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ABSTRACT 

 

The first part of the dissertation focuses on randomly oriented freestanding 

films of multi-walled carbon nanotubes (MWCNTs), also known as buckypapers, 

which have been fabricated by a two-step process using electrophoretic 

deposition (EPD).  These multi-walled carbon nanotubes films were cast onto 

stainless steel electrodes from aqueous suspensions by EPD.  Using a facile 

mechanical cleavage technique, the films were liberated from their underlying 

electrodes to yield the buckypapers.  We investigated the films’ thickness, 

morphology, and surface topology using, respectively, profilometry, scanning 

electron microscopy, and atomic force microscopy.  Mechanical characterization 

of the buckypapers revealed the average tensile strength and Young’s modulus 

to be 14.5 MPa and 3.3 GPa, respectively. 

The second part of this dissertation focuses on vertically aligned multi-

walled carbon nanotubes.  The purpose of our investigation was to optimize the 

growth of catalyst assisted chemical vapor deposition (CVD) grown carbon 

nanotubes for use as a photon absorbers in mid- to far-infrared applications.  

Improvement of the height and density of the carbon nanotubes will effectively 

increase the films absorptivity, bringing this material closer to an ideal absorber.  

NASA is currently exploring the use of this technology towards improving the 

stray light suppression of space flight instruments for future earth and space 

science missions.  Detrimental to these scientific instruments is the stray light 

that scatters on interior telescope and instrument surfaces, thereby reducing the 



performance of observational instruments.  In order to control this undesired 

effect, low-reflectance surface treatments are implemented in structural 

instrument designs.  Z306 black paint is traditionally used to absorb stray 

photons, but advanced absorbers that employ films of multi-walled carbon 

nanotubes have been shown to provide an order of magnitude improvement over 

current surface treatments in the UV-visible-near infrared wavelengths.  To this 

end, we varied the thickness of the iron catalyst layer and deposition conditions; 

varied hydrogen exposure times of substrates to optimize the MWCNT length 

and film density for efficient absorption of longer wavelength photons.  Scanning 

electron microscopy is used to characterize film density and MWCNT height, and 

hemispherical reflectance measurements are used to quantify performance of the 

absorptive films. 
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CHAPTER 1 

 

INTRODUCTION 

 

Carbon, one of the most abundant elements found on earth has unique 

properties due to its spn – hybridized bonds which lead to the many carbon 

allotropes, ranging from zero to three dimensions on the nanoscale. These 

allotropes of carbon (Figure 1.1), the zero- dimensional (0D) carbon buckyballs, 

one-dimensional (1D) carbon nanotubes, two-dimensional (2D) graphene and 

three-dimensional (3D) diamond, make it a highly investigated material for a wide 

range of nanotechnology applications [1]. On the nanoscale, materials behave 

differently from their bulk counterparts, due to the effects of quantum 

confinement; Table 1 shows the effects dimensionality has on the unique 

properties of the allotropes of carbon. From the perspective of materials science, 

these materials possess intriguing chemical, physical and electronic properties 

that have attracted the global community of scientists to investigate applications 

in advanced technological devices.  Of the allotropes of carbon, carbon 

nanotubes (CNTs) have led the charge since their discovery in 1991 by Iijima [2]. 
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Figure 1.1.[1] Schematic diagram showing the different allotropes of 
carbon: the zero- dimensional (0D) carbon buckyballs, one-dimensional (1D) 
carbon nanotubes, two-dimensional (2D) graphene and three-dimensional (3D) 
diamond. 

 

Table 1.1. Electronic properties of carbon-based materials [1] 

 Electron Mobility    
(cm

2
 V

-1
s

-1
) 

Bandgap (eV) Thermal 
Conductivity          
(W cm

-1
 K

-1
) 

Diamond 2200 5.45 22 

Carbon Nanotubes 1 x 10
5
 (0 to 1) 30 

Graphene 1 x 10
4
 to 2 x 10

5
 (0 to 0.5) 40 
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Carbon nanotubes (CNTs) were discovered using the arc discharge 

production method. CNTs can be described as single or multiple sheets of 

graphene with a hexagonal ring structure, rolled into a cylindrical shape as 

shown in Figure 1.2.  As produced, they are usually linear, exhibiting long-range 

order parallel to the axis of the nanotube.  Nanotubes are composed of sp2 

bonded carbon, which is a factor for its unique mechanical, thermal, electronic 

and optical properties.  There are several types of carbon nanotubes (CNTs) 

widespread in the scientific research; single-walled (SW), doubled-walled (DW) 

and multi-walled (MW), as shown in Figure 1.2 respectively. 

 
Figure 1.2.[3] Formation of single and multi-walled carbon nanotubes from 

graphene. The graphene sheet on the left is rolled to form a single walled 
nanotube (middle) and multi-walled carbon nanotube (right). 
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1.1. Structure of Nanotubes 

 Carbon nanotubes, due to their small diameter (~10 Å) and large length to 

diameter (aspect ratio) (>103), provide an important system for studying one-

dimensional physics, theoretically and experimentally [4].  To understand the 

structure of CNTs, we investigate a sheet of 2D graphene rolled to form a 1D 

SWCNT and identify mathematically the alternate forms of chirality since the 

traditional view of a tube is a rolled up sheet of graphene.  The chiral vector hC , 

which spans the circumference of a CNT, is used to identify how a graphene 

sheet can be rolled up into cylindrical form.  The chiral vector hC  is defined as; 

21 amanCh


 1.1 

where a1 and a2 are the unit vectors of graphite and n and m are arbitrary 

integers.  As depicted in Figure 1.3, a (n, m) nanotube is formed by rolling the 

graphene sheet into a cylinder in order for atoms O and A, or B and B’ to be 

connected by the chiral vector.  The diameter of a single tube (tubule) can be 

expressed as; 

2/12 )(3 nmnmaC
d

CCh

t  1.2 

where aC-C is the nearest neighbor distance (1.42Å in graphite), hC  is the length 

of the chiral vector and the chiral angle equation is given by, 

nm

m

2

3
tan 1  [4] 1.3 
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Figure 1.3.[4] Chiral vector schematic defined on the honeycomb lattice of 

graphene, a1 and a2 are unit vectors,  is the chiral angle with respect to the 
zigzag axis. 
 

 The chiral vector determines the rolling direction of the graphene sheet 

where each carbon atom is located at the vertex of the hexagon lattice structure 

for which lattice point integers (n, m) are superimposed with an origin defined as 

(0, 0), resulting in chiral nanotubes[2, 4].  As a result of the chiral vector, where 

each integer pair (n, m) defines a singular approach of rolling the graphene sheet 

we form three rolling orientations (chiral, zigzag and armchair); see Figure 1.4 of 

a carbon nanotube[5].  The chiral angle  and lattice vector representations of the 
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nanotube in the zigzag direction is  = 0, where it has lattice vector values of (n, 

0) and of the armchair = 30o, while its lattice vector values are (n, n).  Both the 

(n, 0) and (n, n) nanotubes have especially high symmetry and exhibit a mirror 

symmetry plane normal to the tubule axis. 

 The lattice constant and intertube spacing are a necessity to generate 

SWCNTs and MWCNTs, where these parameters vary in tube diameter or radial 

direction.  Most experimental measurements and theoretical calculations agree 

that the C-C bond length 42.1CCd  and 46.221 aaa  and intertube 

spacing 4.3ttd
[6].  Since both right and left-handed chirality is possible for 

chiral tubules, it is expected that chiral tubules are optically active to either right 

or left circularly polarized light propagating along the tubule axis. 

 

Figure 1.4.[4] Graphene sheet with unitary vectors specified by (n,m) integers for 
formation of nanotubes. Solid dots represent semiconducting tubes, encircled 
dots represent metallic tubes. 
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 The fundamental translation vector given by ),( mn


is located along the 

tube axis and is perpendicular to hC


.  The length of the Brillouin zone is
T

2
, 

where a  for an armchair nanotube and a3  for zigzag nanotubes.  In 

general, for any (n,m) nanotube, 

R

t

R d

d
C

d

33 
 1.4 

where 
Rd  is the greatest common divisor of (2n+m) and (2m+n). 

 

1.2. Electronic Structure of Nanotubes 

 The bonding of carbon nanotubes consists of sp2 (spXpY) hybridized bonds 

which is similar to that in graphene.  Figure 1.5.a shows the unit cell and basis 

vectors for graphene in real space, where these bonds are planar in 

characteristic and occur when the 2s and 2pXY-shells of each carbon atom are 

combined with the 2s- and 2pXY-shells of its neighboring atoms, forming bonds 

that have both s and p character.  The bonds formed are the strong covalent or  

bonds and the weak  bond based on interaction of the pZ orbital, allowing each 

carbon atom to have three  bonds and one  bond.  These sp2 bonding 

characteristics may be used to approximate the bonds in cylindrical carbon 

nanotubes.  Since perfect nanotubes encompass a uniform diameter, 

observation has shown defects in bonding that allow sp3 bonding to occur.  This 

bonding mechanism may produce defects, such as pentagons and heptagons, in 

the perfect hexagonal structure.  Through the gradual narrowing and widening of 
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nanotubes these defects may be observed[7].  The tubular structure of a 

nanotube then can be described with a sp2 – sp3 bonding characteristic, to 

account for the defects. 

 In order to understand the electronic properties a zone folding tight binding 

method is used to map the band structure of graphene to construct the Brillouin 

zone (BZ) of a SWCNT.  This method takes into account only confinement 

effects and neglects the contribution of curvature[8].  Figure 1.5.b shows the 

hexagonal BZ of graphene, in reciprocal space whose sides are CCa3/1  from the 

center. The BZ contains one electron per atom thus graphite is zero-gap 

semiconductor or semimetal ( - * overlapping).  The Fermi surface is reduced to 

six points at the hexagonal BZ corners where the 2D graphene electronic 

structure near the Fermi energy is given by occupied  (valence) band and an 

empty * (conduction) band.  These bands have a linear dispersion in )(kE  near 

the K point. 

 Based on Wallace’s model [9] the energy dispersion )(kE  of the  and * 

bands are calculated based on the nearest-neighbor tight binding model.  Thus  

2/1

0
2

2cos4
2

cos
2

3
cos41),(

akakak
kkE YYX

YX  1.5 

where 0 is the overlap integral between nearest-neighbor carbon atoms and the 

± refer to the * and  bands, respectively.  Figure 1.6.a and b shows the 2D and 

3D energy bands for graphene based on calculations from equation 1.5.  We 

observed at the K points the vanishing of the energy gap where the Fermi 

energy, EF, is 0FE ; consequently these K points are important for electric  
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Figure 1.5.[8] (a)The unit cell of graphene in real space where carbon atoms are 
located at sites A and B. (b) The Brillouin zone in reciprocal space of graphene or 
2D graphite layer, shaded hexagon and rhombus showing the high symmetry 

points , K amd M.  ai and bi (i = 1,2) are the basis and reciprocal lattice vectors 
respectively. 
 

 

 

Figure 1.6.[8] (a)Tight binding electronic structure of graphene showing the , M 

and K high symmetry points. (b) 3D model of (a) with the inclusion of the  and * 
states, the K point is also displayed. 
 

 
  

a b 

 

  

 
 

 

 

 

a b 
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transport.  Two consequences arise when deriving a nanotube from graphene; 

 i. The size of the first BZ in the tubule axis direction is determined by the 

translational period t, where tk II /2 and the wave vector is continuous. 

 ii. The wave vector is quantized in the direction related to the 

circumference (k┴) due to the periodic boundary conditions; 

mChk 2  1.6 

m
d

m
C

k
t

22
 1.7 

where m is an integer.  Therefore in terms of the 2D BZ of graphene, the allowed 

k states for nanotubes lie along parallel lines separated by a distance given by 

equation 1.7 which has a dependence on diameter and chirality.  Figure 1.7 

shows the allowed k states for armchair (n,n) tubes, where these quantized wave 

vectors lie on K points.  This results in metallic behavior for nanotubes with this 

outcome.  For zig zag (n,0) chiral tubes, the quantized wave vectors lie off 

centered to the Fermi points allowing energy gaps which give zig zag nanotubes 

semiconducting or metallic behavior. 
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Figure 1.7.[10] Reciprocal space of an armchair nanotube with the parallel lines 
along the tube axis (a) which results in metallic nanotubes.  Reciprocal space of 
a zig zag nanotube with the parallel lines along tube axis (b and c) which results 
in semiconducting nanotubes. 
 

1.3. Multi-Walled Carbon Nanotubes 

 MWCNTs consist of multiple concentric layers of graphite, with the 

identical interlayer distance of ~0.34 Å.  They were discovered first by Iijima [2] in 

1991 via the arc discharge method.  As grown by the CVD method, MWCNTs are 

perpendicular to the substrate surface.  Mizuno et al. [11] demonstrated that the 

absorptive properties (blackbody behavior) are dependent on the vertical 

alignment (forest-like structures) normal to substrate. 
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1.4. Buckypapers 

 Buckypapers (BPs) are a macroscopic or ensemble form of 

nanotubes formed into films (composed of SW, DW or MW) that are randomly 

oriented onto the substrate.  Since BPs are formed from the random orientation 

of nanotubes, the electrical and mechanical properties are a bulk composite 

effect of the numerous nanotube interactions; such as nanotube-nanotube 

junctions.  The BP orientation plays a role into the macro-properties and hence 

applications.  For instance, when randomly oriented in porous networks parallel 

to the substrate, it can be used as a composite material, in filtration, for thermal 

dispersion and electrostatic coatings [12-18].  When grown into “forest” structures, it 

can be utilized for field emission and photon absorption.  Wang et al. [19] showed 

that highly oriented tubes parallel to the substrate can increase the Young’s 

modulus and tensile strength. 

 

1.5. Synthesis Techniques of Nanotubes 

Conventionally, CNTs are synthesized by several techniques: (1) chemical 

vapor deposition (CVD), a gas phase thermal decomposition process; (2) arc 

discharge, a high current electric arc that goes through high purity graphite 

electrodes in the presence of catalytic particles in a He atmosphere to form 

carbon nanotubes and soot on the cathode; and (3) laser ablation, which uses a 

Nd-YAG high power laser for the vaporization of pure graphite targets or graphite 

powders in an Ar atmosphere and a furnace temperature of 1200 oC.  Though all 
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these techniques produce nanotubes, CVD has emerged as the most practical 

process for the fabrication of CNTs due to the ability to tune experimental 

parameters.  The advantages of the CVD method are the following; 

 Provides a means of growing on the bulk scale as well as on substrate 

surface 

 A more versatile technique; SWCNT, DWCNT, and MWCNT can be 

synthesized by tuning the parameters [20-22] (carbon feedstock gas, 

temperature, catalyst, etc.) 

 Cost effective. 

 

1.6. Mechanism of CVD Growth and Growth Termination 

 The CVD method uses several metal catalysts, such as iron (Fe), cobalt 

(Co), and nickel (Ni) in addition to carbon-containing compounds such as 

methane and ethylene.  Both SW- and MWCNTs can be grown via this method 

dependent on catalyst parameters and feedstock gas.  The initial stage typically 

consists of depositing the catalyst layer onto a substrate.  The substrate and 

catalyst are then heated to a designated temperature.  During this heating, the 

catalyst layer forms “clusters” which vary in size.  This size variation accounts for 

the size distribution observed in nanotubes grown.  At the specified temperature 

(in our case 750 oC), the catalyst forms a liquid nanoparticle “island” 

supersaturated with hydrocarbon molecules.  The size of the “island” depends on 

the substrate roughness and reaction parameters (gas flow rate, temperature 

gradient, etc.) [23-27]. 
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Figure 1.8. [25] Schematic of root or extrusion growth and tip growth 
mechanisms. 
 

