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Chapter I 

 

INTRODUCTION 
 

 

Noninvasive, highly sensitive, and accurate diagnostic tests are needed to reduce deaths from 

diseases such as lung cancer[4]. One of the challenges of doing tests based on the presence of specific 

biomarkers is that where current tests do not detect biomarkers in low enough concentrations at early 

stages of the disease. As additional biomarkers are identified there will be an increasing need for this 

type of test for infectious, cardiovascular, pulmonary, and metabolic diseases as well.  Interaction assays 

are employed in many sensing applications [2, 5].  For example, they are used to quantify the presence 

of a target, such as a disease biomarker or pollutant, to determine mechanism of action for ligand 

receptor binding [6-8] or to estimate first in-human dosing for new drugs [9-11]. There are many 

methods that have been used to determine if a pair of reactants have interacted or to measure the 

affinity for a biomolecular binding event, including UV-vis, fluorescence, NMR and mass spectrometry 

(MS).  The central nature of interaction determinations and desire to perform chemical and biochemical 

measurements with high accuracy has spawned the development and refinement of label-free 

technologies.  These include plasmonic sensors such as surface plasmon resonance (SPR)[5], 

interferometric devices such as the bio-layer interferometer [2, 12], and hybrid systems like 

interferometric SPR [13, 14].  While useful, all of these approaches require surface immobilization of one 

of the interacting species and cannot be used to perform studies in free-solution.   

Surface Plasmon Resonance 
SPR sensors are well-known label-free biosensors. The fundamental phenomenon of SPR is the 

oscillation of electrons in a solid or liquid that occurs in reaction to light stimulation. The refractive index 
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(RI) of a transducing medium 

changes in response to the quantity 

of the molecule of interest. This 

change in RI can be determined by 

interrogating the SPR [15]. 

Commercialized SPR sensors 

typically have a prism that couples 

the light to the transducing medium 

and have detection limits between 1 

X 10-6 and 1 X 10-7 [16]. A schematic 

of a typical SPR sensor configuration 

is shown in Figure 1 [1]. While these detection limits are good for research purposes, they cannot 

differentiate between bulk and surface RI changes. Also, they can only penetrate about 100 nm into the 

medium [16], making it difficult to detect large targets such as cells and bacteria.   There are other very 

sensitive SPR biosensors, such as long range surface plasmon and short range surface plasmon, that can 

differentiate between bulk RI changes and surface RI changes [17]  but they can only detect one type of 

analyte [16]. SPR is not used to detect analytes in free solution, but rather in a tethered format. SPR is 

used to determine a number of interaction phenomena, such as whether two molecules interact directly 

and the interactions kinetic and thermodynamic properties. It can also be used to detect the presence 

and concentration of a molecule in a solution, such as a biomarker for a specific disease, as well as 

protein surface adhesion to metal surfaces and nanoparticles.    

Acoustic and Calorimetric Sensors 
Other biosensors can detect molecules without labels as well, such as acoustic and calorimetric 

sensors. They do so by monitoring changes in resonant frequencies of quartz crystal resonators [18]. A 

 

Figure 1- Schematic of Surface Plasmon Resonance (SPR) configuration [1]. 
A single wavelength of light is guided to a metal surface where a tethered 
dextran resides to bind to the analyte of interest. Light excites electrons 
when it makes contact with the metal, causing a plasmon wave. Analyzing 
reflected and absorbed light using a detector can give insight into the 
binding taking place on the surface.    
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linear relationship between the mass adsorbed to the surface of the crystal and its resonant frequency 

was discovered by Sauerbrey in 1959. These types of sensors have a mass sensitivity of 3 X 10-2 g mm-2 

[18]. Because the mass of the molecule of interest has to be in direct contact with the crystal this 

method cannot be used in a free solution format.  Calorimetric sensors measure the heat generated 

when substances bind to each other, for example enzyme catalyzed reactions such as a series of statins 

to HMG-CoA reductase [19]. These reactions are exothermic and produce heat that can be used to 

measure the rate of the reaction, and this rate can be used to measure analyte concentrations.  Binding 

constants can be determined by measuring 

the enthalpy and entropy resulting from the 

interaction [19]. Calorimetry methods have 

been limited in their application because 

they require large amounts (>µmol/L) of the 

receptor and ligand [18], limiting 

throughput. 

Mach-Zehnder Interferometer 
Another class of label free 

biosensors use interferometry, where 

multiple light waves interact to create 

interference patterns. This interference 

pattern depends, in part, on the mediums 

through which the light has traveled. 

Changes in the medium produce changes in 

the interference pattern of the light that 

can be studied to gain insights into the 

 

Figure 2- Schematic of A) Mach-Zehnder interferometer (MZI), B) 
Young interferometer (YI), C) Hartman interferometer (HI) [2]. In all 
three configurations, incoming light interacts in regions where 
analytes of interest bind and resultant phase shifts of the outgoing 
are measured. 
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medium, such as molecular binding events that cause RI changes. Three interferometers are shown in 

Figure 2 [2], which I discuss here. The Mach-Zehnder interferometer (MZI) measures binding induced 

changes in RI within an evanescent field. MZI uses a waveguide to monitor differences in RI between a 

sample and reference [2]. Recombining the two beams, which interfere with each other after going 

through different mediums, produces a phase shift in the sensor arm beam, which in turn changes the 

output intensity of the beam. One of the strengths of MZI is that it nearly eliminates temperature 

induced shifts in RI [20], but it is difficult to measure low concentrations of analyte without using large 

sample volumes [21]. Early configurations of MZI resulted in detection limits of 2 X 10-2 refractive index 

units (RIU) [22] but a more recent total internal reflection configuration of MZI was developed that 

reached a detection limit of 7 X 10-6 RIU while sensing the interaction between an immobilized pesticide 

and its antibody in phosphate buffered saline Tween (PBST) [23]. Initial biosensing demonstrations 

detected fetal calf serum non-specifically binding to the sensor surface [22]. 

