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1. Introduction 

1.1 Précis: Heart Failure in a low-income multiethnic population. 

 Heart failure (HF) is a major public health problem, particularly in the southeastern United States 

(US), which has been described as the “heart failure belt”.  However, most data informing the current 

understanding of the risk factors for, incidence of, and survival from HF were derived from cohorts 

outside of the southeast and primarily comprised of white individuals or multi-ethnic populations with 

high proportions of middle-class participants.  Consequently, there are limited data regarding HF among 

individuals in the region of US with the highest prevalence of HF and those with limited resources; and 

potential differences in the patterns of HF incidence and post-HF survival by race and sex in low-income 

multiethnic populations are not well characterized. 

 In addition, while there is increased recognition that individual socioeconomic factors contribute 

significantly to HF risk among middle-class persons in the US, recent evidence also suggests that 

neighborhood factors may in fact predict HF readmissions independently of individual-level factors in 

middle-class populations. However it remains uncertain whether such neighborhood factors are 

independent predictors of HF incidence and post-HF survival particularly in low-income populations.   

 Finally, in contrast to international trends, the existing data from US counties suggest that 

poverty-dense counties have high levels of obesity which are paralleled by high prevalence of cardio-

metabolic conditions including cardiovascular disease (CVD) and HF. Thus, it is important to critically 

examine the link between obesity and HF particularly among populations with scant resources. Prior 

epidemiologic evidence is suggestive of an independent association between excess body weight and 

increased risk of HF; as well as a contrasting decrease in the risk of post-HF mortality – a phenomenon 

coined as the obesity paradox. However, most studies investigating these relationships utilized categories 

of body mass index (BMI) or assumed linearity of effects thereby limiting the elucidation of the natural 

dose-response relationship between measures of obesity and HF risk as well as post-HF survival.  
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 More importantly, less thought has been given to the suitability of BMI – weight (W)/height (H)2 

– in investigating the link between obesity and both HF risk and post-HF survival despite differences in 

the performance of various weight-height indices across population groups defined by race and sex. 

Additionally, predictors with “pleiotropic” effects usually have differential functional relationships with 

varying outcomes suggesting the need to use the data to empirically derive an appropriate weight-height 

index for each outcome. Such approaches may be utilized to adequately model the intricacies in these data 

and reveal novel insights that may improve our understanding of anthropometry and general obesity in 

relation to HF risk and post-HF survival.  

 We propose to leverage the Southern Community Cohort Study (SCCS) which comprises a large 

number of black and white participants, predominantly low-income, living in a region with the highest 

rates of CVD to investigate disparities in HF incidence and mortality by race and sex as well as 

differential effects of anthropometric and neighborhood socio-economic factors.  

 Our specific aims are to investigate: 

 1. Differences in the incidence of HF as well as post-HF survival between groups defined by race 

and sex: white women, black women, white men and black men. 

 2. Whether neighborhood characteristics (defined by a composite deprivation index) predict the 

risk of a) incident HF and b) post-HF survival in the SCCS beyond individual-level socioeconomic status 

(defined by household income and highest level of education attained). 

 3a. The appropriate functional form of a data-derived weight-height index (W/Hn) for the 

association with a) incident HF and b) post-HF survival, and compare its performance in the prediction of 

either outcome with that of BMI based on model fit and “informativeness”. 

 3b. The dose-response relationship between W/Hn (as a surrogate measure of total body fat) and 

both incident HF and post-HF survival by race. We would specifically investigate departures from 

linearity and additivity of effects. 
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 3c. The dose-response relationship between waist circumference (as a surrogate measure of 

visceral fat) and the risk of incident HF by race and sex and contrast these findings with those obtained 

using W/Hn.  

 Heart failure events will be ascertained via linkage of the SCCS cohort with the Centers for 

Medicare and Medicaid Services (CMS) Research Identifiable Files.  For the proposed analyses, we 

would include SCCS participants ≥ 65years at cohort enrollment or participants < 65 years who: a) 

reported CMS coverage at baseline; or b) did not report Medicare or Medicaid on the baseline 

questionnaire but had a CMS claim within 90 days of being enrolled in SCCS. The restriction to these 

groups would maximize the likelihood of participants having continuous coverage in Medicare and/or 

Medicaid from the time of SCCS enrollment to the end of the follow-up period (December 31st, 2010), for 

the ascertainment of incident HF events.   

 Incident HF will be defined as the first occurrence of a medical claim with ICD-9 code 428.x 

within the Medicare institutional (Medicare Provider Analysis and Review, MEDPAR), Part B carrier, or 

outpatient-based claims files or the Medicaid Analytic Extract (MAX) Inpatient and Other Services 

claims files, from the date of SCCS enrollment through December 31st, 2010. All-cause mortality 

following a HF diagnosis will be ascertained via linkage of the SCCS cohort with both the Social Security 

Administration (SSA) vital status service for epidemiologic researchers and the National Death Index 

(NDI) through December 31st, 2010. 

 The relevance of the proposed study can be articulated across several axes: 

 a) It is essential to quantify the burden (incidence and mortality) of HF and any potential 

differential patterns of HF risk and post-HF survival – by race and sex – in a low-income population with 

high proportions of African-Americans and women living in a part of the country which is at particularly 

high risk for CVD. While the current understanding (based on data from cohorts enrolling mostly middle-

class participants) suggests higher HF risk among African-Americans (and men), it would be interesting 
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to see if the patterns persist in a setting with more comparable socioeconomic status between racial 

groups.   

 b) In addition to estimating the scope of the HF epidemic in low-income populations in the “HF 

belt”, it is equally important to provide valuable information on the relative contributions of individual 

and neighborhood socioeconomic factors that likely influence CVD outcomes – HF risk and mortality in 

particular – in this population. There are data suggesting greater rates of HF hospitalizations in 

neighborhoods with less resources. Is this trend similar for other HF outcomes like incidence and 

mortality? The AHA, the Canadian Heart Health plan and other cardiovascular societies recognize that 

improvements in heart health would require strategies that target the entire spectrum of the healthcare 

system:  public policy, prevention, acute care, chronic care and rehabilitation, and end-of-life planning 

and care. However, the more “upstream measures” which focus on public policy and prevention may have 

the greatest potential to mitigate the burden of CVD and improve human health. Areas with the most 

acute socioeconomic deprivation are most likely at the highest risk for CVD (including HF) and CVD 

mortality and hence may benefit most from such improvements in public health policies including (but 

not limited to): improvements in community-level resources (healthy food outlets, physical activity 

resources, smoking cessation programs etc.).  

 c) One of the major contributors to the elevated burden of HF in areas with limited resources may 

be the concomitant increase in the levels of obesity in these settings. Thus, it is important to critically 

examine the link between adiposity and HF risk (and mortality). With most cohorts relying on surrogate 

measures of adiposity collected in routine clinical practice, robust approaches are needed to adequately 

model these data and reveal novel insights that would potentially refine the strategies used to risk-stratify 

persons in clinical and/or public health settings. Our proposed analysis accomplishes the following: It 

utilizes the data to empirically derive an appropriate weight-index to investigate the flexible dose 

response between HF risk (and post-HF survival) and a surrogate marker of total adiposity without 

making assumptions related to a) using BMI as the “de facto index of choice” regardless of the 
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demographic make-up of the population under study; b) using pre-specified cut-points that may be ill-

suited to the study sample c) linearity and/or additivity of effects across sex and racial groups. Most 

cardiovascular societies (including the AHA and the ACCF) as well as the WHO make recommendations 

about specific cut-points for BMI as targets to be utilized in routine clinical practice, risk-stratification, 

preventive care and public health programs in order to mitigate CVD and HF risk. These 

recommendations regarding specific BMI cut-points implicitly assume a discontinuity in the dose-

response association between BMI and HF (or CVD) risk or the existence of definite inflexion points in a 

continuum of risk. If the dose-response relationship between the weight-height index (as a surrogate 

measures of total adiposity) and HF risk (as well as post-HF mortality) is continuous and non-linear (and 

is modified by race and sex), that would suggest that the use of cut-points for decision making is 

seemingly counter-intuitive. An alternative decision-making paradigm would be to develop a prediction 

model for HF risk (and HF mortality) using the relevant anthropometric, lifestyle, clinical and 

demographic factors in this population; and using the estimates of predicted risk for individuals and cost-

effectiveness ratios of efficacious interventions to make decisions in clinical or public heath settings. In 

such models, for example the HF risk calculator developed by the Meta-Analysis Global Group in 

Chronic Heart Failure (MAGGIC), it would be interesting to explore differences in model fit (as well as 

discriminant  and calibration properties) when using the established anthropometric surrogates or 

composite weight-height indices derived for specific race-sex groups. 

 d) The results of the proposed analyses could provide preliminary data for additional studies of 

the association between data-derived weight-height indices – as proxies for total body fat – and measures 

of subclinical CVD like cardiac troponin T as well as N-Terminal pro Brain Natriuretic Peptide (NT-

proBNP). The relationship between anthropometric measures and cardiac troponin T is particularly 

apropos as the latter is thought to be one of the potential links between increased adiposity and incident 

HF. Cross-sectional data from the ARIC cohort suggest that there is a positive association between BMI 

and high cardiac troponin T (using a cut-point of 14ng/l) measured with a new high-sensitivity assay (hs-
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cTnT). In future studies it would be interesting to leverage the SCCS cohort and flexible modeling 

approaches accounting for potential nonlinearity of effects and interactions with race and/or sex to 

investigate the prospective association between proxy-indicators of total and visceral adiposity and hs-

cTnT amongst persons free of CVD at baseline. An improved understanding of the association between 

weight-height indices (used in routine clinical practice and public health) and subclinical CVD could 

potentially improve risk stratification and prediction.  
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1.2 Specific Aims 

 There are over 26 million persons living with heart failure (HF) worldwide.[1]  In the US, over 

5.7 million adults (≈ 2.5% of the US adult population) are estimated to have HF.[2]  About half of persons 

diagnosed with HF die within 5 years and the estimated total costs of HF in the US exceeded $30 billion 

in 2012.[3],[4]    

 Several established cardiovascular disease (CVD) cohorts have investigated HF incidence and 

mortality, including the Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), Multi-

ethnic Study of Atherosclerosis (MESA) and Atherosclerosis Risk in Communities (ARIC).[5-8] The 

FHS included predominantly white individuals.  Other cohorts, including CHS, MESA, and ARIC, 

enrolled multi-ethnic middle-class populations from select communities and their relatively small sample 

sizes limited assessment of differential risk patterns between demographic groups defined by both race 

and sex. 

 Whilst the data from these previous cohorts are suggestive of differences in incidence rates of HF 

as well as post-HF mortality between population subgroups, knowledge gaps persist regarding the 

magnitude and direction of these differences in multi-ethnic low income populations (comprising larger 

numbers of blacks and women) with high burden of CVD risk factors. 

 Also, while there is evidence suggesting that individual socioeconomic status (SES) contributes 

to HF risk among middle-class persons in the US [9, 10], recent data also suggests that neighborhood 

factors may in fact predict HF readmissions independently of individual-level SES in middle-class 

populations [11]. However, it is not known whether such neighborhood factors are independent predictors 

of other HF outcomes like HF incidence and post-HF mortality particularly in low-income populations. It 

would be of interest to investigate whether among persons with very limited resources, a dearth of 

community-level resources i.e. neighborhood deprivation, compounds the risk of HF and post-HF 

mortality above and beyond what is contributed by scant resources and reduced literacy at the individual-

level. 
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 Data from varying communities across the US suggest that poverty-dense counties have high 

levels of obesity which are paralleled by high prevalence of chronic conditions including CVD and heart 

failure [12]. It is ever so important to critically examine the link between adiposity and HF risk (and 

survival following a diagnosis of HF) particularly among populations with scant resources. Most cohorts 

investigating the obesity-HF link have relied on body mass index – weight (W)/height (H)2 – as a proxy 

for total body fat and increased body mass index has been found to be positively correlated with HF 

incidence and survival [13-15] but there is little data on potential effect modification by race. Less 

thought has been given to the suitability of W/H2 in investigating the obesity-HF link despite differences 

in the performance of various weight-height indices across population groups defined by race and sex [16, 

17]. Additionally, predictors with “pleiotropic” effects usually have differential functional relationships 

with varying outcomes suggesting the need to use the data to derive the appropriate weight-height index 

for each outcome. Hypothetically, for any weight-height index given by the general form W/Hn, 

regressing the log-hazard of HF on the natural logs of both weight and height, would yield n as the 

absolute value of the ratio of the coefficients of log height and log weight; this could be used to generate a 

W-H index suitable for a given setting. Also, any potential departures from additivity of effects by race 

and sex could be investigated using interaction terms with the appropriate weight-height index. Such 

robust approaches are needed to adequately model these data and reveal novel insights that would 

potentially refine the strategies used to risk-stratify persons in clinical and/or public health settings. 

