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PREFACE 
 

 
 Melanoma—a skin cancer arising from melanocytes—has been mentioned in 

medical texts dating back to Hippocrates in the 5th Century B.C. Although progress has been 

made in the field of melanoma biology, unfortunately, the overall death rates per 100,000 have 

remained relatively stable since 1975. Particularly, about half of melanoma patient tumors harbor 

an oncogenic mutation in the BRAF kinase and successfully achieving even, durable responses 

for patients remain a challenge. 

 In many cases, dysregulated cellular metabolism broadly affects therapy response by 

influencing compensatory signaling and expanding proliferation. Given many BRAF-mutated 

melanoma patients experience disease progression with targeted BRAF inhibitors, I hypothesized 

that therapeutic response is related to tumor metabolic phenotype, and that altering tumor 

metabolism could change therapeutic outcome. The work described in this dissertation addresses 

heterogeneous responses to targeted therapies in cell line models with respect to the tumor cell 

metabolism.  

 This dissertation attempts to discern the relationship of altered tumor cell 

metabolism and drug resistance, and the chapters are arranged to emphasize a linear course of 

response variability and assay development, glycolytic biology in relation to BRAF inhibition, 

and finer inspection of variability within a tumor. These findings help resolve discordant reports 

in the literature and link a targetable metabolic phenotype to cellular proliferation. Additionally, 

this work brings insight regarding the phenotypic roles of glycolysis and oxidative 

phosphorylation in BRAF-mutated melanomas. 
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CHAPTER I 

 

INTRODUCTION 

 

Melanoma Incidence, Prevalence, and Classification: 

Incidence and Prevalence 

Skin cancer is the most common cancer diagnosed in the US, although the true number of 

cases is difficult to estimate because the vast majority of skin cancers—basal and squamous cell 

carcinomas—are generally not reported in the national cancer registries because they are rarely 

fatal and considered curable (American	Cancer	Society,	Cancer	Facts	&	Figures	2017).  These 

non-melanoma skin cancers, also collectively called Keratinocyte Carcinoma or KC, were 

estimated to affect 3.3 million people in 2012 and comprise 5.4 million cases (this figure 

includes persons with multiple cases of KC, which is common) (American	Cancer	Society,	

Cancer	Facts	&	Figures	2017). Contrastingly, melanoma skin cancer, originating from 

melanocytes, constitutes approximately 1% of skin cancer cases but accounts for the majority of 

skin cancer deaths. The estimated number of new cases for the year of 2017 is 87,110 and the 

estimated number of deaths is 9,730 for that same year (American	Cancer	Society,	Cancer	Facts	

&	Figures	2017). In the state of Tennessee, an estimated 1,840 new cases and 250 deaths will 

occur for the year 2017 (American	Cancer	Society,	Cancer	Facts	&	Figures	2017).  Past data 

ranks the state of Tennessee at number 29 for age-adjusted death rates, but some neighboring 

states rank very high, like the state of Kentucky at number 6 (Howlader, Noone, et al., 2016). 

Melanoma has been mentioned in medical texts dating back to Hippocrates in the 5th Century 

B.C. (Rebecca, Sondak, and Smalley, 2012) and has been found in Inca mummies of Peru dating 
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back nearly 2,400 years (Urteaga and Pack, 1966). Incidence trends have continued to rise over 

the years, probably due to better detection methods, and changes in the population’s cancer risk 

factors—particularly older age and lifespan. Major risk factors include numerous (50+) moles, 

exposure to sun or UV radiation or tanning, family history of melanoma or other skin cancers, 

suppressed immune system, or increased sun sensitivity (excessive sunburns, blonde or red hair 

color) (American	Cancer	Society,	Cancer	Facts	&	Figures	2017). Melanoma continues to have a 

strong prevalence in both genders, and the projected percent new cases of melanoma for the year 

2017 are 6% and 4% for men and women, respectively (American	Cancer	Society,	Cancer	Facts	

&	Figures	2017). Broken down by stage at diagnosis, the 5-year survival rate across all races is 

98% in the localized stage, but drops to 62% and 16% if regional or distant metastases, 

respectively, are present (Siegel, Ma, et al., 2014). Unfortunately, the overall death rates per 

100,000 have remained relatively stable since 1975 (Howlader, Noone, et al., 2016).  

Classification and Molecular Landscape 

Melanoma has been historically managed surgically ever since the 1850s, particularly 

once surgical anesthesia became available and publications of surgical excision case reports 

appeared regularly in The Lancet (Rebecca, Sondak, and Smalley, 2012). In 1967, Wallace Clark 

published a scale to standardize and assess melanoma prognosis based upon histology: the extent 

of invasion into the epidermis and subcutaneous skin layers of dermis and fat (Clark, From, et 

al., 1969). This system of Clark levels (I-V, for melanoma in situ) would help guide surgical 

treatment and staging of melanoma for decades, and others like Alexander Breslow built upon 

this system to further demonstrate that tumor size and thickness played a considerable role in 

prognosis (Breslow, 1970). The mutational status and molecular landscape of melanoma has 

become of great importance in the last several years. Using multi-platform data (DNA, RNA, 
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and protein level) from one of the largest cohorts of clinically annotated patient samples ever 

collected, The Cancer Genome Atlas (TCGA) program cataloged the molecular landscape of 

melanoma and identified four genomic subtypes of melanoma: NRAS, BRAF, NF1, and Triple-

WT (Akbani, Akdemir, et al., 2015). These molecular subtypes are important indicators of 

prognosis and therapeutic options for patients with melanoma, and are generally mutually 

exclusive (i.e., patients harboring a NRAS mutation do not have a co-existing BRAF mutation, 

etc.). Approximately 50-60% of melanomas have a mutation in the BRAF kinase, generally an 

amino acid change of valine to glutamic acid at the 600 position, BRAFV600E (Davies, Bignell, et 

al., 2002; Ribas, Flaherty, et al., 2011; Ascierto, Kirkwood, et al., 2012). The patients harboring 

this mutation generally benefit from treatment regimens with small, targeted inhibitors of 

mutated-BRAF, such as vemurafenib or dabrafenib (Chapman, Hauschild, et al., 2011; Sosman, 

Kim, et al., 2012). Frustratingly, however, the response across the patients is highly variable and 

heterogeneous, despite the patients all harboring the same oncogenic lesion. A common, 

powerful endpoint of large clinical trials is the percent change in the largest target lesion; 

vemurafenib treatment provides confirmed objective responses in 48% of treatment-naïve 

patients (Chapman, Hauschild, et al., 2011) and an overall response rate of 53% in the metastatic 

setting (Sosman, Kim, et al., 2012).  Drug resistance to anti-BRAF therapy significantly 

contributes to patient deaths and investigating mechanisms of resistance is vital for broadening 

efficacy of anti-BRAF therapy. Thus, there remains a need to further examine mechanism of 

action and ultimate effect on cell behavior of anti-BRAF agents, and increase our understanding 

of the biochemical basis for resistance. Later in this chapter, mechanisms of resistance reported 

in the literature will be discussed in more detail.  Ultimately, heterogeneous responses can also 

be found in the cell line models used to study BRAF-mutated melanomas and data-mining in the 



	 4	

Cancer Cell Line Encyclopedia (CCLE) online data bank revealed a variable response to BRAF 

inhibitor PLX4720—similar to that found in patients (Figure 1.1). 

 

Figure 1.1: Heterogeneous Responses to BRAF Inhibition.  Plot of IC50 response of BRAF-
mutated melanoma cell lines in the CCLE. Cells were grown in either DMEM or RPMI1640 
media, plated at ~250 per well in 1,536 well plates; an 8 point dose curve was generated using 
concentrations starting at 8 µM, with 3.16 fold dilutions down. After 72 or 84 hours, Promega’s 
CellTiter-Glo (luciferase-based ATP assay) was used to count viable cells. All conditions were 
done with at least 2 replicates in the run; occasionally, some cell lines were run again/repeated. 
Due to the large nature of the repository and acquisition protocols, it is impossible to know 
which cell line/drug treatment combinations had which unique details (medium type, exact 
replicate numbers, plates runs, etc.)  
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Pathobiology of Mutated BRAF Kinase: 

Importance of Mutation Status 

The RAF oncogene was discovered more than 30 years ago and is an important integrator 

of signaling processes between receptor tyrosine kinases and downstream transcription factors 

(Rapp, Goldsborough, et al., 1983). The RAF homologues A, B, and C homo/hetero-dimerize 

and activate a cascade of signaling as part of the RAS-RAF-MEK-ERK axis. Thus, over-

activation of the homologue BRAF in melanoma can cause downstream signaling that 

inappropriately regulates cell proliferation, protein synthesis, metabolism, and migration. The 

RAF kinases generally signal as dimers, however, the mutation V600E (or, less commonly, 

V600D) makes the BRAF kinase constitutively active and mutated BRAF will signal as a 

monomer.  

The company Plexxikon marketed the first BRAF inhibitor, Zelboraf also known as 

vemurafenib or PLX4032. This compound, along with a research variant called PLX4720, is a 

heterocyclic, 7-aza-indole; PLX4032 differs in structure by the inclusion of 1 benzyl ring 

(compared to the PLX4720). The compounds also contain a difluoro-phenylsulfonamide 

structure that enriched and increased anti-BRAF activity (Tsai, Lee, et al., 2008).  Targeted 

BRAFi has a favorable short-term response in most patients, as demonstrated by significant 

reductions in FDG uptake following just 2 weeks of treatment with vemurafenib (Bollag, Hirth, 

et al., 2010). Interestingly, an up-regulation in MEK activation and tumor insensitivity is found 

with BRAFi and WT normal BRAF kinase, mostly attributed to a transactivation of the BRAF 

(Halaban, Zhang, et al., 2010; and Poulikakos, Zhang, et al., 2010). In the presence of active Ras 

signaling, binding of these ATP-competitive drugs in one RAF molecule of a dimer will induce 

an allosteric change that transactivates the other RAF molecule.  However, BRAF-mutated 
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melanomas have a sufficient low RAS activity that the potency of the ATP-competitive drugs is 

not tempered; thus, these inhibitors have select antitumor activity towards the melanoma cells 

and reduced clinical toxicity (Poulikakos and Rosen, 2011).  

 

Acquired Resistance To Therapies 

 There have been several mechanisms of acquired resistance to BRAF targeted therapy 

described in the literature. Collectively, these findings can be grouped into two categories: MEK-

dependent and MEK-independent pathway alterations. Figure 1.2 outlines many of the main 

mechanisms described, including BRAFV600E splice variants (Poulikakos, Persaud, et al., 2011), 

BRAF amplification (Shi, Moriceau, et al., 2012), BRAF kinase domain duplications (Kemper, 

Krijgsman, et al., 2016), mutations in MEK (Wagle, Van Allen, et al., 2014) and NRAS 

(Nazarin, Shi, et al., 2010), overexpression of COT (Johannessen, Boehm, et al., 2010), EGFR 

(Sun, Wang, et al., 2014), PDGFRb (Nazarin, Shi, et al., 2010) or CRAF (Montagut, Sharma, et 

al, 2008), and loss of negative regulators like NFI (Whittaker, Theurillat, et al., 2013). 

Amplification of the transcription factor MITF was reported by whole-exon sequencing of 

tumors treated with BRAF inhibitors (Van Allen, Wagle, et al., 2014) and Vergani et al. utilized 

MALDI-TOF to probe phosphotyrosine signaling and find cMET activation as a mediator of 

resistance (Vergani, Vallacchi, et al., 2011). Gatekeeper mutations in residues critical for ATP 

binding occurs frequently for other targeted therapies (for example, gefitinib against EGFR), but 

are virtually nonexistent in BRAF-mutated melanomas—despite the fact that gatekeeper 

mutations in the BRAFV600E kinase have been shown experimentally in cell lines to provide 

resistance to PLX4720 (Whittaker, Kirk, et al., 2010).  Additionally, Keiran Smalley’s group has 

demonstrated in cell line models that loss of PTEN will confer increased AKT signaling and 
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resistance to BRAF inhibition (Paraiso, Xiang, et al., 2011) and it has been correlated with 

increased brain metastases and decreased Overall Survival (OS) (Bucheit, Chen, et al., 2014). 

These data at a minimum highlight PTEN loss as a strong factor in regards to intrinsic resistance.  

 

 

Figure 1.2: Mechanisms of Resistance to BRAF Inhibition. In resistant BRAF-mutant 
melanomas MEK-independent and MEK-dependent alterations have been described in the 
literature. Mechanisms have been identified and validated in patient samples/tissues, and shown 
in clinical models such as cell lines. Figure structure is adapted and modified from educational 
material provided courtesy of Dr. Jeffrey Sosman in 2013.  
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Most of what we know about resistance to BRAF inhibitors comes from patient tumors or 

cell lines with acquired resistance, i.e., continued proliferation, growth or metastasis while under 

BRAF inhibitor therapy. Rizos and co-authors extensively examined therapeutic resistance in 

patients that progressed on vemurafenib or dabrafenib therapy. All of the patients had a 

progressing lesion (primary or metastatic) that was macro-dissected and analyzed for known 

progression-associated alterations by RT-PCR (for known mutated alleles and splice variants), 

gene expression microarray analysis (for known MAPK pathway activation signatures) and 

immunohistochemistry (protein staining of IGFR, pAKT, and PDGFRβ) (Rizos, Menzies, et al., 

2014).  Frustratingly, only 22 of 38 tumors (that had matched treatment-naïve tissue) could be 

mapped back to a known mechanism of resistance previously described in the literature (Rizos, 

Menzies, et al., 2014).  This large portion of unexplained resistance in approximately 42% of the 

tumor sampled after therapy failure highlights a major knowledge gap in the field. Others have 

commented on the dearth of knowledge regarding the cellular dynamics and biology leading up 

to observed BRAFi resistance (Smith, Brunton, et al., 2016) and this has fueled an explosion of 

research on non-genetic biology (such as cellular metabolism) in BRAF-mutated melanomas. 

 

Cellular Metabolism: 

Cellular metabolism is connected to an amazingly diverse set of biological processes 

including oogenesis (Sieber, Thomson, and Spradling, 2016), self-renewal of pluripotent stem 

cells (Zhang, Badur, et al., 2016), the cellular fate of immune T-cells (Buck, O’Sullivan, et al., 

2016), the tumor vasculature (Wenes, Shang, et al., 2016), and even the organ-specific site of 

cancer metastases (Dupuy, Tabaries, et al., 2015). Furthermore, cellular differentiation and 

epigenetics can change cellular metabolism and bioenergetics. Birket and coauthors’ elegantly 
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showed this in human embryonic stem cells (hESCs) and neuronal stem cells (NSCs): despite 

having similar relative distributions of ATP-consuming activities, the related secretion biology of 

hESCs accounts for a shift in not only global metabolism, but allocations of energetic demands 

(Birket, Orr, et al., 2010).  

 When oxygen is present and abundant, non-proliferating (usually differentiated) cells will 

catabolize glucose to pyruvate via glycolysis and then completely oxidize most of that pyruvate 

to CO2 in the mitochondria—a process called oxidative phosphorylation. Otto Warburg, a 

German physiologist, noted more than 90 years ago that cancer cells catabolized most glucose to 

lactate, regardless of the abundance of oxygen. Termed the Warburg Effect, he postulated that 

the mitochondria of tumor cells must be damaged because it is inefficient to rely on aerobic 

glycolysis (which nets 2 ATP molecules per glucose) as opposed to oxidative phosphorylation 

(which nets about 36 ATP molecules) (Warburg, 1956).  

The link between cancer and metabolism has been previously established; however, only 

recently has this reprogramming of metabolism or “deregulation of cellular energetics” been 

recognized as an emerging hallmark of cancer (Hanahan and Weinburg, 2011). Deregulated 

metabolism resonates with uncontrolled cellular proliferation: activating oncogenes have a 

propensity toward pushing cells into glycolytic metabolism, which supports fast proliferation 

(Vander Heiden, Cantley, and Thompson, 2009; DeBerardinis and Thompson, 2012). Fast 

proliferating cancer cells generally rely on aerobic glycolysis (the Warburg effect) despite the 

observation that the vast majority of glucose does not contribute to the biomass of cell; instead, 

the high glycolytic flux seems to be needed to provide energy and reducing equivalents, ATP and 

NAD+ respectively, and amino acids contribute the lions’ share to cellular biomass (Hosios, 

Hecht, et al., 2016). 
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 Historically, the field of cancer biology viewed Warburg’s glycolytic metabolism as a 

separate metabolic upshift that occurred exclusively within a cancer cell with no other concurrent 

metabolic programs directing or regulating cellular processes. However, this dualist framework 

of pitting Warburg glycolysis against particularly oxidative phosphorylation is problematic 

and—to borrow David Nicholls’ and Stuart Ferguson’s terminology—“bioenergetically 

dubious”. We now understand and appreciate that Warburg glycolysis and oxidative 

phosphorylation occur concurrently within a cell (Chi Dang, 2012) and, depending on the 

cellular context being studied, certain cancers may up regulate glycolysis, mitochondrial 

respiration or both. A perfect example of this phenomena is the Ski oncogene, and its 

bioenergetic effects as part of oncogenesis within a cell. The Ski oncogene is a transcriptional co-

factor whose interactions mediate a wide range of transcriptional programs, including TGF-β 

signaling (Chen, Lin, et al., 2009). Although it had been shown to promote oncogenesis, it was 

curious that chicken embryo fibroblasts (CEFs) overexpressing Ski did not appear to produce 

extra lactate and acidify the cell culture media as expected due to presumed Warburg glycolysis 

(Ye, Lemieux, et al., 2011). The authors went on to demonstrate that the Ski oncogene increased 

mitochondrial respiration in nearly every part of the electron transport chain (ETC) analyzed by 

high-resolution respirometry; the increases in oxygen consumption across the oxygraph trace 

support activity increases in virtually all ETC complexes (Ye, Lemieux, et al., 2011).  

The translational need for large-scale datasets has resulted in massive efforts to produce quality 

datasets that can be probed and analyzed across multiple platforms and biological processes. 

Large-scale profiling platforms were fundamental in the discovery of the best-studied examples 

of aberrant, metabolic re-wiring in cancer (Benjamin, Cravatt, and Nomura, 2012). Using stable 

isotope labeling of amino acids in cell culture (SILAC) as a large-scale proteomic platform, the 
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enzymatically-slow pyruvate kinase M2 isoform (PKM2) was found to shift metabolism of 

cancer cells to favor aerobic glycolysis and accumulate glycolytic intermediates for tumor 

growth (Christofk, Vander Heiden, et al., 2008).  Similarly, large-scale metabolite profiling via 

metabolic flux analysis led to the finding that citrate born of the TCA cycle, which is then 

converted to Acetyl-CoA once exported to the cytosol, is the primary building block of lipids and 

fatty acids (DeBerardinis, Mancuso, et al., 2007). Metabolomic profiling also led to the 

discovery of the first oncometabolite via mutant isocitrate dehydrogenase 1 (IDH1): 2-

hydroxyglutarate (Dang, White, et al., 2009). These examples are not cancer-specific in their 

origin, but more or less pathway and biochemistry centered. In cancer biology, large-scale 

genomics have taken prominence over phenotypic and functional platforms and this has probably 

limited the ability to find non-genetic sources of dysregulated metabolism driving cancer. 