Young Interferometer 
The Young interferometer (YI) is similar to MZI in that there are two waveguides to guide beams 

through a sample and a reference. YI does not recombine the beams into one, as MZI does, but lets 

them interact in free space. The resulting interference pattern is captured by a CCD camera [2]. 

Waveguide channels can be multiplexed within this interferometer and has been shown to measure RI 

changes as small as 8.5 X 10-8 RIU [24]. YI has been used to detect 21-mer DNA with receptor DNA 

immobilized on the surface of the sensor with a refractive index detection limit of 0.9 X 10-6  [25]. 

Hartman Interferometer 
 Another interferometer, known as the Hartman interferometer (HI), also uses waveguides. 

Planar waveguides are employed that have rows patterned in them to immobilize molecules. A grating 

produces a broad beam that enters the waveguide, interacts with the different species immobilized in 

the different lines of the waveguide, and recombines to produce interference [2]. Again, the phase shift 

of this interference pattern in measured to make determinations regarding the species being 
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interrogated. HI has been shown to overcome problems associated with non-specific binding that occurs 

in complex biological samples, such as serum, by using a reference region and controlled surface 

chemistry [26].  

Dual Polarization Interferometer 
Dual Polarization 

interferometers (DPI) also use 

two waveguides, for a sample 

and reference, which are stacked 

on top of each other so they can 

be illuminated by a single laser 

beam. The polarization of the 

laser used in DPI is alternated 

between two modes in order to 

modulate the signal and increase its sensitivity [2]. Measuring the polarization and RI of the light coming 

out gives information regarding the thickness of an adsorbed protein layer [2]. DPI has been shown to 

measure interactions for a large range of analyte sizes, as well as measuring kinetics and structure at the 

same time [27, 28]. For example, this was done with D-biotin interacting with streptavidin [3]. The 

sensitivity of the interferometers mentioned so far, as well as others, is enhanced with longer optical 

path lengths in contact with the analyte of interest. The more the light interacts with the analyte, the 

greater the phase shift of the outgoing light, and the greater the signal produced. As a result, the 

instrumentation involved in building these sensors are usually measured on the order of centimeters. 

Waveguide Microresonators 
Waveguide microresonators can measure interactions, label free, with high sensitivity. They do 

so by taking advantage of multiple passes of light encountering an analyte, rather than just one pass like 

those that use waveguides. This is due total reflectance being employed in a circular configuration, 

 

Figure 3- Illustration of a dual-polarization interferometer configuration [3]. Two 
planar waveguides are illuminated by the same beam of light. The polarization 
of the light is alternated between two modes and the resulting interference 
pattern is projected and measured. 
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which enhances the Q (resonance) factor of the instrument. Small molecules binding to the resonator 

change the RI on the surface and disrupts the resonance wavelength. Recirculation of the light inside the 

resonator results in a narrower resonance line width [2]. This narrower resonance line width results in a 

higher Q factor, which has been shown to be related to greater sensitivity [29]. Difficulty dealing with 

alignment issues lead to the development of multiplexing this method using lithography and simple 

optical communication technologies [30, 31]. On-chip micro-ring resonators used in an array format 

have been able to detect protein cancer biomarkers in pure serum sensitively enough to be relevant 

clinically [30]. This technology has great potential because of its high sensitivity and multiplexing 

capabilities.  

Porous Sensors 
Another class of sensors utilizes pores etched into materials such as silicon, titanium, and 

aluminum. These porous thin films act as an interferometer by creating an interference pattern from 

light reflecting off different surfaces within the sensor, in this case the top and bottom portions of the 

pores. Pore size can be varied depending on what the analyte of interest is, but generally smaller pores 

result in greater sensitivity [32]. In biomolecular 

interaction applications specifically, functionalized 

portions and their bound substrates reside inside 

the pores, causing light to interact differently on 

these surfaces [2]. Because the principle by which 

these types of sensors work is based on reflective 

interferometry, they measure optical density, which 

is a function of RI and layer thickness. One 

advantage of this is that the temperature does not 

need to be controlled as precisely as it does in other methods. This is because RI and layer thickness 

 

Figure 4- Porous sensor schematic [2]. The interference 
pattern in porous sensors results from light interacting 
with analytes binding to the surface inside the pores.  
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essentially compensate for each other as temperature changes. For example, when temperature rises, 

the layer thickness increases due to thermal expansion, while the RI decreases, and visa-versa[33, 34]. 

Porous sensors have been shown to detect the binding of DNA oligomers, proteins, and other small 

molecules in pico- and femtomolar concentrations [35].  