 We therefore propose to use data from the Southern Community Cohort Study (SCCS) to 

investigate disparities in the risk of incident HF (and post-HF survival) between sex and racial groups and 

the contribution of neighborhood socioeconomic factors and anthropometric measures to HF risk and 

mortality. The SCCS is a large, prospective cohort study that enrolled approximately 86,000 adults (over 

two-thirds black) aged 40 and 79 living in the southeastern region of the US between 2002 and 2009 [18]. 

Data on personal medical history, demographic, socioeconomic, neighborhood factors, lifestyle, and 

anthropometric characteristics were ascertained at cohort enrollment. 
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 Our specific aims are to investigate: 

 1. Differences in the incidence of HF as well as post-HF survival between groups defined by race 

and sex: white women, black women, white men and black men. 

 2. Whether neighborhood characteristics (defined by a composite deprivation index) predict the 

risk of a) incident HF and b) post-HF survival in the SCCS beyond individual-level socioeconomic status 

(defined by household income and highest level of education attained). 

 3a. The appropriate functional form of a data-derived weight-height index (W/Hn) for the 

association with a) incident HF and b) post-HF survival, and compare its performance in the prediction of 

either outcome with that of BMI based on model fit and “informativeness”. 

 3b. The dose-response relationship between W/Hn (as a surrogate measure of total body fat) and 

both incident HF and post-HF survival by race. We would specifically investigate departures from 

linearity and additivity of effects. 

 3c. The dose-response relationship between waist circumference (as a surrogate measure of 

visceral fat) and the risk of incident HF by race and sex and contrast these findings with those obtained 

using W/Hn. 

 Heart failure events would be ascertained via linkage of the SCCS cohort with Centers for 

Medicare and Medicaid Services (CMS) Research Identifiable Files. SCCS participants (n = 27,078) who 

meet the following inclusion criteria would be included in our analyses:  

 ≥ 65years (n = 7001) at cohort enrollment 

 < 65 years (n = 20,077) at enrollment and either:  

i. reported being covered by Medicaid on the baseline questionnaire;  

ii. reported being covered by Medicare on the baseline questionnaire;  

iii. did not report Medicare or Medicaid on the baseline questionnaire but had a CMS claim 

within 90 days of being enrolled in SCCS.  
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 The restriction to these groups maximizes the likelihood of participants having continuous 

coverage in Medicare and/or Medicaid from the time of SCCS enrollment to the end of the follow-up 

period (December 31st, 2010), for the ascertainment of incident HF events.   

 Incident HF will be defined as the first occurrence of a medical claim with ICD-9 code 428.x 

within the Medicare institutional (Medicare Provider Analysis and Review, MEDPAR), Part B carrier, or 

outpatient-based claims files or the Medicaid Analytic Extract (MAX) Inpatient and Other Services 

claims files, from the date of SCCS enrollment through December 31st, 2010. Death from any cause will 

be ascertained via linkage of the SCCS cohort with both the Social Security Administration (SSA) vital 

status service for epidemiologic researchers and the National Death Index (NDI) through December 31, 

2010. 

 For aim 1, we will investigate differential patterns of HF incidence and post-HF survival by race 

and sex (and contrast the findings with those from previous CVD cohorts investigating HF risk and 

survival) using nonparametric methods and multivariable Cox Models. To obtain HF incidence rates, 

duration of follow-up would be computed from date of entry into the SCCS until the date of the first 

diagnosis of HF, date of death, or December 31, 2010, whichever occurred first. Incidence rates (IR) of 

heart failure would be calculated for white women, black women, white men and black men by dividing 

the number of HF cases by person-time of follow-up, and the rates would be presented per 1,000 person-

years. For analyses of post-HF survival among those with a diagnosis of incident HF, follow-up time will 

be defined as time from HF diagnosis to death or December 31st 2010 whichever occurred first. Kaplan-

Meier survival curves would be plotted by race and sex and the Wald tests in Cox models would be used 

to test for differences in survival between the four groups. In the multivariable models for both outcomes 

(HF incidence and post-HF survival), we would include indicator variables for white men, black women 

and black men, with white women as the reference group. The covariates would include: BMI, history of 

diabetes, hypertension, high cholesterol, MI/CABG or stroke, household income, education, smoking, 

alcohol intake, marital status and enrollment source (community health centers vs general population).  
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 For aim 2, the data will be considered to have a hierarchical structure with study participants 

(level-1units) nested within census tracks (level-2 units). The social and economic characteristics of the 

latter will used to compute neighborhood deprivation index for all SCCS participants. We will test for the 

effects of neighborhood deprivation index (the level-2 predictor) on the risk of incident HF after 

adjustment for individual-level factors including SES (annual household income and education); 

demographics (age, sex and race); lifestyle (smoking and alcohol use) and clinical factors (BMI and 

history of diabetes, hypertension, high cholesterol, MI/CABG or stroke). Given the correlation of the data 

points within each census track, and the limitations of a multilevel modelling approach in this setting 

(related to unbalanced data between clusters with the potential of biasing group-level variances and fixed 

effects) our primary approach for aim 2 will be a Cox proportional hazards model that takes into account 

non-independence using the Huber-White cluster Sandwich estimator of variance. 

 For aim 3, we would first derive the appropriate weight-height index for the current cohort based 

on the coefficient of the log weight and log height variables in a bivariate Cox model for the log hazard of 

HF. Second, in separate Cox models, we would regress the restricted cubic splines of the natural log of 

the data-derived weight-height index and that of BMI on the log hazard of HF. Then, model fit statistics 

(LR chi square, χ² and AIC) would be used to compare the performance of the data-derived weight-index 

versus that of BMI in relation to a model utilizing restricted cubic splines of log weight and log height.  

Third, we would use multivariable Cox models which take into account nonlinearity and non-additivity to 

model a flexible dose-response association between the better performing weight-height index (W/Hn) 

(modelled using restricted cubic splines with 5 evenly spaced knots) and HF risk adjusting for relevant 

covariates namely: demographics (age, race, sex); lifestyle factors (smoking and alcohol use); 

socioeconomic status (household income and education), clinical history (history of diabetes, 

hypertension, high cholesterol, MI/CABG or stroke) and total physical activity. Interactions between 

W/Hn and race as well as sex would be tested. These analyses would be repeated for the association 
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between (W/Hn) and post-HF survival. Similar multivariable models will be utilized to investigate the 

relationship between waist circumference and HF.  

 The SCCS cohort comprises a large number of low-income participants (over 52% with annual 

household income < $15,000), a high proportion of blacks (two-thirds) and women (60%), and overall 

represents a segment of the US population that has a high burden of CVD risk factors. In addition, data 

from previous SCCS studies suggests that there is a high prevalence of obesity (defined as body mass 

index >30 kg/m2); the prevalence of hypertension is > 50% overall [19] and the prevalence of diabetes is 

over 21% [20] (compared to a national average of 11% [21]). These characteristics of the SCCS 

participants make it a unique cohort for the examination of the inter-relationship between anthropometric, 

demographic and socioeconomic (individual and neighborhood) factors in the etiology of HF and post-HF 

mortality in a region of the country with the highest rates of CVD.   

 The results of the proposed study will a) quantify the burden of HF (incidence and mortality) in a 

low-income population that has been under-represented in previous cardiovascular cohorts b) improve the 

understanding of the dose-response relationship between weight-height indices (as surrogates of total 

adiposity) and HF risk and the potential differential influences of race and sex in these relationships c) 

provide information on the independent contrasting and/or synergistic relationships between individual-

level and neighborhood-level effects which may inform individual and community-level interventions 

aimed at reducing the burden of the HF epidemic.  
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2. Literature Review and Rationale for Specific Aims 

2.1 Background for Specific Aim 1 

2.1.1 Heart Failure – definition, etiology and classification. 

 Heart Failure (HF) is a complex clinical syndrome resulting from the inability of the heart to 

provide sufficient blood flow at normal filling pressures to meet the metabolic demands of the body [22]. 

The cardinal manifestations of HF are dyspnea and fatigue and fluid retention, which may lead to 

pulmonary and/or splanchnic congestion and/or peripheral edema [22].  

 Heart failure usually results from a variety of conditions affecting the myocardium, heart valves, 

pericardium, or electrical conduction system, and may be due to hypertension, coronary artery disease, 

toxins, inflammatory/infectious diseases, genetic or metabolic disorders.  Most patients with HF have 

some form of cardiomyopathy and impaired left ventricular (LV) function; and the latter is usually 

responsible for the symptoms they present. Heart Failure is often associated with a variety of LV 

functional abnormalities, ranging from normal LV size and preserved ejection fraction (EF) to severe 

dilatation and/or markedly reduced EF [22]. However, regardless of EF, varying degrees of diastolic and 

systolic dysfunction co-occur in most persons with HF. Ejection fraction is important for classifying 

patients – as having heart failure with reduced ejection fraction or HF with preserved ejection fraction – 

because of differences in patient prognosis, therapeutic response, comorbidities and demographics [23]. 

 Different cut-points for EF have been proposed for defining Heart Failure with reduced ejection 

fraction (HFrEF) including ≤35% and ≤40% [24, 25]; the ACCF/AHA guidelines recommends using 

≤40%. Coronary artery disease (CAD) with antecedent myocardial infarction remains the main etiology 

for HFrEF which occurs in conjunction with varying degrees of LV enlargement [26, 27]. 

 There are several criteria that have been proposed to define HF with preserved EF (HFpEF).  

These include: i) clinical signs or symptoms of HF; ii) evidence of preserved or normal LVEF; and iii) 

evidence of abnormal LV diastolic dysfunction that can be determined by Doppler echocardiography or 
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cardiac catheterization [28]. Just as for HFrEF, different investigators have proposed variable EF cut-

points for defining HFpEF ranging from >40% to ≥55% [29].  There appears to be a trend towards 

increasing proportions of persons with of HFpEF [30] which is paralleled by the increasing prevalence of 

some of its major causal factors including diabetes and obesity. Other factors incriminated in the 

occurrence of HFpEF include dyslipidemia, CAD and atrial fibrillation but hypertension remains the 

principal etiology of HFpEF at the population level [31, 32]. 

 The ACCF/AHA and the NYHA classifications have been used to stratify persons with heart 

failure with respect to HF stage and functional classification respectively [33, 34].  

Table 1: Comparison of ACCF/AHA Stages of HF and NYHA Functional Classifications 

ACCF/AHA Stages of HF [34]  NYHA Functional Classification [33] 

A At high risk for HF but without 

structural heart disease or 

symptoms of HF 

None  

B Structural heart disease but without 

signs or symptoms of HF 

I No limitation of physical activity. Ordinary physical 

activity does not cause symptoms of HF. 

C 

 

Structural heart disease with prior 

or current symptoms of HF 

 

I No limitation of physical activity. Ordinary physical 

activity does not cause symptoms of HF. 

II Slight limitation of physical activity.  

III Marked limitation of physical activity. Comfortable 

at rest, but less than ordinary activity causes 

symptoms of HF. 

IV Unable to carry on any physical activity without 

symptoms of HF, or symptoms of HF at rest. 

D Refractory HF requiring specialized 

interventions 

IV Unable to carry on any physical activity without 

symptoms of HF, or symptoms of HF at rest. 

ACCF: American College of Cardiology Foundation; AHA: American Heart Association. 

NYHA: New York Heart Association. 
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2.1.2 The Burden and risk factors of Heart Failure in the United States. 

 2.1.2.1 Prevalence, costs and risk factors 

 It is difficult to overestimate the impact of heart failure (HF) in the US; experts have long 

recognized it as an important cause of morbidity and mortality and its prevalence continues to rise [35-

37].  With the aging of the US population and increasing prevalence of major risk factors for HF 

(especially diabetes), it has become a serious health concern particularly for elderly Americans [38-41]. 

Currently, over 5.5 million Americans (2.5%) are estimated to have heart failure [42]. In 2007, the 

estimated direct and indirect costs of heart failure in the U.S. were in excess of $33.2 billion [42].  

 Previous studies have suggested that the main risk factors for heart failure include older age, high 

blood pressure, diabetes, coronary artery disease, valvular heart disease, and atrial fibrillation [6, 43-49]. 

In addition, other investigators found evidence suggesting that race, body mass index and socioeconomic 

status also contribute to disparities in heart failure risk in US adults. Using data from the Multi-Ethnic 

Study of Atherosclerosis, Bahrami et al found that African-Americans had the highest incidence rate of 

HF, followed by Hispanic, white, and Chinese-American participants. Although the risk of developing HF 

was higher among black compared with white participants (HR, 1.8; 95% CI, 1.1-3.1) in the more 

parsimonious models, adding hypertension or diabetes mellitus to the models attenuated racial/ethnic 

differences in the risk of incident HF[6]. 