 Figure 1.8 is a schematic of the growth models, root and tip, for the CVD 

method.  As depicted in the root growth model, the catalyst particle has a critical 

radius of curvature, resulting from the extremely small diameter of the catalyst 

particle, allowing the formation of graphite crystallites with a basal plane 

formation oriented tangential to the curved surface [23].  The large strain on the 

basal plane forces them to form the crystalline nanotube structure.  In the tip 

growth model, the formation of the catalyst particle and nucleation of carbon 

atoms occur as explained above.  However in this mechanism, the weak catalyst 

particle-crystalline nanotube interaction causes the particle to lift-off with the 

continual growth of the nanotube structures.  Growth ceases when the particle 

surface is covered with carbon and/or when the feedstock is terminated [23]. 

 In Chapter 3, our substrate preparation consisted of depositing the 

catalyst onto an alumina (Al2O3) layer to improve adhesion to the substrate [28].  



15 
 

Kim et al. [27] showed that Ostwald ripening and subsurface diffusion led to the 

loss of catalytic activity which leads to growth termination, as depicted in Figure 

1.9.  Ostwald ripening is a thermodynamically spontaneous process where larger 

particles are more energetically favored than smaller particles as a result of 

surface molecules being less energetically stable than the interior particles.  The 

expression for Ostwald ripening is  

t
TR

Dc
RR

g
o 9

8 2
33

 1.4 

where R is the average radius of all the particles,  is the particle surface 

tension or surface energy, c∞ is the solubility of the particle material,  the molar 

volume of the particle material, D the diffusion coefficient of particle material, Rg 

is the ideal gas constant and T the absolute temperature.  The particle size 

distribution was described by Ostwald ripening up to 5 minutes of thermal 

annealing; beyond this point the total number density of particles decreased 

giving rise to subsurface diffusion of the catalyst into the Al2O3 layer.  This metal 

cluster formation within the alumina layer is a result of the surface metal atom’s 

mobility in addition to the long term stability of clusters of metal atoms with bulk-

like coordination in the alumina pores [27, 29]. 
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Figure 1.9. [27] Schematic demonstrating the effects of Ostwald ripening and 
subsurface diffusion of iron particles on an alumina surface. 
 

1.7. Dissertation Organization 

This dissertation is organized as follows.  Chapter 1 gives an introductory 

review of the underlying material, carbon, and looks at the 1D allotrope for 

research purposes.  Chapter 2 focuses on the electrophoretic deposition (EPD) 

of aqueous suspensions of MWCNTs which are deposited onto stainless steel 

substrates.  Further we demonstrate the development of a new and unique 

procedure to attain free-standing BPs.  Chapter 3 focuses on the previous work 

utilizing vertically aligned MWCNTs as photon absorbers and concentrates on 

the optimization of CVD grown vertically aligned MWCNTs for direct technology 

applications for photon absorption in NASA’s space and earth-based telescopes.  

Chapter 4 focuses on methods to improve the absorptive abilities of our films and 

analysis of our reflectance data using the Kramers-Kronig analysis.  Chapter 5 
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summarizes the content of this dissertation and discusses possible future 

directions of this work. 
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CHAPTER 2 

 

FABRICATION AND CHARACTERIZATION OF BUCKYPAPERS 

 

2.1. Introduction 

Since the discovery of carbon nanotubes (CNTs), growth in scientific 

interest associated with the fabrication of CNT assemblies has been motivated 

by the desire to incorporate CNTs into devices that exploit their attractive 

electrical, mechanical, and thermal properties. Macroscopic CNT assemblies, 

such as yarns, films, and arrays, can be fabricated by an assortment of methods 

[1-5]. Free-standing CNT films with paper-like morphology, known as buckypapers 

(BPs), have been demonstrated for applications such as catalysis, filtration, and 

energy storage [4, 6-10]. BPs have been fabricated using single-walled CNTs [11-15], 

double-walled CNTs [16, 17] and multi-walled CNTs (MWCNTs) [1, 18-20]. The 

properties of BPs – electrical conductivity, tensile strength, and specific surface 

area, to name a few – depend on the composition of the CNTs, e.g., length or 

single-walled vs. multi-walled, their alignment in the BPs, and whether any 

polymer binders or fillers are included. For example, the domino pushing 

technique produces BPs by sequentially compressing vertically aligned arrays of 

CNTs into highly aligned CNT mats, much like a succession of toppling dominos 

[1]. The high degree of alignment confers higher electrical conductivity upon the 

resulting BPs, but consequently, lowers the surface area available for charge 

storage in applications like supercapcitors, when compared to BPs with randomly 
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aligned CNTs [1]. One challenge inherent to such a technique is the difficulty 

accessing thin, sub-50 m buckypapers, as multiple domino pushing steps are 

required. Other CNT film fabrication techniques have other disadvantages, such 

as high impurity content, limited control over lateral dimension, and coupling of 

the films to the substrate on which they are assembled. Thus, we sought a facile 

technique to produce BPs, with substantial control over the lateral dimensions 

and thickness of the film. 

We predicted that casting CNTs from a suspension phase, as a form of 

bottom-up assembly, could provide the desired degree of control over the film 

dimensions. Of the various techniques to cast films of colloidal materials, 

electrophoretic deposition (EPD) uniquely facilitates long-range homogeneity of 

film thickness and morphology, low surface roughness in the films, size 

scalability, and rapid film deposition [21-24].  EPD combines the processes of 

electrophoresis and deposition; suspended charged particles are accelerated by 

the application of an electric field, which drives them to the field-emanating 

surfaces, where they collect and form a dense deposit. EPD has been used to 

deposit CNTs onto a variety of substrates and in a variety of architectures [3, 5, 25, 

26]; however, the production of free-standing BPs from electrophoretically 

deposited films has yet to be demonstrated. Motivated by recent work on free-

standing multilayered nanoparticle films [27] and on CNT-nanocrystal 

heterostructures [5], both produced by using EPD, we explored how to produce 

BPs by liberating electrophoretically deposited CNT films. 
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This chapter describes a method to fabricate BPs whose thickness and 

lateral dimensions are tunable with the use of EPD. From an aqueous 

suspension, MWCNTs were electrophoretically deposited on steel substrates in 

random alignments, with most of the MWCNTs’ length parallel to the substrates. 

This distribution of materials yielded films that comprised porous networks of the 

MWCNTs. The deposited films then were mechanically cleaved from their 

substrates to yield free-standing BPs. A study of the mass and thickness of the 

films as a function of the number of depositions demonstrated the capacity of this 

fabrication process to produce films of consistent density. The deposition 

parameters reported in this paper yielded MWCNT films with thickness in the 

range of 1–7 m. Finally, this chapter reports preliminary mechanical testing of 

the BPs, from which values for the tensile strength and Young’s modulus, 14.5 

MPa and 3.3 GPa, respectively, were calculated. 

The work described in this chapter has been published in the following 

journal article by Rigueur et al. (2010, Carbon 48, pp. 4090-4099) [28].

 

2.2. Surfactant Characterization 

MWCNTs, produced by catalytic carbon vapor deposition and dispersed in 

water with a proprietary surfactant (Aquacyl AQ0101, 1 wt%, Nanocyl Inc, 

Belgium, specified average length 1.5 m, carbon purity > 95%), were employed 

for our experiments. 
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Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was performed on the surfactant using 

an Instrument Specialist TGA-1000 with the data collected in the temperature 

range of 25o C to 800o C with a heating rate of 10o C/min under a dry nitrogen 

atmosphere.  Figure 2.1 shows the relative mass ratio verses temperature graph 

of drop casts of as received MWCNTs and centrifuged MWCNTs dispersions.  

Samples were dried in two alternate temperature regimes; regime 1 at room 

temperature and regime 2 in a furnace at 120 oC for ten minutes.  TGA curves for 

the EPD and freestanding films were also obtained.  These samples were dried 

in regime 2, hence their curves are identical to that of the heat dried centrifuged 

sample.   

As shown in the figure (Figure 2.1), the relative mass ratio of the four 

samples is equivalent at 100 % (represented in scale as 1.0). During the 

temperature ramp, in the range of 50 oC to 200 oC, we observe for the air-dried 

samples (black and green lines) a 15% – 17% reduction in mass.  This is 

attributed to the evaporation of water and decomposition of other organic 

material that may be present in our samples.  For the heat dried samples (red 

and blue lines), this phenomena is observed to be no more than a 10% reduction 

in mass.  This suggests that heat drying the samples reduces the excess water.  

As the temperature is continually increased, we observe further mass loss 

of the samples occurring in the temperature range of ~310 oC to 650 oC.  This 

region represents the main mass loss, which corresponds to surfactant 
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degradation and is prevalent for all samples.  The TGA curves in this 

temperature region coincide with those found for anionic surfactants [1].  The air-

dried samples show a mass loss of ~ 57% while the heat dried samples show a 

mass loss of ~ 65%.  Beyond 650 oC, the residual mass is measured to be in the 

22% to 25 % range.  This suggests the conclusion of surfactant degradation with 

only MWNTs remaining.  It also suggests that the film’s mass is composed of 

mainly surfactant. 

 

Figure 2.1. TGA curves for as received un-centrifuged MWCNT and centrifuged 

MWCNT dispersions. Samples were drop-cast and allowed to dry in regular 

conditions (air) and heat dried at 120oC in a furnace. 
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Energy Dispersive Spectroscopy 

Energy dispersive spectroscopy (EDS) was used to determine the 

elemental composition of the proprietary surfactant, called X from Nanocyl Inc.,  

used in the MWNT suspension.  Characterization was performed on the drop 

cast area of MWNT solution used for deposition as shown in the scanning 

electron microscopy (SEM) image of Figure 2.2.  Figure 2.3 shows the EDS 

spectra of the drop cast film, which shows a strong carbon (C) peak affirming the 

presence of the MWNTs. The sodium (Na) peak present in the spectra suggests 

that the anionic surfactant used to suspend the MWNTs has Na+ as a co-ion.  

The presence of the oxygen (O) peak suggests oxygen-containing molecules 

consisting of the surfactant. 

Figure 2.4 shows the EDS spectra of a freestanding buckypaper.  First 

observation shows the C and O peaks are present though there is the absence of 

the Na peak.  We hypothesize that the absence of the peak comes from the 

repulsion of the Na+ ions from the positive electrode or being attracted to the 

negative electrode during EPD.  Further investigation of the negative electrode 

may strengthen this claim.  An EDS of the negative electrode before and after a 

deposition should clarify the issue.   
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Figure 2.2. SEM image of un-centrifuged drop cast of MWCNT.  Area shown in 

image was used for EDS analysis. 

 

 

Figure 2.3. EDS spectra of un-centrifuged drop cast of MWNTs on stainless 

steel substrate.  The C peak affirms the presence of MWNTs; the Na peak 

affirms the elemental composition of the proprietary surfactant and the O peak 

originates from the surfactant. 
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Figure 2.4. EDS spectra of free-standing buckypaper.  The C peak affirms the 

presence of MWNTs and the O peak originates from the surfactant. 

 

Nuclear magnetic resonance (NMR) spectroscopy was performed on the 

aqueous dispersion of MWNTs.  25 mg of MWNT solution was dispersed in 0.6 

ml of deuterated water (D2O).  The 13C NMR measurement of electromagnetic 

radiation occurred in the frequency region of 600 MHz, with a chemical shift 

range of 200 ppm and the number of scans (ns) approximately 28,000.   The 

peak at 130.36 ppm represents the aromatic carbon in the MWNTs, the peak at 

62.02 ppm identifies a hydroxyl group.  The peaks in the 22 – 65 ppm range 

represent organics with (CH2) and (CH3) groups.  The peak at 165.12 ppm 

represents that of a carboxylic acid.  NMR spectroscopy on non-surfactant 
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functionalized MWNTs is necessary to obtain a comparison with that of the 

surfactant functionalized MWNTs. 

 

2.3. Experimental 

As received MWCNT suspensions were centrifuged for 1.5 hours at 3500 rpm 

(Horizon Premier, Drucker Co.) to remove MWCNT aggregates and excess 

agglomerated surfactant.  The supernatant MWCNT suspension extracted from 

the centrifugation tubes was employed for EPD.  For EPD, 316 stainless steel 

sheets (McMaster Carr, USA), with a thickness of 1 mm, were cut into electrodes 

with dimensions of 5 cm x 2.5 cm.  These electrodes were ultrasonicated in 

acetone, rinsed in deionized (DI) water, and dried with a nitrogen stream prior to 

EPD.  We used a standard EPD setup (Figure 2.5) consisting of vertically aligned 

electrodes in a parallel plate configuration with a separation of ~1 cm.  Electrode 

pairs were dipped in the aqueous MWCNT suspension for 10 minutes.  A BK 

Precision 1787B power supply applied a constant dc voltage of 2.8 V.  At the 

conclusion of the EPD run, the electrodes were extracted from suspension to dry 

and were maintained at 2.8 V for an additional 5 minutes.  This step enabled 

further densification of the CNT deposit [21, 27, 29, 30], which enhances the 

homogeneity of the dried film compared to purely evaporative processes.  With 

the electric field assisting with the drying process, the film homogeneity is 

uniform, allowing the MWCNTs to be tightly packed.   The aforementioned step 

constitutes a single (1X) deposition.   
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Figure 2.5. EPD scheme for the deposition of films of MWCNTs. The MWCNTs 
are surface functionalized with a negatively charged proprietary surfactant and 
deposited onto the positive electrode.  The BK Precision power supply applies a 
voltage (2.8V) across the stainless steel electrodes. The Keithley records the 
current during EPD. Electrode spacing between electrodes was 1cm. 

 

We used a multiple deposition scheme for our experiments, for which 1X and 

3X represented the number of times MWCNTs were deposited onto electrodes.  

For this scheme, different suspensions, identical in preparation and concentration 

of MWCNTs, were employed for each single deposition.  For example, to create 

a 2X film, two beakers containing identical, centrifuged suspensions of MWCNTs 

were used.  The first beaker was used for the first (1X) deposition; thereafter, the 

electrode was extracted and dried with the applied voltage across electrodes.  

Upon completion of this drying procedure, the electrode was then inserted into 

the second beaker, which was used for the second (2X) deposition. This process 

kept the concentration of the suspension constant for the start of each single 
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deposition. Identical electrical, temporal, and spatial parameters for EPD were 

employed for each deposition step. 

To facilitate removal of the film after air-drying it, the anode was submerged in 

DI water for 3-12 hours.  A mechanical cleavage technique was utilized to 

liberate the film from the stainless steel substrate.  The technique involved the 

use of a razor blade to assist in the removal of MWCNT films from the stainless 

steel substrate while still submerged in DI water.  We inserted the razor between 

the film and stainless steel substrate, which caused minimal fraying at the films 

edges, moving the razor in a direction parallel to the substrate’s surface.  This 

process left our films liberated and wholly intact.  Films were then extracted from 

the DI water, placed onto a Teflon sheet, and air-dried.  Once dried, films were 

removed from the Teflon sheet by peeling them off, yielding a freestanding BP. 

Transmission electron microscopy (TEM) images of MWCNTs were obtained 

using a Phillips CM 20 microscope operating at 200 kV accelerating voltage.  

