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CHAPTER I 

 

INTRODUCTION 

 

Over the past few decades, the study of radiation effects has greatly impacted the 

field of electronics. The design, testing, and implementation of circuits, from the 

transistor level to the very large scale integration (VLSI) chip level, have been affected 

by some sub-facet of radiation effects. For example, the advent of circuit simulators, 

including PREDICT, ECAP, NET-1, CIRCUS, SPICE, and SCEPTRE, was directed, at 

least in part, by the need to model radiation effects in circuits [1], [2]. Studies show that 

with shrinking device sizes comes an increased impact of radiation effects, specifically 

single event radiation, on the performance of military, space, and commercial electronics 

[3]. The most important era for radiation effects may be in the days ahead. 

The study of radiation effects possesses multiple facets. It primarily includes the 

analysis of total dose radiation, neutron-displacement damage, dose-rate radiation, and 

single event (SE) radiation. Each subset has different methods of analysis, metrics of 

error, and approaches to mitigation. All four areas are vital to provide an overall view of 

how radiation impacts electronic devices and to provide approaches for the amelioration 

of harmful radiation effects. This work centers on the impact of single event radiation. 

In addition to the challenges presented by radiation, transistor and chip design 

also faces a challenge from the variations that are inherent to the manufacturing process. 

During chip fabrication, extreme measures are taken to ensure precision. However, 
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variations in lithography, random dopant fluctuations, gate depletion, surface state 

charge, and line-edge roughness cause changes in individual transistor behavior and 

therefore, changes in the behavior-describing transistor parameters. The non-standard 

behavior then affects circuit performance and therefore impacts single event response. It 

is anticipated that the effects of process variations will substantially increase with 

shrinking device sizes. Thus, the potential impact of process variations on SE circuit 

response is significant. Parameter variations may also occur after the fabrication process. 

Circuit use, particularly in environments of high electrical, temperature, or mechanical 

stress, can cause device degradation. Device degradation can impact transistor parameter 

values and thus affect the functional performance and behavior of a circuit or system. 

This work analyzes the impact of process variations and device degradation on single-

event upset (SEU) response of sub-100 nm CMOS memory storage circuits. 
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CHAPTER II 

 

TRANSISTOR PARAMETER VARIATION AND SINGLE EVENT OVERVIEW 

 

Predictive ability in circuit design is at the core of the functionality of electronics. 

The response of a transistor ought to be determined based on the set of inputs. Loss of 

predictive ability disconnects the efforts of design and purpose from the actual 

performance of circuits. Both parameter variations and single events can affect the 

deterministic nature of devices. Parameter variations are caused by fabrication process 

variations and by device degradation over the lifetime of a circuit. Significant studies 

have been conducted analyzing the impact of parameter variations, from both sources, on 

device and chip function [4]-[18]. Also, analyses have been conducted studying the 

impact of single events on device and chip function. However, the simultaneous impact 

of both single events and parameter variations due to process variations and device 

degradations, specifically negative bias temperature instability, has had limited 

discussion in technological literature. Since the effects of single events and process 

variations are anticipated to increase with decreasing device sizes [3], [19]-[27], the 

analysis and discussion of the relationship between single events and parameter variation 

should be explored. 
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Process Variation 

Since approximately 1959, the number of transistors that can be inexpensively 

placed on an integrated circuit has doubled approximately every two years, as predicted 

by Moore’s Law [28-30]. One of the reasons for the increase in components is the 

decrease in device size. Figure 1 shows the DRAM ½ pitch size by year [30]. This 

decrease in device size has enabled significant increases in technology including 

increased memory capacity, faster switching times, processing speed, etc. 

 

 

 

The increasingly small transistor sizes have been enabled through advances in 

process technology. Improvements in process technology have stemmed from 

improvements in lithography, materials, patterning, and masks. As devices sizes 

 

Fig. 1. Flash and DRAM ½ Pitch (nm) values by year [30]. 
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decrease, several changes are imposed upon circuits. These include smaller voltage rails, 

decreased storage node capacitance, and increased operating speeds [3]. Such changes 

accommodate the continuance of Moore’s Law, but contribute to the sensitivity of a 

circuit to process variations. 

The manufacturing processes that produce integrated circuits inherently, like all 

manufacturing, have process disturbances [26], [31]. Such disturbances result from 

fluctuations in oven temperature, equipment properties, and chemical properties of 

materials [26]. They cause process variations, which Duvall defines as “random 

fluctuations in process conditions and material properties leading to variations in the local 

or global characteristics of a product” [26]. For instance, chemical polishing results in 

variations due to non-uniform polishing. The changes in polishing speed result from a 

non-uniform layout density. The denser portions of the circuit slow the polishing. Thus, 

the denser portions of the chip are more highly polished than the less-dense portions. This 

effect can cause differences in the inner-layer dielectric thickness in the thousands of 

angstroms [25]. Another process disturbance results from lithography issues, which have 

increased with decreasing device size. The stepper causes a sizeable portion of the 

variations due to lithography. Stepper lens heating and improper lens focusing cause 

variabilities during exposure [25]. Additionally, the spin-on resist causes thickness 

variations, etching causes depth and line-width variations, and doping processes cause 

random dopant variations [25].  

Variations in the manufacturing process may be modeled in multiple ways – using 

process parameter, physical parameters, model parameters (BSIM4) [32], and 

electrical/behavioral parameters [26]. When modeled as BSIM4 parameters, the process 
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variations show the resulting large shifts in the individual transistor parameters. For 

instance, as the polysilicon gate doping concentration decreases, the gate capacitance 

decreases [33]-[37]. The degradation is credited to the voltage drop across the gate due to 

the formation of a depletion layer near the polysilicon/silicon interface [33]. Another 

manufacturing variation is the variation in the surface-state charge density. Deviations in 

the charge density cause shifts in the threshold voltage [38]. Variations in channel length, 

along with variations in threshold voltage, cause increased variation in the standby 

current [6].  

Line edge roughness (LER) results from limitations in the materials and tools 

used in lithography [4]. LER is becoming an issue of increasing concern since it does not 

scale with linewidth, as shown in Fig. 2 [4]. LER causes variations in the threshold 

voltage and may cause enhanced short-channel effects where the channel is shortened by 

LER [4]. 

 



7 

 

 

Variations in threshold voltage are also caused by random dopant fluctuations 

(RDF). Random dopant fluctuations result from the finite number of dopant atoms in the 

channel of a transistor [5], [39], [20]-[21], [40]-[46]. Channel regions are doped to 

control the threshold voltage of the transistor. Shrinking device sizes have decreased the 

number of atoms in the channel region so that in the 16 nm – 32 nm devices, the number 

of atoms in the channel region is in the tens. Fig. 3 shows the decrease in dopant atoms 

with decreasing device size [39]. The small numbers and discreteness of the atoms in the 

channel leads to variations in the electrical characteristics of the transistor. The 

inconsistent distribution of dopant atoms causes variations in the threshold voltage, which 

in turn affect drive current and transistor performance. One challenge with threshold 

voltage variations due to RDF is its impact on matching since the threshold voltage 

values can vary from transistor to transistor [46]. RDF has been discussed for decades in 

 

Fig. 2. The figure shows data from multiple lithography processes as reported by 

different laboratories [4]. Line edge roughness does not scale with linewidth. 
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the literature [44]-[45], [36]-[37] and is anticipated to increase in its impact on circuit 

performance. One of the earliest discussions of parameter variation and of RDF in the 

literature was written by William Shockley in 1961. He discussed the impact of the 

random distribution of dopant atoms on transistor voltages. Research has been conducted 

to examine the impact of various doping profiles, including undoped channel regions, on 

the effect of random dopant fluctuations [47]-[49]. 

 

 

 

Behavioral parameter variations are typically sorted into the categories of die-to-

die (interdie) fluctuations and within-die (intradie) fluctuations. Die-to-die fluctuations 

are the consequence of factors like processing temperature, wafer polishing, and wafer 

placement [24], [50]. With interdie variations, the general assumption is that the 

variations do not vary within the die and that the variations equally affect each transistor 

in the circuit. Within-die variations are the consequence of factors like random dopant 

fluctuations and channel length variations across a single die [25]. Within-die variations 

 

Fig. 3. The mean number of dopant atoms in the channel according to the technology 

node [39]. 
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impact devices across the same die differently. This results in mismatch issues and 

potentially reduces functional yield [24], [26]. Historically, interdie fluctuations have 

been considered more significant than intradie variations since the intradie variations 

have been small in magnitude, compared to interdie variations, and could largely be 

managed with design techniques. However as device sizes have decreased, intradie 

variations have increased in magnitude so that they increasingly threaten circuit 

performance [26]. Both die-to-die and within-die parameter fluctuations are important to 

circuit performance [50], [51]. 

The effects of process variations have increased with decreasing device sizes and 

are anticipated to become a significant concern for circuit performance [39], [22]-[25]. 

Performance/power variability, device behavioral parameter variability, and 

“uncontrollable threshold voltage variability” have been identified by the International 

Roadmap for Semiconductors as key design challenges [30]. Process variability has also 

been noted as a difficult challenge for reliability and scaling [30]. For example, table I 

shows the anticipated percentage of threshold voltage variability due to doping 

variabilities [52]. (The variability is shown as a peak-to-peak difference. For instance, an 

81% variation can also be represented as +/- 40.5% from the nominal value.)  A 

significant increase has been shown in the threshold voltage 4-sigma (4-σ) distribution as 

the gate oxide thickness is decreased from 150 Å to 30 Å. At 150 Å the 4- σ range is less 

than +/- 2% [20]. A gate oxide thickness of 30 Å corresponds to a 4- σ range of almost 

+/- 25% [19]. Increased variability will flatten the distribution of threshold voltage as 

compared to the present distribution, as shown in Fig. 4 [39]. 
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TABLE I. 

THE ANTICIPATED PERCENTAGE OF THRESHOLD VOLTAGE VARIABILITY DUE TO DOPING 

VARIABILITIES [52]. 

Year of 

Production 

DRAM ½ Pitch (nm) 

Contacted 

% VTH Variability (Doping 

Variability Impact on VTH) 

2009 52 40% 

2010 45 40% 

2011 40 40% 

2012 36 58% 

2013 32 58% 

2014 28 81% 

2015 25 81% 

2016 22.5 81% 

2017 20 81% 

2018 17.9 112% 

2019 15.9 112% 

2020 14.2 112% 

2021 12.6 112% 

2022 11.3 112% 

2023 10.0 112% 

2024 8.9 112% 
 

 

Fig. 4. Current (2005) and anticipated future threshold voltage distributions [39]. 
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The process- and transistor-parameter variations pose a serious challenge for 

circuit design at advanced technology nodes [43], [53]-[56]. Parameter variations, which 

model the deviations from nominal transistor behavior caused by process variations, have 

significant impact on drive current, current leakage, yield problems, timing issues, and 

power issues. For instance, Unsal reports that parameter-variation-induced gate-delay 

variability causes a significant portion of the minimum and maximum delay margins at 

130nm [25]. Chip design teams must determine how to manage the process variations for 

both circuit performance and yield problems [24]. Changing design parameters can affect 

the impact of process variations [22]. Designers must consider variations due to process, 

voltage, temperature, and input (PVTI) values. The necessary safety margins are 

becoming an important facet of design [24], [25]. 

 

 

Single Event Radiation Overview 

Single event effects (SEE) encapsulates the study of the effect of single event 

radiation on electronic devices. Single event effects are related to the impact of energetic 

particles (such as protons, neutrons, alpha particles, or heavy ions) on microelectronic 

circuits. When an energetic particle strikes a device, some of the energy of the particle 

may generate electron-hole pairs [57]. Linear energy transfer (LET) is used to describe 

the amount of energy that is lost by the particle per unit of path length. LET can be 

correlated to the deposited charge through the guideline that a particle with an LET of 

approximately 100 MeV-cm
2
/mg deposited approximately 1 pC/µm [57]-[58]. As the 
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particle moves through the semiconducting material, electron-hole pairs are freed [57]-

[58]. The electron-hole pairs serve as “new” mobile charge carriers. If the mobile carriers 

exist in or near a depletion region, the carriers are collected and they produce a 

photocurrent [59], [60]. The progression from ionized particle to current and voltage 

transient is shown in Fig. 5 [27]. 

 

 

 

The impact of the photocurrent depends on the LET of the energetic particle, 

strike location, circuit topology, and circuit state. An induced photocurrent creates a 

localized current transient and resulting voltage transient. Such transients are called 

single event transients (SET). SETs are expected to become the dominant contributor to 

soft error rates [61]. If a single event transient is latched so that it corrupts stored 

information, it leads to a single event upset. 

 

Fig. 5. Development of photocurrent from initial ion strike to current / voltage transient 

[27]. 
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Single events were initially predicted by Wallmark and Marcus in 1962 [62] and 

the anomalies in digital circuits on satellites were attributed to single events, based on 

experimental testing, in 1975 [63]. Significant works during the 1970’s brought attention 

to the challenges caused by single events and helped spur the area’s research [64]-[71]. 

