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CHAPTER I 
 

Introduction 

Natural products have had an important place in the history of drug discovery; 

from the discovery of penicillin to the mass production of Aspirin by the Bayer 

Company 6 March 1899.1 Natural products are often hailed as miracle drugs that 

lead to improvements in the longevity and quality of live.  Between January, 1981 

and June 2006 ~ 47% of new chemical entities were either natural products or 

derivatives and analogues of natural products.  2 Some examples of natural 

products found in use include: antibacterials penicillin G and fosfidomycin, as an 

herbicide Bialaphos.  Aspirin, used as an analgesic to relieve pain, as an antipy-

retic to reduce fever, and as an anti-inflammatory medication.  Fosfomycin is a 

broad-spectrum antibiotic used for the treatment of urinary tract infections.  Cy-

closporin is an immunosuppressant drug widely used in organ transplant pa-

tients.  Surfactin is a very powerful surfactant used as an antibiotic, with other 

properties including anti-bacterial, anti-viral, anti-fungal, anti-mycoplasma, and 

hemolytic.  
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Figure 1 Structures of Natural Products in clinical use 

 

Aspirin 
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often used to cure pain, fever, and inflammation.  However, it was not until 1803 

until someone actually began to identify and isolate the compound responsible 

for willow barks activity.  In 1829, the crystallized form of salicin, a yellow active 

compound, was isolated and then prescribed for the treatment of rheumatism.  

 Salicin was acid hydrolyzed to D-glucose and salicyl alcohol.  The salicylic 

acid can be derived from the oxidation salicylic alcohol, the oxidation of salicylic 

aldehyde or hydrolysis of methylsalicyl ester.  The discovery of Salicylic acid 

helped in the elucidation of the structure of salicin.  Its structure was further elu-

cidated by the French chemist, Cohours, in 1845 and by the Scottish chemist, 

Couper, in 1858, who both hydrolyzed the methylsalicyl ester in wintergreen 

(Gaultheria) oil upon treatment with phosphorous perchloride.  The hydroxyl radi-

cal form readily reacts with the aromatic moiety, which results in hydroxylation.  

Kolb & Lautemann achieved the chemical synthesis of salicylic acid on a small 

scale.  Later, they devised large-scale chemical reactions, which led to the estab-

lishment of a commercial establishment, the Heyden Chemical Company, in 

Germany for the production of salicylic acid for analgesic and antipyretic pur-

poses.  However, salicylic acid upsets most stomachs.  Later, Felix Hoffmann 

preferentially chemically acetylated salicylic acid in 1897 to produce acetylsali-

cylic acid. 
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Figure 2: Chemical Synthesis of Aspirin 
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as other naturally occurring products.  Aspirin is an excellent example of the use 

of a naturally bioactive compound being used in mass production for prescription.  

This also shows the ability to synthetically improve a natural compound.  Another 

excellent historical discovery, penicillin resulted in the establishment of natural 

products discovery as a separate science.   

 

 

Penicillin  

In 1928, Alexander Fleming discovered in some Petri dishes, which were sup-

posed to contain bacteria, instead there was a blue-green mold.  Even more in-

teresting to note was the ring of nothing surrounding the mold.  In the dead zone 

surrounding the mold, Fleming thought the bacteria were undergoing lysis.  The 

mold was misidentified as Penicillium rubrum and broth filtrate named "penicil-

lin."4 however a number of years passed with Fleming unable to generate enough 

attention to his findings, until interest grew again under the duress of World War 

II, WWII.  Due to the pressures of WWII, companies and nations bonded together 

to begin the industrial production, purification, and distribution of penicillin.  De-

spite the industrial production of penicillin, fermentation of the drug was still ardu-

ous and time consuming.  It was thought that if the structure was known then the 

steps making a synthetic metabolite could be taken.  The process took five years 

and collaboration between two world powers.  While attempting to isolate the ac-

tive compound from the fermentation broth, it became obvious there was more 
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than one penicillin.  In fact, there was an entire family of penicillins with differing 

structures and bioactivities.  Finally, in 1945 the structure of penicillin was ulti-

mately solved.  5 

 

 
Figure 3: Penicillin 
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late 1950ʼs allowed for synthesis of a multitude of semi synthetic penicillins.  After 

the discovery of the biosynthetic pathway, it was determine that due to ease of 

production and biological properties, penicillin G was the preferred choice for 

production.7 By the addition of phenylacetic acid, the broth would predominantly 

produce penicillin G.  From then on, other precursors were added to fermentation 

in hopes that other penicillins would result.  Only one other showed advantage 

over penicillin G. 

 

 
Figure 4: Penicillin nucleus 
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 Another way alternate penicillins could be obtained was to produce one type 

of penicillin using fermentation, then to chemically modify the product.  This ap-

proach resulted in what were called semi-synthetic penicillins.  The ability to sin-

gularly produce and then chemically modify the penicillin nucleus opened the 

door for the production of even more effective antibiotics, and also solved the 

problem of resistivity, which had, began soon after mass implementation of peni-

cillin.  8  
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Figure 5: Synthesis Of Penicillin 
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tion of drugs.  Following this discovery and subsequent antibiotics, many compa-

nies added both a microbiology and fermentation department.  Later molecular 

biology began to influence drug research with the use of cloning and protein ex-

pression.  Later more advances were made with the use of recombinant proteins.  

Sequencing of the human genome, high throughput screening, combinatorial 

chemistry, structural based design and directed evolution has unfortunately led to 

a decline in the exploration of natural resources for pharmecuticals.9 

 The decline of the exploration of natural products can be attributed to the 

use of combinatorial chemistry combined with high though put screening.  It was 

thought that sheer numbers could help further the discovery of new chemical en-

tities.  Combinatorial chemistry was used to generate huge libraries of chemical 

structures, which then used an automated system for the determination of activity 

using biological assays.  

 There are two general approaches to generating libraries using combinato-

rial chemistry.  There is the focused library and the prospecting library.  The fo-

cused library uses already identified structures with biological activity and at-

tempts to modify these structures in hopes of improving this activity.  The pros-

pecting library is to provide novel structures entirely or later analysis in hopes that 

something is active.10 Hits are determined by the use of automated assays using 

high through put screening.  HTS allows the testing of small samples of each 

product using vitro assays to identify biologically active compounds.  Previously 

only about 3000 selected compounds could be tested using 1mL samples in test 
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tubes in 1–2 years.11 Use of high throughout screening has resulted in some hits 

(discoveries), but many researchers are beginning to advocate, and point out that 

many of the ʻoldʼ drugs have stood the test of time.  Many studies also show that 

there are alternate uses for the older drugs then originally known. 

