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Chapter 1

Introduction

Eclipsing Binary stars (EBs) are systems in which two stars orbit their common center

of mass, in a plane such that the observer sees one star passing in front of the other, resulting

in eclipses. These systems serve a crucial role in stellar astrophysics — providing one of the

only fundamental ways to measure absolute masses, radii, temperatures, and luminosities

of stars. As luminosities can directly be determined by modeling the system, the distance

to an EB can be derived, without any calibrations, from a measured apparent magnitude

(Guinan et al., 1998). EBs therefore provide essential calibrations to both the astrophysical

distance ladder and stellar population studies.

Approximately 46% of all systems contain more than one stellar component (Tokovinin,

2014b). However, not all of these systems are in the correct plane to result in eclipses and

not all exhibit periods short enough to be easily observed and detected. Nevertheless, there

are a large number of bright EBs with relatively short periods that can easily be observed

from the ground with a modest telescope. For this reason, and because of all the scientific

benefits, EBs have historically been very well studied.

Only about 25% of binaries (i.e. 13% of all systems) contain more than two components

(Tokovinin, 2014b). In order to be dynamically stable, the additional component(s) must

be at a significantly wider separation and therefore longer period than the inner binary they

orbit. Due to their scarcity relative to EBs and the increased complications in modeling the

physics of these systems, triple and higher order systems are not nearly as well studied as

EBs.

However, Tokovinin (2014b) found that more than 60% of short-period binaries (with

periods less than 3 days) have tertiary companions, and Law et al. (2010) found that more

than 80% of apparently ultra-wide binaries (Dhital et al., 2010) are in fact also hierarchical
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triples (see also Stassun, 2012). As a general rule, systems can be dynamically stable if

the outer period is >∼ 10 times the inner period. Therefore, as many of these triple systems

include short-period inner binaries, many dynamically stable triple systems can still have

outer-periods within an observable timescale. Furthermore, these types of systems—with

a short-period inner binary and a wide companion—are particularly interesting in testing

formation and evolution theories of binary star systems.

With modern surveys — Kepler (Batalha et al., 2010; Borucki et al., 2011), MOST

(Walker et al., 2003), CoRoT (Baglin, 2003), Pan-Starrs (Kaiser et al., 2002), Gaia (de

Bruijne, 2012), TESS (Ricker et al., 2015), and LSST (Tyson and LSST, 2002), for ex-

ample — covering a large number of sources over a long time-baseline, observations for

these systems are becoming increasingly available. With the great improvements in obser-

vational precision brought on by these same missions, we now must look towards methods

to improve our models to reap the full benefits that these systems and data provide.

1.1 Precise Constraints on Physical Parameters

Through careful observation and modeling of the photometric light curves and radial

velocities of EBs, it is possible to measure the masses, radii, surface gravities, densities,

and luminosities of both stars with a precision better than a few percent. For example,

in two recent reviews of available benchmark-grade EBs at main-sequence/subgiant ages

(Torres et al., 2010) and at pre-main-sequence ages (Stassun et al., 2014), mass and radius

determinations were better than 3% accuracy for ∼100 main-sequence and ∼15 pre-main-

sequence EBs, and as good as ∼1% in a few cases.

These benchmark systems play a critical role in stellar astrophysics: calibrating the

mass-radius relationship, testing stellar evolution models, providing fundamental parame-

ter for stellar objects across the main sequence, and calibrating the distance ladder. How-

ever, the accuracy obtained for these systems is pushing the limits of our models and comes

at significant overhead. High-precision photometric and spectroscopic (radial velocity) data

2



are necessary along with a considerable manual effort to model these systems. The largest

limitation in reaching an even higher precision is the inherent degeneracies in the non-linear

parameter space of the physical model. These degeneracies result in significant correlations

in the resulting fitted values, limiting our ability to improve on the parameter uncertainties.

In the case of higher order systems, especially those in which all components share

the same orbital plane and are mutually eclipsing, these orbital and stellar parameters can

be constrained to a much higher precision because these degeneracies can be broken by

the highly unique scenarios of these mutual eclipse events. In the case of KOI-126, for

example, Carter et al. (2011) used a photodynamical model of a hierarchical triple system

to measure the masses to a precision of ∼ 1% and the radii to a precision of ∼ 0.5%.

Similarly, for the case of the circumbinary planet system Kepler 16, Doyle et al. (2011)

constrained the masses of both stars in the inner binary to within 0.5% and the radii to

within 0.2%.

1.2 Probing Formation and Evolution Theories

In addition to this increased precision, the presence of additional bodies enables us to

study and test the effects of their mutual gravitational influence. For example, eclipsing

binaries in large photometric surveys exhibit a peak in the orbital period distribution on the

order of 1 day (Devor, 2005; Paczyński et al., 2006; Derekas et al., 2007). Binary forma-

tion theory, however, struggles to explain the creation of these close binaries in situ, and

capture seems unlikely to produce the large number of observed close binaries (Bonnell,

2001). Kozai-Lidov Cycles and Tidal Friction (KCTF) has been proposed as a formation

mechanism for short-period binaries through the interaction with a third star on an eccen-

tric and inclined orbit with respect to the inner-binary (Kozai, 1962; Lidov, 1962; Fabrycky

and Tremaine, 2007; Naoz et al., 2013a). Fabrycky and Tremaine (2007) use simulations of

systems undergoing KCTF to provide testable distributions in the final mutual inclination

between the resulting close inner-binaries and their companions. By modeling systems

3



with these configurations, we can build a sample of observed mutual inclinations to test

against the theoretical values to then conclude to what extent KCTF plays a role in the

formation of close binary systems.

Kozai-Lidov cycles can occur in hierarchical three-body systems with eccentric (i.e.,

non-circular) outer orbits. Inner binaries in systems with mutual inclinations between the

critical values of 39.2◦ and 180◦−39.2◦ cannot maintain circular orbits. In these systems,

Kozai-Lidov cycles will occur, causing oscillations in both the inner eccentricity and the

mutual inclination angle (Kozai, 1962; Lidov, 1962; Fabrycky and Tremaine, 2007; Naoz

et al., 2013a). At some points during these oscillations, the inner binary will be in a state

of higher eccentricity, and tidal forces between the inner stars will increase during their

nearest approach (periastron passage). These tidal forces in turn act to dampen the orbital

eccentricity-inclination oscillations and to tighten and circularize the orbit (Kiseleva et al.,

1998). Eventually the inner binary tightens enough that tidal forces dominate, and the

eccentricity-inclination oscillations cease, resulting in a close binary in a circular orbit

with a tertiary companion settled into a wide, eccentric, and inclined orbit.

Observational studies of triple star systems have argued that KCTF is not the primary

mechanism for initially creating these close inner-binaries, but may likely be responsible

for further tightening them to periods within a few days (Tokovinin, 2008). Tokovinin

(2014a,b) also uses a statistical study of nearby F and G dwarf multiples to suggest that

KCTF may be able to explain both an overabundance of inner-systems at short periods due

to tightening. Thus, observationally, there is support for the idea that KCTF may be an

important ingredient for understanding the eventual tightening of close binaries, if not their

formation.

Recently, others have approached this three-body dynamical problem with different

types of numerical approximations, yielding different observable predictions involving the

mutual angle of inclination between the inner and outer orbits. In simulations, using the

“test particle quadrupole” approximation, in which one of the components of the inner-
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binary is approximated to be massless, Fabrycky and Tremaine (2007) found that inner

binaries with final orbital periods between 3 and 10 days show the final mutual inclination

between the inner and outer orbits for these systems peak around 40 and 140 degrees (see

Figure 7 in Fabrycky and Tremaine, 2007). Teyssandier et al. (2013) found similar results,

but with another peak around 90 degrees, for the case of an initially circular inner orbit.

Most recently, Naoz and Fabrycky (2014) using the “eccentric Kozai-Lidov” approxima-

tion, which relaxes these assumptions and uses the octupole approximation, finds no peak

at 90 degrees and only modest peaks at 40 and 140 degrees (see their Figure 5 and also

Naoz et al. (2013a,b)), and overall a broad nearly featureless distribution of mutual inclina-

tion angles. Ensemble statistics of the mutual inclination angles for large numbers of triple

systems, together with accurate measurement of the mutual inclination angle for individual

case studies of benchmark triple systems, are needed to distinguish between these different

theoretical predictions.

By detecting, categorizing, and robustly modeling stellar multiple systems, we can

slowly build the statistical sample necessary for testing these distributions. The work in

this dissertation is the first step in that process. §2 discusses the detection and cataloging

of EBs in the Kepler data set. The necessary improvements and considerations needed to

model the ultra-precise data from Kepler is discussed in §3, specifically the redesign and

complete rewrite of the eclipsing binary modeling software, PHOEBE. §4 then discusses

the identification of candidate triple systems among Kepler EBs via eclipse timing varia-

tions. The various astrophysical contributions to eclipse timings, including the theoretical

formalism of a new effect, are discussed in §5. Lastly, the incorporation of support for both

higher-order systems as well as eclipse timing variations into PHOEBE is presented in §6

before concluding in §7.
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Chapter 2

Detection and Cataloging of Kepler and K2 Eclipsing Binaries

This chapter includes excerpts and figures adapted

from Kirk et al. (2016) and Conroy et al. (2014a),

used with permission from The Astronomical Journal and

the Publications of the Astronomical Society of the Pacific.

NASA’s Kepler Space Telescope, launched in March 2009, provided essentially un-

interrupted, ultra-high precision photometric coverage of ∼200,000 objects within a 105

deg2 field of view in the constellations of Cygnus and Lyra for four consecutive years. The

details and characteristics of the instrument and observing program can be found in Batalha

et al. (2010); Borucki et al. (2011); Caldwell et al. (2010); Koch et al. (2010). The primary

mission was to detect exoplanets, but Kepler observations were also useful for many other

fields of astronomy, including EBs.

In 2014, Kepler lost the ability to maintain its precise orientation due to the loss of

two reaction wheels, and was transitioned to its re-purposed mission, K2. The K2 mission

provides 80 days of continuous high-precision photometry across each of 10 fields in the

ecliptic plane. Although the photometric precision compared to the original Kepler mission

was expected to be slightly lower due to a decrease in pointing accuracy, K2 is still able

to obtain data an order of magnitude better than is possible from the ground. With the

upcoming TESS mission, EBs identified in K2 will become prime targets for further follow-

up allowing us to extend the time baseline and continue searching for triple systems (stellar

and substellar) through eclipse timing variations and searching for transiting events.

As a member of the Kepler Eclipsing Binary Working Group, I helped identify, cata-

log, and characterize EBs within the Kepler and K2 data sets (Prša et al., 2011a; Slawson

et al., 2011; Matijevič et al., 2012; Kirk et al., 2016; Conroy et al., 2014a; LaCourse et al.,
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2015). The Kepler Eclipsing Binary catalog lists stellar parameters from the Kepler Input

Catalog (KIC) and Ecliptic Plane Input Catalog (EPIC) augmented by: primary and sec-

ondary eclipse depth, eclipse width, separation between primary and secondary eclipses,

ephemeris, morphological classification parameter, and principal parameters determined

by geometric analysis of the phased light curve.

The online catalog, available at http://keplerEBs.villanova.edu and http://keplerEBs.

villanova.edu/k2, provides a searchable database of all eclipsing binaries found in the Ke-

pler and K2 data sets, respectively. For individual EB entries, the online catalog provides a

summary of the EB’s physical properties, analysis plots, and provides the time-series data

for download in various formats. In addition to the raw data, the detrended processed light

curves (§2.2), the analytical polyfit (§2.4), and the eclipse timing variation data (§4), along

with the suite of diagnostic figures are available for download. A static version of the online

catalog associated with this paper is maintained at MAST at https://archive.stsci.edu/.

2.1 Identification of Eclipsing Binary Signals

Candidate EBs were identified from the ∼200,000 Kepler sources through a variety of

approaches and sources. (1) As a first cut, all light curves were visually inspected, flagging

all eclipse-like signatures for further inspection. (2) We also examined all Kepler Objects

of Interest (Mullally et al., 2015) — a list of detected planets and planet candidates —

for planet false positives which may actually be EBs. (3) The Eclipsing Binary Factory

(EBF) (Parvizi et al., 2014), a fully automated computational pipeline used to classify EB

light curves, was trained on one of the earlier releases of the catalog and then used to later

identify 68 candidate systems, of which 13 were validated and added to the catalog. (4)

Identified transit events from Planet Hunters, a citizen science project (Fischer et al., 2012)

that makes use of the Zooniverse toolset (Lintott et al., 2008) to serve flux-corrected light

curves from the Kepler public release data, were examined for addition to the catalog.

In the K2 engineering target list, 9 objects (60017809, 60017810, 60017812, 60017814,
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60017815, 60017816, 60017818, 60017821, 60017822) were identified as previously known

EBs. One of these (60017818) did not show a clear EB in the 12 days of data, so was ex-

cluded, but the remaining 8 were all recovered independently. Since there are no Threshold

Crossing Events (TCEs), manual inspection was the primary source of identifying new EB

systems and in order to test the feasibility of automated detection of eclipsing binary signals

in K2 data. Planet Hunters (Fischer et al., 2012) had independently detected and identified

several of these EBs as well.

The EBs identified in the K2 dataset provide an initial benchmark set for newly devel-

oped pipelines intended for automated discovery of EBs from large datasets such as those

that will be provided by the ongoing K2 mission. We applied the Eclipsing Binary Factory

(EBF) pipeline (Parvizi et al., 2014) to the K2 light curves to test its ability to correctly re-

cover these EBs. The EBF correctly recovered 92% of the manually identified K2 EBs with

at least 90% confidence in the classification. This recovery rate is similar to that obtained

by the EBF from the original Kepler data set, suggesting that automated methods such as

the EBF are capable of identifying a large sample of EBs in the upcoming K2 campaigns

with good completeness.

All candidate EBs were then processed through a custom-built pipeline and vetted for

being false positives (e.g. a true binary signal but from a source outside the pixel mask or

target, see Kirk et al. (2016) for more details). Whenever possible, the original target of the

signal was identified and a new mask was created from the raw pixel-level data to extract

the correct light curve (Abdul-Masih et al., 2016). These re-extracted entries are available

separately from the main catalog at http://keplerEBs.villanova.edu/indirect.

The resulting 2876 systems in the original Kepler mission, 31 in the K2 Engineering

data set (Conroy et al., 2014a), 207 in K2 campaign 0 (LaCourse et al., 2015), and approx-

imately 1000 in campaigns 1-10 are likely EBs — although we note that any individual

case cannot be confirmed with absolute certainty without follow-up. These systems are all

processed through the pipeline to remove any signal not from the EB, to phase-fold, and
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to estimate geometric properties. By doing so, we can study the distribution of EBs across

the field, provide false positive detection for planetary candidates, and identify interesting

systems — including triple and higher order systems.

2.2 Data Detrending

The Kepler mission provides raw and corrected flux columns for each target. The cor-

rected fluxes aim to remove as much of the instrumental trends (i.e., due to the response of

the CCD or rolls of the spacecraft) while maintaining all of the astrophysical signal. The

K2 mission only provides raw data products, so we utilize the extracted and de-correlated

light curves provided by Vanderburg and Johnson (2014). However, this corrected signal

can still come from a variety of astrophysical sources for the sample of EBs. In addition to

the eclipsing signal itself, EBs often show variations in flux due to pulsations or spots on

one or both stellar components. In order to estimate rough morphology and geometric pa-

rameters, we attempt to remove all signal except for the eclipsing signal at the determined

ephemeris.

To accomplish this, we use a sigma-clipping technique to fit a series of polynomials

to the upper-envelope of the raw data as provided by Kepler or Vanderburg and Johnson

(2014). We then divide all fluxes by this “baseline” (see Figure 2.1), resulting in normalized

and detrended light curves (Figure 2.2). We developed a custom graphical user interface,

kephem (Prša et al., 2011a), to allow manual fine-tuning of the parameters of the polyno-

mials: the breaks between each polynomial (often placed when the spacecraft rolled on its

axes, resulting in a discontinuous break in the data), the order of each individual polyno-

mial, and the upper and lower sigma limits for sigma clipping.

Although reasonable initial defaults were set for detrending all targets, most had to be

manually adjusted to provide the best balance between removing extraneous signal without

removing any of the EB signal.
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Figure 2.1 Raw Kepler data (black) and baseline (red) determined via sigma-clipping. The shaded
regions represent the Kepler quarters — indicating when the spacecraft rolled resulting in disconti-
nuities in the raw light curve.

2.3 Determining Ephemerides

Once the data are detrended, the period and BJD0 can be determined so that the light

curve can be phase-folded. To accomplish this, all candidate EBs were phase-folded us-

ing a custom wrapper implementation of several periodagram methods from vartools

(Hartman and Bakos, 2016) within kephem. By selecting the frequencies with the highest

reported power, the user could quickly determine which peak corresponded to the correct

period for the EB signal (i.e., to avoid harmonics and achieve one primary and one sec-

ondary eclipse, when applicable) and visually “scrub” over the periodogram to refine the

value. By dragging on the phase light curve, the user could then set BJD0 so that the

primary (i.e deeper) eclipse occured at zero-phase.

Once ingested into the catalog, the pipeline automatically refined the ephemeris by de-

termining the eclipse timing varations (see §4) by removing any linear trend by adjusting
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Figure 2.2 Detrended Kepler light curve in time-space (left) and phase-space (right) showing the
eclipsing binary signal.

the ephemerides as necessary. We then provide error estimates on both the period and time

of eclipse (BJD0) for every entry in the catalog. The period error is determined through an

adaptation of the Period Error Calculator algorithm of Mighell and Plavchan (2013). Us-

ing error propagation theory, the period error is calculated from the following parameters:

timing uncertainty for a measured flux value, the total length of the time series, the period

of the variable, and the maximum number of periods that can occur in the time series.

