 

status.  Nominal P values are reported and FDR was used to correct multiple testing.  A p 

value of 0.05 was used as criterion for significant result.  Haploview and SAS (SAS 

institute, Cary, NC) programs were used for the analyses. 

Association analysis in family data set 

Family based association analysis was used to follow up one of the SNPs showing 

strongest association in female subset.  The allelic association analyses were conducted 

using the association in the presence of linkage (APL) analysis (Martin et al., 2003b) and 

Pedigree disequilibrium test (PDT) (Martin et al., 2000b). APL and PDT each have 
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distinct advantages.  APL can correctly infer missing parental genotypes in regions of 

linkage by estimating identity-by-descent (IBD) parameters and is a more powerful test 

under those conditions than PDT.  However, APL only uses nuclear families for the 

association test.  PDT can use data from extended pedigrees and gains power 

substantially when extended pedigree data are available.  Genotype-PDT (GenoPDT) is 

an extension of PDT and was used to assess association between genotypes and risk of 

AD in the family data (Martin et al., 2003a).  

 

Results 

 

Power study 

Figure 9-1 shows the results of the power study based on ninety genetic models 

with different inheritance models, diseases allele frequencies and odds ratios.  We define 

the power as the probability of selecting at least one of the two disease loci at p<0.05.  

The power to detect two disease allele frequencies at 0.1 and 0.4 was very close to that of 

0.2 and 0.3 in additive and dominant model (Figure 9-1 A and B).  The power to detect 

major disease alleles (frequency of 0.6) was low in additive and dominant model (Figure 

9-1 A and B).  However, the power of detecting major alleles was the highest in the 

recessive model (Figure 9-1 C).  In the additive and dominant models, the dataset had 

more than 80% power to detect disease alleles with odds ratio greater than 1.5 with two 

disease allele frequencies of 0.1/0.4 or 0.2/0.3.  In the recessive model, the power was 

62% in detecting one of the two disease alleles (allele frequencies of 0.1 and 0.4) at joint 

odds ratio of 1.5.  If the OR=1.7, the power was 86%.  When the two disease alleles had 
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frequencies of 0.2 and 0.3, the dataset had 82% power to detect one of the disease alleles 

at OR=1.8.  The power was 81% to detect one of the major disease alleles (frequencies of 

0.6) in the recessive model. 
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Figure 9-1 Power of the data set with 500 cases and 500 controls at p<0.05 
A: additive model B: dominant model C: recessive model.  Lines in each plot represent 
different allele frequencies for the two disease alleles. 

Allelic association analysis in the overall data set and subsets 

The allelic association of 597 genotyped SNPs was analyzed on the overall data 

set. Twenty-four SNPs in eight genes (PTPLA, SORCS1, PRKG1, SVIL, ACTR1A, 

BA108L7.2, CAMK1D, and PDZK7) showed association with AD at nominal p<0.05 

(Figure 9-2).  After we applied FDR (q=20%) based on the number of genotyped SNPs in 

each gene to correct for multiple testing, two SNPs in two genes remained significant.  

The first SNP is rs10508533 PTPLA with p=0.0022; the second is rs17277986 in 

SORCS1 gene with p=0.0025, Figure 9-2.   
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Figure 9-2 Allelic association test in the overall data set 

PTPLA and SORCS1 are associated with AD after FDR correction for multiple testing 

 

To increase the homogeneity of the data set, I analyzed the data on eight different 

subsets.  Age is the major risk factor for Alzheimer disease as both the prevalence and 

incidence of AD double ever five years after age 60. To look for genetic factors that 

might predispose in different age groups, we subsetted our data into two groups, Age-of-

onset between 60 and 75 and Age-of-onset greater than 76. ApoE is the only known 

genetic risk factor for AD and has very strong effect (OR=5~8).  We analyzed association 

in the ApoE 4-positive subset in which all the cases had at least one ApoE ε4 allele and in 

the ApoE 4-negative subset in which none of the cases had ApoE ε4 allele to identify 

genes underlying Alzheimer disease susceptibility independent of ApoE locus.  

Alzheimer disease is more common in females than in males.   Therefore the female 

subset and male subset were analyzed individually.  Due to the uncertainty of the 
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diagnosis of AD, we separated the AD cases into two groups, definite plus probable 

Alzheimer disease and possible Alzheimer disease.    

Not surprisingly, there were additional SNPs showing significant results in each 

data set.  Five out of eight associated genes in the overall data set showed association in 

three or more subsets (Table 9-11).  These five genes were PTPLA, SORCS1, SVIL, 

PRKG1 and PDZK7.  The female subset had the most significant result (Table 9-11):  

p=0.00002 for a SNP (rs172777986) in SORCS1.  Close to rs17277986, four tag SNPs 

were also significant at p<0.05. 
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Table 9-11 The allelic association results (nominal P-values) in subsets for the SNPs showing significant association (p<0.05) in 
the overall data set 

 
Name location gene function overall aao6075 aao76plus apoe+ apoe- female male defprobAD possAD 

rs10508533 17689894 PTPLA Intron 0.0022 0.0202 0.0571 0.2215 0.0835 0.0199 0.0474 0.0023 0.0931 
rs17277986 108748715 SORCS1 Intron1 0.0025 0.0484 0.0178 0.0073 0.0412 0.00002 0.6617 0.0034 0.0751 
rs4453117 17666099 PTPLA 3' UTR 0.0025 0.0255 0.0403 0.0021 0.1825 0.0125 0.0882 0.0012 0.1607 
rs6480499 53263984 PRKG1 Intron 0.0041 0.002 0.4276 0.0325 0.1385 0.0012 0.5973 0.0058 0.0794 
rs12571141 108738659 SORCS1 Intron1 0.0051 0.0697 0.0282 0.0143 0.0629 0.00005 0.5906 0.0079 0.0859 
rs16921605 53125867 PRKG1 Exon 0.0164 0.0452 0.1953 0.4001 0.058 0.0216 0.3326 0.0388 0.0917 
rs10826650 29854289 SVIL Intron 0.0181 0.0243 0.234 0.0559 0.2062 0.0133 0.4908 0.0967 0.0237 
rs3780849 29844250 SVIL Intron 0.0207 0.0423 0.1834 0.0391 0.2352 0.043 0.2403 0.0932 0.0322 
rs2900717 108721676 SORCS1 Intron 0.0227 0.1752 0.0376 0.0263 0.0948 0.0008 0.5817 0.0043 0.6258 
rs4918280 108780747 SORCS1 Intron 0.0239 0.0656 0.2274 0.3215 0.0103 0.0018 0.7999 0.0041 0.6718 
rs17709610 104240267 ACTR1A Intron (boundary) 0.0263 0.1152 0.1094 0.439 0.0769 0.1281 0.0952 0.028 0.2134 
rs17279997 108799513 SORCS1 Intron 0.0278 0.009 0.8353 0.5525 0.1031 0.0937 0.1547 0.0359 0.1833 
rs10884399 108762924 SORCS1 Intron 0.0281 0.0481 0.3128 0.2698 0.0225 0.002 0.757 0.0084 0.5317 
rs1961742 53440631 PRKG1 Intron 0.0287 0.0678 0.19 0.8253 0.0276 0.0735 0.1966 0.0166 0.3484 
rs807051 102792559 BA108L7.2 3' UTR 0.0291 0.0627 0.1702 0.4537 0.1143 0.0679 0.2259 0.1648 0.0253 
rs2479687 29943066 SVIL Intron 0.0293 0.2035 0.0244 0.6622 0.1936 0.2032 0.0542 0.0415 0.1703 
rs4415704 53231618 PRKG1 Intron 0.0355 0.0349 0.4359 0.0276 0.7619 0.0159 0.7201 0.0873 0.0894 
rs4451621 12471372 CAMK1D Intron 0.0356 0.0579 0.4086 0.0572 0.6932 0.4252 0.0175 0.0193 0.3962 
rs11594325 53152739 PRKG1 Intron 0.0357 0.0111 0.9497 0.069 0.2973 0.0074 0.9739 0.014 0.4923 
rs6584788 108811850 SORCS1 Intron 0.0385 0.0517 0.3944 0.4538 0.2455 0.0611 0.3319 0.0378 0.2522 
rs3740496 102773134 PDZK7 Intron (boundary) 0.0404 0.2477 0.0455 0.6924 0.0194 0.0054 0.7721 0.0762 0.1095 
rs6415910 53405760 PRKG1 Intron 0.0426 0.043 0.4000 0.2198 0.2335 0.1471 0.1528 0.0289 0.3578 
rs717751 108793300 SORCS1 Intron 0.045 0.2944 0.0687 0.1051 0.4857 0.5104 0.0179 0.1253 0.073 
rs10884409 108809774 SORCS1 Intron 0.0452 0.0768 0.3328 0.3748 0.2996 0.0874 0.2837 0.0466 0.2567 

 



The SORCS1 SNP rs17277986 remained significant after FDR correction for 

multiple testing. SNP rs6480499 in PRKG1 is also significant in the female subset after 

FDR correction (Figure 9-3).   
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Figure 9-3 Allelic association analysis in the female subset 

SORCS1 and PRKG1 showed association after FDR correction for multiple testing 

Genotypic association analysis in the overall data set and subsets 

Genotypic association analysis of 597 SNPs was performed on not only the 

overall dataset but also the eight subsets.  Twenty-seven SNPs in twelve genes (CACNB2, 

PTPLA, SORCS1, SVIL, SORBS1, PRKG1, CAMK1D, CNNM2, PDZK7, TCF7L2, 

TNFRSF6, and NT5C2) showed association with AD at nominal p<0.05.  Figure 9-4 

shows the genotypic association in overall data set.  SNPs in CACNB2 and PTPLA were 

significant after FDR correction (q=0.2) for multiple testing (p value of 0.0030 and 

0.0036 for rs1277738 in CACNB2 and rs10508533 in PTPLA, respectively).  Table 9-12 

shows genotypic association in subsets for SNPs having genotypic association with AD at 

p<0.05 in the overall data set.  Similar to allelic association, there were additional SNPs 
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showing significant results in each subset.  The female subset had the most significant 

results.  The SNP rs17277986 in SORCS1 showed genotypic association after FDR 

correction (Figure 9-5) in this subset (p=0.0002). 
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Figure 9-4 Genotypic association analysis in the overall data set 

CACNB2 and PTPLA showed association after FDR correction for multiple testing 
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Figure 9-5 Genotypic association analysis in the female subset 

SORCS1 showed association after FDR correction for multiple testing 
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Table 9-12 The genotypic association in subsets for the SNPs showing significant association (p<0.05) in overall data set 

Name location gene function overall aao6075 aao76plus ApoE 4+ ApoE 4- female male defprobAD possAD 
rs1277738 18,614,317 CACNB2 Intron 0.0030 0.0450 0.0853 0.3220 0.0182 0.0158 0.1254 0.0834 0.0019 
rs10508533 17,689,894 PTPLA Intron 0.0036 0.0386 0.0848 0.0982 0.1258 0.0191 0.1239 0.0057 0.1189 
rs17277986 108,748,715 SORCS1 Intron 0.0100 0.1509 0.0534 0.0248 0.1411 0.0002 0.6625 0.0087 0.2043 
rs4453117 17,666,099 PTPLA 3' UTR 0.0104 0.0861 0.1113 0.0074 0.3148 0.0478 0.1738 0.0065 0.2431 
rs1247419 29,948,133 SVIL Intron 0.0136 0.0318 0.4135 0.1976 0.0135 0.0584 0.1811 0.0233 0.0803 
rs12571141 108,738,659 SORCS1 Intron 0.0162 0.1773 0.0909 0.0425 0.1996 0.0004 0.4887 0.0164 0.2340 
rs7085647 97,290,625 SORBS1 Intron 0.0178 0.0128 0.8267 0.4235 0.0249 0.0138 0.5966 0.0219 0.1248 
rs1961742 53,440,631 PRKG1 Intron 0.0194 0.0944 0.1734 0.3148 0.0935 0.1614 0.0343 0.0134 0.3543 
rs7090118 18,499,287 CACNB2 Intron 0.0199 0.0688 0.0650 0.1958 0.4992 0.2014 0.0109 0.1468 0.0246 
rs6480499 53,263,984 PRKG1 Intron 0.0205 0.0144 0.6523 0.0126 0.1597 0.0071 0.8824 0.0250 0.2601 
rs500470 97,318,685 SORBS1 Promoter 0.0229 0.0055 0.7650 0.0918 0.8158 0.0589 0.2449 0.0400 0.1257 
rs17580343 12,721,118 CAMK1D Intron 0.0242 0.1129 0.1174 0.3580 0.1018 0.6641 0.0070 0.2421 0.0129 
rs1046411 104,827,805 CNNM2 Exon 0.0283 0.0321 0.2795 0.2390 0.1069 0.0299 0.2612 0.0068 0.2970 
rs4750253 12,818,977 CAMK1D Intron 0.0287 0.0236 0.7315 0.4986 0.0432 0.0308 0.1156 0.0680 0.1326 
rs3740496 102,773,134 PDZK7 boundary 0.0310 0.0553 0.1077 0.2467 0.0518 0.0140 0.4321 0.0457 0.1888 
rs2094405 114,705,678 TCF7L2 Intron 0.0330 0.0021 0.8824 0.1759 0.7720 0.0520 0.1876 0.0769 0.1257 
rs3780849 29,844,250 SVIL Intron 0.0341 0.0705 0.3843 0.1522 0.2926 0.1158 0.2454 0.1442 0.0643 
rs4918280 108,780,747 SORCS1 Intron 0.0344 0.0739 0.4558 0.6125 0.0320 0.0025 0.9533 0.0035 0.8687 
rs10826650 29,854,289 SVIL Intron 0.0345 0.0636 0.3742 0.1904 0.2499 0.0369 0.5335 0.1415 0.0597 
rs2252101 53,428,892 PRKG1 Intron 0.0390 0.1407 0.2273 0.1761 0.5187 0.1602 0.2082 0.0109 0.5945 
rs1326935 97,250,237 SORBS1 Intron 0.0392 0.0020 0.7169 0.3272 0.0507 0.1007 0.3641 0.0927 0.1347 
rs2482100 18,521,085 CACNB2 Intron 0.0402 0.1145 0.1732 0.2063 0.6905 0.0387 0.6468 0.3447 0.0137 
rs11191506 104,758,623 CNNM2 Intron 0.0410 0.2013 0.0463 0.3753 0.0316 0.1013 0.0395 0.0346 0.1593 
rs3781202 90,759,443 TNFRSF6 Intron 0.0421 0.1497 0.1096 0.2101 0.4982 0.0723 0.4626 0.0085 0.7879 
rs7914558 104,765,897 CNNM2 Intron 0.0454 0.0871 0.3402 0.2439 0.0462 0.0650 0.5697 0.0789 0.1126 
rs11191547 104,833,137 NT5C2 3' UTR 0.0485 0.0376 0.4294 0.3624 0.1250 0.0460 0.3796 0.0240 0.3218 
rs746293 104,887,243 NT5C2 Intron 0.0493 0.2011 0.1174 0.1775 0.0648 0.0611 0.6135 0.0840 0.0732 
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Table 9-16 Effect size of PTPLA in the overall data set 

Association Case Control Total Freq. Test OR 95% CI P 
rs10508533         
         allelic         

               C 248 343 591 
               A 732 757 1489 0.72 A vs. C 1.34 1.10-1.62 0.003

0.28     
         genotypic         
               AA 
               AC 200 235 435 0.42 AC vs. CC 1.91 1.14-3.21 0.014

266 261 527 0.51 AA vs. CC 2.29 1.38-3.82 0.001

               CC 24 54 78 0.07     
         

rs4453117         
         allelic         
               C 453 424 877 0.43 C vs. A 1.31 1.10-1.57 0.003
               A 511 628 1139 0.57     
         genotypic         
               CC 107 89 196 0.19 CC vs. AA 1.69 1.18-2.41 0.004
               AC 239 246 485 0.48 AC vs. AA 1.36 1.03-1.81 0.031
               AA 136 191 327 0.33     

 



134

Table 9-17 

 Crude  Adjusted by age, gender, ApoE status

 

 

TEffect size of P PLA adjusted by covariates 

 5% R % CI p OR 9 CI p  O 95
rs10508533        
   allelic effect        
       Dominant-having risk allele vs. no ri 2 29-3.  29 -4.03 0.004 
       Recessive-2 risk alleles vs. 0~1 risk allele 1.03-1.68 18 -1.56 0.250 
       Additive-linear effect (0, 1, 2 risk allele) 1.35 1.11-1.64 0.003  1.28 -1.60 0.032 
   genotypic effect     
       2 risk alleles vs. 0 risk allele 2 1.38-3.82 34 -4.18 0.004 
       1 risk allele vs. 0 risk allele 1.91 1.14-3.21 0.014  2.24 -4.02 0.007 
     

sk a
 
llele .11

1.32
1. 47 0.003

0.028 
 
 

2.
1.