 Many biologically produced small molecules contain interesting motifs that 

not only are singularly produced naturally, but are active for use by humans.  

Many methods are currently being explored for the use of these.  Cloning and the 

creation of massive gene data banks have played a definite role in the discovery 

of new entities.  As genetic material was sequenced and placed in the databanks, 

it became obvious that many new natural products could be discovered by simply 

by isolated the results of areas in the genomes that appeared to be responsible 

for the production of complex naturalproducts.12 through the sequencing of gene 

clusters they are able to identify regions which might encode for novel products 

as well as areas whose mutations might result in novel products.  

 With the advent of the science of drug discovery and the introduction of high 

through out screening, the ways drugs were discovered changed.  Before the use 

of HTPS, compounds were dissolved in aqueous solutions under thermodynamic 

conditions.  Using 96-well plates, compounds are dissolved in DMSO with surfac-

tants to improve solubility.  These changes allowed false hits.  As a result, com-

pounds that would later be deemed unacceptable were allowed to be tagged as 

potential hits due to changes in solubility and molecular interaction.  Thus, some-

thing had to be done to single out these false hits.  Looking at the databases of 
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chemical entities it was found one major reason compounds often failed were 

due to solubility and permeability issues.  Looking at the world drug index a large 

database of drugs, certain criteria were broken up statistically to determine what 

factors allowed drugs to get through all the phases of clinical testing.  As a result 

a set of laws that have been assembled concerning what properties a compound 

must posses before it is considered for use as a prescription called Lipinskiʼs rule 

of five13: 

 1) The molecular weight can be no greater than 500 g. 

 2) Have no more than five H-bond donors (expressed as the sum of OHʼs 

and NHs).  

 3) No more than 10 H-bond acceptors (expressed as the sum of Ns and 

Os) 

 4) And have a calculated Log P (M LogP) no greater than 5 

 5) Compound classes that are substrates for biological transporters are 

exceptions to the rules. 

This study preformed by Lipinski et al.13 finds a correlation between poor adsorp-

tion and permeability and compounds that lie outside of this set of rules.  It is in-

teresting to note that when this study was conducted it excluded products dis-

covered beforehand.  It disregards natural products because often times natural 

products contain structures that are similar to products already produced by the 

body, and thus easily incorporated into the body.  The natural product often is 

merely an analogue.  This is important because this means that natural products 
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entering drugs trials already have a greater chance of succeeding over their syn-

thetic counter parts.  It sheds light on ways of improving the mechanism of re-

search and discovery for pharmaceuticals.  

 The field of genetics has also forwarded our understanding of two natural 

product producing biological systems: polyketide synthetase and non-ribosomal 

peptide synthetases.  Gene cluster mining has lead to many interesting discover-

ies. for example, most small molecules that are used for pharmaceuticals are 

produced either non ribosomally, or via polyketide synthesis.  These methods of 

production create molecule with certain structural characteristics that have been 

shown to be biologically active.  Polyketide synthesized and ribosomally pro-

duced natural products are identified by the use of a limited group of proteingenic 

amino acids.  When a small molecule contains peptides outside of those 20 pro-

teogenic options, the mechanism of formation can be further elucidated by the 

presence of other structural motifs.14 

 

Non Ribosomal Peptide Synthesis 

 Nonribosomal peptide synthesis is characterized by the presence non-

proteingenic amino acids.  Important NRPS compounds with biological activity 

include vancomycin, actinomycin, and cyclosporine.  The structural motifs of 

NRPS compounds include macrocyclic, branched macrocyclic, and dimers or 

trimers of identical structural elements.  Smaller heterocyclic rings like thiazoline, 

oxazoline, or thiazole are also common structural features of nonribosomal pep-
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tides.  Additionally, these peptides may contain N-methylations, N-formylations 

and glycosylations as well as insertion of acetate or propionate units while fatty 

acids are also sometimes incorporated.15 



  15 

 

 
Figure 6: Nonribosomally Produced Compounds And Their Characteristics: Red 
Are Fatty Acids, Purple Are Non-Proteingenic Amino Acids, Green Are Carboxy 
Acids, Blue Are Heterocycles And Yellow Are N-Methyls. 

 
 
 

O

O

NH

O

HN

O

OH

O

O

NH
O

NH

O

HN

O

HN

O

HN

HO

O

Surfactin

HO

O

NH2 O

H
N

O

SH

N
H

OH

O

ACV

N

O

OH

OH

N

O

OH

HO NH

O O
N

N

O

HO OHVibriobactin

OH

N

O

N

O

N

O

N

O

NH

HN

O

N

O

HN

O

N

O

N

O

NH

O

Cyclosporin



  16 

 NRPSʼs are multifunction modular enzymes that serve as both the template 

and the biosynthetic mechanism.  Each modular enzyme can then be divided into 

domains, which are performing one single enzymatic step.  There are three main 

domains that are necessary for each module: the adenylation domain (A), the 

peptidyle carrier protein domain (PCP) or the thiolation domain (T), and the con-

densation domain(C).16 The peptide is first activated by addition of an ATP.  

Adenylation domains are the highly selective domains that select the peptide, 

which is activated.  Once activated the unstable amino acid is then transferred to 

the T domain, where is it attached via the pantetheine arm by thiolation.  The Apo 

-PCP domain must also be activated before attaching the activated amino acid.  

The phosphopantetheine moiety of coenzyme A is covalently attached to a serine 

residue of T by Sfp, a phosphopantheteine transferase.17  
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Figure 7: Loading of the NRPS Module 
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bound amino acid.  Peptide bond formation is done by the condensation domain 

(C domain).  The C domain catalyzes the nucleophilic attack of the downstream 

T-bound acceptor amino acid with its free α-amino group on the activated T-

bound donor amino acid.  The peptide is released by the thioesterase domain 

(TE).  Depending on the identity of the NRPS template, product release can be 

carried out either by the external nucleophile to give the linear acid product or by 

an internal nucleophile to yield a cyclic product. 

 Other modifications are made using other domains that are called editing 

domains.  These modifications include: epimerization, methylation, oxidation, re-

duction, and modification of the N-terminal peptide end by a N-formyltetrahydr-

ofolate-dependent formyltransferase domain. 

