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CHAPTER I

INTRODUCTION

“To study the abnormal is the best way of understanding the normal.” - William James

As systems become more complex and the amount of data collected from these systems

increase proportionally, new problems arise about how this data can be used to better under-

stand system operations, monitor performance, and detect unsafe behavior. Of particular

interest, from a safety viewpoint, is the problem of how this data can be used to improve the

effectiveness of anomaly and fault detection schemes. Also, exploratory data-driven meth-

ods provide approaches for discovering previously unknown and undetected anomalies. If

such methods are reliable and robust, they could play a very important role in improving

overall system safety and operability. This thesis takes on this challenge, requiring the

handling of large data sets, which are often originally only available in unstructured forms.

This process of finding anomalies could be compared to looking for a “four leaf clover in

a grassy field.” Furthermore, the complexity of the systems makes the task of interpreting

and evaluating anomalies an equally complex task, and we also deal with the challenge of

presenting characteristics of detected anomalies in a form that can be easily interpreted by

domain experts.

This problem is especially pertinent in engineering domains. Experts in these domains

deal with a number of challenges in the detection of failures and interpreting abnormal

behaviors in the operation of complex systems by analyzing large amounts of operational

data. In engineering, these anomalies are often attributed to degradation in components and

subsystems that arise from normal wear and tear, but also because of non nominal operating

conditions or because of complex interactions between subsystems that were previously

unknown to the experts. As experts discover new fault conditions and previously unknown

1



anomalies they are able to piece together the causes, and develop detection methods, thus

making it easier to detect and respond to these anomalies in future operations.

On the other hand, the consequences of not finding anomalies that occur during system

operation can be numerous, but for simplicity, they can be reduced to safety and monetary

considerations. Early detection of a failure can avert high consequence failures such as loss

of expensive equipment or life, and give system operators and maintenance staff sufficient

time to repair the system before the failure results in disaster. With the increasing complex-

ity of systems being attributable to the interactions among a large number of subsystems,

the number of potential unknown anomalies and failures increases significantly. Early de-

tection is paramount to avoiding failures from propagating into other subsystems, which

makes it harder to identify the root cause of the failure.

While the “black swan” [157] problem in complex systems cannot be eliminated, the

inability to discover unknown anomalies in a timely manner may exaggerate the conse-

quences of these failures. Our research is driven by these motivations to solving the prob-

lem of anomaly detection in complex systems by analyzing large amount of operational

data.

I.1 Research Challenges

I.1.1 Challenges from the Complexity of the System

Anomaly detection methods used to identify failures must be flexible and efficient given

the varying size and complexity of the systems being examined. As systems become large

and more complex in their operations, detecting anomalous behavior while avoiding false

alarms can become difficult. Experts that build models adopt heuristics to mitigate the ef-

fects of the complexity, often making targeted simplifying assumptions that are applicable

to the known faults and operating conditions. These assumptions may be restrictive, mak-

ing a number of anomalies hard to detect, or to be misclassified when they are detected.

Therefore, using the operational data to model pertinent complex relationships that given
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system behavior may improve the detectability and classification accuracy of the known

anomalies and reduce the misclassification of the unknown anomalies.

The complexity of the system leads to two research challenges that we address. First,

there is a research challenge in anomaly detection to identify new anomalies related to this

increasing complexity. If we can improve the number of unique anomalies detectable, we

reduce the chances for surprise failures in the system, and therefore, a diagnosis can be

better prepared to mitigate these failures through early detection.

A second category of research challenges related to the complexity is to improve detec-

tion of already known anomalies. This challenge may require us to find new information

that provides more support for the anomaly or to get rid of previous simplifying assump-

tions that were incorporated into the detection model. In fact, this challenge may encourage

the discovery of new representations of the complexities in the system. Expert can leverage

these new representations to better detect the known anomalies. Improving detection often

means producing new information which can be used to extend previous models.

I.1.2 Challenges from the Size of Operation Data for the System

Along with the challenges presented by the inherent complexity in the system and the

complex interactions they imply, large systems naturally utilize more sensors to help mon-

itor and regulate their components. Coupled with the improvements in sensor technology,

improvements in storage mean that as more data is being produced that is also being stored

for future analyses. Anomaly detection in such systems must navigate increasingly larger

amounts of data, including more operational runs per system, a larger number of sensors,

and increased precision in the sensors resulting in a much larger collection of signals that

are captured for future analyses.

This increase in the overall amount of data produces a number of research challenges.

First there is a challenge in effectively curating the raw collected data to make it efficient

for transforming it into structured forms that can be used for systematic anomaly detection.
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The challenge of curation is in the flexibility to allow for several approaches to work across

the data.

The second challenge of large data is in integrating the curated data with outside infor-

mation. Expert-designed systems, and additional datasets may produce additional valuable

information, such as annotations of failures, and better specification of sensor values and

locations.

Another challenge of large data is curation or structuring of the data to enable more

effective and efficient use of data mining algorithms for exploratory analysis. While the

number of instances, the number of features, and the length of the signal for each feature

needing consideration, there is a challenge in how to make this data efficient for a variety

of analyses that can include both supervised and unsupervised methods. The data may not

be suitable in its current form for the appropriate learning method, and even after transfor-

mation may make the learning algorithm computationally expensive to use.

The other side of computational efficiency is in allowing the data to be efficiently ana-

lyzed either by supervised or unsupervised methods. Further, the results generated by the

algorithm should be translated into structure and forms so that a human expert can easily

extract and interpret the new information provided and assimilated this knowledge into the

detection models. When the data set is large and contains a variety of different information,

characterizing anomalies becomes a harder problem and can impede the expert’s ability to

integrate this new information. Our goal in this work, is to produce methods for discovering

anomalies in large complex systems that address these research challenges.

I.2 Problem Domains

We utilize two domains in this research. The structure of the data in both domains reflect

the research challenges we are solving in this work. There are differences between these

domains which highlights the nuances of the challenges and our approaches to anomaly

detection. In the first domain, we examine aircraft flight operations data collected over a
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five year period for a regional airline. In the second domain, we explore data recorded from

pitches thrown in Major League Baseball games from the years 2009 to 2012.

I.2.1 Aircraft Flight Systems

The data in the aircraft flight domain represents the flights of multiple aircraft of the

same type that belonged to a regional airline. Aircraft represent complex systems with

multiple interacting subsystems. A pilot’s choices while operating the aircraft and the

operating environment, such as the weather, further increase the diversity the data that

needs to be account for when analyzing. This data was originally stored in a very large

number of CD-ROMs, where each CD-ROM contained data from multiple flights. Each

flight is recorded as a separate instance, each with a set of 182 sensors, and each sensor

records data for the entire flight with the data collected at sampling rates of either 1Hz,

2Hz, 4Hz, 8Hz, or 16Hz. The collection of these recorded flights all together represent a

total of 0̃.7 Terabytes of data.

The goal for anomaly detection with this data involves detecting unusual flight con-

ditions; caused by equipment faults or degradation, environmental conditions, and pilot

actions that may be characterized as aviation safety incidents. Aviation safety incorporates

situations related to the aircraft that may cause harm to the aircraft, its occupants, or the

surrounding environment, such as people and property on the ground. Anomalies that im-

pact aviation safety include mechanical malfunctions, pilot decisions, and environmental

conditions that are unsafe for aviation. Our research with this domain is to help improve

already known mechanical failures, and to identify new and previously unknown anomalies

that could potentially result in aviation safety issues.

The research challenges we address for anomaly detection include the complexity and

the size of the data. Our solutions to the problems must include the curation of this data,

and the integration of expert knowledge with the results generated by our data mining algo-

rithms. In improving the models for known anomalies, we must deal with the complexities
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of the aircraft systems and building subsets of the data to help target the anomaly detection

process. For finding new anomalies we must deal with the inefficiency of the structure

of the data for exploratory analysis as well as incorporate the complexity of the temporal

signals from the features on the aircraft to look for new anomalies.

I.2.2 Analyzing Pitcher Performance

The second domain we examine in detail is pitcher data from Major League Baseball

games. This data includes measurements of pitches thrown during the game. These mea-

surements attempt to identify components of the each pitcher’s specific release motion and

position for a number of different pitch types. These measurements taken together approx-

imate the “mechanics” of a pitcher’s throwing motion. The mechanics represent the way

a pitcher throws a specific type of pitch, and includes the release point in relation to their

body, where the ball ends up at home plate, and the amount of spin they place on the ball.

Thanks to other researchers efforts, these measurements for each pitch thrown in a Major

League Baseball since 2007 have been collected are available in a curated database. This

database contains over 4 million pitch records for 1900 pitchers.

The goal of anomaly detection in this domain is to identify games where a pitcher pro-

file of thrown pitches differs from his expected performance. In the aircraft flight domain,

the anomalies are either aviation safety related, or just rare events. The rare events in the

flight domain could include unique but not dangerous weather patterns, or the pilot’s deci-

sions were unexpected but not catastrophic or dangerous. If the aircraft landed successfully

without incident, the anomaly may have no immediate consequence. In the baseball do-

main, an anomalous game may be a bad game for a pitcher, where they gave up a lot more

hits and runs than normal, or a very successful game, where they gave up less hits and runs

than normal. In contrast to the goals for the aircraft flight domain, our discovery of anoma-

lies may point to better games than normal, just as much as our approach could find subpar

games. From either type of anomaly, our goal is to characterize the pitcher’s mechanics
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that differed from their nominal behavior, and this could form the framework for further

study.

This domain and data contrast with the aircraft flight domain, because of its complexity

across different dimensions. In the case of baseball, the data is based on a human inter-

action as opposed to mechanical equipment. Humans are decision makers which results

in variations of their approach to and within a game. There are emotional and physiologi-

cal parameters that affect humans and this needs to be taken into account when analyzing

anomalies.

In spite of this important difference, there are a number of similar challenges for ex-

ploring the baseball data. While the curation of the data has been already accomplished,

we are dealing with a domain where identifying anomalies is a relatively new approach. In

exploring the data for new anomalies we must face the challenge of dealing with a large

number of pitchers and in this case temporal sequences that differ in size across each game

a pitcher throws. The non-standard representation is a challenge in utilizing unsupervised

learning methods such as clustering. Further we must face the challenge of how to char-

acterize anomalies effectively when dealing with varying signals. These problem domains

and their contrasts provide new dimensions for exploring approaches for identifying inter-

esting anomalies.

I.3 Approaches to Anomaly Detection

We have developed two approaches for anomaly detection in this thesis. The first ap-

proach is a method designed to address the research challenge of improving the detection of

already known anomalies. This approach will identify new relationships for better charac-

terizing a known anomaly, and makes them available for an expert in a form that facilitates

their updating existing anomaly detection models. The second approach addresses the chal-

lenge of identifying new anomalies using unsupervised learning methods. This approach is
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exploratory by nature, and is also designed to provide targeted information to the expert to

help them characterize the nature of the anomalies.

I.3.1 Approach for Improving Anomaly Detection

• This approach leverages expert information to constrain the problem by targeting

specific known anomalies and it addresses the large data challenge by reducing the

size of the data considered to segments of anomalous behavior that can be compared

against nominal behavior. This makes model refinement more efficient, and the con-

strained data makes it easier to characterize the anomaly.

• The approach is used with the Aircraft Flight Domain to help improve existing di-

agnostic models used in Aircraft Diagnostic and Maintenance Systems. Improving

these models, improves the detection accuracy and time for known failures. There-

fore, this is often framed as a knowledge engineering task. The knowledge engineer-

ing framework requires that the results of the learned models be easily interpreted by

the experts in the context of the existing diagnosis model. This improvement can help

avoid aviation safety incidents. The improvement may also reduce the cost routine

maintenance situations to on-demand based maintenance.

• The end result of this approach are targeted improvements to the original model.

These improvements increase the accuracy and detection time of future anomalies in

aircraft flight systems.

• We expect that one of our main contributions in this work will be a knowledge en-

gineering solution involving the use of a general framework for applying targeted

anomaly detection using expert guidance. Another research contribution will be the

application of this framework to the aircraft flight system domain. This implementa-

tion of this framework will help improve the diagnostic accuracy of an industry based

diagnostic reasoner.
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I.3.2 Approach for Discovering New Anomalies

• Unlike the first approach, we do not rely on significant amounts of initial expert

knowledge, and thus the starting dataset is less constrained and includes more overall

operational instances of many different types in the data. This change means that

we can explore as much of the data as computationally possible to discover new

anomalies.

• We improve the computational efficiency by exploring dimensionality reduction tech-

niques that are applied to the high dimensional data. With the increase in the amount

of data being used, dimensionality reduction addresses the research challenge of

making the data more computationally efficient for future analysis using supervised

and semi-supervised methods.

• This exploration produces previously unknown anomalies and our approach helps the

expert characterize these new anomalies by highlighting their relevant features. Our

approach to characterization addresses another research challenge of large data, by

helping experts examine the larger dataset in a systematic way with higher precision.

• This approach is used with both the data from the aircraft flight systems, as well as

the baseball domain. Each domain provides a contrast into the applicability of this

approach and the search for different kind of anomalies.

• The end result of this approach should be a collection of nominal data and a collection

of anomalies, with a series of features that best differentiate the anomalies from the

nominal data. These features and anomalies will be characterized as to their impact

on the specific domain.

• We expect our the first research contribution from this work to be an exploratory

approach to discovering previously unknown anomalies in large data from complex
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systems. This contribution includes an end to end framework for exploring large

amounts of this data.

• The dimensionality reduction in this approach should produce its own research con-

tribution, which is the testing of multiple reduction techniques to understand their

effectiveness for anomaly detection.

• Lastly, our final research contribution is the successful use of our approach on the

two problem domains. This contribution includes discovering new and previously

unknown anomalies in aircraft flight systems that may impact aviation safety. For

the baseball domain, this should include the discovery of novel anomalies for games

that pitchers throw and the impact of a pitcher’s mechanics in those games.

I.4 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter II provides a re-

view and background on the primary concepts and approaches to anomaly detection and

data mining. The chapter describe the different types of anomaly detection and the various

types of machine learning algorithms used to build models for anomaly detection. Chap-

ter III provides our overall research approach and methodology for our contributions in this

dissertation. Starting with a more formal description of the data, and the two approaches to

address the challenged for anomaly detection in complex systems with large data. Chap-

ter IV describes our first approach using supervised anomaly detection, and how the knowl-

edge engineering task is used to improve diagnosis. The chapter uses case studies from the

aircraft flight systems domain to demonstrate the approach. Chapter V begins describing

our second approach in more detail, but focuses on the dimensionality reduction techniques

we apply. Using a series of experiments we explore the tradeoffs between different tech-

niques and choose the techniques to use in our approach. Chapter VI describes our second

approach in full detail, and its application to the aircraft flight systems. We compare with
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previous work in the area and demonstrate the effectiveness of our through a series of case

studies of discovered anomalies. Chapter VII demonstrates the same approach as applied

to the baseball domain. We identify a set of pitchers and explore the anomalous games

and how they relate to the specific mechanics of the selected pitcher. Lastly, Chapter VIII

provides a summary of our approaches, and their demonstrations on our problem domains

as well as future research directions.
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CHAPTER II

BACKGROUND ON ANOMALY DETECTION

II.1 Anomaly Detection Models

Anomaly detection is defined as the process of using models to identify behavior that

is different from the normal behavior of a system [21]. Anomalies can be referred to by

vocabulary such as outliers, abnormal behavior, surprises, unusual instances, exceptions,

and aberrations [21]. This research uses outlier, abnormal behavior, and anomalies to re-

fer to the same concept. Early detection of anomalies in a reliable and robust manner is

important to maintain system operations in an efficient and safe manner. Applying these

approaches to studying the purchase histories for consumers may result in identified ab-

normal behavior being recognized as fraud, requiring efficient and fast detection to prevent

further unwanted purchases from an account. In network systems, abnormal behavior may

indicate an intrusion, requiring action to keep the rest of the computers on the network from

being compromised. In every case, the problem involves understanding normal behavior,

and using models that can find and flag new actions or sets of actions as abnormal. Fig-

ure 1 from the literature [21] shows a simple visual example of this problem. For complex

systems, there can be multiple types of normal behavior. The focus of anomaly detection

is on the behavior that exists outside of these areas. Anomalies can appear differently, for

example they can appear as individual points, such as o1 or o2, where each is a single in-

stance separated from the normal clusters. The point at o2 also show that, while anomalies

are different from normal behavior, they may not be radically far from the nominal clus-

ters. Anomalies that are not well-differentiated may be problematic because they can be

harder to detect, but just as critical in their consequences. Lastly, abnormal behavior may

be common enough to form groups such as O3. These small collections can become the

framework for defining anomaly detection techniques, rather than the single points.
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15:2 V. Chandola et al.

Fig. 1. A simple example of anomalies in a two-dimensional data set.

contaminants in different application domains. Of these, anomalies and outliers are
two terms used most commonly in the context of anomaly detection; sometimes inter-
changeably. Anomaly detection finds extensive use in a wide variety of applications
such as fraud detection for credit cards, insurance, or health care, intrusion detection
for cyber-security, fault detection in safety critical systems, and military surveillance
for enemy activities.

The importance of anomaly detection is due to the fact that anomalies in data trans-
late to significant, and often critical, actionable information in a wide variety of appli-
cation domains. For example, an anomalous traffic pattern in a computer network could
mean that a hacked computer is sending out sensitive data to an unauthorized destina-
tion [Kumar 2005]. An anomalous MRI image may indicate the presence of malignant
tumors [Spence et al. 2001]. Anomalies in credit card transaction data could indicate
credit card or identity theft [Aleskerov et al. 1997], or anomalous readings from a space
craft sensor could signify a fault in some component of the space craft [Fujimaki et al.
2005].

Detecting outliers or anomalies in data has been studied in the statistics community
as early as the 19th century [Edgeworth 1887]. Over time, a variety of anomaly detection
techniques have been developed in several research communities. Many of these tech-
niques have been specifically developed for certain application domains, while others
are more generic.

This survey tries to provide a structured and comprehensive overview of the research
on anomaly detection. We hope that it facilitates a better understanding of the different
directions in which research has been done on this topic, and how techniques developed
in one area can be applied in domains for which they were not intended to begin with.

1.1. What are Anomalies?

Anomalies are patterns in data that do not conform to a well defined notion of normal
behavior. Figure 1 illustrates anomalies in a simple two-dimensional data set. The data
has two normal regions, N1 and N2, since most observations lie in these two regions.
Points that are sufficiently far away from these regions, for example, points o1 and o2,
and points in region O3, are anomalies.

Anomalies might be induced in the data for a variety of reasons, such as malicious
activity, for example, credit card fraud, cyber-intrusion, terrorist activity or break-
down of a system, but all of the reasons have the common characteristic that they are
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Figure 1: Abstract Example of Anomaly Detection

II.1.1 Anomaly Types

The techniques for finding these different behaviors fall into three categories of anomaly

types. The first two are “point” and “collective” anomalies. The third is the “contextual”

anomaly, which provides an augmentation or explanation of the data when analyzing the

first two types. The choice of anomaly types changes the way we search through data and

the type of models one builds for detection.

“Point” anomalies represent the most straightforward idea of an anomaly. This type

considers data points as independent of one another. In general, a point anomaly is found by

looking for specific individual samples in the data that are not similar to the rest of the data

set. Applications of point anomaly detection include credit card fraud [3] where a single

purchase data point is determined to be anomalous based on knowledge of other normal

transactions. As a general idea of fraud, a single point-based anomaly against a large set of

normal data points can apply to several different domains [14], including network intrusion

and medical fraud.

In contrast to single points being anomalous is the notion of a “collective” anomaly,

i.e., anomalies that represent situations where the anomalous behavior develops and extends

13



over a number of data points that extend in time or space. A collective anomaly may require

several instances in the data, often occurring sequentially to define a trend to characterize

the anomaly. Unlike point anomalies, collective anomalies occur only in datasets where the

points that make up collective anomalies can be related to one another [55] by a function

of the features. For example, in fault diagnosis, certain degradation of components occur

slowly over time. This incipient type of fault can only be discovered when there are enough

points that indicate abnormal activity in a progression that characterizes the failure. If the

collection of sensor values is represented as a set of signals, this anomaly type is found

by analyzing a sequence of signals that indicate the slow degradation. Contrast this with

a group of anomalous points, which may occur at different points in time and different

locations. The collective anomaly requires the set to be anomalous together with some

relationship.

Applications involving collective anomalies include medical services that identify prob-

lems in physiological data such as electrocardiogram output, where a small problem over

time may be more noticeable to a machine than a human eye [21]. Other sequential ap-

plications include sensor data of celestial observations [122], as well as sequence data for

intrusion detection found in system calls [22]. Other applications for collective anomalies

involve graphs, where a collection of nodes must all be considered part of the collection in

order to identify an anomaly [156]. Applications that utilize the graph based representation

include intrusion detection, such as finding botnet clients [11].

Anomalies that are discovered when characteristics of the data are used to filter rele-

vant data are termed “contextual” anomalies. This is to say, that behavior may only seem

anomalous in a specific context, but not in the data as a whole. A context may be formed

from external sources, e.g., how and when the data was collected. An example is building

a model for network intrusion from data on a specific cluster of machines. A context may

also be formed from internal characteristics of the data, e.g., using the recorded latitude

and longitude of a geospatial dataset to group instances together. The sources used to build
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context in the data are referred to as “contextual” [21] attributes. When these attributes

are possible features in the data, they are removed from consideration as features that may

indicate an anomaly within the context. The remaining features used to discover anomalies

are referred to as “behavioral” [21] attributes.

A classic example to motivate contextual anomalies is the problem of finding areas with

abnormal rainfall in a particular region [21]. Certain amounts of rain fall in the data will

look much different when compared to amounts in the overall dataset. However, when

examining these different amounts in the context of location and time of year, e.g., the

rainy season in South East Asia, the amounts may be normal. An amount of rainfall in

southwestern India during the monsoon season is not abnormal, although a lack of rain

at that time of year would be anomalous; however, that amount of rain at any time in the

American Midwest would certainly be characterized as anomalous. There are several good

applications of context-based anomaly detection that use spatio-temporal relationships with

environmental data [35].

Since contextual anomalies refer primarily to building context to define behavior, inside

the context we must select which type of behavior (either “point” or “collective”) to focus

on for detection. Point anomalies can be used to examine fraud within context. Simply by

selecting the time of year as the contextual feature, certain credit card fraud may be easier

to detect, since an event such as the holiday season may change what we consider to be an

abnormally high purchase amount [45]. As with the point anomalies, contextualization is

used for other fraud-based domains such as intrusion detection [134].

Similar to the point anomalies, a collective anomaly can be used in conjunction with

contextual features. Examples that combine the two include detecting public health is-

sues from health surveillance streams [9]. The context will be the location of the surveil-

lance streams, and the features being considered are signal based and requiring a collective

anomaly detection scheme. Another example of contextual and collective anomalies is

using spatio-temporal features to build models for analyzing hyper-spectral imagery [153].
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II.1.2 Data Considerations

Deciding which type of anomaly detection, and the method used to build the model

requires looking at the nature of the data. The nature of the data is based on how it was

collected and how it may be transformed through preprocessing. Raw data may be capable

of containing several different types of anomalies, including different types of contextu-

alization. Examining the data for the manner of collection, the type of features available,

and knowledge about class labels will guide the use of appropriate types of anomalies and

models to build.

In general, when describing datasets, each separate occurrence in the data is referred

to as an instance or sample. Instances can be placed in order, such as with a time stamp

or just considered to be independent samples. Each of these instances has a set number of

measurements or details. These measurements are described as features that can be used

to understand the nature of each instance. It is possible that not every instance will have

every measurement, which in turn means that a feature may be missing. Missing features

are important to account for when building a model, since that model may have to classify

an instance as abnormal without all the information. Understanding the type of the features

collected is important; numerical information, whether it be discrete or continuous, can

impact the types of algorithms used or require certain types of preprocessing. Features

with categorical information, such as text responses also influence these decisions.

For different anomaly types, it may be useful to transform the data and preprocess cer-

tain features, or the entire dataset to produce appropriate features for anomaly detection.

For example, in flight data, it may be best to transform raw sequences of measurements

about the engines during flight, into single instance for each engine that records statistical

information of the signals into a set of features, such as max temperature or average en-

gine speed at takeoff. This reduction to the dataset may allow the dataset to be used with

different algorithms.
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II.1.2.1 Data and Anomaly Types

Point Anomalies For point anomalies, the necessary organization of the data is minimal.

Point anomalies can be sought out in any data where a data point can be modeled as an

event and where events can can be compared against one another. Events can be defined

by features of many types, such as pure numerical data for credit card fraud [3] and cat-

egorical data for detecting anomalous session activity using decision trees [161]. While

the organization of the data can be general for point anomaly detection, the anomalies may

suffer from a lack of contextualization if the data possesses relationships between features.

The rain example given earlier is a case where, without contextualization, data that appears

anomalous may be nominal given a contextualized comparative sample.

Collective Anomalies Collective anomalies require a dataset where each instance can be

explicitly related to the others. Collective anomalies are found in data that has explicit fea-

tures that are ordinal, such as timestamps or location. The example of fault diagnosis as a

collective anomaly is based on the fact that each instance relates to another in time. Com-

mon data for of this type include signals from systems, so there are popular techniques to

look for these changes over the signal, such as compression and complexity analysis [77].

While temporal order is straightforward to identify in many applications, finding this re-

lationship for other datasets can require analysis before building models, such as seaport

surveillance to find anomalous vessel tracks [89]. Collective anomalies exists over both nu-

merical data such as classification of physiological signals such as electrocardiograms [31]

and categorical data used in intrusion detection [55]. Similarly to point anomalies above, if

the data was collected over several contexts but the detection occurs over the entire dataset,

the results may be poor or misleading.

Contextual Anomalies Contextual anomalies refer to the use of contextualized attributes

to search for point or collective anomalies, so the data must possess features that can be

used to group the data into different contexts. This grouping may be explicit, e.g., temporal

groupings like months of the year for credit card fraud. The contextual attribute may need
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to be data mined, such as clustering latitude and longitude in aircraft takeoffs, to find gen-

eral areas where the data was collected, like airports. These attributes split the dataset into

many smaller datasets for the application of other anomaly types to be detected. Contextu-

alization may happen on multiple levels, such as contextualizing by location of an airport

and then by time of the year, to eliminate weather patterns from effecting takeoff anoma-

lies. Unlike point anomalies, where the data can be used as it is, contextualization and

collective anomalies require the expert to understand the nature of the data to find relation-

ships and appropriate contextualization to transform the data into smaller sets for building

the models.

II.1.2.2 Data Labeling and Supervision

Selecting methods for building models from data to detect anomalies requires under-

standing if there are labels for the data. The labeling of data is defined as selecting, or

building, a feature to be the class label. The labeling marks each instance in the data as

belonging to at most one type in the range of possible values for that feature. In many

methods, the label is a flexible choice where the selection may be numerical, and usu-

ally discrete, or categorical. This choice in anomaly detection may be straightforward. If

knowledge of what constitutes normal behavior in the data is known, then instances in the

data with that behavior are labeled as nominal, and if anomalies are known, the instances

that are known to be anomalous are labeled appropriately.

The existence of a label for the data focuses the choice of methods based on the level

of supervision in the learning algorithm. In anomaly detection, the presence of class labels

in the data change as anomalies are extracted from the data. If the labels are well known

for both nominal and anomalous instances, the data may be used with supervised learning,

which will attempt to discriminate between the nominal and different anomalous groups.

For example, when considering different failures on an aircraft, a supervised model will at-

tempt to discriminate between different types of anomalies as well as the nominal case. The
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greater the number of classes, the more complex the model will have to be to differentiate

between the larger number of groups.

If the labels are known only for one class (usually the nominal case), the use of semi-

supervised learning methods is appropriate, as they build a very specific model for discrim-

inating between the known class and the “others,” which is a catch all group for anomalies

and other behaviors that may have to be analyzed further before they can be labeled.

Lastly, if knowledge of nominal and anomalous behavior is completely unknown, then

the data must be analyzed for common and uncommon behaviors. Unsupervised learning

methods attempt to separate data based on emergent behavior between instances and other

commonalities.

II.2 Using Data Mining Methods to Build Anomaly Detection Models

Knowing the domain and makeup of the data defines the methodologies and techniques

we develop and use for anomaly detection. The next step in the methodology is to choose

appropriate machine learning methods to build the nominal and anomaly models that we

will use for detection and characterization of anomalies. For example, if the data objects

are labeled as nominal and anomalous, one strategy is to directly develop supervised and

semi-supervised methods for classification and characterization of anomalies. On the other

hand, if no differentiating labels are initially associated with the data objects, unsupervised

learning methods are applied to understand and characterize the data.

Building a complete anomaly detection methodology can involve using a number of

machine learning algorithms along a chain to build a complete application. The supervision

of these algorithms is one of the considerations when building the approach. For example,

in cases where the class knowledge is not available apriori, the expert may build a pipeline

of machine learning methods that utilize the output of one method for processing the data to

use as the input of another method, to produce the desired model, i.e., using labels derived

from unsupervised methods to build a model from semi-supervised methods.
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As well as the supervision of the algorithm, the designing of the anomaly detection

scheme is guided by the generality of the model. The use of discriminative or generative

techniques offers tradeoffs in terms of the ease and speed of building the models and a

model’s ability to handle missing or unobservable evidence through complete modeling

of the environment provided by the data. Balancing these trade-offs is a function of the

domain and the expectations for the application.

Also in many real world applications, it is important to involve experts in the analysis

and decision making loop. Choices in algorithm and methodology impact the ability of the

expert to understand the details of a particular model, and how to interpret any anomalous

results based on the model. Since one of the pillars of our research involves improving

previous diagnostic models of embedded vehicle systems that requires methodologies that

incorporate knowledge engineering approaches, which necessitates choosing algorithms

that give the expert information in the right detail and the right format that they can interpret

the new information in the context of existing models. Assessment for such a task still

involves empirical testing of the improvements with data.

Among the details that are also worth considering, are the number and type of param-

eters to tune for optimal performance. Parameters with precise tuning requirements are

not be suitable for systems that operate in diverse environments. Since the datasets for

this research are large in the number of objects and high dimensional, any choice in algo-

rithms or design methodology should be made with an eye toward applicability to large,

high dimensional datasets.

II.2.1 Discriminative Models and Discriminant Functions

Discriminative models and discriminant functions represent two similar types of ma-

chine learning algorithms. Both types restrict their learning to relationships between the

observations, or the features in the data and the labels. From the literature [12], for each

class in the data Ck and the input x, discriminative models use the data to directly learn
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posterior class probabilities P(Ck|x). Decision theory is used with these probabilities to

assign new input to a given class. Compared with the generative models that must learn

joint probabilities over the evidence as well as the posterior probabilities, these models are

computationally easier and useful for general classification.

Discriminative modeling approaches to making decisions have evolved over time, start-

ing with simple structures. Among the original discriminative modeling techniques are

purely probabilistic methods, such as logistic regression [12], and information-theoretic

methods such as Decision Tree classifiers. Decision trees use the information theoretic

principles to split the data and produce a tree model of decisions based on the features [170].

These structures are easy to interpret, but as the number of features, the data, and the overall

decision space grows, a standard decision tree will grow too and over-fit the data, possibly

becoming too large to read and interpret efficiently. Keeping the tree shallower, and thus

smaller is referred to as pruning which keeps a model more general and allows for better

readability [110]. Pruning is a process of removing or never growing specific nodes at

the bottom of the decision tree, thus avoiding the addition of decisions that are often the

noisiest. Several methods exist for pruning decision trees [76, 108].

In contrast to the discriminative models are discriminant functions, which are the sim-

plest methods for classification, using a mathematical function to map the input x directly

to a class label. An example is a two class problem, where function f (x) when applied

to x, returns a 0 or 1 for either class C1 or class C2, respectively [12]. A standard imple-

mentation of such a method is a linear discriminant function using the mean square error

criterion. These functions include linear, polynomial, and radial basis functions. The ex-

pert must chose which function to use for the classifier, often experimenting with many and

using empirical results to guide the final choice. Each increasingly complex function that

is chosen for the classifier may improve the accuracy, but will also begin to over-fit the data

and reduce generality [12].

A disadvantage of discriminant functions are that without the posterior probabilities,
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it is difficult for the algorithm to understand and minimize risk (formally the expectation

of loss), as well as better model the environment in terms of class priors. For an expert,

while the methods are fast to learn and simple to understand, they provide little in the way

of interpretable information. Examples such as data that represents decision spaces for

functions, like XOR (exclusive-OR logic) demonstrates where these classifiers can fail no

matter how complex the mathematical functions chosen.

Issues with such systems helped motivate the evolution of discriminant functions through

the production of more complex structures. For example, the multilayer perceptron (Neural

Network) algorithm [12] takes the simple perceptron classifier [111], and builds a layered

structure of perceptrons trained using back propagation of information through the struc-

ture. These Artificial Neural Networks are capable of accurately separating most any deci-

sion space, given enough time and data to optimize the parameters. It is also referred to as

a “black box” technique, meaning that the information learned from the data produces val-

ues that lack easily understandable semantic information. A lack of semantic information

impedes an expert’s ability to better understand the system through examining the data-

driven model. While the Artificial Neural Network may be accurate for an application, in

many fields where the model itself is important for knowledge engineering activities with

an expert, the Artificial Neural Network is a poor choice.

In the 1990s, AI and Machine Learning researchers began investigating methods for

building function-based discriminative models that remained simple and also focused on

building generality into the classifier to prevent over-fitting, as opposed to post-processing,

such as pruning in decision trees. Among the advancements were kernel methods, such

as Support Vector Machine classifiers, or SVM [162]. SVM models are function-based

classifiers (linear), but the coefficients learned from the data were optimized to produce a

separation of the training data that would be as general as possible. These models in turn

may suffer from a knowledge engineering standpoint as the coefficients are not semanti-

cally valuable to the expert.
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SVM research moved towards methods for separating more complicated, or non-linear

decision spaces by extending the original SVM classifier into higher dimensional spaces.

The spaces are found through transformations applied to the data in techniques called ker-

nels, with the original linear kernel being the simplest. The transformation maps the orig-

inal features into higher dimensionality, while retaining a format desirable for training a

SVM [114]. The use of the kernel involves further loss of semantic value for the expert

because the kernel transformations abstract away the original features and produce a new

feature set, which is combination of the old.

These discriminative learning classifiers are useful when the data is labeled appropri-

ately (supervised and semi-supervised). The models are also a good choice when the ap-

plication does not involve complex interactions between features that might improve their

accuracy (or instead can be abstracted away with Kernel transformations).

II.2.2 Generative Models

In contrast to the discriminative models and discriminant functions are the generative

models. These models do more than just learn the posterior probabilities for data and

classes. Instead, generative models learn joint distributions p(x,Ck) over the features and

classes. These models are capable of describing the interactions among different observed

variables [12], using distributions built from the data to model the environment. The pro-

cess of learning these distributions is more time consuming than just the posteriors or func-

tion coefficients. Theoretical and empirical analyses have shown that generative and dis-

criminative models differ in their generalization behavior, as well as the speed and accuracy

of learning [41, 41, 73, 171]. These models are useful in their ability to better describe an

environment, especially when there are no known class variables, but generative models

are capable of a different over-fitting through building tenuous relationships found in the

distributions of the data that do not exist in the operating environment.
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II.2.2.1 Clustering Algorithms

Generative models naturally relate to unsupervised learning, where the use of the joint

probability distributions can facilitate the grouping of similar objects that help discover

relationships between features and to discover common patterns in the data. The major

group of techniques in unsupervised learning is clustering. Clustering can be broken down

according to two major attributes. The first is the process of how to form the clusters from

the data. The focus is on connectivity models, centroid clustering, distributions models,

and clustering by distance density. The second attribute is the types of features (numerical

and categorical) a clustering algorithm can include when it looks for patterns.

Connectivity models are often referred to as hierarchical clustering. These models are

constructed utilizing a distance measure between instances. These distances refer to how

closely two data points may be related to one another. This class of algorithms is broken

down by the direction of the hierarchical process, either “agglomerative” (build up the

hierarchy) or “divisive” (move down the hierarchy) construction.

Agglomerative clustering [57] starts with each instance in its own cluster, and at each

step the two clusters with the smallest distance are combined together in a single cluster

higher up the hierarchy. In agglomerative clustering, when clusters contain multiple points,

a distance must be measured between two clusters to determine if they contain the next

smallest distance to select for joining into a larger cluster. There are several methods for

determining this distance. The most common include “single link”, “complete link” and

“average link clustering.” Single link looks for the smallest difference between the points in

one cluster and the points in another and uses that to measure the distance between the two

clusters. Complete link is more conservative and chooses the largest distance between any

two points in the the clusters. Average link clustering finds the average distance between the

clusters. Agglomerative clustering ends when all points belong to a single cluster at the root

of the hierarchy. Divisive Clustering on the other hand starts with one cluster and begins to

split the clusters recursively until all points have been split into single clusters [27]. This
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process is often exhaustive, as the cost function for each possible value to split the cluster

must be measured to find the best choice.

Figure 2: Example Dendrogram

The process of the splitting or merging in agglomerative clustering is recorded and

displayed in a visualization known as a dendrogram [125]. The dendrogram, such as the

example in Figure 2, shows the connections in a vertical manner, where clusters merge

to form larger groups as one moves up in the hierarchy. The y-axis shows the distance

measure and helps identify the distance at which two clusters had the smallest distance

and were thusly joined. Connectivity models that utilize the dendrogram visualization

produce a possible taxonomy for the domain. Understanding where instances belong to

a common root allows for examination of those instances to find interesting sub-patterns
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in large groups of data. The dendrogram can also be flattened into a set of clusters by

utilizing a cutoff of the distance between clusters. This flattening with the cutoff ignores

any sub-clusters.

There are a variety of dissimilarity metrics that operate on a variety of data types,

and so hierarchical clustering is used to group data objects with both categorical and

numerical features. Techniques that utilize this approach include conceptual clustering

algorithms [49] such as COBWEB [47] and Similarity-based Agglomerative Clustering

(SBAC) [13]. Further work on hierarchical clustering algorithms provide greater control

on how to balance quality of the clusters with computational efficiency through the use

of iterative strategies of organizing the data [48]. Other algorithms may only work with

numerical data (discrete and continuous) such as Factorized Minimized Message Length

Clustering(Factor SNOB) [166, 167]. The applications of connectivity models include di-

verse areas such as bioinformatics for finding relevant gene features [142], and textual

based learning for areas such as search query log mining [8].