1.31
0.89
1.02

1.31
1.24

 
.29

 
0.001 

 
 2.

   

rs4453117        
   allelic effect      
       Dominant-having risk allele vs. no risk 1.45 1.11-1.89   1.53 -2.08 0.006 
       Recessive-2 risk alleles vs. 0~1 risk allele 1.40 02-1.92   49 -2.13 0.027 
       Additive-linear effect (0, 1, 2 risk allele) -1.67 0.002 
   genotypic effect       
       2 risk alleles vs. 0 risk allele 1.69 1.18-2.41 004  1.85 -2.78 0.003 
       1 risk allele vs. 0 risk allele 1.36 03-1.81   42 -1.97 0.035 

1.13
1.05
1.12

1.23
1.03

  
allel
 

e 0.
0.
0.

0.

006
035
00
 

1.
1

1.
1 1.37 .09-1.56 3  .37 

1. 0.031 1.
 

 



Haplotypic association analysis  

Haplotypic association analysis for each gene was done on the overall data set.  

Global p values core st e  in T   plotype in PTPLA 

had the most significant p value of 0.009.  A haplotype containing ten tagSNPs in SVIL 

gene was marginally associated with =0.04 e  in SORCS1 was 
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significant bl  haplotypes were 

highly significant (sm

rs17277986 hich association in the 

same data s

for s

e 9

atistics ar shown able 9-18. The ha

AD

al

 (p

e subset, it was also analyzed for haplotypic 

9).  Sinc  a SNP

(Ta

, w

et. 

-18).  However, the three 3-SNP sliding window

allest p=0.0005, Figure 9-6).  All these three haplotypes contained 

 showed the most significant single SNP allelic 
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Table 9-18 Haplotypic association in the overall data set 

Gene # SNPs Tag SNPs only Global P value 
USP54 1 N/A N/A 

HNRPH3 2 N/A 0.16249 

PDZK7 2 N/A 0.09629 
IFIT3 2 N/A 0.52978 

PTPLA  2 N/A 0.00928 

CWF19L1 3 N/A 0.88097 

TXNL2 3 N/A 0.79160 

PNLIP 5 N/A 0.85250 

HELLS 6 N/A 0.39395 

PPP3CB 7 N/A 0.70719 

NT5C2 9 N/A 0.47201 
PC1 11 N/A 0.79317 

CNNM2 15 N/A 0.66829 
EIF4EBP2 15 N/A 0.55133 
TNFRSF6 26 N/A 0.29154 
TCF7L2 38 25 0.13144 

CAMK1D  39 30 0.38370 
CACNB2  41 31 0.14616 
SORCS1* 54 20 0.14659 
SORBS1 64 32 0.14904 

SVIL 97 37 

ACTR1A 3 N/A 0.22319 

PNLIPRP1 3 N/A 0.91184 

BA108L7.2 5 N/A 0.17506 

RPS24 5 N/A 0.67050 

MAWBP 7 N/A 0.81463 

CUL2 8 N/A 0.33924 

E

0.04925 
PRKG1 124 64 0.30425 

* Analyzed in female only.
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Analytical convergence of th netic asso on tests 

luding allelic,  and haplotypic 

association tests, several genes showed association. After we applied FDR to correct for 

multiple testing for allelic and genotypic association tests, only five genes showed 

association in at least one of the analyses.  SNPs in PTPLA were significant in the overall 

data set across all three association tests.  SNPs in SORCS1 had a significant allelic effect 

in the overall data set, and it was highly significant in the female subset across all three 

association tests.  Although SNPs in CACNB2 did not show allelic association in the 

overall data set, SNP rs1277738 in CACNB2 had the strongest genotypic effect in overall 
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data set, and showed genotypic association at nominal p<0.05 in four subsets (Age-of-

onset between 60 and 75, ApoE-negative, female and possible AD).  SNPs in SVIL were 

marginally significant in the haplotypic association test in the overall data set. 

 

Follow up of SNPs in SORCS1 and PTPLA genes 

SORCS1 gene 

SNPs in the SORCS1 gene had the strongest allelic effect in the female subset and 

were also significant in the overall data set.  To confirm the effect of this gene, we 

genotyped the most significant SNP (rs17277986) in our validation data sets.  When we 

analyzed female and male individuals together, none of the datasets showed significant 

results at p<0.05.  Two data sets (CAP and NIMH) had family-based association at p<0.1 

using PDT test.  When we analyzed females only, two sets were significant at p<0.05 

(Table 9-19).  The CAP data set showed association in PDT with p=0.03 and the NCRAD 

data set showed association in APL at p=0.01.  The results in family data sets were 

similar to the population based case-controls data set, but not significant after correction 

for multiple comparisons. 

 

Table 9-19 Family-based association tests for rs17277986 in SORCS1 in validation 
data sets 

Female & Male Female_only  All CAP NIMH NCRAD All CAP NIMH NCRAD
APL 0.189 0.696 0.301 0.189 0.057 0.526 0.309 0.010 

Sum_PDT 0.862 0.085 0.099 0.742 0.904 0.030 0.254 0.668 
Geno_PDT 0.606 0.269 0.052 0.402 0.798 0.103 0.182 0.562 

 
All: combined data set; CAP: the Collaborative Alzheimer Project; NCRAD: the 
NCRAD repository at Indiana University; NIMH: the National Institute of Mental 
Health repository 

 

 138



PTPLA gene 

Two genotyped SNPs in PTPLA were significant across all the association 

analyses.  This gene is small, spanning only 27 kb.  We followed the results up by 

genotyping seven more SNPs to give this gene a better coverage.  The linkage 

 is shown in Figure 9-7. 

 

Most of the SNPs were significant in allelic and genotypic association test (Table 

9-20).  The overall haplotypic association test

significant with global score statistic p value = 0.03.  The 3-SNP sliding window 

haploty ic assoc n s a aplo  (F 9

disequilibrium between all genotyped SNPs in cases

 

 
                     

Figure 9-7 Linkage disequilibrium between all nine genotyped SNPs in PTPLA 
r2 is shown in the figure. 

 considering all SNPs in the gene was 

p iatio test wa  signific nt for all h types igure -8).   
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Table 9-20 Allelic and genotypic association of all genotyped SNPs in PTPLA in the 
overall data set 

 SNP location function MAF Allelic Asso. Genotypic Asso.
 

1 rs4453117 17666100 3'UTR 0.42 0.0011 0.0039 

2 rs2357285 17672568 Intron 0.06 0.4504 0.7087 

3 rs1053926 17676315 Exon 6, ns 0.30 0.0141 0.0432 

4 rs7921987 17680752 Intron 0.32 0.0688 0.1316 

5 rs7073625 17682131 Intron 0.37 0.0223 0.0857 

6 rs2252808 17685820 boundary 0.44 0.0017 0.0035 

7 rs10508533 17689895 Intron 0.29 0.0029 0.0082 

8 rs2461891 17695987 Intron 0.25 0.0035 0.0102 

9 rs7918263 17697158 Intron 0.38 0.0007 0.0014 
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Figure 9-8 Haplotypic association analysis using 3-SNP sliding window in PTPLA 

All haplotypes are significantly associated with AD at p<0.05 
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Discussion 

Numerous genetic variants in ma unctional candidate genes have been 

nsistently replicated 

c ram  20 he encies m ue to false 

s  la  power due to sma , or 

p if ur perf  can ene stud est VR22, 

R U R 2 OC4 hich we sted to be 

 et al., 2000;  

0 t a ; Jo on e 03; Johansson et al., 2005; 

artin et al., 2005), combined with an unbiased dense linkage screen on chromosome 10.  

owever, our data suggested much more extensive locus heterogeneity than we 

previously suspected.  With this in mind, we designed the current study to converge all 

available data (linkage, candidate gene, and gene expression data) to identify 

susceptibility genes altering AD risk. 

Several genes showed association with AD in either the overall data set or the 

various subsets.  To correct for multiple testing, we applied the False Discovery Rate 

(FDR) to access potential associations.  In the overall data set, PTPLA showed allelic, 

genotypic and haplotypic association. SORCS1 showed allelic association, CACNB2 

showed genotypic association, and SVIL showed haplotypic association.  In the age-of-

onset 60-75 subset, SORBS1 was the only gene that showed association (genotypic) after 

the FDR correction for multiple testing.  TNFRSF6 showed both allelic and genotypic 

associations in the age-of-onset 76 plus subset; it also showed allelic association in the 

possible AD subset.  PTPLA showed both allelic and genotypic associations in the ApoE-

ny f

associated with AD.  However, none of the associations has been co

ex ept the ApoE locus (Bert  et al., 07).  T inconsist ay be d

po itive results, genetic heterogeneity, ck of ll sample size

po ulation strat ication.  O group ormed didate g ies to t

LR TM3, PLA , IDE, TNF SF6, CDC and L 39999, w re sugge

associated with AD (Bertram Ertekin-Taner et al., 2003; Feuk et al., 2000;

Finckh et al., 2 03; Grupe e l., 2006 hanss t al., 20

M

H
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positive subset and definite and probable AD subset.  SORCS1 showed allelic, genotypic 

ic associations in female subset and genotypic association in the definite and 

probab

multiple comparisons (q=0.2) 

AOO AOO Definite 

and haplotyp

le AD subset.  None of the genes showed association in male subset after 

correction for multiple comparisons.  Table 9-21 summarizes the significant associations 

in the overall and subsets. 

 

Table 9-21 Associated genes in the overall and subsets after the FDR correction for 

 
 All 60-75 76+ ApoE+ ApoE- Female Male /probAD PossAD 

PTPLA Ya,Yg, Yh N N Ya, Yg N N N Ya, Yg N 
SORCS1 Ya N N N N Ya,Yg, Yh N N N 
TNFRSF6 N N Ya,Yg N N N N N Ya 

CACNB2 Yg N N N N N N N Yg 

CWF19L1 N N N N Yg N N N N 
CNNM2 N N N N N N N Yg N 
SVIL Yh N N N N N N N N 

PRKG1 N N N N N Ya N N N 

SORBS1 N Yg N N N N N N N 

*Ya=significant allelic association;       Yg=significant genotypic association;  
  Yh= significant haplotypic association; N=not significant. 
 
 

Given the assumption that genes showing positive association in multiple tests 

have higher likelihood of being important in the disease process, we performed an 

analytical convergence on the results from allelic, genotypic and haplotypic association 

tests.  The most consistently associated SNPs across the three analyses are rs10508533 in 

PTPLA in the overall data set (allelic association p=0.0022) and rs17277986 in SORCS1 

in the female subset (allelic association p=0.00002). 

PTPLA is protein tyrosin phosphatase-like, member A.  Little is known about its 

function, but it may be involved in the protein phosphorylation process that is important 

for the function of some proteins in the AD pathology.  For example, phosphorylation of 

 142



glycogen synthase kinase 3β (GSK-3β), a binding partner of β-catenin, is important in 

regulating the function of β-catenin which binds to transcription factors and starts the cell 

cycle (Caricasole et al., 2003).  PTPLA may also affect the phosphorylation of Tau which 

forms neurofibrillary tangles, a hallmark of AD.  Among all nine genotyped SNPs in 

PTPLA, seven showed allelic association and six showed genotypic association.  Three of 

those six SNPs are functional SNPs.  rs4453117 is in 3’-UTR with allelic p=0.001 and 

enotypic p=0.004.  rs1053926 is a non-synonymous SNP located in exon 6 with allelic 

p  

has allelic p=0.002 and genotypic p=0.004.  This gene is not in the same LD block with 

ore hre c d 

ntia les in e cal nctio of en r are  LD  a 

le S affecting PTPLA ction

lity S s in a her g e. 

ceptor.  It 

ting and trafficking 

unctio

0.0073, and 0.0034 respectively.  It 

was mo

g

=0.014 and genotypic p=0.043. rs2252808 is located in the intron/exon boundary and

any nearby genes based on HapMap data.  Theref ,  tthe e n fu tional SNPs ul co

have pote l ro  th biologi  fu n PTP  gLA e o  in with

susceptib NP fun , but are unlikely to be in LD with 

susceptibi NP not en

SORCS1 encodes sortilin-related VPS10p domain containing type 1 re

contains a leucine-rich domain and mediates intracellular sor

f ns.  It is highly expressed in the brain (Hermey et al., 1999) and neuronal activity 

can differentially affect its expression (Hermey et al., 2004).  SORCS1 is a substrate of γ-

secretase, and γ-secretase cuts amyloid precursor protein (APP) and generates amyloid β 

peptide (Aβ), one of the hallmarks of Alzheimer disease.  rs17277986 in SORCS1 was 

significant in the overall, age-of-onset greater than 76 year old, ApoE 4-positive,  and 

definite/probAD data sets, with p=0.0025, 0.0178, 

st significant in the female subset (p=0.00002).  It survived not only an FDR 

multiple testing correction, but also a more conservative Bonferroni correction.  Three 
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nearby tagSNPs (r2<0.8) are also significant in the female subset (p=0.0008, 0.002, 

0.0064, 0.0018 for rs2900717, rs10884399, rs11193170 and rs4918280, respectively).  

Another SNP (rs12571141) had a p=0.00006 in this subset, but it was in high LD with 

rs17277986 (r2=0.97), suggesting it was measuring the same effect.  Haplotypes 

containing the most significant SNP (rs17277986) were all significant with the smallest p 

value = 0.0005. 