 Due to the singular enzymatic and mechanistic characteristics of each do-

main, the structure of a natural product itself can help predict what the genome 

will look like and aids in the location of the genes responsible for the production 

of that natural product.  For example the small molecule ACV tripeptide mention 

earlier as a precursor to penicillin, it can be elucidated from the structure, the 

modules and domains responsible for its production: 

 

 
Figure 8:Penicillin Nucleus 
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There are three amino acids that can be identified by the presence of the three 

amines: L-α-aminoadipic acid, L-cysteine, D-valine: 

 

 
Figure 9: Amino Acids That Make Up Penicillin Nucleus 
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Figure 10:Suggested Modules Of ACV 

 

Each A domain selects and activates each amino acid, which is then attached to 

the T domain, for there each amino acid is then linked with the previously thio-

lated amino acid.  The third amino acid must be epimerized before it is attached 

the peptide.  Once all three amino acids have then been connected, they are re-

leased from the synthetase by use of the Te domain.  Having identified the do-

mains and modules to search for as well as the order in which they would ap-

pear, one would be able to look at the genome and identify the region responsi-

ble for its production. 

 Following visual inspection, perspective genes are tested with a variety of 

methods including: use of gene knockouts, or the over expression and charac-

terization of the adenylation domain.  One way to generate a gene knock out is 

transposon mutagenesis.  The suspected gene cluster is mutated so that the dif-

ferent mutations have different disruptions in the gene of interest.  The mutated 

gene is then expressed to explore the affect it has on production of the natural 

product.  Another way to determine the correct gene cluster is to clone the 

adenylation domains and express them.  Activation of the adenylation domain is 

traditionally measured by radioactive ATP- [32P] pyrophosphate (PP) exchange 

assays.  18   
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K-26 

An example of a small molecule thought to be a result of a NRPS biosynthetic 

route is K-26.  While searching for ACE inhibiting compounds, K-26 was isolated 

from the broth filtrate of an actinomycete K-26.  K-26 is awater soluble, tri-peptide 

containing: L-isoleucine, L-tyrosine, and L-(R)-l-amino-2- (4-hydroxyphenyl)-

ethylphosphonic acid.  K-26 was found to have ACE inhibition properties.  Angio-

tensin I converting enzyme (ACE) helps in the regulation of blood pressure in 

mammals.  19 

 

 
Figure 11: K-26 
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acids has now been detected in many organisms from sea invertebrates to land 

vertebrates.  Interestingly enough it has been found that most of these com-

pounds posses some level of biological activity which includes antiviral, herbi-

cidal, and antibacterial as just a few examples. 

This activity has been ascribed to the presence of the phosphonic acid, 

which acts as an analogue for natural phosphates.  The differences include the 

bond distance between the C-P and the C-O-P, as well as the lower acidity.  En-

zymes that hydrolyze natural phosphates affect the C-P bond.  This implies that if 

the phosphonic analogue is accepted in place of the phosphate, in a metabolic 

cycle it cannot be as easily broken down as the phosphate.  This means that the 

analogue might be able inhibit the normal metabolic process, because it does not 

break down.  The analogue might compete for a binding area and thus act as an 

inhibitor.  22 

 In the case of most C-P bond-containing compounds, the incorporation of 

the C-P bond can be attributed to two enzymes, phosphoenolpyruvate mutase, 

PEP mutase, and carboxyphosphonoenolpyruvate, CPEP mutase.  PEP is re-

sponsible for catalyzing the conversion of the phosphate to the phosphonic acid.  

CPEP functions in the biosynthetic pathway leading to bialaphos; its mechanism 

remains unknown.  
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Figure 12: Two C-P Bond Forming Enzymes 

 

Two mechanisms have been proposed for the conversion: In mechanism one the 

reaction may proceed through an associative, double-displacement pathway in 

which the enzyme transfers the phosphoryl group from the C (2) oxygen of PEP 

to an active site residue and, then, to the C (3) of the pyruvate enolate intermedi-

ate (mechanism I).  The alternative mechanism involves dissociation of meta-

phosphate from the C (2) oxygen of PEP followed by bond formation to the C (3) 

of the pyruvate enolate intermediate.  23  
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Figure 13: Mechanism Of C-P Bond Formation 

 

 The other enzyme responsible for the formation of C-P bonds CPEP mu-

tase is found exclusively in the biosynthetic pathway of bialaphos. Its mechanism 

is characterized by an intramolecular rearrangement and a spontaneous decar-

boxylation.  Two key mechanistic questions are whether the decarboxylation 

event is spontaneous or enzyme catalyzed, and whether it precedes, accompa-

nies or follows the rearrangement.  A study later showed that the reaction pro-

ceeds via a rearrangement of the carboxyphospho group, followed by decarboxy-

lation.24 
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Figure 14: CPEP mutase 

 

The next chapter will delve further in the discovery and biosynthetic pathways of 

C-P containing compounds.  As evidenced by the discovery of penicillin, being 

able to utilize intermediates that can accumulate during natural production of 

these compounds can be very useful.  

Some interesting phosphonate compounds include:  cidofovir for the inhi-

bition of DNA polymerases, bialaphos (an herbicide) and fosfidomycin (an anti-

bacterial).  Cidofovir is a synthetic compound that is used for the treatment of 

HIV.  Bialaphos as mentioned is a natural product that can be used as a herbi-

cide.  While Fosfidomycin is, an antibacterial used for the treatment of urinary 

tract infections. 

 
Figure 15: Cidofovir 
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CHAPTER II 

 

Introduction 

Current natural phosphonates are divided into three categories, each repre-

sented as follows: by 2-aminoethylphosphonate, bialaphos, and K-26.  Most 

known phosphonates belong to the first category, in which the C-P bond is 

formed by phosphoenol-pyruvate mutase catalyzed intramolecular rearrange-

ment of phosphoenol pyruvate to phosphonopyruvate.  Phosphinothricin tripep-

tide (PTT, or bialaphos), the third category is unique among naturally occurring 

phosphonates in that it has a C-P-C bond.  The first C-P bond in PTT is catalyzed 

by phosphoenol-pyruvate mutase, as in the first category.25 K-26 is the next 

category of natural phosphonates, and contains a non-proteogenic amino acid, 

which excludes the direct involvement of the phosphoenol-pyruvate isomerase, 

responsible for the beginning synthesis in the previous category.  Despite the in-

triguing biological activity often exemplified by C-P bond containing compounds 

few biosynthetic pathways has been discovered.  Only three phosphonates bio-

synthetic pathways (as demonstrated by heterologous production) have been un-

covered: AEP, bialaphos, and FR900098 26.   
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Bialaphos (BA) {Phosphinothricin tripeptide [PTT]} 