To revise a precise value and estimate the uncertainty on BJD0, we use eclipse bisectors.

These work by shifting the BJD0 until the left and right eclipse sides of the phased data

overlap as much as possible. The overlap function is fitted by a gaussian, where the mean

is the BJD0 estimate, and the width is the corresponding error. For case where this estimates

an error larger than the measured width of the eclipse, generally due to extremely low signal

to noise, we instead adopt the width of the eclipse as the error. Since there is not a well

defined BJD0 for binary “heartbeat stars” or ellipsoidal variables — binary systems whose
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variations are caused by the changing cross-section due to tidal distortions, but not actual

eclipse signatures — we do not estimate or provide uncertainties for these objects.

2.3.1 Sources with Multiple Ephemerides

In some cases, a light curve can exhibit extra events that do not phase to the primary

ephemeris. When there is only a single extraneous event, or the extraneous events cannot

be phased themselves, we list each of those events in Table 2.1. These could be indicative

of triple or higher-order systems with long periods (possibly even longer that the time

baseline of the Kepler data set). In other cases, the extra events can be phased to a different

ephemeris — these systems and their determined ephemerides are listed in Table 2.2.

For any of these systems, without confirmation from spectroscopy or eclipse timing

variations (see §4), it is always possible that the observed signal is coming from an unre-

lated system bleeding light into the source aperture.

KIC Event Depth
(%)

Event Width
(days)

Start Time
(-240000)

End Time
(240000)

6543674 0.96 2. 55023 55025
7222362 0.6 0.6 55280.9 55281.5
7222362 0.8 2 55307.5 55309.5
7222362 0.65 2 55975.5 55977.5
7668648 0.94 0.2 55501.1 55501.3
7668648 0.94 0.2 55905.5 55905.7
7668648 0.94 0.2 56104.4 56104.6
7668648 0.94 0.2 56303.7 56303.9
7670485 0.975 1.0 55663 55664

Table 2.1 Properties of extraneous eclipse/transit events in the Kepler sample.

2.4 Fitting a Deconvolved Analytic Function

In order to conveniently characterize the shape of the phase light curve, we fit each

phased light curve with an analytic function. Due to the variety of “shapes” in EB light

curves (from very sharp, V-shaped eclipses to sinusoidal ellipsoidal variables), we use a

chain of four second-order polynomial functions. These polynomials are fitted to the data,

with the “knots” that connect them also fitted simultaneously. This “polyfit” is then a piece-
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KIC Period
(days)

Period Error
(days)

BJD0
(-2400000)

BJD0 Error
(days)

2856960 0.2585073 0.0000001 54964.658506 0.007310
2856960 204.256 0.002 54997.652563 0.369952
4150611 8.65309 0.00002 54961.005419 0.024746
4150611 1.522279 0.000002 54999.688801 0.003464
4150611 94.198 0.001 55029.333888 0.328165
5255552 32.4486 0.0002 54970.636491 0.116220
5897826 33.8042 0.0002 54967.628858 0.116761
5952403 0.905678 0.000001 54965.197892 0.014736
6665064 0.69837 0.00001 54964.697452 0.009707
6964043 5.36258 0.00002 55292.008176 0.308696
7289157 5.26581 0.00001 54969.976049 0.044130
7289157 242.713 0.002 54996.317389 0.055294
9007918 1.387207 0.000002 54954.746682 0.023254
11495766 8.34044 0.00002 55009.377729 0.0460252

Table 2.2 Systems exhibiting multiple ephemerides in the Kepler sample.

wise analytic function consisting of 15 parameters (4 polynomials each with 3 coefficients

and 3 “knots”) that can be used as an approximate analytical representation of the entire

phase-folded light curve (Prša et al., 2011a).

Due to Kepler’s long-cadence 30 minute exposure, the phased light curves suffer from

a convolution effect. For short-period binaries this phase-dependent smoothing can have

a significant impact on the overall shape of the polyfit representation, which would then

propagate through the remaining steps of the pipeline. To mitigate this effect, we decon-

volve the original polyfit that was determined from the phased long-cadence data. Since

there are an infinite number of functions that would convolve to the original polyfit, we

impose that the deconvolved representation must also be described by a polyfit. This does

not necessarily guarantee a unique solution, but does add the constraint that the decon-

volved curve resembles the signal from a binary. We start with the original polyfit and use

a downhill simplex algorithm to adjust the various coefficients and knots, minimizing the

residuals between the original polyfit and the convolved candidate-polyfit. This process

results in another polyfit that, when convolved with a 30 minute boxcar, most closely re-

sembles the original polyfit and, therefore, the phased long-cadence data (Fig. 2.3). This

results in a better representation of the actual light curve of the binary which can then be

used to estimate geometrical properties of the binary.
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Kepler’s short-cadence photometry (1 min exposures) is short enough that the convo-

lution effect is negligible. However, short cadence data are not available for all systems.

Thus, to stay internally consistent, we use only long-cadence data to determine physical

parameters and eclipse timing variations. Nevertheless, short-cadence data allow us to

confirm the effect of convolution and test the performance of our deconvolution process.

Comparing the deconvolved polyfit with the short-cadence data from the same EB shows

that deconvolution is essential for more accurate approximations but can also result in a

representation that does not make physical sense (see the right panel in 2.3).

Figure 2.3 Original polyfit (dashed line) and deconvolved polyfit (solid line) plotted on top of
short-cadence (light dots) and long-cadence (darker x) Q2 data of KIC 11560447 and 6947064. In
both cases, the deconvolution was successful in finding a polyfit which when convolved best fits the
long-cadence data, but this does not necessarily fit the short-cadence data or make physical sense.

2.5 Morphology Classification

In order to overcome the drawbacks of manual classification, we performed an auto-

mated classification of all identified EB light curves with a general dimensionality reduc-

tion numerical tool, Locally Linear Embedding (LLE; Roweis and Saul 2000). This method

projects a high-dimensional data-set onto a much lower-dimensional manifold in a way that

retains the local properties of the original data-set, so all light curves that are placed close
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together in the original space are also nearby each other in the projected space. In our

implementation, we downproject 1000 equidistant phase points (representing the phase-

folded light curve) onto a 2-dimensional manifold. We then fit a spline to this manifold –

assigning a single morphological classification parameter to each entry in the catalog repre-

senting the “detachedness” of the system (see Figure 2.4 and 2.5). Values of the parameter

range from 0 to 0.1 for well-detached systems, values below 0.5 predominantly belong to

detached systems and between 0.5 and 0.7 to semi-detached systems. Contact systems usu-

ally have values between 0.7 and 0.8, while even higher values up to 1.0 usually belong to

ellipsoidal variables. This process is discussed in detail in Matijevič et al. (2012).

Figure 2.4 LLE projection for light curves. Note that the x and y axes represent arbitrary values and
have no direct physical interpretation. The colors represent manual classifications through visual
inspection , with the numbers representing a selection of objects along the curve that are represented
in Figure 2.5. This Figure appears in Matijevič et al. (2012) as Figure 2.
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Figure 2.5 Polyfit representations of light curves across the range of the morphology classification.
These examples are numbered according to their positions noted in Figure 2.4. This Figure appears
in Matijevič et al. (2012) as Figure 3.
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2.6 Spectroscopic Follow-Up

Modeling EBs with only photometric data can only constrain the relative sizes of the

stars and can not robustly determine the masses or mass-ratio. In combination with radial

velocity obtained from double-lined spectral observations, however, these degeneracies can

be broken, and the absolute values for masses and radii of both stars can be determined.

For these reasons, it makes sense to obtain spectra observations for Kepler EB targets,

whenever possible.

We successfully proposed for 30 nights at the Kitt Peak National Observatory’s 4-m

Mayall telescope to acquire high resolution (R≥ 20,000), moderate signal-to-noise (S/N ≥

15), spectra using the echelle spectrograph. As it is impractical to observe all EBs in the

catalog, we prioritized targets that fell into the following categories:

• Well-detached EBs in near-circular orbits. Since the stars in these systems are

well-separated and exhibit little disotrtion, they can safely be assumed to be coeval

and have evolved independently. These are therefore prime sources for calibrating

the M-L-R-T (mass-luminosity-radius-temperature) relationships across the main se-

quence.

• Low-mass main sequence EBs. Carefully modelling these systems allows us to test

the discrepancy between the theoretical and observational mass-radius relations at

the bottom of the main-sequence, namely that the observed radii of low-mass stars

are up to 15% larger than predicted by structure models.

• EBs featuring total eclipses. EBs exhibiting total eclipses (i.e., a flat bottomed

eclipse caused by a significant difference in radius between the two components) al-

low us to determine the inclination and the radii to an even higher accuracy, typically

a fraction of a percent. Coupled with RVs, we can obtain the absolute scale of the

system and parameters of those systems with unprecedented accuracy.
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• Candidate triple and multiple systems. Systems that are determined as potential

triple or higher order systems due to their ETVs (see §4) could show triple lined spec-

tra or an RV signature, confirming the number of stars in the system, and ultimately

allowing to model all components in the system to great precision (see §6).

During the observing runs, we attempted to maximize phase-sampling across the priori-

tized targets. To do so, we scheduled observations for each target such that radial velocities

were obtained at quadrature (quarter phases) according to the ephemeris in the catalog.

This would result in approximately four radial velocity measurements per EB and would

adequately characterize the amplitude and shape (i.e., eccentricity) of the signal.

We acquired and reduced multi-epoch spectra for 611 systems within this program. The

spectra are available for download from the catalog website at http://keplerEBs.villanova.

edu.

2.7 Distributions

The distribution of area-corrected EB occurrence rate as a function of galactic latitude

is shown in Figure 2.6, showing a non-uniform distribution with an increased rate of EB

occurrence at low latitudes. This is likely due to the fact that lower latitudes (thin disk)

contain younger stars on average than higher latitudes (thick disk and halo). This younger

population is therefore larger on average – due to more giants in the magnitude-limited

sample (Prša et al., 2015). Due to the larger radii, any given binary has a larger geometrical

probability of eclipse (i.e., a wider range of inclinations will still result in a grazing eclipse).

Figure 2.7 shows the distribution of orbital periods across the catalog. With the primary

Kepler mission having ended after ∼4 years, the longest orbital periods in the catalog are

at∼1000 days. Catalog completeness at those periods is challenged by our ability to detect

every single eclipse event, which can be made difficult by the small eclipse amplitudes, data

gaps and other intrinsic and extrinsic contributions to background and noise. Adding to this

is the increasingly low probability of eclipses at the larger orbital separations that accom-
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Figure 2.6 EB occurrence rate (d p/db) as a function of galactic latitude (b). Each latitude bin is
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and B is degrees of galactic latitude. The results of this toy model indicate that the occurrence rate
span of EBs ranges between 0.9% and 2.2%.
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Figure 2.7 Distribution of orbital periods of all Kepler EBs.
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pany longer periods, and of course the increasing probability of entirely missed eclipses for

orbital periods longer than the observing window. On the other hand, completeness should

be ∼100% for short period EBs (P ∼ 1 day) because of the high geometrical probability

of eclipses and because even non-eclipsing systems manifest as ellipsoidal variables. Two

features are particularly interesting: the excess of short period binaries (P ∼ 0.3 day) and

the gradual drop-off of longer period binaries.

The short-period excess is a well-known feature of eclipsing binaries: at short periods,

proximity effects become pronounced, most notably ellipsoidal variations, which enable us

to detect binary stars even in the absence of eclipses. This also drives the overall probability

of detection sharply upwards at shorter periods. However, the period plateau at ∼ 2-3 days

cannot be accounted with detection biases or binary formation theory. This is instead of-

ten explained by forming a binary at a wider separation (and longer period) and tightening

the binary over time to the ∼2-3 day orbit we observe today. Many of these mechanisms,

including Kozai-Lidov Cycles and Tidal Friction (KCTF; Fabrycky and Tremaine 2007)

require the presence of a third body. In the case of KCTF, interaction between the inner bi-

nary and companion on a wide eccentric orbit, result in an exchange in angular momentum

between the inner binary eccentricity and outer orbit inclination. When the components of

the inner binary are sufficiently close, tidal friction dissipates energy and tightens the pair.

The high occurrence rate of stellar triples through ETVs (Conroy et al., 2014b; Gies et al.,

2012; Rappaport et al., 2013) gives further credibility to this model (see §4).

The gradual drop-off at the long period end is due to two main contributions. The

dominant contribution is the geometrical probability of eclipses. The second contribution is

due to Kepler’s duty cycle. The satellite observed a single patch of the sky, but observations

were interrupted by regular quarterly rolls and data downlink, and by unexpected events

that put the telescope into safe mode. As a result, the actual duty cycle of observations was

∼92%. These effects and their corresponding corrections are discussed in detail in Kirk

et al. (2016).
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By identifying and cataloging these systems, we can easily make use of the Kepler data

in conjunction with follow-up data and archival data (both from space and the ground) to

robustly model these systems as well as to search for triple and multiple systems. However,

existing codes to model these systems are no longer adequate to reach the full potential in

precision and accuracy theoretically available due to the ultra-precise photometry delivered

by Kepler.
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Chapter 3

Considerations for Modeling Eclipsing Binaries in the Kepler Era

This chapter includes excerpts and figures adapted from Prša et al. (2016),

used with permission from The Astrophysical Journal Supplement Series.

In addition to Kepler (Borucki et al., 2010), there is a wide range of recent missions

surveying the sky and collecting high-precision photometric data. These missions cover

a vast population of EBs (Prša et al. (2011b) estimates a yield of ∼7 million from LSST

alone) to an unprecedented precision (down to ∼20 ppm for Kepler).

There are several publicly available codes that model EB systems and allow for fitting

an underlying physical model to observational data. For example, the Wilson-Devinney

code (Wilson and Devinney, 1971; Wilson, 1979, 2008; Wilson and Van Hamme, 2014,

hereafter WD), and the original version of PHOEBE (Prša and Zwitter, 2005, hereafter

PHOEBE Legacy) which extended WD and included a scripting language and graphical

user interface, have widely been used in the literature. However, the underlying approx-

imations and assumptions used in these codes begin to breakdown when attempting to

achieve the precision necessary to model modern observational data from missions such as

Kepler.

Fixing these limitations required extensive changes to the underlying framework, and

so, as part of the PHOEBE development team, I helped redesign and rewrite the entire

PHOEBE code from scratch with increased precision and flexibility to add new physics,

system hierarchies, and physics into the model. We have released a new version of the

open-source modeling code PHOEBE 2, under the under the General Public License, writ-

ten in C (backend) and python (frontend). PHOEBE 2 is available for download from

http://phoebe-project.org and http://github.com/phoebe-project, along with extensive doc-

umentation and tutorials.
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PHOEBE 2, like many other numerical EB models, computes synthetic models of ob-

servables (i.e., light curves and radial velocity curves) by creating a discretized surface of

the stars and determining which surface elements are visible at any given time. Below

is a brief summary of the general logic and order of operations as implemented within

PHOEBE 2:

1. Dynamics (§3.1): the positions of each star are determined for each requested time

for the given Keplerian orbital elements.

2. Discretization (§3.2): a triangulated mesh is created for each star in the system for

the given Roche equipotential, as defined at t0.

3. Place in orbit (§3.3): the meshes are placed in orbit at each requested time, adapting

to changes to the gravitational equipotential (i.e., for an eccentric orbit where the

distance between the stars changes in time).

4. Local quantities (§3.4): at each time, each surface element must compute its local

quantities (effective temperature, surface gravity, intensity in a given passband, etc).

5. Eclipse detection (§3.5): the portion of each surface element visible to the observer

must be determined.

6. Integration: local quantities need to be integrated over the visible portion of the star

to obtain the observed quantity (i.e., flux or radial velocity).

Here we discuss the specific considerations required for high-precision observations.

For a full overview of PHOEBE 2, see Prša et al. (2016).

3.1 Dynamics and Light Time Effects

In the case of binaries (see §6.2 for considerations in the case of triple and higher-order

systems), PHOEBE 2 computes the positions of each object at a given time via Keplerian
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orbits (Goldstein, 1980). The orbits depend on the semi-major axis a, orbital period P0,

mass ratio q, eccentricity e, and systemic velocity vγ ; their orientation is given by an in-

clination i, argument of periastron ω , and longitude of the ascending node Ω. While this

formalism describes dynamical positions of the bodies in their orbits, it does not describe

the position where the observer sees the bodies due to the finite speed of light.

To address this, PHOEBE iteratively determines the point in each object’s orbit such

that a photon leaving that star, traveling towards the observer, will cross the origin of the

coordinate system (defined such that the barycenter of the system is at the origin at time

t0) at the time of the observation. By doing so, any bodies closer to the observer, with

respect to the barycenter, appear at an advanced point in the orbit, while bodies farther

away appear at an earlier point. This effect is often called the “Rømer delay”, with its

influence on eclipse times discussed in further detail in §5.6.

By defining the reference time with respect to the origin, PHOEBE 2 allows the barycen-

ter to move at a constant velocity. Any radial (along the line-of-sight) barycentric velocity

will result in a measured period (i.e., between successive primary eclipses) different than

the Keplerian orbital period. Any barycentric velocity on the plane-of-sky will result in an

asymmetry in the Rømer corrections, as discussed in detail in §5.9.

3.2 Surface Discretization

PHOEBE 2 determines the shape of a distorted star using one of two supported types

of surface potentials: the Roche model and the rotating single star model. The generalized

Roche lobe (Wilson, 1979) potential, Ω, is defined by:

ΩRoche(r;q,F,δ ) =
1
‖r‖ +q

(
1√

(x−δ )2 + y2 + z2
− x

δ 2

)
+

1
2
(1+q)F2(x2 + y2), (3.1)

expressed in Cartesian coordinates x, y, and z, with the radius vector denoted by r =

(x,y,z)/a; q ≡M2/M1 is the mass ratio, F ≡ Prot/Porb is the synchronicity parameter, and
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δ ≡ d/a is the instantaneous separation between the stars relative to the semi-major axis a.