Centroid clustering constructs clusters based on how closely an instance is related to

the a center point calculated from a number of other instances. K-means clustering [61] is

an algorithm that implements this model. The algorithm requires a parameter of how many

clusters are believed to be in the data, and initializes random means for each cluster. After

each instance in the data is associated with a single cluster, the means are recalculated for

each centroid and the instances are re-associated with the new means. Iterations of the algo-

rithm occur until there is no more movement from the clusters (both in affiliation and in the

centroids). The clusters in this model are “hard clusters” with “strict partitioning”, meaning

every instance belongs to exactly one class. K-means is an NP-Hard problem, and research

exists into making the algorithm efficient through heuristics [74], as well as producing vari-

ations that relax the k-means algorithm, such as fuzzy k-means [95, 119]. The algorithm

has also been transformed to handle categorical features with k-modes clustering [68].
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Centroid clustering is similar to distribution based clustering in that both use mean-

based centers; however, distribution based clustering goes further by defining distributions

(often mixtures of several normal distributions) that represent each cluster. The com-

mon algorithm that performs mixture modeling is the Expectation-Maximization algorithm

(EM) [12]. EM clustering follows a similar strategy as k-means, by taking as a parameter

the number of clusters and initializing random cluster centers. Rather than only means,

there are also variances for each cluster. As in k-means, the algorithm iterates, looking at

cluster membership for the instances and changing the means and variances at each step.

Unlike the k-means approach, this clustering model uses “soft clusters,” which means that

an instance can belong to more than one cluster. Among the many implications, this type of

affiliation changes the condition for halting the algorithm. Instead of looking for when clus-

ter affiliation no longer changes, EM measures the log-likelihood of how well the clusters

describe the instances in the dataset. The affiliation also means that an expert can directly

determine how good the clusters are for describing different behavior through a series of

distributions for each feature. By definition, building a distribution requires numerical data,

so EM clusters will operate on either discrete or continuous features. Clustering with EM

has been used in a variety of applications, including diagnosis as an unsupervised anomaly

detection technique [70], and classifying of images, such as celestial objects [90].

The “soft clusters” used in EM are also strict, meaning that objects may belong to any

number of clusters but must belong to at least one. It is important when working in certain

environments that instances in the data that may not align with other behaviors are not clus-

tered for the sake of a required membership. In density based clustering algorithms, such

as DBSCAN[98], the model works with “hard clusters,” but allows for “strict partitioning

with outliers.” Instances are allowed to remain unaffiliated and examined as a separate set.

Density based clustering groups points together only if they are close enough to one an-

other by a given distance metric (such as a Euclidean distance or Mahalanobis distance).
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If for a given instance, the distance with another data point is within the reachability pa-

rameter η , then the two points may be close enough to begin a cluster. If with a threshold

k, enough points are within the reachability for any given instance, then the set becomes a

cluster. If the points grouped together is smaller than that threshold, the basis point is left

as an outlier. The benefit of distance metrics, is that they can be built for many different

data types, allowing density based clustering to be successfully used with both numerical

and categorical data. Distance metrics; however, can experience difficulty calculating over

large feature spaces, thus DBSCAN can suffer from poor clustering for high dimensional

datasets. Also, the choice for the parameters can be difficult to know ahead of time, re-

quiring estimation. The ability for outliers in the clustering makes density based clustering

suited to unsupervised anomaly detection for applications, such as Aviation Safety [94]

and Network intrusion [92]. Density based clustering also has seen use as the clustering

algorithm for geo-spatial databases [141].

II.2.2.2 Bayesian Networks

Other generative models that handle a variety of supervision tasks include Bayesian

Learning algorithms, where the model is a directed acyclic graph connecting evidence

nodes to potential hypothesis nodes ,i.e., the information of interest to be derived from

the gathered evidence, e.g., fault hypotheses given symptoms. The variables in the data, in-

cluding the potential class label, are vertices, and the correlations amongst the variable are

represented as directed edges with a conditional probability distribution that links the evi-

dence nodes to the conclusions or hypotheses [123]. Bayesian networks provide a compact

representation for drawing inferences across the entire model in order to understand the

probabilistic outcomes based on observations. Model learning with these algorithms run as

a two part process. First, the algorithm looks for correlations in the variables to build the

directed graph. The second step is known as parameter estimation, where the distributions

later used for inference are estimated from the data [51]. These algorithms are generative
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and cut across the supervised, semi-supervised and unsupervised learning spectrum. We

adopt the Bayesian framework for part of our anomaly detection studies. Another benefit

of these structures is that they easily handle missing evidence. In the case where a system

sensor goes offline, a Bayesian Network can use that evidence’s conditional probability

distribution and marginalize the variable, still producing a classification outcome for the

evidence albeit with less precision. That lack of precision; however, will be reflected in the

likelihood (i.e., the probability distribution) associated with the result.

There are two attributes that vary for Bayesian learning algorithms: (1) limitations

on the structure (and the manner with which it is built) and (2) the type of probability

distributions used at the vertices (continuous or discrete). Algorithms limit the structure

for many reasons including, the domain makes assumptions about the interactions with the

variables, to keep the structure simple for analysis, and to make reasoning with the structure

tractable for large feature spaces. Some structures are so simple, they can be built without

analyzing the data. The most simple of these structures is the Naïve Bayesian network

(NB) [111]. This structure connects every feature to a root node (which acts as the class

node for classification tasks), and nothing else. The benefit for this structure comes from

the assumption that the evidence is independent of one another, given knowledge of the

class. This is utilized when using the structure for classification tasks (where the inference

is a conditional probability given the class type). While this assumption may be a stretch in

many practical problems, it reduces the complexity of the system, and can be quite useful

for several tasks, such as text classification [93].

Relaxing the fixed structure of a NB graph is in essence relaxing the independence

assumption of the evidence. Learned structures that introduce this loosening of the in-

dependence assumption, include augmenting the NB structures with a limited amount of

general relationships like Tree Augmented Naïve Bayesian networks (TAN) [51]. Other

structures may not form a NB structure, but instead limit the relationships between evi-

dence based on the data. Perhaps the most well known is Markov Blanket induction and
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includes Partial Bayesian Networks (PBN) [102] and methods known as Local Causal Dis-

covery (LCD) [4]. The use of limited relationships between evidence produce DAGs with

increased generality, but that still have similar structural properties. The algorithms for

building these augmented structures are search algorithms, where the search is for struc-

tures that optimize a measurement such as Bayesian likelihood (like PBN or LCD searches

for an optimal Markov Blanket around a class node), or search for internally similar struc-

tures, such as as a minimum weight spanning tree structure for a TAN, which is then aug-

mented with links known ahead of time (the class node is connected to every evidence

node). In either form, the data is used to discover the relationships. The improved general-

ity from these type of structures can come at a cost of producing relations between evidence

that are hard for experts to understand, and can become time intensive in very large, high

dimensional datasets. These sort of structures have seen use in areas such as diagnosis (as

Supervised Anomaly Detection) [91], as well as in bioinformatics such as gene expression

networks [174] and molecular signature classification [152].

Discovering the structure, without any limitations produces General Bayesian Networks

(GBN) [24, 26, 58, 81]. These structures are totally open, as long as they conform to a

DAG structure. This generality is beneficial for causal discovery as the relationships be-

tween evidence may indicate correlations and causalities initially unknown to the expert.

Without any other limits, a GBN may find many relationships missed in the more strictly

structured Bayesian Networks. The lack of assumptions may also improve performance

for applications in domains where the system has a high amount of correlation and causal

relationships that can be leveraged for classification. The opposite side to this information

is that these relationships are merely estimates from data, and thus subject to over general-

ization, such as the direction of a link between two variables. Over generalization can be

partially mitigated by the expert analyzing the graph without directionality, which focuses

on the potential relationship between two vertices.

GBN algorithms are search based, and the construction of the network can now be
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any link that does not violate the DAG requirement. Greedy search algorithms that are

iterative, such as K2 and Simulated Annealing [63], are the most straightforward approach.

These algorithms evaluate the structure after every link, using the estimate of the likelihood

that the structure would produce the data. This continues until no changes improve the

likelihood. While K2 and Simulated Annealing algorithms are global algorithms (any link

can be added at any time), other algorithms focus on the markov blanket and discover

a single node at a time; examples include Iterative Local Search [63] and Max-Min Hill

Climbing [159]. Another approach is to use genetic algorithms that iterate from several

random networks that eventually converge on an optimal network [88]. These structures

and algorithms face the same challenges as limited structure algorithms, where large feature

spaces and large amounts of data can make the search process a time-intensive process. The

search algorithms of GBNs have been shown to be NP-Complete [25].

The structures for these Bayesian Networks are agnostic of temporal effects. Explicitly

finding causal relationships between evidence that exists from time n to time n+1 creates

structures known as Dynamic Bayesian Networks (DBN) [115]. The structure is often

limited as a first order Markov process requiring temporal relationships to exist at no more

than one unit apart, i.e., no evidence at time n can relate directly to evidence beyond the

time n+1 step. Graphically, a DBN is represented as a time slice, with two copies of a

standard BN (time n, and time n+1) and temporal links that connect between two vertices,

one at time n, to another at time n+1. Algorithms for learning these structures are much

more complex, as they search for relationship in time, and across time (the Markov process

limitation helps keep these algorithms from becoming even more complex). While the

algorithms continue to use a general search algorithm pattern, they incorporate techniques

such as Monte Carlo sampling [54] to efficiently measure the likelihood of the current

structure [115]. DBNs have been used for Fault Detection and Isolation [137] as well as

bioinformatics research [78].

Along with the ability to incorporate missing evidence, the inference of these networks
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handle hidden variables. Latent variables are commonly used to model the state of a system,

when that state cannot be measured. The Hidden Markov Model (HMM) [12] combines

both hidden variables, as well as a markov process system, to model a changing of a state

based on a single observation. Hidden variables can be added to DBNs as well as GBNs,

although at the cost of building a model (the expert must already know the general relation-

ships for the hidden variable) and increasing the complexity of reasoning with the model.

HMMs have been used for speech [163] and text classification [79].

After these structures are constructed, the last step of a Bayesian Learning Algorithm

is to build the conditional distributions for the different vertices in the structures from the

data. This step, known as parameter estimation and can be done parametrically, or non-

parametrically depending on the type of data used to model the system. The choice of

probability distributions can be either discrete or continuous. Discrete probability distribu-

tions require the features to be discrete valued, or discretized during pre-processing. These

distributions are represented as tables, meaning that for a given vertex and parents in the

structure, the table is defined for a cartesian product of the range of the parents, and each

distinct value for the selected vertex. The probabilities for the table are defined using a

counting algorithm, which starts by selecting the appropriate data for each cell in the table,

counts the instances, and divides by the total. The probabilities found through counting the

data may be modified by the use of a-priori estimates of the distributions, which are useful

if the expert believes the data does not have enough information to accurately estimate the

conditional probability for certain combinations of evidence.

When the data is not discrete, or the distributions are better modeled as continuous, the

tables are replaced by continuous conditional probability distributions. Estimating these

distributions is similar to the counting algorithm where the data for a given vertex is se-

lected with the parents in mind, and then instead of counting to build the tables, the pa-

rameters that define the distribution are estimated from the data [118]. Further work has

taken kernel-based, non-parametric approaches and shows great flexibility with respect to
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the data [72]. The choice for which parameter estimation to utilize is not always clear,

as discretization of continuous data can achieve better results. The choice of estimation

could involve empirical comparisons of the respective accuracies, or the desire of an expert

(based on the application) for one estimation over the other.

Generative algorithms apply to all three types of supervision problems, and thus to dif-

ferent kinds of anomaly detection. Among the advantages of these algorithms include the

power to look for unknown structure in the data, to accommodate different probability dis-

tributions that infuse models with a variety of rich behaviors, and to produce models, which

may be useful in understanding the differences between normal behavior and abnormal be-

havior.

II.2.3 Supervised Anomaly Detection

Supervised detection involves the explicit belief in either a-priori knowledge or previ-

ous observations of anomalies. Using supervised detection involves knowing with a high

degree of certainty where in the data an instance or pattern is considered to be expected or

nominal, versus other segments that indicate an aberration. This knowledge is used in the

form of labels that are applied to the data. The primary focus of models for this application

are not on discovering anomalies, but being able to discriminate or distinguish between

anomalous and nominal situations, or among different types of (known) anomalous situa-

tions. This sort of detection is beneficial at the beginning of modeling a physical system

where an expert is looking to improve a model that contains gaps because of incomplete

knowledge.

Depending on the nature of the data and the target application, the models can incorpo-

rate many different attributes or features. The model derivation process can be generative

or discriminative depending on how much of the environment the application needs to

model and the design requirements for computation time given the size of the system being

modeled. The models produced from the training data with these labels are also used to
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find which features are most important for differentiating the nominal from the anomalous

and also between different anomalous groups. The ability to use different modeling tech-

niques to understand the relationship between the features and the different classes makes

supervised anomaly detection suitable as an expert-in-the-loop approach.

The use of discriminative models, such as decision trees have been used to build super-

vised models for different types of attacks in network intrusion [40, 145, 154]. The network

intrusion domain has the benefit of involving a limited number of attack types with varying

implementations. Supervised learning will help differentiate the different approaches to the

same attack type, and in a Decision tree, this structure can be relearned to take advantage

of the new information. Decision trees will produce a structure semantically interesting to

an expert for further analysis of the system.

Neural networks provide an alternative as a discriminant function model. In intrusion

detection, Artificial Neural Networks may be used to classify the user behavior, instead of

classifying attacks. Training on the behavior, the output of the model (the predicted user)

is compared to the current user to decide if an intrusion is in progress [140]. As mentioned

above, Artificial Neural Networks may be fast to learn and accurate, but as a black box the

model will be unable to directly assist the expert in discovering new knowledge. Aside from

the behavior model, the Artificial Neural Network is also a popular technique for learning

models at different areas in the network (such as specific nodes) [145]. The Artificial Neural

Networks may be used in conjunction with Decision Trees to utilize the benefits of the

Artificial Neural Networks and the decision trees help decide how to compare the output of

the Artificial Neural Network with the known user [120]. Artificial Neural Networks have

also been used in diverse applications where the expert may not need to inspect the model,

such as distinguishing between magnetic signatures to detect land mines [150], detecting

anomalous trajectories for vehicles for security [20] and the prototypical credit card fraud

application [23].

Support vector machines have also been used in the ubiquitous intrusion detection genre
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of anomaly detection [67, 112]. The SVM approaches provide a model that uses discrim-

inant functions, but also is built to optimize the generality of the function. Optimizing

the function for generality improves robustness for new instances generated by the sys-

tem. However, unlike decision trees, which may pruned for generality, there is minimal

interpretability for the SVM model when discovering new information in these applica-

tions. The SVM has also been used for other applications, such as hyper-spectral anomaly

detection [1] and credit card fraud [64, 169].

The use of supervised generative techniques, such as Bayesian networks have also

been used for anomaly detection [173]. A number of different diagnosis applications use

Bayesian networks as a supervised anomaly detection approach. As data is collected in

systems for diagnostic analysis, the data may be annotated at runtime with labels that help

refine the fault detection models [34]. When such methods are implemented as Bayesian

networks, the generative model may not only improve detection of failures, but also allow

an expert to understand what sensors in the network cluster are the best for discovering

these known failures.

Extending this use of Bayesian networks to address knowledge engineering in the

anomaly detection models is used to improve previous models and inform the expert about

the nature of the fault. This example also motivates the application of not only differenti-

ating between normal operation and faulty operation, but also looks at how you can isolate

different causes for adverse events. Not all failures in a system are the same, and while

detecting that a system is starting to fail is important, there are times when establishing

the difference between known failures is a critical component. This research has already

produced work to show this advantage of supervised anomaly detection [99, 100, 101].

Models built from labeled, sequential data using Bayesian learning has shown promise

in the areas of diagnosis [103]. Allowing the model to compare a likely sequence with the

data can be used to identify anomalous signals and catch failures in the system.
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II.2.4 Unsupervised Anomaly Detection

Unsupervised methods are employed when we have no initial knowledge or do not

have reliable knowledge how to differentiate between nominal and anomalous behavior.

This problem becomes even more significant when the data is high dimensional, making it

hard for human experts to define precise classification labels or propose analytic methods

for differentiating between nominal and anomalous data. In such situations, very little pre-

knowledge about the data is assumed, and unbiased algorithms are employed to segment

the overall data sets into groups, such that objects within a group are more similar to each

other than objects across groups. A heuristic that is often employed in anomaly detection

is to consider groups that contain a large percentage of the data objects as defining nomi-

nal behavior, whereas the data objects that fall into smaller groups or fail to be labeled in

any of the other groups (outliers) to be anomalous. A number of generative modeling tech-

niques may be employed to produce the nominal models. These techniques find an inherent

structure to the data, using non-parametric algorithms that are distance or similarity-based

and parametric algorithms that can be density-based or expectation maximization based

Bayesian methods.

Unsupervised detection methods will utilize the model output differently depending on

whether it exists as a Bayesian model of the evidence or through a number of clusters and

cluster affiliations. Described in Section II.2.2.1, the types of clusters and affiliations of the

instances in the data provide a variety of uses to the overall detection scheme. The easiest

use of cluster output is to produce initial identifications of the data that are used as ini-

tial labels to produce a dataset for building models with supervised (and semi-supervised)

techniques. Initial labeling from clustering such as K-means has been used with techniques

such as decision trees for chains of algorithms for anomaly detection [53]. For an expert,

the use of clustering for this purpose is mainly as a pre-processing technique.

The use of clustering can also be to reject training data immediately, by discovering the

nominal behaviors and the deviations from them. Depending on the hard and soft, strict
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and loose partitioning of cluster algorithms described in Section II.2.2.1, the results for the

outliers can be used differently. K-means clustering will find anomalous points as groups

to develop common signatures for the groups marked as anomalies [7]. These signatures

are used in aviation safety domains to build fault signatures for sets of aircraft sensors to

find anomalous flights. Other examples of using clustering to find and label data include

intrusion detection [128] where the signatures of different attacks are discovered instead of

built by experts.

When density based clustering techniques are used, the goal is to discover lingering

anomalies that exist separately from any groups of behavior [94]. Unlike k-means, these

outliers do not provide signatures, but provide examples in the data (such as aircraft) to ex-

amine for abnormal behavior. Density based clustering, depending on the method (such as

Gaussian probability density function), allows for unusual shapes (spheres for the Gaussian

pdf) to the nominal clusters, but the expert must also be vigilant that clusters are not made

up of instances of similar abnormal behavior that crosses the parameterized threshold for

cluster creation.

Hierarchical clustering using a cutoff at a high-level will produce small numbers of

flattened clusters. These flattened clusters have been used to find large groups of nomi-

nal behaviors and small groups of anomalous behaviors in applications, such as vehicle

trajectory classifications [52]. The use of hierarchical clustering also allows the expert to

subdivide anomalous groups for further analysis. While this ability to delve deeper in the

construction of the cluster may help the expert, finding the appropriate cutoff where nom-

inal clusters are not yet associated with abnormal clusters is non-trivial, and may involve

manual input from the expert after consulting the dendrogram.

Finally, using mixture of Gaussian clustering to detect anomalies is found in appli-

cations, such as multi-spectral image applications [62]. The soft partitioning makes this

clustering useful for environments where data objects are distributed so that small numbers

of features (compared to the whole) indicate the anomalies, but the number of objects with
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these feature values are minimal. Finding these clusters in data that will be overwhelmingly

normal, can make their discovery difficult. Mixtures of Gaussians can be used to model the

entire distributions over the data to discover these anomalies. Extensions can be used in

conjunction with supervised techniques, such as Artificial Neural Networks to help identify

abnormal patters in sea traffic [89].

The example of density based clustering for anomaly detection was used in conjunction

with feature reduction by Principal Component Analysis (PCA) [135]. The PCA was used

to reduce the dimensionality of the data, and build features that are orthogonal and cluster

better. Feature space reduction can apply to different types of clusters. PCA reduction can

also be used with other unsupervised methods, such as distribution testing to define general

probabilistic neighborhoods of expected activity [85]. The testing will identify instances

in the high-variance Eigen-space that are in the tail and thus anomalous, or outside the

low-variance Eigen-space and therefore do not fit the distribution of the data at all.

When generative models such as Bayesian nets are used for unsupervised learning, the

structure itself can operate as a general classifier as well as use new instances to grow and

augment the structure to deal with ever changing information. An example of using gen-

erative models for anomaly detection is to classify whether vehicles paths as abnormal.

This may be useful for the purpose of understanding potential security risks. This applica-

tion requires looking at the general structure between expected paths and then examine the

instances that do not conform to this example. Once this structure is found, it can be lever-

aged to produce supervised structures that can form models on the attributes of the path

and produce a model that possesses interpretable properties about these anomalies.[105]

Other methods in the unsupervised realm include sequence mining [121, 175], which

look to find common subsequences in separate instances of the dataset. These algorithms

look for statistical support that can indicate when the different sequences are significant

in the data. Sequence mining has been used for unsupervised anomaly detection of air-

craft anomalies [17]. Often used in environments where the data is made up of symbolic
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sequences, more complex sequences that use numerical data may require complexity anal-

ysis [16, 77] to find anomalies inside the signal.

II.2.5 Semi-Supervised Anomaly Detection

Semi-supervised methods answer the issues in both supervised and unsupervised meth-

ods. Acquiring a fully or even mostly labeled dataset of both nominal and anomalous data

object is unlikely. In most cases, only the number of nominal data points is sufficient to

build reliable models, whereas the number of anomalous data points may be too few to

generate reliable anomalous models. Therefore, the first step in semi-supervised anomaly

detection may be to generate nominal models from nominal data, and compare new data

objects against the nominal models. A good match implies that the new data object may

be labeled as nominal, otherwise the data object is anomalous, and a candidate for fur-

ther scrutiny and analysis. Therefore, semi-supervised learning will label the sample as

one class (nominal), or as “everything else”, reducing the error by not over-classifying

the anomaly (although misclassification as nominal is still possible). Unsupervised meth-

ods; however, may not build nominal models that are specific enough, instead, as systems

evolve, so too the model shifts, producing an ever changing decision space of what con-

stitutes nominal. Since these models need to be applied for general systems, not just the

systems in operation, an unsupervised model may be too forgiving of what constitutes

nominal. In contrast, semi-supervised models may grow to be outdated for a specific en-

vironment, but the experts will discover decaying performance, and will be able to retrain

the model for a new environment. In essence, when most of the operations are nominal

and identified as such by either the system, the expert, or though the use of unsupervised

techniques, semi-supervised learning is useful for building the models of this behavior and

using this model to classify new data as nominal and anomalous.

The one-class SVM is one of the most popular techniques for semi-supervised anomaly

39



detection and has found use in diverse fields of anomaly detection such as diagnosis in air-

craft [36, 37], discovery of land mines [117], business applications for churn models [177]

and like so many others, network intrusion detection [124, 158]. The one-class SVM is an

extension of the SVM. The extension optimizes the classifier for a single class label. This

optimization for a single label constructs a general decision boundary for the training data

to build a model that can accurately discriminate data with this label. This technique, like

its original construction suffers from limited information for the expert, and given a kernel

transformation, it produces even less information. In the presence of a noisy training set,

the decision boundary may be poor, and flag more anomalies than actually exist.

Other methods that are less popular include the use of decision theoretic methods for

applications like Fraud detection [146] in financial accounting and network intrusion [87].

Decision-theoretic methods are useful in the decision space of one class, where the struc-

tures for the classifier are built to isolate the single class. Unlike one-class SVMs, these

methods are more open to knowledge engineering tasks due to their openness. Disad-

vantages of decision-theoretic methods include being more time-consuming to build and

potentially more brittle without a representative dataset.

Semi-supervised learning for anomaly detection can involve generative models, such

as mixture models typically for network intrusion [168]. Generative models use the en-

tire probability distribution from the data to determine probabilistically if an instance is

either in the known class, or not. Other generative model for anomaly detection involve

structures, such as Bayesian Networks that have been used to classify failures in computer

equipment, such as hard disks [60]. Like decision theoretic methods, the Bayesian network

is also much easier to apply for knowledge engineering, but also be computationally more

intensive than the one-class SVM.

40



CHAPTER III

RESEARCH APPROACH

The primary research problems being addressed in this thesis are the identification and

early detection of failures (anomalies) in complex systems through the use of data mining

and machine learning techniques that apply to big data. These systems overall behavior

across time is captured by large multivariate time series data. The two general approaches

to this problem are to reduce the data through either:

1. Restricting the scope of the data (both in samples and features) with expert knowl-

edge to solve specific, constrained problems.

2. Dimensionality reduction techniques that manage the size of the data while main-

taining critical information to solve a more general class of problems in an efficient

manner.

Both approaches produce transformed data for performing fault and anomaly detection

and building models for early detection of these anomalies.

This research makes important contributions to the fields of data mining, anomaly de-

tection and knowledge engineering. The first approach combines knowledge engineering,

data curation, and supervised learning schemes, to establish a method for combining ex-

isting expert knowledge with new information derived from classifiers to improve accu-

racy and early detection of known faults. The use of a Bayesian representation structure

provides the seamless link between the expert’s knowledge structures and the classifier-

derived knowledge, by creating additional associations between existing monitors and fault

hypotheses, deriving new monitors that combine old monitors, as well as probabilistic in-

formation that is used to rank potential fault hypotheses.
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The second approach investigates the use of complexity measures based on compres-

sion, information theory, and signal analysis to perform dimensionality reduction on the

large amounts of multidimensional time series data. The approach is designed to make as

few assumptions as possible about the nature of the features and their importance relative

to one another for anomaly detection, other than the fact that they represent temporal (or

ordered) sequences of data. A research contribution for this problem is the dimensionality

reduction approach that preserves important temporal properties of individual features, but

the reduction produces dissimilarity matrices that allow for traditional unsupervised learn-

ing (clustering) methods to be applied to large data to characterize nominal and anomalous

data objects, and then utilize feature selection to aid the expert in understanding the nature

of the anomaly. This approach extracts useful information for domain experts to define

new models to support online detection in future applications. To demonstrate the feasi-

bility and effectiveness of this approach, we apply this methodology to a large ( 0.7 TB)

sized flight data set, as well as a second data set that involves studying the mechanics of

pitchers’ throwing motions in baseball to isolate anomalous incidents. In case of the airline

data, this may be correspond to faults in the equipment or pilot errors, and in the pitcher

data, a change in throwing styles may be a precursor to pitcher injury or an indicator of a

great performance.

This chapter is outlined as follows. First, Section III.1 examines the genesis of the prob-

lems in data from complex systems. Section III.2 provides a description of the anomaly

detection tasks in complex systems and the problems we encounter due to the data. The

structure of the data and the domains we focus on in this research are defined in Sec-

tion III.3. We provide the details of our approaches to the problems, and our contributions

in Section III.4. Lastly, we summarize this chapter in Section III.5.
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III.1 Nature of the Data

When employing data-driven approaches to anomaly detection in complex physical

systems, a primary challenge is the effective management of increasing amounts of data

collected during the operation of these systems. These challenges include how to collect,

organize, and access the data in unbiased ways so that they can be used to provide answers

to problems in an effective and efficient way.

Automation in subsystems has led to an increase in computer-based control, thus result-

ing in more sensors and actuators and the ability to collect more measurements of system

behavior. As control algorithms become more sophisticated, and sensor technology has

become cheaper and more flexible, the rate and quantity of data collected has increased

by significant amounts. Collectively, this implies that much larger amounts of temporal,

i.e., time series, data is being collected during system operations, which opens up doors for

more precise and accurate post hoc analysis of system behavior.

Given the complexities of present day systems, the larger amounts of data provide op-

portunities for more detailed analysis of nominal and anomalous behaviors of these sys-

tems. Systems like aircraft have many interdependent components, and overall analyses of

system behavior requires use of advanced composition and causal analysis mechanisms to

understand how individual subsystems and components contribute to overall behavior. Sys-

tems also operate in more diverse environments, requiring the need for including more con-

textual attributes in the analysis schemes. Some of the complex systems, such as pitcher’s

throwing motions in baseball go beyond the complex nature of pure physical processes.

Human behavior is influenced by a number of physical traits, some governed by the phys-

ical state and conditioning of the pitcher, and some by their inherent traits and makeup.

The large space and set of factors that define human behavior can make tracking anomalies

more difficult, since the nominal behavior itself is can vary and depends on a number of

interdependent factors.
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III.2 Problem Description

The large amounts, the variety, and the complex nature of the data makes transforming

and utilizing this data for anomaly detection a very challenging task. This raw data includes

many different features, not all of which may be relevant to solving particular problems,

such as the anomaly detection problem. A number of the issues that have to be dealt with

before machine learning algorithms can be applied to analyzing the data are described next.

III.2.1 Task 1: Data Curation

Data curation is an essential first step in producing effective anomaly detection models

for complex systems. For anomaly detection tasks, the organization of the data and meta-

data is critical to accurately grouping contextual attributes and making sense of the results

of the models.

The raw data collected from these systems may be stored across a large number of

mediums. For example, in the airline data used in this research, the flights for a specific

aircraft were originally stored on hundreds of CD-ROMs of varying data integrity. There

is a challenge collecting and organizing this data into a database resource to facilitate easy

retrieval to solve a variety of problems. The process of collecting this data can be arduous,

requiring methods that retrieve relevant segments from a variety of resources, and align and

synchronize them while organizing them into a centralized location. Storing the data in a

manner that increases flexibility of retrieval reduces the amount of time required to revisit

the original data stores and repeat the previous tedious tasks of retrieval and organization.

III.2.2 Task 2: Data Transformation

Given that the data has been collected and stored, the next step is extracting the neces-

sary data, and transforming it to a form that facilitates the data mining tasks. This trans-

formation can be further split into two subtasks. The first is the process of finding relevant

data for supervised learning. The second task is taking the extracted raw data and deriving
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features that are structurally efficient for use with a variety of machine learning algorithm

when the datasets are quite large.

III.2.2.1 Selection of Data Relevant for Supervised Learning

Our overall goal is use data-driven approaches from which information may be provided

to build or enhance models that help detect and identify anomalies in system behavior.

Depending on the situation and the approach chosen, these models may be constructed

using supervised learning algorithms. In other words, these learning methods assume some

amount of labeling is available for the data.

It is uncommon for data recorded by automated systems on equipment to record labels

that establish whether the recorded data is nominal or anomalous. Therefore, building

models from the data that help isolate anomalous situations and faulty components using

machine learning techniques becomes a difficult task. This lack of accurate labels (both

for nominal and specific failures) means that the data is by itself unsuitable for building

models that utilize supervised methods.

III.2.2.2 Extracting Features for Analysis

The second task in data transformation is extracting features from the raw data. Each

feature may correspond to one or more sensors that record the measurements over time,

and each of these temporal measurements are typically sampled at sub-second rates such

as 4Hz, 8Hz and 16Hz for the duration of system operation. The data set in this form, with

each data object represented by multiple features, and each feature being made up of mul-

tiple data points does not lend itself to analysis by standard supervised and non supervised

algorithms. Therefore, the data has to be reduced to a more compact and meaningful rep-

resentation without compromising the features in the data that are important for anomaly

detection.

The challenge is to find the appropriate dimensionality reduction approach that takes

45



multivariate time series data, and transforms it into a representation that applies to a wide

range of supervised, and unsupervised learning methods. An additional challenge is to find

the appropriate method that is both accurate and efficient for this comparison.

III.2.3 Task 3: Supervised Anomaly Detection

With a labeled and transformed data supervised learning algorithms can be applied to

build classifier models that can isolate specific anomalies, such as a component fault in a

system. In our research, supervised learning methods have been used to address the knowl-

edge engineering task of finding additional relations that enhance a current diagnoser for

the system. The knowledge engineering task is often mediated by human experts, and the

supervised learning algorithms provide additional information to the experts to help them

augment the diagnostic models. This means that the derived models should be interpretable

by experts.

This is a challenge due to the diverse number of features including many that are simply

not germane to the current anomaly detection task. For knowledge engineering tasks that

involve anomaly detection, the use of extraneous features can interfere with an expert’s

ability to understand the data-driven models. Therefore, model building, task must be

designed to mitigate the negative effects of extraneous features.

III.2.4 Task 4: Unsupervised Anomaly Detection

Transformed data without labels, or with a limited set of labels for some of the nominal

behavior, requires the use of unsupervised anomaly detection.

The large number of data instances makes the use of unsupervised learning more dif-

ficult. The use of a clustering algorithm produces a small number of clusters containing

most of the data. A rule of thumb or heuristic used in these situations is to assume that

the smaller clusters may represent anomalous situations, and are worthy of further analysis

by comparing them to the large, nominal clusters. The method applied for doing this may
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be labeled as a feature selection algorithm. Depending on the feature extraction method

employed in Task 2, this challenge may be made more or less difficult.

Another challenge in the analysis is that the nominal models may not be very compact

and include a variety of different behaviors. In that case, the anomaly detection has to be

carefully designed to take into account this diversification, without significantly increasing

the false positives in the data. For example, when dealing with humans as the systems

producing the data, this challenge becomes intricate. Compared to a mechanical system

built according to a well-known specification, humans possess greater variance from one

sample to the next. Data collected during human operation can be diverse, making the

modeling of nominal behavior difficult, and requiring the model to be more forgiving when

applying anomaly detection to a new participant.

III.3 Problem Domains

The two domains that we study in this thesis:

1. aircraft flight data, and

2. Major League Baseball pitcher data,

provide a unique set of challenges for anomaly detection. In each, we are looking to dis-

cover and understand the anomalies that occur during operation.

In the flight domain, our goal is to first understand and better model known physical

failures, using knowledge of the their occurrence and supervised learning methods. The

models then are used by experts to find improvements to diagnostic systems on board the

aircraft. A second goal is to build models suited for discovering previously undiscovered

anomalies at takeoff. These anomalies and models can be used to help an expert identify

new types of faults and features to classify them for the diagnostic model.

Using the baseball domain, we want to look for anomalies in the pitches that a pitcher

throws in a game compared to the his normal pitching motion. Similar to the flight domain,
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we want to use unsupervised techniques to look for anomalies and build models for what

constitutes nominal behavior. In contrast to the flight data, the novelty of pitcher data is

reflected in the challenges of Task 4 above, specifically dealing with human produced data,

which may have a wide definition of nominal behavior.

III.3.1 Describing the Raw Data as a Data Cube

The aircraft flight data and the baseball pitcher data have similar characteristics. Each

instance in the data is a multivariate collection of a time series. Specifically, each instance

is made up of M features, and each feature is a time series that goes from time 1 to Tm,

where m can be different for each feature that is defined by the sampling rate at which the

data is collected. For simplicity, we assume that while the signals may be different lengths,

they represent the same amount of time across all features and all instances. Without this

assumption, the data is difficult to interpret, since signals could represent different periods

of time. The uniform length in temporal units from instance to instance, allows for a

uniform transformation.

We refer to this notion, illustrated by Figure 3, as the “data cube.”1 The cube is repre-

sented by N instances (each instance is labeled d) each with M features, each with a length

of Tm time series samples. This cube represents the problems encountered in the subtask

for feature extraction in Task 2, and the choices for feature extraction impact Tasks 3 and 4.

Most learning algorithms used for anomaly detection operate in two dimensions: features

and instances such as a Support Vector Machines, or an instance and a univariate time se-

ries such as a Linear Dynamical System. Finding methods that will efficiently collapse one

of the dimensions is imperative to making the anomaly detection task manageable, which

is an important problem that we solve in this research.

1This is a misnomer, as the the shape of the data is more unique due to the varying lengths of features (an
uneven third dimension), data cube is used as an abstract term.
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Figure 3: Data Cube Representation

III.3.2 Aircraft Flight Systems

Aircraft flight system data represents a canonical example of large operational data for

anomaly detection, i.e., to discover a variety of faulty situations that can be attributed to the

aircraft, unusual environmental conditions in which the aircraft operates, and pilot errors

during flight. As aircraft are becoming more sophisticated, data collected from the aircraft

includes a large number of sensors that are recorded at high sampling rates, and in systems

that are increasingly regulated by digital controllers. Early detection of anomalies in air-

craft directly addresses aviation safety matters. Diagnostic systems are already in place on

modern aircraft that model the system and attempt to detect, mitigate, and respond to safety

matters as quickly as possible. Since these models are incomplete for a variety of reasons,

such as a lack of expert knowledge or new technologies on board the aircraft, we desire to

improve these models through the use of data-driven techniques. First, we would like to

improve detection of already known failures through supervised learning and knowledge

engineering. Secondly, we would like to use the data to identify new anomalies, specif-

ically during the takeoff phase of a flight. From these anomalies, the goal is to produce

information about detection so that an expert can add new models of these phenomenon to

the diagnostic reasoner.
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The data that we use in this thesis was provided by Honeywell Aerospace and was

recorded from a former regional airline that operated a fleet of 4-engine aircraft, primarily

in the Midwest region of the United States. Each plane in the fleet flew approximately 5

flights a day for 5 years. This produced over 25,000 flights. Since the airline was a re-

gional carrier, most flights durations were between 30 and 90 minutes. For each flight, 182

features were recorded at sample rates that varied from 1Hz to 16Hz. The data from these

flights has been anonymized for research purposes but maintains the sensor information

and a modest amount of location information such as departure and arrival airports.

When examining this data in the context of the data cube, the instances are flights. The

number of features in the cube is the number of sensors being considered from the total

set of 182. For the problem of detecting anomalies during takeoff, the time series will

focus on the short amount of time when the aircraft has left the ground, and before it has

started a controlled ascent. The sampling rates of the variables vary, making the length of

the time series as long as the operational time in seconds or a multiple of that length with

higher rates such as 4Hz, 8Hz and 16Hz. This cube is very large in terms of instances, and

features and in terms of the different operation times. When we limit the time series to only

takeoffs, this results in features that are around 30 seconds in length per instance, but over

100 samples long with the features using higher sampling rates.