All the interesting SNPs are in intron 1 of SORCS1.  This gene is 590kb and 

intron 1 itself is 207kb and the largest intron in the gene.  Most of the regions in intron 1 

are conserved (>70% identity) over the 100bp calculation window among mammalians 

(Figure 9-9).  Thus, this region may be important as a functional element in the gene. 

rs17277986rs17277986

 

and other Mammals 

first panel is mouse genome, the second is rat genome and the third is dog genome.  

identity) is highlighted by pink shading.  SNP rs17277986 with the most significant 

Figure 9-9 Genomic DNA comparisons of intron 1 in SORCS1 between Human 

Output from VISTA analysis of the conserved region among mammals is shown.  The 

The whole region is the intron 1 (207 kb) in SORCS1gene.  Conserved region (>70% 

result in the association tests is labeled in the figure. 
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            Grupe et al. (Grupe et al., 2006) found an association between SNP rs600879 in 

SORCS1 and Alzheimer disease with a p=0.0043 in their combined data set.  SNP 

rs600879 (108,913,108 bp) is 608 bp away from the first intron/exon boundary.  However, 

it was not consistently replicated in all of their data sets.  It was significant in two of their 

datasets (p=0.017 and 0.040).  However, the sample size of the homozygotes with the 

minor allele was small (between 4 and 9 samples for cases and controls) because the 

minor allele frequency of this SNP was 11.2% and 8.5% for cases and controls, 

respect

our 

explanations for such findings.   

First, it could be due to the estrogen effect.  We checked the transcription factor 

binding sites within 1000 bp of rs17277986 on each side of the SNP using Transcription 

Elements Search System (TESS) (http://www.cbil.upenn.edu/tess

ively.  The SNP was not significant in the other two data sets. 

In our study, SNP rs17277986 (164 kb away from the SNP rs600879 that showed 

association in the Grupe et al. study) in SORCS1 was significantly associated with AD in 

females in the case-control and independent family-based data sets.  There are f

).  There were three 

regions showing a high likelihood of binding to the estrogen receptor (ER).  One of those 

three regions was only 32 bp from the SNP rs17277986.  Thus the genomic fragment 

including this SNP might have higher binding affinity to ER transcription factors or 

higher enhancer activity, suggesting a potential role of estrogen in AD.  Studies on the 

estrogen-replacement therapy in Alzheimer disease suggested that estrogen may provide 

some protection against memory loss and lower the risk of developing AD (Burns and 

Murphy, 1996; Tang et al., 1996; Wickelgren, 2003).  However, this intronic SNP was 

165kb away from the start codon, suggesting its role in transcription regulation was likely 
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to be low.  On the other hand, this SNP was only 42 kb away from exon 2.  There is 

possibility that it is in LD with a SNP close to the intron/exon boundary that may affect 

mRNA splicing.  The DNA sequence containing the SNP rs17277986 is a binding site of 

NF-κB (nuclear factor κB) that is important during AD pathogenesis.  Studies of 

postmortem brain tissue from AD patients hade revealed increased NF-κB activity in 

cells involved in the neurodegenerative process (Baldwin, Jr., 1996).  SNP rs17277986 in 

SORCS1 may play a role in the interaction or translocation of the NF-κB in the 

pathophysiology of AD.  Second, this variant may be in or near intronic regulatory 

sequences that might govern cell type-specific or tissue-specific expression of SORCS1. 

Third, genomic imprinting may also play a role for the significant difference of the alleles 

between AD cases and controls, where differential gene expression depends upon 

whether the inheritance is through the mother or father (Hall, 1990).  Methylation has 

been proposed as a mechanism of imprinting (Holliday, 1989) and is supported by the 
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findings of the increased number of unmethylated sites in AD patients in comparison to 

controls (Payao et al., 1998).  Fourth, there may be interaction between mitochondrial 

DNA mutations and this autosomal locus such that a particular mitochondrial genotype is 

required for individuals carrying this autosomal risk variant to express disease.  It was 

suggested that mitochondria are involved in apoptosis and there is evidence of oxidative 

damage to mitochondrial DNA in AD cases (Mecocci et al., 1994; Green and Reed, 

1998).  Although there is not evidence that any of these possible explanations are in fact 

correct, they provide plausible areas for further research. 

Taken together, our genomic convergence study suggests that genetic variations 

in PTPLA and SORCS1 may be associated and have modest effect to the risk of AD.  



The replication of the effect of these genes in different study populations and search for 

susceptible variants and functional studies of these genes are necessary to get a better 

understanding of the roles of the genes in Alzheimer disease. 
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CHAPTER X 

 

GENE-GENE INTERACTION AMONG GENOMIC CONVERGENCE GENES 

 

Introduction 

Common diseases are likely to have complex etiology and Alzheimer disease is 

not an exception.  Multiple genes with multifaceted interactions among genes and other 

risk factors undoubtedly play roles in the disease process.  However, the inconsistent 

results from numerous studies indicate that finding the underlying genes is difficult.  This 

may be due to several reasons.  First of all, both genetic heterogeneity (allelic and locus 

heterogeneity) and phenotypic heterogeneity make the process of finding genes involved 

in the common complex diseases slow.  For example, hundreds of candidate genes have 

been associated with Alzheimer disease, but all except ApoE have failed to be 

consistently replicated (Pericak-Vance and Haines, 1999). Among the possible reasons 

for this failure are false positive results due to population stratification and true 

differences in genetic etiology between study populations (Hirschhorn et al., 2002). 

Secondly, gene-gene interaction may play an important role in the disease etiology.  

There is clear and convincing evidence that gene-gene interactions are not only possible 

but also probably ubiquitous (Moore, 2003; Tong et al., 2004).  Thus, it is crucial that 

complex genetic data sets be properly interrogated for possible underlying interactions 

(Thornton-Wells et al., 2004).  Thirdly, traditional statisti

IN ALZHEIMER DISEASE 

cal methods of genetic analysis 

are suitable for detecting main effect in simple, Mendelian disease, such as Huntington 

disease, but were not designed and indeed fail in the face of more complex architectures.  
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Statistical and computational methodology has been slow to address the complexity of 

common diseases.  There have been a few attempts to address the issue, including the 

development of non-parametric tools (e.g. the transmission disequilibrium test, TDT, 

ordered subset analysis, OSA) to find homogeneous subset using continuous or ordinal 

covariates, cluster analysis, latent class analysis and factor analysis to produce clusters 

with high intraclass similarity and/or interclass similarity based on genetic background 

(Hauser et al., 1998; Hauser et al., 2004; Ott and Hoh, 2003; Spielman et al., 1993; Hoh 

et al., 2001; Slonim, 2002; Mountain and Cavalli-Sforza, 1997; Grigull et al., 2001). 

Thornton-Wells et al. detailed a complete list of the tools of dissecting heterogeneity 

(Thornton-Wells et al., 2004). 

However, traditional statistical methods to detect multilocus gene-gene interaction 

are limited due to the curse of dimensionality (Bellman, 1961).  Regression analysis is 

one of the traditional approaches that is still widely used today.  Logistic regression 

directly models the relationship of genetic (SNPs) and other risk factors (age, gender, et 

al.) to binary disease status (cases or controls).  However, when the distribution of data 

across numerous combinations of factors becomes sparse, the parameter estimates 

become unreasonably biased, particularly when the ratio of sample size to independent 

variables is below ten to one (Concato et al., 1993; Moore and Williams, 2002; Peduzzi et 

al., 1996).  In addition, logistic regression requires significant main effects to detect 

interactions between factors.  However, this is not always the case in a complex disease, 

in which disease loci may have relatively small main effects but more substantial 

interactive effects. 
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Multifactor Dimensionality R ) is a computational data reduction 

method that addresses several limitations of traditional methods (Ritchie et al., 2001).  

M  

t al., 2003; Hahn and Moore, 2004; Ritchie et al., 2003) and real data (Cho et al., 2004; 

001; Ashley-Koch et al., 2006; Williams et al., 2004; Ma et al., 2005; Qin 

et al., 

eduction (MDR

DR has been successful at finding gene-gene interactions in both simulated data (Hahn

e

Ritchie et al., 2

2005; Tsai et al., 2004).  MDR reduces the dimensionality of multilocus 

information by pooling high-risk genotype combinations into one group and low-risk 

combinations into another group.  Then the new one-dimensional multilocus genotype 

variable is evaluated for its ability to classify and predict disease status using cross-

validation and permutation testing to identify optimal models.   

Since MDR is a nonparametric, genetic model-free method, no hypothesis 

concerning any statistical parameter and no genetic inheritance model is assumed 

(Ritchie et al., 2001). MDR improves the ability to identify the high-order gene-gene 

interactions with the use of relatively small sample sizes.  Another strength of the MDR 

method is its ability to detect significant interactions in the absence of main effects.  The 

potential lack of main effects in complex disease makes MDR an attractive method to 

investigate the susceptibility of the disease. 

To dissect the heterogeneity of Alzheimer disease, we applied a genomic 

convergence approach to identify genes under linkage peaks that are differentially 

expressed between AD cases and controls (Liang X et al. in preparation, as described in 

chapter VIII and IX; Sliffer M et al. in preparation).  In the present study, with the 

appreciation of the importance of epistasis or gene-gene interaction in the complex 

disease, we applied MDR to the 1536 SNPs in the genomic convergence candidate genes 
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that were genotyped on a population data set (506 cases and 558 controls) to identify 

potential gene-gene interactions involved in Alzheimer disease. 

 

Materials and methods 

 

Study population 

The data set had 1064 individuals (506 cases and 558 controls, Table 9-1) with 

substantial clinical information.  The samples were collected by the Center for Human 

Genetics Research (CHGR) at Vanderbilt University and the Center for Human Genetics 

(CHG) at Duke University.  The criteria were same as previously described in chapter IX 

(Liang 

 M et al. in preparation).  Briefly, genes were selected from the 

convergence of linkage, association and expression data.  A gene was declared 

et al. 2007).  The cases are all late onset Alzheimer disease (minimum age at onset 

(AAO) ≥ 60 years), with average age-of-onset of 71.7 years.  The average age-of-exam is 

75.2 and 74.3 years in cases and controls, respectively.  61.5% of the cases are females in 

cases and 60.4% of the controls are females.  All controls were ascertained in the same 

catchment area as cases.  Following informed consent, blood samples were collected 

from each individual.  Genomic DNA was extracted from whole blood by use of the 

Puregene system (Gentra Systems, Minneapolis, MN).  All samples were coded and 

stored at 4oC until used. 

 

Genotyping 

Genes and SNPs were selected as described in chapter VIII (Liang X, et al. in 

preparation, Sliffer
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converg

Statisti

s through k-locus interactions to evaluate all 

possibl

ent if significant effects were found in at least three independent experimental 

methods (e.g. genetic linkage, genetic association, and gene expression).  869 SNPs in 19 

candidate genes were selected at approximately 1 SNP per 2.5 kb.  For the genes on 

chromosome 10, if they were under previously identified linkage peaks from linkage 

screens and they were differentially expressed between AD cases and controls at p<10-10, 

the genes were selected.  667 SNPs in 28 candidate genes on chromosome 10 were 

selected at 1 SNP per 10kb.  These 1536 SNPs were customized and multiplexed into one 

OPA (Oligo Pooled Assay) using Illumina Goldengate genotyping method.  Detailed 

SNP selection and quality control criteria were described in previous chapter. 

 

cal analysis 

All SNPs were tested for the deviation from Hardy-Weinberg Equilibrium (HWE) 

in controls using the Haploview program (Barrett and Cardon, 2006).  The SNPs were 

excluded if HWE p<0.001.  TagSNPs were selected using r2>0.5 as a threshold to 

exclude any SNPs that were in high LD by the Tagger option in Haploview. 

Potential gene-gene interactions were identified using MDR.  MDR performs an 

exhaustive search of all possible single-locu

e high/low risk models of disease.  Briefly, an exhaustive list of n combinations 

are generated from the pool of all independent variables in step one. In step two, for k = 1 

to M, the combinations are represented in k-dimensional space, and the number of cases 

and controls are counted in each multifactor cell. In step three, the ratio of cases to 

controls is calculated within each cell. In step four, each multifactor cell in the k-

dimensional space is labeled as high risk (HR) if the ratio of affected individuals to 
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unaffected individuals exceeds a threshold (T = 1), and low risk (LR) if the threshold is 

not exceeded. In step five, the training accuracy is calculated. Training accuracy for each 

model is calculated based on the number of individuals within the model that are actually 

ations classified as high risk and the number of individuals that 

re controls in the genotype combinations classified as low risk.  In step six, this is 

ultifactor combination. In step seven, the model with the best training 

accurac

cases in genotype combin

a

repeated for each m

y is selected and evaluated in the test set. In step eight, the testing accuracy of the 

model is estimated. Steps 1 through 8 are repeated for each possible cross-validation 

interval (e.g. 5 or 10 fold cross validation intervals).  In step nine, a permutation test is 

conducted to determine the statistical significance of the model(s).  These steps are 

illustrated in Figure 10-1 adapted from Ritchie et al. (Ritchie and Motsinger, 2005) 
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The statistical significance of the final best model is determined through 

permutation testing.  Permutation testing involves creating 1000 permuted data sets by 

randomizing the disease status labels.  The entire MDR procedure is repeated for each 

permuted data set, generating a distribution of 1000 prediction errors and cross-validation 

consistencies that could be expected by chance alone.  The significance of the final model 

is determined by comparing the prediction error and cross validation consistency of the 

final model with the distribution.  A p value is extracted for the model by its theoretical 

 
 

Bars represent hypothetical distributions of cases (left) and controls (right) 

combinations, while light-shaded cells represent LR genotype combinatio

Figure 10-1 Summary of the general steps to implement the MDR method 

with each multifactor combination. Dark-shaded cells represent HR genotype 
ns. CV: 

Cross-validation; HR: High risk; LR: Low risk; MDR: Multifactor dimensionality 
reduction. 
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location in the permutation distribution (Motsinger et al., 2006).  In considering the 

possible unbalanced ratio of cases to controls in the data set, a balanced accuracy 

approach was used to evaluate the performance of the models (Velez et al., 2007).   

In the present study, 1, 2, and 3 locus combinations were run for chromosome 10 

only and cross-chromosome (all genomic convergence genes) models.  Logistic 

regression (SAS program) was used to verify the interaction between genes in the 

identified model. 

 

Results 

 

Interaction among genes on chromosome 10 

Overall data set 

597 out of 667 genotyped SNPs on chromosome 10 passed the quality control 

process.  There is a possibility that MDR method may pick up models containing 

different SNPs in different cross-validation intervals when there are SNPs in high linkage 

disequilibrium (representing the same effect) and results in the low cross validation 

consistency.  Therefore, only SNPs in low LD were considered in the model.  300 

tagSNPs were selected to represent the 597 SNPs at an r2>0.5 threshold to test for gene-

gene interaction in MDR.   

Table 10-1 shows the results of the MDR analysis conducted for genes on 

chromosome 10.  The single best model was found between two SNPs in CACNB2.  This 

2-locus model involves rs1277738 and rs10741083.  The average prediction accuracy 

was 51.43% and the cross-validation consistency was 40%, using 5-fold cross-validation.  
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Because other models outperformed this model in other cross validation intervals, the p 

value was not significant in the permutation test (p=0.374).  However, this model is in the 

top 10 models in 3 out 5 of the cross-validation intervals, being the top model 67% of the 

time.   

We ran the whole MDR analysis 10 times using 10 different random seeds when 

splitting the data set.  The best 2-locus model was identified as the best model in more 

than two cross-validation intervals with all the different splits of the data. Thus, the way 

to split the data set for training and test sets does not affect the selection of this model.   