The potential of an isolated star rotating around the z-axis is given by:

Ωrot(r;ω) =
1
‖r‖ +

1
2

ω
2(x2 + y2), (3.2)

where ω is the angular velocity of rotation.
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Figure 3.1 Mesh comparison between the trapezoidal discretization using trapezoidal elements
(left) and triangulation (right). The crosses denote surface element centers. Both parts correspond to
the same region on the star. The issues with trapezoidal discretization are disconnected, overlapping
meshes with holes, and obvious “seams” across the surface. All these cause systematic effects in
computed fluxes.

This distorted shape then dictates a wide range of effects: surface brightness varia-

tion due to gravity darkening, limb darkening and reflection, ellipsoidal variations due to

the changing cross-section size that faces the observer, etc. Traditionally, particularly in

PHOEBE Legacy and WD, these surfaces were discretized uniformly along co-latitude and

longitude into planar, trapezoidal elements for which local conditions were assumed to be

uniform. Unfortunately, this results in disconnected and self-overlapping surface elements

that do not cover the surface completely. The left panel in Figure 3.1 displays a part of the

star near a pole, a region where these problems are particularly exacerbated.
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This method also causes significant issues for contact binary systems. Here the trape-

zoidal method diverges near the neck of these contact envelopes, requiring discretizing each

“half” of the contact system separately and joining them together (Wilson, 1979). Unfortu-

nately, this often leads to gaps in the mesh near the neck (see the left panel in Figure 3.2),

particularly for systems with a small mass ratio and large fillout factor.
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Figure 3.2 Comparison of the neck region coverage in a trapezoidal (left) and triangulated mesh
(right) of a contact system with mass ratio q = 0.5 and fillout factor FF = 0.9. The trapezoidal
mesh is represented by its current implementation in PHOEBE 2, in which each trapezoid is split
into two triangles for plotting, but retains its center, where all local quantities are computed.

To overcome these problems, PHOEBE 2 replaces trapezoidal surface elements with

triangles. The triangulation of implicit surfaces is a long standing problem in computational

physics. Hartmann (1998) presents a marching method: an algorithm that can discretize any

implicit surface into a set of near-equilateral triangles, so that every element on the surface

has approximately the same area, irrespective of the position or the amount of surface

distortion. The right panel in Figure 3.1 demonstrates this: the polar region of the star has

no inherent symmetry that would impose “seams” across the surface, or surface elements of

notably different sizes. In effect, any systematics that may arise from surface discretization

will be minimized. A mesh generated this way is computationally tractable and alleviates
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the problems with holes or overlaps between trapezoidal elements. Figure 3.2 shows the

improvements in the contact case, where the triangulated mesh successfully covers the

entire mesh region in one, continuous, mesh.

3.2.1 Surface Offsetting

The classical trapezoidal meshes were constructed such that the center of the elements

were on the surface defined by the equipotential. By triangulating, we instead place the

vertices of the triangles on the surface. In the trapezoidal case, this results in an overes-

timate of the surface area and volume of the star, whereas the triangulation case results

in an underestimate. To correct for this, we offset all vertices from the surface such that

(1) the total surface area of the mesh is exactly equal to the analytical surface area of the

equipotential surface, and (2) each triangular element is offset according to the local cur-

vature. Figure 3.3 shows the benefits of this approach - comparing the Fourier fit to the

horizon used within WD to the numerical horizon caused by the offset triangular mesh in

PHOEBE 2.

By using a triangulated mesh that maintains the correct surface area and volume, PHOEBE 2

avoids many of the precision issues associated with trapezoidal meshes. As an added ben-

efit, the marching scheme is flexible enough to handle any implicit surface — making the

future implementation of spherical planets or rings possible within the existing framework.

3.3 Volume Conservation in Eccentric Orbits

For eccentric orbits, the Roche potential (Equation 3.1) changes in time as the instanta-

neous separation (δ ) between the two stars changes throughout the orbit. We must account

for the affect of this change on the distortion of the stellar surface. If we were to keep

the equipotential fixed throughout the orbit, the stars would change in volume throughout,

resulting in generated heat during compression that would be irradiated away and not re-

covered during expansion. This loss of energy would likely result in rapid circularization
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Figure 3.3 Horizon of a Roche star as determined by PHOEBE 2 and WD in polar coordinates. The
black curve represents the analytic horizon, the red curve represents the Fourier fit to the horizon
used in WD, the blue points represent surface elements of the offset PHOEBE 2 mesh that are on the
horizon, and the blue line represents the polygonal shadow that these points span. The lower panel
shows the residuals between the Fourier-based (red) and offset triangulation-based (blue) horizons
with respect to the analytical horizon.

leading to a very small expected number of eccentric short period binaries.

Instead, in PHOEBE Legacy and WD, the simplest assumption has been made — that

the volume of each star is conserved throughout its orbit. Although this assumption seems

reasonable, it has never been directly tested. Within PHOEBE 2, we compute the analytical

volume of the star as defined by the given equipotential at t0 and compute the instantaneous

equipotential that results in a surface of the same volume at any given time.

We also implemented a framework within PHOEBE 2 that allows for the parameteriza-

tion of a small deviation from volume conservation. Highly eccentric ellipsoidal variables

(also known as heartbeat stars; Thompson et al. 2012) can include red giants that are sep-

arated by only a few stellar radii at periastron. This results in significant tidal forces and

extreme changes in stellar distortion throughout the orbit. A total of 28 giants in heartbeat
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stars have been reported to date (Nicholls and Wood, 2012; Gaulme et al., 2013, 2014; Beck

et al., 2014; Richardson et al., 2016); of these, there are 9 for which the authors developed

a full model (Nicholls and Wood, 2012; Beck et al., 2014; Richardson et al., 2016), all

of them under the constant volume assumption. These a prime candidates for testing the

assumption of volume conservation by allowing for a small deviation in the physical model

and is the topic of a future paper by Hambleton et al.

3.4 Sampling Local Quantities

As expected from any discretization scheme, the resulting precision of the synthetic

model correlates directly with the number of surface elements. The most obvious way to

increase the precision would then be to increase the number of surface elements. Unfortu-

nately, meshing and storing all the surface elements can quickly become computationally

expensive, and the larger the number of surface elements, the more computational noise

begins to contribute to the limits of the final precision. Even worse, when using the trape-

zoidal scheme, the gaps and overlaps mentioned above can accumulate and cause a limit to

the achievable precision. As these models need to be computed numerous times in order

to fit observations, it is important to optimize a scheme in which the necessary precision

can be reached while minimizing computation cost and noise. PHOEBE 2 attempts to ac-

complish this goal by “sampling” the local quantities at the vertices of the triangles —

essentially mimicking a grid with three times the number of elements as the mesh itself.

As discussed in §3.2.1, PHOEBE 2 initially places all vertices on the equipotential

surface and then offsets them to obtain the correct surface area and volume. However, we

also maintain a copy of the positions of the vertices on the surface prior to offsetting and

use these positions to assign local quantities (i.e., surface gravities, effective temperatures,

passband intensities, etc) to each vertex. This results in two meshes stored in memory

— the first in which the vertices are positioned directly on the surface of the star is used

to compute the local quantities, and the second in which the resulting surface area and
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volume match the expected value is used for geometrical quantities (i.e., surface area of

each element) and eclipse detection (see §3.5). The local physical quantity assigned to

each triangle (in the case of a fully visible triangle, partially visible triangles are discussed

in §3.5) is then the arithmetic mean of the values at each of the vertices corresponding to

that triangle. This is a linear approximation; we assume that the variation of each physical

quantity across each discretized surface element is linear. It is still therefore necessary to

sample the surface with a sufficiently fine grid so that this approximation is accurate.

3.5 Eclipse Detection

In order to determine the total flux received from the system, intensities must be in-

tegrated over the visible surface elements at any given time. PHOEBE determines the

visibility of each triangle element through horizon and eclipse computation, which is per-

formed once the meshes of all bodies are placed in orbit and their physical quantities are

computed for each vertex.

Eclipse computation is done on the offset triangulated mesh. Figure 3.3 depicts the pro-

jected shadow of a marching mesh compared to the theoretical horizon and demonstrates

that the determined horizon of each star agrees well with the theoretical expectation. In con-

trast, the Fourier-based eclipse detection implemented in PHOEBE 1 (and WD) determines

the horizon of each star by fitting a Fourier series to the coordinates of surface elements

closest to the horizon (Wilson, 1993). In consequence, this approach will always under-

estimate the size of the shadow with respect to the analytic horizon. This underestimation

converges with an increase in the number of surface elements, but very slowly. Due to the

offsetting of surface elements to obtain the correct numerical surface area, PHOEBE 2 does

not underestimate the horizon even for a very coarse mesh and increasing the number of

elements in PHOEBE 2 only makes the horizon smoother.

PHOEBE 2 determines the ratio of each element that is visible to the observer. First, all

elements in which the surface normal is pointed away from the observer, are excluded with
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a ratio of exactly 0. Next, we utilize Painter’s algorithm (Hughes et al., 2013), whereby the

remaining triangles are ordered with respect to distance from the observer and projected

onto the plane-of-sky. We then calculate the visible part of the projected triangles using the

clipping algorithm adapted from the Clipper 2D polygon algebra library1, which is based

on Vatti’s method (Vatti, 1992). From the visible parts of the projected triangles we deduce

the ratio of each triangle that is visible as well as the revised centroid of the visible portion

by adapting the implementation by Paul Bourke2.

This revised centroid is then used to compute a weighted arithmetic mean of any observ-

able local quantity stored in the vertices, under the assumption that these properties vary

linearly across the local surface element (see Figure 3.4). The observable surface area is

then determined based on the determined ratio of the element that is visible. By computing

the observable quantities in this way, we effectively allow for an accurate approximation of

ingress/egress without the requirement of a fine mesh that is more computationally expen-

sive.

1http://www.angusj.com/delphi/clipper.php
2http://paulbourke.net/geometry/polygonmesh/
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Figure 3.4 A segment of a partially-eclipsed mesh. The colors of each triangle represent the ratio of
the triangle area that is currently visible, with green being fully visible and red being fully eclipsed.
The blue crosses represent the centroid of the visible portion of the triangle. For fully visible (green)
triangles, the centroids appear at geometric centers of the triangles whereas the partially visible
(orange and yellow) triangles show the centroid moving away from the eclipsed region. These
centroids and ratios are used to integrate over the visible surface of the star(s).
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By completely redesigning and rewriting this modeling code from scratch, PHOEBE 2

is now capable of reaching the precision of modern observational surveys. In modeling

these systems, it is now possible to push the limits of the resulting model parameter uncer-

tainties for benchmark EB systems.

However, these updates come with computation cost. The computational infrastructure

of PHOEBE 2 is implemented in the low-level C language for speed, and the interface part

is written in the high-level python language that is inherently slow. A number of causal

computations are still linked through python, which causes slowdown of the execution

time. However, the dominant source of slowdown is increased model fidelity. Shortcuts

taken before are no longer in effect and, even though effects can be turned off by the

user, the impact on the overall runtime is significant. That is why the preferred mode of

deployment of PHOEBE 2 is on HPC clusters.

PHOEBE 2 is released as an open-source project under the GNU General Public Li-

cense v3.0 and available at http://github.com/phoebe-project/phoebe2. Additional feature

releases are planned and will be accompanied by minor releases.
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Chapter 4

Identification of Triple and Multiple Systems via Eclipse Timing Variations

This chapter includes excerpts and figures adapted from Conroy et al. (2014b),

used with permission from The Astronomical Journal.

Kirk et al. (2016) determined the ephemerides for the entire Kepler Eclipsing Binary

Catalog (also see discussion in §2). If there are no external effects, a linear ephemeris will

correctly predict all eclipse times of an EB. By measuring the exact time of each eclipse for

a particular binary and comparing it to the calculated time from the linear ephemeris, we

can create an ETV curve (‘eclipse timing variations’; sometimes also referred to as an O-C

diagram). Any trend in these timing residuals may be the result of one or more physical

effects occurring in the system.

Rappaport et al. (2013) previously published a list of 39 candidate third-body Kepler

systems using eclipse times and Gies et al. (2012) published a preliminary study on tim-

ing variations in 41 Kepler Eclipsing Binaries. Orosz (2015) provided eclipse times for

detached binaries, while Conroy et al. (2014b) (discussed here) provided eclipse times for

close binaries. Together, these two papers comprehensively cover all 2605 binaries in the

Kepler EB catalog.

Kepler’s essentially uninterrupted observing over a long time baseline presents the op-

portunity to precisely time the eclipses and detect any underlying signals due to third bod-

ies, apsidal motion, dynamical interaction, etc. Due to the large number of EBs in the

entire catalog, it is necessary to create an automated method for timing eclipses across the

catalog. Short period and contact systems present a particular challenge due to spot activity

and data convolution, due to a relatively long integration time.
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4.1 Measuring Eclipse Times

Orosz (2015) provides eclipse times for binaries with flat out-of-eclipse regions, cover-

ing most of the detached binaries with periods greater than 1 day. There we locally detrend

each eclipse and use a piecewise Hermite spline template to determine the time of mid-

eclipse. This technique performs well on the set of detached systems but is not optimal for

contact systems, systems with strong reflection effects or tidal distortion, or short-period

binaries with only a few points in each eclipse due to Kepler’s 30 minute cadence. For this

reason, we divide the catalog based on the morphology parameter as described in Matijevič

et al. (2012). This parameter is a value between 0 and 1 which describes the “detachedness”

of an eclipsing binary, with 0 being completely detached and 1 being contact or ellipsoidal.

Orosz (2015) report timings for binaries with a morphology parameter less than 0.5. The

method discussed here addresses and determines eclipse times for the remainder of the

Kepler Eclipsing Binary Catalog.

Figure 4.1 Typical polyfit and eclipse bounds for a semi-detached binary. The polyfit knots are
indicated with the squares and solid vertical lines, with the polyfit drawn in white over the data.
Data considered as part of the primary eclipse are shown in black while those belonging to the
secondary eclipse are shown in gray. The eclipse bounds are set at the arithmetic bisector of the
adjacent knots and are shown with dashed vertical lines.
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We fit a polynomial chain to the phased, detrended, light curve data as described in

§2.4 and Prša et al. (2008). This analytic function is a chain of four polynomials that

is continuous, but not necessarily differentiable, at knots which were optimized to find

the best overall solution. This function does not represent a physical model, but rather

analytically describes the mean phased shape of the binary light curve, an example of which

can be seen in Figure 4.1.
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Figure 4.2 Reduced cost function (χ2 ) values, shown as x’s, are computed heuristically (top-left)
for 20 evenly spaced phase-shifts within 0.05 phase, shown by the dotted lines in all panels. The
best fit of these is shown with the dashed line in the top-left panel. A bisection approach (top-right)
is then applied in the area surrounding this estimate, as shown by the dot-dashed lines. This results
in a final minimum at the phase shift denoted by the solid line. The bottom plot shows the data for
a single eclipse along with the polyfits for the respective shifts noted above.

We then take this analytical representation and, using a combination of heuristic and

bisection approaches, determine the horizontal shift required to minimize the χ2 (cost func-

tion) for each individual eclipse as shown in Figure 4.2. In order to minimize the effect due

to spots or imperfect detrending, a vertical shift is first determined using linear least squares

for each eclipse and is applied before computing cost functions for horizontal shifts. The

cost function is initially sampled at 20 evenly-spaced phase shifts between -0.05 and 0.05
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phase. The minimum of this sampling is then used as the center of the bisection algorithm

to quickly find the local minimum of the cost function. The resulting χ2 values are un-

usually large because the errors on the Kepler data are only formal and do not include any

absolute calibration (Jenkins et al., 2010). Therefore, for each eclipse, we normalize the

entire cost function such that the minimum cost is set to N− p−1, where N is the number

of data points used for that eclipse and p is the number of degrees of freedom, which we

take to be 1. This reduced cost function is then used to compute 1-sigma errors on each

timing to correspond to the ∆χ2 = 1 contour.

For the shortest binaries in the catalog, however, the long-cadence data result in signif-

icant phase-smearing and limits our method to a very minimal number of points per cycle

to determine a fit. If there were to be a third-body, the signal would likely be buried in the

noise induced by these factors. For this reason, we include as many data points as possible

in each eclipse timing. Each data point is considered to belong to an eclipse if its phase as

determined by the initial linear ephemeris is within bounds. We initially set these bounds to

be the mid-point between polyfit knots in the out-of-eclipse region as shown in Figure 4.1.

To improve results for particular objects being studied individually, changing these bounds

to use the knots (instead of the mid-points) can sometimes lower the systematics in the sig-

nal. For any given eclipse, if the region between these bounds is not fully sampled or does

not have at least three data points, then timings are not computed for that eclipse. Eclipse

timings are then compared to the values expected from the linear ephemeris as reported by

Kirk et al. (2016) to compute the residuals and test for the presence of an ETV signal.

4.1.1 Dealing with Sources of Spurious ETV Signals

Due to a typically small number of points per eclipse, our timings are sensitive to var-

ious imperfections in the data processing, affecting the measured eclipse time and poten-

tially introducing noise and/or fictitious signals in the ETV signal. Instrumental or astro-

physical pulsations on top of the binary signal can change the shape of a single eclipse
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which can mimic a timing variation. The detrending process attempts to remove these ad-

ditional signals, but is not perfect, struggles at removing signals that happen during eclipse,

and can also introduce spurious signals.