III.3.3 Analyzing Pitcher Performance

The domain of pitchers from Major League Baseball represents an area of increasing

interest from the research community. Similar to the approach for aircraft systems, our

goal is to identify novel anomalies for a pitcher, based on the way they pitch from game

to game. Identifying these anomalies as ones that correlate to potential injuries and above

average performance are crucial in improving the understanding of conditioning and pitch-

ing mechanics of these athletes. After finding these anomalies, our goal is to produce new

models for detecting them in other pitchers. Considering the similarities of these goals
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with those in the aircraft flight systems, the domain of pitchers in Major Leagues Baseball

presents contrasting issues about large data and anomaly detection that makes it novel for

this research. The varying nature of mechanics for throwing the ball coupled with the range

of human body types for baseball pitchers makes this large data set extremely diverse. This

diversity makes anomaly detection through the use of clustering and model building a more

challenging problem, since there are more types of nominal behaviors. The anomaly de-

tection challenge here is to find reliable indicators from diverse data that identify problems

leading to pitcher injuries.

The general form of this data is collected through the use of web-scripting and parsing

of XML files from Major League Baseball Advanced Media or MLBAM. MLBAM over-

sees the devices used to collect data during the game. These devices known as the Pitch

f/x system, are a pair of two cameras in the stadium, each calibrated for the baseball park’s

location and height of the mound from its position. These Cameras record the pitcher’s

movements as well as the baseball, and uses imaging algorithms to measure information

about the pitch. This information includes:

• The location on a 2D axis projected by the plane where it leaves the pitchers hand.

• The Speed of the ball when the pitcher releases the pitch.

• The spin rate of the baseball as it moves through the air.

• The location and speed when the ball crosses a projected plane half way across home

plate.

Each pitch is also annotated with the type of pitch thrown (fastball, changeup, slider,

etc.), game information such as the score, inning, any runners on base, and the result of the

pitch ( was the pitch a strike or a ball, did the batter swing, and if so, what happened on the

play). These are then stored on-line for visualization and for use by fans and researchers.

For example, we may discover by looking at the data that a given pitch was a four-seam

fastball, thrown from a side arm position relative to the pitcher, and left the pitcher’s hand
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at 95MPH. Further, we can identify that this pitch broke downward halfway between when

it was released and crossed home plate. Finally, we know that the pitch arrived at home

plate at 92MPH, and was located in the upper right of the strike zone to a right handed

batter who swung and missed, for a third strike that caused the third out, which ended the

inning. This type of information has been recorded for every pitch thrown since 2008.2.

The data used in this research is provided by Harry Pavlidis and his company, Pitch Info

LLC of Chicago, Illinois. The data from Pitch Info is the same data as MLBAM with a few

improvements. It has been curated into a database for easier dissection, and annotated with

more accurate strike zone information, and pitch type classification. This data is unlabeled

with respect to injury information.

This data is large instance-wise, as it is collected over every game-active pitcher every

day during the season (and for pitchers in the post-season playoffs). When examining this

data in the form of the data cube, we consider an instance to be a game per pitcher, which

is the data for a pitcher for a single game. For example, if a pitcher threw pitches in 30

games a season for 10 seasons, then he would have 300 instances in the data cube.

The features in the cube are data that could be recorded for a given pitch-type thrown

during the game, such as the starting location on the y-axis for all fastballs, the starting

speed for all fastballs, etc. This produces 7 features for each of the 6 types of pitch types

thrown, therefore, 42 features per instance. The time series aspect in this case for each

feature is recorded for each pitch thrown. Much like the different sampling rates in the

aircraft, a pitcher’s chosen pitch types will make some signals longer than others. As above,

where we use takeoffs to constrain the data, we chose only starting pitchers, and only games

where those pitchers threw at least 100 pitches total. We consider this a “routine” start that

involved natural fatigue for the pitcher. This restriction allows the signals to be longer and

more uniform. In the pitcher domain, the time series themselves are likely to be smaller

2The system was in place in 2007, but due to its experimental nature, that data is often ignored because of
noise and incompleteness
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per instance than the flights in the data cube. This adds to the diversity of our problem

domains.

III.4 Research Problems

Together, these two domains and their data illustrate the general problems encountered

in this work. Our approaches to these challenges and the problems we solve form the

contributions to the fields of knowledge engineering, diagnosis, data mining, and anomaly

detection.

III.4.1 Supervised Learning Methods to Support Knowledge Engineering for Diag-

nosis

A primary goal is to provide experts with models of anomaly detection derived from

flight data that can be easily integrated into existing diagnostic reasoners. This approach,

supports a knowledge engineering task, and begins from curation of the data, to the choice

of models for anomaly detection, to the process of implementing suggested improvements

to the diagnostic reference model. We use the aircraft systems data described earlier for

this task.

Our approach in this contribution first superimposes layers of expert information to aid

in the curation of the data. The expert information used for curation of the data includes

a Federal Airline Administration database of aircraft incidents to facilitate the labeling of

data into specific faults and nominal behavior, as well as an expert-built list of features for

feature extraction. These features are values that represent the conditions of systems on

the aircraft during different phases of operation. Together, this information is applied to

the flight database and produces a labeled and transformed dataset for use with supervised

learning techniques.

The approach for the supervised learning of this data is to build models that provide

new information about the nature of the system during a failure. These models are meant
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to be both interpretable by the expert and rich enough to incorporate new information mined

from the data. We utilize Bayesian structures to model this information. Next, we produce

a framework for taking the data-driven models and incorporating the new information as

additions to the diagnostic system. Lastly, our approach provides a test to validate the

improvements to the diagnostic system.

This work produces research contributions to the fields of diagnosis, data mining and

knowledge engineering. The contributions are centered on the creation of a framework

for improving the accuracy of expert-based models of diagnosis and detection for vehicle

based reasoners. This is presented as a data mining induction method, detailing the cre-

ation and application of these techniques with industry based models and aircraft data, and

culminating in case studies to show the validity of the approach.

III.4.2 Unsupervised Learning Methods to Support Anomaly Detection for Multi-

variate Time Series Data

The first approach uses expert information in a layered fashion to constrain the data.

This approach develops a method for discovering anomalies in large data using an unsu-

pervised, exploratory approach.

This approach first focuses on the feature extraction task to reduce the dimensionality

of the data domains, and produce data that is efficient to use in building anomaly detection

models. We explore a range of techniques involving compression, information theory, and

signal analysis for reducing the time series dimension to a single value. This reduction

leaves only the instance and features as the two dimensions of the new dataset. The ap-

proach looks at these techniques and their effectiveness. This is accomplished through the

use of experiments that test the nature of the different dimensionality techniques in the case

of identifying anomalies. These experiments range from controlled signals, to the use of a

real world test set.

Once we have selected the dimensionality techniques based on empirical results, we

54



revisit the aircraft systems domain to look for anomalies that occur during takeoff. After

feature extraction and transformation of the aircraft data using our selected methods, we use

unsupervised techniques to cluster the the data and look for anomalous instances. Expert

knowledge is used during this exploration to isolate anomalies that represent serious events

such as a safety hazard. Through feature selection, our approach isolates the sensors in

the aircraft which are most likely to identify these anomalies, helping the expert to further

improve their diagnostic models.

Lastly, we turn our attention to the pitcher data, and apply our unsupervised, exploratory

approach to a second domain. The approach is very similar, with feature reduction being

applied to the time series portion of the data cube, and exploratory techniques being applied

to this reduced data to identify anomalies. The approach differs from the first domain in

that more organization of the transformed data must be done, to account for the diversity

in the different pitchers. The goal is still the same, to identify relevant anomalies and build

models that can both aid an expert in identifying the warning signs of these anomalies.

The contributions of this work are in the fields of data mining and knowledge engi-

neering. Our experiments to test the different dimensionality reduction techniques set a

baseline for the future comparison of such techniques as they apply to reducing the time

series dimension of complex data. Our applications to aviation safety and baseball show

the ability of these techniques in diverse domains with similar objectives. In both cases, the

application is designed to produce new, interpretable information to the expert for creating

better models. These contributions are explored in terms of case studies and analysis of the

exploratory methods.

III.5 Summary

This chapter gives an overview of the general problem, data, and research methodolo-

gies of our work. We describe the systems and issues that make data large and unwieldy

for anomaly detection. We described briefly the data domains that focus on these issues
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in our research. Lastly, we describe in brief our approaches to these problems and the

contributions of this work. In the next chapter, we begin a more detailed exploration of

our approaches, and start with supervised learning to support knowledge engineering for

diagnosis.
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CHAPTER IV

IMPROVING DIAGNOSTIC REFERENCE MODELS

In this chapter, we detail our supervised anomaly detection approach to support the

knowledge engineering task for diagnosis. When constructing diagnostic systems, models

are often first built manually by experts, crafted from physics and engineering knowledge

of the particular system, and augmented with expert experience from observations of the

construction and use of similar systems. When engineers modify a system’s specification

or redesign a component, the original expert knowledge may have to be updated to accom-

modate the changes. The goal of our supervised data mining approach is to help experts

improve and revise these models using data from the measurements of already running

systems. This work addresses several research and logistic issues related to data-driven

approaches for knowledge engineering:

• How can the raw operational data be transformed systematically into a curated dataset

for building data-driven models?

• How can models be produced from operational data to accurately detect faults and

improve detection time?

• How can data-driven models be used to provide insight about the system and transfer

information to improve the original models used by experts for diagnosis?

These issues are critical in aviation safety, where the early detection and mitigation

of potential adverse events caused by system or component failures can prevent aircraft

damage and loss of life.

Researchers and domain experts face challenges in the data mining and knowledge engi-

neering tasks due to the nature of complex systems. For example, the degradation and faults
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in one component may cascade to other components during flight operations. As a result,

multiple sensors spread across the system may report anomalous or faulty behaviors; con-

sequently, combining this sensor information to detect and isolate faults in a timely manner

becomes a difficult task. Aircraft Diagnostic and Maintenance Systems [151] use (1) a

system reference model that describes causal relations between potential faults in aircraft

components and sensor readings and (2) reasoning software that combines abductive [127]

and Naive Bayesian reasoning [81] methods to infer and rank potential fault hypotheses. A

widely used Aircraft Diagnostic and Maintenance Systems in operation today is the Boeing

777 Central Maintenance System [5].

A benefit of separating the reference model from the reasoner software is it allows sub-

system manufacturers to encode proprietary fault models for individual subsystems in the

reference models. The system integrator, the aircraft manufacturer, designs the integrated

solution that combines information from the subsystem reasoners to make global diagnos-

tic inferences [66]. Bayesian methods address the uncertainty in the diagnostic relations

and improve robustness in the presence of missing and noisy evidence, producing a bet-

ter overall ranking of the potential diagnostic hypotheses. The accuracy, robustness, and

timeliness of the reasoner is very much a function of the accuracy of the system reference

model.

For system experts, building diagnostic reference models is a difficult and time-consuming

task. While experts extract substantial knowledge about fault propagation from their knowl-

edge of subsystems and earlier aircraft designs, gaps arise because: (1) manufacturers up-

date components to improve performance of newer aircraft (for example manufacturers

may migrate to active surge control from passive on-off surge prevention), and (2) complex

interactions between subsystems are hard to characterize and model a-priori. Often, such

knowledge comes from years of experience, and only when an abnormal situation or fault

has occurred a number of times.
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Recently proposed data mining approaches, applied to the vast amount of operational

data collected by the airlines, produce targeted anomaly detection and fault diagnosis appli-

cations [17, 36]. This work develops an approach that employs targeted search techniques

with a Bayesian learning algorithm to detect and analyze the onset of faults that lead to

adverse events during future operations. The methodology is supported by case studies that

demonstrate how existing system reference models can be updated by a combination of data

mining methods and system expert input to improve Aircraft Diagnostic and Maintenance

performance and not endanger the reasoner’s certification status.

To choose appropriate data mining methods for this application it is important to de-

velop an understanding of the current reasoner algorithms and the role that the Aircraft

Diagnostic and Maintenance plays in aircraft flight operations. Many flight management

and flight control functions on an aircraft are now handled by software [147]. This software

has to meet stringent certification requirements (DO-178 or Level 1 certification). Aircraft

Diagnostic and Maintenance systems are certified at Level 4, implying they play only an

advisory role during flight. Changes made to a Level 1 certified system after initial devel-

opment requires the system to go through an expensive and time-consuming re-certification

process. Aircraft Diagnostic and Maintenance are not on the critical path for making flight

control decisions on the aircraft, therefore, the system reference model can be treated as

data, and can undergo reasonable updates by system experts without re-certification. How-

ever, the reasoner algorithm is certified and any changes to the reasoner algorithm would

incur expensive re-certification costs. Therefore, updates made to improve Aircraft Diag-

nostic and Maintenance accuracy and performance are invariably in the reference model,

implemented in a way that requires no changes to the reasoner algorithm. This implies

that data mining solutions, need to take on the role of supporting system experts in their

knowledge engineering tasks of upgrading the system reference model in such a way that

no changes have to be made in the diagnostic reasoner algorithm.
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Current Aircraft Diagnostic and Maintenance reasoner algorithms make a couple of in-

dependence assumptions in defining the system reference model, such as: (1) independence

of the fault hypotheses and (2) independence of the evidence nodes given a fault hypoth-

esis. As a result, the system reference model is characterized as a set of Naives Bayes

classifiers, which simplifies the approach the reasoner uses to compute the likelihood of

fault hypotheses given evidence [81]. Some evidence nodes map directly to sensor values,

or monitors that use a computational procedure to generate evidence by combining infor-

mation from one or more sensors on the aircraft. Updates to the reference model, using the

results derived from data mining cannot violate the independence assumptions of the Naive

Bayes model.

In this work, we assume the availability of existing reference models for aircraft engine

subsystems. In addition, we have access to flight data from a U.S. regional airline that

operated a number of jets. The available data ranges over a period of five years. The data

collected is from a large number of aircraft monitors and sensors, many of them associated

with the four engines on the aircraft. Therefore, we have access to a very large amount of

flight data, which requires us to design significant data curation solutions [66] to find data

relevant for a targeted knowledge engineering application, e.g., improving the detection

accuracy and timeliness of detection for a leak in a fuel line.

We address these issues using a 3-step framework for the knowledge engineering task:

1. Select relevant data from which we could derive new knowledge for targeted diag-

nostic analysis;

2. Apply our targeted data mining algorithms to derive the new knowledge, and with

the help of a domain expert isolate updates to improve the reference model; and

3. Perform experiments to demonstrate the augmentations lead to overall improvements

in the reasoner performance.
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With a domain experts help, we established the specific improvements that could be derived

for the reference model within the Naive Bayes classifier framework. These improvements

are characterized as local changes to the model structure: (1) Improve the accuracy of ex-

isting reference model relations by making the evidence more sensitive to particular failure

hypotheses without increasing the overall false alarm rate; (2) Discover new relations be-

tween existing information and fault hypotheses or create new ways of combining sensors

and fault hypotheses to improve overall diagnostic accuracy; and (3) Create new Compo-

nent to Component relationships that take into account the dependency between two pieces

existing evidence and create a new monitor that combines past evidence to provide stronger

evidence in support of a fault hypotheses. We present three case studies to illustrate these

updates to the system reference model.

This chapter is organized as follows. Section IV.1 briefly reviews the important char-

acteristics of the on-board model-based diagnostic reasoner systems. Section IV.2 explains

how the learned Bayesian model forms the basis for updating the Aircraft Diagnostic and

Maintenance reference model without violating the assumptions and properties of the rea-

soner. Section IV.3 describes the overall framework from curating the data, to using the

information in section IV.2 to produced suggested changes. Section IV.4 discusses the im-

plementation of the framework and the a discussion of the knowledge engineering task.

Section IV.5 presents the results of our three case studies that demonstrate how the hu-

man expert utilized the framework to interpret and utilize the information generated by our

TAN structures to update existing reference models. Section IV.6 presents a summary of

the approach, and outlines the contribution of this work in our research.

IV.1 Aircraft Reference Model Structure and Diagnostic Reasoners

We briefly review the reference model structure and reasoner algorithms employed in

typical Aircraft Diagnostic and Maintenance systems. A traditional system reference model

structure, such as the one used in the Boeing 777 Central Maintenance System [46]), can be
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represented as a flat bipartite graph with two types of nodes: (1) failure modes or hypothe-

ses and (2) evidence nodes as sensor and monitor variables. Figure 4 shows an example

reference model for an engine subsystem. More recently, the aircraft reference models add

hierarchy to the structure ,e.g., the Vehicle Integrated Prognostic Reasoner project [66], to

manage the complexity of aircraft systems.

Fuel metering fault

Fuel Drain Fault

Igniter Fault

Inlet Fan Fouling

HP Compressor Fault

HP Turbine Fault

Nozzle clogging

Controller Fault

No Lightoff

Slow Start

Low Stall Margin for HPC

Low Stall Margin for LPC

Hot Start

Overspeed Shutdown

Low Temp Margin at TKO

High Inlet Pressure Loss

Low Temp Margin at CRU

Failed Powerup Test

Low Stall Margin for fan

Controller Ch A Open

OverTemp Shutdown

Figure 4: Example Reference Model

“Diagnostic monitors” represent the evidence nodes in the system. In more detail, a

monitor provides comprehensive or aggregated information that is based on mathematical

and logical functions of raw sensor readings from a component or subsystem. Designing a

monitor often requires deep domain knowledge about the component or subsystem, but the

details of this information are typically not available to the system integrator. An abstract

view of a monitor is shown in Figure 5. With few exceptions, most diagnostic monitors

are derived by applying a threshold to a time-series signal. This signal can be a raw sen-

sor value or a derived quantity from a set of one or more sensor values. The intermediate

derived quantities are labelled as condition indicators (CIs), x(t). Assuming a pre-defined
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threshold value θ , we set m = 1 ⇔ x(t) ≶ θ . A diagnostic monitor may specify the under-

lying condition indicator and the threshold or simply provide the net result of applying a

hidden threshold. The binary output of the monitor makes the computational framework of

the Bayesian reasoner easier to implement. In our work, we use the results of data mining to

improve on existing thresholds employed by the monitors, and thereby improve diagnostic

accuracy.

Logical 
Operation

> or <

x(t)
Condition Indicator

θ
Threshold

mj

Diagnostic Monitor

P(mj =1| fmi =1) fmi

Failure Mode

Figure 5: Abstraction of Diagnostic monitor

Given F , the set of distinct failure modes in the system and DM, the set of diagnostic

monitors, each failure mode variable, f mi ∈ F takes a binary value:

f mi = 0 ⇔The failure mode is not occurring

f mi = 1 ⇔The failure mode is occurring
(IV.1)

In addition, a value of −1 is sometimes used to denote that the failure mode is unknown.

The priori probability of failure mode f mi is denoted by P( f mi = 1). Failure modes are

assumed to be independent of one another, i.e., given any two failure modes f mk and f m j,

P( f mk = 1| f m j = 1) = P( f mk = 1).

A diagnostic monitor, m j ∈ DM, either indicts or exonerates a subset of failure modes

called its ambiguity group. Each monitor mi in the system is labeled by three mutually
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exclusive values allowing a monitor to express indicting, exonerating or unknown support

for the failure modes in its ambiguity group, as shown in equation (IV.2).

mi = 0 ⇔ Exonerating evidence

mi = 1 ⇔ Indicting evidence

mi =−1 ⇔ Unknown evidence

(IV.2)

An ideal monitor m j fires only when one or more failure modes in its ambiguity group

are occurring. Given the fact that the ith failure mode is occurring in the system, d ji, the

detection probability of the failure mode f mi given indicting evidence provided by the jth

monitor is given by:

d ji ⇔ P(m j = 1| f mi = 1), (IV.3)

False alarm probability, the probability that an indicting monitor fires when the corre-

sponding failure modes in its ambiguity group are not occurring in the system, is given

by

ε j ⇔ P(m j = 1| f mi = 0,∀ f mi ∈ Ambiguity Set) (IV.4)

As monitors activate, the reasoner algorithm first performs an elimination step where

failure modes that do not associate with that newly activated monitor are removed from

the set of probable failure hypotheses. As additional monitors fire, the set should become

smaller, and may reduce to a single hypothesis. In situations where there are more than one

failure hypothesis, the reasoner uses the probabilistic information in the reference model to

generate likelihood values to rank these hypotheses. The probability of false alarms is also

calculated to indicate that the current set of monitors may be noisy. As more monitors fire,

the numeric values of these probabilities increase or decrease, until a specific failure mode

hypothesis emerges as the highest-ranked or the most likely hypothesis. This ranking can

be used by mechanics to determine the order in which components need to be checked for

repair and possible replacement.

64



The probability calculations assume that only one fault mode could be active at any

given time (single fault hypothesis), and that the monitors are independent of one another

given this information. This results in the probability update function for each fault hypoth-

esis, ∀i f mi ∈ F , being computed using a Naïve Bayes model, i.e., P( f mi|m j,mk,ml · · ·) =

α ×P(m j,mk,ml · · · | f mi) = α ×P(m j| f mi)×P(m j| f mi)×P(m j| f mi)×·· · where α is a

normalizing constant. The direct correspondence between the reference model and the sim-

ple Bayesian structure provides opportunities to use data mining methods based on a class

of generative Bayesian model algorithms for diagnostic reasoning. These newly learned

structures can form the basis for designing systematic knowledge engineering techniques

for updating the system reference model. We discuss this approach in the next section.

IV.2 A Bayesian Framework For Updating Reference Models

In current Aircraft Diagnostic and Maintenance systems, expert knowledge is central

to the creation of diagnostic monitors and the links between these monitors and the failure

modes in the reference model. The Naïve Bayes framework governs the reference model

structure, and how updates suggested by the data mining results can be incorporated into

existing reference models. The example reference model in Figure 4 is reasonably complex

because of the multiple-connected nodes, so we use a simpler example shown in Figure 6

to illustrate the model updating methods that we have developed. We revisit the proposed

updates to discuss how these translate into updating the reference model for improving

diagnoser performance:

1. Update Monitors. Update the threshold θ associated with a diagnostic monitor to

improve the accuracy of existing relations between monitors and fault hypotheses.

The goal is to make the monitor i more sensitive to failure mode j (so that the fault

can be detected earlier) without sacrificing the false alarm rate. As an example,

consider a change in the threshold for monitor DM2 with respect to fault FM1 (see
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Figure 7). The threshold value may be made lower to make the fault mode more

sensitive to the monitor value, or it may be increased to decrease the false alarm rate;

2. Add new links between Monitors and Failure Modes. This is equivalent to discov-

ering new relations between monitors and fault hypotheses, which results in added

links between monitors and failure modes. Specifically this could take two forms:

(a) creating a new monitor DM j and deriving the conditional probability d ji to as-

sociate it with the failure mode FMi, or (b) assigning a non-zero d ji between an

existing monitor DM j and a fault hypotheses, FMi if that link did not exist before.

An example of the latter is a new link created between FM1 andDM3 in Figure 7; and

3. Create Super Monitors. New monitors are derived that absorb the dependency

between existing monitors to avoid violations of the Naïve Bayes assumptions. An

example of this situation would be the discovery of a dependency between DM1 and

DM4 in Figure 7.

DM 1

Failure Mode 
#1

Failure Mode 
#2

Failure Mode 
#3

DM 2 DM 3 DM 4 DM 5

Figure 6: Graphical Representation of a Reference Model.

Limiting our approach to this set of reference model updates to avoid increased cer-

tification costs presents two important challenges. The first is related to scaling prob-

lems for conditional probability distributions for large models. Consider the example
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DM 1

Failure 
Mode #1

Failure 
Mode #2

Failure 
Mode #3

DM 2 DM 3 DM 4 DM 5

Figure 7: Additional Information derived from data: (a) update to monitor threshold
DM2 with respect to fault FM1 (b) finding a new relation between FM1 and DM3, and
(c) Discovering that monitors DM1 and DM4 are causally related

where the conditional probability between FM2 and DM2 has to be updated because the

data mining algorithm finds a better threshold for monitor DM2. Since DM2 is a shared

monitor between fault hypotheses FM1 and FM2, which means the faults are causally

dependent. Therefore, to reason about the likelihood of FM1 being indicted by the ev-

idence, i.e., P(FM1|DM1,DM2), we have to consider marginalization of the joint distri-

bution P(FM1,FM2,DM1,DM2,DM3) with respect to nodes FM2 and DM3. Generating

the joint probability distribution table requires much more information, which the domain

expert may be unable to provide, and it is hard to directly derive this information from

data [139]. Preserving the Naive Bayes model structure assumptions, i.e., the indepen-

dence of the fault hypotheses and the independence of the monitors associated with a fault

hypotheses, simplifies this task of deriving the conditional probabilities. In our exam-

ple, the discovery of a new link between FM1 and DM3 makes all of the failure modes

dependent, which greatly increases the number of parameters needed to specify the joint

probability distribution. The Naive Bayes assumption allows for a simplified re-factoring

of the problem, making the conditional probability tables easier to specify. Figure 8 shows

the local structure used for failure mode FM1.
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DM 1

Failure Mode 
#1

Failure Mode 
#2

Failure Mode 
#3

DM 2 DM 3 DM 4 DM 5

Figure 8: The relevant structure after isolating a Failure Mode

A second challenge arises when the data mining algorithm finds dependencies among

monitors, such DM1 and DM4 in Figure 7. This clearly violates the assumption of indepen-

dence of monitors given the fault mode. We address this problem by defining the notion

of a “super monitor.” To accommodate the dependency between DM1 and DM4 while re-

taining the Naive Bayes modeling framework, the two monitors are combined to form a

“Super Monitor” and the sub-structure between FM1, DM1, and DM4 is replaced by a new

node SM1 and a link from FM1 to SM1, as shown in Figure 9. In general, combining ex-

isting monitors, Mi and M j implies stronger indictment evidence for the failure mode FMk.

That is, P(DMi = 1,DM j = 1|FMk = 1) > P(DMi = 1|FMk = 1)×P(DM j = 1|FMk = 1).

Note that monitors DMi and DM j are not removed from the reference model because they

may provide supporting evidence for other faults. This illustrates yet another local update

method applied to the reference model. The creation of this new monitor is triggered by

the presence of the edge in the learned network, and isn’t concerned with the direction of

the edge. This helps alleviate issues involving the manner with which the directionality is

assigned in the learning algorithm.

A number of Machine Learning techniques for building Bayesian networks from data

has been reported in the literature [51], [24],[58]. For example, state-based hidden Markov
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Figure 9: The construction of a Super Monitor

Models [149], and more general Dynamic Bayesian Network [39], [91], [137], [164] for-

mulations can be employed to capture the dynamics of aircraft behavior and effects of

faults on system behavior and performance. However, given that our primary task is to

extend and improving performance an existing Aircraft Diagnostic and Maintenance and

not violate the Naïve Bayes model assumption imposed on the reference model, we have

adopted data mining algorithms whose output is similar in nature to the reference model

structure(although not equivalent). The output is also easily interpreted by experts making

it easier for them to update existing reference model. Our approach learns Tree Augmented

Naïve Bayesian networks from operational flight data. The approach is justified in Sec-

tion IV.4

IV.3 Three Step Knowledge Engineering Approach

In this section, we start by recalling the outline of the three step knowledge engineering

approach.

1. Select segments of operational flight data from which we can derive the new knowl-

edge for diagnostic analysis;

2. Apply our targeted data mining algorithms to derive the new knowledge and with the
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help of a domain expert come up with updated structures that meet the constraints

discussed in Section IV.2 to improve the reference model; and

3. Perform experiments to demonstrate the augmentations lead to overall improvements

in the reasoner performance.

IV.3.1 Curating Data

INPUT: Raw flight operations data for a similar set of aircraft for an extended set of flights,

Existing Reference Model from which we can derive the set of fault hypotheses, and the

set of known monitors.

OUPUT: A Curated Database that contains all of the cleaned up flight segments for the set

of aircraft.

The first step starts with the large operational flight data for a set of similar aircraft. We

assume that the set of fault hypotheses whose detection performance needs to be improved

has been selected by the domain experts or aircraft engineers. The goal in this step is extract

relevant data segments from which additional diagnostic relations can be derived.

Flight data can be extracted by the aircraft tail number and a complete flight segment,

which includes the following phases, startup, taxiing, takeoff, cruise, descent, and landing.

Each flight segment not only contains a time series report of the diagnostic monitor values

(normal or abnormal), but also the time-stamped CIs.

It is important that the curation process be general enough to be applicable to different

types of temporal and time-series data. To maintain the generality and scalability of the

curation approach, while making it efficient and effective for multiple scenarios, we employ

a database schema that performs dual tasks. First, it plays the role of a lookup for the raw

files, and second it uses normalized relational tables for the different condition indicators.

The tables, ordered by the atomic operations that provide links to all of the meta-data, are

structured to allow retrieval of data for different systems of the vehicle and different flight

operations modes. Information such as the length of a flight, the flight date, and relevant
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annotations make this control table easy to filter for more complex queries. Creation of the

initial database is time-intensive because of the need to transform the raw data, but this is

a one-time process that can support multiple data mining analyses and validation studies.

The curation process also results in a clean up where incomplete and inconsistent flight

segments are dropped.

IV.3.2 Causal Discovery Methods to Update the Reference Model

Applying data mining methods to discover new relations and update the reference

model require finding the right flight segments from which this information can be derived,

and then applying the appropriate data mining algorithms to find the relevant relations.

IV.3.2.1 Building Relevant Flight segments

INPUT: We start with the existing reference model, the curated database, and the fault

hypothesis of interest.

OUTPUT: Flight segments from which the relevant new information to support diagnosis

of the fault hypothesis can be generated.

A structured dataset is created that includes: (1) flight segments where the fault mani-

fests as well as nominal flight segments, (2) a set of monitor and condition indicator values

that are relevant to the fault under consideration; this set may be obtained by analyzing

the reference model and by seeking expert input for additional features. The flight data

segments with failures are identified by looking for additional sources that may report fail-

ure information in aircraft, such as the ASIAS database1 that is maintained by the FAA.

The ASIAS database provides information about the aircraft tail number, the date, and the

flight when the failure occurred, and additional information about the failure event. To en-

sure that we capture enough information about the failure, especially indicators that may

imply early onset of the failure, with expert help, we trace back a number of flights from the

1http://www.asias.faa.gov/portal/page/portal/asias_pages/asias_home/
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adverse event report. Capturing labeled and faulty flight data allows us to develop classifier

algorithms that help differentiate non faulty and faulty behaviors.

IV.3.2.2 Building Classifier Model

INPUT: Data segments divided into nominal and faulty behavior; Classifier type to build.

OUTPUT: Classifier model.

The classifier type chosen should be effective at classifying nominal from faulty behav-

ior and provide diagnostic information that can be accommodated into the existing refer-

ence model structure. This step produces a structure for testing the usefulness of the data

in providing diagnostic information and examining the results for updating the reference

model.

IV.3.2.3 Validating Classifier Results

INPUT: The derived classifier model; data segments divided into training and test sets.

OUTPUT: Results of N-fold cross validation studies.

It is important to run cross-validation studies to get good estimates of the accuracy of

classification and the false-alarm rate for the data with this type of structure. It is important

that these numbers satisfy the requirements of the aircraft diagnosis task.

IV.3.2.4 Exploring Classifier Structures to Find Augmentations

INPUT: Set of validated labeled data vectors that represent nominal and faulty flight seg-

ments

OUTPUT: A Classification structure that clearly indicates which feature best support the

fault/no-fault binary classifier

In our case studies, on expert advice, we further segmented the flight data into different

phases of flight operation, e.g., engine startup, take-off, and engine shutdown, and ran the

classification studies on individual segments. The intuition was that certain faults would be
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more prominent in particular phases, e.g., engine faults show the largest effects during take-

off when the engine is stressed the most. We discuss the details of the classifier algorithms

in Section IV.4. Another specific approach we applied to determine early fault indicators

was to define the flight segments into “bins.” A bin represented a set of flights, for example,

bin 1 could be defined as the 10 flights just before an adverse event or failure occurrence,

bin 2 would be flights 11-20 before the failure occurrence, and so on. This procedure is

also discussed in greater detail in Section IV.4.

IV.3.3 Updating Reference Model and Verifying Performance Improvements

INPUT: Expert Generated Augmented Reference Model, Reasoner

OUTPUT: Augmented Subsystem Reference Model

The new monitors and relations between fault hypotheses and monitors have to be inte-

grated into the original reference model. This is done with the help of the domain experts.

The experts make judgements using the results generated by the classifier algorithms to up-

date the conditional probabilities and false alarm rates associated with the fault hypotheses

and monitors. To test reasoner performance after the updates, traces of the incidents from

the dataset are then fed to the reasoner with both the original model as well as the new ref-

erence model. Each trace will look at successive runs of the aircraft over a stretch of time

that ends with the failure occurrence. The expert determines whether the traces with the

augmented reference model provide sufficient improvements in detection and isolation of

the correct fault. Improved performance leads to earlier maintenance decisions and greater

overall safety. The output will either be confirmation of the approved changes, or empirical

proof to reject the changes.

IV.4 Implementation

This section discusses the implementation of the three-step knowledge engineering ap-

proach defined in Section IV.3. This implementation has been formed from initial testing
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on simulated engine data [99]. The curation process is presented in Section IV.4.1, and

the resulting flight segments generated for the classification studies are described in Sec-

tion IV.4.2. Section IV.4.3 discusses the learning algorithm based on the Tree Augmented

Naïve Bayes model (TAN) [51] used for deriving the classifier structures for the set of faults

that define our case studies. Augmenting the reference model using the generated classifier

structures and expert input is presented in Section IV.4.4.

IV.4.1 Aircraft Data

The data comes from a fleet of 30+ identical four engine aircraft that composed a U.S.

regional airline. The data covers about five years of flight operations, with each aircraft

operating 2–5 flights each day. The Aircraft Condition Monitoring System collects sensor

data from the propulsion subsystem, the airframe, the aircraft bleed subsystem, and the

flight management system in a central location on the aircraft during flight to support fault

analysis by the Aircraft Diagnostic and Maintenance, and maintenance operations when the

aircraft lands. The aircraft sensors have different precision levels, and different sampling

rates, therefore, not all sensors collect the same amount of data per flight.

This data is typically stored in raw, uncompressed form as binary files. On landing, the

Aircraft Condition Monitoring System recorded data is transferred to permanent storage (in

our case, the data was stored on CDs). We apply our initial data retrieval and pre-processing

algorithms to this raw time-series data from the multiple CDs. From this initial step, flight

data is generated indexed by the tail identification number of the aircraft, and date and time

of flight.

In addition to the flight data, we have independent access to Federal Aviation Ad-

ministration (FAA) reports through the Aviation Safety Information Analysis and Sharing

(ASIAS) database system, which is a collection of adverse events reported by various air-

line operators. Examples of adverse events related to our flight data included incidents,

such as loss of an engine and engine on fire. Many of these incidents are major safety
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hazards, and cause the affected aircraft to abandon its flight plan and make an emergency

landing at the nearest airport. A list of such adverse events and the root cause failures

associated with these events define the case studies discussed in this paper. We ignored

ASIAS events like sprinkler incidents in the main cabin, because they did not have serious

implications on aircraft flight safety.

Two of our three case studies are computer-aided engine shutdown events during flight,

and the third is an excessive engine vibration that resulted in a crew-initiated shutdown of

that engine. From the ASIAS records, we identified the aircraft (by its tail number) and

the exact flight in which the adverse event occurred. Since the goal of this knowledge en-

gineering study is update the reference model, to enable early and reliable detection of an

evolving fault2 and thus avoid the adverse event, we made sure that the data segments cho-

sen included N previous flight segments along with the flight segment in which the adverse

event occurred. Our domain experts used their knowledge of the temporal characteristics

of the particular fault (slow versus fast evolving) to determine the value of N for each case

study.

IV.4.1.1 Brief overview of Case Studies

The first case study pertains to an engine overheating problem, which triggered the

alarm systems and engine shutdown on the belief that the engine was in danger of catching

fire. Simple analysis from the graphs of raw sensors attributed this to a faulty fuel metering

hydro-mechanical unit(Fuel HMA) in the third engine that cause the overheating, which

eventually led to the engine shutdown. The fuel metering unit is a controller-actuator that

controls fuel flow into the engine combustion chamber to produce the desired thrust. Our

domain experts informed us that a Fuel HMA fault is a slowly evolving incipient) fault. The

experts suggested that manifestations of this fault could likely occur about 50 flights before

the engine shutdown event took place. We made the assumption that only the one engine

2Early detection allows mechanics to make necessary repairs, and thus avoid the adverse event
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with the Fuel HMA issue was faulty, so we had 50 instances of faulty engine flight segment

data and at least 150 (50× 3) instances of nominal engine flight segment data under the

same flight conditions.

The second event involved excessive vibration in an engine that forced the crew to shut

the engine down manually. In this case, the FAA report attributed the excessive vibration

to a broken blade in the turbine bucket of the engine. Again, with expert help, we identified

50 prior flight segments to capture the faulty engine situation, and the data from the other

three engines for these flight segments was labeled as nominal.

The third event, like the first, was an engine shutdown triggered by the fire alarm system

on the engine. After the fact, FAA investigators determined that the cause was a leaking

fuel manifold. But the fault was not detected by any of the existing sensors and monitors on

the aircraft. The third failure is different from the first two in that the cause is not isolated

to a specific subsystem, i.e., an engine. Instead the fault occurred in a mechanical unit that

regulates fuel to two of the four aircraft engines. The manifold leak was also characterized

as an incipient fault by our experts, and they suggested that 50 prior flight segments could

be used as examples of faulty flight instances. This case study produced a different result

from the first two. The experts attempts to update a subsystem model to better detect the

fault was not successful, therefore, the conclusion was this fault was better handled at a

system level as opposed to the subsystem level.

IV.4.2 Description of Flight Segments

Our case studies, focus primarily on the aircraft engine subsystem and fuel flow into the

engines. A set of condition indicators related to engine health were extracted as time series

data, and then annotated by the different modes of operation of the engines: (1) startup

(2) takeoff, and (3) shutdown. We did not include data from the other primary phases:

climb, cruise, and descent/landing in our analyses, because our experts surmised that the

engines were most stressed during takeoff, and knowing the initial and final state of the
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CI Name Description
StartTime This CI provides the time the engine takes to reach its idling

speed. Appropriate threshold generates the no start diag-
nostic monitor.