 2.1.2.2 Heart Failure Incidence and Mortality  

 Several established cardiovascular disease (CVD) cohorts have investigated HF incidence and 

mortality – the Framingham Heart study, Cardiovascular Health Study (CHS), Multi-Ethnic Study of 

Atherosclerosis (MESA) and Atherosclerosis Risk In Communities (ARIC) among others (Tables 2, 3 

and 4). 

 The earlier cohorts – particularly Framingham – included mostly white participants. Other 

cohorts like CHS enrolled elderly participants and a small proportion of African-Americans. Subsequent 
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cohorts like MESA and ARIC enrolled multi-ethnic middle-class populations from restricted communities 

and had relatively small sample sizes to adequately explore differential risk patterns between 

demographic groups defined by both race and sex. 
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Table 2: Incidence rates for HF in other CVD cohorts. 

ARIC [8] CHS [5]  

Age Group  Incidence rate per 1000 PY* Age Group 5yr Incidence rate per 1000 PY 10yr Incidence rate per 1000 PY 

Overall 5.7 Overall - - 

White Men 6.0 White Men 25.3 29.7 

  45-49 2.4   65-69 14.8 18.7 

  50-54 5.6   70-74 20.1 23.9 

  55-59 8.4   75-79 33.3 41.4 

  60-64 14.3    

White Women 3.4 White Women 13.6 17.8 

  45-49 1.7   65-69 7.1 10.7 

  50-54 3.1   70-74 11.8 15.7 

  55-59 4.4   75-79 19.3 26.6 

  60-64 7.7    

Black Men 9.1 Black Men 22.1 25.5 

  45-49 5.2   65-69 13.6 18.4 

  50-54 7.2   70-74 17.3 20.8 

  55-59 14.0   75-79 28.2 34.6 

  60-64 13.4    

Black Women 8.1 Black Women 19.5 22.1 

  45-49 3.8   65-69 13.4 13.4 

  50-54 7.6   70-74 20.1 22.7 

  55-59 10.1   75-79 20.1 30.0 

  60-64 17.4    

MESA: Overall incidence = 3.1/1000 person-years [50]. Framingham: Overall in persons ≥45 years, age-standardized incidence rate in men = 7.2/1000 

P-Y; in women = 4.2/1000 P-Y. Trend of increasing IR with age from 3/1000 in 50-59 to 27/1000 P-Y amongst 80-89yr males and from 2/1000 in 50-59 to 

22/1000 amongst 80-89yr females [7]. 

*PY: person-years. 
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Table 3: Post-HF mortality in CHS and ARIC. 

Mortality rates among persons with HF in the Cardiovascular Health Study [51]. 

 Person-Years 

At risk 

Number of Deaths All-cause Mortality rate per 

100 P-Y (95% CI) 

Overall 2690 1020 37.9 (35.8-40.0) 

Women 1399 492 35.2 (32.5-37.9) 

Men 1291 528 40.9 (37.7-44.1) 

Caucasians 2340 889 38.0 (35.7-40.2) 

African-Americans 350 131 37.5 (31.9-43.1) 

Caucasian Women 1173 416 35.5 (32.5-38.5) 

African-American 

Women 

226 76 33.6 (27.2-40.0) 

African-American Men 124 55 44.4 (33.7-55.1) 

Caucasian Men 1168 473 40.5 (37.1-43.9) 

Case Fatality rates among hospitalized HF patients in the ARIC study [8]. 

 Persons at risk Age-adjusted 1yr Case 

fatality (95% CI) 

Age-adjusted 5yr Case 

fatality (95% CI) 

Overall 1198 22.0 42.3 

Caucasian Men 495 19.6 (16.2-23.5) 41.2 (36.9-45.6) 

African-American Men 164 23.9 (17.8-31.2) 51.8 (44.1-59.4) 

Caucasian Women 301 20.8 (16.6-25.8) 35.8 (30.6-41.4) 

African-American 

Women 

238 23.5 (18.5-29.4) 46.1 (39.8-52.5) 
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 While these studies suggest differences in incidence rates of HF as well as post-HF all-cause 

mortality between population subgroups, the studies were limited by small numbers and a few knowledge 

gaps persist regarding the magnitude and direction of these differences in low income populations (with 

larger numbers of African-Americans and women) (and better adjustment for SES by design) with high 

burden of CVD risk factors. 

 More importantly it remains uncertain whether these racial and sex differences persist across the 

age spectrum and whether there are differential risk factor associations with HF across categories defined 

by these demographic variables. The Southern Community Cohort Study (SCCS) could be a valuable tool 

to investigate these hypotheses.  

 We therefore propose to use data from the SCCS to investigate differences in the cumulative 

incidence and incidence rates of heart failure as well as differences in post-HF survival/mortality between 

groups defined by sex and race in univariate and multivariable models. The SCCS is a large, prospective 

cohort study that enrolled approximately 86,000 adults (over two-thirds black) aged 40 to 79 living in the 

southeastern US between 2002 and 2009 [18]. Data on personal medical history, demographic, 

socioeconomic, neighborhood factors, lifestyle, and anthropometric characteristics were ascertained at 

cohort enrolment. 

 Our findings could provide valuable information for risk stratification and prediction in 

populations with an enormous CVD risk burden. This data could also provide the preliminary data for 

investigating metabolic correlates of HF and particularly biomarkers (including hs-cTnT) for subclinical 

CVD. 
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2.2 Background and rationale for Specific aim 2 

2.2.1 The relationship between demographic, socioeconomic and neighborhood 

factors in the prediction of HF risk in low-income communities.  

 Current evidence suggests that the highest rates of heart failure have been reported for inhabitants 

of the southeastern United States. This may in part be related to a higher prevalence of established risk 

factors (including CVD, obesity, diabetes and high blood pressure) in the southeast [52] which, in turn, 

could be attributed in part to socioeconomic characteristics (including education and income) that 

influence health outcomes. Data from ARIC and CHS suggests that individual socioeconomic status 

(SES) contributes to HF risk among middle-class persons in the US [9, 10]; recent data also suggests that 

neighborhood factors may in fact predict HF readmissions independently of individual-level SES in 

middle-class populations [11]. However, it is not known whether such neighborhood factors are 

independent predictors of other HF outcomes like HF incidence and post-HF mortality particularly in 

low-income populations. It would be of interest to investigate whether among persons with very limited 

resources, a dearth of community-level resources i.e. neighborhood deprivation, compounds the risk of 

HF and post-HF mortality above and beyond what is contributed by scant resources and reduced literacy 

at the individual-level. Additionally the potential “moderating” effects of race in the form of cross-level 

interactions could be relevant as well.     

 The potential relationships between demographic, anthropometric, individual and neighborhood 

socioeconomic factors are depicted in figure 2. 
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Figure 1: Causal Model showing the relationship between community-level factors, individual-level 

predictors, causal intermediaries and heart failure. We hypothesize that neighborhoods with high proportions 

of persons without a high school diploma are likely to be those with the lowest density of physical activity 

resources and healthy food outlets. This, in concert with individual level factors (gender, race, income, 

employment, education etc) may influence an individual’s obesity status. Increased adiposity is expected to 

increase the likelihood of Ischemic and non-Ischemic heart failure by increasing the risk of causal intermediaries 

namely diabetes, hypertension and dyslipidemia. In our study, the community-level factors are summarized in the 

neighborhood deprivation index. We hypothesize that the neighborhood effects may vary for persons of different 

race and gender, just as the nefarious effects of increased BMI could be mitigated by favorable neighborhood 

characteristics - “cross-level interactions” 
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 We therefore propose to use data from the Southern Community Cohort Study (SCCS) to 

investigate whether neighborhood characteristics (defined by a composite deprivation index) predict the 

risk of incident heart failure beyond individual-level socioeconomic status (defined by household income 

and highest level of education attained).   

 For these analyses, study participants (level-1units) are nested within census tracts (level-2 units) 

and the socio-economic characteristics of the latter were used to compute neighborhood deprivation. We 

will test for the effects of neighborhood deprivation index (the level-2 predictor) on the risk of incident 

HF after adjustment for individual-level factors including SES (annual household income and education); 

demographics (age, sex and race); lifestyle (smoking and alcohol use) and clinical factors (BMI and 

history of diabetes, hypertension, high cholesterol, MI/CABG or stroke).  

 We hypothesize that there exists a positive association between neighborhood deprivation and 

heart failure risk even after adjusting for individual-level socioeconomic factors like income and 

education. 
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2.3 Background for specific aim 3   

2.3.1 Measuring Obesity/Adiposity 

 2.3.1.1 Direct and indirect measures of adiposity in biomedical research and clinical 

practice. 

 In routine clinical practice and public health, body mass index is often used as a surrogate 

measure of general obesity or “overweightness” even though it is not ideal to distinguish lean mass vs. fat 

mass [53]. Body mass index (BMI) is defined simply as weight (Kg)/height2 (m2) and is customarily used 

to classify persons as overweight or obese based on the WHO classification - normal weight: 18.9-24.9 

Kg/m2; overweight: 25.0 to 29.9 Kg/m2; class I obesity: 30.0 to 34.9 Kg/m2; class II: 35.0 to 39.9 Kg/m2 

and class III: ≥40.0 Kg/m2 [54].  

 Waist circumference (and waist-hip ratio) is also frequently utilized in clinical practice 

particularly in NCEP ATP II guidelines for defining cut-points for the “metabolic syndrome” (>102 

cm/40 inches for men and >90 cm/35 inches for women), in the American Diabetes Association (ADA) 

standards of care for diabetes and International Diabetes Federation (IDF) clinical practice guidelines for 

diabetes management [55, 56] [57] [58] [59] .  

 Table 4 shows the correlation between BMI, WC and several adipose tissue measurements. The 

data suggests that overall, both BMI and WC have strong positive correlations with total body fat mass 

but there are some differential patterns by sex [60]. Body mass index appears to be a better surrogate 

measure for total fat mass and percent body fat amongst women while the reverse is true among men. 

However, WC is a better predictor of intra-abdominal adipose tissue (IAAT) i.e. visceral fat [61] in both 

men and women and some studies have found WC to be more predictive of type 2 diabetes and some 

cardio-renal events including chronic kidney disease and CHD [62-64]. Additionally, WC is better 

correlated with measures of abdominal adipose tissue (both subcutaneous abdominal adipose tissue, 

SAAT and IAAT) from gold standard techniques like Computed Tomography (CT) scans and magnetic 
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resonance imaging (MRI) [60]. That notwithstanding, both BMI and WC have been shown to be 

significantly associated with cardio-metabolic risk factors (including hypertension, hyperglycemia and 

dyslipidemia) and hard endpoints including CHD and cardiovascular death [65-69].  

Table 4: Correlation, ρ between BMI, WC and adipose tissue compartments in men and women [70]. 

 Men Women 

 BMI WC BMI WC 

Total adipose tissue 0.82 0.87 0.91 0.87 

Percent body fat 0.70 0.79 0.86 0.82 

Total subcutaneous adipose tissue  0.82 0.83 0.91 0.86 

Total intra-abdominal  adipose tissue (IAAT) 0.59 0.79 0.69 0.77 

 

 Most adipose tissue (~85%) is in fact situated subcutaneously and distributed throughout the body 

in discrete homogenous pockets and adjacent to body tissues [71]. The contribution of intra-abdominal or 

visceral fat to total adipose tissue varies with demographic factors – sex, race/ethnicity, age – physical 

activity and total fat mass [60]. Several methods are currently available for measuring total body fat and 

assessing body composition either directly or using surrogate measurements. Importantly, the assessment 

of body composition relies on assumptions regarding the density of body tissues, concentration of water 

and electrolytes; and /or relationships between body components, body tissues and the distribution of the 

estimates of these measures among healthy subjects [72]. 

 In addition to BMI and WC (and waist-hip ratio), skinfold thickness is another anthropometric 

surrogate used as a proxy for assessing adiposity. Measurements of Skin fold thickness (which represent 

the thickness of the subcutaneous tissue in that area of the body) can be obtained from a variety of body 

sites including the subscapular and triceps area which are the skinfolds for which we have the most 

national reference tables available [73]. Their utility is rather limited in overweight and obese individuals 

and there are significant variations by sex [73].  
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 Bio-impedance absorptiometry (BIA) is another indirect method used to provide estimates of fat 

mass (FM) by measuring the body’s resistance (using sensors/electrodes) to a small amount of alternating 

current. Bioelectric impedance analyzers produce a measure of impedance that is proportional to total 

body water (TBW) and is used as predictor variable in a regression equation to provide estimates of FM. 