Phenotype will likely precede the observance of genetic changes, therefore it is postulated that 

changes in cellular metabolism will be an early proximal marker for resistant phenotypes.  

 

Metabolic Strategies That Influence Therapeutic Response: 

Classic Routes of Tumor Drug Resistance Through Metabolism 

 Prevailing models of classic routes of tumor drug resistance have been historically linked 

to cellular metabolism. Zhao et al. summarize some of the major mechanisms of metabolic 

resistance to cancer agents (targeted or chemo-agents) in the broadest terms of accessibility for 

multiple cancer types. Figure 1.3 simplifies the mechanisms into 4 groups: 1) proliferation, 2) 

drug export, 3) pH regulation, and 4) signaling (Zhao, Butler, and Tan, 2013).  Glycolytic 

intermediates generated by dysregulated cancer metabolism fuel expanded cellular growth and 

contribute to clinical resistance. The ATP generated by the glycolytic breakdown of glucose 
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fuels the active export of chemotherapeutic agents by the ABC transporters (which are ATP-

dependent and consuming) and induces HIF1α expression. Export of the glycolytic end product, 

lactate and expression of carbonic anhydrases shift the pH ratio of the interior and exterior of the 

cell resulting in decreased passive transport of basic drugs. Signaling pathways activated by 

dysregulated metabolism also contribute to resistance, either via repressing pro-apoptotic 

signaling or activating compensatory pathways to circumvent drug-induced signal inhibition. 

 

Figure 1.3: Dysregulated Metabolism Can Affect Therapy Response. Dysregulated 
metabolism affects chemo-resistance via multiple cellular pathways. (Re-imagined and adapted 
from Zhao, Butler, and Tan, 2013) 

 

Cancer cells, in particular, exist in a “Metabolic Bubble” where stressors converge to 

present unique bioenergetics challenges. Traditionally, most cells must overcome three stress 

points: 1) biosynthetic stress (doubling mass for proliferation or macromolecule synthesis of 
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cytokines, factors, etc.); 2) reductive stress (maintaining NAD+ and FAD+ pools of reducing 

equivalents and cofactors for enzymatic reactions; and 3) energetic stress (ATP and GTP for 

normal cellular functions).  The distribution of NAD+ within a cell is very disparate: the nucleus 

has NAD+ concentration around ~70 µM, where as the mitochondria has estimates > 250 µM 

(Canto, Menzies, and Auwerx, et al., 2015). NAD+/NADH cannot diffuse through cell 

membranes to different biological compartments, thus the cell must maintain reducing equivalent 

levels within each cellular compartment via transfer of metabolic substrates and enzymatic 

salvage reactions.  

 

Metabolism in BRAF-mutated Melanomas: 

MITF and PGC1α 

Microphthalmia-associated transcription factor (MITF) has been under intense scrutiny in 

melanoma metabolism, due to the downstream signaling to Peroxisome proliferator-activated 

receptor Gamma Coactivator 1a (PGC1α) and subsequent mitochondrial biogenesis (Haq, 

Shoag, et al., 2013; and Vazquez, Lim, et al., 2013). Interestingly, Haq et al. demonstrated 

increased in vitro antitumor effect with the combination of PLX4720 and oligomycin, but the 

cell line used displayed an incredibly marked induction of PGC1α upon PLX4720 treatment—

unlike any of the other cell lines in their panel (Haq, Shoag, et al., 2013). Additionally, there 

exists a discrepancy between therapeutic doses of BRAF inhibitors and responses in BRAF-

mutated melanomas. When using PLX4720 at very low concentrations, MITF levels correlate 

with response, but at “IC50 doses” the correlation disappears (Calpaldo, Roller, et al., 2015). 

Thus, the level of MITF does not potentially explain non-responsive BRAF-mutated melanomas. 
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Presently, it is unknown whether BRAF-mutated melanomas all have constitutively high 

signaling across the MITF axis, if the signaling is fixed or permanent, or if there exists kinetic 

delays that render signaling defective for some melanomas. The interplay of transcription factors 

MITF and PGC1 and their role in mitochondrial biogenesis is a crucial topic in the field. 

Previously, the master metabolic regulator, AMP-activated Protein Kinase (AMPK), was thought 

to be a crucial component and effector of the MITF-PGC1a signaling axis.  AMPK is a 

heterotrimeric protein with three subunits (α, β and γ); the γ subunit binds and senses AMP levels 

and helps to promote phosphorylation on the catalytic α subunit (Hardie, 2007). pAMPK 

regulates a p53-dependent cell cycle checkpoint for energetically unfavorable conditions 

(DeBerardinis, Lum, et al., 2008; Hardie, 2004). So, it is quite possible to imagine that pAMPK 

is mediating cancer cell survival in some insensitive BRAF-muted melanomas. However, BRAF-

mutated melanomas have been shown to negatively regulate LKB1 through phosphorylation of 

S325 and S428 sites; BRAFV600E immuno-precipitates with AMPK. Zheng and colleagues 

showed ERK phosphorylates the LKB1, hindering its ability to activate the metabolic regulator 

AMPK (Zheng, Jeong, et al., 2009). This may be a mechanistic strategy for BRAF-mutated 

tumors to maintain and preserve strong MAPK pathway signaling: by negatively regulating 

LKB1, this could prevent AMPK from actively attenuating BRAF signaling through 

phosphorylation as shown in keratinocytes (Shen, Yuan, et al., 2013).  

Current Field of Melanoma Metabolism 

 The global, cellular metabolism of melanoma was somewhat poorly understood and 

studied until a bevy of articles appeared approximately 5 years ago. Researchers found 

melanoma cells to be excellent models to study the transcription factor MITF and one of its best-

known targets, PGC1a. Two back-to-back papers in the same issue of Cancer Cell demonstrate 
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the aberrant activation of PGC1a in a broad subset of melanoma cell lines (Vazquez, Lim, et al., 

2013) and the relationship of mutated BRAF signaling and oxidative phosphorylation (Haq, 

Shoag, et al., 2013). In particular, Haq et al. suggested that mutated BRAF likely regulates a 

robust oxphos program via MITF and PGC1a signaling, and this oxphos phenotype is increased 

upon treatment with the BRAF inhibitor PLX4720 (Haq, Shoag, et al., 2013). Interestingly, other 

researchers have postulated that mutated BRAF signaling regulates a glycolysis program crucial 

to these cells (Hall, Meyle, et al., 2013; and Parmenter, Kleinschmidt, et al., 2014). In fact, 

Parmenter et al.’s work provides the best evidence that inhibitors targeting the mutated BRAF 

functionally target glycolysis: lactate production, GLUT1 and GLUT3 protein expression on cell 

membranes, and uptake of [3H]2-Deoxy-Glucose (2DG) all are significantly higher in BRAF-

mutated melanomas versus WT-BRAF (Parmenter, Kleinschmidt, et al., 2014). Amazingly, 

matched trios of BRAFV600 melanoma patient biopsies before treatment, during early treatment 

(less than 22 days) and after treatment failure/progression showed statistically significant 

dynamics of hexokinase-2 (HK2) expression decreasing upon treatment then increasing back up 

after resistance (Parmenter, Kleinschmidt, et al., 2014). This discordance in our understanding of 

melanoma cellular metabolism is further highlighted by recent data from Meenhard Herlyn’s 

group: analysis of TCGA data revealed patients with the worst prognosis (overall survival) had 

tumor biopsies that highly expressed genes enriched in both glycolysis and oxidative 

phosphorylation (Zhang, Frederick, et al., 2016). 
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Summary and Purpose of Study: 

Summary 

Although considerable work has been done to investigate mechanisms of resistance in 

BRAF-mutated melanomas, the substantial portion of unexplained resistance to therapy 

(approximately 40%) amongst patients that progressed on targeted BRAFi therapy highlights a 

gap in our understanding of the biochemical basis of therapeutic resistance. As part of my 

project, I considered the possibility that the diversity of vemurafenib responses seen in patients 

was due to metabolic differences within their tumor cells, in spite of possessing the same driving 

oncogenic lesion of BRAFV600E or -V600D. The purpose of this study is to test the hypothesis that 

oncogene addicted tumor cells, such as BRAF mutated melanomas, respond to targeted therapy 

based on intrinsic cellular metabolism, and to test whether that cellular metabolic state is 

clinically targetable with FDA-approved drugs. Several tasks were identified to help achieve that 

goal and move this thesis project forward: 1) curating in vitro melanoma cell line models that 

exhibit therapeutic response variability in regards to proliferation; 2) refining and employing an 

assay to measure proliferation dynamics and catch subtleties missed by typical end point assays; 

and 3) mapping and assessing global metabolism and potential substrate utilization as part of 

cellular bioenergetics. For this work I aimed to create a suite of high-throughput experiments that 

would allow me to ascertain the bioenergetic landscape by looking at the tumor cells’ ability to 

proliferative under various metabolic stressors, and utilize substrates for glycolytic or oxidative 

phosphorylation processes. In the following chapters I show that we can overcome time-related 

biases and poor dynamical outputs of traditional IC50 assays (Chapter III), link glucose 

utilization with therapeutic response phenotypes (Chapter IV), suggest mitochondrial function 

and physiology as a biological indicator of response (Chapter V), and steer high-throughput 
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pipelines to find putative drug targets that may augment response in these cell line models 

(Chapter VI). Additionally, in Chapter VI, I present unpublished data that can help drive future 

experiments and research questions. Some of this data (like the reactive oxygen species (ROS) 

experiments) was completed early in the project in order to help eliminate and streamline the 

questions and project motivations. Other data (like the high-throughput screening (HTS) 

response data) are logical extensions of other completed manuscripts. At the time of writing this 

thesis, we are curating compounds for a targeted HTS of anti-retrovirals and other mitochondrial 

inhibitors; data on an interesting WNT inhibitor—pyrvinium pamoate—are shown in preliminary 

form. 

Project Motivations  

Although progress has been made in the field of melanoma biology, a finer understanding 

of the cellular metabolism is still needed. This is particularly highlighted again by the TCGA 

data presented by Zhang et al.: of the four subgroups (GlycHi/OxHi, GlycHi/OxLow, GlycLow/OxHi, 

GlycLow/OxLow) the best overall survival correlations had low Glycolysis gene signatures, but it is 

clear that only melanomas of a particular phenotype of glycolysis are super-sensitive and 

responsive to BRAF inhibition (Zhang, Frederick, et al., 2016). The metabolic activities of 

cancer cells make attractive targets of therapeutic intervention because they arise in concert with 

uncontrollable proliferation, oncogenic signaling, and therapeutic resistance. Thus, creating a 

thesis project that can add information about the unique metabolic biochemistry of BRAF-

mutated melanomas is desirable. Several goals and motivations of this project include: 1) to 

examine BRAF inhibition’s heterogeneous effect on tumor proliferation; 2) to discern the 

relationship of altered tumor cell metabolism and drug resistance, and possibly resolve some of 

the field’s discordant findings about BRAF-mutated melanoma cellular metabolism; and 3) 
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obtain multi-parametric metabolic data that could possibly classify or cluster subtypes of 

sensitive or insensitive melanomas. 

 

Research Questions 

 As stated earlier, the purpose of this study is to understand how BRAF-mutated 

melanomas respond to targeted therapy and manage to proliferate when deprived of the signaling 

induced by the oncogene those cell’s are addicted to. The larger, overarching research question 

that this project entails is: Can we manipulate the metabolism of BRAF-mutated melanomas 

and affect sensitivity or response to targeted therapies? Imbedded within this larger 

framework of questions includes other smaller aims to 1) study and characterize the variability in 

melanoma cell line models more closely, and 2) query the relationship between a cell’s 

metabolism and the cell’s response (in regards to proliferation) to BRAF inhibition. This 

approach of targeting differential tumor metabolism represents a break from previous models 

constrained within the narrow scopes of upstream and downstream the RAS-RAF-MEK-ERK 

signaling axis. The metabolic phenotypes should be independently actionable—regardless of the 

driving mutations upstream. Based on the recent flurry of melanoma metabolism papers, tackling 

the problem of heterogeneous responses through the lens of tumor metabolism puts the concepts 

and approach of this application on the leading edge.    
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CHAPTER II 

 

MATERIALS & METHODS 

 

Reproduced and adapted from:  Hardeman KN, Peng C, Paudel BB, Meyer CT, et al. (2017). 

“Dependence On Glycolysis Sensitizes BRAF-mutated Melanoma For Increased Response To 

BRAF Inhibition.” Scientific Reports 7; 42604. 

 

And:  Harris LA, Frick PL, Garbett SP, Hardeman KN, et al. (2016). “An Unbiased Metric Of 

Antiproliferative Drug Effect In Vitro.” Nature Methods 13, 497-500. 

 

And: Paudel BB, Harris LA, Hardeman KN, et al. “Dysfunctional Mitochondria Leads To A 

Non-quiescent Idling State In Drug Treated BRAF Mutated Melanoma Cells.” (In Preparation)  

 

Reagents: 

The BRAF inhibitor used in these studies, PLX4720 (catalog# S1152), was obtained from 

Selleckchem (Houston, TX) and solubilized in dimethyl sulfoxide (DMSO) at a stock 

concentration of 10 mM. BKM120 (Cat# S2247, Buparlisib) was obtained from Selleckchem 

(Houston, TX) and solubilized in DMSO at a stock concentration of 10 mM. Trametinib (Cat# T-

8123) and BEZ235 (Cat# N-4288) were obtained from LC Laboratories (Woburn, MA) and 

solubilized in DMSO at stock concentrations of 1 mM. Cisplatin (Cat# 479306, cis-

Diamineplatinum(II) dichlorine) was obtained from SigmaAldrich and solubilized in phosphate 

buffered saline (PBS) at a stock concentration of 12.5 mM. All drugs were aliquoted and stored 
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at -20°C until use except for cisplatin, which was stored at -80°C. Glycolysis Stress Test and 

Mitochondrial Stress Test kits were obtained from Seahorse Biosciences and used according to 

manufacturer instructions.  Briefly, the components were mixed and constituted the day of the 

experiment, and utilized only once (the kits have reagents that are divided for single-use 

purposes). Ethidium bromide and uridine were obtained from Sigma. 

Cell Culture: 

Cell lines used throughout this thesis include BRAF-mutated melanoma cells (WM115, WM165, 

WM88, WM1799, WM793, WM2664, WM983B, SKMEL5, SKMEL28, A375, and A2058), 

BRAF-WT melanoma cells (MEWO), triple-negative breast cancer cells (MDA-MB-231), and 

HER2+ breast cancer cells (HCC1954).  All melanoma cells were grown and cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) media containing 2 mM glutamine, 4.5 g/L 

glucose, 10% FBS and no sodium pyruvate (Gibco, catalog 11965-092), except where specified 

otherwise.  The HCC1954 and MDA-MB-231 cells were grown in RPMI-1640 media with 2 

mM glutamine, 2 g/L glucose, 10% FBS and no sodium pyruvate (Gibco, catalog 11875-093). 

Cells were split and seeded at ratios that allowed for splitting 1-2x per week. The cells were 

labeled lenti-virally with a fluorescent, nuclear tag (Histone 2B monomeric Red Fluorescent 

Protein, H2BmRFP from AddGene), flow sorted for H2BmRFP positivity (top 10-15% 

brightest), and kept as stocks annotated with “H2BmRFP”; if the cell line was labeled with the 

fluorescent ubiquitin-labeled cell cycle indicator FUCCI, then an additional annotation of 

“FUCCImAG-gem” was added as well. For proliferative experiments, the cells were plated the 

night before, then reagents/drugs were prepared in fresh media and added to the cells 

immediately before the start of the experiment the following day. For experiments involving 

nutrient deprivation (like glucose deprivation), cells were washed 1x with PBS then experimental 
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media was added onto the cells. For glucose deprivation, dialyzed FBS was added to DMEM 

medium to mitigate contribution of glucose from FBS. Dialyzed FBS+No glucose DMEM was 

titrated against the normal FBS+DMEM when preparing the drug dilutions for the experiments. 

Rho0 Cell Generation: 

Rho0 cell variants of BRAF-mutated cell lines WM164 and A2058 were generated using DMEM 

medium containing 4.5 g/L or 25 mM glucose, 2 mM glutamine, 1mM sodium pyruvate, 50 

µg/ml uridine and 50 ng/ml ethidium bromide; cells were passaged at least 10x in this medium 

before using in experiments. PCR was used to confirm loss/reduction of mtDNA as a ratio of 

mtDNA to nuclearDNA (data not shown). These cells are classically referred to as rho0 or ρ0. 

Measurement of Oxygen Consumption and Extracellular Acidification Rates: 

Cells were plated in 96-well plates (Seahorse Biosciences, Bilerica, MA) at a density of 25-

40,000 cells/well 24 hours before analysis on the Seahorse XFe 96 extracellular flux analyzer. 

Mitochondrial oxygen consumption was quantified using the Mito Stress Test kit, and glycolytic 

rate quantified using the Glycolysis Stress Test kit, each according to manufacturer’s 

instructions.  Briefly, assay medium was un-buffered DMEM containing either 10 mM Glucose, 

2 mM Glutamine, and 1 mM Sodium Pyruvate (Mito Stress Test) or none of the aforementioned 

(Glyco Stress Test). No FBS was used in assay medium.  

Proliferation Assays: 

The fluorescently labeled cells were counted under drug treatments using fluorescent 

microscopy. Cells were seeded into 96 well plates (1-5,000 cells per well) and drug treatments 

applied the following day, including DMSO or PBS control (all concentrations contained equal 
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percentage of DMSO or PBS solvent). Images were taken every 8-12 hours with sufficient image 

alignment (montaging) in order to capture about 25-100 cells per well/treatment (over the course 

of the experiment, cell counts typically exceed 1,000 in DMSO or low drug concentration wells). 

Direct measurements of cell counts were made using Cellavista software and Image J macros 

(please see Cell Counting Algorithms section in this Chapter). The images were filtered through 

these computer programs to track and label each cell, quantifying the number of cells in each 

time-stamped frame. Proliferation was plotted as log2 normalized growth, using the initial cell 

count from the first image frame for normalization.  

Cell Counting Algorithms: 

Image J macros are usually employed to directly count the cells. Raw microscopy images 

(usually in the highest, TIFF resolution format) are saved locally for the analysis. The macro 

identifies image files by 2 methods: 1) the file location or folder that is directed to “open,” and 2) 

the string characters in the file name such as “-R0” +R+ “-C0” +C. By understanding the naming 

convention of the Cellavista microscope, we designed macros that can pick and group the 

individual image files of each well, putting all the subfield images together (montaging). Below 

is an example of a macro used. After the images are pulled and concatenated into an image stack, 

the median background is subtracted, I threshold the images for optimal pixel visualization, then 

a series of commands are run using built-in Image J functions. The ending output is a count of 

the particles (or nuclei) present. 