When we eliminate noise by using the “FORCELOCI” function in MDR and let 

the program do the permutation only on the two SNPs in the best 2-locus model, the 

permutation p value was significant (p=0.003).  The result was confirmed in logistic 

regression by putting the genotypes of these two SNPs and the interaction between them 

in the model.  The interaction was significant with p=0.004 in the model.  Table 10-1 

shows that SNP rs1277738 in CACNB2 was consistently identified across 1-, 2-, 3-locus 

models in MDR.  It showed a main effect (best 1-locus model) in the MDR analysis. 

This SNP also had strongest genotypic effect in single marker association test (p=0.003). 

 

 

Table 10-1 Summary of MDR results for genes on chromosome 10 

# locus Best model Accuracy (%) Cross validation P 
1-locus CACNB2(rs1277738) 50.35 40% 0.636

     
CACNB2(rs1277738) 
CACNB2(rs10741083) 

CACNB2(rs1277738) 

CAMK1D(rs4750255) 

2-locus 51.43 40% 0.374

     

3-locus CACNB2(rs2489214) 49.96 20% 0.710
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The low cross validation consistencies in the models could be due to locus 

heterogeneity or small effect of the genes.  Several models may perform almost equally 

in different cross validation intervals.  Looking at only the top model might not be 

sufficie

he top 10 models among all cross-validation intervals in the 1-, 3-locus 

odels, and in 80% of cross-validations for 2-locus model.  In more than 60% of cross 

 intervals, PTPLA was in the top 10 MDR models.  SORCS1 was in top 10 

odels among 40% of cross-validation intervals. 

study showed a strong effect of SORCS1 in a female subset.  We 

perform

 

s rs17277986 in SORCS1 and two SNPs (rs1409207 and 

rs24821

nt to identify important genes in this complex disease.  Therefore, we considered 

the frequency of each gene in the top ten MDR models ranked by prediction accuracy.  

Table 10-2 shows three most frequently identified genes in the top 10 MDR models.  

CACNB2 was in t

m

validation

m

Female subset 

Our previous 

ed MDR to find potential gene-gene interactions between this gene and other 

genes.  Table 10-3 shows the results of MDR analysis in female subset.  SNP rs17277986 

in SORCS1 was identified as the single best model with prediction accuracy of 54.74% 

and 80% cross-validation consistency (p=0.098).  This SNP was the one showing the 

strongest single marker allelic effect in the female data set.  There isn’t a good 2-locus 

model because none of the 2-locus models had prediction accuracy greater than 50%. 

The 3-locus model contain

00) in CACNB2 with 52.49% prediction accuracy and 40% cross-validation 

consistency.  Although the permutation p was not significant at p<0.05, the SORCS1 

gene was always in the top 10 MDR models among all cross-validation intervals for 1-, 
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2- locus models.  CACNB2 was in the top 10 1-locus models among all cross-validation 

intervals and 40% of the cross-validation intervals for 2-, 3-locus models (Table 10-2). 

 

Table 10-2 The frequency of 3 genes in the top 10 MDR models from 5 cross-
validations 

 1-locus model 2-locus model 3-locus model 
Overall    
     CACNB2 100% 80% 100% 

     SORCS1 40% 40% 40% 

     CACNB2 100% 40% 40% 

     PTPLA 80% 60% 60% 

Female    

     PTPLA 20% 40% 40% 
     SORCS1 100% 100% 80% 

 

 

Table 10-3 Summary of MDR results in the female subset 

# locus Best model Accuracy (%) Cross validation P 
1-locus SORCS1(rs17277986) 54.74 80% 0.098

     

CACNB2(rs1277738) 

SORCS1(RS17277986) 

CACNB2(rs2482100) 

2-locus SORCS1(rs11193054) 48.67 20% 0.884

     

3-locus CACNB2(rs1409207) 52.49 40% 0.297

 

 

I n among a nvergence

To elim  possibility of getting low cross-validation consistency due to the 

presence of SNPs in high LD (as stated in the previous section) in the MDR method, 576 

tagSNPs were level to represent the 1536 genotyped SNPs in all  

the genomic convergence genes.  Table 10-4 shows best interaction models for all 

nteractio ll genomic co  genes in AD 

inate the

selected at an r2 < 0.5 
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genomi

s models, logistic regression is not 

appropriate for testing gene-gene interaction for the SNPs in the identified MDR models. 

 

c convergence genes in Alzheimer disease.  We observed a statistically significant 

effect of ApoC1 (rs4420638 in 3’-UTR) with an average prediction accuracy of 69.04% 

(p<0.001).  In addition, a statistically significant two-locus interaction between ApoC1 

(rs4420638) and PTPLA (rs10508533) was detected, which predicts disease status 

correctly 67.98% of the time (p<0.001).  A statistically significant 3-locus model was 

identified and involved ApoC1 (rs4420638), PRKG1 (rs10740413) and CUL2 

(rs16935840) with prediction accuracy of 68.27%.  However, the prediction accuracy and 

cross-validation consistency for the 2-, 3-locus models are worse than that in the one-

locus model, suggesting the strongest main effect of ApoC1.  Because there are “0”s in 

some of the contingency tables for 2-, 3-locu

 

Table 10-4 Summary of MDR results among genomic convergence genes in AD 

# locus Best model Accuracy (%) Cross validation P 
1-locus APOC1(rs4420638) 69.04 100% <0.001

     

2-locus PTPLA(rs10508533) 67.98 40% <0.001

APOC1(rs4420638) 

CUL2(rs16935840) 

APOC1(rs4420638) 

     

3-locus PRKG1(rs10740413) 68.27 40% <0.001
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Discussion 

Alzheimer disease is a complex disease that is likely to be the result of many 

genetic and non-genetic factors.  One of the biggest challenges in complex, common 

dise een 

genetic variations and disease risk.  Epistasis, or gene-gene interaction, is crucial in 

morphisms associated with an increased risk of disease (Moore, 2003; 

lls et al., 2004; S al., 2004).  In the present study, we applied MDR to 

e potential ass s between AD tibility and cand genes 

 linkage, gene ion and associat ies. 

MDR identified two SNPs (rs1277738 and rs10741083) in CACNB2 as having an 

interaction effect among genes on chromosome 10.  These two SNPs were both intronic 

SNPs, one was in intron 2 and the other was in intron 5.  They were 216 kb apart and not 

i  dise her (r =0.002).  One SNP, rs1277738, had a very 

st notyp ) with AD  was identified as having a m

effect in MDR analysis.  Another SNP, rs10741083 did not show single marker 

a n wi interaction between this and the

effect SNP had higher prediction accuracy (Table 10-1), suggesting that the interaction 

ffect was not absolutely driven by rs1277738, which had the main effect. 

nnel beta 2 subunit.  The beta 

2 subu

ases, such as Alzheimer disease, is the identification of the relationship betw

detecting poly

Thornton-We ing et 

investigate th ociation suscep idate 

coverged from express ion stud

n linkage quilibrium with each ot 2

rong ge ic association (p=0.003  and it ain 

ssociatio th AD.  However, the  effect  SNP  main 

e

CACNB2 encodes a voltage-dependent calcium cha

nit works as a complex with other subunit (e.g. alpha unit) and the protein 

complexes play pivotal roles in signal transduction and homeostasis processes 

(Opatowsky et al., 2003).  The beta 2 subunit modulates calcium channel activity and 

enables trafficking by both chaperoning the voltage-dependent calcium channel complex 
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to the membrane and modulating gating (Yamaguchi et al., 1998; Brice et al., 1997; 

Bichet et al., 2000).  It permits the flow of Ca2+ ions through the cellular membrane as a 

function of membrane potential.    The polymorphisms in the introns may affect the 

binding site that binds alpha unit.  If the interaction between the alpha and beta subunit is 

affected, the function of the whole protein complex is subsequently affected.   In addition, 

CACNB2 is involved in MAPK signaling pathway.  A downstream protein, c-Jun N-

terminal Kinase interacting protein 1 (JIP1), in this pathway is suggested to be involved 

in AD by regulating APP neuronal transportation and controlling APP processing 

(Matsuda et al., 2003). 

Interpreting results is a challenge in exploring gene-gene interactions.  MDR 

analysis on genes on chromosome 10 had low cross-validation consistency on the best 

model (two SNPs in CACNB2), although the interaction is significant in the logistic 

reg at 

multiple models are all good predictors of disease risk.  If a  the top 

MDR models, it also suggests that the gene may have an effect.  W  discovered three 

g CN S1) that s consistent ev  of asso

with AD in ou DR identified CACNB2 as the single best model, but 

not PTPLA or SORCS1.  By considering the frequencies of specific models in the top ten 

MDR models, we were able to find that these three genes were in the top ten MDR 

models most of the time.  This is another way to identify important effects in the disease 

pathology.  The data suggest that each gene has a modest effect and that an extensive 

epitasis or gene-gene interaction is underlying the disease etiology. 

ression analysis when noise was eliminated from the data set.  It may be the case th

 gene is always in

e

enes (CA B2, PTPLA, and SORC howed idence ciation 

r previous studies.  M
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When we tested potential gene-gene interactions among all genomic convergence 

genes f

cells in the contingency 

tables 

or Alzheimer disease, MDR identified a statistically significant main effect and 2-, 

3-locus models (p<0.001).  All the models contained ApoC1, which is a surrogate for the 

known effect of the ApoE locus (r2=0.74, distance between two SNPs is 11kb).  Although 

the permutation p values for 2-, 3-locus models were significant (p<0.001), the cross-

validation consistency and prediction accuracy of each model were worse than that in the 

one-locus model.  This may suggest that the interaction is mainly driven by the main 

effect from ApoC1, a surrogate of ApoE. 

Due to the limits of the sample size, there are empty 

for different genotype combinations for 2-, 3- locus interactions.  It would be 

beneficial to conduct high-order gene-gene interaction analysis using larger sample size 

of replication data set. 
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CHAPTER XI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Summary and conclusions 

Knowledge of direct Mendelian genetic causes of Alzheimer disease and genes 

that predispose to late-onset Alzheimer disease has led to greater understanding of the 

pathophysiology of the neurodegenerative process.   

In the present study, we located a major linkage peak in the region between 40 to 

60 Mb 

es 

were selected by genomic convergence, so that selected genes had a substantial a priori 

and a minor peak between 80 to 100 Mb by linkage analysis using a large family-

based data set.  Five previously reported candidate genes also showed association in our 

study population in the candidate gene study.  After we compared gene expression levels 

between AD cases and controls, we converged linkage and gene expression data from 

Serial Analysis of Gene Expression (SAGE) and identified and examined 28 candidate 

genes on chromosome 10. We investigated the potential associations between candidate 

genes on chromosome 10 and the risk of Alzheimer disease (AD) using a clinically well-

defined case-control data set to uncover multiple possible associations with AD. 

To our knowledge, the present study is the first comprehensive investigation of 

the allelic, genotypic and haplotypic association together with an investigation of 

potential gene-gene interactions using a set of genes and SNPs identified through the 

genomic convergence of linkage, candidate gene and gene expression studies. 

Several approaches were used to control for false-positive results.  First, gen
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likeliho

ion) and these two genes were also seen in the 

gene-ge

 

Figure 11-2 shows the potential biological relevance of these three genes in AD.  

In Alzheimer disease, the amyloid precursor protein (APP) is cut to generate Amyloid-β.  

od of the involvement in AD pathology.  Second, we applied an analytical 

convergence approach to interpret our findings based on the assumption that SNPs 

showing significant results in multiple tests have higher likelihood of being important in 

the disease process.  We looked for the convergence of results across several methods, 

rather than relying on results from a single analytic tool. 

The most promising findings in this study were the significant associations found 

in PTPLA and SORCS1.  The associations were consistent among all association analysis 

(allelic, genotypic and haplotypic associat

ne effect in MDR analysis.  CACNB2 had the strongest genotypic effect and was 

the best model in gene-gene interaction test in MDR (Figure 11-1). 

Allelic AssociationAllelic Association

PRKG1

PTPLA

SORCS1
APOC1

CACNB2

PRKG1
CUL2

SVILGenotypic Association Haplotypic Association

Gene-gene Interaction

PRKG1

PTPLA

SORCS1
APOC1

CACNB2

PRKG1
CUL2

SVILGenotypic Association Haplotypic Association

Gene-gene Interaction  
 

Figure 11-1 Analytical convergence in Alzheimer disease 
Allelic, genotypic, haplotypic association and gene-gene interaction analysis are 

shown in the figure. 
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Amyloid-β accumulates and aggrega ligomer and cause apoptosis which 

can cause AD (Hardy and Higgins, 1992).  The SORLA gene has been associated with 

AD and it inhibits ).  SORCS1 is a 

homolog of SORLA and might have a similar function as SORLA to inhibit the 

 is a calcium channel protein.  It affects the calcium level 

that co

jecture that it is involved in the 

phosph

tes to form an o

 the generation of Amyloid-β (Rogaeva et al., 2007

generation of Aβ.  CACNB2

uld cause mitochondrial damage and then induce apoptosis (Finlin et al., 2006).  

PTPLA is a phosphatase, but relatively little is known about its biological function.  

Based on its phosphatase function, we might con

orylation of the Tau protein; phosphorylated Tau forms neurofibrillary tangles, 

which is one of the hallmarks of AD.  PTPLA might also be involved in the 

phosphorylation of GSK-3β protein which binds β-catenin.  β-catenin is associated with 

elevated Aβ 42 (Prager et al., 2007; Shim et al., 2007).  β-catenin can also bind to 

transcription factor and induce unscheduled cell cycle, which cause AD (Figure 11-2). 

 

APP Aβ42 Aβ oligomer Apoptosis

SORLA/SORCS1 2+Ca

CACNB2

PTPLA

Mitochondrial damage

β-cateninGSK-3β
P

Neurofibrillary tanglesTau
P

Unscheduled
cell cycle

β-catenin
TCF

-
APP Aβ42 Aβ oligomer Apoptosis

SORLA/SORCS1 2+Ca

CACNB2
Mitochondrial damage

PTPLA

β-cateninGSK-3β
P

GSK-3β
P

Neurofibrillary tanglesTau
P

Tau
P

Unscheduled
cell cycle

β-catenin
TCF

Unscheduled
cell cycle

β-catenin
TCF

-

 

Figure 11-2 Hypothesized pathways involved in Alzheimer Disease 
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In conclusion, this study suggests that genetic variations in PTPLA, SORCS1 and 

CACNB2 genes might alter the risk for Alzheimer disease by affecting multiple pathways.  

Furthermore, these findings support the hypothesis that the etiology of Alzheimer disease 

is complex and that complex interactions may contribute to Alzheimer disease risk.  

 

Future

al information, larger 

sample sizes will give us larger subsets and offset the power issues present with current 

subsets of the data.  The rich phenotypic information of the data set could help us 

effectively analyze the rapidly generated genotypes.   

Due to the genetic (locus and allelic) heterogeneity and the phenotypic 

heterogeneity underlying the complex diseases and the false positive results, replication 

studies are very important to confirm a finding.  The replication of the associated SNPs in 

the suggested genes in independent datasets will help us to confirm the associations 

found in the current data set.  Genotyping more SNPs in the interesting genes is also a 

possible follow-up study, which is made possible by the availability of the large number 

of SNPs in publicly available databases (e.g. HapMap, Perlegen, dbSNP). 