Zeta potential values of the MWCNTs in suspension were obtained from 

electrophoretic mobility measurements using a Malvern Zetasizer NanoZS 

instrument.  The surface morphology and topology of deposited films and 

buckypapers were characterized by scanning electron microscopy (SEM) (Raith 

eLine, 10kV) and by atomic force microscopy (AFM) (Digital Instruments 

Nanoscope III) operating in tapping mode.  A Dektak 150 Surface Profiler (Veeco 

Instruments) was used to measure the thickness of deposited films on the steel 

substrate.  The thicknesses of the freestanding BPs were measured by 

examining the BP edges using SEM.  Mechanical measurements of ~ 5 mm wide 
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by ~ 30 mm long strips of the BPs were performed with a Q800 Dynamic 

Mechanical Analyzer (DMA) (TA Instruments).  The samples were clamped at 

each end and were loaded at 0.25 N/min along the long axis.  Force-strain data 

were collected.  The final point in the force-strain plots corresponded to the 

fracture, prior to the force dropping to zero. 

 

2.4. Discussion 

In this study, we demonstrated how EPD could be incorporated in a 

technique to assemble MWCNTs into BPs with tunable lateral dimension and 

thickness.  The MWCNTs had an average outer diameter of approximately 25 nm 

(Figure 2.6a).  SEM images in figures 2.6b and 2.6c show films 

electrophoretically deposited onto stainless steel electrodes from as-received 

and from centrifuged MWCNT suspensions, respectively.  The as-received 

suspensions contained individually dispersed MWCNTs as well as aggregates of 

MWCNTs held together by excess surfactant (seen as large white masses in Fig. 

2.6b).  By centrifuging the as-received suspension, we were able to remove a 

large quantity of these aggregates from the bulk suspension.  The centrifuged 

suspensions, containing predominantly individual MWCNTs, were used for the 

multi-step deposition experiments and subsequent liberation process to yield 

BPs.  
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Figure 2.6. (a) TEM of MWNT used in deposition, inner diameter of ~7 nm and 

outer diameter of ~25nm; scale bar 20 nm.  SEM of MWCNT deposited onto 

stainless steel substrates: (b) as received, scale bar 5 m and (c) centrifuged 

MWNTs, scale bar 5 m. Inset of higher magnification SEM, scale bar 500 nm. 
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 To understand the EPD steps, we investigated the behavior of the 

colloidal MWCNTs.  Measurement of the electrophoretic mobility (μ) of the water-

dispersed MWCNTs provided information about the distribution of charges on the 

surface of the colloids.  The electrophoretic mobility 
E
 is defined as the 

velocity (v) of a particle divided by the applied electric field ( E ), and can be 

related to the colloid’s zeta potential (ζ) by the expression 0v

E
, 

where η is the solvent viscosity, κ is the dielectric constant of the solvent 

presuming the low particle concentration limit, and ε0 is the permittivity of free 

space [31].  The sign of the mobility corresponds to the colloids’ charge in the 

suspension.  The electrophoretic mobility distribution of the MWCNTs in water, 

shown in Figure 2.7, exhibits a single peak at -4.7 (10-4cm2V-1s-1).  This result 

shows that the proprietary surfactant generates a negative charge on the 

nanotubes when they are suspended in water.  From this result, we anticipated 

that MWCNTs would deposit on the positive electrode during EPD, which was 

indeed the outcome of EPD. 
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Figure 2.7. Distribution of electrophoretic mobility for the centrifuged MWCNTs in 

an aqueous dispersion. 

 

The deposition kinetics of EPD are described by the Hamaker equation

2

1

t

t
AEcdttm , according to which the deposited mass m depends linearly on 

the electrophoretic mobility , surface area of deposition electrode A, electric field 

strength E, and particle mass concentration in suspension c, integrated over time 

t.  Over the course of an EPD run, solids are depleted from the suspension as 

they enter the growing deposit.  Unless material is replenished during the run, the 

particle concentration decreases with time.  In the work of Sarkar and 

Nicholson[32], it was shown that maintaining a constant concentration of solids 

during EPD yields a greater mass of deposit than allowing the solids 

concentration to decrease during EPD, assuming that a constant voltage is 

applied during EPD.  Therefore, to increase the quantity of MWCNTs deposited 

into films, we performed the 2X and 3X EPD runs in 10-minute increments using 

a fresh suspension for each increment, rather than doing 20 and 30 minute runs, 
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respectively, from the same starting suspension.  With this protocol, we better 

approximated the constant-concentration condition, compared to a 30 minute 

single solution process.  This protocol was comparable to the constant voltage-

constant concentration condition of Sarkar and Nicholson. 

For the constant voltage-constant concentration condition, Sarkar and 

Nicholson also demonstrated that the quantity of deposited material is nonlinear 

with respect to the deposition time[32] or, in our case, the number of depositions.  

The Hamaker equation has a contribution from the electric field strength E, and 

the buildup of negatively charged particles and ions at the positive-electrode 

surface can decrease the effective field in the suspension for a given applied 

voltage.  Thus, in our experiments, which used constant voltage, we expected to 

see a nonlinear trend in the quantity of deposited material with respect to the 

number of depositions. 

Figure 2.8a shows the mass of the deposited films as a function of the 

number of depositions.  The result here is in agreement with the prediction based 

on the Sarkar and Nicholson work.  Figure 2.8b shows the thickness of the 

deposited MWCNT films as a function of the number of depositions.  These 

thickness measurements were obtained by contact stylus profilometry of the 

MWCNT films prior to their liberation from the stainless steel substrates.  The 

similar trends in the mass plot and in the thickness plot suggest that the film 

density does not change drastically over the course of 1X to 3X depositions. We 

calculated the average density to be 1.23 ± 0.04 g/cm3. 
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Figure 2.8. Plots of (a) total mass and (b) thickness of MWCNTs films on 

stainless steel electrodes as functions of the number of depositions. 

 

We discuss next the currents measured during the 1X, 2X, and 3X 

depositions.  As the thickness of the already-deposited film increased, the current 

measured during EPD decreased (Figure 2.9).  Although individual CNTs are 

highly conductive along their axial direction, the random orientation of MWCNTs 

in our films and the presence of surfactant coating of the MWCNTs mean that the 

deposited film contributes to an increase in the resistance at the deposition 

surface compared to that of the bare stainless steel.  However, because the 

MWCNT films are porous, the resistance is not increased in proportion to the 

thickness, and therefore the current does not decrease in proportion to the 

thickness of the already-deposited film. 
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Figure 2.9. Current vs. time for the multi-deposition scheme. The initial spike in 
the current was due to the insertion of the electrodes into the solution of 
MWCNTs. The extraction of the electrodes occurred after 600 s. The additional 
film layers acted as resistive layers and as capacitive dielectric layers, which 
affected the measured current. 
 

Once we demonstrated the capabilities to perform multiple electrophoretic 

depositions, the next objective was to liberate these surfactant-coated MWCNTs 

film from the stainless steel substrate.  Figure 2.10a shows the MWCNTs 

deposited via EPD on the stainless steel, prior to film liberation.  These samples 

were then submerged into DI water for 3-12 hours where the films porous nature 

allowed water to permeate through.  Self-liberation of films from the substrate 

occurred via warping and use of a razor blade facilitated the lift-off of intact films.  
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The substrates are not damaged by the mechanical cleavage technique and are 

reused for other depositions. Figure 2.10e and 2.10f show the SEM images of a 

partially liberated film from the stainless steel substrate.  We observe that once 

the MWCNT film has been liberated from the stainless steel, there are no 

remnants of the deposition. 

Figure 2.10b displays a dried free-standing BP once it has been liberated 

and dried.  Aside from minimal fraying at the film edges, our lift-off technique 

facilitated the removal of a wholly intact film.  These MWCNT films exhibited 

paper-like flexibility, (Figure 2.10c).  Figure 2.10d illustrates the scalability of our 

novel EPD lift-off process; larger or smaller freestanding BPs can be fabricated 

by simply changing the size of the electrodes. 
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Figure 2.10. (a) MWCNTs deposited on a stainless steel electrode prior to 

liberation; (b) image of the freestanding buckypaper fabricated from the 

mechanical cleavage technique. Film dimensions are 3.5 cm x 4.0 cm; (c) 

demonstration of films flexibility; and (d) demonstration of the film’s size 

scalability, which depends on the electrodes dimensions. (e) - (f)SEM images of 

a partially liberated MWCNT film from the stainless steel substrate showing 

complete film liberation; scale bar (e) 300 m and (f) 500 nm. 
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From high-magnification SEM imaging (Figure 2.6c inset), we see that the 

electrophoretically deposited MWCNTs lie in random orientations on the 

electrode, forming a porous network.  Examination of the 1X and 3X films’ 

surfaces via AFM, as seen in Figures 2.11a and 2.11b, revealed that MWCNTs in 

both samples have regions that project outward from the surface.  These 

protruding sections contribute to the films’ overall surface roughness.  Using the 

AFM Nanoscope software, we measured the root-mean-square (rms) roughness 

of the 1X and 3X samples: 14.4 ± 0.1 nm and 14.5 ± 0.1 nm, respectively.  From 

these data, we noted that the repeated depositions to increase the films’ 

thickness apparently did not alter the films’ surface topology.  This finding 

reiterated the utility of EPD to deposit MWCNT films over a large range of lateral 

dimensions and thicknesses en route to producing free-standing BPs. 

 

Figure 2.11. AFM images of (a) 1X and (b) 3X film deposited on stainless steel. 

RMS roughness of films is 14.4 and 14.5 nm, respectively. 
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Once the films were liberated from the stainless steel substrate, we 

characterized the mechanical properties of our BPs by static load testing, using a 

DMA Q800.  Samples for the DMA were prepared by cutting the BPs into 5 mm x 

30 mm strips.  The applied load was parallel to the long axis of the film.  From the 

acquired force vs. % strain data, we calculated and plotted the stress vs. % strain 

graphs for our BPs.  To calculate the stress for a given sample, the cross-

sectional areas of the BP strips were determined by using SEM to measure the 

strips’ thicknesses.  Figure 2.12a and 2.12b shows the SEM of 1X and 3X 

samples with thicknesses of 3.8 ± 0.2 μm and 6.9 ± 0.5 μm, respectively.   We 

note that these thickness values are greater than the respective values reported 

from stylus profilometry.  The use of SEM to visualize imperfectly defined edges 

could have led to overestimating the thickness of the films compared to the 

thickness measured by profilometry.  However, by overestimating the thickness 

of the films, we ensure that we do not overstate the strength and modulus of the 

films, since these values are calculated with cross-sectional area (of which 

thickness is a factor) in the denominator. 

Figure 2.12c and 2.12d show representative force-strain and stress-strain 

plots for our thinnest and thickest BPs as measured by SEM.  The stress ( ) 

values were obtained by dividing the force (F) values by the cross-sectional area 

of the samples, defined as A = w × t, where w is the width of the sample and t is 

its thickness.  Both plots exhibited an initially flatter slope that steepens at higher 

loads.  We attributed the initial flatter slope to the relaxation of wrinkles in the 

samples produced during the drying step.  Other groups [33] studying BPs have 



42 
 

observed this similar relaxation behavior during tensile load to failure.  In 

addition, once crack formation and propagation begins the process is irreversible 

if the load is removed.  This suggests that BP films are not elastically inclined to 

return to their original state and will lack a plastic deformation region (strain 

hardening or necking). Therefore, we would expect not to see a drastic decrease 

in the forces at the fracture point because the ultimate tensile strength and the 

yield strength are the same as shown in figure 2.12d.  The procedure used to 

obtain the tensile strength and Young’s modulus of our BPs is as follows. The 

ultimate tensile strength, in MPa, occurred at the samples’ fracture point, which 

was at the maximum strain value in Figure 8d.    The Young’s modulus was 

calculated using the following equation
12

12

%%100
E , where σ1 and σ2 

are different values of stress on the steeper linear portion of the plot and %ε1 and 

%ε2 are their respective % strain values. 
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Figure 2.12. Cross section SEM images, of 1X (a) and 3X (b) buckypapers with 

thicknesses of 3.8 m and 6.9 m respectively: Scale bars are (a) 3 m and (b) 

2.5 m. Graphs of (c) force - % strain, F is the change in force value and %  is 

the change in strain value (d) stress - % strain of 1X and 3X buckypapers. 
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Table 2.1 shows the associated values for the 3X BPs that we produced.  

Our values compared quite favorably to the results from other BP fabrication 

techniques and for other types of carbon nanotube constituents, especially 

considering that the MWCNTs of our samples were covered with a surfactant that 

can attenuate the attractive interaction between pairs of nanotubes. The lower 

value of Young’s modulus for sample 5 likely is a result of macro- and micro-

wrinkles in the sample originating from the drying procedure.  As the sample is 

loaded, these wrinkles can be relaxed with significantly less force than is needed 

to dislocate the MWCNTs, so they are surmised to have a downward effect on 

the slope of force-strain curve, thereby reducing the Young’s modulus.  The 

higher tensile strength for sample 3 compared to the other four samples cannot 

be explained readily from the observed MWCNT arrangement in the BPs.  

Because the samples for mechanical measurement were cut from the larger as-

liberated BPs and selected at random, it is possible that a sample from the BP 

edge could exhibit different properties than those from within the center of the 

BP, since the EPD behavior at electrode edges and air-liquid interfaces is 

different from the EPD behavior at the center of the electrode due to fringe field 

effects and possible meniscus and evaporation effects.  The manifestation of 

these effects in the mechanical properties of the BPs will be the subject of future 

investigation. 
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Table 2.1. Comparison of our BPs to other fabrication methods. 

Samples Tensile Strength 

(MPa) 

Young’s Modulus 

(GPa) 

1 10.1 3.60 

2 12.5 3.38 

3 27.0 3.99 

4 12.7 3.3 

5 10.2 2.20 

Average 12.7 3.27 

 

Table 2.2 shows the comparison of the tensile strength and Young’s 

modulus of BPs in this study with those prepared by other methods. Xu et al. [19] 

through a filtration method used a temperature based acid treatment to enhance 

the interaction of MWCNTs, as where we used an EPD procedure.  

Comparatively, our BPs exhibit greater tensile strength and Young’s modulus 

values. The strongest BPs described by Xu et al had a tensile strength and 

Young’s modulus of 7.5 MPa and 785 MPa respectively with an acid treatment 

temperature of 110 oC.  These values were considerably less than those reported 

by Zhang et al. [33] who increased their BP strength by also performing acid 

treatments. 
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Table 2.2. Tensile strength and Young’s modulus comparison of BPs. 

Authors Constituents / Film 

Type 

Tensile Strength 

(MPa) 

Young’s Modulus 

(GPa) 

    
Zhang et al. [2] SWNTs film 10 

16 
71 
74 

0.8 
1.4 
2.9 
5 

Pham et al. [34] SWNTs BP 6.49 2.29 
    

Xu et al. [19] MWCNTs BP 4.3 
4.6 
7.5 
6.0 
4.5 

0.426 
0.439 
0.785 
0.557 
0.455 

This study.[28] MWCNTs BPs 12.7 3.27 
 

 Investigations of the fracture sites of the 1X (Figure 2.13a and 2.13b) and 

3X (Figure 2.13c and 2.13d) BPs provided insight into the possible mechanisms 

for failure within the films.  In Figure 2.13a a 1X BP films failure region is shown, 

in which individual MWCNTs were extended from a randomly oriented network.  

