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CHAPTER I 

 

GENERAL INTRODUCTION 

 

Introduction 

Biomimicry is a growing field dedicated to applying nature’s successes to solve 

man’s problems.  As a model, nature may be hard to emulate but has already solved many 

challenges that face today’s most gifted researchers and scientists.  Materials experts 

marvel at the silk from a spider that is several times stronger than man-made steel, yet is 

light and flexible.  Pharmaceutical companies still cannot compete with human immune 

systems and antibodies when it comes to specificity and potency.  Recent revelations 

pertaining to commonly used non-steroidal anti-inflammatory drugs (NSAIDS) offer one 

compelling reason why nature is ahead of the science race and that is time.  Billions of 

years of trial and error (i.e., natural selection) have produced efficient and marvelous 

organisms, biological systems, and materials that have passed the test of time often 

dismissing man’s innovations.   

As man encounters ever increasing amounts of resistance and friction on his way 

to theoretical boundaries, feasibility becomes an increasingly important factor.  High 

temperatures, high pressures, and caustic chemicals are often employed to obtain new 

materials, while effective biological and pharmaceutical discoveries are hindered by 

complex structures and a general deficiency in understanding the details governing the 

system targeted.  In contrast, nature’s materials are often produced in aqueous 

environments under ambient conditions.  Specific and efficient pathways have evolved to 
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allow a tiny frog possession and fabrication of the world’s most potent toxins, while 

bacteria are able to construct defense systems that neutralize man’s strongest antibiotics.  

The goal of biomimicry is to understand and utilize nature’s ‘old’ technology. This 

document explores some of the tools and potential innovations of this emerging field. 

 

Silica Oxide from Oceanic Diatoms 

Evolution has provided several organisms (e.g., diatoms, sponges, radiolaria) 

capable of using ubiquitous monosilicic acid in the synthesis of species specific silica 

based endo- and exoskeletons.1  Diatoms are unicellular eukaryotic algae that play a 

crucial role in silica biogenesis throughout the world’s oceans.  Classified under generas 

Nitzschia and Hantzachia, diatoms utilize amorphous silica as structural components 

within their cell walls, also known as a frustule,2 to produce elaborate and complex 

structures arising from predominantly two different cell shapes.  Pinnate diatoms present 

a long and narrow morphology with an axis that traverses the length of the diatom and 

parallel to the plane of symmetry.  In contrast, centric diatoms display radial symmetry 

around a lengthwise axis cutting through the center of the cell (Figure 1).3 

Biomimetic research has recently focused on the biochemical pathways utilized in 

the production of the diatoms biogenic silica.  Silicic acid (Si(OH)4), which has been 

found in concentrations of 70 µM within the world’s oceans, is thought to be the 

synthetic building block of biogenic silica.4  Silica exoskeleton generation would likely 

require active transport and sequestering of enough silicic acid to complete the frustule 

synthesis.  Indeed, five different transport proteins from the cell walls of Cylindrotheca 

fusiformis have been putatively identified in active silicic acid transport.5,6,7   
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The Frustule of Coscinodiscus granii 

Frustule synthesis is unique to each diatom, which has its own unique cell wall, or 

frustule, structures offering a myriad of morphologies.  The silica frustule protects the 

diatom from external forces and pressures by encapsulating the interior of the cell and is 

also used as a photon collector.  Understanding the mechanisms involved in the 

biogenesis of silica is of interest to both biochemists and material scientists.  The secrets 

of advanced material production under ambient conditions are thought to reside in the 

biomimicry of this process.  These structures are expected to have superior properties in a 

wide array of applications and possibly lead to controlled nanoarchitecture.8,9 

A group of cationic polypeptides (called silaffins) isolated from purified frustules 

of the diatom Cylindrotheca fusiformis were discovered and found to create networks of 

silica nanospheres within seconds of being exposed to a solution of silicic acid.10  Also 

found within the frustules were several long-chain polyamines, and recent biomimetic 

experiments have shown that these also precipitate silica spheres in vitro with diameters 

consistent with natural diatoms.11  A more detailed discussion of the proteins involved in 

Figure 1.  The diatom P. sulcata.2 
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diatom biosilification and a biomimetic approach to novel materials is given below and in 

Chapter III.  

 

 
 

 
 
 

Using scanning electron microscopy (SEM) and atomic force microscopy (AFM), 

Noll et al. studied the morphological structure of the diatom Coscinodiscus granii 

(Figure 2).  The general morphology of the silica is very similar in both SEM and AFM 

analysis.  SEM analysis revealed the inner surface of the frustule to be smooth and 

featureless between the craters in the silica shell.  The diameter of the craters is 

approximately 400 nm.12  A closer look from the AFM revealed well defined structures 

associated with the rim of the craters.  These granular structures were on the order of tens 

Figure 2.  Imaging of the diatomic frustule.  (Left) SEM images.  (Right) AFM images of the inner 
surface of the diatomic frustule.12 
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of nanometers and located between the craters (Figure 2).  Starting from the surface of 

the frustule, the crater heights were observed to be around 80 nm.12  This size regime and 

spherical shape are very similar to silica produced from the silica precipitating proteins, 

silaffins, thought to be crucial in the cellular division process and biosilification of the 

frustule. 

 

Diatom Cell Division 

Division of a rigid and amorphous metal oxide cell wall presents problems not 

experienced by cells with a semi-fluid phospholipid bilayer. Thus, mitotic reproduction 

of the diatom cell wall undergoes phases of morphogenesis not seen in most eukaryotic 

cells.  The unique frustules of diatoms are a direct result of the biodeposition of silica 

resulting from cell division.  Frustules are composed of two halves that fit together 

similar to a Petri dish (Figure 3).  The top half of the frustule is the epitheca which 

overlaps the bottom half known as the hypotheca.  The nascent cells retain the opposing 

theca from the parent cell.3,13,14  Therefore, newly formed cells must generate a portion of 

the frustule, either the epitheca or the hypotheca. 

An early step in the diatom division process is creating a specialized organelle 

known as the silica deposition vesicle (SDV) composed of organic matter and silica in 

which the ornate exoskeletons are created.  Each daughter cell is associated with its own 

intracellular membrane-bound SDV organelle.15,16  The SDV is a dynamic organelle that 

is   manipulated   and   molded   during   formation   of   the   frustule,   and  produces  the  
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characteristic structures associated with the diatoms valves and girdle bands.13,17  After 

completion, the whole silica structure is exocytosed to become an integral part of the cell 

wall.13  During the exocytosis stage of cell division, the silica held within the SDV 

creates a hypovalve on the exterior of the daughter cells where the silica frustule is 

absent.  With the hypovalve now developed, daughter cells separate from each other 

resulting in two new cells.  Overlapping bands of the Petri dish structure and girdle bands 

continue to develop into the new frustule.  At this point of division, each nascent cell 

utilizes two SDVs to develop the overlapping girdle bands and completing the mitotic 

division process (Figure 3).  Eventually a fresh hypotheca is spawned for each of the new 

cells.3,13,14  While this specialized cell division alleviates mitosis involving a rigid outer 

shell, it presents the diatom with a conundrum.  Each division results in a daughter cell 

that  is  smaller  than  the  parent  cell  it  was  spawned  from.   Therefore,  as  the lineage  

Figure 3.  Diatomic cell division. Provided by Dr. Marc Knecht. 
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progresses, new members of the population will continue to diminish in size.  To deal 

with this size reduction, diatoms participate in sexual reproduction when they reach 

~30% reduction of their original cell size.18,19  This process restores the diatoms to their 

original size. 

Great interest exists in determining the specific process responsible for the precise 

nanoarchitecture achieved by diatom division.  Templating appears to be the key to 

achieving these intricate structures.  Scientists have isolated several biological 

macromolecules from the frustule via hydrogen fluoride digestion of biogenic silica.  The 

products that result from the digestion are highly structured and templated from various 

proteins, post translationally modified peptides, and polyamines. The well orchestrated 

use and direction of these components plays a pivotal role in the biogenesis of silica.   

Kröger et al. have isolated numerous proteins known as pleuralins20 and 

frustulins21 which most likely form an organic scaffold for the controlled biosilification 

of the diatom’s frustule.  Immunoelectron microscopy studies have suggested that 

pleuralins and frustulins are not directly responsible for silica production activity; 

however, they become associated with the biogenic silica following the polycondensation 

process.22  This association is most likely conferred from the interaction of the multiple 

hydroxylated serine residues of the pleuralins and frustulins with the surface silanolate 

groups of the silica nanoparticles.  This agglomeration results in an organic layer on the 

surface of the new particle leading to species specific self-assembly of the frustule.  The 

proteins offer an organic template that holds the siliceous materials fixed during theca 

formation.  While this material is found on the silica surface, it is not responsible for the 

condensation of silicic acid. 
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Two other organic materials isolated from silica deposits of the Cylindrotheca 

fusiformis and Thalassiosira pseudonana frustules are the species specific protein 

peptides, known collectively as silaffins,23-28 and various polyamines.3,11,29,30  These 

biological molecules have been shown to be responsible for the catalytic 

polycondensation reaction of silicic acid to silica.  Previously, silaffins had only been 

characterized from C. fusiformis, and were found to be rich in hydroxyamino acids and 

lysines.  Two of these species, natSil1A and -1B, are highly post-translationally modified, 

having phosphorylated serines and modified lysines containing ε-N-dimethyllysine, 

phosphorylated ε-N-trimethyl-δ-hydroxylysine, or long chain N-methyl derivatives of 

polypropylenimine.  These phosphate groups are likely responsible for the protein self 

assembly resulting in a requisite primary amine concentration in order to drive the rapid 

polycondensation of silicic acid.31,32 

 

 
 

 
 

Figure 4.  Varying concentrations of tpSil1/2H (▲), tpSil1/2L(●), or tpSil3 (■) were tested for silica 
production following a 10 min reaction time with silicic acid.  All were in the presence of a constant 
concentration of T. pseudonana LCPA (0.75 g/l).26 
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A study by Poulsen and Kröger investigated the silica morphogenesis of T. 

pseudonana by alternative processing.26   They isolated the five major silaffins (tpSil1H, 

-1L, -2H, -2L, and -3) and compared their abilities to precipitate silica.  Interestingly, the 

silaffins of T. pseudonana share little to no sequence homology with C. fusiformis, but 

are similar in amino acid composition and post-translational modifications.  As they 

relate to frustule formation, it was found that all of the silaffins were able to precipitate 

silica when accompanied by long chain polyamines, but that tpSil1/2H and tpSil3 

assemblies have an inhibitory effect at higher concentrations (Figure 4).  This discovery 

provides some insight into the regulation of silica biogenesis by unmasking the role and 

timing of the individual silaffins.  Furthermore, given the lack of homology between 

diatoms, residue composition and amine concentration appear to be governing factors in 

the formation, size, and shape of silica nanospheres. 

Combined genomic and proteomic investigations into the biochemical pathway 

leading to modified silaffins were recently reported by Frigeri et al.28  Aided by the 

genomic mapping of T. pseudonana,27 mRNA responses were monitored during the 

biosilification process.  These responses identified key enzymatic players (Figure 5) for 

future investigation as they relate to silaffin and polyamine synthesis.  For example, 

Frigeri et al. were able to inhibit ornithine decarboxylase by utilizing the specific 

inhibitor 1, 3-diaminopropane dihydrochloride (DAPDH).  The resulting frustule of the 

inhibited decarboxylase exhibited massive deformities (Figure 6) and confirmed the 

enzymes critical role in a diatoms mitosis and subsequent cell wall formation.  This result 

is the only proteomic analysis of a diatom frustule and outlines a methodology for 

elucidation of the complete biochemical pathway responsible for biosilification.  
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Figure 5.  Polyamine biosynthesis pathway showing identified enzymes (bold) and intermediates 
(boxed).  SAM: S-adenosylmethionine 28 

Figure 6.  (A) Untreated diatom.  (B) Diatom treated with 10mM 1,3-diaminopropane dihydrochloride.
Arrows denote where silification is absent.28 



11 

 
The body of research on the reproduction of the ocean’s diatoms is beginning to 

come into focus.  Pathways involved in the synthesis of key players are starting to be 

discovered, while their specific functions are being determined.  Critical analysis reveals 

a potential biomimetic methodology for novel materials.  As mentioned previously, 

sequence homology suggests that only composition, in particular amine concentration, is 

required for condensation of monosilicic acid under ambient conditions.  While the goal 

of specific nanoarchitecture is still hindered by a lack of knowledge pertaining to the 

scaffold structure employed by diatoms, novel silica composites containing biologically 

active materials are now a possibility.  The first of these biomimetic experiments was 

performed with a short peptide segment of natSil1A. 

 

The R5 Peptide 

One of the most studied and utilized short chained peptides isolated from the 

diatomic frustules is the R5 peptide (H2N-SSKKSGSYSGSKGSKRRIL-CO2H) from 

Cylindrotheca fusiformis.25,32,33  Kröger et al. reported that the synthetic and unmodified 

R5 peptide was able to rapidly condense silicic acid and precipitate silica from an 

ambient aqueous solution.  They noted that the unmodified peptide precipitated silica at 

an optimal pH of 7 while the native silaffin protein was optimized to function at ~pH 5, 

the physiological relevant acidic conditions (Figure 7) of the SDV.25   

Knecht et al. examined a variety of R5 mutants and determined critical residues 

responsible for the polycondensation of silicic acid to silica.32  They found that the RRIL 

motif was critical for silica production, presumably because this motif mediated the 

formation of aggregates of multiple R5 peptides.  Indeed, any aggregate is likely to 
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present a locally high amine concentration shown to be important for the condensation 

reaction.31  Furthermore, it was noted that the R5 peptide was incorporated into the silica 

nanosphere as was evident by subsequent condensation reactions failing to reproduce the 

same level of silica production. 
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The R5 mediated, rapid benchtop precipitation of silica nanospheres confirmed 

the hypothesis of sequence and protein mass not being the fundamental cause of 

biosilification.  Discovery of the suprastructure and the RRIL motif allowing for R5 

aggregation led to the true source of silica precipitation, the formation of a critical 

primary amine concentration.  Luckarift et al. were able to utilize the R5 peptide as a 

component for the encapsulation of butyrylcholinesterase.33  They were able to calculate 

a loading of up to 20% (wt/wt) by determining the amount of initial enzymatic activity 

Figure 7.  Amine mediated condensation of silicic acid.  R5 peptide aggregate is represented in orange 
and nascent silica nanoparticles in green.  Provided by Sarah Sewell. 
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associated with the isolated silica nanoparticles.  This was a significant improvement 

over traditional sol-gel encapsulation methods which are biologically limited by very low 

pH conditions, hydrophobicity of alkyl silicates, protein aggregation at relatively high 

concentrations, and denaturation via alcohol byproducts.34-41  Thus, traditional methods 

restrict potential protein candidates and typically produce loadings of 0.1 – 5% (wt/wt).34-

36,38-42  Another favorable property of the enzyme containing silica nanoparticles from R5 

was their stability over time.  Butyrylcholinesterase was able to retain its activity over a 

period of 30 days from within the silica composite (Figure 8).43  A biomimetic approach 

to robust,  stable, and biologically active nanocomposites has many potential applications 

 

 
 

 
 
 

in the medical, pharmaceutical, chemical, and agricultural fields, but the R5 peptide 

approach relies upon a reasonable and steady supply of peptide.  Modern pharmaceutical 

Figure 8.  Stability of butyrylcholinesterase activity at 25 °C in free and biosilica-immobilized enzyme
systems.  free enzyme (■), free enzyme with antibiotic solution (♦) and biosilica-immobilized enzyme 
(●)33 
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manufacturers and research academic labs have begun to answer the need of custom 

peptides by investing in the promise of chemical peptide synthesis. 

 

Peptide Synthesis 

Merrifield’s solid-phase peptide synthesis (SPPS)44 and great improvements in 

liquid chromatography techniques45 opened the door for robust and widespread peptide 

synthesis.  SPPS resolved the problem of solubility associated with the intermediates 

used in a more traditional solution synthesis of peptides.  Simplicity and speed make 

SPPS amenable to mechanization which has led to the emergence of automated 

synthesizers to carry out the many repetitive steps (Figure 9).46  Solid support peptides 

make up the vast majority of synthetic peptides at the milligram scale. 

The basis of peptide synthesis is founded in general organic synthesis and has 

been optimized to an unusually high degree.  The reactions utilized in peptide synthesis 

require near 100% yield and efficient kinetic rates.  Deviation from these requirements 

results in error propagation for each subsequent reaction and/or unreasonable synthesis 

time.  This requires optimization of the inert polymeric support, protection schemes, 

deprotection, and coupling reagents.   These strict requirements and the numerous 

functional groups of the amino acid residues offer a proving ground for various organic 

methodologies.  Despite intense research and optimization, peptide synthesis presents 

several obstacles to even the seasoned practitioners. 
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Reactions and Reagents 

Appropriate supports for SPPS require certain essential characteristics.  Particles 

should not only be chemically inert, but also of particular size and shape for reactivity 

and rapid filtration.  At the same time, potential solid support material must not interact 

detrimentally with itself or the growing peptide chain.  Additionally, the support should 

Figure 9.  Standard SPPS strategy for chain elongation.165 



16 

be able to accept modifications and allow for covalent bonds for first residue attachment.  

Finally, the material should swell in order to be penetrated by the reagents of the 

chemical reactions.  There are two primary choices of resin support used in peptide 

synthesis,  cross-linked polystyrene and polyethylene glycol-grafted polystyrene.   

Merrifield chose a cross-linked polystyrene support, which is composed of beads 

between 20 and 50 µm.  The mechanical stability of polystyrene based resins allows for 

vacuum filtration and can swell to 8 ml/gram in apoloar solvents such as 

dichloromethane, a desirable property to avoid peptide aggregation to be discussed 

below.47,48  Friedel Crafts chloromethylation49 and Gabriel synthesis50 allows for 

aminomethyl groups and hydroxymethyl groups by displacement of chloride ions for 

acetate ions followed by hydrolysis.51,52  These reactions allow for a wide array of 

functionalization to produce resins with a substitution level of 0.3 – 1.2 mmol/gram.   

Another common support system in SPPS is the polyethylene glycol (PEG) 

grafted polystyrene.  PEG based supports were developed in an attempt to improve the 

solvation of the bound peptides.53,54  PEG of 2000 to 3000 daltons is typically attached to 

the base polystyrene directly to amino-functionalized55,56 resins or by anionic 

copolymerization of ethylene glycol in order to produce ‘tentacle polymers.’57-61  While 

the PEG spacer has been shown to improve solvation, the substitution levels range from 

0.15 – 0.3 mmole/gram which reduces the number of growing chains as a function of 

surface area.  This reduction can aid in the synthesis of long peptides by lessening the 

steric interference and possible interaction of multiple peptide chains.   

Chemical peptide synthesis revolves around repetitive amide bond formation with 

an orthogonal protection scheme62,63 of sidechains and N termini within an aprotic polar 
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solvent (most notably N, N - dimethylformamide) in conjunction with active ester amino 

acid derivatives.  Nα was traditionally protected by the Boc group.64,65  The required 

hydrogen fluoride treatment to cleave Boc schemed peptides from the solid support 

created the need for the more commonly used 9-fluorenylmethoxycarbonyl (FMOC) 

protecting group.66  FMOC is removed via a secondary amine base, most commonly 

piperidine, through a well characterized mechanism (Figure 10).67,68  Monitoring of this 

reaction can be performed via ultraviolet-visible (UV-Vis) spectrometry at 275 nm 

(dibenzofulvene product) or by the Kaiser test for primary amines.69  Following Nα 

deprotection, a solution of excessive activated ester derivatives of amino acids is then 

added to the resin.   

 

 
 

 
 
 

Two commonly used classes of reagents to achieve acid activation are the 

carbodiimides and aminium (uronium) salts.  Dicyclohexylcarbodiimide (DCC)70 was 

Figure 10.  Piperidine mediated N-terminal FMOC removal.101 
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introduced in 1955 and was the benchmark for many years before the introduction of 

diisopropylcarbodiimide (DIC)71 which has a more soluble byproduct.  Several side 

reactions can occur using carbodiimides, but the most important is oxazolone formation 

resulting in unwanted racemization of the final product.72,73  To alleviate stereo mixing, a 

kinetic trap is required that displaces the diimide prior to ring formation, but generates an 

ester active enough to achieve rapid amide bond formation.  The first additive offered 

was N-hydroxy-succinimide,74,75 but has since been superseded by the extremely popular 

1-hydroxybenzotriazole (HOBt).76  Since phosphonium77 and aminium salts78,79 were first 

employed in SPPS, they have become a powerful weapon in the arsenal of peptide 

chemists.  Activation of the carboxylic acid via these salts is base catalyzed by a tertiary 

base, incapable of removing FMOC, by removing the acidic proton from the C-terminus 

allowing for rapid activation.  While aminium salts, such as O-(benzotriazol-1-yl)1, 1, 3, 

3-tetramethyluronium hexafluorophosphate (HBTU), do not mechanistically require such 

an additive, HOBt is still typically utilized (Figure 11).  These reagents impart their 

greatest benefit during the coupling of sterically hindered amino acid residues known to 

present problems with diimide reagents.80-83 

After the completion of peptide chain elongation to the desired length, removal of  

the peptide from the solid support is typically achieved from acidolysis.84  Most of the 

common residue sidechain protecting groups used in FMOC synthesis, such as trityl and 

tert-butyl groups, are removed during the cleavage of the peptide from the resin with 

trifluoroacetic acid (TFA).85  Additives such as alkyl silanes,86 thiols, anisoles, and water 

are employed to scavenge the carbocations produced during the acidolysis to avoid 

unwanted alkylation of the peptide chain.87  Following filtration of the solubilized 
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peptide, ethyl ether is often used to precipitate the desired product, and reverse-phase 

chromatography is then able to isolate desired peptides from the mixture.   

 

A) B)

C)

A) B)

C)

A) B)

C)

 
 

 
 

Solvation and Aggregation 

Despite the use of optimized conditions and global protection schemes, SPPS is 

rife with problems.  Various sidechain reactions can occur during the Nα deprotection and 

subsequent cleavage process.  Furthermore, the addition of subsequent residues with 

bulky hydrophobic protection groups can lead to an eventual insolubility of the growing 

chain.  The major side reaction of the various residues during synthesis is the formation 

of undesired cyclic species.  One example of this process is formation of 

diketopiperazines.  These rings result in auto-cleavage of the first two residues on the 

resin.  Judicious selection of chemical linkers on the polystyrene support can alleviate 

diketopiperazines formation.  Sidechains are also known to be reactive with the peptide 

backbone itself.  Aspartamides present themselves during piperidine catalyzed removal of 

the FMOC group whenever a glutamic acid or asparagine is present.  During acidolysis, 

the major obstacle is the formation of pyroglutamates, which creates a cyclic N-terminus.  

Figure 11.  (A) DCC coupling utilizing HOBt to eliminate racemization. (B) Resonance structures of 
HOBt active ester following amino acid activation by either DCC. (C) HBTU.165 
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These side reactions exacerbate the problem of low yields as well as the requirement for 

more refined and tedious separation techniques.   

The most perilous pitfall in SPPS is the onset of aggregation of multiple peptide 

chains or the peptide chain with the polystyrene resin itself during the elongation.  Amide 

bond formation during peptide synthesis is normally quantitative, unless required 

reagents are unable to access the exposed primary amines of the N-termini. This is often 

the case when aggregation of the peptide backbone occurs and either slows the kinetic 

rate of coupling by either involving the Nα hydrogens in a hydrogen bonding network or 

rendering the peptide chain insoluble.88  This phenomenon has been seen as early as the 

fifth residue in some peptides.89  Indeed, gel-phase nuclear magnetic resonance (NMR) of 

peptide-resin suspensions suggests that the on-resin intermolecular association is the 

result of hydrogen bonding.90,91  The likely orientation is similar to that of a ß-sheet 

which causes the N-terminal amino acid inaccessible.92,93  High Ala, Val, Ile, Asn, and 

Gln content peptide sequences have a greater tendency for aggregation.  A peptide whose 

synthesis is afflicted by sluggish Nα deprotection and/or slow coupling times is said to be 

a ‘difficult sequence’, because the incomplete couplings will propagate as error through 

subsequent acid additions resulting in truncated peptide products complicating 

purification and lowering yields. 

 

Solutions for Difficult Sequences 

Alleviation of difficult peptide sequences has garnered much of the recent 

research into peptide synthesis.  Two general strategies are commonly used to combat 

poor peptide production, change the environment in which the coupling is taking place 
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and structurally altering the growing chain.  The first of these strategies, manipulating the 

environment, has found some level of success with the addition of additives such as 

trifluoroethanol, hexafluoroisopropanol, dimethylsulphoxide, and chaotropic salts.94-98  

While isolated cases have reported improvements by using additives, none of them have 

had the universal success of structurally modifying the peptide chain. 

Several different structural modification strategies have been postulated as 

alleviants of aggregation.  The most promising of these, Sheppard’s 2-hydroxy-4-

methoxybenzyl (Hmb) residue derivatives and Mutter’s pseudoprolines, have already 

begun to find widespread use.  Hmb protection is the substitution of the offending amide 

proton responsible for peptide backbone aggregation in exchange for the sterically 

hindering methoxybenzyl derivative.99  Hmb derivatives are incorporated through HOBt 

activation of pentafluoroester derivatives of Hmb protected residues and are removed and 

scavenged during standard acidolysis with TFA (Figure 12).100   

Several success stories with judicious placement of Hmb residues have been 

documented, and one example is the improved synthesis of an HIV-1 related 

octadecapeptide.101  The original 18-mer target peptide constituted the C-terminal end of 

a larger 44-mer target peptide.  The 18-mer was originally attempted on an automated 

synthesizer without sidechain protection on Asn3,5  or Gln11 and multiple protection 

groups of cysteine residues: H-Leu-Ile-Asn-Cys(Trt)-Asn-Thr(tBu)-Ser(tBu)-Val-Ile-

Thr(tBu)-Gln-Ala-Cys(Acm)-Pro-Lys(Boc)-Val-Ser(tBu)-Phe-Pepsyn KA® resin.  UV-

Vis monitoring of the FMOC removal showed a dramatic broadening at Val8, six residues 

from the ß-sheet inhibiting tertiary Pro.  Subsequent couplings were kinetically slow and 

failed to reach quantitative results as  shown  by  the  Kaiser  test.69   The  resulting  crude  
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mixture was found to only contain 33% of the desired product (Figure 13).  The 

introduction of the bulky trityl protecting group to Gln11 delayed the onset of aggregation 

by two residues, but was unable to significantly improve the final purity.  The optimal 

point for Hmb insertion was Val8 which was expected to offset aggregation by six 

residues and allow for a majority of the assembly to be completed.  No further synthetic 

obstacles were encountered and a significant improvement of the resulting crude mixture 

was observed via HPLC (Figure 13).  This 18-mer and other cases demonstrate the 

power of backbone protection schemes in offsetting peptide aggregation.  Unfortunately, 

Figure 12.  Scheme for the incorporation of Hmb residues via pentafluoroester activation.101
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as discussed in Chapter IV, the insertion of Hmb protection schemes is not a universal 

solution.100,102,103  

 

 
 

 
 
 
 
 

Nature uses the amino acid residue proline, which lacks the amide bond hydrogen 

and is constrained in its angles, to either initiate a loop or turn in a protein structure or 

disrupt α-helix formation and ß-sheet structure.  Manfred Mutter reasoned that inserting a 

proline, or similar structure, into the peptide chain would have a negative effect on the 

suspected ß-sheet structure at the root of aggregation (Figure 14).104-106  To mimic 

biology, the method developed involves reversible conversion of Cys, Ser, and Thr into a 

‘pseudoproline’ via formation of an oxazolidine dipeptide.   The result is a more soluble 

peptide   chain   that   is   structurally   reluctant   to   engage  in  ß-sheet  formation.   The  

Figure 13.  HPLC profiles of the HIV-related octadecapeptide.  (A) Standard assembly showing the 
effects of aggregation on crude product.  (B) Introduction of both Gln(Trt)11and (Hmb)Val8 shows 
very little aggregation during assembly.101 
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Figure 15.  Acidolysis of pseudoproline derivatives.106 

Figure 14.  (A) Insertion of standard amino acid residues allows for ß-sheet hydrogen bonding network. 
(B) Pseudoproline residues disrupt secondary structure. 
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pseudoproline residues are converted to the natural residues Cys, Ser, and Thr via typical 

acidolysis treatment (Figure 15).  As discussed in Chapter IV, pseudoprolines have found 

general use and success, but are still limited in their ability to resolve many difficult 

peptide sequences.  The primary limitation is the requirement of a Ser, Thr, or Cys in a 

sequence position prior to the onset of aggregation and with a four to six residue distance 

from the trouble region.  As is the case with the previouly discussed Hmb protection 

scheme, use of pseudoprolines often requires prior knowledge of the peptide in terms of 

where aggregation occurs. 