Over the past twenty years, technology is improving at a great rate.  As 

genotyping throughput increases and costs 

 directions 

In the future, larger sample sizes will be necessary to increase power and to 

develop independent confirmation datasets.  To dissect the complex etiology of 

heterogeneous common human diseases (e.g. Alzheimer disease), finding the most 

homogeneous subset is a critical factor.  With the detailed clinic

per genotyping decrease dramatically, 

genome-wide association studies are underway and have the potential to detect genes 
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with small to moderate effect without a priori knowledge about the gene function or 

chromosome location.   

Genetic variation in the human genome takes many forms, ranging from large, 

chromosome anomalies to single-nucleotide changes.  Recently, multiple studies have 

discovered an abundance of submicroscopic copy number variation (CNV) of DNA 

segments ranging from kilobases (kb) to megabases (Mb) in size (Iafrate et al., 2004; 

Sebat et al., 2004; Sharp et al., 2005).  CNVs, including deletions, insertions, duplications 

and complex multi-site variants (Fredman D, 2004), influence gene expression, 

phenotypic variation and adaptation by disrupting genes and altering gene dosage, and 

can cause disease or confer risk to complex disease traits.  A recent study reported that 

duplication of the APP locus on chromosome 21 causes early-onset Alzheimer disease 

with cerebral amyloid angiopathy (Rovelet-Lecrux et al., 2006). Studies assessing 

genome-wide CNVs in Alzheimer disease using large-scale technology could help us to 

understand the underlying mechanisms of the gene functions in the disease. 

Epigenetic variations may have a great affect on particular genotypes as they 

relate to disease risk.  Epigenetic variation may be a necessary and specific target for 

environmental influences.  Alzheimer disease (AD) is among the few diseases that may 

display high homocysteine (HCY) and low B12 and folate in blood. DNA methylations in 

elderly are consistently lower than in young and mid-aged people (Scarpa et al., 2006).  

These observations have raised the suspicion that Aβ overproduction and accumulation, 

which may be the cause of the disease, could be due to the loss of epigenetic control in 

the expression of the genes involved in APP processing.  Investigation of the unknown 
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and unexam

168

statistical and computational methods for analyzing genetic data.  Thornton-Wells et al. 

LRRTM3 might be a good stratifier to subset the data set 

using the clustering analysis.  Both the clus

at multiple genes in multiple 

pathways are involved in the Alzheim

ined epigenetic differences may make it clearer in studying gene-

environment interactions in AD. 

Additional technological advances should be made to handle the large amount of 

data being generated.  Advances in genotyping technology have far outpaced those in 

suggested that a haplotype in 

tering method and the haplotype in LRRTM3 

could be used to subset the data set and test association in each of the clusters. 

Applications of the new methods (e.g. subsetting data set, detecting gene-gene, and gene-

environment interactions) are promising to find genetic variations altering disease risk. 

It is a very plausible hypothesis that genes in a common biological pathway may 

interact to yield disease; however, the complexity of such a pathway is likely greater than 

our current understanding.  Our present study suggested th

er disease.  Strategies to tease apart both locus and 

allelic heterogeneity must be developed and will likely play a key role in examination of 

complex genetic disease. 

In addition, further experiments to locate the susceptible variants in the associated 

genes and assess the biological relevance of the genes using knock-down/knock-out cell 

lines and transgenic animal models would give a better understanding of the 

pathophysiology of AD.   
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Figure A-3 Two point and multipoint linkage analyses using the ApoE weight as a covariate to order families 
from high to low in the overall and autopsy subset 

A. Overall data set B. Autopsy-confirmed subset 
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Figure A-4 Two point and multipoint linkage analyses using the D12S368 LOD score as a covariate to order 

families from high to low in the overall and three subsets 
A. Overall data set B. Autopsy-confirmed subset C. ApoE ε4-positive subset D. ApoE ε4-negative subset 
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Figure A-5 Two point and multipoint linkage analyses using the Mean Age-of-onset (aoo) as a covariate to order 

families from low to high in the overall and three subsets 
A. Overall data set B. Autopsy-confirmed subset C. ApoE ε4-positive subset D. ApoE ε4-negative subset 
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Figure A-6 Two point and multipoint linkage analyses using the Mean Age-of-onset as a covariate to order 

families from high to low in the overall and three subsets 
A. Overall data set B. Autopsy-confirmed subset C. ApoE ε4-positive subset D. ApoE ε4-negative subset 

C        D 

A        B 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table A-1 Allele distribution of SNPs in five candidate genes in case-control data set 
 

SNP GENE Allele Total Cases Controls
Odds 
ratio 

(95% CI) 
p-value 

RS1786927 VR22 100 974 405 569 1.08 0.3784 
  300 1394 605 789 (0.91,1.27)  
        

RS2126750 VR22 10 519 279 240 1.13 0.2713 
  40 861 489 372 (0.91,1.41)  
        

RS7911820 VR22 100 864 382 482 0.91 0.2638 
  200 1562 654 908 (0.77,1.07)  
        

RS12357560 VR22 100 1834 783 1051 1.02 0.8016 
  300 552 239 313 (0.85,1.24)  
        

RS7070570 VR22 1 1215 662 553 1.18 0.1332 
  2 447 262 185 (0.95,1.47)  
        

RS7074454 VR22 1 917 503 414 0.92 0.4792 
  2 501 265 236 (0.74,1.15)  
        

RS10822719 VR22 200 484 193 291 1.15 0.1653 
  400 1972 855 1117 (0.94,1.41)  
        

RS6480140 VR22 1 554 292 262 1.12 0.3156 
  2 866 480 386 (0.90,1.38)  
        

RS922347 VR22 100 1464 621 843 1.01 0.9389 
  300 876 373 503 (0.85,1.19)  
        

RS4463744 VR22 100 1793 766 1027 1.00 0.9440 
  400 681 292 389 (0.84,1.20)  
        

RS2441718 VR22 100 1650 728 922 0.83 0.0369 
  300 714 282 432 (0.69,0.99)  
        

RS2939947 VR22 100 1279 538 741 0.95 0.1942 
  300 105 494 611 (1.11,1.31)  
        

RS2456737 VR22 100 2091 908 1183 0.76 0.0168 
  300 375 138 237 (0.60,0.95)  
        

RS997224 VR22 1 268 160 108 0.95 0.7102 

 175



 176

  2 890 520 370 (0.72,1.25)  
        

RS746606 VR22 200 1579 660 919 1.07 0.4430 
  400 871 378 493 (0.90,1.26)  
        

RS7909676 VR22 100 1206 524 682 0.94 40.49 1 
  200 1132 476 656 (0.80,1.11)  
        

RS11593235 VR22 200 880 388 492 0.97 80.75 8 
  400 1386 602 784 (0.82,1.15)  
        

RS10997591 VR22 200 1478 644 834 1.04 90.68 8 
  400 792 352 440 (0.87,1.23)  
        

RS7903421 VR22 100 2320 997 1323 0.80 0.2089 
  300 146 55 91 (0.57,1.13)  
        

RS3096244 VR22 200 862 363 499 1.13 0.1617 
  400 1412 637 775 (0.95,1.34)  
        

RS1001016 LRRTM3 200 316 127 189 1.12 0.3350 
  300 2108 905 1203 (0.88,1.42)  
        

RS12769870 LRRTM3 100 1260 506 754 1.18 0.0463 
  300 1062 470 592 (1.00,1.40)  
        

RS1925583 LRRTM3 300 1333 558 775 1.10 0.2577 
  400 1101 486 615 (0.93,1.29)  
        

RS2394314 LRRTM3 100 1112 490 622 0.91 0.2478 
  300 1332 556 776 (0.77,1.07)  
        

RS10762122 LRRTM3 200 746 312 434 1.05 0.6014 
  400 1690 726 964 (0.88,1.25)  
        

RS942780 LRRTM3 200 472 196 276 1.06 30.58 5 
  400 1962 842 1120 (0.86,1.30)  
        

RS1925617 LRRTM3 300 1084 452 632 1.09 00.30 3 
  400 1352 592 760 (0.93,1.28)  
        

RS1925622 LRRTM3 100 1392 600 792 0.98 85 0.75
  300 1078 458 620 (0.83,1.15)  
        

RS1925632 LRRTM3 100 1082 441 641 1.12 0.1800 



  200 1346 585 761 (0.95,1.31)  
        

RS1952060 LRRTM3 200 1146 494 652 0.6217 0.96 
  400 1320 556 764 (0. ) 82,1.13  
        

RS2147886 L 3 RRTM 200 1367 594 773 0.90 0.1814 
  400 1089 444 645 (0.76,1.05)  
        

RS2251000 L 3 RRTM 100 1093 444 649 1.12 0.1610 
  300 1335 580 755 (0.95,1.32)  
        

RS2764807 L 3 RRTM 200 1185 515 670 0.93 0.3834 
  400 1287 537 750 (0.79,1.09)  
        

RS10762136 L 3 RRTM 100 1252 502 750 1.09 0.3192 
  200 1092 460 632 (0.92,1.28)  
        

RS1916341 PLAU 300 1011 433 578 0.97 0.7359 
  400 1445 609 836 (0.83,1.14)  
        

RS2227564 PLAU 200 1915 802 1113 1.17 0.1115 
  400 529 242 287 (0.96,1.42)  
        

RS2227566 PLAU 200 1005 429 576 1.00 0.9872 
  400 1449 619 830 (0.85,1.18)  
        

RS2227568 PLAU 200 2023 880 1143 0.85 0.1746 
  400 363 144 219 (0.68,1.07)  
        

RS4065 PLAU 200 966 423 543 0.95 0.5288 
  400 1466 623 843 (0.81,1.12)  
        

RS1800682 TN 6 FRSF 100 1281 548 733 1.02 0.8097 
  300 1165 504 661 (0.87,1.20)  
        

RS1324551 TN 6 FRSF 200 1198 505 693 1.05 0.5501 
  400 1248 541 707 (0.89,1.23)  
        

RS2031612 TN 6 FRSF 200 973 387 586 1.22 0.0173 
  400 1481 661 820 (1.04,1.44)  
        

RS2296600 TN 6 FRSF 200 1472 655 817 0.83 0.0220 
  300 972 387 585 (0.70,0.97)  
        

RS2251101 IDE 200 648 287 361 0.94 0.4966 
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  400 1622 693 929 (0.78,1.13)  
        

RS2251101 IDE 200 693 299 394 0.98 0.7927 
  400 1741 741 1000 (0.82,1.17)  
        

RS7076966 IDE 200 1292 553 739 0.96 0.6005 
  400 1152 481 671 (0.82,1.13)  
        

RS4646954 IDE 100 180 77 103 1.01 0.9690 
  300 2262 971 1291 (0.74,1.37)  
        

RS3758505 IDE 100 2236 958 1278 0.96 0.7758 
  200 182 76 106 (0.70,1.30)  
        

RS7099761 IDE 200 1200 501 699 1.02 0.7976 
  400 1228 519 709 (0.87,1.20)  
        

RS1544210 IDE 100 1052 430 622 0.96 0.6041 
  300 1196 476 720 (0.81,1.13)  
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Table A 2 Fami se cia test ral
 

P E s
P

gen
PDT at  

Normals

- ly-ba d asso tion in ove l data set 

SN  G NE um
DT

o Fb HWE
Affecteds 

HWE 

RS1786927 VR22 0.925 0.962 0.3356 1.0000 0.321
RS2126750 VR 0 0.58 6522 .265 8 0.4 0.5256 1.0000 
RS7911820 VR22 0 0.12 76 0.9 5 .028 3 0.0 0.3146 17
RS12357560 VR22 0.106 0.072 0.6584 0.4100 0.189
RS7070570 VR 0 0.28 9922 .262 2 0.4 0.4441 0.3825 
RS7074454 VR22 0 0.06 70 0.2 9 .009 6 0.0 0.2769 85
RS10822719 VR22 0.582 0.662 0.7175 0.800 0.0463 
RS6480140 VR 0 0.13 1822 .601 4 0.8 0.3297 1.0000 
RS922347 VR22 0 0.66 06 0.9206 .476 5 0.8 0.9428 
RS4463744 VR 0 0.38 8222 .537 0 0.7 1.0000 0.7081 
RS2441718 VR 0 0.87 7222 .588 5 0.4 0.1200 0.2806 
RS2939947 VR22 0.249 0.329 0.8409 0.493 0.6334 
RS2456737 VR 0 0.84 0022 .583 4 0.5 0.1678 0.5453 
RS997225 VR22 0 0.58 65.582 7 0.1 0.0472 0.8634 
RS4746606 VR22 0.703 0.680 0.3906 0.4656 0.314
RS7909676 VR 0 0.0 5422 .551 43 0.7 0.1147 0.6150 
RS11 93235 R 0 0.20 51 0.7516 5 V 22 .465 4 0.3 0.1722 
RS10997591 VR22 0.680 0.053 0.8566 0.5778 0.889
RS7903421 VR 0 0.24 1922 .148 7 0.3 0.2394 0.5953 
RS3096244 VR22 0 0.53 98 0.3738 .474 5 0.5 0.4484 
RS1001016 LRRTM3 0.727 0.120 0.4191 0.0403 0.258
RS12769870 R 0 0.4 05LR TM3 .271 67 0.1 0.0025 0.9244 
RS1925583 LRRTM3 0 0.83 79 0.4987 .531 5 0.4 0.0187 
RS2394314 LRRTM3 0.351 0.588 0.0881 0.5022 0.324
R 2 R 0 0.10 42S1076212 LR TM3 .908 6 0.9 0.0725 0.9016 
RS942780 LRRTM3 0 0.29 25 0.6563 .099 4 0.1 0.3316 
RS1925617 LRRTM3 0.559 0.002 0.6300 0.086 0.1438 
RS1925622 LRR 0 0.00 43TM3 .267 9 0.0 0.5259 0.2359 
RS1925632 LRRTM3 0 0.14 05 1.0000 .3 65 2 0.1 0.2 31 1
RS1952060 LRR 0 0.00 14TM3 .756 0 0.4 0.0228 0.4997 
RS2147886 LRRTM3 0 0.18 11.584 9 0.2 0.1928 0.7609 
RS2251000 LRRTM3 0.359 0.126 0.9197 0.133 0.1875 
RS2764807 LRR 0 0.49 82TM3 .353 2 0.3 0.3969 0.9197 
RS10 2136 R 0 0.29 99 1.0000 76 LR TM3 .479 2 0.5 0.2765 
RS1916341 PLAU 0.062 0.136 0.9369 0.1559 0.051
RS2227564 PL 0 0.72 75AU .635 7 0.6 0.2669 0.9009 
RS2227566 PLAU 0 0.12 22 0.2688 .040 8 0.0 0.8775 
RS2227568 PLAU 0.020 0.016 0.0291 1.0000 0.084
RS4065 PLA 0 0.30 26U .174 8 0.0 0.6188 0.2813 