Pickel and Blandford, in 1978, introduced a model for estimating the cosmic-ray-induced 

bit error rate and used it to sufficiently estimate the actual bit error rate of dynamic 

RAMs in an operating satellite system [66]. In 1979, an early report of single event 

upsets was made by Guenzer et al. during the description of irradiated DRAM circuits 

[68]. In the same year, single event latchup was first reported in the literature [70]. 

(Further discussion of the single event history can be found in [58], [72].) 

May and Woods reported terrestrial soft errors in 1979. Early terrestrial soft error 

issues were determined to be the result of alpha-particle emission from radioactive 

contaminants in chip packaging [65], [73]. Significant effort went into improved 

packaging material and shielding coatings to prevent terrestrial single event effects [73], 

[74]. Due to that work, terrestrial single events resulting from alpha particles were a non-

issue for a number of years until shrinking device sizes reawakened the issue. However, 

terrestrial circuits showed sensitivity to upset from particles produced by cosmic rays, 

particularly neutrons. In 1993, dense SRAM cells were shown to be susceptible to 

neutron-induced upset at terrestrial levels [75]. Dodd et al. experimentally demonstrated 

the neutron-induced latchup in high density SRAM cells [76] as shown in Fig. 6. 

Additionally, neutrons were demonstrated to be the cause of SEUs in implantable cardiac 

defibrillators [77]. In 2000, it was reported that high-end servers made by Sun 

Microsystems were susceptible to terrestrial single event radiation [78]. Soft errors from 
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both alpha-particles and cosmic ray neutrons are a significant concern in terrestrial 

environments due to decreasing internal circuit capacitances and operating voltages [27], 

[75], [76], [79]-[81]. In fact, terrestrial soft errors have been noted as a concern for 

terrestrial electronics below 16 nm in the International Technology Roadmap for 

Semiconductors (ITRS) [82]. 

 

 

 

Current deep sub-micron technologies are particularly susceptible to single 

events. The challenge derives from a conglomeration of effects that affect circuits’ 

radiation response. For instance, decreasing device size has led to decreased storage 

charge and increased operating speeds [3]. Decreased storage charge contributes to single 

event sensitivity since the charge deposited by the ionized particle is now more on par 

 

Fig. 6. Soft error failure rate as a function of power supply voltage for multiple 

manufacturers and technologies [76]. 
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with the storage node charge. The increased operating speeds increase circuit sensitivity 

since they are now comparable to the speed of a single event transient. It has been 

postulated that single event transients in digital circuits may set limits on the operating 

speeds of rad-hard electronics [3]. Without including new mechanisms, scaling rules 

predict a 43% increase in sensitivity to soft errors per technology generation [83]. Single 

event upsets are currently the dominant failure mode of all reliability mechanisms (in 

qualified products) [84]. Not surprisingly, soft errors have been identified as one of the 

top technology challenges for reliability [30]. Since single events are expected to 

dominate other reliability concerns in deep sub-micrometer devices due to decreased 

transistor currents and nodal capacitances, it is vital to understand and quantify the 

impact of contributing mechanisms. 

As technologies continue to scale, single event radiation has resulted in 

increasingly challenging failure mechanisms in integrated circuits (IC). New phenomena 

have begun to affect radiation response, including charge sharing [85]-[90], pulse 

quenching [91], [92], multiple-bit upset [86], [87], [93], [94], and process-parameter 

variation [95]-[99]. These phenomena add to the complexity of the circuit-level SE 

response. Charge sharing is a problem for advanced technologies due to decreased 

storage node charge and increased packing densities [85]-[87]. Charge-sharing occurs 

because of the diffusion of the carriers in the substrate/well [86] and results in charge 

collection at multiple nodes to a single incident ion [85]-[88]. It increases the 

susceptibility to SE radiation of many circuits [85]-[87], including some hardened circuits 

since more than one storage node can be affected at one time [85], [89]. Techniques used 

to harden circuits to charge-sharing effects include separating sensitive transistor pairs in 
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the layout and guard rings [86]. It has, though, been suggested that charge sharing may 

itself be exploited in specific cases to provide circuit hardening [100]-[102]. 

 

 

Impact of Process Variation on Single Event Response 

Variations in process parameters have been demonstrated to significantly affect 

the single-event response of circuits [95], [97]-[99], [103]-[108]. The impact of parameter 

variations on radiation response has been discussed, albeit not extensively, in the 

literature for decades. In 1989, Kohler and Koga discussed the impact that the feedback 

resistor value has on the minimum linear energy transfer required for upset in SRAMs 

[109]. A few years later, Massengill et al. discussed the spread of critical charge (QC) 

values as shown by the probability density function in Fig. 7 [103]. It was determined 

that the spread was due to a variation in the charge enhancement factor (β) due to line 

width variations, doping variations, and non-uniform dislocation densities of the starting 

material, along with a distribution of strike locations [103]. Additional work in the 1990’s 

further confirmed the influence of process variations on circuit parameters, as shown in 

Fig. 8 for feedback resistance [110], and consequently on the single event response of 

circuits [104], [105], [110], [111]. 
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Fig. 7. The probability density function of QC values across a memory array [103]. 

 

Fig. 8. Histogram of individual values of feedback resistors fabricated in the Sandia IIIA 

technology. The intended value for each feedback resistor was 400 kΩ [110]. 
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As early as 1998, the impact of process variation on the radiation response of 

circuits was identified as a challenge in scaled devices [19]. Since that time, the 

significance of the impact of process variations on circuit performance has increased 

sizably. Recent work has analyzed the impact of process variation in advanced 

technologies and has shown that circuits in the sub-100 nm region have a significant SEU 

sensitivity to process parameter variations [95]-[100]. Balasubramanian examined the 

impact of the threshold voltage variation on inverter performance. Fig. 9 correlates SET 

pulse widths with both PMOS and NMOS threshold voltages [98]. A similar study shows 

the impact of PMOS and NMOS threshold voltages on the critical charge of 130 nm 

SRAM [99]. A spread in critical charge will significantly affect the overall SRAM cross-

section and error rates. In order to accurately predict the single-event response of circuits 

as device sizes continue to scale, it is necessary to identify and quantify the impact of the 

specific process variations. 
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Fig. 9. Variations in the SET pulse width with the variations in threshold voltage. Ten 

thousand Monte Carlo simulations were conducted on inverters in a 90 nm CMOS 

process [98]. 
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CHAPTER III 

 

IMPACT OF PROCESS VARIATIONS ON SRAM SINGLE EVENT UPSETS 

 

 The impact of process variations are increasing with technology scaling. The 

resulting transistor parameter variations present challenges for circuit design in the 

advanced technologies. Single event effects further complicate circuit design difficulties. 

The interaction between parameter variations and single event response can impact 

circuit performance. Earlier work acknowledged the impact of process parameter 

distributions on single event upset cross-section data [103], [104]. This work utilizes 

Monte-Carlo circuit simulation techniques to assess the impact of process variations. 

 

 

SRAM Analysis Approach 

The impact of process variation on single event response was simulated to 

determine the impact of each varying parameter. An example study has been carried out 

on a six transistor (6T) SRAM cell targeted to commercially available 65 nm and 90 nm 

processes. SE hits were modeled to occur individually on the off-state NMOS and PMOS 

transistors in the SRAM cell, as shown in Fig. 10. SE currents were modeled using a 

bias-dependent single-event model that was calibrated to the 90 nm process using 3-D 

TCAD simulations [112]. The bias-dependent SE model was implemented in Verilog-A 
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and incorporated into the SPICE BSIM4 transistor model. The single-event models were 

integrated into the 90 nm process-design kit (PDK) and calibrated using known collection 

depths and the estimate that a charged particle with an LET of 1 MeV-cm
2
/mg deposits 

approximately 10 fC/μm of track length [57]. The bias-dependent SE model was adapted 

to work with the 65 nm process design kit (PDK) and the collection length was linearly 

scaled for the 65 nm technology. 

 

 

 

Simulations conducted on the SRAM cells accounted for different SE hit 

locations by varying the injected-charge value. Simulation studies were performed on 

each of the processes with the process-nominal supply voltages. In all cases, ten thousand 

simulations were conducted at several levels of injected charge. The Monte-Carlo 

simulations provided a representation of the statistical variations during chip 

manufacturing using the process variabilities included in the process design kits. No 

single parameter was varied individually since many of the parameters have 

 

Fig. 10. The 6T SRAM cell with the hit NMOS and PMOS transistors highlighted. 
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interdependencies; all parameters were varied together in accordance with the PDK. For 

example, channel width and length are related to the threshold voltage value. Also, the 

mobility is related to the oxide thickness and threshold voltage. A list of the varying 

parameters is shown in Tables II and III for 90 nm and 65 nm respectively. The 

parameter variation was accomplished globally (local mismatch was not included). The 

Monte-Carlo parameter space is the manufacturer’s representation of the real-world 

process variations seen in fabrication. These process variabilities are reflected in shifts in 

the SPICE transistor parameters. While all model parameter shifts were included in the 

simulations, the analysis isolated the impact of each parameter. The total number of 

analyzed parameters was reduced by removing from analysis all parameters that were 

directly correlated with another parameter. The injected-charge value ranged from a level 

at which none of the ten thousand simulations resulted in an upset to a level at which all 

ten thousand simulations resulted in upsets. The charge values were incremented in 

0.25 fC steps in between these levels for all other simulations. 



23 

 

 

TABLE II 

VARYING PARAMETERS FOR THE 90 NM CMOS PROCESS 

Name Description Type 

cgdl Overlap capacitance between gate and lightly-doped drain region Electrical 

cgdo 

Non-LDD region drain-gate overlap capacitance per unit channel 

width Electrical 

cgsl 

Overlap capacitance between gate and lightly-doped source 

region Electrical 

cgso 

Non-LDD region source-gate overlap capacitance per unit 

channel width Electrical 

cj Zero-bias junction bottom capacitance density Electrical 

cjd Zero-bias bottom junction capacitance per unit area Electrical 

cjs Zero-bias bottom junction capacitance per unit area Electrical 

cjsw Zero-bias junction sidewall capacitance density Electrical 

cjswd Zero-bias junction sidewall capacitance density Electrical 

cjswg Zero-bias gate side junction capacitance density Electrical 

cjswgd Zero-bias gate side junction capacitance density Electrical 

cjswgs Zero-bias gate side junction capacitance density Electrical 

cjsws Zero-bias junction sidewall capacitance density Electrical 

dlc Delta L for capacitance model Electrical 

lint Lateral diffusion for one side Physical 

lu0 U0 width sensitivity Electrical 

noia Flicker noise parameter a Electrical 

noib Flicker noise parameter b Electrical 

noic Flicker noise parameter c Electrical 

rdsw Zero-bias LDD resistance per unit width for RDSMOD=0 Physical 

toxe Electrical gate oxide thickness Physical 

toxp Electrical gate oxide thickness Physical 

u0 Low field surface mobility at 'tnom' Electrical 

vbox Oxide breakdown voltage Physical 

vtho Threshold voltage at zero body bias for long-channel devices Electrical 

wu0 U0 width sensitivity Electrical 

xl Length variation due to masking and etching Physical 

xw Width variation due to masking and etching Physical 
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The process variations resulted in a spread of the number of SRAM upsets at each 

injected-charge value. Fig. 11 shows the number of Monte-Carlo simulations that resulted 

in an SRAM upset at each charge value for an off-state NMOS hit on a 90 nm SRAM. 

The slope of the curve within the two vertical lines, shown in Fig. 11, is representative of 

the effect of the process parameters. The vertical lines correspond to the smallest charge 

TABLE III 

VARYING PARAMETERS FOR THE 65 NM CMOS PROCESS 

Name Description Type 

cgdl Overlap capacitance between gate and lightly-doped drain region Electrical 

cgdo 

Non-LDD region drain-gate overlap capacitance per unit channel 

width Electrical 

cgsl 

Overlap capacitance between gate and lightly-doped source 

region Electrical 

cgso 

Non-LDD region source-gate overlap capacitance per unit 

channel width Electrical 

cj Zero-bias junction bottom capacitance density Electrical 

cjd Zero-bias bottom junction capacitance per unit area Electrical 

cjs Zero-bias bottom junction capacitance per unit area Electrical 

cjsw Zero-bias junction sidewall capacitance density Electrical 

cjswd Zero-bias junction sidewall capacitance density Electrical 

cjswg Zero-bias gate side junction capacitance density Electrical 

cjswgd Zero-bias gate side junction capacitance density Electrical 

cjswgs Zero-bias gate side junction capacitance density Electrical 

cjsws Zero-bias junction sidewall capacitance density Electrical 

dlc Delta L for capacitance model Electrical 

lint Lateral diffusion for one side Physical 

lu0 U0 width sensitivity Electrical 

noia Flicker noise parameter a Electrical 

noib Flicker noise parameter b Electrical 

noic Flicker noise parameter c Electrical 

toxe Electrical gate oxide thickness Physical 

toxp Electrical gate oxide thickness Physical 

u0 Low field surface mobility at 'tnom' Electrical 

vbox Oxide breakdown voltage Physical 

vtho Threshold voltage at zero body bias for long-channel devices Electrical 

wu0 U0 width sensitivity Electrical 

xl Length variation due to masking and etching Physical 

xw Width variation due to masking and etching Physical 
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that causes an upset and the largest charge that causes less than 10,000 upsets. For 

comparison purposes, the critical charge values for the 65 nm and 90 nm SRAMs with 

nominal parameter values for off-state NMOS and PMOS hits are shown in Table IV. 