Judicious use of solvent mixtures and backbone protection schemes in peptide 

synthesis has enabled investigators to not only synthesize entire proteins such as 

ribonuclease A,107 but also individual domains and functional motifs in a wide array of 

biologically relevant proteins.  One of the achievements owing to peptide synthesis is the 

study of conformational switching peptides. 

 

Amphiphilic Peptides 

An area of major theoretical and practical interest is the de novo design of 

peptides displaying well-characterized structural and functional properties.108-111  A sound 

understanding of the conformational properties of amphiphilic peptides, where secondary 

structure is often governed by the formation of multimeric aggregates, is of great 

importance in the construction of novel proteins.  Knowledge of these peptides will allow 

for the development of model systems for the investigation of protein mechanisms and 

function.  Separate from the natural tendencies associated with amino acids and peptides 

towards particular secondary structures, peptide aggregates are manipulated by 
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hydrophobic interactions in an aqueous solution.  By studying and manipulating these 

forces, mimics for globular protein folding can be achieved for investigation.108-110,112-115   

Previously, peptide folding and refolding has been studied as a function of solvent 

and temperature.115,116  Mutter et al.  designed and studied a short series of peptides that 

were found to switch between α-helix and β-sheet secondary motifs as a function of pH in 

a purely aqueous environment.117    To create amphiphilic sequences, the repetitive 

pattern of an amphiphilic β-sheet (i.e., alternating hydrophobic and hydrophilic residues) 

was mutated  such  that  hydrophobic  residues  that  would  become  the  hydrophilic  

face of the α-helical bundle were now indifferent, thus neither polar nor hydrophobic.  

This design resulted in a general sequence for peptides that were amphiphilic in nature 

for both α-helix and β-sheet (Figure 16).   

 

 
 

 

 
 
 
 

Circular    dichroism    (CD)    revealed    that    all    four   peptides  

(Ac-EAALEAALELAAELAA-NH2,     Ac-KAALKAALKLAAKLAA-NH2, 

Ac-KAALEAALKLAAELAA-NH2, Ac-EAALKAALELAAKLAA-NH2) were 

able to switch conformations  (Figure 17).   For example,  peptide  1  was  clearly  in  a 

β-sheet  conformation  at  pH  4,  but  was  ~23%  helical  (as  determined  against  a 

Figure 16.  (Top) Schematic of the conformational transition between α-helical bundles and β-sheet 
structure.  (Bottom) General amphiphilic sequence where P=polar, H=hydrophobic, and N=neutral 
amino acid residues.117 
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poly-L-Lysine reference) at > pH 7.  The transition region of pH 5 – 6 displays intriguing 

spectra not previously seen for simple helix-coil or β-structure-coil transitions.  Peptide 3 

was found to have three transitional pH values.  At pH 3 and 9, peptide 3 was 

predominantly helical with contents of 60% and 53% respectively.  However, spectra 

obtained at pH 7 and 11 are consistent with a predominantly β-sheet structure.  These 

findings begin to allude to motifs found revolving around conformational protein changes 

often seen in nature.  Of particular interest is the class of proteins implemented by viruses 

to achieve entry into target cells.  These fusion proteins are known to undergo significant 

conformational changes during the fusion event, and one of the most well-characterized 

fusion proteins, influenza’s hemagglutinin, has been found to be activated via a change in 

pH (see below).   

 

 
 

 
 

Figure 17.  (Top) Amino acid sequences of amphiphilic peptides.  (Bottom left) CD-spectra of peptide 1 
(0.5 mg/mL).  (Bottom right) Cd-spectra of peptide 3 (0.5 mg/mL) in aqueous solution at varying pH.117 
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Membrane Fusion 

A critical element of many biological processes is specific membrane fusion.118  

The obligatory first step of any fusion event is the close proximity of potential fusion 

partners.  Derjaguin-Landau-Verwey-Overbeek (DLVO) theory estimates the likelihood 

of surfaces coming in to such close contact.  DLVO theory was developed for colloidal 

particle aggregation and is derived from interaction of attractive van der Waals and 

repulsive electric double layer forces between the charged surfaces of particles in 

solution.  Consequently, the free energy (∆G) can be directly related to the separation 

distance, h, between the two potential fusion partners.  The ratio of the number of 

particles at distance h to an infinite separation is offered by the Boltzmann equation, 

exp[-∆G(h)/kT], where k is the Boltzmann constant and T is absolute temperature.  For 

two vesicles to be fusion partners, ∆G/kT >> 1, i.e., the inter-membrane energy of 

interaction is large enough to overcome Brownian motion.  DLVO has its critics and is 

often insufficient in explaining short distance electrostatic interactions amongst more 

biologically relevant lipid bilayers, thus several other methods have been developed to 

study the fusion process of vesicles that better simulate close contact interactions and 

fusion of biological membranes.  Some of these techniques include lipid dye exchange,119 

electron microscopy (EM),120,121 and fluorescent contents mixing.122   

These techniques reveal that the source of the large energy necessary for fusion is 

the massive conformation perturbations and high energy intermediates of the monolayers 

involved in fusion.  The fusion event involves the merging of two separate organelles and 

the mixing of the aqueous components within (Figure 18).  Two vesicles in close enough 

proximity come together to form  a  prefusion  complex.   The  current  paradigm  has  the  
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Figure 18.  The membrane fusion reaction. Two lipid vesicles (A and B) come into close contact, 
"docking" (AB) juxtaposed vesicles fuse membranes into a single unit (C). The mixing of lipid and 
aqueous markers (green and red) indicate the progress of the compartmental mixing process. The fusion 
process can proceed spontaneously, via catalysis, or by specific proteins. These proteins are sometimes 
involved in both "docking" and fusion. In the latter case, a conformational change of the protein catalyst 
(E        E') is coupled with transitions of the lipids.164 

Figure 19.  Schemes for membrane fusion. (A) Top drawing represents two juxtaposed bilayers prior to 
fusion. The stalk illustrates the intermediate with the (cis) monolayers in close contact obtaining 
negative curvature with radius r.  Juxtaposition of the two trans monolayers creates a hemifusion 
intermediate.  A fusion pore represents the first intermediate to allow mixing of aqueous contents. (B) 
Membranes are void of hydrocarbons filling voids, as shown by the stippled black areas in the stalk and 
hemifusion intermediates in section A.164 
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fusion reaction proceeding in at least two stages.  First, the contacting outer monolayers 

(often referred to as ‘cis’) leaflets fuse, but interior distal (called ‘trans’) leaflets remain 

in tact.   This ‘stalk’ continues to change as the distal monolayers become juxtaposed and 

begin to fuse into the hemi-fusion intermediate. This intermediate then ruptures to form a 

fusion pore, the first intermediate that allows for content mixing, and completes the 

coalescence of interior contents (Figure 19).  The reaction could proceed spontaneously 

if the reactants are inherently unstable.  For example, it is possible to produce ~20 nm in 

diameter unilamellar lipid vesicles by ultrasonication, thus introducing energy into the 

system.  These vesicles have a high degree of positive curvature in their outer layer and a 

large amount of negative curvature associated with the distal layer (Figure 20).  

Spontaneous fusion will occur if the lipids comprising  the  layers experience stress  from  

 

 
 

 
Figure 20.  Concepts of intrinsic lipid curvature and stress.119 
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these curved environments.  If the vesicles do not spontaneously fuse, then small 

perturbations, such as divalent ions, peptides, sonication, or PEG are needed to trigger 

fusion.   This conversion of relatively flat lipid bilayers into fusion intermediates is a 

costly energetic process involving a range of chemical chain tilts and lipid remodelling 

(Figure 21).   

 
 

 
 

 

Figure 21.  (Top) Hypothetical membrane fusion events based upon biophysical measurements of PEG 
mediated SUV, secretory granule (SG), and HA mediated fusion.  (Bottom) Concept of energetics for 
fusion.  Measured activation energies are listed in Table 1. 119 
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By utilizing sonication and PEG-mediated fusion techniques, Lentz and Lee, were 

able to study the time, energy, and structural intermediates associated with fusion.119  

Sonicated vesicles (SUV) are known to have perturbed outer lipid layers causing them to 

be metastable and easily prompted into fusing.  PEG is a hydrophilic polymer that is able 

to dehydrate membrane surfaces forcing lipophilic membranes together by overcoming 

the hydration repulsion between membranes that is thought to be an initial step in the 

fusion process.123  Lentz and Lee were able to create vesicles that were easily coerced 

into fusing via exposure to ultasonication or PEG.  EM and fluorescent studies elucidated 

times and energies that showed a close relationship between SUV fusion and observed 

cell membrane fusion events (Figure 21).  They observed that initial outer leaflet mixing 

occurred in less than 10 seconds followed by a delay of up to 3 minutes before content 

mixing occurred.  This initial outer leaflet mixing requires an activation energy of ~ 18 

kcal/mol and is followed by another energy barrier of ~20 kcal/mol to achieve inner 

leaflet mixing.  These times, and likely energies, correspond with known protein 

mediated fusion events.   

From a macroscopic view, there is a significant similarity between PEG mediated 

model membrane fusion, discussed above, and the sequence of events observed for viral 

fusion.  Electrophysical measurements of biological membranes have suggested the 

creation of transient pores in the early stages of protein mediated fusion.124-126   Pore 

formation occurs either just prior or simultaneously with lipid mixing, which takes place 

up to 5 minutes prior to content mixing.  The activation energy for the first step of PEG 

mediated fusion and that of vesicular stomatitis virus (VSV) fusing with ghost 

erythrocytes (42kcal/mol pH 5.85)127 was found to be comparable (Table 1).  While the 
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morphology of intermediates and activation energies of SUV and biological membrane 

fusion are similar, nature must overcome the associated high energy barrier by means 

other than ultrasonication and a high concentration of PEG. 

 

 
 

 
 
 

Biological vesicles, in contrast to studied lipid vesicles, are intrinsically stable and 

their fusion often occurs at salt concentrations and distances (typically nanometer scale) 

not adequately explained by DLVO theory128 or metastable lipid models. Nature has 

evolved specific and well orchestrated events and proteins to deal with energetic concerns 

related to membrane fusion.  Biological membrane fusion events are stringently regulated 

and often involve a mediator commonly referred to as ‘docking’ or ‘fusion’ proteins.  

These protein catalysts are often required for the docking and coalescing of fusion 

partners.  One of the hallmarks of protein mediated docking and fusion is large, often 

irreversible, conformational changes of the protein responsible for making membrane 

fusion energetically favorable.  The most studied of these proteins are the membrane 

fusion proteins from envelope viruses such as influenza.   

 

 

 

Table 1.  Thermodynamics of fusion intermediates.  Rates were determined at 35˚C.119
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Viral Fusion Proteins 

Enveloped viruses have evolved two distinguished, yet conceptually similar, 

classes of viral fusion proteins to mediate membrane fusion.129,130  Class I is utilized by 

orthomyxo-, retro-, filo-, and paramyxoviruses.  Following release from the ribosome, 

these fusion proteins are proteolytically cleaved by a host protease to give a membrane-

anchored subunit with an amino-proximal fusion peptide.  Three identical copies 

aggregate into a metastable fusion primed protein, which is subsequently triggered (either 

by receptor binding or acid exposure) to undergo the requisite conformational change.  

The result is the postfusion structure with a characteristic triple-stranded coiled-coil 

complex.131,132  This coiled-coil structure has been found to be extremely thermal stable 

and is thus suspected to provide the free energy required to overcome the energetic 

barriers associated with the fusion process.133  

Class II viral fusion proteins are utilized by flavi- and alphaviruses. Class II 

fusion proteins possess internal fusion peptides in contrast to the amino-proximal fusion 

peptides of Class I.  Class II fusion proteins are not enzymatically cleaved following 

synthesis, rather they are associated with a second membrane glycoprotein or accessory 

protein.   The activation event is the subsequent cleavage of this accessory  protein.134   

X-ray structures of the fusion E proteins from Semliki forest virus135 and tick-borne 

encephalitis136 reveal several motifs unrelated structurally to Class I proteins.  Given the 

crucial role of membrane fusion in the viral life cycle, understanding and manipulating 

these proteins can result in new strategies for fighting viral infection. 

 

 



35 

Influenza Hemagglutinin 

Over the past two decades many studies have shown a complex and orchestrated 

pathway by which influenza hemagglutinin (HA) mediates viral and cellular membrane 

fusion.129,137  HA is the sole protein required for viral fusion with the host cell.  HA is 

initially synthesized as an incompetent precursor, called HA0.  HA0 is then 

proteolytically cleaved into two subunits, a transmembrane and a surface subunit.  This 

cleavage results in the metastable or fusion primed glycoprotein.  The surface subunit, 

HA1, remains covalently attached to the transmembrane subunit, HA2, through a single 

disulphide bond.  HA1 is responsible for recognition of sialic acid, the specific receptor 

on the host cell.  HA2 contains the fusion peptide region at the amino terminus and is 

anchored in the viral membrane via hydrophobic helices.  Following sialic acid binding, 

the influenza virus is endocytosed.  The endosome has an acidic interior, and this low pH 

exposure triggers fusion (the optimal pH for fusiogenic activity has been determined via 

monitoring of spike morphology changes, and is found to be 5.0 at 37˚C).138-140  This 

fusion process consists of enormous conformational changes of HA which results in the 

influenza virus escaping the endosome to content mix with the interior of the host cell.  

The fusion process of HA is often referred to as the ‘spring-loaded model’ owing to the 

notion of a primed protein ready for fusion. 

 

The Spring-Loaded Model 

Wilson and coworkers provided the first high-resolution view of a viral envelope 

glycoprotein.141  The crystal structure showed a large portion of the native HA 

ectodomain that was cleaved from the viral surface by bromelain.  The result is a 
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structure that lacks the hydrophobic region anchoring the protein to the viral membrane.  

The HA is a long homotrimer that extends 135 Å.  The top of the structure is comprised 

of three exposed globular head domains responsible for sialic acid binding.  This head 

sits above the remainder of HA1 and HA2 oriented as a long stalk containing a trimeric 

coiled-coil at its core.  The coiled-coil is composed strictly of HA2 which also contains 

the buried fusion peptide.  This configuration was perceived to be the native pre-fusion 

state, because the protein was never exposed to acidic conditions.  Wilson’s crystal 

provided insight into influenza’s fusion machinery, but left several unanswered questions 

such as how a buried fusion peptide ended up in a cell membrane almost 100 Å away. 

Insights into the conformational rearrangement of HA have been elucidated from 

synthetic peptides, computer models, and isolated post-fusion ectodomain structures in 

neutral and low pH conditions.142,143  Sequencing of the HA protein reveals critical 

regions involved in the fusion process.  The glycine rich fusion peptide which eventually 

finds itself inserted into the target membrane is located at the N-terminus of the HA2 

subunit. Furthermore, computer analysis suggested a region in HA2 would have a strong 

propensity for forming a coiled-coil similar to the stalk already seen.  However, the 

available crystal structure of HA was at a neutral pH and showed these residues (54-81) 

to be an extended loop (residues 55-75).  Indeed, it was concluded from biophysical 

studies that the synthetic peptides from this region do form a loop to coiled-coil 

transformation in solution.  This led to the notion of a ‘spring-loaded’ protein to highlight 

the notion of a metastable protein primed for action.  The result of the identified peptides 

forming a helix, later confirmed by X-ray crystallography, is the extension of the central 

helical stalk and the movement of the fusion peptide over 100 Å to the N-terminal end of 
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the stalk in order to interact with a target membrane (Figure 22).  This theory was 

supported by evidence of proline substitutions at residues 55 and 71 allowing HA 

expression but disabling fusiogenic activity.    While this rearrangement brings the fusion  

 

 
 

 
 
 

peptide in contact with the host membrane, the viral membrane is only brought into close 

proximity of the host membrane following a transition of residues 112-128 from each of 

the three members of the HA homotrimer.  These residues move to fill grooves along the 

triple stranded stalk in an anti-parallel fashion.  The result is a meshing of the viral and 

host cell membranes as discussed above.  The resulting hexameric coiled-coil of the 

Figure 22.  The spring-loaded mechanism for HA mediated fusion. (Left) The native conformation of 
HA; HA1 subunits (yellow) occupy the distal end of the protein, sitting above a trimeric coiled-coil
domain of HA2 (blue). The fusion peptide (green) is sequestered within the core. (Right) Following 
exposure to low pH, conformational changes occur that trigger the fusion event. Noncovalent 
interactions between HA1 and HA2 are perturbed allowing the loop regions of HA2 (red) to "spring" 
into an extension of the central trimeric coiled-coil, thus propelling the fusion peptides to the top of the 
structure to interact with the target membrane.142 
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transitional peptide segments found in several Class I fusion proteins have demonstrated 

unusually high melting temperatures.144-152  The tension and thermal stability of this 

fusion core formation is thought to provide the driving force and energy needed to 

achieve the energetically costly fusion process.146,153,154 

 

Peptides to Inhibit HIV gp41 

One of the modern day plagues is the blood borne human immunodeficiency virus 

(HIV).  HIV1-gp41 is the Class I fusion protein employed by HIV to merge the viral and 

cellular membranes.  Structurally and functionally, gp41 is very similar to HA, but is 

triggered by the binding of the CD4 receptor on the surface of the target cell membrane in 

contrast to the low pH trigger of HA.  Post-fusion gp41 was subjected to proteolysis, an 

enzymatic dissection performed to expose stable domains, and only a trimeric helical 

domain survived.155  The trimeric unit was found to be comprised of two discontinuous 

peptides, one from each of two 4, 3 heptad repeat domains (HR).  One of two 4, 3 heptad 

repeat regions is located C-proximal to the fusion protein (HR-1), and the other is N-

proximal to the transmembrane anchor (HR-2).    Crystallography of both HIV and the 

closely related simian immunodeficiency virus (SIV) confirmed the presence of the 

coiled-coil structure in a post-fusion state.  The HR-2 peptides were packed in an anti-

parallel fashion in the grooves of the triple stranded helical bundle of the HR-1 peptides 

(Figure 23).  Formation of this structure would require a folding of the pre-fusion gp41. 

This folding would have the HR-2 peptide looping around to the same end of the 

molecule as the HR-1 peptides resulting in the fusion peptide and transmembrane anchor 

being in close proximity to promote fusion of the attached membranes.   
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The combined HA and gp41 data suggests a common fusion mechanism amongst 

members of different viral families.  This process has been hypothesized by several 

groups.129,131,156,157  It follows that the envelope fusion glycoprotein is expressed as an 

inactive precursor only able to promote fusion following proteolytic cleavage.  The 

cleavage event locks the protein in a metastable state blocked from fusion by a kinetic 

barrier.  The kinetic barrier theory is supported by experiments that reveal HA can be 

triggered not only by acidic conditions, but also high temperature and urea 

denaturation.158  Once exposed to fusion-activating events, the fusion protein overcomes 

the kinetic barrier to initiate the required conformational changes for fusion.  In the case 

of HA, HA1 domains lose some of their trimeric contacts and the fusion peptide is 

liberated from its buried position and is sprung to the amino terminus of the central triple-

stranded coiled-coil.  This allows the fusion peptide to mesh with host cell membrane.  It 

is unknown in HIV if there is a spring-loaded mechanism involved or if CD4 binding 

uncovers the fusion peptide, but the fusion peptide and central triple-stranded coiled-coil 

stalk become exposed.  For both viruses, the transmembrane subunit is spanning both the 

viral and host cell membranes following fusion peptide insertion.  Interactions amongst 

Figure 23.  Hexameric coiled-coil crystal structures isolated from HIV and SIV. The top schematic 
protein sequence displays the fusion peptide (red), HR-1 region (blue), HR-2 region (yellow), and 
transmembrane domain (black).  Adapted from reference 146. 
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helical peptides promote the formation of a hexameric coiled-coil that concludes with 

both membranes at the same end of the folded molecule.   

The massive conformation changes required for the Class I fusion proteins leaves 

the possibility of relatively long lasting intermediates exposed.  These intermediates 

could be exploited as potential fusion inhibiting drug targets.  A biomimetic approach 

that shows promise is the use of synthetic peptides from the HR regions responsible for 

the coiled-coil domain.  Synthetic peptides from both HR-1 and HR-2 have demonstrated 

effective fusion inhibition.155,159-161  HR-2 peptides are known to function at the 

nanomolar range,  and  are  much  more  potent  than the  HR-1  peptides, which typically  

 

 
 

 
 

Figure 24.  Schematic representation of the current working model for viral membrane fusion. 
Following exposure to activating conditions, the fusion peptide (red) is inserted into the target 
membrane exposing the two HR regions.  The HR-1 peptide helical stalk, and likely the HR-2 peptide 
region, is exposed, vulnerable to inhibitory molecules, at least for HIV-1. This ‘prehairpin intermediate’ 
of HIV-1 constrains gp41 such that the HR regions cannot interact. In the absence of inhibitors, the 
prehairpin intermediate resolves into the hexameric coiled-coil, and membrane fusion occurs.  Adapted 
from reference 146. 
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require a micromolar concentration.  The current paradigm has the HR-2 peptides 

working in a dominant-negative manner where the synthetic peptides compete for 

binding in the grooves presented by the HR-1 helical stalk (Figure 24).  The 

effectiveness of the unmodified synthetic peptides has lead to several other biomimetic 

peptide based inhibitors against HIV fusion.162,163 

The success of HIV inhibiting peptides illustrates a biomimetic success.  The use 

of proteases, computer modeling, and natural peptides has provided a powerful new 

weapon against a viral killer responsible for thousands of death a year.  Furthermore, the 

target of the HR peptides is proposed to be a common intermediate throughout the Class I 

fusion proteins thus allowing for similar studies to understand and fight a plethora of 

viruses. 

 

Research Aims and Goals 

The increasing demand for novel weapons in the war against infectious agents and 

new biologically active materials is at the core of the research presented: 

• Excluding vaccines, viruses have historically been out of reach for the 

pharmaceutical industry.  Several drugs are available to combat the symptoms of viral 

infection, but few actually attack the virus itself.  Paramyxoviruses are the leading cause 

of respiratory distress, and kill thousands of children worldwide every year.  The 

Paramyxoviridae family includes all four parainfluenza strains, measles, mumps, 

respiratory syncytial virus, and human metapneumovirus.  While vaccines are available 

for a few of these agents such as measles and mumps, most have no known treatment 

against the virus itself.  Chapter II discusses a biomimetic approach to studying and 
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inhibiting the fusion protein of the human metapneumovirus by utilizing homology 

modeling techniques and synthetic peptides. 

• Unique biologically active materials have potential application in clinical 

diagnostics, pharmaceuticals, electronic devices, etc.  Building upon work done 

previously in our laboratory, Chapter III explores the synthesis and characterization of 

silica nanocomposite materials which encase functional enzymes. 

• Difficult peptide sequences present the danger of terminating a line of research.  

Complicated solvent regiments, Hmb protection, and pseudoprolines provide viable 

options for overcoming the low solubility and aggregation associated with these 

sequences; however, they are not universally applicable.  Chapter IV investigates room 

temperature ionic liquids (RTILs) as potential new solvents that may have universal 

application in peptide synthesis.   
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CHAPTER II 

 

THE HUMAN METAPNEUMOVIRUS FUSION PROTEIN MEDIATES FUSION 
THROUGH A COILED-COIL COMPLEX THAT CAN BE INHIBITED BY 

SYNTHETIC HEPTAD REPEAT REGION 1 PEPTIDES 
 

Introduction 

Viruses are a leading cause of lower respiratory tract infection in children 

worldwide, with significant associated morbidity and mortality.  Previously identified 

major pathogens include respiratory syncytial virus (RSV), parainfluenza viruses (PIV), 

influenza and measles viruses, all of which are associated with clinical syndromes of 

severe lower respiratory tract disease, such as bronchiolitis, pneumonia, and 

laryngotracheobronchitis.  In 2001, a new member of this viral group, the human 

metapneumovirus (hMPV), was discovered by Dutch scientists.1  Samples collected 

longitudinally from 1976 to 2001 at the Vanderbilt Vaccine Clinic showed that 12% of 

lower respiratory tract diseases were attributable to hMPV.2  Subsequent genetic analysis 

classified hMPV as a member of the pneumovirus subgroup within the paramyxoviridae 

family.3 

The paramyxoviridae family includes two subfamilies: the paramyxoviruses and 

the pneumoviruses.  Paramyxoviruses include all the parainfluenza types, sendai virus, 

mumps virus, hendra virus, Newcastle disease virus, simian type 5 virus, the 

morbilliviruses measles virus, canine distemper virus and others.  The pneumovirus 

subfamily consists of the pneumoviruses RSV and pneumonia virus of mouse, the 

metapneumoviruses avian metapneumovirus, and hMPV.4  Paramyxoviruses contain two 

major surface glycoproteins critical for viral replication and survival.  The attachment 
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protein (G, HN, or H) first locates and binds to the cellular target.  After binding, multiple 

trimers of the fusion (F) protein take part in anchoring the viral membrane to the host cell 

membrane, allowing viral entry to the cell. 

 

 
 

 
 
 

F protein Domains:  Paramyxovirus F proteins are type I integral membrane viral fusion 

proteins that are synthesized as inactive precursors (F0) and then cleaved by host-cell 

proteases into the biologically fusion-active F1 and F2 domains (Figure 25).  F2 is 

extracellular and disulfide-linked to F1.  These type I glycoproteins span the membrane 

once and are a common feature among a variety of other viruses including influenza 

virus,5 simian immunodefiency virus (SIV),6 human immunodeficiency virus (HIV),7 and 

Ebola virus.8 Following cleavage, three units of fusion protein form homotrimers 

embedded in the viral membrane.  There are two 4-3 heptad repeat domains at the N- and 

C-regions of the protein (designated HR-1 and HR-2 respectively), which form coiled-

coil α-helices (discussed in detail below) following target cell binding.  A hydrophobic 

Figure 25.  Schematic view of the fusion protein (F protein).  The ectodomain of the hMPV F1 and F2 
subunits.  The relative positions of the heptad repeat regions, fusion peptide, and transmembrane anchor 
are illustrated.  The synthetic peptides used in this study are from the HR-1 and HR-2 regions, and their 
sequences are listed.  Peptides do not have modified N or C termini. 
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fusion peptide N-proximal to the N-terminal heptad repeat is thought to insert into the 

target cell membrane.  At their C-terminus, a hydrophobic trans-membrane (TM) domain 

anchors the F protein in the plasma membrane, leaving a short cytoplasmic tail.  The end 

result of the fusion process is the eventual association of the heptad repeats, bringing the 

TM domain and viral membrane into juxtaposition with the cellular membrane inducing 

membrane fusion.9  Indeed, the process of hexameric coiled-coil formation has been 

postulated to provide ample energy to drive fusion in HIV infection, due to the large 

energy gain by the increase in stability afforded by the hexameric coiled-coil structure.10  

Thus, F proteins are thought to promote membrane fusion by coupling irreversible 

folding to membrane juxtaposition.    