 179



RS1800682 TNFRSF6 0 0.98 58 0.8478 .873 4 0.4 0.8134 
RS1324551 TNFRSF6 0.924 0.795 0.6625 0.6359 0.283
RS2031612 TNFR  0 0.95 00SF6 .867 1 0.9 0.4691 1.0000 
RS2296600 TNFRSF6 0 0.9 52 1.0000 .910 59 0.8 0.4663 
RS2251101 IDE 0.391 0.350 0.4875 0.880 0.5391 
RS2251101/ IDE ID 0 0.30 14-7 (2) E .483 1 0.9 0.8600 1.0000 
RS7076966 IDE 0 0.86 82 1.0000 .678 7 0.8 1.0000 
RS4646954 ID 1. 0.95 17E 000 8 0.4 0.6615 0.7463 
RS3758505 ID 0 0.9 05E .955 98 0.4 0.6134 0.7428 
RS7099761 IDE 0 0.7 58 0.8388 .4 12 64 0.5 1.0 00 0
RS1544210 ID 0 0.5 91E .658 46 0.4 0.8906 0.6772 
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Ta 7) 

S G

ble A-3 Family-based association test in Duke subset (N=14
 

NP ENE sum
PDT

geno
PDT Fbat HWE 

Affecteds 
HWE 

Normals
RS1786927 VR22 0.625 0.498 0.825 0.3169 1.0000 
RS2126750 VR22 0.382 0.058 0.987 0.2956 0.1556 
RS7911820 VR22 0.215 0.339 0.707 0.4884 0.5372 
RS12357560 VR22 0.245 0.109 0.327 0.0775 0.1325 
RS7070570 VR22 0.125 0.034 0.254 0.0075 0.7897 
RS7074454 VR22 0.104 0.272 0.345 1.0000 0.0084 
RS10822719 VR22 0.838 0.836 0.374 0.3269 0.0713 
RS6480140 VR22 0.637 0.841 0.559 0.6863 0.8247 
RS922347 VR22 0.229 0.452 0.423 0.7169 0.0356 
RS4463744 VR22 0.899 0.805 0.411 0.3488 0.6375 
RS2441718 VR22 0.026 0.112 0.096 1.0000 0.4766 
RS2939947 VR22 0.099 0.313 0.173 0.2625 0.8534 
RS2456737 VR22 0.231 0.389 0.243 1.0000 0.7013 
RS997225 VR22 0.821 0.659 0.656 0.0194 0.4875 
RS4746606 VR22 0.760 0.952 0.503 0.5856 0.1669 
RS7909676 VR22 0.298 0.527 0.489 0.8575 1.0000 
RS11593235 VR22 0.245 0.306 0.846 0.2553 0.8447 
RS10997591 VR22 0.653 0.310 0.977 0.7053 0.8322 
RS7903421 VR22 0.439 0.281 ** 1.0000 0.0969 
RS3096244 VR22 0.510 0.579 0.729 0.2481 0.6769 
RS1001016 LR  RTM3 0.514 0.745 0.670 1.0000 0.3065 
RS12769870 LRRTM3 0.744 0.761 0.276 0.4320 0.8447 
RS1925583 LRRTM3 0.534 0.469 0.664 0.4153 1.0000 
RS2394314 LRRTM3 0.459 0.524 0.577 0.7116 1.0000 
RS10762122 LRRTM3 1.000 0.090 0.733 0.7125 0.8250 
RS942780 LRRTM3 0.139 0.246 0.028 0.8641 1.0000 
RS1925617 LRRTM3 0.947 0.086 0.762 0.3434 0.0553 
RS1925622 LRRTM3 1.000 0.089 0.780 0.2613 0.0378 
RS1925632 LRRTM3 0.817 0.225 0.419 0.7156 0.4537 
RS1952060 LRRTM3 1.000 0.007 0.241 0.7078 0.2775 
RS2147886 LRRTM3 0.764 0.266 0.325 0.0303 0.6919 
RS2251000 LRRTM3 0.614 0.202 0.501 0.0188 0.5763 
RS2764807 LRRTM3 0.336 0.239 0.388 0.1003 0.8650 
RS10762136 LRRTM3 0.851 0.132 0.168 0.0753 0.8547 
RS1916341 PLAU 0.604 0.560 0.769 0.3709 0.4463 
RS2227564 PLAU 0.797 0.597 0.947 0.1516 0.3500 
RS2227566 PLAU 0.895 0.744 0.755 0.2869 0.7178 
RS2227568 PLAU 0.560 0.665 0.676 0.2850 0.2634 
RS4065 PLAU 1.000 1.000 0.467 0.5788 0.4553 
RS1800682 TN  FRSF6 0.682 0.027 0.649 0.7328 0.1425 
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RS1324551 TNFRSF6 0.799 0.189 0.294 0.1625 0.4575 
RS2031612 TNFRSF6 1.000 0.247 0.848 0.3516 0.6984 
RS2296600 TNFRSF6 0.823 0.262 0.622 0.4378 0.6903 
RS2251101 IDE 0.371 0.661 0.579 0.3981 0.7972 
RS2251101/ IDE-7(2) IDE 0.371 0.672 0.576 0.6763 0.6147 
RS7076966 IDE 0.192 0.549 0.474 0.4772 0.5709 
RS4646954 IDE 0.912 0.443 0.816 0.2400 1.0000 
RS3758505 IDE 0.646 0.548 0.886 0.1881 1.0000 
RS7099761 IDE 0.475 0.387 0.669 0.3775 0.3606 
RS1544210 IDE 0.245 0.455 0.233 0.4675 0.8438 

 
ajor alleles **Less than 2 m
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Ta ) 

S GE sum
PD

g
P

ble A-4 Family-based association test in Vanderbilt subset (N=113
 

NP NE  
T 

eno 
DT Fbat HWE 

Affecteds 
HWE 

Normals
RS1786927 VR 0.722 36 0.562 0.502 0.3169 0.1888 
RS2126750 VR22 * * * * * 
RS7911820 VR 0.722 26 0.715 0.743 0.2031 0.4184 
RS12357560 VR 0.522 40 0.823 0.563 1.0000 0.7628 
RS7070570 VR 0.322 66 0.658 0.513 1.0000 0.5672 
RS7074454 VR22 * * * * * 
RS10822719 VR 0.822 00 0.956 0.628 1.0000 1.0000 
RS6480140 VR22 * * * * * 
RS922347 VR 0.422 24 0.468 0.976 1.0000 0.3128 
RS4463744 VR 0.822 27 0.895 0.950 0.5806 0.2356 
RS2441718 VR 0.222 06 0.324 0.204 0.7656 0.7872 
RS2939947 VR 0.222 57 0.355 0.511 0.4891 0.1122 
RS2456737 VR 0.722 77 0.337 0.953 0.6781 0.6900 
RS997225 VR22 * * * * * 
RS4746606 VR 0.322 22 0.533 0.390 0.8078 1.0000 
RS7909676 VR 0.022 33 0.093 0.018 1.0000 0.7906 
RS11593235 VR 1.022 00 0.152 0.975 1.0000 1.0000 
RS10997591 VR 0.722 82 0.471 0.969 0.4344 0.1656 
RS7903421 VR 0.8 0  22 76 0.876 .760 1.0000 1.0000 
RS3096244 VR 0.922 22 0.735 0.393 0.7794 1.0000 
RS1001016 LR .4RTM3 0 75 0.654 0.417 1.0000 0.5681 
RS12769870 LR .3RTM3 0 23 0.198 0.616 0.4794 0.6109 
RS1925583 LR .2RTM3 0 30 0.383 0.521 0.8175 0.4291 
RS2394314 LR .2RTM3 0 35 0.455 0.483 1.0000 0.7934 
RS10762122 LR .9RTM3 0 31 0.629 0.570 0.7563 0.5378 
RS942780 LR .3RTM3 0 17 0.190 0.462 0.7578 0.4481 
RS1925617 LR .7RTM3 0 53 0.589 0.922 0.3472 0.4278 
RS1925622 LR .9RTM3 0 29 0.828 0.707 0.2153 0.5966 
RS1925632 LR .1RTM3 0 57 0.244 0.295 0.4447 0.4463 
RS1952060 LR .9RTM3 0 05 0.899 0.866 1.0000 1.0000 
RS2147886 LR .3RTM3 0 17 0.355 0.351 0.2356 0.8000 
RS2251000 LR .2RTM3 0 04 0.182 0.268 0.1422 0.6041 
RS2764807 LR .2RTM3 0 51 0.143 0.298 1.0000 0.8097 
RS10762136 LR .4RTM3 0 80 0.510 0.675 0.6347 0.8053 
RS1916341 PL 0.9AU 23 0.435 0.445 1.0000 0.2994 
RS2227564 PL 0.3AU 77 0.420 0.768 0.3925 0.7572 
RS2227566 PL 1.0AU 00 0.519 0.480 0.8194 0.3488 
RS2227568 PL 0.6AU 15 0.317 0.287 0.0275 0.6769 
RS4065 PL 0.5AU 76 0.843 0.681 0.6225 1.0000 
RS1800682 TN 3FRSF6 0. 88 0.426 0.568 0.6359 0.0897 
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RS1324551 TN 7FRSF6 0. 10 0.160 0.740 0.8044 0.0425 
RS2031612 TN 4FRSF6 0. 67 0.294 0.398 0.6290 0.1222 
RS2296600 TN 7FRSF6 0. 89 0.576 0.591 0.4656 0.1300 
RS2251101 ID 0.0E 74 0.237 0.354 0.7578 0.4616 
RS2251101/ IDE-7 (2) ID 0.1E 34 0.405 0.895 0.5569 0.2719 
RS7076966 ID 0.3E 24 0.101 0.959 0.3406 0.4369 
RS4646954 ID 0.7E 32 0.268 0.891 1.0000 0.5688 
RS3758505 ID 0.6E 02 0.196 0.752 1.0000 0.5622 
RS7099761 ID 0.1E 74 0.065 0.668 1.0000 0.0438 
RS1544210 ID 0.2E 94 0.587 0.727 1.0000 0.6047 

 
*  No genotype information on these markers for VAN individuals 
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Table A-5 Family-based association test in NIMH subset (N=352) 
 

SNP GENE sum 
PDT 

geno 
PDT Fbat HWE 

Affecteds 
HWE 

Normals
RS1786927 VR22 0.629 0.833 0.369 0.1950 0.5350 
RS2126750 VR22 0.938 0.  0.836 0.4753 0.0588 423
RS7911820 VR22 0.090 0.270 0.097 0.4938 0.8638 
RS12357560 VR22 0.158 0.166 0.197 0.6684 0.5213 
RS7070570 VR22 0.406 0.607 0.851 1.0000 0.5534 
RS7074454 VR22 0.193 0.  0.330 0.7400 0.8625 438
RS10822719 VR22 0.637 0.896 0.487 0.6059 0.2672 
RS6480140 VR22 0.273 0.  0.625 0.6591 1.0000 127
RS922347 VR22 0.974 0.551 0.491 0.9034 1.0000 
RS4463744 VR22 0.746 0.665 0.651 0.5091 0.3616 
RS2441718 VR22 0.255 0.348 0.130 0.0272 0.7000 
RS2939947 VR22 0.381 0.469 0.419 0.8253 0.3466 
RS2456737 VR22 0.3 5 2 0.4 3 7 0. 3 20 0.3 7 24 0.4 1 63
RS997224 VR22 0.498 0.708 0.324 0.2603 0.8253 
RS4746606 VR22 0.820 0.629 0.793 0.1731 0.4844 
RS7909676 VR22 0.315 0.002 0.838 0.1325 0.0559 
RS11593235 VR22 0.858 0.216 0.640 0.5734 1.0000 
RS10997591 VR22 0.126 0.283 0.111 0.3409 0.6047 
RS7903421 VR22 0.134 0.134 0.149 0.6284 1.0000 
RS3096244 VR22 0.047 0.218 0.035 0.3556 0.6122 
RS1001016 LRRTM3 0.601 0.373 0.869 0.3266 0.0547 
RS12769870 LRRTM3 0.203 0.077 0.237 0.0156 0.4384 
RS1925583 LRRTM3 0.507 0.234 0.526 0.0463 0.1569 
RS2394314 LRRTM3 0.360 0.139 0.392 0.0831 0.2153 
RS10762122 LRRTM3 0.965 0.328 0.425 0.0375 0.2697 
RS942780 LRRTM3 0.655 0.272 0.726 0.3734 1.0000 
RS1925617 LRRTM3 0.683 0.228 0.188 0.5072 0.7553 
RS1925622 LRRTM3 0.365 0.468 0.106 0.5784 0.2803 
RS1925632 LRRTM3 0.238 0.488 0.044 1.0000 0.7628 
RS1952060 LRRTM3 0.774 0.030 0.213 0.3900 0.8759 
RS2147886 LRRTM3 0.645 0.841 0.137 0.8244 0.6244 
RS2251000 LRRTM3 0.477 0.772 0.070 0.8250 0.6444 
RS2764807 LRRTM3 0.624 0.880 0.405 0.5944 0.7525 
RS10762136 L  RRTM3 0.375 0.688 0.178 0.9222 0.5431 
RS1916341 PLAU 0.101 0.185 0.161 0.6484 0.5384 
RS2227564 PLAU 0.905 0.883 0.810 0.7559 0.1569 
RS2227566 PLAU 0.053 0.145 0.064 0.5063 0.7644 
RS2227568 PLAU 0.024 0.008 0.036 0.8375 0.8066 
RS4065 PLAU 0.133 0.268 0.159 0.2691 0.7534 
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RS1800682 TNFRSF6 0.626 0.210 0.628 0.5191 0.7578 
RS1324551 TNFRSF6 0.572 0.169 0.581 0.7463 0.2803 
RS2031612 TNFRSF6 0.682 0.529 0.377 0.4040 0.6184 
RS2296600 TN 6FRSF 0.631 0.618 0.360 0.3675 0.7563 
RS2251101 IDE 0.447 0.217 0.943 0.7981 0.5913 
RS2251101/ IDE-7 (2) IDE 0.721 0.220 0.868 0.7216 0.7200 
RS7076966 IDE 0.646 0.557 0.998 0.3797 0.2141 
RS4646954 IDE 0.747 0.907 0.742 0.7159 0.5241 
RS3758505 IDE 0.508 0.754 0.581 0.6938 0.5263 
RS7099761 IDE 0.275 0.214 0.477 0.5113 0.1688 
RS1544210 IDE 0.500 0.377 0.512 1.0000 0.6359 
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Table A-6 Family-based association test in IU subset (N=154) 
 