 

 

 

 

 

  

 

Fig. 11. The number of SRAM upsets that occur at each injected charge value for an off-

state PMOS hit on a 65 nm SRAM cell. The two vertical lines show the range of charge 

values used for simulations. 

TABLE IV 

THE CRITICAL CHARGE VALUES FOR THE SRAMS WITH NOMINAL PARAMETER VALUES FOR 

OFF-STATE NMOS AND PMOS HITS. 

 

65 nm 90 nm 

PMOS hit 11.548 fC 20.103 fC 

NMOS hit 4.027 fC 7.091 fC 
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In order to determine the impact of the parameter values, the upset simulations 

were carried out over the expected range of injected-charge values for the SRAM cells. 

For each injected-charge value, 10,000 simulation runs were carried out by varying 

transistor parameters using foundry supplied Monte-Carlo models. For the simulation set, 

each parameter value range was divided into an equal number of segments. From 

parameter to parameter, the numerical values associated with each segment changed. 

However, the percentage of the variation stayed the same. For instance, the range of one 

bin of the threshold voltage covered approximately 4% of the nominal value and the 

range of the oxide thickness bin covered approximately 2%, but both bins covered 10% 

of the overall range of variation for both parameters.  The number of segments should be 

loosely associated with the number of Monte Carlo simulations. If the number of 

simulations is low, the number of segments should be decreased to ensure an adequate 

number of simulations in each segment. A larger number of simulations would enable a 

larger number of bins. A larger bin count increases the accuracy of the analysis by 

enabling a more detailed expression of the SE response.  

For this simulation set, the range of parameter values used was divided into ten 

segments. For each simulation, the parameter value was checked and assigned to one of 

these segments. Fig. 12 shows a cartoon illustration of the simulation parameter segments 

assignments. Each white column represents the total number of simulations runs for 

which the parameter value falls into the parameter segment. Each associated blue column, 

which is contained in the white columns, represents the number of those simulation runs 

that resulted in an SRAM upset. Thus, each simulation run had a specific injected-charge 

value and a specific segment of parameter-value assigned to it. 
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The simulation results were used to determine the SRAM upset probability over 

the range of possible parameter values for a given injected charge. For each parameter-

value segment, the total number of simulations and the total number of simulations 

resulting in an upset were binned. This segregation enabled the comparison of the 

probability-of-upsets over the parameter-value range to the probability-of-upsets at the 

corresponding injected-charge level. The upset probability used in this paper is defined as 

the percentage of the total number of simulations that resulted in an upset out of all of the 

simulation runs (i.e., 5,000 upsets for 10,000 simulation runs will result in a 50% upset 

probability). (For this work, probability is based upon empirical data.)  The charge-level 

upset probability is the percentage of the total simulations that result in an upset for a 

particular value of the injected charge. The parameter-value upset probability is the 

percentage of the simulations for each parameter-value segment that result in SRAM 

upsets. 

 

Fig. 12. The total number of simulation runs and the number of simulation runs that 

resulted in an upset as assigned to a set of parameter-value segments. 
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Fig. 13 depicts the upset probability of the PMOS threshold voltage SPICE 

parameter (VTHO) over its value segments (bins) and lists the upset probability of the 

entire Monte-Carlo simulation set at the injected charge value of 7.25 fC for an off-state 

NMOS hit on a 90 nm SRAM. The parameter values for Fig. 13 and the following figures 

are normalized to the nominal parameter value, which is shown as Nom. The upset 

probabilities provide a quantitative description of the impact of each individual process 

parameter on the upset probability of an SRAM. For the example in Fig. 13, the value of 

the PMOS VTHO significantly affects the likelihood of an SRAM upset. For the largest 

magnitude of VTHO, the upset probability is approximately 36% greater than that for the 

overall charge upset probability, and for the smallest magnitude of VTHO it is almost 44% 

less with respect to the overall charge upset probability. An increase in threshold voltage 

magnitude will result in a decrease in transistor current. The decrease in transistor current 

will result in a lowering of critical charge as restoring current is decreased. This will 

result in an overall increase in upset probability as observed in these simulations. 
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The upset probabilities over the PMOS threshold-voltage values and injected-

charge values are shown in Fig. 14. A comparison of these upset probabilities to the 

charge-level upset probability, shown in Fig. 11, can elucidate the impact of the threshold 

voltage on the SRAM upset probability. The comparison of the parameter-value upset 

probability and the charge-level upset probability highlights the impact of the parameter 

on the upset probability. PMOS VTHO has the most significant impact near the center of 

the range of injected-charge values. At the low end of injected-charge values, the charge 

level is too low to upset many of the SRAM cells regardless of the process parameter 

values. At the high end of injected-charge values, the charge level is high enough to upset 

most of the SRAM cells regardless of the process parameter values. In the middle of the 

charge range, the impact of the parameters is the most evident. 

 

 

Fig. 13. The upset rate of PMOS threshold voltage over its value segment range of the 

entire Monte-Carlo set of simulations at an injected charge value of 7.25 fC for an off-

state NMOS hit on a 90 nm SRAM. 
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The impact of the process variations is shown in the increase in the upset 

probability for a given injected charge over the range of the threshold voltage, as 

highlighted in Fig. 14. Fig. 15 overlays, onto the plot from Fig. 14, the upset probability 

values that would occur if the threshold voltage variation did not impact upset 

probability. Those values correspond to the charge-level upset values. The difference 

between the parameter-value extracted upset probability and the charge-level upset 

probability, the differential upset probability as shown in Fig. 16, isolates the impact of 

the individual parameter. The differential upset probability is calculated by subtracting 

the charge-value upset probability from the parameter-value upset probability. The 

differential upset probability is important because it allows the measurement of the peak-

to-peak upset probability variation. The peak-to-peak upset-probability variation is the 

delta between the two differential upset probability extremes, which can serve as types of 

radiation corners for process variation. The peak-to-peak upset-probability variation 

 

Fig. 14. The extracted upset probability binned by PMOS threshold voltage and injected 

charge values for an off-state NMOS hit on a 90 nm SRAM. 
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shows the maximum variation in single event response due to the variation in process 

parameters. Radiation “corners” that bound the impact of process variations provide 

quantitative information for evaluation of the effects of parameter variation. They also 

afford an approach for the comparison of the impacts of multiple parameters. 

 

 

 

 

Fig. 15. The extracted upset probability over the PMOS VTHO values and injected charge 

values for an off-state NMOS hit on a 90 nm SRAM. The blue lines represent the upset 

probability values that would occur if the threshold voltage variation did not impact upset 

probability. 
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Fig. 17 shows the difference between the PMOS VTHO upset probability and the 

charge-level upset probability for an NMOS hit on a 90 nm CMOS SRAM. It also 

highlights the peak-to-peak upset probability variation. The middle portion of the charge 

range shows that a smaller threshold voltage magnitude results in a lower likelihood of an 

SRAM upset and that a larger threshold voltage magnitude results in a greater likelihood 

of an SRAM upset. The main reason for this effect is the decreased critical-charge 

requirements for SRAMs. For any given SRAM cell (or any storage cell), an upset occurs 

when the SET pulse-width generated by an ion hit exceeds the feedback delay of the 

SRAM cell. When the magnitude of the PMOS transistor threshold voltage is higher, the 

current provided by the transistor is lower. As the PMOS transistor for N-hits act as the 

restoring transistor, lower current results in longer SET pulse-widths and higher 

likelihood of an upset. Similarly, for lower threshold-voltage-magnitude transistors 

higher restoring current results in shorter SET pulse-width and subsequently lower 

 

Fig. 16. The differential upset probability is the difference between the parameter-value 

extracted upset probability and the charge-level upset probability. 
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probability for an upset. 

 

 

 

 The differential upset probability can be used to show the potential range in upset 

probabilities due to process variation. Fig. 18 displays the charge-level upset probability 

values, in blue diamonds, and the range of upset probabilities over the range of threshold 

voltage variation at each injected charge value, in red lines. The red lines show the extent 

of the potential upset probabilities due to process variation. 

 

 

Fig. 17. The variation in upset probability for PMOS VTHO (compared to the charge 

impact) on the SRAM upset rate over the range of charges for a 90 nm SRAM and an off-

state NMOS hit. The peak-to-peak upset probability variation is shown. 
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SRAM Analysis 

The examination of the parameter related SRAM upsets illustrates the 

significance that process variations can have on single event circuit response. The 

parameter analysis was conducted on all varying parameters. Some of the most 

significant results are presented here. The upset probability over the range of possible 

PMOS threshold voltages and over the series of charge values is shown in Fig. 19 for an 

off-state NMOS hit for a 65 nm SRAM. The variation in upset probability for shifts in 

PMOS VTHO is shown in Fig. 20. The trend at 65 nm is the same as for 90 nm; the greater 

magnitude threshold voltages result in an increased likelihood of SRAM upset and the 

lesser magnitude threshold voltages result in a decreased likelihood of SRAM upset. 

 

 

Fig. 18. The variation in upset probability over the range of PMOS VTHO values and the 

nominal charge-level upset probability for a 90 nm SRAM and an off-state NMOS hit. 
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Fig. 19. The extracted upset probability binned by PMOS VTHO values and injected 

charge values for an off-state NMOS hit on a 65 nm SRAM. 

 
 

Fig. 20. The variation in upset probability for PMOS VTHO (compared to the charge 

impact) on the SRAM upset rate over the range of charges for a 65 nm SRAM and an off-

state NMOS hit. 
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Several process parameter variations impact the SRAM upset probability. For 

instance, variations in oxide thickness can be discerned by examining TOXE, the 

electrical gate oxide thickness used in device modeling. Changes in TOXE will affect the 

threshold voltage, mobility, substrate current, gate-tunneling current, and the capacitance 

of the circuit node. As TOXE increases, the drain current decreases resulting in 

subsequent increases in the upset probability. Correspondingly, a decrease in TOXE 

would increase the drain current and decrease the probability of upsets. Additionally, 

increases in TOXE would also decrease the storage-node capacitance values and would 

increase the probability of SRAM upset. Fig. 21 shows the extracted upset probability 

binned by TOXE. The variation in upset probability for TOXE shifts on the difference 

probability of SRAM upsets is shown in Fig. 22 for an off-state PMOS hit at 90 nm. (The 

charge axes on Figs. 21 and 22 are reversed in order to improve the clarity of the graphs.)  

The corresponding variation in upset probability for a 65 nm SRAM is shown in Fig. 23. 

At 90 nm, the largest values for TOXE result in large increases, of up to 77.8%, in the 

likelihood of an SRAM upset. The smallest values of TOXE sizably reduce the relative 

likelihood of an SRAM upset. At 65 nm, the largest values for the gate oxide thickness 

result in a 72% increase in the likelihood of an SRAM upset for an injected charge of 

11.25 fC. Additionally, the smallest values for TOXE show a decreased likelihood for 

SRAM upset. For an off-state PMOS SE hit for the 90 nm SRAM cell, fig. 24 shows the 

range of possible upset probabilities due to variations in TOXE and the nominal charge-

level upset probabilities. The graph indicates that changes in the process affecting TOXE 

will have a large impact on the SEU error probability. 
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Fig. 21. The impact of TOXE shifts on the rate of SRAM upsets for an off-state PMOS 

hit at 90 nm. 

 
Fig. 22. The impact of TOXE shifts on the SRAM differential upset probability for an 

off-state PMOS hit at 90 nm. 
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Another common process concern is the issue of over-and under-etching. The 

SPICE parameter XL, length variation due to masking and etching, is affected by variants 

in etching. Length variation shifts can impact the effective channel length, the intrinsic 

 

Fig. 23. The impact of TOXE shifts on the relative rate of SRAM upsets for an off-state 

PMOS hit at 65 nm. 

 

Fig. 24. The variation in upset probability over the range of PMOS TOXE values and the 

nominal charge-level upset probability for a 90 nm SRAM and an off-state PMOS hit. 
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capacitances, and the transit time. Increases in XL increase the effective channel length 

and therefore decrease the drain current. The impact of the length variations on the 

variation in SRAM upset probability is shown in Fig. 25 for an off-state NMOS hit in 65 

nm. (The nominal value of XL is negative.)  As shown for TOXE, the shifts in XL have a 

notable impact on the SRAM upset probability. At 65 nm, the large XL values result in 

an increase in the relative likelihood of an SRAM upset. Also, the smaller XL values 

decrease the differential upset probability. The figures illuminate the impact that process 

variations have on the radiation response of the SRAM. A summary of the peak-to-peak 

upset probability variations for the SRAM is shown in Table V. Quantifying the impact 

of the SPICE parameter shifts provides the circuit designer with numerical information 

that can be applied to help increase the radiation hardness of a potential circuit. It can be 

used to anticipate the impact of process variations on a circuit’s radiation response and 

can lead to the development of mitigation techniques. For instance, analysis could reveal 

a sensitivity of dual interlocked storage cells (DICE) to the variation of a specific set of 

parameters. DICE latches employ dual node feedback control and demonstrate single 

event upset immunity unless multiple nodes are upset due to a single particle impact [85], 

[89], [113]. Mitigation techniques could then be applied to harden the DICE cells. 