Backscattering Interferometry 
A relatively new interferometric methodology, backscattering interferometry (BSI), has a 

significant advantage over these other sensing methods because it can be used in either label-free 

format, tethered or free-solution [36-39].  There are advantages to both formats, with tethered assays 

being particularly valuable when there is a need to deploy the test to a remote location or in a near 

patient setting. Free-solution determinations, without labels, provide an unperturbed environment for 

determining if a ligand and receptor bind and give the most accurate measure of affinity.  In addition, 

free-solution assays are rapid, less complex, cost less, and don’t risk the potential of biasing or 

perturbing the outcome [18, 40].   

Unlike any other method, BSI is a 

unique interferometer, impinging 

coherent parallel rays from a laser onto a 

fluid-filled microchannel. While other 

instrument components are measured in the order of centimeters, as mentioned above, the channel in 

which light interacts in the BSI instrument is on the order of only 10s of micrometers.  As described 

previously [8], the light-chip interaction leads to a fan of scattered light containing a high contrast 

interference fringe pattern (Figure 5). Measuring the spatial shift in the fringes has enabled the 

detection of numerous types and classes of biomolecular interactions [38, 39, 41, 42], with high 

sensitivity and in complex matrices [43].  

Figure 5- Composite photograph of 47 interference fringes produced 
by backscattering interference of light from a laser impinging on a 
fluid filled microchannel onto a 1 inch CCD array camera. For more 
detail please refer to Figure 6.  
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Biomolecular binding events can be measured by BSI because changes in the refractive index 

(RI) of the medium which is principally a consequence of changes in conformation, hydration and 

electrostatics [44, 45], can be detected by measuring the spatial shifts of the fringes. Because of this, BSI 

is minimally affected by the relative mass of the two interactants, which is not the case for sensing 

methods such as SPR. Correlation of these fringe shifts with analyte concentration in the fluid provides 

high sensitivity (picomolar Kd and detection limits on the order of thousands of molecules), label free 

quantification of a vast array of molecules such as protein-protein interactions, ion-protein interactions, 

small molecule-protein interactions, membrane-ligand interactions, carbohydrate-lectin binding, and 

aptamer-protein interactions[38, 39, 41, 42].  

Protein adsorption to glass is a well-known phenomenon [46-48] and proteins that adhere to 

the glass channel surface undergo conformational changes[46]. This is a problem when detecting 

interactions in free solution using BSI because light interacting on the surface of the channel is affected 

by surface composition. Changes on the surface due to protein adsorption contribute unwanted noise to 

the signal. One approach to eliminate contributions from surface binding is to reduce protein adhesion 

at liquid-glass interfaces. These methods require physical modification of either the glass surface or the 

proteins involved in the interaction, but some protein adhesion inevitably still occurs [49] and 

manipulation of the surface of the channel affects the signal produced by BSI[38, 41, 50, 51]. While this 

is not a problem in a tethered format used by the instruments covered above, it can be problematic 

when the analyte of interest is in free solution, as it is in BSI. SPR, which uses a tethered format, 

automatically distinguishes the surface from the bulk binding signal because the evanescent wave 

couples only about one hundred nanometers into the solution [52], but since BSI can work in both 

configurations and the optical interrogation method inherently combines the surface and the bulk 

signal, there is a desire to optimize performance under the most appropriate assay configuration.   
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Although we have shown that BSI can be used to make interaction measurements at efficacious 

performance levels, even in complex matrices[38, 43], improvements in S/N are desirable and could 

simplify the use of the technique.  Non-specific protein adsorption has, and continues to be, a major 

limitation in the application of biosensors such as SPR [53]. Many approaches have been employed to 

reduce or eliminate surface fouling, most of them involving some form of surface pacification chemistry 

[54]. BSI is not immune to this phenomenon, with adsorption to the surface of the channel producing a 

signal as a result of changes in the optical path of the interferometer. Because the BSI signal is an 

ensemble measurement resulting from the refraction of light at all interfaces, under conditions where 

the amount of material adhered to the surface changes throughout the assay or from run-to-run on 

replicate determinations, the contribution of the signal from the changing surface can lead to a 

reduction in the reproducibility of the measurement and negatively affect the limit of quantification 

(LOQ)[43].  

Previous signal analysis methods used in BSI [55] include taking the cross-sectional intensity 

profile of a small, contiguous subset of the fringes and performing a fast-Fourier transform (FFT) on 

them.  This is done using 4-8 of the fringes in a region of the fringe pattern that exhibits a single spatial 

frequency. The specific fringes analyzed vary between different experiments but typically reside in the 

first half of the fringe pattern, beginning from the left. The phase of the dominant frequency, which is a 

measure of the spatial shift, is then monitored [5]. This analysis method ignores signal content 

contained in the other fringe subsets and less dominant frequencies. Since BSI can measure either 

surface immobilized or free-solution binding events, we hypothesize that one region in the fringe 

pattern could be signaling binding events on the surface and another region could be signaling binding 

events in the bulk solution [51]. 

Here we report an approach to reducing the impact of non-specific surface binding on the BSI 

signal by using a fringe pattern interrogation method to identify differences in the fringe pattern for the 
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signal produced at the surface or the bulk.  We have found that the signal produced by BSI, in a response 

to a change in the RI of the bulk fluid, can be discriminated from a change in RI produced when 

molecules bind to the surface. Using two model assay systems, producing known bulk and surface RI 

changes, we developed an algorithm to identify signal changes in response to bulk RI while eliminating 

the contribution of the signal produced by surface bound species. The algorithm can automatically find 

these fringe features and allow the user to display the experimental result as a composite, bulk, or 

surface binding signal.  