The equations used by the analyzers are derived using data from a given “reference population” and these 

measures are only valid for subjects with the same body type and shape as the subjects from the reference 

in question [73]. More importantly, the data for the use of BIA in overweight and obese persons is scant 

and its accuracy in these populations is rather limited [74]. 

 Direct methods like the measurement of total body water (fat free mass is estimated from total 

body water and FM can then be obtained), total body counting and neutron activation produce somewhat 

more accurate results [73]. 

 There are also criterion methods that include a) measurements of body density b) dual x-ray 

absorptiometry (DEXA) and c) CT and MRI. Hydro-densitometry and air displacement plethysmography 

(ADP) are the 2 main body density measurement techniques currently in use. For the former, body density 

is measured via underwater weighing and multi-compartment models are used to combine body density 

with measures of bone density and total body water to calculate body fatness [75, 76]. ADP works 

follows similar underlying principles without the drawback of subjects having to hold their breath during 

the measurement to ensure compliance and accuracy [77]. DEXA is the most widely used technique for 

assessing lean mass, FM and bone density. The two low-energy levels used in DEXA and their 

differential attenuation through the body allow the discrimination between tissues types – soft tissues 

(FFM and FM) and bone tissue. Mathematical algorithms allow calculation of the separation components 

using various physical and biological models. DEXA measurement make assumptions (which vary by 

manufacturer) related to hydration, potassium content or tissue density. However, DEXA is considered to 

be 1 of the most reliable and valid techniques for estimating FFM, FM and bone density in much of the 

population and is currently included in the ongoing National Health and Nutrition Examination Survey 
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(NHANES) [73, 78]. Computed Tomography and MRI are gold standard techniques for body 

composition measurements. The former is rarely considered for “whole-body” assessments due to the 

high level of radiation exposure and thus is mainly used to measure abdominal fat. CT can also provide 

measurements of intrahepatic and intramyocellular fat which are known to be correlated with the risk of 

type 2 diabetes [79, 80]. Magnetic resonance imaging is often not able to accommodate large body sizes 

but can provide accurate whole-body measurements for normal or “moderately overweight” persons [73].   

 2.3.1.2 Weight-height indices as surrogate measures of total adiposity  

 Given their relative ease of collection and potential biologic relevance to the occurrence of 

chronic diseases, anthropometric data like weight (W) and height (H) are often utilized in epidemiologic 

studies to compute ‘weight-height indices’ which serve for the most part as proxy measures of obesity or 

body “fatness”. 

 Almost 2 centuries ago, Quetelet noted that compared to W/H and W/H³, W/H²  – later renamed 

as body mass index by Keys et al [81] – was more stable with increasing height in young adults but he 

never actively advocated for the latter to be used as a ‘measure of adiposity’. However, in the 

biomedical/epidemiologic research community, the need for a surrogate measure of body fatness that 

could be readily obtained from anthropometric surrogates – like W and H – routinely measured in clinical 

settings led to the investigation of several weight-height indices and measures of relative weight as 

potential proxy indicators of obesity.   

 Two main criteria have been used to assess these indices. First, such an index would have to be 

relatively uncorrelated with height [16, 17]. The goal here was to obtain an index that was summarily “a 

measure of weight-corrected-for height” such that head-to-head comparisons of persons of different 

heights could be performed using this index regardless of the (modest) correlation between weight and 

height. Differences in such an index could therefore be attributed primarily to differences in fat (or fat-

free) mass. Second, the index had to be highly correlated with a robust measure of body fat [16, 17] like 
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body density (measured via underwater weighing) or other measures of body fat. However, several 

studies have found that the performance of these indices on these two criteria varies across population 

groups defined according race, sex and age.  

 One of such studies was conducted by Keys et al using data from 7424 healthy men, aged 18-60 

in 12 cohorts from 5 countries (US, Finland, Italy, South Africa and Japan) to compare 4 indices – the 

ponderal index (PI), W/H, W/H² and relative weight [17]. The relative weight of the subjects was 

expressed as a percentage of the average weight (from life insurance industry tables) of a sample of 

persons of the same height, age and sex in the population to which they belonged. The PI was defined as: 

H ∛W⁄ . Among white men, W/H² had the weakest correlation with height: in particular, among the 249 

male executives from Minnesota, aged 49-59, the Pearson correlation coefficient, r of W/H² with height 

was 0.015 while the values for relative weight, W/H and PI were 0.102, 0.181 and 0.304 respectively[17]. 

Thus, the PI had the strongest correlation with height and hence was the least suitable index based on the 

first criteria. In contrast, among Bantu men (n = 116, age range: 31-60years) in South Africa, the values 

of the correlation with height for these indices (W/H², W/H and PI) were: 0.249, 0.509 and 0.102 

respectively[17]; thus PI had the lowest correlation with height. This suggests that the finding of which 

index was least correlated with height varied by race.  

 In addition, in the study by Florey et al – which was based on data from the fourth examination of 

the Framingham Heart Study – there were sex differences in the correlation of the aforementioned indices 

(W/H², W/H and PI) with height[16]. The Pearson correlation coefficient for W/H², W/H and PI among 

women (n = 2519) were -0.20, 0.03 and 0.41 respectively. In men (n = 2003), the corresponding values 

were: 0.08, 0.22 and 0.36[16]. Hence based on the first criteria (relative independence with height) W/H 

would be the best choice among women while among men it would be W/H².  

 Several studies have reported on the correlation between these weight-height indices and 

measures of body fat (skin fold thickness or body density). Overall, most investigators suggested that 
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W/H² (BMI) was: a) more strongly correlated with measures of body fat compared to PI[16, 17] and b) 

more or at least as correlated as W/H and W/H³ with body fat measures[16, 17, 82]; with substantive 

variations related to the demographic characteristics (age, sex and race) of the population under 

investigation and the attending differences in the anthropometry of these population subgroups. In the 

study by Keys et al, among 180 young adults (aged 18-24) from the University of Minnesota, the 

correlation between body density (measured via underwater weighing) and W/H², W/H and PI were: -

0.850, -0.833 and -0.791 respectively[17]. These values were -0.666, 0.658 and 0.657 among the middle-

aged Minnesota executives (n = 249, age range: 49-59years) suggesting differential patterns by age[17]. 

In other words, while W/H² performed better than the other indices among young white males, there were 

no differences in the correlation of the said indices with body fat among middle-aged adults. Among the 

middle-aged black men in South Africa, the values of the correlations with body density were not 

available but the correlation with skin fold thickness for W/H², W/H and PI were: 0.732, 0.756 and 0.629 

suggesting W/H performed slightly better; a trend different from that observed among middle-aged white 

men[17]. Also, Florey et al suggested sex differences in the correlation between the indices and infra-

scapular skin fold thickness among white women in the Framingham Heart study but the observed 

differences were minimal – the values of r for W/H², W/H and PI were: 0.65, 0.66 and -0.64 

respectively[16].  

 In summary, it would be safe to say that on both criteria – independence from height and strong 

correlation with body fat measures – there is significant variation in the performance of the indices 

depending on the demographic characteristics of the population under study. Using simulations, Florey 

showed that the correlation of the indices with height depended particularly on the slope (and the 

intercept) of the height variable in a regression equation where weight was regressed on height [16]. 

Incidentally, the slope parameter (i.e. the mean change/increase in weight per unit increase in height) 

appears to be vary based on the demographic characteristics of the study population. For instance, in the 

National Health Survey population, investigators found a slope of 4.0 among white men; among white 
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women the slope was 2.3 [83]. Similar values among men and women have been reported in other 

studies[16]. This difference in the association between weight and height across sex groups could be 

viewed across the lens of the fundamental axioms of Rothman’s sufficient-component cause model. 

According to this model, component causes in a sufficient cause interact causally in varying patterns to 

influence outcomes [84]. As such, the association between a component cause and an outcome is 

influenced by its causal complement in the sufficient cause. Height may be independently correlated with 

weight but the slope of the height variable when weight is regressed on height may vary based on age, 

sex, race or ancestry and other unknown/unmeasured (U) covariates as shown in the causal pie below. 

And working on the premise of the simulations of Florey et al, this would influence the correlation 

between height and a given weight-height index; which may explain the differences seen across studies.  

 

 With such potential variations, it would seem intuitive to use a data-driven approach to determine 

the appropriate weight-height index to be utilized in any given study. In theory, for any weight-height 

index given by the general form W/Hn, a regression of body fat on the natural logs of both weight and 

height, would yield an absolute value of n (i.e. the exponent of the height variable in the ‘composite’ 

weight-height index) for the ratio of the coefficient of log height to that of log weight. Ergo, if the 

appropriate composite index of weight and height was one of W/H, W/H² or W/H³, then by regressing 

body fat on the natural logs of both weight and height, the absolute value of the regression coefficient for 

 
U 

Sex 

Race 

Height 
Age 

Weight 
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the log height variable would be 1, 2 and 3 respectively (i.e. the exponent of the height variable in the 

‘composite’ weight-height index) 

 Working on this premise, one could obtain the appropriate exponent of the height variable for the 

weight-height index by regressing body fat on log weight and log height in a given dataset obtained from 

the population under study. The same could be done for any potential outcome e.g. CVD (including HF) 

that is thought to associated with the said weight-height-index (used here as a surrogate measure of body 

fat). Hence, the exponent of the height variable in the composite index would likely vary depending on 

the outcome under study. Theoretically, one could view this heterogeneity of the functional form of the 

composite weight-height index via prisms afforded by an “adaptation” or “extension” of the Rothman’s 

model. One could postulate that the functional form of the weight-height index (i.e. the value of n) could 

vary based on a) the characteristics of the population under study and b) the outcome being investigated.  

 

 

 Separate indices may have to be constructed to study the association of interest within subgroups 

defined by race and/or sex. Otherwise, using a common composite index, interaction terms could be 

included in multivariable models to investigate differential associations of the weight-height index with 

CVD including HF.  

 
U 

Sex 

Race 

W/Hn Age 
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2.3.2 The Burden of Obesity in the United States. 

 Every year in the US, overweight and obesity contribute to substantial morbidity and 

mortality[85, 86] and are responsible for billions of dollars in medical costs and lost productivity [87] . 

Their prevalence has increased to the extent that a majority of adult Americans are now considered 

overweight or obese (body mass index   25 kg/m2) [88]. Obesity is associated with a myriad of adverse 

health outcomes including metabolic abnormalities such as dyslipidemia, type 2 diabetes, hypertension, as 

well as chronic kidney disease and cardiovascular disease [89]. 

2.3.3 Obesity and the Heart – Metabolic, Hemodynamic, Structural and Functional 

changes. 

 Individuals with elevated body mass index usually have both increased adiposity and fat-free 

mass and these are associated with metabolic, cellular and hemodynamic changes which are in turn 

associated with alterations in myocardial structure and performance [14]. 

 2.3.3.1 Hemodynamic changes 

 In persons with excess body weight – both adipose tissue and fat-free mass – there is a 

proportionate increase in cardiac output which results primarily from an increased left ventricular (LV) 

stroke volume (figure 1) [90]. In addition, compared to persons with normal weight, persons with class II 

or III obesity also have higher right ventricular (RV) end-diastolic pressure, mean pulmonary artery 

pressure, pulmonary vascular resistance, and mean arterial pressure [90].  

 2.3.3.2 Structural Changes 

Increases in adiposity and lean body mass are also associated with obesity-related myocardial changes 

which are correlated with the extent and duration of obesity [91], systolic blood pressure, LV end-systolic 

wall stress and LV chamber size in diastole [92, 93].  

The most common structural changes observed include: hypertrophy of cardiac myocytes, concentric 

remodeling, eccentric and concentric LV hypertrophy, increased LV mass, dilated cardiomyopathy and 
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increased RV wall thickness which occur in varying degrees depending on the presence or absence of 

hypertension and obesity class [90, 92-99].  
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Figure 2: Pathophysiology of Obesity Cardiomyopathy 

This figure shows the central hemodynamic, cardiac structural abnormalities, and alterations in ventricular function that 

may occur in severely obese patients and predispose them to heart failure. Left ventricular (LV) hypertrophy in severe 

obesity may be eccentric or concentric. In uncomplicated (normotensive) severe obesity, eccentric LV hypertrophy 

predominates. In severely obese patients with long-standing systemic hypertension, concentric LV hypertrophy is 

frequently observed and may occur more commonly than eccentric LV hypertrophy. Whether and to what extent 

metabolic disturbances such as lipotoxicity, insulin resistance, leptin resistance, and alterations of the renin-angiotensin-

aldosterone system contribute to obesity cardiomyopathy in humans is uncertain. RV = right ventricular. (Adapted from 

Lavie CJ et al: Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart 

failure 2013, 1(2):93-102). 
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 2.3.3.3 Functional Changes – LV Diastolic and Systolic dysfunction 

The presence of LV hypertrophy predisposes obese persons to diastolic dysfunction. Several 

hemodynamic studies found increased LV end-diastolic pressure [90, 92] and other studies utilizing 

echocardiography and radionuclide techniques reported abnormal diastolic filling pressures suggestive of 

LV diastolic dysfunction in obese persons, which worsened with increasing levels of obesity [92, 100-

103]. 