F protein Structure:  Yin et al. recently solved the structure of both the pre-fusion F 

protein of parainfluenza virus 5 F and the cleaved ectodomain of the PIV3 F protein in a 

post-fusion state.11,12  Combined, these two structures offer a view of the paramyxovirus 

F protein before and after fusion.  In the pre-fusion conformation, the F protein is broken 

down into several key domains.  The pre-fusion structure contains a globular head fixed 

to the trimeric helical bundle comprised of HR-2 peptides (Figure 26) reminiscent of a 

lollipop.  The end of the HR-2 stalk has the TM domain inserted into the viral membrane.   

The globular head itself contains three domains, denoted DI – DIII.12,13  DI and DII fold 

into rigid scaffolding molecules during the fusion event, while much of the 

conformational changes occur in the DIII domain (amino acids 42-278).   The top of the 

head has three spikes formed by peptidyl loops (60-65 and 178-185), which project 

upwards from the globular domains of each subunit.  Each of the three units of the F 

homotrimer  contains  their  own  DI-DIII  domains  wrapping  around  the  trimeric  axis,  
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creating several intersubunit contact points.  Units DI and DII form the bottom side of a 

large cavity present at the base of the head.  DIII covers the top of the cavity and contains 

the  important  spikes comprised of HR-1 and the fusion peptide (residues 103-128).   

HR-1 is composed of two sets of six helices forming rings which cover the top of the 

head, while the HR-2 three helices bundle from underneath.  The fusion peptide located 

in DIII is in three different parts: part extended, part ß-sheet, and part α-helix.  It is 

Figure 26.  The pre-fusion structure of parainfluenza virus 5.  (Top Left) Ribbon diagram of the 
homotrimer responsible for fusion.  The head region undergoes massive conformation changes during 
the fusion event.  The stalk is comprised of the HR-2 segments and terminates in the TM domain 
inserted into the viral membrane.  Grey areas indicated an engineered non-native coiled-coil to simulate 
the full length stalk.  (Top Right) Ribbon diagram of a single monomer of the F protein.  The domains 
are labeled and color coded.  DIII contains the helical loops and subunits which undergo stalk extension 
to generate the HR-1 trimeric coiled-coil.  (Bottom) Color coded surface map of the pre-fusion trimeric 
structure.  The fusion peptide eventually is inserted into the target cellular membrane.  This requires the 
fusion peptide to travel ~ 115 Å to the N-terminus of the HR-1 trimeric stalk. Adapted from ref. 11. 
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pressed between DIII of its own subunit and DII of another subunit.  The F protein is 

likely to maintain this structure until triggered by binding of a cellular targeting protein, 

such as hemagglutinin neuramidase (HN) in SV5, upon which the refolding into the 

metastable pre-fusion hairpin occurs. 

At the time of this writing, crystallographic data pertaining to the metastable pre-

fusion structure is absent from the literature; however, the post-fusion structure reveals 

the final structure resulting from PIV3 F protein mediated fusion.  The massive 

conformational shifts of fusion result in a final F protein structure containing a 

predominately  ß-sheet  globular  head,  a  neck  region  consisting  of  both  ß-sheet  and 

α-helix, and an elongated stalk region (monomer dimensions are ~ 27 X 160 Å) 

comprised of mostly α-helix (Figure 27).   The crystal is formed by three elongated 

monomers that utilize their C-terminal regions (residues 428-484) to span across the 

trimeric axis to interact with the adjacent monomers.    

The most intriguing element of the post-fusion PIV3 F protein structure is the 

hexameric coiled-coil bundle associated with the long stalk.  The bundle is a joining of 

each monomer’s HR-1 and HR-2 regions.  The three HR-1 domains form an interior 

trimeric helical bundle that exposes long hydrophobic grooves along its surface and 

contains the familial 3-4-4-4-3 stutter pattern (residues 172-187).  This stutter is 

necessary for the HR-1 segment to avoid a kink in the long hydrophobic groove.  The 

hydrophobic faces of the HR-2 domains pack into the hydrophobic grooves of the HR-1 

trimeric bundle.  Missing from the structure are residues (95-135) which are N-terminal 

to HR-1 and which include the fusion peptide (starting at residue 110).  Computer 
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modeling of the missing residues suggests that the fusion peptide is located at the tip of 

the hexameric coiled-coil analogous to influenza’s HA (Chapter I). 

 

 

 
 

 
In order to mediate viral and target cell membrane fusion, a significant refolding 

process must occur to achieve the post-fusion conformation seen for PIV3’s F protein 

that started from the pre-fusion structure analogous to that of parainfluenza virus 5 F.   

The overall transition revolves around flipping the stalk and transmembrane domains 

relative to the F protein head.  The globular head region is significantly compacted in the 

post-fusion form compared to the pre-fusion configuration.  The DI domains turn slightly 

inwards, disrupting intersubunit contacts, while the DII domains swing around to make 

new contacts with other monomers.  Overall, however, DI and DII domains remain close 

to their starting positions.  Indeed, superimposing these regions in their pre- and post-

Figure 27.  (Left) Ribbon diagram of the trimeric hPIV3 F protein in a post-fusion conformation. 
Residues 95-135 are disordered in all monomeric units.  (Right) The surface image of the hPIV3 F 
protein.  The individual F protein monomers are distinctly colored. Adapted from ref. 12. 
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fusion positions reveals an average root-mean-square (RMS) deviation of 1.97 Å and 1.5 

Å, respectively. 

DIII experiences extensive refolding between the pre- and post-fusion structures, 

resulting in the hexameric coiled-coil projecting upwards from the head and away from 

DI, the pre-fusion stalk, and the viral membrane.  The fusion peptide moving ~ 115 Å 

from its pre-fusion position to allow for DII repositioning is illustrative of the extreme 

refolding achieved by type I F proteins.  The extension of a HR-1 stalk away from the 

viral membrane requires DIII to rotate and collapse inwards, further compacting the 

globular head (Figure 28).    

 
 
 

 
 

Figure 28.  (Top) Side by side comparison of two type I F proteins in the pre- and post-fusion 
configurations.  The DII elements orchestrating stalk extension are colored magenta.  The HR-2 region 
is blue, and the DI and DII  domains are yellow.  (Bottom) Single monomer of the F proteins discussed 
above.  The HR-1 region is highlighted in green and converts from well compacted helical and loop 
regions into an elongated stalk in a coiled-coil configuration.  The HR-2 sequence migrates to pack into 
the hydrophobic grooves presented on the surface of the HR-1 stalk. Adapted from ref. 11. 
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All of the HR-1 post-fusion contacts are absent from the pre-fusion structure.   

The pre-fusion crystal has HR-1 divided up into four helices, two ß-strands, and five loop 

or kink segments.  Therefore, no fewer than 11 distinct segments must undergo refolding 

in the DIII region to form a single elongated α-helical stalk.  The hydrophobic grooves 

exposed on the surface of this stalk are eventually filled by HR-2 segments.  In the 

prefusion structure, the HR-2 segments are located at the base of the head region and 

terminate with the TM domain inserted into the viral membrane.  During the conversion 

to the post-fusion conformation, these HR-2 segments separate and relocate to the base of 

the nascent HR-1 stalk extending towards the target cellular membrane.  The result is the 

TM domain fixed to the viral membrane moving near the fusion peptide, which is 

inserted into the target cellular membrane at the base of the HR-1 stalk (Figure 29). 

 

 
 

 

Figure 29.  Proposed fusion based upon structural literature.  The pre-hairpin comprised of the HR-1 
stalk (green) following extension is labeled.  The hydrophobic grooves along the surface of the pre-
hairpin structure are packed by the HR-2 peptides (blue) in order to bring the cellular membrane and 
viral membrane in close proximity. Adapted from ref. 11. 
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Synthetic Peptides to Study Fusion:  Initial structural studies of type I F proteins 

focused on the important hexameric coiled-coil comprised of the HR-1 and HR-2 protein 

segments.   Peter Kim and associates used enzymatic digestion to determine the specific 

sequences associate with the HIV gp41 fusion core.14  They isolated two peptides that 

each contain a 4, 3 heptad repeat, a 51 residue segment from HR-1 (N51; residues 540 – 

590) and a 43 residue piece from HR-2 (C43; residues 624 – 686).  Biophysical 

examination of synthetic N51 and C43 demonstrate distinct differences.  The CD spectra 

of N51 contain a strong minimum at 222 nm indicative of α-helical conformation.  The 

uneven 210 and 222 nm minima indicate aggregation into non-discrete formations.   

Furthermore, the signal was found to be concentration dependent.  Also, N51 solutions 

experienced thermal denaturation and were shown to be proteinase-resistant, completing 

the profile of a strong tendency towards self-aggregation (Figure 30).  In contrast, the 

C43 peptide displayed little secondary structure.  C43 was also found to be vulnerable to 

proteinase, but was unaffected upon addition of N51 up to a 1:1 stoichiometry.    

 

 
 

 
 
 

Figure 30.  (Left) CD spectra of N51 (open circles) and C43 (filled circles).  (Right) Thermal response 
for N51 and C43.14 
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The 1:1 molar mixture of N51 and C43 was of particular importance.  CD 

analysis of the mixture resulted in a strong helical spectrum.  The helical content was 

found to be greater than the additive spectrum of the two individual peptide spectra.   

This is indicative of peptide interaction, in particular, tertiary structure formation of 

predominately α-helical conformation.  The even minima at 210 and 222 nm are 

indicative of a discrete structure.  Indeed, sedimentation measurements revealed a mass 

consistent with a 1:1 ratio of six peptides of N51 and C43.  Evidence supporting the 

hypothesis that formation of such a hexameric structure was the source of energy to drive 

fusion was obtained by determining the melting point of the N51 and C43 complex to be 

93 °C (Figure 31).  Furthermore, specialized proteolysis of the N51 and C43 complex 

with a shortened N51 missing 12 residues from the N-terminus was performed.  This 

experiment resulted in two peptide fragments, the 12 residue shortened N51 and a 30 

residue peptide from C43.  The shortened C43 peptide was truncated from the C-terminus 

indicating that N51 and C43 are aligned anti-parallel in the hexameric complex. 

 

 
 

 
 
 

Figure 31.  (Left) CD spectra of 1:1 molar mixture of N51 and C43.  (Right) Melting curve for coiled-
coil complex.14 
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Five years later, Lambert and associates conducted similar experiments with the 

HR sequences of RSV that demonstrate the similarity between type I F proteins across 

viral  families  despite  poor  sequence  homology.15   The peptides used in the study were  

 

 
 

 
 

Figure 32.  (Top) CD spectra of HR-2 peptide at 10 µM (filled circles) and 50 µM (open circles). 
(Middle) CD spectra of 1:1 mixture of the RSV HR-1 and HR-2 peptides (open circles) and the 
predicted spectrum assuming no interaction (filled circles).  (Bottom) Melting temperature data of the 
HR peptides mixture (open circles) and HR-1 peptide (filled circles).15 
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also derived from proteinase-K experiments.  The sequences used consisted of a 50-mer 

from HR-1 and a 35-mer from HR-2.  The CD studies on HR-1 suggested helical self-

association.   The self-assembled homotrimer was confirmed by sedimentation studies 

and was found to have a thermal melting point of 42 °C.    Simliar to C43 of HIV, the 

HR-2 peptide of RSV displayed random-coil monomeric secondary structure.  Upon 

mixing both peptides, an increase in helicity content was observed (86%) that was greater 

than the predicted additive spectra (55%) (Figure 32).  The thermal stability of this 

complex was discovered to be ~ 87 °C.  Sedimentation equilibrium experiments of the 

solution mixture were employed to confirm that the peptides were in a 1:1 ratio.    

The striking similarities between the HIV and RSV HR peptides and their 

interactions was further demonstrated when the crystal structures of their respective 

fusion cores were solved by Peter Kim and coworkers.16,17  While the exact sequences 

used for crystallographic measurements were not completely identical to the previous 

biophysical work on HR peptides for HIV and RSV, the sequences used were from the 

same domain and determined via proteolysis.  HIV’s core structure consisted of a 36-mer 

from the HR-1 region (N36; residues) and a 34-mer from the HR-2 region (C34; 

residues).  RSV’s structure was composed of a HR-1 peptide of 57 residues (residues 

153-209) and a HR-2 peptide of 45 amino acids (HRSV-C45; residues 476-520).  Both 

structures are of three HR-1 peptides forming a parallel, interior coiled-coil while three 

HR-2 peptides pack into hydrophobic grooves along the interior coiled-coil’s surface in 

an anti-parallel fashion (Figure 33).  Numerous electrostatic contact points line the 

hydrophobic grooves and interact with the complementary HR-2 peptide.  Another 

intriguing feature common to both structures is a hydrophobic pocket located  near  the 
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C-terminal area of the HR-1 interior core.  This deep channel is filled by bulky 

hydrophobic sidechains from the corresponding HR-2 peptide (I635, W631, and W628 

for HIV; F488 and F483 for RSV).   This cavity and the corresponding HR-2 sidechains 

were later shown to be critical for fusion in HIV, thus presenting an attractive target for 

non-biomimetic small molecule drug design.18 

 

 
 
 

 
 
 

Given the putative role of the F protein in type I viral membrane fusion, an 

attractive strategy to probe the function of the coiled-coil motif and design new antiviral 

inhibitors is to create antagonists that bind one of the heptad repeat regions and trap the 

structure prior to bundle formation, as discussed in Chapter I.  Indeed, synthetic peptides 

corresponding to both HR 1 and 2 of the HIV gp41 protein have been shown to inhibit 

viral fusion.19-21 Due to the relatively high potency of HR-2 peptides, this approach has 

been extended to peptides derived from the fusion proteins of several viruses, including 

Figure 33.  (Left) Ribbon diagram from the solved hexameric fusion core crystal of HIV-1.  The HR-1 
peptides are blue and the HR-2 peptides are in purple.  (Right) Ribbon diagram from the solved 
hexameric fusion core crystal of RSV.  The HR-1 peptides are light blue and the HR-2 peptides are in 
yellow.16,17 
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RSV,22 hPIV-3,22,23 avian pneumovirus (APV),24 Newcastle Disease virus (NDV),25 

measles virus 22 and simian virus 5 (SV5).26  It was also noted that the HR peptides were 

virus-specific; no peptide has been shown to inhibit multiple viruses.   

 

 
 
 

 
 

 

Figure 34.  (Top) Suspected mechanism of HR-2 inhibition.  (Bottom) Current paradigm for HR-1 
peptide inhibition (1), and a possible pathway for monomeric HR-1 inhibition (2). 
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These peptides are thought to function by ensnaring the complementing HR 

peptide segments in the native F protein (Figure 34).  HR-1 peptides show a strong 

tendency to self aggregate and the current paradigm has them forming homotrimeric 

bundles and then capturing a native HR-2 segment in one of the hydrophobic grooves 

along its surface.  This requirement of forming a homotrimer, as well as potential steric 

issues, may be the causes for the reported effectiveness of HR-1 peptides as fusion 

inhibitors being many times less effective than their HR-2 counterparts.14,27-30  The 

inhibition studies mentioned above all found that the HR-2 based peptides were effective 

in nanomolar concentrations.  This may be due to the HR-2 peptides working as single 

monomeric units, an hypothesis supported by the biophysical measurements of the 

individual peptides.    

The effectiveness of HR-2 peptides to disrupt viral fusion is encouraging for the 

design of biomimetic weapons against disease.  However, two drawbacks to such a 

strategy are the difficult peptide synthesis required and the potential loss of anti-fusion 

activity because of the lack of helical content shown in CD experiments.  The latter issue 

is an intriguing academic problem.  The lack of secondary structure likely prevents the 

HR-2 peptides from aggregating, but all previous studies suggest that the peptides adopt a 

helical structure in order to bind the hydrophobic grooves presented by the interior HR-1 

coiled-coil.  Sia et al. attempted to solve both problems in 2002 by chemically modifying 

short constrained HR-2 peptides from HIV-1.31  They experimented with a 14-mer 

(residues 626-639) thought to bind the above mentioned hydrophobic cavity of the fusion 

core structure.  They investigated several helix inducing strategies and found a significant 

increase   in   anti-fusion   activity   for   C-14linkmid   (Figure 35).     They   found   that  
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C-14linkmid had the greatest propensity for forming an α-helix via TFE titrations and CD 

analysis.  Furthermore, nuclear magnetic resonance (NMR) was utilized to follow 

tryptophan residues associated with the HR-1 peptide during exposure to HR-2 based 

inhibitors.  They concluded that C-14linkmid did indeed bind the hydrophobic pocket of 

HIV-1 (Figure 36).  This was later confirmed via X-ray crystallography.  The IC50 value 

of 35 µM  (Table 2, p. 71) is still ~ 1000 times higher than the values associated with the 

proteolytically derived HR-2 peptides, but it demonstrates chemical avenues for 

optimizing biomimetic, peptidyl fusion inhibitors of type I F proteins.    

Figure 35  Peptides used by Kim and associates to test short, constrained peptides as potential inhibitors 
to HIV-1.  C14wt is the wild type 14-mer,C14Aib have mutations M629Aib and N636Aib, C14linkmid 
is crosslinked at positions 629 and 636, C14unlinkmid is designed to mimic change in hydrophobicity 
of C14linkmid without the covalent constraint, C14linkN crosslinked at the N-terminus residues 626 
and 633, and C14linkNAib is a combination of C14linkN and C14aib.  "am" denotes amidated carboxy 
termini and "suc" represents a succynil modification to the N-termini.  The heptad repeat sequence is 
shown above C14wt and the mutated residues are bold.31 
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Recently several other fusion core crystal structures have been solved.6,8,12,32,33  

These structures also revealed the important structural features of a hydrophobic pocket 

within grooves on the surface of the inner HR-1 trimer, and key contact points lining the 

pockets and grooves.  These two features likely are responsible for the extraordinary 

binding strength of HR peptides and their specificity.  This chapter reports the first 

structural studies of the hMPV F protein hexameric core, inhibition of hMPV using 

Figure 36  One dimensional proton NMR of the short, constrained peptides exposed to IQN17, a 
synthetic peptide containing the HIV-1 hydrophobic pocket sequence.  The dashed lines highlight the 
resonance signals for the tryptophans in the hydrophobic pocket.  A-F are discussed in the text and G is 
a HR-1 peptide inhibitor containing d-isomers.31 
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synthetic peptides, and evidence that HR-1 peptides can exhibit inhibitory potency 

comparable to that of HR-2 peptides. 

 
 
 
 

 
 
 

Experimental 

Coiled-Coil Model: The F protein sequences of 12 paramyxoviruses were compared 

using a global PAM250 scoring matrix with a gap start of 10 (MOE 2005.06).  Heptad 

repeat (HR) regions of viruses with available coiled-coil crystal structures were aligned 

further with hMPV using a Blosum80 matrix for the HR regions.  RSV (PDB ID: 1G2C) 

was found to be the most homologous sequence with 50% identity in HR-1 and 35% in 

HR-2, and was chosen as a template.  50 models were generated and evaluated based 

upon probability density function and overall energy using the modeler package within 

InsightII (Accelyrs).  The best model was refined further in AMBER 7 in a generalized 

Born solvent model minimization.  Minimization involved 2500 cycles with protein 

backbone atoms fixed allowing sidechains to relax followed by 2500 cycles allowing all 

atoms to relax and produce the final structure.  CARNAL was used to convert the 

AMBER structure to PDB. 

Table 2  Inhibition of membrane fusion via C14 peptides.31 
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Peptide Synthesis:  Peptides were synthesized on an Apex 396 (Advanced Chemtech) 

equipped with a 96 well reaction block capable of vortex mixing.  Customized tentagel 

resin was swollen in Dichloromethane (Fisher) prior to synthesis.  9- 

Fluorenylmethoxycarbonyl (FMOC) amino acids (Synpep) were coupled using O-

Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluor-phosphate (HBTU; 5 eq with 

respect to resin; Synpep), 1-hydroxybenzatriazole (Hobt; 5 eq; Synpep), 

diisopropylethylamine (DIEA; 10eq; Advanced Chemtech) in N,N-dimethylformamide 

(DMF; Fisher).   Peptides were cleaved with 95% (v/v) trifluoroacetic acid and 5% 

triisopropylsilane and desalted on a G-25 sephadex column before final purification on a 

C4 semi-prep reverse phase HPLC column using water and acetonitrile gradients.   

Circular Dichroism:  Fusion core complexes were made at 12.5 µM total peptide in 0.15 

M PBS at pH 7.4 (Invitrogen) by mixing equimolar amounts of each HR peptide 

followed by addition of TFE or a freeze/thaw cycle.  Spectra were collected on an Aviv 

215 CD spectrophotometer equipped with variable temperature control over the 

wavelength range of 190 nm to 260 nm with a resolution of 0.5 nm and a bandwidth of 1 

nm.  The spectrometer is equipped with variable temperature control, automatic titration 

system and pH probe.  Samples were analyzed in a 300 µL strain-free quartz cell with a 

1.5 s averaging time.  The coiled-coil complex was examined for thermal stability by CD 

every 5 °C from 25 °C to 100 °C. 

Plaque Inhibition Assay:  Serial dilutions of the 1:1 peptide solutions in OPTI-MEM 

medium (Invitrogen) were added to plates containing 50-60 plaque-forming units of 

hMPV per well.  Concentrations tested were 25, 12.5, 6.25, 3.12, 1.56, 0.781, 0.390, 

0.195, 0.0977, 0.0488, 0.0244, and 0.0122 µM.  Additional HR-1 peptide testing was 
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performed at 6, 3, 1.5, 0.76, 0.38, 0.19, .0095, and 0.0048 nM.  Peptide and virus 

mixtures were incubated for 1 hour at 37 ºC.  Subconfluent cell monolayers of LLC-MK2 

cells were washed twice with PBS, and 100 µl of the peptide-virus mixtures were added 

to the cells.  Cells were incubated for 1 hour at 37 ºC with gentle rocking every 15 

minutes, then overlaid with methyl cellulose, maintaining the peptide concentration.   

Cells were incubated for 4 days at 37 ºC.  Cells were fixed with formalin at room 

temperature for 1 hour  Plates were rinsed with running water followed by incubation for 

30 minutes at 37 ºC with blocking buffer (PBS/0.1% Tween/5% nonfat dried milk).  

Blocking buffer was removed and the plates were incubated with a 1:1000 dilution of 

guinea pig anti-hMPV serum at 37 ºC for 2 hours.  The plates were washed and incubated 

with goat anti-guinea  pig  Ig-horseradish  peroxidase  conjugate  (Southern Biotech) at 

1:1000 at 37 ºC for 2 hours.  Secondary antibody was removed by washing, followed by 

the addition of TrueBlue peroxidase substrate (Kierkegarard Perry Laboratories) and 

incubation for 10 minutes.  Plates were rinsed with water and dried overnight.  Plaques 

were counted using a dissecting microscope and the average between triplicate wells 

calculated.    

Size Exclusion Chromatography:  The molecular weight of the coiled-coil complex 

was examined by size exclusion chromatography (SEC).  Peptides from both HR regions 

were mixed equimolar and their coiled-coil formation was confirmed by CD 

spectroscopy.  Coiled-coil complex and sodium polystyrene sulfonate weight standards 

were run in triplicate isocratically in 0.15 M PBS at pH 7.4 on a Waters Ultrahydrogel 

HPLC size exclusion column with a flow rate of 0.3 mL/min.  Standards had average 

masses (g/mol) of 4,950, 7,950, 16,600, 34,700, and 57,500.  Eluants were monitored at 
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wavelengths 210, 220, and 257 nm.  Coiled-coil complex elution peak masses were 

determined from linear calibration of the logarithmic weight values.   

 
 

 
 
 

Pseudoproline Incorporation:  The standard FMOC protocols described above were not 

adequate to produce sufficient quality and quantities of the HR-1 and HR-2 peptides 

(Figure 37).  To isolate the onset of aggregation, the larger LearnCoil-VMF sequences 

were broken into overlapping 15-mers and synthesized individually on custom resin.  A 

13 residue stretch (PEDQFNVALDQVF) that was difficult to synthesize was identified 

as an individual peptide within the HR-2 domain (Figure 38).  Therefore the strategy of 

pseudoproline and Hmb insertion discussed in Chapter I was employed.  Pseudoproline 

dipeptide acids (Nova Biochem) were activated for 20 minutes in DMF in the presence of 

DIC (1 eq.), DIEA (2 eq), and Hobt (1 eq.) to achieve active esters.  Next, three 

Figure 37.  (Left) HPLC of identified problem region synthesized as individual peptide.  (Right) Same 
peptide synthesized utilizing pseudoproline and Hmb schemes. 
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equivalents, with respect to resin substitution, of the active ester derivative were then 

added to the resin and allowed to mix for 24 hours.  The reaction was tested via the 

Kaiser test to ascertain completion.    

 

 
 
 

 
 

Hmb Incorporation:  Hmb-protected amino acid derivatives were purchased from Nova 

Biochem already in activated pentafluorobenzyl ester form.  The active esters were 

dissolved in DMF with 2 equivalents (with respect to resin substitution) Hobt and added 

to the resin.  The reaction was allowed 24 hours for completion as determined via the 

Kaiser test.  The subsequent amino acid was coupled via 10 equivalents of symmetrical 

anhydride.  The anhydrides were synthesized in cold DCM by the addition of 20 

equivalents of amino acid and 10 equivalents  DIC.  The result was a white precipitate 

which was added to the resin as a slurry and allowed to mix for 24 hours.  This process 

was repeated as necessary until a negative Kaiser test was achieved. 

 

Figure 38.  (Top) Overlapping 35-mer sequences derived from HR-2 used to identify problematic 
regions in synthesis.  (Bottom) Location of pseudoproline coupling (blue) and valine HMB (red) used to 
overcome aggregation challenges  
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Results 

To compare the hMPV F protein to the F proteins of related paramyxoviruses, the 

sequences  of  12 F  proteins  were  aligned  to that of  hMPV  using  a  PAM250  scoring  

 

 
 
 

 
 
 

Figure 39.  12 paramyxovirus fusion proteins aligned using a PAM250 matrix with a gap start penalty 
of 10 and an extend penalty of 1.  (1) hMPV (2) NDV (3) SV5 (4) Sendai (5) TRT (6) PVM (7) Measles 
(8) Mumps (9) PIV1 (10) PIV3 (11) hRSV (12) APV 
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matrix.34 Results indicate that hMPV had several key local alignments, including the 

predicted α helical structures in the suspected HR regions (Figure 39).  The HR regions 

then were aligned locally using a Blosum80 matrix,35 revealing a 3-4-4-4-3 stutter pattern 

characteristic of paramyxoviruses (Figure 40).32,36  The cysteine alignment patterns for 

the 12 sequences revealed eight conserved cysteines found to be involved in disulphide 

bonds within the PIV3 fusion protein.12  Within the pneumoviruses, five of the sequences 

(hMPV, RSV, PVM, APV, and TRT) displayed an additional conserved cysteine pattern 

of six cysteine residues.  These alignments suggested that the hMPV F protein has similar 

structure and function to previously studied paramyxovirus F proteins. 