 

 

  



11 
 

Chapter II 

 

DISTINGUISHING SIGNAL CONTRIBUTIONS FROM BULK FLUID AND CHANNEL SURFACE REGIONS IN 
BACKSCATTERING INTERFEROMETRY  

 

 

Abstract 
Backscattering Interferometry (BSI) has been used to detect bio-molecular interactions by 

measuring shifts in the bulk refractive index of a sample due to conformational changes occurring upon 

binding. BSI has advantages over other biosensors because of its sensitivity and it can detect 

interactions in free solution, as well as in a tethered format. Previous studies have demonstrated 

interaction assays with BSI in a surface tethered configuration and demonstrated the free-solution 

determinations using the same fringes and analysis algorithm.  So when performing an assay in free-

solution the signal detected must be an ensemble measurement of both the surface and bulk signal.  In 

the past, proper controls, rinsing procedures and channel wall coatings has enabled discrimination of 

the non-specific surface adsorption from the signal of interest generated in the bulk. Even so, these 

unwanted surface-derived signals reduce the reproducibility of BSI assays and negatively affecting its 

limit of quantification. Here I show that there are regions within the spatial and frequency domains of 

the fringe pattern that are sensitive only changes in the bulk fluid. This observation allowed the 

development of a procedure and algorithm to be developed that enables rejection of the surface signal 

with minimal impact on the signal to noise ratio for the bulk signal. Two model systems were designed in 

which the surface conditions of the glass microchannel, as well as the bulk fluid, were changed in a 

controlled manner. Step changes in glycerol concentration in the bulk fluid were made and successive 

layers were chemically coupled to the surface to produce independent bulk and surface signals. Non 

dominant frequencies, as well as all contiguous fringe subsets of the fringe pattern, previously 

uninvestigated, allowed distinct regions to be identified that are sensitive to bulk RI, but that are 
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insensitive to the surface changes. The algorithm tabulates the phase output of each frequency, within 

each contiguous fringe subset, and outputs those subsets that show no signal from surface changes, but 

maintains signal produced by bulk fluid changes. Thus by analyzing these regions of interest specifically, 

unwanted signal contributions from surface adhesion are effectively eliminated while the signal 

produced by the bulk fluid is maintained. Multiple regions in each data set, within each model, were 

found that are insensitive to surface binding.  One limitation of the method is a reduction in signal to 

noise ratio performance when the algorithm is applied to give a discrete output. The signal to noise ratio 

using the previous analysis method was 3.56, while using the new algorithm resulted in a signal to noise 

ratio of 2.98.  By summing frequencies and regions of interest, the signal to noise ratio of this new 

analysis can be increased by as much as 59%. 
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Introduction 
Noninvasive, highly sensitive, and accurate diagnostic tests are needed to reduce deaths from 

diseases such as lung cancer[4]. One of the challenges of doing tests based on the presence of specific 

biomarkers is that where current tests do not detect biomarkers in low enough concentrations at early 

stages of the disease. As additional biomarkers are identified there will be an increasing need for this 

type of test for infectious, cardiovascular, pulmonary, and metabolic diseases as well.  Interaction assays 

are employed in many sensing applications [2, 5].  For example, they are used to quantify the presence 

of a target, such as a disease biomarker or pollutant, to determine mechanism of action for ligand 

receptor binding [6-8] or to estimate first in-human dosing for new drugs [9-11]. There are many 

methods that have been used to determine if a pair of reactants have interacted or to measure the 

affinity for a biomolecular binding event, including UV-vis, fluorescence, NMR and mass spectrometry 

(MS).  The central nature of interaction determinations and desire to perform chemical and biochemical 

measurements with high accuracy has spawned the development and refinement of label-free 

technologies.  These include plasmonic sensors such as surface plasmon resonance (SPR)[5], 

interferometric devices such as the bio-layer interferometer [2, 12], and hybrid systems like 

interferometric SPR [13, 14].  While useful, all of these approaches require surface immobilization of one 

of the interacting species and cannot be used to perform studies in free-solution. 

Previous signal analysis methods used in BSI [55] include taking the cross-sectional intensity 

profile of a small, contiguous subset of the fringes and performing a fast-Fourier transform (FFT) on 

them.  This is done using 4-8 of the fringes in a region of the fringe pattern that exhibits a single spatial 

frequency. The specific fringes analyzed vary between different experiments but typically reside in the 

first half of the fringe pattern, beginning from the left. The phase of the dominant frequency, which is a 

measure of the spatial shift, is then monitored [5]. This analysis method ignores signal content 

contained in the other fringe subsets and less dominant frequencies. Since BSI can measure either 
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surface immobilized or free-solution binding events, we hypothesize that one region in the fringe 

pattern could be signaling binding events on the surface and another region could be signaling binding 

events in the bulk solution [51]. 

