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CHAPTER I 

 

INTRODUCTION 

 

The utilization of nanoscale tools in the development of clinically-relevant 

diagnostic assays and therapies, and the elucidation of complex biological mechanisms 

and mediators, will be facilitated by the development of surface engineering strategies 

which modulate cell and/or biomolecule-specific device targeting.  Nanoengineering of 

device interfaces permits the presentation of information at biologically-relevant length 

scales, and thus affords unprecedented control over various biomolecular interactions, 

such as ligand-receptor binding, opsonization, and cell-device contact.  Surface 

engineering strategies may also be applied to create nanodevices of enhanced 

functionality, via the construction of vehicles which permit the simultaneous packaging 

of multiple synthetic and biological materials with diverse physicochemical properties.    

This dissertation describes three diverse surface engineering strategies which are 

designed to expand the scope of application of nanotechnology in the imaging of cells 

and biomolecules in vitro and in vivo.  Targeting and multimodality are the two 

challenges in nanoscale surface engineering addressed.  Nanoscale surface modification 

technology was utilized to confer cell surface and intracellular substructure targeting 

capabilities upon nanostructures, and to facilitate multimodal nanotherapeutic and 

nanodiagnostic approaches.  These approaches were systematically evaluated in well-

characterized in vitro and in vivo models. 
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The first Aim of this proposal was focused on the surface functionalization of 

quantum dot nanocrystals to enable multiplexed cellular and biomolecular detection in 

vivo with enhanced specificity.  In addition, cell subsets were internally-loaded with 

nanoparticulate imaging agents via a cell-penetrating peptide for the long-term tracking 

of cells in a mouse model of atherosclerosis ex vivo and in vivo.  In Aim 2, nanoscale 

various imaging agents and/or therapeutics were packaged together within a lipid matrix 

(solid lipid nanoparticles) to demonstrate the application of a novel multimodal 

nanocarrier for bioimaging and drug delivery applications.  Additionally, paracellular and 

subcellular translocation mechanisms of these solid lipid nanoparticles were investigated. 

 

Specific Aim 1: Develop surface engineering strategies for cell surface marker 
detection in vivo 
 

 

In this Aim, nanoparticle surfaces were engineered for the simultaneous color-

coded detection of multiple cell surface biomarkers within the same imaging specimen in 

vivo using fluorescence imaging.  Previous approaches to detect pathologically-

significant biomarkers in vivo have been impeded by rapid probe clearance, low signal to 

noise ratios, and an inability to simultaneously analyze multiple cell types and/or 

biomarkers within the same imaging session.  In this Aim, quantum dots (QD) were 

coated with engineered monoclonal Mab (Mab) and cell-penetrating peptide (CPP) 

coatings for the long-term multispectral imaging of cells and biomolecules ex vivo and in 

vivo with high targeting efficiency.  Mab conjugation was achieved by the use of a high 

molecular weight polyethylene glycol (PEG) bridge to evade physiological 
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nanoparticulate clearance mechanisms.  Furthermore, through biological and chemical 

modifications of the targeting Mab, specifically Fc-masking and PEGylation, Fc-

mediated probe clearance was reduced while maintaining high target specificity.  As a 

test bed for this application, cells and biomolecules involved in inflammation were 

targeted, and QD were used for spectrally-coding cell adhesion molecules (CAMs) and 

circulating neutrophils.  Imaging of inflammation is a technically-demanding task since 

nanoparticulate clearance mechanisms are pervasive and high-specificity imaging with 

low background is critical.  The specificity of QD-Mab was evaluated on isolated rat 

neutrophils and rat retinal endothelial cell cultures in vitro using fluorescence microscopy 

and flow cytometry.  The efficacy of this approach was evaluated in rat models of 

diabetes and ocular inflammation, using an in vivo fluorescence imaging system to detect 

multiple cell types and biomarkers with spectrally-distinct quantum dot fluorescence 

signatures, followed by ex vivo immunofluorescence correlation of in vivo observations.   

Following this application, quantum dot surfaces were then functionalized with a 

cell-penetrating peptide coating to enable its loading into cells ex vivo.  Loading cells 

with QD as opposed to labeling cell surface proteins may be preferable, as it potentially 

may enable long-term imaging of cells in vivo without membrane shedding of 

bioconjugates or perturbation of cell surface interactions.  This approach was utilized to 

investigate leukocyte subtype recruitment within lesions of the ApoE -/- atherosclerotic 

mouse model.   
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Specific Aim 2: Develop entrapment-based surface engineering strategy to facilitate 
multimodal nanoparticulate applications  
 
 

Aim 2 was focused on the collective packaging of multiple synthetic and 

biological materials for the purpose of conferring multimodal functionality upon 

nanoscale carriers while concurrently conferring cell targeting capabilities.  

Multifunctional nanostructures have been sought after for designing combinative 

therapies, drugs with signal-emitting reporters, as well as cellular and biomolecular 

detection assays which exploit multiple imaging modalities.  In this Aim, a unique 

nanostructure referred to as functionalized multimodal solid lipid nanoparticles (SLN) 

was investigated for cell transport capabilities and efficacy as a multimodal carrier for 

bioimaging and drug delivery applications.  SLN consist of a biocompatible solid lipid 

matrix which during the nanoparticle synthesis process entraps materials of varying 

physicochemical properties, while bearing a variety of surface information on the SLN 

periphery.  This Aim was centered upon on the synthesis and characterization of SLN 

containing dyes, proteins, drugs, and the nanoparticulates iron oxide, gold, and QD.  Cell 

transport studies were conducted to determine if SLN have cell membrane translocation 

properties.         
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CHAPTER II 

 

BACKGROUND AND SIGNIFICANCE 

 

Potentials and Challenges of Nanoparticles for Medicine and Biology 

 

 The overall utility of nanotechnology in the detailed evaluation of biological 

mechanisms, as well the development of diagnostic and therapeutic tools in medicine, has 

yielded much enthusiasm.  In particular, the emergence of a variety of nanoparticles, 

often defined as objects with feature sizes below 100 nm, as well as techniques to 

modulate their surface properties, have enabled a number of applications in these fields.  

Successful applications of nanoscale surface engineering of nanoparticles in therapeutic 

development include liposomal and poly-lactide-co-glycolide (PLGA) formulations for 

targeted drug delivery and sustained drug release strategies (1-4), and the nanoscale 

surface modification of proteins for prolonged activity in vivo (5).  Superparamagnetic 

nanoparticles with biological coatings, such as dextrans, are already in clinical use as 

magnetic resonance contrast agents for the detection of a number of pathologies (6), and 

quantum dot nanocrystals have been utilized for a variety of studies in elucidating disease 

processes in vivo and in vitro, including cancer biology and cell signaling (7-10).  

Nanoparticle surfaces have been conjugated to receptor-specific ligands for the targeting 

of disease-specific cells, and with antibodies to detect proteins of interest, with the 

physicochemical properties of the nanoparticle permitting the monitoring of biology or 

disease using a number of analysis tools in medical imaging and molecular 
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characterization.  Collectively these applications are very promising and are primarily a 

consequence of decades of nanoscale surface engineering research and development.  

Further applications which extend the scope of such technologies are highly-desired and 

would yield valuable data concerning the pathogenesis, diagnosis, and/or treatment of 

disease, but will require additional nanoscale engineering advances over current 

techniques in order to be realized.   

 

Nanoscale Surface Modifications for Enhanced Cellular and Biomolecular 
Targeting: Proposed Work and Significance 
 
 

Three high-impact design challenges were addressed in this dissertation: high-

efficiency in vivo cell surface nanoparticulate targeting, intracellular delivery of 

nanoparticles, and strategies for the packaging of multifunctional nanoparticles.  In order 

to enhance the targeting specificity of nanoparticles to cell surface proteins, polymer and 

Mab biochemical modification techniques were employed to mask the nanoparticle from 

the immune system for long-term imaging, and to retain the antigen-binding affinity of 

the probe following ligand bioconjugation steps.  The objective of these strategies was to 

minimize nonspecific binding of the nanoparticle during the in vivo detection of 

molecular targets, so as to permit the real-time, simultaneous imaging of multiple 

biomarkers within the same imaging specimen, with low background or false-positive 

results.  The second challenge involved the translocation of nanoparticles across cell 

membranes.  By surface conjugation of the nanoparticle to cell penetrating peptides, the 

capability of loading nanoparticles within the cytoplasm was the objective.  This enabled 

tracking of cells in vivo or ex vivo without perturbing cell surface protein interactions 
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required for cell function, and also enhanced long-term imaging applications, since QD-

mAb conjugates could get dislodged from the cell surface due to routine cell surface 

protein shedding.  To address the third challenge, a general process was designed 

employing biocompatible functionalized solid lipids for constructing multifunctional 

nanoparticles containing diagnostic and therapeutic reagents for the delivery of drugs and 

bioimaging using diverse modalities (e.g. electron microscopy, fluorescence imaging, x-

ray).  The general aim of this strategy was to provide a targeted nanoparticle for usage in 

medicine and biology which permits extensive use of instrumentation while 

simultaneously permitting registration of the same biological target between each 

modality, while also potentially functioning as a biocompatible drug delivery device.                  

Three diverse schemes were proposed to address each nanoparticle surface 

engineering design problem, with the understanding that they could potentially be utilized 

not as individual approaches but in combination, and not explicitly using the prototype 

nanoparticles used for testing, but rather various classes and combinations of 

nanoparticles.   

 

Background and Significance: Aim 1- Develop surface engineering strategies for cell 
surface marker detection in vivo: Quantum Dot-Based, Multiplexed In Vivo Studies 
of Vascular Biomarker Expression and Leukocyte Trafficking in Inflammation 
 

 

Rationale 

It has become increasingly important in biology and medicine to consider the 

relative contribution of multiple cellular and molecular mediators to critical processes, 

such as angiogenesis and cancer progression, as opposed to traditional studies which 
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focused primarily on analyzing such mediators in singlet, or in a vacuum.  In order to 

simultaneously-monitor multiple participants in disease and other biological processes, 

molecular probes with near-absolute specificity, high signal to background ratios, and 

highly-distinct emission spectra (i.e. between molecular probes) must be developed.  

Quantum dot nanocrystals (QD) offer these potential features; their high fluorescence 

emission intensities, size-tunable emission spectra, and amenability to surface 

bioconjugation of ligands provide a means for simultaneously monitoring the expression 

of multiple biomarkers and/or cell subtypes via optical imaging.  However, in order to 

harness these superior optical properties, QD, as with other nanoparticles, must be 

carefully nanoengineered for maximum targeting efficiency.  The study of mediators of 

inflammation is an appropriate application for optimizing QD surface engineering 

strategies, as the cell types being targeted (e.g. macrophages, endothelial cells) are often 

problematic sites for nonspecific probe uptake.  In Aim 1 nanoparticulate masking 

strategies will be utilized which maximize target binding efficiency while reducing 

nonspecific clearance of the probe.    

 

Rationale for Multiplexed Imaging of Cellular and Biomolecular Mediators of 
Inflammation 
 

 

Undesirable provocation of the inflammatory response is a detrimental feature of 

numerous diseases such as diabetes, multiple sclerosis, atherosclerosis, and asthma (11-

13) and thus impacts a significant population.  Inflammation is a complex process 

involving numerous cell types and surface proteins characterized by leukocyte rolling and 
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tethering along endothelial cells followed by transmigration into tissue.  Treatment of 

inflammation-associated diseases can be challenging due to the fact that the extent and 

type of inflammation in each case can vary considerably. For example, the leukocyte 

subsets present, the molecular mediators participating in adhesion and emigration, and 

the resulting effects on tissue all vary with the type of inflammation.  Conventional 

therapies administered as anti-inflammatory measures such as non-steroidal anti-

inflammatory drugs (NSAIDs) and corticosteroids have mixed results in the clinic and are 

often characterized by significant side-effects. In light of the limitations of these 

generalized approaches, specifically-targeted therapeutic measures in development intend 

to inhibit key molecules to prevent transendothelial migration of leukocytes.  While not 

all specifically-targeted therapies have had equal success, those directed towards well-

studied molecules, such as Remicade (infliximab) which targets tissue necrosis factor 

(TNF) in Crohn’s disease and rheumatoid arthritis, have shown promising clinical 

efficacy in patients responding poorly to conventional regimens (10, 14).  It can be 

inferred that the success of clinical diagnostic procedures and therapeutic strategies 

which employ this molecular level approach is contingent upon a detailed understanding 

of the mechanisms and mediators involved in specific inflammatory processes.   

 

Current in vitro and ex vivo cellular and molecular profiling tools 

 

Decades of research in the pathogenesis of inflammatory disease have identified 

leukocyte subsets and their general functions, cell adhesion molecules (CAMs), and other 

protein families critical in the inflammatory cascade.  Biological assays used to elucidate 
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cellular and molecular function in inflammation include blotting techniques, which detect 

proteins, RNA, or DNA presence within a biological sample, and flow cytometry, a 

quantitative technique utilized to probe molecular expression, cell cycle phase and 

viability of cells.  Immunohistochemistry can be utilized to visualize a protein of interest 

in tissue sections.  Valuable information about the expression profiles and roles of 

proteins in inflammation have been extracted from experiments which use these assays.  

However, for many of these observations, in vivo corroboration has not been obtained.  

A second limitation of these approaches is that they provide endpoint data only. It 

is often necessary to culture cells, fix them and analyze each cell sample at a number of 

different time points.  However, real-time spatial and temporal information concerning 

these proteins is very difficult to obtain.  This data could be potentially valuable in 

determining if the co-expression of one protein next to another enhances its activity, or 

how the pattern of molecular expression cycles through the progression of a disease or in 

response to drug interventions.  In addition, such assays often involve complex isolation 

procedures.  Some cell cultures are sensitive or very difficult to maintain in vitro, which 

adds difficulty in analyzing a biomarker over a time course of days or weeks.  Standard 

flow cytometry is a powerful quantitative tool, and while it can be used to provide 

valuable information, such as an estimate of the number of particular receptors on a 

single cell, this analysis is performed using cells separated from the circulatory 

environment.  Thus, in vitro techniques may provide a means of generating hypotheses 

for in vivo function, but it is necessary that some in vivo technique be performed to 

validate the in vitro findings.   
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Current in vivo cellular and molecular imaging tools 

 

The current understanding of the principal molecular and cellular players involved 

in inflammation is summarized in Figure 1. Given the above limitations with in vitro 

assays, several attempts to probe in vivo cellular and molecular activities in inflammation 

have been reported.  Radiolabeled monoclonal antibodies to ICAM-1 and VCAM-1 were 

administered in vivo (16, 17). While this represents an important step in multiplexed 

analysis of inflammatory markers, in order to assess Mab binding at the different 

timepoints, corrections due to background signal needed to be performed to estimate 

specific antigenic signal.  In addition to the signal to noise issues, these studies required 

compensations in signal calculations in order to distinguish each signal and minimize 

contributions from unbound Mab.  The spatial and temporal resolution of these 

radiolabeled Mab techniques are too limited for detailed studies of leukocyte-endothelial 

dynamics in inflammation.   
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Figure 1. Major inflammatory biomarkers and their   
functions (15). 
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A technique with the spatial and temporal resolution to capture leukocyte motility 

through the circulation was established by Nishiwaki and colleagues using the fluorescent 

DNA-intercalating dye acridine orange (AO) in conjunction with scanning laser 

ophthalmoscopy (SLO) (18).  While spatial and temporal resolution is adequate, AO is 

internalized by all nucleated cells in the circulation.  Thus, endothelial cells and all 

leukocyte subsets fluoresce with AO signal, presenting a challenge in determining cell 

adhesions, and making it impossible to probe molecular expression.  Furthermore, AO is 

phototoxic to lysosomes and a suspected carcinogen (19), has a low quantum efficiency, 

and is prone to fading and cell washout.  Thus, this technique is not appropriate for in 

vivo imaging applications where multiple species are to be detected or for long periods of 

time.  Nevertheless, it is the most common method of observing labeled leukocytes in the 

circulation for determination of extravasation and velocity.   

A third method has been used to characterize VCAM-1 expression in vivo using 

multimodal fluorescent Cy5.5-conjugated Mab and peptide conjugates by Weissleder and 

colleagues (20, 21).  Both conjugates, most notably the peptide conjugates, exhibited a 

high affinity for VCAM-1 in both intravital confocal microscopy and magnetic resonance 

studies on atherosclerotic lesions and in TNF-α induced inflamed murine ear.  While this 

method is a significant achievement in the development of in vivo molecular profiling 

techniques, its utility in multispecies real-time imaging applications may be limited.  

First, one of the applications was hampered by nonspecific IgG control Mab uptake at 

certain time periods in inflamed murine ear, thus calling into question the specificity of 

the Mab-based technique.  While the peptide-Cy5.5 conjugate was specifically taken up 

by the cells, performing the same technique for detection of other biomarkers would 
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require time-consuming phage display rounds which may not yield suitable, specific 

candidates.  In addition, while the use of a magnetic resonance contrast-enhancing probe 

in detecting VCAM-1 may be a useful tool for whole-body detection applications, its 

potential in applications requiring the detection of multiple proteins is limited to available 

contrast agents.  Also, the use of cross-linked iron oxide nanoparticles (CLIO) has been 

associated with aggregation problems (22), which could limit their in vivo utility, as 

nonspecific signal may be detected by aggregation of nearby conjugates.  The dye Cy5.5 

was used to detect VCAM-1 using fluorescence imaging which opens the possibility of 

this technique for monitoring multiple proteins. However, as in the radiolabeled Mab 

technique, different conjugates would be required to detect other proteins, which would 

necessitate an additional excitation laser for each fluorophore.  In addition, organic dyes 

can often have spectrally-overlapping characteristics making specific detection without 

noise a challenge. 

 

A QD-based in vivo imaging technique for the simultaneous detection of cellular 
and molecular inflammatory mediators 
 

 
 The proposed design differs from previous in vivo approaches to study 

inflammation primarily by the harnessing of unique QD optical properties, as well as 

novel surface engineering strategies which are aimed toward enhancing QD targeting 

efficiency.  QD-Mab conjugates are used to specifically label molecular targets in vivo.  

QDs, or semiconducting nanocrystals, with their nanoscale size providing a quantum 

confinement effect, are the only tracers which can make a multi-spectral imaging system 

achievable.  These properties include higher quantum efficiency relative to conventional 
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dyes, resistance to fading, narrow and size-tunable emission spectra excitable by only one 

wavelength, and amenability to surface engineering of proteins and polymers for 

optimum stability and targeting (23).  No conventional fluorescent probes currently 

implemented in in vivo imaging techniques are capable of exhibiting all of these features. 

 Current techniques used to observe detailed cellular and molecular interactions in 

inflammation are not suitable for imaging multiple cell types, concurrently with multiple 

proteins, continuously in real-time with sufficient spatial and temporal resolution.  A QD-

based in vivo retinal fluorescence imaging technique has been designed which will enable 

noninvasive studies of dynamic leukocyte-endothelial interactions and molecular 

expression at high sensitivities and signal to noise ratios.  This multispectral approach 

will allow the in vivo distinction of up to four different cell types or proteins in the same 

imaging specimen at sub-micron resolutions.  Continuous imaging at millisecond 

intervals will be performed to capture high-velocity cell motility through major vessels as 

well as the microcirculation.   

 Size-tunable QD nanocrystals will be used to specifically-label multiple proteins 

expressed on leukocytes or endothelial cells.  It is possible to detect each protein 

simultaneously in the retinal circulation due to the distinct spectral signatures encoded by 

the QD bioconjugates.  QD emission peaks are narrow and intense, minimizing spectral 

overlap while exhibiting high signal to background ratios.  QDs are amenable to 

conjugation of antibodies or peptides to their surface, as well as surface engineering of 

polymers designed to stabilize them or improve bioconjugation efficiency(24).  Only one 

excitation source is necessary to visualize all nanocrystals, in contrast to methods using 

fluorophores which require a separate excitation wavelength for each fluorophore.   
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 The proposed retinal imaging approach is based on an inverted fluorescence 

microscope equipped with xenon flashlamp and metal halide excitation lamps.  This 

apparatus was originally developed as part of an optical technique to track vascular 

permeability changes in the retina (25).  This technique has been used to track acridine 

orange labeled leukocytes in a rat retina.  An example of a video frame from one of these 

sequences is shown in Figure 2.  In this frame the moving AO labeled cells are captured 

as well-defined white dots (arrows) by the 4 ms flashlamp illumination.  These results 

suggested that this platform in combination with brighter, specific probes would enable 

us to noninvasively monitor cells and proteins in inflammatory disease in the retina.   
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Figure 2. In vivo tracking of acridine orange labeled 
cells (arrows) in a rat retina illuminated with a 
flashlamp. 
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Nanoparticulate surface engineering strategies for enhanced in vivo half-life and 
targeting specificity: PEGylation, site-specific bioconjugation of proteins, and Mab 
fragmentation 
 
 
 
 The success of this quantum dot-based multispectral imaging approach is highly-

dependent on the probe’s affinity and specificity for the target of interest.  In utilizing 

quantum dots or other nanoparticles for the in vivo detection of cells and biomolecules in 

disease, several physiological factors must be addressed in surface engineering processes.  

First, the body has several tissues, primarily the liver and spleen, which actively retain 

nanoparticles as part of their role in the reticuloendothelial system (RES) (22, 26).  The 

major nanoparticulate modification employed to evade RES uptake for as long as 

possible has been PEGylation.  Polyethylene glycol (PEG) is well-known for its ability to 

diminish nanocarrier clearance by the reticuloendothelial system and inhibiting protein 

surface adsorption.  This is a consequence of the hydrophilic exclusion volume exerted 

by the freely mobile polymer chain of the carrier surface.  This is analogous to having a 

surface whereby a hydrophilic tail whips several angstroms from side to side, essentially 

whipping away hydrophobic molecules which might normally bind to the surface, an 

occurrence which might induce immune clearance via opsonization.  This strategy has 

been recently utilized for the protection of therapeutic proteins, as reinforced by the 

increasing number of PEGylated drugs in the clinic, such as PEGASYS (interferon alfa-

2b, Roche) and Exubera (inhaled insulin, Pfizer).  In addition, PEGylation has been 

reported to reduce nonspecific binding of quantum dot nanocrystals to cell surfaces in 

vitro (27), and more importantly, to reduce RES uptake in vivo (26, 28).  
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 The next challenge to be considered when designing a nanoparticulate targeting 

system in vivo involves the development of a surface modification strategy which retains 

the full functionality of the targeting moiety.  In many targeting paradigms, the surface 

ligand may be a biomolecule which is not recognized as foreign by the body, such as 

folate and transferrin.  However, in a large fraction of nanoparticulate targeting methods, 

antibodies, primarily immunoglobulin G (IgG) proteins are employed.  Whole IgG 

contain two F(ab) regions, which contain the antigen-binding site, as well as a Fc 

fragment, a species-conserved sequence which is responsible for immune recognition of 

the Mab.  Fc-mediated opsonization and clearance through phagocytes with Fc receptors, 

such as macrophages, are potential sources of nanoparticulate clearance as well, unless 

the Fc fragment can be shielded from such recognition.  Two general methods have been 

reported which aim to combat this clearance mechanism; however, it must be noted that 

these studies have only examined Mab clearance itself, rather than nanoparticle-Mab 

complex clearance.  The first method is to enzymatically-digest the IgG molecule at a 

specific site, so as to separate the active F(ab) or F(ab)2 fragment from the Fc fragment, 

as can be accomplished with pepsin or papain/ficin, respectively (5, 29, 30).  By utilizing 

digestion schemes that yield a divalent (F(ab)2) Mab fragment, a higher affinity Mab is 

derived relative to the monovalent (F(ab)) form.  However, if the Mab is to be covalently 

cross-linked to nanoparticle surfaces, a significant problem further compromising Mab 

affinity would result by conjugating the F(ab)2 form.  Nanoparticles are cross-linked to 

antibodies (whether in their fragmented or whole form) using amine residues, which are 

usually critical for antigen-binding activity.  When the Mab to be conjugated to a 

nanoparticle is in its whole (Fc + F(ab)2) form, antibodies which are cross-linked via the 
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Fc region (which contains many lysine amino acids bearing amine groups) maintain their 

antigen-binding affinity (i.e. antigen-binding region amines are not modified).  However, 

if the Fc fragment is absent, then there is no alternative but to cross-link amines used for 

antigen-binding to the nanoparticle.  Nonspecific amine-cross-linking has thus been 

implicated in the loss of function of antibodies, especially in the case of Mab F(ab)2 

conjugation (5, 31).  In contrast, the F(ab) fragmentation reaction (using pepsin) is 

capable of yielding an Mab fragment without an Fc region which bears a single, site-

specific unpaired cysteine residue (normally used to link F(ab) fragments by disulfide 

bridges) (29).  This residue is often the only cysteine in the entire IgG, and is located in 

the hinge region of the Mab which is not involved in antigen-binding.  Using specific 

sulfhydryl-reactive chemistries, nanoparticles can be site-specifically conjugated to F(ab), 

such that Fc-mediated nanoparticulate clearance is eliminated, and antigen-binding 

affinity of the F(ab) is not obliterated by nonspecific amine chemistries as in the divalent 

case.  However, as a result of this tradeoff for site-specific conjugation (to avoid 

nanoparticle cross-linking induced deactivation of the Mab), only the inherently lower 

affinity, monovalent form of Mab is attached on the nanoparticle surface.  A final 

concern with this first method of Mab engineering is that enzymatic digestion of 

antibodies is a complex process, with the procedure being significantly sensitive to the 

host species of the Mab.  For example, Mouse IgG subclass 2 antibodies can be digested 

by papain, whereas IgG subclass 1 antibodies do not cleave sufficiently in response to the 

enzyme, requiring a completely different enzyme, ficin (Pierce, Rockland, IL), to 

accomplish the task.  Empirical testing of optimal procedures for each Mab can be very 
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costly and time-consuming, and there is no guarantee of successful, high-efficiency 

digestion.     

To circumvent the various problems brought by Mab fragmentation techniques, 

recombinant protein engineering strategies have emerged recently, whereby vectors are 

engineered to generate Mab fragments with site-specific linker sites (31, 32).  

Furthermore, by utilization of PEG linkers with divalent cysteine-reactive arms, Mab 

fragments (specifically scFv, or single-chain Mab fragments) can be “glued” together to 

create an Mab construct with similar affinity to a F(ab)2.  While this may be an optimal 

method for the site-specific PEGylation of antibodies for prolonged circulation time with 

preserved target affinity, it has not been applied to nanoparticulate surface engineering, 

nor is it clear that such a strategy could be applied without extensive optimization.  

Furthermore, Mab production using this strategy would be potentially very time-

consuming and costly, especially in the case where multiple such antibodies were to be 

produced. 

In Aim 1 a strategy for masking the Fc region of the Mab will be tested, by 

adsorbing Fc-specific F(ab)2 fragments to the QD-Mab surfaces.  We hypothesize that the 

steric hindrance imposed by the Fc-blocking Mab would inhibit Fc-mediated clearance 

mechanisms in the body, such as complement fixation and Fc receptor binding.  Should 

this strategy prove successful in reducing nanoparticulate clearance, it would constitute a 

time-saving, inexpensive Mab engineering method that could be applied to nanoparticle-

Mab constructs and antibodies alike to reduce immune reactions for improved in vivo 

targeting.       
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Advantages and potential applications of QD-based retinal imaging platform 

 

 The unique features of this technique are high signal intensity, the ability to 

noninvasively detect both cells and cell surface markers simultaneously in vivo with high 

spatial and temporal resolution, the need for only one excitation source in the visible 

spectrum, and the optical accessibility to perform continuous imaging for the collection 

of real-time data.  Currently, no other system currently available has combined all of 

these features for in vivo imaging applications.  In addition, the surface engineering 

strategies proposed in Aim 1 are likely to enhance the specificity of the circulating 

bioconjugates, thus minimizing noise, and due to the engineering of site-specific cross-

linking sites on the Mab, the QD probes should have very high affinity for their epitopes.      