 Bialaphos (BA) representing the third category of C-P bond containing com-

pounds was isolated by Ogawa as a structural component of antibiotic SF-1293 

from Streptomyces hygroscopicus.  27It is a tripeptide composed of two alanines 

and a peptide called phosphinothricin, possessing antibiotic activity because of 

its interaction with peptide metabolism and nitrogen anabolism.  BA is also the 

result of a non-ribosomal like mechanism.  Its three peptides are bonded via con-

densation domains, after the non-proteogenic peptide PTT is synthesized.  The 

high toxicity of bialaphos in plants also makes it an excellent herbicide.  The 

Phosphinothricin moiety, an analogue of glutamate in plants, acts as an inhibitor 

resulting in ammonia accumulation, which is the reason for BAʼs high toxicity.28   
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Figure 17: Phosphinothricin Precursors 

 

Biaphos expression has been studied and identified in the strains Streptomyces 
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resulting PPyn was removed to drive the reaction towards its production.  To 

prove that this was indeed the first step in the BA pathway, mutants with the first 

step blocked were analyzed.  The S. viridochromogenes genes and enzymes re-

sponsible for the initiation of phosphinothricin biosynthesis and production of 

phosphonoacetaldehyde, involving gene ppm and ppd, were identified.  

 

 

 
Figure 18 Originally Proposed Pathway 
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phosphonoenolpyruvate took place over three steps starting with cleavage fol-

lowed by oxidation, and immediately followed by the addition of another molecule 

of PEP.  However a recent study by Blodgett et al30 suggests that these steps are 

not so simple nor so few. The CPEP mutase is similar to enolase, which work 

through dehydration, thus the proposed biosynthetic pathway with expected ac-

tivity.  

 Previous studies 31has shown genes located in a certain region might be 

involved in these catalytic steps: phpC, phpD, and phpE. Mutants were con-

structed which blocked each of these individual genes.  PTT production took 

place; however at much lower levels than wild type.  The gene we then over ex-

pressed with a His tagged end.  It was discovered that phpC catalyzes the reac-

tion of phosphonoacetaldehyde to hydroxyethlphosphonate using NADH or 

NADPH as a cofactor.  (Step3)   

 PhpD (step4) was then over expressed as well and it was found through 

LC/MS analysis that phpD is responsible of the conversion of HEP to hydor-

yxymethylphosphonate.  Attempts to characterize phpE failed, however bioactiv-

ity was detected in the broth cultures were assayed.  The phpE (step 5) gene en-

codes a protein similar to the members of the hydoxyacid alcohol dehydrogenase 

family of enzymes, which suggests that PhpE is an alcohol dehydrogenase 

whose substrate is HMP.  If it is an HMP dehydrogenase, the expected product is 

phosphonoformaldehyde.  

 To produce the known intermediate phosphonoformate, an aldehyde dehy-
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drogenase is required.  The sequence of phpJ suggests that it is the likely culprit.  

Mutants of this gene were still able to produce PTT however the accumulated the 

intermediate aminomethylphosphonate not the expected phosphonoformate.  

This is reminiscent of the accumulation of other products in previously blocked 

steps that might be evidence for non-specific aminotransferases.  Thus, it was 

concluded that step 6 is indeed the oxidation of phosphonoformaldehyde to 

phosphonoformate. 

PhpF is responsible for the release of inorganic phosphate when the CMp-

5ʼ-phosphonoformat is formed.  The identification of this compound proves that 

the initially proposed pathway cannot take place.  It also can be viewed as the 

activated intermediate for the transfer of the phosphonoformate group.  This fits 

well with the idea that the PhpG and PhpH proteins could work in concert to pro-

duce CPEP in vivo via a reaction series analogous to the phosphoglycerate mu-

tase and enolase reactions of glycolysis.  PhpG is a close homolog of an auto-

phosphorylating phosphoglycerate mutase from the archaeon Sulfolobus sol-

fatericus.  It was suggested that PhpG catalyzes an analogous reaction using the 

activated CMP-5ʼ-PF intermediate to donate phosphonoformate to the active site 

of the enzyme.  The enzyme-bound phosphonoformate could then be donated to 

a compound such as 3-phosphoglycerate, thereby yielding a phosphonoformy-

lated 

Intermediate that would then serve as the substrate for the PhpH enolase, creat-

ing CPEP. 
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Figure 19 Steps 1- 9 
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Figure 20: Step 10 

 

Carboxyphosphoenolpyruvate (CPEP) is the substrate for CPEP phos-

phoenomutase in a reaction that yields phosphonopyruvate as a product.  It is 

unknown whether the decarboxylation of the presumed Carboxyphosphoenolpy-

ruvate intermediate of this reaction is the result of enzyme catalysis or inherent 

product instability despite in vitro study of the enzyme; further enzymatic studies 

may help clarify the mechanism.  CPEP phosphoenomutase is encoded by bcpA 

in S. hygroscopicus, corresponding to phpI in S. viridochromogenes. 

 

 
Figure 21: Originally proposed Pathway 
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acid thus making this reaction similar to the TCA cycle.  Aconitase the catalyst for 

the first reaction in the TCA cycle is inhibited by monofluroacetic acid.  Addition of 

monofluroacetic acid to the culture resulted in the inhibition of BA synthesis, re-

sulting in an intermediate phosphinomethylmalic (PMM) acid, which bears a 

structural resemblance to citric acid.  This shows that the PPA conversion to 

PMM is catalyzed by either the citrate synthase or a related enzyme.  The related 

enzyme was later identified as phosphinomethylmalate synthase (PmmS) in S. 

hygroscopicus, a homolog of the S. viridochromogenes pms gene product.  

Phosphinomethylmalate isomerase, the pmi gene product, was previously shown 

to rearrange the structure of phosphinomethylmalate for subsequent oxidation 

and decarboxylation by an unknown enzyme into deamino-keto-

demethylphosphinothricin (DAKDMPT).  The enzyme responsible for step X has 

not been identified.  It was previously predicted that this reaction would take 

place by an enzyme similar to (or perhaps identical to) isocitrate 

dehydrogenase32.  

 

 
Figure 22:Step 11 
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Likewise, an aminotransferase homolog was also not found which would 

likely be required for the conversion of DAKDMPT to demethylphosphinothricin.  

Unpublished results cited by Seto and Thompson29 indicate that both of these 

steps could be catalyzed by microorganisms that do not produce PTT; thus, it is 

probable that these steps are catalyzed by ubiquitous, generic enzymes that can 

be found in most microorganisms. 