Also, all polyfits in the current version of the catalog use chains of four second-order

polynomials, which does not always result in the ideal fit and can leave slight phase-

dependent residuals. For the purpose of pipeline processing, we limit ourselves to second-

order polynomials, but note that, for special cases and in-depth studies, higher precision

timings can be obtained by increasing the order of the fit. In the cases when a binary has a

period that is near-commensurate to Kepler’s 29.44 minute cadence, the period and cadence

may beat, which results in a separate spurious signal. Any combination of these effects can

cause issues in determining true and precise eclipse times when dealing with only a few

data points.

Figure 4.3 Determining eclipse timings using both eclipses will cancel the anti-phase effect and
reveal any underlying signal. The plots on the left show a phased light curve with primary eclipse
data in black and secondary in gray with the analytic ‘polyfit’ in white. These four plots highlight
the data during individual cycles (shown in white on the left) at four different times noted in the
ETV plots with the dashed line, showing the presence of spots. The plots on the right show the ETV
as measured at for primary and secondary eclipses separately (middle) and full phase (right).

Figure 4.3 demonstrates how the cost function for the phase shift is affected by the
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vertical discrepancy in the out-of-eclipse region, creating a fictitious signal in which the

ETVs of the primary and secondary eclipse are in anti-phase. The left of Figure 4.3 plots

four different eclipses, showing that over time the data in the out-of-eclipse region can

be higher on either the right or the left. When measuring timings for the primary and

secondary eclipses separately, the cost function will artificially be minimized by “pulling”

the analytic function towards the region with lower flux. Since this will affect the primary

and secondary in the opposite direction, we can mitigate for this effect by also running the

fit over the entire phase. This effectively averages out the anti-phase effect in the primary

and secondary eclipses, projecting the real ETV signal of the entire system. Figure 4.4

shows two cases where the anti-phase signal was removed, clearly showing whether there

is a presence of any underlying ETV signal. These signals that show a “random walk”

nature, often attributed to the presence of spots, are discussed by Tran et al. (2013).

Figure 4.4 ETVs for KIC 6880727 (left) and 4451148 (right) determined for primary and secondary
eclipses separately (top) and together (bottom). KIC 6880727 (left) shows an example with no un-
derlying signal under the antiphase “noise”, while KIC 4451148 (right) shows a possible underlying
third-body signal. Typical errors for ETV measurements are shown to the left of the data.

Unfortunately, as there is no rigorous way to discriminate between true and fictitious

anti-phase signals, this process would also hide a physical ETV signal such as apsidal

motion. As we are dealing with short-period binaries, most of these orbits will be quite

circular so we do not expect to be able to detect any systems with apsidal motion anyway.
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4.2 Identifying Candidate Triple and Higher-Order Systems

Our method requires at least three data points per timing, which allows us to get primary

and secondary eclipse timings individually for long cadence data of binaries with periods

as short as 3 hours and full phase timings for binaries as short as 1.5 hours. Plots and data

for detrended light curves and eclipse times for the entire sample are available as a part of

the Kepler Eclipsing Binary online catalog at http://keplerEBs.villanova.edu.

As ETVs are computed, the ephemerides in the catalog are refined by fitting a linear

trend through the entire-phase timings and adjusting the values as necessary to get a “flat”

trend. For any ETV with a long-term sinusoidal trend, this could introduce systematics

depending on the part of the sine curve observed and used to fit the linear trend. In partic-

ular, for very long ETV signals (on the order of 1000 days and more), the measured orbital

period of the binary will be anomalous because the variation cannot be accounted for from

available data.

All ETV measurements were examined by eye for the presence of any interesting signal,

discarding any that seem to be spurious based on their individual primary and secondary

eclipse timings. We do not expect to see evidence of apsidal motion in many of our targets

due to their short periods and, consequently, circular orbits. We also do not expect to be

able to detect any signals due to gravitational quadrupole coupling (the Applegate Effect,

see §5.3 and Applegate 1992). This mechanism is able to create period changes with am-

plitudes on the order of 10−5 times the period of the binary, meaning a maximum of 3.5

seconds for a binary with a period of 4 days, falling well below our noise limits.

ETV signals that are sinusoidal in nature or show any sign of curvature are flagged and

fit for both a third-body signal (see §5.7) and a parabolic mass transfer model (see §5.2).

For the cases where we only see a sign of curvature and not a full cycle, we could either be

seeing a section in a long period third body signal or mass transfer. To determine whether

we consider the signal as a candidate third body or mass transfer, we compare the two
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models using the Bayesian Information Criterion (Schwarz, 1978):

BIC = n ln
(

1
n ∑(xi− x̂i)

2
)
+ k lnn (4.1)

where xi are the data, x̂i the model, n the number of data points, and k is the number of

parameters used in the fit. For example, k = 6 for the case of the eccentric LTTE model,

k = 4 for the circular LTTE model, and k = 3 for the mass transfer model. The fit with the

lower BIC value then determines whether we consider the signal as a candidate third body

or mass transfer.

Figure 4.5 A selection of ETV signals that are better fit by a quadratic ephemeris than an LTTE fit.

Thirty-one ETV signals were better fit by a parabola than an LTTE orbit, and are possi-

bly caused by mass transfer or the Applegate effect instead of the presence of a third body

(Hilditch, 2001). These are listed in Table 4.1 with a selection shown in Figure 4.5.

236 binaries (∼ 20% of the sample) were flagged as candidate third bodies. The results

of the model fits are reported in Table 4.2 with a selection plotted in Figure 4.6. Based

on the fitted period, we then divided these third body candidates into three groups. The

first group contains third body signals with periods less than 700 days, such that there are

at least two full cycles of the signal present in data through Q16. These systems have the

highest confidence and are most likely due to the presence of a tertiary component. The
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Table 4.1. ETVs with Parabolic Signals

KIC KIC KIC

2305372 3104113 3765708
4074532 4851217 4853067
5020034 5471619 5770860
5792093 6044064 6044543
6066379 6213131 6314173
6464285 6677225 7696778
7938468 7938870 8758161
9087918 9402652 9840412
9934052 10030943 10292413

10736223 11097678 11144556
11924311 · · · · · ·

second group contains signals with periods between 700 and 1400 days, such that there

is at least one full cycle present. The last group contains signals with periods longer than

1400 days. Often these detections merely show some sign of curvature in the ETV signal

and so a full sinusoidal signal cannot yet be confirmed. For this reason the fits generally

have large errors and many of these may not even be true triple systems, particularly the

signals on the closest binaries which are more likely to be due to mass transfer.

Gies et al. (2012) presented an initial study of eclipse timings in 41 Kepler binaries.

Of their entire sample of 41 binaries, 40 are still in the Kepler EB Catalog (KIC 4678873

has since been removed from the catalog as a false positive), 32 fall under the scope of this

paper (have a morphology less detached than 0.5), and 9 appear in our list of third-body

signals. They identified 14 out of their original 41 as candidate third-body systems, with

others being identified as likely caused by starspots, pulsations, and apsidal motion. Of

their 14 candidate third-body systems, all 14 are still in the Kepler EB Catalog, 12 fall

under the scope of this paper, and 9 appear in our list of third-body signals. Binaries that

they list as candidate third-body systems, but we do not, either show significant noise or

would be very long period LTTE orbits.
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Table 4.2. ETVs with Potential Third-Body Signals

KIC morphbin Pbin (d) P3 (d) e3 ALT T E(s)

2856960 0.60 0.259 204.5±0.1 0.447±0.001 202±1
3228863† 0.65 0.731 644.1±15.7 0.000±0.003 195±3
3245776 0.96 1.492 636.3±70.6 0.587±0.021 136±10
3641446 0.95 2.100 228.6±1.0 0.000±0.010 85±1
4037163 0.58 0.635 267.0±8.1 0.349±0.009 77±1
4909707† 0.72 2.302 516.1±16.1 0.686±0.006 707±14
5128972† 0.74 0.505 438.7±1.9 0.323±0.002 256±1
5264818† 0.91 1.905 299.7±107.5 0.421±0.306 178±42
5310387† 0.96 0.442 214.3±0.3 0.250±0.004 31±1
5376552† 0.82 0.504 331.1±0.8 0.000±0.002 87±1
5459373 0.97 0.287 411.5±1.2 0.372±0.002 228±1
5560831 0.60 0.868 609.0±149.2 0.093±0.010 58±9
6302592 0.93 1.578 623.6±42.9 0.211±0.009 671±30
6370665† 0.94 0.932 283.2±20.9 0.136±0.085 66±3
7362751 0.73 0.338 540.3±3.4 0.162±0.001 250±1
7657914 0.72 0.475 689.9±295.1 0.405±0.025 30±8
7685689 0.77 0.325 507.3±6.2 0.176±0.002 183±1
7690843† 0.64 0.786 74.1±0.1 0.233±0.021 81±1
8043961† 0.63 1.559 478.0±10.4 0.000±0.005 184±2
8145477 0.88 0.566 353.7±46.7 0.418±0.007 136±12
8190491 0.95 0.778 594.7±11.7 0.000±0.003 130±1
8211618 0.73 0.337 127.3±66.7 0.319±0.137 31±10
8330092 0.80 0.322 595.5±5.4 0.201±0.001 127±1
8386865† 0.99 1.258 293.9±2.8 0.493±0.013 197±1
8394040† 0.77 0.302 392.6±0.8 0.467±0.001 278±1
8904448† 0.74 0.866 538.8±59.9 0.577±0.016 166±12
9075704 0.68 0.513 396.3±7.5 0.101±0.003 138±1
9451096† 0.54 1.250 106.8±0.1 0.091±0.033 93±1
9706078 0.55 0.614 639.2±27.6 0.550±0.004 237±6
9722737† 0.78 0.419 451.3±3.7 0.152±0.003 225±1
9994475 0.76 0.318 610.9±6.8 0.375±0.001 196±1

Note. — An excerpt of the table listing identified third-body signals. The
full table appears in Conroy et al. (2014b).

†Appears in Rappaport et al. (2013)
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Table 4.3. ETVs crossmatched with Rappaport et al. (2013)

KIC P3,R (d) P3 (d) ALT T E,R(s) ALT T E(s)

3228863 668.4 644.1±15.7 189{187,194} 195±3
4647652 753.5 755.2±44.3 228{183,274} 239±9
4909707 505.3 516.1±16.1 493{378,627} 707±14
5128972 447.8 438.7±1.9 259{244,271} 256±1
5264818 296.3 299.7±107.5 145{107,196} 178±42
5310387 214.2 214.3±0.3 31{ 27, 37} 31±1
5376552 334.5 331.1±0.8 94{ 91, 98} 87±1
6370665 285.9 283.2±20.9 67{ 61, 74} 66±3
6531485 48.3 · · · 72{ 31,109} · · ·
7690843 74.3 74.1±0.1 71{ 51, 91} 81±1
8043961 476.7 478.0±10.4 194{179,213} 184±2
8192840 803.9 1045.9±185.0 208{187,223} 260±30
8386865 293 293.9±2.8 171{156,210} 197±1
8394040 394.8 392.6±0.8 369{345,391} 278±1
8904448 548.1 538.8±59.9 171{158,192} 166±12
9451096 106.7 106.8±0.1 90{ 59,144} 93±1
9722737 443.9 451.3±3.7 230{225,236} 225±1
9912977 753.7 780.4±95.2 105{ 94,117} 96±7

10226388 934.9 965.3±183.8 465{434,493} 457±58
10991989 554.2 554.8±64.1 256{239,274} 232±17
11042923 839 984.4±63.9 223{213,230} 276±11

Note. — P3,R and ALT T E,R are the period and amplitude as reported
by Rappaport et al. (2013)
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Figure 4.6 Gallery of select ETV signals found in close binaries with LTTE fits. These are KIC
3228863, 4909707, 6265720, 6302592, 6615041, 7339345, 7362751, 8045121, 8043961, 8394040,
8957887, and 9665086. Typical errors for ETV measurements are shown to the left of the data.

Rappaport et al. (2013) also reported 39 triple-star Kepler binaries due to ETV signa-

tures. Of these 39, 21 fall under the scope of this paper, 19 of which also appear in our list
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of third-body signals, with the other two determined to be unlikely caused by a third-body

due to their very short periods and notable spot activity. The detections that overlap both

of these studies are noted in Table 4.3. In most cases, the model fits from both studies are

consistent. In general, due to our treatment of the full Kepler dataset, tertiary parameters

should now be more precise and longer period third body signals are now more apparent.

Any disagreement is likely due to a slightly differ inner-binary ephemeris or the addition

of the physical delay in their models (see also §5.4 for a discussion of these dynamical

contributions).

4.2.1 Higher-Order Systems

Figure 4.7 KIC 5310387 and 6144827 are among several ETV signals with residuals that suggest
another parabolic or LTTE signal, possibly indicating the presence of a fourth body.

It is also possible that some of these ETVs could be composed of multiple signals. KIC

5310387, 6144827, 8145477, 11612091, and 11825204, for example, may have both an

LTTE and quadratic component or two LTTE signals as shown in the residuals in Figure

4.7. In general, the stronger signal is fitted and noted.
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4.2.2 Systems Confirmed through Eclipse Events

Some of these systems also exhibit extra eclipse events (see §2.3.1). When these

eclipses can be phased to the same period as the LTTE signal in the ETVs, this can provide

strong evidence that the system is indeed a higher-order system. Figure 4.8 shows one of

these systems, KIC 2856960, in which eclipse events and the ETV signal can easily be seen

to be caused by the presence of a third component in the system.

Figure 4.8 A triple eclipsing star KIC 2856960. Left: the detrended light curve phased at the inner
period of 0.26-d. The white line is the polyfit function, and white rectangles are the knots. Dashed
lines delimit the phase space of the primary and secondary eclipse; these are used separately to
obtain primary and secondary ETVs. Upper right: the measured ETVs (black points) and the best
light-time travel fit (white line), yielding the outer period of 205.5 days. Lower right: the detrended
light curve, with the tertiary eclipses clearly visible.
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KIC 2835289, shown in Figure 4.9, is particularly interesting because the inner binary

is an ellipsoidal variable with a short period below one day. As the ellipsoidal variable does

not eclipse but the third body does, we know that the system cannot be coplanar and can

model the mutual inclination between the two orbits. Furthermore, the shape of the LTTE

signal tells us that the third component is on a fairly eccentric orbit. Initial models (Conroy

et al., 2015) suggest that the mutual inclination may be consistent with the distributions

expected from KCTF (see §1.2), and since the inner binary is near the period peak of close

binaries, may be a prime example of a post-KCTF system. This system is the target of a

future study (Conroy et al, in prep).

Figure 4.9 KIC 2835289 is an ellipsoidal variable with a period of 0.857 days. We can see one
tertiary eclipse in the light curve and the ETV signal can put an additional constraint on the expected
period of a potential third-body.

4.3 Statistics

We found a third body rate of ∼ 20% in our sample of close binaries, nearly all of

which have inner binary periods shorter than 3 days (Figure 4.10). This is much lower
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Figure 4.10 Distribution of period of potential third body companions verses the inner-binary pe-
riod (left) and morphology (right). Third body periods greater than 3000 days are all placed in the
final bin despite their modeled periods. The different colors represent the three different samples
of binaries represented in Table 4.2, determined by the period of the potential third body. The top
histograms show the occurrence rate of candidate third bodies for each bin in period or morphology,
and the histogram on the right shows the number of third body candidates at each period.

than the third body rate of 96% found by the previous studies mentioned. However, our

identification of tertiary companions is certainly a lower limit for several reasons.

First, our ability to detect a third body is very sensitive to both inclination and mass

of the third body, such that low-mass tertiaries and/or tertiaries whose orbital planes are

highly inclined relative to the inner binary orbital plane do not present detectable LTTE

effects. Of our total sample of 1279 binaries, 3 (< 1%) show an LTTE orbit and visible

tertiary eclipses. 111 (∼ 10%) have LTTE orbits with periods shorter than the span of our

photometric data but do not show tertiary eclipses, suggesting that the orbits are not well
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enough aligned to show eclipses or the eclipses fell in a gap in the data. Thus, there is

evidence from these examples that, in a few percent of cases, we are indeed missing true

third bodies because of inclination non-alignment. 94 (∼ 7%) have LTTE orbits with peri-

ods longer than the photometric baseline. In these cases we do not have well constrained

periods and our chances of detecting a tertiary eclipse are poor.

A second reason that our determination of the third-body occurrence is likely a lower

limit is that the very close binaries that comprise our sample here generally present more

noise in the ETV signal, which could easily bury a weak LTTE signal. We have employed

a method that minimizes false positives due to spurious ETV signals, and thus necessarily

have eliminated some potentially true LTTE signals.

Third, and perhaps most important, the limited timespan of the Kepler data at the time of

this study (∼1400 days) significantly restricts us to detect third bodies with orbital periods

comparable to or shorter than 1400 days. Relative to the full span of tertiary separations

found in previous works (Tokovinin, 1997; Tokovinin et al.; Dhital et al., 2010; Law et al.,

2010), with separations as large as ∼1 pc, we are at present sampling only the relatively

closest tertiary companions. Indeed, Tokovinin et al. found among tight binaries that the

rate of third bodies with orbital periods less than ∼3 years (comparable to our limit based

on the duration of the available Kepler data) is 15%± 3%. Thus our finding of a third-body

occurrence rate with a period less than 1400 days of∼ 10% is compatible with the expected

rate, though it appears we are likely still missing a fraction of some systems for the reasons

already mentioned.

The distribution of periods of potential third body orbits is also shown in Figure 4.10.

We can clearly see a falloff in detection past the current length of the Kepler mission of

∼ 1400 days, as expected. However, for third-body periods shorter than ∼ 1400 days,

for which our detectability is relatively good, the occurrence rate does appear to increase

toward longer third-body periods, consistent with the period distribution of third bodies

among tight binaries found by Tokovinin et al.. Furthermore, we find that the triples on
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the widest orbits are found around the shortest period binaries, which is consistent with

models that tighten the inner binary orbit through the presence, and gradual widening, of a

companion.