 



40 

 
 

 
 

  

 

Fig. 25. The variation in differential upset probability of SRAM upsets for XL shifts for 

an off-state NMOS hit at 65 nm. 

TABLE V 

SRAM PEAK-TO-PEAK UPSET PROBABILITY VARIATIONS. 

Parameter Name Process 

Peak-to-peak upset 

probability variation 

VTHO 90 nm 80.0% 

VTHO 65 nm 73.9% 

TOXE 90 nm 141.9% 

TOXE 65 nm 122.3% 

XL 65 nm 66.0% 
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SRAM Intradie Analysis 

Die-to-die variations have historically been considered more impactful on circuit 

performance than within-die variations. However, within-die process variations can have 

significant impact on circuit performance, particularly for circuits that rely on transistor 

matching [24]. In order to study the impact of the within-die variations on SRAM single 

event radiation sensitivity, another Monte-Carlo-based simulation study was conducted 

on the 65 nm 6T SRAM cell, shown in Fig. 26. In this study, the parameters were varied, 

according to the process design kit, to mimic the effects of within-die process variations. 

The affected BSIM4 model parameters are shown in Table VI. As in the previously 

discussed Monte-Carlo simulation study, the single event hits were conducted on the off-

state NMOS and PMOS transistors and were modeled using the same bias-dependent 

single-event model [112]. Two thousand simulations were conducted at each value of 

injected-charge. The values of the varying parameters were recorded for each of the six 

transistors in the SRAM cell along with the injected charge value and the upset result. 
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 For a SE strike on the off-state PMOS transistor, T5, the parameters that have the 

most impact on the upset probability are the channel width variation (XW) and the 

threshold voltage (VTHO) for the T1 transistor. Fig. 27 shows the differential upset 

probability of the SRAM for the extracted threshold voltage of transistor T1. As the 

threshold voltage increases, the variation in upset probability increases. The increase in 

threshold voltage decreases the T1 drain current. The decrease in drain current reduces 

the ability of T1 to dissipate charge on the node between the drains of T5 and T1 that 

 

Fig. 26. 6T SRAM cell with labeled transistors. 

TABLE VI 

WITHIN-DIE VARYING PARAMETERS FOR THE 65 NM CMOS PROCESS 

Name Description 

rdsw Zero-bias LDD resistance per unit width for RDSMOD=0 

u0 Low field surface mobility at 'tnom' 

vtho Threshold voltage at zero body bias for long-channel devices 

xl Length variation due to masking and etching 

xw Width variation due to masking and etching 
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results from the charge injected onto the drain of T5. Fig. 28 shows the range of the upset 

probabilities due to VTHO variation and the charge-level upset probabilities. 

 

 

 

 

 

  

 

Fig. 27. Variation in upset probability for a single event hit on transistor T5 over the 

range of extracted threshold voltage values for transistor T1. 

 

Fig. 28. The variation in upset probability over the range of T1 VTHO values and the 

nominal charge-level upset probability for a 65 nm SRAM and SE hit on T5. 
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The width variation, XW, of T1 also has a strong impact on the variation in upset 

probability due to a single event strike on transistor T5. Fig. 29 shows the relationship 

between the width variation of T1 and the variation in upset probability. Decreases in 

channel width, due to a smaller XW value (which is nominally negative), correspond to 

an increase in the variation in upset probability. As the channel width for transistor T1 

decreases, the drain current also decreases. The decrease in drain current increases the 

susceptibility of the node between T5 and T1 to upset and thus increases the likelihood of 

overall SRAM upset. 

 

 

 

 Similarly, variations in the VTHO and XW parameters of transistor T4 sizably 

affect the sensitivity of the SRAM to upset due to a SE hit on T0. Figs. 30 and 31 show 

the relationship between the variations in upset probability and the parameter variation 

for threshold voltage and width variation, respectively. The increase in VTHO and the 

decrease in channel width both decrease the drain current for T4. The decrease in drain 

current increases the sensitivity of the node between T0 and T4 to the charge injected 

 

Fig. 29. Variation in upset probability for a single event hit on transistor T5 over the 

range of extracted width variation values for transistor T1. 
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onto T0. 

 Figs. 32 and 33 compare the charge-level upset probabilities and the ranges of 

possible upset probability due to interdie and intradie, respectively, threshold voltage 

variation.  Both figures correspond to a single event strike on T0.  Fig. 32 correlates the 

upset probability to the PMOS threshold voltage value and Fig. 33 correlates the upset 

probability to the T4 threshold voltage value.  The upset response in Fig. 33 is elongated 

due to a greater threshold voltage variation. 

 

 

 

 

Fig. 30. Variation in upset probability for a single event hit on transistor T0 over the 

range of extracted threshold voltage values for transistor T4. 
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Fig. 31. Variation in upset probability for a single event hit on transistor T0 over the 

range of extracted width variation values for transistor T4. 

 

Fig. 32. The charge-level upset probabilities and the ranges of possible upset probability 

due to interdie threshold voltage variation.  The single event strike was simulated on T0 

and the upset response was correlated to the PMOS threshold voltage. 
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Fig. 33. The charge-level upset probabilities and the ranges of possible upset probability 

due to intradie threshold voltage variation.  The single event strike was simulated on T0 

and the upset response was correlated to the T4 threshold voltage. 
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CHAPTER IV 

 

IMPACT OF PROCESS VARIATIONS AND CHARGE SHARING ON THE SINGLE 

EVENT UPSET RESPONSE OF FLIP-FLOPS 

 

An analysis was conducted on flip-flops by employing the same approach used 

with the SRAM circuits. It correlates the shifts in radiation response to specific device 

and process-parameter variations by quantifying the impact of process variability on the 

range of SEU critical charge. However since charge-sharing reduces the effective upset 

threshold and increases the circuit’s vulnerability to SEU [86], [87], a combined analysis 

of parameter variation, charge sharing, and single events is performed. The combination 

of the mechanisms provides a more accurate analysis of single event response. In 

advanced technologies, latches have become vulnerable to upset at decreasing values of 

deposited charge and have become more susceptible to charge-sharing effects. The 

investigation leverages Monte-Carlo simulations to assess the impact of process 

variations on the SEU response of flip-flops. 

To examine the impact of process variations on single event upset response, a 

simulation study was conducted using two unhardened, D flip-flop designs. Both designs 

function at very high frequencies (up to 4GHz) and one is optimized for low power. One 

flip-flop was targeted to a commercially-available 45 nm CMOS process, and the other to 

a commercially-available 65 nm CMOS process. In this work, the flip-flops will be 

referred to as FF A (45 nm) and FF B (65 nm). 
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Single event hits were modeled on each of the individual transistors using the 

previously-described bias-dependent single-event model [112]. The model was integrated 

into the 45 nm and 65 nm process design kits and was calibrated using TCAD simulations. 

Charge-sharing was incorporated into the simulations by modeling the multiple-node 

charge collection with additional injected charge. The secondary charge-sharing-induced 

currents were modeled on transistors that neighbor the primarily struck device in the 

layout. The amount of collected charge was calculated based on the distance between the 

struck device and a neighboring device. In order to determine the relationship between 

collected charge and distance, TCAD simulations were performed on a series of diodes. 

The TCAD data provided the charge collection and time profiles of junctions located at 

varying distances from the strike. A similar approach has been used in other research to 

perform a layout-aware analysis of multiple flip-flops [112]. The profiles enabled the 

development of a collected-charge-versus-distance function that was empirically fitted to 

the TCAD data. 

Simulations performed on the flip-flop accounted for charged particles with 

different linear energy transfer values by varying the amount of injected charge. For each 

level of injected charge, approximately six hundred Monte-Carlo simulations were 

conducted. The Monte-Carlo simulations varied the BSIM4 transistor parameters 

according to the PDKs. The full, statistical parameter variations were imported directly 

from the PDKs and provided the “best representation of long-term manufacturing 

performance” [114]. Table VII lists approximate parameter variations from simulations 

conducted on FF B. The variations represent the anticipated real-life variances that could 

occur in the specific process in which flip-flop B was fabricated. Results from the 
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simulations show the effect of each of the BSIM4 parameter variations on the single-event 

response of the flip-flop designs. 

 

 

 

Ideally, a set of flip-flops from the same design and process would have a single 

critical charge value. However, the combined contribution of charge sharing and process 

variation causes a spread in the critical charge values. As the value of the primary 

injected-charge increases, the subset of the total number of flip-flops resulting in an upset 

TABLE VII. 

SELECT PARAMETER VARIATIONS FROM SIMULATIONS ON THE 65 NM FLIP FLOP B. 

Parameter 

Abbreviation 

Parameter Description % Variation 

CGDL Drain-gate overlap capacitance  +/- 8.7 

CGDO Drain-gate overlap capacitance per unit channel 

width 

+/- 9.3 

CJ Junction capacitance density +/- 15.1 

CJSWG Gate-side junction capacitance +/- 8.6 

RDSW Resistance per unit width +/- 21.3 

TOXE Electrical gate oxide thickness +/- 4.7 

U0 Mobility +/- 4.3 

VTH0 Threshold voltage +/- 14.3 

XL Length variation due to masking and etching. 

XL, which has a negative nominal value, must 

be added to the drawn channel length to get the 

effective channel length. The variation is 

approximately -25% to 2% of the drawn length 

for the most sensitive transistor. 

+/- 105.1% 

XW Width variation due to masking and etching. 

XW, which has a negative nominal value, must 

be added to the drawn channel width, which is 

divided by the number of fingers, to get the 

effective channel width. The variation in XW is 

approximately -8% to 1% of the drawn width 

for the most sensitive transistor. 

+/- 119.4% 
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also increases. Fig. 34 shows the percentage of Monte-Carlo simulations that resulted in 

an upset at each injected-charge value for a transistor strike in FF B. (In this work, 

specific, numeric injected-charge values refer to the value of the primary injected 

charge.)  In order to facilitate further analysis, specific information is recorded during the 

Monte-Carlo simulations. After each simulation, the value of each parameter, the upset or 

no-upset response of the flip-flop, and the injected charge value are recorded. Such 

information allows the calculation of the charge-level upset probability. Fig. 34, in 

essence, shows the charge-level upset probability for a transistor strike on FF B since it 

shows the percentage of upset-resulting simulations at each level of injected charge.  

 

 

 

 

Fig. 34. The percentage of simulations resulting in an upset for a strike to a transistor that 

causes upset through charge sharing in flip-flop B. 
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In order to analyze the contribution of parameter values, the range of variation for 

each parameter was divided into eight segments of equal size. After each simulation run, 

the parameter value was binned according to its value. Fig. 35 shows the percentage of 

the simulations with a process parameter value in each segment. In the figure, the 

segments are noted by their mean value as a fraction of the nominal parameter value. 

Information from the simulations allows the correlation of parameter value to 

upset response. Fig. 36 shows the parameter-value upset probability for a hit on FF B. 

Fig. 37 shows the variation in upset probability (which isolates the impact of the 

individual parameter variation) for a transistor strike on FF B. It contains the differential 

upset probability between the upset probability data from Fig. 36 and the upset 

probability data in Fig. 34. In Fig. 37, the peak-to-peak upset-probability variation 

indicates that the possible 28% change in the threshold voltage can result in an 89.8% 

change in the differential upset probability or, in other words, that the flip-flop can have a 

possible delta around the nominal upset probability of 89.8%.  
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Fig. 35. The percentage of simulations with a threshold voltage value in each segment. 

The average value of each segment is shown as a fraction of the nominal VTHO value. 

 

Fig. 36. The impact of threshold voltage variations on the parameter-value upset 

probability for a strike in flip-flop B. 
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The analysis of parameter impact focused on the examination of physically 

measurable parameters. If the impact of a parameter variation is known and the ability to 

determine the specific parameter value exists, it may be possible to evaluate the 

sensitivity of a batch of chips based on the parameter value. One measurable parameter is 

threshold voltage. Changes in threshold voltage can significantly affect both circuit 

performance and soft-error rates. The impact of the threshold voltage variations on FF B 

is shown in Fig. 37. As the threshold voltage increases, the differential upset probability 

increases. Decreasing values of VTH0 result in a lower differential upset probability. 

After chip fabrication, knowledge of the actual threshold voltage, which could be 

determined from fabrication testing, compared to the nominal VTH0, could indicate the 

sensitivity of fabricated chips to single event radiation. 

 

Fig. 37. The impact of threshold voltage variations on the differential upset probability 

for flip-flop B. 
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Another measurable parameter is the electrical gate oxide thickness, TOXE. For 

the same reasons discussed for SRAMs, both flip-flops showed an increase in the 

differential upset probability as the oxide thickness increased. Figs. 38 and 39 emphasize 

this effect by showing the impact of TOXE on the 45 nm and 65 nm flip-flops, 

respectively. The peak-to-peak upset-probability variation value for 45 nm, 181.9%, was 

greater than the value at 65 nm, 137.4%. This corresponds to the expected increase of 

parameter variation impact with decreasing device size. Fig. 40 shows the range in upset 

probabilities over the TOXE parameter variation and the charge-level upset probability 

for each injected-charge value. 