 
 

 
 

 
 
 
 

To generate a computational model of the hypothesized hMPV fusion core, a 

suitable template was identified.  The available hexameric crystal structures were 

examined for sequence similarity with hMPV’s heptad repeat regions.6,8,12,13,32,33,37  The 

hMPV F protein showed the greatest homology with RSV F protein HR regions (50% in 

HR-1 and 35% in HR-2; Figure 41).  These values exceed the reasonable threshold of 

25% sequence identity commonly employed to obtain reasonable homology models.38   

 

Figure 40.  Alignment of 7 paramyxovirus HR-1 sequences displaying a 3-4-4-4-3 stutter pattern in the 
HR-1 region.  This stutter is postulated to be present in all the paramyxovirus HR-1 regions. 
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Several models were produced in the modeler package of InsightII.  

Subsequently, these models were scrutinized for overall energy and probability density 

function values to isolate the most stable model intermediate.  This intermediate 

underwent further rigorous minimization for a final model of the hMPV fusiogenic core 

(Figure 42).   The  model  displayed  several  features  akin  to  those  of other hexameric  

 

 
 
 

 

Figure 42.  Shown is the modeled hexameric fusion core of hMPV.  The sequence of the RSV fusion 
core crystal was subjected to a strong local alignment with the hMPV sequence to determine 
appropriate homology sequences for the hMPV fusion core model.  The alignment produced two hMPV 
peptides with 50% (HR-1) and 30% (HR-2) identity with the RSV peptides.  Using the RSV structure as 
a template, the hMPV peptides were grafted onto the RSV Cα backbone and allowed to minimize. 
(Left) Shown is the surface of the HR-1 trimeric stalk (red: solvent exposed, blue: hydrophilic, green: 
hydrophobic) with the HR-2 (purple ribbons) filling the hydrophobic grooves.  (Right) Axial view of 
the hexameric core.  This hexameric coiled-coil formation is the major structural feature of the F 
protein’s post-fusion conformation. 

Figure 41.  Sequence alignment of the HR regions of RSV and hMPV.  RSV sequences obtained from 
crystal structure (PDB ID: 1G2C).  The HR-1 region shows an identity of 50% between the two viruses 
while the HR-2 region has 35% identity.  (1) hMPV HR-1 (L130 to K179)  (2) RSV HR-1  (3) hMPV 
HR-2 (P448 to G487)  (4) RSV HR-2.  LearnCoil-VMF generated sequences for hMPV are boxed.  
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fusion cores.  Three HR-1 peptides form an inner helical bundle that presents three long 

hydrophobic grooves along the ~72 Å stalk.  Corresponding HR-2 peptides assume 

helical structure offering a hydrophobic face that packs in an anti-parallel fashion into the 

HR-1 hydrophobic grooves.  This configuration would allow for the fusion peptide, found 

near the N-terminus of the HR-1 stalk, to be in close proximity with the transmembrane 

anchor located at the C-terminus of the HR-2 peptide.  The presence of a hydrophobic 

pocket and key salt bridges also were identified.  The hydrophobic pocket of the hMPV 

model is comprised of residues V162, L165, V169 from one HR-1 peptide and A161, 

L165, and F168 of a second HR-1 fragment (Figure 43).  Lining the immediate exterior 

of the pocket are several polar residues contributed from HR-1 (R163, K166, D167, 

S170,  and  K171  with  E164  from a second  HR-1  fragment).  The polar residues likely  

 

 
 
 

 
 
 

contribute specificity among HR sequences,22,33 as seen by the formation of a strong ionic 

network between K166 and K171 from HR-1 and E453 of HR-2.  Overall, the hMPV 

Figure 43.  hMPV model images. (Left) Surface image of the hMPV hydrophobic pocket filled by 
phenylalanines 451 and 456 of the HR-2 peptide (red: solvent exposed, green: hydrophobic). (Center) 
RSV Phenylalanines 483 and 488 complimenting the hydrophobic cavity. (Right) Congruent leucine 
447 and isoleucine 449 of SV5 packing a hydrophobic pocket. Images produced using MOE 2005.06 
(Chemical Computing Group). 
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fusion core model was consistent with other hexameric cores found in type I viral fusion 

proteins.  The final refined hMPV model was superimposed upon the RSV fusion core 

crystal structure which has already been shown to be structurally similar to other 

paramyxovirus cores.33  The overlayed Cα and backbone nitrogen of the RSV and hMPV 

HR-1 peptide strands reveals an RMSD of 0.53 Å, and the HR-2 strands have an average 

of 0.45 Å.  Using the same superimposition technique, RSV and SV5 HR-1 peptides have 

an RMSD of 1.5 Å, and the HR-2 peptides result in a 2.78 Å RMSD.  In comparison, 

hMPV and SV5 HR-1 peptides show a 1.48 Å RMSD, while the HR-2 peptides have a 

3.55 Å RMSD.  The combined molecular surface of the hMPV model and RSV crystal 

structure showed the same hydrophobic cavity filled by the phenylalanine residues of the 

RSV and hMPV HR-2 peptides (RSV: F483 and F488; hMPV: F451 and F456).  Overall, 

the hMPV fusion core model is consistent with known type I fusion protein core 

structures. 

In the absence of available hMPV F protein, peptide sequences for synthesis and 

study had to be determined by methods other than commonly used protein 

degradation.15,33,39  The homology model of the hMPV heptad repeat regions yielded 

peptides of 50 and 40 amino acids in length for HR-1 and HR-2 respectively.  To refine 

the critical regions of the HR peptides, the hMPV F protein sequence was analyzed using 

LearnCoil-VMF.40,41  Originally developed to predict HR regions within viral fusion 

proteins, LearnCoil-VMF predicted a HR-2 of the HIV gp41 protein that mediates fusion, 

in which 80% of the overall sequence was identical to the 36-mer anti-viral, Enfuvirtide 

(La Roche).  Similarly, a predicted HR-2 from RSV had a sequence overlap of 71.4% 

with the fusion inhibitor T-118.23   For  hMPV,  LearnCoil-VMF suggested an optimal 
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43-mer peptide sequence (residues 130-172) within the HR-1 region and a 33-mer (33A; 

residues 454-486) peptide within the HR-2 region.  33B, a HR-2 33-mer shifted 5 amino 

acids to the N-terminus of the LearnCoil-VMF 33-mer, was synthesized to better 

complement the hydrophobic pocket within the fusion core model developed above. 

The target peptides were synthesized and their solution-phase secondary structure 

was examined using circular dichroism spectroscopy in 0.15M PBS (pH 7.4) at 25 °C.  

Unexpectedly, the HR-1 peptide showed a lack of helical structure (< 25%).  Previous 

HR-1 peptides from other viral fusion proteins have been shown to contain a significant 

α-helical content.15,22-24,32,42,43  The spectra of 33A and 33B also displayed little secondary 

structure content consistent with previously reported HR-2 peptides.  When the HR-1 and 

HR-2 peptides were combined at a 1:1 molar ratio, an additive spectrum was obtained 

indicative of no higher order complex formation (Figure 44).   

Based upon the fusion model and sequence analysis above, the HR-1 peptide 

should possess a propensity to adopt an α-helical structure.  Trifluoroethanol (TFE) and 

thermal modulation 44 provide avenues for inducing the targeted helix confirmation.   The 

HR-1 peptide showed a strong helical spectrum with as little as 2.5% (v/v) TFE that 

plateaued at 5% additive.  In contrast, HR-1 showed no increase in observed intensity at 

224 nm following a freeze/thaw cycle.  The HR-2 peptides were unaffected by the 

addition of small volumes of TFE (up to 5% (v/v)) or thermal cycling. 

Peptides from both HR regions were mixed in the presence of 5% TFE, and the 

intensity at 224 nm was greater than the additive spectra of the individual peptides in 

TFE.   Such  an enhancement of helicity indicates the formation of the desired coiled-coil  
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assembly.  The use of more than 5% TFE did not cause an additional change in the 224 

nm signal, suggesting that the maximal amount of peptide had transitioned to the putative 

hexameric core.  After thermal cycling of an equimolar mixture of HR-1 and 33A, the 

CD spectrum exhibited the expected enhanced coil-coiled trace similar to that of the 

mixture in the presence of TFE (Figure 44).  A mixture of HR-1 peptide and 33B showed 

similar behavior.   

The known viral F protein cores have been shown to have unusually high melting 

temperatures compared to similar length helical bundles.6,8,15,24,33,45  The melting curve of 

the hexameric core of hMPV formed by HR-1 and 33A, obtained from a freeze/thaw 

cycle, gave a Tm ~ 90 °C (Figure 45).  This is consistent with the previously reported Tm 

Figure 44.  Circular Dichroism of Coiled-Coil   Both the HR-1 and HR-2 (33A) peptides show little 
secondary structure at 25°C (HR-1 43-mer (Ο), HR-2 33A ( )). Mixing of the two HR peptides 
produced only an additive spectrum indicative of no interaction (equimolar mixture at 25°C ( )). The 
same equimolar mixture at 25°C following a freeze / thaw cycle adopted the putative coiled-coil ( ). 
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of 88 °C for the RSV F protein hexameric core.33  The melting temperature obtained from 

the 33B and HR-1 complex was found to be ~ 85 °C.   

 

 
 

 
 
 

To investigate the aggregation state of the putative hexameric core, the induced 

peptide structure was examined by size-exclusion chromatography.  The chromatograms 

of the peptide solutions yielded two pronounced and well resolved peaks.  The major 

peak corresponded to a mass of 24,802 g/mol + 135 (retention time: 26.1 min + 0.02).  

The theoretical mass of the hexameric core formed from the LearnCoil-VMF peptide 

sequences is 24,933 g/mol.  Furthermore, given the mass difference between the HR-1 

and HR-2 peptides, non-hexameric structures and structures with a ratio other than 1:1 for 

HR-1 to HR-2 would fall outside of the standard deviation of the experiment.  The second 

peak at 23.4 min.  (+ 0.03) corresponded to a mass consistent with 12 peptides in a 1:1 

ratio of the HR peptides.  The fractions containing the hexameric and dodecameric 

Figure 45.  Melting point curve for the HR-1 and 33A peptides following a freeze/thaw cycle. 
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peptide assemblies were isolated and both were found to contain helical content 

consistent with the coiled-coil core.  Additionally, the relative composition of the sample 

was found to shift towards the dodecamer over a 24-hour period, suggesting slow 

dimerization of the hexameric core. 

 

 
 

 
 
 

Peptides corresponding to the HR sequences of other hexameric F protein cores 

have been shown to be potent inhibitors of viral propagation.6,15,19-25,32,43,46,47  The hMPV 

F protein HR sequences predicted by LearnCoil-VMF and the 33B peptide were tested 

and shown to inhibit viral growth.  Peptide 33B mediated very little inhibition at the 

maximum test concentration of 25µM.  Peptide 33A caused significant viral inhibition 

with an EC50 ~ 165 nm.27,43  Surprisingly, the HR-1 peptide showed exceptional 

inhibition with an EC50 ~ 46 nM , at least 1000 times more potent than previously 

reported HR-1 peptides (Figure 46).27,28,48 

Figure 46.  Dose  Response Curve Data of the HR peptides was obtained by adding virus and peptide to 
confluent cells for 1hr.  A layer of methyl cellulose was added and maintained the peptide 
concentration.  Anti-hMPV guinea pig primary antibodies were then utilized followed by an anti-guinea 
pig secondary antibody linked to horseradish peroxidase in order to detect foci.  Data was fit using the 
Hill-Slope model.  The HR-1 peptide was found to be a very potent inhibitor (EC50 ~ 46 nm) 
comparable with reported HR-2 peptides.  33A was never able to achieve > 50% activity. 
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Discussion 

The recently discovered paramyxovirus hMPV is one of the most common causes 

of serious lower respiratory tract illness in infants and children.1,2  The studies described 

above show that the fusion protein of hMPV possesses a high level of homology at the 

nucleotide sequence level and at the level of predicted protein structure to other type I 

integral membrane viral fusion proteins.  Peptides from the HR regions of the hMPV F 

protein inhibited virus-cell fusion, bolstering the hypothesis that the hMPV F protein 

functions through a HR peptide-sensitive membrane fusion mechanism similar to that of 

SV5,32 RSV,15 and HIV-1.21   

Homology modeling suggested the presence of key electrostatic contacts and a 

hydrophobic pocket akin to that seen in the SV5, RSV, and hPIV3 F proteins that are 

characterized structurally.12,32,33  Within the hMPV fusion core model, several polar 

groups line the hydrophobic cavity.  Analogous residues in related paramyxoviruses 

appear to convey specificity among virus-derived HR-2 peptides.22,33  The hydrophobic 

pocket proposed by the hMPV F protein model is complemented by two phenylalanines 

(F451 and F456) of a HR-2 strand, and exhibits homology with the hydrophobic F483 

and F488 residues found in RSV F protein and the L447 and I449 residues of SV5 F 

protein.  Docking of small-molecule antagonistic drugs within the hydrophobic cavity or 

interference with critical ion pairs has been shown previously to inhibit fusion of 

hMPV.49 

LearnCoil-VMF was employed as a tool to analyze the hMPV F protein to 

determine potential target peptides for physical characterization of the fusion core.  

LearnCoil-VMF is similar to generic helical dimer and trimer prediction algorithms such 
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as PairCoil 50 and MultiCoil,51 but it is biased to hexameric coiled-coil assemblies from 

viral membrane F proteins.  Based on the ability of LearnCoil-VMF to predict sequences 

that encompass sequences of well-studied fusogenic core peptides, the HR-1 43-mer and 

33A peptides were selected for synthesis.  The homology fusion core model also 

suggested study of peptide 33B in order to examine any potential advantages of targeting 

the hydrophobic cavity.   

Characterization of HR-1 and HR-2 peptide interaction is consistent with a 

hexameric coiled-coil fusion core for hMPV.  Following helical induction, assembly of 

the hexameric coiled-coil resulted in CD spectra containing α-helical content 

substantially greater than the additive spectra of the individual peptides.  This α-helical 

species also was determined to have a melting temperature (Tm ~ 90 ˚C) consistent with 

that of other described viral fusogenic cores.6,8,15,32,33  SEC determined the mass of the 

induced samples to be consistent with the expected hexameric moiety in a 1:1 HR-1 to 

HR-2 ratio.  This ratio is consistent with analytical sedimentation analysis, described by 

Lawless-Delmedico et al. of peptides derived from HR regions of RSV.15  The 

sedimentation analysis of the RSV peptides found evidence of monomers, HR-1 trimers, 

and a hexameric structure with a 1:1 ratio of RSV’s HR-1 and HR-2 peptides.15  In 

contrast, the peptides of hMPV did not exhibit self-trimer aggregation by SEC analysis, 

consistent with the absence of α-helical content observed for HR-1. 

Requisite induction of the hMPV HR-1 peptide from a predominantly random 

conformation to an α-helix illustrates subtle differences between experimentally 

determined HR sequences and those identified by LearnCoil-VMF.  One such difference 

between previously reported HR-1 peptides determined from enzymatic footprinting 
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experiments and the hMPV LearnCoil-VMF HR-1 peptide is the lack of helical structure 

or aggregation of the hMPV HR-1 peptide.15,22,32,33  A small volume of TFE produced a 

strong α-helix signal from the HR-1 solution, thus demonstrating the propensity for 

aggregating into the three-helix bundle comprising the inner stalk of the fusion core.  The 

subsequent addition of a HR-2 peptide caused the hexameric assembly to form.  These 

data suggest that the HR-1 helical transition prior to exposure to HR-2 peptides 

contributes significantly to the mechanism of the fusion process.   

Fusion of paramyxoviruses with their target cellular membrane requires protein-

driven cellular docking, activation of the pre-fusion F protein, and a conformational 

change of the F protein into the post-fusion state containing a hexameric coiled-coil.9,47,52  

Following activation, the HR-1 peptides of the trimeric F protein aggregate into the 

central helical bundle of the hexameric core.  The membrane targeting fusion peptide 

presents on the tip of the trimeric HR-1 peptide bundle.  The fusion peptide inserts itself 

into the target cellular membrane, resulting in a pre-“hairpin” intermediate (Figure 47.1).  

This intermediate presents the hydrophobic grooves of the HR-1 bundle to the HR-2 

peptides for binding in an anti-parallel fashion, resulting in the formation of a 

thermostable hexameric coiled-coil core.  This conformational juxtaposition of the HR 

regions results in close proximity of the viral membrane to the target host cell, which 

facilitates subsequent fusion of the virus and cell membranes.  The conversion from the 

pre-fusion to post-fusion structures has become a popular target of peptidyl anti-fusion 

antagonists. 
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Recent work involving type I integral membrane fusion protein inhibition has 

focused on peptides derived from HR-2 regions due to their remarkable potency against 

viral fusion.47  The postulated mechanism of inhibition for the HR-2 peptides involves 

binding of the helical monomers to the hydrophobic groove presented along the surface 

of the HR-1 bundle.  Binding of the synthetic HR-2 peptides prevents native HR-2 

Figure 47.  (1) Proposed mechanism between type I fusion proteins and cellular membranes.  Following 
cellular docking, a transient prehairpin complex arises as a result of a conformational change in the F 
protein.  This results in the insertion of the fusion peptide into the cellular membrane and the exposure 
of the HR-1 trimer.  The previously constrained and sequestered HR-2 peptides migrate to pack 
hydrophobic channels of the HR-1 trimer resulting in the coiled-coil complex and membrane fusion. 
(2) Possible routes of inhibition by utilization of synthetic HR-1 peptides: (A) monomers aggregate into 
a synthetic trimer sequestering a native HR-2 peptide, and (B) monomeric synthetic units of HR-1 
intercalating into native trimer stalk  
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peptides from reaching their target.  The synthetic peptides thus are able to arrest the 

fusion protein intermediate.  The hMPV HR-2 peptides, 33A and 33B, failed to achieve 

anti-fusion activity comparable to optimal HR-2 peptides previously described.20-24  

While peptide 33B did not affect fusion, the LearnCoil-VMF predicted peptide 33A 

exhibited a titratable response that failed to reach >50% inhibition up to 25 µM.  While 

the final sequences used in this study were taken directly from LearnCoil-VMF, previous 

work has shown significant fluctuations in anti-fusion activity between peptides offset by 

as little as a single residue in the HR sequence.  In studying the HR-2 region of the RSV 

F protein, Lambert et al. examined a single offset scanning library of potential inhibitors 

and found, for example, EC50 values differing more than fivefold between the 

consecutive peptides T-106 and T-107 respectively.22  Current work towards 

development of an optimal peptide inhibitor for hMPV involves investigation of a more 

exhaustive set of peptides from the HR-2 region. 

The current paradigm for HR-1 peptide inhibition suggests that the synthetic HR-

1 peptides present as a helical trimer and then ensnare one or more of the native HR-2 

peptides (Figure 47.2A).20,27,43,53  Prior to this study, HR-2 peptides always have been 

reported to exhibit fusion-inhibiting activity that is orders of magnitude more potent than 

HR-1 peptides.  It has been hypothesized that strong HR-1 aggregation is partly 

responsible for the weak inhibitory properties of HR-1 based peptides, as such 

interactions would create steric complications and require at least 3 times the 

concentration of HR-1 peptides relative to HR-2 peptides, which are thought to inhibit in 

a  monomeric state.48  For this to be true in this study, a required helix inducer would 

need to be present on the cellular or viral surface.  While the present research does not 
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rule out the involvement of such an inducer, the phenomenon would likely depend on 

concentration; but this prediction is not supported by the strong fit of the Hill-Slope 

response model.54 

An alternate inhibition mode for HR-1 peptides postulates that monomeric HR-1 

peptide could insert and substitute for a native HR-1 peptide in the trimeric bundle.  

Indeed, the body of evidence in this study suggests a possible intercalation of the HR-1 

peptide into the fusion protein prior to or during fusion (Figure 47.2B).  The absence of 

interaction amongst the HR-1 and HR-2 peptides in the CD analysis suggests that the 

HR-1 peptide does not inhibit as a dimeric or trimeric unit with an ensnared HR-2 

peptide.  Furthermore, the SEC data does not indicate the presence of the HR-1 helical 

bundle, unlike the trimeric HR-1 bundle seen in RSV sedimentation data.   

Yin et al. recently solved the pre-fusion structure of the parainfluenza virus 5 F 

protein, previously mentioned.11  The crystal displays the HR-2 peptides in a helical 

bundle associating the transmembrane domain with the viral membrane.  The HR-1 and 

fusion peptide sequences are sequestered within the globular head.  This structure 

suggests a possible intermediate target for an intercalating HR-1 peptide.  In order to 

expose the fusion peptide for insertion in the target membrane, the HR-1 peptides must 

extend into a helical bundle outward from the viral membrane.  During stalk extension, 

incorporation of a synthetic HR-1 peptide is not unreasonable.  This would result in 

failure of the fusion peptide to reach its final position within the target membrane, and 

would likely arrest subsequent folding and fusion. 

The compilation of data in this study provides evidence for the structural and 

functional relationship of the hMPV F protein to that of other paramyxoviruses.  The 
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study identifies the first HR-1 derived peptide with potent fusion-inhibition activity.  

While previous research concluded that HR-1 peptides could be effective inhibitors of 

type I integral membrane fusion proteins when constrained and presented as trimeric 

helical bundles,27,43 the data in this study suggests that intercalation of individual HR-1 

peptides can lead to effective viral inhibition.  To find the optimal peptidyl anti-fusion 

agent, synthesis and testing of a scanning HR-1 library combined with the ongoing HR-2 

library should isolate the ideal peptide length and sequence for further modification.  Dye 

transfer experiments, intermediate capture experiments and peptide labeling will help to 

elucidate  which  critical intermediates and functions are being arrested by the hMPV 

HR-1 peptide inhibitor and will shed new light on the mechanism of action of viral fusion 

proteins. 

 

Current and Future Work 

Preliminary work with hMPV HR offers encouragement that an optimized peptide 

based anti-viral can be identified and tested.  LearnCoil-VMF identified the first 

generation of HR peptides for study, but weak inhibitory properties associated with the 

HR-2 peptide demand further refinement and optimization to reach an effective EC and 

IC50.   The unexpected inhibition and the physical properties of the HR-1 peptide open a 

new avenue, previously disregarded, for peptide based inhibitors for all type I membrane 

bound fusion proteins.  The known F protein crystallographic data as well as computer 

modeling will be used to generate structural, functional, and inhibitory information from 

a second generation of HR-2 and HR-1 based inhibitors.    
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The extension of the 33-mer predicted to include E453 is likely to convey an 

increase in anti-fusion activity.   Extending  the  HR-2 sequence 3 residues towards the 

N-terminus will include the contact point predicted by the hMPV model.  This will also 

give a length commonly associated with HR-2 fusion inhibitors.  Overall helical content 

has shown a correlation with anti-fusion activity in HIV.  Therefore, work continues to 

modify the termini of the second generation HR-2 peptides with one of several helix 

promoters that have been shown to be effective in fusion inhibiting peptides.  The ability 

of these modifications, such as N-terminal succinyl and acetyl groups in conjunction with 

C-terminal amide formation, to induce α helix conformations is thought to reside in their 

hydrogen bonding ability.22,42,43  These extra bonding sites likely reduce the entropic 

penalty to helix formation for the four terminal residues on either end of the peptide.   

This would be particularly useful in the extended HR-2 peptide where E453 would likely 

be included near the N-terminus.  It has also been shown that constraining the HR-2 

peptides into rigid helical structures confers increased activity against viral-fusion.19,55  

This method, discussed above, has been accomplished previously by the careful addition 

of glutamine residues into the HR-2 peptide followed by covalently linking the amide 

sidechains via a short hydrocarbon linker.  This constraint helps lock helical loops into 

the desired conformation.  To improve the inhibitory activity of the HR-2 peptides, 

conformational constraints and helical-inducing terminal modifications will be added to 

the peptides. 

Preliminary results with the LearnCoil-VMF HR-1 sequence of hMPV offer a 

new avenue for mechanistic studies and peptide inhibitor design for type I fusion 

proteins.  Previously, only HR-1 peptides isolated from enzymatic degradation and other 
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biophysical experiments designed to isolate stable protein domains were tested as 

inhibitors.  These HR-1 peptides were found to be ~ 1000 times less potent than their 

HR-2 counterparts.21,27,28,56  The weak anti-fusion activity of HR-1 peptides is thought to 

come from aggregation into a trimeric helical bundle which subsequently ensnares a 

native HR-2 peptide.  A required 3:1 ratio of HR-1 peptides to fusion protein and 

increased steric issues of a large helical bundle causing poor inhibition of fusion form a 

reasonable hypothesis.  Therefore, many type I fusion proteins have had their HR-1 

sequences ignored or unreported as part of a broad inhibitory peptide library.22  The 

hMPV HR-1 peptide isolated by LearnCoil-VMF has distinctly different structural 

properties when compared to the enzymatically derived sequences in the literature.  The 

most notable of these distinctions is the lack of helical content in solution.  This 

conclusion is supported by CD data, absence of a HR-1 trimer in the size exclusion 

chromatograms, and the strong fit of the nanomolar inhibition data to the Hill-Slope 

model.  These results strongly suggest the HR-1 peptide is inhibiting hMPV growth as a 

single monomeric peptide.  If the hMPV LearnCoil-VMF 43-mer is indeed functioning as 

a monomeric unit, then it is likely to be inhibiting a different fusion protein intermediate 

than the HR-2 counterparts.  Identifying a possible route of action for the hMPV HR-1 

peptide was greatly enhanced by Yin et al. providing crystallographic data of type I 

fusion proteins in both the pre-fusion and post-fusion conformations.11,12   

A critical step in fusion protein activity is the extension of several short helical 

domains outward from the globular head of the pre-fusion protein in order to create the 

native, trimeric HR-1 stalk.  This ‘stalk extension’ is likely the target of a monomeric 

HR-1 peptide inhibitor.  It can be hypothesized that the hMPV 43-mer is able to 
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intercalate into this critical structure during stalk extension.  This would result in an 

improperly folded and inactive fusion protein.  Given the effectiveness of an unmodified, 

first generation HR-1 inhibitor, it is reasonable to assume an optimized sequence with 

effective modifications will likely surpass HR-2 peptides in anti-fusion activity.   

Therefore, two experimental methodologies are being explored to identify new HR-1 

based inhibitors.  The first approach is aimed at locating a shorter, easier to synthesize 

segment from the current LearnCoil-VMF HR-1 43-mer.  Additionally, this experiment 

will be designed to also isolate critical regions within the HR-2 region.  A second, and 

novel, approach to HR based inhibitors is a rational design to the creation of second 

generation HR-1 peptide inhibitors based on computer modeling and available 

crystallographic data.  This could avoid costly and time consuming production of lengthy 

difficult peptide libraries as a means to optimize a sequence for inhibition. 