The capability to image multiple proteins and cells simultaneously on any time 

scale with striking clarity would be a major advancement in the field of in vivo molecular 

imaging.  Specifically, the utility of this approach will become increasingly important in 

the design of diagnostic assays and therapeutic strategies, in which the monitoring and/or 

targeting of multiple suspected mediators of inflammation is critical to an improved 

prognosis.  In addition to elucidating the key cells and proteins in inflammation, this 

strategy certainly can be extended, for example, to the tracking of homing precursor cells 

and proteins in angiogenesis, for which the corneal pocket is a widely-accepted model 

(33), as well as molecular profiling in a number of ocular diseases ranging from 

glaucoma, macular degeneration, and diabetic retinopathy, devastating diseases which 

impact a large population and necessitate in vivo therapeutic targets and early diagnostic 

indicators.  Flow cytometric analysis of any circulating cell type via microscopic analysis 
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of the retinal circulation is feasible with this technology, which might facilitate the 

development of imaging applications which seek out circulating metastatic cells to 

monitor tumor progression.   

From a surface engineering standpoint, it is likely that Mab engineering would be 

equally effective with other classes of Mab-conjugated nanoparticles, such as gold 

nanoparticles for ablative targeting of diseased tissue, iron oxide nanoparticles for cancer 

imaging, or Mab-conjugated liposomes.  The PEGylation chemistry is also readily 

applied to most nanoparticles which are to be employed for in vivo targeting; in addition, 

even non-targeted nanoparticles used for vascular imaging, or for passive tumor 

accumulation in drug delivery applications employing passive retention in the leaky 

vasculature which supplies it, would most likely benefit from increased circulation time 

for prolonged velocity calculations or maximal drug retention, for example.         

 

Background and Significance: Aim 2 - Develop entrapment-based surface 
engineering strategy to facilitate multimodal nanoparticulate applications: Solid 
Lipid Nanoparticles for Bioimaging and Drug Delivery 
 

 

Rationale 
 

Given the novel properties conferred upon nanoscale devices of unimodal 

functionality, it has quickly become relevant that composite structures consisting of 

nanoparticulates of various functionalities can be delivered within the same package, 

given the proper surface engineering strategy.  Multimodal nanoscale devices would 

permit the usage of multiple imaging modalities in biology and medicine to extensively 

characterize disease processes with the feature of co-registration, for example, by using in 
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vivo MRI in conjunction with fluorescence microscopy in histological analysis to 

correlate with in vivo findings.  By packaging diagnostic and therapeutic reagents within 

the same vehicle, detailed pharmacokinetic and pharmacodynamic studies would also be 

enabled, for example, by conducting biodistribution studies of candidate drugs as 

assessed by optical or magnetic resonance reporter nanoparticles.      

 The suitable multimodal nanoparticle platform would consist of a biocompatible, 

well-tolerated biomaterial, either natural or synthetic, which is amenable to the 

encapsulation or entrapment of nanoscale compounds of varying physical and chemical 

properties.  Specifically, the carrier, whether having a hollow core and membranous 

bilayer, as liposomes, or having a glassy, porous interior, such as some polymeric 

structures, should ideally be capable of bearing hydrophobic and hydrophilic, charged or 

neutral, or high (MDa) and low molecular weight (>500 Da) compounds.  While the 

internal modularity must be accommodating, equally important is the nanoparticle 

surface.  By surface-tuning the nanoparticle surface with bioactive ligands such as 

targeting antibodies or CPPs, the ultrafunctional construct would behave as one 

nanoparticle in a biological environment.  Should the carrier be capable of holding 

multiple encapsulated probes, high signal to noise ratio imaging and the delivery of 

therapies with maximum treatment efficiency can be carried out relative to single 

nanoparticles.   
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Current Techniques for the Design of Multimodal Nanoparticles 

 

  The first multimodal applications utilizing nanoparticles generally consisted of 

single probes bearing dual functionalities, an example being gold nanoshells, the 

thickness and core radius of which can be tuned to scatter and absorb photons at distinct 

NIR-range wavelengths for deep tissue penetration.  This feature, combined with the 

engineering of bioactive functionalities on the nanoshell surface, together form a HER2-

targeted, photothermosensitive optical contrast agent(34-36).  A number of multimodal 

strategies are in development by specialized drug delivery companies, utilizing pumps, 

microchips, and various biosensors (ALZA, Epic Therapeutics, Emisphere Technology, 

Alkermes).  Recent device innovations for bioimaging and drug delivery reported in the 

literature attest to the high efficacy of multimodal approaches.  Liposomes were 

engineered to bear both quantum dots and the T1 magnetic resonance contrast agent 

Gadolinium for dual-modality imaging at levels sufficient to detect tumor angiogenesis 

(37, 38).  In a magnetooptical nanoparticulate application, Cy5 dye conjugated with 

dextran cross-linked iron oxide nanoparticles were utilized to detect atherosclerotic 

plaques via inflammatory biomarkers, using both MRI and in vivo optical imaging(20, 

21).  In an innovative combinative therapeutic approach for combating tumors, an anti-

angiogenic agent was layered above a sustained release chemotherapeutic agent to 

achieve a temporally-controlled “nanocell (39).”  Thus, both lipid-based and polymeric-

based approaches have been demonstrated to be promising platforms for multimodal 

systems, in addition to biologically (e.g. dextran)- engineered approaches.   
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Solid Lipid Nanoparticle-Based Multimodal Nanoparticles: Potential Advantages 

 

 The aforementioned works are only a few examples demonstrating the diversity 

of multimodal approaches that are possible for detailed studies of biological processes 

and disease in living systems.  However, as this field is in its infancy, there are as 

expected some drawbacks which require consideration should this area progress further 

in potential.  First, many multimodal approaches seek to complex only a few 

nanoparticles together, to create bimodal point sources, such as Cy5-iron oxide 

nanoparticle constructs (21).  While initial studies demonstrate that signal output is 

sufficient for the detection of disease in animal models, an approach adapted for hi-

fidelity imaging of disease in humans might benefit from a multimodal carrier engineered 

to bear multiple cargoes, perhaps 10-100 nanoparticles within one carrier.  Indeed, in the 

case of T2 relaxing agents, a high density of the reagent at the target site would provide 

excellent signal over background, a welcome advantage for the detection of 

hepatocellular carcinomas for which the nanoparticle is currently utilized (40).  In 

addition, it is important to consider a major common denominator of the aforementioned 

nanoparticulate systems which hinder their transition from laboratory testing to clinical 

implementation: regulatory issues and potential for scaling-up of production.  For 

example, PLGA nanoparticles, recalling their ability to be internalized nonspecifically 

into endosomes followed by triggered escape, have the potential to degrade within cell 

bodies, a process which due to the carrier alone has been associated with cytotoxicity.  

Furthermore, it has been a highly-difficult task to scale up PLGA nanoparticle production 

lines, thus limiting this polymer application to biomedical implants, such as Zoladex, as 
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well as large microparticulate forms which are too large for intracellular transport.  In 

addition to regulatory concerns and production difficulties is the issue of cost.  

Liposomes, for example, are very expensive to make, a fact which hinders the majority of 

candidate liposomal formulations in the pharmaceutical industry.  As individual 

liposomal formulations are costly, it is unlikely that production of liposomes bearing 

multiple cargoes would be economically feasible, unless it posed a very high-impact 

detection and/or treatment reagent.  A major contributor to the cost of nanoparticulates 

like these involve the time-consuming steps and multiple resources required for synthesis.  

Evaporation, cooling, centrifugation, emulsion, and mixing steps to generate pure 

nanoparticles with acceptable loading efficiencies can be tedious and are not only costly 

but add to the challenge of scaling-up production.  Next, while each nanoparticulate 

system has its own advantages supporting their potential candidacy for multimodal 

systems, there are still a host of disadvantages when evaluating the physicochemical 

properties of the carriers themselves.  PLGA, for instance, has been associated with 

intraparticle cargo degradation, due to the internal acidic environment created by ester 

hydrolysis of the polymer surface, as demonstrated with a drop in fluorescence of FITC-

Albumin with PLGA microspheres (41).  Liposomes are associated with a variety of 

physical stability issues, making long-term storage and regular drug administration a 

challenge.  While there are countless potential applications of liposomal formulations in 

the literature, the expectations have clearly not matched its potential, having been first 

invented in 1913 and the main focus of hundreds of R&D funding initiatives. 

 In light of these observations, a nanoparticulate system for the development of 

multimodal systems for bioimaging and drug delivery for the purpose of enhanced 
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cellular/biomolecular detection should ideally have the following characteristics: 

potential for scale-up of production, a capacity to accommodate compounds of varying 

physicochemical properties (size, charge, solubility, e.g.), amenability to presentation of 

multiple surface functionalities (polymers, ligands, etc.), should be a solid candidate for 

regulatory agency approval by using GRAS (generally recognized as safe) standards 

among others, and lastly, should be as stable as possible under varying storage conditions 

and administration regimens (intravenous, intraocular, etc.).   

 The hypothesis of Aim 2 is that an approach not described for multimodal 

nanomedical or nanobiological systems, dubbed functionalized solid lipid nanoparticles 

(fSLN), is a solid starting material strategy which could address some or all of the 

expectations for a successful multifunctional system.  A class of solid lipids were 

identified which could be formulated into nanoparticles ranging in average size from 35-

800nm depending on process parameters.  Nanoparticulate formation is accomplished by 

the solvent-assisted formation of a microemulsion.  The solid lipid, a dry pellet, is 

dissolved with a solvent composition of tunable polarity, such that the affinity of this 

organic solution for water is adjusted.  Upon the addition of an aqueous phase to the 

solvent mixture, the hydrophobic packing of the lipid upon exposure to water provides 

for instantaneous formation of a nanoscale particle, the size of which is determined by 

solvent polarity.  Higher solvent polarity permits rapid phase inversion as water 

miscibility is higher, whereas lower solvent polarity likely extends the nanoparticle 

packing time, allowing for larger-sized nanoparticles to form.  The instantaneous lipid 

packing which occurs upon organic-aqueous phase inversion is thought to readily entrap 

any species dissolved in either phase.       
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Summary 

 

The three surface engineering strategies proposed here represent an investigation 

into the improvement of nanoparticulate probe functionality, to facilitate the development 

of diverse and powerful applications in biology and medicine.  The dissertation focused 

specifically on two challenging problems, the enhancement of nanoscale device in vivo 

targeting, and the development of multifunctional devices.  The result of this research 

was a framework enabling nanodevice targeting to specific destinations within tissues or 

cells, for the purpose of high-resolution bioimaging using multiple imaging modalities. 

 The first manuscript describes efforts to perform multiplexed in vivo retinal 

vascular imaging using quantum dots functionalized with modified, Fc-blocked 

antibodies, in rat models of diabetes and ocular inflammation.  This work was published 

in Bioconjugate Chemistry in Fall 2007 (42).  The second manuscript extends the strategy 

of using quantum dots to image multiple cell types in pathology by incorporating cell-

penetrating peptide-coated quantum dot nanocrystals to image monocytes and T 

lymphocyte recruitment to atherosclerotic lesions.  This work was submitted to the 

Journal of Lipid Research in April 2008.  Chapters V and VI describe the synthesis and 

characterization of solid lipid nanoparticles (SLN), unique endothelial barrier 

translocation properties conferred upon SLN via surface engineering, and cell membrane 

translocation properties of multimodal SLN constructs.  Chapter V was published in 

IEEE Transactions on NanoBioscience in March 2008 (43). 
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Abstract  

Quantum dot-antibody bioconjugates (QD-mAb) were synthesized incorporating 

PEG crosslinkers and Fc-shielding mAb fragments to increase in vivo circulation times 

and targeting efficiency.  Microscopy of endothelial cell cultures incubated with QD-

mAb directed against cell adhesion molecules (CAMs), when shielded to reduce Fc-

mediated interactions, were more specific for their molecular targets.  In vitro flow 

cytometry indicated that surface engineered QD-mAb were capable of labeling leukocyte 

subsets with minimal Fc-mediated binding.  Nontargeted QD-mAb nanoparticles with Fc-

blockade featured 64% (endothelial cells) and 53% (leukocytes) lower nonspecific 

binding than non Fc-blocked nanoparticles.  Spectrally-distinct QD-mAb targeted to the 

cell adhesion molecules (CAMs) PECAM-1, ICAM-1, and VCAM-1 on the retinal 

endothelium in a rat model of diabetes were imaged in vivo using fluorescence 

angiography.  Endogenously-labeled circulating and adherent leukocyte subsets were 

imaged in rat models of diabetes and uveitis using QD-mAb targeted to RP-1 and CD45.  

Diabetic rats exhibited increased fluorescence in the retinal vasculature from QD 

bioconjugates to ICAM-1 and VCAM-1 but not PECAM-1.  Both animal models 

exhibited leukocyte rolling and leukostasis in capillaries.  Examination of retinal whole-

mounts prepared after in vivo imaging confirmed the fluorescence patterns seen in vivo.  

Comparison of the timecourse of retinal fluorescence from Fc-shielded and non-Fc-

shielded bioconjugates indicated nonspecific uptake and increased clearance of the non-

Fc-shielded QD-mAb.  This combination of QD surface design elements offers a 

promising new in vivo approach to specifically label vascular cells and biomolecules of 

interest. 
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Introduction 

 

Inflammation is a complex process involving numerous cell types and surface 

proteins.  It is characterized by leukocyte rolling and tethering along endothelial cells 

followed by transmigration into tissue, where their immunodefensive functions, such as 

phagocytosis, are elicited (1, 2).  Undesirable provocation of the inflammatory response 

is thought to be a detrimental feature of numerous diseases such as diabetes, 

atherosclerosis, and asthma (3-6).  Treatment of inflammatory disease is challenging due 

to uncertainties associated with the roles of many of the cellular and biomolecular 

mediators.  However, one developing strategy hinders inflammation by blockade of cell 

surface receptors either on the endothelium or on circulating leukocytes (7-9). 

Detailed information about molecular mediators of inflammation might be 

acquired through in vivo imaging methods, since they can provide real-time data 

concerning the spatial and temporal dynamics of cellular activities and molecular 

expression throughout the time course of the disease.  However, disadvantages of current 

imaging techniques include limited optical accessibility to tissue, invasiveness (10, 11), 

low or unstable signal intensity due to the use of organic fluorophores (12-14), or low 

spatial and temporal resolution achieved by the use of radiolabeled antibodies (15).  No 

available technique provides a framework for the simultaneous imaging of multiple 

molecular participants on moving leukocytes and stationary endothelium and leukocytes 

in real time.   

Imaging inflammation is a difficult task, as the cell types of interest have one or 

more of the Fcγ receptor family (CD16, CD32, and CD64) which bind to Fc fragments of 
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Immunoglobulin G (IgG) antibodies with variable affinity (16).  Binding of bioconjugates 

to these receptors can yield false-positive results when attempting to detect vascular cell 

surface targets.  In addition, it is well-known that nanoparticulate probes are subject to 

rapid uptake by the tissues of the reticuloendothelial system, such as liver and spleen 

(17).  These immunodefensive mechanisms either serve to rapidly clear the probe from 

the circulation, or to nonspecifically bind the probe.  However, the many advantages 

afforded by nanoparticles as bioconjugates, particularly quantum dots (QD), which 

feature size-tunable visible-IR emission spectra, the need for only one excitation source, 

and high quantum efficiency, warrant new methods to facilitate their continued 

application (18, 19).  Recent work has indicated that the surface functionalization of PEG 

chains on the quantum dot surface can substantially reduce nonspecificity and clearance 

problems (20, 21).  In addition, many studies have established QD amenability to 

bioconjugation and ease of encapsulation in water-soluble coatings (22), and its 

incorporation within targeted in vivo imaging applications (20, 23, 24).    

In this study, we selected spectrally-distinct quantum dot (QD) nanocrystals to 

enable high-resolution, multispecies imaging using a previously developed, non-invasive 

in vivo retinal vascular imaging system (25).  In this application, which pursues the 

detection of vascular targets, mitigation of nonspecific uptake and clearance mechanisms 

are essential.  To address this, monoclonal antibodies (mAb) targeting leukocytes, 

neutrophils (26) or the cell adhesion molecules PECAM-1, ICAM-1, and VCAM-1 were 

site-specifically conjugated to PEG-Maleimide-activated QD surfaces via 2-MEA to 

preserve mAb orientation and binding affinity (27).  QD-mAb were then adsorbed with 

Fc-blocking F(ab)2 fragments to reduce nonspecific immunorecognition.  When 
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incubated with endothelial cells or leukocytes in vitro, the shielded probes were found to 

be more specific for their targets relative to controls.  In vivo retinal imaging of 

streptozotocin (STZ)-treated diabetic rats using QD-mAb revealed upregulation of 

ICAM-1 and VCAM-1 but not PECAM-1.  Imaging of a rat model of Endotoxin-Induced 

Uveitis (EIU) showed the expected increase in stagnant leukocytes in the 

microcirculation.  The high photostability of QD permitted post-experimental histological 

observations which confirmed the in vivo results.  Real-time imaging of QD-IgG1 

conjugates indicated rapid clearance of conjugates lacking Fc-blocking F(ab)2 fragments 

from the circulation.  The distinct spectral emission characteristics of the QD enabled the 

simultaneous imaging of up to four biomarkers or cell types within the same animal with 

high specificity.   

 

Experimental Procedures 

 

Synthesis and Characterization of Shielded Quantum Dot-Antibody Conjugates 

 QD nanocrystals with approximately 80 NH2 groups/nanoparticle (ITK-NH2, 

Invitrogen Corp.) were surface-functionalized with a heterobifunctional PEG-based 

cross-linker (NHS-PEG-MAL, Nektar Therapeutics) to couple reduced antibodies to the 

surface, followed by Fc-shielding F(ab)2 surface adsorption as shown in Scheme 1.  (1) 1 

uM of QD-ITK-NH2 (1.2 x 1014 nanoparticles in 200 uL solution) were maleimide-

activated by incubation with a 20-fold molar excess of NHS-PEG-MAL (MW: 5218) for 

2 hours in PBS with 10 mM EDTA, pH = 7.4 (PBS-EDTA) at room temperature.  Excess 

NHS-PEG-MAL was removed using two exchanges of PBS-EDTA on a 100K MWCO  
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Scheme 1. Schematic of Fc-shielded QD-mAb design. (1) Maleimide activation of QD-
NH2 surface using NHS-PEG(5000)-MAL (N-hydroxysuccinimide-polyethylene glycol-
maleimide) crosslinker. (2) Selective hinge region reduction of whole IgG into two 
functional half IgG (r IgG) with hinge region MAL-reactive sites using 2-
mercaptoethylamine (2-MEA). (3) Reaction of r IgG with MAL-activated QD. Reaction 
is site-specific, preserving activity at antigen-binding sites (*).  (4) Adsorption of Fc-
specific F(ab)2 against purified QD-r IgG bioconjugates. 
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Amicon Ultra-4 column.  The solution was analyzed qualitatively for the presence of 

large aggregates (> 200 nm) using fluorescence microscopy, and was filtered through a 

100 nm syringe filter if aggregates were observed. (2) mAb (Table 1) were buffer-

exchanged in 500 μg amounts into PBS-EDTA, with two exchanges on a 100K MWCO 

spin column device (Amicon Ultra-4, Millipore) according to manufacturer-supplied 

instructions.  The retentate was resuspended to 10 mg/mL concentration in PBS-EDTA.  

The antibodies were then reduced specifically in the hinge region to create two 

monovalent IgG (r IgG) bearing 1-2 free sulfhydryl groups using 2-mercaptoethylamine 

(2-MEA, Pierce) (28) according to manufacturer's instructions.  Briefly, 6 mg of 2-MEA 

was dissolved in 100 μL of PBS-EDTA, and 1 μL of this solution was added to each 10 

μL of mAb solution.  The mixture was reacted for 120 min. at 37°C on a slow rocking 

platform.  Excess 2-MEA was removed from mAb using a NAP-5 desalting column (GE 

Healthcare) pre-equilibrated with degassed PBS-EDTA buffer according to 

manufacturer's instructions.  The presence of free sulfhydryl groups generated from 2-

MEA reduction was confirmed using Ellman’s reagent (Pierce) on a Nanodrop ND-1000 

spectrophotometer according to manufacturer's instructions.  (3) The QD retentate from 

(1) was then added to the 2-MEA reduced and purified r IgG mixtures and incubated 

overnight at 4°C.  The following day, the reaction was terminated with 1 mg/mL L-

cysteine (Sigma) to quench remaining maleimide groups. The QD-r IgG conjugates were 

purified by gel filtration chromatography according to manufacturer's instructions 

(Superdex 200, GE Healthcare).  Fractions were eluted with PBS into 96-well 

microplates and evaluated by a UV-Vis and fluorescence spectrophotometry (Nanodrop 

ND-1000 and ND-3300) or a fluorescence microplate spectrophotometer (Biotek Synergy 
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HT) in order to identify appropriate QD-mAb fractions and to evaluate conjugation 

efficiency.  In 6 separate conjugations of r IgG2a to QD655, the average conjugation 

efficiency measured by UV-Vis absorbance spectrophotometry on pooled QD-bound and 

unbound r IgG fractions was 59.33 ± 11.34%.  This corresponds to 18 r IgG/QD.  (4) The 

bioconjugate fraction was incubated with goat anti-mouse IgG (Fc-specific) blocking 

F(ab)2 (Sigma) at molar concentrations equal to primary antibody concentrations for 1 

hour at room temperature, and the resulting mixture was filtered through a 0.22 μm 

syringe filter and stored at 4ºC until use.  On the day of animal imaging, bioconjugates 

were briefly spun in an Eppendorf 5415R microcentrifuge for 10 min. at 10,000g to 

remove QD-mAb aggregates, reserving the supernatant for use.  The supernatant was 

examined by fluorescence microscopy to ensure the absence of QD aggregates (> 200 

nm).  
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Flow Cytometry 

 Whole blood was collected in 2 x 3mL aliquots from male Long-Evans rats into 

BD VACUTAINER tubes spray-lined with K3EDTA.  Erythrocytes were lysed by 

incubation with BD PharMLyse at a 20:1 ratio of lysis buffer to whole blood for 15 min. 

in the dark at room temperature to obtain a diffuse red suspension of white blood cells.  

The solution was then centrifuged at 400 x g in an Allegra X-22R unit with swinging 

bucket rotor (Beckman) at room temperature.  The leukocyte pellet was rinsed in 500 μL 

PBS (pH = 7.2) containing 0.5% BSA, and 0.1% sodium azide (staining buffer) to reduce 

shedding of membrane antigens.  Each pellet was rinsed twice with staining buffer.  The 

cells were resuspended to a 1x106 leukocytes/mL concentration, and were incubated for 

45 minutes with one of the following in staining buffer: 50 nM each of QD585-anti-RP-1 

conjugate, QD585-anti-CD45 conjugate, Fc-blocked QD585-isotype control IgG1, 

maleimide-activated and L-Cysteine quenched QD585, Fc-blocked QD585-isotype 

control IgG2a, non Fc-blocked QD585-IgG2a isotype control, or 1 ug Phycoerythrin (PE)-

anti-RP-1 conjugate (BD Pharmingen).  A separate unlabeled fraction was also retained 

for analysis.  All samples were immediately analyzed (n = 20,000 gated events) using a 

BD LSR II multicolor flow cytometer equipped with a 488 nm Ar laser.  Rat leukocyte 

subtypes could be readily resolved by forward and side scatter profiles as previously 

described (29).  Bandpass emission filters were set at 585/42nm to analyze QD or PE-

labeled cells.  Analysis was conducted using Flowjo 7.0 (Treestar Software).   
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Cell Culture and Immunofluorescence Microscopy 

 YPEN-1 (CRL-2222, ATCC) rat prostate endothelial cells were cultured to 

confluency on Lab-Tek II 8-well chambered coverslips with media containing Minimum 

essential medium (Eagle) with 2 mM L-glutamine and Earle's BSS adjusted to contain 

1.5 g/L sodium bicarbonate, 0.1 mM non-essential amino acids, and 1.0 mM sodium 

pyruvate, supplemented with 0.03 mg/ml heparin; fetal bovine serum, 5%.  YPEN-1 were 

stimulated with 30 ng/mL TNF-α in media overnight as previously described (30) to 

upregulate cell adhesion molecules, or incubated with media alone as a control.  The next 

day, YPEN-1 were rinsed with 1 wash of media and incubated with 10 nM amounts of 

QD bioconjugates for 1hr. at 37°C as follows: QD655-anti-PECAM, QD655-anti-ICAM, 

QD655-anti-VCAM, QD655 (reactive maleimide group quenched with 1 mg/mL L-

Cysteine), and QD-isotype control IgG1 in Fc-blocked forms as described above or as 

synthesized without the Fc-blocking step.  Cells were then rinsed 6 times in Dulbecco’s 

PBS containing Ca and Mg, pH = 7.4, and incubated with 4% paraformaldehyde in PBS 

for 15 min at 25°C, followed by rinsing three times, 5 minutes each, with PBS with 50 

mM glycine.  Fixed cells were imaged using a Nikon TE2000U inverted fluorescence 

microscope with filter settings as shown in Error! Reference source not found..  These 

experiments were performed in triplicate.  Images were acquired using a Hammamatsu 

C7780 12-bit color CCD in conjunction with Image Pro Plus 5.1 (Media Cybernetics). 

 

Preparation of Animal Subjects 

 All experimental procedures were approved by the Vanderbilt University 

Institutional Animal Care and Use Committee. Diabetes was induced in Long-Evans rats 
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by intraperitoneal injection of 65mg/kg streptozotocin (STZ, Sigma) in 0.1 mM sodium 

citrate, pH = 4.5, with the same number of rats remaining untreated as experimental 

controls (n = 6 per group).  Elevated blood sugar (> 250mg/dl) was confirmed in STZ 

treated animals.  Endotoxin-Induced Uveitis (EIU) was initiated in Long-Evans rats by 

intraperitoneal injection of 200 μg lipopolysaccharide.  Controls were age-matched 

untreated rats (n = 6 LPS, n = 3 control).  Animals were anesthetized with 

intraperitoneally-administered 15/85% ketazine/xylazine prior to imaging.  Tail vein 

catheterization was performed for injection of QD-mAb.  Both eyes were dilated with 1 

drop each of 2.5% phenylephrine hydrochloride and 1% tropicamide ophthalmic 

solutions (Alcon).  The right eye was placed on the plano-concave lens previously filled 

with 2% methyl cellulose (Aqua Poly-Mount, Polysciences).     