Depression of LV systolic myocardial performance is uncommon in obese persons in the absence of 

concomitant cardiovascular disease. In some obese subjects there was some subclinical LV dysfunction 

characterized by abnormal myocardial strain which was load-independent [103]. 

 2.3.3.4 Metabolic, cellular and neuro-hormonal changes 

Based on data from animal models, it has been hypothesized that the structural and functional changes 

seen in obese individuals are related to several abnormalities in biochemical and metabolic pathways. 

These include: decreased insulin sensitivity, hyperinsulinemia, leptin resistance and hyperleptinemia, 

decreased serum adiponectin levels, increased sympathetic tone, and activation of the Renin Angiotensin 

Aldosterone System (RAAS), low-grade systemic inflammation (with increased C-reactive protein and 

tumor necrosis factor). Cellular insults accompanying these processes may engender fibrosis, apoptosis 

and hypertrophy of cardiac myocytes which ultimately impact diastolic function [14]. 

2.4 Previous epidemiologic Studies on the association between Obesity and Heart 

Failure  

 Previous epidemiologic studies have suggested a strong independent association between elevated 

body mass index and incident heart failure (Table 5). However, in a community-based study of 550 

diabetes-free men and women in Greece, elevated BMI alone was not independently associated with HF 

risk, whilst metabolic syndrome was associated with a 2.5-fold (95% CI: 1.64-3.58) higher HF risk [104]. 

Metabolic syndrome was defined using the National Cholesterol Education Program Adult Treatment 

Panel (NCEP-ATP) III criteria i.e. the presence of 3 or more of the following conditions: abdominal 
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obesity given as waist circumference (>102 cm in men and >88 cm in women), serum triglycerides >150 

mg/dl, high-density lipoprotein cholesterol <40 mg/dl in men and <50 mg/dl in women, BP ≥130/85 mm 

Hg or use of antihypertensive medications, fasting glucose ≥100 mg/dl. 
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Table 5: Previous studies investigating the association between measures of obesity and heart failure risk 

Authors Study Description Covariates Findings Limitations 

Kenchaiah et al 

[13]. 

Framingham Heart 

Study (n= 5881, 

mostly Caucasian, 

54% female, mean 

age = 55.4 years). 

Age, alcohol 

consumption, smoking, 

total cholesterol, 

diabetes, hypertension, 

valvular heart disease, 

myocardial infarction, 

LVH (on ECG) 

496 (258 women, 238 men) incident HF cases. 

1. Continuous BMI 

HR (95% CI) per 1Kg/m2 increase: 

Men: 1.05 (1.02-1.09). Women: 1.07 (1.04-1.10)  

2. BMI categories 

- Overweight vs Normal 

Men: 1.20 (0.87-1.24). Women: 1.50 (1.12-2.02) 

- Obese vs. Normal 

Men: 1.90 (1.30-2.79). Women: 2.12 (1.51-2.97) 

1. Assumptions of linearity for 

continuous BMI analysis. 

2. Categorization: loss of 

precision and misrepresentation 

of the nature of the dose-

response relationship. 

3. Couldn’t investigate 

potential differential effects by 

race.  

Ndumele et al 

[15]. 

ARIC study (n= 

9507, 58.2 female, 

21.6% black, mean 

age = 62.4 years). 

Age, sex, race, 

smoking, diabetes, 

hypertension, LDL 

cholesterol, HDL 

cholesterol, 

triglycerides, alcohol 

intake, NT-proBNP, 

and estimated GFR.  

868 incident HF events. 

1. Continuous BMI 

HR per 5Kg/m2 increase: 1.32. 

2. Categorical BMI 

BMI≥35Kg/m2 vs Normal (18.5 – 24.9Kg/m2)  

Age-adjusted: 3.39 (2.74 - 4.19) 

Full-adjustment: 2.39 (95% CI: 1.89 -3.01). 

 

1. Assumptions of linearity for 

continuous BMI analysis. 

2. Categorization: loss of 

precision and misrepresentation 

of the nature of the dose-

response relationship. 

3. Potential differential effects 

by race and sex weren’t 

investigated. 

He et al [105]. NHANES (n= 

13,643; 59.4% 

female; 14.8% 

black, mean age = 

49.8 years).  

Sex, education, physical 

activity, cigarette 

smoking, diabetes, 

hypertension, valvular 

heart disease, and 

coronary heart disease. 

1382 CHF events. 

Categorical BMI 

Overweight vs Normal:  

RR (95% CI): 1.30 (1.12-1.52). 

1. Categorization: loss of 

precision and misrepresentation 

of the nature of the dose-

response relationship. 

2. Potential differential effects 

by race and sex weren’t 

investigated. 

Chen et al [106]. Established 

Populations for 

Epidemiologic 

studies of the 

Elderly, New Haven 

cohort (n= 1749, 

58.9% female, 

18.4%, black, mean 

age=74.2 years) 

Age categories, type of 

housing, sex, pulse 

pressure and diabetes. 

173 incident HF events. 

Categorical BMI 

BMI≥28Kg/m2 vs <24.0Kg/m2)  

RR (95% CI): 1.6 (1.0-2.4). 

1. Categorization: loss of 

precision and misrepresentation 

of the nature of the dose-

response relationship. 

2. Potential differential effects 

by race and sex weren’t 

investigated. 
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2.5 Rationale for investigating the association between a weight-height index (as a 

proxy for total body fat) and HF risk in SCCS.   

 2.5.1 Rationale for considering a data-derived weight-index (W/Hn)  

 Data from varying communities across the US suggest that poverty-dense counties have high 

levels of obesity which are paralleled by high prevalence of chronic conditions including CVD and heart 

failure [12]. It is ever so important to critically examine the link between adiposity and HF risk (and 

survival following a diagnosis of HF) particularly among populations with scant resources. Most cohorts 

investigating the obesity-HF link have relied on body mass index – weight (W)/height (H)2 – as a proxy 

for total body fat and increased body mass index has been found to be positively correlated with HF 

incidence and survival [13-15] but there is little data on potential effect modification by race. Less 

thought has been given to the suitability of W/H2 in investigating the obesity-HF link despite differences 

in the performance of various weight-height indices across population groups defined by race and sex [16, 

17]. Additionally, predictors with “pleiotropic” effects usually have differential functional relationships 

with varying outcomes suggesting the need to use the data to derive the appropriate weight-height index 

for each outcome. Hypothetically, for any weight-height index given by the general form W/Hn, 

regressing the log-hazard of HF on the natural logs of both weight and height, would yield n as the 

absolute value of the ratio of the coefficients of log height and log weight; this could be used to a W-H 

index suitable for a given setting. Also, any potential departures from additivity of effects by race and sex 

could be investigate using interaction terms with the appropriate weight-height index. Such robust 

approaches are needed to adequately model these data and reveal novel insights that would potentially 

refine the strategies used to risk-stratify persons in clinical and/or public health settings. 

 2.5.2 Rationale for investigating departures from additivity of effects by race in SCCS. 

 Most of the previous studies enrolled predominantly white populations or small numbers of 

middle class multi-ethnic populations from small communities; thus the obesity-HF association in blacks 

was understudied. Importantly, some studies have found that increased BMI have less detrimental health 
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effects in blacks. Cohen et al and Calle et al reported stronger associations between BMI and 

cardiovascular outcomes in whites compared to blacks [66, 107]. In the SCCS cohort, we have previously 

shown that whites with BMI ≥ 40Kg/m2 had a greater than 2-fold increased risk of cardiovascular death 

compared to those with normal weight, while in blacks the increase in risk was modest (17-40%) and non-

significant [107].  Similarly, using data from the SCCS cohort, Lipworth et al found that in whites the risk 

of atrial fibrillation was 49% (HR: 1.49; 95%CI: 1.11, 2.01) higher in obese persons compared to those of 

normal weight, while among blacks the corresponding HR was 0.90 (95%CI: 0.69, 1.16) [108]. This 

suggests that the association between BMI (and potentially other anthropometric surrogates of total body 

fat) and cardiovascular outcomes including HF needs to be further contrasted between blacks and whites. 

Additionally, a more flexible modeling approach take into account potential nonlinearity of effects may 

reveal additional insights into the causal relationships between W/Hn and HF. 

 Hence, we plan to use the unique opportunity afforded by the SCCS data to investigate potential 

differential patterns in the dose-response relationship between W/Hn and the risk of incident heart failure 

by race and sex.  

 We will investigate these associations using data from the linkage of the SCCS cohort with CMS 

Research Identifiable Files to ascertain incident HF events. We would use data for body mass index at 

enrollment based on self-reported weight and height (and validated in a sub-cohort of SCCS) to 

investigate the W/Hn-HF association.  

 For all these analyses we would use data for SCCS participants (n = 27,078) who meet the 

following inclusion criteria would be included in our analyses:  

 ≥ 65years (n = 7001) at cohort enrollment 

 < 65 years (n = 20,077) at enrollment and either:  

i. reported being covered by Medicaid on the baseline questionnaire;  

ii. reported being covered by Medicare on the baseline questionnaire;  
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iii. did not report Medicare or Medicaid on the baseline questionnaire but had a CMS claim 

within 90 days of being enrolled in SCCS. 

 We hypothesize that a) there is a positive non-linear dose-response association between W/Hn and 

incident HF which is stronger in whites compared to blacks. Cox regression analyses would be used to 

model the association between W/Hn and the instantaneous risk of incident HF while adjusting for all 

relevant covariates (age, history of MI/CABG, stroke, hypertension, diabetes, dyslipidemia, income, 

education, smoking, alcohol use, and total physical activity) and modelling interactions with race and sex.   

 We would repeat these analyses using waist circumference data which is available for a subset (n 

≈ 3300) of our study sample. 

2.5.6 Obesity and post-HF survival  

2.5.6.1 The Obesity Paradox 

 Whilst the biologic evidence for the nefarious effects of excess body weight on the structure and 

functioning of the myocardium and the epidemiologic evidence linking obesity to increased HF incidence 

are both compelling, several studies (table 6) have suggested that overweight and obese persons with 

heart failure have a demonstrably higher survival compared to leaner subjects – a phenomenon coined as 

the obesity paradox.
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Table 6: Previous studies investigating the association between measures of Obesity and post-HF mortality. 

Authors Study Description Covariates Findings Limitations 

Horwich et al 

[109]. 

1203 patients (23.4% 

female, mean age = 52 

years) with advanced HF 

(mean LVEF = 22%) 

referred for care.  

Age, sex, medications, 

hypertension, diabetes, 

LVEF, peak VO2, 

serum sodium, serum 

lipids, serum 

creatinine, mitral and 

tricuspid regurgitation. 

- 537 deaths  

- HR for 1Kg/m2 increase in BMI: 0.952 (0.915-

0.991).  

- Higher Cumulative survival at 2 years in 

overweight (BMI= 27.8-31Kg/m2) and obese (BMI 

>31Kg/m2) groups compared to normal weight. 

1. Small sample size 

2. Categorization: loss of 

precision and 

misrepresentation of the 

nature of the dose-response 

relationship. 

3. Potential differential 

effects by race wasn’t 

investigated.  

Lavie et al [110]. 209 ambulatory HF 

patients (mean age = 

53.9yrs) with chronic 

systolic HF referred for 

care at UCLA 

cardiomyopathy center. 

Age, sex, ischemic vs 

non-ischemic 

cardiomyopathy, 

NYHA class, LVEF 

and peak VO2. 

28 major events (urgent transplant or CV death). 

1. Percent body fat: 

For every 1% increase in percent body fat there was 

a 13% reduction in major CV events. 

2. Categorical BMI 

Kaplan-Meier plot showed higher survival for 5th 

BMI quintile compared to 1st quintile. 

 

1. Small sample size 

2. Categorization: loss of 

precision and potential 

misrepresentation of the 

dose-response relationship. 

 

Clark et al [111]. 3187 patients (25.2% 

female, mean age = 53.0 

years, mean LVEF = 

22.9%) referred for HF 

management or 

transplant evaluation at 

UCLA. 