Preliminary work in the first approach, identifying a short, effective peptide from 

within the HR-1 43-mer, has demonstrated early success.  The experimental design is 

based upon taking an expanded sequence from each HR region and dividing them into 

relatively easy to produce 21-mers (Figure 48).  Given the critical requirement of helical 

content discussed throughout this chapter, these peptides were analyzed for helical 

content and propensity (Table 3).  Additionally, concentration dependent conformations 

were analyzed at 25uM, 50uM, and 100uM of the peptide in order to assess self assembly 

commonly seen with HR-1 peptides.  One notable observation was the aggregation of 

several segments when the concentration was raised from 50uM to 100uM.  Furthermore, 

each  of  the  HR-1 21-mers was mixed individually with all the members of the HR-2 

21-mers.  N21B,  from  the  N-terminal HR (SEVTAIKNALKKTNEAVSTLG), has been 
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Table 3.  Helicity of overlapping 21-mer peptides in buffer and TFE. 
 

Peptide Buffer(0.01M PBS) 50% TFE 
 θ224 θ224/θ210 θ224 θ224/θ210 

N21A -2263 0.49 -8564 0.82 
N21B -1400 0.51 -15958 0.87 
N21C -633 0.41 -3835 0.75 
N21D -1455 0.43 -7217 0.70 
N21E -1370 0.46 -7584 0.69 
N21F -209 0.36 -3752 0.79 
N21G -1455 0.43 -7217 0.70 
N21H -1334 0.54 -9293 0.81 
C21A -665 0.36 -1115 0.52 
C21B -1277 1.5 -2538 2.5 
C21C -959 0.45 -1965 0.71 
C21D -663 0.37 -2330 0.77 
C21E -1148 .413 -7909 .854 
C21F -745 0.39 -3852 0.82 
C21G -1374 0.51 -6640 0.81 
C21H -695 0.45 -3295 0.75 

* θ in units of deg·cm2/dmole 

 

Figure 48  Sequences of extended LearnCoil-VMF HR regions and the 21-mers synthesized.  Sequences 
of N-HR (top) and C-HR (bottom). 
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identified as being most reactive with the C-terminal HR peptide segments.  N21B 

mixtures  containing  1:1 ratios  of  C21E,  C21G, and the full length  LearnCoil-VMF 

33-mer all display an increase in helical content that is greater than the simple addition of 

the two peptides in solution.  The large increase in the 224 nm band coupled with the loss 

of the 210 nm band indicates a tightly constrained and stable helical species (Figure 49).  

At the time of this writing, the 21-mers are being tested as fusion inhibitors. 
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The experimental design of the second approach will be based on the SV5 pre-

fusion crystal (PDB ID: 2B9B) and the current hMPV fusion core model.  There are 

several helical subunits located within the globular head of the pre-fusion SV5 structure 

(Figure 26, p. 57).  These units make up a large portion of the hexameric SV5 post-

fusion core structure (PDB ID: 1SVF).  Additionally, LearnCoil-VMF predicts a 47 

residue sequence (129-175) also found in these helical subunits.  It can be hypothesized 

Figure 49.  CD spectra of 21-mer N21B and 21-mer C21G mixture.  These shorter peptides display a 
propensity to interact and form higher order structures such as a hexameric coiled-coil. 
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that hMPV’s pre-fusion structure also contains congruent helical subunits which undergo 

stalk  extension  during  the  fusion  process,  and  exposure of the protein  to  monomeric  

 

 
 

 
 

A) 

B) 

C) 

D) 

Figure 50.  Stalk extension inhibitors (blue) based on (A) the LearnCoil-VMF HR-1 peptide (#6), (B) 
Peptide (#9) overlapping the fusion core peptide with near region of stalk, (C) Peptide (#10) helix from 
the mid-region of the extended stalk, (D) Peptide (#X11 helix-coil from the head region of the stalk). 
Note: All peptides undergo dramatic conformational shift assuming a strong helical conformation in the 
post-fusogenic form of the F protein. 
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HR-1 peptide inhibitors containing these sequences will interfere with stalk extension 

rendering  an  inactive  fusion  protein  (Figure 50).  By  effectively  aligning  the  hMPV 

sequence and fusion core model to identify the likely sequences of these helical subunits, 

they can be tested individually for anti-fusion activity (Table 4).  This will also increase 

the likelihood of isolating a shorter, easier to synthesize peptide inhibitor.  Furthermore, 

the previously discussed helical-promoting elements can be used to trigger HR-1 

aggregation typically seen in proteolytically derived sequences.  These experiments will 

likely lower the ability of the peptide to inhibit fusion.  The data gained from an 

intercalating peptide sequence being converted to a less effective helical aggregate will 

provide insight into peptidyl anti-viral drug design as well as illustrate a new path for 

mechanistic intermediate arrest and study.    

 

 
Table 4.  Peptide inhibitors to be examined in this study 

. 
Peptide Residues HR 

Inhibitor 
Description 

1 454-486 HR 2 LC-HR-2 Sequence 
2 451-486 HR 2 Computer homology model HR 2  
3 451-488 HR 2 LC + 3 N-Term. Res. + helix inducer termini 
4 451-486 : 454 X 461 HR 2 2 + covalent helix constraint 
5 Unknown HR 2 Defined by F-protein footprinting 
6 130-172 HR 1 LC Sequence 
7 130-179 HR 1 Computer homology model HR 1 
8 Unknown HR 1 Defined by F-protein footprinting 
9 114-144 HR 1 Stalk Inhibitor 
10 178-204 HR 1 Stalk Inhibitor 
11 209-236 HR 1 Stalk Inhibitor 
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CHAPTER III 

 

AMINE-TERMINATED DENDRIMERS AS BIOMIMETIC TEMPLATES FOR 
PROTEIN ENCAPSULATION WITHIN SILICA NANOPARTICLES 

 

Introduction 

Biologically active molecules are being used as tools in an increasingly diverse 

set of research fields ranging from synthetic organic chemistry to physics and materials 

development.  Many uses for biomolecules such as biologically active materials, organic 

synthesis reagents, and reaction reporter, have been hindered by the reality that many 

biological reagents and components require additional separation procedures and have a 

poor shelf life.  Previous work has shown that materials containing functional enzymes 

within a silica matrix offer increased stability over time and improved strategies for 

product recovery.1,2  Unfortunately, many active silica materials are plagued by 

limitations stemming from inefficient loading and the limited scope of biomolecules that 

survive typical encapsulation reaction conditions.3-10  Some recent approaches are able to 

achieve increased encapsulation efficiencies for a wider array of biomolecules, but 

require lengthy and laborious processing.11-14  

Other recent attempts to stabilize biomacromolecules encased in silica using 

methods inspired by natural biomineralization processes have been reported to offer a 

rapid benchtop approach.2,15-18  One biomimetic solution is to encapsulate the 

biomolecule in silica nanoparticles via a class of peptides related to the silaffins discussed 

in Chapter I.  Silaffin peptides function in a self-assembled template to catalyze the 

formation of silica nanoparticles into the intricate biological structures of oceanic 
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diatoms.19  The native silaffin peptides are highly post-translationally modified, having 

phosphorylated serines and modified lysines containing ε-N-dimethyllysine, 

phosphorylated ε-N-trimethyl-δ-hydroxylysine, or long chain N-methyl derivatives of 

polypropylenimine. Isolated silaffin inspired peptides have been able to produce spherical 

mesoporous silica nanoparticles of various sizes from hydrolyzed silicic acid.20  Indeed, 

this biomimetic approach has been adopted with a variety of amine sources providing a 

wide range of encapsulated molecules.21-23  

Silica Precipitating Peptides:  Chapter I discussed the process of mitosis undertaken by 

oceanic diatoms.  Formation of the frustule requires transportation, condensation, and 

deposition of silicic acid in the SDV.  In one of the first studies of this biomineralization, 

Kröger et al. showed that diatoms employ specific peptides and polyamines for the 

biogenic synthesis of silica.  The silaffin peptide extracted from the frustle of C. 

fusiformis was shown to moderate the direct precipitation of silica from a silicic acid 

solution.24  Terminal amino acid degradation revealed a large amount of homology 

between all of the silica precipitating peptides generated from C. fusiformis.  

SSKKSGSYSGSKGSKRRIL was finally determined to be the critical amino acid 

sequence for silica precipitation.  This peptide, deemed the R5 peptide, contained many 

post-translational modifications to the lysine and serine residues.  The lysines were 

affixed with highly branched chains of polyamines, mostly by methylated 

polypropylenimine, while the serines were phosphorylated (Figure 51).  Mass 

spectrometry confirmed the post-translational modification structural analysis. 24,25  

 

 



 106

H3N S S K K S G S Y S G S K G S K CO2

HO3PO OPO3H OPO3H OPO3H OPO3H OPO3H OPO3H

NH2

NH2

N

NH

NH

H

OH

H

N

HO3PO

H

NH2

NH2

N

NH

n = 4 - 9

m = 4 - 9

 
 
 

 
 

 

As Frigeri et al. demonstrated, the post-translational modifications of the lysine 

and serine residues of the silaffin peptides are of particular importance.26  Studies from 

multiple species have exposed these modifications to be species specific.24,25  Many of 

the free polyamines are strongly associated with the frustule and have been shown to 

precipitate silica in vitro from solutions of silicic acid.27  One reasonable series of events 

would occur via interactions of the amine moieties with the silicic acid driving the 

hydrolysis of the precursor into the formation of silica (Figure 52).   

Due to the significance of sidechain modifications, one of the key aspects to 

diatom research revolves around the extraction technique.  Extracting the peptides from 

the cell frustule under harsh conditions, such as hydrofluoric acid exposure, cleaves the 

phosphate group, leaving only the hydroxyl groups of the serine residues.  Under 

identical  reaction  conditions  capable  of  precipitating  silica  in  the  presence  of native  

 

Figure 51.  natSil-1a with alkylated lysine residues and phosphorylated serines. 
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silaffins, the dephosphorylated peptides produced little or no silica production. Charging 

these dephosphorylated peptide solutions with various concentrations of phosphate 

induces silica production in a linear dependence which plateaus once activity matches 

that of native silaffins at a concentration of 30 mM phosphate (Figure 53).24,25  

Phosphate addition reconstitutes the ionic crosslinkage network to form aggregates 

capable of biosilification.  This further supports the hypothesis of phosphate groups 

associated with the serine residues promoting an electrostatic assembly of multiple 

silaffin units to form a supramolecular assembly.  This moiety would generate the locally 

high concentration of polyamine to drive silica precipitation.25  Indeed, an ionic network 

created by phosphorylated serines was finally confirmed by 31P NMR experiments 

showing peak broadening due to the aggregation in solution at pH 5.5.  Extrapolation of 

Figure 52.  Amine mediated condensation of silicic acid.  R5 peptide aggregate is representated in 
orange and nascent silica nanoparticles in green. Provided by Sarah Sewell. 
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the peak broadening reveals that approximately 700 peptide sequences can self assemble 

into a network.25 

 

 
 

 
 

An interesting observation noted by Kröger et al. was the ability of the synthetic, 

unmodified R5 peptide to precipitate silica.  This was unexpected considering the 

absence of the polyamine-to-lysine adducts as well as phosphorylation of the serines.  

Further analysis revealed a significant difference in the pH profiles for silica deposition 

between silaffin and the unmodified synthetic R5 peptide from C. fusiformis.  One 

substantial difference between native silaffins and the unmodified R5 peptide was the 

difference in pH required to produce the maximum amount of silica particles.  The non-

modified R5 peptide precipitated silica with a maximum activity at pH 7.0, but silaffins 

have been shown to have optimal silica precipitation activity at pH 5.0 (Figure 54).24   

Figure 53 .  Phosphate dependence of the non-phosphorylated silaffin; Provided by Dr. Marc Knecht 
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N/A0.17 ± 0.1SGSKGSKEEIL10

N/A0.24 ± 0.2SGSKGSKAAIL9

60 - 3002.88 ± 0.3SSKKSGSYRRIL8

60 - 3003.17 ± 0.2LIRRSSKKSGSY7

85 – 1301.29 ± 0.2SSKKSGSYSGSKGSK6

150 – 3002.70 ± 0.2SGSKGSKRR5

125 – 2003.29 ± 0.2KSGSYSGSKGSKRRIL4

180 – 4003.35 ± 0.3SGSKGSKRRIL3

N/A0.08 ±
0.05SSKKSGSY2

250 – 4503.59 ± 0.2SSKKSGSYSGSKGSKRRIL1

Particle 
Size (nm)

Specific
Activity*SequenceNumber
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Table 5.  The silica precipitating truncate and mutant peptides and their activities.  *Specific activity 
listed as nmol of silica/(nmol peptide * min).  Provided by Dr. Marc Knecht 

Figure 54.  pH dependencies of silaffin and the R5; Provided by Dr. Marc 
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This unexpected enigma of silica production from unmodified synthetic R5 was 

investigated by Knecht et al.  Their mutational study (Table 5; Figure 55) of R5  

revealed a critical C-terminal RRIL motif that serves as an organizing element for 

supramolecular formation of peptide assemblies observable by dynamic light scattering.28  

This complex also offers a locally high concentration of primary amine side chain 

residues to drive in vitro silica condensation.  Again, the formation of silica dioxide from 

silicic acid solutions is driven by the formation of a complex aggregation of amino acid 

based molecules to achieve a locally high amine concentration. 

Recent work with a variety of polyamines such as poly-L-lysine,29 

pentapropylenehexamine30 or poly-allylamine hydrochloride31,32 reveals that silica 

condensation can be driven by a variety of sources rich in amine moieties. One such 

study was performed by Manfred Sumper and associates in 2004.31  The researchers 

Figure 55.  Silica production from the mutant and truncate peptides at concentrations of 2 mM.  12* 
refers to a blank measurement.  Provided by Dr. Marc Knecht 
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wanted to determine the role of anions and the effect of poly-allylamine hydrochloride 

(PAA) aggregation on silica precipitation.  PAA exhibits a long chain polyamine 

structure similar to the silaffins isolated from diatoms.  Previously, PAA had been shown 

to precipitate silica from silicic acid.33,34  The investigators discovered that without at 

least 0.3 [Pi]/[ru] of phosphate, silica would not precipitate from the PAA and silicic acid 

solution.  They reasoned that in the absence of sufficient phosphate concentrations, PAA 

would fail to aggregate into large moieties lending locally high amine concentrations.  To 

test this hypothesis, dynamic light scatter was used to determine the PAA moiety’s size 

as a function of phosphate concentration (Figure 56).  They found a direct correlation 

between   the  amount  of  phosphate  in  solution  and  the  size  of  the  PAA  aggregates. 

 

 
 
 

 

Figure 56.  Diameter, d, of PAA aggregates determined by dynamic light scattering as a function of 
phosphate concentration per repeating unit (ru) of PAA.  Dashed line indicates the minimum phosphate 
concentration required for silica precipitation.31 
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Additionally, the required 0.3 [Pi]/[ru] of phosphate produced significant PAA 

aggregates.  Indeed, the solutions containing the larger aggregates began to display a 

cloudy mixture consistent with the presence of ever larger PAA aggregates.  NMR 

analysis showed that PAA concentration in the supernatant of the cloudy mixtures 

experienced a decrease as more phosphate was added.  Therefore, it was not unexpected 

to observe that solutions with greater than 0.5 [Pi]/[ru] failed to produce silica.  They 

concluded from these experiments that microscopic phase separation was a requirement 

for the biomimetic silification from primary amine sources.   

Their hypothesis of requisite PAA aggregation in order to condense silicic acid 

was further supported by the increase in size of the silica nanoparticles produced as the 

concentration of phosphate increased.  This would be expected because the organic 

scaffolds used by diatoms to template biogenic silica are incorporated into the silica as 

discussed in Chapter I.  Therefore, larger PAA aggregates being engulfed by silica would 

be expected to produce larger silica particles.  Furthermore, these trends were found to be 

identical when sulfate was substituted for phosphate.  However, chloride, a monovalent 

ion, failed to precipitate silica from the silicic acid mixture at its highest concentration 

(20 [Cl]/[ru]).  Dynamic light scattering showed that chloride mediated aggregates 

reached a maximum diameter of 9 nm, two orders of magnitude smaller than divalent 

mediated aggregates of 600 nm (Figure 57).  Since macroscopic phase separation did not 

occur with the chloride and PAA mixtures, it was concluded that monovalent anions fail 

to attract sufficient quantities of PAA to achieve moieties necessary to achieve locally 

high amine concentrations. 
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Similar to the R5 peptide, systems such as PAA require the self assembly of the 

active catalyst. This assembly process and maintenance could potentially limit the scope 

of molecules incorporated into novel silica materials.  Potential new components to silica 

materials  may  interfere  with the suprastructure of the amine moiety and severely hinder  

silica precipitation.  This could be particularly true with enzymes because of their large 

number of charged surface groups.  One class of molecules that presents itself as a 

possible remedy to self-assembly requirements is the dendrimer family.  Indeed, a 

plethora of nanoparticles, including sol-gel composites, have been patterned and 

stabilized from the use of dendrimers.35-39 

Biomimetic Dendrimers:  The observation of protein and peptide sequences with little 

homology having a shared ability to precipitate silica, provided they can generate a 

required local amine concentration, encourages biomimetic template exploration.  

Templates enriched with amines do not need to be peptide based, and therefore could be 

obtained more cheaply and easily than natural or synthetic silaffin.  An abundant supply 

Figure 57.  Diameter, d, of PAA aggregates as a function of chloride per repeated units (ru) of PAA31 
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of templating material opens doors for inexpensive novel materials produced under 

ambient conditions.  Ambient conditions used for production would allow researchers to 

investigate biomolecules as components to the new materials.   

Dendrimers are unimolecular polymer templates which offer a wide array of 

functionality and optimization stemming from the control of branching elements and 

terminal groups.  Dendrimers have been used for molecular recognition, micellular 

generation, and formation of host-guest complexes (see reference 40 for a review of 

dendrimer  literature).   These  polymeric  supports  represent  well -defined  templates  to  
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Figure 58.  Chemical structures of silaffin derived and biomimetic dendrimer precipitating amines.  (a) 
Silaffin peptide isolated from C. fusiformis, underscored residues are post translationally modified in 
vivo. Of note, the repeating N-methylpropylenimine units critical for providing sufficient amine 
concentration to drive silica condensation.  (b) Poly N-methylpropylenimine extracted from S. turris,
where R indicates a repeating N-methylpropylenimine unit of n = 15-21.  (c) G-3 PPI dendrimer.  (d) G-
1 PAMAM.41 
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provide sufficiently high local amine concentrations to drive biomimetic silica 

nanosphere formation.41  Polypropylenimine dendrimers (PPI) are composed of repeating 

propylenimine  units  similar  to  the  major post-translational  modification  found  in the  

lysines of the silaffins.  PAMAM dendrimer branches terminating in primary amines are 

similar to the unmodified lysines of the R5 peptide (Figure 58).   

 

 
 

 
 
 
 
 

Knecht et al. demonstrated that an amine-terminated dendrimer can serve as an 

effective alternative to the self-assembled silica precipitating structure of the R5 

peptide.20,41,42  A series of dendrimers (PPI G1-G5 and PAMAM G0-G6) were probed for 

Table 6.  Silica Condensation Activity for Amine-Terminated Templates 41 
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their capabilities to rapidly precipitate silica nanospheres from a solution of metastable 

silicic  acid  (Table 6).   Each  dendritic  template assayed was active, and produced silica  

nanospheres of expected morphology. The β-silico-molybdate assay was employed to 

quantify the silica upon removal of the interfering dendrimer from the dissolved silica 

solution.43   Further confirmation of the crucial role of amines was given by the lack of 

silica production from analogous hydroxyl-terminated PAMAM dendrimers.   

Functional Silica Nanocomposites:  Many applications are being developed based upon 

the genesis of composite materials with hybrid organic-inorganic composition.  

Functional building blocks for heterogeneous catalysis,44,45 biological labeling and 

detection,46,47 and components of electronic devices are some examples of real world 

application.48  Typical synthetic methods for these materials include vapor deposition, 

self assembly,49,50 and electrodeposition.51,52  These techniques give the formation of a 

nearly homogenous material containing unique activities that can be manipulated through 

careful selection of the ratios of the respective materials.  A complication to some of 

these techniques is the overly complex and strictly controlled reaction conditions 

necessary to produce them.  Indeed, many of these synthetic routes limit the functionality 

and diversity of the materials.  A biomimetic approach functioning rapidly under ambient 

conditions would open many doors to novel, functional materials. 

Nanocomposite materials comprised of encased functional species in silica 

matrices47,53-58 offer flexible routes for the tuning of nanoparticle properties, enhancing 

stability,56 and a pliable surface for subsequent conjugation for additional functionality.47  

Methods currently employed in nanoparticle silica encapsulation include the Stöber 

method53,54,56,57 and microemulsion techniques.47,55,58  These techniques do in fact 



 117

encapsulate nanoparticles, but they either demand further synthetic work to induce silica 

formation or they function at extreme pH.  As mentioned above, the ambient conditions 

required for amine terminated dendrimers to induce silica formation represent a versatile 

alternative to these often harsh methods. A diverse range of nanoparticles, including sol-

gel composites, have been previously patterned and stabilized from the use of 

dendrimers.35-39  Other approaches have relied on the host guest properties of dendrimers 

to stabilize nanoparticles.56  Utilizing these attributes, PAMAM dendrimers have been 

employed as a multifunctional framework, performing dual roles as both the host for 

nanoparticle synthesis and a template for silica condensation under ambient conditions.42  

These composites were characterized by a variety of methods and demonstrate a robust 

method for the preparation of heteronanosphere composites derived from a biomimetic 

approach to the encapsulation of nanoparticles within a mesoporous silica framework.   

To demonstrate this application, Knecht et al. were able to incorporate gold 

nanoparticles into silica spheres by utilizing the previously mentioned dendritic 

approach.42  Dendrimer encapsulated gold nanoparticles were produced as described by 

literature procedures.36,42,59  Fifteen minutes of incubation allowed for the coordination of 

Au3+ ions to amines associated with the G4 PAMAM dendrimers.50  Reduction by NaBH4 

yielded the Auo nanoparticles, displaying a fingerprint plasmon absorbance band at 513 

nm. The nanoparticles were then lyophilized (Figure 59).  Subsequent transmission 

electron microscopy (TEM) analysis of the powder displayed a mean gold particle size of 

4.1 + 1.1 nm.  These nanoparticles were either trapped within the interior of the 

dendrimer or surface passivated by select dendrimers, as determined by TEM analysis.  

This leaves surface primary amines of the dendritic template available for silica 
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condensation reactivity.  The dendritic Auo nanoparticle powders suspended in phosphate 

buffer and diluted to give a primary amine concentration of 20 mM shown to be optimal 

for silica condensation41 were reacted with monosilicic acid. 

 

   M+ 

NaBH4 

 

 
 
 

 
 

 
 

When compared to the empty G4 PAMAM template, slightly less activity and a 

linear dependence on the concentration of surface primary amines was observed from the 

silica formation activity profile of the dendritic Au0 nanoparticles.38  This infers a 

heterogeneous mixture of inter- and intra-dendrimeric nanoparticles.59,60  The nascent 

negatively charged silicates align along the positively charged template and finally ripen 

to form nanospheres of silica that encapsulate the dendrimer. Thus, multiple siliceous 

particles ripen to yield larger structures. Eventually a critical size is reached, and the 

silica nanosphere becomes insoluble and precipitates.24,28,41  

Figure 59  Synthetic scheme of the synthesis of zero-valent noble metal nanoparticles using dendrimeric 
templates.42 
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Upon reaction of the nanoclusters/dendrimer composite with monosilicic acid, a 

dark red siliceous pellet was evident following centrifugation, giving visual evidence to 

the silica encapsulation of the dendrimer-supported Au0 nanoparticles.  The resulting 

multicomponent nanocomposite was analyzed using a variety of techniques that 

demonstrated the encapsulation of the Au0-dendrimer composite within the silica 

nanoparticle.42  Additionally, treatment with potassium cyanide proved that there was 

significant solvent access to the gold nanoparticles as evinced by the cyanide mediated 

degradation of the Au0 cluster.  This result suggests that such silica nanocomposites may 

have applications in heterogeneous supported catalysis. 

Biocomposites: Biologically active molecules are being used as tools in an increasingly 

diverse set of research fields ranging from synthetic organic chemistry to medicine to 

materials science.  Great interest is held for biomolecules as novel, functional materials, 

reagents for organic synthesis, and reporters for biological activity.  Traditional 

approaches have been hindered by the stringent conditions of a biological reaction 

including lengthy purification procedures and poor stability.  Previous reports state that 

materials containing functional enzymes within a silica matrix offer improved stability as 

a function of time and simplified strategies for product recovery.1,2,12  Older techniques 

for the production of active silica materials are plagued by limitations of inefficient 

loading and the limited scope of biomolecules that survive typical encapsulation reaction 

conditions.3-10  Recent advances have increased the loading efficiencies in sol-gel 

composites, but at the expense of extensive and precise synthetic processing.12  The 

biomimetic technique, based on the silaffin chemistry discussed above, promises 

reasonable encapsulation efficiencies in a rapid, inexpensive, and bench top environment. 
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When compared to traditional sol-gel methods of encapsulation, the use of a 

biomimetic approach improved the preparation of bio-silica composites. Using the 

unmodified R5 peptide of Cylindrotheca fusiformis (H2N-SSKKSGSYSGSKGSKRRIL-

CO2H), Luckarift et al. reported an encapsulation efficiency improvement up to a 

reported 20% relative to the typical 0.1%-5% (w/w) with other sol-gel techniques.2,4  The 

improvements in silica encapsulation were attributed to reaction conditions more 

amenable to biological molecules.  Furthermore, due to the mild conditions, a much 

larger array of biologically active molecules could be potential targets for silica 

encapsulation.   Compared to more efficient sol-gel methods based on sodium silicates,12 

the R5 encapsulation reaction was performed on the benchtop on the order of minutes in 

contrast to the multi-day and thermally sensitive silicate sol-gel synthesis. 

This chapter focuses on a novel use of PAMAM dendrimers to drive the 

encapsulation of enzymes in silica spheres with high loading efficiency and excellent 

long term stability.  Consequently, the requirement of generating a supramolecular 

complex of the silica precipitating moiety in order to achieve locally high amine 

concentrations has been eliminated.  Furthermore, electrostatics of the enzyme, buffer, 

and dendrimer are shown to play a crucial role in the encapsulation efficiency.   

 

Experimental 

Peroxidase Encapsulation and Activity: Horseradish peroxidase (HRP; EC 1.11.1.7) 

from Sigma (181 units/mg Type II from Horseradish) was encapsulated into silica 

particles using a generation 4 PAMAM dendrimer (Sigma; 10 wt% in MeOH) as a 

nucleating template.  An aliquot of 200 µL from HRP stock solution (220 units/mg) was 
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charged with dendrimer to give a final dendritic amine concentration of 20mM. HCl (aq) 

hydrolyzed 1M tetramethylorthosilicate (TMOS) was added (20 µL) resulting in rapid 

precipitation of white silica nanoparticles.  The particles were centrifuged at 10,000 RPM 

and washed with water three times.  General protein content was quantitated using the 

Bradford assay from a standard curve of known amounts of HRP.  Specific HRP activity 

was determined via a H2O2 and 3-3’-5-5’ tetramethylbenzidine TMB assay kit (Sigma).61   

Glucose Oxidase Encapsulation and Activity: Encapsulation proceeded as above for 

HRP.  Glucose Oxidase (EC 1.1.3.4) from Fluka (220u/mg) was dissolved in water at pH 

7.  O-dianisidine (0.1 mL of a 1% solution) was added to 12mL of 0.1M phosphate buffer 

at pH 6 for dye reagent.  From this dye reagent, 192 µL was added to 25 µL of 18% β-D-

glucose solution.  HRP (8.35 µL of 200 µg/mL) was then added, followed by 25 µL of 

glucose oxidase test solution.  The reaction was allowed to run for 5 minutes and 

terminated with 50 µL of 2M sulfuric acid.  Absorbance was read at 460 nm (Agilent 

Technologies model 8453 UV-Vis).   