 

In vivo Retinal Imaging 

 Our imaging design is based on a previously published technique (25), in which 

an inverted fluorescence microscope (TE2000U Eclipse, Nikon) with 4X and 10X 

objectives and a plano-concave -6 D lens (Edmund Scientific) on the microscope stage 

were utilized to image the rat retinal circulation.  In this study this technique was 

modified to include a high sensitivity Andor Bioimaging iXon 885 EMCCD camera 

(Andor Bioimaging), Hamamatsu C7780 color camera, Exfo X-cite 120 metal halide 

lamp (Exfo Life Sciences), and a pulsed xenon arc flashlamp excitation source (FX 4400, 

Perkin Elmer) triggered by a function generator configured for square wave output at 20 

Hz (Tektronix).  The metal halide lamp and flashlamp were utilized for the imaging of 

stationary endothelial targets and circulating leukocytes, respectively.  Following 

measurements of pre-injection tissue autofluorescence levels in each QD-specific 
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emission channel, QD-mAb were injected via the tail vein catheter.  Injectate consisted of 

200 uL of a 500 nM solution in PBS-EDTA.  Initial digital sequences were acquired 

using exposures ranging from 20 to 200 ms (depending on the QD and the filter set, 

Table 1) at 110 ms intervals.  Subsequent sequences were acquired at approximately 30 

min. intervals for 2.5 hrs.  In four animals, a QD-IgG1 isotype control was used as a 

negative control.  Animals were sacrificed with 150mg/kg sodium pentobarbital 

administered via tail vein catheter.   

 

Immunofluorescence Microscopy of Retinal Tissue  

 Following euthanization of animals, both eyes were enucleated. Retinal flat 

mounts were prepared of the right eye, which was the eye imaged by our in vivo retinal 

imaging system.  Eyes were fixed in 4% paraformaldehyde in PBS overnight and flat-

mounted on a microscope slide mounted with fluorescence mounting media.  The left eye 

was fixed in 4% paraformaldehyde and paraffin embedded for sectioning.  Sections and 

flat mounts were analyzed by fluorescence microscopy (Nikon TE 2000U) using the 

same filters as those used in in vivo imaging (Table 1). 

 

Image Analysis 

 For analysis of QD-mAb binding to YPEN-1, fluorescence micrographs acquired 

under identical settings and conditions (matched cell densities in field of view) were 

measured in the Red CCD channel (the chip with which QD655 emission is captured) for 

fluorescence intensity using Image Pro Plus 5.1.  From this data the mean Red channel 

fluorescence intensity was obtained and standard deviation determined.  Background 

correction was performed on image intensities by subtracting the mean Red CCD channel 
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intensity obtained from the same density of unlabeled YPEN-1.  Intensities were 

analyzed for statistical significance using an unpaired 2-tailed t-test (SigmaStat 3.0, 

SYTAT).  Background-corrected data was then plotted using SigmaPlot 9.0 (SYSTAT).  

Statistical significance was interpreted by P < 0.05.   

For in vivo image quantification of leukostasis, the area of image analysis of rat 

fundi was a circle of two optic disk diameters from the center, allowing for counts of 

stagnant leukocytes and observations of leukocyte trafficking and cell adhesion molecule 

expression within major arteries and veins as well as the microcirculation.  A leukocyte 

was assumed to be stagnant if no displacement larger than 1 cell diameter was observed 

within 60 s of continuous imaging.  The number of stagnant QD-labeled cells was 

quantified for STZ, EIU, and wild-type retinas post-acquisition from digital video using 

Andor iQ 1.6, and compared using an unpaired 2-tailed t-test in SigmaStat 3.0.   

Quantitative analysis of Fc-blocked and non Fc-blocked QD-IgG1 bioconjugates 

was performed by analyzing 60 consecutive digital frames of wild-type rat retina before 

and after systemic injection of 500 nM (200 uL) of each probe.  An observation area of 2 

optic disc diameters from center was utilized for the analysis.  Using Andor iQ 1.6 image 

analysis software, the mean fluorescence intensity of 60 consecutive frames was plotted 

as a function of time.  Data was plotted using SigmaPlot 9.0.   

 

 

 

 

 

48



 

Results 

 

In Vitro Studies 

 In cell culture studies, the QD655-mAb Fc-shielded conjugates specifically 

labeled CAMs on TNF-α-stimulated YPEN-1 rat endothelium (TNF+) (Figure 1A-D, 

Figure 2B, 2E).  In order to simulate the in vivo environment, no traditional 

immunofluorescence blocking steps (e.g. serum, Fc receptor blocking mAbs) were 

utilized.  Under TNF+ conditions, a statistically-significant increase in Fc-blocked 

QD655-anti-VCAM binding to YPEN-1 (Figure 1B, 1D) was observed, whereas TNF+ 

conditions did not significantly affect QD655-anti-PECAM binding (Figure 1A).  These 

observations were consistent with previous reports (31, 32).  QD655-anti-ICAM 

bioconjugates bound TNF+ YPEN-1 by over 10-fold as compared to untreated cells 

(Figure 2E).  A strong reduction in nonspecific binding was observed when comparing 

binding of Fc-blocked and non Fc-blocked QD655-anti-ICAM bioconjugates (Figure 

2A-B, 2E).  A reduction in nonspecific binding was also observed when comparing 

measured intensities of YPEN-1 labeled with Fc-blocked or non Fc-blocked QD655-

isotype control IgG1 nanoparticles (Figure 2C-E), suggesting that the Fc fragment is 

responsible for a substantial percentage of QD-mAb nonspecific binding.  

Immunofluorescence analysis of YPEN-1 indicated that non Fc-blocked QD655-mAb 

constructs were aggregated in focal locations along cell membranes, shown by 

arrowheads (Figure 2A-C).  This observation may be due to two features: the  

upregulation of Fcγ receptors on endothelial cells following TNF-α stimulation, and the 

patching and capping effect observed previously for Fc receptor-ligand combinations 
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(33).  Specifically, patching and capping refers to the accumulation of surface bound 

IgG-Fc receptor pairs at distinct, punctate locations at the membrane to form clumps of 

Fc receptor-IgG pairs.  This incidence of cap formation was less evident in TNF+ YPEN-

1 cells incubated with Fc-blocked bioconjugates (Figure 2B).  Maleimide-quenched QD 

which were not conjugated to Mab (Figure 1C) did not bind appreciably to cell surfaces.  

These data collectively suggest that nonspecific binding of unshielded probe was likely 

due to the binding of mAb Fc fragment to endothelial Fc receptors. 
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Figure 1. Evaluation of Fc-blocked QD-mAb conjugate specificity toward TNF-α 
stimulated (TNF+) or untreated (TNF-, image insets) rat endothelial cells (YPEN-1).  (A-
C) Fluorescence micrographs of QD655-anti-PECAM (A), QD655-anti-VCAM (B), and 
QD655 (C).  Insets show incubation of TNF- YPEN-1 with matched bioconjugates.  (D) 
Mean image intensities from immunofluorescence analysis of TNF+/- YPEN-1 incubated 
with QD655-mAb bioconjugates (reported as mean + S.D., n=3 images per sample).  
Intensities for each TNF+ and TNF- pair were compared by t-test for statistical 
significance (P < 0.05 indicated by asterisk). 
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Figure 2. Comparison of Fc-blocked and non Fc-blocked QD655-mAb conjugate 
specificity toward TNF-α-stimulated YPEN-1 (TNF+).  (A-B) TNF+ YPEN-1 incubated 
with non Fc-blocked (A) and Fc-blocked (B) QD655-anti-ICAM bioconjugates 
(magnification 100X).  Arrowheads indicate possible Fc receptor capping, which was 
substantially reduced when using Fc-blocked conjugates.  (C-D) TNF+ YPEN-1 
incubated with non Fc-blocked (C) and Fc-blocked (D) QD655-IgG1 isotype control 
bioconjugates, with capping sites labeled with arrowheads (magnification 400X).  (E) 
Mean image intensity analysis reveals lower nonspecific binding of bioconjugates 
featuring Fc blockade (reported as mean + S.D., n = 3 images per sample).  Intensities for 
each matched Fc-blocked and and non Fc-blocked bioconjugate were compared by t-test 
for statistical significance (P < 0.05 indicated by asterisks).   
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Fc-blocked QD585-anti-RP-1 (neutrophils) and QD585-anti-CD45 (leukocyte 

common antigen) were shown to retain bioactivity and specificity in vitro (Figure 3).  

QD585-anti-RP-1 conjugates were shown to specifically bind to neutrophils and not other 

leukocyte subsets (Figure 3A), and QD585-anti-CD45 were shown to label the three 

main subclasses of leukocytes as shown by flow cytometric analysis of erythrocyte-lysed 

whole blood (Figure 3B, 3D).  QD-anti-RP-1 was observed to have over 4-fold 

enhancement in fluorescence over PE-RP-1 (1003 vs. 233), a positive control antibody 

coupled to phycoerythrin (Figure 3C).  QD585-IgG2a (matching the isotype of QD585-

anti-RP-1), when Fc-blocked with a anti-Fc F(ab)2 fragment, featured 53% lower mean 

fluorescence levels than that due to the non-Fc-blocked conjugate (Figure 3C), indicative 

of reduced nonspecific binding of Fc-blocked bioconjugates.  Fc-blocked QD585-anti-

CD45 conjugates used to label leukocytes yielded a mean fluorescence of 1430, over 17-

fold greater than cells labeled with Fc-blocked QD-IgG1 isotype control (82) and 22-fold 

greater than unlabeled cells (65) (Figure 3D). 
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Figure 3. FACS analysis of leukocytes labeled with QD-mAb bioconjugates in vitro. (A) 
QD585-anti-RP-1 (Fc-blocked) specific labeling of neutrophils in peripheral blood.  (B) 
QD585-anti-CD45 (Fc-blocked) labeling of all leukocyte subsets, with arrow B-D 
indicating fluorescence histogram of gated leukocytes (D). (C) Gated neutrophil 
populations from rat peripheral blood (arrow A-C shows a gated neutrophil population 
used for analysis of 1 sample), (488nm Ar laser excitation, Phycoerythrin (PE) emission 
filter (585/42nm)), with mean fluorescence intensity of each sample indicated in bold.  
Light Blue: PE-anti-RP-1 dye-labeled positive control mAb, Purple: QD585-anti-RP-1 
(Fc-blocked), Blue: QD585 quenched with L-Cysteine, Brown: QD-Ms-IgG2a isotype 
non-Fc blocked, Green: QD-Ms-IgG2a isotype Fc blocked, Red: Unlabeled rat peripheral 
blood. (D) Rat leukocytes labeled with QD585-anti-CD45 (Red, gated leukocytes from 
(B)), QD585-Ms IgG1 Fc blocked isotype control (Blue), or unlabeled (Green).  
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In vivo Imaging 

Intravenous injection of QD bioconjugates targeted to ICAM-1 or VCAM-1 

resulted in a maximum increase in vascular fluorescence in streptozotocin (STZ)-treated 

diabetic rats within 30 and 90 minutes, respectively (Figure 4).  This increase in 

fluorescence was observed in major vessels as well as the microcirculation.  Control rat 

retinas did not exhibit the same fluorescence intensity with either the ICAM (Figure 4A-

C) or VCAM (Figure 4D-F) conjugates.  Injection of QD anti-PECAM produced 

increases in fluorescence which were similar in both STZ-treated and untreated animals 

(Figure 4G-I).  Injection of QD-IgG1, a nonspecific control, did not result in 

fluorescence signal accumulation in the retinal vasculature to any appreciable degree 

throughout the duration of imaging up to 2.5 hrs (Figure 4J-L).  

Intravenous injection of QD585-anti-RP-1 conjugates enabled the fluorescence 

detection and long-term tracking of neutrophils in STZ-treated diabetic animals as shown 

in Figure 5A-D. Using a pulsed xenon flashlamp, we visualized individual free flowing 

leukocytes (Figure 5A-B), leukocyte rolling along endothelial walls (Figure 5C), and 

leukostasis (Figure 5D) in major vessels as well as capillaries.  Individual neutrophils 

were resolved in all vessels including arteries, and an increase in stagnant neutrophils in 

the microcirculation was observed in the STZ-treated group (5.83 ± 2.86, n = 6) vs. 

untreated animals (0.50 ± 0.55, n = 6) (P < 0.01).  Fluorescence micrographs of stagnant 

neutrophils in flat-mounted STZ-treated rat retinas confirmed in vivo observations 

(Figure 5G).  

Injection of the QD655-anti-CD45 bioconjugate in LPS-treated EIU rat models 

revealed a significant number of stagnant leukocytes in the microcirculation relative to  
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Figure 4. Representative frames from in vivo digital videos of STZ treated and untreated 
rat retinas. Pre-injection digital videos using the appropriate fluorescence filters for the 
spectrally-distinct biomarkers of interest (left column; A,D,G,J) were acquired prior to 
bioconjugate injection. QD585-anti-ICAM, QD655-anti-VCAM, QD525-anti-PECAM, 
and QD565-Ms IgG1 were systemically injected in STZ-treated rats. Untreated control rat 
fundi (middle column; B,E,H,K) and STZ-treated rat fundi (right column; C,F,I,L) were 
imaged either 30 min (ICAM)  or 90 min (VCAM, PECAM, IgG1) post-injection under 
identical acquisition settings used for background autofluorescence measurements for 
each biomarker channel.  Fluorescence enhancement due to target binding in untreated 
controls (B,E,H,K) was primarily observed for PECAM (H). The retinal vasculature of 
STZ-treated rats (C,F,I,L) showed a marked increase in fluorescence due to binding of 
QD-mAb conjugates to ICAM (C) and VCAM (F), with at least 5-fold increases in 
fluorescence intensity over background measured for labeled vasculature.  Injection of 
conjugates to PECAM (I) produced similar levels of fluorescence under both conditions 
(H,I). Fluorescence signal from nonspecific IgG1 mAb bioconjugates (J-L) was not 
detected in either control or STZ retinas.  Images shown were acquired at imaging 
intervals resulting in optimal signal to noise ratio.   
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Figure 5. In vivo imaging of endogenously QD-mAb-labeled leukocyte trafficking in two 
rat models of inflammation.  The CCD acquired images with exposure times ranging 
from 50 to 200ms with 110 ms between exposures.  Flowing of QD585-RP-1 labeled 
cells in vessels (A-B) or leukocyte rolling (C) in STZ model as detected by two pulses of 
a xenon flashlamp at 50 ms intervals within 30 minutes of probe injection.  Leukostasis 
was frequently observed in the STZ-treated rat model (D in right panel). Stagnant 
neutrophil appears as a hyperfluorescent dot in the microcirculation. Stagnant neutrophils 
were continuously visible in the retinal vasculature for over one hour of in vivo imaging. 
Stagnant leukocytes labeled in vivo with QD655-anti-CD45 were present at high densities 
in EIU rat models (E) relative to untreated controls (F).  Stagnant neutrophils labeled in 
STZ-streated diabetic animals were visible in post-mortem retinal flat-mounts (G). 
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untreated animals (Figure 5E-F).  The number of stagnant leukocytes in LPS-treated rat 

retinas (20.33 ± 8.73, n = 6) was elevated over control retinas (2.17 ± 1.17, n = 3) in vivo 

(P < 0.01). 

Ten seconds after tail vein injection, comparison of the retinal fluorescence from 

Fc-shielded and non-Fc-shielded bioconjugates showed significantly less fluorescence 

from the non-shielded bioconjugate (Figure 6).  Tracers injected intravenously into a tail 

vein travel through the hepatic circulation, heart and lungs before the remainder reaches 

the eye.  Our data indicate that non Fc-blocked nonspecific QD-IgG1 is cleared rapidly 

within 2 hours of circulation, returning retinal fluorescence levels to pre-injection values 

(Figure 6E-H, J).  For Fc-blocked nonspecific QD-IgG1, an apparent bolus is observed 

within 12 seconds of injection (Figure 6B), and fluorescence levels by 2 hours have not 

returned to background values (Figure 6A-D, I).  These results suggest that Fc blockade 

substantially enhances the circulation lifetime of the QD-mAb due to reduced uptake and 

clearance.   

 

Ex vivo imaging of retinal tissue 

 Immunofluorescence analysis of flat-mounted retinas showed correlation of in 

vivo features, such as enhanced CAM expression areas within the microcirculation, with 

ex vivo microscopy (Figure 7A-B).  Analysis of post-mortem retinal tissue also indicated 

low nonspecific binding of Fc-shielded bioconjugates (Figure 7C-D) within blood 

vessels.  The microcirculation in a flat mount from an EIU rat featured leukocyte 

adhesions and extravasations similar to those observed in vivo (not shown), and similar to 

the result shown for the STZ-treated rat (Figure 5G).  
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Figure 6. Comparison of Fc-blocked (A-D, I) and non Fc-blocked (E-H, J) QD-IgG1 
mAb bioconjugates in vivo.  (A) Pre-injection autofluorescence in QD655 emission 
channel.  (B-D) Fc-blocked QD655-IgG1 in retina observed 12 s post-injection (B) where 
the first-pass of bolus through retinal circulation is observed, 1 hr. post-injection (C), and 
2 hrs. post-injection, by which time Fc-blocked QD655-induced fluorescence is still 
above background levels as measured in (I, dashed line).  (E) Autofluorescence levels in 
QD565 channel.  (F-H) non Fc-blocked QD565-IgG1 bolus was not qualitatively visible 
at 12 s post-injection (F), and subsequent image acquisitions at 1 hr (G) and 2 hr (H) 
revealed eventual return of image intensity to pre-injection levels (J, solid line), 
suggesting a relatively rapid clearance and/or uptake of non Fc-blocked QD-mAb.   
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Figure 7. In vivo microcirculatory VCAM-1 expression (A), can be confirmed using 
immunofluorescence analysis post-mortem (B), as shown for QD655-anti-VCAM-1 
labeled vasculature. While QD655-VCAM-1 (Fc-blocked) conjugates were shown to 
specifically stain vasculature in retinal histological sections (C), no background staining 
due to QD-IgG1 (Fc-blocked) was observed above background autofluorescence levels 
(D). 
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Discussion 

 

 Fc-blocked QD-mAb were found to be specific for CAM and leukocyte targets, as 

shown by immunofluorescence (Figure 1-2), flow cytometry (Figure 3), and in vivo and 

ex vivo retinal imaging (Figure 4-7).  QD-IgG that were nonspecific in reactivity did not 

bind to retinal vasculature (Figure 6), which suggests that Fc-blocked QD-antibody 

bioconjugates feature reduced nonspecific binding tendencies while retaining the native 

binding affinity conferred by the mAb.  Our technique, employing PEGylation, 2-MEA 

reduction and Fc-blockade by Fc-specific F(ab)2 is a rapid, cost-effective method for the 

site-specific bioconjugation and immune-shielding of mAb on nanoparticle surfaces.  The 

2-MEA reduction process was found to work equally well on mouse IgG1 and IgG2a 

subclasses using the same protocol.  As an alternative to removal of the Fc fragment from 

the antibody, we choose instead to adsorb it with an antibody fragment which itself has 

no Fc region.  Non-targeted QD-IgG conjugates adsorbed with an Fc-blocking F(ab)2 

were less susceptible to nonspecific binding to leukocyte and endothelial cell surfaces 

compared to the same conjugates without Fc-blockade (Figure 1-3).  This may be the 

result of steric inhibition conferred upon the bioconjugate by the F(ab)2 which reduces Fc 

receptor access to its Fc fragment binding site on the IgG.  Fc-blockade of CAM-targeted 

QD did not affect their binding affinities toward endothelial cell proteins in vitro or in 

vivo (Figure 1-2, 4).  Fc-blockade by itself also may potentially enhance the circulation 

half-life of QD-mAb when employed in conjunction with PEG.  Fc-blocked, non-targeted 

QD-IgG were present in the retinal circulation in much higher fluorescence levels relative 

than the same dose of non-Fc-blocked constructs (Figure 6), suggesting that Fc-blockade 
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of IgG may substantially reduce first-pass nonspecific clearance of probes due to liver 

and spleen immunorecognition.  Therefore, our probe design features target selectivity 

with a reduced tendency for nonspecific binding. 

 Analogues of our strategy exist for reduction of nonspecific binding of 

bioconjugates for in vitro applications, and we have applied these in vitro techniques for 

the first time to in vivo imaging.  For example, the commercial reagent FcBlock (anti-

CD16, anti-CD32, BD Biosciences) has long been utilized to functionally block Fc 

receptors on hematopoietic and endothelial cells prior to immunofluorescence (34) or 

flow cytometric (35) analysis for the reduction of background staining using cell surface 

protein antibodies.  Direct blockade of the Fc fragment of antibodies rather than Fc 

receptors occurs often in biology.  Blockade of the antibody Fc domain with 

streptococcal proteins has been found to reduce Fc-mediated nonspecific binding (36).  

Herpes Simplex Virus type 1 (HSV-1), when bound by an IgG, uses its Fcγ receptors to 

occupy the Fc fragment of the same IgG, thus preventing Fc-mediated immunodefensive 

mechanisms (37).  By adsorption of the QD-IgG conjugate with an Fc-targeted F(ab)2, it 

is likely that the adsorbed fragment makes the Fc binding site of the targeting antibody 

sufficiently inaccessible to immune surveillance, thus enhancing specificity and 

circulation time.     

Other strategies to reduce Fc-mediated immune recognition of antibodies or 

antibody-based bioconjugates are reported in the literature. Specifically, antibody 

fragmentation techniques using papain, pepsin, or ficin require several reaction steps and 

much reagent quantity and time optimization for each antibody species and subclass, and 

generally do not yield a biomolecule with a site-specific crosslinking site suitable for 
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nanoparticle conjugation.  Instead, primary amines which reside in the antigen-binding 

site of the antibody could be crosslinked to the nanoparticle, obliterating its antigen 

binding affinity following bioconjugation.  Protein engineering techniques now provide 

for a means of producing antibody fragments with engineered hinge region cysteines 

(Fab’) which allow for site-specific nanoparticle conjugation while preserving the 

antigen-binding region (38, 39).  However, this process is time-consuming and costly, 

and may not be suitable in applications where multiple IgGs are to be conjugated to 

nanoparticles for multiplexed imaging on a small scale, or where IgG targets are quickly 

examined and replaced for purposes of drug discovery or biology.  Our process provides 

for the site-specific conjugation of antibodies to nanoparticles, without IgG subclass-

specific optimization, with similar benefits of immune system evasion afforded by 

antibody fragmentation techniques.  

Our in vivo imaging results are consistent with studies of ICAM and VCAM 

expression in diabetic and non-diabetic tissue, in which their upregulation is implicated in 

an inflammatory cascade that causes various complications of the disease (6, 40, 41).  QD 

fluorescence due to ICAM and VCAM expression is apparent on major vessels as well as 

the microcirculation in disease models, which appears as an out of focus fluorescent 

background behind the major vessels (Figure 4A-F).  QD targeted against PECAM, a 

panendothelial marker, produced increases in fluorescence which were similar in both 

STZ-treated and untreated animals (Figure 4G-I), thus suggesting its utility as an internal 

control or vascular counterstain in this imaging application.  Our technique was found to 

be suitable for the long-term imaging of stagnant leukocytes commonly observed in both 

the STZ-treated rat model of diabetes (6, 9) and the LPS-treated rat model of EIU (42).   
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Photobleaching is a problem with current techniques which probe leukocyte 

dynamics in vivo, such as acridine orange fluorography (43, 44).  Thus, long-term 

imaging of leukocytes is hindered.  Using QD-based fluorography, we were able to 

continuously observe entrapped leukocytes in the circulation over an hour of continuous 

illumination without bleaching (Figure 5).  Therefore, our QD-based imaging technique 

constitutes a potential alternative to current methods of imaging leukocytes due to the 

ability to simultaneously image multiple leukocyte subsets and stationary biomarkers 

with one excitation source with high specificity.    

Our imaging technique provides non-invasive optical access to the in vivo retinal 

vasculature and continuous monitoring of vascular events. Spatial resolution on the order 

of a cell is achieved with this technique.  QD have superior optical properties, such as 

high quantum efficiency and photostability, as well as distinct size-tunable emission 

wavelengths with the need for only one excitation source.  By harnesseing these QD 

properties while immune-shielding the nanoparticle surface, it was readily possible to 

image three CAMs and one leukocyte subset within the same animal, without spectral 

overlap, using one blue excitation source to sufficiently illuminate QD-tagged species 

within the circulation.  This feature enables detailed multiplexed studies of disease and 

biological processes.  We used this approach to simultaneously observe the molecular 

expression of three different biomarkers, while also observing leukocyte-endothelial 

interactions.  Other applications of this imaging strategy could readily be applied to 

studies in which multiple cellular and biomolecular vascular functions remain to be 

elucidated such as cancer, ocular angiogenesis, and atherosclerosis.  While qualitative 

information was primarily presented in this initial application of our technique, we 
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foresee the calculation of additional parameters including rolling velocities for various 

subtypes, relative fluorescence intensities of specific biomolecules along vascular walls, 

density of entrapped leukocytes, and important features of the inflammatory process in 

vivo. 
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Abstract 

 

The progression of atherosclerosis has been associated with leukocyte infiltration 

within lesions.  We describe a technique for the ex vivo imaging of cellular recruitment in 

atherogenesis which utilizes quantum dots (QD) to color-code different cell types within 

lesion areas.  Spectrally-distinct QD were coated with the cell-penetrating peptide 

maurocalcine to cytoplasmically-label immunomagnetically-isolated monocytes and T 

lymphocytes.  QD-maurocalcine bioconjugates labeled both cell types with high 

efficiencies, preserved cell viability, and did not perturb native monocyte adhesion to 

inflamed endothelium in vitro.  QD-labeled cells were reinfused in ApoE -/- mice and 

age-matched controls for up to 4 weeks to investigate the incorporation of cells within 

aortic lesion areas, as determined by oil Red O (ORO) and immunofluorescence staining 

ex vivo.  QD-labeled cells were visible in atherosclerotic plaques within 2 days of 

injection.  Reinfused monocytes colocalized with CD68 immunofluorescence staining, 

whereas T lymphocytes were observed in distinct regions.  Both cell types colocalized 

with areas of subsequent ORO staining.  Our method for tracking leukocytes in lesions 

enables high signal to noise ratio imaging of multiple cell types and biomarkers 

simultaneously within the same specimen.  It also has great utility in monitoring the role 

of circulating leukocytes in plaque development and progression.   
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Introduction 

 

Atherosclerosis is a complex disease exacerbated by multiple cellular and 

molecular participants.  A key contributor toward atherogenesis is the dysfunction of 

vascular endothelium, which presents molecular cues promoting leukocyte infiltration 

into arterial intima (1).  Leukocytes which localize within atherosclerotic plaques include 

monocytes (2, 3), and lymphocytes, primarily of the CD4+ subset (4, 5).  Monocytes 

migrate toward lesions and accumulate lipids in a process that transforms them into 

macrophage foam cells (6).  These lipid-laden macrophages secrete reactive oxygen 

species and proteinases which induce a positive-feedback monocyte recruitment cascade, 

eventually leading to plaque instability and rupture (7).  Lymphocytes also contribute to 

the progression of atherosclerosis via the secretion of the proinflammatory cytokine 

interferon gamma (IFN-γ), which has various roles in contributing to leukocyte 

recruitment to plaques and eventual plaque instability (4, 8-10).  Other cell types, such as 

neutrophils (11) and dendritic cells (12, 13), also play a role in potentiating 

atherosclerotic complications via their activation proximal to inflammatory plaque 

surfaces.  Therefore, techniques to visualize the spatial and temporal dynamics of these 

cellular mediators are needed to understand their role in the different stages of 

atherosclerosis.     

Advances in the pathobiology of atherosclerosis have identified a number of key 

cellular and molecular mediators involved in early and late stages of disease (14, 15).  