By identifying these candidate triple systems through ETVs, we can continue to follow-

up these systems to obtain additional observations — extending the time baseline on the

ETVs and therefore the precision of the fitted third body orbits, obtaining high-precision

photometry at times of expected triple eclipses, and obtaining spectroscopy so that radial

velocities can be extracted. With the combination of these various types of observations,

we can then precisely fit a physical model to an individual system. In order to do so, we

must account for all astrophysical contributions to the ETVs and create a physical model

capable of handling the dynamics of triple and higher-order systems in addition to the

necessary considerations for modeling high-precision data already discussed in §3.
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Chapter 5

Astrophysical Contributions to Eclipse Timing Variations

This chapter includes excerpts and figures adapted from Conroy et al. (2018),

used with permission from The Astrophysical Journal.

Eclipse Timing Variations (ETVs) occur whenever an eclipse appears at a time other

than that predicted by the linear ephemeris. These contributions can be split into two main

categories: time-dependent changes to the orbit itself that influence the true time of the

eclipse and apparent effects caused by the finite speed of light. Examples of the former

include apsidal motion (§5.1), mass transfer (§5.2), the Applegate Effect (§5.3), and dy-

namical effects in triple systems (§5.4). Example of the latter include parallax and proper

motion effects (§5.5), Rømer delay (§5.6), light travel time effect in triple systems or sys-

tems with radial barycentric velocity (§5.7), the Shklovskii Effect (§5.8), as well as a previ-

ously overlooked effect called Barycentric and Asymmetric Transverse Velocities (BATV,

discussed in detail in §5.9 and Conroy et al. 2018).

Depending on the circumstances of any given binary system, some or several of these

effects may be negligible while others dominate. Many of these effects are particularly

prevalent in close binary or triple systems and so are especially important to consider when

attempting to robustly model any of these systems. Most of these effects (all light time

and dynamical effects) are implemented into the physical model within PHOEBE and are

discussed in §6.

5.1 Apsidal Motion

Eccentric binaries can undergo apsidal motion or precession resulting in variations to

the eclipse times. This precession can be caused both by the non-point-mass nature of the
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stars as well as general relativistic effects. Together, these result in a time-depedence to the

argument of periastron, ω:

ω = ω0 + ω̇E (5.1)

where E is the epoch number (number of orbital cycles since t0) and ω0 is defined as the

argument of periastron at E = 0.

This changing argument of periastron, in turn, affects the projected separation between

the primary and secondary eclipses, ecosω , as well as the widths of the eclipses, esinω .

The eclipses will be separated by exactly half-phase when the line of periapsis lies along the

line of sight (i.e., eclipses occur at periastron and apastron) and most extremely separated

when the line of periapsis lies along the plane of sky. The precession of the argument

of periastron, ω̇ , then results in the primary eclipses and secondary eclipses exhibiting

sinusoidal-like ETVs in antiphase to each other.

Gimenez and Garcia-Pelayo (1983) (see also Todoran 1972 for a similar expression

with terms up to the third order in e) provide the following expression for the time of

eclipse:

T = T0 +PSE +( j−1)
P
2
− P

π

5

∑
n=1

(e
2
(3−2 j)

)2
{

3

∑
m=1

(e
2

)2m−2
fmn(i)

}
sinnω̄ (5.2)

where T is the time of a given eclipse at epoch E, T0 is the time of eclipse at E = 0, Ps is the

sidereal orbital period, e is the eccentricity, ω̄ is the argument of periastron at epoch E plus

π/2 (i.e., ω̄ = ω0 + ω̇E +π/2), j = 1,2 for primary and secondary eclipses, respectively,

and

f1n(i) =
(

1+
1
n

)
+ cot2 i ∑

k=1
n(n− k+1)(csc2 i)( j−1)

f2n(i) =
2

n+2
{(6−n)(n+2)− (−1)n}+n f1(n+2)−6 f1n

f3n = 2{ f1 5−3( f1 3− f1 1)}−6.4

(5.3)
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given that f2n = 0 for n > 3 and f3n = 0 for n > 1. The period of the apsidal motion is then:

U =
2π

ω̇
Pa (5.4)

where Pa is the anomalistic period (the time between two periastron passages). The relation

between the sidereal and anomalistic periods is:

Ps = Pa(1−
ω̇

2π
) (5.5)

5.2 Mass Transfer

For a close binary system in which one component is overflowing the Roche lobe at L1,

mass transfer can occur between the two components, resulting in a change in the semi-

major axis and orbital period of the system (e.g. Pettini 2013). By defining the mass transfer

from M2 to M1 and under the assumption of zero mass-loss from the system (i.e., conser-

vative mass transfer), Ṁ1 = −Ṁ2. The total angular momentum of the system must then

be conserved throughout this process. Here we ignore the rotational angular momenta of

the individual stars and write the total orbital angular momentum of the system, assuming

a circular orbit:

L = µ
√

GMtota , (5.6)

where µ ≡ M1M2
Mtot

and Mtot ≡M1 +M2. By forcing the time-derivative of L to be zero, the

orbit must shrink when M1 < M2 (mass transfer from the more massive star to the less

massive) and expand when M1 > M2 (mass transfer from the less massive star to the more

massive):
1
a0

ȧ = 2Ṁ1
M1−M2

M1M2
. (5.7)

According to Kepler’s third law, P ∝ a3/2, the orbital period of the system must also
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change:
1
P0

Ṗ =
3
2

1
a

ȧ = 3Ṁ1
M1−M2

M1M2
(5.8)

Any linear change in the orbital period will show itself in the ETVs as a quadratic term:

T = T0 +P0E +
1
2

P0ṖE2 . (5.9)

Stȩpień and Kiraga (2013) caution against using measured ETVs in single systems to

argue for the presence of mass transfer, noting that the Applegate Effect (§5.3) or presence

of third bodies (§5.7) are generally more likely scenarios that can exhibit a similar shape in

the ETV curve.

5.3 Applegate Effect

The Applegate Effect (Applegate, 1992) describes period modulations in binary sys-

tems on the order of ∆P/P∼ 10−5 over timescales of decades caused by gravitational cou-

pling between the orbit and oblateness of one or both stars. As an active star goes through

its activity cycle, the magnetic torque causes changes in the distortion of the outer layers

of the star, resulting in a change in the distribution of the rotational angular momentum.

This change in the rotational angular momentum can then be exchanged with the system’s

orbital angular momentum, ultimately affecting the orbital period of the binary.

As the Applegate Effect is driven by magnetic fields, the period of the ETVs must

correspond to the observed photometric variation due to the underlying activity cycle with

an expected amplitude in the luminosity of ∆L/L∼ 0.1 (Applegate, 1992).

The relation between the amplitude of the ETV signal and the orbital period modulation

is (see Applegate 1992, Equation 38):

AApplegate =
∆P
P

PApplegate

2π
. (5.10)
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Note that, as PApplegate (the length of the orbital period modulation) depends on the activity

cycle, it may not be strictly periodic.

The time of an eclipse, corrected from the linear ephemeris, is given by (see Applegate

1992, Equation 37):

T = T0 +P0E +
1
2

P0ṖE2 +
AApplegateP0

2πν
cos(P0νE) , (5.11)

where E is the cycle number, P0 is the orbital period provided in the linear ephemeris, and

ν = PApplegate/2π .

5.4 Dynamical Effects

Masses in a triple or higher-order system can interact with each other, exchanging angu-

lar momentum between the various orbits and spins of the components. These orbital per-

turbations can then affect the orbital periods, resulting in ETVs from the linear ephemeris

assuming a fixed period.

In the case of a hierarchical triple system, the amplitude of this dynamical perturba-

tion on the orbital period of the inner binary is approximated by Rappaport et al. (2013),

Equation 10, as:

Adyn =
3

8π

M3

M123

P2
in

Pout
(1− e2)−3/2

=
3
4

G−1/2qouta3
ina−3/2

out M−1/2
123 (1− e2)−3/2 .

(5.12)

Multiple formulations and analytical expressions for the full ETV signal can be found in

many sources, including Harrington (1968, 1969); Soderhjelm (1975, 1982); Mayer (1990);

Borkovits et al. (2003, 2011); Rappaport et al. (2013).

Generally, the contribution to ETVs from these interactions increases as the system

becomes more tightly packed and as the mass of the third object increases. However,

there is a limit to how tightly a system can be packed and still be dynamically stable (see,
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for example, Harrington 1972; Bailyn 1987; Eggleton and Kiseleva 1995; Mardling and

Aarseth 2001; Mikkola 2008). Although the stability limit varies with eccentricity and mass

ratio, systems generally become unstable if ain/aout > 0.1. For systems that are near the

stability limit, the dynamical effects can change the orbital period, and therefore contribute

to the ETVs, quite significantly.

5.5 Parallax and Proper Motion Effects

Scharf (2007) and Rafikov (2009) discuss the effects of parallax and proper motion on

transit (and eclipse) times due to the apparent precession of the orbit as the system moves

on the plane of sky throughout Earth’s orbit around the Sun. This is most pronounced when

the binary orbit and Earth-Sun orbit are coplanar. Scharf (2007) estimates the magnitude

of this effect to be:

∆t =
RP
πd

(5.13)

where R is the orbital radius of Earth about the Sun (1 AU), P is the orbital period of

the eclipsing system, and d is the distance to the object. For most cases this effect will

contribute, at most, an amplitude of ∆t ∼ 10−1−10−2s to ETVs, which is well below our

current timing precision abilities.

In the case where the orbits are orthogonal, Scharf (2007) also discusses the resulting

change in transit duration, τ , due to an apparent change in inclination throughout Earth’s

orbit. For systems within 100 pc of Earth, ∆τ/τ can be estimated to vary between 0.001%

(for a 10 day period) and 10% (for a 1000 day period).

Scharf (2007) also notes that the same principle applies to barycentric motion of the

system relative to Earth. If a system exhibits large space velocities, an apparent precession

or change in inclination, strictly due to the change in observing angle, could appear in

the ETVs or duration variations. In §5.9 we present the formalism of a new effect, called

BATV, that describes the light time effects caused by transverse motion on the sky, which
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acts in addition to these geometric observing-angle effects.

5.6 Rømer Delay

The so-called Rømer delay, named after Ole Rømer who computed the speed of light

from the eclipses of Io by Jupiter in 1676, has long been applied to eclipsing binary star

systems and transiting planets to account for the effect of the finite speed of light on the

observed timings of eclipses.

By definition, the eclipsed component is always behind, and therefore further away

from the observer, than the eclipsing component. Due to the different distances the photon

must travel from each component to the observer, the observer “sees” each component

at different phases along their respective orbits — resulting in a shift in the timing of an

observed eclipse.

Interestingly, this affects the primary and secondary eclipses in opposite directions,

resulting in a shift in the phase separation between eclipses. Kaplan (2010) provides the

following expression, adapted from Fabrycky (2010), for this phase-shift (Kaplan 2010,

Equation 4, adapted to be translated from time- to phase-space):

∆Φsep(i→ 90◦) =
1
P

(
2GM1P2

π2c3

)1/3
(1−q)

(1+q)2/3 . (5.14)

As this is a function of the size of the orbit, the eccentricity, and the mass-ratio, this separa-

tion of eclipses can be used to constrain the mass-ratio if the other values can be constrained

independently through, for example, radial velocities. This has been successfully applied

to observable systems, including a Kepler eclipsing sdB+dM binary (Barlow et al., 2012).

§5.9.4 discusses this approach in more detail, introducing the contribution of barycentric

motion (BATV).
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5.7 Light Travel Time Effect

Although often interchangeable with the Rømer delay discussed in §5.6, we make the

distinction here that Rømer delay accounts for the light time delay between the two eclips-

ing components whereas the Light Travel Time Effect (LTTE) accounts for the light time

delay between an eclipsing binary and some reference frame, often the barycenter of a

higher-order system.

In the case of single binary systems with a systemic radial velocity, the entire system is

either receding or approaching the observer at some (usually) constant projected velocity.

The path the photon has to travel between one eclipse and the next is therefore changing at

a linear rate — resulting in an anomalous orbital period. For this reason, from photometry

alone, it is (nearly) impossible to decouple the orbital period from a reasonable range of

systemic velocities. However, with observed radial velocities, the systemic velocity can

easily be measured and used to correct the observed period (i.e., time between two succes-

sive primary eclipses in the absence of other ETV sources) from the true orbital period of

the system.

In the case of a higher-order system, this systemic radial velocity is caused by the mo-

tion of the binary about the common center of mass of the entire system, and is therefore

time-dependent. Borkovits et al. (2003, 2007, 2011); Rappaport et al. (2013); Conroy et al.

(2014b) provide analytical expressions for the contribution of LTTE to ETVs in a hierar-

chical triple system:

ETVLTTE = ALT T E

[(
1− e2

3
)1/2

sinE3(t)cosω3 +(cosE3(t)− e3)sinω3

]
, (5.15)
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where:

E3(t) = M3(t)+ e3 sinE3(t) ,

M3(t) = (t− t0)
2π

P3
,

ALT T E =
G1/3

c(2π)2/3

[
m3

m2/3
123

sin i3

]
P2/3

3 ,

(5.16)

and t0 is a time offset, m3 is the mass of the third body, m123 is the mass of the entire system,

and P3, i3, e3, ω3, E3(t), and M3(t) are the period, inclination, eccentricity, argument of

periastron, eccentric anomaly, and mean anomaly of the third body orbit, respectively.

5.8 Shklovskii Effect

Shklovskii (1970) accounted for the transverse velocity of pulsars resulting in a positive

time-derivative to the observed rotation period. Rafikov (2009) applied this to transit timing

and Kaplan et al. (2014) used the effect in the case of a double white-dwarf binary.

As described in §5.7, a system with a radial systemic velocity results in an anomalous

orbital period due to the increasing or decreasing distance between the source and ob-

server. Here the Shklovskii effect occurs due to transverse motion of a system, resulting in

a time-dependent contribution to the radial systemic velocity (i.e., due to a linear transverse

velocity on the spherical plane-of-sky). This will always result in the system receding from

the observer, and therefore a positive Ṗ.

Rafikov (2009) writes the expression for eclipse/transit times as follows:

˙PShk = 9.6
( vt

30km s−1

) 100
D

(
a

10 R�

)
µs yr−1 (5.17)

where vt is the transverse systemic velocity, D is the distance to the system, and a is the

semi-major axis.

Rafikov (2009) also notes that even for nearby systems with large proper-motion, this is
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unlikely to be observed on a timescale of 10 years, even with Kepler photometric precision.

5.9 Barycentric and Asymmetric Transverse Velocities

Here we present a non-relativistic contribution to the observed timings of eclipses (here-

after, our use of the word “eclipse” can also be applied to occultations and transits) caused

by any asymmetry in the transverse velocities of the two objects relative to the observer.

This can be the result of internal (i.e., non-unity mass-ratio) or external (i.e., barycentric

motion, additional components) causes. GAIA Data Release 1 (DR1) has recently released

proper motions for 2 million sources brighter than 20.7 magnitude (Gaia Collaboration

et al., 2016a,b; Lindegren et al., 2016), making it possible to obtain this information for

any source in the very near future.

5.9.1 General Theory

In order to define the observed time of eclipse, the positions of both bodies must be indi-

vidually corrected according to the light travel time between their respective instantaneous

positions and some fixed reference frame. Any asymmetry in the transverse velocities of

these two bodies relative to the observer, therefore, results in an unequal correction in their

positions. This asymmetry can result from two root causes. A non-unity mass-ratio in the

system will result in the lower-mass object having a higher velocity than the higher-mass

object at any given time throughout the orbit. Additionally, any barycentric transverse

(i.e., on the plane of the sky rather than along the line of sight) motion will affect the abso-

lute transverse velocities of both components, relative to the observer. Here we provide a

derivation of the effect that BATV has on the observed time of eclipse.

If we assume that all orbital motion is in the xz plane with z pointing towards the ob-

server (therefore guaranteeing an eclipse), then we can define the condition for an observed

eclipse as:

xb(tb) = xf(tf) , (5.18)
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where the subscripts “b” and “f” refer to the back (eclipsed) and front (eclipsing) star, re-

spectively. This condition states that the stars must appear aligned w.r.t. a photon traveling

towards the observer. The photon that is emitted by the back star at xb(tb) at time tb will be

intercepted by the front star at xf(tf) at time tf (see Figure 5.1 for a schematic). By express-

ing the x-positions of both stars in terms of their x-velocities, our condition for an observed

eclipse becomes:

−
∫ talign

tb
vx,b(t)dt =

∫ tf

talign

vx,f(t)dt , (5.19)
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0.0 +0.50

tf = +0.5 −0.50.0

tb = −0.5

t0 = +0.0

tf = +0.5

z0

tb = −0.50

talign

0.0 +0.50

tf = +0.75 −0.75

vx,bary

0.0

tb = −0.25

t0 = +0.25

tf = +0.75
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Figure 5.1 2D schematic representation of the effect BATV has on observed eclipse times for
an equal-mass binary system. On the left is a system with no barycentric motion, such that both
components have equal—but opposite—velocities. On the right is a representation of the same
system, but with the addition of transverse barycentric motion, such that the speed of the star in
front is 1/3 the speed of the star in back, relative to the observer. The separation between the two
stars in both cases is equivalent to one light-time unit. At time t = talign = 0.0, the stars are in
geometric alignment (i.e., the time of eclipse as provided by the ephemeris as c→∞). An eclipse is
observed when a photon that was emitted by the back (blue) star travels the distance to the front (red)
star and is intercepted. In other words, the x-position of the stars must align while being separated
by exactly the time it takes the photon to cross the distance between them. We define the time of
eclipse as the time at which the photon passes the plane containing the system barycenter, z0. For
the case with no barycentric motion (left), the eclipse is observed at t=0 (although shifted to the
left in space), whereas the case with positive barycentric motion (right) has a shift in the observed
eclipse time by 0.25 light-time units.
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where talign is the time at which the stars are in geometric alignment, i.e. when c→ ∞.