Here we report an approach to reducing the impact of non-specific surface binding on the BSI 

signal by using a fringe pattern interrogation method to identify differences in the fringe pattern for the 

signal produced at the surface or the bulk.  We have found that the signal produced by BSI, in a response 

to a change in the RI of the bulk fluid, can be discriminated from a change in RI produced when 

molecules bind to the surface. Using two model assay systems, producing known bulk and surface RI 

changes, we developed an algorithm to identify signal changes in response to bulk RI while eliminating 

the contribution of the signal produced by surface bound species. The algorithm can automatically find 

these fringe features and allow the user to display the experimental result as a composite, bulk, or 

surface binding signal.  

Methods 
The BSI instrument configuration utilized in this study is shown in Figure 6 and has previously 

been described in detail [56].  Typically BSI signals are a transduced by capturing 4-8 fringes and 

measuring their spatial shifts using the frequency with the highest power in the Fourier domain of the 

fringe subset [5].  In the experiments performed in this study, the camera, initially positioned at a 

distance of 45 cm from the mirror, was moved to 3.5 cm away. This dimension is labeled “d” in Figure 6. 
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This allowed us to capture more than 60 

fringes for analysis. In order to develop an 

algorithm that automatically distinguishing 

between signal originating from surface 

changes and signal originating from the 

bulk fluid region of the channel, we 

developed two models. In both model 

systems, a variety of bulk fluid content and 

surface bound molecules were applied in 

the channel in succession. By controlling 

the surface layers and bulk fluid content we were able to produce signal originating from known 

changes in the surface and bulk regions independently. An algorithm was then developed to analyze 

these independent signals to find regions within the fringe pattern that only responded to changes in 

the bulk fluid content, regardless of surface contamination.  

In the first model system, 4 concentrations of glycerol in phosphate-buffered-saline (PBS) were 

used to produce changes in bulk refractive index with no surface layer bound to the channel surface. 

Glycerol was chosen because it produces a linear shift in the refractive index of the bulk fluid. The 

specific glycerol concentrations (0 mM, 2 mM, 6 mM, and 10 mM) were chosen because they are easy to 

produce accurately using simple dilution methods. A surface layer was then added to the channel using 

3-mercaptopropyltriethoxysilane (MEPTES) to mimic surface binding. Four measurement were taken 

with 0mM glycerol in PBS, followed by 4 more glycerol concentration changes in PBS. Each of the twelve 

samples and their associated bulk and surface content is outlined in Table 1.  

 

Figure 6- BSI instrument schematic. A He-Ne laser is directed from 
a fiber coupler to the microfluidic channel via a mirror. The 
backscattered light is then directed, via the same mirror, onto a 
CCD array camera and recorded in LabVIEW.  
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A CCD camera was used to record 50 frames of the fringe pattern produced by each sample 

described in Table 1. Data was taken for samples 1-4 before the addition of MEPTES to the surface of the 

channel. Next, the surface of the channel was cleaned by soaking the channel in 10% KOH in methanol 

for 30 minutes.  Then the channel was rinsed with deionized water and dried with dry compressed air. 

The channel was then rinsed with Toluene. Next, the channel was soaked in 2% 

3-mercaptopropyltriethoxysilane (MEPTES) in toluene for 60 min in order to silanize the glass surface.  

The channel was again rinsed using Toluene. After rinsing with deionized water and drying, samples 5-

12, along with associated bulk fluid content shown in Table 1, were analyzed. An illustration of the 

silanization process is shown in Figure 7.  

 

 

 

Figure 7- Steps of microchannel surface layer preparation. For model 1, MEPTES is applied to silanize the surface of the 
glass. For model 2, a layer of GMBS is added, followed by ExtrAvidin, Biotin-BSA, and then a second layer of ExtrAvidin. 
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In the second model system the bulk fluid content was changed to water and 4 more surface 

layers were applied to produce the surface signal. Different bulk content and surface layers between 

model 1 and model 2 were chosen to make sure that our analysis method can be extended to more than 

one system. First, a 4-step glycerol in water concentration gradient was produced.  N-(γ-

maleimidobutyryloxy)succinimide ester (GMBS) was added as the first surface layer, followed by 

ExtrAvidin, BSA-Biotin, then another layer of ExtrAvidin. An illustration of this process is shown in Figure 

7. Table 2 shows the 12 samples and their surface and bulk content.  

 

Table 1 – Model 1: Each data set consisted of BSI signals obtained under 12 different sample conditions (S1-S12). This table 
lists the bulk fluid content of the microchannel and the surface bound molecule layers present for each of the 12 samples in 
model 1. 

 

 

 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

MEPTES MEPTES MEPTES MEPTES

0mM 

Glycerol 

in PBS

0mM 

Glycerol 

in PBS

2mM 

Glycerol 

in PBS

6mM 

Glycerol 

in PBS

10mM 

Glycerol 

in PBS

S
u

rf
a

c
e

 L
a

y
e

rs

MEPTES MEPTES MEPTES MEPTES

B
u

lk
 C

o
n

te
n

t
0mM 

Glycerol 

in PBS

2mM 

Glycerol 

in PBS

6mM 

Glycerol 

in PBS

10mM 

Glycerol 

in PBS

0mM 

Glycerol 

in PBS

0mM 

Glycerol 

in PBS

0mM 

Glycerol 

in PBS

 