Furthermore, innovations in both  imaging instrumentation and in vivo imaging reagents 

complement these therapeutic and diagnostic targets for developing strategies to visualize 
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vascular disease in vivo (16, 17).  Macrophages in lesions have been imaged in vivo using 

magnetic resonance imaging (18, 19), optical imaging (20, 21), and positron emission 

tomography (22), by either intracellular targeting or cell surface biomarker targeting.  

Recently, we investigated a strategy for the color-coding of circulating leukocytes and 

cell surface biomolecules with fluorescing semiconducting nanocrystals, or quantum dots 

(QD), for multiplexed in vivo vascular imaging in rodent models of diabetic and ocular 

inflammation (23).  The size-tunable emission spectra of QD enable the simultaneous in 

vivo and ex vivo tracking of multiple cells and biomarkers within the vasculature of the 

same animal with only one excitation source.  Furthermore, QD are amenable to 

bioconjugation of ligands for cell targeting, and feature high quantum yields and 

photostability for long-term imaging applications (24, 25). 

In this report, we demonstrate the utility of a method for applying the optical 

properties of QD for ex vivo imaging of atherosclerotic cellular components.  The 

technique uses QD coated with the cell penetrating peptide maurocalcine (26) to 

fluorescently-label cytoplasmic compartments of lymphocytes and monocytes with 

different emission wavelengths so they can be simultaneously-detected in tissue.  This 

approach was used to visualize leukocyte subtype recruitment to aortic valve leaflet 

lesions in an ApoE -/- mouse model of atherosclerosis (27), and has important 

implications for the multiplexed imaging of cells and biomolecules in vascular disease in 

vivo. 
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Methods 

 

Immunomagnetic isolation of leukocytes 

 All animal procedures were approved by the Instituional Animal Care and Use 

Committee at Vanderbilt University.  Spleens from wild-type and ApoE -/- mice aged 

from 7 months to 1 year were collected in RPMI 1640 supplemented with 10% fetal 

bovine serum (FBS) and 1% streptomycin-Fungizone.  Splenocytes were prepared by 

disrupting the spleen with a syringe plunger on a nylon mesh filter.  Collected cells were 

washed once in RPMI medium.  Lymphocytes were isolated using Lympholyte M density 

gradient medium (Cedarlane Laboratories, Burlington, NC) according to manufacturer’s 

instructions.  Monocytes and T lymphocytes were isolated using anti-CD11b-coated 

paramagnetic microbeads (Miltenyi Biotec, Auburn, CA, # 130-049-601) and biotin-anti-

T cell receptor antibody- (TCR β chain, BD Biosciences, San Jose, CA) coated 

paramagnetic microbeads (Miltenyi Biotec # 130-091-256) for monocytes and T 

lymphocytes, respectively.   Each population was tested for purity by flow cytometry.  In 

all cases (n = 4) the purity was >90%.   Data was analyzed using FlowJo 7.2 (Treestar 

Software, Ashland, OR) and a FACSCalibur flow cytometer (BD Biosciences).      

 

Quantum dot-labeling of leukocytes 

 QD coated with 6-8 streptavidins/nanoparticle emitting at 585 nm and 655 nm 

(QD585 and QD655) were purchased from Invitrogen Corporation (Carlsbad, CA).  

Biotinylated maurocalcine peptide was synthesized by Biomatik Corporation according 

to previously-published protocols (26).  A 35-fold molar excess of peptide was mixed 
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with 1 molar equivalent of QD585 or QD655 in 100 mM PBS, pH = 7.4, for 30 min. at 

room temperature.  QD-maurocalcine was then separated from excess peptide using size-

exclusion chromatography over a Superdex 200 column according to manufacturer 

instructions (GE Healthcare, UK).  Elution fractions were measured using a BioTek 

Synergy HT microplate spectrophotometer (BioTek, Vermont, USA) configured for QD 

fluorescence at 585 nm or 655 nm, and peptide fluorescence as measured by 

fluorescamine assay (Sigma Chemical, St. Louis, MO).  This process typically yielded 

QD with 12-17 peptides per nanocrystal. 

For each cell labeling experiment, 1 X 106 cells/mL were stained with 100 nM 

QD-maurocalcine in PBS, pH = 7.4, at 37°C for 30 min.  Cells were rinsed with PBS via 

centrifugation at 200 X g for 10 min.  Cell viability and labeling efficiency were 

determined by the LIVE/DEAD single color fixable green kit according to manufacturer 

instructions (Invitrogen) on a FACSCalibur flow cytometer.  Unlabeled cells subjected to 

the same rinsing and centrifugation steps served as controls. 

 

Monocyte adhesion assay 

bEnd.3 mouse endothelium was a gift from Dr. Jack Virostko.  Cells were 

cultured in DMEM supplemented with 10% fetal bovine serum to confluency on 24-well 

tissue culture grade microplates.  Cells were then treated with 500 ng/mL Salmonella 

Typhimurium lipopolysaccharide (LPS, Sigma) or untreated in complete media overnight.  

Monocytes (1 X 106 cells/mL) were incubated with 1 μM calcein-AM (Invitrogen) for 30 

min.  100,000 monocytes of this suspension were either incubated in PBS or PBS 

containing 100 nM QD-maurocalcine for 30 min at 37°C.  After rinsing with PBS, cells 
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were plated onto LPS-stimulated or unreated bEnd.3 monolayers and incubated for 1 hr. 

at 37°C.  At the end of the experiment, monolayers were rinsed three times with PBS to 

remove non-adherent cells, and the microplate was measured for calcein-AM 

fluorescence (490 nm excitation/525 nm emission).  Results were compared by t-test and 

plotted using Sigmaplot 9 (SYSTAT, San Jose, CA). 

 

Analysis of QD-labeled leukocytes in ApoE -/- mouse aorta 
 

ApoE -/- and wild-type mice ranging from 7 months to 1 year were injected with 

1 X 106 QD-maurocalcine-labeled monocytes or T lymphocytes via the retroorbital route.  

Animals were euthanized 2, 3, 5, and 28 days post-injection, and proximal aorta and 

whole aorta were harvested and sectioned as described previously (28).  5 μm frozen 

sections were stained for immunofluorescence with Alexa Fluor 488-conjugated anti-

CD68 and mounted in VECTASHIELD with DAPI (Vector Laboratories, Burlingame, 

CA).  Sections were analyzed by fluorescence microscopy on a Nikon TE2000U Eclipse 

inverted microscope (Nikon Instruments, Melville, NY) using DAPI, Alexa Fluor 488, 

QD585, and QD655 cubes in conjunction with a Hamamatsu C7780 cooled CCD camera 

(Hamamatsu Corp., Bridgewater, NJ).  Image analysis was conducted using Image Pro 

Plus 5.1 (Media Cybernetics, Bethesda, MD). 

 

Ex vivo imaging 

En face aortas from ApoE -/- and wild-type mice were imaged for QD 

fluorescence using an IVIS 200 fluorescence imaging system configured for spectrally-

distinct detection of QD585 and QD655 using bandpass emission filters (Caliper Life 
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Sciences, Hopkinton, MA).  Following QD imaging, aortas were stained with Oil Red O 

and the percentage of atherosclerotic lesions (ORO positive area)  was quantified in using 

a previously described technique (29).  The IVIS 200 was then used to image ORO-

stained areas via analysis of dye-induced near-infrared fluorescence (30, 31) with QD 

fluorescence subtracted from the image.  ORO-stained lesions were pseudocolored so that 

areas of QD585-lymphocytes, QD655-monocytes, and ORO could be colocalized within 

the same tissue. 

 
Results 

 

Loading of leukocytes with QD-maurocalcine bioconjugates 

The attachment of maurocalcine cell penetration peptides to QD enabled their 

highly-efficient loading into T lymphocytes and monocytes ex vivo, with no appreciable 

effects on cell viability and function.  Immunomagnetic isolation procedures using anti- 

TCR and anti-CD11b beads yielded distinct T lymphocyte or monocyte subpopulations 

as demonstrated by double-staining experiments (Figure 1A).  Labeling of these 

populations separately with QD585-maurocalcine and QD655-maurocalcine was more 

efficient than labeling with QD alone (Figure 1B-C). 

Flow cytometric viability assays did not reveal substantial differences in cell 

viability between populations incubated with QD-maurocalcine or unlabeled populations, 

for either cell type (Figure 2A).  Furthermore, monocytes labeled with QD homed to 

LPS-stimulated bEnd.3 mouse endothelium at a comparable rate to monocytes loaded 

only with C-AM dye (Figure 2B). 
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Figure 1. FACS analysis of CD11b and TCR-biotin immunomagnetically-purified 
leukocyte subsets (A), and QD-maurocalcine labeling of T lymphocytes with QD585 (B) 
and monocytes with QD655 (C).  (A) Immunomagnetic purification yields two distinct 
populations, a CD11b+/CD68+ population, and a CD11b+/CD68- population.  T 
lymphocytes express low levels of CD11b and expression of CD68 is absent, whereas 
monocytes express both markers at relatively higher levels.  (B-C) Both leukocyte 
subsets efficiently-internalize QD-maurocalcine (red) while excluding QD without 
peptide (green).  
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Figure 2. Cell viability analysis (A) and monocyte adhesion assay on bEnd.3 mouse 
endothelial monolayers in vitro (B).  *- P < 0.05, n = 3. 
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Localization of QD-labeled leukocyte subsets in atherosclerotic lesions 

QD-labeled monocytes were observed in atherosclerotic lesions as early as two 

days post-injection and as late as four weeks (latest time point observed) in ApoE -/- 

mice.  Figure 3 shows QD-labeled monocytes within aortic root lesions of 7 month 

(Figure 3A-D) and one year old (Figure 3E-H) ApoE -/- mice, and their colocalization 

with CD68-positive cells and the nuclear stain DAPI.  In both mice, infused monocytes 

appeared to have infiltrated squamous endothelium to reside in deep regions of the lesion, 

where other, presumably pre-existing macrophages were present.  However, the extent of 

accumulation of both resident and ex vivo reinfused monocytes/macrophages in early 

lesions was noticeably lower than the extent of accumulation in 1 yr. old ApoE -/- mouse 

lesions.  Observations of lesions from mice of similar age were consistent with our 

finding that monocyte accumulation in lesions was proportional to the extent of lesion 

progression as determined by size and ORO staining.  Lesions from mice not injected 

with QD-labeled cells or not labeled with CD68 did not exhibit appreciable 

autofluorescence.   

QD-labeled T lymphocytes were observed in ApoE -/- mice aortic lesions as early 

as two days and as late as four weeks (latest timepoint tested) post-injection of cells.  

Figure 4 shows fluorescence micrographs of lesions from the youngest animals (7 

months) and the oldest animals (1 year) tested.  A stark contrast in cellular accumulation 

between the two age groups was evident with both QD and immunofluorescence labeling 

methods.  T lymphocytes appeared in regions of plaques either adjacent to resident 

macrophages or distinct from macrophages.  QD585-labeled cells were detected in either  
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Figure 3. Representative fluorescence micrographs of QD-labeled monocyte 
accumulation in aortic root tissue lesion of 7 month old (A-D) and 12 month old (E-H) 
ApoE -/- mice, 5 days post-injection of 1 X 106 QD655-labeled monocytes.  (D, H) Areas 
of colocalization between QD-labeled monocytes and Alexa Fluor 488-anti-CD68  are 
indicated with arrowheads (Magnification 50X).  Inset in (H) shows magnified region 
(100X) showing increased colocalization of infused monocytes with resident 
macrophages.   
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Figure 4. Fluorescence micrographs of QD-labeled T lymphocyte recruitment to aortic 
root lesions.  (A) Arrowheads indicate regions of cellular infiltration (yellow).  
Magnification 50X.  (B) Arrowheads indicate lymphocytes in regions colocalized with 
CD68 (green), or in distinct areas. 
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deep regions of lesions as small clusters (~5-8 cells) of lymphocytes in 

CD68-rich areas (Figure 4A), or areas of low CD68 expression near smooth muscle 

cells (Figure 4B).   

The time allotted for QD-labeled leukocyte circulation post-injection did not 

affect relative levels of leukocyte accumulation in lesions, as 4 week post-injection 

timepoints featured similar accumulation of leukocytes as 2-5 day post-injection 

age-matched animals (not shown).  Generally, QD was not observed to fade within 

the coverslipped specimen within a month following sample preparation, nor did 

extended circulation time of QD-labeled cells adversely affect photostability and 

photointensity of QD within lesions.  Lesion autofluorescence in the QD585 channel 

was negligible.   

Correlation of leukocyte accumulation with ORO staining by en face analysis 

Macroscopic fluorescence imaging of en face preparations of mouse aortas 

revealed QD585 and QD655 accumulation in ORO-stained lipid regions throughout the 

aortic stem (Figure 5).  No cells were observed in wild-type aortas, indicating that QD-

labeled cells homed specifically to lesions.  Furthermore, QD fluorescence was 

proportional to lesion surface area as determined by ORO-positive staining.  The near 

infrared fluorescence spectra of ORO did not overlap with that of QD655 and QD585, 

due to the use of distinct bandpass emission filters and the serial nature of sample 

preparation, whereby QD images were acquired prior to ORO staining to allow for digital 

image background correction. 
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Figure 5. Ex vivo imaging of en face aorta preparations using macroscopic fluorescence 
imaging of ORO (A), QD585-T lymphocytes (B), and QD655-monocytes (C). 
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Discussion 

 

QD are versatile reagents for imaging disease in preclinical models, due to the 

flexibility of ligands (nucleic acids, antibodies, peptides) they can accommodate, high 

photostability and emission intensity, and size-tunable emission wavelengths, and 

imaging of multiple QD within tissue requires only one excitation wavelength  (32).  QD 

have been loaded into (cytoplasm) or onto (cell surface) multiple cell types for imaging 

of dynamic processes in vivo, including tracking of cancer metastasis (33) and leukocyte-

endothelial interactions during inflammatory vascular disease (23).  The multispectral 

imaging capabilities enabled by QD make them attractive reagents for visualizing 

dynamic processes consisting of multiple cellular and biomolecular mediators in vivo. 

In this work, we have adapted QD for monitoring atherogenesis in ApoE -/- mouse 

models ex vivo, with particular attention given to the potential utility of this approach for 

in vivo imaging of cellular accumulation within atheroma.  Furthermore, leukocytes 

capable of homing to lesions, namely monocytes, which differentiate into macrophages 

within the lesion, can be genetically-engineered to induce regression of lesions (34).  

Therefore, a technique to monitor their biodistribution in vivo and ex vivo is particularly 

desirable.  Flow cytometric analysis indicate that QD-maurocalcine bioconjugates were 

internalized efficiently within leukocyte subtypes (Figures 1B-C), with no significant 

effects on cell viability (Figure 2A) and homing to inflammatory endothelium (Figure 

2B) observed.  These in vitro studies collectively indicate that QD are at least on the short 

term suitable for studies of leukocyte function in vascular disease.  Homing of both cell 

types to lesions were observed (Figures 3-4), with varying degrees of penetration and 
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colocalization with resident macrophages.  Therefore, QD may be a useful tool to study 

differential localization on a spatial or temporal scale for several cell types within the 

same tissue. The multiplexing capability afforded by the use of spectrally-distinct QD 

makes the simultaneous detection of multiple cell types a possibility, even with the use of 

conventional immuno-fluorescence markers, in this case Alexa Fluor 488 anti-CD68 and 

the nuclear stain DAPI, without spectral bleed-through.  Although organic dyes were 

used in conjunction with QD-labeled cells in this application, QD-antibody conjugates 

could be substituted in order to multiplex immunofluorescence analysis as well. 

Macroscopic imaging of QD within en face aorta preparations indicate both the 

specificity of QD-labeled leukocytes toward lesions, as well as the high signal to noise 

ratio of QD in tissue (Figure 5B-C).  We selected QD configured for emission above 

green (< 540 nm) wavelengths for this study, due to the substantial amount of tissue 

autofluorescence within lesions in this range of the spectrum.  The selection of yellow-

red wavelengths provide for high signal to noise ratio imaging of atherosclerotic lesions 

without auto-fluorescence.  QD are optimally-excited using ultraviolet to blue excitation 

wavelengths.  Since ORO fluorescence is excited at ~650 nm, with peak emission in the 

range 670-700 nm (Figure 5A), macroscopic fluorescence imaging of ORO, QD585 

(lymphocytes), and QD655 (monocytes) could be simultaneously performed in the same 

tissue, since the QD selected do not emit appreciable fluorescence when excited at 650 

nm.  Therefore, QD emission wavelengths can be selected for optimal multispecies 

imaging, and can also be integrated within conventional lesion analysis tools which use 

fluorescent dyes or immunohistochemical stains. 
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Several observations support the utility of QD for in vivo imaging applications 

involving vascular disease.  The aorta is not directly accessible to optical imaging 

instrumentation, due to its deep location.  However, given the high intensity and stability 

provided by QD in the aorta (Figure 5), we believe that optical imaging of 

atherosclerotic lesions in vivo is feasible.  QD can be designed to emit in the near infrared 

emission windows for optimal in vivo imaging of tissues without the scattering and 

absorption limitations imposed by imaging of shorter wavelengths (35).  Furthermore, 

although the UV-blue excitation light required to optimally excite QD would only have 

limited penetration in tissue due to scattering and absorption phenomena, two-photon 

excitation instruments have been designed for exciting QD optimally while at the same 

time overcoming these limitations (36).  The prospect of using QD-antibody and QD-

peptide bioconjugates for labeling cell surface biomarkers or the cytoplasm of specific 

subtypes of cells, combined with in vivo imaging instrumentation, should facilitate efforts 

toward the molecular profiling of atherosclerosis in vivo for developing diagnostic assays 

and disease-customized therapeutic interventions for clinical usage. 

 

Conclusion 

 

We have demonstrated a technique for monitoring the recruitment of leukocyte 

subsets to atherosclerotic lesions.  The optical properties of QD can be harnessed to 

permit high signal to noise ratio imaging of multiple cell types without spectral overlap, 

and can also be used simultaneously with conventional immunofluorescence and 

immunohistochemical reagents used in the study of atherosclerosis.  Given the 
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implication of multiple cell types in the initiation and progression of atheroma, QD 

should be utilized to study these cell types within the same specimen in order to 

understand the interconnectedness of atherosclerotic mediators.   Future efforts of this 

technique will include molecular profiling of atheroma in vivo including the monitoring 

of inflammatory biomarker expression in early and late stages of disease, and the 

assessment of therapeutic response via the tracking of genetically-engineered monocytes 

infused systemically in order to promote lesion regression in vivo. 
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Abstract 

 

The objectives of this study were to synthesize and characterize functionalized 

solid lipid nanoparticles (fSLN), to investigate their interaction with endothelial cell 

monolayers, and to evaluate their transendothelial transport capabilities.  fSLN bearing 

tetramethylrhodamine isothiocyanate-labeled bovine serum albumin (TRITC-BSA) and 

Coumarin 6 were prepared using a single-step phase inversion process that afforded 

concurrent surface modification with a variety of macromolecules such as polystyrene 

sulfonate (PSS), poly-L-lysine (PLL), heparin (Hep), polyacrylic acid (PAA), polyvinyl 

alcohol (PVA), and polyethylene glycol (PEG).  TRITC-BSA/Coumarin 6 encapsulated 

in fSLN with composite surface functionality (PSS-PLL and PSS-PLL-Hep) were also 

investigated.  Size and surface charge of fSLN were analyzed using dynamic light 

scattering and transmission electron microscopy.  Transport across bovine aortic 

endothelial cell (BAEC) monolayers was assessed spectrophotometrically using a 

transwell assay, and fSLN localization at the level of the cell and permeable support was 

analyzed using fluorescence microscopy.  fSLN with tunable size and surface 

functionality were successfully produced, and had significant effects on cell localization 

and transport.  Specifically, fSLN with PSS-PLL-Hep composite surface 

functionalization was capable of translocating 53.2 ± 8.7 ug of TRITC-BSA within 4 

hours, with fSLN-PEG, fSLN-PAA and fSLN-PSS exhibiting near-complete apical, 

paracellular, and cytosolic localization, respectively.  Coumarin 6 was released by fSLN 

as indicated by dye labeling of BAEC membranes.  We have developed a rapid process 

for the production of fSLN bearing low and high molecular weight payloads of varying 
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physicochemical properties.  These findings have implications for drug delivery and 

bioimaging applications, since due to tunable surface chemistry, fSLN internalization 

and/or translocation across intact endothelial cell monolayers is possible. 

 

Introduction 

 

 Endothelial barrier function governs the transport of information such as 

macromolecules and solutes from the blood to the tissues.  The pathways through which 

this transport may occur have been identified to be paracellular (between cells) or 

transcellular (through cells) (1).  Endothelial cells maintain a tight barrier 

compartmentalizing blood and tissue through multi-protein junction complexes (2), and 

utilize various machinery such as caveolae (3) to shepherd desired materials across or 

between the cell.  Most processes involving the transport of macromolecules, such as 

clathrin-dependent endocytosis, direct cargoes to intracellular compartments, such as 

endosomes and lysosomes, as opposed to exocytosis at the basolateral membrane, and 

thus are not considered processes for translocation of compounds across endothelial 

barriers (4).  Some small molecules, due to their small size (<500 Da) and/or 

lipophilicity, are capable of translocation across endothelial barriers, including the tight 

blood-brain barrier (5).  However, it has been a significant challenge in pharmaceutical 

research to deliver imaging agents or therapeutics of varying physicochemical 

characteristics (e.g. high molecular weight, hydrophilic) across endothelial barriers with 

the same efficiency.   

96



 We have developed a strategy for the single-step encapsulation and surface 

functionalization of solid lipid nanoparticles (fSLN), based on a combined adaptation of 

the solvent-injection process by Schubert et al. (6) and a previously-described process in 

our laboratory for the development of functionalized polymeric nanoparticles (7).  In our 

process, low and high molecular weight compounds of varying hydrophilicity and charge 

are entrapped within a coco-glyceride based, solid lipid matrix, with concurrent 

modification of the fSLN surface through incorporation of functional moieties in the 

aqueous phase.  In this study, we investigated whether synthesizing fSLN with tunable 

surface functionalities of varying hydrophilic-lipophilic balance (i.e. negative, positive, 

bioactive) could impart endothelial barrier translocation properties.  We demonstrate that 

fSLN can be engineered to achieve various cell interactions, and to transport compounds 

normally not capable of transcytosis across endothelial monolayers. 

 

Materials and Methods 

 

Materials 

 Softisan 100 was a gift from Sasol GmbH.  Coumarin 6 (laser grade) was from 

Acros Organics.  3 μm pore size permeable cell culture supports (Transwell®) were from 

Corning.  TRITC-BSA (1 mol TRITC/mol BSA), paraformaldehyde, Dulbecco’s minimal 

essential medium (DMEM), fetal bovine serum (FBS), 1-methyl-2-pyrrolidone (NMP, 

anhydrous), dimethylformamide (DMF, ACS Grade), tetrahydrofuran (THF, ACS 

Grade), acetone (anhydrous), poly (styrene-4 sodium sulfonate) (MW = 70,000, (PSS)), 

poly (acrylic acid) (MW = 10000, (PAA)), poly (L-lysine hydrochloride) (MW = 22,100,  
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(PLL)), poly (vinyl alcohol) (MW = 13,000, (PVA)), porcine heparin sodium salt (MW = 

4000-6000, (Hep)), and hydroxyl-terminated poly (ethylene glycol) (MW = 10,000, 

(PEG)) were from Sigma.  Float-a-Lyzer dialysis membranes (cellulose ester, 100K 

MWCO) were from Spectrum Laboratories.  VECTASHIELD aqueous mounting 

medium for fluorescence microscopy was from Vector Labs.  BAEC were a gift of Dr. 

Keith Gooch, and were used at passages 3-4.  BAEC were cultured in DMEM containing 

10% FBS and 1% penicillin/streptomycin/fungizone prior to transport experiments.  

BAEC cultures were free of fibroblast contamination.          

 

Methods 

Synthesis of Functionalized Solid Lipid Nanoparticles 

fSLN bearing various surface functionalities were prepared using a modified 

phase inversion process (Table 1).  0.1% (w/v) Softisan 100 and 0.01% (w/v) Coumarin 

6 were dissolved in a 1 mL organic phase consisting of the solvent pairs DMF/Acetone, 

THF/Acetone, or NMP/Acetone.  Solvent ratios were adjusted stoichiometrically to 

achieve solvent compositions of varying solvent polarity-polarizability indices (SPP) as 

measured by Catalan (Equation 1) (8, 9).  To this 1 mL of an aqueous phase consisting 

of 0.1% (w/v) TRITC-BSA and 0.001% (w/v) of one of the surface functionalization 

moieties (e.g. PSS, PLL) was added to yield the fSLN.  Residual solvents and freely 

soluble functionalization moiety were removed by dialysis against 1 L double distilled 

deionized water (ddH2O, Millipore) in Float-a-Lyzer dialysis membranes for four hours, 

with three complete changes of ddH2O.  Further modification of fSLN with composite 

functional surfaces, to synthesize fSLN-PSS-PLL, fSLN-PSS-PLL-Hep and fSLN-PLL-
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Hep were prepared by electrostatic layer-by-layer (LBL) assembly (10).  Specifically, 

fSLN-PSS, following dialysis, were incubated with 1% (w/v) PLL in ddH2O under 

constant stirring for 5 minutes, and then dialyzed in a similar manner as described above.  

fSLN bearing composite surface functionality was then achieved by incubating SLN-

PSS-PLL or SLN-PLL in 1% (w/v) Hep in ddH2O under constant stirring for 5 minutes, 

followed by 100K MWCO dialysis to generate fSLN bearing PSS-PLL-Hep and PLL-

Hep, respectively.  
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Table 1. Specific fSLN formulations prepared and their general properties. 

 

 

                           (1) 

Equation 1. Solvent Polarity-Polarizability Index Calculation for binary solvent systems, 
where Vx = volume of compound X, SPPY = SPP index value for solvent Y, as 
determined by Catalan (8). 
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fSLN Size and Zeta Potential Characterization 

 The size distribution and zeta potential (ζ) of the fSLN suspensions were 

determined in triplicate using a Beckman-Coulter DELSA 440SX Zetasizer. 

Additionally, ζ was mapped as a function of pH to determine the isoelectric point (11) of 

the fSLN surface.  Briefly, 200 μL of SLN suspension was suspended in a total of 2 mL 

ddH2O adjusted to the desired pH with 2 N HCl or 2 N NaOH as needed prior to ζ 

measurement.  Size distribution was monitored for several months post-fSLN synthesis to 

ascertain the effect of storage (4°C) on size.   

Low-Voltage Transmission Electron Microscopy (LVTEM)   

 fSLN-PSS were imaged using LVEM5 (DeLong Instruments).  fSLN were air-

dried onto 3 mm grids and then imaged at 5kV under 10-5 mbar vacuum.  The image was 

captured using an attached CCD camera (Proscan 1300 x 1030 pixels) and processed 

using a ProDIA Image Processing Software. 

In vitro Transendothelial Transport Studies 

P3 or P4 BAEC were plated onto polycarbonate inserts at a nominal density of 

50,000 cells/cm2 and the inserts were assembled in wells of a 12-well tissue culture 

microplate.  BAEC incubated at in a humidified incubator at 37°C and 5% CO2, until 

confluent (2-3 days).   

Prior to in vitro transport studies, the receiver compartments of the 12-well plates 

were filled with 400 μl Ringers’ solution supplemented with 10% FBS and the 

monolayers were bathed with 200 μl Ringers’ solution supplemented with 10% FBS.  