IdleSpeed This CI provides the steady state idling speed. Appropriate
threshold generates the hung start diagnostic monitor.

peakEGTC This CI provides the peak exhaust gas temperature within
an engine start-stop cycle. Appropriate threshold generates
the overtemp diagnostic monitor

N2atPeak This CI provides the speed of the engine when the ex-
haust gas temperature achieves its peak value. Appropriate
threshold generates the overspeed diagnostic monitor.

timeAtPeak This CI provides the dwell time when the exhaust gas tem-
perature was at its peak value. Appropriate threshold gen-
erates the overtemp diagnostic monitor.

Liteoff This CI provides the time duration when the engine attained
stoichiometry and auto-combustion. Appropriate threshold
generates the no lightoff diagnostic monitor.

phaseTWO This CI provides the time duration when the engine con-
troller changed the fuel set-point schedule. There are no
diagnostic monitors defined for this CI.

prelitEGTC This CI provides the engine combustion chamber tempera-
ture before the engine attained stoichiometry. Appropriate
threshold generates the hot start diagnostic monitor.

Table 1: Startup Features Transformed from the Raw Data

engine at the start and end of a flight, was more important for diagnostic purposes. The

flight segment data was obtained in two steps: (1) Data from all flights for the selected

condition indicators was collected into the curated database for all four aircraft engines; (2)

The labeled flight segments, representing nominal and faulty situations was extracted into

individual data sets for the classifier studies. Lists for CI’s used for each flight segment are

found in Tables 1 and 2:

The flight segments were further broken down so that each engine represented a sep-

arate data point. The data included 50 time segments, so for the four engines we had

4×50 = 200 data points, and each data point was defined by 25 features corresponding to

the 25 CI’s. For the first two case studies in Section IV.4.1, only one of the four engines
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CI Name Description
tkoN1, tkoN2, tkoEGT, tkoT1, tkoPALT These CIs provide the fan speed, en-

gine speed, exhaust gas temperature, in-
let temperature and pressure altitude, re-
spectively, averaged over the time interval
when aircraft is operating under takeoff
conditions. There are no diagnostic mon-
itors defined for these CIs.

tkoMargin This CI provides the temperature mar-
gin for the engine during takeoff condi-
tions. Appropriate threshold generates
the medium yellow and low red diagnos-
tic monitors.

Rolltime This CI provides the time duration of the
engine’s roll down phase. Appropriate
threshold generates the abrupt roll diag-
nostic monitor.

resdTemp These CI provide the engine exhaust gas
temperature at the end of the engine’s roll
down phase. Appropriate threshold gen-
erates the high temp diagnostic monitor.

N2atDip, dipEGTC These CIs provide the engine speed
and the exhaust gas temperature at the
halfway point in the engine’s roll down
phase. There are no diagnostic monitors
defined for these CI.

N2cutoff These CI provide the rate of change of the
engine speed at the halfway point in the
engine’s roll down phase. There are no
diagnostic monitors defined for these CI.

Table 2: Takeoff and Shutdown Features Transformed from the Raw Data
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is faulty, and the other three were categorized as “nominal.” A quick note, that the term

“nominal” here does not indicate the absence of failures in the engine, but rather that it

does not include effects of the fault under investigation. We developed additional operators

to break this into multiple tables, one for each mode of operation.

IV.4.3 Learning Tree Augmented Naive Bayesian Networks

Our choice of the data mining algorithm is governed by the desire that the learned struc-

ture closely match the reference model structure, which implies that the learned structures

satisfy the Naïve Bayes assumptions. However, CIs for aircraft subsystems may not be

independent given a fault hypothesis for multiple reasons: (1) two CIs may be based on

dependent measurements, where one measurement is downstream from the other, e.g., a CI

derived from a pressure measurement at the end of a pipe is not independent of a second CI

whose value is derived from a pressure measurement at the inlet point in the pipe; and (2)

two CIs may share one or more sensor measurements, e.g., two different measures of health

state of an aircraft engine may both use the engine temperature in their computations. This

dependency information, when known, can be used to improve diagnosis results. There-

fore, in this work, we prefer learning algorithms where the independence assumptions may

be systematically relaxed to capture additional discriminatory evidence for diagnosis.

A method that satisfies these requirements is the Tree Augmented Naïve Bayesian

learning algorithm [51], also called the TAN classifier. The TAN provides a simple ex-

tension to the Naïve Bayes network model. The fault hypothesis presented as the root or

the class node is causally linked to every evidence node, which correspond to the CIs that

support that fault hypothesis. In addition, an evidence node (CI) can have at most two par-

ents: (1) the class node, and (2) a causal connection to another evidence node (CI). These

constraints maintain the directed acyclic graph requirement of Bayesian networks, and pro-

duce a more nuanced tree that allows for additional dependency relationships among the
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CIs without becoming too general and thus harder for the expert to interact with and use

when augmenting the reference model.

The TAN Structure can be generated in several different ways. One approach uses a

greedy search that constrains the graph from building “illegal" edges from the evidence

nodes3 [34]. We employ a procedure that builds a Minimum Weighted Spanning Tree of

the evidence nodes and then connects the fault node (root) to all of the evidence nodes in

the tree [51]. A standard algorithm (e.g., Kruskal’s algorithm [84]) can be employed to

generate the Minimum Weighted Spanning Tree. The mutual information function is used

for pairwise edge weight computations [51]. This metric calculates the how much infor-

mation one variable provides about the other. Note that the Mutual Information measure

is not directional. After the minimum weighted spanning tree is built, one of the nodes is

designated as the root node and the direction of the edges is based on that choice. This

search path for this choice uses a likelihood measure with respect to the training data to

find the optimal node for the root.

Figure 10: Example TAN Structure

3an illegal edge is created when an evidence node is assigned more than one parent
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An example TAN structure generated using our minimum weighted spanning tree al-

gorithm is illustrated in Figure 10. The root node, labeled class, is the fault hypothesis of

interest. The other nodes represent evidence supporting the particular fault hypotheses. For

the structure in Figure 10, rolltime, a monitor associated with the shutdown phase of the

aircraft is the anchor evidence node built with the minimum weighted spanning tree. We

refer to the anchor node as the observation root node in the TAN structure. Like a Naïve

Bayes classifier structure, the fault hypothesis node (class) is linked to all of the relevant

monitor nodes that support this hypothesis. Dependencies among some of the monitors,

e.g., rolltime and dipEGTC, are captured as additional links in the Bayes network. Note

that the TAN represents a static structure; it does not explicitly capture temporal relations

among the evidence. The observation root node is important; in some ways, it represents

an important monitor for the fault hypothesis, since it is directly linked to only this node.

This means the distribution used in the observation root node (whether it be a discrete CPT,

or a continuous distribution) is conditioned only on the priors of the class distribution. The

rest of the minimum weighted spanning tree structure is also linked to this node but all

other conditional probability tables (CPTs) generated for this TAN structure include the

class node and at most one other evidence node.

The structure of the TAN found using a minimum weighted spanning tree and the choice

of the root provides a heuristic ranking of the features. We discovered in close consultation

with the system experts, that the closer a CI node is to the root of the tree (fault hypothesis),

the more important this CI is for diagnostic analysis. Much like Information Gain in a

decision tree [133], the mutual information calculations of edges between node variables

(i.e., CIs) in the minimum weighted spanning tree will produce an ordering of CIs from

greater to lesser impact. The generated TAN illustrated above first points the domain expert

to the observational root node, i.e., the condition indicator just below the fault hypothesis

node. As one moves down the tree hierarchy, the corresponding CI’s have a smaller impact

in establishing the fault hypothesis.
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We used an implementation of the TAN algorithm from the Weka [59] toolkit for our

case studies. Weka uses CPT based Bayesian structures, and preprocesses the data using

a discretization algorithm. The discretization algorithm bins the individual features into

ranges that create the biggest unbalance in the class labels for each feature value (or pairs

of feature values when there is a dependency between features), to generate CPTs that

provide the most differentiation between classes. The choice of the observational root node

is determined by the CI node that provides the best discrimination among the nominal

versus faulty class as calculated by the mutual information measure. The value of the CPT

and more specifically the ranges found by the preprocessing algorithm are essential for

updating existing monitor thresholds and adding new links between monitors and the fault

hypotheses in the reference model.

IV.4.4 Using TAN Models to Update the Reference Model

The TAN structure is similar to the structures shown in Section IV.2. The bins used for

examining performance as described in Section IV.3.3 produce the best TAN structure to

use for updating the reference model.

As discussed, augmentations created from the TAN structure support all of the follow-

ing updates:

1. Update Monitors Updating a monitor is equivalent to updating the threshold on the

CI associated with the monitor. This requires studying the discretization of the CI

used to create the CPTs. Applying marginalization to the CI parent (if one exists) will

produce general probabilities for each set of ranges found through the discretization.

The fault range is established from the range that has the highest probability of the

failure mode given the marginalized CPT. The value that defines the border between

the nominal range and faulty range is taken as the new threshold for the monitor.

Given the data associated with the structure in Figure 10, the derived CPT for the

rolltime CI is given in Table 3. The table indicates that the fault node, Fuel HMA
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Class (-inf-34.875] [34.875-inf)
Nominal .823 .177

Fault .227 .773

Table 3: Example CPT for Finding Thresholds

failure, is more likely when rolltime is > 34.875. With an expert’s approval this

change may be introduced into the reference model to improve the accuracy and

time of detection of the FuelHMA fault.

2. Add Monitors to indict Failure Mode A new CI that appears in the TAN structure,

may imply a new monitor. Again, consultation with the domain experts will help

determine the relevance of this CI, and the choice of threshold (like the previous

step) to optimize fault detection. If, for example, resdTemp appears in the TAN

structure of Figure 10, but it does not exist in the reference model, the experts and

the data mining researchers may examine the CPT for this CI jointly in the manner

discussed above, and add a new monitor that uses a threshold based on the value

discovered in the CPT.

A second possibility is that the threshold associated with an existing CI contradicts

the threshold value of a monitor that already exists. For example, the CPT associated

with this CI indicates the higher likelihood of a fault when the CI values exceeds a

threshold, but the existing monitor is designed to generate an alarm when the CI value

falls below a threshold. After careful examination, the domain experts conclude that

the addition of a new diagnostic monitor defined by the new threshold is helpful in

improving detection performance. Using the example of the threshold for rolltime in

Table 3, a new monitor is defined with the threshold of greater than 34.875 because

the previous rolltime monitor was designed to generate an alarm for values less than a

threshold value θ = 34.875. The earlier monitor will be replaced by the new monitor

for fault detection and isolation.
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3. Creating new Component to Component relationships If a relationship between

an observational root node and a child node in the TAN is deemed important to the

expert, this can be the basis for forming a “super monitor” This coupling of the CIs

can be transformed into a new monitor that adds information not only in a single

flight, but across adjoining flights segments as well. For example, if the original

structure showed a possible relationship between monitors in flight n followed by

flight n + 1, the causality might result in this new monitor to fire only when the two

original monitors fire in that explicit sequence, flight n and flight n + 1. Not only

does this super monitor combine the results from other monitors, but it also indi-

cates cyclic behaviors that again provide useful diagnostic information not originally

captured by the reference model.

In general, super monitors can model complex interactions thus increasing the over-

all discriminability properties of the reasoner. The consequence of using a super

monitor, is that the usefulness of the two monitors used in the construction are di-

minished. The links from the monitors to the isolated failure mode are removed (they

remain active for any other failure mode in the original reference model). The new

monitor is created which uses logic, such as AND and OR to combine the original

monitors. Also a new monitor may be subsumed into a super monitor relationship.

An expert uses the TAN in Figure 10 and the monitors associated with rolltime and

dipEGTC, and decides that the relationship between the two is strong enough to pro-

duce a super monitor that indicts a fault if and only if, both the monitors for rolltime

and dipEGTC would have indicted the fault. This would remove the direct relation

between the monitors and the failure mode, and instead replaces them with the single

super monitor.
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IV.5 Case Studies

We use three case studies to demonstrate the effectiveness of our three-step approach

to updating the subsystem reference model to improve diagnostic performance. Domain

experts play an integral role in interpreting the TAN structures derived from flight data,

and determining how to update the reference model. We employ two standard metrics to

evaluate the TAN models generated: (1) the classification accuracy and (2) the false positive

rate.To systematically evaluate these metrics we utilize a 10-fold cross validation approach.

After updating, the reasoner is applied to the new system reference model to determine

if the new model provides an improvement in diagnostic performance, i.e., higher accuracy

and faster detection time, with the new model. The test traces to evaluate performance are

generated from relevant flight data.

The three case studies are discussed in greater detail below.

IV.5.1 Case Study 1

This first case study involves the Fuel HMA fault, which resulted in engine overheating

and eventual shutdown. The TAN classifier was derived by comparing the data from the

faulty engine against the three other engines on the aircraft, which were assumed to operate

normally during the period of 50 flights before the adverse event.

IV.5.1.1 Experiment 1: Classification Accuracy of Generated TAN structure

Experiment 1 in this case study studied the effectiveness of the generated TAN classifier

structures in isolating the fault condition using the set of CIs that were chosen by our

experts. The values for the CIs over the 50 flights was calculated from the flight data. Data

from the three engines of the aircraft that showed no abnormalities (1, 2, and 4) was labeled

as nominal, and the data associated with engine 3, where the shutdown incident occurred,

were labeled as faulty.

The average classification accuracy of the derive TAN structures after running 10-fold
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Figure 11: TAN Structure Generated using Data from all 50 Flights

cross validation was 99.5% with a .7% false positive rate.This clearly implied that the set

of CIs are appropriate for detecting and isolating the Fuel HMA fault. The next step was

to conduct further experiments to ensure that the classification structure was not just as

artifact of engine position, i.e., engine three versus the other engines on the aircraft. This

involved running the TAN classifier generation using training data from engine 3 (faulty)

versus one of the nominal engines (engines 1, 2, or 4). The data from the other two nominal

engines was used as test data. If the classifier split the test data between the nominal and

faulty classes, it would indicate that the TAN structure was more likely an artifact of engine

position on the aircraft. For the three experiments (one of the nominal engines used for

training and the other two for test), the fault classification accuracy remained at or above

90%, indicating that the TAN classifier was truly differentiating between the fault and no-

fault conditions.
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Bin Flights Acc. FP%
1 1 to 10 97.65% 2.30%
2 11 to 20 93.90% 5.70%
3 21 to 30 94.65% 5.30%
4 31 to 40 96.62% 3.50%
5 41 to 50 96.06% 4.10%

Table 4: Accuracy, False Positive Rate from Different Data Segments

IV.5.1.2 Experiment 2: Using the TAN structure to Update Reference Model

The domain experts were more closely involved in Experiment 2. First, the experts

examined the TAN structure shown in Figure 11 created from all 50 flights set used in

Experiment 1. The expert’s attention was drawn to the relationships between different pairs

of CI’s for different phases of the flight:(1) rolltime and dipEGTC during the Shutdown

phase, and (2) PeakEGTC and Starttime during the Startup phase. The expert concluded

that there was a likely dependence between the shutdown phase of flight n and the startup

of the next flight, n + 1. The reasoning was that an incomplete or inefficient shutdown in

the previous flight created situations where the startup phase of the next flight was affected.

The expert hypothesized that this cycle of degradation from previous shutdown to the next

startup resulted in the fault effect growing with each flight, and eventually impacted a

number of CIs of the faulty engine. This phenomena indicated a causal relation that was

not captured in the current reference model. The experts suggested that a super monitor that

combined CIs associated with a landing and subsequent take-off would aid the diagnostic

reasoner. However, the experts wanted to gain a better temporal understanding of how this

relationship between monitors evolved over multiple flights.

To address this, a binning procedure was developed, and the 50 flights were divided

into 5 bins of 10 flights each. The data from the 10 flights for a corresponding bin was

used for training, and the data from the other 40 flights were used as test data. Additional

test data was also generated from flights after engine three was repaired after the adverse

event. Table 4 shows the accuracy and false positive rate(FP%) metrics reported for the
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Bin Flights Obs. Root Node Children of ORN Notes
1 1 to 10 IdleSpeed StartTime Thresholds Cho-

sen from this Bin
due to low FP

2 11 to 20 peakEGTC liteOff,dipEGTC peakEGTC
Important Node

3 21 to 30 peakEGTC liteOff,dipEGTC peakEGTC
Important Node

4 31 to 40 startTime peakEGTC Links startTime
and PeakEGTC

5 41 to 50 liteOff phaseTwo,RollTimeLinks Startup and
Rolldown CI

Table 5: Observational Root Node and Immediate Child Node for Classifiers Created
from Different Data Segments

five experiments corresponding to five bins of 10 flights each (for a total of 50 flights). The

observation root node, and its immediate child in the generated TAN structures are listed

in Table 5.

The conventional wisdom was that the accuracy and false positive metrics would have

the best values for the classifiers generated from data close to the adverse event, and perfor-

mance would deteriorate for the TAN structures derived from bins that were further away

from the incident. The results show partial agreement. The bin 1 experiment produced the

highest accuracy and lowest false positive rate, but the next best result came from the bin

4 data. The high performance of the TAN in bin 1 meant that the discretization used in the

CPTs would be used for threshold updating and adding any new monitors to the reference

model.

While performing this threshold updating, additional information was discovered by

the domain expert. The discretization of the startTime CI allowed the expert to discover

that the startTime showed a higher probability of a fault when the value indicated a faster

than nominal start. The original monitor for this CI was based on a greater than relationship

threshold for a slowStart monitor. This discovery in the CPT implied a new monitor called

fastStart that examined if the startTime was much faster than nominal could be added to
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detect the failure mode. The new monitor and it associated threshold value derived from

the discrete CPT for this CI was used to update the reference model.

The results of bin 1 and bin 4 prompted the domain expert to study the bin 1 to bin 4

TANs more closely. The expert concluded that two CIs, startTime and peakEGTC showed

a strong causal connection for bin 4, and startTime was highly ranked for the bin 1 TAN.

On the other hand, PeakEGTC was the root node for bins 2 and 3. This study led the

domain expert to believe that a new monitor that combined startTime and peakEGTC would

produce a reference model with better detection and isolation capabilities.

This new diagnostic monitor combined information from the newly formed fastStart

monitor and the HighTemp monitor to improve detection of the fuelHMA fault. To accom-

modate the super monitor, the connection from the FuelHMA fault hypothesis to the indi-

vidual monitors was deleted to avoid redundancy and preserve the Naive Bayesian struc-

ture. Therefore, the updated reference model included improved threshold values for some

monitors, as well as the new super monitor.

IV.5.1.3 Experiment 3: Verifying Improvement in Reasoner Performance

Event Minus 20 Flights Event Minus 10 Flights

HPT Degradation

Fuel Metering

Fuel Delivery

Turbine Nozzle

Bearing

Duct Rupture

Igniter Fault

Event Minus 30 Flights

0.15 0.15

3.23

2.29

0.15

3.23 3.23

2.292.29

1.31 1.31 1.31

Figure 12: Trace of the Reasoner on the Original Reference Model

Experiment 3 was directed to verifying the improvement in the reasoner performance
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Fuel Delivery
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Bearing

Duct Rupture

Igniter Fault

Event Minus 30 Flights

0.15 0.15

13.29

2.08 2.08 0.45

2.07

2.29

0.15

13.29 8.52

2.07 2.07

2.402.40 2.40

3.563.69 3.56

2.292.29

Figure 13: Trace of the Reasoner with the improved Reference Model

with the updated reference model. These results from the reasoner simulations are shown

for the the original reference model in Figure 12 and the augmented reference model in

Figure 13. The traces illustrate the reasoner’s inferences through a progression of flights

before the incident occurred. A green shade on a failure mode indicates that there is a

likelihood of the fault given evidence and the number in the box indicates the calculated

relative likelihood value. A failure mode shaded red, indicates a high likelihood for that

hypothesis, and when the failure mode is bolded, “Fuel Metering” in this case, it indicates

that the failure mode has been isolated with very high likelihood, and this mode is added

to a report for the mechanics. In this case study, the red indicator appeared about 30 flights

before the adverse event, which would give the mechanics a number of opportunities to

avoid the adverse event occurrence. Verification experiments of this kind are critical not

just to establish the fact that the early detection metric is improved, but also that the new

information added is not creating side-effects, such as increasing the number of potential

diagnostic hypotheses, and complicating the mechanics decision making process. In this

case, the expert deemed the verification test a success, and the updated reference model

was accepted.
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IV.5.2 Case Study 2

The second case study discusses a broken turbine bucket blade fault called the “HPT

degradation” failure mode. The broken turbine blade resulted in excessive vibration that

resulted in an engine shutdown that resulted in an emergency landing of the aircraft. This

failure, still associated with an engine, was chosen because of its physical difference from

the Fuel HMA failure. The results of the three experimental steps are presented, and then

additional experiments were conducted to show that the false alarm rates would remain

low, even when the Fuel HMA and HPT degradation faults were compared.

IV.5.2.1 Experiment 1

This case study used the same CIs as case study 1 and employed the same 10-fold cross

validation framework on the 50 flights that led to the engine shutdown incident. The result

was an average accuracy of 92.18% and a false positive rate of 2.1% for the derived TAN

classifier.

IV.5.2.2 Experiment 2

The same binning procedure as case study 1 was applied, and the results for this exper-

iment are shown in Tables 6 and 7. Results from Bin number 2 were chosen for updating

thresholds and looking for new monitors. The StartTime monitor indicating a slow start

turned out to be the most important monitor for fault detection and isolation. There was

no overlap between the thresholds found here with case study 1. This means that in spite

of shared monitors, the non overlapping thresholds would not result in ambiguity of fault

hypotheses.

The expert found that the structures of the TANs generated by binning were very sim-

ilar, and, therefore, the decision was to focus on the TAN generated from all 50 flights.

From the structure shown in Figure 14, the expert focused on the connection between res-

dTemp, the residual temperature of the engine at shutdown, and the peakEGTC, which is
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Bin Flights Acc. FP%
1 1 to 10 90.625% 4.2%
2 11 to 20 92.50% 2.5%
3 21 to 30 87.5% 5%
4 31 to 40 88.125% 12.50%
5 41 to 50 85.625% 11.7%

Table 6: Accuracy and False Positive Rate for Classifiers Created from Different
Data Segments for Case Study 2

Bin Flights Obs. Root Node Children of ORN Notes
1 1 to 10 StartTime(Slow start) Every CI Thresholds Cho-

sen from this Bin
2 11 to 20 StartTime(Slow start) Every CI Similar Structure
3 21 to 30 StartTime(Slow start) Every CI Similar Structure
4 31 to 40 StartTime(Slow start) Every CI Similar Structure
5 41 to 50 StartTime(Slow start) Every CI Similar Structure

Table 7: Observational Root Node and Immediate Child Node for Classifiers Created
from Different Data Segments for Case Study 2

the peak temperature of the engine after startup. This relationship with the casual direction

would imply that the residual temperature is causally related to the peak engine tempera-

ture. The expert decided that this was most likely a relation between the resdTemp of flight

n and the startup temperature in flight n + 1. The expert used this relation to design a su-

per monitor that indicted the fault, if and only if, the high temperature monitors associated

with resdTemp of flight n, fired, and the high temperature monitor connected to peakEGTC

of flight n + 1 were also indicting the fault. Therefore, this super monitor captures some

temporal information between flights for diagnostic reasoning. Like before, the updated

reference model included updated thresholds and the new super monitor.

IV.5.2.3 Experiment 3

Utilizing these changes, we ran this scenario with the reasoner and the augmented set of

monitors. From the trace generated by the updated reference model (Figure 15), 12 flights
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Figure 14: TAN Structure Generated using Data from Case Study 2

before the adverse event occurred there were symptoms pointing towards degradation in

the high pressure turbine(HPT). The failure mode listed as “HPT degradation” is an ag-

gregate term that captures loss of turbine function and includes the broken turbine blade

fault. Typically this would trigger a maintenance request wherein the mechanic would use

a special camera called a borescope to visually inspect the damage and determine if this

should result in an engine removal action to avoid safety incidents in future flights. The

maintenance procedures would result in replacing the broken blade before the engine was

put back into operation.

While the HPT degradation was hypothesized 12 flights before the adverse event, its

likelihood increased progressively through subsequent flights and eight flights prior to the

event it became a highly likely candidate. However, the fault condition was not uniquely

isolated because another failure mode, “fuel nozzle clogging” was also a strong second

candidate. Our domain experts surmised that the reasoner would have generated a main-

tenance alert about eight flights before the adverse event, although it could not uniquely

isolate the problem. A borescope inspection following this alert would have clearly identi-

fied the broken turbine blade.
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Figure 16, shows the trace without the augmented reference model. The baseline case

of the monitors merely creates a bearing failure mode fault, and this is detected just before

the flight where the adverse event occurred. In this case the maintenance crew would take

action, but for an incorrect fault hypothesis. The check on the HPT blades may never have

occurred before the adverse event. In contrast, the augmented reference model produces

a relevant alert eight flights prior to the event, which would give the mechanics ample

opportunity to take action that would avoid the inflight engine shutdown event.

Fault condition. State = WAITING
HPT degradation: 1.03
Inlet Fouling: 1.03

Fault condition. State = WAITING
Fan/LPC degradation: 3.03
HPT degradation: 3.43
Inlet Fouling: 1.70
Nozzle clogged: 2.87

Fault condition. State = WAITING
Fan/LPC degradation: 3.03
FADEC fault: 0.05
HPT degradation: 7.22
Inlet Fouling: 2.75
Nozzle clogged: 6.83

Fault condition. State = WAITING
Fan/LPC degradation: 0.87
FADEC fault: 0.05
Inlet Fouling: 1.03
Nozzle clogged: 2.83

Fault condition. State = ISOLATED
HPT degradation: 7.22

Fault condition. State = WAITING
Bearing: 2.12
Imbalance: 2.12

Event Minus 12 Flights

Reasoner Trace of HPT Degradation with Augmented Reference Model
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HPT Degradation

Fan Degradation
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Figure 15: Trace of Data from Case Study 2 with the Reasoner using the Augmented
Reference Model

At Event

Fault condition. State = WAITING
Bearing: 2.12
Imbalance: 2.12

Reasoner Trace of HPT Degradation with Original Reference Model
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Figure 16: Trace of Data from Case Study 2 with the Reasoner using the Original
Reference Model
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IV.5.3 Robustness Experiment

With the reference model updated for two faults, we decided to run a robustness ex-

periment to check the performance when comparing one fault against the other. When we

used the TAN classifier generated using the Fuel HMA data, an experimental run with the

Turbine Bucket Blade(TBB) fault data was classified as nominal with 95.93% accuracy and

a false positive rate of 4.10%. The TBB TAN achieved 85% accuracy with a false positive

rate of 15% when the experiment was conducted on the Fuel HMA fault data. This showed

that the Fuel HMA TAN was tuned to detecting the Fuel HMA fault without increasing

the false alarm rate, but the TBB TAN was less precise. The expert concluded that in this

case, additional CIs, such as a vibration detector, was necessary to better isolate the TBB

fault. This second case study establishes the generality of our approach across faults in

the engine subsystem. It also shows that robustness analysis is another tool that helps the

expert understand the nature of the failures and the feature sets being used to distinguish

between those failures.

IV.5.4 Case Study 3

The third case study investigates a fuel manifold leak fault that also caused an engine

shutdown event in flight, leading to an emergency landing. The fuel manifold leak is not

associated with a single engine subsystem, rather it contains the fuel lines that supply two

of the four engines of the aircraft. This failure also impacts the engines, producing similar

effects to other failures, however, our analysis helped the expert determine that this fault

was not associated with one of the engine subsystems, and, therefore, should be analyzed

using the system level diagnoser. We show that using the process developed along with the

robustness analysis.
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IV.5.5 Experiment 1

The experimental set-up provided an accuracy value of 90.31% and a false positive rate

of 5.4% using 10-fold cross validation on the Fuel Manifold TAN. Utilizing the other two

datasets as the test set reveals more about this fault. The Fuel HMA data has a 77.5%

accuracy and 22.5% false positive rate, which is a much weaker result. The broken blade

failure scored worse with an accuracy rate of 44.4%. This means that the Fuel Manifold

TAN is not serving the purpose of differentiating between its own failure and the blade

failure. On further reflection, the expert realized that this failure could not be reliably

isolated at the engine subsystem level.

This case study reveals that the data mining methods are useful not only for finding

additional relations and monitors to augment subsystem reference models, but they also

provide useful indicators to knowledge engineers and system experts, when the approach

being used is not a good fit for the fault being analyzed.

IV.6 Conclusions

The supervised data mining method employed for improving existing diagnostic refer-

ence models for aircraft derives Bayesian TAN classifiers from selected segments of aircraft

flight data, and with the help of domain experts, augment the existing Aircraft Diagnostic

and Maintenance reference models by : (1) updating threshold values on monitors, (2) dis-

covering new monitors, and (3) combining monitors to build super monitors to improve

overall diagnostic performance. Experiment 3 in Studies 1 and 2 demonstrated that the

knowledge engineering processes that combines supervised learning with the expert in-

terpretation and updates not only improved fault isolation capabilities, but fault detection

times are reduced in the flight sequence, thus aiding mechanics in their decision making

tasks for maintenance and improving overall safety by mitigating the occurrence of adverse

events. Case Study 3 demonstrates how the classifier performance alerts the knowledge en-

gineers and experts through TAN classifier accuracy and false positive rates, showing that
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the fault under consideration does not fit the reference model structure that is being used.

This led the experts to better understand the nature of the fault, i.e., the fault was at the

system level as opposed to the engine subsystem level.

It is important to note that this method is developed with the rarity of known failure

data in mind. It may be difficult to find enough data to build a robust classifier that works

across a number of different single faults. The consequence is that the generality of the

classifiers in this method across multiple faults is hard to test. Obviously as more data

is collected, the more confident an expert would be about the results, and the tighter the

discretization used in the CPTs, deriving even better thresholds and the avoidance of false

alarms and misclassification errors. One augmentation that cannot be done reliably is the

augmentation of probabilities used directly in the reference model by the reasoner. This is

because it requires a formalization of the necessary size of the dataset, to account for the

a-priori probability of a failure being present.

Whereas the knowledge engineering approach has produced successful results that are

practically useful but conceptually of limited applicability, we extend our data analysis

methods to more open approaches. These approaches are scalable in bit data, and have the

potential to discover previously unknown faults and anomalies in complex systems.
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CHAPTER V

EMPIRICAL STUDIES OF DISTANCE MEASURES FOR DIMENSIONALITY
REDUCTION OF TIME SERIES DATA

Chapter IV addressed supervised anomaly detection over large data by exploiting expert

knowledge to identify relevant flight data and simplifying the detection problem to a single

fault versus no fault analysis. In this case, the data curation process was well-defined

and we demonstrated a successful approach to building accurate models by producing new

knowledge for experts to analyze and incorporate this knowledge into existing diagnostic

reference models. The obvious disadvantage of the previous method is that it is limited

to known adverse or faulty situations. This constrains the data to small subsets which are

effective in supervised learning, but do not easily scale to dealing with multiple single fault

situations, and leave a large portion of the curated data unused.

We adopt another approach that uses exploratory analysis methods such as clustering

to detect and characterize previously unknown anomalies in our problem domains, which

results in new information data mined from large amounts of unlabeled data. Our approach

first identifies new anomalies in the data. We then characterize the anomalies by comparing

them against a nominal set to provide insight into the set of features that best differentiate

the anomalies from nominal situations.

This approach encounters the challenge of large dimensionality of the data. Our prob-

lem domains produce data with many instances, many features and temporal signals for

each feature. Specifically, the time series dimension of our data interferes with the use of

several unsupervised techniques for exploratory data mining. In order to leverage this un-

used data we simplify its time series dimension. We face another challenge in finding ways

to extract features and transform the data into organized datasets, while still maintaining in-

formation about the temporal characteristics of each feature. Our solution to this challenge
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must not only identify anomalies but also characterize them to help the expert understand

possible root causes and learn from these anomalous instances. Our approach for helping

the experts characterize the new anomalies is to extract the features that best differentiate

the anomalies from the common features found in the clusters that characterize the nomi-

nal set. This means the methods we use to simplify the temporal sequences maintain the

original feature information.

This chapter focuses on the dimensionality reduction task of the time series dimension.

This task starts with the three dimensional structure of the data cube described in Sec-

tion III.3.1 and reduces it to a structure of dissimilarities of each pair of instances, for each

original feature. This structure is then reduced to a two dimensional dissimilarity matrix

comparing each instance, which we apply to traditional unsupervised learning algorithms.

The chapter primarily focuses on studying different dissimilarity (distance) measures that

can be used in our approach for reducing the temporal signals, specifically for exploring the

aircraft flight systems and baseball domain. We explore possible choices for these distance

measures and perform experiments that focus on the properties of the different measures

when comparing different forms of temporal signals. We intentionally use well-defined

mathematical functions, so we can make systematic comparisons. The distance measures

chosen are representative of different approaches that have been employed to analyze time-

series data and the experiments are designed to test how distances react to the parameters

of the chosen test set.

The rest of the chapter is organized as follows. Section V.1 outlines the approach for

measuring the complexity of the time series aspect of the data cube and reducing it to a

form where traditional clustering algorithms can be applied. Section V.2 describes the dif-

ferent dissimilarity measures and justifies the choices of complexity measures considered

in this work. Section V.3 describes the test suite of data and evaluation method used for

performing these experiments. Section V.4 presents the results of the test suite and identi-

fies the best performing dissimilarity measures. To further demonstrate the effectiveness of
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the approach, Section V.5 takes the best performing measures and applies them to a labeled

multivariate time series dataset. The ability to classify the data objects provides us with an

indication of the effectiveness of these measures in analyzing real data. Section V.6 pro-

vides a summary of the experimental results, and picks the best performing dimensionality

reduction method for application to our two primary problem domains in later chapters.

V.1 Dimensionality Reduction Approach

Considering the data representation modeled in the data cube defined in Chapter III,

there are two ways in which the data cube can be simplified:

1. by reducing the number of features in the data cube, and

2. by reducing feature descriptions that are represented as time series data.

Our overall goal is to apply unsupervised techniques to identify anomalous instances. An

approach to achieving the first type of reduction is performed where researchers unroll the

data cube, so that each sample of each feature is transformed into a feature itself [94]. This

unrolled cube in two dimensions and each instance now possesses M times TM features,

where M represents the dimensionality of the original feature space. Principal Component

Analysis is then applied to build a reduced and orthogonal feature space. From this new,

shortened dataset, the Density based clustering [94, 98] is applied to identify outliers. This

approach is effective at reducing the dataset size but possesses downsides for our data. The

unrolling transformation and the nature of PCA means each time sample for a signal is

assumed to be independent of the rest of the signal points. Also, any correlation between

the original features is removed. There is definitely a loss of information for each feature

value because the time correlations are ignored. The reduction of the feature dimension in

to a new set also impacts the ability to quantify the relevant features for an anomaly since

the feature space has lost the semantic meaning during both the unrolling and the PCA

transformation.
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The second class of approaches are applied to compress the data along the time series

dimension. The reduction of this dimension retains the instance information, and allows

for characterization of the anomalies in the original feature domain without loss and trans-

formation of the feature set. Our approach is to reduce the time series information into as

small of a number of values as possible. This is balanced with maintaining as much in-

formation about the signal’s temporal characteristics. In other words, we may assume that

the method reduces the complexity of the signal. Our approach is based on using measures

of complexity to define signal characteristics by a small vector of values or evan a single

value.

The complexity measures studies can be used to characterize a signal in terms of a small

set of discrete values such as wavelet coefficients or they provide a mechanism for com-

puting between pairs of signals. Pairwise differences between these new reduced values

are defined as a dissimilarity metric. Primary metrics include the Manhattan, Euclidean,

and Mahalanobis metrics [71]. Not all distance based measures have metric properties ,i.e.,

they satisfy the triangle inequality.

Given the measurement chosen to represent the time series, the dataset is reduced to

either a two dimensional data set or a cube made up of distance matrices. Single signal

reductions produce a dataset made up of the instances and the complexity measurements for

each of the features. When a dissimilarity measure is utilized, our data cube is transformed

into another similarly shaped cube, as shown in Figure 17. This is now as series of M

matrices, each of dimension NxN instances. The final reduction of the cube to a data set

for cluster studies combines these matrices into one dissimilarity matrix for analysis.

Our approach is to apply a modified form of the Euclidean distance to each pair of

instances in the data. We define this as

mED(D) =

√
M

∑
m=1

ωm ∗D2
m
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, where D is the vector of dissimilarity measures for each feature, for a given pair of in-

stances i and j. The value ωm normalizes the pairwise distance by the max distance for

any pair in the distance matrix for the particular feature. The weighting of each distance

in the vector ensures that each feature is represented on an appropriate scale. Applying the

function to every pair of instances reduces each pairwise distance to a single value and the

cube into a two dimensional matrix.

Feature M
dii dij din

dniFeature 3
dii dij din

dni
Feature 1

dii dij din

dni

Feature 2dii dij din

...

Figure 17: Example of a Data Cube of Dissimilarity Measures

V.2 Background on Complexity Measures

There are many choices for computing the complexity of temporal signals for com-

parison and modeling. In anomaly detection, there are needs that these measures must

satisfy to be effective. Primarily, the measure needs to be sensitive to the important differ-

ences between signals, but not be overwhelmed by unnecessary details. Methods can be
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as simple as Autoregressive Model Order Estimation [69], which measures the complexity

in a signal by the coefficients, i.e., the order of the regression function, in the polynomial

function model of the temporal signal that minimizes the mean square error estimate [75].

While this method is easy to apply to our data, it may not have enough power to isolate

small differences in signals of the same type (such as two quadratic functions). Secondly,

in complex system domains, where operations may generate large amounts of data, the

measures should be relatively efficient in its computation. The Embedded Space Eigen

Spectrum [65] looks at the fractional spectral radius in a pre-determined set of n eigenval-

ues found after decomposing the set of embedded vectors that capture a signal over a time

window. This method has great power in locating differences, but the computation neces-

sary for eigenvector decomposition is an obstacle to using for dimensionality reduction.