Some fraction of the nanotubes was oriented in the direction of applied load.  We 

considered the BPs as a multi-layered fibrous composite, [35] for which a “fiber” in 

our material consists of the local network of randomly oriented MWCNTs.  The 

implication here is that during the application of the load, individual MWCNT 

fibers began to unravel via tube-tube shearing from each other within the 

randomly oriented network, producing the observed failure of the bulk BPs.  As 

the failure propagated across the sample, as depicted in Figure 2.13b, bridging 

[36] occurred.  A MWCNT bridge forms when a single MWCNT is simultaneously 

connected to opposite sides of a fracture site within a film that has experienced 
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tensile loading.  Figure 2.13c illustrated that several MWCNTs were bridging the 

two sides of a fissure at a point of deformation in the buckypaper. 

From Figure 2.13c, we perceived another failure mechanism, slip, which 

we attributed to the multiple-deposition approach, which closely packs each of 

the deposited layers.  For our BP system, this was observed in the closely 

packed multi-layered structure of the 3X BPs.  This type of failure was noticeable 

along both fracture sites of the 3X samples.  From observations of the 1X and 3X 

BPs, we concluded that the plastic deformation range increased as we fabricated 

thicker films in a laminar, layer-by-layer architecture, thereby increasing the 

overall strength of the buckypapers.  Figure 2.13d shows the deformation that 

occurred both horizontally and vertically within our multi-layered films.  As the 

MWCNT deposit dried onto the substrate with the voltage still applied, 

densification occurred, which left minimal space between the MWCNTs layers 

(for example, between the 1X and 2X layers or between the 2X and 3X layers).  

In a 3X deposition, for example, the solution-phase MWCNTs that arrived at the 

electrode’s surface to deposit and to adhere onto the previously cast MWCNTs 

did not substantially intertwine with the network of underlying MWCNTs.  This 

formed nearly isolated, bulk layers of carbon nanotubes that comprised the 

overall cast film.  The interfaces between these 1X, 2X, and 3X layers gave rise 

to the observed slip plane interfaces (Figure 2.13c). 
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Figure 2.13. SEM images of samples subjected to load to failure testing, arrows 

indicate direction of applied load. (a) 1X buckypaper; scale bar 2 m (b) 

unraveling (tube-tube shearing) of randomly oriented MWCNT network; scale bar 

500 nm (c) 3X buckypaper; scale bar 2 m and (d) 3X failure region similar to 

9(b) for layer by layer deposition; scale bar 500 nm. 

 

 Failure of these randomly distributed networks occurred when the 

MWCNTs became unraveled via nanotube-nanotube shearing.  The SEM images 

in Figure 2.13 suggested that with each deposited layer, stress propagation 

occurred in the vertical and horizontal directions, leading to the unraveling 

phenomena of the nanotubes, as they were seen protruding from the bulk of the 

films (Figs. 2.13b and 2.13d).  In a multi-deposited buckypaper, the appearance 

of parallel but staggered fracture sites suggested that stress did not propagate as 

readily across the deposition interfaces.  Instead, failure transpired when a 
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critical number of nanotube-nanotube failure events were realized in each 

layered MWCNT network.  The result was that multiple depositions engendered 

greater film strength by suppressing the accumulation of failures in one region of 

the film due to the random orientation between each deposited interface. 

 

2.5. Conclusion 

 In this study, we have described and demonstrated a technique for the 

rapid production of buckypapers by first performing EPD of MWCNTs onto 

stainless steel electrodes and then liberating the film of MWCNTs using 

mechanical cleavage.  We have shown the capability to vary the thicknesses of 

these films by using a multi-deposition scheme.  Conceivably, the film 

thicknesses could be tuned outside of the 1 m to 7 m range we have shown by 

varying the duration of each deposition step and by varying the total number of 

deposition steps.  Preliminary measurement of the mechanical properties of our 

BPs showed them to have an average tensile strength and Young’s modulus of 

14.5 MPa and 3.3 GPa, respectively. These values compare quite favorably to 

values reported for buckypapers prepared from other carbon nanotube types and 

via other fabrication methods.  Finally, the BPs prepared by our technique are 

flexible and contain nanotubes in a random porous network, which suggest 

possible use of these BPs in applications such as filtration and energy storage.  
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CHAPTER 3 

 

OPTIMIZATION OF MULTI-WALLED CARBON NANOTUBE PHOTON 

ABSORBERS FOR MID-AND FAR-INFRARED STRAY LIGHT SUPPRESSION 

IN SPACE INSTRUMENTATION 

 

Chapter Overview 

 In this chapter, I discuss the research conducted at the National 

Aeronautics and Space Administration (NASA) Goddard Space Flight Center 

(GSFC) for the optimized growth of catalyst assisted chemical vapor deposition 

(CVD) nanotubes for the improvement of absorption in vertically aligned (VA) 

films.  Films of VA-nanotubes have been shown experimentally to be excellent 

absorbers close to that of unity, theoretically and experimentally [1, 2].  We 

hypothesized that by optimizing the growth process we would be able to increase 

film height and successively lower the density, allowing us to improve film 

absorption.  We describe our findings on the effects of optimization and 

characterize our VA-nanotube films.  We conclude by describing the effects of 

the optimization process on our films. 

 

3.1. Introduction 

A Blackbody Material 

 In physics, a blackbody, a concept first introduced by Kirchhoff [3], is a 

theoretical object that absorbs all incident light, due to the lack of transmittance 

and reflection.  As such, it has an appearance at room temperature which is 

“super black.”  The definition of this “blackness” is described by the emissivity (e) 
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which is equivalent to unity, where we define e as the ratio of radiated energy by 

an object to that of a blackbody.  In thermal equilibrium a blackbody emits 

blackbody radiation (electromagnetic radiation) according to Planck’s Law of 

radiation given by  

1)/exp(
)(

3

32 
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u  3.1 

where this equation gives the relative intensity of the radiation as a function of 

frequency. 

Super black materials are tremendously important for optical coatings of 

instruments [4] and solar energy conversion [5, 6] due to their ability to reduce 

unwanted reflections and absorb stray light.  Carbon is an excellent absorber 

with an e of 0.8 – 0.85 [1] and is used in various materials to improve absorption.  

Scientists have made advances in this area due to the importance of obtaining 

super black materials.  Materials such as nickel-phosphorous (Ni-P) [7], micro-

structured silicon (Black-Si) [8], silicon nano-tip (SiNTs) arrays [9] and nano-fractal 

gold (gold black) [10], have all been fabricated.  Recently, nanotubes have been 

placed in the forefront as an inexpensive novel material which has the lowest 

reflectance over a larger wavelength spectrum (UV-VIS-IR) and angles of 

incidence when compared to other materials.  The low reflectance is due 

primarily to the interaction of light at the air – nanotube interface, caused by the 

variation in the refractive index.  Large jumps in the refractive index, translates 

into an increase in reflection, according to Fresnel’s law given by; 
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where n0 is the refractive index of air (n0 = 1.0003), n refractive index of other 

material (in this case CNTs) and R the reflectance.  Thus when the refractive 

index is close to air, reflection is inhibited simply because the momentum of the 

incident photon is not deterred.  Currently there are two methods to reduce the 

air – medium interface issue; 

I. fabricate materials with a graded refractive index, and/or 

II. find a material with a refractive index close to air. 

Surface modified Ni-P, with its micrometer-sized features is one such 

material with a graded refractive index approach.  The micro-sized cavities aid in 

effectively trapping photons at normal incidence, yielding a low reflectance (R = 

0.16-0.18%); however, this R becomes significantly greater at larger angles (R = 

4-5%) and wavelengths (R =10% at 10 m) [1].  SiNTs arrays have low 

reflectance in the visible though its infrared reflectance increases linearly with 

wavelength [9].  Theoretical calculations for nanotubes predicted refractive index 

values of 1.01 -1.10 [11], due to their vertical alignment, nanometer rough surface 

and array spacing.  These intrinsic features permit a low reflectance (R = 0.03-

0.045%) [2] and an index of refraction close to that of air.  While graded refractive 

index materials have provided decent results, difficulty arises in the fabrication 

methods and the cost of production is rather expensive and hazardous.  For this 

reason, CNTs are an excellent cost effective alternative and can be grown on 

numerous substrates, which aligns with the goals of NASA. 

 

Literature Review 
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The 1D allotrope of carbon is related to the 2D allotrope by a rolled-up 

vector (as discussed in Chapter 1), therefore it has been standard practice to use 

the optical properties of graphene to describe the optical properties of nanotubes.  

The research of the scientific community is presented below in chronological 

order beginning with such an investigation en route to the development and 

understanding of VA nanotubes as absorbers. 

Taft E. A. et al.[12] (1965): Optical properties of Graphite 

 Derived the complex dielectric constant for graphite by the application of 

the Kramers - Kronig relation to reflectance data in the energy range to 26 

electron volts (eV). 

 In the 0 to 9 eV range, the intra- and inter-band optical transitions involve 

mainly the  bands which arose from the one electron per atom, atomic 

2pz orbitals extending above and below the carbon-layer planes. 

De Heer W. et al.[13] (1995): Aligned carbon nanotube films: Production and 

optical and electronic properties 

 Developed a method to produce thin films of aligned carbon nanotubes 

aligned either parallel ( -aligned) or perpendicular ( -aligned) to the 

surface. 

 Dielectric functions of the films were determined by ellipsometry.  For light 

polarized along the tubes ( II) the surface resembles graphite. For light 

polarized along the perpendicularly ( ┴) the dielectric function from an 

effective medium point of view should be a mixture of the two dielectric 
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functions of graphite, (parallel ( grII) and perpendicular ( gr┴) to the graphite 

sheets). 

 Raman studies of aligned cross sections revealed that comparison of the 

II to ┴ direction indicated stronger effective photon-phonon coupling in 

the parallel direction at 1582 cm-1. 

Garcia-Vidal F. et al.[11] (1997): Effective medium theory of the optical properties 

of aligned carbon nanotubes 

 Theoretical study using effective medium theory to analyze the 

experimental findings of DeHeer et al. (above). 

 Developed a Maxwell-Garnett approach to study the system and 

demonstrated that a full electromagnetic coupling between the nanotubes 

is necessary for explanation.  

Lu W. et al.[14] (2000): Optical properties of aligned carbon nanotube systems 

studied by the effective-medium approximation method 

 Comparison of Maxwell-Garnett theory 2D array model and Effective-

Medium approximation (EMA-Bruggeman’s theory) of an aligned nanotube 

system based on the nanotubes described in reference [4]. 

 Solutions for both MGT and EMA equations yielded an effective dielectric 

of )1( ffs

eff  for s-polarized light, where the volume fraction (f) 

can be estimated by Im'Im fs

eff (where ff )1('
2 ).  For p-

polarized light, eff for EMA consisted of two E-field components and for 

MGT one E-field component. 
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 The EMA theory which is valid for densely and randomly distributed 

particle systems explained the experimental data of reference [4] better 

than MGT theory. 

Marinopoulos A. et al.[15] (2003): Optical and Loss Spectra of Carbon 

Nanotubes: Depolarization Effects and Intertube Interactions 

 Calculated absorption and loss spectra for 4 Å nanotubes in both random 

phase and the adiabatic local density approximations. 

 Local field effects induced by an external field  suppresses absorption 

peaks rendering tubes almost transparent below 5 eV, agreeing with 

experimental observations. 

 Intertube interactions and distances can be evaluated due to the 

measurability spectroscopic quantity of the  +  plasmon peak.  

Murakami Y. et al.[16] (2005): Polarization dependence of the optical absorption 

of single-walled carbon nanotubes 

 Presented anisotropic optical absorption properties of SWCNTs for the 

energy range of 0.5 to 6 eV, as determined by polarized optical absorption 

measurements. 

 Polarization dependence of absorption peaks due to maxima at 4.5 eV 

(Im{ ┴} and 5.25 eV (Im{ II
-1} related to the optical properties of graphite. 

 Noted the considerable scientific disagreement for the absorption peaks at 

4.5 and 5.25 eV. 
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 Demonstrated that the chirality dependence of the absorption in SWCNTs 

can be traced back to combined effects of the joint density of states and 

the optical matrix element. 

Yang Z. et al.[2] (2007): Experimental observation of an extremely dark material 

made by a low-density nanotube array 

 Engineered low density vertically aligned multi-walled carbon nanotube 

arrays to index match the vacuum, achieving low reflection. 

 Ultra low diffused reflectance of 1 x 10-7 measured with an integrated total 

reflectance of 0.045% at = 635 nm, making it the darkest known 

material. 

 Calculated effective index of refraction ( effn ) and absorption coefficient (

eff ) as a function of nanotube spacing as shown in Figure 3.1. At an 

intertube spacing (a = 50 nm) and tube diameter (d = 10 nm), for p-

polarization an 026.1p

effn and 112.0 mp

eff , thus %02.0pR ; for s-

polarization 074.1s

effn and 
19.2 ms

eff , thus %60.0sR . 
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Figure 3.1.[2] Calculated effective index of refraction and the absorption constant 
plotted as a function of nanotube spacing. A schematic of the nanotube array and 
the s and p light polarizations is displayed in the inset. 
 

Mizuno K. et al.[1] (2008): A black body absorber from vertically aligned single-

walled carbon nanotubes 

 Demonstrated that vertical alignment is key component to absorption of 

films. 

 Produced SWCNT films with near constant and near-unity emissivity of 

0.98-0.99 across the spectral range of 200 nm to 200 m. 

Lidorokis et al.[17] (2009): Photonics with Multi-wall carbon nanotubes arrays 

 Theoretically modeled CNT-based photonic crystals (2D array model) 

using the finite-difference time-domain (FDTD) method, where they 

propose that second order Bragg scattering resonantly redirects incident 

light into the film so it is quickly absorbed. 
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 For small intertube spacing of 20 - 30 nm, obtained strong Bragg 

scattering and photonic band gaps in the deep UV range (25 – 35 eV).  

For intermediate spacing of 40 – 100 nm, the photonic bands anti-cross 

with the graphite plasmon bands resulting in a complex photonic structure 

leading to reduced Bragg scattering.  For large spacing >150 nm, the 

Bragg gap move into the VIS and decreases due to absorption. 

Lehman et al.[18] (2010): Very black infrared detector from vertically aligned 

carbon nanotubes and electric-field poling of lithium tantalite 

 Demonstrated the practical application of water-assisted CVD grown 

MWCNTs as a coating on a lithium tantalite (LiTaO3) pyroelectric detector.  

A 2 nm Fe catalyst layer on top of a 20 nm Al2O3 layer was used to seed 

tube growth. 

 Observed difference in reflection of detector and witness (Si substrate) 

attributable to the detectors electrode metal and surface properties of 

LiTaO3. 

Bao H. et al.[19] (2010): Optical properties of ordered vertical arrays of multi-

walled carbon nanotubes from FDTD simulations 

 FDTD method was used to calculate the reflection, transmission and 

absorption properties of VA-MWCNTs, with variations in parameters such 

as intertube distance nanotube length and diameter, polarizations and 

incident wavelength. Results were compared to MGT theory. 
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 Absorbance at any wavelength can be fitted to )(1)( LeLA ; where  is 

the absorption coefficient and L tube length.  Also noted that good surface 

alignment can produce darker material. 

The scientific contributions have demonstrated that the bulk of research has 

focused mainly on theoretical modeling of these 2D VA-nanotube arrays.  The 

experimental research momentum has confirmed in some instances the concepts 

of these theoretical models, and has focused on development of practical 

applications utilizing this material. 

The conventional approach to growth of nanotubes is the CVD method.  