 

 
Figure 23: Step 12 
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corresponding to the pat 33or the homologous S. hygroscopicus bar gene prod-

uct.34 

 

H3N

O

O

P

OHH

O

H
N

OH

O

P

OHH

O

O

Demethylphosphinothricin
N-Acetyl demethylphosphinothricin



  39 

Figure 24: Steps 13- 15 
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acetylphosphinothricin tripeptide (step XV) by the dea gene product 39,40 to pro-

duce the intact PTT molecule.  

The addition of the two alanine residues to Phosphinothricin, producing 

PTT, has been shown to occur by a nonribosomal peptide synthesis mechanism 

41 and a large segment of the minimal gene cluster is dedicated to nonribosomal 

peptide synthesis activities.  

The nonribosomal biosynthesis of PTT differs from that of the known bac-

terial systems, for one the three NRPS modules are not clustered together but 

rather scattered in the genome.  42 Sequence analysis has revealed that all three 

peptide synthetase genes encode only one peptide synthetase module.  An in 

silico analysis, as well as biochemical and genetic experiments, proved that 

PhsA is responsible for the activation of the first amino acid, N-Ac-DMPT, the 

precursor of PT, whereas PhsB and PhsC each activate one alanine43. PhsA 

consists of A and T domains; PhsB of T, C, and A domains; and PhsC of C, A, 

and T domains.  Currently, it is not possible to determine which of the two alan-

ylylation steps is catalyzed by PhsB and PhsC.  The fact that the two enzymes 

cannot replace each other suggests a defined positioning for each protein in the 

PTT assembly line.  However, in PTT synthetases, short communication-

mediating domains (COM domains) that mediate interactions between peptide 

synthetases could not be identified. 

 A typical TE domain at the C terminus of PhsB or PhsC is missing.  How-

ever, a highly conserved TE GXSXG motif at amino acids (aa) 14 to 18 was lo-
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calized at the N-terminus of PhsA.  Furthermore, the two genes theA and theB 

were identified, and their gene products showed high similarity to type II TEs 

(TEII).  TEIIs are autonomous, monomeric proteins, while TEIs typically are inte-

grated in the last module of peptide synthetases.  Within polyketide and nonribo-

somal polypeptide biosyntheses, it was shown that TEII enzymes have editing 

roles.  In most cases, along with the TEI, only one autonomous TE-encoding 

gene is part of the cluster.  Based on these facts, two alternatives for the release 

of PTT from the peptide synthetase complex can be postulated.  

In the first, the TE motif in PhsA is functional.  In this case, the three pep-

tide synthetases arrange in a manner such that the C terminus of PhsB or PhsC 

and the N terminus of PhsA can interact, and the tripeptide can be cleaved off 

from 

The peptide synthetase complex with the participation of the TE motif.  

 In the second model, the TE motif is not functional.  In this case, one of 

the TEIIs of PTT biosynthesis is responsible for the release of the tripeptide from 

the peptide synthetase complex.  The other TE would have editing roles in PTT 

biosynthesis specific sequences that exhibit the function of a COM domain 

And thus are responsible for the selective interaction of PhsA, 

PhsB and PhsC.   

   

Fosfomycin 

 



  42 

 

 Fosfomycin representing the first class of C-P bond containing compounds 

was first isolated from the fermentation broths of Streptomyces fradiae.  44 Fos-

fomycin is a clinically useful antibiotic for the treatment of lower urinary tract in-

fections and limb-threatening diabetic foot infections.  The antimicrobial activity of 

fosfomycin has been attributed to the inactivation of UDP-GlcNAc-3-O-

enolpyruvyltransferase (MurA), which catalyzes the biosynthesis of an important 

cell wall component.  45  

 The biosynthetic pathway of fosfomycin is being explored and thus far, 

minimal gene cluster elucidation has occurred.  The biosynthetic pathway has 

only been fully elucidated in S. wedmorensis, however it has never been hetero-

geously expressed.46 The genes, fom1-4, are thought to be responsible for the 

first few steps of involving the conversion of PEP into phosphonopyruvate (PnPy) 

by PEP mutase, followed by a decarboxylation to form phosphonoacetaldehyde 

(PnAA).  These first steps are shared be a number of C-P containing compounds 

including bialaphos, AEP, and 2-hydroxyethylphosphonate (HEP).  47 

 

 



  43 

 
Figure 25: Proposed Biosynthetic pathway of Fosfomycin 

 

From there, further genes were discovered using mutagenesis.  The mutated 

clones were then plated for activity.  S. Fradiae genomic DNA containing 21 puta-

tive Orfs were analyzed.  Gene disruption analysis coupled with bioinformatics 

studies narrowed down the number of Orfs involved to 13 total Orfs including 

what we believe to be the minimal gene cluster fom1-4, fomA-D, and fomR.  

Thus, two genes previously thought to be involved in biosynthesis fomE and 

fomF, were found not to be required and a proposed transcriptional activator 
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fomC and D.  The biochemical action of both FomA and FomB from S. wedmo-

rensis as phosphotransferases that inactivate fosfomycin has been demonstrated  

 The third class of compounds represented by one single compound K-26 
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has not been heterogeously produced nor has the biosynthetic pathway been 

elucidated.  The next chapter will present the discovery of the K-26 compound as 

well as discuss the structure moiety of AHEP as well as its ACE inhibitory activity. 
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CHAPTER III 

 

ACE activity 

Discovered in 1985, K-26, a novel inhibitor of Angiotensin I converting enzyme 

(ACE) was isolated from the broth filtrate of an actinomycete K-26.  K-26 is a wa-

ter soluble, acidic peptide composed of an equal mol of L-isoleucine, L-tyrosine, 

and l(R)-l-amino-2- (4-hydroxyphenyl)-ethylphosphonic acid.  

 

 
Figure 26: K-26 

 

Angiotensin I converting enzyme (ACE) has been found to play a critical 

role in the regulation of blood pressure in man and animals.  Ever since the dis-

covery of Captopril, a specific inhibitor of ACE, and its successful application to 

the therapy of hypertension, attempts have been made to develop other ACE in-

hibitors for use as anti hypertensive agents for clinical use.  As a result, a grow-

ing number of inhibitors of ACE, synthetic or microbial, have been discovered in 

recent years.  During the course of screening for microbial inhibitors of ACE by 

O

H
N

O

N
H

O

H
N P

O

OH

O

OH

OH



  49 

Yamato et al, an active substance, designated K-26, was isolated from the broth 

filtrate of an actinomycete K-26, and characterized chemically and biologically. 