Image J Macro Example: 

//SKMel5 treated on 2 dimensions with varying glucose and PLX4720 

//Have 7 time points taken, this plate is all SKMel5; washed 1x with PBS before drug addition 

//3 x 5 montage, so total 15 in number=15; There was a total of 10 plates run with this group 
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//this for loop pulls all wells in loop 

//for (R=row where to start; R< row to end at; same for column 

for (R=2; R<8; R++) { 

for (C=2; C<12; C++){ 

if (C < 10) 

WellNumber = "-R0"+R+"-C0"+C; 

else 

WellNumber = "-R0"+R+"-C"+C; 

time0 = "F:\\Keisha Hardeman\\hardemkn\\Melanoma\\March 2016\\20160325 SKMel5 
GlucPLX\\1\\"; 

time1 = "F:\\Keisha Hardeman\\hardemkn\\Melanoma\\March 2016\\20160325 SKMel5 
GlucPLX\\2\\"; 

time2 = "F:\\Keisha Hardeman\\hardemkn\\Melanoma\\March 2016\\20160325 SKMel5 
GlucPLX\\3\\"; 

time3 = "F:\\Keisha Hardeman\\hardemkn\\Melanoma\\March 2016\\20160325 SKMel5 
GlucPLX\\4\\"; 

time4 = "F:\\Keisha Hardeman\\hardemkn\\Melanoma\\March 2016\\20160325 SKMel5 
GlucPLX\\5\\"; 

time5 = "F:\\Keisha Hardeman\\hardemkn\\Melanoma\\March 2016\\20160325 SKMel5 
GlucPLX\\6\\"; 

time6 = "F:\\Keisha Hardeman\\hardemkn\\Melanoma\\March 2016\\20160325 SKMel5 
GlucPLX\\7\\"; 

run("Image Sequence...", "open=[time0] number=15 starting=1 increment=1 scale=100 
file=&WellNumber or=[] sort"); 

rename("stack"); 

run("Image Sequence...", "open=[time1] number=15 starting=1 increment=1 scale=100 
file=&WellNumber or=[] sort"); 

rename("time1"); 

run("Concatenate...", "  title=[Concatenated Stacks] image1=[stack] image2=[time1] image3=[-- 
None --]"); 

run("Image Sequence...", "open=[time2] number=15 starting=1 increment=1 scale=100 
file=&WellNumber or=[] sort"); 
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rename("time2"); 

run("Concatenate...", "  title=[Concatenated Stacks] image1=[Concatenated Stacks] 
image2=[time2] image3=[-- None --]"); 

run("Image Sequence...", "open=[time3] number=15 starting=1 increment=1 scale=100 
file=&WellNumber or=[] sort"); 

rename("time3"); 

run("Concatenate...", "  title=[Concatenated Stacks] image1=[Concatenated Stacks] 
image2=[time3] image3=[-- None --]"); 

run("Image Sequence...", "open=[time4] number=15 starting=1 increment=1 scale=100 
file=&WellNumber or=[] sort"); 

rename("time4"); 

run("Concatenate...", "  title=[Concatenated Stacks] image1=[Concatenated Stacks] 
image2=[time4] image3=[-- None --]"); 

run("Image Sequence...", "open=[time5] number=15 starting=1 increment=1 scale=100 
file=&WellNumber or=[] sort"); 

rename("time5"); 

run("Concatenate...", "  title=[Concatenated Stacks] image1=[Concatenated Stacks] 
image2=[time5] image3=[-- None --]"); 

run("Image Sequence...", "open=[time6] number=15 starting=1 increment=1 scale=100 
file=&WellNumber or=[] sort"); 

rename("time6"); 

run("Concatenate...", "  title=[Concatenated Stacks] image1=[Concatenated Stacks] 
image2=[time6] image3=[-- None --]"); 

run("Median...", "radius=2 stack"); 

run("Subtract Background...", "rolling=50 stack"); 

setThreshold(20, 255); 

run("Convert to Mask", " "); 

run("Watershed", "stack"); 

run("Analyze Particles...", "size=100-1500 circularity=0.60-1.00 show=Outlines exclude clear 
include summarize stack"); 

while (nImages>0) {  
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          selectImage(nImages);  

          close();  

      }  

} 

} 

The text is usually saved with basic text editors (ex: TextEdit on MAC processors) and the file 

name is annotated with the experiment date, and cell line name (and sometimes other pertinent 

information).  

Clonal Fractional Proliferation Assay: 

Clonal Fractional Proliferation (cFP) was done as previously described (Frick, Paudel, et al., 

2015). Briefly, sub-confluent cells are seeded at low density (~10–20 cells per well) in 96-well 

culture imaging plates. Plates are kept in humidified and CO2-controlled incubators for 

approximately one week with medium replacement every 3 days to allow single cells to expand 

into colonies of approximately 50 cells. Medium is then replaced with drug- or vehicle-

containing medium and cells are imaged every ~8–12 hours until the end of the experiment, with 

drug replacement every three days. Images are processed as follows: raw images are sequentially 

organized into spatially registered montages and temporally assembled into image stacks. Cell 

counts per colonies were obtained using the freely available software called ImageJ 

(https://imagej.nih.gov/ij/), with a custom-written macro as described previously (Frick, Paudel, 

et al., 2015). This macro differs from the population-counting macros described in the prior 

section of this Chapter. Growth curves of single cell-derived colonies were plotted as described 

above.  
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Single Cell Derived Subclones: 

SKMEL5 sublines were derived from single cells by serial dilution. Briefly, SKMEL5 cells were 

serially diluted and plated to less than 1 cell per well in 96-well imaging plates and imaged to 

identify wells containing a single cell. Cells were expanded in complete growth medium (in the 

absence of any inhibitors) and sequentially transferred to 48-, 24-, and 6-well plates until 

sufficient numbers of cells were available for cryopreservation of each subline. Sixteen such 

sublines were tested for their sensitivity to BRAF inhibitor (PLX4720) prior to cryopreservation 

(about 40+ sublines were produced from the entire assay, but most are not utilized in any 

experiments and have not been characterized).  

Time-Lapse Single Cell Tracking:  

For single-cell tracking, fluorescence images of nuclei were obtained as previously described 

(Quaranta, Tyson, et al., 2009). Briefly, images were acquired using a BD Pathway 855 in 

(spinning disk) confocal mode with a 20× (0.75NA) objective in a CO2- and temperature-

controlled environment every 20 min for 260 h from the time of first drug addition. Medium was 

replaced with freshly prepared drug every three days. Images from each well were organized into 

stacks of time series. Fluorescent nuclei were manually tracked across sequential images to 

obtain cell lifespans and resultant cell fates (death or division) as previously described (Tyson, 

Garbett, et al., 2012). “Birth time” denotes the time at which a mitotic event occurs, giving rise 

to two sister cells. “Lifetime” denotes the duration of single cell viability until they either died or 

underwent another mitosis. End of Experiment (EOE) represents the cells that were born in drug 

but did not exhibit any cell fate during the remaining observation time. A two-dimensional plot 
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of birth time (h) vs lifetime (h) shows the occurrence of differential cell fates in drug at the 

single-cell level.  

Principal Component Analysis (PCA) and Liner Regressions: 

Metabolic parameters were extracted for nine cell lines from two representative experiments, a 

glycolytic function experiment (Glyco Stress Test) and a mitochondria function experiment 

(Mito Stress Test) according to equations in supplemental table.  Bioenergetic Health Index was 

calculated as previously described by Chacko, Kramer, et al. 2014. Correlation between 

metabolic parameter and IC50 was calculated using Pearson correlation. Before principal 

component analysis (PCA), each extracted parameter was Z-score normalized to minimize 

variation due to the different parameter scales. The first principal component was calculated 

using all possible combinations of parameters and each combination was correlated with the 

measured IC50 for nine cell lines in panel.  All code for analysis is available in the public 

repository in GitHub: 

https://github.com/hardemkn/Hardeman_et_al_2016  

Statistical Analyses: 

Data are presented as either an average of 3+ separate experiments or a representative example; 

error bars are means + or – SD and p values were obtained using unpaired t-test (Gaussian 

distribution assumed, two-tailed) done in Prism 7. Statistics for PCA and IC50 calculation are 

described in preceding sections. Estimates of DIP rate are determined within an experiment using 

the sum of cells across all technical replicates at a given time point and obtaining the slope of a 

linear model of log2(cell number) ~ time for time points greater than the observed delay. 

Minimum delay time is estimated by visual inspection of log-growth curves for the time at which 
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they become approximately linear. All data analysis was performed in R (version 3.2.1) and all 

raw data and additional R analysis code is freely available at github.com/QuLab-

VU/DIP_rate_NatMeth2016. 

Publicly available data sets 

Drug-response data were obtained from the Genomics of Drug Sensitivity in Cancer (GDSC) 

project4,9 website at ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-

5.0/gdsc_drug_sensitivity_raw_data_w5.zip and from the Cancer Cell Line Encyclopedia 

(CCLE)6 website at http://www.broadinstitute.org/ccle/ in the data file 

CCLE_NP24.2009_Drug_data_2015.02.24.csv (user login required). 



	 29	

CHAPTER III 

 

CELLULAR PROLIFERATION BIASES IN ONCOGENE-ADDICTED TUMORS: AN 

UNBIASED METRIC OF ANTIPROLIFERATIVE DRUG EFFECT IN VITRO 

 

Adapted From:  Harris LA, Frick PL, Garbett SP, Hardeman KN, et al. (2016). “An Unbiased 

Metric Of Antiproliferative Drug Effect In Vitro.” Nature Methods 13, 497-500. 

 

Abstract: 

 In vitro cell proliferation assays are widely used in pharmacology, molecular and cellular 

biology, and drug discovery. The gold standard metric is the number of viable cells remaining 72 

h after drug addition. This is a “static” drug effect metric, since it is a single-time-point 

measurement. We found that dose–response curves constructed using “static,” standard metrics 

of drug effect can result in erroneous and misleading values of drug-activity parameters, skewing 

data interpretation. This is because these metrics can suffer from time-dependent bias: i.e., the 

metric value varies with the time point chosen for experimental measurement. Using theoretical 

modeling and experimentation, we demonstrate these effects and possible inaccurate assessments 

of parameters such as drug potency and efficacy. To overcome this problem of bias, we propose 

using the slope of the proliferation response once it has linearized: a metric we call the drug-

induced proliferation (DIP) rate.  This DIP rate is essentially the slope of the line on a plot of cell 

population doublings (in log2 scale, on the y-axis) versus time (on the x-axis). My co-authors 

model mathematical, theoretical scenarios or treatments that could produce time-dependent 

biases in in vitro proliferation assays: (1) fast-proliferating cell line with a fast-acting drug, (2) 
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slow-proliferating cell line with a fast-acting drug, and (3) fast-proliferating cell line with a 

delayed-action drug.   

My contribution to this manuscript is primarily in the 2nd half where cell line data is 

utilized to demonstrate the validity of the theoretical models and metrics. Under the section 

“Experimental Demonstration of Time-Dependent Biases” within this chapter, data I generated 

on two breast cancer cell lines (HCC1954 and MDAMB231) is used to experimentally 

demonstrate the scenarios of fast-proliferating cells treated with either fast-acting drugs (the 

metabolic inhibitors rotenone and phenformin) or slow-acting drugs (the tyrosine kinase 

inhibitors lapatinib and erlotinib). We generate dose–response curves from those data using the 

standard static effect metric and our novel DIP rate for various drug exposure times. Consistent 

with our theoretical results, the shape of the static-based dose–response curve strongly depended 

on the time point at which cell counts were taken: an illustration of time-dependent bias. These 

data make up the majority of Figure 3.5 of this chapter. Additionally, proliferative response data 

I collected using BRAF-mutated melanoma cell lines is included in the section title “Biases 

Found For Melanoma Cell Lines In Public Data Sets.” Theoretically and in our hands we show 

that time-dependent biases can shape the metrics we obtained from proliferative assays; 

naturally, we wondered if these biases exist in public datasets. We extracted IC50 values from 

four BRAF-mutated melanoma cell lines (SKMEL5, A2058, A375, and WM115) that were 

shared in common within two large public data sets: the Cancer Cell Line Encyclopedia (CCLE) 

and the Genomics of Drug Sensitivity in Cancer (GDSC). Comparison-wise, our IC50 values 

corresponded closely to the value from at least one of the public data sets. Furthermore, in three 

cases the static- and DIP-rate-based IC50 values corresponded within an order of magnitude, 

however in one case (A375), they differed by nearly two orders of magnitude. This discrepancy 
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can be traced to a period of complex, nonlinear dynamics (brief regression followed by rebound) 

observed for this cell line between 24 h and 72 h post drug addition.  

Introduction: 

Evaluating antiproliferative drug activity on cells in vitro is a widespread practice in 

basic biomedical research (Zuber, McJunkin, et al., 2011; Berns, Hijmans, et al., 2004; Bonnans, 

and Werb, 2014) and drug discovery (Garnett, Edelman, et al., 2012; Wang, McLeod, et al., 

2011; Barretina, Caponigra, et al., 2012). Typically, quantitative assessment relies on 

constructing dose–response curves (Stephenson, 1956). Briefly, a drug is added to a cell 

population over a range of concentrations, and the effect on the population is quantified with a 

metric of choice (Fallahi-Sichani, Monarnejad, et al., 2013). The de facto standard metric is the 

number of viable cells 72 h after drug addition (Garnett, Edelman, et al., 2012; Barretina, 

Caponigra, et al., 2012; Fallahi-Sichani, Monarnejad, et al., 2013; Yang, Soares, et al., 2013). 

Since this is a single-time-point measurement, we refer to it as a 'static' drug effect metric. The 

data is then fit to the Hill equation (Goutelle, Maurin, et al., 2008), a four-parameter log-logistic 

function, to produce a sigmoidal dose–response curve that summarizes the relationship between 

drug effect and concentration. Parameters extracted from these curves include the maximum 

effect (Emax), half-maximal effective concentration (EC50), half-maximal inhibitory 

concentration (IC50), area under the curve (AUC), and activity area (AA) (Garnett, Edelman, et 

al., 2012; Barretina, Caponigra, et al., 2012; Fallahi-Sichani, Monarnejad, et al., 2013; Yang, 

Soares, et al., 2013). These are useful for quantitatively comparing various aspects of drug 

activity across drugs and cell lines (Figure 3.1). 
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Figure 3.1: Different Formulations of Dose Curve Parameters. Potency parameters EC50 and 
IC50 are shown, as are area under the curve (AUC) and activity area (AA; the inverse of AUC), 
parameters that attempt to capture both potency and efficacy in a single quantity. (a) The 
“scaled” form given in equation (S2); (b) The “direct effect” form obtained by rearranging 
equation (S2) to solve for Edrug; (c) The “response ratio” form obtained by dividing the direct-
effect form by E0. Note that we consider here a case where Emax < 0, which is possible when 
using a dynamic drug effect metric such as DIP rate. This results in IC50 < EC50 (see equation 
S5). In cases like this, the IC50 is sometimes referred to as the GI50 (half-maximal growth 
inhibitory concentration). (Figure Contribution: Leonard Harris and Darren Tyson) 

 

We contend that dose–response curves constructed using standard metrics of drug effect 

can result in erroneous and misleading values of drug-activity parameters, skewing data 

interpretation. This is because these metrics suffer from time-dependent bias: i.e., the metric 

value varies with the time point chosen for experimental measurement. We identify two specific 

sources of time-dependent bias: (i) exponential growth and (ii) delays in drug effect stabilization. 

The former can lead to erroneous conclusions (e.g., that a drug is increasing in efficacy over 
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time), while the latter requires shifting the window of evaluation to only include data points after 

stabilization has been achieved (Figure 3.2). 

To overcome this problem of bias, we propose as an alternative drug effect metric the 

drug-induced proliferation (DIP) rate (Tyson, Garbett, et al. 2012; Frick, Paudel, et al. 2015), 

defined as the steady-state rate of proliferation of a cell population in the presence of a given 

concentration of drug. Using related approaches, we previously quantified clonal fitness (Frick, 

Paudel, et al. 2015) and heterogeneous single-cell fates (Tyson, Garbett, et al., 2012) within cell 

populations responding to perturbations. Here, we show that DIP rate is an ideal metric of 

antiproliferative drug effect because it naturally avoids the bias afflicting traditional metrics, it is 

easily quantified as the slope of the line on a plot of the doubling of cell populations versus time 

(Figure 3.2), and it is interpretable biologically as the rate of regression or expansion of a cell 

population. 

 

Figure 3.2: Action of Drugs On Proliferation. Hypothetical growth curves (in log scale) for a 
cell line untreated and treated with two different drugs: a fast-acting drug where the full effect is 
achieved immediately, and a slow-acting drug that causes a temporal delay in the stabilization of 
the drug effect. Also shown is drug-induced proliferation (DIP) rate, defined as the slope of the 
line after the drug effect has stabilized (in this case, immediately for the fast-acting drug and 
≥48h for the slow-acting drug). Note that the DIP rate is shown as equivalent for both the fast- 
and slow-acting drugs for illustration purposes only. (Figure Contribution: Leonard Harris and 
Darren Tyson) 
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Results: 

Theoretical Illustration of Biases in Drug Dose-Response Curves 

To theoretically illustrate the consequences of time-dependent bias in standard drug 

effect metrics, we constructed a simple mathematical model of cell proliferation that exhibits the 

salient features of cultured cell dynamics in response to drug (Figure 3.3). The model assumes 

that cells experience two fates, division and death, and that the drug modulates the difference 

between the rates of these two processes, i.e., the net rate of proliferation. Drug action may occur 

immediately or gradually over time, depending on the chosen parameter values. In all cases, a 

stable DIP rate is eventually achieved and, when calculated over a range of drug concentrations, 

a sigmoidal dose–response relationship emerges (Figure 3.3). 