We investigate a number of choices for measuring this complexity using compression,

information theory and signal analysis methods. Our choices include Approximate Kol-

mogorov Complexity, Complexity-Invariant Distance, Approximate Entropy, and the Haar

Wavelet transformation for representing a signal.

V.2.1 Compression-based Methods

Compression based methods utilize compression algorithms such as the standard bzip

algorithm that takes a data string and reduces it to a smaller string for storage purposes [50].

Compression algorithms are designed to take advantage of redundant information in the

original string and reduce that information into a smaller sequence that can be reconsti-

tuted at a later time. Lossless algorithms produce compressed strings which when decom-

pressed are identical to the originating input. Lossy algorithms, on the other hand, may

ignore information in the string during compression, and a decompressed string will be

similar, but not exactly the same as the original. Lossless algorithms are important for text

and sensitive data that requires precision to use. Lossy algorithms are used for efficient
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transmission of images and multimedia where a loss in precision can be tolerated. Com-

pression algorithms are most effective if the data can expressed as a repetitive pattern. The

simpler this pattern, the smaller the size of the compressed string. In time series data, if

the signal can be described as a repetition of a basis function, it can be compressed more

effectively than a signal with a more random sequence. For time series data, we want to use

compression for identification of when the signal is more complex and than another signal

with more pattern based behavior. There are two primary methods we examine that use

compression methods to compare strings of data: Approximate Kolmogorov Complexity

and Complexity-Invariant Distance.

V.2.1.1 Approximate Kolmogorov Complexity

Kolmogorov complexity (KC) [77] defines the complexity of a signal (an ordered string

of values) as the smallest Turing machine that can reproduce that signal [82]. Complex

signal patterns require longer program segments to recreate the pattern, as compared to

simpler and repeating patterns. However, Turing Machines are a theoretical construct, and

methods to compute exact KC values for an arbitrary set of signals is non-existent.

A practical alternative is finding reasonable approximations of the measure using com-

pression algorithms that can be applied to compacting the data. Similar to the KC theory,

a complex signal will require more space even after compression, much like a longer Tur-

ing machine would be necessary to produce the same signal. The measures are best used

with lossless compression algorithms so that information in the data is not lost during

compression. The memory footprint of a signal after lossless compression can be used as

the approximate measure of the complexity for that signal. A compression algorithm that

captures relevant information from the data using a minimal footprint is a more accurate

description of the KC approximation. An approach to understanding how efficient a com-

pression algorithm is for a given signal may involve a comparison of the compression result
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for that signal compare to other signals. Therefore, the Approximate Kolmogorov Com-

plexity is represented as a relative measure, i.e., a measure of the pairwise distance between

two signals, which measures the comparative complexity of one signal given another.

There are a number of distance measures that have been employed to compute ap-

proximate Kolmogorov complexity, including Normalized Compression Distance [32], the

Chen-Li Metric [144], the Compression-based Dissimilarity Measure [77] and Compression-

based Cosine distance [144]. Most of these dissimilarity measures initially appear to be

different, but after careful examination they can be deconstructed to show that they have

the same basic structure [144].

The dissimilarity metrics assume a compression function C that compresses a string

and for any pair of strings x and y, we may compute a number of parameters C(x), C(y),

C(xy), and C(x|y). The output of C(x) or C(y) is the compressed lengths of strings x and

y. We measure this compression in bytes of storage for the compressed strings. C(xy)

is the number of bytes required to store the concatenated string “xy” and C(x|y) is the

compression of x, using the compression profile of y. This last measurement is semantically

similar to the original idea behind Kolmogorov-Complexity, where one string forms the

basis for finding the information in the other. The nature of compression algorithms does

not guarantee that the corresponding dissimilarity measure satisfies the symmetric property

as C(xy) may not equal C(yx).

A number of different dissimilarity metrics may be derived from the primary compres-

sion measures, but a few have become popular in the literature:

1. the Compression-based Dissimilarity Measure (CDM), and

2. the Normalized Compression Distance (NCD).

CDM measures the dissimilarity between signal x and signal y as

CDM(x,y) =
C(xy)

C(x)+C(y)
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. This value is bounded by the interval [.5,1], where 1 implies complete dissimilarity and

.5 represented the case when the two signals are identical. This measure does not satisfy

the triangle inequality.

NCD measures the dissimilarity as

NCD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)}

. The values for NCD are bounded by the interval [0,1], where a value of 1 implies complete

dissimilarity. Unlike CDM, the interval is twice as large, with 0 representing complete

similarity between signals. This larger interval, and the fact that NCD has metric properties:

1. NCD(x) = NCD(xx) , and

2. NCD(xy) = NCD(yx), and

3. NCD(xz)≤ NCD(xz)+NCD(yz)

makes it a more appealing dissimilarity metric.

Moreover, it has previously been employed by clustering applications [32]. From this

information, we use the NCD measure over CDM in our experiments.

V.2.1.2 Complexity-Invariant Distance

Approximations of Kolmogorov Complexity attempt to identify the distance between

two signals purely based on the complexity as a form of compression. The Complexity-

Invariant Distance Measure (CiDM) was built to addresses shortcomings in that approach

for time series signals [6]. The CiDM was built with time series data in mind, and instead

of using only compression to find the dissimilarity, CiDM uses compression as a way of

normalizing the Euclidean distance. The CiDM is defined as:

CiDM(x,y) =
(ED(x,y)×max{C(x),C(y)})

min{C(x),C(y)}
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and the Euclidean Distance is defined as:

ED(x,y) =

√
n

∑
i=1

(xi− yi)2

This measure is invariant to complexity, which is to say that it is designed to account for the

fact that signals of the same general type with issues such as noise contain varying levels

of complexity. By normalizing the Euclidean distance by the measured complexity, CiDM

removes this variance and measures the signals more effectively. Considering our approach

is geared towards anomaly detection, in which the domain will remain fairly consistent, this

seems an appropriate choice.

V.2.1.3 Compression Algorithms

The choice of compression algorithm and the ability of the algorithm to work with

certain types of data can improve the efficiency of the compression. As mentioned for the

KC Complexity, this choice of compression can make the measure of complexity a more

accurate approximation. Given the possibility that the data to be compressed could be

noisy, we want our compression method to be sensitive to differentiating among signals,

and at the same time, robust to noise. Note that a signal that is pure noise, i.e., sampled

from a random distribution, will have high compression values masking the contribution of

the actual signal.

The first compression algorithm chosen comes from the DEFLATE family of algo-

rithms. This algorithm is an implementation known as DZIP [50]. The DEFLATE al-

gorithm is based on a two step process of running the LZ77 compression algorithm [10]

and then using Huffman Coding [80] to find a compact representation. LZ77 is a sliding

window based compression algorithm. The operation of LZ77 is to locate a pattern of a

specified window length, and replace all occurrences of this pattern except for the origi-

nal with two markers. The first points to the index of the original pattern and the second
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describes how long the pattern was repeated from the markers placement. The output of

LZ77 is a series of original patterns interspersed with markers for these patters as repeated.

Huffman coding is then applied to the reduced signal to find a compact representation. The

implementation of DZIP specifically deals with finding the appropriate window length, and

reducing the overhead of storing the Huffman code trees in the data string.

The second compression algorithm we used is the extension of the Lempel-Ziv com-

pression of LZ77 called Lempel-Ziv-Welch (LZW) [109, 143]. LZW is used in GIF image

compression and has a hardware implementation. Simply, LZW is similar to the window-

based method of LZ77, but attempts to encode the pattern representation of LZ77 using an

incremental bit representation that mimics the Huffman Coding. This choice of compres-

sion is to provide a similar approach to the DZIP implementation of DEFLATE.

A third algorithm is prediction by partial matching (PPM) [33, 176]. PPM diverges

from the LZ77 base that the previous two compressors utilize for pattern decomposition.

PPM counts the original string’s symbols and uses probabilistic methods to find the most

common repeated patterns. The more common the pattern, the smaller the number of bits

to represent it in the compressed representation. More complex strings will have fewer

higher probability patterns and require a less compact compression. These values are used

during decompression to produce the next symbol in the decompressed string by using the

current portion of the decompressed string as the predictive value.

Our final compression algorithm is the Burrows-Wheeler transform (BWT) [19, 104].

BWT operates more as a front end to a compression algorithm, by pre-processing the string

before another technique compacts the string representation. This preprocessing is a sorting

algorithm. This sorting rearranges the string to a format that isolates as many patterns as

possible, making the compression of the string more efficient.

The number of different ways in which we compute our compression-based complexity

methods of a signal is the Cartesian product of the set of distance measures that are chosen

and the possible compression algorithms used on the signals. This leaves us with 2 Distance
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Measures and 4 compression algorithms, for 8 possible choices. A compression algorithm

and accompanying distance metric may be better suited for certain kinds of signals, and our

initial experiments help discover “the best” compression methods and distance measures.

The empirical studies help to determine the properties of the compressions algorithm, and

then determine the one that best matches our needs for comparing time series.

V.2.2 Approximate Entropy (ApEn)

ApEn [65, 126] is a measure that reduces the entire signal to a single value, representing

how much entropy it contains over time. This is in contrast to the compressor methods

which utilize a pairwise distance and measure the values of compressed versions of the

signals. Entropy is a probabilistic measure from information theory linked to information

gain or information content. A measure of information content is the number of bits needed

to encode a signal for transmission. The more predictable the signal, the smaller the number

of bits required to encode information. Pincus defines ApEn formally as the measure of “the

likelihood that runs of patterns that are close for [a number of] observations [in the signal]

remain close on the next incremental comparison. [126]” The ApEn measure examines

the change in entropy of the signal over increasing windows of time, and computes the

increase in entropy as the window size is increased over a signal of length N. The function

to calculate ApEn has two parameters, a starting window size m and a tolerance r which

helps determine if two sections of data are similar enough. This function is defined as

ApEN(m,r) = φ
m+1()−φ

m()

where

φ
m(r) = (N−m−1)−1

(N−m−1)

∑
i=1

ln(Cm
i (r))

where ln is the natural logarithm and Cm
i (r) is the measure of the frequency of patterns of

size m which are similar, within a tolerance r, in the data starting from point i.
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ApEn has been used to help classify biomedical signals, such as EKGs and respiratory

responses [86] [148]. Recently it has been applied to analyzing noisy vibration signa-

tures for diagnosis problems [172]. The accuracy of the ApEn measure increases with the

window length (i.e., large number of data samples), but empirical studies show that it is

effective for sequences of the order of about 70-100 samples.

The output of ApEn is a single value for a signal. The compressor methods discussed

earlier compute distances by pairwise comparison of signals. ApEn is not a distance mea-

sure by itself. We calculate a distance, so that it can be compared with the methods above,

by computing the distance between two signals as the absolute value of the difference be-

tween the ApEn of the two signals.

V.2.3 Wavelet Based Representation

A number of interpolation methods have been developed for representing signals, such

as Fourier transforms [15], iterated function systems [107] and Wavelet transforms [38].

We have selected Wavelet transforms as a complexity measure because when applied continuous-

time signals (both discrete and continuous) the transform returns sets of scaled components

for each signal that capture the temporal and spatial properties of the signal. Wavelets

transforms offer advantages over Fourier transforms, which are purely frequency based,

because they are localized in space. This localization means scale components can return a

smaller number of components for the same function, making them ideal for compression,

and removing noise [165]. Wavelets are also faster to compute than methods using iterated

function system approaches. The complexity measure from the wavelet representation will

be based on the number of components, as well as the values for the components.

Given a signal represented as an ordered series of values [a,b,c,d], the calculation

of a wavelet transform begins with producing coefficients that correspond to the average,

e.g., [a+b
2 , c+d

2 ], and coefficients that correspond to the difference, e.g., [a−b
2 , c−d

2 ]. The

application applies the same two transformations to only the coefficients of the average.
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This occurs until the size of coefficients of the average is a single value. The transform

then collects the set of coefficients for each average and difference. This set can be used

to reconstruct the signal, and these coefficients can be compared to another signal, to see

how similar the scaled components are to one another and to provide a relative basis of

complexity.

Similar to ApEn, the output of the wavelet decomposition is not a distance but a re-

duced definition for a signal. In this case, the wavelet produces a series of coefficients

for the signal. An Euclidean distance measure can again be applied to the corresponding

coefficients of a pair of signals to produce a distance measure comparable with the one for

ApEn and the compressor methods. For our work we use these measures to reduce the

dimensionality of our data cube by transforming the temporal dimensions of each feature

to pairwise comparisons of these signals that produce a measure of dissimilarity between

pairs of instances.

V.3 Experimental Approach of Studying Dissimilarity Measures

We have presented three different approaches that are commonly used for measuring the

complexity of time series signals and reducing them to methods for pairwise comparisons

of signals. As a next step, we run a set of empirical studies to compare the properties

of the different approaches by applying these measures to a range of signals, as well as

discovering how specific these measures are at discerning differences within a given type

of signal. Our experiments focus on a set of artificial temporal signals that correspond to

first and second order dynamics. We are primarily interested in studying:

• the ability of the measures in differentiating between signal types, and

• the sensitivity of the measure to parameter changes within a type of signal.

We explore these differences in each measure by creating a series of experiments. We

first create a test data suite to examine a number of common signal types, and to explore
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the differences within each type across a set of values for selected parameters. We apply

our chosen complexity measures across the data suite and look for how well each measure

differentiates the different signal types using a classifier, and then measure how well each

measure differentiates the different parameters within each signal type. The goal is to

select a smaller number of measures that can be applied to our problem domains and used

to identify anomalies in real data. We finish our experiments by taking the best choices

of complexity measures from the test suite and applying them to a multivariate data set

produced from real world measurements. This data includes known labels to identify each

instance. We explore how the selected measures classify and cluster the data. This provides

insight into their effectiveness at identifying similar behaviors.

V.3.1 Test Data Suite

We have constructed an experimental test bench that includes a selection of the primary

signals characterizing basic dynamics: linear, quadratic, sinusoid, and a sinusoidal signal

with exponential attenuation. These signals are illustrated in the plots shown in Figure 18.

The linear and quadratic signals have similar parameters, as do the two types of sinusoidal

examples. The experiments conducted study the sensitivity of the distance metrics to the

parameter value changes in the signals of a particular type. Comparisons are also made

across the different types of signals.

Figure 18: Example Plots of a Signals for Test Data Suite
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The following parameters are varied for each signal type:

1. Slope and y-intercept for the linear time-varying signals,

2. The coefficient of the quadratic and linear terms for the quadratic signals,

3. The frequency and phase of the sinusoidal signals, and

4. The frequency and attenuation of the attenuated sinusoidal signals.

For small values of the quadratic parameter, the quadratic signals should be more simi-

lar to the linear signals, similarly for small attenuation values, the sinusoidal and attenuated

sinusoidal signals should be quite similar.

Our goal is to identify choices for these measures and metrics for use in anomaly de-

tection schemes, and these different studies of the signals help identify their general abili-

ties. Specifically, these studies test the ability to separate different signal types ,e.g., linear

from quadratic, and to also understand how sensitive the measures are to parameter values

changes in the same signal type.

With the exception of the attenuation parameter, the parameters were chosen to be

[1,10,50,100,500]. These values include a range of magnitude and multiplicative differ-

ences. The values of the attenuation parameter were chosen from the set [.001, .01, .01, .5,1],

which allows the attenuation to be very small and therefore, similar to non-attenuated si-

nusoidal behavior, and then a much bigger attenuation of the signal at the other end of the

spectrum. Since each signal was defined by two parameters, we ran 25 experimental com-

binations for each signal. The dynamic functions and the parameters values used for these

experiments are summarized in Table 8.

In addition to the comparison of the idealized ,i.e., noise free signals, we also made

comparisons of noisy signals by varying the signal-to-noise ratio. The noise model was

Gaussian with zero mean, and variance values were either 2% or 10% of the signal mag-

nitude. These comparisons of the noisy signal experiments to study the robustness of the

measures are also made over multiple trials.
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Function Values for k1 Values for k2
ẋ = k1 ∗ t + k2 [1,10,50,100,500] [1,10,50,100,500]

ẋ = k1 ∗ t2 + k2 ∗ t [1,10,50,100,500] [1,10,50,100,500]
ẋ = sin(k1 ∗ t)+ k2 [1,10,50,100,500] [1,10,50,100,500]

ẋ = expk1∗t sin(k2 ∗ t) [.001, .01, .01, .5,1] [1,10,50,100,500]

Table 8: Functions and Parameters Used for Test Data Suite

V.3.2 Structure of the Experiments with the Test Data Suite

Our experiments with the test suite are divided into two parts. Part 1 examined the

compression-based distances with the different compression algorithms. From this analy-

sis, we selected the best combination of distance and compression algorithm from the eight

possible choices. Part 2 of this study compare the best compression based measure against

the two other measures, ApEn and Wavelets. The combination of the experiments produces

a selection of the top choices for complexity measures. As a last step, we then apply the

chosen measures to a real world set that we acquired from the UCI Database.

The purpose of these experiments are to understand the effectiveness of the complexity

measures and to do this we

1. study the properties of the different complexity measure in differentiating between

the signal types, and

2. further study the ability of each measure to differentiate between signals of the same

time as the parameters are varied.

Before the start of either study, for each distance measure under consideration, we build

a distance matrix for each pair of signals in our data. This produces a matrix of 100 by 100

distances.

V.3.2.1 Differentiating Across Different Signals

The study of properties in the complexity measure are based on examining how well

the distances separate the different classes of signals (Linear, Quadratic, Sinusoid, and
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Attenuated Sinusoid). Taking a cue from previous work [77], we chose a one-nearest

neighbors classifier to compare the distances across all the signals in an effort to gage the

discriminating power between the signal types. The results are compiled into a confusion

matrix. We examine overall accuracy for the signals, and then study the confusion matrix

in more detail to identify the weak points in the classification. This evaluation is in terms

of the noise-free and noisy (two levels) signals.

V.3.2.2 Differentiating Within a Signal Type

Our examination of the measures abilities to differentiate the varying parameters for

each signal, requires measuring attributes about each signal and the distances between each

parameter choice. For each signal type, we examine how the distance measure varies as

one of the parameters is progressively increased. For example, we picked a linear signal

corresponding to slope 50 and a fixed intercept as the based signal S1, and computed the

distance from all other linear signals, i.e., those with slopes, 1, 10, 100, and 500 and the

same fixed intercept with S1. A similar experiment was conducted with linear signal S1

having intercept = 50 and a fixed slope, and then comparing linear signals with different

intercept values, but the same slope value.

Examining these trends, we produce two measurements to help identify behaviors of

the complexity measures. When examining the compression based methods, we measure

how sensitive the distances are for the range of parameters across the different compression

algorithms. Secondly, we record for all complexity measures, whether the distances in the

trend are monotonic.

Sensitivity of the measure is linked to the difference in the parameter values for the

two signals. In other words, the difference in the measure should be proportional to the

absolute difference between the two parameters that vary for the signal. The larger the

proportionality, the more sensitive is the complexity measure for that parameter, and the

better it is at differentiating that parameter space of a signal. This is useful to identify in
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the measure, since our anomaly detection may be looking at two signals that appear to be

generated by the same dynamic system, but whose coefficients are different. Less sensitive

measures are likely to generate false negatives.

The sensitivity measure is application to comparison of measures of the same type, be-

cause two measures may have very different scaling factors, thus there is no pre-determined

framework in which to compare the values of the measures. Therefore, we do not repeat

this comparison for the ApEn and the Haar Wavelet distances.

Due to the number of experiments run, specifically for the noisy signals, we describe

the sensitivity of signals in the result tables as a ranking, rather than by the range. This

ranking is an inverse number, i.e., the higher the number the more sensitive, the signal. We

also use a ’-’ implying the parameter distances were not monotonic, so the sensitivity is not

applicable.

The other measure within each signal is monotonicity. Monotonicity is the property

where as a parameter changes in value with respect to S1, the distance between the cor-

responding signals change in a way that preserves the order of the changes. If we find a

measure is not monotonic for a given signal it impacts how useful the distances are for pre-

dicting relative anomalous behavior to a normal value. A failure for a complexity measure

to be monotonic means that there is a possibility than an outlier signal for a sensor appears

closer to a nominal signal, than other signal behavior which is closer to nominal. The prac-

tical impact in our approach will be clusters and models that are not very informative in

terms of separating anomalous behavior from nominal. In our result tables, we summarize

the monotonicity result as: yes (Y) or no (N) with exceptions indicated if the trend was

mostly monotonic, except for the rare cases when noise corrupts the results for a single

parameter value.

As previously mentioned, the sensitivity values are not reported if the measure is not

monotonic. Taken together, these measures of within signal variance can help identify

measures that will be more suited to detect changes when a signal deviates from an expected
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behavior, but not changing radically from one signal type to another. These measures then

will be more specific in possibly identifying anomalous behavior in our problem domains.

V.3.3 Experiments with Real World Multivariate Time Series Data

The test data suite and experiments are used as a framework for gauging the distance

measures using tightly controlled parameters for the signals. The controlled nature of the

data and experiments limits our ability to explore how these measures may work in real-

world domains. Specifically, the test data suite explores univariate signals, whereas our data

in the problem domains is multivariate. TThe use of a real world dataset containing both

complex, multivariate time series data, as well as known labels provides another experiment

for exploring the best complexity measures in our test data suite.

V.3.3.1 Real World Data

The selected dataset1 is a series of Electroencephalographies from a biomedical exper-

iment on addiction. The Electroencephalographies come from 120 people broken into two

groups:

1. A group diagnosed as alcoholics.

2. A control group made up of non-alcoholics.

Each participant was shown images and an Electroencephalographies measurement of

their brain activity was recorded. A hundred and twenty such trials were conducted for each

of the participants. Each Electroencephalography signal is made up a set of 64 channels,

and each channel records a temporal brain signal, creating a multi-variate time series. These

measurements are captured over 4 seconds and recorded at a sampling rate of 64Hz that

produced 256 time samples per channel. In our data cube representation, each participant

trial is the instance, and the cube has 64 features. Each feature for an instance is 256
1Found in the UCI data repository and donated by Henri Begleiter at the Neurodynamics Laboratory at

the State University of New York Health Center at Brooklyn.
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samples long. This cube is also annotated with information identifying the participant,

the trial for the data collected, and a label indicating whether or not the participant is an

alcoholic.

This data has previously been used for classification studies using methods such as Auto

Regressive modeling [44], HMMs [178], ApEN [2], and even SVMs trained with Haar

Wavelets and PCA [83]. These studies have produced good accuracy results using a variety

of complexity measures found in our own study, combined with supervised classification

algorithms.

We limited the size of original the data cube for our experiments. This was done by

sampling without replacement 100 trials for each label. The sampling focused on the same

image type, but was agnostic of the participants (hence a participant may show up more

than once). This produced a cube that focused the data on a contextually similar series of

the Electroencephalography experiments. This provides a consistency when comparing the

complexity of the time series for each participant.

V.3.3.2 Approach to Exploring the Data

Using this data, and the selected distance measures, we build a distance matrix for each

feature and produce the data cube made up of distance matrices. The next step is to build

a distance matrix that represents the entire feature space, for exploration. Our modified

Euclidean distance measure that normalizes each feature, is used to compute an overall

distance between a pair of instance in the data.

The labels in this data present a chance to explore the effectiveness of the distance

matrix to identify the two classes of participant. In order to do this, we run a series of

N-Nearest Neighbor classifiers (N=1,3,5,7) to classify each instance in the data and study

the classification accuracy.
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Besides a classification study based on our measures, we utilize the fact that the dis-

tance measures we find are suited to the task of unsupervised methods. The second exper-

iment with this data is to cluster the distance matrix and explore the smaller clusters for

anomalies. Exploiting the knowledge of the labels, we explore the relationships between

the participants.

V.4 Empirical Studies of the Models

The results from the test suite are presented below. We first examine the impact across

different signals and measure effectiveness within signals to find the best compression-

based method and compression algorithm. We then compare that choice against the results

of ApEn and the Haar Wavelet using the same data.

V.4.1 Experiment 1: Selecting the Best Compression Algorithm and Complexity

Measure

Using the test data suite, we look at the classifier results first to identify which distances

and compression algorithms are the most robust to noise. We then look at the within signal

measures to find the most sensitive and monotonic combination.

V.4.1.1 Classifier Results

The confusion matrices of the one-nearest neighbor classifier for data built using NCD

are shown in Tables 9,10, and 11. The results show that the NCD measure combined with

PPM and BWT produce the best results accuracy-wise for non-noisy and noisy signals.

The confusion matrix for NCD with PPM and BWT shows that as the noise increases, the

results for linear signals and the quadratic signals degrade. For LZW, the weaknesses are

the inability to differentiate between sinusoids for attenuated sinusoids with a very small

attenuation. The issues with the classifier show in the no noise scenario and are consistent

across the noise range.
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Linear Quadratic Sinusoid Atten. Sinusoid

DZIP Linear 96% 4% 0% 0%
Quadratic 0% 96% 0% 4%
Sinusoid 0% 0% 92% 8%

Atten. Sinusoid 0% 0% 0% 100%
LZW Linear 96% 4% 0% 0%

Quadratic 4% 96% 0% 0%
Sinusoid 0% 0% 96% 4%

Atten. Sinusoid 0% 0% 0% 100%
PPM Linear 64% 36% 0% 0%

Quadratic 0% 96% 0% 4%
Sinusoid 0% 0% 96% 4%

Atten. Sinusoid 0% 0% 0% 100%
BWT Linear 100% 0% 0% 0%

Quadratic 0% 96% 0% 4%
Sinusoid 0% 0% 92% 8%

Atten. Sinusoid 0% 0% 0% 100%

Table 9: NCD One Nearest Neighbor Classification Accuracy - No Noise
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Linear Quadratic Sinusoid Atten. Sinusoid

DZIP Linear 89.2% 10.8% 0% 0%
Quadratic 0% 96% 0% 4%
Sinusoid 0% 0% 90.8% 9.2%

Atten. Sinusoid 0% 0% 0% 100%
LZW Linear 86.8% 13.2% 0% 0%

Quadratic 0% 96% 2.8% 1.2%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 0% 100%
PPM Linear 88.4% 11.6% 0% 0%

Quadratic 0% 96% 0.4% 3.6%
Sinusoid 0% 0% 90.4% 9.6%

Atten. Sinusoid 0% 0% 0% 100%
BWT Linear 92% 8% 0% 0%

Quadratic 0% 96% 0% 4%
Sinusoid 0% 0% 96% 4%

Atten. Sinusoid 0% 0% 0% 100%

Table 10: NCD One Nearest Neighbor Classification Accuracy - 2% Noise
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Linear Quadratic Sinusoid Atten. Sinusoid

DZIP Linear 88.8% 11.2% 0% 0%
Quadratic 0% 96% 0% 4%
Sinusoid 0% 0% 90% 10%

Atten. Sinusoid 0% 0% 0% 100%
LZW Linear 87.6% 12.4% 0% 0%

Quadratic 0% 96% 2.4% 1.6%
Sinusoid 0% 0% 78.8% 21.2%

Atten. Sinusoid 0% 0% 0% 100%
PPM Linear 79.6% 20.4% 0% 0%

Quadratic 0% 96% 2% 2%
Sinusoid 0% 0% 94.4% 5.6%

Atten. Sinusoid 0% 0% 0% 100%
BWT Linear 92% 8% 0% 0%

Quadratic 0% 96% 2% 2%
Sinusoid 0% 0% 95.6% 4.4%

Atten. Sinusoid 0% 0% 0% 100%

Table 11: NCD One Nearest Neighbor Classification Accuracy - 10% Noise

The CiDM results shown in Tables 12,13,and 14 revealed a more robust handling of

noise. This positive result is countered by a sharper loss in accuracy with all compression

algorithms when comparing low attenuation sinusoids and the original signal.

This weakness for both CiDM and NCD with LZW can be explained by the fact that low

attenuation values do not result in big differences from the non-attenuated sinusoids that

have low frequency parameters. CiDM’s use of Euclidean distance caused more confusion

than NCD that is based on pure compression values. In general, we find that CiDM may

be problematic for sensor values that show small decay in the measurements. In general,

however, both metrics work quite well with all of the compression algorithms.

V.4.1.2 Monotonicity and Sensitivity Analysis

Tables 15 and 16 list the monotonicity and sensitivity results for the four signals types

as non-noisy signals. Each entry in the table corresponds to a signal type run with a com-

pression and distance measure pair. The first value for each entry deals with changes in
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Linear Quadratic Sinusoid Atten. Sinusoid

DZIP Linear 100% 0% 0% 0%
Quadratic 0% 100% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
LZW Linear 96% 0% 0% 4%

Quadratic 0% 100% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
PPM Linear 100% 0% 0% 0%

Quadratic 0% 100% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
BWT Linear 100% 0% 0% 0%

Quadratic 0% 100% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%

Table 12: CiDM One Nearest Neighbor Classification Accuracy - No Noise
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Linear Quadratic Sinusoid Atten. Sinusoid

DZIP Linear 96% 0% 4% 0%
Quadratic 4% 96% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
LZW Linear 96% 0% 0% 4%

Quadratic 3.2% 96.8% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
PPM Linear 100% 0% 0% 0%

Quadratic 4% 96% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
BWT Linear 100% 0% 0% 0%

Quadratic 4% 96% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%

Table 13: CiDM One Nearest Neighbor Classification Accuracy - 2% Noise
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Linear Quadratic Sinusoid Atten. Sinusoid

DZIP Linear 96% 0% 4% 0%
Quadratic 4% 96% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
LZW Linear 96% 0% 0% 4%

Quadratic 3.2% 96% 0% 0.8%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
PPM Linear 100% 0% 0% 0%

Quadratic 3.6% 96.4% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%
BWT Linear 96% 0% 4% 0%

Quadratic 4% 96% 0% 0%
Sinusoid 0% 0% 80% 20%

Atten. Sinusoid 0% 0% 20% 80%

Table 14: CiDM One Nearest Neighbor Classification Accuracy - 10% Noise

the parameters for slope (linear) , the x2 coefficient (quadratic), frequency (sinusoids), and

level of attenuation (attenuated sinusoids). The second value stands for the y-intercept

(linear), the coefficient of the first order term, x (quadratic), phase change (sinusoid) and

frequency (attenuated sinusoid).

Overall, there is not much change in the results from noiseless signals to 2% noise, but

there is significant deterioration in the quality of the results (monotonicity and sensitivity)

when the noise levels reach 10%. On closer observations, CiDM has better monotonic and

sensitivity properties across signal types and parameter value changes; The exception is

for sinusoidal signals for all compression measures, indicating that none of the compres-

sion measures are effective for periodic signals. The NCD measure has poor monotonicity

properties across the board, but has its best results for LZW compression. For CiDM, LZW,

BWT, PPM and DZIP show similar results.
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Signal Template Distance Measure
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NCD
Monotonicity* Sensitivity*

DZIP Linear N, N -, -
Quadratic Y, N 1, -
Sinusoid Y, N 3, -

Atten. Sinusoid N, Y -, 1
LZW Linear Y, N 1, -

Quadratic Y, Y 2, 1
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 3
PPM Linear N, N -, -

Quadratic N, N -, -
Sinusoid Y, N 2, -

Atten. Sinusoid N, N -, -
BWT Linear N, N -, -

Quadratic N, N -, -
Sinusoid Y, N 1, -

Atten. Sinusoid N, Y -, 2

Table 15: Monotonicity and Sensitivity with No Noise

Signal Template Distance Measure
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CiDM
Monotonicity* Sensitivity*

DZIP Linear Y, Y 2, 2
Quadratic Y, Y 2, 2
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 1
LZW Linear Y, Y 2, 2

Quadratic Y, Y 2, 2
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 4
PPM Linear Y, Y 2, 2

Quadratic Y, Y 2, 2
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 2
BWT Linear Y, Y 2, 2

Quadratic Y, Y 2, 2
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 3

Table 16: Monotonicity and Sensitivity with No Noise
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Tables 17 and 18 show these same analyses for 2% noise. The major difference com-

pared with Tables 15 and 16 is that NCD for every compressor save BWT is less mono-

tonic. For CiDM, monotonicity also suffers with the high values of the parameters. In

particular, LZW shows the worst results. This may be attributed to the nature of the LZW

algorithm which uses 8 bit integers in the compression algorithm, which is insufficient for

large signal values. Even with the robust nature of LZW above, this limitation disquali-

fies LZW from being a possible compressor choice in the anomaly detection phase of this

work. In this case we find CiDM as the superior measure with PPM and BWT the better

compressors.

Signal Template Distance Measure
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NCD
Monotonicity* Sensitivity*

DZIP Linear N, N -, -
Quadratic Y, N 1, -
Sinusoid N, N -, -

Atten. Sinusoid N, N -, -
LZW Linear Y (except 1), N 2, -

Quadratic N, N -, -
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 2
PPM Linear Y (except 1), N 1, -

Quadratic Y, N 3, -
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 1
BWT Linear Y, N 1, -

Quadratic Y, N 2, -
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 1

Table 17: Monotonicity and Sensitivity with 2% Noise

Lastly, Tables 19 and 20 represent the analysis with the maximum amount of noise

introduced into the signals at 10%. Here, only BWT is robust in place for NCD. In CiDM,

both PPM and BWT remain robust with the monotonicity of the linear signal for y-intercept
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Signal Template Distance Measure
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CiDM
Monotonicity* Sensitivity*

DZIP Linear Y, Y (Except 500) 1, 1
Quadratic Y, Y (Except 500) 1, 1
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 3
LZW Linear Y, Y(Except 500) 2, 2

Quadratic Y(Except 500), Y(Except 500) 1, 1
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 4
PPM Linear Y, Y(Except 500) 1, 1

Quadratic Y, Y(Except 500) 1, 1
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 2
BWT Linear Y, Y(Except 500) 1, 1

Quadratic Y, Y(Except 500) 1, 1
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 2

Table 18: Monotonicity and Sensitivity with 2% Noise

monotonicity disappearing , otherwise both compressors remain similar to the 2% noise

analysis.

These results point to a choice between PPM and BWT with CiDM as the best choices

to implement the KC approximation. Between PPM and BWT, we picked the PPM com-

pressor because it more efficient to compute on the data. Thus we choose the CiDM/PPM

combination as the best choice from these combinations.

V.4.2 Experiment 2: Comparison with Approximate Entropy and Wavelets

V.4.2.1 Classifier Results

As a next step, we chose the best combination for the KC measure (CiDM/PPM) and

compared them again the ApEn and the Haar Wavelet based distance measures using the

same comparison criteria as the last experiment. The confusion matrix for ApEn with no

noise in Table 21 shows one of the higher accuracies in the presence of no noise with a
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Signal Template Distance Measure

C
om

pr
es

si
on

A
lg

or
ith

m
s

NCD
Monotonicity* Sensitivity*

DZIP Linear N, N -, -
Quadratic Y(Except 500), N 1, -
Sinusoid N, N -, -

Atten. Sinusoid N, N -, -
LZW Linear P, N 3, -

Quadratic N, N -, -
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 2
PPM Linear Y(Except 1), N 2, -

Quadratic Y(Except 10), N 2-, -
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 1
BWT Linear Y, N 1, -

Quadratic Y, N 2, -
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 1

Table 19: Monotonicity and Sensitivity with 10% Noise

Signal Template Distance Measure
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CiDM
Monotonicity* Sensitivity*

DZIP Linear Y, N 1, -
Quadratic Y, Y(Except 500) 1, 1
Sinusoid N, N -, -

Atten. Sinusoid N, Y -0.1
LZW Linear Y, N 2, -

Quadratic Y, Y(Except 500) 1, 2
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 2
PPM Linear Y, N 1, -

Quadratic Y, Y(Except 500) 1, 1
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 1
BWT Linear Y, N 1, -

Quadratic Y, Y(Except 500) 1, 1
Sinusoid N, N -, -

Atten. Sinusoid N, Y -, 1

Table 20: Monotonicity and Sensitivity with 10% Noise
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98% accuracy and is clearly able to distinguish between the information in the different

signals. The confusion matrix shows that the few errors for noiseless signals with ApEn

occur in differentiating the quadratic signals from both types of sinusoidal signals. This

overall excellent result is undermined by the results in the presence of noise, such as those

shown for 2% noise in Table 22 where the ability discriminate between the linear and

quadratic functions breaks down. This result grows worse with 10% noise having less than

50% accuracy overall. This result is simply much worse than the best choices from the

Complexity-based measures.

Linear Quadratic Sinusoid Atten. Sinusoid

Linear 100% 0% 0% 0%
Quadratic 0% 92% 4% 4%
Sinusoid 0% 0% 100% 0%

Atten. Sinusoid 0% 0% 0% 100%

Table 21: Classification Accuracy: ApEn Wavelet One Nearest Neighbor Results -
No Noise

Linear Quadratic Sinusoid Atten. Sinusoid

Linear 44% 66% 0% 0%
Quadratic 48% 48% 4% 0%
Sinusoid 0% 8% 92% 0%

Atten. Sinusoid 0% 0% 12% 88%

Table 22: Classification Accuracy: ApEN Wavelet One Nearest Neighbor Results -
2% Noise

The Haar wavelet based distance is a more robust measure and produces accuracy re-

sults similar to the CiDM measures. The confusion matrix in Table 23 shows the Haar

doing particularly well with an overall 97% accuracy. The measure has problems when dif-

ferentiating the attenuation coefficient sinusoid from similar sinusoid based signals. Closer
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examination of the 8% misclassification of the attenuated sinusoid as the standard sinusoid

shows the problem with classification as an issue with the Haar wavelet being unable to

handle the lowest attenuation coefficient and confusing the signal with the sinusoid having

the same frequency. Any noise increase with the Haar wavelet distance produced the same

confusion matrix and accuracy. This showed the most robustness to noise of any of the

measures.

Linear Quadratic Sinusoid Atten. Sinusoid

Linear 96% 0% 0% 0%
Quadratic 0% 100% 0% 0%
Sinusoid 0% 0% 100% 0%

Atten. Sinusoid 0% 0% 8% 92%

Table 23: Classification Accuracy: Haar Wavelet One Nearest Neighbor Results

From these experiments, ApEn would be the best choice for noise free situations. CiDM

and wavelets compare favorably, with similar problems in terms of classification errors.