TMB Assay: HRP was dissolved in either water pH 7 or 0.1M phosphate buffer pH 7.  A 

test sample of 100 µL from the enzyme solution was mixed with 100 µL of 3,3’,5,’-

tetramethylbenzidine liquid substrate and allowed to sit at room temp for 10 minutes.  2M 

sulfuric acid was added to terminate the reaction.  Absorbance was read at 420 nm.   

β-Galactosidase Activity Assay:  β-Galactosidase (Fluka) was suspended at 2 mg/mL.  

Encapsulation proceeded as above for HRP.  Activity was determined via UV-VIS 

spectrophotometry as previously described.62  Briefly, 1 mL of phosphate buffer was 

charged with 0.3 mL of 1.0M 2-mercaptoethanol, 0.5 mL of 0.014M o-Nitrophenyl-β-D-
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galactopyranoside (ONPG), and 1 mL of pure water.  This mixture was then charged with 

the enzyme and the absorbance was monitored at 420 nm. 

Nitrilase Activity Assay:  Nitrilase (Biocatalytics) was suspended at 2 mg/mL in 25mM 

phosphate buffer at pH 7.5.  Encapsulation proceeded as above for HRP.  Activity was 

determined by a fluorometric assay previously described.63  Briefly, nitrilase was charged 

with 50mM 3-cyanopyridine and an aliquot of the nitrilase and substrate mixture was 

removed and added to an alcoholic o-phthaldialdehyde (Fluka) solution (3.75 mM) in the 

presence of alcoholic 2-mercaptoethanol (Sigma; 3.6 mM).  This solution was allowed to 

mix for 35 minutes, and was excited at 412 nm.  The emission was monitored at 467 nm 

(Biotek Synergy HT).  NMR analysis was performed on a Bruker DPX-300 at room 

temperature.  NMR samples were prepared by performing encapsulation and enzymatic 

activity assay in deuterated 25 mM phosphate buffer. 

Bradford Assay: Quantification of protein mass was performed by adding 160 µL of 

enzyme test solution to 40 µL of BioRad Protein Assay solution concentrate and mixing 

for 15 minutes and monitored via UV-Vis at 595 nm.  Calibration curves were produced 

for each enzyme studied between the ranges 0.8 µg/mL and 80 µg/mL.   

Silica Quantitation: Silica was quantified following the β- Silicomolybdate method 

described by Iler.43  Individual samples were dissolved in 0.5 M NaOH and incubated at 

95 °C for 30 minutes.  Following incubation, the liberated dendrimers were removed 

from solution by Centricon filtration (American Centricon filtration devices, Millipore 

Inc.), as they interfered with the molybdate assay. Samples with templates of molecular 

weights greater than 3000 were quantitated.  Molybdate reagent was added (1:4 silicic 

acid/molybdate) to the filtered solutions to initiate the formation of the bright yellow 
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product monitored by UV-Vis spectrophotometry  at 410nm and quantitated from a 

standard curve of silicate standards.   

Scanning Electron Microscopy: Silica samples were suspended in ethanol and pipetted 

onto the surface of an aluminum SEM sample stage (Ted Pella Inc.) to dry.  Each sample 

was sputter-coated with a thin layer of gold by use of a Pelco Model 3 Sputter Coater 

(Ted Pella Inc.).  Once sputtered, samples were imaged on a Hitachi S4200 scanning 

electron microscope operated at variable voltage. 

 

Results and Discussion 

Biogenic Silica Morphology: Biogenic silica is utilized to create a myriad of intriguing 

shapes and morphologies, although in vitro silica produced from synthetic silaffins is 

spherical.  The nascent silica spheres aggregate together to form larger particles with a 

size distribution of 500-700 nm (Figure 60).24,27  These nanospheres of amorphous silica 

are the building blocks of the cell wall frustule which will be templated for the final 

intricate design.   

 

 

 
 

 
 

Figure 60.  Biogenic silica produced in vitro.  Bar (lower left) = 1 µm27 
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The spherical morphology of biomimetic silica produced in vitro can be 

dramatically altered by the addition of external forces to the reaction mixture, such as 

changing the anionic species in solution.  For example, extended arched, interconnected, 

pearl-like silica structures of ornate morphology have been generated by bubbling 

nitrogen through the reaction mixture.  Further changes were observed when shear stress 

was added to the reaction vessel, resulting in the formation of lengthy ropelike structures 

(Figure 61).64  Charging the reaction with hydroxylated glycerol induced the formation 

of networks of aggregated silica particles, while addition of electrostatic and 

hydrodynamic variants created plate and dendritic like siliceous structures.65   These 

physical changes likely perturb the reaction at the templating level of silica formation. 

 
 
 

 
 
 

 
 
 

Changes to silica morphology have also been observed from the addition of 

various anionic species to the reaction.  Previous work has shown the relationship 

between polyanions and silica production.25,31,66  Silica deposition along these anionic 

molecular scaffolds is key for the formation of novel multi-dimensional silica structures.  

Figure 61.  Modified silica morphologies. (Right) Silica produced following constant nitrogen bubbling. 
(Left) Silica produced as a function of shear stress being applied during the reaction.  Bar = 1 µm.64 
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With the addition of short chain DNA, formation of strings of silica nanospheres were 

reported, most likely templated along the phosphate backbone.  Surfactant addition also 

changed the silica morphology such that the formation of sponge-like siliceous structures 

were obtained.66   

Previously, the use of amine terminated dendrimers to catalyze the condensation 

and precipitation of silica nanoparticles from monosilicic acid has been reported.41,42,67  

Synthesis of novel silica composites that incorporate CdSe/ZnS and Au0 nanoparticles 

into the framework of dendrimers has also been reported.42  This approach has been 

extended to encapsulate PAMAM dendrimers and biomolecules within silica 

nanospheres.  At physiological pH, interactions between the enzyme surface and cationic 

surface of the PAMAM dendrimers are hypothesized to play an important role in forming 

a supramolecular complex between the enzyme and dendrimer (Figure 62).   To examine  

 

 
 
 

 

Figure 62. Proposed scheme for enzyme encapsulation within silica nanoparticles.  The complimentary 
electrostatics associated with the cationic dendritic amines are likely to associate with the acidic 
residues along the enzyme surface.  This effect is more influential in an unbuffered media. 
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the effects of electrostatics between the protonated dendrimer (pKA ~ 9.5) and the 

surface of enzymes with different pI values as a potential methodology for achieving 

maximum loading efficiency, encapsulation of horseradish peroxidase (HRP; pI ~ 8.9), 

glucose oxidase (GO; pI ~ 4.2), and ß-galactosidase (ß-gal; pI 4-6) was examined in both 

0.1M phosphate buffer and water (both at pH 7).   

A solution of HRP 0.1M phosphate at pH 7 was charged with enough PAMAM 

dendrimer to achieve a 20 mM primary amine concentration.  To this mixture, 1 M 

hydrolyzed TMOS was added to be condensed into silica.  Following the rapid 

precipitation of silica from the reaction mixture, the supernatants and washes were tested 

for enzyme activity and protein content.  Analysis of the supernatants and washes gave 

significant enzyme activity, suggesting inefficient encapsulation of HRP (Table 7).  

Enzyme presence in the supernatant and washes was confirmed using the Bradford assay, 

and was consistent with ~ 30% encapsulation.  A subsequent wash with 200 mM KCl 

failed to yield additional activity suggesting that the enzyme was not weakly adsorbed to 

the surface of the silica nanoparticles. Using the ß-silicomolybdate assay,43 the amount of 

silica produced in each reaction averaged 0.42 mg (+ 0.06), and was consistent with 

previously published yields.41  

 

 

 
 

 

Table 7. Percentages of active enzyme within silica nanoparticles 
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The same experiment was repeated in water (pH 7).  Testing revealed a similar 

encapsulation efficiency for HRP.  A corresponding enzyme activity and concentration 

were found in the supernatant and washes.  These results suggested that there is little 

electrostatic interactions between the dendrimer and HRP, undoubtedly a result of the 

predominately positive surface of HRP repelling the postively charged dendritic 

amines at pH 7. Under both conditions, the enzyme was likely trapped nonspecifically 

in the aggregating silica matrix as the particles precipitated from solution. The 

loading efficiency is similar to previous reports of R5 encapsulation (20%)2 in 

phosphate buffer.  Furthermore, the encapsulated enzymes showed no loss of enzyme 

content through diffusion into the storage solution over several days. This is 

analogous to the previously reported stability for butylcholinesterase encapsulated in 

silica by the R5 peptide.2     

Glucose oxidase (GO) was subjected to the same encapsulation procedures as 

described above for HRP. With GO’s more acidic pI, an increase in encapsulation was 

hypothesized given the reciprocating charge on the surface of the cationic dendrimer.  

Initial encapsulation in 0.1M phosphate buffer gave a small percentage of active 

enzyme encased in the silica particles (Table 7).  The remaining enzyme activity was 

accounted for in the supernatants and the first two of three water washes.  Despite 

having a complementary charge to the cationic dendrimer, GO in a buffered 

environment exhibited lower encapsulation efficiencies.  This may be due to the 

higher ionic strength buffer masking the negative surface of GO from the cationic 

dendritic surface.   
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When GO was encapsulated in water (pH 7), the silica particles (Figure 63) 

were found to incorporate quantitative amounts of enzyme. Of note, both the enzyme 

activity assays and Bradford assay failed to detect any GO in the supernatant of the 

condensation reaction or subsequent washes.  Activity of encapsulated enzyme via 

direct testing of the nanoparticles led to an observed retained activity of  53.90% ( + 

5.31) (Figure 64) with the 2 mg/mL stock and a maximum loading by mass (wt / 

wt%) with the 6 mg/mL stock (Figure 65).    The 6 mg/mL stock resulted in 446.48 ug 

(+ 53.50) of active enzyme in the average 426 ug of silica nanoparticles, thus giving 

Figure 63.  (Top)  Visual confirmation of GO encapsulation.  (Left) 6 mg/mL GO solution used in silica 
synthesis.  (Center) Silica prepared and washed in water showing encapsulated GO.  (Right) Silica 
prepared in the presence of GO and 0.1M phosphate buffer.  (Bottom) SEM image of silica particles 
formed in water and containing GO. 
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quantitative loading (wt/wt).  The decline of the enzyme’s specific activity by 50% 

during the encapsulation process could be explained by unfavorable orientations of the 

enzymatic active sites within the growing silica nanoparticle.    

 
 

 
 
 

 
 

 

Figure 65.  Loading capacity by mass of GO in silica particles as a function of initial GO 
concentrations.  Measurements were obtained from the specific activity assay for GO.  Using a 6mg/mL 
stock solution of GO resulted in the maximum mass of active enzyme 

Figure 64.  Encapsulation efficiency of GO as a function of initial GO concentration.  200 µL of the 
buffer free enzyme stock was charged with PAMAM dendrimer followed my hydrolyzed TMOS.  The 
resulting silica contained ~ 50% of the initial enzyme activity until a stock solution of greater than 
2mg/mL was used. 
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ß-galactosidase underwent encapsulation in the same fashion as HRP and GO.  

The Bio-Rad assay for protein content and specific activity assays failed to detect any 

enzyme in the supernatent produced from the encapsulation process.  Unfortunately, no 

enzymatic activity was detected within the silica nanoparticles following collection and 

washing.  In order to investigate the fate of the ß-galactosidase, stock solutions of the 

enzyme were charged with relevant concentrations of the PAMAM G4 dendrimer and 

tested for activity as a function of time.  It was determined that the G4 dendrimer was a 

significant inhibitor to ß-galactosidase activity.  Dilution studies indicated that the G4 

dendrimer was able to inhibit activity at a concentration of 35 µM.  There are 64 amine 

functional groups on each molecule of the G4 dendrimer demonstrating that the PAMAM 

G4 dendrimer inhibits ß-galactosidase activity at 2.7 mM amine, 10 fold less than the 

20mM required to achieve maximum silica production. 

This phenomenon was further investigated by a larger array of PAMAM 

dendrimers.  Generations 1-6 of PAMAM dendrimers were tested as ß-galactosidase 

activity inhibitors at a 35 µM concentration of the dendrimer molecule (Figure 66).  

Generations 1 and 2 were found to be less effective as inhibitors than the larger dendritic 

molecules.  This could be the result of the PAMAM dendrimers affinity to the enzyme 

surface near the active site.  This would result in occlusion prior to encapsulation and also 

promote silica precipitation over the active site.  Another possible scenario could be the 

disruption of required subunit interactions, resulting in encapsulation of inactive subunits.  

This could explain the lack of protein content in the supernatant following encapsulation, 

while rendering inactive silica nanoparticles. 
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Enzyme Kinetics of Encapsulated HRP and GO: While specific activity measurements 

suggest the amount of folded and functioning enzyme, questions pertaining to substrate 

and product dynamics and the newly created locally high enzyme concentrations require 

a broader examination of enzyme function.  Comparisons between the kinetic parameters 

Figure 66.  (Top) Initial ß-galactosidase activity.  (Bottom) Activity following exposure to 0.035 mM 
PAMAM dendrimer G1(black), G2(red), G3(blue), G4 (green), G5 (light blue), and G6 (purple). 
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of the free enzyme and enzyme encapsulated in silica nanoparticles revealed that the 

encapsulated enzyme experiences a slight shift in the Km values to a lower concentration 

(Figure 67).  GO’s Km was decreased by one fold (13.51mM for free GO and 6.25mM 

for encapsulated GO) following encapsulation, while encapsulated  HRP’s Km  was found  
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Figure 67.  (Top) Kinetic plots for GO. ( ) Free Glucose Oxidase ( ) Encapsulated Glucose Oxidase
(Bottom)  Kinetic plots for HRP ( ) Free Horseradish Peroxidase ( ) Encapsulated Horseradish 
Peroxidase 
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to shift by less than one fold (0.170mM for free HRP and 0.130mM for encapsulated 

HRP).  Previous reports for sol-gel encased HRP report a 6-fold increase in Km 

(0.163mM for free HRP and 0.985mM for encapsulated HRP),12 while HRP based 

electrodes have even shown significantly higher Km values.14,68,69  This suggests the silica 

nanoparticle is not significantly hindering the enzyme’s access to substrate or release of 

product by creating a diffusion barrier.  In theory, lower Km values could result from 

affinity of the silica nanoparticles to the different substrates, or alternatively, enzymes 

restricted in their movement within the bulk solution may be reaching Vmax sooner due to 

competition of several constrained enzymes in close proximity within the silica 

nanoparticle.  This constraint would create a locally high concentration of enzyme within 

the nanoparticles and may no longer maintain sufficient substrate concentrations to 

satisfy steady state Michaelis-Menten analysis.  Additionally, enzyme kinetics may also 

be affected by a basic silica surface70,71 perturbing the enzymes’ local environments.  

This may be especially true for GO where it is known to be optimally active at ~ pH 

6.72,73  Assuming Michaelis-Menten steady state kinetics, the active enzyme components 

within the composite are functioning kinetically similar to the free enzyme.  

Consequently, the loss of 50% of the absolute GO activity is most likely due to occlusion 

of the active site by silica during the encapsulation process.  

Silica Nanoparticle Size: Previously, dendrimer mediated silica nanospheres were 

scrutinized by scanning electron microscopy.67  PPI dendrimers G1 and G2 produced 

spherical silica particle sizes ranging from 170-180 nm, and G3-G5 produced particles 

with diameters from 220-260 nm.  Silica formed by PAMAM G0 and G1 dendrimers 

yielded a bimodal population with smaller particle diameters averaging 95 and 130 nm 
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and larger diameter particles of 350 and 400 nm, respectively.  In contrast to the smaller 

dendrimers, PAMAM dendrimers G2-G6 show average silica particles ranging from 275 

to 390 nm.  Comparing PPI and PAMAM dendrimers with the same number of amines 

(i.e. PPI GX vs. PAMAM G(X-1)) shows that the ratio of the template diameter 

correlates with the ratio of silica nanosphere diameters, suggesting that the silica 

encapsulated dendrimer is the aggregating unit of silica growth.  These silica nanosphere 

sizes were consistent with those produced from native silaffins,24 the R5 peptide as 

reported by Naik et al.64 and a series of R5 truncates reported by Knecht et al.28  While 

the simpler dendrimer system produces silica nanoparticles at a rate comparable to the R5 

peptide, the observed particle size distributions data suggests that monodispersity of 

nanoparticles represents a challenge in this approach.   

Ion Effect on Nanoparticle Size: One of the largest hurdles facing the biomimetic 

synthesis of materials is acquiring the desired degree of dimensional and spatial control.  

Given that a particle’s size plays a vital role in reactivity, methods resulting in a more 

monodispersed product need to be developed.  Typical reaction conditions for biomimetic 

silica synthesis provide for continual growth and ripening, resulting in the formation of 

larger nanospheres with diameters on the order of 200 – 600 nm.24,25  Studies of biogenic 

silica formation with polyamine templates implicated phosphate ions associated with the 

buffer system as crucial players for in vitro growth of silica nanospheres.31,66  Thus it is 

difficult to differentiate the nanosphere formation mechanism from the template 

assembly, due to the phosphate-dependent self-assembly process.  Indeed, by using a 

monomolecular dendrimer template Knecht et al. were able to separate these steps and 
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show evidence that the cation choice and concentration can be a critical factors in 

nanoparticle size.67   

Their work highlighting the use of PAMAM and PPI dendrimers as 

monomolecular templates allowed for the expansion of the biomimetic silica production 

reaction conditions, yielding a more robust synthesis allowing for size selective 

precipitation of silica nanospheres.  Utilizing defined concentrations of phosphate buffer 

or main group metal chloride salts, it was shown that the dendrimer mediated biomimetic 

silica growth process was governed by cationic neutralization of the anionic silica 

nanosphere surface.  Establishing a charge double-layer around the nanoparticle results in 

neutralization, thus minimizing electrostatic repulsions and favoring agglomeration and 

continued ripening of nanospheres to the order of 250 – 300 nm in diameter.  By 

modulating the concentrations of cations, one can judiciously precipitate silica 

nanospheres of desired dimensions between 30 and 300 nm without negatively affecting 

the template’s activity or the overall reaction yield.   

One of the goals of biomimetics is to simplify complicated biologically pathways 

and processes in order to increase robustness and feasibility.  To further investigate the 

role of the buffer ions and any dependence on sodium phosphate in particular, Knecht et 

al. obtained silica particles from a G4 PAMAM dendrimer template where phosphate was 

replaced with individual salt solutions (0.255 mM to 400 mM, pH 7.5).67  Particle size 

followed a linear increase in diameter as salt concentrations increased up to 100 mM.  

Silica also precipitated from LiCl, NaCl and KCl.  All gave nanospheres with a maximum 

size of approximately 235 nm at concentrations higher than 100 mM.  RbCl and CsCl 

produced  particles  of  smaller  diameter,  210 nm and 195 nm  respectively (Figure 68).  
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Figure 68.  G4 PAMAM dendrimer mediated silica as a function of main group metal chloride salt 
concentrations.  (a) Normal silica production at 20 mM primary amine.  (b) Typical size distributions 
and micrographs of nanospheres generated by the G4 PAMAM dendrimer at various sodium chloride
concentrations (scale bars:  blue – 500 nm, red = 1000 nm).  (c) Typical size distributions for silica 
nanospheres generated from PAMAM dendrimers.  Error bars illustrate the error associated with the 
sample size investigated for particle size distributions.67 
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The difference in nanosphere  sizes  may be attributed to the atomic radii of each cation 

studied.  The smaller cations having radii between 90 pm and 152 pm,74,75 preferentially 

bind a single silanol group at the surface of the ripening clusters, resulting in a stronger 

affinity to the growing silica structures and effective charge neutralization of the particle.  

The cations greater than 166 pm74,75 are more likely to bridge between several silanol 

groups, resulting in inefficient surface charge neutralization and more rapid flocculation,  

the consequence being diminished particle sizes.  This study suggests an important 

difference between biologically derived templates and a unimolecular template.  Silaffin 

based templates require both polyvalent anions, particularly phosphate, for self assembly 

of an active template and cations for nanoparticle solubilization, but a unimolecular 

template does not require self-assembly.  Unimolecular templates require only cations for 

nanoparticle stabilization.  The ability of a cation to promote the solubility of the nascent 

silica surface for an extended time gives rise to larger particles and in many cases 

bimodal distribution through the agglomeration of smaller particles.  In contrast to 

Sumper’s work discussed in the introduction to this chapter, this body of work concludes 

that the size of the isolated silica nanoparticles is determined by the period of ripening 

prior to precipitation from solution.  Consequently, a potential advantage of the use of 

polymeric biomimetics is improved robustness of the system.     

Physical characterization of the HRP and GO active silica nanoparticles was 

performed via SEM.  The HRP particles gave an average particle size of 162 + 92 nm 

when aggregated from water.  For comparison, low ionic strength water control particles 

displayed an average of 39 + 14nm which is consistent with previously published 

values.41  Particles containing HRP produced in 0.1M phosphate buffer revealed a 
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bimodal distribution, as a result of particle necking, with average sizes centered at 232 + 

97 nm and 721 + 113 nm size compared to the 244 + 106 nm and 745 + 102 nm averages 

of  control  silica  produced   in  phosphate  buffer.   Similar  patterns  were  observed  for  

 

 

 
 

 
 

 

Figure 69.  (Top) Size distribution  of  GO containing silica nanoparticles  generated in 0.1M phosphate 
buffer.  Ripening and necking of growing particles allows for a bimodal distribution.  (Bottom) Size 
distribution of  GO containing silica particles formed in water.  Absence of cations results in early 
particle precipitation due to inefficient surface charge masking the growing nanoparticle.   
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average particle sizes and distribution in the case of silica particles containing GO.  GO 

in unbuffered water gave rise to silica particles with an average size of 113 + 60 nm.  

Particles produced in 0.1M phosphate buffer resulted in average particle sizes of 269 + 

113 nm and 784 + 130 nm for the two modes (Figure 69).     

The particle sizes suggest that both GO and HRP were able to self-buffer the 

growing nanoparticles when encapsulated in a water environment.  In the case of GO, the 

electrostatics in the hybrid supramolecular system result in having the positively charged 

dendrimer in close proximity to the enzyme’s surface (due to the overall acidic pI leading 

to an overall negative charge) while the cationic sidechains substitute for the missing 

cations in the aqueous environment.     

The shelf life of some enzymes has been shown to increase upon silica 

encapsulation relative to storage in solution.2  The long term stability of the encapsulated 

GO was examined.  The GO composite, stored under a variety of conditions (citrate, 

succinate, PBS, sodium chloride, and phosphate buffers at pH 6) for 30 days, 

demonstrated no loss of activity (Figure 70).  One reason may be the inability of 

microorganisms commonly found in aqueous mixtures to penetrate the porous silica cage 

around the enzymes.2 

One of the potentials of biologically active, stable silica materials is their use in 

organic chemistry.  The physical characteristics and shelf life described above would be 

desirable properties in a biologically active reagent.  Enzymes as organic reagents would 

be particularly useful because of their efficiency and specificity.  Another drawback to 

enzyme use has been enzyme regeneration following use.  Enzyme immobilized within 
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silica nanoparticles offers a solution to this problem through the use of standard filtration 

or centrifugation. 

 

 
 
 
 

 
Chemical transformation of nitriles into carboxylic acids is of significance due to 

the relative ease of organic nitrile production.  Organonitriles can be produced by the 

addition of cyanide to alkyl halides,76 the Strecker reaction,77 reaction of aryl halides with 

copper cyanide,78 and the dehydration of amides.79  Unfortunately, the hydrolysis of 

nitriles typically involves harsh conditions, such as strong base and high temperatures, or 

laborious and expensive catalysis.80-83  Due to the desire to utilize organonitriles, the use 

of whole cells containing nitrilase enzymes to produce hydrolyzed organonitriles has 

become well established.84-86   

Figure 70.  Stability of encapsulation.  (1) GO encapsulated in water and stored in phosphate buffer 
(solid: day 1, slash: day 30).  (2) Encapsulated in water and stored in water.  (3) Encapsulated in 
phosphate buffer and stored in phosphate buffer.  No leeching of enzyme was detected in the storage 
media and the silica was found to retain the activity of the encapsulated GO for at least 30 days. 
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In order to produce a simpler, biomimetic approach, we chose to encapsulate 

isolated and purified nitrilase was encapsulated using the methods established and studied 

above, using 200 µL of a 2 mg/mL stock solution of nitrilase.  The goal of the experiment 

was to evaluate a synthetically desirable enzyme encapsulated in silica nanoparticles as a 

potential reagent.  The conversion of 3-cyanopyridine was chosen as an initial substrate 

because the hydrolyzed product (nicotinic acid; vitamin B5) is of biologically and 

commercial interest.  The specific activity test used in this study for nitrilase detects the 

production of the ammonia byproduct, and the presence of nicotinic acid was confirmed 

via NMR (Figure 71).  The nitrilase purchased from Biocatalytics has a theoretical pI of 

5-7.  This should promote some level of dendrimer interaction with the enzyme moiety.  

It was determined that nitrilase performed poorly in unbuffered water, unlike GO, but 

was found to achieve sufficient activity with 25mM phosphate buffer pH 7.5 – 7.8.  The 

requirement of ions is likely due to the activity of nitrilase being linked to subunit 

association.87   

 
 

 
Figure 71. Conversion of 3-cyanopyridine to nicotinic acid by nitrilase containing silica nanoparticles 
as a function of time.  Red = stock nitrilase solution of 2 mg/mL and black is silica containing nitrilase. 
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Following nitrilase encapsulation, silica nanoparticles analogous with GO and 

HRP containing particles discussed above were collected.  The protein mass was assessed 

in the supernatant and found to be ~ 20% of the initial enzyme mass.  However, the 

supernatant failed to display significant activity with the 3-cyanopyridine substrate.  

Further investigation revealed a small inhibitory effect attributed to continued exposure 

of nitrilase to the PAMAM dendrimer, similar to the ß-galactosidase discussion above, 

but far less potent than in the case of ß-galactosidase.  Again, this is most likely to 

interference with the aggregation of nitrilase subunits necessary for activity.  Unlike the 

ß-galactosidase, however, significant activity was retained within the silica nanoparticles 

in the case of nitrilase.  The conversion from nitrile to carboxylic acid and ammonia is 

near completion at six hours for the 50 mM substrate concentration.  Additionally, this 

activity did not diminish over a four day period.   

 

 
Figure 72. NMR spectra following the conversion of 3-cyanopyridine to nicotinic acid.  Time points are 
overlayed where black is initial, red is 3 hours, and blue is 36 hours. 
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Physical characterization of freshly prepared silica nanoparticles with enzymatic 

activity may not be ideal conditions to gauge more likely uses in everyday organic 

synthesis.  For example, despite a six hour reaction time, many practical uses of nitrilase 

containing silica would involve leaving the reaction running overnight.  The activity 

assay data shows an 18 hour time point, and the NMR data shows a 36 hour spectrum 

(Figure 72).  Furthermore, the 36 hour NMR spectrum does not contain signal from 

nitrilase, suggesting that the nitrilase is not leeching out over the course of the reaction. 