Table 2- Model 2: Each data set consisted of BSI signals obtained under 12 different conditions. This table lists the bulk fluid 
content of the microchannel and the surface bound molecule layers present for each of the 12 samples (S1-S12) in model 2. 
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50 frames of each sample we recorded in the same manner as model 1. Samples 1-4, along with 

associated bulk fluid content shown in Table 2, were analyzed. After the channel was rinsed and dried, 

the silanized chip was then soaked in 1 mM N-(γ-maleimidobutyryloxy)succinimide ester (GMBS) in 

absolute ethanol for 30 min.  Once again, the channel was rinsed with deionized water and dried and 

sample 5 was analyzed. The channel was then rinsed and dried before soaking in an ExtrAvidin solution 

(1 mg/mL) for 2 ½ hours. Sample 6 was then analyzed.  Having coated the channel with ExtrAvidin any 

biotinylated molecule of interest can be immobilized onto the surface by soaking for 60 minutes. BSA-

Biotin was then added as an additional layer in like manner for sample 7. Sample 8 consisted of an 

additional layer of ExtrAvidin. Each of the samples 5-8 were analyzed with deionized water residing in 

the channel. An illustration of this process is shown in Figure 7. More detail regarding layer thickness 

and surface characterization was reported previously (Olmstead, et al) [56]. Data from samples 9-12 

were collected the same manner as samples 1-4 but with the surface chemistry present. 

Each sample (S1 to S12, illustrated in Tables 1 and 2) produces a fringe pattern. The fringe 

pattern was then modeled by measuring the cross-sectional intensity of the fringes, as shown in Figure 

8-c. An FFT was performed on each contiguous fringe subset to determine its frequency content. Since 

in this approach the important regions of the fringe pattern are unknown, we simply evaluated every 

possible contiguous subset. In total, 9 X 105 different parameter combinations are analyzed by the 

program. Each frequency in this frequency domain (Figure 8-d) has an associated phase. The magnitude 

of each phase, calculated at a single frequency within a subset of fringes, was measured in radians. This 

magnitude, relative to the baseline sample, constitutes the signal and was recorded as the output from 

the analysis.  A program was written in LabVIEW to analyze 50 frames of each sample (1-12) and the 

associated position of all available fringes (see Figure 8-c).  
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The algorithm, referred to as the surface vs. bulk (SvB) algorithm, analyzes each frequency of 

the discrete Fourier transform (frequency domain) of each contiguous subset of fringes within the total 

set of fringes captured by the camera. All possible contiguous subsets of fringes are analyzed. 

Contiguous subsets were analyzed in this study for two reasons. First, this was the strategy used to 

analyze BSI data in previous experiments [1, 5]. Second, it is computationally simple to do so. Other 

methods could have been attempted, such as analyzing all possible non-contiguous fringe subsets, but 

this would drastically increase the complexity of the algorithm. Contiguous subsets were therefore a 

logical and simple starting point for this new analysis.     

The program output the phase of each sample for each fringe-frequency subset exhibiting signal 

produced from the bulk fluid and not from the surface layers. Algorithm parameters regarding the signal 

quality criteria, such as signal to noise thresholds and linear fits to the glycerol concentration gradients, 

 

Figure 8- a) Intensity profile of 3 fringes of two different samples at different phases. The spatial shift of the fringes from red 
to blue are plotted in the inlayed phase plot with phase differences corresponding to the red and blue lines. b) Backscattered 
fringes as seen with the naked eye aligned below the intensity profile to show the intensity relationship (aligned with the 
intensity profile above it shown in 4-a). The CCD camera is a 1-dimensionally arrayed camera with vertically stretched pixels 
as shown. Each value in the intensity profile in 4-a represents the average intensity of each pixel. c) Intensity profile of 60 
fringes being captured by the camera. The red dots below the plot show the fringes as seen with the naked eye. d) Fourier 
output of 4-c.   
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can be set by the user. For a fringe-frequency subset to qualify as one that exhibits signal from the bulk 

region (samples 1-4) of the channel and not from the surface (samples 5-8), it must pass these criteria.  

These criteria, along with their associated formulas, are presented in appendix A. The phase output from 

samples producing a bulk signal (samples 1-4) must pass a bulk signal criterion and the phase output 

from samples eliminating the surface signal (samples 5-8) must pass a surface signal criterion. A second 

glycerol concentration change in the bulk fluid (samples 9-12) is also included and compared to the first 

(samples 1-4). The algorithm compares the baseline of these two sets to make sure the surface signal 

has been eliminated and the second glycerol curve is not affected by the four surface layers. An 

algorithm flowchart is given in appendix B. 

The fringe-frequency subsets that meet the criteria for a bulk signal being present, with no 

surface signal, were tabulated. These parameter subsets accurately reflect phase changes as the bulk 

fluid is changed, but no phase changes due to surface layers being added. The program allows the user 

to view the resultant phase plot for each fringe-frequency subset and records the window and 

frequency information used in the analysis. This information includes which fringes within the total 

fringe pattern are the first and last fringes in the window of fringes being output and which frequency is 

used in the analysis, in units of cycles/window. The signal to noise ratio and the slope for each glycerol 

gradient signal is also recorded. Program and data files are located on the external hard-drive in Darryl 

Bornhop’s lab under the file-path, Joe Evans/Surface vs Bulk. 