 E um
DT

o
TSNP GEN s

P
gen
PD Fbat HWE 

Affecteds 
HWE 

Normals
RS1786927 VR22 78 20. 6 0.81 0.859 0.1231 1.0000 
RS2126750 VR22 17 70. 2 0.33 0.263 0.4600 0.3000 
RS7911820 VR22 21 60. 0 0.55 0.405 0.2181 1.0000 
RS12357560 VR22 57 20. 4 0.79 0.710 0.1225 1.0000 
RS7070570 VR22 80 70. 5 0.95 0.591 0.5363 0.7969 
RS7074454 VR22 07 60. 4 0.26 0.221 0.2816 0.7856 
RS10822719 VR22 65 10. 7 0.26 0.635 0.4059 0.7588 
RS6480140 VR22 00 41. 0 0.48 0.585 0.3863 0.7897 
RS922347 VR22 86 80. 4 0.74 0.812 0.4875 0.2541 
RS4463744 VR22 45 40. 9 0.53 0.309 1.0000 0.7728 
RS2441718 VR22 04 40. 7 0.16 0.317 0.7016 0.5556 
RS2939947 VR22 39 40. 0 0.56 0.119 0.3225 1.0000 
RS2456737 VR22 07 20. 1 0.05 0.059 0.1788 1.0000 
RS997225 VR22 92 60. 3 0.24 0.349 0.8063 0.7141 
RS4746606 VR22 34 30. 7 0.61 0.090 0.6022 0.1888 
RS7909676 VR22 81 30. 3 0.71 0.874 0.6238 0.3641 
RS11593235 VR22 79 70. 7 0.75 0.308 0.3263 0.8159 
RS10997591 VR22 18 40. 2 0.18 0.086 0.6006 0.1525 
RS7903421 VR22 63 70. 9 0.68 0.689 0.6050 1.0000 
RS3096244 VR22 41 80. 4 0.16 0.160 0.2734 0.6056 
RS1001016 LRRTM 75 33 0. 6 0.36 0.040 0.6888 0.2919 
RS12769870 48 1LRRTM3 0. 1 0.81 0.339 0.0850 1.0000 
RS1925583 LRRTM3 0.60 23 0.87 0.541 0.1984 0.8016 
RS2394314 LRRTM3 0.52 66 0.82 0.437 0.4163 1.0000 
RS10762122 69 1LRRTM3 0. 9 0.90 0.906 1.0000 0.0519 
RS942780 LRRTM3 0.64 04 0.92 0.391 0.4241 0.7209 
RS1925617 50 2LRRTM3 0. 1 0.05 0.087 0.3000 0.3503 
RS1925622 LRRTM3 0.39 07 0.03 0.081 0.5003 0.2469 
RS1925632 LRRTM3 0.72 54 0.81 0.264 1.0000 0.2163 
RS1952060 LRRTM3 0.85 84 0.17 0.215 0.1934 0.8200 
RS2147886 LRRTM3 0.84 58 0.73 0.253 1.0000 0.4606 
RS2251000 LRRTM3 0.92 83 0.72 0.406 0.7525 0.3188 
RS2764807 LRRTM3 0.88 10 0.69 0.392 0.7303 0.8131 
RS10762136 80 2LRRTM3 0. 5 0.69 0.608 0.4231 0.4697 
RS1916341 PLAU 0.26 55 0.42 0.170 0.8713 0.8066 
RS2227564 PLAU 94 0 0. 1 0.75 0.382 0.3816 0.7781 
RS2227566 PLAU 16 9 0. 2 0.41 0.148 1.0000 0.6165 
RS2227568 PLAU 51 8 0. 8 0.65 0.614 0.1181 1.0000 
RS4065 PLAU 18 1 0. 5 0.38 0.070 1.0000 0.4431 
RS1800682 TNFRSF 76 36 0. 3 0.34 0.166 0.6191 0.0078 
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RS1324551 TNFRSF 36 26 0. 8 0.21 0.061 0.7390 0.0075 
RS2031612 TNFRSF 36 36 0. 8 0.21 0.049 0.5081 0.6197 
RS2296600 TNFRSF 49 66 0. 6 0.26 0.089 0.7350 0.8053 
RS2251101 IDE 45 60. 8 0.81 0.712 0.1534 0.1231 
RS2251101 IDE-7 (2) DE 29 3I 0. 3 0.66 0.650 0.3513 0.2394 
RS7076966 IDE 85 30. 8 0.68 0.712 0.7242 0.8019 
RS4646954 IDE 50 70. 8 0.74 0.417 0.1919 0.5172 
RS3758505 IDE 42 10. 3 0.65 0.436 0.1731 0.4656 
RS7099761 IDE 89 30. 8 0.61 0.870 0.8641 0.8163 
RS1544210 IDE 42 20. 8 0.68 0.379 0.7347 0.4669 
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Table A- data set 
(N=566) 

 

 GEN
omi M
Het

LO o

R s
o

D 

7 Two point linkage analysis of five candidate genes in overall 

SNP E 
D nant odel 

erogeneity 
D Sc re 

eces ive Model 
Heter geneity 

LO Score 

ASPEX
MLS 

RS1786927 VR2 0.2 0.00 00 0.00 
RS2126750 VR2 0.2 0.31 21 0.26 
RS7911820 VR2 0.2 0.24 12 0.06 
RS12357560 VR2 0.2 0.00 00 0.00 
RS7070570 VR2 0.59 0.53 2 1.30 
RS7074454 VR2 0.2 0.81 58 0.29 
RS10822719 VR2 0.2 0.00 00 0.00 
RS6480140 VR2 0.2 0.00 00 0.00 
RS922347 VR2 0.00 2 0.07 0.00 
RS4463744 VR2 0.2 0.17 44 0.29 
RS2441718 VR2 1.2 1.02 01 0.72 
RS2939947 VR2 0.2 0.95 81 0.63 
RS2456737 VR2 0.2 0.56 92 0.78 
RS997225 VR2 0.17 2 0.48 0.04 
RS4746606 VR2 0.2 0.07 00 0.07 
RS7909676 VR2 0.2 0.73 58 0.26 
RS11593235 VR2 0.2 0.09 07 0.07 
RS1099751 VR2 0.2 0.50 40 0.32 
RS7903421 VR 0.22 0.00 00 0.00 
RS3096244 VR 0.22 0.00 00 0.01 
RS1001016 LRR 0.TM3 0.00 00 0.00 
RS12769870 LRR 0.TM3 0.00 00 0.00 
RS1925583 LRR 0.TM3 0.05 01 0.04 
RS2394314 LRR 0.TM3 0.05 02 0.02 
RS10762122 LRR 0.TM3 0.00 00 0.01 
RS942780 LRR 0.TM3 0.02 07 0.03 
RS1925617 LRR 0.TM3 0.60 74 0.59 
RS1925622 LRR 0.TM3 0.54 56 0.64 
RS1925632 LRR 0.TM3 0.34 25 0.29 
RS1952060 LRR 0.TM3 0.14 12 0.13 
RS2147886 LRR 0.TM3 0.12 07 0.06 
RS2251000 LRR 0.TM3 0.24 10 0.12 
RS2764807 LRR 0.TM3 0.10 06 0.07 
RS10762136 LRRT 0.M3 0.51 41 0.28 
RS1916341 PLA 0.U 0.00 00 0.00 
RS2227564 PLA 0.U 0.04 04 0.07 
RS2227566 PLA 0.U 0.01 04 0.01 
RS2227568 PLA 0.U 0.07 05 0.00 
RS4065 PL 0.00 AU 0.00 0.00 
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RS1800682 TNF 0.RSF6 0.49 39 0.20 
RS1324551 TNF 0.RSF6 0.31 17 0.10 
RS2031612 TNF 0.RSF6 0.88 85 0.56 
RS2296600 TNFRS 0.F6 0.75 72 0.50 
RS2251101 IDE 0.00 0.00 0.00 
RS2251101/ IDE-7 (2) IDE 0.0.00 00 0.00 
RS7076966 IDE 0.11 0.28 0.08 
RS4646954 IDE 0.17 0.02 0.06 
RS3758505 IDE 0.27 0.11 0.07 
RS7099761 IDE 0.14 0.35 0.10 
RS1544210 IDE 0.00 0.00 0.00 
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Ta s 
covariate to order families  to high in overall data set 

  S

ble A-8  OSA Two-point Linkage Analysis using APOE LOD score (at theta=0) a
 from low

 

SNP GENE MAX 
LOD 

EM
p

P FAM 
Used 

TOT
FAM

 
S

PROP
FAM

RS1786927 VR22 100 04  0.615 0. 60 5 0.12
RS2126750 VR22 0. 0.630 504 1 364 57 0.1
RS7911820 VR22 0. 0.920 448 523 6 156 0.8
RS12357560  0. 0.260 112 527 1 VR22 595 0.2
RS7070570 VR22 0. 0.800 477 486 8 659 0.9
RS7074454 VR22 0. 0.830 438 505 7 378 0.8
RS10822719  0. 0.810 529 3 VR22 020 14 0.0
RS6480140 VR22 0. 0.490 506 3 042 14 0.0
RS9223471 VR22 0. 0.190 516 8 819 43 0.0
RS4463744  0. 0.320 533 1 VR22 901 60 0.1
RS2441718 VR22 0. 0.840 495 514 6 681 0.9
RS2939947 VR22 0. 0.780 530 532 0 846 1.0
RS2456737 VR22 1. 0.870 530 532 0 028 1.0
RS997224 VR22 0. 0.830 428 477 0 248 0.9
RS4746606  0. 0.480 514 1 VR22 317 3 0.0
RS7909676 VR22 0. 0.600 497 514 6 748 0.9
RS11593235  0. 0.930 503 523 6 VR22 098 0.9
RS10997591 VR22 0. 0.710 401 513 8 633 0.7
RS7903421 VR22 0. 0.570 523 7 146 36 0.0
RS3096244 VR22 0. 0.510 524 3 265 67 0.1
RS1001016 LRRTM3 0. 0.850 516 1 013 4 0.0
RS12769870  0.509 0.250 507 1 LRRTM3 7 0.0
RS1925583 LRRTM3 0. 0.250 520 3 491 18 0.0
RS2394314 LRRTM3 0. 0.320 522 2 620 9 0.0
RS10762122  0.363 0.300 528 1 LRRTM3 57 0.1
RS942780 LRRTM3 0. 0.720 474 529 0 198 0.9
RS1925617  0. 0.890 2 521 3 LRRTM3 551 75 0.5
RS1925622 LRRTM3 0. 0.820 5 528 6 494 09 0.9
RS1925632 LRRTM3 0. 0.985 5 528 0 164 28 1.0
RS1952060 LRRTM3 0. 0.950 5 529 6 102 10 0.9
RS2147886 LRRTM3 0. 0.970 533 2 027 9 0.0
RS2251000 LRRTM3 0. 0.970 531 1 098 61 0.1
RS2764807 LRRTM3 0. 0.980 533 2 010 11 0.0
RS10762136  0.303 0.990 5 523 0 LRRTM3 23 1.0
RS1916341 PLAU 0. 0.740 519 7 185 34 0.0
RS2227564 PLAU 0. 0.750 529 2 218 10 0.0
RS2227566 PLAU 0. 0.840 506 7 196 34 0.0
RS2227568 PLAU 0. 0.550 503 9 452 46 0.0
RS4065 PLAU 0.386 0.410 509 8 41 0.0
RS1800682 F6 0. 0.550 5 534 7 TNFRS 541 20 0.9
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RS1324551 TNFRSF6 0. 0.780 4 521 5 276 96 0.9
RS2031612 TNFRSF6 1. 0.260 2 528 2 565 75 0.5
RS2296600 TNFRSF6 1. 0.500 1 531 3 319 73 0.3
RS2251101 IDE 0. 0.940 495 0 000 1 0.0
RS2251101/ IDE-7 (2)  0. 0.945 520 0 IDE 000 1 0.0
RS7076966 IDE 0. 0.950 518 526 8 165 0.9
RS4646954 IDE 0. 0.910 473 532 9 176 0.8
RS3758505 IDE 0. 0.890 464 519 9 263 0.8
RS7099761 IDE 0. 0.890 516 524 8 153 0.9
RS1544210 IDE 0. 0.965 508 0 000 1 0.0
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Table A-9 OSA Two-point Linkage Analysis using APOE LOD score (at theta=0) as 
covariate to order families from high to low in overall data set 

 

S G M
L

EM
p 

A
Us

T
FNP ENE AX 

OD 
P F M 

ed 
OT 

AMS 
PROP 
FAMS 

RS1786927 V 0.218 0.4 17 504 R22 90 0.03 
RS2126750 V 0.563 0.4 367 504 R22 80 0.73 
RS7911820 V 0.659 0.3 396 523 R22 00 0.76 
RS12357560 V 1.134 0.062 58 527 R22 0.11 
RS7070570 V 1.436 0.1 49 486 R22 54 0.10 
RS7074454 V 1.411 0.1 271 505 R22 00 0.54 
RS10822719 V 0.114 0.620 305 529 R22 0.58 
RS6480140 V 0.195 0.2 7 506 R22 40 0.01 
RS9223471 V 0.077 0.8 39 516 R22 50 0.08 
RS4463744 V 0.476 0.5 299 533 R22 60 0.56 
RS2441718 V 1.344 0.3 373 514 R22 10 0.73 
RS2939947 V 1.150 0.5 291 522 R22 60 0.56 
RS2456737 V 2.303 0.049 273 532 R22 0.51 
RS997224 V 0. 0.4 27 478 R22 661 90 7 0.58 
RS4746606 V 0.830 0.1 36 514 R22 06 0.07 
RS7909676 V 1.653 0.0 302 517 R22 83 0.58 
RS11593235 V 0.589 0.540 399 523 R22 0.76 
RS10997591 V 1.151 0.350 265 513 R22 0.52 
RS7903421 V 0.127 0.5 97 523 R22 60 0.19 
RS3096244 V 0.488 0.3 272 524 R22 20 0.52 
RS1001016 L 0.092 0.460 155 516 RRTM3 0.30 
RS12769870 L 0. 0.380 162 507 RRTM3 315 0.32 
RS1925583 L 0.160 0.610 116 520 RRTM3 0.22 
RS2394314 L 0.300 0.440 158 522 RRTM3 0.30 
RS10762122 L 0. 0.915 1 528 RRTM3 000  0.00 
RS942780 L 0.522 0.310 384 529 RRTM3 0.73 
RS1925617 L 0.952 0.350 49 521 RRTM3 0.09 
RS1925622 L 0.796 0.410 55 528 RRTM3 0.10 
RS1925632 L 1.229 0.100 56 528 RRTM3 0.11 
RS1952060 L 0.539 0.340 52 529 RRTM3 0.10 
RS2147886 L 0.685 0.310 55 533 RRTM3 0.10 
RS2251000 L 1.000 0.142 56 531 RRTM3 0.11 
RS2764807 L 0.977 0.164 55 533 RRTM3 0.10 
RS10762136 L 1. 0.340 168 523 RRTM3 125 0.32 
RS1916341 PL 0.224 0.6 39 519 AU 30 0.08 
RS2227564 PL 0.400 0.5 326 529 AU 10 0.62 
RS2227566 PL 0.238 0.7 46 506 AU 60 0.09 
RS2227568 PL 0.206 0.7 8 503 AU 50 0.02 
RS4065 PL 0. 0.6 5 509 AU 163 10  0.01 
RS1800682 T 0.794 0.200 162 534 NFRSF6 0.30 
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RS1324551 T 0.276 0.750 485 521 NFRSF6 0.93 
RS2031612 T 1.194 0.680 492 528 NFRSF6 0.93 
RS2296600 T 1.045 0.710 495 531 NFRSF6 0.93 
RS2251101 ID 0.055 0.6 1 495 E 60 0.00 
RS2251101/ IDE-7 (2) ID 0. 0.6 1 5E 055 30 20 0.00 
RS7076966 ID 0. 0.4 28 526 E 504 60 1 0.53 
RS4646954 ID 0. 0.1 29 532 E 808 64 5 0.55 
RS3758505 ID 0. 0.1 28 519 E 846 25 4 0.55 
RS7099761 ID 0. 0.2 16 524 E 820 40 1 0.31 
RS1544210 ID 0.420 0.2 110 508 E 10  0.22 
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Table A-10 OSA Two-point Linkage Analysis using APOE weight as covariate to 
order families from low to high in overall data set 