 

Figure 3.3: Figure legend on next page. 
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Figure 3.3: Mathematical Model of Cell Proliferation.  (a) The model assumes two states, a 
drug-naïve state and a drugged state, each with its own characteristic rate of proliferation (DIP0 
and DIPmax, respectively), which is the difference between the rates of cell division and death. 
The rate of transition from the drug-naïve state to the drugged state depends on the concentration 
of drug, while the reverse transition does not. Hence, as the concentration of drug increases, the 
dynamic equilibrium between states shifts increasingly in favor of the drugged state. (b) Since 
the action of an antiproliferative drug is to reduce, and perhaps reverse, the rate of proliferation 
of a cell population, we assume that the proliferation rate of the drug-naïve state is positive and 
greater than that of the drugged state (which may be positive or negative). In Figure 3.4 of this 
chapter, we assume that in each case the drug is cytotoxic at saturating drug concentrations (i.e., 
causes regression of the cell population). Hence, the DIP rate of the drugged state (DIPmax) is 
assumed to be negative. (c) An example dose–response curve predicted by the two-state model 
under the partial equilibrium assumption (PEA). The curve was generated from equation (S27) 
with EC50 = 1e–8 M, DIP0 = 0.06*ln(2) h-1, and DIPmax = –0.03*ln(2) h-1. (d) An example dose–
response curve predicted by the two-state model in conditions where the PEA does not hold. The 
curve was generated by numerical integration of equations (S12) and (S13) with kon = 1e5 M-1 h-

1, koff = 1e–3 h-1, kdiv– kdeath = 0.06*ln(2) h-1, and kdiv* – kdeath* = –0.03*ln(2) h-1. Note that these 
are consistent with the values used in part (c); see equations (S22), (S23), and (S26). Arrows 
highlight largest differences between calculated values (circles) and the Hill equation fit (black 
line). (Figure Contribution: Leonard Harris and Darren Tyson) 

 

We model three scenarios: treatment of a fast-proliferating cell line with a fast-acting 

drug (Figure 3.4, part a), treatment of a slow-proliferating cell line with a fast-acting drug 

(Figure 3.4, part b), and treatment of a fast-proliferating cell line with a delayed-action drug 

(Figure 3.4, part c). In each case, we generate simulated growth curves in the presence of 

increasing drug concentrations (Figure 3.4, columns 1 and 2) and from these produce static dose–

response curves by taking cell counts at single time points between 12 h and 120 h (Figure 3.4, 

column 3). As expected, in each scenario the shape of the dose–response curve varies depending 

on the time of measurement. Consequently, parameter values (EC50 and AA) extracted from 

these curves also vary (Figure 3.4, columns 4 and 5). Similar results are obtained for an 

alternative drug effect metric proposed by the U.S. National Cancer Institute's Developmental 

Therapeutics Program (Shoemaker, 2006). In contrast, as DIP rate is the slope of a line, it is 

independent of measurement time. Using it as the drug effect metric gives a single dose–
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response curve (Figure 3.4, columns 3 and 6) and single values of the extracted drug-activity 

parameters (Figure 3.4, columns 4 and 5).  

 

 

 

Figure 3.4: Theoretical Illustration of Time-dependent Bias. Computational simulations of 
the effects of drugs on: (a) a fast-growing cell line treated with a fast-acting drug; (b) a slow-
growing cell line treated with a fast-acting drug; (c) a fast-growing cell line treated with a slow-
acting drug. In all cases, in silico growth curves, plotted in linear (column 1) and log2 (column 2) 
scale, are used to generate static- (column 3) and DIP rate-based (columns 3 and 6) dose–
response curves, from which values of EC50 (column 4) and activity area (AA; column 5) are 
extracted. For DIP rate-based values of EC50 and AA, the black triangle denotes the first time 
point used to calculate the DIP rate (i.e., after the drug effect has stabilized; see Online 
Methods); the black dashed line signifies that the value remains constant for all subsequent time 
points. Note that the “response ratio” (column 3) and “direct effect” (column 6) versions of the 
DIP rate-based dose–response curves (Figure 3.1) convey complementary information about the 
activity of a drug on a cell line. (Figure Contribution: Leonard Harris and Darren Tyson) 
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Experimental Demonstration of Time-Dependent Biases 

As a first confirmation of our theoretical findings, we subjected triple-negative breast 

cancer cells (MDA-MB-231) to the metabolic inhibitors rotenone (Figure 3.5, part a) and 

phenformin (Figure 3.5, part b). Using fluorescence microscopy time-lapse imaging (Tyson, 

Garbett, et al., 2012; Frick, Paudel, et al., 2015; Quaranta, Tyson, et al., 2009), we quantified 

changes in cell number over time for a range of drug concentrations. For both drugs, we 

observed a rapid stabilization of the drug effect (<24 h delay) and stable exponential proliferation 

thereafter, reminiscent of the growth dynamics of the theoretical cell lines treated with fast-

acting drugs. We generated dose–response curves from these data using the standard static effect 

metric and DIP rate for various drug exposure times. Consistent with our theoretical results, the 

shape of the static-based dose–response curve strongly depended on the time point at which cell 

counts were taken, an illustration of time-dependent bias. The DIP rate, on the other hand, was 

free of time-dependent bias and produced a single dose–response curve in both cases.  
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Figure 3.5: Figure legend on next page. 
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Figure 3.5: Experimental Confirmation of Time-dependent Bias. Population growth curves 
(log2 scaled) and derived dose–response curves (static- and/or DIP rate-based) for (a) MDA-
MB-231 triple-negative breast cancer cells treated with rotenone; (b) MDA-MB-231 cells treated 
with phenformin; (c) three single-cell-derived drug-sensitive (DS) clones of the EGFR mutant-
expressing lung cancer cell line PC9 treated with erlotinib; (d) HCC1954 HER2-positive breast 
cancer cells treated with erlotinib and lapatinib. Data for (a) and (b) are from single experiments 
with technical duplicates; data in (c) are from individual wells for two experiments containing 
technical duplicates (growth curves) and from a single experiment with technical duplicates 
(dose–response curves); data in (d) are sums of technical duplicates from a single experiment 
(growth curves) and mean values (circles) with 95% confidence intervals (gray shading) on the 
log-logistic model fit (dose–response curves; n=4, 6 for erlotinib and lapatinib, respectively).  
 

These DIP-rate-based dose–response curves produce interesting insights (Figure 3.5, 

parts a and b). For example, they indicate that while rotenone is much more potent than 

phenformin (EC50 ≅ 8.5 nM versus 25 µM), phenformin is more effective (Emax/E0 ≅ −0.1 

versus 0.1). The static dose–response curves can discriminate the ordering of potencies (rotenone 

>> phenformin) but not the ordering of efficacies: i.e., the static drug effect metric obscures the 

crucial fact that at saturating concentrations phenformin is cytotoxic (cell populations regress) 

while rotenone is partially cytostatic (cell populations continue to expand slowly). This 

information is critical to studies assessing drug mechanism of action. This example illustrates the 

perils of biased drug effect metrics and the ability of DIP rate to produce reliable dose–response 

curves from which accurate quantitative and qualitative assessments of antiproliferative drug 

activity can be made. 

To illustrate the confounding effects that a delay in the stabilization of the drug effect can 

have, we examined single-cell-derived clones of the lung cancer cell line PC9, which is known to 

be hypersensitive to erlotinib (Gong, Somwar, et al., 2007), an epidermal growth factor receptor 

(EGFR) kinase inhibitor. Consistent with our previous report (Tyson, Garbett, et al., 2012), three 

drug-sensitive PC9-derived clones (DS3, DS4, and DS5) each responded to 3 µM erlotinib with 

nonlinear growth dynamics over the first 48–72 h, followed by stable exponential proliferation 
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thereafter (Figure 3.5, part c). These dynamics are reminiscent of those for the theoretical fast-

proliferating cell line with a delayed-action drug (Figure 3.4, part c). Because of the delay in 

drug action, all three clones had nearly identical population sizes 72 h after drug addition for all 

concentrations considered. The static 72-h metric thus produces essentially identical dose–

response curves for all clones (data not shown). In contrast, dose–response curves based on DIP 

rate make a clear distinction between the clones in terms of their long-term response to drug: i.e., 

erlotinib is cytotoxic (negative DIP rate) for two of the clones but partially cytostatic (positive 

DIP rate) for the other (Figure 3.5, part c).  

We then investigated the effects of erlotinib and lapatinib (a dual EGFR/human EGFR 2 

(HER2) kinase inhibitor) on HER2-positive breast cancer cells (HCC1954; delay ~48 h; Figure 

3.5, part d). In each case, DIP-rate-based dose–response curves produced EC50 values more than 

five-fold larger than their static counterparts; i.e., by the static drug effect metric the drugs 

appeared significantly more potent than they actually were. Taken together with the PC9 results 

(Figure 3.5, part c), these data illustrate the importance of accounting for delays in drug action 

when assessing antiproliferative drug activity, and they further emphasize the ability of the DIP 

rate metric to produce accurate drug-activity parameters and qualitative conclusions about drug-

response dynamics. 

 

Biases Found For Melanoma Cell Lines In Public Data Sets 

Within the last several years, a number of studies have been published reporting drug 

responses for hundreds of cell lines derived from various cancer types (Garnett, Edelman, et al., 

2012; Barretina, Caponigra, et al., 2012; Yang, Soares, et al., 2013; Seashore-Ludlow, Rees, et 

al., 2015; Rees, Seashore-Ludlow, et al. 2016) and organ sites (Fallahi-Sichani, Honarnejad, et 
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al., 2013; McDermott, Sharma, et al., 2008; Heiser, Wang, et al., 2009). Raw data are available 

for the responses of over 1,000 cancer cell lines to a panel of 24 drugs in the Cancer Cell Line 

Encyclopedia (CCLE) (Barretina, Caponigra, et al., 2012) and for the responses of over 1,200 

cell lines to 140 drugs in the Genomics of Drug Sensitivity in Cancer (GDSC) project (Yang, 

Soares, et al., 2013). These data are largely based on 72-h cell counts, a metric that we have 

shown contains time-dependent bias. 

To investigate bias in these data sets, we treated four BRAFV600E- or BRAFV600D-

expressing melanoma cell lines with various concentrations of the BRAF-targeted agent 

PLX4720, an analog of vemurafenib. We produced experimental growth curves (Figure 3.6, part 

a) and static- and DIP-rate-based dose–response curves (Figure 3.6, part b), and we extracted 

IC50 values for each cell line and compared these to IC50 values obtained from the CCLE and 

GDSC data sets (Figure 3.6, part c). In all cases, our IC50 values corresponded closely to the 

value from at least one of the public data sets. While in three cases the static- and DIP-rate-based 

IC50 values corresponded within an order of magnitude, in one case (A375), they differed by 

nearly two orders of magnitude. This discrepancy can be traced to a period of complex, nonlinear 

dynamics (brief regression followed by rebound) observed for this cell line between 24 h and 72 

h post drug addition (Figure 3.6, part a). This result is particularly intriguing because it shows 

that, based on DIP rate, this cell line is not much different than the other three cell lines in terms 

of drug sensitivity. Using the biased static drug effect metric, however, one would be led to the 

incorrect conclusion that it is significantly more sensitive. It is likely that cases like this abound 

within these and other similar data sets (Seashore-Ludlow, Rees, et al. 2015; Rees, Seashore-

Ludlow, et al. 2016), and this likelihood illustrates the critical need for new antiproliferative drug 

effect metrics.  
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Figure 3.6: Bias In Potency Metrics Found In Public Datasets. (a) Population growth curves 
(log2 scaled) for four select BRAF-mutant melanoma cell lines treated with various 
concentrations of the BRAF inhibitor PLX4720; (b) dose–response curves based on the static 
effect metric (colored lines) and DIP rate (black line); (c) static- (circles) and DIP rate-based 
(triangle+line) estimates of IC50 for each measurement time point. IC50 values obtained from 
public data sets (CCLE: Cancer Cell Line Encyclopedia; GDSC: Genomics of Drug Sensitivity 
in Cancer), based on the static 72h drug effect metric, are included for comparison. The triangle 
denotes the first time point used in calculating the DIP rate and the black line signifies that the 
value remains constant for all subsequent time points. Data shown are from a single experiment 
with technical duplicates. Experiment has been repeated at least twice with similar results. 
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Discussion: 

Current protocols for cell proliferation assays are based on informal 'rules of thumb', for 

example, counting cells after 72 h of treatment to ameliorate the impact of complex dynamics 

and delays in drug response. However, these de facto standards have no theoretical basis and, as 

demonstrated here, they suffer from time-dependent bias that leads to erroneous conclusions. In 

light of the widespread applications of cell proliferation assays in oncology, pharmacology, and 

basic biomedical science (Sporn, & Harris, 1981) (for example, to assess activity of cytokines, 

cell surface receptors, altered signaling pathways, gene overexpression and silencing, or cell 

metabolic adaptation to varied microenvironmental conditions), it is imperative that the quality 

of the metric for antiproliferative assays be improved. Toward this end, we have proposed DIP 

rate as a viable, unbiased alternative antiproliferative drug effect metric. DIP rate overcomes 

time-dependent bias by log-scaling cell count measurements to account for exponential 

proliferation and by shifting the time window of evaluation to accommodate lag in the action of a 

drug, changes that do not substantially alter experimental design (Supplementary Note and 

Supplementary Figs. 6, 7, 8, 9). Moreover, DIP rate is an intuitive, biologically interpretable 

metric with a sound basis in theoretical population dynamics, and it faithfully captures, within a 

single value, the long-term effect of a drug on a cell population.  
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CHAPTER IV 

 

DEPENDENCE ON GLYCOLYSIS SENSITIZES BRAF-MUTATED MELANOMA FOR 

INCREASED RESPONSE TO BRAF INHIBITION  

 

Adapted From:  Hardeman KN, Peng C, Paudel BB, Meyer CT, et al. (2017). “Dependence On 

Glycolysis Sensitizes BRAF-mutated Melanoma For Increased Response To BRAF Inhibition.” 

Scientific Reports 7; 42604. 

 

Abstract: 

Dysregulated metabolism can broadly affect therapy resistance by influencing 

compensatory signaling and expanding proliferation. Given many BRAF-mutated melanoma 

patients experience disease progression with targeted BRAF inhibitors, we hypothesized 

therapeutic response is related to tumor metabolic phenotype, and that altering tumor metabolism 

could change therapeutic outcome. We demonstrated the proliferative kinetics of BRAF-mutated 

melanoma cells treated with the BRAF inhibitor PLX4720 fall along a spectrum of sensitivity, 

providing a model system to study the interplay of metabolism and drug sensitivity. We 

discovered an inverse relationship between glucose availability and sensitivity to BRAF 

inhibition through characterization of metabolic phenotypes using nearly a dozen metabolic 

parameters in Principle Component Analysis. Subsequently, we generated rho0 variants that 

lacked functional mitochondrial respiration and increased glycolytic metabolism. The rho0 cell 

lines exhibited increased sensitivity to PLX4720 compared to the respiration-competent parental 

lines. Finally, we utilized the FDA-approved antiretroviral drug zalcitabine to suppress 
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mitochondrial respiration and to force glycolysis in our cell line panel, resulting in increased 

PLX4720 sensitivity via shifts in EC50 and Hill slope metrics.  Our data suggest that forcing 

tumor glycolysis in melanoma using zalcitabine or other similar approaches may be an adjunct to 

increase the efficacy of targeted BRAF therapy. 

Introduction: 

Melanoma is the most malignant form of skin cancer, and roughly 50% of clinical 

isolates have a mutation in the BRAF kinase of the mitogen-activated protein kinase (MAPK) 

pathway (Davies, Bignell, et al., 2002; Ribas and Flaherty, 2011). Ninety percent of those BRAF 

mutations are missense mutations that change the valine at position 600 to glutamic acid 

(V600E) or aspartic acid (V600D) (Ascierto, Kirkwood, et al., 2012). The mutation confers 

constitutive activation of the BRAF kinase and drives oncogenic signaling through MEK 

phosphorylation. Targeted therapies against the mutant BRAF have prolonged progression-free 

survival and overall survival in Phase III clinical trials (Chapman, Hauschild, et al., 2011). 

Unfortunately, most patients will exhibit some degree of disease progression while treated with a 

BRAF inhibitor, with nearly 50% of patients progressing after only 6 to 7 months of initial 

treatment (Chan, Haydu, et al., 2014).  There have been a variety of mechanisms that underlie 

initial and acquired drug resistance described in the literature. Generally, mechanisms of 

resistance to anti-BRAF therapies are put into MEK-dependent and MEK-independent 

categories. MEK-dependent mechanisms include mutations in NRAS, MEK1 and MEK2 

(Nazarian, Shi, et al., 2010), loss of RAS regulation by NF1 (Hodis, Watson, et al., 2012; 

Whittaker, Theurillat et al., 2013), COT overexpression driving MEK signaling (Johannessen, 

Boehm, et al., 2010), and genetic alterations in BRAF itself, such as truncation or amplification 

(Poulikakos, Persaud, et al., 2011). MEK-independent mechanisms of resistance include receptor 
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tyrosine kinase protein and ligand overexpression, such as cMET, IGF1R, and PDGFRb 

(Nazarian, Shi, et al., 2010), and signaling through PI3K (Villanueva, Vultur and Herlyn, 2011). 

Unfortunately, more than 40% of the resistance found in patients who progressed on targeted 

therapy cannot be attributed to any of these mechanisms Rizos, Menzies, et al., 2017). One of the 

features common to all of the known pathways that contribute to resistance is that they exert 

direct or indirect control of multiple cellular metabolic pathways—contributing to the single 

“hallmark” of metabolic reprogramming. In the last several years, there has been an increasingly 

intense focus on tumor metabolism as an exploitable therapeutic avenue (Vander Heiden, 

Cantley, et al., 2009; DeBerardinis, Lum, et al., 2008; DeBerardinis, and Chandel, 2016; 

Hanahan and Weinberg, 2011), with the success of asparaginase in the treatment of acute 

lymphoblastic leukemia (ALL) being just one example that has achieved widespread clinical use 

(Clavell, Gelber, et al., 1986; Silverman, Gelber, et al., 2001), and with many other metabolism-

based therapies under active development (Wang, Karamanlidis, and Tian, 2016; Zhao, Butler, 

and Tan, 2013). 

Dysregulated metabolism in cancer has been shown to affect treatment outcome via 

multiple pathways, including the activation of compensatory receptor tyrosine kinase signaling to 

bypass molecular targeted therapies, the repression of pro-apoptotic signaling, and limitation of 

drugs’ access to molecular targets through active and passive mechanisms (Zhao, Butler, and 

Tan, 2013). Komurov et al showed chronic lapatinib treatment of HER2+ breast cancer cell lines 

produced cells with an advanced nutrient starvation phenotype Komurov, Tseng, et al., 2012).  

Furthermore, the cells were sensitive to the antihelminthic pyrvinium pamoate, which targets 

mitochondrial function under various conditions (Tomitsuka, Kita, and Esumi, 2012), 

particularly glucose deprivation (Esumi, Kurashima, and Hanaoka, 2004).  Recently, it has been 
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shown in BRAF-mutated melanoma that chronic treatment with BRAF inhibitor induces 

glutamine dependence that correlates with drug resistance (Baenke, Chaneton, et al., 2015; 

Hernandez-Davies, Tran, et al., 2015). We were interested in the prospect that the molecular 

metabolic landscape of any individual tumor might have a direct relationship to its sensitivity to 

targeted therapies.  

The same metabolic pathways that have been targets for investigation in other 

malignancies have also been explored in BRAF-mutated melanoma, but a consensus of the major 

metabolic program exhibited by BRAF-mutated melanomas, or even whether a single dominant 

metabolic program exists, is lacking. BRAF-mutated melanomas have conversely been 

characterized as exhibiting primarily aerobic glycolysis (Parmenter, Kleinschmidt, et al., 2014) 

or oxidative phosphorylation (Vazquez, Lim, et al., 2013; Haq, Shoag, et al., 2013). Moreover, 

the relationship between metabolic program and therapeutic response in BRAF-mutated 

melanoma is poorly understood, so we set out to probe the phenotypic relationship of 

metabolism and responses to the BRAF inhibitor vemurafenib. 