 

 

 

 

Fig. 38. The impact of TOXE variations on the differential upset probability for flip-flop 

A. 
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Fig. 39. The impact of TOXE variations on the differential upset probability for flip-flop 

B. 

 

Fig. 40. The variation in upset probability over the range of PMOS TOXE values and the 

nominal charge-level upset probability for a flip-flop B. 
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Shifts in the masking and etching aspects of fabrication, caused by over- and 

under-etching, result in length and width variations, which are represented by variations 

in the XL and XW BSIM4 parameters. The effective channel length is determined by 

adding the variation, XL, to the drawn length of the struck transistor. For the 45 nm flip-

flop, the magnitude of the nominal value of XL is approximately 9% of the drawn length 

of the struck transistor. The range of XL magnitudes over the Monte Carlo simulations is 

approximately -8% to -11% of the drawn value. As XL increases, the effective channel 

length increases. 

The effective channel width is determined by adding the variation, XW, to the 

drawn width divided by the number of fingers. For FF B (45 nm), XW is approximately 

2% of the drawn width of the struck transistor. For the Monte Carlo simulations, the 

range of XW magnitudes is approximately 0.5% to 4% of the drawn width of the struck 

transistor. For both XW and XL, the percentage change of the nominal parameter value is 

large, but the percentage change of the drawn width and length values is relatively small. 

Increases in channel length cause a decrease in drain current and decreases in 

channel width cause a decrease in drain current. Decreases in drain current increase 

single event sensitivity. The impact of XL on the variation in upset probability of FF A is 

shown in Fig. 41. The impact of XW on the variation in upset probability of FF A is 

shown in fig. 42. The peak-to-peak upset-probability variation values, shown in the 

figures, describe the significance that channel length and width variations can have on the 

flip-flop soft-error rates. With shrinking device sizes, XL and XW may become 

increasingly dominant due to limitations in process etching and lithography. 
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Fig. 41. The variation in upset probability for variations in NMOS XL for flip-flop A, a 

45 nm flip-flop. The nominal value of XL is negative. 

 

Fig. 42. The differential upset probability for variations in NMOS XW for flip-flop A, a 

45 nm flip-flop. 
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Summaries of significant peak-to-peak upset-probability variation values for the 

FF A and FF B are shown in Figs. 43 and 44. For both flip-flops, certain parameters, 

including TOXE, XL, XW, and VTH0, show sizeable impact on SEU response. The 

parameter variations effect on the radiation response of the latch circuits is also consistent 

with the previous analysis of SRAM cells [50]. This consistency suggests that a select 

subset of parameters has significance over a range of circuits and processes. The 

existence of an impactful subset of parameters implies that certain design considerations 

and process controls could ameliorate the rate of SEUs caused by process variations. The 

impact of process variation, as shown in the peak-to-peak upset-probability variation 

values, increased from 65n to 45 nm. An increase in variation impact reflects the 

expected increase in process variation described in Table I. 

 

 

 

Fig. 43. Peak-to-peak upset-probability variation values for flip-flop A, a 45 nm flip-flop. 
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Charge sharing impacts the radiation response of circuits, particularly those 

fabricated in advanced technologies [4], [53]-[56], [105]-[107]. Charge sharing has been 

demonstrated to cause multiple-bit upsets, decrease LET threshold, and increase upset 

cross-sections. The combination of process variations and charge sharing can aggravate 

the effects of single events on integrated circuits. Without charge sharing, a strike with 

sufficient charge causes an upset if it hits a sensitive transistor, but not if it hits an 

insensitive transistor. When charge sharing is included in the simulations, strikes on 

insensitive transistors may cause an upset if they neighbor a sensitive transistor. The 

primary strike on the device injects charge into the sensitive transistor. Therefore, charge 

sharing expands the area in the circuit that is sensitive to single events since SEUs can be 

caused by strikes to transistors that would otherwise not cause an upset. 

Additionally, through the generated secondary currents, charge sharing extended 

the charge range of upset-causing strikes. Without charge sharing, the range of injected 

 

Fig. 44. Peak-to-peak upset-probability variation values for flip-flop B, a 65 nm flip-flop. 
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charge values over which process variations affect upset response is limited. Charge 

sharing significantly increased the charge range for process variation impact and thus 

amplified the effect that parameter variation can have on the single event response of a 

circuit. Fig. 45 shows this progression for strikes simulated in FF A. Transistor A, the 

sensitive transistor, had an upset range of 9 fC to 13 fC. Strikes on transistor B did not 

result in an upset during simulations without charge sharing effects. However, when 

charge sharing was included in simulations, strikes to Transistor B resulted in SEUs. The 

upsets were caused by the current shared with Transistor A. Since the charge is 

attenuated over the distance between the two transistors, the injected charge values of the 

transition region increased. Transistor B has a transition charge range of 52 fC to 69 fC. 

Charge sharing significantly increased the total range of values for which parameter 

variations impact the SE response of the flip-flop. 
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Quantifying the influence of BSIM4 parameter shifts shows the significance that 

process variations can have on SE response. For the two flip-flop designs examined in 

this work, measurable process parameters were highlighted and shown to impact the flip-

flops’ SE responses in a consistent manner. Charge sharing was demonstrated to increase 

the charge range for parameter variation SE response impact. A quantified assessment of 

process-variation impact provides designers and fabrication engineers with the ability to 

determine important factors affecting the soft-error rates for flip-flops. Additionally, the 

ability to predict the radiation response of circuit lot based on determinable parameters 

could provide meaningful information about SEU likelihood.  

 

Fig. 45. The ranges of injected charge values for neighboring transistors in FF A. The 

charge range for a strike on Transistor A is 9fC to 13fC. The charge range for a strike on 

Transistor B is 52fC to 69fC. 



63 

 

CHAPTER V 

 

VERIFICATION OF THE PROCESS VARIATION IMPACT ON SINGLE EVENT 

UPSET 

 

 When conducting research, particularly research based largely in simulations, it is 

vital to verify the veracity of the research through outside resources and experimental 

data. Toward that end, an extensive literature search was conducted and experiments 

were performed in order to confirm the impact of process variations on single event upset 

response. 

 

 

Simulation Results Literature Survey 

Previously mentioned papers by A. Balasubramanian, et al. relate the effect of 

random dopant fluctuations on threshold voltage and consequently on the radiation 

hardness of SRAM circuits [98], [99]. In both papers, simulations, in which threshold 

voltage was singularly varied, were conducted to determine the impact on single event 

upset response of the threshold voltage shifts caused by RDF. Balasubramian, et al. 

argues that an increase in the absolute value of the threshold voltage of the PMOS 
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transistors in an SRAM cell decreases the critical charge and increases the SEU 

sensitivity of the SRAM. Fig. 46 shows the change in the critical charge over the range of 

NMOS and PMOS threshold voltages for an off-state NMOS hit [98]. The cited research 

by A. Balasubramanian, et al., concurs with the correlation between the increased 

threshold voltage magnitude and increased SEU sensitivity presented in this work. 

 

 

 

 Jahinuzzaman, et al., develops an analytical model for critical charge as a method 

to analyze the soft error vulnerability of SRAM cells [115]. Simulation verification of the 

model compares the model to SPICE simulations and analyzes the impact of process 

variations on the SRAM single event response. Fig. 47 shows the relationships between 

threshold voltage and critical charge for NMOS and PMOS transistors for the SRAM 

 

Fig. 46. The spread of critical charge values required for a bit flip in a 65 nm CMOS 

SRAM cell for an off-state NMOS transistor SE strike [98]. 



65 

pictured in Fig. 48 [115]. For a single event strike on MnA, the threshold voltage of MpA 

has the greatest impact on the critical charge. As the threshold voltage of MpA increases, 

the restoring current decreases and thus decreases the Qc requires for SRAM upset. 

Similarly, an increase in the threshold voltage of MnB causes a decreased restoring current 

for Node B. The decreased restoring current increases the sensitivity of Node B and 

lowers the critical charge for the SRAM. A decreased threshold voltage for MpB would 

increase the ability of the transistor to turn on and supply current to Node B. Therefore, a 

decreased threshold voltage for MpB increases the soft error sensitivity of the SRAM and 

lowers its critical charge. 

 

 

 

 

Fig. 47. Critical charge as a function of threshold voltages of the transistors in the cross-

coupled inverters for the SRAM pictured in Fig. 43 [115]. 
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 The research conducted by Jahinuzaman, et al., also examined the impact of 

channel length and width variation on SRAM critical charge [115]. Fig. 49 shows the 

impact of the change in length on the SRAM critical charge. In general, an increase in 

channel length causes a decrease in drain current. For transistor MpA, the decrease in 

drain current associated with an increase in channel length causes a decrease in the 

critical charge. For MpB, an increase in drain current associated with a decrease in 

channel length provides a stronger pull-up current for Node B, once MpB turns on. The 

effect of channel width variations was observed, during simulations, to be approximately 

the opposite of the effect of channel length variations. The change in effect occurs since 

an increase in channel width increased drain current. The impact of threshold voltage and 

channel length variation on soft error rates, as discussed by Jahinuzaman et al., is 

consistent with the research presented here. 

 

 

Fig. 48. SRAM with injected charge onto the drain of MnA. The voltage value at Node A 

begins at ‘1’ and the value at Node B begins at ‘0’ [115]. 
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Negative Bias Temperature Instability Literature Survey 

 Experimental verification of the impact of process variations on the single event 

response of latches provides additional confidence in the accuracy and reliability of the 

simulation results. It is necessary to add sufficient credence to simulation analyses of 

parametric variation on SEU response.  One challenge of experimental analysis of 

process variations and their impact on single event upset response is the difficulty of 

identifying and varying the parameter values. Negative bias temperature instability, a 

type of device degradation, can be used to affect the threshold voltage of PMOS 

transistors. Device degradations, which include hot-carrier injection (HCI), gate-oxide 

breakdown, time-dependent dielectric breakdown (TDDB), and bias temperature 

instability (BTI), cause alterations in the characteristics of transistors over time [116]. 

They lead to behavioral parameter drifts during circuit operation [117]. Of the various 

 

Fig. 49. SRAM critical charge as a function of the change in channel length [115]. 
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device degradation mechanisms, negative bias temperature instability is considered one 

of, if not the most critical [16]-[18]. 

Bias temperature instability, which describes the CMOS-device-characteristic 

changes that result from the application of bias at elevated temperatures, has emerged as 

one of the most important reliability issues for advanced CMOS technologies [16]-[18], 

[116], [118]-[121]. Bias temperature instability is particularly pronounced in PMOS 

devices under negative bias [116], [122], [123]. Deal et al. discussed facets of negative 

bias temperature instability in 1967 [124] and Jeppson et al. presented work focused on 

negative bias stress in 1977 [125]. Bias temperature instability stems from the trapped 

charges that are generated when bias is applied to the gate for a long duration or at 

elevated temperatures. The trapped charges cause changes in threshold voltage 

magnitude, mobility degradation, and transconductance [118], [122], [126]. Fig. 50 

shows the degradation of threshold voltage after negative bias temperature stress [120]. 
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Negative bias temperature instability has been demonstrated to cause increasingly 

challenging problems with circuit performance [118]. The threshold voltage shift caused 

by NBTI is a major reliability concern, particularly for circuits that employ matching 

[118]. In digital circuits, NBTI-induced shifts can lead to timing issues, reduced current, 

 

Fig. 50. Threshold voltage degradation after negative bias temperature stress. The W/L of 

the device geometries in a) is 10 µm/0.18µm and 10µm/0.5µm in b) [120].  
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frequency degradation in ring oscillators, and reduced noise margins in SRAMs [56]. 

Additionally, the issue of NBTI has been aggravated in advanced technologies due to thin 

gate dielectrics and higher oxide fields [55], [117], [118], [126], [127]. It has emerged as 

the dominant PMOS device failure mechanism at the advanced technology nodes. 

 The change in PMOS transistor threshold voltages due to NBTI can be used as an 

instrument to analyze the impact that a variation in threshold voltage has on SEU 

sensitivity. The effects of long-term NBTI can be replicated in accelerated testing by 

stressing circuits at high temperature and electric field [73]. Research conducted by D. 

Rossi, et al., relates the effects of NBTI to soft error susceptibility [128]. Simulations on 

combinational circuits and latches were conducted to determine the impact of NBTI on 

the critical charge of the circuits. In the simulations, the impact on the PMOS threshold 

voltage was determined by the model in [129]. The voltage shifts were used to customize 

the transistor model in order to simulate the circuits with the appropriate amount of 

NBTI-induced voltage shift. Fig. 51 shows the change in critical charge over the range of 

circuit operating time for an SRAM cell that stores a signal equal to 1 50% of the time 

(α=0.5) and for an SRAM cell that stores a static signal for the entire ten years (α=1)  

[129]. NBTI causes an increase in the PMOS threshold voltage. The increase in PMOS 

threshold voltage would lower drain current in the ON transistor and increase the 

susceptibility of the SRAM to soft errors. The simulation results agree with the 

parametric analysis presented in this paper. 
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Experimental data documented by G. La Rosa, et al., relates the impact of 

negative bias temperature instability to the stability of SRAM cells. Fig. 52 shows the 

increase in SRAM failure count due to NBTI as a function of ICRIT, which is the peak 

current of the “N Curve” [130]. The increase in the PMOS threshold voltage due to NBTI 

results in an increase in the soft error sensitivity of the SRAM. The SER increase is 

consistent with the other research presented here. 