Results/Discussion 
The purpose of this study is to find regions within the BSI signal that are not affected by changes 

to the surface of the channel, but are still sensitive to changes in the bulk fluid, in an attempt to improve 

the S/N of assays that suffer from poor signal due to surface adhesion to the glass microchannel. Since 

both signals are present in the dominant frequency we commonly analyze, run-to-run changes on the 

channel surface from non-specific adsorption of ‘sticky’ samples, such as proteins in serum, can 
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decrease the limit of quantification for an assay.  Our preliminary optical modeling efforts (data not 

shown) indicated that some of the signal emanating from the surface of the chip would reside in a 

fringe-frequency subset that is different from that of the bulk solution.   

To test this hypothesis we interrogated a large portion of the BSI fringe pattern by moving the 

camera closer to the chip (Figure 6) and independently changing the bulk fluid RI and that of the surface.  

By adding surface layers, in both model 1 and 2, it is shown that our hypothesis was confirmed. We 

found that for each data set there are multiple fringe-frequency subsets within the total set of fringes 

produced by BSI that report only the bulk or the surface signal.  

Figure 9 includes 4 plots (a-d) that illustrate the signals produced from each of the twelve 

samples described in Table 1 and Table 2. The BSI signal is the magnitude of the phase shift of a subset 

of fringes.  This is calculated in radians and shown on the vertical axes of these 4 plots. As this figure 

illustrates, each sample varies in signal magnitude due to variations in the surface and bulk contents of 

the channel. The x-axes of these plots denote the 12 different samples, with 50 data points taken by the 

camera of each sample. Thus, each sample in these plots includes 50 data points, leading to a step-like 

appearance between one sample and the next. All 50 data points for each sample are shown, rather 

than a single average value for each sample, to qualitatively illustrate the noise associated with each 

signal. These data points were recorded by the camera after each sample was prepared with its surface 

and bulk content, as described previously.  

Figure 9-a and b shows the output of an experiment where the same samples were used but the 

data was analyzed in different ways.  Figure 9-a illustrates the output using the previous signal analysis 

method used in BSI [55], where we select 4-8 fringes, in this case between fringe number 10 and 16, and 

record the phase shift of the dominant frequency.   Note the signal difference between sample 1 and 

sample 5, both of which have the same bulk content (0mM glycerol in water) but sample 5 has no 
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MEPTES applied to the surface and sample 1 does.  The different phase magnitude between these 

samples shows the signal produced by silanizing the surface of the channel with MEPTES. As expected, 

the baseline for the second glycerol curve (sample 9) is the same as sample 8, rather than sample 1 (the 

beginning of the first glycerol curve) due to the change in surface chemistry.  

Figure 9-b shows the SvB algorithm analysis on the same data set, using the same samples. The 

SvB algorithm analyzes all of the fringes, scanning for the dominant and sub-dominant frequencies. 

Thus, each frequency within each fringe subset, together referred to as a fringe-frequency subset, has 

an associated signal, some of which only show signal when the bulk fluid is changed and no signal when 

the surface is modified. Other fringe-frequency subsets that eliminate the surface signal were found in 

addition to the one illustrated in Figure 9-b, but this one serves as an example. In this case we utilized 

the SvB algorithm to look at fringes 1-28 at a frequency of 34 cycles/window. The algorithm identified 

this fringe-frequency subset as one that did not show signal due to changes on the channel surface. It 

can be seen that sample 1 and sample 5 have the same signal magnitude, even though sample 5 had 

MEPTES added to the surface and sample 1 did not (see Table 1). The baseline for the second glycerol 

curve, starting at sample 9, has the same signal magnitude as the first (sample 1) when analyzed at this 

fringe-frequency subset. There were 90 other distinct fringe frequency subsets which likewise 

eliminated surface contributions to the signal. Another feature to note in this SvB algorithm output for 

model 1 is that the slope of the second glycerol concentration gradient (samples 9-12) is different from 

the first (samples 1-4). This is not totally unexpected since adding layers to the surface changed the 

interferometer in such a way that a different signal output may result. Although, we see that when the 

bulk fluid was changed from PBS to water in model 2 there was no longer any difference.   

 Figure 9-c and d show the output from data collected using model 2 (see Table 2) utilizing the 

previous and SvB algorithm analysis methods, respectively. The first surface layer of GMBS (sample 5) 

shows a signal magnitude different from sample 1, where no surface was present. Each subsequent 
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surface layer added (sample 6-8) also produce distinct signals. As was the case in model 1, the second 

glycerol curve (sample 9) starts at the same magnitude as the last surface layer (sample 8). This is 

expected because they have the same bulk and surface configurations, as shown in Table 2. The 

previous analysis method was used to generate the signal resulting from the dominant frequency 

between fringes 7 and 14 as shown in Figure 9-c, while Figure 9-d shows analysis of fringes 1-14 at the 

non-dominant frequency of 10 cycles/window. The surface signal of all 4 surface layers has been 

eliminated, as shown by samples 5-8 in Figure 9-d. Also, the second glycerol concentration gradient 

samples maintain the same slope and signal magnitude as the first (samples 1-2). Again, the algorithm 

successfully found regions in the BSI fringe pattern that produced signal from the bulk fluid but not the 

channel surface. In this particular data set there were 76 other fringe-frequency subsets exhibiting bulk 

signal but no surface signal output by the algorithm. 
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Careful evaluation of the previous analysis method in Figure 9-c, versus the new analysis 

method in Figure 9-d, shows that there is a deterioration in S/N from the previous method to the SvB 

method. This is the same for plots shown in Figure 9-a and b, respectively. This is likely due to the fact 

that the frequency at which the surface signal disappears is not the dominant frequency. The previous 

analysis method always used the dominant frequency of the fringe subset for signal analysis since it 

produced the best signal to noise ratio. The frequencies at which the SvB algorithm identified 

insensitivity to surface binding was never at the dominant frequency. The S/N value varied between the 

fringe-frequency subsets but the particular signals shown in Figure 9-c and d had S/N of 3.56 and 2.98, 

respectively. This translates to a 16% reduction in S/N for this case. The S/N varied with each unique 