The wavelet transformation shows the best robustness property for noisy signals.

V.4.2.2 Monotonicity Analysis

No Noise 2% Noise 10% Noise

Linear I,I N,N N,N
Quadratic N,Y N,N N,N
Sinusoid N,N N,N N,N

Atten. Sinusoid N,Y N,N N,N

Table 24: ApEn Monotonicity Results

The results for monotonicity for APEn in Table 24 and for the wavelets in Table 25 are

contrasted with the choice of CiDM with PPM and provide insight into the classification
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No Noise 2% Noise 10% Noise

Linear Y,Y Y,N Y,N
Quadratic Y,Y Y,N Y,N
Sinusoid N,N N,N N,N

Atten. Sinusoid N,Y N,Y N,Y

Table 25: Haar Wavelet Monotonicity Results

results. For example, in ApEn, the linear signals are invariant (‘I’) and zero. However, only

the ‘x’ coefficient of the quadratic signal and the attenuation coefficient are monotonic for

the signals with no noise. Once noise is introduced, the linear signals no longer satisfies

the monotonicity property, and the rest of the parameters are also non-monotonic. This

would make sense, since the ApEn’s classification accuracy was poor, for even a moderate

amount of noise.

Investigating the monotonicity of the wavelets produces results similar to the CiD-

M/PPM combination. The dissimilarities are under the presence of noise. Comparing the

wavelet results in Table 25 where the secondary coefficients for the linear case (the slope)

and the quadratic (first order term) both lose monotonicity with those in Tables 19 and

17 , where CiDM/PPM maintains monotonicity for all cases of parameters but the largest.

While CiDM/PPM appears to be the choice for identifying differences in a signal type, the

Haar wavelets produce comparable results.

V.5 Multivariate Time Series Experiments on Real Data

The experiments on the test data suite show that the wavelet transform and the CiD-

M/PPM combination are the two most accurate measures that are both robust to noise

while remaining sensitive to detecting changes in signals of the same general type. We

utilize both measures with the selected real world data of the EEGs to look at both their

classification abilities as well as how they cluster the data.
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Both measures using the 1,3,5, and 7 nearest-neighbor classification produce contrast-

ing results as shown in Tables 26 and 27. The CiDM/PPM combination resulted in an

highest overall accuracy of 60.8% on the 3 nearest neighbor classifier. The breakdown of

this classification was 73.73% accuracy on the alcoholic group, and a low 48.48% accu-

racy on the control. Using the Haar Wavelet distance, the accuracy was highest with 1-NN

classifier at 69.84%, with the breakdown of 71.71% accuracy on the alcoholic group, and

68.68% accuracy with control. Classification of with the wavelets was slightly less accurate

on the alcoholic group, but was much better at identifying the control group.

N-Nearest Neighbor Overall Accuracy Alcoholic Accuracy Control Accuracy
1 59.79% 66.66% 53.53%
3 60.80% 73.73% 48.48%
5 57.28% 74.74% 40.40%
7 59.29% 76.76% 42.42%

Table 26: Nearest Neighbor Classification Accuracy of EEG data with CiDM/PPM

N-Nearest Neighbor Overall Accuracy Alcoholic Accuracy Control Accuracy
1 69.84% 71.71% 68.68%
3 63.81% 70.70% 57.57%
5 63.31% 73.73% 53.53%
7 63.31% 74.74% 52.52%

Table 27: Nearest Neighbor Classification Accuracy of EEG data with Haar Wavelet
Transform

These results while less accurate than the methods designed specifically for classifi-

cation, show similarities to some of the conclusions drawn from previous work [44] with

the dataset. Specifically, the classification methods of other researchers and our use of

distances measures show the alcoholic group as easier to classify than the control. The

control group may have a larger variance of response to the stimuli whereas the alcoholic
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group is more cohesive in signal shape. Also of note, in the use of supervised learning

with the EEGs, among the best techniques was the Haar wavelet with PCA and a Support

Vector Machine classifier [83]. This coincides with the improvement in our experiments

with grouping the control samples using the wavelets.

We also clustered the data using our distance measures to look for properties of the

data. Since the wavelet transform performed the best in the classification study, we used

the wavelet distance matrix with a complete-link agglomerative clustering algorithm to pro-

duce a hierarchy. The resulting dendrogram was used to analyze the clusters and examine

the distribution of the labels. The overall dendrogram is shown in Figure 19. The partici-

pants are singletons at the bottom, and the horizontal line across the dendrogram at distance

11.3, presents a reasonable separation with 7 different clusters. We label them clusters 1

through 7 from left to right.

Figure 19: Dendrogram of EEG Data Using Haar Wavelet transform
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We examined this grouping and analyzed it for accuracy of labeling by group. We

compare the actual labels to the distribution in Table 28. We find that there are a couple

of large clusters which are fairly balanced. Since our best classifier with the wavelet based

distance matrix was a 1-Nearest Neighbor classifier, it makes sense that the structure for

the labels may be in the pairs at the bottom of the dendrogram.

Cluster Number # of Alcoholics # of Alcoholics
1 39 19
2 25 34
3 14 17
4 13 18
5 1 1
6 4 6
7 4 5

Table 28: Distribution of Labels in Clusters

V.6 Conclusions

We examined a number of dissimilarity measures designed to reduce the time series di-

mensionality of the data produced from complex systems. These distance measures cover

compression based methods, information theory, and signals analysis. The goal is to iden-

tify measures that can reduce this dimensionality and retain as much information about

the complexity of the signal for anomaly detection. We compared two compression based

measures, NCD and CiDM, and for each, we examined their effectiveness over a set of

compression algorithms. These choices were compared to Approximate Entropy, and the

Haar Wavelet Transform.

Utilizing distance measures for use in anomaly detection requires understanding how

precise the different measures are at differentiating between similar signal types. This

required a test data suite made up of several distinct signal types, each with a varying

set of parameters. The distances were examined for their ability to differentiate between
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the different signal types, and their changes within each signal type as the parameters are

varied. Within signal differentiation was measured using monotonicity and sensitivity as

performance measures. Lastly, the best distance measures in this test suite were examined

on a real-world multivariate time series dataset, a set of labeled Electroencephalographies.

The chosen distance measures were examined for how they differentiate the known labels,

and the clusters they create.

The results from the test bench showed that the use of CiDM with the PPM compression

was the most effective of the compression based methods. CiDM was particularly robust

when the signals in the test data were combined with Gaussian noise. When CiDM and

PPM were compared to ApEn and the wavelets, the wavelets was more robust to noise

in differentiating the different signals. The wavelet, however, lacked the ability to be as

precise with varying parameters of an individual signal type as CiDM/PPM. Both the CiDM

and wavelet measures were compared on the Electroencephalography dataset, where the

wavelets were more accurate overall, and particularly for the control group. Previous results

from other researchers on this data confirmed that the control group was harder to classify.

These results indicate that the wavelets are clearly superior in terms of classification, while

the test bench results for monotonicity indicate the CiDM and PPM would be preferable

to identifying distances when the signals are similar, a distinction that makes it still useful

for an anomaly detection task. When we clustered the Electroencephalography data using

the distance matrix based on the wavelet transform, we found that the data broke into 7

clusters. Looking at these clusters show a balance for the labels, indicating that similarities

for the labels exist more in the pairwise distances than as clusters of behaviors.

Previous studies on distance measures incorporate a large number of measures and

explore their accuracy on supervised learning tasks with complex and often univariate sig-

nals. This research is meant to take a more focused view for the purpose of our research

problem. This meant comparing the distances measures for their ability to help reduce the

dimensionality of data and be effective for anomaly detection. This contribution is a series
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of results that explore which measures may be more suitable to use for building anomaly

detection model for complex systems that produce time series data where the majority of

signals can be modeled in terms of dynamic functions. The results from these experiments

carry into our research approach of using these measures to reduce our data for exploratory

methods of anomaly detection in real world domains.
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CHAPTER VI

ANOMALY DETECTION OF UNLABELED AIRCRAFT DATA FOR AVIATION
SAFETY

After identifying complexity based distance measures appropriate for anomaly detec-

tion in Chapter V, we return to the primary goal of discovering anomalies in operational

data collected from complex systems. In contrast to the approach in Chapter IV that ex-

ploits multiple sources of expert information, we have built an approach which is less re-

liant on expert-based knowledge and data.This anomaly detection approach is based on the

complexity measures as a dimensionality reduction technique. In this chapter, we apply this

approach to the domain of aircraft systems for improving aviation safety. The goal in this

chapter is to isolate anomalies that are interesting safety related events. These anomalies

would form the basis for building anomaly detection models for the takeoff of aircraft.

We discover these flight anomalies through modeling based on unsupervised learning

techniques that are applied to search a large database of flight operations data. We make an

assumption that most of the flight instances in this database will fall into a nominal range,

but a small subset of flight will differentiate themselves from this nominal range. With

a very large amount of data, we call this search for anomalies a “needles in a haystack”

problem.

In our approach we begin by transforming our curated flight data from Chapter IV into a

data cube based on the format specified in Section III.3.1. We consider the flights to be the

instances, the sensors to be the features, and each sensor’s measurements over time during

the flight to be the signals. The data cube is contextualized according to the takeoff phase

of flight in order to constrain the data and focus on specific types of anomalies. Before

we can apply clustering algorithms to this data, we must first reduce the dimensionality of

the data cube into a two dimensional data set of dissimilarities between each pair of flights
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in our data. This is accomplished by applying one of the complexity measures explored

in Chapter V. The use of complexity measures provides a method of reducing temporal

signals of each instance and retaining important characteristics about the signal. After

dimensionality reduction, we then apply hierarchical clustering to the reduced data. From

these structures, we locate the larger clusters and label them as nominal. We examine each

instance within the smaller clusters to characterize these instances and identify anomalies

that are relevant to the expert. The characterization of an instance involves identifying

“significant actors.” We define a significant actor as a feature in the data cube that best

differentiates the examined instance from the selected nominal set. When a cluster contains

many more instances than can be examined manually, we produce a group characterization

method using interactive techniques to sub-group the cluster by relevant features. These

significant actors are ranked by significance and we present them for each instance to the

expert through visualization of the anomalous signal against a nominal sample. The expert

may then identify the likely cause of the flight anomaly and either flag it as interesting or

not.

This chapter is organized as follows. Section VI.1 reviews previous approaches and

limitations of previous work for anomaly detection in large amounts of unlabeled, high

dimensional aircraft flight data. In Section VI.2, we formally describe our approach, first

explaining the curation and transformation of the multivariate time series data into dis-

similarity measures for exploration of anomalous instances using cluster analysis methods.

Following clustering, we develop a scheme for identifying possible anomalous flights. We

extract information from these anomalous flights to guide experts in characterizing them

into equipment, environment, or human-related categories of anomalies. We conduct fur-

ther study of these anomalies to determine if they should be flagged as aviation safety

issues. Section VI.3 illustrates the approach applied to our transformed data by contrasting

it with the previous work. Based on the results of our approach, we visualize the results and

examine case studies about aviation safety based on our findings. Lastly, in Section VI.4,
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we summarize and discuss our application of this approach to the aircraft flight system

domain.

VI.1 Previous Work on Anomaly Detection of Aviation Data

Research into building systems for anomaly detection of aviation data has progressed

from general methods designed for any domain, to approaches tailored for anomaly detec-

tion in aircraft flight system domains. Such methodologies are designed to handle large

amount of raw flight data. We review some of the original work in this area, such as the

state of the art methods of Principal Component Analysis with Density Based Clustering

(PCA-DBSCAN) [94, 98], and Multiple Kernel Anomaly Detection (MKAD) [36, 37].

Both frameworks have been shown to be effective in discovering a variety of anomalies

in aviation data. The assumptions these systems operate under reduce their generality in

terms of detection in the problem domain, and our approach is designed to address these

problems.

A theme that these techniques have in common is that starting with a data cube rep-

resentation of the data, dimensionality reduction are applied to reduce the dimensions of

the feature space, or to simplify the task of comparing pairs of flights. The choice of the

approach and how it is applied to the raw data defines the nature of the overall methodology.

VI.1.1 From A General Approach to Approaches Using Limited Data

General approaches to exploring a feature space for identifying anomalous instances

have employed a number of different learning algorithms, requiring highly tunable global

models and error minimization procedures. Such methods include least-squares regres-

sion [12] to derive discriminative models from data. This leads to the development of

robust algorithms to detect a number of additive faults through the use of receiver oper-

ating characteristic curves plotted to tune the detection algorithm and set the false alarm
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rates [30]. Such approaches require large amounts of real and simulated data to derive gen-

eral and robust solutions. Further, these methods are supervised approaches, since practi-

tioners must understand the data and the results of experiments on the model(accuracy and

false positives) in order to tune the system.

The domain of aviation flight data has produced a number of techniques for discovering

anomalies, such as SequenceMiner [17], Orca [7], The Inductive Monitoring System [70],

and Morning Report [28]. These methods are built with varying amounts of data, and

are computationally expensive. For example, Morning Report, which was built to be run

overnight on the previous day’s flight data to generate a report to be examined in the morn-

ing.

SequenceMiner focuses on clustering methods for exploring a set of instances by re-

ducing the features signals using a metric for measuring common sequences known as the

normalized longest common subsequence [18]. This method’s use of the metric across fea-

tures, retains the original feature semantics, allowing an anomaly to be characterized from

this model. This metric is similar to our complexity measure, but is targeted for analysis of

symbolic sequences. Often to utilize a metric like the normalized common subsequence,

a practitioner will preprocess numerical signals into a symbolic form. Transformation of

numeric signals to symbolic sequences requires the use of a technique such as Symbolic

Aggregate Approximation [97]. These techniques require signals of an adequate length

(such as a few minutes) to produce symbolic sequences that are long enough to effectively

leverage the similarity metrics. Since the focus of anomaly detection may be on a period

of time such as takeoff or landing that may be as short as 20 seconds, the signals for those

phases could be difficult to transform into symbolic sequences.

Orca uses a scalable k-nearest neighbor approach to detect anomalies in data with con-

tinuous and discrete features. Since each data point is a sample in time and treated as

independent by the algorithm, Orca struggles to detect anomalies with temporal signatures.

The Inductive Monitoring System is a distance based anomaly detection method that
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focuses on continuous parameters. The method uses incremental cluster analysis to build

models of expected operation of the system, but also does not consider the temporal patterns

in the data. The Euclidean distance from an anomalous data point to the nearest cluster

center is reported as the anomaly score for that data point. This method was originally

designed to deal with flight data, where new monitors in a diagnostic system could be built

from the parameters of the clusters.

Morning Report builds a statistical signature across each feature of a sample to reduce

it to a smaller dimension. This is then used with distance metrics such as Mahalanobis

distance to find flights that are outliers from the majority of the data points. The use of a

statistical signal makes characterization of the found anomalies difficult without the use of

another method to investigate the original data of the anomalous instance.

SequenceMiner and Morning Report are designed to interact with temporal signals in

the data. These methods make assumptions, such as SequenceMiner requiring a symbolic

transformation and Morning Report requires a pass from another algorithm through the

original data to help an expert characterize found anomalies.

VI.1.2 Principle Component Analysis and Density Based Clustering

The first method we look at in detail is one that combines Principal Component Anal-

ysis (PCA) and Density based clustering [94, 98]. The traditional method to PCA analy-

sis is to generate the eigenvalues and eigenvectors of a covariance matrix, and retain the

eigenvectors that correspond to the highest eigenvalues, such that at least 90% or higher

of the variance is retained in the chosen features. This method relies on “unrolling” each

instance’s features in the data cube into a new set of features where each is a sample of

time for each sensor. This transformation to make each sample independent is described in

Section V.1. These “unrolled” instances are projected into a lower dimensional space that

corresponds to the selected eigenvectors. This reduces the feature size and because of the

eigenvectors, creates only orthogonal features which are uncorrelated. The next step is to
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apply density-based clustering to this reduced feature space, which provides a number of

advantages. It requires little domain knowledge to determine the input parameter of how

many points create a cluster, and the threshold for similarity. The algorithm is relatively

efficient for large numbers of instances, but not for large feature spaces. The clusters gen-

erated by the algorithm are of arbitrary shape, and the algorithm is robust to noise in the

data. An advantage of the output of DBSCAN is that it does not require a sample to be

affiliated with a cluster, so values that are sufficiently different will be labeled as outliers

in the dataset. The output of this method produces clusters which are considered to be

homogeneous in the chosen feature space, and a set of outlier data points that become the

focus for further investigation.

There are two primary issues with this method. The first is that the “unrolling” of the

instances in the data cube results in the removal of potentially important temporal informa-

tion. This method isolates each sample in each signal as a unique feature, when the change

over that time may be an important factor. The other issue with this approach is that the

application of PCA which results in a transformed feature space does not allow for easy

analysis and characterization of the abnormal nature of the outliers in terms of original

features.

VI.1.3 Multiple Kernel Anomaly Detection

In contrast to the unsupervised approach of PCA-DBSCAN, Multiple Kernel Anomaly

Detection (MKAD) [36, 37] represents a semi-supervised approach that operates on large

data cubes such as those found in the aircraft flight system domain. Similarly to Se-

quenceMiner, the algorithm first preprocesses all continuous sequential data into symbolic

feature sequences. The preprocessing is necessary for measuring the similarity of these se-

quences between samples. The pairwise comparisons are organized for learning by build-

ing two kernels that combine the feature streams for either continuous or discrete values.
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The kernel method for both types is based on the normalized Longest Common Subse-

quence [18], the same metric used in SequenceMiner for measuring common sequences.

The kernel is built for a one-class SVM classifier [136]. This procedure is semi-supervised,

so the data used for training should ideally contain only nominal samples. This method

of isolating anomalies attempts to exploit common sequential information for two samples

represented as a single value. When built over the entire set of samples, this technique

can construct the model of nominal behavior. Analysis of flagged anomalies is examined

post-SVM, since the SVM model based on kernel methods is difficult to interpret. MKAD

is demonstrated with a combination of switching and continuous FOQA data for a fleet of

aircraft [36]. The derived models find a number of interesting anomalies, such as a high en-

ergy approach landing, pilot responses to environmental disturbances, and high speed low

altitude flights. MKAD uses a SequenceMiner routine on the group of anomalies flagged

in the test set to better understand why these samples were detected.

MKAD is a robust algorithm for anomaly detection, but there exist issues that inter-

fere with direct application to operational data. Due to the semi-supervised nature of the

algorithm, MKAD requires knowledge of a nominal set for training. This keeps it from

being applicable to large unlabeled data, until another method has been utilized to remove

anomalies and isolate a set of instances as nominal. The implementation of MKAD at-

tempts to deal with this issue but still struggles. The similarity to SequenceMiner in the use

of symbolic sequences means that MKAD may also have trouble working with sequences

in the data that are not very long. In the demonstrations of MKAD, the sequences used in-

cluded significant amounts of the flight operations during landing to construct the training

and testing sets. In our data, we may be focusing on a more precise phase that is of a short

durtion, which would create difficulties for MKAD. Lastly, MKAD requires the need for

a secondary technique such as SequenceMiner to identify the features that are anomalous

for characterization. These issues interfere with this algorithm using a large collection of

unlabeled data such as the one we have collected.
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VI.2 Approach to Exploration and Characterization

Our approach is designed to address a number of the issues with both PCA-DBSCAN

and MKAD, namely the temporal dependency that is ignored in PCA-DBSCAN, the lack

of knowledge about nominal instances in the data for MKAD, and the ability to use the

same data and clusters to identify and characterize anomalies in the data. Our approach

to this exploratory anomaly detection for complex systems is broken into a series of steps.

First, we transform and contextualize the curated data to produce an initial data cube for

exploration. We then apply dimensionality reduction to the cube to produce a transformed

two dimensional dissimilarity matrix, which is used with a hierarchical clustering approach

to generate clusters from the data. We assume the results of the clustering produce some

large cluster where significant number of the flight instances reside. These are labeled the

nominal data. The rest of the instance can be divided into groups: (i) a very small number

of outlier data points and (ii) some small clusters that distinct from the large nominal clus-

ters. As a first step we study the outliers by selecting features that sufficiently distinguish

the outliers from the nominal data. Then further analysis using group characterization is

performed on the small clusters.

We illustrate the stages of this approach in Figures 20 and 21. These two figures

break up the work into two general procedures. Figure 20 represents the transformation to

clustering stages of the data. The input to begin this process is a curated data set, which

is then contextualized and transformed into the standard data cube. We reduce this data

cube by applying our complexity measure as a mechanism for dimensionality reduction.

This produces a cube of distances matrices. We collapse the cube of distance matrices

using the weighted euclidean distance and cluster the resulting dataset to identify clusters

of anomalies and clusters of nominal ranges. The output at the end of the clusters should

be preliminary groups of instances for further consideration.

These partitioned instances labeled as nominal or anomalous are the input for the proce-

dures shown in Figure 21. These steps are responsible for the characterization and modeling

143



Curated
Operational 

Data

Nominal Sets

Anomalous 
Sets

Feature M
dii dij din

dniFeature 3
dii dij din

dni
Feature 1

dii dij din

dni

Feature 2dii dij din

...

Data 
Transformation

Dimensionality 
Reduction

Clustering
And 

Exploration

Feature M

dniFeature 3

dni
Feature 1

INt

Feature 2

...

Int InT1Int+1

Int InT2Int+1

Int InT3Int+1

Int InTMInt+1

Figure 20: Transformation to Clustering of Unlabeled Data

of the data. With possible anomalous groups and a nominal base of clusters, feature selec-

tion is applied to identify the relevant features that differentiates each anomalous group.

An expert will use these features to further characterize the anomalies for their level of

failure. Coupled with the nominal sets, these groups can be used to produce new models of

anomaly detection, to identify new anomalies in the incoming data.

VI.2.1 Transformation and Reduction

As a first steps we start with the aircraft data from the curated database described in

Chapter IV and extract and transform the data from this database and produce a data cube

representation. This step also narrows the focus of the anomaly detection. We then apply

the dimensionality techniques discussed in Chapter V to reduce this to the dataset to a form

that allows for the application of a standard clustering algorithm.
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Figure 21: Characterization and Modeling of Anomalies

VI.2.1.1 Extraction and Transformation

The input for this approach is raw collected data organized and pre-processed to remove

sensors, which are not germane to the operation of the aircraft. This removal helps improve

the efficiency of the approach, and removes noise. This involves eliminating features not

involved with describing the operation of the aircraft during flight such as meta-data about

the internal storage on the aircraft. This removal based on expert input removes the num-

ber of possible features in our data from 145 sensors to 87. This dataset is further curated

with location of each instance. The location is kept as a meta-data that can be used later

to classify anomalies that can be attributed to environmental conditions. The location is

responsible for variance in operations associated with different altitudes and geographical

elements in the data, such as typical weather conditions and length of the runway. The lo-

cation is identified by mining the latitude and longitude positions at takeoff to find common

clusters of positions that coincide with general locations of airports.

After applying all of the curation steps, we are ready to build the relevant dataset. From

the curation we select from 5333 possible flights to include in the data cube. This complete

set covers flights of 12 different aircraft over a period of 5 years. This provides a broad
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enough selection to encompass a variety of flight situations that include takeoff locations,

and weather, reducing the need to perform the analysis only for restrictive contexts. We

then extract data for a chosen phase of operation for the aircraft. We focus on a specific

phase of flight in order to contextualize the instances for the same period of time during

flight.

For this study, we further contextualize the data to takeoff, a situation when the aircraft

equipment and pilots are most stressed. The calculation for this phase can be computed in

a number of ways. In this work, we examine the two possible ways illustrated in Figure 22.

The first method, known as the “phase computer method”, relies on the computer of the air-

craft to detect a takeoff situation based on pre-specified conditions. This generally begins

when the pilot applies significant thrust to the engines, and then assuming a threshold of 90

seconds implying the aircraft will have completed its takeoff phase and begun the ascent

phase within this time. The data we extracted by this method is down sampled, produc-

ing feature signals that have the same temporal length and are synchronized on the same

points in time. This method was the first developed as a baseline for validating a variety

of anomaly detection methods such as Principal Component Analysis with Density Based

Clustering and specifically the Multiple Kernel Anomaly Detection. The implementation

of Multiple Kernel Anomaly Detection makes demands on the structure of the data and that

meant we needed as much information as possible, while retaining identical signal lengths

for each feature. This method wasn’t intended to be the final choice for transformation,

but is included because a significant amount of work was done with this transformation,

including the initial application of this approach. Also of note, due to issues discovered

in the implementation of MKAD, this set contained 2116 flight instances extracted for a

single aircraft.

The second method of calculating takeoff is to use a physical cue measured by the sen-

sors. This is known as the “weight on wheels method.” The data from this method is based

on when the sensor recording the weight on the landing gear registers 0, meaning that the
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Figure 22: Illustration of Different Methods of Capturing Takeoff

plane has lifted off the ground. Normally, an expert would cut this off when the pilot re-

tracted the landing gear, an indication that the plane is moving into full ascent mode since

the aircraft’s velocity and direction may increase the vertical and horizontal force and dam-

age the landing gear. The retraction of landing gear is a variable timed procedure and in the

data, this can take on average 30 seconds, and is usually between 25 seconds to 35 seconds.

Due to the nature of the complexity based measures and to remove a possible variable in the

time it takes to retract the gear, we take a 32 second sample after the weight on wheels has

changed to zero. Unlike the first method, the features were not down-sampled, allowing the

sensors original resolutions to vary the size of signal from feature to feature. This method

is based on feedback from experts after first employing and experimenting with the phase

computer method. This data cube contains the entire dataset of 5333 flights.

These two methods contain overlap of the same period of time, with the phase computer

method detailing more of the aircraft’s acceleration to lift off, and possibly containing some

of the initial ascent. The weight on wheels method, however, contains more information
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for sensors with a higher sampling rate for the same period of time. The weight on wheels

method is also constraining in the amount of choices a pilot may make, thus reducing the

overall possible anomaly size. Using both methods, we extract the signals of 87 sensors

over the instances in the data.

VI.2.1.2 Dimensionality Reduction with Complexity Measures

The transformed data is reduced into distance matrix cube with the complexity based

measures. These measures were selected based on the experiments in Chapter V. The

distance based on the Haar Wavelet along with the complexity invariant distance measure

using a prediction by partial matching compressor (CiDM/PPM) were the top choices from

the experiments. Based on the experimental results of the real world data set the Haar

Wavelet was the better of the two measures.

Early experiments of the phase computer based data cube utilized CiDM/PPM as the

dimensionality reduction measure. As mentioned, this data was built as a test cube for a

variety of methods, and the CiDM/PPM measure was applied to produce initial results. Uti-

lizing the Haar wavelet for this cube would not be ideal since the features are all the same

size of 90 samples which is not a power of two, and a requirement of the Haar Wavelet

Transformation. The data cube with this method was built before the complexity experi-

ments were finished, so the size was not an original consideration. While, the data could

either be reduced to 64 samples, or padded with zeros to create 128 samples, the cube is

left as designed, and the CiDM/PPM measure is applied to reduce the dimensionality for

clustering.

For the weight on wheels based data cube, we use the Haar Wavelet. The Haar Wavelet

appeared as the best overall measure in our experiments, balancing the ability to identify

significantly different signals, as well as remain sensitive to changes within signal type.

The Haar wavelet decomposition is best applied to this cube without the need for padding

or removal, since each feature signal is a power of two. This is due to the fact that each
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sensor samples at a rate that is a power of two, so that a 32 second signal at full resolution

will remain a power of two with 32, 64, 128, 256 or 512 samples.

VI.2.2 Clustering and Exploration

A hierarchical clustering algorithm using the complete link methodology is employed to

construct dendrograms from the euclidean distance based dissimilarity matrix. Complete

link clustering only joins two clusters together if the furthest distance between any two

points in the clusters is the smallest distance value remaining in the adjacency matrix. This

information is known as the linkage, and is stored for the links between single instances,

as well as between the clustering of multiple instances. Complete link clustering usually

yields clusters that are well separated and compact. Since we want to separate out the

instances that are different from the majority in the data, this methodology should help

build the clusters we are most interested in finding.

The structure of the generated dendrogram can be used as a mechanism for visualizing

the unlabeled data. This means looking for clusters that break the data into a larger nominal

cluster and producing a set of much smaller, possibly anomalous clusters. Beyond this

visualization, the dendrogram serves the operator and expert as a marker for identifying the

cutoff in the hierarchy where clusters should form for this data [71].Locating this cutoff can

be done manually through this visualization, as well as searching through the a variety of

cutoffs with a goodness of fit calculation such as the Cophenetic correlation coefficient [43]

and the inconsistency coefficient [71], or directly from the linkage information about the

dendrogram to determine a likely split. These utility measures all attempt to identify when

clusters are too large and generalized, or still too small and specific by comparing the

distances in the clustered sets with the overall distances across the clusters. We choose to

operate a search that is interleaved with the use of the linkage criterion, and through human

guidance to identify likely clusters. The work flow is illustrated in Figure 23.

Using the amount of total linkage contained in a cluster, we have the algorithm select
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Figure 23: Clustering Work Flow

clusters based on how much of the linkage is contained at that point in the hierarchy. The

base value we use is that a cluster may contain no more than 70% of the total linkage in

the dendrogram. This initially skews towards larger clusters, but it will help identify very

large and compact regions of data that may be identified as nominal. If one single cluster is

identified, and thus no differentiation, we lower the threshold until a split has been found.

The user will identify the likely nominal clusters, and look to subdivide the smaller clusters

into possible sub-cluster themselves. Producing a smaller dendrogram from each original

cluster, this procedure uses the same linkage criterion as above. This subdivision continues

until a reasonable stopping point is identified by the user, or the linkage parameter used for

clustering drops below a threshold. Based on these choices, the final cutoff is determined

by identifying the overall distance in the original dendrogram that can partition the data

according to these clusters.

The output at this stage is a series of datasets. Each dataset is labeled as either a likely
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nominal set, or as a set to characterize by the expert. These smaller sets contain the in-

stances that are worth characterizing for the differences from the majority in the entire

dataset and the larger labeled nominal set will be used as the basis for finding the cause of

these anomalies.

VI.2.3 Feature Selection and Characterization

Given a possible dataset of anomalies found through the clustering operation, the ques-

tion is which features are separating these anomalies from the nominal set. Feature selec-

tion for these instances is governed by the signals where the anomalies have the greatest

differences from the nominal set. It stands to reason that these differences can be found by

examining the feature by feature distance matrices from the data cube produced by reduc-

ing the signal dimensionality through complexity measures. Finding the distances which

are the greatest for the anomaly, or set of anomalies will produce an ordered set of features

to examine for an expert. We refer to these features as “significant actors.”

The features are selected by

1. For each feature, select the matrix made up of relevant distances for an anomaly,

or set of anomalies and the selected nominal set. This is known as the anomalous

distances.

2. Selecting the the distance matrix made up of only nominal flights. This set is referred

to as the nominal distance matrix.

3. Removing the duplicates in the nominal matrix so it is a vector of unique distances

for the nominal group. This is known as the nominal distances.

4. Performing a two-sample Kolmogorov-Smirnov test [96, 106] on anomalous dis-

tances and the nominal distances to test the null hypothesis that the samples come

from the same continuous distribution.
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5. If the test rejects the hypothesis, calculate the mean dissimilarity for the anomalous

distances.

6. If the hypothesis is not rejected, skip that feature.

7. With a collection of average distances, sort them in descending order. This represents

the list of significant actors from most offending to least.

The choice of an average dissimilarity for a the anomalous distances with the nominal

set by itself would not take into account noisy sensors, which may have higher dissimilarity

across all aircraft and flights, and thus the complexity measure itself is not suitable for

ordering. We mitigate this issue by using a probability test to identify the likelihood that the

anomalous distances would be drawn from the same distribution as the nominal distances.

Since we do not want to make any assumptions about the distribution, and the fact that

the distances represent continuous values, we decided to use the Kolmogorov-Smirnov test

to adjudicate this matter. If the null hypothesis is rejected, we can feel confident that the

distances are likely different between the two groups. If it is not, we can believe that

the distances are all either very similar, in which case the average distance would have

been quite low, or the values are quite spread out among nominal and anomalous distances

meaning that the sensor is noisy and unreliable for identification.

Another choice in this matter is to either group the anomalies together, or look at the

significant actors one by one. Ranking the significant actors as a group of anomalies will

attempt to identify their unifying characteristics. If the anomalies only similarities are

that they are sufficiently different from the nominal cluster, the distribution of possible

significant actors will dilute the average feature distances. One anomaly against a nominal

set will produce the significant actors for that anomaly. This could be burdensome for

anomalous groups that are larger than a few instances. Also, it requires the expert to identify

single anomalies, rather than being able to draw conclusions across a sample of possible

anomalies.
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VI.2.3.1 Characterizing Anomalies

Once ordered, the process of showing the top features to the expert for characterization

of the anomaly is based on a tiered system. The ten highest significant actors are presented,

followed by the next ten, until the distances drop below a threshold of normalized distance,

such as 0.1. The expert recalls these tiers as they feel they are necessary to produce more

information to characterize the anomaly. These tiers focus the expert, as well as provide

information about their relative importance compared to the other features. This may help

guide the expert as they focus on the possible anomalies.

The features are displayed to the expert through plots of the signal for that feature from

the data cube. The plots clearly mark the anomalous signal, but also plot a random sample

from the nominal set as well. This sample from the nominal set provides context for the

anomalous signal, to show the expert how the aircraft typically responds. Identifying an

anomalous takeoff will be easier through the lens of likely operations based on the samples

from the nominal set.

VI.2.3.2 Characterizing Anomalous Groups

Using the single anomaly versus the nominal cluster to build significant actors, we

developed a process to explore possible relationships in the data. Given a cluster of possible

anomalies, the output should be a partitioning of the anomalous group in a manner than

conveys a collection of significant actors that unify the different partitions.

The procedure for this is to:

1. Merge the top significant actors for each anomaly into a set.

2. For each anomaly, collect the distances for each feature in the set.

3. Cluster this data using a Targeted Projection Pursuit lgorithm [42].

4. From these clusters, identify the features Targeted Projection Pursuit finds most sig-

nificant.
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5. For each Partition found, associate that partition with a set of most significant features

for visualization.

Targeted Projection Pursuit is a method of visualizing the process and output of using

methods such as PCA, and Singular Value Decomposition [56] in identifying the features

that most effectively separate the given data into partitions. This process is partially inter-

active, but the results of it are a series of features for each cluster. These features in turn

can be used to identify possible relationships in the data.

VI.3 Results and Case Studies

We first present the basic results from applying PCA-DBSCAN and MKAD to the

data cube built from the phase computer method. This provides a baseline for the how

these approaches perform in data constrained to a specific phase, and without labeling. We

follow this with the original application of CiDM/PPM to the phase computer based data

cube, and identify and characterize the primary results. These anomalies indicate why we

utilize the weight on wheels based method for the remainder of this work. We then use the

Haar Wavelet based distance on the weight on wheels data. We examine the results of our

approach in helping to characterize found anomalies. We present several anomalies found

in our methods and assess their impact on aviation safety.

VI.3.1 Application of PCA-DBSCAN to Aviation Data

The implementation of PCA-DBSCAN comes from our own tested implementation of

the PCA algorithm, and a DBSCAN implementation in the MATLAB exchange written by

Michal Daszykowski. The application of PCA-DBSCAN starts by unrolling the data cube

from the takeoffs calculated by the phase computer into a 2116 instance x 7830 feature data

set. During the PCA step, after eigenvalue decomposition, we chose to retain 98% of the

variance in the features. The application of PCA with 98% of the variance resulted in a

reduced feature set of 13 orthogonal features.

154



This dataset was clustered with DBSCAN. There are two parameters, the threshold to

declare to features similar to one another, and the minimum number of instances needed to

produce a cluster. The threshold can be estimated from the data and the minimum number

required for a cluster. We varied the minimum number to form a cluster parameter from 3 to

5 to 10 to 150 to 500. In each case, DBSCAN reported the same cluster assignments, iden-

tifying 7 instances that were considered outliers and marked as anomalous by the method

and producing only one cluster containing all the rest of the instances.

Since this method is unable to identify the significant actors, we plotted every feature

for each anomalous instance. We found that for 6 of these instances, the primary significant

actor was the sensor for the second fuel tank, which was reporting zero. Inspection of other

sensors that related to fuel quantities and fuel flow for the engines that utilize the fuel from

that tank clearly indicate non zero values of fuel in tank two, contrary to the fuel quantity

sensor reading. While interesting to identify, this anomaly does not directly impact aviation

safety.

The final instance is where the phase computer method includes a recorded “flight” that

was simply a ground test, meaning the mechanics fired the engines but the aircraft did not

leave the ground. Since the computer doesn’t use contextual clues such as altitude, and

only the thrust of the engines, instances like this are included in this data cube of flight

data. A ground run does imply some form of problem with the aircraft, resulting in the test,

but the root problem associated with the test may be hard to discern.

While PCA-DBSCAN does identify a set of anomalies, the process to characterize them

is arduous, since it requires at least another processing step on the original data to identify

the significant actors. The quick and easy method applied above is due to the small size

of outliers and would be very difficult in the case where there were more flights flagged as

initially anomalous.
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VI.3.2 Application of MKAD to the Aviation Data

The implementation of MKAD is from the data mining group NASA Ames. The base

requirement is that the data cube be replaced by N flat comma separated value files, where

N is the number of instances. Each line in the file is a sensor. This is loaded as a matrix into

MATLAB. This requires each sensor to be the same length, thus the primary reason why

the phase computer based method of the data cube down-samples the sensors that operate

at greater than 1Hz. Due to this down sampling and the need for a rectangular structure

for each file, this guided the 90 seconds captured by the phase computer method. Since the

MKAD implementation resulted in loss of data through down sampling, we attempted to

make this up by providing as much information about the takeoff phase, even if it included

time past when a takeoff phase is completed.

These files are loaded, preprocessed to make the continuous sensors symbolic (the dis-

crete sensors are considered to already be transformed). The parameters for this transfor-

mation, the window length, and the alphabet size are not made directly accessible to a user,

but we managed to make them more transparent for our own experiments. The dataset is

considered to be made up of nominal instances. Since we do not have a labeled nominal

set the MKAD implementation attempts to find one through the use of distribution testing.