Though the growth process is not yet fully understood, (more specifically, control 

of tube chirality, height and density), we are able to tune certain properties of 

films, i.e. tube diameter, height and density.  Nessim et al.[20] demonstrated this 

tuning by controlling the timing and duration of hydrogen exposure during CVD 

annealing and growth.  Using this scheme, we focused growing of VA- MWCNTs 

at GSFC as a replacement for Z306 paint, the standard blackening surface 

treatment for spacecraft parts, in order to reduce the inherent random photon 

scattering.  Our goal is to be able to reproduce our film growth, with minute 

differences in the reflectivity/absorption, en route to growing these films on the 

components of telescopes thereby reducing stray photons.  In our early 

experimental endeavors, we had a wide dispersion of the reflectance data with 

respect to the hydrogen exposures, as we sought optimal growth parameters.  

The fabrication of homogeneous films requires several key factors, as described 

in the literature and this chapter, which must be addressed; these factors include 
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the density/volume fill fraction (v.f.f.), tube length, intertube distance, surface 

roughness and incident angle. 

 

3.2. Methods 

Sample Preparation 

 Substrates of silicon (Si) and titanium (Ti) were cleaved and machined 

respectively to a dimension of 130 ± 2 square millimeters (mm2) and cleaned via 

sonication in acetone followed by sonication in isopropyl alcohol and then blow 

dried with an air stream. After the cleaning procedure, all samples were weighed 

using a microbalance with an instrument error of ± 2 E-6 micrograms ( g). The 

weighing procedure was additionally performed after physical vapor deposition 

(PVD) process and CVD growth process to obtain the bulk mass of nanotubes.  

This method is preferred rather than scraping or etching the film from the 

substrate due to the negative implications of the latter procedures.  

 

Physical Vapor Deposition 

 In order to fabricate thin films, a PVD 75 deposition system (Kurt J. Lesker 

Co. USA) was used for deposition of the alumina layer (Al2O3) and iron catalyst 

(Fe). 99.99% purity Al2O3 1.5 - 4 mm pieces and 99.95% purity Fe pellets with 

1/8” in diameter X 1/8” in length and were purchased from Kurt J. Lesker Co.  

Both materials were resistively heated, permitting thermal evaporation and 

deposition onto silicon Si and Ti substrates. An initial Al2O3 layer of 60 
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nanometers (nm) was deposited followed by the deposition of the Fe layer with 

various thicknesses of 2, 4, 6, 8, and 10 nm. 

 

Chemical Vapor Deposition 

 Growth runs of our vertically aligned films were performed via the CVD 

technique. Samples were placed into a three zone atmospheric-pressure furnace 

operating at a maximum temperature of 750 oC, with a fused silica tube with an 

internal diameter of 1 inch.  The flow rates of the reactant gases used were; for 

Argon (Ar), 980 standard cubic centimeters (sccm), which was reduced to 410 

sccm with the inclusion of water (H2O) vapor; hydrogen (H2) 580 sccm; and 

ethylene (C2H4) 990 sccm.  During this phase of experimentation, we varied the 

H2 gas flow time which consequently varied the exposure time of the heated 

catalyst layer. The growth time (as determined by the duration of C2H4 feedstock 

gas) remained constant at 15 minutes for multi-walled nanotube growth. 

 

Scanning Electron Microscopy 

 Nanotube heights were obtained using the SEM at NASA GSFC operated 

at 5kV and a Raith eLine Tool operated at 10kV at Vanderbilt University.  The 

film morphology and topography were characterized using high magnification 

SEM. 
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Raman Spectroscopy 

 Raman spectra of our MWCNTs were obtained with a Horiba JOBIN-

YVON LabRam HR800 Raman spectrometer measured in the range of 100 cm-1 

to 3000 cm-1 with the excitation of a He-Ne laser.  Wavelengths of 632.8 (633) 

nm and 784 nm were used for sample excitation. 

 

Hemispherical Reflectance 

 Optical reflectance/absorption measurements were collected with a 

Perkin Elmer Lambda 950 UV/VIS/NIR Spectrophotometer with an integrating 

sphere operated with a monochromatic light source.  The standard procedure 

consisted of irradiating our samples with un-polarized light at an incident angle of 

8o from the surface normal over the spectral range of 200 – 2500 nm. Detection 

occurs through a photomultiplier tube for the UV/VIS range and a Peltier-cooled 

lead sulfide (PbS) detector for the NIR range. For angular dependence 

measurements, incident angles of 0o and 8o were used with a polarized and un-

polarized source. Baseline corrections were performed using a barium sulfate 

reference sample with a calibration to a NIST standard prior to experimentation. 

 

3.3. Growth of Vertically Aligned MWCNTs 

 We investigated the effects of H2 exposure time on the structure of the 

nanotubes, including effects on the tube diameter, intertube distance/spacing, 

density and tube length.  MWCNTs, which are metallic, were more desirable for 

experimentation due to their larger size and uniform optical properties.  SWCNTs 
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contain an array of numerous chiralities with random distributions.  Their strong 

chiral dependence affects its optical properties as a result of the variations in 

nanotubes types and diameter.  Theoretical descriptions [11, 19] of the optical 

properties of CNTs, depends on the v. f. f. which is a the ratio of our calculated 

sample densities to the density of graphite, 2.2 g cm-3.  The aperiodic intertube 

distances and variations in tube diameters allow us to treat our films as a porous 

homogeneous medium.  To realize low reflectance and high absorbance from our 

nanotubes, a low v .f. f., i.e., a successively lower density and longer tubes are 

favorable. 

 The CVD technique is a widely accepted method for nanotube growth, 

which includes two phases of growth during CVD;  

i. the formation and reduction of the Fe catalyst 

ii. the nucleation and growth of the CNTs on the catalyst particles. 

Important growth parameters include catalyst thickness, reactant 

temperature, reactant time, gas flow rates and growth time.  

Figure 3.2 shows the CVD furnace and sample positions in (a) and in (b) the 

growth steps of the MWCNTs.  Figure 3.3 shows the thermal profile used for our 

CVD growth treatment.  Initially the furnace temperature is ramped at a heating 

rate of 37.5 oC/minute followed by an annealing step.  Once our annealing step 

has been completed, the growth is initiated for a set time period, and then 

terminated as the furnace is cooled. 
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Figure 3.2. Sketch of (a) CVD furnace at zone 2 (center of furnace) and the 
location of samples with respect to the directional flow of gases (Ar, Ar/H2O, H2 
and C2H4).  The green colored sample is a reference (with only a 5 nm Fe layer) 
sample present in all growth runs (b) Growth steps of MWCNTs by the CVD 
method. 
 

During the initial temperature ramp, the Fe layer melts and forms clusters 

which act as seeds for nanotube growth and contribute to nanotube diameters.  

In the annealing phase we varied the H2 exposure time of the Fe catalyst with the 

H2 acting as a vapor etchant which reduces the oxidation of the Fe catalyst prior 

to nucleation and growth.  Further, H2 reduces gas phase pyrolysis of the 

hydrocarbons causing desorption of amorphous carbon (a-C) fragments from the 

catalyst surface [20].  This step is critical in maintaining the balance between the 
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formation of a-C and crystalline CNTs.  The introduction of the carbon precursor, 

C2H4, enables crystalline tube orientation during the growth phase.  The 

introduction of H2O vapor increases the catalyst lifetime and thereby extends the 

lifetime of the growth process.  Recent studies [21-23] showed that the diameters 

and wall count can be controlled by varying the metal catalyst thickness.  To 

maintain experimental control, we included a witness sample in all CVD growth 

runs, with a 5 nm layer of Fe deposited onto a Si substrate.  It was anticipated 

that a smaller Fe layer thickness will produce longer vertically aligned nanotubes. 

 

Figure 3.3. Thermal profile used for CVD growth of multi-walled carbon 
nanotubes where the variable is the H2 exposure time (flow rate of 580 sccm) 
relative to the introduction of C2H4 with a flow rate of 990 sccm. The carrier gas is 
dry Ar with a flow rate of 980 sccm (without H2O vapor) and wet Ar at 410 sccm 
(with H2O vapor). 
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Table 3.1. H2 exposure times and growth results.  The H2 exposure times 
are explained as followed; (i) t-15 – H2 introduced 15 minutes prior to 
introduction of C2H4 (ii) t=0 – simultaneous introduction of H2 and C2H4 (iii) 
t+10 – H2 introduced 10 minutes after introduction of C2H4. The introduction 
of C2H4 is the start of the growth phase. 

H2 Exposure 
Times (min) 

t-15 t-10 t-5 t=0 t+5 t+10 

Results of 
Growth Trials 

Growth  Growth  Growth  Growth* 1. Growth  
2. No growth 

 

No Growth 

*Initial trials on the Si substrate yielded a large height variation as shown in Appendix B.  

 

Table 3.1 shows the H2 exposures we attempted for the deposited Fe 

catalyst and the results of whether those investigations yielded growth of CNTs. 

With an increased H2 exposure time, we were able to grow homogeneous 

vertically aligned CNTs.  Nessim et. al. and references therein [20], demonstrated 

that an increase of exposure time leads to catalyst coarsening.  The coarsening 

results in the transport of Fe via vapor phase or diffusion of Fe adatoms on the 

Al2O3 surface.  Thus the masses of initial small clusters are redistributed to larger 

clusters, resulting in increased cluster size and spacing.  When the H2 exposure 

was performed after C2H4 was introduced, growth of nanotubes gave poor 

results.  Knowing that the thermal decomposition of C2H4 forms H2 and various 

hydrocarbons (CH4, C2H6) 
[20], slower Fe reduction and coarsening occurs.  

Accordingly the limit shown for the times t +5 min and t +10 min, is expected as 

the growth of crystalline MWCNTs has been impeded.  The t = 0 exposure time 

which included the simultaneous introduction of H2, H2O and C2H4 reactant 

gases yielded growth, however the heights and growth rates of the CNTs were 

less than those grown with the t -5 H2 exposure time [Appendix B discusses our 
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results and how we arrived at this conclusion].  Additionally it was reasoned [20] 

that the CNT diameters increase with increased H2 exposure time, hence the 

importance of the H2 exposures for our investigation. 

Based on our results in Appendix B, we selected the t -5 H2 exposure 

times to conduct nanotube growths on Si substrates due to its steady growth 

profile and previous reflectance performance [4].  To ensure that the t -5 exposure 

time was optimal, we increased the H2 exposure times to t -10 and t -15.  For 

these additional exposure times, we explored the effect of catalyst thickness on 

our films reflection. 

Figure 3.4 shows the bulk mass in micrograms ( g) of the carbon content 

(nanotubes, amorphous carbon, and graphitic carbon) for our respective catalyst 

thicknesses as a function of the H2 exposure times. The Al2O3 and Fe layers 

were deposited successively under the same vacuum conditions, ensuring the 

accuracy of our carbon mass measurements by microbalance, less that of the Fe 

and Al2O3 layers.  The masses of the t -15 and t -10 exposure times show no 

trend as a function of Fe layer thickness as compared to the t -5 exposure time, 

which shows a linear trend for the mass as the catalyst layer increases.  As 

previously discussed, increased exposure time leads to coarsening and a slower 

growth rate [20].  Larger Fe clusters, accumulating more C atoms, form larger 

diameter MWCNT with an increased count of inner tubes.  As such, the increase 

in mass of the t -10 and t -15 samples are expected.  In the case of the t -10 2 

nm samples, the high mass count may be the result of; 
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i. submergence of Fe clusters into the Al2O3 underlayer thereby 

causing the agglomeration of C atoms into a-C and CNTs. 

ii. agglomeration of C atoms in addition to non-uniformity of surface 

coverage. 

iii. an effect of prolonged oxidation of the catalyst.  However, 

comparisons of CVD growths were performed on new and old 

catalysts layers and showed no effects. 

iv. position of the samples, as the 23 nm (74 g) and 24 nm (9091 g) 

samples were in positions 1 and 2 (Figure. 3.2) respectively. 

Figure 3.5 shows SEM images of both t -10 2 nm (23 and 24) samples, which 

demonstrate point i above. 
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Figure 3.4. Mass of carbon for respective Fe catalyst layers for the t -15, t -10 
and t -5 H2 exposure times. The masses of the t -15 and t -10 exposure times are 
relatively inconsistent. The t -5 H2 exposure time shows a linear trend for the 
mass as the catalyst layer increases. 
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Figure 3.5. SEM images of 23 nm (a) and 24 nm (b) samples displaying growth of 
nanotubes with the agglomeration of C atoms at the Al2O3 surface.  The inset in 
(b) shows a higher magnification of this occurrence. The scale bars in the images 
are 200 nm. 
 

The heights of our nanotubes were measured using scanning electron 

microscopy (SEM). Figure 3.6 displays the averaged heights of nanotubes as a 

function of the H2 exposure times.  For the t -5 exposure, the nanotube heights 

are approximately similar in value within error.  The t -10 exposures show a linear 

trend in height.  The t -15 2 nm samples yielded nanotubes with the longest 

lengths measured in our experiments, though this phenomenon did not translate 

over other Fe layer thicknesses of the same exposure.  The growth rates of the 

nanotubes are initially rapid, with the presence of the H2O vapor, a weak 

oxidizer, they are etched during the growth process.  This may explain the 

relative similarity in heights for our t -5 samples.  Accounting for the effects of 

prolonged H2 exposure on the Fe catalyst [20], the inconsistency of growth may 

explain our t -10 and t -15 samples.  Further we postulate that due to the effect of 
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CNT length on absorption, for which longer tubes have a higher absorbance [11, 

19], the performance of the t -15 exposures over t -5 and t -10 exposures ought to 

improve.  We will discuss a method of accomplishing this below. 

 

Figure 3.6.  Heights of nanotubes (averaged) as measured by SEM for t -5, t -10 
and t -15 H2 exposure times.  t -5 heights are approximately the same within 
error, t -10 heights have a linear trend and t -15 show no trend. 
 

From our bulk mass and height measurements, we calculated the bulk 

density of our nanotubes with respect to the catalyst thickness based on the 

following equation;  

)( hA

M
B

 3.3 
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where is the bulk density in units of grams per cubic centimeters (g cm-3), M 

the mass of the carbon nanotubes in units of micrograms ( g), A the cross-

sectional area in units of square millimeters (mm2) and h the height in units of 

micrometers ( m). Figure 3.7 shows our bulk density calculations.  Our samples 

are porous in nature; the B takes into account the mass of the material which 

includes the volume of the pores or void spaces (intertube spacing or periodicity).  

The void spaces are crucial for improving the absorptive properties of nanotubes 

[1, 2, 11, 13, 19].  The H2 exposures we employed in our experimentation was a 

method for controlling the diameters [20].  Now that we have a representation of 

the density we sought to correlate it to measured reflectance.  A plot of the 

reflectance (%R) as a function of bulk density would be expected to yield a linear 

relationship based on equation 3.2.  Figure 3.8 shows the %R density 

relationship for our samples.  The linear relationship is absent due to the 4nm 

outlier for the t -5 exposure time.  We found that our 4nm samples were 

contaminated as shown in Figure 3.9, which resulted in higher %R values.  The 

striations shown in the figure appear as regions of less growth. 
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Figure 3.7. Average bulk density ( B) of nanotubes as a function of the catalyst 
thicknesses for t -5, t -10 and t -15 H2 exposure times. The bulk density of the t -5 
exposure time is relatively linear with an R2 value of 0.98. 
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Figure 3.8. Relationship between reflectance (%R) and (a) bulk density and (b) 
areal density for our samples. 
 