Next, 200 μL of the fSLN suspension in Ringers’ was added to the upper compartment, 

and the cells were incubated for 4 hours at 37°C.  Ringers’ supplemented with 10% FBS 
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containing 0.1% TRITC-BSA served as controls in order to verify integrity of the 

monolayer during the transport studies.  We initially verified that exposure to Ringers for 

4 hours did not affect BAEC monolayer integrity as assessed by the absence of visible 

discontinuities in the cell monolayer in micrographs.  Experiments were performed in 

triplicate.  SLN produced using the NMP/Acetone binary solvent system was selected for 

transport studies due to their size reproducibility even under slight variations in SPP.   

In selected wells, 1 mg/mL Texas Red-Dextran (MW = 10 kDa, neutral, 

Invitrogen) was incubated with BAEC monolayers seeded on Transwell inserts for 1 hr. 

in Ringers’/FBS, then rinsed 3 times with PBS and fixed.  In addition, Texas Red-dextran 

was incubated with BAEC 1 hour following BAEC incubation with fSLN-PSS-PLL-Hep, 

in order to assess effects on the paracellular permeability of the BAEC monolayer.  In 

these cases, the receiver compartment was replaced with fresh Ringers’/FBS solution to 

remove interfering fluorescence from fSLN.  Permeability coefficients were calculated 

based on dextran concentrations as previously-described (12).           

Following incubation, the media covering the cells was removed carefully using 

micropipette and rinsed three times with Ringers followed by fixation with 4% 

paraformaldehyde for 10 minutes.  The Transwell inserts were removed and mounted on 

a glass slide using VECTASHIELD/DAPI.  The 12-well microplates were then analyzed 

in a Biotek Synergy HT microplate fluorescence spectrophotometer configured for 

TRITC, Coumarin 6, and Texas Red-specific channels to measure SLN translocation 

across the BAEC monolayer.  For formulations indicating high translocation via 

microplate spectrophotometry (more than 15% fluorescence intensity above BAEC not 

incubated with fSLN), the concentration of TRITC-BSA in the receiver compartment 
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solution was determined via fluorescence spectrophotometry.  The solution was exposed 

to 40ºC temperature to melt solid lipid, and filtered through an Amicon-4 spin column 

centrifugation device with 10K MWCO in order to concentrate TRITC-BSA and remove 

free lipid.  Concentration was measured using a Nanodrop ND-3300 fluorescence 

spectrophotometer calibrated by a TRITC-BSA standard curve in Ringers’/10% FBS 

solution prepared by the same heating/concentration preparation steps.  Texas Red-

Dextran in the receiver compartment was measured by fluorescence spectrophotometry 

using a standard curve.         

Visualization of fSLN in BAEC Monolayers  

 The mounted Transwell supports were imaged using a Nikon TE2000U inverted 

fluorescence microscope equipped with a motorized computer-controlled z-focus device 

(Ludl, Inc.) using TRITC and FITC filters for TRITC BSA and Coumarin 6 respectively.  

Using Image Pro Plus 5.1 in conjunction with ScopePro 5.0 (Media Cybernetics), 2-D 

slices of BAEC in each channel were acquired by sequentially exposing a field of view 

under TRITC and FITC filters to generate a co-registered image showing fSLN and 

Coumarin 6 localization in the same frame.  The z-stacks were deblurred using a 

constrained, iterative algorithm (Inverse Filter, Sharpstack 5.2.2) calibrated to imaging 

objective settings (Plan Apo 40X oil immersion), and combined to construct cross-

sections that restrict out-of-focus haze from slices not within the X-Y plane of interest.  

Cross sections were generated from high-resolution TIFFs using Andor iQ 1.5 image 

analysis software (Andor Bioimaging).   
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 For evaluation of fSLN-PSS localization within BAEC in culture, cells were 

seeded to confluency in 6-well microplates and imaged via fluorescence microscopy 

using phase contrast and TRITC settings.     

Cytotoxicity of BAEC exposed to fSLN 

 BAEC seeded to confluency on 6-well microplates were incubated with fSLN-

PSS or fSLN-PSS-PLL-Hep suspensions for four hours in Ringers’/FBS.  Cells were 

rinsed three times and detached with 0.25% trypsin, and resuspended into ice-cold 

PBS/EDTA pH = 7.4.  Cells were then incubated with LIVE/DEAD single color fixable 

(green) viability kit (Invitrogen) according to manufacturer instructions, and assayed for 

viable/dead cells using a BD FACSCalibur flow cytometer equipped with 488 nm laser.  

The dead cell proportion, showing a log-scale enhancement in green (FL1) fluorescence, 

was quantified using FlowJo 7.2.2 (TreeStar software) in order to express %viability of 

BAEC populations as compared to Ringers’/FBS exposure alone.  A minimum of 20,000 

cells were assayed per sample.   

 

Results 

 

Size and Surface Charge Characterization 

 In our process, by varying the SPP of the organic phase, fSLN diameter was 

tunable.   The organic phase was composed of acetone and a highly polar secondary 

phase (NMP, THF, or DMF).  Increasing the polarity of this phase (higher SPP) resulted 

in a reduction in fSLN mean diameter (Figure 1).  While the THF-Acetone system 

offered fSLN over a much wider range than the other systems investigated, the NMP-
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Acetone system afforded the particles with highest size reproducibility with variance in 

SPP.  This suggests that the range of NMP-Acetone volume fractions studied all have 

high miscibility with water, favoring rapid phase inversion and lipid packing, which 

subsequently promotes the formation of fSLN of smaller size.  fSLN prepared by our 

process appeared to be fairly monodispersed as satellite populations above and below the 

size of the major population peak were wither minimal or absent.      

 All three solvent systems were capable of producing stable nanoparticles, as 

indicated by lack of coagulation/turbidity in solution over a month of storage, except for 

the case of fSLN-PLL, which noticeably coagulated in suspension within 24 hours post-

synthesis.  The spherical morphology of the fSLN was confirmed by low-voltage TEM 

(Figure 2).  Following storage at 4°C for one month, fSLN-PSS (SPP = 93.44) exhibited 

a small change (4.54%, n = 3) in mean diameter as measured by dynamic light scattering.   

The incorporation of the prescribed functional group in the aqueous phase onto 

the SLN surface was verified by measuring the pIe of the fSLN surface.  This was 

performed by mapping the ζ of the fSLN as function of pH.  pIe corresponded reasonably 

well with that for the pKa of the ionizable group in the functional moiety (Figure 3).  

Thus, entrapment of the functional moiety on the SLN surface was achieved at 

concentrations sufficient to impart its charge characteristics. 
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Figure 1. fSLN-PSS Diameter as a function of solvent polarity-polarizability index (SPP) 
for three different binary solvent systems of varying solvent composition (n=3).  All 
solvent pairs consisted of Acetone and one of NMP, DMF, or THF.  Diameter was not 
affected by the incorporation of other surface functionalities (data not shown).  SLN 
diameter is expressed as a peak (>80%) value from size distribution analysis using multi-
angle dynamic light scattering.  
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Figure 2. LVTEM of fSLN-PSS synthesized using the NMP/Acetone binary solvent 
system.  Compacted nanoparticles (black regions) with spherical morphology are 
apparent.  Air-drying artifacts distort nanoparticle size measured by dynamic light 
scattering.   
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Surface Charge Characterization of Composite fSLN 

The impartation of composite layered surface functionalities (PSS-PLL, PSS-

PLL-Hep, PLL-Hep) was verified by measuring the ζ, of fSLN at physiological pH (7.4), 

which for fSLN-PSS-PLL and fSLN-PSS-PLL-Hep was 8.72 ± 3.22 mV and 2.82 ± 1.71 

mV, respectively.  ζ  for fSLN-PSS at pH = 7.4 was -42.40 ± 5.78 mV (Figure 3), 

collectively suggesting that fSLN-PSS-PLL-Hep surfaces are composed of both PLL and 

Hep. 

In vitro Transendothelial Transport Studies 

 Of all formulations tested, fSLN bearing the composite layered functionality of 

PSS-PLL-Hep afforded the most translocation of BSA (fluorescence intensity 

corresponding to 53.2 ± 8.7 μg as determined by fluorescence spectrophotometry, Figure 

4).  The relative amount of TRITC-BSA translocated across BAEC in the PSS-PLL-Hep 

system was 22-fold greater than the second most efficient system, fSLN-PLL-Hep, and 

about 160-fold greater than TRITC-BSA/Ringers’ control.  Previous studies reported a 

baseline flux of < 0.05 pmol BSA/hr for intact BAEC monolayers, a rate three orders of 

magnitude lower than observed for the fSLN-PSS-PLL-Hep system in this study (13).  

fSLN-PEG and fSLN-PVA systems did not transport detectable levels of TRITC-BSA in 

the receiver compartment.  Furthermore, Coumarin 6 was not detected in the receiver 

compartments for any formulation tested. 
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Figure 3.  Zeta potential (ζ) as a function of pH for various functionalized SLN (n = 3, 
reported as mean ± S.D.).  The isoelectric point (11) of the sample (point at which ζ = 0 
mV) corresponds closely with the pKa of the surface functionality’s ionizable group (PSS 
= sulfonic acid ( pKa = 2.1), PAA = acrylic acid (pKa = 4), PLL = amine (10.5), Hep = 
uronic acid (3.13), PEG = hydroxyl (5))   
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Figure 4. Fluorescence spectrophotometry of fSLN/TRITC-BSA transport across BAEC 
monolayers for a variety of surface functionalities (n = 3, reported as mean ± S.D.).  
Fluorescence intensity of fSLN-PSS-PLL-HEP-associated receiver compartment was 
measured to correspond to 53.2 ± 8.7 μg of TRITC-BSA.  Other fSLN species were 
below thresholds of TRITC detection in receiver compartments.   
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Endothelial monolayer integrity following fSLN-PSS-PLL-Hep translocation was 

measured using a dextran permeability assay.  Dextran is known to translocate BAEC 

monolayers via a paracellular route, and thus has been used to measure the integrity of 

endothelial barriers and their tight junctions (14).  Prior to incubation with fSLN, 

permeability of Texas Red-dextran (MW = 10,000) across BAEC monolayers after 1 hr. 

was 9.1 X 10-6 ± 3.5 X 10-7 cm/s.  Following 4 hr. incubation with fSLN-PSS-PLL-Hep, 

the 1 hr. dextran permeability was 9.6 X 10-6 ± 4.3 X 10-7 cm/s (n = 3).  These data were 

similar, and also consistent with previous studies of dextran permeation across intact 

monolayers (15).  Thus, endothelial integrity at this timepoint was not compromised with 

regard to the paracellular transport pathway.  In addition, fSLN-PSS-PLL-Hep were 

detectable by fluorescence microscopy in the receiver compartment, indicating that fSLN 

can be transported across monolayers intact, while maintaining stability in serum (Figure 

5). 
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Figure 5. fSLN-PSS-PLL-Hep observed by fluorescence microscopy in receiver 
compartments following transendothelial transport assays.   
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Fluorescence Microscopy of BAEC Incubated with Functionalized SLN 

 Fixed BAEC monolayers were imaged using fluorescence microscopy to assess 

localization and extent of transport within monolayers.  Representative fluorescence 

micrographs from the six most efficacious fSLN formulations are shown in Figure 6.  

Our data suggests that the chemical composition of the SLN surface dictates various 

aspects of fSLN interaction with BAEC monolayers including compartment of 

localization (intracellular versus apical cell surface), and transport pathway (paracellular 

versus transcellular).   

Among the negatively charged fSLN, fSLN-PSS exhibited intracellular 

localization, with a diffuse cytoplasmic distribution, but without passage through 

endothelium (Figure 6F).  To confirm this distribution, fSLN-PSS incubated with BAEC 

on tissue culture polystyrene were also imaged for greater clarity by fluorescence 

microscopy, and fSLN distribution within cell cytoplasm was similar (Figure 7).  fSLN-

Hep was internalized within BAEC, but appeared to be sequestered in the cytoplasm and 

not translocated, as indicated by a lack of fluorescence at the support membrane level 

(Figure 6C).  fSLN-PAA particles, however appeared to primarily localize along cell-

cell junctions (Figure 6D).  These results suggest that impact of charge in cellular 

interaction in this system might be secondary to other considerations such 

physicochemical characteristics of the surface functional moiety.   

Among the fSLN with composite surface functionality, fSLN-PLL-Hep (Figure 

6B) was distributed primarily along paracellular regions and/or at the apical surface.  

Furthermore, no accumulation of these particles at the level of the Transwell membrane 

insert was observed, suggesting a lack of translocation.  This is significantly different  
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Figure 6. Fluorescence microscopy of permeable supports with fixed BAEC monolayers 
following in vitro SLN transendothelial transport studies.  Each of the 6 display items 
consist of a 2-D view of the monolayer at the middle of the cell (16) and a cross-sectional 
view of the same monolayer processed via deblurring and reconstruction from a 3-D 
stack through the insert (bottom).  TRITC-BSA is red, and Coumarin 6 is green; a 
mixture of the two is orange in color.  Images are representative of experiments 
performed in triplicate.  SLN formulations displayed are (A) fSLN-PSS-PLL-Hep, (B) 
fSLN-PLL-Hep, (C) fSLN-Hep, (D) fSLN-PAA (arrowheads show localization along cell 
borders), (E) fSLN-PEG, and (F) fSLN-PSS.  (fSLN-PSS-PLL data not shown)  
(Magnification 400X) 
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Figure 7. Fluorescence micrographs of BAEC incubated with fSLN-PSS.  All cells in 
view are efficiently and diffusely labeled with TRITC-BSA containing nanoparticles 
(pseudocolored red).  (Magnification 100X) 
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from the fSLN-Hep system, which also possesses a net negative surface charge, and once 

again alludes to fSLN-cell interactions that are more complex and driven by 

physicochemical considerations.  Similarly, no appreciable translocation was observed in 

fSLN-PSS-PLL (data not shown), although its positively charged surface is more 

favorably disposed toward interacting with negatively charged cell surfaces.  These 

observations are consistent with transendothelial transport studies (Figure 4).  In 

contrast, fSLN-PSS-PLL-Hep (Figure 6A) was primarily localized to paracellular 

transport regions, also known as tight junctions, although in some cases larger SLN were 

restricted to the apical cell surface without entry.  As shown in the cross-sectional image 

derived from 3-D image processing (Figure 6A), fSLN-PSS-PLL-Hep bearing TRITC-

BSA were transported to the level of the permeable support (bottom layer of image).  

This level of monolayer permeation was not observed for any other species tested.  In the 

transport studies this system yielded the highest fluorescence in the receiver compartment 

as well (Figure 4).  No translocation was observed in the fSLN-PEG (Figure 6E) and 

fSLN-PVA system (fSLN-PVA data not shown).  These fSLN remained primarily 

associated with the plasma membrane near the apical surface as highly compacted 

nanoparticle aggregates, with no detected populations at support boundaries.  Since the 

samples were thoroughly washed prior to fixing, these interactions represent stable cell 

surface incorporation.  In all inserts, it was observed that Coumarin 6 was partitioned 

effectively in the cell membrane.  This could be due to either leakage of the small 

molecule through the fSLN, or additionally, partitioning of the dye within cell 

membranes upon initial fSLN contact with BAEC.  Further investigation is necessary to 

116



determine the primary mechanism of small molecule release, as this study would be 

important for investigating fSLN as drug delivery formulations. 

Cytotoxicity Analysis  

 The toxicity profile of fSLN was assessed using a membrane integrity dye in 

conjunction with flow cytometry, and was found to be similar to Ringers’/FBS exposure 

alone (Figure 8).  These results, in conjunction with dextran permeability studies, 

demonstrate that fSLN constitute a biocompatible approach for the translocation of 

compounds across endothelium.     
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Figure 8. Flow cytometric toxicity analysis.  BAEC were incubated with fSLN-PSS or 
fSLN-PSS-PLL-Hep for 4 hrs. in culture.  Viability of fSLN-labeled cells was similar to 
BAEC incubated in Ringers’/FBS.  Data reported as %viable (mean ± S.D., n = 3) BAEC 
from a sample of 20,000 assayed cells. 
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Discussion 

 

The ability to deliver of therapeutics and imaging agents of diverse 

physicochemical properties across endothelial barriers has key implications in the 

diagnosis and treatment of high-impact diseases such as cancer, atherosclerosis, and 

diabetes.  In general, current methods for traversing endothelium may not be suitable for 

high molecular weight compounds, or may expose the underlying tissue to the 

unrestricted influx of compounds as a result of prolonged barrier perturbation.  In our 

approach, we have selected a solid lipid, the hydrogenated coco-glyceride Softisan 100, 

as a biocompatible starting material for the delivery of compounds across endothelial 

barriers, as it is a component of many topical formulations for the purpose of imparting 

enhanced spreading and permeation characteristics (17, 18).   

The physicochemical characteristic of fSLN surfaces appears to be the dominant 

parameter in dictating their destination within or across endothelial cells.  Among the 

various fSLN studied, fSLN bearing the composite surface derived from PSS, PLL and 

Hep afforded the most efficacious transport across BAEC monolayers.  Since this 

efficiency of translocation was not observed for individual components of this 

formulation (i.e. fSLN-PSS, fSLN-PSS-PLL, fSLN-PLL-Hep), it is apparent that all three 

moieties are necessary to achieve high molecular weight payload translocation.  A 

possible mechanism involving diminished cellular membrane interaction due to the 

presence of the negatively-charged PSS and some specific interactions with cell junctions 

through tight-junction proteins with affinity for heparin may be involved, with the PLL 

layer serving as a molecular bridge between the PSS and Hep regions on the fSLN 
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surface.  This mechanism seems reasonable based on the experimental observations and 

what is known about heparin.  Heparin is a highly bioactive polysaccharide involved in 

critical endothelial cell functions.  Heparin is present in many configurations which serve 

to elicit distinct responses from endothelial cells, which also have specific heparin-

binding sites (19-21).  Furthermore, heparin is involved in the transcytosis of 

biomolecules across endothelium (16).  However, in our studies, fSLN-Hep, while 

appearing to be stable nanoparticles, were not capable of transcytosis. This observation is 

consistent with the proposed mechanism wherein the relatively hydrophobic, but 

negatively charged PSS has a role in favoring interaction with tight junctions.  Further 

studies are warranted to ascertain if the ultrastructure of Hep are altered by the presence 

of strongly-charged polyelectrolytes in conjunction with a neutral solid lipid.    

Some of the cell interaction characteristics of the fSLN warrant further attention.  

fSLN-PSS were observed to efficiently and homogenously penetrate cell membranes into 

cytoplasmic space.  A lack of aggregation of the particles suggests that the cytoplasmic 

distribution may not entirely involve the endosomal pathway.  As discussed earlier, PSS 

may inhibit solid lipid interactions with cell surface domains, in turn facilitating direct 

membrane fusion.  fSLN-PAA was observed to possess a very high affinity for the cell-

cell boundaries.  However, this site-specific aggregation did not appear to facilitate 

transendothelial transport.  Coating of fSLN with PEG resulted in localization of 

nanoparticles exclusively to cell surfaces.  The exclusion volume created by the gyration 

of PEG tethers on the fSLN surface may prevent lipid-lipid interactions entirely.  Our 

preliminary efforts to probe the effects of fSLN on endothelial barrier integrity and 
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cytotoxicity suggest that lipid nanoparticles do not adversely effect cell viability or 

barrier properties, as indicated by flow cytometric and dextran permeability assays. 

Our initial studies concerning the synthesis, characterization, and in vitro 

transendothelial transport properties of fSLN warrant their future investigation as 

versatile drug or bioimaging probe carriers for vascular disease.  Our process provides for 

the rapid, single-step encapsulation of physicochemically-diverse compounds within 

stable solid lipid matrices, which can concurrently be engineered at their biological 

interface to exhibit novel properties, such as transcellular or intracellular penetration.  We 

anticipate its further investigation as a multimodal delivery system for bioimaging, drug 

delivery, and/or gene therapy. 
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Introduction 

 

 The efficient intracellular targeting of both clinical imaging and therapeutic 

agents poses a significant challenge in medicine and biology.  Optimal systems for this 

purpose should feature biocompatibility, the capability to deliver physicochemically-

diverse payloads such as nanoparticles or proteins, evasion of the endo-lysosomal 

pathway of internalization, and an amenability to surface functionalization for tuning of 

interfacial characteristics.  Here we report on the application of multimodal 

functionalized solid lipid nanoparticles (fSLN) for efficient delivery into the cytosol with 

low toxicity.  fSLN were capable of encapsulating various nanoparticulate and 

chemotherapeutic payloads.  Delivery of fSLN into the cytosol was achieved after pre-

incubation of endothelial cells and cell lines at 4°C, and without colocalization with 

endosomes.  fSLN-labeled cells could be imaged, depending on the payload, by magnetic 

resonance imaging, fluorescence imaging, and/or light microscopy, and paclitaxel-loaded 

fSLN were capable of inducing cell cycle arrest.  fSLN are a novel vehicle for the 

delivery of diverse payloads into cells without endosomal sequestration or chemical 

modification of the encapsulated payload itself.                      

 Current approaches directed toward the goal of intracellular drug targeting and/or 

imaging include the use of cationic peptides (1, 2) or polymers (3), and nanoparticulate 

formulations such as ligand-conjugated liposomes (4), dendrimers (5) or cholesterol-

based carriers (6, 7).  Many of these strategies are limited by cytotoxicity at modest 

doses, reliance on endocytosis, adverse modification of the drug/imaging agent, and a 

decrease in delivery efficiency with increasing payload size.  We therefore sought to 
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develop a biocompatible delivery paradigm which would enable the rapid intracellular 

delivery of a diverse range of imaging agents and therapies without compromising their 

functions.   

Highly-biocompatible solid lipids, or “hard fats,” have been utilized extensively 

in dermatological and cosmetic applications for the ability to promote permeation and of 

topically-applied compounds (8-10).  However, studies to elucidate the nature of their 

contact with cell membranes on the microscale have not been carried out with great 

detail.  We hypothesized that some solid lipids may have intimate interactions with 

plasma membranes such that the translocation of co-formulated species, such as drugs or 

nanoparticles, is enabled.  We conducted studies to determine whether solid lipids could 

be formulated into nanoscale pharmaceutical or contrast agent carriers.  A discrete class 

of solid lipids, hydrogenated coco-glycerides, were identified by our laboratory which 

could be formulated into nanoparticles ranging from approximately 80-900 nm (11).     

fSLN synthesis using these solid lipids is accomplished by the solvent-assisted 

formation of a microemulsion (11, 12).  In this process, the lipid is dissolved within an 

organic solvent system of tunable polarity, such that the affinity of the solution for water 

is controllable.  Upon the addition of an aqueous phase to the solvent mixture, the 

hydrophobic packing of the lipid upon exposure to water provides for instantaneous 

formation of a nanoscale particle, the size of which is determined by the polarity of the 

organic phase.  Higher solvent polarity permits rapid phase inversion as water miscibility 

is higher, whereas lower solvent polarity extends the nanoparticle packing time, allowing 

for larger-sized nanoparticles to form.  By adding hydrophobic species within the solvent 

phase and hydrophilic species within the aqueous phase, we have successfully 
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encapsulated diverse species, such as albumin and the fluorescent dye Coumarin 6 (11).  

The high loading efficiency of our lipid entrapment process translates to high signal to 

noise ratios compared relative to individual, non-encapsulated species, and permits the 

delivery of higher concentrations of therapies or imaging agents in discrete packets.  SLN 

can be engineered to bear multiple surface functionalities, permitting their usage as 

conventional nanoparticles for site-specific targeting by means of charge or biomolecule-

assisted conjugation (11).  Cationic, neutral, anionic, and bioactive interfaces have been 

constructed on fSLN surfaces via layer-by-layer assembly.  The process of formulating 

SLN requires no surfactants or emulsifying agents, and all solvents are removed by 

extensive dialysis following SLN formulation.  In past work, it was observed that 

negatively-charged fSLN bearing a polystyrene sulfonate (PSS) polymer surface, as 

opposed to other surfaces exhibiting cationic charges, exhibited interactions with bovine 

aortic endothelial cell (BAEC) membranes which facilitated internalization (11).  In this 

report, we expand upon previous studies to widen the scope of constructs that can be 

encapsulated within fSLN for evaluation as a multimodal device, and to investigate the 

mechanism and dynamics of fSLN internalization within cells.    

 

Methods 

 

Synthesis and characterization of fSLN 

 fSLN were synthesized using a modified phase inversion technique as previously-

described (11).  In this process, a 500 μL aqueous phase is prepared consisting of 

hydrophilic moieties for encapsulation, along with the stabilizing polymer PSS (0.1%, 
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MW = 70,000, Sigma), confers sufficient dispersion and water solubility upon resulting 

fSLN.  This phase is combined with a 500 μL anhydrous organic phase consisting of N-

methyl pyrrolidone:acetone = 70:20, with the remainder of volume consisting of 

hydrophobic encapsulants in DMSO.  Hydrophilic encapsulants studied were 1 mg of 20 

nm fluorescein isothiocyanate (FITC)-dextran-coated superparamagnetic iron oxide 

nanoparticles (SPIO, Micromod Partikletechnologie GmbH), and/or 1 μM 1.4 nm 

streptavidin-Alexa Fluor 594-conjugated gold colloids (Nanoprobes, Inc.).  Hydrophobic 

species encapsulated included 1 μM quantum dot nanocrystals (Evident Technologies) 

dialyzed into DMSO, and/or 1 μM paclitaxel (Sigma) in DMSO.  fSLN-QD-SPIO were 

produced by incorporating 1 mg and 1 μM doses of SPIO and QD, respectively, in the 

reaction mixture, in order to investigate multimodality.  fSLN were concentrated as 

necessary using a Pall Nanosep spin column filtration device, MWCO = 10K using 

distilled water or PBS.  Unencapsulated (free) SPIO or QD were phase-separated and 

removed by Pasteur pipette.  Organic solvents or low molecular weight compounds (gold, 

paclitaxel) were removed by dialysis into double-distilled water or PBS using 25K 

regenerated cellulose dialysis columns for 2 hrs. followed by overnight dialysis in 100K 

MWCO columns (Spectrum Laboratories).   

The fluorescence (intrinsic or dye-labeled) of all encapsulants enabled the 

determination of encapsulation efficiency by fluorescence spectrophotometry using a 

Nanodrop ND-3300 and fitting to standard curves of encapsulants.  fSLN bearing no 

payload was processed under identical parameters and used as a control.  Encapsulation 

efficiency was determined for fSLN-QD, fSLN-SPIO, fSLN-paclitaxel and fSLN-gold by 

determining the ratio of encapsulated species to total species originally present in the 
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reaction mixture prior to phase inversion.  Samples were analyzed in triplicate.  fSLN 

were further characterized by dynamic light scattering analysis on a Beckman-Coulter 

DELSA 440SX particle zetasizer, and by fluorescence microscopy using a Nikon 

TE2000U inverted fluorescence microscope equipped with dye and QD-matched 

excitation and bandpass emission filters.  Transmission electron microscopy (TEM) was 

performed on a Phillips CM-12 at 80 keV.  fSLN were pipetted 1:1 with a solution of 

pure ethanol on Formvar grids and dried.   Staining with 5% phosphotungstic acid was 

performed to stain solid lipid in negative relief.       