 
 

Figure 73.  Consecutive experiments performed on a single triplicate batch of silica.  50 mM 3-
cyanopyridine was added and time points taken at 6 hours.  Silica was washed 3 times between 
experiments and stored at room temperature over 8 consecutive nights.  Activity was below 50% of 
first run by run ten. 

 
 

The recycling and reuse of the nitrilase containing silica particles is a critical 

improvement over traditional use of enzymes in solution.  Recycling was performed by 

either filtration or centrifugation of the reaction mixture followed by washing the active 

silica particles (Figure 73).  The silica was given 10 consecutive 50 mM substrate 
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solutions, over an eight day period, and displayed consistent loss likely associated with 

silica loss due to washing between trials.  The loss of activity on trial 3 was contributed to 

oxidizing thiols in the test solution.  Test solutions were prepared fresh thereafter.  

Further testing is underway to determine a maximum number of uses of individual 

particle preparations, but the ten consecutive uses already demonstrated compensate for 

any enzymatic activity lost during the encapsulation process. 

 

Conclusions 

The entrapment of HRP, quantitative encapsulation of GO, and significant 

nitrilase activity inside silica nanoparticles by utilizing an amine terminated dendritic 

template was performed.  Improvements over harsh traditional sol-gel chemistry allow a 

wide array of proteins and other sensitive molecules to be explored as potential targets for 

encapsulation.  Newer sol-gel techniques offer an improved array of potential 

biomolecules, but are slow and cumbersome compared to the reported method.  This 

improved strategy utilizes a water soluble biomimetic template, PAMAM dendrimer, to 

catalyze the condensation of Si(OH)4 while trapping an enzyme within the mesoporous 

framework.  This technique is rapid, achieving the final isolated product in a few 

minutes.  Furthermore, the role of pI and ionic strength within the encapsulation 

environment has a strong influence on encapsulation efficiencies.  When placed in a low 

ionic strength environment, GO’s acidic pI has the complementary charge to the amine 

terminated dendrimer, encouraging formation of a supramolecular complex capable of 

condensing silica. This resulted in a quantitative amount of GO being trapped inside the 

silica nanoparticles.  However, encapsulations performed in a high ionic strength or with 
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peroxidase’s non-complimentary pI gave significantly lower encapsulation efficiencies.  

These results suggest that the electrostatic manipulation of a rapid and strong 

supramolecular silica precipitating complex has the potential of adding a vast array of 

chemical and biological activity to hybrid composite materials.   

Further manipulation of electrostatics should lead to multi-layered complexes 

offering even more diverse materials.  Another avenue to be explored is the surface 

functionalization of the biologically active nanocomposite materials.  These new 

biologically active composite materials have the potential of finding applications in 

fields as diverse as microbiology, clinical diagnostics, electronic devices, and organic 

synthesis.  Microbiologists can begin to develop ‘smart’ assays capable of 

reproducing entire biological systems via the incorporation of heterogenous 

composite materials consisting of many different enzymes and detection probes.  

With the incorporation of fluorescent probes and proteins, clinically relavent 

diagnostics capable of rapid and early detection of infectious agents are now within 

reach.  Merging the fields of materials, semi-conductors (such as the CdSe quantum 

dots42), and biochemistry opens the door to researching sophisticated electronic 

sensors and circutry. Organic chemists interested in utilizing enzyme specificty and 

catalysis as reagents for delicate synthetic routes will find easy to filter and long 

lasting ‘biosand’ a valuable tool.  Combining all these disciplines affords the potential 

of a single silica wafer capable of simulating a cellular or disease pathway while 

simultaneously providing a fluorescent detection or tagging mechanism can open new 

doors in biology and disease detection and prevention.     
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CHAPTER IV 

 

INITIAL EVALUATION OF ROOM TEMPERATURE IONIC LIQUIDS AS 
POTENTIAL SOLVENTS TO IMPROVE SYNTHESIS OF DIFFICULT 

PEPTIDES 
 

Introduction 

 Since Merrifield introduced solid-phase peptide synthesis (SPPS) in the early 

1960s,1 it has become one of the most important synthetic methodologies in biochemical 

research.  Examples demonstrating the power of this technique can be seen in the 

production of biologically active proteins such as ribonuclease A,2 fragment P2 of 

Staphylococcus aureus nuclease T,3 and the acyl carrier protein.4  However, despite these 

noted accomplishments, many synthetic peptides are still unattainable in sufficient yields 

and purities.   

 The first comprehensive study investigating difficulties associated with some 

peptide sequences during SPPS was published by Pillai and Mutter in 1981.5  The 

confirmation of a peptide is determined by the intramolecular, noncovalent interactions 

between various amino acid groups and by the growing peptide’s interaction with the 

solvent medium.  The latter interactions had previously limited experimental 

investigation of peptide and protein interactions due to the limited solubility in 

appropriate solvents.6  Therefore, Pillai and Mutter utilized a liquid-phase method 

whereby the C-terminal macromolecule, polyoxyethylene (POE), is solubilized in order 

to allow a more facile approach to investigate growing peptide chain interactions.  This 

design effectively simulates SPPS in an environment suitable for biophysical analysis, 

such as CD, UV, and NMR spectroscopy. 
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 It was determined that a direct correlation is present between the onset of 

secondary structure in the growing peptide chain and the insolubility of the growing 

peptide chain.  Insoluble intermediates result in incomplete coupling of subsequent amino 

acid residues.  Insufficient couplings produce truncated peptide sequences which 

Figure 74.  CD and solubility experiments examining the relationship between β-sheet onset and 
solubility of the peptide.  (Top) CD spectra of oligoisoleucine as a function of increasing chain length. 
(Bottom) Solubility of peptides as a function of their chain length and secondary structure where rc = 
random coil, β = beta sheet, and α = helix.5 
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complicate crude product purification and drastically decrease yields.  The onset of ß-

sheet structure for a variety of homooligomers was monitored by CD (Figure 74).  

Homooligoisoleucine was shown to adopt a ß-sheet conformation by the 6th residue, and 

similar patterns were observed for a 7-mer of oligoalanine and a 8-mer oligovaline.  It 

was further determined that the 8-mer oligoisoleucine was still in a ß-sheet structure at a 

concentration as low as 0.02 mg/mL.  This remarkable stability would be expected in an 

intramolecular ß-structure containing intramolecular hydrogen bonding of ß-bends.  

Unfortunately, such stability proved to be detrimental to peptide synthesis.  The transition 

from random coil to ß-sheet initiated precipitation of the growing peptide chain (Figure 

74).  Additionally, it was observed that particular peptides such as [Glu(OBzl)]n were able 

to increase in solubility, as a transition from ß-sheet  to α-helix was noted for increased 

chain length.  This underscores the idea that each peptide could potentially have its own 

intrinsic ‘difficult’ sequence regions.   

As discussed in Chapter I, one remedy to the onset and subsequent precipitation 

of a ß-sheet structure during peptide synthesis is the Hmb backbone protection scheme 

(Figure 75).  While this method has brought some remarkable successes, synthetic and 

practical obstacles prevent the Hmb protection scheme from finding widespread 

acceptance.  FMOC Solid Phase Peptide Synthesis: A Practical Approach, edited by 

Chan and White,7 identifies the problems associated with Hmb protection: 

• Synthetic protocols associated with the synthesis of the active ester residue containing 

the protective N-(2-hydroxy-4-methoxybenzyl) group and the insertion of the residue 

into the peptide chain are lengthy and low yielding. 

• Protection must be utilized on a residue prior to the onset of aggregation. 
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• Backbone protection is implemented at a maximum of every sixth residue. 

• Hmb protection cannot be used on a residue that is to be followed by a ß-branched 

residue, because the subsequent coupling will not be quantitative due to steric 

hindrance. 

• Aspartyl bonds susceptible to base-catalysed transformations require specific 

protection. 

 

 

 

 

An example of a difficult peptide that failed to respond to Hmb protection has 

been reported by Keller and Miller.8  They were interested in chaperonin 60.1 because of 

its role in human monocyte expression of IL-1ß and IL-6 genes, key mediators of 

inflammation.  Enzymatic digestion had isolated a 25 residue sequence (195-217) with 

significant biological activity.  The subsequent SPPS synthesis of H-

KGFLSAYFVTDFDNQQAVLKEDALI-OH using an Hmb protection scheme resulted 

in low coupling yields and undesirable side products.  However, they were able to 

employ the pseudoproline protection scheme to acquire acceptable purity and yield.  

Pseudoproline dipeptides (FMOC-Val-Thr(ψMe,Me pro)-OH and FMOC-Leu-Ser(ψMe,Me 

Figure 75.  (Left) structure of the Hmb amide backbone protection unit.  R1= residue sidechain.  (Right) 
Pseudoproline protection unit.  R1 = residue sidechain and R2 = Methyl. 
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pro)-OH) were inserted at S199 and T204, and it was noted that neither dipeptide was 

able to sufficiently delay the onset of aggregation alone.  The successful synthesis of the 

previously unattainable chaperonin subunit demonstrates the distinct differences between 

the Hmb and pseudoproline methodologies and further highlights proper study and 

planning required when choosing a synthetic peptide strategy. 

 The success of pseudoproline dipeptides where Hmb backbone protection has 

failed was further illustrated by Nicholas Ede and associates in a report of direct 

comparison between the two methods.9  Their experimental design was simply to 

evaluate crude product purities from known difficult peptide sequences following 

standard     HBTU    coupling,    HBTU    coupling    aided    by    Hmb    protection,    

and     HBTU     coupling     aided     by    pseudoproline    insertion.     The    peptide    

H-PKYLQNTLKLATGMRNVPEKQTT-OH (underscore represents point of insertion of 

Hmb or pseudoproline residues) was evaluated, and the HPLC profiles resulting from the 

various synthetic methodologies are given (Figure 76).  Ala was incorporated as FMOC-

(FMOC-Hmb)Ala-OH and as FMOC-Ala-Thr(ψMe,Me pro)-OH.  The standard HBTU 

coupling procedures was only able to produce a 24% yield of the desired peptide.  The 

Hmb amide backbone protection generated 43% of the peptide.  The best method proved 

to be the pseudoproline insertion as it was able to yield 78% of the desired product.  The 

authors conclude that pseudoproline insertion is superior to the Hmb backbone protection 

scheme in both synthetic preparation of the derivatized residues and overall quality of the 

resulting crude product.   
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 Many chemical research laboratories are capable of utilizing standard FMOC 

based SPPS.  However, difficult peptide synthesis limits the scope of peptides produced.  

Alleviation of the ß-sheet onset and subsequent insoluble peptide during synthesis can be 

achieved by the methods discussed above, but the expertise needed to implement the 

Hmb backbone protection is a limiting factor.  Additionally, the simpler pseudoprolines 

have the substantial drawback of only being applicable if the difficult sequence desired 

happens to have a Ser, Thr, or Cys in an appropriate location in the sequence.  One reason 

for this hurdle is that both methods require they be implemented prior to the onset of 

aggregation.  Prior knowledge of this phenomenon is typically the result of multiple 

failed synthesizes adding cost and time to the production of the desired peptide.  

Therefore, many peptides may still be unattainable and require a more universal and 

simplistic solution to difficult peptide synthesis. 

Figure 76.  (Left) HPLC of difficult peptide following standard FMOC synthesis protocols.  (Center) 
Same peptide following pseudoproline protection scheme.  (Right) Same peptide following Hmb amide 
backbone protection scheme where # = lysine deletion and * = leucine deletion.9 



 158

 Recent attempts to deliver a simple, universal remedy to difficult peptide 

sequences have focused on changing the environment in which the peptide is being 

synthesized.  The rationale is that a change in the environment could either dissolve or 

disrupt the ß-sheet structures.  Two such methods involve the use of dimethyl sulfoxide 

(DMSO) as either an additive or substitute solvent for traditional DMF or N-

methylpyrrolidinone (NMP) and the addition of chaotropic salts, such as LiCl.  Hyde et 

al. demonstrated the potential of DMSO by alleviating aggregation associated with a 

decamer from the acyl carrier protein.  This peptide (H-VQAAIDYING-OH) is known to 

aggregate just prior to the final valine.  Typical yields are between 80 and 90% (Figure 

77).  DMSO allowed for a near quantitative yield and has been proven to potential be 

kinetically superior to traditional dipolar aprotic solvents for ester activation of acid 

residues. 

 

 

 

Figure 77.  Comparison of traditional polar aprotic solvents and dimethyl sulfoxide during acyl carrier 
protein peptide synthesis.  (Left) traditional solvent where A is the desired decamer and B is des-valine. 
(Right) Same peptide synthesized in 100% dimethyl sulfoxide.7 
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It was also noted in Hyde’s study that LiBr, a chaotropic salt, was effective in 

delaying or disrupting β-sheet formation.  Thaler et al. published a more thorough 

investigation of lithium salts as potential coupling additives in 1991.10  They chose to test 

the peptide (Ala)nPhe with n ranging from 5 to 12.  This peptide is known to adopt a β-

sheet structure at n > 5 even in a TFA solution.11  They tested three different resin 

matrices, poly(ethylene oxide) on polystyrene (PEO-PS), a poly(N,N-

dimethylacrylamide) on ‘Kieselgur’ (PDMAA-KG), and a classical polystyrene (PS) 

support.  They reported that lithium salts can exhibit a strong influence in peptide 

coupling reactions.  Increased yields were seen for the n = 6 peptide, such as a 16% 

increase in a 1:1 DMF:DCM mixture and a 5% increase in NMP.  This was attributed to 

the increased swelling of the resin matrix, which increases the solubility of short peptides 

and the distance between growing peptide chains. The latter is similar to using a lower 

substituted resin which has fewer peptide elongation sites for the same surface area.  The 

best results were observed with the more polar PEO-PS and PDMAA-KG resins in either 

NMP or 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) solvent systems. 

One intriguing approach to try and gain the advantages of both polar solvents and 

ionic disruption of the β-sheet structure was Vallette et al.’s use of a room temperature 

ionic liquid (RTIL) as the primary solvent.12   ILs are molten salts below 100°C with 

poorly coordinated ions.13  Those ILs which are liquid at room temperature are referred to 

as room temperature ionic liquids (RTILs).   ILs have previously been used in a variety of 

organic reactions such as hydroformulations,14 Heck reactions,15 and aromatic nitration 

reactions.16  ILs display a wide range of solubility properties and are charged ionic 

species that have the potential to strongly disrupt hydrogen bonding networks, similar to 
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the above mention lithium salts.  Vallette found marginal success with dipeptide 

synthesis using 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]PF6.  One 

disadvantage noted was the large increase in reaction times.  Typical peptide couplings in 

traditional dipolar aprotic solvents are near quantitative conversion within an hour, but 

the [BMIM]PF6 system was on the order of days depending on the amino acids used.  

However, an advantage to the ionic liquid system was an increase in crude product purity.  

Both of these observations could be explained by stabilization of the charged species in 

the RTIL.  The stabilization would likely slow the kinetic rate for the nucleophilic attack 

of the N-terminal amine from the peptide to the activated ester.  Additionally, this could 

provide a more selective pathway for the reaction.  This was the first report of peptide 

bond formation in a RTIL system, but key aspects critical to SPPS were left untested.  

First, the reactions were not performed on a solid support, which adds additional 

extraction techniques that could result in yield reduction, and removes solvent-matrix 

interactions discussed above.  Second, the ‘peptides’ produced were all dipeptides 

consisting of unnatural amino acids, leaving the question of solubility during chain 

elongation still unanswered.  Third, the researchers investigated only one RTIL and a 

single traditional solvent, DCM, as a control.  This was an unusual choice given that most 

SPPS is not performed in DCM, but rather dipolar aprotic solvents.  Finally, the time 

required to achieve modest product yields would be a large obstacle to widespread usage 

for SPPS.  The time may be comparable to the Hmb protection scheme, but would still 

require prior knowledge to aggregation onset if used during specific coupling steps. 

This chapter investigates 5 RTILs as potential solvents for SPPS.  In particular, 

the solubility of the pre-activated amino acid residue as well as the protected peptide 
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present during chain elongation is tested.  Additionally, the coupling efficiencies 

achieved by the RTILs are compared to a variety of traditional solvents.  Once a suitable 

liquid is discovered to achieve reasonable coupling kinetics and efficiencies, the potential 

of an RTIL being used as a simple, effective alternative in the chemical toolbox against 

difficult peptide aggregation can be determined (Figure 78). 

 

 

 

 

Experimental 

Preparation of 1-methy-3-butylimidazolium and 1-Butyl-1-methylpyrrolidinium 

chloride salts:  Salts were prepared as previously described.17  Briefly, a schlenk flask 

was covered in aluminum foil, flushed with nitrogen, and then charged with dried 

acetonitrile and either dried 1-methylimidazolium or dried 1-methylpyrrolidinium.  The 

mixture was cooled with ice and charged with a 1 molar equivalence, with respect to the 

methylated rings, of 1-chlorobutane dropwise.  This mixture was slowly brought to room 

temperature and then refluxed for 16 hours at 80 ˚C.  The resulting yellow, orange liquid 

Figure 78.  General scheme for ionic liquid synthesis. 
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was cooled and allowed to solidify.  The supernatant was aspirated and the solid was 

reheated to 80 ˚C and then dripped into an excess of cold ethyl acetate.  The white 

precipitate was collected by filtration.  Care should be taken as the precipitate is very 

hygroscopic.  The white powder was washed with fresh ethyl acetate and then dried 

under vacuum for 48 hours.   

1-Butyl-1-methylpyrrolidinium bis-(trifluoromethansulfonyl)imide, [BMPY]N(Tf)2:  

In a schlenk flask flushed with nitrogen, a 1:1 molar mixture of 1-methylpyrrolidinium 

chloride and lithium bis-(trifluoromethansulfonyl)imide were suspended in DCM.  It was 

later found that 1-methylpyrrolidinium chloride was readily soluble in DCM, but the 

lithium salt was not.  The vessel was protected from light and allowed to mix under 

nitrogen for 72 hours and then filtered.  The resulting cake was washed with further 

aliquots of DCM and the aliquots were then pooled and washed with water until the 

washes tested negative for halides (silver nitrate test).  Care should be taken to keep the 

volume of the water washes at least 10 times smaller in volume than the organic layer, 

because the product is miscible in both.  The organic layer was then removed in vacuo 

and the resulting liquid was charged with activated charcoal and mixed for 24 hours.  

This mixture was then filtered over basic alumina to yield the final ionic liquid as a near 

colorless liquid.  The liquid was then dried at 110 ˚C in vacuo for at least 48 hrs. or until 

no loss of volume over time. 

1-Butyl-1-methylpyrrolidinium Trifluormethansulfonate, [BMPY]OTF:  The same 

procedures were followed as described above for [BMPY]N(Tf)2 with the exception that 

lithium trifluoromethansulfonate was used in place of lithium bis-

(trifluoromethansulfonyl)imide. 
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1-methy-3-butylimidazolium Tetrafluoroborate, [BMIM]BF4 :  The same procedures 

were followed as described above for [BMPY]N(Tf)2 with the exception that silver 

tetrafluoroborate was used in place of lithium bis-(trifluoromethansulfonyl)imide. 

1-methy-3-butylimidazolium Trifluormethansulfonate, [BMIM]OTF:  The same 

procedures were followed as described above for [BMPY]N(Tf)2 with the exception that 

lithium trifluoromethansulfonate was used in place of lithium bis-

(trifluoromethansulfonyl)imide. 

1-methy-3-ethylcyanoimidazolium bis-(trifluoromethansulfonyl)imide, [EMIMCN] 

N(Tf)2:  The cation produced from the initial reflux reaction of 1-methylimidazole and 3-

chloropropionitrile was a stand-alone ionic liquid.  The mixture was then charged with 1 

equivalence (eq.), with respect to the theoretical amount of 1-methy-3-

ethylcyanoimidazolium produced, lithium bis-(trifluoromethansulfonyl)imide chloride 

was dissolved in a minimal amount of acetonitrile and added to the yellow, viscous 1-

methy-3-ethylcyanoimidazolium chloride. The resulting product was collected in as 

described above. 

UV-Analysis of Solubilized FMOC:  Traditional gravimetric analysis would not be 

sufficient to analyze the mass of reagents dissolved in RTILs, because of their extremely 

low vapor pressure.  Traditionally, undissolved solid material from the initial mass of 

solute would be separated by filtration or centrifugation followed by a drying process.  

The resulting mass would be weighed and subtracted from the initial mass.  The thermal 

stability and low vapor pressure would not be conducive to achieving sufficient drying 

and would thus interfere with accurate measurement.  Therefore, a spectrometric 

approach was developed.   
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 All the solutes tested had a primary amine protected by FMOC.  The design calls 

for the solid solute to be allowed 20 minutes to dissolve in the liquid being tested, 

followed by filtration through celite and paper plug.  From the filtrate, 100 µL was added 

to a mixture of DMF and piperidine (3:1) to achieve a total volume of 1 mL.  This 

solution was allowed to react for 25 minutes in order to remove any FMOC protecting 

groups dissolved, and further diluted to 3 mL.  The biphenylfullvene released (see 

Chapter I for a more thorough discussion of FMOC removal) can then be measured at 

290 nm.  A calibration curve was generated in DMF, and subsequent reactions were 

evaluated and normalized to DMF. 

Peptide Synthesis:  Peptides were synthesized on an Apex 396 (Advanced Chemtech) 

equipped with a 96-well reaction block capable of vortex mixing.  Customized tentagel 

resin was swollen in Dichloromethane (Fisher) prior to synthesis.  9- 

Fluorenylmethoxycarbonyl (FMOC) amino acids (Synpep) were coupled using O-

Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluor-phosphate (HBTU; 5 eq. with 

respect to resin; Synpep), 1-hydroxybenzatriazole (Hobt; 5 eq.; Synpep), 

diisopropylethylamine (DIEA; 10 eq.; Advanced Chemtech) in N,N-dimethylformamide 

(DMF; Fisher).  Peptides were cleaved with 95% (v/v) trifluoroacetic acid and 5% 

triisopropylsilane and desalted on a G-25 sephadex column before final purification on a 

C4 semi-prep reverse phase HPLC column using water and acetonitrile gradients.  The 

final Leu was coupled by dissolving 3 (eq.) of the pre-activated pentafluorophenyl ester 

derivative, and then addition of this solution to the resin.  Three hours of vortex or 

mechanical stirring followed.  Peptide containing FMOC and side chain protection 
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elements were collected by exposure of the 2-chlorotrityl polystyrene resin to 3% TFA in 

DCM for 5 minutes followed by precipitation with cold diethyl ether. 

 

Results and Discussion 

 Ionic liquids (ILs) are defined as salts that melt near or below 100 ˚C due to poor 

coordination between ions, and room temperature ionic liquids (RTILs) are liquids at 25 

˚C or below.  They have currently been used in a wide array of organic reactions.18  Their 

enduring popularity exists for several reasons.  They are often referred to as nontoxic, 

‘Green’ solvents.  This label comes from their vanishingly small vapor pressures under 

ambient and typical reaction conditions.  This is of particular importance for reclaiming 

and recycling the solvent.  Several groups have reported reactions showing an increase in 

crude purity that saves enough time in purification to offset typically longer reaction 

times.  Given the large number of potential combinations of cations and anions, 

researchers can customize solvents to particular reactions to greatly increase efficiency 

and yields.  Therefore, the study of basic properties associated with ionic liquids and the 

reactants for a given reaction is of particular interest. 

 ILs display a wide range of solubility properties and are charged ionic species that 

have the potential to strongly disrupt hydrogen bonding networks.  Recently, Tom 

Welton and colleagues have been able to apply ILs as manipulators of nucleophilicity and 

reaction rates for amine bases in charge-neutral reactant reactions (Figure 79).19  This 

work noted that the reaction conditions follow Hughes-Ingold20 and Kamlet-Taft21-23 

rules and parameters.  By following the UV-Vis transition of Tri-nbutylamine, they were 

able  to  conclude  that  if  initial  reactants  are  charge -neutral  and  the  generation of an  
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activated complex includes charge formation, then the reaction rates will increase in an 

ionic liquid solvent system.  This conclusion suggests that ILs should be investigated as 

synthetic solutions to peptide chain insolubility and aggregation.  Furthermore, the 

reaction rates could potentially surpass those where traditional solvents are utilized.  

Figure 79  (Top) UV-VIS analysis of tri-nbutylamine with methyl-p-benzesulfonate.  (Center) Scheme 
for the methylation of tertiary amines.  (Bottom) Stabilization of high energy intermediate by the 
hydrogen bond acceptor of the ionic liquid anion.19 
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Judicious selection of the ion pair of the RTIL should allow for the selection of possible 

solvents to achieve ideal reaction conditions for SPPS (Figure 80). 

 

 

 

 

 

 The observation of increased nucleophilicity by Welton is encouraging for the 

idea of using RTILs in peptide synthesis, because the same general reaction is at the heart 

of peptide bond formation (Figure 80).  The RTILs chosen as the first to be evaluated for 

SPPS compatibility were [BMPY]OTF, [BMIM]OTF, [BMIM]BF4, [BMPY]N(Tf)2, and 

[EMIMCN]N(Tf)2.  The latter two liquids are hydrophobic in order to assure that trace 

amounts of water often found in the extremely hygroscopic ILs were not interfering with 

amide bond formation.  All of these anions should be capable of accepting a hydrogen 

bond, and thus stabilizing the charged intermediate formed during amide bond formation.  

However, given the large number of potential ion pairs capable of being hydrogen bond 

acceptors, the experiments designed herein also test general parameters with an eye 

Figure 80.  Theoretical hydrogen bonding affects.  (Left) Hydrogen bond donors would likely slow 
kinetics by inhibiting the primary amine lone pair from performing  a nucleophilic attack.  (Right) 
Congruent with the analysis of Welton, designed anions could be capable of stabilizing the high energy 
intermediate during amide bond formation. 
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towards possibly developing a rapid, combinatorial approach to identifying the ideal IL 

for SPPS.  The parameters chosen were coupling efficiency, active ester solubility, and 

protected peptide solubility. 

 

 

 

 The peptide chosen to study in these experiments was H-LAPEGRS-OH.  This 

peptide was designed to be water soluble for simple purification and analysis, and 

provides a reasonable test for two common side chain protection schemes employed in 

modern SPPS (i.e. butyl associated with Ser and Glu and N‘-2,2,4,6,7- 

pentamethyldihydrobenzofuran-5-sulfonyl (PBF) on Arg).  Standard protocols were 

utilized to synthesize the first six residues on a 2-chlorotrityl polystyrene resin.  The final 

residue, Leu, was coupled via FMOC-Leu-OPfP (activated pentafluorophenyl ester) in 

Figure 81.  Bar graph showing relative percentage of coupling efficiency as a function of solvent 
Reaction proceeded for 3 hours at room temperature under vortex or mechanical mixing. 
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the test liquids for three hours.  The pre-activated residue was chosen to simplify the 

coupling reaction.  HBTU and DIC couplings require additional additives, such as Hobt, 

and demand an initial activation reaction take place in order to generate an active ester. 

 The coupling efficiencies, as determined by HPLC analysis, are shown in Figure 

81.  The results following a three hour reaction time with both vortex and mechanical 

mixing were less than desired.  All of the RTILs failed to achieve 50% conversion as 

compared to DMF, which was quantitative.  Additionally, no significant change in 

conversion was observed upon heating the reaction to 60 °C or following a 24 hr. 

reaction time. 