For any photon traveling in the positive z-direction towards the observer between the

two stars, the times must satisfy the following condition, accounting for the light travel

time:

tf− tb =
zf(tf)− zb(tb)

c
. (5.20)

The time of observed eclipse can be given w.r.t. the photon crossing any plane of choice

along z; a convenient choice which also allows using this time shift in conjunction with

LTTE is the plane that contains the barycenter of the system, z0. By making this choice,

the resulting expression can be used in conjunction with classical LTTE which accounts for

the shift due to the travel time between the barycenter and the observer. We can express the

time, t0, at which the photon crosses this z0 plane as follows:

t0 = tf−
zf(tf)− z0(t0)

c
. (5.21)

To find the time of observed eclipse, we need to solve Equations (5.19-5.21) for t0.

If the functional dependence of vx,b(t) and vx,f(t) is known, this can be computed either

analytically or numerically. For the purposes of deriving an approximate general analytic

solution, let us examine the case where the x-velocities can be assumed constant throughout

the travel time of the photon, [tb, tf], thereby allowing us to simplify Equation (5.19) as

follows: (
tb− talign

)
vx,b =

(
tf− talign

)
vx,f . (5.22)

We can now use Equations (5.20-5.22) to solve for ∆tBATV ≡ t0− talign, i.e. the time

shift, relative to the time of geometric alignment, at which the photon emitted by one star,

traveling along the line of sight, and then intercepted by another star, will pass the z0 plane:

∆tBATV =
zf(tf)− zb(tb)

c
vx,b

vx,b− vx,f
− zf(tf)− z0(t0)

c
. (5.23)
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If the z-positions of both stars and the barycenter are constant over the photon path time

interval, [tb, tf], such that zf(tf) = zf(t0) and zb(tb) = zb(t0), then we can simplify Equation

(5.23) by dropping all dependencies on time as follows:

∆tBATV =
∆zbf

c
vx,b

vx,b− vx,f
− ∆z0f

c
, (5.24)

where ∆zbf ≡ zf− zb and ∆z0f ≡ zf− z0. Note again that all values of ∆zi j and vx,i may

change between successive eclipses, but are assumed constant over the light travel time

between the two stars at eclipse.

In order to determine the observed time of any individual eclipse, this effect, as well

as any delay caused by a change in the distance between the observer and the barycenter

(i.e. classical LTTE) must be taken into account:

tobs = talign +∆tLTTE +∆tBATV , (5.25)

where talign itself may need a dynamical correction for any perturbations to the orbital

period or other elements (e.g. due to interactions with additional bodies in the system)

from the value provided by a linear ephemeris:

talign = tephem +∆tdyn . (5.26)

5.9.2 Application to Keplerian Orbits

In the case of a Keplerian binary system, we can further simplify by expressing the z-

position of the barycenter, z0, in terms of the mass-ratio of the binary. From the definition

of the center of mass, we know that ∆z0 f = ∆zbf/(ξ +1) where ξ ≡ Mf/Mb is the mass-

ratio, q, for a primary eclipse, or the inverse of the mass-ratio, 1/q, for a secondary eclipse,

giving:
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∆tBATV =
∆zbf

c

(
vx,b

vx,b− vx,f
− 1

ξ +1

)
. (5.27)

We can separate the external barycentric velocity (denoted with the ‘bary’ subscript)

and orbital velocities relative to that same barycenter (denoted with the ‘orb’ subscript), and

take advantage of the relationship that, for a Keplerian orbit, ξ = Mf/Mb = |vb,orb|/|vf,orb|.

So, by substituting vx,f = vx,f,orb+vx,bary and vx,b =−ξ vx,f,orb+vx,bary, we get the following

final expression for the time shift of an eclipse caused by BATV:

∆tBATV =
∆zbf

c

(
ξ −1
ξ +1

− 1
ξ +1

vx,bary

vx,f,orb

)
. (5.28)

The orbital velocity (vx,f,orb) and separation (∆zbf) terms are provided as orbital ele-

ments in Appendix A.

In many cases, the shift in observed eclipse times is constant and can simply be ab-

sorbed by a time-offset in the entire light curve. However, if any of the above quantities

vary with time, then this shift, ∆tBATV, also varies in time, resulting in a contribution to the

ETVs.

5.9.3 Expected Contribution from GAIA Proper Motions

GAIA DR1 (Gaia Collaboration et al., 2016a,b; Lindegren et al., 2016) includes mea-

sured parallaxes and proper motions for ∼ 2 million sources also found in the Hipparcos

and Tycho-2 catalogs. With approximately 1 billion total targets in GAIA, the number of

sources with precisely determined proper motions can be expected to increase drastically in

the near future. As BATV depends strongly on the transverse velocity of a system, GAIA

will enable us to estimate the magnitude of BATV for most observed systems.

Unfortunately, proper motions alone are not enough, as BATV depends on these trans-

verse velocities projected along the direction of motion of the eclipsed object on the sky.

In some rare cases, this orientation of a given system on the sky may be constrained,
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e.g. through direct imaging or astrometric solutions, but in most cases it will likely remain

unknown.
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Figure 5.2 Left: the distribution of proper motions (in velocity units) computed from the GAIA
DR1 (excluding the 3% of targets with proper motions above 150 kms−1). Right: the derived
distribution in vx,bary, where the velocity is determined from a randomized orientation of the binary
on the sky relative to the proper motion. The standard deviation (29 kms−1) and the corresponding
confidence levels are shown with vertical dotted lines.

The existing proper motions from GAIA DR1, however, provide the expected distri-

butions of the projected transverse velocity, vx, bary. Figure 5.2 depicts the distribution of

proper motions (in velocity units) computed directly from the GAIA parallaxes and proper

motions as well as the distribution of projected transverse velocities, assuming a random

distribution in orientations of binary systems on the sky. Excluding the 3% of sources

with proper motions above 150 kms−1, the expected projected transverse velocity is up to

100 kms−1, with 68% (1σ) falling between−29 and +29 kms−1, 95% (2σ ) falling between

−58 and +58 kms−1, and 99.7% (3σ ) falling between−87 and +87 kms−1. Although these

proper motions alone will not allow for estimating the exact value of vx, bary for a particular

system, it does allow an estimate for a statistical range of values.
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Figure 5.3 2D schematic representation showing how BATV with non-unity mass-ratio (q = 1/3
in the case shown) affects the phase-separation between primary and secondary eclipses. Left: a
primary eclipse (ξ ≡ q= 1/3), with the more massive object (with a slower velocity and closer to the
barycenter) being eclipsed. Right: a secondary eclipse (ξ ≡ 1/q = 3) with the roles reversed. Since
the observed time is measured with respect to the (fixed) barycenter, the primary and secondary
eclipses are observed to be shifted with respect to each other.

5.9.4 Constant Shift in Phase-Separation Between Eclipses

For a binary system with time-independent (or zero) barycentric transverse velocity, the

observed times of the primary and secondary eclipses, relative to each other, can still be

altered for a non-equal mass system due to both the asymmetric velocities and the distance

from the barycenter during eclipse, as depicted schematically in Figure 5.3. This same

effect, for the case without barycentric velocity, was discussed in §5.6 (see also Kaplan

2010 and Fabrycky 2010).

We can express the magnitude of this effect as the difference between the time shifts

for the primary and secondary eclipses, tpri and tsec, divided by the orbital period, P, used

for phasing. This resulting ∆Φsep, BATV will be the observed change in phase-separation

between the primary and secondary eclipses as compared to the expected value (i.e. 0.5 for
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a circular system, assuming c→ ∞).

Here we make the assumption that ∆zbf (provided in terms of orbital elements in Ap-

pendix A) is constant between successive eclipses of the same type, but not between pri-

mary and secondary eclipses for non-zero eccentricity. For simplicity, we will allow vx,bary

to be non-zero, but assume it to be constant in time (including between primary and sec-

ondary eclipses).

We will use Equation (5.28) and alternate the roles of the eclipsed and eclipsing stars, as

necessary, using indices 1 and 2 to represent the primary and secondary stars, respectively.

∆Φsep, BATV =
1

Pc

[
∆z12(tsec)

(
1/q−1
1/q+1

− 1
1/q+1

vx,bary

vx,1,orb(tsec)

)

−∆z21(tpri)

(
q−1
q+1

− 1
q+1

vx,bary

vx,2,orb(tpri)

)]
,

(5.29)

where ∆z12 and vx,∗,orb can be found in terms of orbital elements in Appendix A.

We can make a few additional simplifications by examining the circular case. Here,

the separation between the two stars remains constant throughout the orbit, so ∆z12(tsec) =

∆z21(tpri) = asin i. Additionally, the velocity of a given star is constant throughout the

orbit, so the velocities in the x-direction are the same at primary and secondary eclipses,

and therefore vx,2,orb ≡ vx,2,orb(tpri) = vx,2,orb(tsec) and vx,1,orb ≡ vx,1,orb(tpri) = vx,1,orb(tsec).

This then also allows us to use the mass-ratio to relate velocities via vx,1,orb =−qvx,2,orb:

∆Φsep, BATV =
2asin i

Pc

(
1−q
1+q

+
1

1+q
vx,bary

vx,2,orb

)
. (5.30)

We then represent vx,2,orb in terms of orbital elements (again, assuming the circular

case, see Appendix A for vx,2,orb in the general, eccentric, case):

vx,2,orb(e = 0) =

√
GMtot

a
1

1+q
. (5.31)

Then by using Kepler’s third law, we can write the entire expression for the offset in
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phase-separation for the circular case in terms of vx,bary, q, i, Mtot, and a:

∆Φsep, BATV =

(
GMtot

π2a

)1/2 sin i
c

[
1−q
1+q

+ vx,bary

(
a

GMtot

)1/2
]
, (5.32)

or in terms of vx,bary, q, i, Mtot, and P:

∆Φsep, BATV =

(
2GMtot

π2P

)1/3 sin i
c

[
1−q
1+q

+ vx,bary

(
P

2πGMtot

)1/3
]
. (5.33)

Figure 5.4 shows the magnitude of this shift from 0.5-phase separation for a circular

binary with a period of 1.0 days converted to time units. The magnitude increases as the

mass-ratio becomes more extreme and as the total mass of the system increases. For equal

mass binaries with a period of 1 day, the shift caused by BATV is ∼ 1 s. However, for

smaller mass ratios, the shift can reach ∼ 30 s, which is easily observable with precision

photometry.

For hot-Jupiters around fairly high-mass stars, for example, if an occultation can be

observed and used to constrain the eccentricity, it is important to account for BATV in
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Figure 5.4 Change in eclipse separation (from the expected 0.5-phase) caused by BATV for a
circular i = 90◦ binary with a period of 1.0 d as a function of the total mass and mass-ratio shown
in solid black for vx,bary/vx,f,orb,peri = 0%, dashed blue for 5%, and dash-dotted red for 10%.
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order to avoid misconstruing a phase-separation as non-zero eccentricity. It can also be

important to account for a conservative uncertainty in the value of vx,bary and its influence

on the phase-separation when determining measured uncerainties on the eccentricity or

ecosω . KELT-9b (Gaudi et al., 2017, Collins et al., in preparation), for instance, is a

detected planet system which is particularly susceptible to BATV as it has a small mass-

ratio of q = 0.0011 and a fairly large total mass of Mtot = 2.5 M�. Although the system is

not known to be exactly circular, it is expected to have been significantly circularized due

to its short orbital period of P = 1.48 d. Figure 5.5 shows the expected time-shift of the

secondary eclipse relative to the expected value as a function of vx,bary. For a reasonable

range of transverse velocities adopted from the 3σ distribution from GAIA (see Figure

5.2), this shift could be anywhere from ∼ 20 to ∼ 45 seconds. As the eccentricity of this

system is not well-constrained, there will be a degeneracy in the contribution to this shift

between BATV and a small, but non-zero, eccentricity. With individual eclipses timed to

a precision of ∼ 10 s (Collins et al, in preparation, private communication), the effect of

BATV on the resulting uncertainties on ecosω could be to the same order as the effect of

these timing uncertainties.

The above equations (5.29 for the general, eccentric, case and 5.32 or 5.33 when known

to be circular) provide a more robust estimate of the phase-separation and therefore could

be used in a similar matter to that of Kaplan (2010) (discussed in §5.6) to provide con-

straints on the mass-ratio. In practice, unless within a higher-order system, vx,bary will

likely be unknown, in which case reasonable limits, or constraints adopted from GAIA

proper motions, could be applied to estimate the resulting uncertainty on the mass ratio.

5.9.5 Eccentric Systems with Apsidal Motion

In the case of apsidal motion, the distance between the two components, ∆zbf, at a

given eclipse (i.e. primary or secondary) ranges throughout the entire precession cycle from

a(1− e)sin i when the eclipse occurs at periastron to a(1+ e)sin i at apastron. In addition,
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Figure 5.5 Change in transit separation (from the expected 0.5-phase, assuming a circular orbit),
caused by BATV for KELT-9b as a function of vx,bary. With no barycentric transverse motion,
the secondary event can still be expected to show a shift of 34.4 s due to its small mass ratio.
Black dotted vertical lines show the estimates for the distribution of vx,bary from GAIA for different
confidence levels (see Figure 5.2). At 3σ , 99.7 % of objects will be influenced by the barycentric
term of BATV by up to ±12 s.

the velocity of the front star varies from vf,orb,peri at periastron to vf,orb,peri (1− e)/(1+ e)

at apastron. As both the separation and velocities are time-dependent, the effect caused by

the asymmetric velocities will also vary in time. We can therefore determine the maximum

peak-to-peak amplitude of this effect, ABATV, over the whole apsidal motion cycle as the

difference between Equation (5.28) expressed at periastron and apastron:

ABATV =

∣∣∣∣2easin i
c

(
ξ −1
ξ +1

− 2
ξ +1

vx,bary

vx,f,orb,peri

)∣∣∣∣ . (5.34)

Equation (5.34) is plotted in Figure 5.6 for several values of vx,bary/vx,f,orb,peri along

with several known apsidal motion cases, whose adopted parameters are listed in Table

5.1. The parameter space in which this effect is maximized (i.e. small mass-ratio, large

eccentricity, large semi-major axis) also minimizes the chance of observing and detecting

the eclipses. Largely because of this, most known apsidal motion binaries have fairly small

contributions when assuming no barycentric transverse velocity. However, it is not implau-

sible to imagine a system being observed in which it is necessary to account for BATV
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Figure 5.6 Peak-to-peak BATV amplitude (for primary eclipses, ξ ≡ q) over an entire apsidal
motion cycle as a function of eccentricity (e) times projected semi-major axis (asin i) and mass ratio
(q) shown in solid black for vx,bary/vx,f,orb,peri = 0%, dashed blue for 1%, and dot-dashed red for 2%.
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Figure 5.7 Peak-to-peak BATV amplitude (for primary eclipses, ξ ≡ q) over an entire apsidal
motion cycle for several known apsidal motion systems as a function of the bulk transverse velocity,
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Figure 5.8 Same as Figure 5.6 but extended to low mass-ratios for planets. Shown are the peak-to-
peak BATV amplitudes (for transits) over an entire apsidal motion cycle as a function of eccentricity
(e) times projected semi-major axis (asin i) and mass ratio (q) for all confirmed Kepler exoplanets.
The contours are shown in solid black for vx,bary/vx,f,orb,peri = 0%, dashed blue for 5%, and dot-
dashed red for 10%. Note that these are not necessarily known to exhibit apsidal motion, but do
represent the parameter space of known exoplanets.

in order to accurately determine the true precession rate, particularly as missions such as

GAIA begin to give us constraints on the barycentric transverse velocities of these systems.

This will require a fairly long baseline, as all cases listed in Table 5.1 have contributions

from BATV below 0.1 seconds per day (even with conservative estimates on vx,bary, see

Figure 5.7).

Figure 5.7 shows this same amplitude for these apsidal motion binaries as a function

of vx,bary by computing vx,f,orb,peri for each binary using the total mass, Mtot, adopted from

the literature as listed in Table 5.1. Note that even for no barycentric transverse velocity,

the finite speed of light still requires a corrective term to apsidal motion for non equal-

mass systems. Barycentric transverse motion does, however, contribute significantly even

at relatively low velocities. Also note that since ξ < 1 for all of these cases (see footnote

in Table 5.1), the two terms in Equation (5.34) are opposite in sign for small negative

barycentric velocities, therefore decreasing the amplitude of the effect until the second

term eventually dominates (see Figure 5.7). Once these transverse velocities are known,
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Table 5.1. Adopted values and computed amplitudes for known apsidal motion binaries

System e a sini q Mtot Papsidal ABATV
(R�) (M�) (d) (s)

DI Herculis 0.489 43.2 0.89 9.7 55400 5.7
HD 152218∗ 0.269 39.7 0.76† · · · ‡ 176 6.8
HD 165052∗ 0.090 11.9 0.91 · · · ‡ 30 0.2

KIC 3749404 0.659 40.4 0.74 3.1 309 18.5
KIC 4544587 0.288 10.8 0.81 3.6 182 1.5

∗spectroscopic binary - may not eclipse.

†reported as q = 1.32 in Rauw et al. (2016).

‡not included as only Mtot sin3 i is known.

Note. — All values except BATV amplitudes are either directly or computed from values
in the literature (Guinan and Maloney (1985) for DI Herculis, Rauw et al. (2016) for HD
152218, Ferrero et al. (2013) for HD 165052, Hambleton et al. (2016) for KIC 3749404,
and Hambleton et al. (2013) for KIC 4544587). All reported transverse amplitudes are
computed for vx,bary = 0. See Figures 5.6 and 5.7 to see the dependence of these values on
the barycentric transverse velocity.