 

Flow cytometry and fluorescence microscopy  

 Bovine aortic endothelial cells were cultured at passages 4-6 in DMEM with 10% 

FBS and 1% pencillin-streptomycin at 37°C, 5% CO2.  The human cervix carcinoma cell 

line, HeLa (American Tissue Type Culture Collection # CCL-2), and a mammary 

carcinoma line, 4T1 (gift of Dr. Jack Virostko, Vanderbilt Institute of Imaging Science), 

were cultured in the same medium and under the same conditions. 

HeLa cells were cultured in 6-well microplates or 4-well chambered slides (Lab-

Tek II, Nalge Nunc) to 80% confluency.  For flow cytometric analysis of fSLN-QD 

uptake, cells were incubated with the fSLN equivalent of 100 nM QD emitting at 580 nm 

for 30 min at 37°C.  To block endocytosis, cells were pre-incubated at 45 min. at 4°C and 

then incubated with fSLN-QD at the same temperature for 30 min.  Following incubation 

cells were rinsed three times in HBSS, pH = 7.4.  These incubation steps were also 

repeated with Qtracker QD-loading reagent (Invitrogen) according to manufacturer’s 

instructions.  Cells were detached with 0.25% trypsin-EDTA, which also served to 
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remove surface-bound fSLN.  Cells were pelleted at 400 X g, 5 min., and rinsed once and 

resuspended in HBSS for flow cytometry.  Cells were analyzed on a LSR II flow 

cytometer (BD Biosciences) equipped with a UV laser and a 585/42 nm bandpass 

emission filter to detect QD.  Unlabeled cells were used as a control.  This experiment 

was performed in triplicate.     

For cell cycle analysis, HeLa were incubated with 10 nM fSLN-paclitaxel, drug 

alone (in DMSO), or empty fSLN for 24 hrs.  Cells were then rinsed thrice in HBSS, 

trypsinized, and fixed with ice-cold 70% ethanol for 2 hrs. at -20°C.  The cells were 

rinsed in HBSS and pelleted.  The pellet was resuspended in 1 mL of 50 μg/mL 

propidium iodide and 50 μL of 10 μg/mL RNAse A (Sigma) for 12 hr. at 4°C and 

analyzed on a FACSCalibur flow cytometer (BD Biosciences).  Data was analyzed using 

FlowJo 7.2 (Treestar Software).  For cell cycle analysis, the distribution of cell cycle for 

each population was determined using the Watson pragmatic fitting module incorporated 

in the software.  10,000 cells of each population were analyzed.  To determine cell 

viability, cells were stained with the LIVE/DEAD single color fixable green kit 

(Invitrogen) and analyzed according to manufacturer instructions. 

For fluorescence microscopy, HeLa were incubated with 10 nM fSLN-QD were 

fixed in 4% paraformaldehyde in PBS, quenched with 100 mM glycine in PBS, and 

coverslipped using Cytoseal 60 (Richard-Allan Scientific).  Samples were imaged using a 

Nikon TE2000U inverted fluorescence microscope.  For imaging of fSLN bearing Alexa 

Fluor 594-conjugated gold colloids, cells were incubated with 100 nM fSLN-gold or gold 

colloids alone as a control for 30 min. at 37°C.  Cells were rinsed thrice in HBSS, and 

imaged using the same procedure. 
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For qualitative light microscopic analysis of fSLN-QD-SPIO uptake in HeLa 

cells, cells on chambered slides were incubated with the fSLN equivalent of 0.25 mg 

SPIO nanoparticles for 60 min at 37°C.  0.25 mg dextran-coated SPIO was incubated for 

60 min. for comparison with fSLN-SPIO and 24 hrs. as a positive control.  Cells were 

then rinsed and fixed.  Samples were stained using Perls’ Prussian Blue stain according to 

manufacturer instructions (Sigma).  Cells incubated with fSLN-gold or fSLN-gold-SPIO 

(using dosage for fSLN-gold) were stained with the gold colloid detection reagent 

GoldEnhance for qualitative light microscopic analysis (following the Prussian Blue stain 

in multimodal samples).       

 

Magneto-optical fSLN imaging      

For magnetic resonance imaging, four samples containing a pellet of 1 X 105 cells 

(in Eppendorf tubes) were placed in a custom-built holder and aligned so that the pellet 

(400 X g, 5 min.) of each sample was in approximately the same plane. Samples were 

then imaged at bore temperature (20 ˚C) using a 7.0-T, 16-cm bore Varian Inova 

spectrometer (Varian Inc., Palo Alto, CA). A 63-mm inner diameter quadrature volume 

coil (Doty Scientific, Columbia, SC) was used for RF transmission and reception.  

 For each set, a single 2-mm slice just above the pellet was chosen from T2-

weighted scout images for subsequent imaging. T2 measurements were then made using a 

single-slice, multiple spin-echo sequence (13) with an echo spacing (∆TE) = 7 ms, 

repetition time (TR) = 2 s, number of echoes (NE) = 16, field of view = 40 × 40 mm2, 

acquisition matrix = 64 × 64, in-plane resolution = 625 ×  625 μm2, acquisition 

bandwidth = 51.8 kHz, and number of averages (NEX) = 2. Spoiler gradients were placed 
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about each 90x180y90x broadband composite refocusing pulse (14) in an alternating and 

descending fashion (13) in order to remove signal from unwanted coherence pathways. 

The spoiler gradients were calculated so as to cause a minimum phase dispersion of π/2 

across one slice thickness, which was found to be sufficiently large to remove stimulated 

echo artifacts within the decay curve. 

 T1 measurements were made in the same slice using the multiple flip angle 

approach (15), in which a total of four gradient echo images were acquired using 

excitation flip angles (θ) of 5, 10, 20, or 40˚. Additional imaging parameters included TE 

= 2.6 ms, repetition time (TR) = 50 ms, prescan dummy scans = 100 (to ensure steady-

state was reached prior to acquisition), field of view = 40 × 40 mm2, acquisition matrix = 

64 × 64, in-plane resolution = 625 ×  625 μm2, acquisition bandwidth = 50 kHz, and 

number of averages (NEX) = 8. 

The multiple-spin echo data, (TE)M⊥ , were used to generate T2 maps by fitting 

data from each voxel to  
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where M0 represents the equilibrium magnetization and TE the echo times used during 

acquisition. The multiple flip angle data, ( )M θ⊥ , were used to generate T1 maps by 

fitting data from each voxel to  
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where TR and θ represent the repetition time and excitation flip angles used during 

acquisition, respectively. All fitting was performed using the nonlinear Levenberg-

Marquardt optimization algorithm (16).   

Following magnetic resonance imaging, cell pellets and a gradient of fSLN-QD-

SPIO suspensions were imaged using an IVIS 200 fluorescence imaging system (Caliper 

Life Sciences) with filters appropriate for QD, using background subtraction to remove 

autofluorescence.  Empty fSLN incubated with cells were used as a control.    

 

Results and Discussion 

 

 fSLN-PSS were capable of encapsulating quantum dot nanocrystals (2.4 nm, 

Figure 1), gold colloids (1.4 nm), iron oxide nanoparticles (SPIO, 20 nm), and/or the 

anticancer drug paclitaxel (Table 1).  The encapsulation of hydrophobic compounds was 

relatively more efficient.  The mean size of fSLN-QD as determined by dynamic light 

scattering analysis was 111 ± 8.6 nm for >65% of the distribution of particles.  The 

remaining distribution of nanoparticles post fSLN synthesis was typically a lipid 

aggregate easily removed by 0.8/0.2 μm series syringe filtration.  Using the same process 

parameters, less than 10% differences in hydrodynamic radius between fSLN bearing 

varying cargoes, including multimodal nanoparticles (QD-SPIO), were observed by 

dynamic light scattering analysis.  These observations suggest that the hydrophobic lipid 
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packing which occurs upon phase inversion produces similarly-sized nanoparticles, 

regardless of the encapsulated species.   

 

Table 1. Encapsulation Efficiencies for fSLN formulations 
fSLN formulation Encapsulation Efficiency (%, n = 3) 

fSLN-QD 40.23 ± 7.18 
fSLN-Gold 46.34 ± 8.57 

fSLN-Paclitaxel 65.73 ± 7.41 
fSLN-SPIO 22.11 ± 3.37 

 

 

 

Figure 1. Fluorescence spectroscopy and transmission electron microscopy of fSLN.  (A) 
fSLN-QD-PSS (orange) can be surface functionalized with PLL (green, FITC-labeled) 
without alteration in QD fluorescence emission profiles.  (B-C) Low magnification 
(66000X) and high magnification (176000X)  TEM of fSLN-QD-PSS.  

 

 

Within a 30 min. incubation period, fSLN internalized within HeLa cell 

membranes as determined by flow cytometric analysis (Figure 2A).  Internalization of 

fSLN was only slightly reduced at 4°C cell pre-incubation rather than blocked, 

suggesting that fSLN can enter cytoplasmic space without complete dependence on 

active transport.  The slight reduction in internalization could be due to decreased plasma 

membrane fluidity, which would reduce lipid-lipid interactions between the nanoparticle 
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and cell membrane.  In contrast, the quantum dot endosomal-loading agent, Qtracker, 

which translocates nanocrystals across membranes via cationic oligoarginine peptides 

(17), did not internalize within cells appreciably at 4°C (Figure 2A).  Co-incubation of 

cells with Qtracker and fSLN bearing 580 nm-emitting quantum dots revealed distinct 

localization within the cytoplasm (Figure 2B).  These data collectively reveal that fSLN 

may be capable of membrane translocation to the cytosol without inclusion and 

sequestration in endosomal compartments, making subcellular targeting possible.  Our 

approach achieves nanoparticulate internalization within cells without cationicity, which 

may complex electrostatically with negatively-charged cell surface proteins within the 

cell and possibly alter their function or availability within the cell.  Viability of HeLa 

treated with fSLN-QD for 2 hrs. was 88 ± 3 %, comparable to untreated cells (92 ± 2 %) 

and empty fSLN-treated cells (90 ± 5 %).        

 fSLN successfully delivered gold colloids within HeLa cells as determined by 

light and fluorescence microscopy (Figure 2C).  Colloids exhibited a diffuse cytoplasmic 

and cell membrane localization when delivered by fSLN, but did not translocate cell 

membranes efficiently without lipids (Figure 2D).  fSLN may therefore be a useful 

carrier for gold colloids in photothermal ablation applications (18, 19), or as a computed 

tomography x-ray (20) or electron microscopic contrast agent (21).   

SPIO were also effectively delivered into HeLa cells within 1 hr post-incubation 

(Figure 2E).  However, when dextran-coated SPIO were incubated with HeLa cells for 

the same interval, little internalization was indicated by Prussian Blue staining (Figure 

2F).  Thus, fSLN enable rapid translocation of compounds incapable of penetrating cell 

membranes alone.                   
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Figure 2. Flow cytometric, fluorescence, and light microscopic characterization of 
multimodal fSLN internalization in HeLa cells.  (A) fSLN translocation into HeLa is 
largely energy-independent.  (B) 200X magnification of distinct localization of fSLN-
QD580 (red) and endosome-marking Qtracker cationic peptide-based conjugates, which 
aggregate in the endosomes (green).  (C-D) Alexa Fluor 594-labeled gold colloid 
internalization in DAPI-labeled HeLa.  (C) fSLN-gold, (D) gold colloids alone at 
equivalent concentration.  Inset (C) Goldenhance light microscopic enhancement of gold 
colloids in HeLa cells (charcoal regions).  Magnification 50X.  (E-F) Prussian blue 
staining of fSLN-SPIO (E) and SPIO given at equivalent dose and incubation time (60 
min.) in HeLa cells, counterstained with nuclear fast red.  Magnification 50X.    
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fSLN efficiently delivered SLN-paclitaxel into HeLa cells for induction of cell 

cycle arrest in G2 phase (Table 2), comparable to free drug.  Nanoparticles bearing dye-

labeled paclitaxel were visible in the cytosol within 30 min. of incubation (Figure 3).  24 

hrs. post-incubation, a marked increase in the percentage of cycling cells in the G2 phase 

was observed, consistent with literature reporting the timecourse of paclitaxel-induced 

mitotic arrest (22).  Therefore, fSLN can potentially be utilized as a drug delivery vehicle 

in conjunction with imaging agents to visualize uptake and/or biodistribution.  Future 

studies are warranted to investigate relative drug formulation efficacy when combined 

with nanoparticles.          

 

 

 
Figure 3. Fluorescence micrograph (magnification 100X) of HeLa stained with Oregon 
Green 488-loaded fSLN. 
 

 
Table 2. Efficacy of 10 nM fSLN-paclitaxel compared to 

drug alone in arresting G2/M phase in HeLa cells following 24 hr. incubation 
Sample %G1 %G2
Untreated 37.08 23.52
fSLN 35.07 22.12
fSLN-paclitaxel 21.88 49.57
Paclitaxel 17.99 45.61
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 The multimodality of fSLN was specifically-investigated by translocating 

quantum dots and iron oxide nanoparticles within the same fSLN vehicle across 4T1 

mammary carcinoma cells.  This tumor cell line was selected due to its highly-metastatic 

potential.  Imaging modalities to track tumor cell extravasation and metastasis with the 

aid of contrast agents are therefore a likely application for fSLN targeting.  Within the 

same cell pellet following rinsing and trypsinization steps to detach cell surface-bound 

proteins which might adsorb fSLN nonspecifically, both magnetic resonance contrast, in 

the form of shortening of T2 relaxation, as well as optical contrast via QD fluorescence, 

was achieved (Table 3-4, Figure 4).  Loading of fSLN-SPIO-QD was achieved within 

one hour, whereas to achieve the same T2-weighted contrast using conventional, dextran-

coated SPIO, a 24 hr. overnight loading period was required (Table 4).  Incubation of 

dextran-coated SPIO with 4T1 cells for 1 hr. without fSLN did not result in significant 

uptake, similar to HeLa cells.  Negative enhancement of T2-weighted images was 

proportional to fSLN-SPIO-QD loading concentration, but fSLN-QD did not affect T2 

relaxation as compared to unlabeled cells (Table 4).  QD fluorescence in fSLN-SPIO-QD 

was reduced compared to fSLN-QD but remained detectable by optical imaging (Figure 

4A), suggesting that a balance between magnetic resonance contrast and optical contrast 

can be achieved by judicious selection of starting concentrations of each reagent in fSLN 

synthesis.  fSLN should therefore be considered as a useful device for the safe, rapid 

loading of multimodal nanostructures into cells.     
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Table 3. Relaxation measurements acquired (mean ± SD) for determination of relaxivity.       
Amount corresponds to mg of SPIO in each cell pellet.  

fSLN-QD-SPIO (mg) 0.031  0.095  0.117  0.247  

T1 (ms) 1287.3 ± 78.2 1008.5 ± 98.9 816.1 ± 43.1 747.0 ± 43.7 
T2 (ms) 67.8 ± 2.9 43.1 ± 5.1 37.4 ± 8.8 26.0 ± 6.5 

 

 

Table 4. Relaxation measurements acquired for 4T1 cell pellets  
Sample Untreated SPIO 24 hr. fSLN-QD-SPIO fSLN-QD 

T1 (ms) 2108.9 ± 90.31223.9 ± 72.1 806.4 ± 121.9 2393.9 ± 83.1 
T2 (ms) 127.1 ± 1.9 78.4 ± 8.0 65.7 ± 16.0 117.9 ± 4.0 
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Figure 4. Multimodal imaging of 4T1 using fSLN-SPIO-QD.  (A) SPIO do not 
significantly quench QD emission and fluorescence is proportional to fSLN 
concentration.  (B) T2 shortening in 4T1 cell pellets is a function of fSLN-SPIO-QD 
concentration.  (C) T1 and T2 maps of fSLN-QD-SPIO in 4T1 cell pellets corresponding 
to Table 3.  (D) T1 and T2 maps of fSLN-QD-SPIO, SPIO (24 hr. incubation), untreated, 
and fSLN-QD-treated 4T1 cell pellets corresponding to Table 4. 
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Multimodality and high loading volume are unique features of fSLN.  The 

incorporation of diverse imaging agents and therapeutics within a single, targeted 

package should expand the scope of clinical approaches.  For example, lower-resolution 

but noninvasive imaging modalities such as MRI could be combined with optical imaging 

for guidance in tissue biopsies and histological immunofluorescence analysis.  

Furthermore, the encapsulation of many nanoparticles within one functional nanoscale 

carrier should enable signal to noise amplification strategies for detection of proteins for 

in vitro diagnostics using flow cytometry, or in vivo imaging using optical imaging, as 

example applications whereby detection of biomolecules in low abundance is critical to 

diagnosis.  Furthermore, the entrapment of high concentrations of cytotoxic drugs within 

nanoscale packets should result in enhanced therapeutic efficacy if the carrier can be 

appropriately site-directed.   

Current strategies for translocating compounds of varying physicochemical 

properties (e.g. hydrophilicity, molecular weight, charge) across membranes have largely 

been limited to the use of cationic transfection reagents such as polymers or peptides.  In 

this work we demonstrate for the first time that an anionically-charged, biocompatible 

nanoparticle composed of a solid lipid matrix is capable of rapidly delivering various 

imaging agents and therapeutics into cells.  Negatively-charged compounds are typically 

incapable of penetrating plasma membranes without dependence on receptor-mediated or 

other types of endocytosis, making our findings a novel result and expanding the range of 

currently-limited techniques for delivering compounds to subcellular destinations.  Given 

the wide range of encapsulants tested in this work, it is likely that other therapeutics and 

contrast agents are also compatible with the encapsulation process, including Gadolinium 
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chelates and radiotracers.  We hypothesize that the negative charge of fSLN afforded by 

PSS surface entrapment electrostatically-perturbs interactions of the nanoparticle with 

cell surface proteins, thereby favoring lipid-lipid interactions.  The negative charge of 

fSLN, besides its potential role in promoting energy-independent nanoparticle  

translocation, may also be favorable for preserving cell viability and function as a result 

of reducing the likelihood of cytoplasmic protein adsorption to the fSLN surface.  

However, charge alone may not be responsible for the membrane translocation 

capabilities of fSLN, as PAA-coated fSLN did not translocate across membranes but 

rather were localizaed among cell borders (11).  Our process additionally features size-

tunability and amenability to surface functionalization of targeting ligands, making fSLN 

a versatile candidate for a wide range of pharmaceutics and imaging agents.   
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CHAPTER VII 

 

0BCONCLUSIONS AND FUTURE WORK 

 

 This dissertation is composed of four manuscripts which define a framework for 

incorporating nanoscale surface engineering for enhanced functionality in bioimaging 

and drug delivery.  The main functional advances in nanotechnology made possible by 

this work relate to enhanced targeting (cell surface and intracellular) capabilities, and the 

development of multifunctional devices.  Chapters III and IV were concerned with the 

goal of improving nanoparticle imaging agent targeting for long-term in vivo imaging of 

disease.  In chapter III, insight into the imaging of diabetes and ocular inflammation 

(uveitis) was provided using a noninvasive retinal imaging technique in conjunction with 

quantum dot-antibody conjugates (QD-Mab) that were engineered for high specificity 

and circulation lifetime.  While only QD-Mab were the imaging agent in these studies, it 

is likely that most other imaging agents would benefit from the immune-shielding 

techniques used in this Aim, such as iron oxide nanoparticles, microbubbles, or gold 

nanoparticles for magnetic resonance, ultrasound, or x-ray contrast agents, respectively.  

Future work will be focused on molecular expression of various inflammatory molecules 

using this technique in diabetes and atherosclerosis.  In addition, studies are currently 

underway to elucidate the role of Fc-blockade in reducing liver and splenic macrophage 

uptake of QD-Mab in vitro and in vivo.  The implications of this study may be significant 

for the design of Mab-based therapeutics, many of which are currently in clinical usage.  

In chapter IV, QD were coated with a cell-penetrating peptide (CPP), to confer 
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cytoplasmic loading capabilities upon QD, which themselves are not capable of crossing 

cell membranes.  By retaining QD in subcellular space, labeled cells can interact with 

other cells or biomolecules without potential steric hindrance from QD-Mab conjugates, 

and QD cannot be shed from the membrane surface as part of normal membrane 

shuffling/recycling functions, for long-term imaging applications such as the imaging of 

cancer metastasis.  Future work is directed toward the elucidation of mechanism of CPP 

internalization into cells, and whether internalization can occur independently of 

endocytic mechanisms.  Should the CPP evade the endosomal pathway, subsequent work 

will be directed toward the targeting of QD-CPP toward subcellular destinations for 

bioimaging and targeted therapeutics.   

 Chapters V and VI explore features of functionalized solid lipid nanoparticles 

(fSLN) relevant for imaging and drug delivery as proposed in Aim 2.  Surface 

engineering approaches for the impartation of multiple functionalities into one device, 

and for the conferring of targeting capabilities upon the device.  In Chapter V, it was 

observed that fSLN could be tuned for the translocation of compounds such as proteins 

either across endothelial barriers or within endothelial cells by controlling surface 

information.  Specifically, a composite surface, PSS-PLL-Heparin, when coated on fSLN 

by simple layer-by-layer assembly, facilitated transendothelial transport across 

endothelial barriers, whereas PEG blocked transport completely.  Interestingly, the PSS 

coating facilitated intracellular transport, prompting the subsequent study of this fSLN 

formulation in Chapter VI.  This chapter expands upon the potential of multimodal fSLN 

by describing the construction of various fSLN-PSS formulations, including multimodal 

fSLN bearing both QD and SPIO, and begins the elucidation of the fSLN-PSS 
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intracellular transport mechanism.  Future work relevant to Aim 2 is directed toward the 

in vivo investigation of fSLN-PSS-PLL-Heparin, in the context of transendothelial barrier 

delivery of imaging agents and therapeutics.  Should this formulation be capable of 

blood-brain barrier translocation, this would be a significant result in the field of 

nanomedicine as this barrier complicates effective treatment.  Furthermore, the studies of 

Chapter VI will be continued to generate statistically-robust data relating to fSLN 

internalization and the generation of magnetic resonance and optical contrast by these 

probes.  In future work, alternative SPIO will be selected, as the commercially-available 

SPIO (Micromod GmbH) purchased for this study were degraded in the organic solvents 

used for encapsulating fSLN.  Several methods for the synthesis of magnetite for 

solubility in both organic and aqueous phases have been reported, specifically those 

involving oleic acid as a surfactant.  These SPIO will likely be evaluated in future 

applications due to enhanced solubility in both phases, which should translate toward 

higher encapsulation efficiencies.  In order to evaluate fSLN as an effective drug carrier, 

extensive studies must be performed to determine therapeutic efficacy, encapsulation 

efficiency via HPLC, and evaluation of release profiles.     

 
 
 

 

148



APPENDIX A 

 
ANIMAL SUBJECTS 

 
 This appendix details the rat and mouse models used for studies in Aim 1, as well 

as relevant experimental details for each animal.  All acquired video sequences have been 

archived on DVD and catalogued by date, corresponding to the dates of animal 

experimentation.   

 

I. STZ-induced diabetic rat model and wild-type controls 

All species are male, Long-Evans (Blue Spruce) rats from Harlan Sprague Dawley, Inc. 
    
STZ treatment = 65 mg/kg intraperitoneally 
QD-Mab injections included a QD565 isotype control Mab injection 
    

Date Age (Days) STZ Measurements 
9/22/2004 111+ 8/4/2004 Fluorescein/dextran angiography, acridine orange fluorography, PS/F quantitation 
3/2/2005 111+ N acridine orange fluorography 

3/21/2005 111+ 11/22/2004 QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
3/22/2005 111+ 11/22/2004 QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
3/23/2005 111+ 11/22/2004 QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
4/5/2005 111+  3/2/2005 QD-RP-1; nontargeted QD circulation kinetics 
4/5/2005 111+ N  QD-VCAM-1/ICAM-1/RP-1/PECAM-1 

4/14/2005 111+ 11/23/2004 QD-CD45; flow cytometric analysis; leukostasis; rolling velocities 
5/17/2005 111+ 4/6/2005 QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
6/14/2005 111+ N QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
7/6/2005 111+ 6/21/2005 QD-VCAM-1/ICAM-1/RP-1/PECAM-1 

7/13/2005 111+ 6/21/2005 QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
8/1/2005 111+ N QD-VCAM-1/ICAM-1/RP-1/PECAM-1 

1/31/2006 111+ N QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
2/28/2006 111+ N QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
3/7/2006 111+ 1/30/2006 QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
3/8/2006 111+ N QD-VCAM-1/ICAM-1/RP-1/PECAM-1 

3/29/2006 111+ 1/30/2006 QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
4/14/2006 111+ 1/30/2006 QD-VCAM-1/ICAM-1/PECAM-1 
4/18/2006 111+ N QD-VCAM-1/ICAM-1/RP-1/PECAM-1 
10/4/2006 111+ N FC BLOCKADE EXPERIMENT  
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II. Endotoxin-induced uveitis (EIU) rat model of ocular inflammation 

LPS treatment = 200 ug LPS intraperitoneally 
All species are male, Long-Evans (Blue Spruce) rats from Harlan Sprague Dawley, Inc. 

Date Age (Days) LPS Measurements 
10/24/2006 111+ 10/23/2006 QD-CD45/RP-1 
10/24/2006 111+ 10/23/2006 QD-CD45 
10/24/2006 111+ N QD-CD45 

3/6/2007 91-100 3/6/2007 CD3, CD45, monocytes, dendritic cells 
3/8/2007 91-100 3/6/2007 CD45, monocytes, dendritic cells 
3/19/2007 91-100 N CD45 
4/30/2007 111+ N CD45 
5/1/2007 50-57 5/1/2007 CD45, RP-1, natural killer cells 
5/3/2007 50-57 5/1/2007 RP-1, CD45, monocytes, natural killer cells 

 

III. ApoE -/- mouse model of atherosclerosis 

 

Path ID Animal Type Age (mos.) Injections/Measurements
7885 Apo E -/- 7 QD/CD11b- 5 X 10^6 cells
7886 Apo E -/- 7 QD/CD11b- 5 X 10^6 cells
7887 Apo E -/- 7 QD/CD11b+ 300,000 cells
7931 Apo E -/- 12 QD/TCR+ and QD/CD11b+ 1 X 10^6 cells
7932 Apo E -/- 12 QD/CD11b+ 1 X 10^6 cells
7983 Apo E -/- 12 QD/CD11b+ 1 X 10^6 cells
7984 Apo E -/- 12 QD/CD11b+ 1 X 10^6 cells
8035 C57/BL6 12 QD/TCR+ and QD/CD11b+ 1 X 10^6 cells IVIS imaging
8036 Apo E -/- 12 QD/TCR+ and QD/CD11b+ 1 X 10^6 cells IVIS imaging
8037 C57/BL6 12 QD/TCR+ and QD/CD11b+ 1 X 10^6 cells IVIS imaging
8038 Apo E -/- 12 QD/TCR+ and QD/CD11b+ 1 X 10^6 cells IVIS imaging

 

 

 

 

 

 

 

 

 

150



APPENDIX B 

 

IN VIVO IMAGING OF LEUKOCYTES IN ENDOTOXIN-INDUCED UVEITIS 

 

 Using the methods described in detail in Chapter III, quantum dots emitting at 

spectrally-distinct wavelengths were conjugated to antibodies against neutrophils (RP-1), 

dendritic cells, natural killer cells, and monocytes (mouse anti-rat, BD Biosciences).    