One of the barriers to widespread industrial use of ILs is the absence of 

knowledge pertaining to how the structure of the IL affects solvent strength and physical 

properties.  Two parameters which may warrant further investigation are the viscosity of 

the RTIL and the polarity of the RTIL.  The RTILs were observed to be very viscous, 

comparable to glycerine following visual inspection.  Indeed, [BMIM]BF4’s viscosity 

was  recently  determined  to  be   279.86  η/mPa●S  at  298 K,  as  compared  to   water 

(1 η/mPa●S), benzene (0.604 η/mPa●S), and glycerol (934 η/mPa●S).24  The viscosity of 

the solvent medium could interfere with the movement of the polystyrene resin beads.  A 

single molecule moving in a liquid has to escape the forces of attraction associated with 

its neighboring molecules.  Design of the ionic liquid allows for reasonable control of 

physical properties, such as viscosity.  There are two key structural components to an IL 

that govern viscosity: the charge localization of the anion and the length of the alkyl 

chain associated with the cation.  Anions that fail to delocalize the negative charge 

throughout its structure tend to be more viscous and often experience a transition from 
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glass to liquid above room temperature.  This is expected as the localized negative charge 

strengthens the coordination of the ion pair, thus beginning to resemble a traditional salt.  

The alkyl chains attached to the cation have been shown to increase viscosity through 

what is believed to be Van der waals forces.  This too might be expected in the RTILs 

used in this chapter due to their ring and planar structures being able to stack.   

The polarity of ILs is a topic being investigated by several research groups.  

Traditional calculations led to early misconceptions of the polarity of RTILs.  For 

example, the program Chem3D can accurately predict the polarity of traditional solvents 

within 10% of accepted values.  DMF was predicted to be 3.97 debyes and the accepted 

value is 3.82 debyes.  [BMPY]OTF was predicted by Chem3D to be 15.21 debyes.  

These misconceptions have been recently been debunked, and even led to publications 

such as ‘How polar are room-temperature ionic liquids?’.25  Most attempts at determining 

polarity for these new solvents involve solvatochromic probes.26,27  These probes have 

λmax values that shift as a function of the solvents polarity.  From this, researchers are able 

to calculate energy values and polarity approximations.  They have determined that many 

of the imidazolium and pyrrolidinium ILs have polarities between methanol and 

ethanenitrile.  One variant in using solvatochromic dyes is that they measure values from 

an excited state.  Earle et al. later confirmed these approximations for [BMIM]BF4 and 

[BMIM]OTF in the ground state by using keto-enol tautomerism as a gauge for polarity 

(Figure 82).28  The nucleophilic attack and the subsequent high energy intermediate 

associated with amide formation would be predicted to be greatly influenced by the 

polarity of the solvent according to the Hughes-Ingold rules discussed above. 
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During the investigation of coupling efficiency it was observed that the RTILs 

were unable to dissolve 3 molar equivalents (34 mg; with respect to theoretical number of 

growing peptide chains on 50 mg of 0.4 mmol/g of substituted resin) of the active 

FMOC-Leu ester.  UV-VIS analysis of the biphenylfullvene released during base 

catalyzed removal of the FMOC protecting group showed distinct solvent strengths in the 

RTILs (Figure 83).  All of the RTILs save [EMIMCN]N(Tf)2 achieved < 1 molar 

equivalence dissolved.  This is likely a contributing factor to the poor yields discussed 

Figure 82  (Top) Keto-enol tautomerization and the cation of the ionic liquids tested.  (Bottom) Graph 
of dielectric points from 30 different solvents.28 
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above.  Curiously, [EMIMCN]N(Tf)2 was found to be the least effective solvent tested for 

amide bond formation.  Either one of the physical properties such as viscosity or polarity 

are inhibitive of amide bond formation, or the solvent was nearing saturation as may be 

the case for all of the RTILs tested. 

 

 

 

The poor solubility of the active ester led to the investigation of whether the 

protected peptide chain on the surface of the resin was soluble in RTILs.  The 6-mer 

peptide was collected with all of the side chain protecting groups as well as the N-

terminal protecting FMOC group.  UV-Vis analysis revealed that all of the RTILs, save 

[BMPY]N(Tf)2, dissolved the theoretical amount of peptide in the reaction (24 mg).  

[BMPY]N(Tf)2 was found to only dissolve 36% of the 24 mg.  However, [BMPY]N(Tf)2 

Figure 83.  Bar graph representing the percentage of active ester solubilized in the selected solvents. 
34 mg (65 µM) is equivalent to 100%.   
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was one of the more efficient solvents for the amide bond formation.  It maybe the case 

that [BMPY]N(Tf)2 has certain properties conducive to amide bond formation, but has 

overall poor solvent strength limiting the reaction yield.  Further investigation, and likely 

a combinatorial approach, into the properties and design of RTILs suitable for SPPS is 

warranted.   

 

 

 

 

 

 

 

 

Figure 84.  Peptide synthesis scheme utilizing an ionic liquid support as proposed by Chan.29
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Future work in the area of RTIL mediated SPPS involves testing solubility limits 

for the active ester in concert with the protected peptide.  Careful addition of reagent 

quantities should lead to ideal solubility properties in order to better isolate the physical 

properties of the RTILs governing the amid formation reaction.  This suggests that a 

liquid phase reaction may prove to be a more effective method for peptide synthesis in a 

RTIL.  During the time of this research, a group led by Tak-Hang Chan synthesized a 

biologically active 5-mer in a liquid phase reaction involving an ingenious use of an 

RTIL (Figure 84).29  Their approach appears to be well thought out and efficient, and 

would be predicted as a potential success by the data presented in this chapter.  One of 

the questions raised by the researchers was how many residues could be added to the 

peptide chain before solubility or glass transition becomes a problem.  This present 

research shows that in fact, many RTILs are powerful solvents for at least six residues 

and likely several more amino acids.   

Critical analysis of their approach does leave some unanswered questions that 

need to be addressed.  First, they chose to use the older N-terminal BOC protection 

scheme (discussed in Chapter I).  This requires the use of a 1:1 DCM:TFA solution to 

deprotect the N-terminal primary amine as opposed to 3:1 DMF:piperidine used in 

FMOC synthetic protocols.  This could be due to an unreported immiscibility with either 

DMF or piperidine and may present a problem as an overall method for peptide synthesis 

because most modern side chain protecting groups are acid labile.  Acid labile protection 

schemes are preferred due to their removal and easy cleanup during the peptide’s 

cleavage from the support.  They were able to incorporate a butyl protected Tyr residue, 
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but this was the final residue in the 5-mer and would not have been compatible with a 

subsequent elongation step.   

In conclusion, RTILs and possibly other ILs show potential as peptide synthesis 

mediums.  Further investigation into the physical properties of individual ILs can aid in 

the careful selection of the proper solvent.  However, a combinatorial approach which 

tests specific parameters such as reagent solubility, viscosity, and polarity could prove to 

identify an ideal IL for peptide synthesis more rapidly.  By either approach, the potential 

offered by a ‘green,’ easily recycled, and non toxic solvent for the growing field of 

peptide synthesis is worth investigating. 
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APPENDIX A 

 

HPLC DATA FROM HMPV PEPTIDES AND SIZE EXCLUSION DATA FROM 

THE HMPV FUSION CORE 
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Peptide synthesis of peptides 2-6 (Figure 85) was performed as described on page 73.  

Pseudoproline addition was achieved as described on page 75, and Hmb incorporation as 

described on page 76.  Peptides were produced on custom resin described on page XX to 

achieve a C-terminal amide group.  N-terminal succinyl groups were added by an 

additional HBTU, DIEA, and HOBT mediated coupling of mono-tert-butyl succinic acid 

following final FMOC removal. These peptides are the next generation of HR-2 peptides 

from hMPV to be optimized and tested. 

Figure 85.  (Top) Overlapping 35-mer sequences derived from HR-2 used to identify problematic 
regions in synthesis.  (Bottom) Location of pseudoproline coupling (blue) and valine HMB (red) used to 
overcome aggregation challenges  
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Figure 86.  HPLC data for purified LearnCoil-VMF sequences discussed in Chapter II.  (TOP) 33A 
(Bottom) HR-1 43-mer 
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Peptide 1 

Peptide 2 

Peptide 3 
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Figure 87—cont. Crude HPLC data for the HR-2 peptides listed in Figure 85 above.  Peaks with largest 
area under the curve were confirmed to contain the desired peptides via MALDI-TOF. 

Peptide 4 

Peptide 5 
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Figure 88.  Size exclusion chromatography data (discussed in Chapter II) of the hMPV fusion core 
following a freeze/thaw cycle of the HR peptide mixture.  The polymeric weight standards are shown in 
brown, and the fusion core sample is purple.   
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APPENDIX B 

 

SELECTED PEPTIDE LIBRARY 
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The following library of overlapping 15-mers is being used to elicit immune system 

response.  The resulting data set will produce a linear epitope map of the human 

metapneumovirus F protein.  The crude peptides were synthesized and collected as 

described on page 73.  Purification was performed on a 20 mL Sephadex G-15 column.  

Highlighted sequences were purified on a Waters C18 HPLC system with degassed 

solvents to avoid intramolecular disulfide bond formation.  Identities were confirmed by 

MALDI-TOF. 

 
Table 8.  Linear peptides currently being evaluated to produce a linear epitope map of the  
hMPV F protein. 
 
M S W K V V I I F S L L I T P 
K V V I I F S L L I T P Q H G 
I I F S L L I T P Q H G L K E 
S L L I T P Q H G L K E S Y L 
I T P Q H G L K E S Y L E E S 
Q H G L K E S Y L E E S C S T 
L K E S Y L E E S C S T I T E 
S Y L E E S C S T I T E G Y L 
E E S C S T I T E G Y L S V L 
C S T I T E G Y L S V L R T G 
I T E G Y L S V L R T G W Y T 
G Y L S V L R T G W Y T N V F 
S V L R T G W Y T N V F T L E 
R T G W Y T N V F T L E V G D 
W Y T N V F T L E V G D V E N 
N V F T L E V G D V E N L T C 
T L E V G D V E N L T C A D G 
V G D V E N L T C A D G P S L 
V E N L T C A D G P S L I K T 
L T C A D G P S L I K T E L D 
A D G P S L I K T E L D L T K 
P S L I K T E L D L T K S A L 
I K T E L D L T K S A L R E L 
E L D L T K S A L R E L R T V 
L T K S A L R E L R T V S A D 
S A L R E L R T V S A D Q L A 
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R E L R T V S A D Q L A R E E 
R T V S A D Q L A R E E Q I E 
S A D Q L A R E E Q I E N P R 
Q L A R E E Q I E N P R Q S R 
R E E Q I E N P R Q S R F V L 
Q I E N P R Q S R F V L G A I 
N P R Q S R F V L G A I A L G 
Q S R F V L G A I A L G V A T 
F V L G A I A L G V A T A A A 
G A I A L G V A T A A A V T A 
A L G V A T A A A V T A G V A 
V A T A A A V T A G V A I A K 
A A A V T A G V A I A K T I R 
V T A G V A I A K T I R L E S 
G V A I A K T I R L E S E V T 
I A K T I R L E S E V T A I K 
T I R L E S E V T A I K N A L 
L E S E V T A I K N A L K K T 
E V T A I K N A L K K T N E A 
A I K N A L K K T N E A V S T 
N A L K K T N E A V S T L G N 
K K T N E A V S T L G N G V R 
N E A V S T L G N G V R V L A 
V S T L G N G V R V L A T A V 
L G N G V R V L A T A V R E L 
G V R V L A T A V R E L K D F 
V L A T A V R E L K D F V S K 
T A V R E L K D F V S K N L T 
R E L K D F V S K N L T R A I 
K D F V S K N L T R A I N K N 
V S K N L T R A I N K N K C D 
N L T R A I N K N K C D I A D 
R A I N K N K C D I A D L K M 
N K N K C D I A D L K M A V S 
K C D I A D L K M A V S F S Q 
I A D L K M A V S F S Q F N R 
L K M A V S F S Q F N R R F L 
A V S F S Q F N R R F L N V V 
F S Q F N R R F L N V V R Q F 
F N R R F L N V V R Q F S D N 
R F L N V V R Q F S D N A G I 
N V V R Q F S D N A G I T P A 
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R Q F S D N A G I T P A I S L 
S D N A G I T P A I S L D L M 
A G I T P A I S L D L M T D A 
T P A I S L D L M T D A E L A 
I S L D L M T D A E L A R A V 
D L M T D A E L A R A V S N M 
T D A E L A R A V S N M P T S 
E L A R A V S N M P T S A G Q 
R A V S N M P T S A G Q I K L 
S N M P T S A G Q I K L M L E 
P T S A G Q I K L M L E N R A 
A G Q I K L M L E N R A M V R 
I K L M L E N R A M V R R K G 
M L E N R A M V R R K G F G F 
N R A M V R R K G F G F L I G 
M V R R K G F G F L I G V Y G 
R K G F G F L I G V Y G S S V 
F G F L I G V Y G S S V I Y M 
L I G V Y G S S V I Y M V Q L 
V Y G S S V I Y M V Q L P I F 
S S V I Y M V Q L P I F G V I 
I Y M V Q L P I F G V I D T P 
V Q L P I F G V I D T P C W I 
P I F G V I D T P C W I V K A 
G V I D T P C W I V K A A P S 
D T P C W I V K A A P S C S G 
C W I V K A A P S C S G K K G 
V K A A P S C S G K K G N Y A 
A P S C S G K K G N Y A C L L 
C S G K K G N Y A C L L R E D 
K K G N Y A C L L R E D Q G W 
N Y A C L L R E D Q G W Y C Q 
C L L R E D Q G W Y C Q N A G 
R E D Q G W Y C Q N A G S T V 
Q G W Y C Q N A G S T V Y Y P 
Y C Q N A G S T V Y Y P N E K 
N A G S T V Y Y P N E K D C E 
S T V Y Y P N E K D C E T R G 
Y Y P N E K D C E T R G D H V 
N E K D C E T R G D H V F C D 
D C E T R G D H V F C D T A A 
T R G D H V F C D T A A G I N 
D H V F C D T A A G I N V A E 



 188

F C D T A A G I N V A E Q S K 
T A A G I N V A E Q S K E C N 
G I N V A E Q S K E C N I N I 
V A E Q S K E C N I N I S T T 
Q S K E C N I N I S T T N Y P 
E C N I N I S T T N Y P C K V 
I N I S T T N Y P C K V S T G 
S T T N Y P C K V S T G R H P 
N Y P C K V S T G R H P I S M 
C K V S T G R H P I S M V A L 
S T G R H P I S M V A L S P L 
R H P I S M V A L S P L G A L 
I S M V A L S P L G A L V A C 
V A L S P L G A L V A C Y K G 
S P L G A L V A C Y K G V S C 
G A L V A C Y K G V S C S I G 
V A C Y K G V S C S I G S N R 
Y K G V S C S I G S N R V G I 
V S C S I G S N R V G I I K Q 
S I G S N R V G I I K Q L N K 
S N R V G I I K Q L N K G C S 
V G I I K Q L N K G C S Y I T 
I K Q L N K G C S Y I T N Q D 
L N K G C S Y I T N Q D A D T 
G C S Y I T N Q D A D T V T I 
Y I T N Q D A D T V T I D N T 
N Q D A D T V T I D N T V Y Q 
A D T V T I D N T V Y Q L S K 
V T I D N T V Y Q L S K V E G 
D N T V Y Q L S K V E G E Q H 
V Y Q L S K V E G E Q H V I K 
L S K V E G E Q H V I K G R P 
V E G E Q H V I K G R P V S S 
E Q H V I K G R P V S S S F D 
V I K G R P V S S S F D P V K 
G R P V S S S F D P V K F P E 
V S S S F D P V K F P E D Q F 
S F D P V K F P E D Q F N V A 
P V K F P E D Q F N V A L D Q 
F P E D Q F N V A L D Q V F E 
D Q F N V A L D Q V F E S I E 
N V A L D Q V F E S I E N S Q 
L D Q V F E S I E N S Q A L V 
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V F E S I E N S Q A L V D Q S 
S I E N S Q A L V D Q S N R I 
N S Q A L V D Q S N R I L S S 
A L V D Q S N R I L S S A E K 
D Q S N R I L S S A E K G N T 
N R I L S S A E K G N T G F I 
L S S A E K G N T G F I I V I 
A E K G N T G F I I V I I L I 
L I A V L G S T M I L V S V F 
V L G S T M I L V S V F I I I 
S T M I L V S V F I I I K K T 
I L V S V F I I I K K T K K P 
S V F I I I K K T K K P T G A 
I I I K K T K K P T G A P P E 
K K T K K P T G A P P E L S G 
K K P T G A P P E L S G V T N 
T G A P P E L S G V T N N G F 
P P E L S G V T N N G F I P H N 
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APPENDIX C 

 

NUCLEAR MAGNETIC RESONANCE SPECTRA OF ROOM TEMPERATURE 

IONIC LIQUIDS 
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Figure 89.  1H NMR spectrum of [BMIM]BF4 

 

 
 

Figure 90.  19F NMR spectrum of [BMIM]BF4 
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Figure 91.  1H NMR spectrum of [BMPY]OTF 

 
 

 
Figure 92.  19F NMR spectrum of [BMPY]OTF 
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Figure 93.  1H NMR spectrum of [BMIM]OTF 
 

 

 
Figure 94.  19F NMR spectrum of [BMIM]OTF 
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Figure 95.  1H NMR spectrum of [BMPY]N(Tf)2 

 

 

 
Figure 96.  19F NMR spectrum of [BMPY]N(Tf)2 
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Figure 97.  1H NMR spectrum of [EMIMCN]N(Tf)2 

 

 

 
Figure 98.  19F NMR spectrum of [EMIMCN]N(Tf)2 
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APPENDIX D 

 

CUSTOM RESIN AND SELECTED CUSTOM PEPTIDES 
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Figure 99.  Synthetic scheme used to produce the custom resin utilized during HR peptide synthesis. 
Briefly, 6-(amino)-caproic acid (Sigma) was coupled to tentagel resin (Synpep).  FMOC was removed by 
the use of piperidine.  The Knorr linker (4-[(2, 4-Dimethoxyphenyl)(FMOC-amino)methyl]-Phenoxyacetic 
Acid; Advanced Chemtech) was coupled to the resin to produce final amidated peptides.  Note: 33A and 
HR-1 43-mer from Chapter II substituted a 2-chlorotrityl linker (Advanced Chemtech) in place of the Knorr 
linker to produce carboxy terminal peptides. 
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Briefly, the peptide (Figure 100) was synthesized on Rink Amide MBHA resin 

(Anaspec) and needed to be > 95% pure.  SGSGK was created with K having the 

sidechain amine protected with a trityl protecting group.  The final FMOC was removed 

as described in Chapters I and Chapter II.  D-biotin (Anaspec) was added via a standard 

HBTU, DIEA, and HOBT coupling with a 24 hour mixing time.  The trityl group on K 

was then removed with a 3 minute exposure to 3% trifluoroacetic acid in 

dichloromethane.  Additional residues were coupled sequentially to the K sidechain 

amine by standard chain elongation protocols.  The final Q contained an N-terminal 

benzyloxycarbonyl (Cbz) protecting group.  The Z group was inserted to avoid 

pyroglutamate formation of the N-terminal Q during acidylosis.  The peptide was 

collected as described in Chapter II and purified via HPLC.  The Z group was then 

removed via hydrogenation catalyzed by 10% palladium on carbon in an aqueous 

Figure 100.  Custom peptide created at the request of Dr. Daniel Liebler. 
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medium.  The mixture was filtered and purified via HPLC to produce > 95% pure product 

as confirmed by MALDI-TOF. 
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Figure 101.  Custom peptides produced at the request of Dr. Todd Giorgio. 

 

Peptides (Figure 101) were synthesized following normal protocols described in Chapter 

II.  Following collection and purification, the peptides were dissolved in carbonate buffer 

(pH 9).  Care was taken to avoid K sidechain adduction by carefully monitoring solution 

pH to allow for a greater concentration of N-terminal amines in a deprotonated neutral 

state (sidechain pKA ~ 10.3 and N-terminal amine pKA ~ 8.9).  1.5 equivalents of Alexa 

FluorTM 488 tetrafluorophenyl ester (Molecular Probes, Inc.) were added to the individual 

peptide solutions.  The reaction was allowed 4 hours to react.  Final purification was then 

performed via HPLC.  The desired peptides gave off an intense green color by visual 

inspection.  The green color turned to light red during the freezing of the peptide 

solutions.  Final products were confirmed via MALDI-TOF analysis. 
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Doctorial Thesis 
 

Peptides and Proteins:  Anti-Virals to Novel Materials 
 
Brief Description of Doctoral Work: The fusion protein of the recently discovered human 
metapneumovirus was shown to be a homolog of previously characterized type I integral 
membrane fusion proteins.  Computer models were generated to study structural aspects of 
the fusion protein and identify potential antagonists.  Synthetic peptides from the heptad 
repeat regions were also shown to possess anti-viral activity.  The synthesis of several 
hundred peptides for collaborative endeavors and the ‘difficult’ sequences of the heptad 
repeat regions led to the study of ionic liquids as potential solvents to address aggregation and 
other synthetic hurdles currently cleared by expensive and labor intensive methods.  
Concurrently, new biologically active materials comprised of functional enzymes 
encapsulated in SiO2 were synthesized and characterized with an eye towards these novel 
materials being used as synthetic reagents. 
 

 
Research Interests 

 
Developing methods to improve peptides as possible materials, drugs, drug delivery, and 
tools for protein structure/function elucidation 
 

• Improving methods of synthesis for ‘difficult’ peptide sequences 
• Modifying amino acid sidechains and termini to offer useful properties for drug and 

materials research and deliver 
• Designing peptide and small molecule anti-viral and anti-cancer agents 

 
Development of Novel Biologically and Chemically Active Materials 
 

• Designing clinical diagnostic devices 
• Improving stability and adding functionality to novel biologically active materials 



 203

Publications 
 

Doctoral Dissertation 
 
Peptides and Proteins:  Anti-Virals to Novel Materials 
 
Refereed Articles 
 
Geoffrey H. Chew, Lamar C. Galloway, Neil R. McIntyre, Laura Aaron Schroder 
Karla M. Richards, Scott A. Miller, David W. Wright, David J. Merkler  “Ubiquitin and 
Ubiquitin-Derived Peptides as Substrates for Peptidylglycine α-Amidating 
Monooxygenase”; FEBS Letters  (2005), 579(21) 4678-4684 
 
Scott A. Miller and David W Wright “Dendrimer Nanocomposite Materials”; Polymer News 
(accepted) 
 
Miller, Scott A., Hong, Edmund, & D. Wright, David.W. (2005) “Rapid and Efficient Enzyme 
Encapsulation in a Dendrimer Silica Nanocomposite”; (submitted to Langmuir) 
 
“The Human Metapneumovirus Fusion Protein Mediates Fusion Through a 
Coiled-Coil Complex That Can Be Inhibited By Potent Synthetic Heptad 
Repeat Region 1 Peptides”; (submitted to The Journal of Biological Chemistry) 

 
"Relative Affinities of Neutral Ligands for CpRu(Ph2(CH2)nPPh2))+ Determined by IR 
Multiphoton Dissociation FT-ICR Mass Spectrometry";   (to be submitted to Inorganic 
Chemistry) 

 
“Determination of Relative Binding Strengths of Isosteric p-Benzoate Anions for trans-
Rh(PPh3)2(CO)+ via the Rh-NCS/Rh-O2C(p-benzoate) Equilibrium”; (to be submitted to 
Organometallics) 
 
“Determination of Relative Binding Strengths of Aliphatic and Substituted Aliphatic 
Carboxylate Anions for trans-Rh(PPh3)2(CO)+ via the Rh-NCS/Rh-O2C(carboxylate) 
Equilibrium”; (to be submitted to Organometallics) 

 
 

Public Talks and Presentations at Meetings 
 
Principal Presenter 
 
"Relative Affinities of Carboxylate Anions for trans-Rh(PPh3)2(CO)+ Measured by Metathesis 
Equilibrium with Isothiocyanate Ion," American Chemical Society National Meeting, New 
Orleans, Aug. 1999 (presented by Scott A. Miller) 
 
"Relative Affinities of Carboxylate Anions for trans-Rh(PPh3)2(CO)+ Determined Quantitatively 
via Metathesis Equilibrium with Isothiocyanate Ion," American Chemical Society National 
Meeting, San Francisco, CA, Mar. 2000 (presented by Scott A. Miller) 
 
“Characterization of A New Paramyxovirus Fusion Protein via Models and Synthetic Peptides,” 
Southeast Regional Meeting of the American Chemical Society, Atlanta, Nov. 2003 (presented by 
Scott A. Miller) 
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“Rapid and Efficient Enzyme Encapsulation in a Dendrimer Silica Nanocomposite,” Southeast 
Regional Meeting of the American Chemical Society, Memphis, Nov. 2005 (presented by Scott 
A. Miller) 
 
 
Contributed 
 
“Molecular Modeling & Crystal Structures of Rhodium (I) Vaska Complexes of 
Tricyclohexylphosphine and Other Bulky Phosphines,” American Chemical Society National 
Meeting, Dallas, Mar. 1998 
 
“Steric Interactions in trans-Rh(PR3)2(CO)O2CCR Modeled by Semi-Empirical Methods,” 
Southeastern Theoretical Chemistry Association Meeting, Memphis, TN, Mar. 1999 
 
“Determination of Relative Activation Energy for Metal-Ligand Bond Breaking by IR 
Multiphoton Dissociation Mass Spectrometry,” American Society of Mass Spectroscopists, 
Nashville, TN, May 2004.  
 
“Relative Activation Energies for Metal-Nitrile Bond Breaking in CpRu(dppn)(NCR)+ via IR 
Multiphoton-Dissociation Mass Spectrometry,” Gordon Research Conf. on Organometallic 
Chemistry, Newport, RI, July 2004. 
 
“Ligand Affinity for Ru(II) by IR Multiphoton Dissociation FT-ICR Mass Spectrometry,” ACS 
National Meeting, San Diego, CA, Apr. 2005. 
 
“Effect of Bite Angle in Cyclopentadienyl-Diphosphine Ruthenium Complexes on Binding 
Neutral Ligands,” ACS National Meeting, San Diego, CA, Apr. 2005. 
 
“Ligand Affinity for Ru(II) Determined by IR Multiphoton Dissociation FT-ICR Mass 
Spectrometry,” 5th North American FT-ICR MS Conference, Key West, FL Apr. 2005. 
 
“Steric Interactions in Square-Planar Rhodium(I) Complexes Containing Bulky 
Triorganophosphines,” Southeastern Theoretical Chemistry Association Meeting, Memphis, TN, 
Mar. 1999 
 
“Semiempirical Modeling & Crystal Structures of Rhodium (I) Vaska Complexes with Bulky 
Phosphines,” American Chemical Society National Meeting, New Orleans, Aug. 1999 
 
“Intramolecular Oxidative Addition of the Carbon-Halogen Bond in Rh(I) Vaska o-
Halobenzoates,” American Chemical Society National Meeting, San Diego, CA, Apr. 2001 
 
“19F NMR Reporter Ligands in Anion-Metathesis Equilibrium Studies of Rh(I) Systems,” 
American Chemical Society National Meeting, Washington, DC, Aug. 2000 
 
 