With parameters to set a max sample size for the training set, and sigma values to use as the

limit of the nominal range, MKAD attempts to shrink the training set down to a core group.

A one-class SVM is then applied to this training set, and the pruned data is applied back as

the test set. The flagged anomalies are then processed with SequenceMiner to identify the

significant actors with relevant plots.

Starting with our entire data cube, we first used the default parameters for the symbolic

preprocessing. We did, however, change the distribution testing parameters to encompass

as much of the data as possible, leaving a single sigma bound and setting a max for the

training set at the size of our data. With these set parameters, MKAD built a training set of

100 instances and in turn, produced results, where almost every single instance was flagged
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as a possible anomaly. Furthermore, when Sequence Miner was employed by MKAD to

characterize the anomalies, the large number caused the system to crash. This result, based

on the number of possible anomalies was not unexpected, since SequenceMiner was not

built with large data in mind. We increased the sigma parameter to 3 times the original

sigma and reran the experiments. This time, 430 instances were used in the training set.

This dropped the number of flagged anomalies to just under 500. This was still too many

for SequenceMiner to handle without crashing MKAD.

The results caused us to write methods that made the symbolic transformation param-

eters more transparent. Since we were dealing with a small period of time, and had down

sampled the signals, the symbolic transformation algorithms did not have sufficient data to

reliably perform the signal to symbol transformation. As we expanded the alphabet size

used for producing a finite domain of values (which the original implementation had lim-

ited to 20), and decreased the window size used for generating a new symbol from the

signal, we were unable to find a tuned set of parameters that could find a more manageable

set of anomalies that did not crash the system.

MKAD has high potential, but requires many choices that limit its generality and initial

effectiveness. From the need to have large enough signals that symbolic transformation is

effective, to the number of tunable parameters, to the need for a small enough number of

anomalies to run SequenceMiner efficiently on a standard computer, the current implemen-

tation is brittle without significant curation of the data and some assumptions about where

to look for anomalies.

VI.3.3 Application of Approach with CiDM/PPM and Phase Computer Based Data

Cube

The application of PCA-DBSCAN and MKAD to this work showed mixed results. In

general, we found anomalies that fell into either a set of flights with a broken fuel gauge,

or ground tests. In the case of MKAD, we discovered that while the approach has a good
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theoretical basis, the data must be carefully managed to accommodate the limitations and

constraints of the implementation. As we ran the complexity experiments, we decided to

run the best Compression-Based method on the same data to explore the data cube and

compare our approach to the first two methods.

Using the CiDM distance metric with the PPM compression measure, we started with

the 2116× 87× 90 data cube and computed the pairwise single feature distance matrix.

The results of the reduction with the complete-link agglomerative clustering algorithm to

generate the dendrogram shown in Figure24. The solid rectangle to the right of Figure 24in-

dicates a group of 3 flights that represent a possible anomalous situations for more detailed

investigation.

Figure 24: Dendrogram of the Agglomerative Clustering for CiDM/PPM Reduction

Of these three flights, two can be classified as ground runs of the aircraft. These match

those found by PCA-DBSCAN. The last flight is one where the significant actors match

an inoperative engine. This is found using weight on wheels data with the Haar Wavelet
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transform and is discussed in more detail in Section VI.3.4.1. Certainly this is an important

flight to find, which was missed by PCA-DBSCAN.

The results from this analysis show that CIDM/PPM is more conservative in identifying

anomalies than PCA-DBSCAN. It does not identify the broken fuel gauge pattern of PCA-

DBSCAN, but identifies a flight with inoperative engine, which is far more important. We

understand that this phase computer based takeoff data used for detection is prone to issues

with ground runs, and has been down-sampled, thus removing information that may help

identify new anomalies. These results on the phase computer data motivate our use of

weight on wheels data in the following section.

VI.3.4 Application of Approach with Haar Wavelet and Weight On Wheels Based

Data Cube

Using the weight on wheels based data cube, we also now apply the Haar Wavelet based

distance measure that was found to be successful in our earlier experiments. This method

for calculating takeoffs should also remove the possibility of ground runs in the data, since

to effectively have zero weight on the wheels, the aircraft sensors should record a wheel off

the ground event. This data also contains a more diverse selection of instances, including

all 5333 flights from our curated data set. This increases the possibility of characterizing

nominal flight more accurately and also for finding additional anomalies in the data.

Using the combination of the Haar Wavelet transform and the Euclidean distance mea-

sure to reduce the data cube, the cube is reduced to a set of dissimilarity matrices, each

corresponding to one of 87 features. This was transformed into a single distance matrix

and we applied our clustering scheme to identify likely anomalies. Figure 25 shows the

initial clustering results. The clusters are colored, but the anomalous cluster is indicated

by a rectangle on the right of the figure. It is clear that the flight instances are broken into

a large set which is considered to be nominal and a smaller set which are likely to be the

anomalous flights. The small set contains 138 flights. The largest cluster is being left aside
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as a nominal set. We extract the smaller set of 138 flights and cluster them separately.

Figure 26 shows this sub-clustering which produced three clusters. These clusters are also

colored, but the plot also contains the cutoff level applied in the dendrogram to determine

how the three clusters are defined. From right to left, anomaly cluster 1 contains 9 flights,

anomaly cluster 2 contains 39, and anomaly cluster 3 contains 90 flights respectively. All

together these 138 flights make up just 2.5% of the total flight instances. In this work, we

focus first on anomaly cluster 1, to show how the expert investigates these different anoma-

lies. We then explore anomaly cluster 2, using our technique for characterizing a group of

anomalies.

Figure 25: Full Dendrogram based on Haar Wavelet Transformation with Initial Clus-
ters
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Figure 26: Sub Cluster Dendrogram based on Haar Wavelet Transformation with
Cutoff for Three Anomalous Clusters

VI.3.4.1 Characterizing Single Anomalies in Cluster 1

Tables 29 and 30 shows for each anomaly in anomaly cluster 1, the ID for that flight

in the data cube, the top significant actors, and a preliminary group ID for organizing our

results and comparing these anomalies. From this table we can draw some general con-

clusions. There are three general groups of significant actors in these anomalies. The first

group is the singleton of flight 5186. For this flight, the engine sensors for the second

engine are the significant actors. This is in contrast to the anomalous flights of group 3

which show engine parameters for three of the engines as significant actors. The conclu-

sion, therefore, is that the anomaly in flight 5186 is specifically associated with engine two.

The second group of anomalies are ones that include environmental sensors such as total

pressure and altitude as a contextual attribute. The last group, as mentioned earlier, con-

tains several measurements for a variety of engines for the aircraft that appear to contribute

to the anomaly. We examine these groups in more detail.
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Group ID Flight ID Actor 1 Actor 2 Actor 3 Actor 4 Actor 5

1 1256 N1.1 N1.3 N1.4 N2.1 N2.3
1 3316 N1.4 N1.3 N1.1 N2.3 FF.4
2 5006 EAI BAL2 BAL1 ALT VRTG
2 5007 BAL2 BAL1 ALT PS PSA
2 5148 BAL2 BAL1 ALT PT PS
2 5152 BAL2 BAL1 ALT FQTY.2 PS
2 5153 BAL2 BAL1 ALT FQTY.2 PS
2 5193 BAL2 BAL1 ALT VRTG PT
3 5186 N2.2 N1.2 ATEN EGT.2 PLA.2

Table 29: First through Fifth Significant Actors for the Anomalies in Cluster 1

Group ID Flight ID Actor 6 Actor 7 Actor 8 Actor 9 Actor 10

1 1256 FF.4 N2.4 FF.1 VRTG PLA.4
1 3316 N2.1 VRTG PLA.4 N2.4 FF.1
2 5006 PS PT PSA OIT.1 LATG
2 5007 PT RUDP OIT.4 VRTG OIT.2
2 5148 PSA LONG BLAC AOAI AOAC
2 5152 PSA PT OIT.3 LATG VRTG
2 5153 PSA PT OIT.3 LATG VRTG
2 5193 PS PSA OIT.1 LATG BLAC
3 5186 FF.2 LATG VRTG OIP.2 FQTY.2

Table 30: Sixth through Tenth Significant Actors for the Anomalies in Cluster 1
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Flight 5186 is one of the most interesting anomalies in the entire dataset. The significant

actors that relate to engine two, such as the one for Engine Temperature in Figure 27 show

that the engine is not producing any power. All significant actors listed for engine two

indicate that the engine appears to be nonfunctioning. Similar to the ground tests in the

PCA-DBSCAN, the expert asked to look at a navigational sensor like altitude in Figure 28,

as well as values for those sensors on other engines such as engine temperature for engine

four in Figure 29, and core speed for engine one as illustrated in Figure 30. Together, these

sensors indicate that this flight was indeed at full takeoff at a normal altitude, with the

other engines registering a slightly higher than normal power. The expert examined these

significant actors and came to the conclusion that engine 2 was not working during the

flight. If this were a regular airline flight then it would represent a highly unusual situation,

with strong safety implications.

While coming to this conclusion, the expert postulated that it was known that engine

2 was inoperative, and that this flight was the aircraft returning the from a remote airport

to a hub for maintenance on engine two. This was verified by looking at the latitude and

longitude of the raw data for the instance. The originating location for the flight was an

airport in Ohio. The destination was to the hub airport of the airline. The expert came to the

conclusion that this is a non-passenger flight but it would be difficult to verify this, since

this type of aircraft is certified to fly with 3 engines for smaller distances. The expert be-

lieved the closest way to verify this is to check the engine serial number for the anomalous

flight and compare it to subsequent flights for this aircraft. We found that after a number

of ground runs after this flight, the second engine was replaced (different serial number)

before the next full flight. The origin and destination of the anomalous flight coupled with

the different serial number for the engine strongly suggests that the expert’s hypothesis is

correct.

The second group contains the collection of environmental sensors and the altitude as

the significant actors. We choose one of these flights, 5006 as the representative sample.
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Figure 27: Temperature of Engine Two at Takeoff for Flight 5186

Figure 28: Altitude at Takeoff for Flight 5186
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Figure 29: Temperature of Engine Three at Takeoff for Flight 5186

Figure 30: Core Speed of Engine 1 at Takeoff for Flight 5186
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All flights in this group have the same basic altitude, 7900 feet at takeoff as shown in

Figure 31. The total air pressure and other environmental variables are also related to the

location of this takeoff. Corroborating this information was the examination of the takeoff

location which is near a mountainous region of the United States. Since the radio altitude

was not ranked in the top 10 significant actors, this would appear to eliminate the fact

that this takeoff was otherwise anomalous compared to the nominal values, just that the

location was rare for this airline. The expert asked to examine an engine parameter. We

selected from the next ten ranked significant actors, an engine temperature for the third

engine illustrated in the plot in Figure 32. The fact that the engine is running at a higher

power confirmed the experts suspicions that these anomalies are similar to the results with

CiDM/PPM and PCA-DBSCAN and are high energy takeoffs. Although we rediscovered

this environmental anomaly, this approach was more helpful. The significant actors imme-

diately point out that this is an environmental based anomaly by flagging environmentally

sensitive measurements, rather than features that pointed to the performance of the aircraft

or the pilot. This shows that these significant actors can potentially be used as contextual

attributes such as the altitude sensor for anomaly detection. The expert again confirmed

that these are high altitude takeoffs and would need to be filtered by this method in the fu-

ture, as they constitute a false alarm to an expert who was aware of the possibility of flights

from this environment. As with the previous analysis, we agree that this isn’t a safety issue,

but the method is effective at identifying rare operating environments.

A last observation about this anomalous group involves the sensitivity of the complex-

ity distance based on the Haar Wavelet. Similar to our experiments, this is the situation

where the slopes of these lines are similar, and instead there is a shift in the y-intercept.

There is a range of about 1500 feet in the random sample of plotted nominal values. That

provides quite a range of possible geographical locations that our method can encompass

as a “normal” environment for the aircraft to be operating. For this anomaly, the fact that

the location is also rare in the data, means that this is certainly worth catching. Our method
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ranked significant actors that immediately let the expert know that the anomaly was likely

to be environmental.

Figure 31: Altitude at Takeoff at Takeoff for Flight 5006

The third group contains two flights, and each has a selection of the engine parameters

from the different engines relating to the core speed and the fan speed in the engine. This

includes the fuel flow sensor for the first and fourth engine and the power level angle for

the fourth engine. Figures 33 and 35 show examples of the fan speed for the same engine

in both flights. Plotted with a selection of 50 flights from the nominal set, the dips in both

sensors are quite large. Also of note, the fact that these are being clustered close to one

another is reasonable considering the nature of the drops in both flights. After looking at

a series of significant actors for each flight, the expert came to the conclusion that these

two flights were quite different in terms of what they mean for a takeoff. The expert makes

use of other significant actors such as flight path acceleration to place the change in engine

parameters in context for each flight. The flight path acceleration for flight 1256 and shown

in Figure 34 shows that the airplane slowed down off after takeoff. The expert postulated
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Figure 32: Temperature for the Third Engine at Takeoff for Flight 5006

that this could be a part of the flight plan, since all engines are consistent in their changes.

The expert believed that there is nothing unusual about this type of flight and the final

verification was that the the automatic throttle did not change mode as it should have, but

that very likely an auto pilot decision.

Flight 3316 while initially appearing similar to flight 1256 is quite different. The expert

believes that the auto throttle disengaged in the middle of the climb. The automatic throttle

is designed to maintain either constant thrust from the engines, or as controller to maintain

constant speed. The behavior in the significant actors is unusual because that means that

the auto thruster decided to switch from maintaining speed for a takeoff to a setting that

applied constant thrust. The change in setting in the auto thruster indicated that the plane

is on the verge of a stall. This is verified by the flight path acceleration sensor shown in

Figure 36. The sensor was trending up and if the plane continued to operate along that

trajectory, there was a chance of a stall. The expert then explained that the automatic

throttle would switch to a possibly lower thrust setting to compensate for this situation.

By examining the engine parameters, the expert verified that all the engines responded in
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Figure 33: Fan Speed of Engine 3 at Takeoff for Flight 1256

Figure 34: Flight Path Acceleration at Takeoff for Flight 1256
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Figure 35: Fan Speed of Engine 3 at Takeoff for Flight 3316

Figure 36: Flight Path Acceleration at Takeoff for Flight 3316
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Figure 37: Flight Path Acceleration at Takeoff for Flight 3316 and Flight 1256

an appropriate fashion to this throttle command. This meant that the aircraft responded

and slowed down (the acceleration drops at around 350 samples). Figure 37 shows the

acceleration for Flight 1256 plotted on top of Flight 3316. This shows that while both were

clustered together, the expert was better able to explain the two situations as different by

examining a set of significant actors. While flight 3316 certainly does not demonstrate a

flaw in the aircraft, the expert found the anomaly interesting and would ask “why did the

airplane accelerate in such a fashion and come so close to a stall condition?” Since the

expert could not determine the root cause, these incident would cause them to seek more

information. The expert would also want to use this in future to guide other pilots away

from taking action, and instead assure them that the aircraft autopilot would compensate

sufficiently to correct for the situation.

VI.3.4.2 Characterizing the Group of Anomalies in Cluster 2

The previous cluster was a small collection of anomalies, and one that could be ex-

amined through a manual process of exploring the lists of significant actors. The second
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cluster contains 39 flight instances. While this may be possible to be examined in the same

manual manner, our method provides a way of guiding an expert through a high level char-

acterization, and allowing them to prioritize flight and anomalies from the set they want to

examine first.

Following our procedure for characterizing a group, we first found that there were 52

unique sensor listed as the top 10 significant actors for anomaly cluster 2. From this we

created a dataset of 39 instances, each with 52 features, one for each sensor. Each feature is

the average distance for that sensor of the instance from the nominal set. We then applied

targeted projection pursuit. This method is partially interactive. The point of the targeted

projection pursuit is to find a partitioning that splits the data effectively. This split provides

the expert with guidance about what to look for in the cluster. Targeted projection pursuit

also calculates significance of each feature. The interactivity of this process can isolate

potential significant actors that may separate anomalies in a one of the partition groups.

A clustering of two was found and Table 31 shows a list of the relevant significant actors

that are found during this interactive exploration, with their significance ranking in splitting

the flights into the clusters. The feature with the largest differences for separating the two

clusters was the altitude sensor. This was true for 31 of the 39 anomalous flights. This is

quite helpful to the expert, as it already indicates a likely contextual issue with location. The

next three sensors are all the Fan Speed, but for three of the 4 engines. These features appear

to most closely group the remaining 8 anomalies. Targeted projection pursuit shows that

this second cluster is less cohesive than the larger cluster based on altitude. This is further

indicated by the sensors indicating the automatic throttle is engaged and the bleed valve

position. The automatic throttle sensor indicates when the computer is set for a specific

thrust and is a binary value. The bleed valve position sensor measures what position the

actuator that bleeds the air from the turbines is set. The bleed valve is often used to produce

compressed air to pressurize the cabin, or de-ice the wings. Targeted projection pursuit

shows that these sensors each isolate one of the 8 flights in the smaller cluster. Based on
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this information, we can begin to examine, the very large cluster based on altitude, and the

other 8 we can examine similar to the approach used above, but looking at these sensors

found through the use of targeted projection pursuit.

Rank Sensor Note

1 ALT Main Sensor Separating Partitions
2 N1.1 Groups Remaining Non-Altitude Anomalies
3 N1.2 Groups Remaining Non-Altitude Anomalies
4 N1.3 Groups Remaining Non-Altitude Anomalies
5 Automatic Throttle Engaged Significant for only one flight
6 Bleed Valve Position Significant for only one flight

Table 31: Significant Sensors Found through the use of Targeted Projection Pursuit

Examining the altitude sensor for the larger partition of 31 flights, we discover more

high altitude takeoffs due to location. As Figure 38 illustrates for flight 5332 from this set,

these flights occurred at a high altitude. Like those found in anomaly cluster 1, these are

quite a bit higher than the nominal range. The fact that these flights group together but not

with the set found in cluster 1 would indicate that these flights possess a modest difference.

In order to investigate why these flights were separated, we plotted the significant actors

for the anomalies in this cluster with the high altitude takeoffs found in anomaly cluster 1.

Figure 39 shows a barometrically correct altitude plot for a the same sample in Figure 38

but compared to the high altitude takeoffs in anomaly cluster 1. These figures show that

while both start in the same altitude range, there is a difference in the climb for this flight.

Other significant actors include the engine parameters which when compared to cluster

1 are in the upper part of the range for that sample, and sometimes a bit higher. This

is illustrated in the fan speed of engine 1 for the same sample used to show the altitude

change and plotted in Figure 40. In general, these flights showed a likelihood of being even

more aggressive at takeoff while at roughly the same altitude. The complexity measure

derived from the Haar wavelet differentiates this set of high energy flights from those in
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Figure 38: Altitude at Takeoff for Flight 5332

cluster 1, even if the location is the same. The expert agreed that these were an outlier, but

maintained that there is no operational significance to these flights. Much like the previous

set, we were the conclusion was that these type of flight should filtered out of the anomalous

sets in the future.

Next we examined the smaller partition generated by the targeted projection pursuit.

These eight flights can be broken into 1 group and two single flights. The group contains a

series of flights containing significant actors that include engine sensors across the different

engines. We illustrate with an example of one of these flights. Figure 41 shows a plot for

the fan speed of one of the engines in flight 1370. All four engines for this feature as well as

engine temperature, fuel flow and core speed are listed as significant actors with the same

pattern. This bears some similarity to the anomaly found in flight 1256 in cluster 1 and

plotted in Figure 33. Much like the differences in the high energy takeoffs, this anomaly

and the flight 1256 both contain a drop, late in the takeoff, and as high altitude takeoffs

could be differentiated by the aggressiveness of the climb, this behavior has a parallel,

where flight 1370 has a much deeper and sustained drop in power. The expert looked at
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Figure 39: Barometrically Corrected Altitude at Takeoff for Flight 5332 Against High
Altitude Takeoffs in Cluster 1

Figure 40: Fan Speed in Engine One at Takeoff for Flight 5332 Against High Altitude
Takeoffs in Cluster 1
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this anomaly and concluded that it was very similar to 1256 and not very interesting from

an operational standpoint. The examination of the auto throttle for this anomaly found a

similar behavior to flight 1256 indicating a normal slow down. The flight path acceleration

for this anomaly was not a highly ranked significant actors but is presented in Figure 42

and in contrast to 3316. This shows that flight 3316 has a sharper change in acceleration,

and more interesting than flight 1370.

Figure 41: Fan Speed in Engine One at Takeoff for Flight 1370

As the targeted projection pursuit indicated, there was a flight in the smaller set that was

the only one to be differentiated by the bleed valve sensor. The bleed valve sensor for flight

4893 is illustrated in Figure 43. This plot shows two types of nominal behavior, either a

zero position meaning the valve is closed, or a position at 8 meaning partially open. In both

cases, the signal remains flat. The anomaly shows a signal that starts at 8, but late in the

takeoff, the bleed valve changes positions to 12 which is more open than 8. The expert was

interested enough to request the entire flight instance for further examination. The expert

explained that the bleed valve is normally open throughout the flight. There is one for each
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Figure 42: Flight Acceleration at Takeoff for Flight 1370

engine and they supply air to the cabin. Taking bleed from an engine is a parasitic load,

meaning that this air is not available for propelling the airplane and thus reduces the power

in the engines. When more engine power is needed, the bleed valves close so that more

power is available. Hence it is common to see 2 out of 4 bleed valves close monetarily to

make up the power.

Other significant actors, specifically those with the engines reflect an anomalous signal

in general and a change that appears to correspond with the bleed valve. Figure 44 shows

the temperature for engine one, but each engine has similar signals. The signals all show

the engines as relatively low powered compared to the nominal. That signal also shows a

drop when the bleed valve changes. The expert confirmed that this was coincidence that

as the bleed valve is opened, and hot air leaves the turbines, the temperature would drop.

While this is an unusual case, it had no safety implications. If the bleed valves remain

closed for the entire flight or consecutive flights then it is a indication of degrading engine

power. Since this is a one-off anomaly, and the expert verified that the bleed valve does not

remain closed, this anomaly did not represent a safety issue.
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Figure 43: Bleed Valve Position at Takeoff for Flight 4893

Figure 44: Temperature for Engine One at Takeoff for Flight 4893
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The last flight we explore is the one that involves a significant actor for the sensor that

detects when the automatic throttle computer has been engaged. Flight 222 contains an

interesting set of significant actors. First, Figure 45 shows the automatic throttle sensor.

The nominal data shows that this auto throttle is always engaged at takeoff. We can witness

possible effects with significant actors from the engines such as Fan Speed. Figure 46

shows a plot of the fan speed for engine one during this flight. The engine is underpowered

and the signal is definitely a different shape than those in the nominal sample as it rises

twice during the takeoff. Lastly, the radio altitude was also identified as a significant actor.

The plot for radio altitude in Figure 47 shows a flight that remains on a much shallower

climb than the ones in the nominal set.

Figure 45: Automatic Thrust Engaged at Takeoff for Flight 222

After examination, the expert said it is rather atypical for a pilot not to engage the auto

throttle during takeoff. Sometimes pilots may disengage the auto throttle because they

feel they can handle the cross-winds better or have an unusual weight distribution on the

aircraft. However, the data from the 2 engines from the significant actors indicate that the
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Figure 46: Fan Speed of Engine One at Takeoff for Flight 222

Figure 47: Radio Altitude at Takeoff for Flight 222
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engines are synchronized and hence this data set may represent a change in command for

the throttle. While nothing mechanical seems out of the ordinary here and the data shows

the engines lining up correctly, this is an non-typical operating procedure. This anomaly

clearly represents a pilot based decision.

This second cluster of anomalies contained quite a bit of variance in the significant

actors, the possible causes and the impact on aviation safety. It would be difficult to explore

each of these flights on a one by one basis. Our approach of using targeted projection

pursuit helps induce possible places to start and groups of very similar anomalies. Together

these results help cut down on the overhead an expert would be expected to contribute to

characterize these anomalies.

VI.3.4.3 Comparison with CIDM/PPM on Weight on Wheels Based Data Cube

We briefly examined how the data clustered when we looked at the Weight on Wheels

data with CIDM/PPM as the complexity measure. Figure 48 illustrates the dendrogram

formed from the use of CIDM/PPM as the complexity measure. The rectangle on the right

of the figure highlights the outlier data points. These are two clusters which are shown in

more detail in Figure 49. The far right cluster (cluster 1) contains 37 flights and the left

cluster (cluster 2) contains 62 flights.

Closer examination of these clusters is performed by comparing the flights found in

these clusters to the anomalies found in the clustering that uses the Haar Wavelet. Cluster 1

contains only high altitude flight discovered in the two clusters we examined with the Haar

Wavelet transform. It also contains every one of these flights, indicating that CIDM/PPM

appears to more more likely identify their similarities and the fact that they are anomalous

in the data (due to their rarity). This is contrast with the Haar Wavelet transform which

found high altitude flights to be anomalous, but broke them into two groups, based on how

aggressive the ascent at takeoff.

The second cluster contained 41% of the rest of the anomalies in the Haar Wavelet
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Figure 48: Full Dendrogram of the Weight on Wheels Data with CIDM/PPM

Figure 49: Enlarged Dendrogram of the Anomalous Clusters in Figure 48
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based clusters. Among the missing anomalies was the near stall flight described earlier. A

quick analysis showed that many of the flights in this second cluster contained issues where

the flight path changes earlier in the data. The expert found this to be slightly anomalous

but not an aviations safety issue.

In general, the CIDM/PPM clusters appear to be initially similar to the Haar Wavelet

clusters, but the anomalies found in the Haar Wavelet clusters are more varied and contain

more interesting flights for the expert to investigate. From this comparison, these results

bolster the experiments in the previous chapter, showing that the Haar Wavelet transform

is likely a better measure in the multivariate situations.

VI.4 Conclusion

In this chapter, we applied our knowledge of complexity measures derived from our

review and experimental studies in Chapter V, and applied it to our exploratory approach

for identifying and characterizing anomalies in a large multivariate signal dataset of flight

segments. This approach starts from curated data, extracts an appropriate part of the data,

uses the complexity measure to reduce the dimensionality and then applies hierarchical

clustering to the dataset. The derived clusters can be broken into a large nominal set,

and the rest into anomalies. Due to the way we reduce the data, we can utilize the same

work to help characterize significant actor features that help explain the anomalies because

they differ significantly from the nominal set. We also present a process for beginning the

characterization process when there are more than a handful of anomalies to process. We

present this in contrast to previous work, including the state of the art.

We explore our approach through the application of flight data to identify anomalies

related to aviation safety. We focus on data related to aircraft takeoff, a phase that is stren-

uous on both the pilot and the aircraft, and takes the operating environment into account.

We looked at two possible ways to extract this data for takeoffs. Examining other ap-

proached that have been applied, we found that this data was either too big and needed
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added contextualization, or we found the current implementations lacking in flexibility for

large unlabeled data.

Using our approach, we found that our first method for calculating takeoff was too

broad and did not contextualize the takeoff appropriately. As a result, very few interesting

anomalies were found. When we applied our approach using a much tighter definition of

takeoff, we discovered more interesting anomalies, ranging from the environmental such as

high altitude takeoffs, to ones in which the aircraft experiences changes in engine perfor-

mance, to anomalies that indicate a pilot choice that would be worth investigating further.

From the eight types of anomalies presented to our aircraft expert, three were flagged as

very interesting for further study. This included a dead engine, an issue with a possible

stall, and a pilot choice to not use the computer auto thrust. Only one type, the high alti-

tude takeoff was considered unimportant, but it presented very clear significant actors that

would allow it to be filtered in the future. In general, the expert found the method useful

for identifying interesting anomalies from such a large dataset.

Through this last application of our approach we demonstrate a primary contribution of

this work. Our approach is designed to handle unlabeled data, and make it easier for practi-

tioner and expert to work with the data and isolate interesting cases for further exploration.

This approach is shown to help identify possible nominal sets which would be useful for

building semi-supervised models for further classification of new data. Our approach is

also successful in showing how it may be helpful in the aircraft domain at isolating flights

from very large unlabeled datasets that are worth exploring for possible fault causing be-

haviors. This approach is designed to be general, and in the next chapter we apply it to a

different domain, i.e., pitcher data in professional baseball games.
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CHAPTER VII

ANOMALY DETECTION OF UNLABELED PITCHER DATA FOR
EVALUATION OF MECHANICS

Chapter VI presented our unsupervised exploratory approach to discovering anomalies

in large segments of flight data, where most of the flight instances were nominal. However

that data dealt with a number of identical aircraft, and their behaviors were defined by the

aircraft state, physical laws, the manner of operation, and the environmental conditions.

Anomalies in this domain correspond to signals that show different characteristics from the

nominal behavior, which is derived by clustering all of the flight instances, and labeling

the large groups of flights as nominal. An example, such as a pilot not using the automatic

throttle to control the airspeed is detected because almost all nominal takeoffs utilize this

controller.

However, our second problem domain, which involves the study and analysis of pitches

thrown by a pitcher pitchers in Major League Baseball games is different, because, in

this case, the pitcher’s throw, once it leaves his hand, obeys the laws of physics, and is

affected by environmental conditions. There are many subtle differences, however, in the

way the ball leaves the pitcher’s hand. A lot of these variations can be attributed to the

pitcher’s decision making and his mental and physical state, and all of these are much

harder to analyze than an aircraft during taxiing, taking-off, cruising, or landing. Since the

pitcher’s decision making and mental states are truly latent, it makes exploring anomalies

in baseball pitching much more challenging, primarily because there are not a finite state

of well-defined physical laws that completely define the characteristics of a pitch.

Therefore, although this chapter uses the same exploratory approach for the same set

of research challenges for complex systems and large data, the domain provides a new

challenge from Chapter VI. This additional challenge in this chapter is to analyze baseball
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pitchers’ throws on a game by game basis, and try to characterize games where the pitcher’s

overall throws were anomalous as compared to their average pitching behaviors across the

entire set of games that they pitched. Like the aircraft data, once we discover anomalous

games, we analyze the details of the pitches in that game to determine what was different

in their set of pitches for the game. The cumulative effect of the characteristics of a pitch

includes parameters such as grip, release point, and shoulder and arm action. These are

collectively referred to as a pitcher’s mechanics. A number of environmental factors are

carefully controlled during a game, however, the consequences to diversity in a pitcher’s

approach, and the his decision making can vary how one player’s mechanics apply from

game to game. As discussed earlier, we use our unsupervised learning approaches to clas-

sify the set of pitches the pitcher made in the game as nominal or anomalous, i.e., those that

deviate significantly from the nominal. Analyzing the anomalous pitch patterns in more de-

tail, should provide us with sufficient information for identifying good and bad patterns in

the pitcher’s throwing mechanics, and how they impacted his performance.

This chapter is organized as follows. Section VII.1 describes how our approach for

organizing this data, and contrasts the approach with the aircraft flight system domain.

Section VII.2 presents the results of the approach. We first describe the process of looking

at all the data together, and the process of building a one pitcher model. We then contex-

tualize the data into specific pitchers. From these models we examine case studies from

selected pitchers and describe the anomalies found by our model. We summarize these

results in Section VII.3 and briefly compare the results of using our approach with baseball

data with the aviation data in the previous chapter.

VII.1 The Application of the Approach to Pitcher Data

Applying our approach follows the pitcher data involves the same steps described in

Section VI.2 and illustrated in Figures 20 and 21. We first build the data cube described
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in Section III.3.1. Using a complexity measure, we reduce the data cube to a set of dis-

similarity matrices for each feature. This set is then reduced to a composite dissimilarity

matrix and we build a hierarchical cluster and search for anomalous groups. Our approach

then applies feature selection to help characterize these anomalies for further investigation

and modeling. This application requires some modification in the implementation of these

steps. We discuss the changes in data curation, contextualization, and how to interpret the

output during characterization.

VII.1.1 Data Curation and Contextualization

The pitcher data for this study was put into a structured and interpretable form by Harry

Pavlidis at Pitch Info LLC and made available to others in the form of a SQL database. Each

record in the database is a pitch thrown since 2007. The structure used to transform the data

from the database into the data cube is defined in Section III.3.3. Similar to focusing on

the takeoff for the aviation data, to further curate the baseball data to make comparisons

between pitcher games more equitable. We focus on games starting from the year 2009

where a pitcher throws 100 or more pitches for that game and we concentrate on pitchers

that have at least 75 such games from 2009-2012. The reason for 100 pitches per game, is

that all of these pitchers pitched for a sufficiently long time in the game for fatigue to set

in on their bodies. The choice of 75 games was somewhat arbitrary, but chose to ensure

that each of the pitchers had played a sufficient number of such games for the period of

the study. Further, the choice of high number of pitches, implies that the pitcher was doing

reasonably well, otherwise, he would have been replaced by a reliever earlier in the game

due to poor performance. This selection results in our selecting 20 pitchers, and a total of

1818 instances of games that they played. These 1818 instances make up one dimension of

the data cube. Table 32 presents the list of the 20 pitchers selected, whether they are right

or left handed, and their top three pitches by overall usage.
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Table 32: Pitchers Used in Data Cube

Name Handedness Pitch One Pitch Two Pitch Three

Ubaldo Jimenez Right Four Seam FB Sinker Ball Slider
Jered Weaver Right Four Seam FB Sinker Ball Slider
C.C. Sabathia Left Four Seam FB Slider Change Up
Roy Halladay Right Cut Fastball Sinker Ball Curve Ball

Jon Lester Left Four Seam FB Cut Fastball Curve Ball
Zack Greinke Right Four Seam FB Slider Sinker Ball

Clayton Kershaw Left Four Seam FB Slider Curve Ball
Matt Cain Right Four Seam FB Slider Change Up
Cliff Lee Left Sinker Ball Four Seam FB Cut Fastball

Felix Hernandez Right Sinker Ball Four Seam FB Change Up
Jeremy Guthrie Right Sinker Ball Four Seam FB Slider

Justin Verlander Right Four Seam FB Curve Ball Change Up
Yovani Gallardo Right Four Seam FB Curve Ball Slider

Max Scherzer Right Four Seam FB Change Up Slider
Dan Haren Right Sinker Ball Cut Fastball Curve Ball

James Shields Right Four Seam FB Change Up Cut Fastball
Tim Lincecum Right Four Seam FB Sinker Ball Change Up

Cole Hamels Left Four Seam FB Change Up Curve Ball
David Price Left Four Seam FB Sinker Ball Curve Ball
C.J. Wilson Left Four Seam FB Sinker Ball Cut Fastball
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Like the aircraft domain, the anomaly detection task remains the same, but in this anal-

ysis there are two areas in which we could discover anomalies. First, we are looking for

the games where the pitcher still went deep into the game but was not as effective as he

was on average, i.e., we look for subpar performances. Second, we look for the opposite,

i.e., games where he performed better than his average performance, and then analyze what

changes in the mechanics resulted in the superior performance.

We employ the Haar Wavelet transform based distance to reduce the data cube, there-

fore, we need the signal lengths to be powers of two and we need an equal number of

coefficients between pairs of signals. Unlike the aircraft flight system domain, there does

not exist a contexualization of the baseball data that allows us to easily compare equal sized

signals from the data without removing some of the signal. Therefore, to prevent loss of

information by truncation of signal lengths, we padded each signal with zeros to next near-

est power of two. We modify our implementation to make sure that when we compare two

signals, if they are not already the same size, we further pad the smaller of the two signals

with zeros to match the larger signal. The use of padding with zeros to help with signals

that are not the right length has been advocated for a number of applications [138] and

used by researchers to help explore the power spectrum [155] and compression [113]. In

our case, when the two sequences are quite different in original length, this padding does

not interfere with identifying these sequences as different. The consequence is that the ap-

proach can detect anomalies where one signal is not necessarily shaped different, but much

smaller than normal, or missing altogether. In the context of baseball, this would mean that

might detect games where a pitcher rarely uses one of their frequently used pitches. Given

the contextualization of the data for a specific set of pitchers, finding pitcher-games where

a pitcher does not use a normal pitch would be an interesting anomaly.

Given this data we explore two different contextualizations. We first examine the entire

data cube. Similar to the aircraft flight system domain, we treat every pitcher-game instance

as originating from the same type of generator. This use of the data cube is meant to provide

189



a baseline for how this human data responds to clustering. The second contextualization is

to focus the approach on a specific pitcher. In this case, we remove any possible variation

in terms of mechanics across all pitchers and focus on looking at finding a nominal set of

games for that given pitcher. This would provide a nominal model for those mechanics and

isolate anomalies where the mechanics were different. From this contextualization, we can

focus on specific changes, rather than trends across all pitchers.

VII.1.2 Characterization of Anomalies in Pitcher-Games

The characterization of anomalies in this data set follows the same general approach,

but to visualize the significant actors for this data and domain is slightly different. Since we

deal with significant actors that indicate the lack of a signal when one is normally expected,

we merely mark this for the expert. When the signal is present but different we rely on

three types of plots to demonstrate the differences. We still utilize plots of several nominal

signals against the anomalous signal. This is effective when we want to demonstrate that the

pitcher’s speed or spin on the baseball is general different (higher or lower) than normally

expected. This provides a sample of the range for a pitcher as a game progresses. The

second visualization is to produce a mean signal and illustrate a one sigma range around the

signal. The plots of the nominal games can be so spread that they make it hard for an expert

to track the nominal trends and see why the anomalous signal was different. A mean signal

present the expert with a general trend and the sigma range shows a bit about where the

pitchers normally fall during that trend. When the pitcher’s mechanics are functioning at a

level where he is not outside of his normal range, but is trending differently than expected,

this plot can help characterize those instances. Lastly, our final plot is one that eschews

the temporal sequencing in order to show a general change for the game. Sensors such

as the starting location and ending location benefit from seeing the nominal locations for

games, and comparing these to the anomalous set. This is especially true when the location

is different but remains constant over time, making the signal less interesting. Visualizing
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these sensors in the context of the game by displaying the Cartesian planes from which

they are measured gives an expert the clearest idea of where the differences occurred for

that game.