Endotoxin-induced uveitis was initiated by intraperitoneal injection of 200 µg of 

lipopolysaccharide in 50 and 90 day old Long-Evans male rats and imaged 24-48 hrs. 

post-injection.  In addition, peripheral blood was drawn from a 90 day old wild-type rat 

for flow cytometric analysis.  During in vivo imaging, RP-1 labeled neutrophils were 

identified in the retinal circulation as hyperfluorescent cells rolling along vessels, 

characteristic of EIU.  Using spatial calibration based on the size of the rat optic disk, 

rolling velocities were determined for 10 neutrophils within 2 optic disc diameters and 

compared to literature values.  The mean rolling velocity of QD-labeled neutrophils was 

57.7 ± 7.3 µm/sec.  This is somewhat close to the values of neutrophil rolling in EIU 

post-injection (24 hrs.) recorded by Miyamoto et al. (1), which was 46.6 µm/sec.  In 

future work, a greater sample size and wider range of animals will be employed to 

generate statistically-significant data.  The in vivo findings suggest that QD-RP-1 can be 

used to quantify leukocyte rolling in vessels without significantly perturbing function.   

 As previously reported, RP-1 is upregulated on rat neutrophils in proportion to 

activation state.  However, its role in inflammation has not been defined.  QD-RP-1 was 

incubated at 100 nM doses to 1 X 106 Percoll density gradient-isolated neutrophils with 
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or without 100 ng/mL LPS pre-treatment.  As shown by FACS below (Figure 1), QD-

RP-1 labeling was observed to be proportional to activation time.  QD can therefore be 

harnessed as a biosensor to probe not just the presence or absence of a single cell type, 

but also cell function.  In vivo imaging of QD-RP-1 labeled neutrophils at increasing 

intervals post-LPS injection were consistent with in vitro observations (Figure 1).   

 

                    

            

Figure 1. Top: QD655-RP-1 labeled neutrophils at 1 (red), 2 (green), and 3 (blue) 
hrs. post-LPS treatment.  Brown – unlabeled cells.  Fluorescence intensity was 
found to increase with increasing post-treatment times.  Bottom:  In vivo imaging 
of neutrophil 1 hr. (left) and 6 hrs. (right) post-LPS treatment.  Greater intensity 
of labeled cells was qualitatively-apparent, particularly in slow-moving or 
stagnant neutrophils. 
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Using the in vivo imaging strategy outlined in Chapter III, other cell types were 

also imaged in EIU, including monocytes, dendritic cells, and natural killer cells.  In 2 

90-day old mice, it was observed that the 3-6 hr. post-injection timepoint featured a 

transient monocytic infiltrate, whereas 48 hrs. post-injection, dendritic cells appeared to 

be primarily recruited (Figure 2).  These observations, while preliminary, underscore the 

need to characterize individual components of the immune response using multispectral 

imaging.  Such observations may have a profound impact on the development of timely 

therapeutic interventions in inflammatory disease. 
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Figure 2. Left: Monocyte infiltrate at 3-6 hrs. post-LPS treatment in an EIU rat model.  
Right: Dendritic cell infiltrate 48 hrs. post-injection. 
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Abstract 

 

Solid Lipid Nanoparticles (SLN) bear significant potential as drug delivery 

systems and diagnostic probes.  They constitute a promising alternative to 

polymeric and liposomal nanoparticulate formulations due to their efficient loading 

and stabilization of poorly soluble or instable compounds, high biocompatibility, and 

potential for scaling up production processes for pharmaceutical applications.  To 

enhance the scope of their biomedical application, methods which enable 

simultaneous drug/probe entrapment and presentation of surface functionalities are 

desired.  We have developed a process for the single-step formulation of 

functionalized polymeric nanoparticles with tunable size and narrow polydispersity 

(1).  By incorporation of a polyelectrolyte or polymer within the aqueous phase, 

our process enables the surface engineering of diverse surface moieties upon a 

non-functionalized polymer backbone within a binary solvent system, via a phase 

inversion process.  By substitution of a biocompatible coco-glyceride for the 

non-functionalized polymer in the organic phase, we have applied this strategy 

toward the formulation of surface functionalized SLN capable of entrapping 

physicochemically-diverse cargoes.  We investigated the effect of process 

parameters on nanoparticle size, surface charge, and compound entrapment 

efficiency.  Species to be encapsulated included fluorescent dyes, semiconducting 

nanocrystals, and paramagnetic nanoparticles.  Surface moieties incorporated in the 

aqueous phase included PEG, amine groups and carboxyl groups for the 

155



bioconjugation of targeting ligands.  Nanoparticles were characterized by laser 

light scattering, x-ray photoelectron spectroscopy (XPS), fluorescence 

spectrophotometry, electron microscopy, and fluorescence microscopy.  Our studies 

demonstrate that the solvent composition can be varied to control nanoparticle 

hydrodynamic radius while maintaining a narrow polydispersity.  Both hydrophilic 

and hydrophobic species can be efficiently entrapped within the lipid matrix to 

create targeted and stable high signal intensity diagnostic probes or concentrated 

drug carriers for biomedical applications.  We anticipate the application of SLN 

toward magnetic resonance and fluorescence imaging, targeted chemotherapy, as 

well as the surface modification of biomaterials for tissue engineering strategies.              

 

Introduction 

  

Nanoparticulate delivery systems generally aim to safely and efficiently deliver 

therapeutic or diagnostic compounds to specific tissue sites, without degradation of 

the cargo that would limit its efficacy.  Nanoparticles with solid lipid matrices, or 

solid lipid nanoparticles, (SLN) exhibit several key features which make them 

promising agents for the delivery of diagnostic probes or therapies in vivo.  Among 

these are their capacity to entrap poorly water-soluble compounds, physical stability 

(remaining solid at physiologic temperatures and/or during storage), and 

biocompatibility (2-4).  They are not limited by some of the challenges associated 

with current nanoparticulate drug delivery systems in research and clinical 
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administration stages, including poly-lactide-co-glycolide nanoparticles (PLGA NP) 

and liposomes, which have been associated with acidic degradation of protein 

cargoes (5) and potentially low cargo loading and stability (6), respectively.   

In order to expand the capabilities of SLN in medical imaging and drug delivery 

and to facilitate their clinical implementation, further work is warranted in the 

continued adaptation of laboratory-scale production processes for the 

pharmaceutical-scale, and the modifications of process parameters to control 

efficiency-critical properties of SLN, such as size and loading capacity.  

Furthermore, it is important that SLN be capable of bearing surface functionalities 

and/or functionally-diverse cargoes such as contrast agents and drugs, regardless of 

their physicochemical properties (e.g. hydrophilicity, size).  Such a versatile carrier 

technology at the nanometer scale of biology would provide a template for the 

manufacture of a broad spectrum of drugs and imaging agents which work at the 

scale of biology.   

 We have developed a single-step process for the rapid synthesis of 

functionalized polymeric nanoparticles based on the polymers PLGA and poly-lactic 

acid (PLA) (1).  The solvation core of this non-functionalized polymer backbone is 

specifically engineered such that addition of a polyelectrolyte or polymer-containing 

aqueous phase results in the instantaneous formation of a nanoparticle, the surface of 

which bears the aqueous moiety.  We have adapted this process toward the surface 

engineering of SLN capable of entrapping various types of cargoes while at the same 

time bearing different surface functionalities.  Our process obviates the need for 
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surfactants, emulsifiers, and melting/cooling steps which are often involved in other 

nanoparticle synthesis methods.  Tailoring of the solvent composition and presence 

of aqueous phase moieties in the process was found to have profound effects on the 

surface engineering and encapsulation features of the nanoparticulate system.  We 

discuss the synthesis and characterization of polymeric and solid lipid NP and 

implications for biomedical applications such as drug delivery, imaging, and tissue 

engineering.        

 

Materials and Methods 

 

Materials 

Poly (dl-lactide-co-glycolide) (PLGA, RG 503, MW=30,000) and poly 

(L-lactide) (PLA) MW = 70,000, inherent viscosity 1.20 dL/g in CHCl3) were 

purchased from Birmingham Polymers.  PLGA and PLA were prepared for use by 

precipitation from methylene chloride (MeCl) in methanol. Tetrahydrofuran (THF), 

Toluene, MeCl, Acetone, and 1-Methyl-2-pyrrolidinone (NMP) were purchased from 

Sigma or Fisher Scientific in HPLC grades.  HCl, NaOH, Fluorescein 

isothiocyanate-bovine serum albumin conjugate (FITC-BSA), Poly (styrene-4 

sodium sulfonate) (PSS, MW = 70,000), poly (acrylic acid) (PAA, MW = 2000), 

poly (L-lysine hydrochloride) (PLL, MW=22,100), Fluorescein isothiocyanate PLL 

(FITC-PLL, avg. MW = 30,000) and poly (ethylene glycol) (PEG, MW=10,000) 

were purchased from Sigma.  4',6-diamidino-2-phenylindole (DAPI) in the form of 
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VECTASHIELD, an aqueous mixture of DAPI in a glycerol-containing suspension, 

was purchased from Vector Labs.  Trypan Blue was purchased from Gibco.  

Softisan 100 was a gift from Sasol GmbH.  Water soluble, 50nm silica magnetite 

nanoparticles were purchased from Micromod GmbH as a 10 mg/mL suspension in 

PBS. Cadmium Selenide-Zinc Sulfide (CdSe) semiconducting nanocrystals (EviDots) 

in toluene were purchased from Evident Technologies.  10K MWCO regenerated 

cellulose (RC) and 100K MWCO cellulose ester (CE) 6 mL capacity floating 

dialysis columns (Float-a-Lyzer) were purchased from Spectrum Laboratories and 

dialyzed overnight against 4L double distilled water (Millipore) to remove sodium 

azide preservative prior to use.     

 

Methods 

Polymeric Nanoparticle Synthesis 

To prepare polymeric NP, an aqueous phase was added to an equal volume of 

PLGA or PLA polymer dissolved in a binary solvent system. THF:Acetone, 

MeCl:Acetone and MeCl:THF were selected as the binary solvent systems for 

polymeric NP synthesis. The volumetric ratio of the solvent pair was varied to 

investigate the effect of solvent polarity on nanoparticle formation. When surface 

functionalization was desired, the aqueous phase was supplemented with either a 

polyelectrolyte or a water-soluble polymer such as PEG, at a 0.5% concentration.  

Alternatively, the fluorescent dye DAPI was added to the aqueous phase at a 100 

ug/mL concentration prior to phase inversion, after which the polymeric NP were 
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dialyzed on 10K MWCO Float-a-Lyzers against double distilled water to remove 

non-entrapped dye. 

Solid Lipid Nanoparticle Synthesis 

 To prepare SLN, Softisan 100 was dissolved in an anhydrous 80:20 mixture of 

NMP:Acetone as the binary solvent system at a concentration of 1%.  To synthesize 

SLN bearing quantum dots (QD), 1 uL of a 1 mg/mL suspension of CdSe QD in 

toluene was added to the NMP/Acetone/Softisan mixture in a nitrogen-purged glove 

bag.  An aqueous phase containing 1% PSS in ultrapure (100nm filtered) 

double-distilled water was prepared.  To synthesize SLN bearing 

FITC-BSA/magnetite, the PSS-based aqueous phase was supplemented with 0.1% 

FITC-BSA and 100ug of paramagnetic, silica-capped iron oxide nanoparticles.  The 

organic phase was rapidly infused into a scintillation vial containing the aqueous 

phase using a syringe accompanied by gentle shaking.  Organic solvents were 

removed by dialysis against 4L ddH2O in 10K MWCO RC Float-a-Lyzers in a 

low-speed stirring beaker for 2 hours.  Next, excess polymer and FITC-BSA was 

removed by overnight dialysis against 4L ddH2O in 100K MWCO CE 

Float-a-Lyzers with a complete change of dialysis buffer every 4 hours.  For further 

surface functionalization of PLL, FITC-PLL was incubated at 4°C overnight with 

SLN-QD-PSS at a concentration of 1%, and dialysis against 4L ddH2O using 

100,000 MWCO CE Float-a-Lyzer was performed the following day to remove 

excess FITC-PLL.    

Measurement of Polymeric and Solid Lipid Nanoparticle Hydrodynamic Radius and 
Zeta Potential  

160



 Polymeric NP were diluted by a factor of 15 in ddH2O and adjusted to the 

desired pH for zetasizing analysis using either HCl and NaOH.  Measurements of 

zeta potential and hydrodynamic radius were conducted in automatic mode on a 

Malvern Instruments Zetasizer 3000HS.   

SLN were diluted by a factor of 50 in ddH2O and adjusted to an acidic pH using 

HCl.  Measurement of hydrodynamic radius and zeta potential was conducted using 

a Beckman-Coulter 440SX Zetasizer.   

Fluorescence and Electron Microscopy of Polymeric and Solid Lipid Nanoparticles 

Fluorescence microscopy of DAPI (VECTASHIELD)-loaded PLGA NP 

mounted in PBS, pH=7.4, was conducted on a Zeiss Axiophot equipped with 

bandpass excitation and emission filters specific for the dye.  Digital photographs 

were acquired at optically- and digitally-enhanced 400X magnification and analyzed 

using Zeiss-supplied software.  SLN-QD, SLN-QD with FITC-PLL surface 

functionalization, and SLN bearing FITC-BSA-iron oxide NP were mounted in 

borate buffer, pH = 8, and analyzed using a Nikon TE-2000U fluorescence 

microscope equipped with bandpass excitation and emission settings of 380/45ex, 

585/40em for SLN-QD, and a standard FITC configuration to visualize 

dye-conjugated PLL on the SLN surface or entrapped FITC-BSA, at digitally and 

optically-enhanced magnification of up to 500X.  For microscopy of 

FITC-BSA/iron oxide bearing SLN, the solution was supplemented with 0.5% 

Trypan Blue to quench non-encapsulated FITC-BSA fluorescence.  A 1.5T static 

magnet was placed on the right edge of the microscope slide to induce coordinated 
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movement of FITC-BSA/iron oxide SLN in response to the applied field.  Images 

were analyzed using Image Pro Plus 5.1 software (Media Cybernetics). 

 SLN-QD were prepared for electron microscopy by mounting on Formvar grids 

with 50:50 EtOH:phosphotungstic acid solution to visualize solid lipid in negative 

relief using a Philips CM-12 electron microscope.  Electron density of encapsulated 

QD enabled facile visualization.     

X-ray Photoelectron Spectroscopy (XPS) of Polymeric NP 

Polymeric NP were prepared for XPS surface analysis by dialysis of a 5 mL NP 

suspension against 500 mL 50% EtOH, flash freezing of NP in liquid nitrogen, 

followed by lyophilization for 48 hrs.  The NP powder surface composition was 

analyzed using a Kratos Axis-Ultra X-ray photoelectron spectrometer equipped with a 

monochromatic Al Kα (1486eV) x-ray source, configured at at 315W (25mA).  Data 

was collected using a pass-energy of 40eV with 0.05eV steps.  Elemental composition 

was determined using CasaXPS software. 

Fluorescence Spectrophotometry of Solid Lipid NP 

 SLN-QD-PSS and SLN-QD-PSS-FITC/PLL were diluted 10-fold in borate 

buffer, pH=8.  2 uL of each suspension was then analyzed on a Nanodrop ND-3300 

spectrofluorimeter configured for UV LED excitation and automatic sensitivity 

adjustment, with fluorescence emission intensity analyzed in the visible spectrum. 
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Results and Discussion 

 

Control of Polymeric Nanoparticle Size and Polydispersity 

 We hypothesized that judicious selection of an appropriate organic solvent 

composition for dissolution of the non-functionalized polymer (i.e., PLGA or PLA), 

by alteration of solvent polarity, would have significant effect on NP size by 

modulating the rate of polymer chain collapse into a nanoparticle upon the rapid 

addition of water.  By varying both the choice of solvent pairs and the relative 

solvent volumetric ratios, the process yielded polymeric NP diameters ranging from 

70-400nm, with narrow PDI.  Representative results are shown in Table 1.  It is 

likely that the primary determinant of NP size in our system is solvent composition.  

Specifically, a highly-polar solvent system with dissolved PLGA or PLA, upon 

addition of water, collapses rapidly into small NP, whereas a less polar solvent 

system would support slower polymer chain collapse upon interaction with water, to 

yield larger NP.       
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Table 1. Typical NP diameter and polydispersity index (PDI) 
measured for different combinations of polymer, polyelectrolyte 
(aqueous), and binary solvent systems. 
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Surface Engineering of Polymeric Nanoparticles  

The presence of a polyelectrolyte in the aqueous phase prior to organic-aqueous 

phase mixture provided a mechanism for spontaneous surface functionalization of 

the solidifying non-functionalized polymer core.  We hypothesized that by utilizing 

polyelectrolytes for surface functionalization with high affinities for water, 

preferential accumulation of the surface moieties would occur at the NP-water 

interface following phase inversion.  Zeta potential analysis of polymeric NP 

supports our hypothesis.  Figure 1 shows the surface charge variation as a function 

of pH for non-functionalized (PLGA) and functionalized (PLGA-PSS, PLGA-PLL) 

nanoparticles.  As shown, the isoelectric point of the nanoparticulate formulation is 

associated closely with the pKa of the ionizable group (PLGA = -COOH, PSS = 

SO3H, PLL = NH2).     

XPS analysis also confirms our hypothesis, as polymeric NP surface 

compositions were abundant with the desired functionality (Table 2).  It is 

important to note that PSS, despite its charge profile to PLGA, is effectively 

entrapped on the PLGA NP surface using our approach (66%).  Additionally, the 

ability to functionalize NP surfaces with PLL enables the potential bioconjugation of 

ligands via amide linkages to the NP surface for in vivo targeting applications.  

Thus we are able to rapidly produce PLGA NP of defined size ranges and narrow 

PDI, with the added benefit of customizing NP surface information.    
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Figure 1. Zeta potential as a function of pH for non-functionalized and 
functionalized PLGA NP.  Isoelectric points of NP correlate with the pKa 
of the PLGA or polyelectrolyte functional groups. 

 
 

 
 

 

 

    Table 2. Surface composition of PLGA NP as analyzed by XPS (C1S). 
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Encapsulation of Small Molecules by Polymeric NP                

Our single-step process for the surface engineering of polymeric NP does not 

appear to preclude the encapsulation of compounds for drug delivery or imaging 

purposes.  Fluorescence microscopy of DAPI-loaded PLGA-PSS NP reveals that 

the water-soluble dye is efficiently and homogenously entrapped within the NP core 

(Figure 2).  In other work, we have entrapped other fluorescent dyes, proteins, and 

synthetic drugs within polymeric NP.  Thus, our process appears to be a versatile 

approach for packaging structurally and functionally-diverse cargoes within 

well-defined (tight size range and PDI) and surface functionalized NP.    
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Figure 2. Fluorescence micrograph (400X) of DAPI-loaded PLGA NP. 
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Control of Solid Lipid Nanoparticle Size and Loading Efficiency 
  

An adaptation of our procedure for synthesizing functionalized polymeric NP 

for the entrapment and targeted delivery of small therapeutic and diagnostic agents 

enabled us to develop a similar process for the rapid single-step production of 

functionalized SLN.  After considerable investigation we found the binary solvent 

system NMP:Acetone to provide effective size control of SLN while also providing 

for excellent solubility of the coco-glyceride.  High ratios of NMP:Acetone are 

associated with rapid lipid packing upon exposure to water, due to the high 

miscibility of NMP with water.  Lower ratios result in slower lipid packing, 

resulting in larger SLN.  Quantum dots, which without commercial modifications 

are highly hydrophobic, were selected as a candidate for encapsulation, as it has a 

high molecular weight and has emerged as a fluorescent probe with superior optical 

properties for bioimaging applications (7).  By varying the volumetric ratio of 

NMP:Acetone from 40:60 to 80:20, SLN bearing quantum dots ranging from 

75nm-790nm were synthesized.  Furthermore, by varying the SLN diameter 

through solvent composition, we were able to concurrently modulate SLN loading 

efficiency of QD (Figure 3).  Larger SLN diameters, or larger lipid matrix cores, 

allow for more incorporation of QD as they partition into the lipid phase upon 

exposure to water.  The high loading capacity of 100nm SLN, for example 

(100-150 QD avg. per SLN (n=10) as determined by TEM), allows for the creation 

of nanoparticulate probes with significantly enhanced signal intensity compared to 

single nanoparticles (Figure 3).  This feature could be useful in many biomedical 
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applications, including the magnetic resonance (e.g., CLIO-NP) or 

fluorescence-based (e.g., QD) signal amplification of low levels of antigens on cell 

surfaces, or the delivery of large payloads of drug into cells.   
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Figure 3. Transmission electron microscopy and fluorescence microscopy of 
SLN-QD.  First row: A.) Transmission electron micrograph (175000X at 80keV, 
scale bar 100nm) showing 2.4nm 580nm-emitting CdSe/ZnS quantum dots (red 
arrow) within a lipid matrix (white background of QD) against phosphotungstic acid 
negative lipid stain (green arrow).  B.) TEM (66000X at 80 keV) of same SLN-QD 
sample, showing dispersion and narrow size range of SLN-QD (outlined in blue). 
Second row: Fluorescence micrographs (40X) of large-diameter (C) and 
small-diameter (D) SLN-QD. 
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Surface Engineering of SLN 

 By incorporation of polyelectrolytes into the aqueous phase prior to the 

lipid-packing phase inversion step, we efficiently loaded the desired surface 

functionality upon the SLN surface in a manner analogous to that seen for polymeric 

NP.  Functionalization of negative charges upon SLN (SLN-PSS) was confirmed by 

zeta potential analysis (Figure 4).  As shown in Figure 5, fluorescence microscopy 

and spectrophotometry were indicative of efficient surface incorporation of 

dye-labeled PLL.  PLL was readily functionalized upon SLN surfaces by 

layer-by-layer assembly.  By first synthesizing SLN initially coated with the 

negatively-charged PSS, which effectively incorporates within the lipid while 

remaining preferentially at the NP-water interface (due to the sulfonic acid group), 

the positively-charged PLL can be layered electrostatically.  Other surface 

functionalities presented on SLN surfaces to date include polyethylene glycol (PEG) 

for evasion of the mononuclear phagocyte system in vivo (8), polyacrylic acid (PAA), 

which has been utilized to incorporate mucoadhesive properties (9), and streptavidin 

for biotin-based immunofluorescence applications (10).  Thus, our process enables 

the encapsulation of functionally-diverse nanoparticles (i.e. dye, contrast agent, 

therapeutic) within solid lipid matrices capable of bearing different types of surface 

information.         
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Figure 4. Zeta potential analysis of SLN-QD-PSS as a function of pH.  The 
isoelectric point of the sample correlates with the pKa of the sulfonic acid 
group of PSS, thus indicating effective surface functionalization. 
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Figure 5. Top Row: Fluorescence microscopy of QD entrapped within 
PSS-FITC/PLL-functionalized SLN, in the QD 580 emission (left) and FITC 
emission channels (right).  The core of the SLN exhibits high QD fluorescence 
due to effective entrapment of hydrophobic QD within the lipid matrix, whereas 
FITC-PLL is adsorbed upon previously incorporated PSS at the NP-water 
interface, thus providing an amine template for further bioconjugation.  Bottom 
Row: Fluorescence spectrophotometry of QD-PSS (orange) and 
QD-PSS-FITC/PLL (green) SLN.  Surface functionalization of PLL (initial 
FITC peak as indicated) does not significantly affect native QD fluorescence 
(580nm emission peak, as indicated).  Mean diameter 550 nm. 
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Multimodal SLN for Biomedical Applications 

 In order to demonstrate the potential of SLN as multimodal carriers, we 

co-encapsulated 50nm silica-capped paramagnetic iron oxide NP and FITC-BSA 

within PSS-functionalized lipid matrices by incorporation of both species within the 

aqueous phase prior to phase inversion.  FITC-BSA/iron oxide NP SLN coated with 

PSS were incubated in a solution containing 0.5% trypan blue and analyzed by 

fluorescence microscopy (Figure 6).  Trypan Blue is an effective quenching agent 

for reducing extracellular FITC as part of phagocytosis assays (11).  We therefore 

utilized trypan blue to quench unencapsulated FITC-BSA to confirm that only 

FITC-BSA within SLN was visualized.  Upon application of a magnetic field using 

a static magnet (1.5 T), FITC-BSA nanoparticles shown in Figure 6 were observed 

to move in response to magnet polar orientation. Fluorescent nanoparticles were 

highly sensitive to rapid changes in the external field while control nanoparticles 

consisting of FITC-BSA mixed with iron oxide NP in distilled water without lipid 

did not move in response to changes in magnetic fields. These data suggest that 

FITC-BSA was co-encapsulated with iron oxide NP, and that the native 

magnetization properties of the NP are not affected by encapsulation. We have in 

effect created a technique applicable to the development of magnetooptical probes 

which employ fluorophores (e.g. quantum dots or fluorescently-labeled proteins) and 

iron oxide nanoparticles, which would have applications for in vivo imaging using 

MRI and fluorescence imaging techniques such as multiphoton excitation 

microscopy.  Further work is directed toward the co-encapsulation of QD and iron 

oxide NP to develop high-intensity magnetooptical probes for bioimaging 
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Figure 6. Fluorescence microscopy of SLN bearing FITC-BSA and iron oxide 
NP in a solution of 0.5% Trypan Blue.  Encapsulated FITC-BSA not 
accessible to Trypan Blue in mounting medium is evident, and all SLN were 
observed to move toward the pole of an externally applied magnet, indicating 
successful co-encapsulation of FITC-BSA with iron oxide NP. 

applications, as well as drug-QD conjugates for pharmacokinetic/pharmacodynamic 

studies of chemotherapeutics.      
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applications, as well as drug-QD conjugates for pharmacokinetic/pharmacodynamic 

studies of chemotherapeutics.      

 

Conclusion 

 

We have demonstrated a technique for the rapid synthesis of functionalized 

polymeric NP, and an analogous procedure for producing functionalized solid lipid 

nanoparticles.  Our process provides for the simultaneous, efficient entrapment of 

compounds of varying physicochemical properties, so that combinative imaging and 

therapeutic strategies can be harnessed.  Mechanical dispersion, the addition of 

emulsifying agents, or temperature-dependent steps are not required.  The lipid 

utilized in SLN is derived from cosmetic formulations, and all solvents used in 

synthesis are removed, thus ensuring biocompatibility.  Furthermore, the process 

can be easily scaled-up for the mass production of pharmaceuticals and SLN are 

highly-stable in storage.  Future work is directed toward with the applications of 

multimodal SLN for the simultaneous utilization of multiple imaging modalities as 

well as combined drug delivery/gene therapy approaches.  

 

Acknowledgements 

 

 This work was supported in part by the Vanderbilt University Discovery Grant 

Program (VPS), and a Vanderbilt Vision Research Center Training Grant (AJ).   

177



                       

                                 References 
 
 
(1) Sussman, E. M., Clarke, M. B., Jr., and Shastri, V. P. (2007) Single-step 

process to produce surface-functionalized polymeric nanoparticles. Langmuir 
23, 12275-9. 

(2) Muller, R. H., and Keck, C. M. (2004) Challenges and solutions for the 
delivery of biotech drugs--a review of drug nanocrystal technology and lipid 
nanoparticles. J Biotechnol 113, 151-70. 

(3) Uner, M., Wissing, S. A., Yener, G., and Muller, R. H. (2004) Influence of 
surfactants on the physical stability of solid lipid nanoparticle (SLN) 
formulations. Pharmazie 59, 331-2. 

(4) Wissing, S. A., Kayser, O., and Muller, R. H. (2004) Solid lipid nanoparticles 
for parenteral drug delivery. Adv Drug Deliv Rev 56, 1257-72. 