 

 

Fig. 51. Simulation results showing the SRAM critical charge as a function of the circuit 

operating time in years [128]. 



72 

 

 

 

Negative Bias Temperature Instability Experimental Data 

 The following work is purposed to determine the correlation between the process-

variation simulations and negative bias temperature instability (NBTI) experimental data.  

Two methods were used to evaluate the predictive ability of the simulations.  The first 

method estimated the increase in flip-flop sensitive area due to the NBTI-induced 

increase in PMOS threshold voltage magnitude.  The second approximated the change in 

SEU likelihood based on simulation-based upset probabilities.  Both approaches showed 

good correlation between the experimental and simulation data. 

Experimental analysis of fifteen flip-flop designs with varying area, power, speed, 

and radiation-tolerance parameters was conducted. The flip-flops were stressed to induce 

 

Fig. 52. Negative bias temperature instability induced increase in SRAM failure count as 

a function of I
*
CRIT [130]. 
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the effects of negative bias temperature instability. The NBTI-induced change in 

threshold voltage increased the single event upset likelihood of the flip-flops. The 

analysis presented here deals with one D flip-flop design. The analysis SEU cross-section 

trends observed in these two flip-flops were consistent for the others in the test set, and 

the analysis method is applicable to those designs as well. 

The flip-flop designs were fabricated in a commercial 40 nm bulk dual-well, 

CMOS process using the CREST approach [131]. The simplified schematic in Fig. 53 

generally describes the D flip-flop, which has approximately 16K stages.  All support 

circuits (PLL, error detection, etc.) were designed on-chip and triple-modular redundancy 

(TMR) was used. As a result, all observed errors were solely due to the errors generated 

in the shift register. 

 

 

 

 

Fig. 53. A simplified schematic of the slave portion of the D-latch. 
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The chips were stressed at 80 °C with an increase over the nominal power supply 

voltage by approximately 15%. The overstress was carried out for approximately 12 

hours and the ICs were allowed to cool to room temperature for a short time before being 

exposed to the ion beam. The heavy-ion testing was performed, both before and after 

stressing, using the 88-inch Cyclotron at the Lawrence Berkeley National Laboratory 

[132]. For both tests, all inputs to the shift registers during testing were kept at logic 1 to 

eliminate effects of ion hits on clock lines. The clock was active during the stress and 

test. All, but one of the tests, were performed to a fluence of 5x10
7
 particles/cm

2
, with the 

one test having a fluence of 1.5x10
7
 particles/cm

2
. The linear energy transfer (LET) of the 

incident particles was varied up to 58 MeV-cm
2
/mg. The angle of incidence was varied 

between 0 degrees and 30 degrees. 

NBTI causes an increase in threshold voltage (VTH) magnitude for PMOS 

transistors.  Such an increase will cause a decrease in the PMOS transistor currents. For 

FF designs that are the most sensitive to n-hits (for which PMOS transistors provide 

restoring current), the effects of NBTI on SE error rates will be significant.  On the other 

hand, if the most sensitive hits are p-hits (NMOS transistors provide restoring current 

drive), the effects of NBTI on the SE error rates may not be as significant.  A decrease in 

restoring current may, depending on the specific circuit topology, result in a lowered 

critical charge value due to the decreased restoring current.  The decreased critical charge 

value will increase the susceptibility of a flip-flop to single events.  

In order to examine the veracity of the process-variation simulation analysis, a 

comparison of the simulation analysis and experimental data was conducted.  For DFF1, 

the sensitive NMOS transistors were identified, as shown in Fig. 54 [133].  The NMOS 
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transistors were specifically selected since the SEU sensitivity of the NMOS transistors 

would be affected by negative bias temperature instability.  Using the previously-

described Monte-Carlo simulation approach, the effect of parameter variation on the 

sensitive NMOS transistors was determined.  Fig. 55 shows the increase in upset 

probability with the increase in the LET of the incident particle for a simulated strike on 

the sensitive NMOS transistor for a HIGH clock state. 

 

 

 

 

Fig. 54. Layout-aware simulation image highlighting the sensitive NMOS transistors 

[133]. 
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In order to determine the impact of NBTI on the PMOS threshold voltage, the 

NBTI model described in the IBM 65nm CMOS process design kit was used to calculate 

the NBTI-induced increase in the magnitude of threshold voltage [134].  Fig. 56 shows 

the increase of threshold voltage over time.  For the stress time of 12 hours, the change in 

threshold voltage is approximated to be -17 mV.  During the analysis of the Monte-Carlo 

simulations, the range of parameter values for each parameter is divided into bins.  

Quantification of the NBTI-induced threshold voltage shift allows the identification of 

the bin that corresponds to the NBTI-induced threshold voltage.  Once the appropriate 

threshold voltage bin is determined for the post-stress threshold voltage, the sensitivity of 

DFF1 to the NBTI-altered threshold voltage may be determined via the parameter value 

upset probabilities.  Fig. 57 shows the change in the upset probability over incident LET 

values for the nominal and NBTI-induced threshold voltages.  The NBTI-shifted 

 

Fig. 55. Increase in flip-flop upset probability corresponding to the increase in the LET of 

a SE strike on the most sensitive NMOS transistor.  The threshold voltage is nominal and 

the clock state is HIGH. 
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threshold voltage results in a more sensitive flip-flop due to the decrease in PMOS 

restoring current.  The increase of the SEU sensitivity of DFF1 should result in an 

increase in SEU upsets and consequently in an increase in cross-section.  Estimating the 

increase in cross-section based on the process-variation simulations would allow the 

comparison of the experimental data and the process-variation simulations. 

 

 

 

 

Fig. 56. NBTI-induced increase in the threshold voltage magnitude of PMOS transistors 

based on the stress-time [134]. 
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 Two different approaches were used to determine the correlation between the 

simulation and the lower-LET experimental data.  The first estimates the increase in 

sensitive area resulting from NBTI stress.  Due to charge-sharing, a single event may 

strike a circuit at one location and the charge may spread through the substrate to a 

sensitive transistor.  The charge collected by the sensitive transistor can then result in an 

SEU.  Previous work has used a 3D-TCAD calibrated relationship in order to determine 

the amount of charge collected by multiple devices based on the distance between 

primarily-struck transistor and secondary transistor [96], [100], and [135].  The 

relationship used the injected charge in the primary transistor and the distance between 

the primary and secondary transistor to determine the approximate charge collected by 

the secondary transistor.  In this work, the 3-D TCAD based charge sharing relationship 

was used to solve for the maximum strike distance from the sensitive device, which still 

 

Fig. 57. Change in upset probability due to increase in threshold voltage magnitude due 

to NBTI. 
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results in a collected charge capable of upsetting the flip-flop.  The estimation of the 

maximum distance between a single event strike and a transistor given a specific 

collected charge can be used to approximate the sensitive area for a specific transistor by 

using the distance as the radius of a sensitive area circle.  The area difference between the 

nominal threshold voltage sensitive area circle and the sensitive area circle for the NBTI 

collected charge is equivalent to the increase in cross-section due to strikes near the 

NMOS transistor as a result of NBTI-induced PMOS threshold voltage shift. 

 The SEU response of a flip-flop is particularly sensitive to process variations at an 

upset probability of 50%.  Therefore, the LET value selected for the sensitive distance 

estimation was the value that corresponds to an upset probability of 50%.  The LET 

values corresponding to a 50% upset probability were determined for both the nominal 

and the NBTI-shifted PMOS threshold voltages.  Since the LET value that corresponds to 

the NBTI-shifted threshold voltage is lower than the value associated with the nominal 

threshold voltage, the maximum allowable distance between a SE strike and the sensitive 

transistor is greater after NBTI.  The difference between the approximate sensitive area 

after negative bias temperature instability and the nominal sensitive area for a specific 

transistor is the amount of sensitive area increase due to NBTI for strikes near the 

specific NMOS transistor being examined.  The increase in area for each of the sensitive 

NMOS transistors was summed to get a total sensitive area for each clock state.  Then, 

the increase in sensitive area for the LOW and HIGH clock states was averaged for a 

50% duty cycle, which was the condition during testing.  This determines the sensitive 

area increase that is equivalent to the increase that might be observed under test 

conditions. 
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 The sensitive NMOS transistors for both clock LOW and clock HIGH states were 

identified and process-variation simulations were conducted to mimic the test condition 

of a 50% duty cycle.  Then, the difference between the NBTI-induced sensitive area 

approximation and the nominal sensitive area approximation was determined for the 

sensitive transistors.  The increase in sensitive area for both clock states was averaged to 

find the approximate increase in overall sensitive area due to NBTI.  The increase in 

sensitive area was added to the pre-stress cross-section values for the experimental data 

and compared to the post-stress cross-section values.  Fig. 58 shows the pre-stress cross-

section, the post-stress cross-section, and the simulation-based post-stress cross-section 

approximation. 

 

 

 

 

Fig. 58. Comparison of the pre-stress cross-section, the post-stress cross-section, and the 

process-variation simulation-based post-stress cross-section approximation. 
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 The second approach for the comparison of the process-variation simulations and 

the experimental data uses a ratio of the upset probabilities that correspond to the nominal 

bin and the NBTI-shift associated bin.  For each of the sensitive NMOS transistors at the 

nominal threshold voltage, the average upset probability is calculated over the range of 

LET values that produce a 0% upset probability to a 100% upset probability.  The 

average upset probability for the NBTI-shifted threshold voltage is calculated for the 

same range of LET values.  The nominal and NBTI-associated overall upset probabilities 

for each sensitive transistor are each averaged to determine the average upset probability 

for each clock state.  Those upset probabilities, for both nominal and NBTI-shifted 

threshold voltage bins, are then averaged over the clock HIGH and clock LOW states.  

The resulting overall upset probabilities provide first-order representations of the 

likelihood of SEU for the flip-flop before and after NBTI stressing. 

The ratio of the NBTI-associated upset probability to the nominal upset 

probability represents the average increase in upset likelihood.  Multiplying the pre-stress 

experimental data cross-section values by the ratio representing the NBTI-induced 

increase in overall upset likelihood provides an estimation of the simulation-predicted 

NBTI impact.  Fig. 59 compares the pre-stress cross-section, the post-stress cross-section, 

and the estimation of the post-stress cross-section.  The correlation between the post-

stress cross-section and the simulated post-stress cross-section is significant.  The 

correlation for the larger LET values is limited since the method does not include the 

LET-associated SEU variations related to variations in collection distance.  The ratio is 

developed for the smallest LET values where the process variation is significant, and 

where the SE strikes are not at the saturated maximum distance for charge sharing.  
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However, this approach does not require TCAD calibration or in-depth knowledge of the 

circuit layout. 

 

 

 

 The same approach using the overall upset probability can be used to estimate the 

relationship between the change in threshold voltage and the resulting change in cross-

section.  For each threshold voltage bin (which can be represented as the nominal 

threshold voltage plus some threshold voltage delta), the average change in upset 

probability was determined by taking the ratio of the associated upset probability to the 

nominal threshold voltage upset probability.  Then, the anticipated cross-section 

corresponding to the threshold voltage bins was determined by multiplying the pre-stress 

cross-section by the expected change in upset probability.  The change in threshold 

 

Fig. 59. Comparison of the pre-stress cross-section, the post-stress cross-section, and the 

overall upset probability based estimation of the post-stress cross-section. 
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voltage (from the nominal threshold voltage) was correlated to the delta between the 

anticipated cross-sections and the cross-section associated with nominal VTHO.  Fig. 60 

shows the relationship between the change in PMOS threshold voltage and the 

corresponding change in cross-section for an LET strike of 3.49 MeV-cm
2
/mg.  The 

figure shows that a decrease in the threshold voltage, which is actually an increase in the 

threshold voltage magnitude for PMOS VTHO, typically causes the cross-section of the 

flip-flop to increase.  The description of the relationship between the change in threshold 

voltage and the change in flip-flop cross-section provides insight the effect of NBTI-

induced threshold voltage variations over varying times of NBTI exposure.   

 

 

 

 

Fig. 60. Relationship between the change in threshold voltage and the resulting change in 

flip-flop cross-section for an incident ion LET of 3.49 MeV-cm
2
/mg. 
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 Both of the methods used for simulation data assessment show good correlation 

between the simulation and experimental data.  For the collection distance analysis, 

correlation is greatest for the lowest LET values in the experimental data since the low 

LET values correspond to the values indicated in the simulation data to be the most 

sensitive to parameter variation.  The overall upset probability analysis shows good first–

order agreement between the simulation and the experimental data over the entire range 

of LET values.  The analysis provides further verification to the veracity of the process-

variation simulations. 

 There are five instances of experimental and simulation data that have been 

documented in the literature and that corroborate the conclusions drawn in this research. 