 

Figure 3.9. SEM image of contaminated 4nm sample. The striations shown in 
the inset caused regions of non-uniform growth, resulting in higher %R values. 
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Table 3.2 is a summary of the sample identifications (ID), iron (Fe) layer 

thickness, hydrogen exposure times, bulk mass, measured nanotube heights, 

calculated bulk densities and Average %R values.  The %R values were 

averaged over the wavelength range of 750 nm – 2500 nm, with an average of 

1625 nm.  Discussion and significance of these values are in the following 

section. 
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Table 3.2. Sample identifications (ID), iron (Fe) layer thickness, hydrogen 
exposure times, bulk mass, measured nanotube heights, calculated bulk 
densities and Average %R values. 

 
 

 
 

 
 

 

 

Sample ID Fe Layer (nm) H2 Exposure M ( g) height ( m) B g cm
-3

) Average % R

Silicon 21 2 t -5 395 70.57 0.02 0.1604 ± 0.0500

Silicon 22 2 t -5 365 53.04 0.03 0.1395 ± 0.0501

Silicon 41 4 t -5 478 51.3 0.04 0.3147 ± 0.0598

Silicon 42 4 t -5 790 62.3 0.05 0.2738 ± 0.0496

Silicon 61 6 t -5 1243 47.36 0.10 0.2360 ± 0.0699

Silicon 62 6 t -5 1460 78.02 0.07 0.2139 ± 0.0720

Silicon 81 8 t -5 2502 67.96 0.14 0.2011 ± 0.0445

Silicon 82 8 t -5 2456 78.02 0.12 0.2144 ± 0.0576

Silicon 101 10 t -5 2202 54.45 0.16 0.2273 ± 0.0642

Silicon 102 10 t -5 2257 68.96 0.13 0.7507 ± 0.0836

Sample ID Fe Layer (nm) H2 Exposure M ( g) height ( m) B g cm
-3

) Average % R

Silicon 23 2 t -10 74 2.07 0.14 0.7379 ± 0.0779

Silicon 24 2 t -10 9091 2.02 17.65 0.5510 ± 0.0993

Silicon 47 4 t -10 1128 19.59 0.23 0.4045 ± 0.1002

Silicon 48 4 t -10 926 11.45 0.31 0.4500 ± 0.1231

Silicon 66 6 t -10 878 20.11 0.17 0.4496 ± 0.0985

Silicon 67 6 t -10 758 14.67 0.20 0.3958 ± 0.1157

Silicon 83 8 t -10 2262 43.48 0.20 0.3943 ± 0.0791

Silicon 84 8 t -10 2699 49.43 0.21 0.3816 ± 0.0651

Silicon 104 10 t -10 2788 54.1 0.20 0.4290 ± 0.1100

Silicon 105 10 t -10 3235 58.5 0.22 0.3904 ± 0.0762

Sample ID Fe Layer (nm) H2 Exposure M ( g) height ( m) B g cm
-3

) Average % R

Silicon 25 2 t -15 2118 105.2 0.08 0.2749 ± 0.0770

Silicon 26 2 t -15 2870 127.7 0.09 0.3036 ± 0.0879

Silicon 45 4 t -15 1202 22 0.21 0.3756 ± 0.0879

Silicon 46 4 t -15 1020 15.4 0.26 0.4053 ± 0.1084

Silicon 64 6 t -15 2037 56.7 0.14 0.4106 ± 0.0796

Silicon 65 6 t -15 1348 20.67 0.25 0.4671 ± 0.1070

Silicon 86 8 t -15 3490 67.8 0.20 0.4472 ± 0.0806

Silicon 87 8 t -15 3668 68.24 0.21 0.3816 ± 0.0738

Silicon 105 10 t -15 360 21.4 0.06 0.3656 ± 0.0639

Silicon 107 10 t -15 208 22.96 0.04 0.3510 ± 0.0706
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3.4. Raman Spectroscopy 

 The evaluation of our nanotube purity, tube alignment and defect density 

is crucial in the ability to have reproducibility of obtaining vertically aligned 

nanotubes.  The Raman measurements were performed at Fisk University by 

Yulong Cui PhD. in Professor Arnold Burger’s group. 

 The Raman shift spectra for the t -5 samples are shown in Figure 3.10 for 

varying catalyst thicknesses.  We observe for our samples the presence of the 

radial breathing mode (RBM), D -band, G -band and G’ -bands.  The RBM for 

MWCNTs has been related to the narrow innermost tubes [24] as well as the 

presence of defects and the presence of iron catalyst[25, 26].  The D -band (1318 - 

1321 cm-1) is assigned to the presence of disorder in graphitic materials.  The G -

band (1577 – 1585 cm-1) corresponds to the tangential vibrations of the 

hexagonally bonded carbon atoms. The G’- band (D* or 2D) is a second – order 

harmonic of the D mode and is indicative of long range order in samples due to 

two-phonon, second-order scattering process that results in the creation of 

inelastic phonons [18].  The G’-band can be utilized to assess the purity of 

MWCNTs due to the unreliability of ID/IG interpretation which stems from the 

effects of carbon impurities on these intensities.  The G’ –band peak has been 

shown to be a more accurate alternative for measuring quality and purity[27]. 

 Additionally, disorder can be examined using the G –band peak dispersion 

over multiple wavelengths.  The G peak dispersion is given by the following 

equation[28]; 

)633784(

)()( 784633
1 GIGI

nm

cm
Gd  3.4 
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where IG is the intensity of the G –band peaks for the 633 and 784 nm 

wavelengths. The G –band peak has high dispersions in more disordered 

carbons where the dispersion is proportional to the degree of disorder.  Figure 

3.11 shows the linear relationship of the Gd (G dispersion) as a function of the 

catalyst thickness.  Since the Gd increases with more disorder we anticipate that 

our 2 nm t -5 samples will have improved absorption capabilities over the other 

Fe catalyst layer thicknesses.  This finding is confirmed below in the following 

section.  We also note the ID/IG ratio, which exhibits a negative slope and 

supports the hypothesis that the 2 nm samples will give high performance.  

These examinations based on Raman data confirm the effects of impurities on 

our samples.  Defects such as amorphous carbon (a-C), surface defects 

(adatoms, vacancies) and the influence of pentagon and heptagon structural 

defects which cause helical nanotube formation on the sp2 hexagonal lattice[18] 

affect sample homogeneity and thus the absorbance properties.  The theoretical 

models are based on solid and hollow cylinders [11, 14, 16, 19]; as shown in Figure 

3.11 the nanotubes grown confirms their helical structure.  Examination of the 

helical angles result in angles of 28o, 33o, 44o and 45o, which is consistent with 

the finding in the literature [18].  Due to the anisotropic nature of nanotubes, the 

polarization dependence will be altered for helical tubes. 
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Figure 3.10. Raman shift spectra for t -5 H2 exposure time. The radial breathing 
mode (RBM) is present for some of our samples and is located in the range of 
230 – 235 cm-1and is typically used to calculate the diameter of single-walled 
CNTs. In addition we observe the presence of the D, G and G’ –band peaks with 
intensities in the range of ~1318-1321 cm-1, 1577-1585 cm-1 and 2600 cm-1 , 

respectively. Laser beam diameter and power were 2 m and 13 mW 
respectively. 
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Figure 3.11. The G dispersion (Gd) and ID/IG ratio for the t -5 H2 exposure time. 
The 2 nm sample exhibits lower impurity defects. 
 

 

 

Figure 3.12. SEM images showing the helical nature of our nanotubes. 
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3.5. Optical Absorption and Reflectance as Indicators of Performance 

We used hemispherical reflectance (HR) to quantify the absorption 

performance of our nanotubes grown with t -5, t -10 and t -15 H2 exposure times 

as shown in Figures 3.13, 3.14 and 3.15, respectively.  The t -5 exposure 

samples, overall have the best performing percent reflectance (%R) and thus the 

best absorptive properties.  For the sample set, the %R values remains below 

0.25% (R = 0.0025) from  = 1250 nm.  The 42 and 81 nm samples exhibit a 

linear increase of %R, wavelength ( )-dependence, as  increases.  We will 

investigate this observance further below.  Our %R for the 22 nm sample is the 

lowest acquired for our data shown in Figure 3.13.b as well as in Table 3.2.  We 

sought to compare our 2 nm samples as they gave the best performance, with 

the exception of the t -10 samples.  Comparison of the 2 nm %R values for the t -

5, t -10 and t -15 exposure times yielded values of 0.1395 ± 0.0501, 0.5510 ± 

0.0993 and 0.2749 ± 0.0770, respectively.  While the 25 nm sample has 

considerably longer CNTs, its HR performance is 2 times poorer than the 22 nm 

sample.  Considering its height and density, the nanotubes are 2 times longer, 

while the density is ~3.4 times greater than our best performers.  We suggest 

that these factors affects the surface roughness, longer tubes exhibit increased 

irregularity at the air-nanotube interface and intertube spacing which is critical for 

effective photon trapping. 

Examination of the 24 nm sample by SEM (Figure 3.9), which has the 

shortest CNTs measured, explains its poor performance.  Further, the extremely 

high density is a result of a-C present in our samples which increased the 
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reflectance and caused -dependence.  As a final point, the nanotube heights 

and alignment are important factors that contribute to higher absorbance[1] 

allowing reflection from the bottom surface to become weaker [19]. 

From our averaged %R data we calculated the emissivity of our samples.  

Ideally, the emissivity should be wavelength ( )-independent and unity across a 

large spectral range.  For our case we are observing the near IR spectrum from 

750 to 2500 nm (1625 nm - averaged value).  As photons interact with the 

nanotubes, several mechanisms such as reflection (R), transmission (T) and 

absorption (A) transpires simultaneously.  The sum of these three optical 

mechanism components is given by, 

1ATR  3.5. 

As shown, our material is highly absorptive which means we can assume that the 

transmission component is accordingly minor, effectively negligible (0).  

Furthermore from Kirchhoff’s radiation law we find that; 

e  3.6 

where e  is the emission coefficient or emissivity and  is the absorption 

coefficient or absorptivity.  It states that the emissivity of an object is equal to the 

absorptivity and thus the absorptivity is equal to one in thermal equilibrium.  

Setting T = 0 and substituting e  = A, from equations 3.5 and 3.6 respectively, we 

obtain the equation to calculate our emissivity; 

Re 1  3.7. 

We calculated the emissivity of our t -5 and t -15 2 nm samples as they had the 

lowest %R values in our experimentation.  We obtained values of 0.9984, 
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0.9986, 0.9973 and 0.9970 for 21, 22, 25 and 26, respectively which are fairly close 

to 1 and demonstrate the relative closeness of nanotubes to being a blackbody. 

 

UV Peak at 275 nm 

Our analysis thus far has focused on the near IR spectrum.  We now focus 

on the UV spectrum (200 – 400 nm), more specifically, the UV peaks located at 

~275 nm (~4.5 eV).  These peaks originate from the optical properties of 

graphite.  As previously stated, graphite is birefringent, thus its dielectric function 

consists of two components, the o and e, which correspond to ordinary and 

extraordinary rays in that order (hence CNTs are birefringent and anisotropic).  

.As a nanotube forms the 1D structure from 2D graphene by the rolling vector,  

the nanoscale diameter causes quantization of the circumferential wave vectors, 

creating strong divergences in the electronic density of states (Van Hove 

singularities) which formulate discrete energy levels or sub-bands [29].  The 

presence of this peak has been shown to be polarization dependent [11] and 

consistent with reports for both random and aligned SWCNTs and MWCNTs [16].  

The peak is attributed to several factors that include  plasmon (4.2-4.5 eV) 

surface and bulk  plasmon excitations (5.2 eV),  plasmon along tube axis, and 

pristine samples containing a-C (5.2 eV). 

Additional information, such as a quantitative index for nanotube 

alignment, intertube spacing and v.f.f. (both relate to density), relating our 

samples to o and e of graphite, can be extracted for a range of .  Two 

theoretical approaches have been widely used to translate the properties of 
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graphite onto nanotubes, the Maxwell-Garnett (MG) approximation [11] and 

effective medium theory (EMT) [14], to calculate the effective dielectric constants 

of nanotubes ( eff).  However, the EMT was found to more closely fit experimental 

data.  In order to comprehend eff, we first acknowledge that our material is 

homogeneous and electromagnetic radiation affects its permittivity.  From 

Maxwell’s equations, we have 

PED fp  3.8 

where D is the electric displacement, fp the permittivity of free space, E the 

electric field and P the polarization field.  The polarization field, P, is given by; 

EP fp  3.9 

where is the electric susceptibility.  Then by combining equations 3.8 and 3.9, 

we obtain the expression; 

fprfpfpfp EEED )1(  3.10 

where r is the relative permittivity. 

For nanotubes the eff is given by the following equations for p- and s- 

polarizations respectively; 
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where 1 is 
eo

for p- polarization, o for s- polarization, 2 the dielectric 

constant of air, L is the depolarization factor (for p=1/2, and for s= 0) and f the 

v.f.f. 

Thus far, for our UV peaks, we can conclude that the reflectance values of 

our best performers (Figures 3.13.a and 3.15.a – 2 nm samples) correspond to a 

lower density and lower reflectance. In Figure 3.14.a, the 2 nm sample peak is 

also low this is why further analysis is necessary.  In order to fully obtain 

quantitative information we chose to perform the Kramers-Kronig relation 

analysis on our %R data for select samples (Chapter 4). 

 

 
Figure 3.13. (a) Shows the peak located at 275 nm (4.5 eV) in the ultraviolet 
spectrum (UV). (b) Measured hemispherical reflectance of t -5 exposure time 
(lowest averaged reflectance showed these as our best samples) for the near 
infrared (IR) spectrum. 
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Figure 3.14. (a) Shows the peak located at 275 nm (4.5 eV) in the ultraviolet 
spectrum (UV). (b) Measured hemispherical reflectance of t -10 exposure time 
(best performing samples) for the near infrared (IR) spectrum. The 24 nm sample 

shows the onset of  -dependence. 
 

 

 

 
Figure 3.15. Measured hemispherical reflectance of t -15 exposure time (best 
performing samples) for the near infrared (IR) spectrum. Inset shows the peak 
located at 275 nm (4.5 eV) in the ultraviolet spectrum (UV). 
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3.6. Conclusion 

 In summary, we have investigated the growth of MWCNTs under varying 

H2 exposure times, t -5, t -10 and t -15.  For our CVD growth we found that the t -

5 H2 exposure time yielded consistent growth results in addition to having the 

lowest %R (<0.25%).  Measurements of our sample masses and nanotube 

heights allowed for calculation of the respective bulk densities of our samples; 

the associated effects on the film properties such as absorption were 

investigated.  Raman spectroscopy was utilized to examine our film purity and 

defect content.  The Gd showed that our t -5 2 nm samples had fewer impurities.  

Our %R data showed that the t -5 H2 exposures yield the most desirable 

absorbance for both of our 2 nm films.  We calculated that our best sample 

absorbs 99.86% of light.  We were able to calculate  from our reflectance 

data using the Kramers-Kronig relations.  Furthermore, the K-K relations allowed 

us to calculate the optical properties of our material.  Added research is 

necessary for this aspect of the research as the extrapolation points must be 

selected carefully.  The Im  and Re values  confirmed observations made by 

SEM and Garcia-Vidal [11].  Finally, we were able to show the effect of angular 

dependence on specular and diffuse reflectance. 
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CHAPTER 4 

 

DETERMINATION OF OPTICAL PROPERTIES AND EFFECTS ON FILM 

PERFORMANCE 

 

4.1. Experimental Improvement of Reflectance  

 In this experiment, samples were plasma etched with oxygen (O2) for 10 

seconds at 100 Watts, removing approximately 10-15 nm from the top layer.  We 

choose samples from an earlier group that demonstrated a profound linear -

dependence in addition to -independence.  The t =0 and t -5 exposure samples 

have a Fe catalyst layer of 8 nm.  The removal of the top layer of randomly 

oriented bridge-like nanotubes ought to increase the absorption of the films.  This 

increase in absorption would be a result of an increase in the available void 

spaces and reduction in surface scattering which would encourage light trapping 

within the material.  Further, it will provide an improvement at the air-nanotube 

interface, reducing the refractive index.  Figure 4.1 a and b displays our %R data 

for two measured samples before and after O2 plasma etching.  The results 

indicate for the t =0 sample, that the process did not improved the overall 

reflectance; rather it degraded the film performance.  At the longer wavelengths 

(>2100 nm) %R seems unchanged though this may be due to experimental error.  