In the present study, we used a panel of human BRAF-mutated melanoma cell lines to 

demonstrate in vitro variability in response to PLX4720, a BRAF inhibitor and analogue of 

vemurafenib.  Utilizing our previously described method for measuring proliferative rate under 

various treatment conditions (Harris, Frick, et al., 2016), we calculated a metric describing the 

dependence of proliferation on drug concentration to place the cell lines on a continuum of 

sensitivity to PLX4720. We then examined baseline glycolytic and oxidative metabolism and 

found a relationship between reliance on glycolysis and sensitivity to inhibition by PLX4720.  

Building upon this observation, we show that forcing exclusive reliance on glycolysis via 

mitochondrial DNA depletion using either ethidium bromide or zalcitabine (a first generation 
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antiretroviral used to treat HIV) significantly attenuates intrinsic resistance to PLX4720 in our 

cell line panel. 

Results:  

PLX4720 Response Spectrum and Global Metabolism 

To confirm the variability in response to mutant BRAF inhibition observed in patients 

could be modeled in vitro, we measured the cell lines’ proliferative responses to BRAF 

inhibition. The proliferative kinetics of the cell lines were quantified in the presence of 

PLX4720. Based on the PLX4720-treated DIP rates, BRAF-mutated melanoma cell lines fall 

along a response spectrum or continuum (Figure 4.1), from highly sensitive (e.g., WM164) to 

largely insensitive (A2058). The IC50 metric is calculated from a log-logistic curve fit to the 

estimated rate of proliferation obtained at each drug concentration, known as the drug-induced 

proliferation (DIP) rate (Harris, Frick, et al., 2016).  
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Figure 4.1: Heterogeneous Responses to BRAF Inhibition. Proliferative spectrum of IC50’s 
for PLX4720 based on DIP rate. The dose-response curves are generated using a 2-fold dilution 
of PLX4720 from 32 µM down to zero (DMSO). The proliferative rates are calculated using the 
slope of the log2-normalized population curve after 48 hours. Mean responses are shown as solid 
lines, 95% confidence intervals as shaded regions. All results are based on 3+ biological 
replicates.  
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We next wanted to confirm that the measured variability in response to PLX4720 

treatment was not due to phenotypic selection of drug-resistant subclones during the short 4-5 

day timeframe of our experiments. We leveraged a fluorescent ubiquitin-dependent cell cycle 

indicator (FUCCI; mAG-gem1-110) to detect cells that have committed to cell division (i.e. 

passed the G1/S transition). We reasoned that if intrinsically resistant clones exist within the 

population, they would be enriched in cells that continue to proliferate in the presence of BRAF 

inhibition and would remain resistant after isolation. To test this, we treated the BRAF-mutated 

melanoma lines with PLX4720 or DMSO for 72 hours followed by flow sorting for the actively 

dividing FUCCI+ cells from both groups, then re-plated them in the absence of drug for 24 h and 

treated a second time with PLX4720. The proliferative responses of the two groups were 

essentially the same, indicating that PLX4720 does not appear to select for resistant populations 

in the short term (Figure 4.2). Stated differently, cells that actively divide in the presence of 

PLX4720 have similar proliferation kinetics when re-challenged with the drug. 

 

 

Figure 4.2 Figure legend on next page. 
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Figure 4.2: FUCCI-sorting Experiment: Cells Retain No Memory. Schematic outline of the 
flow of the experimental design: A375 cells were pre-treated for 72 hours with either DMSO or 
PLX4720, then flow sorted for positive fluorescence-ubiquitin-linked cell cycle indicator 
(FUCCI). Those cells were seed in 96 well plates overnight, then retreated with PLX4720.  The 
proliferation was log-2 normalized and plotted as population doubling (y-axis) over time (x-axis, 
in hours). Data shown are from a single experiment with technical duplicates; experiment has 
been repeated with similar results.  

 

To determine the metabolic profiles exhibited by our panel of BRAF-mutated 

melanomas, we quantified lactate-producing glycolysis and mitochondrial oxidative metabolism 

using the Seahorse extracellular flux analyzer platform.  Using a panel of 10 BRAF-mutated 

melanoma cell lines, we found most lines can variably utilize glucose and consume oxygen as 

part of mitochondrial respiration (Figure 4.3). Notably, most cells have minor glycolytic reserve 

after the addition of oligomycin (Figure 4.3, lower), indicating most of the melanoma cell lines 

are functioning at or near their glycolytic capacity. The basal respiration and oxygen 

consumption also varied across cell lines. Additionally, the subsequent decreases in oxygen 

consumption rate (OCR) after the addition of oligomycin (Figure 4.3, upper) suggest varying 

dependencies on ATP-linked respiration (or ATP turnover supported by oxidative 

phosphorylation) across the cell lines.  In totality, these data suggest broad, intrinsic metabolic 

heterogeneity across the cell line panel. 
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Figure 4.3: Global Oxidative Phosphorylation and Glycolysis. Upper: Oxygen consumption 
profiles for the cell lines with sequential additions of oligomycin (1 µM), FCCP (1 µM) and 
Rotenone/Antimycin A (0.5 µM). Lower: Extracellular pH profiles for the cell lines with 
sequential additions of glucose (10 mM), oligomycin (1 µM), and 2-deoxyglucose (0.5 µM). 
Data shown are from a single experiment with minimum 5 technical replicates; experiment has 
been repeated at least twice with similar results. Error bars are standard deviation.  
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Given the observed heterogeneity in PLX4720 responses without an obvious biological 

mutational trend (Figures 4.1 and Table 1) and the variable metabolic strategies employed by our 

panel of BRAF-mutated melanomas, we sought to examine more closely whether a direct 

relationship exists between metabolism and drug response.  

 

Table 1. Relevant Mutation Biology and Calculated IC50. Cell line mutation information 
from WISTAR Institute website, COSMIC website, and Birgit Schittek, et al., Int J. of Cancer; 
82, 583-585 (1999). HOMOZ=homozygous; MU=mutated; WT=wild type; HEM 
DEL=hemizygous deletion 

 

Glucose Is A Key Nutrient Influencing Response 

To quantify the relationship between the metabolic program of BRAF-mutated melanoma 

cell lines and PLX4720 response, eleven metabolic parameters were calculated from 

measurements of mitochondrial oxygen consumption and glycolytic function curves for nine cell 

lines (parameters described in Figure 4.4 schema).  
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Figure 4.4: Schema For Principal Component Analysis. Schematic diagram describing the 
components and metrics from Seahorse assays used in the PCA; Bioenergetic Health Index 
(BHI) calculation is described in methods. 

 

Each metabolic parameter was independently tested for correlation with the measured IC50 for 

PLX4720 for each cell line (Figure 4.5).  We found a significant inverse correlation (r = -0.495) 

between glycolysis and the measured IC50 values, suggesting increased glycolysis in BRAF-

mutant cell lines is indicative of greater sensitivity to BRAF inhibition (and thus a lower IC50).   
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Figure 4.5: Independent Correlation Analysis. Metabolic parameters individually tested for 
correlation (Pearson) to PLX4720 IC50 of the cells. Parameters include: Non-mitochondrial 
respiration; Basal respiration; ATP production; Bioenergetic health index; Proton leak; Max 
respiration; Spare capacity; Glycolysis; Glycolytic capacity; Glycolytic reserve; and Non-
glycolytic acidification. 

 

Next we determined how different combinations of the metabolic parameters correlated 

with drug sensitivity using Principle Component Analysis (PCA). This analysis comparing all 

possible combinations of parameters identified a linear combination of glycolysis and glycolytic 

reserve as strongly correlating to the cell line's IC50 values, with the combination of these two 

metabolic parameters accounting for more than two-thirds (69.7%) of the variance in the 

parameter ensemble across the cell line panel (Figure 4.6).  Based on these results, we predicted 

increasing the rate of glycolysis while depleting glycolytic reserve would decrease the IC50 

value for a BRAF-mutated melanoma to PLX4720 treatment. 
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Figure 4.6: PCA Analysis. The first principle component of a linear combination of glycolysis 
and glycolytic reserve parameters (in cell lines) correlates with IC50. Corr=correlation. 

 

We titrated across serial dilutions of PLX4720 and glucose concentrations to test whether 

glucose availability and PLX4720 response were functionally related. We first quantified drug-

induced proliferative (DIP) rates across the spectrum of glucose/PLX4720 conditions in 6 

melanoma cell lines. We found that the DIP rate responses are largely linear and 

glucose/PLX4720 concentration dependent, as shown in Figure 4.7. Glucose-replete conditions 

exhibited the “best” or highest DIP rates for each cell line (indicating more rapid cell 

proliferation), and the glucose-deprived conditions the poorest or lowest DIP rates, as might have 

been expected. The key finding was each cell line appears to have the capacity to revert 

phenotypically to a more PLX4720-sensitive phenotype (i.e. lower DIP rate) by simply lowering 

the glucose in the medium, and every cell line exhibited sensitivity to glucose limitation to 

approximately the same degree. Using proliferation as a phenotypic output, every cells’ 

phenotype is pushed into a more responsive zone of lowered proliferation. These data suggest 

that glucose is a key nutrient tied to BRAF inhibition, and PLX4720 efficacy is maximized in 

glucose-limiting conditions.   
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Figure 4.7: Glucose Affects PLX Response. Un-scaled heatmap of the proliferative responses 
of cell lines treated in PLX4720 dose-response assay coupled with varying glucose 
concentrations (indicated in legend, 5 glucose/media conditions total). The doses of PLX4720 
are the x-axis (10 doses, from 32 µM to zero/DMSO) and concentrations of glucose are the y-
axis (from 25 mM to 1.55 mM, labeled using legend key). Data shown are from a single 
experimental run; experiment has been repeated at least once with similar results. 
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To test the hypothesis that increased glycolytic dependence is functionally related to 

enhanced PLX4720 response, we generated rho0 variants of two of our melanoma lines, A2058 

and WM164.  These two lines were chosen because they represented the least and most sensitive 

lines, respectively, to PLX4720 in our assays.  Generating rho0 variants (which lack 

mitochondrial DNA and, thus, lack a functional electron transport chain) allowed assurance of a 

quantitative shift to an exclusively glycolytic metabolic program.  We confirmed depletion of 

mitochondrial DNA (data not shown) and showed absence of mitochondrial oxygen consumption 

and a significant increase in glycolytic rate combined with a significantly decreased glycolytic 

reserve (Figure 4.8) compared to the parent line for each variant.   
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Figure 4.8: Metabolic Phenotype of Rho0 Variants. Extracellular pH or acidification rate of 
parental A2058 and WM164, and their Rho0 derived counterparts; bar plot showing maximum 
ECAR after adding glucose (10 mM), with t-test between parental and Rho0. Oxygen 
consumption rate of parental A2058 and WM164, and their Rho0 derived counterparts; bar plot 
showing maximum OCR after adding FCCP (1 µM), with t-test between parental and Rho0. Data 
shown are from a single experiment with 5-6 technical replicates; experiment has been repeated 
at least twice with similar results. Error bars are standard deviation. 

 

Rho0 cells have been shown to be capable of apoptosis (Kukat, Kukat, et al., 2008; 

Gregoire, Morais, et al., 1984) and are largely reported as carrying “ghost” mitochondria that 

lack electron transport chain functionality. Using the rho0 cells as a model, we tested whether 

forced glycolysis impacts response to BRAF inhibition by treating the rho0 variants with 

increasing doses of PLX4720. We first noted that, as might be expected, the overall proliferative 
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rates of the rho0 cells were decreased compared to their parental counterparts (Figure 4.9). 

However, even taking this into account, the percent inhibition (based on the final population 

doublings) with PLX4720 treatment was significantly increased in the A2058 & WM164 Rho0 

cells compared to their parental cell lines (Figure 4.9). 

	

	  

Figure 4.9: Rho0 Cells Have Increased Inhibition. Log2 normalized proliferation of parental 
A2058 treated with DMSO or 32 µM PLX4720, and Rho0 A2058 treated with DMSO or 32 µM 
PLX4720 (purple). Similar population doublings-time plot of WM164 (lower panel), with 
additional dose of 1 µM PLX4720. (D & E) Quantification of percent decrease in Doublings 
from respective DMSO control (ie., parental compared to parental, or Rho0 compared to Rho0). 
Data shown are from a single experiment with technical duplicates; experiment has been 
repeated at least twice with similar results. Error bars are standard deviation. 
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Anti-retrovirals Can Be Repurposed To Target BRAF-Mutated Melanomas 

Finally, we sought to replicate these findings and to force glycolysis using an alternative 

method with greater translational potential than ethidium bromide treatment. To accomplish this, 

we utilized the FDA-approved antiretroviral drug zalcitabine, also called ddC, in our cell lines. 

Zalcitabine/ddC is a nucleoside analog utilized as a first generation antiretroviral in the treatment 

of HIV (Lee, Hanes, and Johnson, 2003), falling out of favor largely due to the mitochondrial 

toxicities it exerted on various tissues and organs and the development of less toxic and more 

effective antiretrovirals (Birkus, Hitchcock, and Cihlar, 2002; Dalakas, Semino-Mora, and Leon-

Monzon, 2001). In humans, ddC has been shown to deplete mitochondrial DNA (Reiss, Casula, 

et al., 2004; Walker, Bauerle, et al., 2004), and in vitro assays have been utilized with up to 300 

µM ddC (Birkus, Hitchcock, and Cihlar, 2002), with efficient mtDNA depletion typically 

observed at concentrations in the 10-50 µM range. In our melanoma cell lines, treatment with 40 

µM ddC phenocopied the suppression of mitochondrial oxygen consumption, the increase in 

glycolysis, and the reduction in glycolytic reserve (Figure 4.10) seen in the rho0 cell lines.  
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Figure 4.10: Anti-retrovirals Can Deplete mtDNA. (Upper) Extracellular pH or acidification 
rate of parental A2058 and WM164, and their ddC/zalcitabine treated counterparts (40 µM 
zalcitabine); bar plot showing maximum ECAR after adding glucose (10 mM), with t-test 
between parental and ddC treated cells. (Lower) Oxygen consumption rate of parental A2058 
and WM164, and their ddC/zalcitabine treated counterparts (40 µM zalcitabine); bar plot 
showing maximum OCR after adding FCCP (1 µM), with t-test between parental and ddC 
treated cells. 
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Utilizing our previous model for in vitro assays (Harris, Frick, et al., 2016), we found the 

PLX4720 response in ddC-treated WM164 was significantly increased: the proliferative kinetics 

phenocopied the prior WM164 rho0 experiments and the percent decrease in doublings was 

statistically significant (Figure 4.11, upper). In contrast, the PLX4720-resistant line A2058 was 

more substantially affected by the attenuation of proliferation associated with ddC treatment 

itself: the percent decrease in doublings was not significant. However, the effect on proliferative 

kinetics of a single ddC treatment phenocopied the high-dose PLX4720 treatment (Figure 4.11).   

		 	

	 	

 

Figure 4.11: Figure legend on next page. 
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Figure 4.11: Anti-retroviral Effects On Proliferation. Left: Log2 normalized proliferation of 
ddC treated WM164 or ddC treated A2058. Right: Quantification of percent decrease in 
Doublings from respective DMSO controls for the cell lines (not statistically significant). Data 
shown are from a single experiment with technical duplicates; experiment has been repeated at 
least twice with similar results. Error bars are standard deviation. 

Moreover, ddC treatment in A2058 reduced the EC50 for PLX4720 ten-fold and also 

substantially reduced Emax (Figure 4.12, upper), both effects consistent with significantly 

enhanced efficacy of PLX4720 in the context of ddC pretreatment.  Additionally, the rate of 

proliferation affected the dose-response slopes, or Hill coefficients, revealing that ddC treatment 

decreased the Hill slope metric (Figure 4.12, lower). 

		

	 	

Figure 4.12: Anti-retrovirals Shift Dose Dynamics With BRAF Inhibition. Upper: Drug 
Induced Proliferative (DIP) metric dose response curves (non-normalized) marking model 
estimated EC50 values in nM (red dashed vertical line), and model estimated Emax values (grey 
dashed horizontal line). Lower: Non-normalized (bottom left) and normalized (bottom right) 
dose-response curves of A2058 parental and A2058 pre-treated with ddC/Zalcitabine. 
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Mitochondrial respiration provides more than just ATP through oxidative 

phosphorylation, as rho0 cells and electron deficient cells can still proliferate if provided uridine 

and pyruvate (King and Attardi, 1989; King and Attardi, 1996a; King and Attardi, 1996b). To 

test whether increased PLX4720 sensitivity in the ddC –treated A2058 might be due to a 

deficiency in the necessary biosynthetic intermediate aspartate, which is normally produced 

through mitochondrial respiration (Sullivan, Gui, et al., 2015; Birsoy, Wang, et al., 2015), we 

supplemented both pyruvate and exogenous aspartate to attempt to rescue the ddC-treated A2058 

cells.  Not only did this not rescue the proliferative response, proliferative rates were actually 

further decreased upon treatment with PLX4720 (Figure 4.13).  

 

Figure 4.13: No Rescue From Aspartate Nor Pyruvate During BRAF Inhibition. Log2-
normalized proliferation of parental A2058 (top left plot) and pre-treated ddC/zalcitabine A2058 
(remaining 3 plots, pre-treated with 40 µM of zalcitabine for ~5 days). 10 mM Aspartate (bottom 
left) or 10 mM Sodium Pyruvate (bottom right) was added to the medium. Data shown are from 
a single experiment with technical duplicates. 
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Discussion: 

 All cells, including tumor cells, have basic energy and metabolic needs for survival and 

proliferation. Cellular responses—such as adaptation, differentiation, proliferation, and signal 

transduction—are inherently complex and dynamic in nature. Therefore, sustained proliferation 

in the presence of targeted inhibitors is likely shaped by a cell’s dynamic metabolic constraints. 

In our study we investigated whether there exists a direct link between overall metabolic 

program and sensitivity to targeted BRAF inhibition, and if that relationship could be exploited 

to increase sensitivity in the cells. Our results demonstrate over-reliance on glycolysis can 

sensitize BRAF-mutated melanoma cells to targeted BRAF inhibitor treatment. The cells had 

significantly reduced proliferation (even death) when co-treated with PLX4720 and zalcitabine. 

This finding is in agreement with earlier reports (Haq, Shoag, et al., 2013; Hall, Meyle, et al., 

2013) suggesting mitochondrial inhibitors like oligomycin would be therapeutically beneficial in 

this cancer type. However, the use of oligomycin in humans would be difficult due to its extreme 

toxicity, and other mitochondrial inhibitors, like metformin and phenformin, probably exert 

antitumor effects but have potential dosage issues (Chandel, Avizonis, et al., 2016) and lactic 

acidosis problems (Shitara, Nakamichi, et al., 2013), respectively.  Antiretrovirals like 

zalcitabine, in contrast, have toxicities that may be easier to manage, and the portfolio of 

nucleoside analogs has been greatly expanded compared to the clinically available mitochondrial 

inhibitors (Lee, Hanes, and Johnson, 2003; Dalakas, Semino-Mora, and Leon-Monzon, 2001). 