Also, the NBTI tests reveal an increase in sensitive area with the increase in PMOS 

threshold voltage. The corroboration of data from the literature and the negative bias 

temperature instability experiments provides further credence to the presented parameter 

analysis. 
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CHAPTER VI 

 

IMPACT OF PROCESS VARIATIONS ON UPSET REVERSAL IN A 65 NM FLIP-

FLOP 

 

In advanced integrated circuits, multiple node charge collection increases due to 

the decreasing device size and the proximity of transistors.  The increase in charge 

sharing leads to an increase in the incidence of competition between electrical 

propagation and charge propagation.  This leads to the possibility of multiple thresholds 

in SEU response.  Analysis of flip-flop single event upset response demonstrated the 

existence of a second threshold to the SEU response due to an upset reversal mechanism.  

The impact of process variations on the critical charge threshold has been examined for 

6T SRAM cells and for DICE and D flip-flops.  Analysis of the impact of process 

variations on the upset reversal threshold was also conducted. 

Simulations were conducted using a low-power version of D flip-flop design to 

analyze the impact of process variations on upset-reversal. The flip-flop has a master-

slave topology. The flip-flop was targeted to both a 45 nm and a 65 nm commercially-

available, bulk-CMOS process. Single events strikes were modeled using a bias-

dependent SE model [112]. Charge sharing was included by modeling the multiple-node 

charge collection with additional injected charge as previously described.  
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Preliminary simulations were conducted to isolate the transistors demonstrating 

sensitivity to upset reversal. The simulations covered all input options and all clock input 

options (High, High; High, Low; Low, High; and Low, Low). Then, Monte-Carlo 

simulations were conducted on sensitive transistors to determine the impact of process 

variations. The Monte-Carlo simulations simultaneously varied the BSIM4 transistor 

parameters according to the statistical variations supplied by the manufacturer in the 

process design kits for the 45 nm and 65 nm bulk-CMOS processes. 

 

 

Upset Reversal Mechanism 

Simulations elucidated the upset reversal mechanism in the flip-flop under each of 

the input and clock possibilities. In each instance, the upset reversal effect reflected the 

same general pattern. At its core, the mechanism is a product of charge sharing. After a 

single event strike occurs on a transistor, the deposited charge spreads to other nearby 

transistors. In a manner similar to pulse quenching [91], [92], the secondary currents 

combined with the feedback in the latch cause the altered output that was triggered by the 

initial SE strike to reverse to its original state. 

One set of transistors showed particular sensitivity to upset reversal. It was 

affected by upset reversal for both the HIGH and LOW input values when the initial 

clock state is LOW. It also occurred in the master sub-circuit and the identical slave sub-

circuit. A partial schematic of the slave sub-circuit is shown in Fig. 61. Upset reversal 

occurs for a strike on the NMOS transistor in Inverter 0 (N_INV0). The following steps, 

which correspond to the numbers in Fig. 61, describe the progression. 
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1) A single event strike occurs on the drain of N_INV0.  

 

2) When the SE hits N_INV0, the deposited charge pulls the inverter output from the 

original value of HIGH to the SE-induced value of LOW, as shown in Fig. 62.  

 

3) The change in the output of INV0 propagates through INV1. At the same time, the 

deposited charge spreads through the substrate and reaches Transistor T6. In the 

circuit layout, T6 is a neighboring transistor to N_INV0, as shown in Fig. 63. It is 

part of a tri-state inverter. The charge deposited by the SE hit spreads to T6 and gets 

collected by the drain region of T6. The output of INV1 switches from LOW to 

HIGH, as shown in Fig. 64, on a similar timescale as when T6 starts to collect 

charge. 

 

4) The charge collected at the drain of T6 negates the charge provided to NODE 0 by 

the PMOS transistors in INV1. Given sufficient charge, the collected charge 

effectively prevents the SE-induced transient from altering the voltage at NODE 0. 

NODE 0 changes from LOW to HIGH only momentarily. After brief fluctuation, 

NODE 0 reverts back to the correct value of LOW, as shown in Fig. 65. The 

minimum injected-charge value to prevent flip-flop upset is called the reversal charge 

since the change in voltage effectively reverses the SE induced pulse at NODE 0.  
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5) The change in the INV0 input signal causes the INV0 output to return to the 

original high value, as shown in Fig. 66. 

 

 

 

 

 

 

Fig. 61. A partial schematic of the master-slave flip-flop. It shows the progression of the 

upset-reversal mechanism. 

 

Fig. 62. The voltage signal at the output of inverter 0 (INV0) after a single event strike to 

the drain of the NMOS transistor in the inverter. 
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Fig. 63. An illustration of the sharing of charge between N_INV0 and T6 after a single-

event hit. 

 

Fig. 64. The voltage signal at NODE 0 given that insufficient charge is collected by T6 in 

order to draw current through the transistor. The voltage signal changes from the correct 

value of LOW to the SE – induced value of HIGH. 
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Three-dimensional mixed mode technology computer-aided design (TCAD) 

simulations were conducted on the flip-flop to further analyze the upset reversal 

mechanism. Using mixed-mode simulations allowed T6 and N_INV0 (the NMOS 

transistor from INV0) to be modeled using calibrated 3-D TCAD and the remaining 

transistors to be modeled using compact models. The transistor sizing and spacing was 

 

Fig. 65. The voltage signal at NODE 0 given that sufficient charge is collected by T6. If 

so, charge collected by T6 prevents the SE–induced transient from changing the voltage 

at NODE 0. 

 

Fig. 66. The voltage signal at the output of INV0 if the reversal charge was reached. The 

signal changes back to the correct value of HIGH. The change takes approximately 0.5ns. 
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based on the fabricated flip-flop layout. Fig. 67 shows the 3-D structures used in the 

TCAD simulations (For clarity, the field oxides are not shown in the image). The 

simulations used Fermi-Dirac statistics, SRH and Auger recombination, and the Carrier-

Carrier Scattering mobility model. The simulated ion strikes occurred in the center of 

N_INV0. The heavy-ions were modeled using a Gaussian radial profile with a 

characteristic 1/e radius of 25nm, and a Gaussian temporal profile with a characteristic 

decay time of 2ps. 

The mixed-mode simulations demonstrated the upset reversal mechanism. Fig. 68 

shows both the NODE 0 and the INV0 output node voltage signals given that insufficient 

charge is collected by T6 in order to cause upset reversal. Fig. 69 shows both node 

voltages given that a sufficient charge is collected by T6 to cause upset reversal. 

 

 

 

 

Fig. 67. Three-dimensional TCAD model of T6 and the NMOS transistor in INV0. In the 

picture, the field oxides are removed for better clarity. 
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 Upset reversal can only occur under a precise set of conditions. There must exist a 

set of transistors consisting of the primarily struck transistor and the secondary 

transistor(s) in proximity. Also, the charge collected by the secondary transistor(s) must 

cause a voltage shift in the opposite direction than the voltage transient induced by a SE 

 

Fig. 68. The voltage signals at NODE 0 and the output of INV0 given that insufficient 

charge is collected by T6 in order to cause upset reversal. 

 

Fig. 69. The voltage signals at NODE 0 and the output of INV0 given that sufficient 

charge is collected by T6 in order to cause upset reversal. 
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strike on the primary transistor. The transistors must be close enough in the circuit layout 

that charge deposited in the primary transistor spreads through charge sharing to the 

secondary transistor(s). Under these conditions, upset reversal will result in a charge 

window for which a flip-flop will experience an upset. If the deposited charge is less than 

a certain threshold (usually the critical charge of the flip-flop), the flip-flop will not 

experience an upset. If the deposited charge is higher than a particular tolerance, upset 

reversal will result in a no-upset condition. One advantage of using upset reversal as a 

hardening mechanism is the minimal space requirement. In the example flip-flop, no 

extra transistors were added for the purpose of upset reversal. 

As a whole, the conditions required for upset reversal can be determined during 

circuit and layout design. If desired, a designer could intentionally create the conditions 

necessary for upset reversal in order to use the mechanism as a hardening technique. In 

this way, upset reversal could function as a type of common-mode-rejection that reverses 

the impact of an SET. Previous research has indicated that another technique that 

employs layout proximity and common mode rejection can be used to assist in SET 

rejection [101]. Additionally, reinforcing charge collection (RCC) and single event upset 

reversal employ multiple node charge collection to reduce soft error rates [136]-[138]. 

RCC uses two main principles: 1) Placing state reinforcing nodes and diffusions as 

closely as possible together and 2) Maximizing the separation of nodes that increase the 

critical charge [137], [138]. N. Seifert, et al., performed proton irradiation testing on 

multiple SRAM designs to determine the effect of design on radiation response. Fig. 70 

shows the resulting cross sections [138]. The RCC latches (CNL: RCC and IUCF: RCC) 
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show decreased cross-sections compared to the standard latches (CNL: Latch and IUCF: 

Latch). 

 

 

 

 

Parametric Variation Impact on Upset Reversal 

Shrinking device sizes have significantly impacted the challenges associated with 

circuit performance. The soft error rate of circuits has increased due to decreased storage 

charge and increased operating speeds [3]. Charge sharing has become a sizeable issue 

due to its prevalence in advanced technologies and its propensity to increase the 

susceptibility of many circuits to SE radiation [26], [85]-[87]. Additionally, process 

variations have increased as device sizes have decreased [22]-[25]. These variations 

cause challenges for circuit performance [25] and impact the single event response of 

circuits [95], [97]-[99]. Since upset reversal depends strongly on the effects of shrinking 

 

Fig. 70. The normalized cross-sections for multiple 32 nm devices [138]. 
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device sizes, an analysis of the potential impact of process variation provides valuable 

information that can be used during circuit design.  

In order to determine the impact of parameter shifts on upset reversal, simulations 

were conducted to analyze the impact of process variation on the reversal-charge values. 

The reversal charge value refers to the higher charge threshold at which a flip-flop will 

not show an upset (or the amount of charge required so that upset does not occur). A 

Monte Carlo approach was selected for the simulations since that approach captures the 

extremities of circuit performance. In a reliability situation, it is important to know how a 

circuit will perform under all, not just typical, circumstances. A Monte Carlo simulation 

set was performed on each of the junctions that demonstrated the upset reversal 

mechanism. After every simulation, each parameter value, the upset response, and the 

injected charge value were recorded in order to analyze the relationship between 

parameter values and SE response. Each simulation set confirmed that upset reversal 

occurred regardless of the parameter variation. However, the reversal charge value 

shifted with the varying parameters. The shifting of the reversal charge values affects 

which single events (due to their associated LET value) trigger the upset reversal 

mechanism and can thus impact the overall single event sensitivity of the circuit. 

For the flip-flop example, the nominal charge for SET reversal for a strike on the 

drain of N_INV0 is 96 fC. However, the range of SET reversal charges over the Monte 

Carlo simulation set begins at 76 fC and ends at 116 fC. Fig. 71 shows the spectrum of 

the SET reversal-charge values. The process variations cause a shift of +/- 20% in the 

reversal-charge values. 
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The range of reversal-charge values indicates that process variation impacts upset 

reversal, but does not indicate which parameters are the most impactful. In order to 

determine which parameters exercise the most influence, the reversal charge was 

correlated to the specific parameter values (for all varying parameters) for each 

simulation in the simulation set. Since multiple parameters have varying values, the 

correlation is a manner of examining the simulation data from the perspective of a single 

parameter. The effect of the other varying parameters can be seen in the range of upset 

reversal charges for a specific parameter value. In the analysis, a greater correlation 

coefficient implies a stronger relationship between the reversal charge and a parameter. A 

strong relationship indicates that the variation of the parameter affects the onset of upset 

reversal. Several parameters show a significant correlation coefficient to the onset of 

upset reversal. The most strongly correlated parameters are TOXE, the electrical gate 

oxide thickness, VTHO, the threshold voltage, XW, width variation due to masking and 

etching, and XL, length variation due to masking and etching, for the PMOS transistors. 

 

Fig. 71. The spectrum of the reversal charge values for a single event hit on the N_INV0. 
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Oxide thickness varies with wafer furnace position, process temperature, and 

atmospheric pressure [139]. Such variations lead to changes from run-to-run, die-to-die, 

and within-die in the oxide thickness [140]. TOXE is the BSIM4 model transistor 

parameter that represents the electrical gate oxide thickness.  The simulations show that 

when TOXE increases, the reversal charge decreases. Fig. 72, through a correlation 

scatter plot, shows the relationship between the upset-reversal charge and the PMOS 

transistor TOXE value, which is presented as a percentage of the nominal value. 

Increases in TOXE values decrease the nodal capacitances in the flip-flop. The decreased 

TOXE values also affect the threshold voltage, and subsequently the transistor currents 

and gate delays, to alter the reversal charge requirements. 

 

 

 

Masking and etching issues lead to variations in the channel. In SPICE, variations 

in the channel width are represented by the parameter XW (for NMOS transistors in this 

case). Since it represents the variation in the channel width (instead of the actual channel 

 

Fig. 72. A scatter plot showing the correlation between the electrical gate oxide thickness 

and the upset-reversal charge. 
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width), XW must be added to the drawn channel width to get the effective channel width. 