 

 
Figure 27: Captopril, Break Through Discovery Ace Inhibitor Drug 

 

ACE inhibitor activity of K-26 was tested in vitro along with Captopril.  K-26 

proves to be just as potent as Captopril in ACE inhibition in vitro.  The IC50 of K-

26 was tested in two buffers 0.1 M phosphate buffer, pH 8.3, and 0.1 M borate 

buffer, pH 8.3, HHL or AG I being used as a substrate.  Six determinations were 

made to obtain an IC50; the average values were represented in table 1.  

 
Table 1: Activity of K-26 

()= Captopril,  - = not tested 

Substrate  IC50 (ng/ml) 
 Phosphate Borate 
HHL 6.7(6.0) 12(12) 
AG I 3.3(5.0) - 

  

 Each drug was administered intravenously to an anesthetized, normoten-

sive rat at the time indicated by an arrow at the following dose: Angiotensin I (AG 

I); 300 ng/kg, Angiotensin II (AG II); 100 ng/kg, noradrenalin (NA); 3 ug/kg, K-26; 

0.1 mg/kg, Captopril (CAP); 0.1 mg/kg.19 
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 It was shown that the introduction o f K-26 into the system had 

nearly identical affects on the blood pressure as those of Captopril.  When ACEI, 

II, and NA are introduced to the system, a spike in the blood pressure of the rat is 

recorded.  However; proceeding the introduction of the blood pressure raising 

compounds if either the K-26 of Captopril had been inject the spike caused by the 

ACE I was reduced.  As with Captopril the K-26 compound only inhibits the af-

fects of the type I ACE. 

Yamato et al believed that the phosphonate moiety might interact with an 

active site zinc atom resulting in the inhibitory activity of the compound.  How-

ever, other small peptides without C-P bonds possess ACE activity.  48 Wu Et Al 

48 constructed a database of 168 dipeptides and 140 tripeptides. According to the 

models, the IC50 values of seven new peptides with matchable primary se-

quences within pea protein, bovine milk protein, and soybean were predicted.  

The predicted peptides were synthesized, and their IC50 values were validated 

through laboratory determination of inhibition of ACE activity.  

To further ascertain the structural component responsible for the biological 

activity, Ntai et al synthezed K-26 and a multiple of analogues (table 2) to deter-

mine the affects 49.  ACE activity was extracted from rabbit acetone powder by 

soaking with 1oomM borate buffer followed by ultra-centrification.  Furylacryloyl-

Phenylalanyl-Glycyl-Glycine (FAPPGG) was then added.  The reaction can be 

monitored can be monitored based on the hyposcopic shift of the adsorption 

spectra due to the hydrolysis of FAPGG to FAP and GG.  ACE extract was pre-
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incubated with a range of inhibitor concentrations in the responsive concentration 

region for 5 min then 1 mM solution of FAPGG was added.  The rate of FAPGG 

hydrolysis was measured by the rate of hydrolysis by the change in absorbance 

at 340 nm/time.  IC50 values were obtained by fitting triplicate measurements 

to a curve.  

 

Table 2: Synthesized Compounds 

Compound IC50 
(K-26)  Ac-l-lle-l-Tyr-R-AHEP 14.4 

Ac-l-lle-l-Tyr-S-AHEP 139 
Ac-l-lle-l-Tyr-R-AHEP (OEt) 2 3.83 × 10−5 

L-lle-l-Tyr-R-AHEP 234.3 
L-lle-l-Tyr-S-AHEP 5.46 × 104 
Ac-l-lle-l-Tyr-l-Tyr 2.1 × 104 
Ac-l-lle-l-Tyr-d-Tyr 2.0 × 106 

L-lle-l-Tyr-l-Tyr 2.36 × 105 
L-lle-l-Tyr-d-Tyr 106 

Captopril 7.7 

 

 

As demonstrated by the chart the addition of the acetylation of analogues re-

sulted in an increase of activity while the inversion of the AHEP also resulted in a 

decrease in activity.  The inclusion of the AHEP moiety in the analogues im-

proved activity across the board.  The only analogue with improved activity was 

the adduct with the modified AHEP moiety Ac-l-lle-l-Tyr-R-AHEP (OEt) 2.  This 

data demonstrates that the affects of ACE inhibition may be due to the strong 

ionic interaction of the phosphonates anion with the enzyme. 
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Structure elucidation 

The structure of K-26 suggests the three amino acids are condensed using a 

NRPS like pathway, due to the presence of the amine bonds and the non-

proteogenic amino acid.  However, it is unclear as to whether the AHEP moiety is 

modified post or pre adenylation.  The aromatic amino acid functionality of AHEP 

suggests that its origin lies in the shikimic acid pathway.  However, it is difficult to 

rationalize how a PEP mutase generated precursor or analogous mutase reac-

tion can be integrated into classical amino acid metabolism to generate AHEP.  

To discover the biosynthetic origin of the AHEP, a series of incorporation studies 

with isotopically labeled tyrosine was undertaken by Ntai et al50. The labeled ty-

rosine was introduced by pulse feeding growing cultures of Actinomycete sp. K-

26 (1 mM/day for 5 days) with ring-d4-tyrosine, 3,3-d2-tyrosine, and 15N-

tyrosine(figure 4).  The K-26 was then purified and analyzed using MS/MS and 

subsequently isotopic enrichment measurements using a triple quadrupole mass 

spectrometer using electrospray ionization (ESI), collision-induced dissociation 

(CID), and selected reaction monitoring (SRM). 
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Figure 28: Incorporation Of Labeled Tyrosine Into The AHEP Moiety Of K-26 

 

The data suggests (table 2) that enzymatic phosphonylation occurs after tyrosine 

biosynthesis and does not proceed via an eliminated intermediate.  The AHEP 

moiety is the result of modifications to Tyr; this study determined that Tyr is an 

immediate precursor to AHEP.  

 

Table 2: Incorporation Studies On K-26: 

a. Determined by subtraction of percentage Ile from percentage Ile-Tyr. 
b. Determined by subtraction of percentage AHEP from percentage Tyr-AHEP. 
 

Precursor Ile (%) Tyr (%) AHEP (%) 
d4-tyr Nd 17.6+ 20.2 +/- 0.2 
d2-Tyr Nd 16.1 +/- 0.6b 18.7+/-0.6 
15N-Tyr 2.6+/- 0.1 6.2+/- 0.6a( 5.4+/- 

1.4)b 
7.1+/- 0.4 

 

However, these studies were unable to determine if there is a free AHEP inter-

mediate involved, when the C–P bond actually forms and the acetylation of the 
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Ile.  Another study by Ntai et al 51 attempts to determine whether AHEP is a free 

intermediate, the timeline for C-P bond formation and the acetylation of the N 

terminus. To aid in these determinations 13C2 labeled AHEP was synthesized for 

the purpose of isotopic incorporation studies. 