 

SNP  GENE M
L

E
p

F
U

AX 
OD 

MP 
 

AM 
sed 

TOT 
FAMS 

PROP 
FAMS 

RS1786927 VR22 0.000 0 101 .835 504 0.20 
RS2126750 VR22 0 0 187 .285 .530 504 0.37 
RS7911820 VR22 0 0 477 .118 .755 523 0.91 
RS12357560 VR22 0.000 0.940 108 527 0.20 
RS7070570 VR22 0.607 0 447 .710 486 0.92 
RS7074454 VR22 0 0 464 .347 .665 505 0.92 
RS10822719 VR22 0.000 0.810 110 529 0.21 
RS6480140 VR22 0.117 0 102 .142 506 0.20 
RS9223471 VR22 0.000 0 104 .915 516 0.20 
RS4463744 VR22 0 0 482 .254 .595 533 0.90 
RS2441718 VR22 0 0 514 .661 .930 514 1.00 
RS2939947 VR22 0 0 418 .862 .580 522 0.80 
RS2456737 VR22 1 0 532 .018 .845 532 1.00 
RS997224 VR22 0 0 3.246 .660 78 478 0.79 
RS4746606 VR22 0.026 0 455 .740 514 0.89 
RS7909676 VR22 1 0 417 .114 .164 517 0.81 
RS11593235 VR22 0.055 0.845 106 523 0.20 
RS10997591 VR22 0.454 0.900 513 513 1.00 
RS7903421 VR22 0.001 0 107 .870 523 0.20 
RS3096244 VR22 0 0 415 .071 .630 524 0.79 
RS1001016 LRRTM3 0.007 0.435 103 516 0.20 
RS12769870 LRRTM3 0.000 0.785 104 507 0.21 
RS1925583 LRRTM3 0.027 0.690 424 520 0.82 
RS2394314 LRRTM3 0.042 0.310 107 522 0.20 
RS10762122 LRRTM3 0.000 0.795 106 528 0.20 
RS942780 LRRTM3 1.618 0.021 115 529 0.22 
RS1925617 LRRTM3 0.491 0.840 521 521 1.00 
RS1925622 LRRTM3 0.440 0.810 528 528 1.00 
RS1925632 LRRTM3 0.294 0.470 115 528 0.22 
RS1952060 LRRTM3 0.067 0.620 468 529 0.88 
RS2147886 LRRTM3 0.074 0.570 117 533 0.22 
RS2251000 LRRTM3 0.143 0.460 116 531 0.22 
RS2764807 LRRTM3 0.030 0.770 119 533 0.22 
RS10762136 LRRTM3 0.385 0.630 114 523 0.22 
RS1916341 PLAU 0.004 0 106 .885 519 0.20 
RS2227564 PLAU 0.008 0 529 .930 529 1.00 
RS2227566 PLAU 0.030 0 506 .955 506 1.00 
RS2227568 PLAU 0.036 0 210 .820 503 0.42 
RS4065 PLAU 0.000 0 10.880 3 509 0.20 
RS1800682 TNFRSF6 0.392 0.810 534 534 1.00 
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RS1324551 TNFRSF6 0.148 0.700 114 521 0.22 
RS2031612 TNFRSF6 1.091 0.530 220 528 0.42 
RS2296600 TNFRSF6 0.992 0.440 221 531 0.42 
RS2251101 IDE 0.000 0 30 .855 157 0.19 
RS2251101/ IDE-7 (2) IDE 0 0 3.000 .880 4 171 0.20 
RS7076966 IDE 0 0.735 .131 60 172 0.35 
RS4646954 IDE 0 0 139 .285 .131 171 0.81 
RS3758505 IDE 0 0 140 .254 .190 172 0.81 
RS7099761 IDE 0 0.283 .480 59 172 0.34 
RS1544210 IDE 0 0.152 .117 32 169 0.19 
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Table A-11 OSA Two-point Linkage Analysis using APOE weight as covariate to 
order families from high to low in overall data set 

 

SNP GENE M
L

E
p

F
U

AX 
OD 

MP 
 

AM 
sed 

TOT 
FAMS 

PROP 
FAMS 

RS1786927 VR22 0.000 0.780 41 504 0.08 
RS2126750 VR22 0.287 0.570 55 504 0.11 
RS7911820 VR22 0.368 0.220 332 523 0.63 
RS12357560 VR22 0.343 0.470 96 527 0.18 
RS7070570 VR22 1.054 0.079 379 486 0.78 
RS7074454 VR22 0.995 0.270 317 505 0.63 
RS10822719 VR22 0.330 0.142 62 529 0.12 
RS6480140 VR22 0.000 0.755 41 506 0.08 
RS9223471 VR22 0.157 0.200 92 516 0.18 
RS4463744 VR22 0.529 0.390 309 533 0.58 
RS2441718 VR22 1.509 0.200 58 514 0.11 
RS2939947 VR22 1.022 0.480 327 522 0.63 
RS2456737 VR22 1.348 0.220 38 532 0.58 
RS997224 VR22 0 0.490 .375 383 478 0.80 
RS4746606 VR22 0.057 0.490 318 514 0.62 
RS7909676 VR22 0.553 0.855 517 517 1.00 
RS11593235 VR22 0.803 0.155 110 523 0.21 
RS10997591 VR22 1.342 0.056 324 513 0.63 
RS7903421 VR22 0.849 0.033 106 523 0.20 
RS3096244 VR22 0.203 0.520 306 524 0.58 
RS1001016 LRRTM3 0.110 0.008 58 516 0.11 
RS12769870 LRRTM3 0.059 0.121 45 507 0.09 
RS1925583 LRRTM3 0.069 0.520 62 520 0.12 
RS2394314 LRRTM3 0.056 0.230 62 522 0.12 
RS10762122 LRRTM3 0.000 0.790 48 528 0.09 
RS942780 LRRTM3 0.028 0.960 529 529 1.00 
RS1925617 LRRTM3 0.575 0.375 408 521 0.78 
RS1925622 LRRTM3 0.550 0.345 419 528 0.79 
RS1925632 LRRTM3 0.164 0.945 528 528 1.00 
RS1952060 LRRTM3 0.146 0.390 317 529 0.60 
RS2147886 LRRTM3 0.177 0.480 63 533 0.12 
RS2251000 LRRTM3 0.114 0.670 61 531 0.11 
RS2764807 LRRTM3 0.897 0.190 62 533 0.12 
RS10762136 LRRTM3 0.595 0.410 107 523 0.20 
RS1916341 PLAU 0.593 0.050 94 519 0.18 
RS2227564 PLAU 0.909 0.018 62 529 0.12 
RS2227566 PLAU 0.734 0.020 93 506 0.18 
RS2227568 PLAU 0.173 0.300 104 503 0.21 
RS4065 PLAU 0 0.576 .011 91 509 0.18 
RS1800682 TNFRSF6 0.392 0.785 534 534 1.00 
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RS1324551 TNFRSF6 0.218 0.500 105 521 0.20 
RS2031612 TNFRSF6 1.060 0.750 528 528 1.00 
RS2296600 TNFRSF6 0.926 0.750 531 531 1.00 
RS2251101 IDE 0.042 0.300 96 495 0.19 
RS2251101/ IDE-7 (2) IDE 0 0 1.021 .420 04 520 0.20 
RS7076966 IDE 0.235 0 110 .570 526 0.21 
RS4646954 IDE 0 0.129 .955 532 532 1.00 
RS3758505 IDE 0 0.203 .965 519 519 1.00 
RS7099761 IDE 0.404 0 110 .310 524 0.21 
RS1544210 IDE 0.010 0.730 60 508 0.12 
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T  
t  

SNP (RS #)  
 

 
 

able A-12 OSA Two-point Linkage Analysis using mean age-of-onset as covariate
o order families from low to high in overall data set

 

GENE MAX
LOD

EMP
p

FAM 
Used 

TOT 
FAMS 

PROP 
FAMS 

RS1786927 VR22 0.680  0.078 25 504 0.05 
RS2126750 VR22 0.474   0.570 350 504 0.69 
RS7911820 VR22 1.457  0.070 185 523 0.35 
RS12357560 VR22 0.109   0.710 159 527 0.30 
RS7070570 VR22 0.950  0.460 364 486 0.75 
RS7074454 VR22 1.378  0.076 184 505 0.36 
RS10822719 VR22 0.444   0.200 186 529 0.35 
RS6480140 VR22 0.063  0.575 1 506 0.00 
RS9223471 VR22 0.345   0.380 157 516 0.30 
RS4463744 VR22 0.287  0.680 182 533 0.34 
RS2441718 VR22 1.839   0.046 220 514 0.43 
RS2939947 VR22 1.132  0.370 215 522 0.41 
RS2456737 VR22 2.028   0.121 246 532 0.46 
RS997224 VR22 0.181  0.950 169 477 0.35 
RS4746606 VR22 0.132  0.650 200 514 0.39 
RS7909676 VR22 1.307  0.120 183 517 0.35 
RS11593235 VR22 0.729  0.230 138 523 0.26 
RS10997591 VR22 1.112  0.190 152 513 0.30 
RS7903421 VR22 0.295  0.190 247 523 0.47 
RS3096244 VR22 0.210  0.420 240 524 0.46 
RS1001016 LRRTM3 0.014   0.800 132 516 0.26 
RS12769870 LRRTM3 0.067   0.720 195 507 0.38 
RS1925583 LRRTM3 0.142  0.680 4 520 0.01 
RS2394314 LRRTM3 0.134  0.670 9 522 0.02 
RS10762122 LRRTM3 0.004  0.870 7 528 0.01 
RS942780 LRRTM3 0.197  0.500 374 529 0.71 
RS1925617 LRRTM3 0.491  0.970 521 521 1.00 
RS1925622 LRRTM3 0.440  0.980 528 528 1.00 
RS1925632 LRRTM3 0.164  0.990 528 528 1.00 
RS1952060 LRRTM3 0.086  0.940 186 529 0.35 
RS2147886 LRRTM3 0.116   0.840 182 533 0.34 
RS2251000 LRRTM3 0.118   0.880 189 531 0.36 
RS2764807 LRRTM3 1.123   0.051 180 533 0.34 
RS10762136 LRRTM3 1.511  0.112 184 523 0.35 
RS1916341 PLAU 0.483  0.164 14 519 0.03 
RS2227564 PLAU 0.168   0.730 181 529 0.34 
RS2227566 PLAU 0.474  0.280 14 506 0.03 
RS2227568 PLAU 0.582  0.330 23 503 0.05 
RS4065 PLAU 0.203  0.400 13 509 0.03 
RS1800682 TNFRSF6   0.650 0.620 439 534 0.82 
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RS1324551 TNFRSF6   0.334 0.760 475 521 0.91 
RS2031612 TNFRSF6   1.798 0.173 432 528 0.82 
RS2296600 TNFRSF6   1.573 0.280 435 531 0.82 
RS2251101 IDE 0.015  0.705 1 495 0.00 
RS2251101/ IDE-7 (2) IDE 0.000  0.910 2 520 0.00 
RS7076966 IDE 0.192  0.920 2 526 0.00 
RS4646954 IDE 0.738  0.180 24 532 0.05 
RS3758505 IDE 0.585  0.380 24 519 0.05 
RS7099761 IDE 0.825  0.290 46 524 0.09 
RS1544210 IDE 0.296  0.420 17 508 0.03 
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Table A-13 OSA Two-point Linkage Analysis using mean age-of-onset as covariate 
to order families from high to low in overall data set 

 

SNP (RS #) GENE M
L

E
p

F
U

AX 
OD 

MP 
 

AM 
sed 

TOT 
FAMS 

PROP 
FAMS 

RS1786927 VR22 1.019 0.014 23 504 0.05 
RS2126750 VR22 0.796 0.220 21 504 0.04 
RS7911820 VR22 0.173 0.820 485 523 0.93 
RS12357560 VR22 0.532 0.090 12 527 0.02 
RS7070570 VR22 0.950 0.370 451 486 0.93 
RS7074454 VR22 0.507 0.620 467 505 0.92 
RS10822719 VR22 0.201 0.450 4 529 0.01 
RS6480140 VR22 0.168 0.330 17 506 0.03 
RS9223471 VR22 0.071 0.750 16 516 0.03 
RS4463744 VR22 0.464 0.550 12 533 0.02 
RS2441718 VR22 0.778 0.700 436 514 0.85 
RS2939947 VR22 1.083 0.420 466 522 0.89 
RS2456737 VR22 1.181 0.620 500 532 0.94 
RS997224 VR22 1 0.176 .200 93 477 0.19 
RS4746606 VR22 0.359 0.320 12 514 0.02 
RS7909676 VR22 0.691 0.700 485 517 0.94 
RS11593235 VR22 0.470 0.340 7 523 0.01 
RS10997591 VR22 0.573 0.790 435 513 0.85 
RS7903421 VR22 0.191 0.380 6 523 0.01 
RS3096244 VR22 0.059 0.770 4 524 0.01 
RS1001016 LRRTM3 0.640 0.082 16 516 0.03 
RS12769870 LRRTM3 0.044 0.790 4 507 0.01 
RS1925583 LRRTM3 0.096 0.750 139 520 0.27 
RS2394314 LRRTM3 0.129 0.600 126 522 0.24 
RS10762122 LRRTM3 0.301 0.180 31 528 0.06 
RS942780 LRRTM3 0.455 0.320 442 529 0.84 
RS1925617 LRRTM3 1.105 0.360 126 521 0.24 
RS1925622 LRRTM3 0.801 0.520 491 528 0.93 
RS1925632 LRRTM3 0.850 0.129 21 528 0.04 
RS1952060 LRRTM3 0.986 0.095 24 529 0.05 
RS2147886 LRRTM3 0.849 0.058 21 533 0.04 
RS2251000 LRRTM3 0.849 0.105 21 531 0.04 
RS2764807 LRRTM3 0.297 0.430 4 533 0.01 
RS10762136 LRRTM3 0.343 0.880 520 523 0.99 
RS1916341 PLAU 0.950 0.113 23 519 0.04 
RS2227564 PLAU 0.299 0.530 30 529 0.06 
RS2227566 PLAU 0.686 0.140 22 506 0.04 
RS2227568 PLAU 0.752 0.280 12 503 0.02 
RS4065 PLAU 0 0.775 .050 24 509 0.05 
RS1800682 TNFRSF6 0.455 0.850 509 534 0.95 
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RS1324551 TNFRSF6 0.439 0.600 401 521 0.77 
RS2031612 TNFRSF6 1.390 0.460 429 528 0.81 
RS2296600 TNFRSF6 1.217 0.490 263 531 0.50 
RS2251101 IDE 0.117 0 42 .360 495 0.08 
RS2251101/ IDE-7 (2) IDE 0 0 4.201 .230 2 520 0.08 
RS7076966 IDE 0.949 0 239 .230 526 0.45 
RS4646954 IDE 0.551 0 343 .460 532 0.64 
RS3758505 IDE 0.721 0 155 .350 519 0.30 
RS7099761 IDE 0.825 0.290 46 524 0.09 
RS1544210 IDE 0.296 0.420 17 508 0.03 
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