In the 950 to 1750 nm range, the %R degraded by an average of 50%. In the UV 

range we notice a shift in the peak and a reduced magnitude.  However, despite 

these results, the -independence is unchanged. 
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Figure 4.1. Measured hemispherical reflectance of (a) t =0 and (b) t -5 exposure 
times before and after O2 plasma etch for an 8 nm Fe catalyst layer growth on 
silicon. The UV-VIS-NIR spectrum is plotted. The UV peaks are located at 275 
nm (4.5 eV), though there is a shift to higher wavelength (lower 
energy/frequency) for t =0.  The reflectance increases linearly after plasma 
etching for the t -5 sample, an approximate five-fold increase. 
 

In Figure 4.2 we observe the SEM image showing the associated regions 

of nanotube structures from the substrate to the surface.  Due to the difference in 

nanotube structure and alignment, these regions contain varying indexes of 

refraction. 
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Figure 4.2. SEM image of CNTs with a height of ~ 35 m. Region I is the surface 
of the aligned nanotubes which exhibit bridge-like interconnections. Region II 
shows highly aligned nanotubes with helical growth and Region III is the base 
where growth begins. 
 

Region I is the first region and is located at the air-CNT interface and 

consists of randomly aligned nanotubes with bridge-like CNT connections. The 

random surface encourages increased diffuse scattering events along the tubule 

axes [1]. Additionally, these surface structures decrease the void spaces of the 

aligned helical nanotubes. 

Light-photon 
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Region II contains vertically-aligned helical nanotubes. The helical nature 

is due to pentagon and heptagon defects [2] along the sp2 structures.  These 

tubes due to their angular nature and length allow for the reflectance, 

transmission and absorption of light in the film.  For our purpose, removal of the 

region I layer and exposure of region II should further improve our films 

absorbance by lowering the refractive index. 

Region III, the final region, contains more aligned nanotubes.  However, 

the nanotubes are considerably short and are close to the substrate.  At this 

height the effects of absorption are reduced due to the limited path for photons to 

travel.  The length effect is also reduced such that we expect the reflectance to 

increase.  This increased reflection from the substrate is a direct result of a 

glossy surface.  Based on these observations we attempted to remove or reduce 

the thickness of region I, and expose region II. 

Figure 4.3 (a, b, c and d) show the SEM images of samples before and 

after the O2 etch for t =0 and t -5 sample respectively.  For the t =0 sample, we 

observe the removal of the surface (region I), mentioned earlier and an 

improvement in the void spaces (Figure 4.3.c).  We also notice graphitic 

remnants from the etch process.  It is possible that these graphitic remnants are 

the cause for the observed increase in %R (Figure 4.2.a). 
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Figure 4.3. SEM images of (a) t =0 before O2 plasma etch (b) t -5 before O2 

plasma etch (c) t =0 after O2 plasma etch and (d) t -5 after O2 plasma etch.  
Insets in (a) and (b) are higher magnifications of film. Scale bars are 200 nm, for 
regular and insets. 
 

 For the t -5 sample, the plasma etch removed the surface diffusive 

scattering of the bridge-like surface exposing the nanotubes below.  Figure 4.3 (b 

and d) show the SEM images for this sample.  In Figure 4.3.d the surface 

appears as a uniform film with relatively low void spaces.  It should be noted that 

even though the contrast of the SEM shows topologically where the voids are 

located, it cannot ascertain the depth.  The effect of the linear -dependence is 

worsened as depicted in Figure 4.2.b due to the lack of void spaces in the 

nanotube film.  Additionally, since the nanotubes are more closely packed 

without the random layer, the density of the material should increase. 
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4.2. Wavelength-Dependence Mechanisms of Reflection 

 We conducted additional experiments to comprehend why we observed 

the linear increase in the reflectance (  -dependence) of our samples in the 

infrared region.  Our HR set-up consisted of two sample mounts at an angle of 

incidence of 8o from the normal and 0o to examine any changes in our 

reflectance data.  We selected two samples from an earlier growth group which 

exhibited this phenomena (as the optimization improved this phenomena 

decreased).  Figure 4.4.a and 4.4.b shows the graphs of a t =0 and t -5 8 nm Fe 

catalyst layer sample.  In Figure 4.4.a shows that for both incident angles, the 

reflectance spectrum is unchanged.  Figure 4.4.b, we observed that the 

reflectance increased linearly at ~1700 nm for the 8o angle of incidence.  

However, at the normal, 0o we immediately observed the absence of this linear 

increase.  In order to confirm whether this was indeed due to -dependence we 

measured a sample with -independence. 

We explain this phenomenon as follows: our data recorded the total 

reflectance (RT) from our sample, which is all of the reflected light from the films 

surface.  RT is composed of two components, specular (RS) and diffuse (RD) 

reflectance.  The surfaces of the nanotube are rough on the nanometer scale, 

where photons are scattered in both forward and backward directions.  As a 

result they are an excellent diffuse surface.  At an incidence of 0o the beam is 

reflected 180o off the nanotube surface, expunging the RS component, leaving 

solely the RD.  We hypothesize that at 8o, the RS component is responsible for 

the -dependence.  Hence, the optical reflectance mechanism fluctuates from RD 
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to RS as  increases.  RS may be caused by the dense electron clouds below the 

diffuse layer as the nanotubes act as a bulk material with little intertube spacing. 

 

Figure 4.4. Measured hemispherical reflectance for (a) t =0 Si 8 nm catalyst 
thickness at 0o and 8o angles of incidence (b) t -5 Si 8 nm catalyst thickness at 0o 
and 8o angles of incidence. In (b) we observe the absence of the specular 
component, suggesting that the linear wavelength-dependence is a component 
of specular reflection. 
 

4.3. Kramers-Kronig Relations 

 The K-K relations describe the fundamental connection between the real 

(Re) and imaginary (Im) parts of linear complex optical functions that exhibit light-

matter interaction phenomena [3].  In reflectance spectroscopy, K-K couples the 

measured reflectance and phase of the reflectivity allowing retrieval of the phase 

and the ability to extract quantitative information, such as the refractive index, N 

( ) and complex dielectric function, eff ( ).  To obtain the optical constants, 

reflectance is commonly measured at normal incidence and then followed by 

dispersion relations to retrieve the phase,  ( ).  For our measurements we 

utilized angle of incidence of 8o, which is near normal, thus considering it to be 

0o.  
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From Fresnel’s law, the complex reflectivity, r ( ), at the boundary 

between sample and vacuum is given by, 
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where  is the frequency in eV,  the index of refraction (Re), i  a complex 

variable and  is the extinction coefficient (Im).  We obtain, 
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In polar coordinates the complex reflectivity is expressed as, 
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Such that, 
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If we perform of a Hilbert transform to equation 4.4, we can relate the real and 

imaginary parts as, 
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In this equation for the phase of complex reflectivity, P is the principle value 

integral. 

 In order to perform the principle value integration in equation 4.5, we first 

needed to smooth our reflectance data.  We must also extrapolate the data down 

to = 0 and out to  = ∞.  The principle value requires that the function and its 

derivative be continuous.  In order to extrapolate to zero we use the simple 

function, 
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where o is the lowest frequency point at which data was taken, f ( o) in the 

reflectance at that point and a is the chosen to give a continuous derivative.  To 

extrapolate to infinity, we use 
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where o is the highest frequency at which there is data, f ( o) the reflectance at 

that frequency, a is determined by requiring a continuous slope.  The additional 

term is added to yield a more convergent integral and to allow us to examine the 

sensitivity to how rapidly we continue f ( ) to zero. 

 In Figure 4.5 (a and b) we show the smoothed data and the extrapolations 

for two cases.  We examine the t -5 Si8 sample before and after the O2 plasma 

etch.  Note, we perform two extrapolations in Figure 4.5.a.  We use these in the 

K-K relations to generate the phase of r ( ),  ( ), shown in Figure 4.6.  We 

observe that the extrapolation of  to ∞ does not have a great effect on the data 

which is continued downward toward zero. 

 The phase,  ( ) is not something for which there is any great intuition.  

Given r ( ) we can use equation 4.1 to obtain the index of refraction, N ( ), both 

its real and imaginary components.  Further the susceptibility  ( ) can be found 

from  
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N
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 4.8 
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 In Figure 4.6 we observe the plots of  ( ) as calculated from the 

dispersion relation.  We can compare our value for Im  ( ) to that calculated by 

Garcia-Vidal et al[1].  We observe similar -dependence and similar magnitudes.  

For our sample, we observe the shift of the UV peak from high to low energy.  At 

the higher energy the nanotubes have more intertube spacing, however at the 

lower energies the nanotubes are in very close contact.  Further we can surmise 

that out nanotube diameters are much larger than those in Garcia-Vidal.  Thus 

we believe this approach is reasonable and yields  ( ).  The imaginary 

components of  ( ) are a clear measure of a materials absorbance.  Thus using 

the K-K dispersion relations could help assess influence of a material at 

suppressing scattered light. 

 Unfortunately, the application of equation 4.5 to our other measured 

reflectance data has proven problematic.  The same calculation as used for the 

above two cases yields N ( ) and  ( ) with unphysical imaginary components.  

This would imply an exponentially increasing wave on the light entering the 

medium.  Others [4-7]  have found similar difficulty and have traced the problem to 

the utilization of a long r  in the dispersion integral.  The dispersion relation is 

not valid if r ( ) has a zero in the upper half plane.  Several suggestions have 

been made to circumvent this problem.  Whether their modified approach can be 

used to handle the data taken here warrants further investigation. 
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Figure 4.5. Smoothed reflectance data for a t -5 Si 8 nm catalyst thickness and 
the extrapolations used (a) before plasma etch and (b) after plasma etch. 
 

 

 

 

Figure 4.6. Phase data for a t -5 Si 8 nm catalyst thickness (a) before plasma 
etch and (b) after plasma etch. 
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Figure 4.7. Calculated  ( ), with real and imaginary components for t -5 Si 8 nm 

catalyst thickness. (a)Re  ( ) before plasma etch (b) Re  ( ) after plasma etch 

(c) Im  ( ) before plasma etch (d) Re  ( ) after plasma etch. 
 

4.5. Conclusion 

We calculated that our best sample absorbs 99.86% of light.  We were able to 

calculate  from our reflectance data using the Kramers-Kronig relations.  

Furthermore, the K-K relations allowed us to calculate the optical properties of 

our material.  Additional research is necessary for this aspect of the projrect as 

the extrapolation points must be selected carefully.  The Im  and Re values  

confirmed observations made by SEM and Garcia-Vidal [1].  Finally, we were able 

to show the effect of angular dependence on specular and diffuse reflectance for 

our samples. 
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CHAPTER 5 

 

CONCLUSIONS & FUTURE WORK 

 

In this dissertation we have demonstrated the applicability of the 

electrophoretic deposition (EPD) technique to assemble thin films of carbon 

nanotubes (buckypapers).  We suspended the MWCNTs in an aqueous media in 

order to facilitate deposition onto a stainless steel substrate.  We demonstrated 

and effective method to remove the film once deposited and termed this the 

“mechanical cleavage” technique.  The random porous networks of nanotubes 

were comparable to other BPs fabricated by alternate techniques in both its 

Young’s modulus and Tensile strength. 

Furthermore we have addressed a direct technological application using 

MWCNTs for NASA grown via the chemical vapor deposition (CVD) method.  

Due to their vertical alignment, films of nanotubes have come extremely close to 

the theoretical emissivity of a blackbody.  We investigated various H2 exposure 

times to find consistent growth parameters for optimal absorption performance.  

By varying the exposure times we were able to control, within experimental 

reason, the factors important to nanotube absorption such as height, density, 

v.f.f., intertube spacing and incident angle.  We developed a technique to 

measure the bulk density of our samples.  The optical properties of a few 

samples were analyzed using the Kramers-Kronig relations and yielded 

quantitative and qualitative information on our samples. 
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To this end, the research discussed in this dissertation should be explored 

further.  En route to achieving uniform films via CVD, several exciting research 

questions remain.  For instance, understanding the effects of Ostwald ripening 

and utilizing this phenomenon may open a new understanding of growth 

termination and catalyst-underlayer adhesion.  Another idea follows from the O2 

plasma etch trial.  If researchers are able to effectively remove the randomly 

oriented nanotube surface then achieving a near perfect blackbody is in sight, as 

well as solar and thermal conversion efficiencies.  We began an analysis using 

the K-K relations and found that they accurately retrieve intrinsic material 

constants.  Further investigation of our samples is necessary, especially in the 

mid- to far-infrared spectrum.  I believe this would aid in NASA’s goal to replace 

its existing coating material with nanotubes. 
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APPENDIX A 

ELECTROPHORETIC DEPOSITION THEORY 

DLVO Theory 

Derjaguin, Landau, Verwey and Overbeek (DLVO) theory, combines the 

effects of attractive and repulsive interactions between two particles in a system.  

The overall stability of the system depends on the interaction between the 

individual particles in the suspension [1].  Descriptions of these interactions in the 

suspension are in terms of the van der Waals attraction (UVdW) and electrostatic 

repulsion (Uelect).  From these mechanisms acting in a dispersed system, we can 

postulate whether the particles will agglomerate or coagulate.  To avoid particle 

agglomeration, a high electrostatic repulsion due to high particle charge is 

required.  For instance, during the formation of the deposit, the particles come 

closer to each other with increasing attractive force.  If the charge on the particle 

is low, the particles will coagulate regardless of inter-particle spacing.  This leads 

to deposits that are more porous in nature.  In contrast, if the particles have a 

higher surface charge during deposition, they will repel each other, occupying 

positions that lead to a higher packing density [2].    

If we examine a negatively charged MWNT in its colloidal medium 

surrounded by both positive and negative ions and water, as depicted in Figure 

A.1, there will be a fixed layer of positive ions at the surface.  This layer is the 

stern layer.  Outside this stern layer is a diffuse layer of counter ions, in which a 

reduction of positive ions decreases with increasing distance from the MWNT.  
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Formation of the diffuse layer occurs from free ions in the medium/system under 

the influence of electric attraction and thermal motion [1].  The diffuse layer 

electrically screens the stern layer.  Both the stern and diffuse layers make up 

the double layer.  The boundary at the interface of the diffuse layer and bulk 

medium (suspension) is the slipping plane.  Within this region, the MWNT acts as 

a single entity when a force is applied, inducing the motion of MWNT and the 

double layer.  The potential at this boundary is the zeta potential (refer to section 

A for the value).  This potential determines the particles velocity v by which they 

move under the influence of the applied electric field E and the electrophoretic 

mobility  given by 

E


  .        (1) 

The relationship of the zeta potential  and the electrophoretic mobility is 

given by the Smoluchowski equation [1] 




 r0        (2) 

where 0 is the permittivity of vacuum, r is the relative permittivity of solvent, and 

 the solvent viscosity.  Thus, the mobility of the particle depends linearly on the 

dielectric constant of the fluid, the zeta potential and the potential gradient and is 

inversely proportional to the fluid viscosity. 
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Figure A.1. Schematic of double layer surrounding MWNT as two parts; the 
inner region where ions are strongly bound is the stern layer (a), the outer 
region where ions are less firmly associated is the diffuse layer (b) both regions 
comprise the double layer (a and b). The diffuse layer contains a boundary 
known as the slipping plane, where the particle (MWNT) acts as a single entity. 
The potential at this boundary is the zeta potential. 
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In the colloidal suspension, we assume Na+ is one of the free ions in the 

system due to the proprietary surfactant present on our nanotubes.  This 

assumption is based on the EDS scans.  Neglecting all but the electrostatic and 

the van der Waals forces and treating them as separable entities, DLVO theory 

allows for a description of colloidal suspensions [3]. 