The magnitude of the nominal value of XW is approximately 5.7% of the drawn channel 

width for N_INV0 in the 65 nm CMOS process. Thus the variance of the nominal XW 

magnitude over the Monte Carlo simulations represents approximately -2% to 14% of the 

drawn channel width. Variations in XW affect the onset of upset reversal. Fig. 73 shows 

that the reversal charge decreases as XW increases. Increases in XW increases the 

effective channel width and subsequently affects individual transistor currents and gate 

delays. The increase in the restoring transistor current and decrease in gate delays 

increases reversal charge requirements. Therefore as XW increases, the upset reversal 

charge increases. 

 

 

 

Similarly, shifts in the parameter XL, which is channel length variation due to 

masking and etching, impact the upset-reversal value. The effective channel length is 

determined by adding the variation, XL, to the drawn length. The magnitude of the 

 

Fig. 73. A scatter plot showing the correlation between the channel width variation and 

the upset-reversal charge. 
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nominal value of XL, for PMOS transistors, is approximately 8.5% of the drawn channel 

length. Therefore, the range of XL magnitudes over the Monte Carlo simulations is -2% 

to 26% of the drawn value. As XL increases, the effective channel length increases. 

While channel length is a factor in both nodal capacitance and drain current, the effect on 

drain current is the dominant effect. Increased channel length decreases the current 

through the PMOS transistors that provide current reinforcing the upset NODE 0 value. 

The decrease in reinforcing current increases the ability of the collected charge to pull the 

value at NODE 0 back to the original low value. Thus an increase in XL lowers the upset-

reversal charge values, as shown in Fig. 74. 

 

 

 

Threshold voltage variations result from oxide thickness and dopant fluctuation 

issues [4]. The variations impact the flip-flop reversal charge by affecting the current 

provided by the PMOS transistors in the tri-state inverter INV1 and the restoring current 

 

Fig. 74. A scatter plot showing the correlation between the channel length variation and 

the upset-reversal charge. 
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drive at the hit node. As the magnitude of the threshold voltage (for a PMOS transistor) 

increases, the reversal charge value decreases. When the magnitude of threshold voltage 

increases, the current supplied by the transistor is lower. Since PMOS transistors provide 

restoring current, lower current increases the ability of the collected charge to pull the 

upset nodal voltage back to LOW. Therefore an increase in threshold voltage magnitude 

results in a lower reversal-charge value, as shown in Fig. 75. 

 

 

 

Process variations impact the onset of upset reversal by affecting nodal 

capacitance and restoring current. This indicates that several factors can impact the onset 

of upset reversal because several factors affect nodal capacitance and restoring current. 

Table VIII shows the correlation coefficient between VTHO, TOXE, XL, and XW, and 

the upset-reversal charge values. Since no single parameter is solely responsible for the 

change in upset-reversal values, the correlation coefficients are significant, but none of 

 

Fig. 75. A scatter plot showing the correlation between the threshold voltage and the 

upset-reversal charge. 
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them dominates the mechanism. It is interesting to note the holistic impact of the 

parameter variations. 

 

TABLE VIII. 

THE CORRELATION COEFFICIENTS OF THE HIGHEST-IMPACTING TRANSISTOR PARAMETERS 

TOXE XW VTHO XL 

-0.452 0.405 0.491 -0.549 

 

As device sizes shrink, circuit reliability has encountered significant challenges. 

Single events have caused an increased number of soft errors, charge sharing has 

contributed to amplified SE sensitivity, and process variations progressively impact 

circuit performance and radiation response. The interaction between transistor-level 

process-variations and the upset-reversal mechanism has been analyzed. Process 

variations are shown to change the onset of upset reversal for a master-slave flip-flop. 

Analysis of the interactions between the process variation and upset reversal provides a 

more accurate description of the radiation-response mechanisms anticipated in advanced 

sub-micron circuits 
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Error Source Analysis 

 During a simulation or experimental analysis, a thorough description of the error 

sources adds to the efficacy of the analysis. In the analysis of the impact of process 

parameter variations on the single event upset response of sub-100 nm latches, there are 

five main sources of error. These include the manufacturer modeling error, the BSIM4 

quantization error, the numerical error, the circuit modeling error, and the Monte-Carlo 

sampling error. The manufacturer modeling error, ETM, describes the difference between 

the BSIM4 transistor model of transistor behavior and the actual behavior of the 

transistor. Asenov, et al., analyzes the compact modeling (CM) parameter generation for 

the BSIM4 model and the PSP model [141]. The work particularly considers the 

statistical variation found in integrated circuits and provides an estimate of the error 

between actual transistor behavior and the model representation of transistor behavior. 

Table IX lists the statistical parameter extraction errors for BSIM4 models as a function 

of the number of parameters that were used to capture the intrinsic statistical variation in 

an actual transistor [141]. 
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 Other sources of error include the quantization error. Quantization error results 

from the inability to represent analog parameters in a quantized digital format [142]. 

Quantization error is at most one least significant bit (LSB) if the mantissa is chopped 

and is at most one-half of an LSB if the mantissa is rounded [142]. Numerical Error 

results from the use of a computer. A computer uses finite precision to perform 

operations on floating-point values. The amount of error associated with numerical error 

is at most one LSB [142]. Since the calculations used in the analysis used double-

precision, the error is 2
-64

, or approximately 5.42*10
-20

. Since the error from both the 

quantization error and the numerical error are several orders of magnitude less than the 

manufacturer modeling error, the manufacturer modeling error will dominate the three 

error sources. 

 Circuit modeling error, ECM, represents the error incurred by the SPICE netlist 

used to model an integrated circuit during simulation. Circuit modeling error derives 

from several sources. One source is the non-idealities that occur in a physical circuit. The 

TABLE IX. 

STATISTICAL PARAMETER EXTRACTION ERRORS FOR BSIM [141]. 

Number of 

Parameters 

Average RMS fitting 

error (%) 

Maximum RMS 

fitting error (%) 

Standard 

Deviation 

1 16.8 30.1 4.3 

2 10.5 22.5 3.5 

3 8.5 21.5 4.1 

4 3.99 9.75 1.4 

5 2.85 6.75 1.15 

6 1.56 3.6 0.6 

7 1.16 2.8 0.45 
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netlist can only imitate actual circuit performance to the extent that the inherent 

imperfections in the circuit are included. If parasitic extraction is performed on a circuit 

layout, the SPICE netlist can include many of the circuit non-idealities. This work does 

not include layout parasitics, such as line–to-substrate capacitance, line-to-line coupling 

capacitance, trace resistance, and inherent inductance. Other factors also contribute to the 

accuracy of the circuit model. These include the step size during a transient simulation, 

the accuracy of the single event model, and the simulation settings on numerical accuracy 

(simulation tool numerical error). 

 The Monte-Carlo sampling error, ES, derives from the use of Monte Carlo 

simulations to represent the overall behavior of transistors over the entire range of 

parameter variations. In essence, the simulations are samples taken of a larger population 

and are, as such, subject to sampling error [143]. The sample sizes, in the analysis, are the 

number of samples in each parameter segment. Since the number of samples in each 

segment varies with the parameter values, the smallest number of samples will be 

selected as the measure of error in order to show the maximum error. The root-mean-

square (RMS) error between the sample mean and the population mean is   √  where n 

is the number of samples [143]. Equation (1) describes the Monte-Carlo sampling error. 

   √
(   
     

 )

 
      (1) 

Since the total RMS error, ETOTAL, is equal to the square root of the sum of the 

squares of the contributing error source, the total amount of error arising from the 

parameter analysis can be calculated [144]. Equations (2) and (3) describe the total error.  
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)    (3) 

Given numerical error component values, the total error can be obtained. A numerical 

approximate of the total error can be assessed if the values provided by Asenov, et al., are 

used for the manufacturer modeling error, if the circuit modeling error is estimated at half 

of the manufacturer modeling error, and if the smallest number of samples per segment 

for the simulation data presented in this document, four, is used for n (since the smallest 

number of samples would represents the largest sampling error). Table X shows the 

estimate. If four parameters were used to develop the BSIM4 models used in the 

parameter analysis, the total RMS error is less than 5%. 

 

 

 

  

TABLE X. 

PARAMETER ANALYSIS ERROR QUANTIFICATION 

Number 

of 

Parameters 

[138] 

Average 

Modeling RMS 

Error (%) [138] 

Circuit 

Modeling 

RMS Error 

(%) 

Sampling 

RMS Error 

(%) 

Total RMS 

error (%) 

1 16.8 8.4 9.39 21 

2 10.5 5.25 5.87 13.125 

3 8.5 4.25 4.75 10.625 

4 3.99 1.995 2.23 4.9875 

5 2.85 1.425 1.59 3.5625 

6 1.56 0.78 0.87 1.95 

7 1.16 0.58 0.65 1.45 
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CHAPTER VII 

 

CONCLUSIONS 

 

 Thorough comprehension of the impact of process variations on the single event 

upset response of integrated circuits is required for full understanding of SEU response.  

The anticipated increase in the effect of process variations with decreasing device size 

along with the expected escalation in the influence of single events on circuit 

performance makes the analysis of their interaction vital.  An approach to study and 

quantify the effect of process variations on the SEU response has been demonstrated.  

The impact of process variations on the SEU response of sub-100 nm memory cells has 

been presented and discussed. 

 The analysis exploits the manufacturer-provided description of process variation 

included in the process design kit for each technology.  Monte Carlo simulations are 

conducted and specific information is extracted.  The extracted information allows the 

SRAM upset response to be correlated to specific transistor parameter shifts while 

maintaining the required integrity of transistor parameter relationships.  The 

quantification of the relationship between varying transistor parameters and the 

likelihood of single event upset provides the circuit designer with both trending and 

numerical information about the sensitivity of his circuit design. If a designer is able to 

determine that process variations may decrease the critical charge of his circuit below 
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acceptable levels, he may employ hardening techniques to counter the impact of process 

variations. 

 Interdie process variation impact on SRAM single event upset response was 

examined for 90 nm and 65 nm SRAM cells.  The impact of the transistor parameters on 

upset probability was examined over a range of injected charge values.  Several 

parameters were indicated to have a significant impact on the single event response of the 

SRAM cells.  These include the oxide thickness (TOXE), the channel width (XW) and 

length (XL) variations, and the threshold voltage (VTHO).  For instance, the range of 

threshold voltage values corresponds to a peak-to-peak swing in the possible upset 

probabilities of 73.9% around the upset probability value that corresponds to the nominal 

threshold voltage value.  A survey of the intradie process variation impact on the SEU 

response for a 65 nm 6T SRAM cell was also conducted.  The channel width variation 

and threshold voltage were shown to have the greatest impact on SEU response.  

Knowledge of the most impactful parameters provides a circuit designer with beneficial 

information that can be used to harden sensitive nodes. 

 The impact of process variations, via their impact on transistor parameters, on the 

SEU response of flip-flops was analyzed for 65 nm and 45 nm D-flip-flops.  The 

analysis, which included the effect of charge-sharing, indicated that the same set of 

parameters, TOXE, VTHO, XL, and XW, have significant impact on the SEU response.  

Also, the impact of process variation increased with the decrease in device size. 

 Experimental tests were conducted in order to verify the impact of parameter 

variation on upset response.  A shift in threshold voltage was imposed using negative bias 
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temperature instability.  Three flip-flops designs, a DICE flip-flop and two D flip-flops, 

fabricated in a 40 nm bulk CMOS process were subjected to heavy–ions before and after 

temperature and voltage stressing. The data showed that the sensitivity of all three flip-

flop designs increased with the NBTI-induced change in threshold voltage. 

 In advanced technologies, the upset response of circuits can change with 

increasing LET.  While the previously summarized research studied the effect of process 

variations on the onset of SEU, the analysis of SEU upset response continued by studying 

upset reversal, a mechanism that effectively reverses single event upset given sufficient 

injected charge.  Upset reversal, which showed sensitivity to VTHO, TOXE, XL, and 

XW, may serve as a mitigation technique in advanced technologies since it exploits their 

inherent sensitivity to charge sharing. 

 As technologies progress, the impact of process variations is anticipated to grown 

more severe.  Additionally, charge sharing is expected to increase in effect with 

decreasing device size.  Combined with the intensified effect of single events in advanced 

technologies, the single event upset response of circuits may grow more severe and 

complex.  Multiple upset onset and reversal charge thresholds may exist.  Analysis, 

which to this point has typically examined the critical charge threshold, will need to be 

performed to determine the impact of process and parameter variation on each of the 

charge thresholds.  Also, the conducted investigation was limited to sub-100 nm memory 

cells.  Similar investigations should analyze the effect of process variations on 

combinational logic.  As circuit speed increases, SEU occurring in combinational logic 

will increase in importance to chip performance. 
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 The exploration of the relationship between single event upset response and 

process-induced transistor parameter variations is vital to the full understanding of 

integrated circuit single event sensitivity.  A method for the quantification of those 

relationships has been presented and applied to memory cells targeted to 90 nm, 65 nm, 

and 45 nm.  The results show that parameter variation has a significant impact on SEU 

response and that the impact is likely to increase with technology advancements.  The 

investigation of the effect of process variations on single event upset response of sub-

100 nm memory cells provides key insight into the complex field of radiation response. 
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