Moreover, there is a tremendous amount of clinical experience with antiretrovirals used alone, in 

combinations, and in the context of many other drugs. The dose of ddC used in our studies is 

admittedly high in comparison to plasma concentrations typically achieved with conventional 

dosing to treat HIV infections, though our timeframe for treating cells to achieve mtDNA 
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depletion was also very short. In translating these findings to in vivo studies, lower doses of ddC 

for longer periods of time would be expected to produce the same effects while allowing 

toxicities to remain manageable. The DIP rate metric overcomes time-related biases of slow 

acting vs. fast acting drugs, fast vs. slow-proliferating cells, and complex contributions of cell 

death and division that plague typical end-point assays. Interestingly, though, the Hill slope (or 

Hill coefficient) emerges as an important metric for evaluating antiretrovirals in the context of 

cancer therapeutics, and it has already been postulated by others to be clinically important when 

assessing drug sensitivity in the context of non-genetic influences (Fallahi-Sichani, Honarnejad, 

et al., 2013).  Moreover, as a consequence of “washing out” time-dependent biases, the DIP rate 

metric may miss potentially clinically meaningful findings.  This can be seen with ddC treatment 

of A2058, where a major effect of high dose, short duration ddC treatment is to slow 

proliferative rate.  This is problematic for DIP rate-based assessments, but clinically, a slower 

growing tumor would generally be regarded more favorably than a rapidly growing one.  

Moreover, DIP rate analysis alone would miss the 10-fold shift in the EC50 for PLX4720 in 

ddC-treated A2058.  Should this effect translate fairly directly into in vivo studies, this would 

represent a shift of EC50 for BRAF inhibitor from outside the typically achievable range into a 

dose range that is readily achievable and that may allow for lower doses to limit toxicities.    

However, there still remain questions about what physiological role glycolysis, oxidative 

phosphorylation, or the mitochondria play for BRAF-mutated melanomas, particularly under the 

context of drug treatment.  It can be speculated that BRAF inhibition cuts off the oncogenic 

signaling that is ramping up the metabolism and ATP production. ATP hydrolysis and glucose 

flux have been postulated to be intimately linked in highly proliferative cells: the ATP/AMP 

ratio is repressed and kept to a minimum by linking high ATP consumption activities (like N-
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glycosylation and folding of proteins (Fang, Shen, et al., 2010)) with increased glycolytic flux 

for biosynthetic production. Thus, the high amounts of ATP generated from glycolysis are 

shuttled in order to relieve negative feedback inhibition on major glycolysis enzymes such as 

PFK.  Other mechanisms to control ATP/AMP levels involve the tumor suppressor LKB1 and its 

target the AMP-activated Kinase: loss of function mutations and deletions of LKB1 in non-small 

cell lung cancers (Whang, Park, et al., 2016) and Peutz-Jeghers Syndrome (Beggs, Latchford, et 

al., 2010), and activating mutations in PI3K and AKT that lead to strong signaling increasing 

glycolytic flux and ATP (and thus preventing the activation of AMPK through high levels of 

AMP) (Hardie, 2004; Shaw, Kosmatka, et al., 2004; Schaffer, Levin, et al., 2015).  In BRAF-

mutated melanomas it has been shown that the strong signaling down the MEK-ERK-RSK 

pathway enables negative regulation on LKB1 through phosphorylation of S325 and S428 sites 

(Zheng, Jeong, et al., 2009).  Interestingly, WT BRAF immuno-precipitates with AMPK (Shen, 

Yuan, et al., 2013) and high phospho-ERK staining inversely correlated with low phospho-

AMPK staining in vivo under the context of WT BRAF (Shen, Yuan, et al., 2013). To put these 

finding into context WT BRAF uses AMPK in the context of integrating energy metabolism with 

proliferation; mutant BRAFV600E will dampen the influence of AMPK, possibly because it is not 

needed for downstream metabolic signaling.  BRAF inhibition may relieve the negative feedback 

regulation on LKB1 and thus, provide an avenue of metabolic rescue that would include 

mitochondrial biogenesis to make up for the resultant diminished ATP production. Therefore, in 

our work when we targeted mitochondrial DNA and rendered the cells functionally deficient, we 

metabolically constrained the cells to rely on glycolysis for all ATP (and redox regeneration). 

Our approach of targeting differential tumor metabolism represents a break from previous 

models constrained within the more narrow scope of looking upstream and downstream along 
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the RAS-RAF-MEK-ERK signaling axis. Identifying avenues of resistance through “non-

oncogenic vulnerabilities” has been suggested (Adler and Gough, 2011; Singh, Joshi, and 

Komurov, 2015), particularly since many cancers are multifaceted and resistant to single target 

therapies. The functional integration of drug resistance mechanisms leads to adaptive, 

independently actionable phenotypes. Targeting the metabolic phenotype rather than a single 

genetic driver appears promising: the phenotype sustains the tumor--not necessarily the pathway, 

due to signaling plasticity and mechanistic redundancies. Thus, the benefit of targeting a terminal 

phenotypic state and bypassing the risk of oncogene switching or secondary mutations can be 

realized with current FDA-approved drugs such as zalcitabine. The strength of this study is that 

we used a large panel of cell lines, treated with physiologically relevant doses of the BRAF 

inhibitor PLX4720.   
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CHAPTER V 

 

DYSFUNCTIONAL MITOCHONDRIA LEADS TO A NON-QUIESCENT IDLING 

STATE IN DRUG TREATED BRAF MUTATED MELANOMA CELLS 

 

Adapted From: Paudel BB, Harris LA, Hardeman KN, Abugable A, Lizama-Manibusan B, 

McLaughlin BA, Tyson DR, Fessel JP, and Quaranta V. “Dysfunctional Mitochondria Leads To 

A Non-quiescent Idling State In Drug Treated BRAF Mutated Melanoma Cells.” (In Preparation 

To Be Submitted Spring of 2017) 

 

Abstract: 

Therapeutic resistance to targeted, small molecule inhibitors remains a clinical challenge 

for melanoma patients with the BRAF-V600 mutations. We sought to understand the 

proliferative dynamics of these cancer cells during the course of treatment, and utilized a battery 

of in vitro assays to illuminate cellular responses. We found that exposure of BRAF-mutated 

melanoma cells to BRAF inhibitors induces complex, non-linear proliferation dynamics followed 

by transition into a non-quiescent state of balanced death and division that we term “idling” state. 

Experiments with single cell-derived clonal lineages suggest that the response dynamics are a 

combined effect of clonal selection and drug-induced reversible phenotypic state transitions. Our 

results indicate that previously reported differences in cell line sensitivity to BRAF inhibitors are 

misleading, as they only occur on short time scales and dissipate ~100 hours after drug addition. 

Instead, all cell lines that we tested, including clonal isolates, transition into the idling state in the 

presence of continued BRAF inhibition. Interestingly, this idling state has features of 
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significantly decreased metabolism, and poor mitochondrial function despite prior up-regulation 

of PGC1α. Because of the continued division observed at the single-cell level, idling melanoma 

cells are potential reservoirs for genetic mutations and may represent an untapped phenotypic 

bottleneck susceptible to therapeutic targeting. My contribution to this developing manuscript is 

with data acquisition at the population level (Figures 5.1, 5.3, 5.4) and phenotypic 

characterization of the subclones in regards to metabolism (Figures 5.5 and 5.6). Presently, I am 

working with the first author to develop final key experiments to finish the manuscript and 

submit to a peer-reviewed journal. 

Introduction: 

Targeted small molecule inhibitors of BRAF (Flaherty, Yasothan and Kirkpatrick, 2011) 

show remarkable, short-term efficacy in melanoma patients with tumors harboring BRAFV600 

mutations (Flaherty, Puzanov, et al., 2010; Chapman, Hauschild, et al., 2011). However, clinical 

responses are variable, short-lived, and tumor recurrence is almost universal within a few months 

of initiation of therapy (Chapman, Hauschild, et al., 2011; Sosman, Kim, et al., 2012). 

Overcoming inherent and acquired resistance to targeted therapy is a major goal of current 

melanoma research, which uncovered two categories of resistance mechanism: (i) re-activation 

of mitogen-activated protein kinase (MAPK) signaling cascades (Poulikakos, Persaud, et al., 

2011; Montagut, Sharma, et al., 2008; Wagle, Emery, et al., 2011; Shi, Moriceau, et al., 2012; 

and Villanueva, Vultur, et al., 2010), and (ii) activation of MAPK-pathway independent 

signaling pathways (Wagle, Emery, et al., 2011; Nazarin, Shi, et al., 2010; Shi, Hugo, et al., 

2014; Rizos, Menzies, et al., 2014; and Whittaker, Theurillat, et al., 2013). This has led to the 

development of combination therapies of BRAF inhibition with other targeted agents (Larkin, 

Ascierto, et al., 2014; Menzies and Long, 2014; Greger, Eastman, et al., 2012; Long, 
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Stroyakovskiy, et al., 2014; Flaherty, Infante, et al., 2012; and Whittaker, Cowley, et al., 2015) 

or in conjunction with immunotherapy (Hu-Lieskovan, Robert, et al., 2014). While these 

therapies improve clinical responses, variation in treatment outcomes persists and benefits 

remain transient and unpredictable (Long, Stroyakovskiy, et al., 2014). 

 

Most of our knowledge of melanoma tumor recurrence is derived from analysis of post-

resistant tumors or cells (Rizos, Menzies, et al., 2014); the proliferation dynamics of drug-treated 

tumor cells prior to resistance is poorly understood (Smith, Brunton, et al., 2016). Resistance is 

usually attributed to rare, resistance-conferring genetic alterations that either preexist (Greaves 

and Maley, 2012; Shackleton, Quintana, et al., 2009; and Nowell, 1976) or develop during 

therapy (Shi, Hugo, et al., 2014; and Johnson, Menzies, et al., 2015). However, there is 

accumulating evidence that non-mutational processes play a significant role in the response of 

cancer cells to drug treatment (Smith, Brunton, et al., 2016; Raj and van Oudenaarden, 2008; 

Vandamme and Berx, 2014; Niepel, Spencer, and Sorger, 2009). It has been suggested that 

cancer cells employ a dynamic survival strategy involving phenotypic state transitions, governed 

by epigenetic alterations to evade lethal external cues (Sharma, Lee, et al., 2010; and Hugo, Shi, 

et al., 2015). These observations are consistent with preclinical and clinical evidence suggesting 

that cancer cells can become re-sensitized to therapy after a brief “drug holiday” (Sun, Wang, et 

al., 2014; Das Thakur, Salangsang, et al., 2013; and Cara and Tannock, 2001). It is likely, 

therefore, that both genetic and non-genetic processes are involved in the acquisition of drug 

resistance and/or relapse of melanoma tumors. 

Here, we use experimentation to quantify drug-induced proliferation dynamics in 

numerous BRAF-mutated melanoma cell lines at the cell population, clonal, and single cell 
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levels. We show that treatment with a BRAF inhibitor induces entry into a previously 

unrecognized, non-quiescent state of balanced death and division (zero net growth), which we 

refer to as the “idling” state. Experiments with single cell-derived clonal lineages suggest that the 

drug-response dynamics are a combined effect of clonal selection and drug-induced phenotypic 

state transitions. We postulate that idling cancer cells may constitute a reservoir from which 

genetic mutations and, ultimately, tumor recurrence arises. They may also represent a previously 

unappreciated phenotypic bottleneck that can be targeted, and perhaps eliminated, with an 

appropriate secondary treatment. 

Results: 

To investigate drug-induced proliferation dynamics of BRAF-mutated melanoma cells to 

BRAF inhibition, we subjected populations of the BRAF-mutated human melanoma cell line 

SKMEL5 to varying concentrations of a small molecule BRAF kinase inhibitor (BRAFi) called 

PLX4720. Using fluorescent time-lapse imaging, we tracked cell numbers over time for a period 

of approximately two weeks. For intermediate drug concentrations, we observed complex, non-

linear population dynamics (Figure 5.1). After an initial transient period (~24 hours), the cell 

population regressed significantly (for ~24 hours), rebounded (for ~100 hours), and then settled 

into a phase of near zero net growth. We confirmed that the zero-net-growth phase is not trivially 

due to confluency (data not shown). In addition, some cells (~10%) are positive for an 

exogenous marker of the S, G2, and M phases (Figure 5.1, part B), indicating continuing 

progression through the cell cycle, while other cells exhibit early nuclear morphological changes 

associated with apoptosis (Ziegler and Groscurth, 2004) (data not shown). Since cells continue to 

turnover (die and divide) but the cell population maintains a constant level, we refer to this phase 

as “idling”. Furthermore, the idling phenotype is not specific to SKMEL5 cells; we also observe 
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it in A375, SKMEL19, SKMEL28, WM164, WM793 and WM88 cell lines (Figure 5.1, part C). 

Idling cells resume normal proliferation when switched to drug-free media and exhibit similar 

initial proliferation dynamics when re-challenged with the drug (Figure 5.1, part D), suggesting 

that the idling phase is both drug-induced and reversible. Taken together, these results indicate 

that entry into an idling phase in response to continued long-term BRAF inhibition is a general 

characteristic of BRAF-mutated melanoma cells. 
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Figure 5.1: BRAF-Mutated Melanoma Cell Populations Idle Under Continued BRAF 
Inhibition. (a) Population growth curve (log2 normalized) for the SKMEL5 parental cell line 
treated with BRAFi. (b) Percentage of FUCCI-positive cells during 168-300h of BRAFi 
treatment for the SKMEL5 parental cell line. (c) Population growth curves for six additional 
BRAF-mutated melanoma cell lines in BRAFi. Mean responses are shown as solid lines, 95% 
confidence intervals as shaded regions. All results are based on 3+ technical replicates. (d) Idling 
cells respond similarly to BRAFi as drug-naive cells after a 24h drug holiday: (left) Population 
growth curves (log2 normalized) for drug-naive and post-idling SKMEL5 cells in complete-
growth media; (right) Responses of drug-naive and post-idling cells to 8µM BRAFi. 
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We investigated more closely the short-term, non-linear population dynamics in the 

SKMEL5 cell line. We sought to determine whether all cells were adapting to BRAFi or whether 

the population-level response was a composite of clonal subpopulation responses, i.e., clonal 

selection (Nowell, 1976). To test these possibilities, we tracked ~200 single cell-derived colonies 

(~110 cells per colony) treated with BRAFi using the Clonal Fractional Proliferation (cFP) assay 

(Frick, Paudel, et al., 2015). Drug responses varied from clone to clone and encompassed a broad 

range of behaviors, from rapidly expanding to rapidly regressing (Figure 5.2, parts A and B). 

Further, the proliferation rate of a clonal lineage prior to treatment does not correlate to its 

proliferation rate in response to BRAFi (Figure 5.2, part C). The aggregate of the clonal 

responses qualitatively matches the short-term population-level response (Figure 5.2, part D), 

suggesting that the short-term dynamics are a result of clonal selection: the initial regression 

phase is due to depletion of the proportion of the population with negative proliferation rates and 

the subsequent rebound is due to expansion of positively proliferating clones. Similar results 

were obtained for other drug concentrations (data not shown). Moreover, to determine whether 

clonal heterogeneity is a general phenomenon, we tested two other BRAF-mutated melanoma 

cell lines in BRAFi and observed similar clonal variation in drug response (data not shown). 

Together, these results indicate that BRAF-mutated melanoma cell populations contain pre-

existing hidden clonal heterogeneity that is revealed upon drug-exposure and shapes drug-

response population dynamics in the short term. 
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Figure 5.2: Short-Term Drug Response is Due to Clonal Heterogeneity. (a) Population 
growth curves (log2 normalized) for BRAFi-treated SKMEL5 single cell-derived colonies 
(n=203) obtained using the cFP assay. (b) Distribution of clonal proliferation rates of single cell-
derived clones in BRAFi, quantified by linear fit to the response dynamics (d) Comparison of 
untreated and BRAFi-treated (8µM) proliferation rates (doublings/h) for SKMEL5 single cell-
derived colonies (n=203) obtained using the cFP assay. (d) Comparison of the clonal composite 
(sum of cell counts from all colonies at each time point) to the SKMEL5 population-level 
response (means are shown as solid or dashed lines, 95% confidence intervals as shaded regions; 
the population-level response is the same data as in Figure 5.1, part A). 

 

To reconcile the long-term population-level response (Figure 5.1) with the observed 
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some expanding, some regressing, and some maintaining a stable population. We selected three 

sublines representative of the range of observed short-term responses for further 

experimentation: SC01 (expanding), SC07 (stable), SC10 (regressing). Upon prolonged exposure 

to BRAFi, despite their initial divergent responses, both SC01 and SC10 converged to 

approximately zero net growth, while SC07 maintained its initial zero-net-growth response 

(Figure 5.5, part A). In each case, we confirmed that entry into the idling phase is not due to 

confluence (Figure 5.3).  

 

Figure 5.3. Plate Confluency Is Not Responsible For Idling Phase. Representative 
microscopy images at 190 hours with treatment of DMSO or 8 µM PLX4720. Cells are stained 
with Hoeschst stain (blue), and the image is overlayed with FUCCI-positive cells in green 
channel.  The cell lines SC01, SC07, SC10 are single cell-derived sublines from the melanoma 
cell line SKMel5 (See text in this Chapter V for additional details, first paragraph page 79). Data 
shown are from a single experiment with technical replicates. 
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By manually tracking the fates of multiple individual cells over time, we also determined 

that all three clonal sublines experience both death and division events while in the idling phase 

(Figure 5.4, part B), confirming that idling is not due to quiescence but rather to balanced rates 

and death and division (concurrent death and division are also observed in the early response, 

data not shown). Together, these results suggest that idling is a phenotypic state that all clonal 

populations, regardless of initial sensitivity, can transition into in the continued presence of 

BRAF inhibition. 

To determine whether the idling state could be targetable, we re-challenged (following a 

brief 24h drug holiday) idling cell populations of three clonal sublines (SC01, SC07, and SC10) 

with Trametinib (a MEK inhibitor), Cisplatin (a platinum-based chemotherapeutic), BEZ235 (a 

PI3K/mTOR dual inhibitor), and BKM120 (a PI3K inhibitor). Sensitivity to the PI3K inhibitors 

did not change in the idling cells as compared to their untreated counterparts. In contrast, idling 

cell populations of clonal sublines SC07 and SC10 acquired sensitivity to Trametinib and 

BKM120 (Figure 5.4, part C). Idling SC07 cells were also sensitive to Cisplatin. These 

preliminary results indicate that transition into the idling state indeed opens additional potential 

treatment avenues. 
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Figure 5.4: Single Cell-Derived Clonal Sublines Idle Independent of Short-Term Dynamics. 
(a) Population growth curves (log2 normalized) for three single cell-derived SKMEL5 sublines 
treated with BRAFi (means are shown as solid lines, 95% confidence intervals as shaded 
regions; all results are based on 3+ technical replicates). (b) Single cell lifespans vs. birth times 
(time of first mitotic event) for the three sublines after a week in BRAFi. Cells born during the 
experiment but reaching the end of the experiment (EOE) without a second mitotic event are 
plotted along the diagonal. (c) Population growth curves (log2 normalized) for three single cell-
derived SKMEL5 sublines, either drug-naïve or following a week in BRAFi (“post-idle”), treated 
with trametinib, cisplatin and BKM120 (error bars are 1 standard deviation). For post-idle 
populations, BRAFi was removed less than 24h prior to subsequent drug addition. Data shown 
are from 3+ experiments. 
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BRAF inhibition might possibly relieve the negative regulation mutant-BRAF exerts on 

metabolic housekeeping strategies, via regulation of LKB1 (Zheng, Jeong, et al., 2009). 