The combination of UVdW and Uelect describes the total interaction energy 

(UT) of the suspension.  At nanometer distances, the attractive force is due 

primarily to the van der Waals interaction, which is a result of fluctuating electric 

dipole effects present in the suspension.  Van der Waals attraction follows the 

power law whose strength varies with the Hamaker constant (AH) and a 

geometrical factor.  Typically, spherical bodies represent the geometry for 

particles in colloidal suspensions.  For our MWNTs, rigid cylindrical bodies are 

used for the approximation of the van der Waals potential. We express their 

interactions as a function of their separation distance and orientation.  The two 

orientations of focus are parallel and perpendicular.  In the case of two infinitely 

long thin cylinders far apart where L >> z, the equation is given by [3]: 
















 

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z

AAA
U H

vdW


 (3) 


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











 


4

21

2 z

AAA
U H

vdW


 (4) 

where AH is the Hamaker constant, A1, A2 the fixed cross-sectional areas and z is 

the center-to-center separation as shown in Figure A.2.  In addition, we can 

express them as two infinitely long cylinders near contact, given by [3]: 
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


 


6
 

(6) 

where R is the fixed radii of the MWNTs and l is the variable surface separation 

where l << R, as demonstrated in Figure A.3. 

The Hamaker constant relates to the dielectric properties of the MWNTs 

and the intervening space. Theoretical estimates have been reported in the 

literature for the Hamaker constant of CNTs, which is approximated as AH = 6 x 

10-19 J (3.744 eV) [4].   
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Figure A.2. (Top). Infinitely long cylinders whose orientation is perpendicular and 
separation distance far apart, z coressponds to the minimal center-to-center 
separtion, A1 and A2 are the fixed cross-sectional areas per unit length. (Below). 
Infinitely long thin parallel cylinders. 
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Figure A.3. (Top). Infinitely long, parallel circular cylinders with fixed radii R and 
near contact where the variable surface separation l << R. (Below). Infinitely long 
perpendicular cylinders near contact. 
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A graph of the van der Waals energy vs. center-to-center separation for 

these rigid fixed bodies of parallel and perpendicular pairs of CNTs is shown in 

figure A.4. The van der Waals energy was calculated using the Hamaker 

constant (~ 3.744 eV) value. For the length of the MWNTs 250 nm was taken as 

a rough approximation.  As the center-to-center, separation approaches zero, the 

magnitude of the van der Waals forces increases. These calculations suggest 

stronger inter-particle binding for CNTs that are parallel. 
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Figure A.4. Plot of the van der Waals potential energy vs. center-to-center 
separation between rigid CNTs of varying diameters for equations (3) and (4). 
Nanotubes aligned in a parallel orientation (top) and nanotubes aligned 
perpendicularly (bottom). 

 

Equation (7) is the representation of the coulomb interaction of the 

aqueous dispersed MWNTs: 


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where R is the radius, -1 the Debye screening length, ε0 the permittivity of free 

space and  the relative permittivity and D is the inter-tube spacing.  In colloidal 

suspensions, the Debye length controls the range of the double layer interaction 

with other particles.  In order to derive this expression, there are a few 

assumptions one makes. First, we must approximate the charge on the surface 

of the MWNTs.  To determine this value, we solve the mobility equation for the 

charge number (Z): 













hR

Ze




6  (8) 

where Rh is the hydrodynamic radius of the MWNT and  the viscosity of the 

suspension at room temperature.  From earlier experiments, we determined the 

value of the mobility for our MWNT solution, as measured by dynamic light 

scattering, to be -3.2 10-4 cm2 V-1 s-1.  Before we proceed with the solution of 

equation (2), we must find a solution for the existing unknown value of Rh.  The 

expression for the hydrodynamic radius is equation (3); [5] 

 
















2
12ln3 

 c
h

D
R

  (9) 

where  c (25 nm) the outer diameter of the 

nanotube.  Solving this equation for a fixed rigid MWCNT, we arrive at a value of 
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116 nm for Rh.  Plugging this value into equation (8), we obtain a value of 438 for 

the charge number (Z) on the surface on the nanotubes. 

 Now that we have a value for surface charge on a MWCNT, we proceed to 

derive the force F (F = - dU/dr) between two MWCNTs surfaces.  The force 

between two spheres in terms of the energy per unit area of two flat surfaces at 

the same separation l is known as the Derjaguin approximation.  It is applicable 

so long as the range of the interaction and the separation l is much less than the 

radii of the spheres [5].  The approximation is useful since it is beneficial to derive 

the interaction energy for two planar surfaces rather than for curved surfaces.  If 

we assume two nanotubes with radii of R1 and R2 are oriented perpendicular to 

one another, =90o the Dejaguin approximation is [5] 

 



sin

2)(
21RR

WDF     for l << R1,R2.                                        (10) 

for cylinders of equal radii, R = R1 = R2 which reduces the equation further.  Now 

that it has been shown that the distance between the two nanotubes act as two 

planar surfaces, we express the interaction energy as [5], 















o

De
W



 22

                                                                                (11) 

where the term  is defined as: 
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
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


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Ze
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2                                                                               (12) 

where Z is the charge number, l the tube length, R the radius, e the quantized 

electric charge.  

The term   represents the Debye screening length, which defines the thickness 

of the double layer encapsulating a particle. It is expressed as: 

  2
11 8

  cB                                                                      (13) 

with c (units of m-3) being the number density of monovalent ions (counter-ions), 

and λB the Bjerrum length.  The Bjerrum length is the separation at which the 

electrostaitic interaction between charges (e) is comparable in magnitude to the 

thermal energy kBT.  It is represented as;  

Tk

e

Bo

B



4

 .                            (14) 

Finally, we derive equation (7) to obtain the expression for nanotubes.  In 

order to accomplish this we need to integrate the force F (F = - dU/dr), where the 

expression for U equation (7) is denoted below,  

 WdDAU .                                                                                   (15) 
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 Figure A.5 shows the graphs of the Coulomb potential as a function of the 

Debye screening length. The MWNTs have a radius R of 12.5 nm and a surface 

charge Z of 438.  In pure water, the Debye length is 960nm where the 

concentration of ions is at equilibrium.  For the MWNT suspension, we will look at 

two cases where the Debye length is 25 to 100 nm and 200 to 960 nm.  The plots 

show that the larger the screening on the tubes, the more repulsive their 

interactions which translates into a stable suspension.    
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Figure A.5. Plots of the Coulomb potential energy vs. center-to-center separation 
between two parallel CNTs of varying Debye screening lengths.  

 

 An alternate description of the MWNT colloidal system can be described 

as nanotube bundles with rotational motion occupying a spherical space.  Figure 

A.6 shows the MWNT bundle occupying spherical while in motion.  Values for the 

size distribution of these bundles were obtained using the Malvern Zetasizer 

Nano series.  Three samples were prepared for these measurements by varying 

the pH value from a dilution of the standard suspension (CNT1).    Increasing the 

hydronium ion concentration lowered the pH values of CNT2 and CNT3 where 

visible aggregation occurred.  This lowering of the pH effectively reduces the 
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double layer.  Figure A.7 shows the size distribution for the three samples.  This 

geometry may provide a more accurate description of the MWNT suspension 

than that of the fixed rigid bodies.  

  

 

Figure A.6. MWNT bundle with rotational symmetry occupying spherical space. 
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Figure A.7. Size distribution of MWNTs in aqueous media with varying pH 
values.  pH values go from basic (typical suspension) to acidic. 
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APPENDIX B 

PRELIMINARY EXPERIMENTS 

H2 Exposure Investigation 

 Our initial investigation of the effects of H2 exposure times were conducted 

with exposure times of t-5, t=0 and t+5, each performed twice on silicon (Si) and 

titanium (Ti) substrates with an Fe layer thicknesses of 6nm and 8nm (i.e. 6 nm 

layer).  Table B.1 further clarifies this nomenclature.  The samples were loaded 

into the three zone furnace according to Figure B.1 where the directional flow of 

gases is shown.  Initially we assumed that the position of the samples were a 

contributing factor to the erratic growth of the samples on the Si substrates. Li et 

al.[1] reported that longer CNTs were grown downstream in the furnace and 

becomes more prominent with increasing growth time. They concluded that 

factors such as the temperature of the gas mixture and it flow velocity are 

responsible though they did not have an effect on the quality of CNTs.  

 
 
Table B.1: CVD runs (numbers) for samples with respective H2 exposure 

times. 

CVD Run Number H2 Exposure Set Number* Results 

1 t -5 1 Growth 

2 t =0 1 Growth 

3 t +5 1 Growth 

4 t -5 2 Growth 

5 t =0 2 Growth 

6 t +5 2 Growth 

*The set numbers refer to samples that were coated with the Al2O3 under layer and Fe catalyst 

concurrently in the physical vapor deposition system. 
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Figures B.2 and B.3 shows the results of the average height 

measurements for the nanotubes grown as a function of varying H2 exposure 

times.  We note that the larger error bars for the Ti samples are due to the 

inherent substrate roughness which affects the deposition of the Al2O3 under-

layer and the catalyst layer during PVD deposition.  For the t-5 exposure times, 

the 6 nm Fe catalyst on the Si substrate has heights of 47.2 ± 1.6 m and 42.0 ± 

1.7 m for CVD runs 1 and 4 respectively. Figure B.4 shows the average 

nanotube height as a function of sample position for CVD runs 1 and 4.  The 6 

nm Fe catalyst on the Ti heights at position 2 are 92.7 ± 9.4 m and 98.9 ± 2.7 

m for the identical runs.  This increase in height is approximately a two-fold 

increase over the Si samples at position 1. For the 8 nm Fe catalyst samples at 

positions 3 and 4, the heights of Si samples are 42.9 ± 1.6 m and 53.5 ± 0.7 m 

and the heights of the Ti samples are 66.5 ± 5.2 m and 83.1 ± 2.6 m 

respectively. We observe that the heights of the 8 nm verses the 6 nm Fe 

catalysts on the Si substrates are relatively similar. While the heights of the CNTs 

decrease for the 6 nm verses the 8 nm Fe catalyst for the Ti samples.   

Next, the t=0 exposure time shows inconsistent growth (Fig. B.5) for the 

Si substrates while the Ti substrates has a consistent yield.  The Si substrates 

with the 6 nm and 8 nm catalyst layers have heights of 5.8 ± 0.3 m, 9.39 ± 2.1 

m and 83.4 ± 2.7 m and 58.6 ± 3.4 m for CVD runs 2 and 5 respectively.  The 

6 nm and 8 nm catalyst layers for the Ti substrates has heights of 52.4 ± 9.9 m, 

35.6 ± 5.2 m  and 95.8 ± 5.7 m and 79.1 ± 3.4 m.  Finally, for the t +5 

exposure times the Si substrates with the 6 nm and 8 nm catalyst layers have 
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heights of 62.1 ± 1.8 m, 44.7 ± 1.4 m and 67.0 ± 1.4 m and 42 ± 2.8 m for 

CVD runs 3 and 6 respectively.  The 6 nm and 8 nm catalyst layers for the Ti 

substrates has heights of 35.6 ± 12.2 m, 31.2 ± 2.9 m  and 71.6 ± 4.2 m and 

25.1 ± 2.1 m.   

In conclusion, based on our height measurements and despite the fact 

that the t =0 exposures had a similar growth rate as the t -5, we determined that 

the t -5 H2 exposures, due to its consistent growth profile were best for hydrogen 

pretreatment. The t +5 samples proved to be inconsistent in growth when we 

reduce the deposited catalyst layer to 4 nm.  The trends of the average CNT 

heights as a function of H2 exposure have been determined. Our Si samples for 

the t =0 exposure time had a large variation of tube heights. It is proposed that 

factors such as passivation of Fe catalyst on Si substrates (the Ti substrates 

were also affected though the surface irregularities foster CNT growth) and 

irregular gas flow rates resulted in the shorten heights of tubes grown during 

CVD run 2. The Ti samples displayed a consistent trend for tube heights where 

the t -5 exposure times yielded the tallest nanotubes and the t +5 exposure times 

yielded the shortest tubes. The surface roughness of the Ti substrate may have 

facilitated oxidation of the Fe catalyst which would explain the decrease in tube 

heights of t -5 exposure, which allows for an increased reactant time prior to the 

introduction C2H4 and H2O vapor gases.   Whereas the combination of H2 and 

H2O vapor gases does not improve on the effects oxidation on the catalyst as 

C2H4 is introduced.  Simultaneous competing reactions of reduction and 

nucleation will be occurring during the growth phase.  
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Figures (B.4 – B.6) show that the average heights of the CNTs decreases 

from position 2 to position 3 for all H2 exposure times. The heights then increase 

for both t -5 and t =0, though not t +5 which would suggest that our results are 

not consistent with the findings of Li et al. though this can be attributed to the 

differences in experimental set-up, such as the diameter of the quartz tube, 2 

inches for Li et al. and 1 inch for our furnace, flow rates of gases and sample 

size. A further investigation of these phenomena warrants clarification on the 

effects of the temperature gradient and gas velocity in the furnace. 
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Figure B.1. Image of CVD furnace at zone 2 (center of furnace) and how the 
samples were mounted with respect to the directional flow of gases (Ar, Ar/H2O, 
H2 and C2H4). Three hydrogen exposure times of t -5, t =0 and t +5 were used 
with the same sample mounting scheme above. The green colored sample is a 
reference sample present in all growth runs. Position numbers: 1. Si 6 nm 2. Ti 6 
nm 3. Si 8 nm and 4. Ti 8 nm. 
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Figure B.2. The effects of hydrogen exposure time on the heights of nanotube 
for the Si substrate. Substrates with equivalent set numbers (subscript) were 
grown at the same time in the CVD furnace. In this group of samples the t -5 
exposures had consistent growth of CNTs with heights that were virtually 
equivalent irrespective of catalyst thickness. The t =0 exposure demonstrates the 
large variation of CNT heights during this growth process. And the t +5 
exposures shows both a decrease in the height for set number 2 and a rapid 
increase in height for set number 1. 
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Figure B.3. The effects of hydrogen exposure time on the heights of nanotube 
for the Ti substrate. Substrates with equivalent set numbers (subscript) were 
grown at the same time in the CVD furnace. The height of the CNTs on the Ti 
substrate shows a decrease in height as a function of hydrogen exposure time. 
The large variation of heights is additionally present for t =0. 
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Figure B.4. The average nanotube heights as a function of sample position in 
CVD furnace for t -5 hydrogen exposure. 
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Figure B.5. The average nanotube heights as a function of sample position in 
CVD furnace for t =0 hydrogen exposure. 
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Figure B.6. The average nanotube heights as a function of sample position in 
CVD furnace for t +5 hydrogen exposure.  
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