 

 
Figure 29: Labeled AHEP 

 

 

Liquid cultures were fed the isotopically labeled and unlabeled racemic mixtures 

of AHEP, the unlabeled being used as a control for growth.  The incorporation of 

AHEP was monitored using methods described in the previous paper.  A two 

atomic mass difference between the enriched(536) and unenriched (534)K-26 

molecule verifies incorporation of the labeled AHEP.  When the data was decon-

voluted, it suggested that the labeled K-26 was incorporated at about 85%.  This 
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indicates that AHEP is  a discrete precursor and that the substrate of the C-P 

bonds forming enzyme of Tyr or an analogue.  

Decarboxylation is necessary for incorporation of tyrosine into AHEP, they 

also synthesized labeled tyramine to determine if perhaps that was the direct 

precursor.  Incorporation studies done using the labeled tyramine failed, leading 

to the belief that tyrosine is a more direct precursor.  This suggests that the de-

carboxylation is combined with the C-P bond formation.  To determine the time 

line for the acetylation of the N- terminus, labeled isoleucine and labeled acety-

lated isoleucine were synthesized for another feeding study.  The cultures were 

prepared in the same method as before and the data analyzed as before.  The 

data shows that the acetylated Ile was incorporated with one addition mass unit 

at 43% while the Ile was incorporated at a little more than half of the acetylated 

compound.  The acetylated lle was only incorporated after being deacetylated, 

the high level of incorporation of the acetylated Ile vs. the unaceltylated may be 

the result of the ability of the intracellular transport of the different compounds.  

This indicates that the acetyltransferase may be a component of the NRPS and 

potentially the first domain.  The data also suggest that the acetylation is inde-

pendent of the NRPS functionality and occurs after the tripeptide has been re-

leased from the Te domain.  A third option is the formation of the tripeptide by 

two free synthetases, in this instance the acetylation occurs after the peptide 

bond.  
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Figure 30: Summary Of Incorporation Studies 
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CHAPTER IV 

 

Introduction 

We hypothesize that there is a NRPS system responsible for the biosynthesis of 

K-26.  K-26 an acetylated tripeptide appears to be the result of an NRPS like 

mechanism, which is evident by the presence of the non-proteogenic amino acid 

AHEP, as well as the previous incorporation studies.  The presence of three pep-

tides leads us to look for three modules.  The theoretical organization of domains 

is shown in figure 33. 

 To verify the entire genome of the K-26 was shot gun sequenced and 

BLASTed to aid in locating genes that might be responsible for the biosynthetic 

pathway of K-26.  Areas of high interest were identified in particular NRPS mod-

ules, which might encode for acetylation domains and tripeptide producing do-

mains.  Blasted sequences did not yield any obvious targets for the gene encod-

ing of K-26 thus the method selected was the over expression of adenylation 

domains for the purpose of determine which area is responsible for the produc-

tion of K-26.  The activity was verified using a novel MS technique that assays for 

adenylation activity.  
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Figure 31: Theoretical Biosynthetic Pathway Of K-26: Three Modules 

 Looking through the genome of the K-26 species yielded no obvious areas 

so areas that encoding for NRPS systems were scrupulously examined.  Using 
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Challis 8-amino acid code prediction, areas that were predicted to encode for Ile 

and Tyr were selected for over expression in E coli. 

 

Materials and methods 

All primers were purchased from Operon.  All enzymes were purchased from the 

New England Biolab (Ipswich, MA).  Chemicals were purchased from Sigma Ald-

rich (St. Louis, MO).  The SUMO vector was purchased from Invitrogen 

(Carlsbad, CA).  The Vanderbilt Chemical Biology Core provided the pBg102 

SUMO vector.  The Vanderbilt Sequencing Core preformed all sequencing.  Me-

dia and antibiotics were all purchased from Research Products international or 

Sigma Aldrich.  All SDS gel materials were purchased from Bio-Rad (Hercules, 

CA).  TOPO cloning was preformed using materials from Invitrogen.  Both the 

BL-21 (DE3) strain and the ROSETTA strain were purchased from Novagen (San 

Diego, CA).  

 MALDI and ESI MS samples were run by or with the aid of Vanessa 

Phelan.  MALDI-TOF mass spectrometric analysis was performed on a Voyager-

DE™ STR Biospectrometry MALDI-TOF MS Workstation.  ESI-LC/MS mass 

spectrometric analysis was performed on a ThermoFinnigan LTQ linear ion trap 

mass spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped with an 

ESI interface in negative ion mode 
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Pps 8 A3 

Primers [table 3] were designed with the cleavage sites for the enzymes Xbal and 

Bsa and for cloning into the SUMO vector.  The SUMO vector has a large fusion 

protein as well as six His tags on the N terminus.  They were then amplified for 

30 cycles  using the concentrations and conditions found in tables 2 and 3.  The 

1.7Kb PCR product was then ligated  into TOPO vector and transformed using 

electro competent top10 cells and plated for overnight growth on LB plates with  

kanamycin (50ug/mL). 

 

Table 3 Primers 

Primer Name 
TAAGGTCTCAAGGTATGGCGCCGCTGACCCC 2754 FP:1 

TAAGGTCTCAAGGTATGGCGCCGCTGACC 2754 FP:2 
TAATCTAGATCACTCACGGTCGTCGCG 2754 RP:1 
ATAGGATCCATGACCGGCCCCTTCGAG 2753 FP1 
ATAGGATCCATGACCGGCCCCTTCGA 2753 FP2 

ATAAAGCTTTCATGCGCGTGCGTCGAG 2753 RP1 
ATAAAGCTTTCATGCGCGTGCGTC 2753 RP2 

 

Table 4: concentration of PCR reaction 

 concentration Amount used(uL) Final concentra-
tion 

Forward primer 1uM 6  
Reverse primer 1uM 6  
Taq plus enzyme 5units/uL .5 2.5 units 
DMSO - 3 6% 
Taq Buffer 10X 5 1X 
Water - 37 - 
DNA template - .5 - 
dNTPs 10mM 1.5 .5uM 
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Table 5:PCR reaction conditions 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 32: PCR (lane 1- marker , lane 2 - combination of FP1 and RP, lane 3  

combination of FP2 and RP) 

cycles Temperature 
(Celsius) 

Duration 
(minutes) 

1 94 5:00 

30 94 0:30 

 52 1:30 

 72 2:30 

1 72 10:00 
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white overnight colonies were then selected inoculated for over night growth in 2-

5mL of LB media and Ampicillin (100ug/mL) .  The resulting growths were lysed 

and digested  to confirm the presence of the insert.  The insert is then ligated into 

the expression vector  with the SUMO protein. 