Therefore, we decided to examine the global metabolism of the subclones, particularly the 

glycolysis and mitochondrial respiration using Glyco and Mito Stress Tests on the Seahorse 

Extracellular Flux Analyzer. Using sequential addition of metabolic inhibitors, we assessed the 

oxygen consumption and glycolysis (via lactate production) of the subclones in their basal (or 

untreated) and idling (7 days treatment with PLX4720) states. The untreated subclones have 

varying metabolic profile traces and it is interesting to note that the SC01 has little to know 

Glycolytic Reserve: after the three measurements of basal and glucose ECAR, the addition of 

oligomycin does not yield a subsequent increase in ECAR as it does in SC07 and SC10 (Figure 

5.5., lower left side). Surprisingly, we found a significant metabolic depression in the idling cells 

(Figure 5.5, right side) across all three subclones. Others have reported increased oxygen 

consumption rates (OCR) upon BRAF inhibition (Haq, Shoag, et al., 2013; Corazao-Rozas, 

Guerreschi, et al., 2013), so the substantially decreased OCR at basal and FCCP-stimulated 

levels is unexpected.  
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Figure 5.5: Prolonged BRAF Inhibition Causes Metabolic Depression. Upper: Oxygen 
consumption profiles for the cell lines with sequential additions of oligomycin (1 µM), FCCP (1 
µM) and Rotenone/Antimycin A (0.5 µM). Lower: Extracellular pH profiles for the cell lines 
with sequential additions of glucose (10 mM), oligomycin (1 µM), and 2-deoxyglucose (0.5 
µM). 
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Others have shown that mitochondrial biogenesis and a shift toward oxidative 

phosphorylation occurs in BRAF-mutated melanomas under PLX4720 treatment, so the prior 

result of decreased OCR led us to examine the mRNA expression of PGC1a. Looking at all three 

sublines (plus the parental cell line they were generated from), there is clear cessation of PGC1a 

expression over time, particularly after 120 hours of BRAF inhibition treatment (Figure 5.6). 

 

Figure 5.6: Increased PGC1a Levels Are Not Sustained. Using PCR, mRNA expression for 
each cell line is normalized to its own zero-hour time point. Relative expression is plotted with 
standard deviation (~2-3 replicates each time pt/cell line). SC01, SC07 and SC10 are single cell-
derived sublines from the melanoma cell line SKMel5 (See text in this Chapter V for additional 
details, first paragraph page 79). Parental= SKMel5 cell line. On the x-axis the time lengths for 
drug exposure are indicated (0, 72, 120, 192, and 240 hours). 
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Finally, we decided to examine more closely the mitochondrial physiology of the 

subclones. MitoOrange and MitoGreen MitoTracker fluorescent probes were used to stain and 

visualize the mitochondria of the three sublines. MitoGreen will stain the mitochondria of all live 

cells without regards to the mitochondrial membrane potential; thus, we used MitoGreen to see if 

mitochondrial mass was increased in the idling cells. The total mass of mitochondria appear to 

decrease on SC07, increase in SC10, and stay relatively the same in SC01 (Figure 5.7, left 

panel).  However, the average size of the mitochondria in SC10 appears to decrease significantly 

(Figure 5.7, middle panel) suggestive of mitochondrial fragmentation or fission. This led us to 

utilize MitoOrange CMTMR, which will only accumulate inside intact mitochondria that have 

retained their membrane potential. The overlap between MitoOrange and MitoGreen decreases 

significantly in the SC10 idling cells (Figure 5.7, right panel). These results indicate that the 

early increased expression of PGC1a does not lead to functional mitochondria in any of the 

sublines: SC07 actually decreases mitochondrial mass and SC10 exhibits signs of fragmented, 

damaged mitochondria. 

 

Figure 5.7: Mitochondrial Physiology Worsens Under Idling State. Plots of fluorescence 
intensity (left), size (middle, in arbitrary pixel units), and membrane potential per area (right).  
The cells were stained with MitoTracker MitoGreen (Ch1) and MitoTracker MitoOrange (Ch2). 
Basal indicates no drug treatment. Idling indicates cells exposed to 7 day PLX4720 treatment (8 
µM). SC01, SC07 and SC10 are single cell-derived sublines from the melanoma cell line 
SKMel5 (See text in this Chapter V for additional details, first paragraph page 79). 
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Discussion: 

We report here that sustained BRAF inhibition (>1 week) induces entry of BRAF-mutated 

melanoma cell populations into an idling state of balanced death and division, which results in 

~zero net proliferation. Idling occurs at both the population and clonal levels, independent of 

variation in initial short-term response, and is drug-induced and reversible, consistent with non-

mutational drug tolerance described in earlier reports (Smith, Brunton, et al., 2016). To our 

knowledge, the idling phenotype has not been previously described. We attribute this to the fact 

that drug response assays are usually performed over short observation times (72-96h) and 

proliferation rates are not usually measured (Tyson, Garbett, et al., 2012; Harris, Frick, et al., 

2016; Frick, Paudel, et al., 2015), as we do in this work.  

This indicates that previously reported differences in sensitivity among melanoma cell 

lines, measured on short time scale, might indeed be misleading. Our findings thus provide a 

unifying view of how BRAF-mutated melanomas respond to BRAF inhibition as well as a 

conceptual framework for how they might evade therapeutic interventions using both non-

mutational and mutational means. It is possible that idling cancer cells constitute the bulk of the 

stable disease (tumors neither increasing nor decreasing in size) observed in patients following 

targeted therapy and preceding tumor recurrence (Casanovas, Hicklin, et al., 2005). This view is 

consistent with previous reports speculating that drug-induced tolerant cancer cells act as 

reservoirs from which genetic mutation, and ultimately tumor recurrence, arises (Sharma, Lee, et 

al., 2010; Ramirez, Rajaram, et al., 2016; Hata, Niederst, et al., 2016; Menon, Das, et al., 2015; 

Lito, Rosen, and Dolit, 2013). However, in contrast to those reports, we show here that idling 

cancer cells continue active division. We speculate that continued progression through the cell 

cycle during idling makes cells prone to accumulating deleterious mutations and, hence, a more 
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fertile ground for acquired resistance than quiescent (Sharma, Lee, et al., 2010; Haass, Sproesser, 

et al., 2008; Haass, Beaumont, et al., 2014) or senescent cells (Haferkamp, Borst, et al., 2013). 

Therapeutic approaches that suppress or eliminate this non-quiescent reservoir of idling cells 

could thus delay, perhaps indefinitely, tumor recurrence. Our model assumes that in the idling 

phase the majority of cells occupy a state of zero net proliferation. If this is true, then idling 

constitutes a phenotypic bottleneck that may be targetable with an appropriate secondary 

treatment. Initial experiments show that indeed new drug sensitivities are acquired by idling 

cells, although each clonal subline behaves differently in this respect. Future studies should 

focus, therefore, on identifying the molecular signatures of idling cancer cells and developing 

therapeutic approaches to eliminate them.  

Many in the field have reached a consensus that some type of metabolic reprogramming 

in BRAF-mutated melanomas is occurring after therapy treatment: the details and the 

mechanism, however, remain unresolved. It was recently suggested that resistance to targeted 

BRAF inhibition requires two steps: first, a metabolic reprogramming during the early phases of 

treatment, then the acquisition of mutation(s) that will drive resistance, continued proliferation, 

etc. (Verduczo D, Flaherty KT, and Smalley, 2015).  In this context, the mitochondria play a 

very important role of managing the bioenergetics demands within the cell. As a critical 

biosynthetic powerhouse, the mitochondria coordinates and integrates metabolite signaling from 

the cytosol to help build fatty acids, nucleotides and amino acids (Ahn and Metallo, 2015). 

Therefore, mutations or alterations related to the mitochondria can be the driving metabolic 

trigger for reprogramming before a mutation event. Our finding of mitochondrial fragmentation 

and dysfunction thus explain the idling phenotype and provide motivation for a two-hit model.  
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Under treatment, subclone 10 undergoes mitochondrial fragmentation that accompanies 

the physiological dysfunction (reduced oxygen consumption). Fission of mitochondria is 

generally thought to be pro-tumorigenic, as targeting mitochondrial fission can decrease 

proliferation, cell cycle progression, and cell viability (Rehman, Zhang, et al., 2012; Arismendi-

Morillo, 2009; Chen, Dasgupta, et al., 2014; Inoue-Yamauchi and Oda, 2012; and Zhang, Jin, et 

al., 2013). Indeed, Kashatus and colleagues asked if “altering the balance of mitochondrial fusion 

and fission” could be targeted particularly in RAS mutated tumors, and demonstrated that MAPK 

signaling promotes mitochondrial fission via phosphorylation of Drp1 by ERK2 (Kashatus, 

Nascimento, et al., 2015). This brings the possibility of the SKMel5 clones, particularly subclone 

10, undergoing a type of Mitochondrial Dysfunction-associated Senescence (MiDAS), termed by 

Wiley and co-authors (Wiley, Verlarde, et al., 2016). 
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CHAPTER VI 

 

SUMMARY, CONCLUDING REMARKS, AND FUTURE DIRECTIONS 

 

Summary: 

Melanoma is the most malignant form of skin cancer and around 50% of melanomas 

harbor a specific mutation in the MAPK family member BRAF kinase, predominantly V600E or 

V600D (Davies, Bignell, et al., 2002; Ribas and Flaherty, 2011; Ascierto, Kirkwood, et al., 

2012). BRAF-targeted therapies like vemurafenib and dabrafenib have high response variability 

in patients, and the premise of this thesis work is to connect metabolic changes to response 

variability. Fortunately, there exist cell line models that could be used to test functional 

relationships of proliferative responses and intrinsic, cellular metabolism. Dysregulated 

metabolism has been shown to affect therapeutic responses, by influencing compensatory 

signaling, expanding proliferation, repressing apoptosis, and active/passive drug transport 

mechanisms. Interestingly, the main part of this thesis (Chapter IV) demonstrated that heavy 

reliance on glycolysis—with little to none Glycolytic Reserve—sensitizes cells for an increased 

response to targeted therapy. This result confirms early evidence of BRAF-mutated melanomas’ 

addiction to glycolysis and adaptation towards oxidative phosphorylation. Furthermore, this is 

the first phenotypic exploration on how the FDA-approved antiretroviral zalcitabine affects 

proliferation of the melanoma cells’ co-treated with vemurafenib. Figure 6.1 illustrates a 

schematic model of resistant, oxidative cells. 
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Figure 6.1: Model of Metabolic Phenotypic Resistance to BRAF Inhibition. Conceptual 
diagram visualizing how BRAF-mutated cells may become increasingly oxidative as a 
mechanism of resistance. 

 

Given the results confirming a functional interaction between glucose metabolism and 

PLX4720 response (Figures 4.6 and 4.7), we set out to probe the details of this interaction with 

respect to particular metabolic strategies.  Oxidative phosphorylation was inhibited at its terminal 

step using the ATP synthase inhibitor oligomycin (Appendices B and C), and lactate-producing 

glycolysis was inhibited at its terminal step using the lactate dehydrogenase inhibitor oxamic 

acid (Appendix D). Ordered and viewed according to the PLX4720 response spectrum (Figure 

4.1), PLX-insensitive cell lines are more resistant to LDH inhibition; this makes sense, as the 

PCA data suggested that PLX-insensitive cells have more Glycolytic Reserve and metabolic 

flexibility. Oxamic acid exhibited a fairly wide dose-response relationship with regard to cell 

proliferation in our cell line models.  By contrast, oligomycin had an almost binary effect, with 

melanoma lines being either extremely sensitive to every dose or tolerant of every dose with an 

identical DIP rate approximately ½ of their respective untreated control. This result, in 



	 91	

combination with the oxygen consumption results (Figure 4.3), suggests that variable ATP-

linked respiration only translates to 2 proliferative outcomes: extreme sensitivity or adaptable 

tolerability. These data suggest that forcing a glycolytic metabolic strategy in the context of 

PLX4720 treatment may enhance the antitumor effect of mutated BRAF inhibition in relatively 

insensitive lines like A2058 and WM115. 

As detailed in Chapter V, the dynamics and biology of drug-treated tumor cells prior to 

the observation of treatment failure or resistance is generally understudied. However, with 

powerful models such as single cell-derived subclones, we can attempt to dissect the variability 

and the dynamic biology occurring within the first stages of BRAF inhibition. Single cell-derived 

subclones are about as genetically similar as it can possibly exist; thus, their usage allows for a 

type of experimental control against the varied background constellation of mutations cancers 

typically bear. Nonetheless, we still can observe varied responses at the clonal level, adding 

credibility to the accumulating evidence that non-mutational, epigenetic processes influence the 

response of cancer cells to therapeutics (Smith, Brunton, et al., 2016; Raj and van Oudenaarden, 

2008; Vandamme and Berx, 2014; Niepel, Spencer, and Sorger, 2009). With this report on the 

idling cancer cells in Chapter V, I can easily see the link towards what clinicians deem stable 

disease: a period before resistance or recurrence is reported where the tumor neither increases 

nor decreases. A type of metabolic reprogramming in BRAF-mutated melanomas is likely 

occurring after BRAF inhibitor treatment, and the idling state is simply a reservoir where the 

cells are not only dynamically adjusting their oxidative phosphorylation and mitochondrial 

operations, but likely acquiring mutations that will help drive their metabolic recovery. 

 It is important to consider the value-added or contribution this body of work gives to 

the field of melanoma cellular biology. Thinking back to Meenhard Herlyn’s gene expression 
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analysis (Zhang, Frederick, et al., 2016), part of this work has given more resolution on the 

particular phenotype of glycolysis that makes some melanomas super-sensitive and responsive to 

BRAF inhibition. The key role of glycolytic reserve in determining the ability of a cell to 

overcome addicting oncogene inhibition (ie., BRAF inhibition) is an important discovery. 

Furthermore, the suggestion to use anti-retrovirals creates a clear translational path to repurpose 

those drugs in the treatment of these cancers. I am not alone in this thought process: the 

MITF/PAX inhibition screen that Smith et al. used led them to target melanomas with protease 

inhibitor anti-retrovirals (Smith, Brunton, et al., 2016).  Additionally, coupling a dozen metabolic 

metrics to build a PCA is unusual in the field: most Seahorse Bioanalyzer users do not assay and 

measure both Glyco and Mito Stress Tests in their systems. High-throughput metabolic analyses 

and nutrient screenings should become the norm and Gohil et al. suggest a great design/platform 

for such experiments: using either glucose- or galactose-containing media, they screened over 

3,000 compounds to find even modest, subtle shifts in metabolism (Gohil, Sheth, et al., 2010). A 

screening design such as this should be employed to find novel inhibitors that shift metabolism 

of BRAF-mutated melanomas. Of course, the assays should employ the more powerful DIP rate 

metric as detailed in Chapter III of this thesis. Gohil et al. used static metrics (number of cells 

remaining after 3 days) but the static dose–response curves can only separate and enrich for 

highly potent compounds (like the rotenone >> phenformin example in Chapter III). Efficacy is 

obscured or lost when examining static dose-response analyses.  All in all, the work described in 

this thesis dissertation provides an important contribution to response variability and assay 

development, the glycolytic biology in relation to BRAF inhibition, and a finer inspection of 

variability within a tumor. These findings help resolve discordant reports in the literature and 

link a targetable metabolic phenotype to cellular proliferation.  
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Concluding Remarks: 

 BRAF-mutated cells may be addicted to glucose, due to reducing equivalents (NADH) 

produced for redox balance and the production of the central metabolite acetyl-CoA from the 

pyruvate generated through glycolysis. Acetyl-CoA is a 2 carbon acetyl group (CH3CO) linked 

by a thioester bond to the vitamin derivative coenzyme A; the molecule is impermeable to 

membranes (except passive diffusion through nuclear pores) and acts as a central metabolite by 

linking glycolysis to oxidative phosphorylation, influencing functionality and stability of 

proteins from translation through post-translation, and participating in cell cycle/mitosis via 

histone acetylation (Pietrocola, Galluzzi, et al., 2015).  Histone acetylation is important to drive 

preferential gene expression of high target genes involved for cell proliferation, glycolysis, and 

to counter oxidative stress (Pietrocola, Galluzzi, et al., 2015). Acetyl-CoA is the sole donor or 

“obligate cofactor” for histone acetyltransferases, thus centering this metabolite in epigenetic 

processes. There is subcellular compartmentalization of Acetyl-CoA, and in the context of the 

mitochondrial matrix, the alkaline pH of the negatively charged matrix can allow for non-

enzymatically driven acetylation due to physiochemical properties of generated acetyl-phosphate 

intermediates (Kuhn, Zemaitaitis, et al., 2014). 

In regards to the reported glutamine dependency as a mechanism of resistance (Baenke, 

Chaneton, et al., 2015; Hernandez-Davies, Tran, et al., 2015), reductive carboxylation of 

glutamine happens frequently when glycolysis is blocked, hypoxic conditions arise or in the 

setting of mitochondrial defects. Glutamine dependence, therefore, is probably a bioenergetic 

strategy for BRAF-mutated melanomas to recover Acetyl-CoA. Upon transport into the cytosol 

from a carrier, glutamine is metabolized to glutamate, then the glutamate is transported into the 

mitochondria via the glutamate-aspartate carrier SLC25A13. Enzymes glutamate dehydrogenase 



	 94	

2 (GLUD2) or glutamic-oxaloacetic transaminase 2 (GOT2) metabolize glutamate into α-KG, 

which then goes into the TCA cycle backwards (reductive carboxylation) to make citrate. Citrate 

can leave the mitochondria by the transporter SLC25A1 and is metabolized to acetyl-CoA (and 

oxaloacetate) by the enzyme ATP citrate lyase (ACLY). Interestingly, AKT1 phosphorylates 

ACLY on Ser455 to increase its activity (Lee, Carrer, et al., 2014); thus, it can be argued that 

activation of AKT1 signaling can help drive a glutamine dependency under BRAF-treatment in 

the end-goal of generating and accumulating acetyl-CoA. A key question to address would be if 

we could rescue a metabolic catastrophe phenotype by using cell-permeable dimethyl α-

ketoglutarate. In like manner, the cell membrane impermeant nicotinamide adenine dinucleotide 

(NAD+) has a central role in cellular metabolism and it can be postulated that the inhibition of 

BRAF signaling may also disturb the reductive-oxidative balance in BRAF-mutated melanomas. 

Future Directions: 

The WNT pathway 

WNT5A can drive Beta catenin expression and metastasis in melanoma. Hoek, et al 

describes phenotype switching model where melanoma cells are “growing or going”: 

proliferating/dividing versus metastasizing or invading (Hoek, Eichhoff, et al., 2008). BRAF 

mutated melanomas with high levels of Beta catenin are more sensitive to apoptosis from BRAFi 

(Biechele, Kulikauskas, et al., 2012).  That same group later showed that WNT5A is increased in 

cell lines made resistant through chronic exposure to BRAF inhibitor PLX4720 (Anastas, 

Kulikauskas, et al., 2014).  