Age, diabetes, LVEF, 

peak VO2, NYHA 

class, HF cause 

(ischemic vs non-

ischemic)  

988 Major events (deaths, heart transplants, 

ventricular assist device placements) 

1. Body Mass Index 

HR (95%CI) for normal vs High BMI (≥25 Kg/m2):  

- Men: 1.34 (1.13-1.58);  Women:1.38 (1.02-1.89) 

2. Waist circumference (WC) 

- Men 

HR (95%CI) for normal vs High WC (≥102cm): 2.02 

(1.18-3.45) 

- Women 

HR (95%CI) for normal vs High WC (≥88cm): 2.99 

(0.90-4.8). 

 

1. Categorization: loss of 

precision and 

misrepresentation of the 

nature of the dose-response 

relationship. 

2. Potential differential 

effects by race wasn’t 

investigated. 

Oreopoulos et al 

[112]. 

Meta-Analysis of 9 

observational HF studies 

(n= 28,209) with average 

follow-up ≈ 2.7 years. 

 BMI categories 

- HR (95% CI) for Overweight vs Normal 

CV death: 0.81 (0.72 – 0.92)  

All-cause Mortality: 0.84 (0.79 – 0.90) 

- HR (95% CI) Obese vs. Normal 

CV death: 0.60 (0.53 – 0.69)   

All-cause Mortality: 0.67 (0.62 – 0.73) 

Categorization: loss of 

precision and 

misrepresentation of the 

nature of the dose-response 

relationship 
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 Some authors have suggested a few underlying biological reasons to explain this phenomenon. 

- Higher metabolic reserve among obese persons in addition to leaner HF patients having a higher 

likelihood of being cachectic and thus at a higher risk of death [113]. 

-  The specificities of the neuro-humoral profile and hemodynamics of obese persons with heart failure 

such as the secretion of  soluble TNF alpha receptors which have beneficial neutralizing effects; higher 

circulating lipoproteins which may bind and detoxify lipopolysaccharides that play a role in stimulating 

the release of inflammatory cytokines and  elevated blood pressure which raises the tolerance of obese 

individuals to higher doses of cardio-protective agents including beta blockers, aldosterone antagonists 

and RAAS inhibitors [114, 115].  

 Other investigators have advanced epidemiologic reasons related to: 

1) Study participants who experienced unintended weight loss before study enrollment and who may have 

had higher mortality risk [114]. 

2) The fact that compared to normal weight persons, overweight and obese persons were found to have 

lower atrial natriuretic peptide levels which was correlated with having higher muscle mass and muscle 

strength [116]. The latter have been associated with improved survival in other patient populations and 

this may be analogous to patients with advanced HF as well [117]. 

 2.5.6.2 Rationale for investigating the association between anthropometric surrogates and 

all-cause mortality among HF patients in SCCS. 

 There is a wealth of data suggesting that in persons with HF, intentional weight loss mitigates 

some of the hemodynamic abnormalities and reduces LV mass and chamber size [90, 92, 93, 100, 114, 

118]. However, in light of the epidemiologic evidence suggesting an obesity paradox, some 

cardiovascular societies – whilst still advocating weight loss – have been conservative, recommending 

intentional weight reduction only at higher cut-points for BMI. For example, the AHA recommends 

intentional weight loss in HF only for persons with BMI >40 kg/m2, the Heart Failure Society of America 
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for individuals with BMI >35 kg/m2, both the European Society of Cardiology and the Canadian 

Cardiovascular Society recommend weight loss above a BMI cut-point of 30 kg/m2 and none of the major 

societies recommend weight loss for overweight patients with HF.  

 These recommendations seem to make the assumption that there exists a discontinuous 

relationship between the survival probability of persons with heart failure and body mass index; and the 

discontinuities (or sharp inflexion points) are found at the recommended cut points. If the dose-response 

relationship between body mass index and survival probability in heart failure is in fact a smooth 

function, making recommendations about specific cut-points may be counter-intuitive. 

 We plan to use data from SCCS to investigate the dose-response relationship between W/Hn and 

mortality risk in persons with incident heart failure while accommodating potential nonlinearity of effects 

and effect modification by race.  

[However, many experts acknowledge that in patients with heart failure more data on the effects of 

intentional weight loss on morbidity (hospitalizations) and long-term prognosis including hard endpoints 

like cardiovascular and all-cause mortality would provide better insights.] 
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3. Materials and Methods 

 The current study would leverage existing data from the Southern Community Cohort Study to a) 

quantify the burden of heart failure (incidence and mortality) in a low-income population that has been 

under-represented in previous cardiovascular cohorts b) improve the understanding of the dose-response 

relationship between weight-height indices (as surrogates of total adiposity) and HF risk and the potential 

differential influences of race and sex in these relationships c) elucidate the independent contrasting 

and/or synergistic relationships between individual-level and neighborhood-level effects which may 

inform individual and community-level interventions aimed at reducing the burden of the heart failure 

epidemic. 

3.1 Study Population: The Southern Community Cohort Study 

 The SCCS enrolled approximately 86,000 adults, age 40-79, living in rural and urban settings in a 

12-state area of the southeastern United States (Tennessee, Arkansas, Louisiana, Missouri, Alabama, 

Georgia, Florida, South Carolina, North Carolina, Virginia, West Virginia and Kentucky) between 2002 

and 2009 [18].  The majority of participants (~85%) were recruited primarily at community health centers 

(CHCs), which are federally funded healthcare facilities primarily servicing low-income individuals and 

medically underserved populations. Thus, most SCCS participants are of similar (usually low) 

socioeconomic and at especially elevated risk of adverse health outcomes including obesity, hypertension 

(~56%), diabetes (~21%) and cardiovascular disease. The characteristics of participants enrolled in the 

SCCS are summarized in Table 7.
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Table 7. Baseline characteristics of 76,614  SCCS Participants by Sex and Race, 2002–2009 

 Black Men White Men Black Women White Women 

 No. % No. % No. % No. % 

Age, years  

40–49 11,179 51 3,407 37 14,59

9 

47 5,486 38 

50–59 7,526 34 3,222 34 10,47

4 

34 5,176 36 

≥60 3,309 15 2,714 29 5,737 19 3,785 26 

Mean 51.3  54.7  52.

2 

 54.

2 

 

Education  

<9 years 1,913 9 777 8 2,192 7 1,060 7 

9–11 years 5,422 25 1,261 14 6,954 23 2,388 17 

High school 8,996 41 3,214 34 11,95

5 

39 5,625 39 

Some  college 3,766 17 1,810 19 6,314 21 2,975 21 
College  or postgraduate 1,899 9 2,270 24 3,366 11 2,392 17 

Income  

<$15,000 12,925 59 3,730 41 17,94

5 

59 6,955 49 

$15,000–$24,999 4,693 22 1,565 17 7,064 23 2,778 20 

$25,000–$49,999 2,799 13 1,611 18 3,887 13 2,344 17 
$50,000 or more 1,351 6 2,291 25 1,491 5 2,125 15 

Smoking  

Never 4,863 22 2,389 26 14,57

8 

48 5,573 39 

Former 4,553 21 3,137 34 5,978 20 3,628 25 

Current,  <1 pack/day 8,983 41 1,200 13 7,684 25 2,268 16 

Current,  ≥1 packs/day 3,411 16 2,467 27 2,299 8 2,875 20 

Alcohol consumption  

None 6,607 30 3,631 40 16,68

4 

55 7,999 56 

<1 drink/day 6,284 29 2,964 32 9,610 32 4,944 35 

≥1 drinks/day 8,792 41 2,534 28 3,971 13 1,231 9 

Body mass index at cohort entry  

  <18.5 278 1 82 1 311 1 254 2 

   18.5–24.9 7639 35 2544 27 4777 16 3638 25 

   25–29.9    737 35 3542 38 7860 26 3831 26 

  ≥ 30    5,535 29 2,705 34 17,95

2 

58 6,824 47 
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3.2 Study population for our proposed analyses 

 SCCS participants (n = 27,078) who meet the following inclusion criteria would be included in 

our analyses: ≥ 65years (n = 7001) at cohort enrollment or < 65 years (n = 20,077) at enrollment and 

either: a) reported being covered by Medicaid on the baseline questionnaire; b) reported being covered by 

Medicare on the baseline questionnaire or c) did not report Medicare or Medicaid on the baseline 

questionnaire but had a CMS claim within 90 days of being enrolled in SCCS.  

 The restriction to these groups increases the likelihood of participants having continuous 

coverage in Medicare and/or Medicaid from the time of SCCS enrollment to the end of the follow-up 

period (December 31st, 2010), for the ascertainment of incident HF events. 

 Based on these criteria we had n = 33,018 participants. We further excluded the following groups 

of persons successively (given these groups were not mutually exclusive) (fig. 4): 

a) Persons (n = 1571) who did not self-report as “Black” or “White” given the sample sizes for these 

groups were too small to make significant inferences. 

b) Persons (n = 4312) with a known history of HF before cohort entry (enrollment) i.e. prevalent 

HF. 

c) Persons (n = 51) whose date of HF diagnosis was coincident with date of enrollment (i.e. follow-

up time from cohort entry to HF diagnosis = 0) as these persons may have had prevalent HF. 

Given HF is a chronic condition whose onset is often insidious, these participants may have been 

symptomatic for HF before enrollment. 

d) Persons (n = 6) whose diagnosis of HF was later confirmed to have occurred after end of follow-

up (December 31st 2010). 

In summary, a further 5940 subjects were excluded leaving a total sample size of 27,078.  
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Fig 3: Flow diagram indicating participant eligibility for the proposed study. 

 

Entire SCCS Cohort 

N = 86000 
 

 

Initial Sub-cohort based on inclusion criteria (n = 33018) 

1) ≥ 65 at baseline (n=8798) 

2) < 65 at baseline and 

a) Reported Medicare (=14481) 

b) Reported Medicaid (n=5995) 

c) Had a CMS claim within 90 days of enrollment (n=3744). 

 

 

Final Sub-cohort after applying exclusion criteria (n = 27078) 

1. ≥ 65 (n= 7001) 

2. < 65 at baseline and 

a. Reported Medicare (n=12023) 

b. Reported Medicaid (n=4852) 

c. Had a CMS claim within 90 days of enrollment (n=3202) 

- Study sample for HF incidence (aims 1-3) 

 

 

Excluded participants (n = 5940). 

1. Other racial categories (n=1571) 

2. Prevalent HF (n= 4312) 

3. Time to HF = 0 (n = 51) 

4. HF diagnosis after end of 

follow-up (n = 6) 

 

 

 

Non-cases 

n= 22347 

 

 

HF cases 

n = 4341 

- Study sample for post-HF 

survival (aims 1-4) 
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3.3 Comparison between SCCS and other cohorts investigating HF 

Table 8: Baseline characteristics of SCCS, ARIC, CHS, MESA and FHS participants 

 
SCCS   

(n= 27,078) 

ARIC[8]  

(n= 14,993) 

CHS[5]  

(n= 5,888) 

MESA[6]  

(n = 5,923)† 

FHS[7]  

(n=9,405)‡ 

Age (years)* 55.5 (10.4) 54 (6) 72.8 (5.6) 61.8 (10.3) 41 (10) 

Women (%) 62.6 54 57.6 53 53 

Blacks (%) 68.8 27 15.7 26.1 ≈ 0 

Education (<high school) (%) 38.4 24 29.5 16 56§ 

BMI (kg/m2)* 30.4 (7.8) 27.3 (5.1) 26.7 (4.7) 28.0 (5.4) 24.9 (3.8)|| 

Obese (BMI > 30) % 44.8 26 19 32 10.8|| 

Diabetes (%) 26.5 11 16.4 11.6 4.1 

Hypertension (%) 62.5 33 57.7 42 7 

Myocardial infarction (%) 8.6 4 9.6 n/a 1.6# 

Stroke (%) 9.6 1.4 4.2 n/a 0.5** 

Ever smoked cigarettes (%) 65.3 58.2 53.5 49 57.3§ 

 

 Compared to ARIC, SCCS participants included in the current study had higher proportions of 

persons reporting a history of myocardial infarction at baseline as well as hypertension, BMI≥30Kg/m2 

and proportion of black participants.  

 Compared to CHS and MESA, the SCCS population was younger at baseline, had higher 

proportions of women and African-Americans; and equally had higher mean BMI and prevalence of 

hypertension and diabetes.  

3.4 Data Collection in SCCS 

 At enrollment into the SCCS, participants completed a questionnaire which ascertained 

information about demographics (date of birth, sex, race), lifestyle factors (including smoking and alcohol 

use), personal and family medical history, anthropometric factors, education, occupation, income, and 

physical activity data [18].  For CHC participants, the questionnaire was administered in person via a 
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computer-assisted personal interview (CAPI) with logic-checking and skip pattern technology.  Trained 

interviewers administered the questionnaires with the assistance of handheld cards to facilitate responses, 

and abstracted anthropometric and clinical information from participants’ medical records if those 

measurements were also collected on the day of enrollment. General population participants (~15%) 

completed and mailed in a paper version of the study questionnaire. Recruitment began in March 2002 

and was completed in September 2009.  Institutional review boards at Vanderbilt University Medical 

Center and Meharry Medical College approved all SCCS research protocols and participants provided 

informed consent and signed HIPAA authorization forms. 