Lastly, this domain benefits from wealth of ancillary information collected about the

game. These include news articles, as well as the game statistics for the pitcher. Unlike

the aircraft flight system domain where secondary information such as pilot reports and

mechanic notes may not exist or be possible to retrieve due to privacy concerns, the sport

domain is about providing as much similar information to the fans as possible. For each

anomaly we can examine the significant actors and then see if this can be corroborated

with information provided by the players and coaches as well as scouts. In our results we

utilize this information to provide context as well as to help explain the information we are

receiving about these anomalies.

VII.2 Results and Case Studies with Pitcher Data

As described in our approach to this data, we utilize two contextualizations. We first

describe the results of exploring the entire data cube of 1818 instances. We look for anoma-

lous clusters and attempt to characterize the pitchers in that group. We then explore data

cubes made up of a single pitcher’s games. We explore three pitcher in particular. First we

examine Roy Halladay, currently with the Philadelphia Phillies, and Tim Lincecum, cur-

rently with the San Francisco Giants. Both pitchers have won Cy Young awards for being

the best pitcher during a season and both have won during the span of the data we cur-

rently have in the data cube. The third pitcher is Jon Lester, currently with the Boston Red

Sox. Jon Lester has been a relatively successful starting pitcher, but over the last year has

dropped in performance. All three pitchers provide an interesting exploration considering

they all use slightly varying pitch types, and have very different mechanics.
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VII.2.1 Exploring All Pitcher Data

The entire data set was reduced with the Haar Wavelet transform and distance, and then

clustered. The results of the dendrogram and initial clustering are illustrated in Figure 50.

Similar to previous applications of this approach, we find a very large cluster and then an-

other smaller cluster as indicated by the rectangle. A quick analysis of this cluster showed

that the data is comprised of only two pitchers, Roy Halladay and Dan Haren. Upon closer

examination, the sub-tree was split into homogenous groups of the instances for these two

pitchers. This would indicate that at the very least the mechanics for these two pitchers

were different enough from the other 18 pitchers, but similar enough to be clustered near

one another, but still separable.

Figure 50: Dendrogram of All Pitchers with Anomaly in Rectangle

Further examination of these two pitchers from Table 32 indicates why they might be

clustered. Roy Halladay and Dan Haren both thrown a rather unique set of three pitches.

Nowhere to be found in their primary repertoire is the Four Seam fastball. Instead they
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use another type of fastball, the cutter as the replacement for this pitch. Also of note,

these two pitchers are right handed, and a quick look at their height and weight shows they

have comparable body types. Based on this information, we might expect that they would

provide a similar profile in terms of mechanics. That being said, their usage is moderately

different with Dan Haren relying on his sinking fastball and Roy Halladay using his cut

fastball as the primary pitch.

This clustering indicates that the individual mechanics and pitch repertoire of a pitcher

are fairly dominant characteristics that determine the clustering results. This conclusion

would line up with the expectation that even though each pitcher is over five feet and

eleven inches, and they are all successful pitchers, they are a diverse group when it comes

to measuring their abilities. Unlike the aircraft flight system domain where the aircraft

is expected to be identical, these instances have repeatable variance that can separate out

when grouped together.

VII.2.2 Exploring Single Pitcher Data

The other contextualization is clustering individual pitchers, an approach which would

address the issues when clustering all the pitchers together. In this case, we are attempting

to contextualize the mechanics and pitch repertoire that each pitcher brings, and hopefully

build a group of nominal games where these attributes of the pitcher are relatively simi-

lar. Our goal is to then identify the anomalous games, and compare them to the expected

mechanics and repertoire so we can see how a pitcher may have changed and the con-

sequences of those adjustments. We examine three pitchers in detail, Roy Hallday, Tim

Lincecum, and Jon Lester. As Table 32 shows, one is a right hander, and the other two are

left handers. Their mechanics are also different starting from their size as Lincecum is only

five feet and eleven inches tall, whereas the other two are over six and a half feet tall. The

pitch repertoires for each are also diverse, providing breadth in our investigation.
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VII.2.2.1 Roy Halladay

Roy Halladay is one of the two pitchers in our group that does not throw a normal four

seam fastball, instead he prefers to throw a cut fastball which has more movement. By

movement for this pitch and pitcher, we mean it has a higher spin rate, and when thrown,

the ball moves to the left of the projected straight line. His other pitchers also involve a

spin, including his fourth most thrown pitch, a split finger fastball, which is thrown slower

than a cut fastball, and has spin on a different axis. Together these two pitches form a pair

which when used strategically, are able to fool a batter into swinging at a pitch and in the

case of contact, result in a weakly hit ball.

Using a data cube made only from the games where Roy Halladay pitched, we examined

a total of 91 games. After dimensionality reduction and clustering, we can see a cluster

of 10 games in the anomalous set shown in Figure 51. Similar to the case of the first

cluster of anomalies in Chapter VI.3.4.1, we are able to rank the significant actors and look

at each anomaly by itself. First, we lined up these anomalies to look for any temporal

patterns in their occurence. Of the 10 anomalies, 7 of the games occurred in consecutive

starts for Halladay. These games occur at the beginning of the 2011 season. Among their

characteristics was the fact that Halladay did not throw his change up. While not one of

his primary three pitches, the fact that he did not throw it all was part of this anomaly.

Another pitch that is listed and shown to be thrown very infrequently in these games is

his curveball, one of his top three pitches. Lastly, a pitch that shows up as thrown with a

expected frequency but is different mechanically is his split finger fastball. Taken together,

this would indicate that as Halladay was warming up for the season in his first games, he

was not using, lightly using, or changing the mechanics of pitches in his normal selection.

When we examined each of the anomalous games in the context of the statistical results

of how Roy Halladay pitched, we found two that were particularly interesting. We found

a dominant game in his series of spring starts, and we found a poor start that lasted 100

pitches later in the season.
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Figure 51: Dendrogram of Roy Halladay Games with Anomaly in Rectangle

The first anomaly is a complete game against the New York Mets where he allows a

single run, 7 hits, and struck out 8 batters. The news reports for this start consider it a

dominant performance [131]. When we examine the significant actors, we first notice the

fact that he did not throw a single change up. The telling significant actors however are the

start and ending speed of his split finger fastball as well as the spin rate of the same pitch.

Figures 52 and 53 show the ending speed and spin rate, respectively. The ending speed is

plotted against his normal trend. From this graph, one can notice that his typical trend is

to lose speed on his pitches as the game goes on, but in this case, his ending speed starts

up slower then steadily improves over time before dropping again. Couple this with spin

rate in Figure 53, also plotted against the mean signal. Here the spin rates are much higher.

Taken together, it seems that the pitches are coming at the batter faster as the game goes on,

and with more spin, they are moving more than expected. With this sort of movement, and

since Halladay isn’t throwing one of his pitches, he appears to find a strategy for inducing

outs against the Mets. The article goes on to say, that Halladay did not feel like he was
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pitching his best that day, but he was being aggressive. The significant actors for the split

finger fastball would help corroborate this statement.

Figure 52: Ending Speed of Roy Halladay’s Split Finger Fastball Against the Mets

The second game we analyze was not as successful. Although Halladay lasted over

100 pitches, he gave up more runs and was less effective [130] than at any point in the

season. The significant actors for this instances include some of the same sensors as the

first anomaly, as well as new significant actors. Figures 54 and 55 show the spin rate of the

split finger and the speed of the curve ball. Unlike the dominant game, here the spin rate,

plotted against the mean signal, is much lower. With that little spin, there was also likely

less movement, meaning that it was just a slow pitch that would be easier for the batter to

make solid contact. This significant actor also shows that he did not throw as many of these

pitches as he would normally. This is likely due to the fact that he was ineffective with

the pitch. The results are similar for his curveball, where Figure 55 shows that his starting

speed for his curveball was also lower than average. With both pitches ineffective, he was

196



Figure 53: Spin Rate of Roy Halladay’s Split Finger Fastball Against the Mets

relying on smaller repertoire. Overall, this game was a struggle because he was unable to

get the typical movement on one of his pitches, and another was not at the normal velocity.

Both games show that Halladay’s pitching results could hinge on his split finger fastball.

A pitch like the split finger that relies on a lot of spin to generate movement and confuse a

hitter is certainly going to help generate a lot of strike outs. When it isn’t working, it would

be more likely to cause a pitcher to have to rely on a smaller set of pitches to survive a game.

Information generated for these type of games would be useful for two sets of people. First,

for the team that is currently employing the pitcher, these results may help identify before

his next start, what the problem was, and see if it can be corrected through extra practice.

The second group is opposing teams, who could use this information, such as the lack of

change ups being used in the spring, to scout the pitcher, and help their own hitters narrow

down what to look for when the hit against the pitcher. These two applications are enhanced

by detecting changes in the pitcher’s normal approach, and being able to characterize them

given the normal mechanics.
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Figure 54: Spin Rate of Roy Halladay’s Split Finger Fastball Against the Rockies

Figure 55: Starting Speed of Roy Halladay’s Curveball Against the Rockies
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VII.2.2.2 Tim Lincecum

The next pitcher we examine is Tim Lincecum. In contrast to Roy Halladay’s mechan-

ics, Lincecum is a different type of pitcher. Shorter than Hallday by 7 inches and also

left handed, Lincecum has the nickname of “The Freak” due to a unique pitch delivery

for his frame. He has also been very successful, winning several season awards for his

performance.

Contextualizing the data cube for only the games that Lincecum pitched reduced the

data cube to 88 instances. After reduction, and clustering, the dendrogram shown in Fig-

ure 56 helped identify one large cluster and one small cluster containing 8 anomalies. Same

as with Halladay, we looked at each of these anomalies one on one, since there were so few.

Looking at them temporally, only two of the games were sequential. Similar to Halladay,

both starts were from the beginning of a season, and in this case, the season was 2009. In

both games, it appears that the reason for the anomaly was that the pitcher did not utilize

his slider. This makes sense, because sliders are one of the more physically straining pitch

types, thus the need to slowly work into throwing that pitch during the season so as to not

risk injury. The remaining 6 anomalies, however, demonstrate how this approach on the

data is good at identifying anomalies which are due to performance above the norm for the

pitcher. We present one of the anomalies as a case study of the 6.

This anomaly was a complete game shutout, where the pitcher gave up 3 hits and had 6

strike outs in a win over the Oakland Athletics. It was such a great game, that advanced stats

scored it as one of the three best games for Lincecum up to that point in his career [132].

Complete games are commendable by themselves, but ones where the pitcher has a shutout

are considered exceptional. Examining the significant actors for this game, we find an

interesting set. First, in Figure 57, we show the starting speed of Lincecum’s four seam

fastball over the course of the game. A four seam fastball is the most common fastball

in Major League Baseball. It is often referred to as a “rising” fastball due to the fact that

the spin is placed on the ball to give it the illusion that it is moving upwards towards the
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Figure 56: Dendrogram of Tim Lincecum Games with the Anomalous Cluster in a
Rectangle

batter. In this plot we can see that the speed is not exceptional, but rather it is the lack of a

pattern of degradation in the speed over time, as shown by the mean signal. Lincecum was

able to maintain his top velocity over the course of the game, and was able to vary it when

necessary. One of the many subtle levels of strategy is a pitcher’s ability to vary their own

speed and balance their control over the location of the pitch with overwhelming a batter

with higher than expected velocity. This is backed up by the spin rate on his fastball which

also maintained a consistency shown in Figure 58. In the case of his four seam fastball,

Lincecum was able to produce this kind of variation over the course of the game, and even

threw it harder at the end. The final significant actor to examine is in Figure 59, where

we show the release location of the four seam fastball. The release point is an x and y

coordinate based significant actor. The plot shows the anomalous pitches against a random

sample from the nominal games. This is visualized as facing the pitcher. The origin refers

to a spot in the middle of the pitcher’s mound and a ball thrown directly in front of the

pitcher. The x-axis shows the release point in relation to the middle of the pitcher’s mound
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and the y-axis refers to the release from the height of the pitcher (these values have been

normalized for the given pitcher and the height of the mound). The originating significant

actor in this case is the x-axis. In general we see that his release point varies on this axis,

moving at times further from the mound and at other time closer. Also of note, the release

point is consistently low, especially compared to the spread shown in the normal data. This

lower release point may have helped him maintain his velocity over the course of the game.

The varying nature of the x-axis may also have helped confuse the batters about the type of

pitch being thrown as well as obscuring the pitchers intended velocity.

Figure 57: Starting Speed of Tim Lincecum’s Four Seam Fastball Against the Ath-
letics

Similar to Halladay, we find that for Tim Lincecum we are able to identify some of the

anomalies from his lack of throwing certain pitches. Our ability to catch when a pitcher

is not throwing a pitch is important to potentially identifying whether there is an injury

explanation, or if it’s conditioning the throwing arm for a long season, especially when
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Figure 58: Spin Rate of Tim Lincecum’s Four Seam Fastball Against the Athletics

Figure 59: Release point of Tim Lincecum’s Four Seam Fastball Against the Athlet-
ics Compared to Nominal Games
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the pitch like a slider can put a lot of stress on the arm. Lastly, this approach helps catch

what makes a start special, such as the shut out we examined for Lincecum. In contrast to

Halladay, it may not be a spike in the velocity during the game, but rather maintaining the

performance and varying the release point of the pitch that is effective.

VII.2.2.3 Jon Lester

The last two pitchers presented two very different approaches to pitching, from hand-

edness, to size, to the overall repertoire. The last pitcher we examine, Jon Lester, is a cross

between the two pitchers. Also left handed like Lincecum, the body type of Jon Lester is

similar to Roy Halladay. Lester’s pitch selection is a cross between the two, with an overlap

of two pitches out of the top three for the other pitchers. This provides an interesting final

study, as we examine a great start, and a really poor start where the success and failure

of the mechanics are clearly understood and even recognized by coaches before they even

examined the video tape of the game.

Contextualization of Jon Lester’s games from the data produces a data cube with 91

instances. Figure 60 shows the dendrogram after performing the dimensionality reduction

on the data. Unlike the two previous examples, there is one large cluster and two smaller

anomalous looking groups of games. From right to left in Figure 60 we refer to these

smaller clusters as anomaly cluster 1 with three games and anomaly cluster 2 with 8 games.

This provides an interesting chance to look at these clusters and to look across them.

The first cluster contains three games. Their unifying theme when examining the sig-

nificant actors is that these are starts where Lester did not throw a sinker ball. While not

in his top 3 pitches, Lester does use the pitch a moderate amount during games and these

three did not include a single instance. Of these three, two were excellent starts, one during

2010, and another in 2011. The final game in the cluster was from 2012 and was not a

performance on the same level as the other two games in the cluster. In fact, Lester was

mediocre, but it was considered an improvement from his previous starts[29].
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Figure 60: Dendrogram of Jon Lester Games with Anomalous Clusters in Rectan-
gles

We focus on the two top games, which include a complete game against the Minnesota

Twins [116] and a strong performance against the Kansas City Royals [129]. In both games,

the significant actors are demonstrative about what elevated the performances. Figure 61

shows the starting speed for Lester’s four seam fastball against the Twins. Plotted against

the mean, it shows that Lester really elevated his velocity against the Twins and attempted

to overwhelm them with the speed. This is coupled with his release point shown in Fig-

ure 62. The release point is not vastly different in terms of the Y-Axis, but Lester is more

consistent in releasing a bit closer to the middle of the mound. This results in more of an

over head motion which would allow him to increase the overall velocity of this pitches.

The consistency in the location of the x-axis means that he was likely throwing with more

command.

The game against the Kansas City Royals only has two significant actors: the spin rates

of the four seam fastball and the cut fastball. Figure 63 and 64 show these rates for the

four seam and cut fastballs respectively. In both cases, plotted against the mean value,
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Figure 61: Starting Speed of Jon Lester’s Four Seam Fastball Against the Twins

Figure 62: Release Point of Jon Lester’s Four Seam Fastball Against the Twins
compared to Nominal Set
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we see that these spin rates are higher the the nominal signal and with greater variance.

The spin rates for both pitches are still sustained at a higher level than normal. Since

no other significant actors are selected, the pitches were likely at the normal velocity and

release point, but contained better movement and thus were sharper in terms of location

and more effective. In this case, we see that better mechanics does not necessarily mean

an improvement in terms of speed, but rather, it may indicate that the grip has improved,

producing better spin and thus improving the deceptive nature of the pitch’s movement.

Figure 63: Spin Rate of Jon Lester’s Four Seam Fastball Against the Royals

The second cluster contains 8 games. With the exception of one game where it listed

the significant actor for no change ups thrown, the rest of the games were not flagged for

lacking in an expected pitch type. Instead these games seemed to indicate a fair amount

of variability in the pitching of Jon Lester. We focus on one game in this cluster which

contrasts with the two great games examined above and contains expert testimony that

corroborates the significant actors. The game we chose from this cluster was a year to the
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Figure 64: Spin Rate of Jon Lester’s Cut Fastball Against the Royals

day after the complete game against the Twins and was a tough outing for Lester against

the Chicago Cubs [160]. In the report of this game, the manager for the Red Sox, Terry

Francona says “I thought because of the [ineffective cut fastball] he had to work harder

and gave up some hits.” When we look at the significant actors for this game we identify

the spin rate for the cut fastball as well as the spin rate for the four seam fastball. Shown

in Figures 65 and 66, the spin rates are certainly down and more erratic compared to the

mean signal for both pitches and with neither fastball containing the normal movement, it

would be hard to be strategic with when to use either pitch, since the opposing team has

less movement on the pitches to keep them off balance.

These anomalous games for Jon Lester provide another lesson in characterizing anoma-

lies for this domain. It is not always the case that if a pitch is unsuccessful, it is the velocity,

spin and release point all failing at the same time, but rather, each component has a degree

of autonomy in making up the mechanics of the pitch. If one part of the mechanics is off,

it can make the difference between a strike out and solid hit. Identifying for Lester that his
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Figure 65: Spin Rate of Jon Lester’s Four Seam Fastball Against the Cubs

Figure 66: Spin Rate of Jon Lester’s Cut Fastball Against the Cubs
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spin for his cut fastballs is a primary mechanical issue means that the experts on the team,

such as the pitching coach, can attempt to work with Jon Lester to improve the consistency

of his cut fastball.

VII.3 Conclusion and Discussion

In this chapter, we took our exploratory approach to anomaly detection in large mul-

tivariate signal datasets and applied it to a domain that is primarily about physical human

interaction. In this case we examined pitcher data from Major League Baseball. This data

is sparser in terms of the signals than the aircraft flight system domain. It also has more

variance from instance to instance. While the environment is more tightly controlled be-

cause it is a sport with many rules, the nature of human bodies, the variation in technique

of throwing a baseball, and psychology produces many instances, even for the same pitcher

that can be different. The goal of this work was to test whether our approach would be able

to find a nominal set of operational instances and isolate interesting anomalies that could

be used for further investigation and modeling.

We specifically applied the approach to pitchers who have been known to thrown many

pitches during a game and have a proven track record of being successful. The trade off for

this choice is the gathering of longer signals for the features in the data cube, versus picking

instances that are more likely to be successful instances in the game. We first clustered all

the data together and found that the individual mechanics and pitch selections for a pitcher

could differentiate certain pitcher’s entire set of games from the data cube. We then applied

our approach to contextualized data cubes of individual pitchers. We produced case studies

of a few pitchers and found that our approach could identify some poor games, but was

more successful at identifying effective performances for the pitcher above their standard.

Our feature selection allowed us to characterize both the poorer games and the excellent

performances in terms of the mechanics for the specific pitchers. We showed anomalies

where the pitcher was able to either improve an aspect for a pitch or even just remain more
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consistent across the entire game. We also showed for the same pitcher how we could

identify mechanics that could make the difference between a great start and one that was

worse. Lastly, we showed that this could be effective not just for the team that the pitcher

being analyzed was currently playing for, but that this could be used for opponent scouting

to identify current flaws.

When compared to the aircraft flight system domain, one of the greatest contrasts is

that the anomalies found in the aircraft were never improvements over the nominal opera-

tion. Even when they were not safety incidents, they still represented something that was

unexpected about the takeoff of the airplane. In the baseball domain, the baseline, even for

a successful pitcher leaves anomalies in two directions. There is the poor outing, where

the anomaly is why the mechanics of the pitcher lead to worse performance than normal.

In this domain, there are anomalies where even a successful pitcher has a better game than

expected, and is in more control. As much as the experts would want to avoid the poor

mechanics, understanding what helped produce such a great game would be very useful in

this domain.
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CHAPTER VIII

RESEARCH CONTRIBUTIONS AND FUTURE WORK

Detection of anomalies in complex systems using large data requires approaches that

can accommodate the complex nature of the systems, and be efficient enough to leverage

the large amount of operational data that is produced in these systems. Section I.1 identified

specific research challenges for performing anomaly detection for systems that are both

complex in the number of relationships and also produce large amounts of data in terms of

instances, features, and the temporal sequences for each feature. Section III.3 details the

problem domains that we focused on in this research and were emblematic of the research

challenges.

This dissertation has described our two approaches we developed for performing anomaly

detection on these complex systems. The first approach is a supervised learning method-

ology for improving diagnostic reference models and thus improving the accuracy and

early detection times of diagnostic reasoners. It is an approach that exploits expert infor-

mation to constrain both the problem and the data to discover specific knowledge that is

used to update diagnostic models. The second approach is exploratory method that uses

dimensionality reduction to transform the data cube described in Section III.3.1 into a two

dimensional dissimilarity matrix for clustering analysis. We use the structure generated by

clustering to identify anomalous instances in the domain, and then perform feature selec-

tion to help an expert characterize the nature of the anomalies. These approaches form the

core of our research and are demonstrated to show their effectiveness in improving mod-

els of detection for specific anomalies, and for discovering and characterizing previously

unknown anomalies for future detection.
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VIII.1 Summary and Research Contributions

Chapter II provided a background on the current state of the art in anomaly detection.

We first explained the different types of anomalies and then described the different data

considerations when building models for anomaly detection. We then explored discrim-

inative and generative types of data mining algorithms that can be used to construct the

anomaly detection models. We explained the difference between supervised, unsupervised

and semi-supervised models and review the different anomaly detection approaches that

have been constructed with each level of supervision of data mining.

Chapter III formally described our research approach to this problem. We started by de-

tailing the nature of the data that is collected from complex systems and that we use to look

for anomaly detection. We then explained the problem we are solving, starting with data

curation. This curation led to data transformation where the data may have dimensionality

reduction applied to make it computationally feasible for a data mining. We either applied

supervised learning techniques or unsupervised learning depending on the approach and

the goal of the detection task. We summarized the problem domains, including formally

describing the data cube representation that use to frame the data in the rest of the disserta-

tion. Lastly, we explained our research problems in more detail with high level descriptions

of the two approaches and what the goal of these approaches are when applied to the data

in our problem domains.

Chapter IV presented our supervised approach to anomaly detection as a knowledge

engineering task. We applied our approach to the case of improving the reference models

in diagnostic systems. This improvement is designed to make the models more accurate

for a specific anomaly which in turn improved the early detection performance of the di-

agnostic reasoner. We first described the reasoner and the reference model we targeted

with this approach. We then described the Bayesian framework we developed for build-

ing models from data, and then incorporated information from these data-driven models

into the reference model structure. We then presented our overall approach for targeted
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anomaly detection, starting with curation of data, and using expert knowledge to target rel-

evant segments of the data to transform the curated data into a specific data set. We then

explained how we build and validate classifier models using Tree Augmented Naïve Bayes

model built from the targeted dataset. Our final step was to take the information from the

Tree Augmented Naïve Bayes model and suggest improvements to the reference model.

We combined this approach with the aircraft flight system domain and data, along with the

reasoner and reference model described earlier. Using this specific implementation of our

approach, we demonstrated its effectiveness through a number of case studies of specific

engine failures in the aircraft in our domain. We showed that our technique does improve

the early detection times of the reasoner, as well as alert an expert when a failure being

explored is not germane to the subsystem on the aircraft that we targeted.

Our major contributions in the chapter include:

• A general framework for applying targeted supervised anomaly detection with expert

guidance: This framework allows a practitioner to utilize different reasoner and ref-

erence models and different domains of physical systems to start from raw data, and

produce specific anomaly detection models which can be reapplied to a reasoner for

targeted improvements.

• A successful implementation of this framework on an industry designed aircraft rea-

soner: This implementation of our general approach was able to take operation data

from an aircraft, a specific aviation safety incident in the data and produce a Bayesian

model that could accurately detect the failure. With the help of a human expert, and

using our framework, aspects of this model could be reapplied back to the reference

model. After these applications it was shown that the reference model was quicker

in detecting the correct anomaly.

Chapter V described the dimensionality reduction techniques we utilized in our second

approach for using unsupervised learning methods for anomaly detection. One of the main
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components of our unsupervised approach is the use of dimensionality reduction of the

temporal sequences to reduce the data cube into a two dimensional dissimilarity matrix.

Since this reduction is so important to the overall approach, we focused on the possible

measures available to us. Since we wanted the temporal signal to be compressed but the

semantic information about the features to remain, we reviewed the possible complexity

measures that can meet our requirements. We examined compression based measures, the

information theoretic measure of approximate entropy, and then investigate the use signal

analysis techniques, such as the Haar Wavelet transform. In order to compare these dif-

ferent complexity measures we built a series of experiments. These experiments used a

combination of artificial data of many dynamic signals built specifically to test the sensi-

tivity and monotonicity of these measures as the signals change. We measured across the

different signals, as well as measuring the changes as the parameters of each signal vary.

We then took the two best measures, the Compression Invariant Distance Measure using

the Prediction by Partial Matching compression algorithm and the Haar Wavelet transform

and examined them in the scope of a very specific real world example of EEG data. The

data came from the readings of alcoholics and a control group and was a multivariate time

signal. Using clustering and an N-Nearest Neighbor classifier, we settled on the use of the

Haar Wavelet transform as the best complexity measure.

Our major contribution in the chapter included:

• The building of a experimental test suite for exploring the different complexity mea-

sures: While others have run tests of their own, our experiments were focused on

how these measures change for two conditions, when the signals are different, and

when the parameters vary for the same signal type. Both of these are important in

our problem domains used for anomaly detection. It is important to recognize two

signals are different if they vary drastically, but also to detect when two signals with
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the same general shape have different enough parameters. Our experiments help dic-

tate the use of the Haar Wavelet transform as the main complexity measure to use in

our dimensionality reduction.

In Chapter VI we presented our unsupervised learning approach for anomaly detection.

Using the dimensionality reduction techniques explored in Chapter V, we applied our ap-

proach to the domain of aircraft flight systems. We first reviewed the previous work for

anomaly detection, especially other techniques that were designed specifically with aircraft

flight systems. We described two of the more recent methodologies in depth, the use of

principal component analysis with density based clustering and multiple kernel anomaly

detection. With this previous work as the baseline, we provided a description of our sec-

ond approach, starting with curation of the data cube. We then described the process of

contextualization of the flight data into the specific phase to limit the anomalies we attempt

to discover. From this contextualized data cube we performed dimensionality reduction,

clustered the dissimilarity matrix and looked for nominal clusters and anomalous clusters.

We then explained our approach for characterizing the anomalies using feature selection

that looks for the features known as significant actors in the data cube that best differen-

tiates an anomaly from the nominal set. We described how this process works when the

number of anomalies is small enough for examining them one by one. We also suggested

a process of characterizing groups of anomalies using an interactive approach using Tar-

geted Projection Pursuit. Lastly, we compared our approach to the previous work. In our

approach we identified the anomalies and showed how we can characterize their behavior

with the significant actors. Using a domain expert for the aircraft flight domain, we used

these characterization to identify if any of the anomalies were aviation safety issues. We

found that a number of our anomalies are quite interesting to the expert including a flight

that only used three of the four engines, and another flight that came very close to stalling

before the computer controller took over. In both cases the expert would want to flag these

anomalies for further investigation, and to look for these kind of anomalies in the future.
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When compared to the previous work, our approach is quite successful at both identifying

a reasonable number of anomalies, and easily characterizing their significant actors.

Our major contributions in the chapter include:

• An exploratory approach to discovering previously unknown anomalies in large data

from complex systems: We provide an end to end approach for taking raw data and

producing at the end, a likely nominal data set as well as set of characterized anoma-

lies. This approach uses complexity based measures to perform dimensionality re-

duction on the data that renders the data more efficient for clustering while retaining

information about the original features to identify later. The approach uses hierar-

chical clustering to build a rich structure that can identify high level trends and be

examined deeper in the tree for more specific relationships. We present in our ap-

proach a method for producing the significant actor features that can help an expert

explore the potential anomalies more closely.

• The successfully exploration of a very large flight dataset with our approach and in-

teresting anomalies: Using our approach we were able to apply it to a flight dataset

that has yet to be truly explored. In our maiden use of this data of 5333 flight we

already started to discover interesting flights such as one where it used only 3 of

the 4 engines. Finding these flights in the data are useful as annotations for other

researchers to then apply that information to better contextualize which data is rele-

vant. For example, this flight may likely implicate the flights before it as indicating

an engine anomaly. Since there are no incident reports for the flight, an expert now

has a smaller set of flights to investigate. We also found flights that implicate pilot

behavior and the use of automatic throttle. These can be used to help model pilot

behavior at takeoff.

Chapter VII maintained the general approach we described in Chapter VI and explored
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the use of our unsupervised learning approach in the baseball domain. Using the same ap-

proach, this time we chose a domain that contrasted with the rigid nature of aircraft design.

Whereas all aircraft of the same type are built to a specification, data that comes from the

measurement of physical human interaction contains a variety of variation, between hu-

mans, and even from instances measures from the same human. In this chapter, we used

this domain to test the flexibility of our approach. The data we selected was pitching data

from Major League Baseball. We treated each instance as a game that a pitcher threw,

and we selected from the data, pitchers who threw quite a few pitchers during their ca-

reers. This was an attempt to find data rich instances, but also predisposes the data to more

successful games. Our goal was to look for anomalous games and then use the character-

ization method from our approach to identify the significant actors from the sensors that

measure the pitcher’s approach to throwing the ball. These sensors then provide insight in

the mechanics of the pitcher. The results from our approach for a selection of pitcher found

two results. First, when we grouped all the selected pitchers together, we found that they

merely clump based on their pitch repertoire and their mechanics vary enough to separate

them. When we applied the method to a specific pitcher in the dataset, the results helped us

identify games where the pitchers perform better than usual, including games where they

are near perfect according the rules of the game. We identified that for each pitcher we ran,

we saw parts of their mechanics which vary more, and which impact their performance the

most. Mechanics of the pitcher including where they release the ball, and how much spin

they put on the pitches were two of the more common significant actors we found.

Our major contribution in the chapter includes:

• The successfully exploration of a novel data set for a relatively new purpose: Using

our approach we were able to apply it to a baseball dataset. This dataset has not been

used previously by researchers and specifically for the use of signal based method-

ologies. We found a number of interesting anomalies, and were able to relate them

back to notable performances, as well as link the significant actors to information
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provided by the experts in the game. This application is a novel use of the data,

and showed the generality of the approach with a domain that contrasts in interesting

ways with the aircraft flight system domain.

VIII.2 Future Research Directions

Given the combinatorial ways in which one can contextualize or structure specific data

from different domains, and explore approaches to anomaly detection, there are many op-

portunities for future research. Promising research directions for our approach and problem

domains include:

Studying Different Phases of Flight. The examination of takeoff is interesting because

of the stress placed on the pilot and the aircraft during that phase of operation. Choosing an-

other phase such as landing would be interesting since it also includes relatively high stress

on both actors in the domain. In fact, running this exploratory analysis on several phases

and then overlaying the anomalies on a time line would provide a first pass of annotations

for each aircraft. These annotations could be used to identify when an aircraft suffers from

multiple anomalies in a row, even if at different phases of flight. These anomalies could

be contextualized across a single aircraft or across a fleet to identify likely environmental

anomalies, mechanical issues, or even with added data, look for similar pilot profiles. Au-

tomatic annotation of such data would be a great first step in putting unlabeled large data

into perspective.

Different Structure to the Pitcher Data. Similar to the different contextualizations

for different phases of flight, the pitcher data offers a number of different ways to structure

the data. Our breakdown used a subset of the available sensors, and grouped them by

each pitch type. Another structure would be to produce single signals that combine all the

pitches together regardless of type for each sensor. One could add a new symbolic signal of

the pitch types. This advantage is that using the data extracted in this research, the padding

would likely only go to 128 for each sensor, increasing their resolution and ability to look
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for subtle changes. In this restructuring of the data, the clustering may identify whether

different pitchers with similar mechanics approach the same teams in similar ways.

The structure may also be modified to try and reduce the amount of padding that occurs

in the data. The effect here is that we remove the tangible differences in how long a pitcher

goes. With this structure we may be able to relax the extraction criteria away from only

pitchers that throw over 100 games. This relaxation may allow us to build more general

models of pitchers from this data.

Different Wavelets and Transformations for Dimensionality Reduction. The choice

of the Haar wavelet was predicated on the simplicity of the approach and diversity of appli-

cations that use the Haar Wavelet for analysis. There are however, other choices that might

be interesting to examine that may also allow us to relax the need for the same size signals

between instances, or at least requiring the signal to be a power of two. Shannon entropy

based wavelets could be a potentially interesting choice. The application and success of in-

formation theoretic measures such as approximate entropy in other domains suggests that

an information theoretic wavelet would be an interesting experiment. Using another trans-

formation such as the iterative function systems used with fractals is another measure that

may be interesting. Together, these changes to the approach would make for an interesting

comparison on either of the problem domains.
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APPENDIX A

LIST OF PUBLICATIONS

Our research has lead to the following journal, conference, and workshop publications.

A.1 Refereed Journal Publications

J-1 Daniel L.C. Mack, Gautam Biswas, Xenofon Koutsoukos, and Dinkar Mylarswarmy,

“Learning Bayesian Structures to Augment Diagnostic Reference Models”, Journal

of Engineering Applications of Artificial Intelligence, 2013 Submitted.

J-2 Joseph W. Hoffert, Daniel L.C. Mack, and Douglas Schmidt, “Integrating Machine

Learning Techniques to Adapt Protocols for QoS-enabled Distributed Real-time and

Embedded Publish/Subscribe Middleware”, International Journal of Network Pro-

tocols and Algorithms (NPA): Special Issue on Data Dissemination for Large-scale

Complex Critical Infrastructures, Vol 2, No 3 2010

A.2 Refereed Conference Publications

C-1 John S. Kinnebrew, Daniel L.C. Mack, and Gautam Biswas, “Mining Temporally-

Interesting and Characteristic Learning Behavior Patterns”, The Sixth International

Conference on Educational Data Mining. Memphis, TN. July 2013 Submitted.

C-2 Josh D. Carl, Daniel L.C. Mack, Ashraf Tantawy, Gautam Biswas, and Xenofon

Koutsoukos, “Fault Detection and Isolation for Spacecraft Systems: An Applica-

tion to a Power Distribution Testbed”, SAFEPROCESS-2012. Mexico City, Mexico.

2012.

C-3 Daniel L.C. Mack, Gautam Biswas, Xenofon Koutsoukos, Dinkar Mylarswarmy
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and George Hadden,“Deriving Bayesian Classifiers from Flight Data to Enhance Air-

craft Diagnosis Models”, Annual Conference of the Prognostics and Health Manage-

ment Society, Montreal, Canada. October 2011.

C-4 John S. Kinnebrew, Daniel L.C. Mack, Gautam Biswas, and Douglas C. Schmidt,

“Coordination of Planning and Scheduling Techniques for a Distributed, Multi-level,

Multi-agent System”, The International Conference on Agents and Artificial Intelli-

gence (ICAART 2010). Vallencia, Spain. January 2010.

A.3 Refereed Workshop Publications

W-1 Daniel L.C. Mack, Gautam Biswas, Xenofon Koutsoukos, and Dinkar Mylarswarmy,“Using

Tree Augmented Naive Bayes Classifiers to Improve Engine Fault Models”, Uncer-

tainty in Artificial Intelligence: Bayesian Modeling Applications Workshop, Barcelona,

Spain. July 2011.

W-2 Joseph W. Hoffert, Daniel L.C. Mack, and Douglas Schmidt, “Using Machine Learn-

ing to Maintain Pub/Sub System QoS in Dynamic Environments”, The 8th Workshop

on Adaptive and Reflective Middleware (ARM) 2009, Urbana Champaign, IL. De-

cember 2009

A.4 Other Publications

O-1 Daniel L.C. Mack, Dan Brooks, and Gautam Biswas “Baseball Prospectus News:

Introducing Pitch Sequence Visualizations”, Baseball Prospectus. September, 2012.
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APPENDIX B

LIST OF ACRONYMS

ALT Altimeter

AOAC Corrected Angle of Attack

AOAI Indicated Angle of Attack

ApEn Approximate Entropy Measure

ASIAS Aviation Safety Information Analysis and Sharing Database

ATEN Automatic Throttle Engaged

BALX Barometrically Adjusted Altitude

BLAC Body Latitudinal Acceleration

BWT Burrows-Wheeler transform

CDM Compression-based Dissimilarity Measure

CI Conditional Indicators

CiDM Complexity-Invariant Distance Measure

CPT Conditional Probability Table

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Networks

EAI Engine De-Ice Activated

EGT.X Engine Temperature of Engine X
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EM Expectation-Maximization algorithm

FAA Federal Aviation Administration

FF.X Fuel Flow for Engine X

FQTY.X Fuel Quantity in Tank X

GBN General Bayesian Networks

HMM Hidden Markov Model

LATG Lateral Axis Acceleration

LCD Local Causal Discovery

LONG Longitudinal Axis Acceleration

LZW Lempel-Ziv Welch Algorithm

MKAD Multiple Kernel Anomaly Detection

NCD Normalized Compression Distance

N1.X Fan Speed for Engine X

N2.X Core Speed for Engine X

NB Naïve Bayesian network

PCA Principal Component Analysis

PCA-DBSCAN Principal Component Analysis with Density Based Clustering

PBN Partial Bayesian Networks

PLA.X Power Level Angle of Engine X

PPM Prediction by Partial Matching
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PS Static Pressure

PSA Average Static Pressure

PT Total Pressure

RUDP Position of the Rudder

SBAC Similarity-based Agglomerative Clustering

SVM Support Vector Machine

TAN Tree Augmented Naïve Bayesian networks

VRTG Vertical Acceleration
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