Utilizing a high-throughput approach I found interesting preliminary data regarding the 

WNT inhibitor, pyrvinium pamoate (PP). PP is an antihelminthic or parasitic inhibitor that 
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inhibits WNT pathway signaling via the activation of Casein Kinase 1-α (Thorne, Hanson, et al., 

2010; Li, Flaveny, et al., 2014).  Figure 6.2 shows the DIP rates of BRAF-mutated melanomas 

treated with PP alone or with combination of PLX4720. Several phenotypes can be discerned 

from the data: PP appears to have additive effects with PLX in WM2664 and SKMel5 cells; 

combination has no effect in WM88 and WM164; and, an interesting PLX-rescue phenotype is 

observed in A375 and WM1799. These results are very preliminary and due to the design of the 

screen and drug solubility issues, dose optimization has not been completed. 

 

 

 
Figure 6.2. Figure legend on next page. 
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Figure 6.2: Phenotypes of WNT Inhibition Varies. High-throughput result of pyrvinium 
pamoate alone (red line) and with 2 µM PLX combination (blue line). Non-normalized DIP rate 
(slope of proliferation, per hour) are plotted as IC50 dose curve response with 10-fold dilutions 
of pyrvinium. Source drug plates are made first using the Echo 550/555 by Labcyte.  Echo 
provides acoustic liquid transfer and distributes the drugs into target plates at 8X final 
concentration via acoustic wave in units of 2.5 nano-L droplets (these drug plates are kept in -80 
& sealed until needed; 50uL media added later when used). The Bravo by Agilent (Velocity 11) 
is used for automated pipette liquid transfer and serial dilutions on the morning of the 
experiment. The plates are housed in a Cytomat incubator that can hold up to 42 individual 
plates; every plate is barcoded and read by a barcode reader before each data acquisition. 
Utilizing only the inner 308 wells of the 384 plate, the drug dilutions are done in either duplicate 
or triplicate; takes about 10 mins to image ea plate on an ImageXpress Micro XL automated 
microscope imager from Molecular Devices, and data is acquired every 8-9 hrs. Each 
experimental run produces about 2.5-3.5 TB of data. The cell lines shown here are WM88 
(“88.pyrvinium”), WM2664 (“2664.pyrvinium”), A375 (“375.pyrvinium”), SKMel5 
(“SK5.pyrvinium”), WM1799 (“1799.pyrvinium”), and WM164 (“164.pyrvinium”). 
 

Nonetheless, it is not discouraging to see the variable responses to PP. In fact, another set 

of high-throughput data suggests that a strong differential response to WNT inhibition is 

correlated to the varying inherent metabolism of these cells.  Data from the Cancer Therapeutics 

Response Portal version 2.0 (CTRPv2) were downloaded and pharmacological data extracted. 

An intelligent string classifier is used to parse the accompanying annotation, and the drugs are 

divided and binned based on their mechanism of action. Out of nearly 550 drugs, groups such as 

“EGFR,” “Proteasome,” “PI3K,” “DNA damage,” etc. are created; this also includes a “WNT” 

group consisting of 2 drugs—JW-74 and CCT036477.  JW-74 (Broad Institute ID BRD-

K75664313) inhibits WNT signaling by stabilizing a component of the Beta catenin destruction 

complex (Stratford, Daffinrud, et al., 2014); CCT036477 (Broad Institute ID BRD-A22997170) 

targets a Beta catenin-mediated transcription complex (Mathur, Sehgal, et al., 2015). WNT 

inhibition significantly correlates to an unintuitive mix of the Seahorse metabolic parameters, 

thus highlighting a complex relationship of inherent cellular metabolism and WNT signaling.  

.  
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Figure 6.3: WNT Inhibition Correlates To Metabolic Parameters. PCA of IC50 data of 2 
WNT compounds, JW-74 and CCT03677, on y-axis versus and the first principle component of a 
linear combination of Seahorse metabolic parameters. IC50 data is from the CTRPv2. JW-74 
was tested at drug ranges of 0.002 µM to 66 µM; CCT036477 was tested at 0.001 µM to 33 µM. 
A normalization was done on the IC50 data in order to roughly compare all drugs together in 
groups.  
 

Lactate Dehydrogenase and Glycolytic Intermediates  

 Membrane potential Δψ and (ΔpH) can significantly affect the distribution of reduced 

forms of products, substrates, reactants, and mediators of electron transfer. Craig Thompson’s 

group just showed that an acidic pH promotes an unusual production of the stereoisomer L-2-

hydroxyglutyrate (L-2HG) via ‘ “promiscuous” reduction of the alternative substrate α-KG’ by 

lactate dehydrogenase (LDH) (Intlekofer, Wang, et al., 2017). LDH does not normally reduce α-

KG, but usually has pyruvate as a canonical substrate, producing lactate. The acidic pH results in 

a protonated form of α-KG that can stably bind LDH, and the resulting L-2HG stabilizes HIF1α 

and is a purported cellular adaptation to acidic environments or acidosis under normoxia for 
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highly proliferative cells (Intlekofer, Wang, et al., 2017). In our melanoma cell line models, 

A2058—the most insensitive BRAF-mutated cell line—loses its concentration-dependent 

response to PLX4720 when treated with the LDH inhibitor Oxamic acid (Figure 6.4).  It is 

intriguing to postulate that the inability of cells to make lactate may create a substrate and 

cytosolic pH bottleneck. 
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Figure 6.4: Oxamic Acid Constrains Proliferation Under BRAF Inhibition. Population 
doublings of cell line A2058 treated with BRAF inhibitor PLX4720 (left), varied Oxamic acid 
with constant 2 µM PLX (middle) and varied PLX with constant 12.5 mM Oxamic acid. Data 
shown are from a single experiment with technical duplicates; experiment has been repeated at 
least twice with similar results for single drug doses only (not combination conditions). Error 
bars are standard deviation. 
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It would be interesting to probe the dependency and flexibility of the cells lines on the 

three major oxidation substrates of the mitochondria: fatty acids, pyruvate, and glutamine. 

Dependency is defined as the absolute need of a carbon source for oxidation and usage; 

flexibility, on the other hand, is a measure of adaptability when inhibited from using a particular 

fuel source. The concept of creating Fuel Dependency and Fuel Flexibility analyses is relatively 

new (propelled by the works of Anne Murphy, Christian Metallo, Nika Danial, and others).  

Mitochondrial Inhibition  

 Mitochondrial DNA (mtDNA) have a high mutation rate, mostly due to poor 3 to 5 prime 

exonuclease activity of the polymerase gamma, the lack of protective histones, assault of ROS 

due to the close proximity to the ETC, and a unique exposure to an enrichment of xenobiotics—

the negative charge on the inner matrix-side of the membrane is needed to maintain membrane 

potential and ATP production, but it also encourages the accumulation of lipophilic cations like 

toxins and dyes. Lastly, it has been shown that p53 helps with the stability of the polymerase 

gamma, yet many cancers have mutant p53 (and about 10% of melanomas have a mutated p53).  

Given the crucial role oxidative phosphorylation and mitochondrial respiration plays in 

phenotypic resistance, I can imagine or postulate that combination BRAF inhibitors and anti-

retrovirals would bring about positive or favorable composite endpoints: decreased clinical 

worsening, categorical increase in functioning or quality of life, etc. However, the combination 

of mitochondrial and BRAF inhibitors is not trivial, as Livingston and colleagues point out: 

dabrafenib- or vemurafenib-treated patients with concomitant use of the mitochondrial inhibitor 

and anti-diabetic treatment metformin had no improved survival or response benefits in the 

BREAK-3 clinical trial data (Livingston, Swann, et al., 2015).  
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Evaluating the Role of ROS in the Context of PLX4720 Treatment 

Early in this thesis project I sought to dissect the relative contributions or importance of 

varied biology subsequent of mitochondrial inhibition. Specifically, targeting the mitochondria 

produces 3 broad conditions that can significantly affect downstream phenotypes such as 

proliferation: 1) decrease in in ATP production from oxidative phosphorylation; 2) decrease in 

biosynthesis through mitochondrial pathways (metabolites for lipid generation and protein post-

translational modifications); and 3) increase in ROS generation.  I sought to test in several ways 

the importance of ROS in our model system by attempting to answer 2 broad questions: 1) Is the 

response machinery used to handle or dispose of ROS defective in these cells? 2) Does PLX4720 

treatment significantly increase ROS in a manner that is detrimental to these cells (and thus 

amplified by combination with other metabolic inhibitors)? The data in the following two figures 

helped shape my thinking and steer my thesis work away from ROS studies, by essentially 

eliminating ROS as a sensitizer and/or modulator of BRAF inhibition.  

 

To answer the first question about the ROS machinery in BRAF-mutated melanoma cells, 

I designed an experiment to see if targeting proteins involved in disposal of ROS would give 

strong decreases in proliferation. Raj et al. reported a small molecule inhibitor called 

Piperlongumine that is selectively toxic to cancer cells (in vitro); even a breast cancer mouse 

model showed differential toxicity to cancer cells, as the other tissues in the mice showed no 

clinical signs of adverse effects (Raj, Ide, et al., 2011). The authors used a combination method 

of stable isotope labeling with amino acids (SILAC) and small molecule affinity beads (Ong, 

Schenone, et al., 2009) to show that piperlongumine binds to proteins involved in responding to 

oxidative stress like Glutathione S-transferase pi 1 (GSTP1) (Raj, Ide, et al., 2011). This drug 
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interacts with proteins like GSTP1 and CBR1 to yield the cellular phenotype of depleted total 

glutathione, protein glutathionylation and increased ROS (Adams, Dai, et al., 2012). 

Piperlongumine’s bioactivity is related to its chemical structure: it has multiple electrophilic sites 

and two crucial olefin moieties (C2-C3 & C7-C8) that are essential for its cellular toxicity and 

ROS elevation (these moieties have Michael acceptor functionalities where a nucleophilic 

species is added) (Adams, Dai, et al., 2012). Adams et al. proposed a model where glutathione is 

added to the C2-C3 site 1st because the C2-C3 is more electrophilic/potent than C7-C8. Secondly, 

the piperlongumine-glutathione adduct will bind to a glutathione binding protein on its 

glutathione side and the entire complex is stabilized by the 2nd Michael addition of a nucleophilic 

part of the protein reacting with the C7-C8 electrophilic site (Adams, Dai, et al., 2012). Based on 

work from Raj et al., we know that the increased ROS in cancer cells treated with 

piperlongumine is probably nitric oxide and hydrogen peroxide but not superoxide anion (Raj, 

Ide, et al., 2011).  Therefore, I treated two BRAF-mutated cell lines to varying concentrations of 

Piperlongumine—a typical dose-curve experiment—to see if differential proliferative responses 

would occur. SKMel5 and SKMel28 were the cell lines I used: at the time they had common 

media (DMEM/F12) as this was prior to the acquisition of WM lines from M. Herlyn and the 

transition to DMEM media for all cells lines. Additionally, these cells had vastly different 

response dynamics evident from their population growth curves, and preliminary single-cell 

tracking revealed SKMel5 to display dramatic cell death (deemed a “Death Burst” at the time) 

during treatment with PLX4720. Piperlongumine, however, had no differential effects between 

SKMel5 and SKMel28 (Figure 6.5, lower right panel). Trying to design a more specific 

experiment, I created a rescue experiment by first treating the cells with the Complex 1 inhibitor, 

Rotenone to find an IC50 value that would reduce proliferation but not kill too many cells (data 
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not shown). Then, I treated the cell lines with a combination of Rotenone (218 nM) and varying 

does of the general antioxidant N-acetylcysteine or NAC. I surmised that NAC should rescue or 

increase the proliferation rate and this would be evident in the growth plots (Figure 6.5, lower 

left panel). However, there was no rescue in the SKMel5 nor SKMel28 (data not shown).  The 

caveat of the NAC+Rotenone experiment is that Complex I respiration may not be important in 

these cells; thus there would be little ROS produced to demonstrate measurable rescue benefits 

with the addition of NAC. Indeed, oxygraph measurements of oxygen consumption revealed that 

Patient Derived Xenograft (PDX) models of BRAF-mutated tumor samples consumed very little 

oxygen until the Complex II substrate (succinate) is added (PDX #1218, kindly provided by Ann 

Richmond; data not shown).  Due to the complexity of ROS effects, I consulted with other 

experts and acquired samples of two reagents: mitoTEMPO and mitoEbselen. 
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Figure 6.5: ROS Does Not Modulate Proliferation In The Context of BRAF Inhibition. 
Population doublings of either SKMel5 or SKMel28 treated with indicated compound.  For Pre-
Treatment experiments (top-right and middle-right panels) the mEbselen or mTEMPO was 
added to the wells first (in the dose-dependent fashion) and allowed to incubate for 15 mins; the 
controls (PLX only or DMSO had nothing added to them). Afterwards, the media was aspirated, 
washed 1x with PBS gently, and then replaced with fresh media plus 8 µM PLX4720 (or 
DMSO). For the NAC+Rotenone and Piperlongumine experiments, additional drug doses were 
examined but not included in these graphs for sake of clarity. Data shown are from a single 
experiment with technical duplicates. 
  

mitoTEMPO and mitoEbselen are mitochondria-targeted antioxidants designed with 

classic triphenylphosphonium moiety that allows for concentration within the mitochondria 

(Daiber, Di Lisa, et al., 2015). Functionally, mitoTEMPO targets superoxide, and mitoEbselen 

targets hydrogen peroxide. I executed another rescue experiment but this time using a co- and 

pre-treatment design. Furthermore, I used PLX4720 as the putative ROS-producing perturbation: 
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since my initial questions revolved around the importance of ROS under the context of variable 

responses to BRAF inhibition, then the most convincing rescue would be in the context of BRAF 

treatment. There was no evidence of rescue in the SKMel5 nor SKMel28 (data not shown for 

SKMel28). This led to the final experiments of measuring ROS directly in the cell lines. Initially, 

the dye CellROX was used to stain ROS in 96-well plates, but despite including H2O2 and 

untreated controls, I experienced quantitation problems (data not shown). Thus, high-pressure 

liquid chromatography (HPLC) was employed to directly measure the ROS-dye product from the 

cells. Untreated and 8 µM PLX4720-treated cells (48 hr treatment) were incubated with 1 µM 

MitoSOX for 20 mins right before analysis. MitoSOX, or hydroethidine, is a mitochondria-

targeted probe that reacts with superoxide to generate the red product 2-hydroxyethidium or 

dihydroethidium (Zielonka and Kaylanaraman, 2010). The prior experiment with CellROX was 

thought to be confounded due to quantitation problems with the microscope but also the 

generality of CellROX acting in the cytosol. Thus, probing with MitoSOX and HPLC 

quantification was intended as a more refined and targeted approach.  48 hours of treatment with 

8 µM PLX4720 did not result in a statistically significant difference from the DMSO controls; in 

fact, it was surprising to observe a trending decrease of superoxide formation (Figure 6.6.) 
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Figure 6.6: PLX4720 Does Not Form Differential Superoxide in BRAF-mutated Melanoma 
Cells.  HPLC (used in conjunction with fluorescence detection for robust quantitation) on 
Shimatzu HPLC system with temperature control and automated sampling.  Reverse-phase 
HPLC is done on a C18 column (Nucleosil 250 to 4.5 mm) and a mobile phase containing 0.1% 
trifluoroacetic acid and an acetonitrile gradient (from 37% to 47%). Results are normalized and 
reported based on protein concentration; all done in triplicate, error bars are SEM. Analysis 
provided by Sergey Dikalov and Alfiya Bikineyeva.  

  
Even though MitoSOX can be sequestered and concentrated in the mitochondria by ~500 

fold in comparison to cytosol, the probe has two significant limitations: interference from heme 

enzymes, cytochrome c and peroxidases (Zielonka and Kaylanaraman, 2010), and the similarly 

fluorescent waste product, ethidium (Dikalov and Harrison, 2012).  It is still unclear what role 

ROS plays in defining or shaping the variability found in BRAF-mutated melanoma cell lines, 

however these initial experiments can help lay groundwork for further work. Understanding the 

confounding factors and limitations of these probes and reagents can influence more intelligent 

experimental designs; additionally, based on the work with clonal population in Chapter V, some 

of these results may very well be averaged out due to the population level responses being 

measured. It would be interesting to see if subclones with differential responses to PLX4720 

engender differential 1) ROS formation, or 2) detoxification. 
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APPENDICES 

 

 

Appendix A: Media Formulations (Comparisons). Table highlighting a few of the prominent 
nutrients in the media utilized within this thesis. All values are in mM concentrations. 
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Appendix B: Growth Curves and Population Doublings of Melanoma Cell Lines In the 
Presence of Oligomycin (Part 1/2). Representative experiments of BRAF-mutated cell lines 
treated with oligomycin (first set of six cell lines). The proliferation was log-2 normalized and 
plotted as population doubling (y-axis) over time (x-axis, in hours). The concentrations of 
oligomycin started at 4 µM, going down 4-fold to zero control (ethanol). Therefore, the doses 
used are as follows: 4000 nM, 1000 nM, 250 nM, 62.5 nM, 15.625 nM, 3.9 nM, 0.97 nM, 0.244 
nM, 0.06 nM, and ethanol control. For graph clarity, some of the concentrations are not shown, 
in order to eliminate crowding of the graph curves. Data shown are from a single experiment 
with technical duplicates; experiment has been repeated at least twice with similar results. Error 
bars are standard deviation. Additionally, for perspective about the dosing: 1 µM is needed to 
adequately inhibit oxygen consumption in our Seahorse assays. 
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Appendix C: Growth Curves and Population Doublings of Melanoma Cell Lines In the 
Presence of Oligomycin (Part 2/2). Representative experiments of BRAF-mutated cell lines 
treated with oligomycin. The proliferation was log-2 normalized and plotted as population 
doubling (y-axis) over time (x-axis, in hours). The concentrations of oligomycin started at 4 µM, 
going down 4-fold to zero control (ethanol). Therefore, the doses used are as follows: 4000 nM, 
1000 nM, 250 nM, 62.5 nM, 15.625 nM, 3.9 nM, 0.97 nM, 0.244 nM, 0.06 nM, and ethanol 
control. For graph clarity, some of the concentrations are not shown, in order to eliminate 
crowding of the graph curves. Data shown are from a single experiment with technical 
duplicates; experiment has been repeated at least twice with similar results. Error bars are 
standard deviation. Additionally, for perspective about the dosing: 1 µM is needed to adequately 
inhibit oxygen consumption in our Seahorse assays. 
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Appendix D: Variability of Response to Oxamic Acid in Melanoma Cell Lines. Proliferative, 
dose-response spectrum of IC50’s for Oxamic acid based on DIP rate. The dose-response curves 

are generated using a 2-fold dilution of Oxamic acid from 50 mM down to zero (PBS). The 
proliferative rates are calculated using the slope of the log2-normalized population curve after 48 

hours. Data shown are from 3+ experiments and 95% confidence intervals are the shaded 
regions.
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