(5) Estey, T., Kang, J., Schwendeman, S. P., and Carpenter, J. F. (2006) BSA 
degradation under acidic conditions: a model for protein instability during 
release from PLGA delivery systems. J Pharm Sci 95, 1626-39. 

(6) Mohammed, A. R., Weston, N., Coombes, A. G., Fitzgerald, M., and Perrie, Y. 
(2004) Liposome formulation of poorly water soluble drugs: optimisation of 
drug loading and ESEM analysis of stability. Int J Pharm 285, 23-34. 

(7) Stroh, M., Zimmer, J. P., Duda, D. G., Levchenko, T. S., Cohen, K. S., Brown, 
E. B., Scadden, D. T., Torchilin, V. P., Bawendi, M. G., Fukumura, D., and 
Jain, R. K. (2005) Quantum dots spectrally distinguish multiple species 
within the tumor milieu in vivo. Nat Med 11, 678-82. 

(8) Woodle, M. C., and Lasic, D. D. (1992) Sterically stabilized liposomes. 
Biochim Biophys Acta 1113, 171-99. 

(9) Guggi, D., Marschutz, M. K., and Bernkop-Schnurch, A. (2004) Matrix 
tablets based on thiolated poly(acrylic acid): pH-dependent variation in 
disintegration and mucoadhesion. Int J Pharm 274, 97-105. 

178



(10) Diamandis, E. P., and Christopoulos, T. K. (1991) The biotin-(strept)avidin 
system: principles and applications in biotechnology. Clin Chem 37, 625-36. 

(11) Finnemann, S. C., Bonilha, V. L., Marmorstein, A. D., and Rodriguez-Boulan, 
E. (1997) Phagocytosis of rod outer segments by retinal pigment epithelial 
cells requires alpha(v)beta5 integrin for binding but not for internalization. 
Proc Natl Acad Sci U S A 94, 12932-7. 

 

179



 

 

APPENDIX D 

 

LIGHT-GUIDED SURFACE ENGINEERING FOR BIOMEDICAL APPLICATIONS 

 
 
 
 
 
 
 
 
 
 
 

Ashwath Jayagopal 
Gregory P. Stone 

Frederick R. Haselton 
 
 

 

Department of Biomedical Engineering 
Vanderbilt University 
Nashville, Tennessee 

 
 
 

Bioconjugate Chemistry 19, 792-6. 2008 
 

180



 

 

Abstract 

 

Free radical species generated through fluorescence photobleaching have been 

reported to effectively couple a water-soluble species to surfaces containing electron-rich 

sites (1).  In this report, we expand upon this strategy to control the patterned attachment 

of antibodies and peptides to surfaces for biosensing and tissue engineering applications.  

In the first application, we compare hydrophobic attachment and photobleaching methods 

to immobilize FITC-labeled anti-M13K07 bacteriophage antibody to the SiO2 layer of a 

differential capacitive biosensor and to the polyester filament of a feedback-controlled 

filament array.  On both surfaces, antibody attachment and function were superior to 

previously employed hydrophobic attachment.  Furthermore, a laser scanning confocal 

microscope could be used for automated, software-guided photoattachment chemistry.  In 

a second application, the cell adhesion peptide RGDS was site-specifically photocoupled 

to glass coated with fluorescein-conjugated polyethylene glycol. RGDS attachment and 

bioactivity were characterized by a fibroblast adhesion assay.  Cell adhesion was limited 

to sites of RGDS photocoupling.  These examples illustrate that fluorophore-based 

photopatterning can be achieved by both solution-phase fluorophores or surface adhered 

fluorophores.  The coupling preserves the bioactivity of the patterned species, is 

amenable to a variety of surfaces, and is readily accessible to laboratories with 

fluorescence imaging equipment.  The flexibility offered by visible light patterning will 

likely have many useful applications in bioscreening and tissue engineering where the 

controlled placement of biomolecules and cells is critical, and should be considered as an 

alternative to chemical coupling methods. 
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Introduction 

 

Strategies for the directed patterning of biomolecules at specific sites on diverse 

material surfaces are highly desired for multiplexed, array-based screening paradigms (2) 

as well as technologies such as tissue engineering, which rely on micro- or nanoscale 

cell-protein interactions (3).  Recently, a fluorophore-based immobilization technique 

was described for the high-resolution, site-specific patterning of proteins such as enzymes 

within microfluidic channels (1, 4).  This method utilizes photobleaching, a singlet 

oxygen-dependent immobilization mechanism, to couple dye-labeled proteins to glass 

and polydimethylsiloxane (PDMS) surfaces.  Visible light patterning has two main 

advantages over other biomolecular patterning strategies.  Non-damaging wavelengths, 

such as those used in aryl azide and benzophenone chemistries (5, 6), are avoided.  

Secondly, the reaction can be rapidly carried out in aqueous, neutral buffers preserving 

protein functionality.   

In order to facilitate the implementation of photoattachment chemistry in the 

development biomolecular and/or cellular arrays, further studies are necessary to expand 

upon the scope of materials which can be surface engineered using this process, namely 

polymer surfaces. Also, efforts to facilitate photopatterning, such as implementation with 

laser scanning confocal microscopes and software-driven, automated bleach parameters, 

are relatively unexplored.  In addition, a reverse-coupling technique would be desirable. 

In this case, instead of labeling the soluble protein with a dye, the target surface is 

conjugated to a fluorophore.   This has several advantages.  Dye-labeling of proteins is 
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not required, and in this scenario, one photoactivable surface could be employed for the 

patterning of multiple biomolecules.   

In this study, we explored the utility of visible light-guided surface engineering 

for site-specific antibody immobilization on a differential capacitance-based viral 

biosensor (7) as well as a polyester filament-based fluorescence detection platform (8-

10).  We then extended this photopatterning technique to couple the cell adhesion peptide 

RGDS (11) to a surface layer of polyethylene glycol-fluorescein (PEG-FITC) with the 

intent of developing a substrate for site-specific biomolecular and cellular patterning.  

This latter example also features low nonspecific adsorption, a limitation not addressed in 

previous visible-light photopatterning techniques (4).  In these initial studies, we 

observed that a variety of surfaces are amenable to photopatterning, and that the 

simplicity of these techniques makes automated surface patterning readily accessible to 

biological laboratories with access to a laser scanning confocal microscope.  This method 

may have broad applicability in the field of biosensors which rely on an a priori pattern 

of binding partners as well as tissue engineering applications which rely on spatial 

control of cells in their construction.  Photocoupling can also be used to functionalize 

nanoparticles and other bioconjugates bearing amine or PEG-FITC moieties.   

 

Experimental Procedures 

 

Antibodies were photocoupled onto silicon dioxide and polyester surfaces for 

sandwich immunoassays.  In the third portion of this report, peptides were 
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photoimmobilized on PEG-FITC coated capture substrates in order to modulate cell 

attachment.   

 

Photopatterning of capture antibody on capacitive M13K07 sensor  

 A previously-characterized, capacitive sensor for the detection of M13K07 

bacteriophage (7) was prepared for use under dry argon at 25ºC with three rinses of 

anhydrous acetone (Sigma, St. Louis, MO).  The surface was then immersed in a 4% 

solution of 3-aminopropyltriethoxysilane (United Chemical Technologies, Bristol, PA) in 

anhydrous acetone for 10 minutes, followed by 5 minute immersions in anhydrous 

acetone and ultrapure water, and stored at 25ºC in a desiccator.  Successful silanation of 

capacitor surfaces was verified by comparing the adsorption of fluorescein-conjugated 

bovine serum albumin (1 mg/mL in borate pH = 8.5) on treated and untreated chips.  

Immediately prior to use, the silicon dioxide surface was layered by micropipette with 

100 μL of a 100 μg/mL FITC-anti-M13K07 monoclonal antibody ((mAb), 2.8 mol 

FITC/mol IgG) in 100 mM sodium bicarbonate buffer, pH = 8.5.    

 The FITC-labeled capture mAb (anti-M13K07 Ms IgG1, GE Healthcare) was 

immobilized onto the biosensor surface using an upright laser scanning confocal 

microscope (LSM 510, Carl Zeiss).  The timed bleach function provided in the 

microscope manufacturer’s software package, as used for fluorescence recovery after 

photobleaching (FRAP) studies (12), was used to control the laser intensity of the 488 nm 

line of a 30 mW Argon laser, as well as the number of scanning iterations.  A 4X, 0.1 NA 

objective was used to scan the 200 μm2 capacitor surface.  Two capacitors were each 

bleached using different bleach iterations (50 vs. 10, using 100% laser intensity).  Using 
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the manufacturer’s software, the laser was rastered in parallel with the plates of the 

capacitor, and the bleaching time was less than three minutes.  The surface was rinsed 

three times with PBS, pH = 7.4 for 1 minute each.  Next, the capacitors were coated with 

the same amount and concentration of FITC-mouse IgG1 isotype control mAb (3 mol 

FITC/mol IgG), and bleached at 100% intensity for 50 iterations.   

The functionality of the photoimmobilized surface was ascertained by sandwich 

immunoassay.  The surface was rinsed with PBS, and exposed to a solution of 100 μL of 

M13K07 bacteriophage (3.3 X 1011 virions/mL) for 30 min at 25ºC.  The surface was 

rinsed with PBS and incubated with 100 μL of Cy5-conjugated anti-M13K07 mAb (1.72 

mol Cy5/mol IgG, 50 μg/mL in PBS) for 30 min at 25ºC.  The chip was rinsed with PBS 

and imaged immediately on a Nikon TE2000U inverted fluorescence microscope 

equipped with a Cy5 fluorescence cube, an Exfo X-Cite 120 metal halide excitation light 

source, and a C7780 Hamamatsu cooled CCD camera.  Mean fluorescence intensities 

were measured by analyzing ROIs defined along capacitor boundaries using Image Pro 

Plus 5.0 (Media Cybernetics), with data plotted using SigmaPlot 9.0 (SYSTAT).   

 

Photopatterning of antibody on polyester filament-based M13K07 sensing array  

 We investigated the utility of photoattachment chemistry in the development of 

high-throughput biomolecular screening.  A previously described polyester 

monofilament-based system for viral detection based on hydrophobically-immobilized 

capture mAb for multiplexed sandwich immunoassays (9) was adapted for the detection 

of M13K07 bacteriophage, a test virus, based on photopatterned capture mAb.  All 

procedures were carried out at 25°C.  A 120 μm polyester monofilament (Sulky Corp.) 
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was wrapped around a PhastGel sample applicator (GE Healthcare) and inlaid within the 

concave teeth as previously described (9).  The filament/comb apparatus was rinsed in 

successive washes of 70% ethanol, 10% HCl, Milli-Q water, and dried overnight prior to 

use.  0.75 μL of solution containing 100 μg/mL of anti-M13K07 mAb or mouse IgG1 

isotype control mAb in 100 mM borate buffer, pH = 8.5 was pipetted on each loading 

tooth for either timed passive incubations or photobleaching sessions.  The distance 

between neighboring teeth is 0.5 cm.  For photobleaching, the comb was inverted and 

suspended within a humidified 60 mm petri dish upon the Nikon TE2000U microscope 

stage.  For photobleaching, the X-Cite 120 metal halide light source was used in 

conjunction with a FITC cube and 4X objective at full lamp intensity (1.4 W from 

microscope emission port, as determined by the manufacturer) for specific durations.  

Bleaching was monitored by measuring filament mean fluorescence using Image Pro Plus 

5.0.   

To test the functionality of the passively-adsorbed and photopatterned surfaces, 

combs were was rinsed three times in PBS, immersed in a multichannel pipette basin 

containing 3.3 X 1011 virions/mL M13K07 in PBS for 30 min, and rinsed three times 

with PBS.  The combs were subsequently immersed in a basin containing 50 μg/mL Cy5-

anti-M13K07 mAb for 30 min and rinsed in PBS.   

 Filaments were immediately fastened to a standard, pre-cleaned microscope slide 

with tape, and the fluorescence measured using a Genepix 4000B microarray scanner 

(Axon Instruments) equipped with a 635 nm laser line as previously-described (9).  Mean 

fluorescence intensity of ROIs defined along discrete filament spots was measured by 

Image Pro Plus on grayscale 16-bit images, and plotted using SigmaPlot.  
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Photopatterning of poly-D-lysine coated glass substrate with PEG-RGDS 

Poly-D-lysine-coated 35 mm glass-bottom dishes with no. 1 borosilicate 

coverglass (MatTek Corp.) were coated with a heterobifunctional PEG spacer (MW = 

3400) containing an N-hydroxysuccinimide ester (NHS) amine-reactive group and a 

fluorescein isothiocyanate moiety (NHS-PEG-FITC, Nektar Therapeutics) by incubating 

the surface with 0.2 mg of NHS-PEG-FITC in 100 mM borate buffer, pH = 8.5 for 1 hr. 

followed by three rinses in borate buffer. Unreacted amine groups were quenched by 20 

min. incubation with 1 mg of sulfo-NHS-acetate (Pierce Chemical) in borate buffer. This 

acetylation reaction rendered the remaining amines unreactive. The glass dish was then 

incubated with with 100 μg/mL of the fibronectin-derived cell adhesion peptide RGDS (> 

95% purity, Genscript Corp.) in borate buffer. Photobleaching of 1 mm rectangular areas 

delineated by taped foil photomasks was achieved using a 10X objective with the 

aforementioned inverted fluorescence microscope and light source for timed intervals, 

with mean fluorescence levels monitored to confirm photobleaching. Typically, the time 

necessary to reduce intensity levels 20% of initial fluorescence was less than 5 minutes.  

Photobleaching and RGDS passive adsorptions were followed by three rinses in borate.  

RGDS presence on the glass substrate was qualitatively assessed using fluorescamine.  

Since RGDS has been demonstrated to promote fibroblast adhesion and spreading 

(DeLong et al. 2005), we evaluated the bioactivity of the coupled RGDS using a 

fibroblast adhesion assay. 3T3 fibroblasts (ATCC) were cultured to 70% confluency in 

DMEM containing 10% bovine calf serum under incubation at 37°C, 5% CO2. The cells 

were then seeded in each dish at a concentration of 1000 cells/mL and incubated 

overnight under the same culture conditions. The next day, dishes were rinsed three times 
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with PBS, and fixed for 20 min. at 25°C in 4% paraformaldehyde in PBS. Dishes were 

incubated with 0.5% trypan blue prior to the fixation step to ascertain cell viability via 

dye exclusion. The dishes were then rinsed in PBS containing 100 mM glycine and 

imaged by phase-contrast.   

 

Comparison of antibody chemical crosslinking and photoattachment on PEG-FITC and 
PEG-maleimide-coated glass substrates 
 

Poly-D-lysine-coated MatTek dishes were coated with 0.2 mg of NHS-PEG-FITC 

or thiol-reactive NHS-PEG-Maleimide (NHS-PEG-MAL, MW = 3400, Nektar) and 

acetylated as described in 2.3.  To generate sulfhydryl groups for covalent coupling of 

mAb to NHS-PEG-MAL, 5 mg of anti-M13K07 mAb in 1 mL PBS-EDTA, pH = 7.4 was 

reacted with a 10-fold molar excess of 2-iminothiolane (Traut’s reagent, Sigma) for 30 

min. at 25°C.  Excess Traut’s reagent was removed by 3 centrifugation cycles of 

mAb/Traut’s reagent on an Amicon-4 Ultra 100K MWCO spin column filtration device 

(Millipore) using PBS-EDTA as the rinse and resuspension buffer.  For chemical 

crosslinking, 200 μg of mAb in 200 μL PBS-EDTA was pipetted onto the PEG-MAL 

surface and was reacted overnight at 4°C.  For photocrosslinking, 200 μg of purified mAb 

in a 200 μL solution of PBS-EDTA was pipetted on the PEG-FITC surface.  The 

microwell of the dish was then photobleached using the X-Cite 120 light source (1.4 W) 

using a 2X objective for 10 min.  Following both reactions, the dishes were rinsed 3X 

with PBS, saving the initial aspirate.  Aspirate was collected from 20 MatTek dishes 

bearing either the PEG-FITC or PEG-MAL attachment linker.  Protein concentration was 

determined using the Coomassie Plus assay (Pierce) according to manufacturer 

instructions.         
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Results and Discussion 

 

Our studies suggest that photobleaching can be used to pattern proteins and 

peptides on SiO2, polyester, and glass surfaces.  Photopatterning of anti-M13K07 mAb to 

capacitor surfaces was site-specific, with an achieved spatial resolution below 10 μm 

(Figure 1a-b).  No signal was detected due to photopatterned IgG1 control mAb capture 

of virus, or nonspecific binding of the virus itself, as indicated by mean fluorescence 

output (Figure 1c).  In addition, no secondary antibody fluorescence was detected 

beyond the capacitor regions of the chip, indicating that diffusion of the bleached 

fluorophore did not interfere significantly with site-specific coupling, and that 

nonspecific adsorption was not significant.  Specifically, the average fluorescence from 

10 different non-capacitor regions of the chip was 237 ± 67, which was similar to control 

capacitor values (Figure 1c). 

The fluorescence signal from sandwich immunoassay generated from filament-

coupled anti-M13K07 mAb using photoattachment chemistry was two to three-fold 

higher than signal generated by passively-adsorbed antibodies (Figure 2). The enhanced 

signal could be due to either a.) an initially-higher coupling efficiency using the 

photobleaching technique, and/or b.) greater preservation of bioactivity of photocoupled 

mAb. Although further studies would be required to differentiate between these two 

possibilities, we did observe that photocoupled antibodies appeared to be more tightly-

coupled since successive washes of filament was associated with loss of passively-

adsorbed antibodies but with low loss of photocoupled antibody (data not shown). 
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Figure 1. Light (A) and fluorescence (B) micrographs of a multiplexed capacitive 
biosensor photopatterned with anti-M13K07 monoclonal antibodies and isotype controls, 
with measured fluorescence intensities shown in (C).  Parameters and reagents used for 
photoattachment using a confocal microscope: Cap 1: 30 mW, 50 bleach iterations, anti-
M13K07 photopatterned, Cap 2: 30 mW, 50 bleach iterations, anti-Ms IgG 
photopatterned, Cap 3: 30 mW, 10 bleach iterations, anti-M13K07 photopatterned, Cap 
4: No patterned antibody. (C) Fluorescence intensity measurements of Cy5-anti-
M13K07-incubated sensors, reported as mean ± S.D., n = 3. Bar = 10 μm  
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Figure 2. Schematic of a strategy for photocoupling of antibody to polyester filament (A) 
and resulting sandwich immunoassay Cy5-anti-M13K07 intensities (B). A representative 
filament is overlaid on the graph in (B).   
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Our studies also demonstrated that cell adhesion peptides can be site-specifically 

coupled on tissue culture substratum (Figure 3).  Irradiated PEG-FITC regions (Figure 

3a) promoted fibroblast attachment similar in density and morphology observed on the 

native poly-D-lysine-coated MatTek surface (Figure 3e).  Non-irradiated PEG-FITC 

regions on the same were resistant to cell adhesion (Figure 3b).  The lack of cell 

adhesion in nonirradiated regions was most likely due to the PEG-coating on the surface 

which blocks adsorption of RGDS (Figure 3c) as well as the fibroblasts themselves 

(Figure 3f).  The PEGylation of the surface was found to be important for controlling cell 

attachment, as acetylation of the surface alone was not sufficient (Figure 3d).  Complete 

photobleaching of the entire PEG-FITC surface (from 1 to 3 hours of continuous lamp 

illumination) did not result in cell attachment (Figure 3g-h).  In a separate experiment, 

we demonstrated that attachment of 3T3 cells to PEG-RGDS was most likely due to 

specific peptide-integrin interactions, since competitive inhibition experiments (addition 

of 2 mM soluble RGDS peptide) reduced cell attachment by 82% (Figure 4).     
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Figure 3. Representative micrographs of 3T3 fibroblast attachment on surface engineered 
poly-d-lysine MatTek dishes from 3 trials using PEG-FITC based photoattachment 
diagrammed in (I). Experimental conditions for each substrate: (A) PEG-FITC and 
acetylation, RGDS photopatterned; (B) Same as in (A), but in an area where RGDS was 
not photopatterned; (C) PEG-FITC and acetylation, RGDS passively adsorbed; (D) No 
PEG-FITC, acetylation, RGDS passively adsorbed (cells are rounded); (E) No PEG-
FITC, no RGDS (native surface); (F) PEG-FITC, no acetylation, no RGDS; (G) PEG-
FITC and acetylation, bleached 1 hr prior to cell adsorption, no RGDS; (H) PEG-FITC 
and acetylation, bleached 3 hrs. prior to cell adsorption, no RGDS. Cells in (A) and (E) 
showed similar viability of seeded cells as indicated by trypan blue exclusion (not 
shown). (50X magnification) 
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Figure 4. Competitive inhibition of 3T3 attachment to PEG-RGDS-coated MatTek glass 
bottom dishes.  3T3 cells at a concentration of 1000 cells/mL were incubated with 1 μM 
calcein-AM (Invitrogen) in serum-free DMEM for 20 min. at 37°C and seeded on PEG-
RGDS-coated surfaces in the presence or absence of 2 mM soluble RGDS.  Cells were 
incubated for 4 hrs. at 37°C, 5% CO2, rinsed 3X with Hank’s Balanced Salt Solution, and 
immediately imaged via fluorescence microscopy under FITC imaging settings to analyze 
attached cells.  Viable cells as ascertained by calcein-AM fluorescence were counted in 
10X fields (n = 4) using Image Pro Plus 5.1.Representative 10X fields show a.) 3T3 
attachment onto PEG-RGDS-coated borosilicate glass, and b.) 3T3 attachment in the 
presence of 2 mM soluble RGDS.  Shown on each panel is the mean ± S.D. of calcein-
AM positive 3T3 cells counted within each 10X field, for each experimental condition. 
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The mAb coupling efficiency of photoattachment and chemical crosslinking was 

compared and found to be similar.  The efficiency of photocoupling was measured to be 

3.3 pmol / cm2.  Thiol-maleimide crosslinking, a technique which has long been utilized 

for efficient, facile conjugation of proteins to material surfaces (13), resulted in a higher 

mAb coupling efficiency (4.2 pmol / cm2).  Although the chemical crosslinking technique 

was capable of immobilizing a higher quantity of mAb, further optimization of 

experimental conditions may produce higher yields for visible light photoconjugation, 

such as buffer strength, reaction volume, PEG molecular weight, and reagent 

concentrations.  Furthermore, photopatterning offers control over site specificity of 

coupling, which in itself may warrant its future implementation. 

The light patterning properties of the confocal microscope facilitated the efficient 

photoattachment of antibodies on the biosensor surface.  With a fixed laser intensity (full 

output), the number of bleach iterations within the FRAP software module controlled the 

coupling efficiency of FITC-mAb.  Furthermore, the ROI can be readily defined within 

the software to pattern microscale regions.  The patterning of antibodies upon groups of 

four capacitors was achieved within five minutes, and real-time fluorescence intensity 

measurements within the software confirmed successful photobleaching.  The confocal 

microscope should facilitate the implementation of photoattachment methods in various 

laboratories in biological and biomedical sciences, where they are readily available.  

Since these laboratories often do not have access to cleanroom facilities needed for 

photolithography, photoattachment chemistry may constitute a viable alternative to the 

in-house development of custom molecular and cellular arrays as diagnostic or biological 

study tools.   
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 In addition to extending techniques related to the coupling of dye-conjugated 

biomolecules on surfaces, we also hypothesized that biomaterial substrates could be 

engineered to bear the photoreactive groups, thus obviating the need for bioconjugating 

proteins, a step which can often compromise native function.  Polyethylene glycol (PEG) 

has long been utilized for reducing protein adsorption to biomaterial surfaces, is 

biocompatible, and is amenable to the grafting of functional groups (14).  NHS-PEG-

FITC is a commercially-available heterobifunctional reagent used to detect PEGylation 

efficiency in bioconjugate chemistry, and combines the properties of PEG with the 

bioconjugation moiety NHS (amine-reactive) for immobilization on a variety of 

substrates, as well as a FITC dye, to enable detection of the PEGylated species in vitro or 

ex vivo.  We observed that pipetting an RGDS peptide solution over the PEG-FITC-

functionalized glass substrate, followed by photobleaching of the dye groups, resulted in 

site-specific immobilization of the adhesion peptide, as indicated by fibroblast binding 

exclusively on regions of irradiation (Figure 3a).  Therefore, the use of this reagent in the 

development of biosensor arrays affords the resistance of the coating to nonspecific 

adsorption of proteins.  

 Dye photobleaching generally involves the energy transfer from the dye in the 

excited state to molecular oxygen in the ground state (15-17).  As a result of 

photobleaching, singlet molecular oxygen is produced, leaving the fluorophore with an 

unpaired electron.  While the process of visible light coupling of dye-conjugated species 

has not been completely elucidated, it is possible that the unpaired electron on the dye 

serves as a binding site to an electron-rich substrate.  Our data provide further evidence 

that the photobleached fluorophore as the coupling moiety.  When including 1 mg/mL 
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sodium fluorescein (NaFl) as a free dye in the initial mAb coupling solution, we observed 

a decrease in fluorescence signal from the virus-associated Cy5 secondary antibody, 

indicating that the coupling technique was associated with fluorophore photobleaching 

(Figure 2b).  In previous work, oxygen depletion in the coupling medium was associated 

with significantly-lower photoattachment efficiency (1), which is consistent with our 

report that photobleaching chemistry is essential for the coupling reaction.  Provided that 

photobleaching events drive the coupling of biomolecules onto the surfaces tested in this 

work, it is important to take necessary precautions when carrying out individual 

reactions.  Samples were only exposed to ambient lab light for durations < 5 min., to 

minimize premature photobleaching due to the photolability of fluorescein.   

This work expands upon previous approaches to achieve photopatterning of 

biomolecules, through adapting a confocal microscope to perform automated patterning 

of microscale regions, and by expanding the scope of surfaces which are candidate 

substrates for this technique.  Future work will focus on the controlled 

orientation/deposition of cells on adhesion peptide-patterned surfaces.  Such a feature 

would be useful in the development of arrays which incorporate cells as biosensors, or in 

the synthesis of 3-D tissue constructs, in which hierarchical organization of cells and 

proteins elicit specific cell functions (18).  Our technique features the microscale 

resolution necessary to construct such devices, and nanoscale resolution is potentially 

achievable with this technique, when used in conjunction with techniques to overcome 

diffraction barriers, such as stimulated emission depletion fluorescence microscopy 

(STED) (19, 20).  While fluorescein was used as the coupling moiety in this work, it has 
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been demonstrated that photottachment strategies can be extended toward the patterning 

of multiple dye-labeled species, such as Alexa Fluor-labeled proteins (1).    

 

Conclusion 

 

Our studies have extended the utility of visible light photoattachment chemistry in 

creating biomolecular and/or cellular arrays in well-defined microscale regions on diverse 

substrates.  The method is rapid and can be easily controlled on a spatial and temporal 

scale.  Furthermore, protein activity is retained, and the high-efficiency conjugation of 

proteins using light patterning may facilitate the development of high-sensitivity 

screening platforms.  Additionally, we have shown that a photoreactive substrate can be 

the mediator for photocoupling, eliminating the need for bioconjugation of species prior 

to patterning.  In forthcoming applications which utilize cells as biosensors, this 

technique may be useful for controlling cell orientation and spreading.  This rapid, 

flexible technique is readily accessible and can be implemented in a number of 

biomedical applications.   
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