BATV may then become a significant contribution for some systems.

In the case of exoplanets, the mass-ratio will be small, resulting in a large contribution

even when the size of the orbit is small. Figure 5.8 shows the same as Figure 5.6, but for

the parameter space of known Kepler exoplanets. Note that these are not necessarily known

apsidal motion cases, but the figure does exhibit that BATV can be quite significant for any

exoplanet exhibiting precession.

5.9.6 Binary System with Change in Inclination

There are several known cases in which the inclination of an eclipsing system changes

quickly enough to cause an observable change in the depth of the eclipse, including AY Mus
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(Soderhjelm, 1974), V907 Sco (Lacy et al., 1999), SS Lac (Torres, 2001), and a number

of systems in the Magellanic Clouds (Juryšek et al., 2017). In some of these cases, this

change in inclination is so extreme that eclipse can be seen to begin or cease entirely. A

change in inclination can be due to any external forces on the system, including the presence

of any additional bodies in the system causing dynamical effects, including Kozai cycles

(Kozai, 1962; Mazeh and Shaham, 1979). Note that these dynamical effects may also cause

perturbations to other orbital elements which could result in additional contributions to the

shape and timing of eclipses.

Similar to the apsidal motion case, a change in inclination also results in a change in

the projected separation of the two stars between successive eclipses, but the velocities at

eclipse remain fixed. In this case, the separation at eclipse will vary from secl ≡ ∆zbf(i =

90◦) to ∆zbf(i = 0◦) = 0. However, as eclipse times are only measurable when eclipses

are still present, the maximum observed amplitude will only occur between some critical

inclination, icrit, and 90◦.

This critical inclination can be approximated geometrically as follows:

icrit = cos−1
(

Rf +Rb

secl

)
, (5.35)

where Rf and Rb are the radii of the front and back stars, respectively, and secl is the (non-

projected) distance between the two components at eclipse (i.e. a for circular binaries).

Therefore the observable effect can be approximated by:

ABATV =

∣∣∣∣∣∣
1−

√
1−
(

Rf +Rb

secl

)2
 secl

c

(
ξ −1
ξ +1

− 1
ξ +1

vx,bary

vx,f,orb

)∣∣∣∣∣∣ . (5.36)

The expression above is plotted in Figure 5.9 for the case where Rf+Rb = 2R�, showing

that, for a binary with a change in inclination, BATV can have a measurable contribution

to the ETVs on the order of seconds, with any barycentric transverse velocity potentially
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Figure 5.9 BATV amplitude (for primary eclipses, ξ ≡ q) over a change in inclination from icrit
to 90◦ as a function of the mass-ratio (q) and the separation between two components at eclipse
(secl) for a system in which the sum of radii is Rf +Rb = 2R�. The contours are in solid black
for vx,bary/vx,orb = 0%, dashed blue for 5%, and dot-dashed red for 10%. The dashed black line at
secl = 2R� represents the limit at which the two stars will be in contact.

increasing the magnitude of the effect. As was the case for apsidal motion, ξ < 1 will result

in opposing signs for the two terms on the right in Equation (5.36), and therefore a small

negative vx,bary will actually decrease the overall amplitude before eventually dominating.

5.9.7 Hierarchical Triple Systems

For a hierarchical triple system in which a third star is in orbit with an inner-binary sys-

tem, the barycentric transverse velocity of the inner-binary system varies in time throughout

the period of the outer-orbit, resulting in a cyclical contribution to the ETVs of the inner-

binary caused by BATV.

Here vx,bary in Equation (5.28) becomes the transverse velocity of the barycenter of

the inner-binary caused by its orbit about the barycenter of the entire triple system and

vx,f,orb is the velocity of the eclipsing star caused by the inner-orbit alone, projected along

the instantaneous direction of vx,bary (by definition of the x-direction). As we know the

barycenter of the inner-binary is moving in the z-direction throughout the outer-orbit, the
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assumptions in Equation (5.28) can no longer be assumed. Note though that the z-velocity

of the inner-binary is minimized as the contribution from BATV is maximized, and vice

versa. Nevertheless, these assumptions should be dropped and a numerical method or the

should be used to determine precise times of observed eclipse as a function of time. These

equations, along with the orbital elements provided in Appendix A, can still be particularly

useful in conjunction with classical LTTE and dynamical equations to fit orbital elements

of the outer-orbit to observed ETVs of an inner eclipsing binary prior to completing a full

dynamical model with light time delay.

For simplicity, to compare the contribution to the ETVs of BATV to both LTTE and

dynamical effects, we’ll examine the case of a hierarchical triple system in which both

orbits are circular and share the same plane (i.e. iin = iout and Ωin = Ωout). Coplanar orbits

maximize the contribution of BATV as the barycentric transverse velocity caused by the

motion around the center-of-mass of the entire system is most aligned with the velocity

of the stars in the inner-binary at eclipse. We derive the circular case using the following

conditions:

∆zbf(ein = 0) = ain sin iin ,

vx,f,orb(ein = 0,eclipse) =

√
GM12

ain

1
1+ξin

,and

vx,bary(eout = 0) = cos(υ12)

√
GM123

aout

qout

1+qout
,

(5.37)

where the subscript “in” represents the inner-orbit and “out” the outer-orbit in which the

inner-binary is the primary component (qout ≡M3/M12) and is treated as a point mass at its

own barycenter. υ12 is then the true anomaly of the inner binary within the outer-orbit.

Substituting these into Equation (5.28), we can get the contribution of BATV through-
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out the outer-orbit as a function of the mass-ratios and semi-major axes:

∆tBATV(e = 0,coplanar) =
ain sin iin

c

[
ξin−1
ξin +1

± cos(υ12)

(
ain

aout

)1/2 qout

(1+qout)1/2

]
,

(5.38)

where the sign on the second term is positive for a prograde orbit and negative for a retro-

grade orbit.

The cosine term above varies in sign as vx,bary flips direction throughout the outer-

orbit. The peak-to-peak amplitude is therefore the difference between this expression taken

while the inner binary is in the front and back of the outer-orbit, i.e. ∆tBATV(υ12 = 0)−

∆tBATV(υ12 = π). Since the extrema used in the amplitude are taken at points along the

outer-orbit in which the inner-binary is not moving in the z-direction, this amplitude can

safely be determined without the need for numerical computations. As only the second

term is time-dependent, the peak-to-peak amplitude does not depend on ξin:

ABATV(e = 0,coplanar) =±2
ain sin iin

c

(
ain

aout

)1/2 qout

(1+qout)1/2 . (5.39)

5.9.8 Comparison of Contributions of Effects

Classical LTTE (see §5.7) for the same circular, coplanar, case will contribute peak-to-

peak ETVs equivalent to the photon travel time across the outer orbit:

ALTTE(e = 0) = 2
aout sin iout

c
qout

1+qout
. (5.40)

Since we are exploring the coplanar case, we can set iout = iin, and can therefore approxi-

mate the ratio between the BATV and LTTE contributions to the ETVs as follows:

ABATV(e = 0,coplanar)
ALTTE(e = 0)

=±
(

ain

aout

)3/2

(1+qout)
1/2 . (5.41)

Figure 5.10 shows the magnitude of BATV for circular, coplanar, hierarchical orbits.
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Figure 5.10 Peak-to-peak amplitude of BATV over an entire orbit of the inner-binary within the
outer-binary for the circular and coplanar case, viewed edge-on at i = 90◦. The left shows qout < 1
while the right shows 1 < qout < 5. The solid black contours are in terms of the photon travel
time between the two eclipsing components in the inner-binary, ain/c, from Equation (5.39) and
the dashed blue contours are in terms of the ratio of the amplitude as compared to classical LTTE,
ALTTE, from Equation (5.41). The red dotted lines represent the estimated stability limits, for qin = 1,
according to Harrington (1972), Bailyn (1987), Eggleton and Kiseleva (1995), and Mardling and
Aarseth (2001) as compiled by Mikkola (2008).
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This effect is maximized as qout→ ∞ (so that the inner-binary’s velocity through space is

increased) and as ain → aout (the more tightly packed the system is, the larger the ratio

between barycentric and orbital transverse velocity for the inner-binary). Also depicted in

Figure 5.10 are various estimates for the stability limit of hierarchical triple systems ac-

cording to Harrington (1972), Bailyn (1987), Eggleton and Kiseleva (1995), and Mardling

and Aarseth (2001) as compiled and summarized by Mikkola (2008). Generally speak-

ing, in the most extreme but still stable scenarios, it is possible for BATV to contribute

≈ 15−20% that of classical LTTE. In the most stable hierarchical systems, however, it is

likely that the contribution from BATV will be under 1% that of LTTE.

Nevertheless, without properly accounting for BATV, fitting the LTTE contribution of

ETV observations would result in an incorrect measurement of the amplitude of the timing

variations caused by LTTE. Since ALTTE ∝ P2/3
out

(
m3/m2/3

123

)
, this will result in an overesti-

mate or underestimate in the mass-ratio (and therefore mass of the third body) for prograde

and retrograde orbits, respectively (see Figure 5.11).

Figure 5.11 also compares the analytical approximation for LTTE and BATV in Equa-

tion 5.38 (assuming nested Keplerian orbits) to the exact numerical solution. The residuals

in the case shown are on the order of 1% the amplitude of the BATV contribution and are

caused by the approximations used: that the barycenter of the inner-binary does not move

in the z-direction and that the eclipsing stars travel in constant and straight trajectories

during the photon travel time. When the systematic residuals due to these approximations

prove too significant to neglect, Equations (5.19-5.21) can be solved iteratively in conjunc-

tion with the relevant equations of motion. Provided that ~rb(t), ~r f (t), and ~rbc(t) can be

computed, the scheme is as follows:

• pick a timestamp tb (e.g. talign) and compute~rb(tb);

• solve Equation (5.19) for t f ; in most cases this needs to be done iteratively, i.e. by

employing a Newton-Raphson method;
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Figure 5.11 Contribution to ETVs by both classical LTTE and the BATV effect for a circular
coplanar hierarchical triple, for the case where qout = 10 and ain/aout = 0.1. On the left is the pro-
grade case, showing an increase in the overall magnitude of the ETVs, whereas the right shows
the retrograde case with a decrease in the magnitude. The expressions are plotted here as a con-
tinuous function of Φout but note that they are only applicable at times at which an eclipse of the
inner-binary occurs, shown as black +s for the numerical solution. The residuals between the exact
numerical solution and the analytic expression (due to the stated approximations) are shown in the
lower panel, reaching up to 0.5% of ABATV.

• given tf, compute~rf(tf);

• given~rb(tb) and~rf(tf), calculate the difference between both sides of Equation (5.20),

∆ = tf− tb− [zf(tf)− zb(tb)]/c;

• iterate the scheme over tb until ∆→ 0 to a required level of precision;

• given tf and~rbc(t0), solve iteratively for t0 using Equation (5.21).

Similarly to BATV, dynamical effects (see §5.4) increase as the triple system becomes

more tightly packed, and therefore also maximize their contribution to the ETVs. The

amplitude of this effect can be approximated (see Mayer, 1990; Borkovits et al., 2003,
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2011; Rappaport et al., 2013) as:

Adyn =
3

8π

M3

M123

P2
in

Pout
(1− e2)−3/2

=
3
4

G−1/2qouta3
ina−3/2

out M−1/2
123 (1− e2)−3/2 .

(5.42)

We can then determine the ratio between BATV and dynamical contributions to the

ETVs for the circular, coplanar, edge-on case:

ABATV(e = 0, i = 90◦,coplanar)
Adyn(e = 0)

=
8
3

G1/2

c
a−3/2

in aoutM
1/2
12 . (5.43)

Note that, unlike for LTTE, this ratio does not depend on qout but instead on the total

mass of the inner binary, M12. Figure 5.12 shows this ratio with aout at the mean stability

limit from Harrington (1972), Bailyn (1987), Eggleton and Kiseleva (1995), and Mardling

and Aarseth (2001), assuming ein = 0, eout = 0, and qin = 1 (Figure 5.10 shows the discrep-

ancy between these models and the relation with qin). As this ratio (Equation 5.43) scales

linearly with aout, the contribution from BATV relative to dynamical effects will increase

for increasingly stable systems.

For any system, it is likely that either LTTE or dynamical effects will dominate over

BATV (see Figure 7 in Rappaport et al. (2013) for a comparison between ALTTE and Adyn

as a function of Pout). However, it may still be necessary to account for BATV in order to

achieve accurate and precise determinations on the system parameters.
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cular coplanar case in which aout is fixed to be at the mean stability limit (see text for more details).
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linearly.
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Chapter 6

Robust Modeling of Stellar Triples

This chapter includes excerpts and figures adapted from Conroy et al. in preparation,

to be submitted to The Astrophysical Journal Supplement Series.

For the most part, the underlying infrastructure that is applied to binaries (discretization

of surfaces, treatment of atmospheres, limb-darkening, reflection, doppler boosting, etc),

presented in §3 and Prša et al. (2016), is easily extended to higher-order systems. These

details are not repeated here except when additional considerations need to be made for

these higher-order systems.

Two main limitations of the binary implementation, however, need to be redesigned

to handle multiple systems: Keplerian dynamics and Roche distortions. Although using

Keplerian dynamics by nesting hierarchical orbits (i.e. so that the inner binary is treated as

a point mass to a companion object) may be sufficient for truly hierarchical systems, this

does not hold for the general case. Instead, in addition to support for nested Keplerian or-

bits, we also include a full N-body dynamical treatment of all masses in the system within

PHOEBE 2. Unfortunately, as the Roche model for stellar distortion is parameterized via

Keplerian orbital elements (mass ratio q, synchronicity parameter F , separation in units of

the semi-major axis δ , and the equipotential of the surface Ω), it can no longer be directly

utilized when switching to N-body dynamics. We describe below the hybrid approach im-

plemented within PHOEBE 2 for determining the equipotentials used for the distortion of

each stellar surface while still using N-body dynamics. A similar, independent approach

“merging” WD (Wilson and Devinney, 1971) along with a Burlisch-Stoer N-body imple-

mentation within the SWIFT package (Levison and Duncan, 1994) is discussed by Brož

(2017).
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6.1 Defining the System Hierarchy

Before any dynamics or surface distortion can be determined, the system first needs to

be defined in a self-consistent manner. Conventionally, a binary system orbit is defined

by the mass ratio q, semi-major axis a, eccentricity e, and period P (along with other

“orientation” parameters such as inclination, argument of periastron, and longitude of the

ascending node) with the masses then being uniquely determined through Kepler’s third

law.

For a triple system, we can use the same parametrization by defining “nested” (i.e. “in-

ner” and “outer”) orbits. The resulting six parameters (qinner, qouter, ainner, aouter, Pinner,

Pouter; see Figure 6.1 for a schematic), however, must be self-consistent so that both in-

stances of Kepler’s third law result in consistent masses. The triple system is then defined

by five of the six parameters, with the sixth being constrained by both applications of Ke-

pler’s third laws:

P2
inner =

4π2

G(M1 +M2)
a3

inner ,

P2
outer =

4π2

G((M1 +M2)+M3)
a3

outer ,

(6.1)

where

qinner ≡
M2

M1
,

qouter ≡
M3

M1 +M2
.

(6.2)

In PHOEBE 2, multiple stellar systems are defined with this “nested” hierarchical pa-

rameterization with the flexibility to choose any of the five parameters to be constrained by

the others (qinner is excluded as that would introduce the need to set the mass of either or
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Figure 6.1 Schematic representation of the nested hierarchical parametrization of a triple system.

both stars in the inner binary):

a3
inner

P2
inner

=
a3

outer

P2
outer

1
1+qouter

. (6.3)

For example, if both periods can be fitted and constrained via mutual eclipses, qinner and

ainner via radial velocities, and aouter via the amplitude of the ETVs of the inner binary, then

it makes most sense to leave qouter constrained. If, however, fitting a system in which the

third star is instead on a wide orbit with an unknown period, then it may make more sense

to leave Pouter constrained and fit the remaining five free parameters, with qouter perhaps

constrained by the presence of a triple-lined spectrum.

6.2 Dynamics

All parameters within PHOEBE 2 are defined at a reference time, t0. This allows orbital

elements to change in time due to dynamical interactions. As these orbital elements are

expected to change with time in a dynamical multiple star system, using nested Keplerian
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orbits alone is not sufficient. Instead, we determine the initial positions and velocities of

all components at t0 using the nested Keplerian orbits, and use an N-body integrator to

determine their positions and velocities at all other necessary times.

Within PHOEBE 2, we have incorporated the rebound1 package (Rein and Liu,

2012) to handle N-body integration. This python package currently includes support for

the following integrators: IAS15 (Rein and Spiegel, 2015), WHFAST (Rein and Tamayo,

2015; Wisdom and Holman, 1991), WHFASTHELIO, EULER, LEAPFROG, SEI (Rein

and Tremaine, 2011), and HERMES.

Note that all dynamics done within PHOEBE 2 currently assume the stars are point

masses, effectively ignoring any effects tides may have on the orbits. This assumption and

its consequences are discussed further in §6.6.1.

Light time effects (both Rømer delay discussed in §5.6 and LTTE discussed in §5.7)

are accounted for in PHOEBE 2 by advancing or retarding each component in its own orbit

such that its light will reach the barycenter of the system (and therefore the observer on

Earth) simultaneously. The implementation for Keplerian orbits is discussed in §3.1. Here

we extend the same basic logic to dynamical N-body orbits. As depicted in Figure 6.2,

each object is first placed in orbit according to the N-body integrator at the observation

time tobs. The radial distance between that position and the barycenter dz is then computed

and used to estimate the time-shift dt required so that the light reaches the barycenter at

tobs. This process is repeated iteratively for each object until all objects are in their orbits

as they would be viewed by the observer.