 The new plasmid is then transformed into both BL21 DE3 and Rosetta for 

expression.  Transformation was verified once again via digestion under the fol-

lowing conditions.  Expression was first preformed using 250mL cultures grown 

to OD600= 0.4- 0.6.  Then induced using IPTG, under various conditions to deter-

mine the best production of protein.  Cells were then selected for growth in a 2.8-

L baffled flask containing 500 mL LB medium with 100 μg/mL Ampicillin , at 17 

degrees with 0.2mM of IPTG for 16 hours in the Rosetta strain.  The cells were 

pelleted ( 1hr, 3750 rpm, 4°C) and resuspended in binding buffer (500m M NaCl, 

20 mM NaH2PO4, 20 mM imidazole, pH 7.4).  For cell lysis, DNase I was added. 

 Using a French Press,  the cells were lysed and then filtered through a 

0.45-μm filter.  The protein was affinity purified on a HisTrap FF column on an 

ÄKTA chromatography system (GE Healthcare) using binding buffer with gradu-

ated step  increasing imidazole concentration (20–500 mM).  The pure protein 

was then desalted with a HiTrap Desalting column using 20mM Tris, pH7.5 and 

stored in aliquots.  Protein concentrations were measured with Pierce® BCA Pro-

tein Assay Kit (Thermo Scientific). 

Expression in  Rosetta at 17 degrees and induced with .2mM IPTG, and 

Ampicillin  for 16hrs.  
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        75kB ------------> 

 

                   60kB ------------> 

                      
Final  
Concentration:  
915ug/ml 
 
 
 

 
Figure 33: SDS gel lane A: Marker B: uninduced Cell free extract(CFE) C: in-

duced CFE D: Flow through C: Bound concentrated F: Desalted concentrated G: 
Marker 

 

The protein in the gel above shows two different sizes that cannot be separated 

and it was bard to determine which protein is indeed ours.  This band can be at-

tributed to background production by the strain as the top band is present in the 

uninduced lane as well. 

 

Pps8 A2 

Primers were also purchased and designed with BamHI and HindIII cleavage 

sites for use in the Vanderbilt Core SUMO vector .  The concentrations for the 

PCR reaction are the same as previously stated.  Primers were amplified using 

the PCR protocol found in table with.  The 1.7 Kb PCR product was ligated and 
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transformed into TOPO vector as per previous protocol.  Once again, the plasmid 

was digested and ligated into the SUMO vector.  Then is was transformed into 

both the Rosetta and the BL-21 DE3 expression strains.  Protein was expressed 

and purified using the same procedure as mentioned previously under the follow-

ing conditions: 37 degrees for 16 hrs with 5mM IPTG  for 16hrs with kanamycin.  

(50 uL/mL) 

 
 
 
 

 
Figure 34: Digestion Of 2753 In Bl-21 (De3) Vector With Insert 
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Figure 35: Pps8 A2: Lane A- Marker, Lane B- Uninduced, Lane C- Induced, Lane 

D- Flow Through, Lane E- Concentrated Desalted Purified Protein 

 

Assay 

The activity of the first  concentrated protein was then tested for activity using an 

unpublished method  by Phelan et al. involving the use of heavy labeled ATP and 

ESI MS to record the exchange between the protein and the ATP. 
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By using y-18O4-ATP isotopically labeled ATP and incubating it with the 

adenylation protein, and different amino acids we are able to track the exchange 

through us of MALDI or ESI.  the reversible formation of aminoacyl adenylate  by 

the  Adenylation domain with the use of the labeled of y-18O4-ATP, can be used 

to  generate unlabeled ATP by the addition of unlabeled Pi. 

 

 

 

 

The reactions were carried out in 6uL and with final concentrations of 5 

mM MgCl2, 5 mM PPi, 1 mM g-18O4-ATP, 3mM amino acid, and 20mM Tris-HCl 

pH 7.5.  The reactions were initiated by the addition of 2 mL of 600 nM enzyme in 

desalting buffer.  After a half hour incubation at 25oC, reaction was stopped by 

the addition of six uL 9-aminoacridine in acetone (10 mg/mL) for the MALDI sam-

ples. In the case of the ESI reactions the reactions were quenched with the intro-

duction of pure 6uL of acetone 

The mass peak of 514 corresponds to the four labeled ATP, 506 corre-

sponds to the presence of unlabeled ATP.  The increase in unlabeled ATP is in-

dicative of an active exchange between the adenylation domain and the labeled 

ATP, this reaction is reversible.  Masses 508, 510 and 512 are present as the re-

sult of 1,2, or 3 three respectively labeled O18 present on the ATP and if the result 

of natural abundance and buffer exchange.  
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 Masses 528-536 are the sodium adducts, while the 588 through 596 

peaks are the ammonia acetate adducts, a result of the buffer.  

For analysis of both methods the ratio of unlabeled ATP was compared to all la-

beled ATP adducts and then calculated using Microsoft excel. 

Using TycA adenylation domain as control we are able to show any activ-

ity between adenylation and the amino acids.  AS shown in the graphs using the 

TycA as a control  to show the activity of the assay.  Compared with TycA do-

main incubated with no amino acid for background there seems to be some non-

specific activity as well as just background.  this suggests that none of the amino 

acids tested were the substrate the protein normally activates.   

 

 

Discussion 

Expression and characterization of these two domains show low activity.  The 

first pps8 A3 show no affinity for any amino acid.  The small activity present  

though non-descript does however verify that the protein is indeed active.  This 

leads us to believe that none of the amino acids tested are the substrate  for this 

domain. 

The second protein when tested shows an affinity for aspartate and aspar-

tic acid, which is ideal because of the near identical nature of these AA.  How-

ever, the third activation is low.  However once again because exchange can be 
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demonstrated it verifies that the protein is indeed active.  Once again, the lane 

shows the presences of a second indistinguishable protein.   

 

 

DATA 

Pps8 A3 

Table 6: Activity of Pps A 3: A 
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Table 7: Activity of Pps8 A3: B 
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