3.5 Quality Control for Measurements and Questionnaires 

 Most of the questions in the SCCS questionnaire were adapted from questionnaires used and 

validated in other settings. However the SCCS investigators performed a series of validation studies to 

assess the reliability of the questionnaires used in data collection. Samples of approximately 150-800 

SCCS participants were selected to validate physical activity patterns via repeat interviews and use of 

accelerometers, tobacco use status via measurement of serum nicotine, and disease occurrence for self-

reported diabetes via confirmation in medical records and by measurement of HbA1c [18]. Over 96% of 

self-reported diabetes diagnoses were validated with data from confirmatory medical records or elevated 

HbAlc measurements. Self-reported height and weight were compared with contemporaneous clinic 

recorded measurements for over 20% of the participants (correlation was >95%) [18]. Repeat blood 

samples were also collected and banked from over 650 participants and repeat urine samples from over 

240 participants for future comparability assays to check for concordance of biomarker levels over time 

periods spanning one to three years. 

3.6 Outcomes and Outcome ascertainment 

 The main outcomes for our study would be incident heart failure and survival following a first 

diagnosis of heart failure. Heart failure events would be ascertained via linkage of the SCCS cohort (using 

Social Security Number, date of birth, and sex) with national Centers for Medicare and Medicaid Services 
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(CMS) Research Identifiable Files. Given that Medicare coverage is almost universal for persons who are 

aged 65 or older, and the low-income status of SCCS participants under age 65 results in many being 

eligible for Medicaid, the CMS linkage affords the opportunity for ascertainment of heart failure 

diagnoses for a significant proportion of subjects (n = 27,078) in the SCCS.  

3.6.1 Incident Heart Failure 

 Incident HF would be defined as the first occurrence of a medical claim with ICD-9 code 428.x 

within the Medicare institutional (Medicare Provider Analysis and Review, MEDPAR), Part B carrier, or 

outpatient-based claims files or the Medicaid Analytic Extract (MAX) Inpatient and Other Services 

claims files, from the date of SCCS enrollment through December 31st, 2010.  

 The diagnosis code (ICD-9 428x) [119] algorithms for identification of HF in the proposed study 

have been previously validated.  A review of the detection of heart failure in administrative claims data 

included eight studies conducted among Medicare beneficiaries reported positive predictive values 

(PPVs) between 76% and 99%, with the majority of the studies reporting PPVs over 90% [119].  These 

codes have also been used with high specificity in a number of studies [120, 121]. 

3.6.2 All-cause mortality/Post-HF Survival 

 Deaths, including dates and causes of death, would be ascertained via linkage of the SCCS cohort 

with both the Social Security Administration (SSA) vital status service for epidemiologic researchers and 

the National Death Index (NDI) through December 31, 2010. Both NDI and SSA are well-established and 

reliable means of identifying deaths in the US, and are expected to capture nearly all deaths [51, 122, 

123].   
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3.6.3 Understanding the linkage with CMS research Files for HF ascertainment 

3.6.3.1 Medicare  

 3.6.3.1.1 Types of Medicare coverage  

 Medicare is the primary health insurance program for persons aged ≥ 65; hence Medicare data is 

a valuable resource for making inferences about medical care of older adults. The program also provides 

insurance coverage for persons < 65 with certain disabilities, and individuals of all ages with ESRD.  

 Almost all Medicare beneficiaries receive Part A hospital insurance benefits, which helps cover 

inpatient hospital care, skilled nursing facility stays, home health and hospice care. The majority of 

beneficiaries equally subscribe to Part B medical insurance benefits, which help to cover physician 

services, outpatient care, and durable medical equipment (DME) and some home health care. Also, many 

beneficiaries elect to purchase Medicare Part D prescription drug coverage.  

 Beneficiaries may elect to receive fee-for-service (FFS) Medicare.  In an FFS plan, treatment and 

diagnostic procedure decisions are under the control of the physician/hospital based on what they consider 

to be best practice and they’re reimbursed for every service offered to the patient or client. As an 

alternative to FFS Medicare, beneficiaries can enroll in Medicare Part C (Medicare Advantage). These are 

 

03/2002 

 

12/2010 09/2009 

End of recruitment – 

Indirect Follow-up 

continues 

Exit date for all 

incident HF cases 

and mortality. 

 

- Recruitment 

starts/entry date 

- CAPI 

 

Figure 4: Timeline for recruitment, data collection and ascertainment of outcomes 
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private plans similar to manage care organizations which provide Medicare Part A and Part B services. 

Managed care organizations supervise the financing of medical care delivered to their members. They 

include health maintenance organizations (HMOs), preferred provider organizations (PPOs) and points of 

service and the flexibility afforded to the clients in (e.g. for specialist consultation options) vary across 

these plans. 

 3.6.3.1.2 The Chronic Condition Ware house (CCW) Medicare research data files 

 The Chronic Condition Data Warehouse (CCW) Medicare data are extracted from the Centers for 

Medicare & Medicaid Services (CMS) enrollment files and fee-for service administrative claims 

submitted for payment to CMS. Data for all beneficiaries enrolled in Medicare is available from the 

CCW. The CMS Institutional and Non-institutional data files found in the CCW generally represent 

Medicare FFS claims only (i.e., managed care encounter information is not available). A few exceptions 

exist, including coverage of Hospice services. 

 The CCW data files were designed in such a way as to facilitate research across the continuum of 

care, using data files that could be easily merged and analyzed by beneficiary. Each beneficiary in the 

CCW is assigned a unique, unidentifiable link key, which allows researchers to easily merge data files 

and perform relevant analyses across different claim types and enrollment files.  

 3.6.3.1.3 The Master Beneficiary Summary File (MBSF) 

 The Master Beneficiary Summary File is created annually and contains demographic and 

enrollment data for all beneficiaries enrolled in Medicare for any part of the year. This annual person 

level summary file can be used to determine whether a beneficiary has a sufficient surveillance period for 

inclusion in the analytic file being created. Variables contained in this file include: the number of months 

of Medicare Part A, B, C, and D coverage; whether the beneficiary died during the year and other 

beneficiary demographic and geographic information. 

 3.6.3.1.4 Claim Types 
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 In general, all CMS administrative data files contain variables which can be used to join the CCW 

files. When medical services provided to a beneficiary are the focus, the primary linkage will be at the 

person level, after aggregation of the claim level files. 

  a) Medicare Institutional Claims 

 Claims from institutional providers which are covered by the Medicare Part A benefit appear in 

the Institutional claims file and are processed by Medicare Administrative Contractors (MAC). In 

addition, claims for institutional-based services covered by the Medicare Part B benefit (e.g., home 

health, hospital outpatient) appear in the Institutional claims file. For each setting, there is a base file and 

a revenue center file. These files include the following types of claims:  

 Inpatient - This file includes ICD-9 diagnosis and procedure codes, Diagnosis Related Group 

(DRG) information, dates of service, reimbursement amount, hospital provider, and beneficiary 

demographic information. 

 Outpatient - Contains claims data for outpatient services submitted by institutional outpatient 

providers (e.g., hospital outpatient departments, Rural Health Centers [RHCs], Federally 

Qualified Health Centers [FQHCs], renal dialysis facilities, outpatient rehabilitation facilities, 

comprehensive outpatient rehabilitation facilities, and community mental health centers). This file 

includes ICD-9 diagnosis codes and CMS Common Procedure Coding System (HCPCS) codes. 

 Skilled Nursing Facility (SNF), Hospice, Home Health Agency (HHA) which provide base files 

for claims submitted by the SNF, Hospice and HHA respectively and all include ICD-9 diagnosis 

codes. 

Institutional claims have base files (contains beneficiary ID, claim type, admitting diagnosis, primary 

diagnosis, and up to ten additional diagnosis code fields and six procedure codes with associated dates, as 

well as the DRG; and beginning with claims files from 2009, the claims allow for 25 diagnosis codes and 

25 procedure codes) and revenue center files. 
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  b) Medicare Non-Institutional Claims 

 The Medicare Non-Institutional claims include services covered by the Part B benefit, and consist 

largely of professional services and DME. All claims are processed by MACs; also known as Carriers. 

These files include the following types of claims: 

 Carrier – Contains claims data for non- institutional providers (e.g., physicians, physician 

assistants, nurse practitioners, independent clinical laboratories, ambulance providers, and 

freestanding ambulatory surgical centers).  

 Durable Medical Equipment (DME) – Contains non-institutional claims for the Durable Medical 

Equipment Regional Carrier submitted by DME suppliers and providers.  

 Non-institutional claims have base files (contains the beneficiary ID, claim type, referring 

physician, carrier number and up 8-12 diagnosis codes) and line files (contains the HCPCS and 

ICD-9 diagnosis codes as well).  

 3.6.3.1.5 Investigating chronic disease rates in a sample of Medicare Beneficiaries 

 Ideally, in order to capture all cases of disease and comorbid conditions in a sample of Medicare 

beneficiaries, it may be best practice to restrict analyses to enrollees who have FFS Medicare A and B 

coverage. However many beneficiaries with part A coverage have a state buy-in via Medicaid to cover the 

part B premium. Those enrolled in Medicare Part C have managed care coverage, and the transactional 

data regarding services received are not included in the claims data files. The MBSF indicates the type of 

Medicare coverage obtained. The Medicare state buy-in variable appears 12 times in the MBSF to 

represent each month of coverage. The values within this variable indicate whether the beneficiary had 

Medicare Part A and/or B coverage for the month, and whether there was state buy- in (i.e., Medicaid) for 

the Part B premium. A limitation of this state buy-in variable is that it does not provide information 

regarding whether the beneficiary was entitled to full or only partial Medicaid benefits. To determine 

whether the beneficiary had Medicare FFS or managed care coverage, the HMO indicator variable 
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appears 12 times to represent each month of coverage. The MBSF also contains information regarding 

whether the person was dually eligible for both Medicare and Medicaid services. 

 Not all Medicare enrolled beneficiaries will have used Medicare-paid services in a particular time 

frame. Some do not use any medical services at all, while others may use services that are paid by a third 

party (e.g., the Veteran’s Administration). Third party claims do not appear in the Medicare data files. 

 3.6.3.1.6 Patterns of Health Care Utilization 

 Institutional claims cover both inpatient and outpatient settings. Non-Institutional claims cover a 

variety of settings including physician office, laboratory, imaging, procedures, and others. Visits with 

health care professionals in the ambulatory setting may take place in an outpatient facility or a provider 

office setting. Outpatient care is identified from the Institutional Outpatient claims files. Physician Office 

Care, is a small portion of the claims found in the Part B Carrier files.  

 Hospital Outpatient (HOP) claims are considered Institutional data files due to the type of claim 

used with Medicare, even though these claims are generally paid through the Medicare Part B benefit. 

Part B non-institutional – “carrier” – claims include: evaluation and management (physician office, 

specialist, consultation…), procedures (anesthesia, major cardiac procedure…), Imaging (echography, 

standard imaging), labs, DME etc.  

 For some services there could be an Institutional or Non- Institutional claim, or both claim types. 

In general, the professional component of a service (e.g., the physician or therapist care) appears in the 

Non-Institutional file (Part B Carrier), whereas the facility claim for an associated service, when 

applicable, appears in the Institutional file (Part A Inpatient or Skilled Nursing Facility [SNF]). 

 One of the most common examples of a type of service which may appear in either the 

Institutional or Non-Institutional claims is outpatient clinic-type services for physician/other provider 

care. Understanding the ambulatory care provided to a patient (e.g., a physician/clinic visit for a service), 
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requires examining the hospital outpatient file (hospital-based clinics, RHCs and FQHCs) in addition to 

the Part B Carrier files. 

 3.6.3.1.7 Diagnosing Disease in Medicare 

 Medicare claims use the ninth version of the International Classification of Diseases (ICD-9) to 

classify all diagnoses, which identify the condition(s) for which a patient is receiving care. Claims data 

generally allow providers to specify numerous diagnosis codes (up to 25 codes for Part A claims and up 

to 12 codes for Part B claims beginning with claims files from 2009, when the version J data file layout 

was implemented), with one diagnosis identified on the claim as the principal or primary diagnosis. The 

diagnosis codes appear on the base claims.  