As this is done numerically within an N-body integrator, other effects such as dynamical

changes to orbital elements (discussed in §5.4) or barycentric and asymmetric transverse

velocities (BATV; discussed in §5.9 and Conroy et al. 2018) are automatically taken into

account for each synthetic data point, regardless of whether an eclipse occurs at that time.

Additionally, the assumptions made in the expressions provided in §5.9 are not necessary

1https://github.com/hannorein/rebound
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using this numerical approach — resulting in the most accurate eclipse times and synthetic

photometry possible.

Although subtle for binaries without companions, LTTE and BATV can become signif-

icant for multiple star systems as the barycenter for each subsystem is in orbit around the

system’s barycenter itself. Together with dynamical effects, this can result in observable

eclipse timing variations (see §6.5).

Figure 6.2 Schematic representation of light travel time corrections to the position of each star.
Objects are placed in orbit according to N-body dynamics at time t = tobs (black points and dashed
line) and are then moved along their respective orbits by dt = dz/c so that their light arrives at the
barycenter at t = tobs (colored points and dashed line).

6.3 Stellar Surface Distortion

The Roche framework (Equation 3.1) allows for nicely parametrizing the equipotentials

of stars in a binary system by describing the equipotentials in the rotating reference frame
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of the primary component. This allows for easy surface discretization as well as volume

conservation (see §3.2, §3.3, and Prša et al. 2016). Using a generic N-body equipotential

becomes overly complicated because of the multiple rotating reference frames and becomes

computationally prohibitive for volume conservation.

In order to apply the Roche framework to a system with N-body dynamics, we need

to make a few assumptions. First, we assume that there is no mass-transfer and therefore

hold all mass ratios fixed. Second, as in eccentric binary systems, we assume the volume of

each star remains fixed and do so by recomputing the equipotential Ω and re-discretizing

the surface at each time as is done in the binary case in §3.3. With these assumptions, we

need to compute δ and F at each time from the N-body dynamics.

To do that, we compute an instantaneous Keplerian orbit at a given time that describes

the current positions and velocities of each star in relation to its sibling in the defined hier-

archy (see Figure 6.3). In the case where the sibling is itself an orbit containing multiple

components, we assume that the total mass of those components is placed at the center-

of-mass of that sub-system. From the computed instantaneous semi-major axis ainst and

separation, we determine the instantaneous unit-less separation δinst . As the instantaneous

orbital period Pinst changes, we adjust the synchronicity parameter Finst under the assump-

tion that each star’s rotation period remains fixed throughout the model (see §6.6.3 for a

discussion on this assumption).

With q fixed and instantaneous values for δinst and Finst determined, we apply the

volume conservation constraint to determine the surface of the star. Figure 6.3 shows a

schematic representation of this process.

This “hybrid” Roche framework naturally only accounts for distortion between each

star and its nearest neighbor in the hierarchy. In other words, a star in an inner-binary will

not be directly distorted by the presence of a third component. This assumption is discussed

in further detail in §6.6.2.
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Figure 6.3 Schematic representation of the “hybrid” Roche distortion scheme implemented in
PHOEBE. The solid lines represent the N-body dynamical positions provided by rebound for
each star (red, blue, and green respectively). The dashed black lines represent the hierarchy con-
necting each star and the center-of-mass of its parent orbit. The dashed colored lines depict the
computed instantaneous Keplerian orbit at the time of the current frame, with the orbital parameters
on the top of the image and Roche parameters on the bottom of the image. At the bottom are the
meshes of the inner stars distorted according to those instantaneous Roche parameters and compared
to a sphere of the same radius (black circles).

6.4 Eclipse Detection

There are two main computational bottlenecks in extending PHOEBE from binary stars

to higher-order systems. The first of these is in discretization: as the orbits are not strictly

Keplerian, the meshes must be recomputed (according to volume conservation) at each
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time point. Unless circular hierarchical orbits are assumed, this step cannot be ignored or

significantly optimized.

The second bottleneck is in eclipse detection. The cost of eclipse detection, as explained

in §3.5 and Prša et al. (2016), goes as ∼O(N1.5). Increasing the number of components in

a system, therefore, has a significant impact on the cost of eclipse detection. Fortunately,

certain shortcuts can be made to optimize the computational cost of this operation.

At any given time, PHOEBE estimates which subset of all stars could possibly be

eclipsing each other by determining whether their projected separations on the plane-of-

sky are within the sum of their maximum radii. These maximum radii are conservatively

determined as the radius of each star at periastron in its (strictly Keplerian) orbit. As the

dynamical interactions could at some point bring a star within its Keplerian periastron dis-

tance, resulting in a larger radii, a conservative tolerance is used to ensure that eclipses will

not be ignored. In practice, PHOEBE computes full eclipse detection for any set of stars

that are within a tolerance of 10% of the estimated maximum sum of radii of those stars.

Stars that are not deemed to be eclipsing any other star by this check are instead handled

by only computing the visibility of elements with respect to the horizon.

6.5 Modeling Eclipse Timing Variations

ETVs have long been used to detect third components around eclipsing binary stars

(see §4 for our search for third components within the Kepler EBs catalog). By measuring

the time of the observed eclipses with respect to the linear ephemeris, extra components

can be detected by their influence on both the radial position of the binary as it orbits the

common center of mass (i.e. light travel time effects) as well as the perturbative effects

on the binary’s orbit (i.e. dynamical effects). These various contributing factors are all

discussed in detail in §5.

With the upcoming release of PHOEBE 2, ETVs will be a supported “observable”

dataset. Although analytical expressions for these perturbations are known in the case of
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triple systems (Borkovits et al., 2003, 2007, 2011; Conroy et al., 2018), PHOEBE computes

eclipse times directly from the orbit by computing the time that minimizes the projected

separation between the two eclipsing objects on the plane of the sky nearest to the expected

time of eclipse from the provided epoch number (see Figure 6.4). Even for ellipsoidal

variables in which an eclipse technically does not occur, this time still represents the mea-

surable time of minimum flux due to the distorted surfaces of the stars.

With nested-Keplerian orbits (instead of the hybrid-method with dynamical treatment),

Figure 6.5 shows that these ETVs roughly match the sum of those from the analytical

LTTE expression given in Rappaport et al. (2013) and BATV given in §5.9 and Conroy

Figure 6.4 Eclipse times are computed by minimizing the projected distance (dashed line) on the
plane-of-sky (upper-left). The middle panel shows the light curve with colored dashes marking the
computed eclipse times, and the bottom panel shows the resulting ETV curve when subtracting the
linear ephemeris.
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et al. (2018).

Figure 6.5 Computed ETVs for primary (blue) and secondary (red) eclipses for nested-Keplerian
orbits compared to the analytical light travel time effect LTTE and BATV contributions.

6.6 Justification of Assumptions

In order to devise the “hybrid” approach that handles dynamical orbits with surface

distortion in a computationally feasible manner - several assumptions and approximations

had to be made. In the sections below, I list and justify those assumptions and discuss when

a more robust method may be necessary.

6.6.1 Point Masses

Although the dynamical treatment implemented in PHOEBE 2 can handle changing

orbits due to interactions between all masses in the system, these masses are all treated as

point masses - effectively ignoring the tidal effects due to the distortions themselves.
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Handling tidal effects could be possible and may be considered as an additional feauture

in the future, but would come with significant computational cost. In order to achieve this,

each time-step would need to iterate between the dynamics changing the instantaneous

orbits which affect the distortions and then those distortions in turn affecting the mass-

distribution within each star feeding back into dynamical corrections. This would need

to be an iterative procedure until the result converges within some acceptable tolerance.

In addition to the computational complexity, the physical model would need to include

the distribution of mass within the star and account for how (and how quickly) that mass

redistributes to the “instantaneously” reacting outer layers.

Although tidal forces are known to affect orbits in some cases (e.g. apsidal motion in

eccentric cases), the outer layers of a star contain a small percentage of the overall mass.

Furthermore, the effect of these tides on the orbit occurs over a long timescale. With the

exception of extremely distorted stars in eccentric orbits, the assumption of point masses

for dynamics should hold over observable timescales.

6.6.2 Distortion Between Pairs

In order to still use the Roche framework, this hybrid approach in PHOEBE 2 only

accounts for the surface distortion due to a component’s nearest neighbor in the hierarchy

(i.e. in a hierarchical triple, the distortion of the stars in the inner binary only react to each

other, and not the third mass, whereas the third component reacts to the inner binary as if it

were a point mass located at the subsystem’s center of mass). For most stable hierarchical

systems, this assumption should be fairly safe.

In order for a triple system to be dynamically stable it must be sufficiently hierarchical.

According to Mikkola (2008), the stability limit can be generalized as douter, peri/ainner >

3−4 (see also Harrington, 1972; Bailyn, 1987; Eggleton and Kiseleva, 1995; Mardling and

Aarseth, 2001). Since the stars in the inner binary will be most affected by the outer com-

ponent when at closest approach, and distortion scales as (R/d)6 (where R is the radius of
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the star and d is the separation between the two sibling stars), under the most conservative

estimates the distortion on any of the stars in the inner binary due to the outer star is at most

0.07% of the distortion due to its pair:

(R/douter, peri)
6

(R/ainner)6 =

(
ainner

douter, peri

)6

=

(
1
3

)6

= 0.0007 . (6.4)

For these reasons, for any system which is dynamically stable, the assumption of dis-

tortions due to the nearest pair alone should be sufficient to within ∼ 0.1%. Although a

more robust and generic equipotential could be computed, inverting the equations to solve

for volume conservation would become much more computationally expensive.

6.6.3 Fixed Rotation Periods

As described in §6.3, we choose to retain the rotation period of each star and instead

allow for the synchronicity Roche parameter Finst to adjust to any change in the orbital

period and/or semi-major axis of the instantaneous Keplerian orbit.

The obvious assumption may be to conserve the angular momentum of the entire sys-

tem. However, there is no obvious way to distribute the changing orbital angular momen-

tum between the individual stars in the system. Therefore, the simplest two assumptions

to make would either be to preserve each star’s synchronicity or rotational period. As the

synchronicity timescale in an eccentric binary (Zahn, 2008; Moreno et al., 2011) is orders

of magnitude longer than any observable timescale that would be used within PHOEBE 2

and therefore also longer than the observable dynamical effects, we instead preserve the

initial rotational periods (even if at the cost of conserving total angular momentum).

In a sense this is similar to how stellar rotation is handled for eccentric binaries. The

synchronicity parameter sets the rotation period (i.e. a synchronicity parameter of exactly

one sets the rotation period to be exactly the orbital period). The rotational velocity is then

held fixed throughout the orbit, regardless of the orbital velocity at a given time.
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6.6.4 Instantaneous Keplerian Orbits

The last approximation used in this hybrid method is that an unclosed N-body orbit

can be instantaneously represented by a closed Keplerian orbit. This assumption is again

safe as long as the given system is sufficiently hierarchical. The dynamical interactions

between the components should only contribute a perturbative correction to the nested

Keplerian orbits, making this approximation reasonable. In extreme, either short-lived or

unphysical situations, this approximation may begin to breakdown, resulting in quick or

even discontinuous changes to the underlying Keplerian orbits and therefore the resulting

stellar distortions.

6.7 Utilizing Multiple Backends

As mentioned in §3.5, PHOEBE 2 is already inherently slower than other codes that

include more approximations. This becomes even more significant for the higher-order

systems. Although we have made efforts to optimize the code, PHOEBE 2 will likely

always be significantly slower than many other codes.

For this reason, as well as to test the validity of various models, the PHOEBE 2 frontend

has been designed with the capability of calling multiple backends. In the case of higher-

order systems, photodynam2 (Carter et al., 2011; Pál, 2012) is a highly-optimized code

that can compute light curves of systems with generic hierarchies, but lacks surface distor-

tion or advanced stellar atmospheres. We therefore include photodynam as an alternate-

backend within the PHOEBE 2 frontend interface and handle translating between the pa-

rameterizations between the two backends.

This allows for fitting a higher-order system computationally feasible. An MCMC fit-

ting run can be started with wide, conservative, priors to sample the entire parameter space

using the optimized photodynam. Once the parameter space has been well-explored

2A forked version is available at http://github.com/phoebe-project/photodynam
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and the posteriors begin to converge on a final solution, the user can switch to using the

PHOEBE 2 backend and enable the advanced, but computationally expensive, effects —

including the hybrid surface distortion.

Figure 6.6 shows an example triple system, highlighting the importance of surface dis-

tortion on the final light curve. However, the model with spherical stars still roughly models

the timing and shapes of the triple events. Here in this system, the full “hybdrid” distortion

model will be necessary for both the ellipsoidal variables for the inner binary and for the

exact shape of the triple eclipse events.

By utilizing this approach, PHOEBE 2 will allow for fitting the triple and higher-order

systems to unprecedented accuracy and precision, with the use of moderate HPC computing

resources. With these robust models and parameter uncertainties, we can provide both

benchmark stellar parameters as well as test the distributions of orbital parameters provided

by KCTF and other binary formation theories.

Figure 6.6 Light curve of an example triple system with the “hybrid” Roche distortions (solid)
compared to spherical stars (dashed). The meshes above are shown at the time indicated with the
vertical dashed lines and are also shown both with the “hybrid” Roche distortions (upper-right)
and spherical stars (upper-left). At this time in particular, the distortions clearly make a noticeable
difference in whether the third (green) component eclipses the inner binary (red and blue).
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Chapter 7

Discussion and Conclusions

The work in this dissertation represents the first steps towards robustly modeling stellar

triples and higher-order systems to the precision available by modern photometric surveys.

To accomplish this, I led the effort to identify these candidate triple systems from Kepler

EBs by measuring their ETVs, obtain additional follow-up data including spectroscopy

from the ground, and introduced a novel hybrid approach to handling the subtleties of

modeling these systems within PHOEBE 2 — including various astrophysical contributions

to the eclipse timings, dynamical perturbations caused by the multiple stars in the system,

and stellar distortion.

I have also described the theoretical formulation and consequences of a previously-

overlooked contribution to ETVs, called BATV, which is necessary to reach this same de-

sired level of precision when modeling ETVs. In addition to multiple star systems, BATV

also has consequencies for EBs in which their is a systemic velocity on the plane of sky.

This manifests itself in several physical cases: including apsidal motion, a change in incli-

nation, and the measurement of mass ratio from the phase separation between primary and

secondary eclipses.

With the framework now in place in PHOEBE 2 to model these systems to the necessary

precision, the modeling of individual triple and higher-order systems can finally begin. As

already mentioned in §4.2.2, KIC 2835289 is a perfect example of a tight inner binary with

a wide and eccentric third body identified both in the ETVs and in mutual eclipsing events.

This system is particularly interesting scientifically as it may be a post-KCTF system that

can test the predictions of the expected mutual inclination. Initial rough models show that

the mutual inclination may agree well with these predictions (Conroy et al., 2015).

This work enables the modeling of dynamical multiple stellar systems, and with sev-
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eral systems already identified in the Kepler EB sample ready for detailed modeling and

more expected from future high-precision missions on the horizon, we will soon be able to

quickly expand the sample of higher-order systems with precise solution. By obtaining the

high-precision data necessary and then robustly modeling these systems, we can slowly ac-

quire the statistical sample needed to test theories of close binary formation by comparing

the observed distribution in mutual inclination verse those expected from simulations by

Fabrycky and Tremaine (2007).

As these samples are being assembled, we will be able to constrain the stellar parame-

ters of the close binaries to unprecedented precision — thanks to the mutual eclipse events

that will break the solution degeneracies that have limited our abilities to model EBs to

higher precision. These will become new benchmark systems, with an improvement up

to an order of magnitude in precision better than has been possible with EBs. These new

benchmark systems can then play a crucial role in informing and calibrating stellar popu-

lation studies.
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Appendix A

Orbital Elements for BATV

Orbital Elements for Binary Systems

We can write several of the terms in Equation (5.28) with orbital elements of a binary

star system.

For the velocity of the front star (f) in our binary (fb), we want the velocity projected

along the longitude of ascending node. That can be represented as follows:

vx,f,orb =

√
G

Mfbafb(1− e2
fb)

Mb

[
− sin(ν f (t))cosωfb

+
[
cos(ν f (t))+ efb

]
sinωfb

]
,

(A.1)

where ν(t) is the true anomaly of a given star at time t, M is mass, ω is the argument of

periastron, a is the semi-major, and e is the eccentricity of the orbit.

The separation between the front and back components projected along the line-of-

sight, ∆zfb, can be written as follows:

∆zfb =
afb(1− e2

fb)

1+ efb cos(νf(t))
sinfb [cos(ωfb +νf(t))+ efb cosωfb] . (A.2)

Orbital Elements for Hierarchical Triple Systems

In the case of a hierarchical triple system, Equation (5.28) can be expressed in terms of

orbital elements of both the inner and outer Keplerian orbits.

For the velocity of the eclipsing component (f) in our inner-binary (fb), we want the

velocity projected along the longitude of ascending node for that same orbit (fb) and there-
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fore can use the same Equation (A.1), as for a single binary system. Likewise, we can use

Equation (A.2) for ∆zfb.

The barycentric transverse velocity, vx,bary is the velocity of the inner-binary (fb) caused

by its motion within the outer-orbit (fbt) projected along the same direction as vx,f,orb:

vx, bary =

√
G

Mfbta f bt(1− e2
f bt)

mt

[
− sin(ν f b(t))cosω f bt

+
[
cos(ν f b(t))+ e f bt

]
sinω f bt

]
cos(Ω f bt−Ω f b) .

(A.3)
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N. C. Hambly, M. Hauser, S. Jordan, M. G. Lattanzi, H. Lenhardt, S. Liao, W. Löffler,
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