 

Figure 9- Basic output for a 12 sample data set as described in Tables 1 and 2 for model 1 and 2, respectively, showing signal 
from the bulk region (samples 1-4), surface (samples 5-8), and a combination of both (samples 9-12).The phase difference 
between samples (y-axis) denote the signal, while every 50 frames (x-axis) denote a unique sample, labeled S1, S2…S12. a) 
Fringe-frequency subset from model 1 where both bulk samples and surface sample produce a signal using the previous 
analysis method. b) Subset from model 1 that produces signal from the bulk samples but not the surface samples using the 
new analysis method. c) Fringe-frequency subset from model 2 where both bulk samples and surface sample produce a 
signal using the previous analysis method. b) Subset from model 2 that produces signal from the bulk samples but not the 
surface samples using the new analysis method. 
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fringe-frequency subset found but the SvB algorithm analysis was inferior to the previous analysis 

method for all cases in this regard. Efforts were made to increase the S/N of the signal using the SvB 

algorithm method. There were many cases in which multiple frequencies within a single fringe subset 

exhibited the bulk signal and no surface signal. In these cases we found it possible to increase the S/N, 

while maintaining discrimination of the bulk signal, by simply summing these multiple fringe-frequency 

subsets. Table 3 shows the magnitude of signal to noise increase using this method for various subsets. 

The first and second column show the first and last fringes of the specific subsets being summed, 

respectively. The third column shows the different frequencies within the fringe subset. For example, 

the first two rows in Table 3 show two fringe-frequency subsets that were summed. Both subsets were 

between fringes 1 and 57 but had different frequencies of 29 and 30 cycles per window. The S/N was 

calculated for each subset and is shown in column 4. The S/N was calculated again after the signals from 

the two fringe-frequency subsets were summed and is shown in column 5. The last column in Table 3 

shows the percentage increase in S/N after the summing was performed.  

There are potential ways to utilize this algorithm to improve S/N ratios for assays whose S/N is 

decreased due to inconsistent surface adhesion between samples. For example, because MEPTES is now 

 

Table 3- Increase in signal to noise ratio occurs when data from fringe-frequency subsets are summed. The 
summed data have the same fringe subset with different frequencies represented in each. The summed 
subsets are contained within bold borders. Corresponding increases in signal to noise ratios are given. 

 

 

start fringe end fringe frequency S/N S/N after summing % S/N increase

1 57 29 2.72 31.25

1 57 30 3.28 8.84

0 46 28 3.34 14.37

0 46 34 2.80 36.43

1 53 27 2.79 46.95

1 53 28 3.36 22.02

1 53 30 3.40 20.59

1 49 25 2.40 59.17

1 49 26 3.31 15.41

1 49 28 3.47 10.09

3.57

3.82

4.10

3.82



26 
 

known to alter the BSI signal when applied to the channel surface, a small section of the channel could 

be coated with MEPTES to provide calibration. Signal from a glycerol gradient in the bulk fluid of the 

channel could be obtained with and without the MEPTES present. The SvB algorithm would then be run 

to find the fringe-frequency subsets that eliminate the signal produced by the MEPTES and this subset 

could then be used to analyze the signal from samples of interest. In theory, because the fringe-

frequency subset found by the SvB algorithm is not sensitive to what happens on the surface of the 

channel, the surface adhesion from the samples of interest would not affect the signal. In this way, the 

inconsistencies on the channel surface that degrade the S/N would be ignored and the S/N would 

increase. 

Conclusions 
We demonstrated a new fringe pattern interrogation method that has the potential to 

distinguish signals produced at the surface from those in the free-solution.  Using a greater number of 

fringes and analyzing sub-frequencies, we found that the fringe pattern produced by BSI has multiple 

fringe-frequency subsets that report only changes in the bulk fluid but not at the channel surface. Using 

a less dominant frequency has the disadvantage of slightly degrading the S/N produced by BSI, but 

summing two or more of the these sub-frequencies improves performance so as to approach the 

conventional assay methodology.   The algorithm is user friendly, allows predetermined parameters to 

be selected to set signal quality thresholds, outputs these subsets, and reports at which fringes, and at 

what frequency within those fringes, to perform analysis in order to eliminate signal being produced 

from the surface of the channel.  Alternatively it is possible to select the frequencies of analysis so as to 

eliminate the bulk signal, as would be desirable for tethered assays.  We are currently testing the SvB 

methodology for the ability to improve the reproducibility of measurements of challenging assays such 

as those performed in high percentages of serum, on tissue homogenates, or with samples that have 

significant non-specific binding to the channel.  
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Appendix 

 

A. Criteria Illustration 
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B. Program Flowchart 
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C. LabVIEW Code (version 2012 SP1 32-bit) 
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