 Medicare assigns hospital discharges to diagnosis-related groups (DRGs), a classification system 

that groups similar clinical conditions and procedures. The beneficiary’s principal diagnosis and 

secondary diagnoses, as well as any procedures performed during the stay, are used to determine the 

appropriate DRG. Medicare switched to a modified system, called Medicare Severity Diagnosis Related 

Groups (MS-DRGs) on October 1, 2007; both DRGs and MS-DRGs appear in the base portion of the 

claims. 

 Sometimes, to reduce the risk of false positives during outcome ascertainment, it may be prudent 

to require the presence of more than one claim to rule-in the condition of interest. In the CCW, for 

example, some chronic conditions in the Medicare population are pre-coded and appear in the MBSF – 

Chronic Conditions segment. The algorithms for these conditions are very precise regarding the number 

of claims, the specific types of services, and the number of years of data which must be examined to make 

a CCW determination regarding whether a person was likely receiving care for a particular condition. 

Incidentally, the use of this information assumes that if a claim was processed with a particular diagnosis 

code, the patient was receiving care for that particular condition.  

 3.6.3.1.8 Limitations of using Medicare data for computing rates for persons < 65. 



57 
 

 Medicare beneficiaries aged < 65 may differ from the general Medicare population and the 

general U.S. population in several ways that may affect disease outcomes. So when the goal is to calculate 

rates for certain metrics, it may be desirable to consider sensitivity analyses excluding these persons.  

3.6.3.2 Medicaid 

 3.6.3.2.1 The Medicaid Program 

 The Medicaid Program provides medical benefits to groups of low-income adults, children (State 

Children’s Health Insurance Program), pregnant women, elderly adults and people with disabilities, some 

who may have no medical insurance or inadequate medical insurance. Medicaid is administered by states, 

according to federal requirements and the program is funded jointly by states and the federal government. 

 Medicaid key eligibility groups include: a) the categorically needy like pregnant women and 

children under age 6 whose family income ≤ 133 % of the Federal poverty level; b) medically needy like 

persons aged ≥65 and disabled persons whose income levels do not allow them to qualify as categorically 

needy; and c) Special groups like Qualified Medicare Beneficiaries (Medicaid pays Medicare premiums, 

deductibles and coinsurance for individuals with income ≤100% of the Federal poverty level and 

resources ≤ 2× the standard allowed under SSI). 

 Mandatory services provided by State Medicaid plans include Inpatient and Outpatient hospital 

services including FQHCs and RHCs, Labs and X-rays etc. 

 3.6.3.2.2 Medicaid data sources 

 Each state’s Medicaid agency collects enrollment and claims data for persons enrolled in 

Medicaid and the Children’s Health Insurance Program (CHIP).  These data are collected in the state’s 

Medicaid Management Information System (MMIS) which is the basic source of state-submitted 

eligibility and claims data on the Medicaid population, their characteristics, utilization, and payments.  

Because the Medicaid program varies by state, the data in the MMIS are converted into a national 

standard and submitted to CMS via the Medicaid and CHIP Statistical Information System (MSIS). 
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 The MSIS enrollment and claims data are reported to CMS on a quarterly basis.  The enrollment 

data identify Medicaid and CHIP enrollees in each month of that quarter and whose enrollment in a prior 

period should be revised (due to a correction or retroactive enrollment).  The fee-for-service (FFS) claims 

data identify persons who received service.  The FFS claims data are submitted based on the quarter in 

which the claim was adjudicated, not when the service was performed.  The managed care encounter 

records identify who received what service under which managed care organization and from which 

provider. The encounter records are submitted based on the quarter in which the encounter was processed, 

not when the service was performed.   

 The MSIS data are challenging to use for research because the data represent a mixture of time 

periods.  CMS developed the Medicaid Analytic Extract (MAX) files, which is a more research-friendly 

set of Medicaid administrative files. The enrollment information in MAX identifies monthly enrollment 

after the retroactive/correction records have been applied and after certain state-specific data elements are 

transformed into a consistent, national format.  The claims in MAX identify the services rendered.  The 

enrollment pertains to people enrolled in the given calendar year and claims pertain to the services 

rendered in that same time period, thereby making a consistent—and more meaningful—time period for 

analyses of enrollment and service utilization. 

 3.6.3.2.3 Medicaid Analytic eXtract (MAX) Data for Research Purposes 

 Medicaid analytic extract (MAX) data are person-level data files on Medicaid eligibility, service 

utilization and payment information for all Medicaid enrollees – whether they have received one or more 

Medicaid service in a given calendar year or none. The purpose of MAX is to produce data to support 

research and policy analysis on Medicaid populations.  

 MAX is produced from 7 Fiscal Year quarters of MSIS data from all 50 states plus the District of 

Columbia. All 7 quarters of MSIS data needs to be approved (due to lags in obtaining updated eligibility 

information and adjudicating claims) in order to create MAX data.  
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 a) MAX Production 

MAX transforms data from the 7 fiscal year quarters to a calendar year; MAX data is event based. For 

every service rendered for every Medicaid beneficiary, MAX combines initial claims voids and other 

adjustments to create a “final action event”. 

 b) MAX Datasets 

MAX consists of 1 Person Summary File and 4 Claims Files inpatient, long term care, prescription drug 

and other services). The former includes person level data on eligibility, demographics, managed care 

enrollment, a summary of utilization and Medicaid payment by type of service. The files include fee for 

service (FFS) claims as well as managed care encounter data. 

 c) MAX Enhancements to MSIS Data 

 MAX provides more detail on Medicaid Eligibility: Improved identification of unique enrollees; 

retroactive eligibility in proper chronology; verified eligibility with eligibility data added to each claim. 

 Data on Dual Medicare and Medicaid Status: 

• Qualified Medicare Beneficiaries. (QMB’s) 

• Specified Low –Income Medicare Beneficiaries. (SLMB’s) 

• Identifies and links Medicare HIC number and Medicaid Case Number. 

MAX provides detail on service claims including types of service and detailed data on conditions and 

treatments such as ICD-9-CM Diagnostic Codes, Procedure Codes and National Drug Codes, Improved 

Coding for Services and therapeutic usage data added to each prescription drug record. 

 d) Enhancements to MAX Data 

 Some key novel enhancements to the data include: improved verification of SSNs, expanded 

detail on enrollee race and ethnicity, Monthly dual Medicare and Medicaid enrollment (earlier years were 
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reported quarterly); link to Medicare Enrollment Data Base (best way to identify dual eligible) and 

capability for other linkages (e.g. SSA) 

  e) Challenges in Developing Consistent Medicaid Data 

There are challenges related to a) Medicaid differences (including eligibility and types of services 

provided) across states, over time and when Fiscal Agents change; b) Eligibility and Type of services 

provided  

 f) Limitations of Medicaid Data 

These are related to a) Eligibility (e.g. minimal information on other insurance coverage) and b) Services 

(provided only during “spells of eligibility”, varying service coverage varies by state, incomplete data for 

“dual eligibles”) c) data are not always available in a timely fashion. 

 3.6.3.3 Preliminary data and challenges in ascertaining complete and continuous CMS 

coverage for SCCS Sub-cohort  

  1. Inclusion Criteria for the proposed study  

 As the SCCS uniquely captures a population of underserved, underrepresented, and often 

uninsured participants, in order to ascertain incident HF, use of Medicaid and Medicare claims databases 

will be used.  To increase the likelihood of participants having complete and continuous coverage in 

Medicare and/or Medicaid from the time of SCCS enrollment to the end of the follow-up period 

(December 31st, 2010), for the ascertainment of incident HF events we are restricting the analyses to: 

 Persons ≥ 65years (n = 7001) at cohort enrollment, or persons < 65 years (n = 20,077) at 

enrollment who: a) reported being covered by Medicaid on the baseline questionnaire; or b) 

reported being covered by Medicare on the baseline questionnaire; or c) did not report Medicare 

or Medicaid on the baseline questionnaire but had a CMS claim within 3 months of being 

enrolled in SCCS.  

The numbers for the mutually exclusive groups are given in Table 9 below: 
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Table 9: Exclusive participant categories based on the inclusion criteria for the current study 

Criteria n % 

Aged ≥ 65 at enrollment 7001 25.9 

Aged ≤ 65 and reported Medicaid at enrollment 12023 44.4 

Aged ≤ 65 and reported Medicare at enrollment 4852 17.9 

Aged ≤ 65 and Any CMS Claim within 90 days 3202 11.8 

Total 27078 100 

  

 2. Ascertaining CMS coverage for participants aged ≥ 65 for proposed study 

  Table 10: Self-reported CMS categories among participants aged ≥ 65 

 n % Any CMS Claim ≤90 days, % 

Medicaid Only 537 7.7 76.7 

Medicare Only 4264 60.9 75.1 

Both 1513 21.6 82.2 

None 394 5.6 42.1 

Missing 293 4.2 62.8 

Total 7001 100 74.4 

 

 Overall, over 82% of persons in the current SCCS sub-cohort filed a claim in CMS within 90 

days of enrollment regardless of self-reported CMS coverage at baseline; that figure is ~74% among 

persons aged ≥65. For participants 65 years and older, there may be near-complete capture of Inpatient 

claims through Medicare; but with data suggesting over 80% of the general Medicare population having 

part B coverage, it would be important to investigate the proportion of participants in our study with part 

B coverage to ensure we’re capturing events reported via physician encounters. However, with over 21% 

of persons reporting both Medicare and Medicaid, this could suggest there is a sizable proportion of 

persons with Medicaid state buy-ins to cover part B carrier benefits. 
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 3. Ascertaining CMS coverage for participants aged < 65 in the proposed study 

  Table 11. Self-reported CMS categories among participants aged < 65 

 n % Any CMS Claim ≤90 days, % 

Medicaid Only 8910 44.4 81.6 

Medicare Only 4852 24.2 78.5 

Both 3113 15.5 88.3 

None 739 3.7 100 

Missing 2463 12.2 100 

Total 20077 100 84.8 

 Among participants < 65, over 84% had a CMS claim within 90 days of enrollment; importantly, 

even among those who reported no CMS coverage, 100% of them filed a CMS claim probably due to the 

fact that States allow eligible persons to enroll in Medicaid at the points-of-care when service is needed 

(and many do in fact enroll at the time care is needed at their coverage status is updated retroactively in 

MAX). Eligibility for Medicaid does change over time so follow-up data (based on SCCS follow-up 

interviews) is needed to document the proportion of study participants claiming Medicaid coverage at 

baseline who still reported Medicaid at follow-up. However, as this preliminary findings suggests, 

eligible persons could still obtain care via Medicaid (and hence considered as having “continued CMS 

coverage”) when care is needed regardless of self-reported Medicaid coverage or lack thereof. Also, while 

a participant’s enrollment in Medicaid may vary over time, it is likely in the low socioeconomic status 

population of the SCCS that participants in Medicaid at enrollment will remain in Medicaid throughout 

the follow up period.  

 We would consider additional analyses among participants with documented CMS encounters; 

with over 81% having a Medicaid claim within 90 days of enrollment, we may have higher numbers of 

persons with documented Medicaid encounters throughout the study. 

 3.6.3.4 Assessing the validity of International Classification of Diseases, Ninth Revision, 

Clinical Modification (ICD-9-CM) codes for HF 

 The diagnosis code (ICD-9 428x) [119] algorithms for identification of HF in the proposed study 

have been previously validated.  A review of the detection of heart failure in administrative claims data 
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included eight studies conducted among Medicare beneficiaries reported positive predictive values 

(PPVs) between 76% and 99%, with the majority of the studies reporting PPVs over 90% [119].  These 

codes have also been used with high specificity in a number of studies [120, 121]. 

 Goff et al investigated the validity of the use of ICD 9 codes to identify hospitalizations with 

clinical evidence of CHF using data from the Corpus Christi Heart Project, a population-based 

surveillance program set up to investigate the natural history of CHD in non-Hispanic whites and 

Mexican Americans [119]. Eligible cases (n= 5083, mean age = 60.4, 37% female) were subjects 

admitted for possible acute myocardial infarction, aortocoronary bypass surgery, percutaneous 

transluminal coronary angioplasty, and related revascularization procedures.  Enrollment took place by 

monitoring admissions to special care units at the 7 hospitals in the Nueces County, TX. For all potential 

cases, data on sociodemographic factors, medical history, electrocardiograms, and hospital discharge 

diagnostic codes were collected. 

 The clinical documentation of CHF was considered the validation standard and was ascertained 

based on clinical evidence of acute CHF i.e. a composite variable including a) the presence of physician-

diagnosed acute CHF in the medical records and b) radiographic evidence of pulmonary edema [119]. 

The choice of the clinical diagnosis as the validation standard was based on the premise that the sources 

of the clinical evidence were the primary data in the medical record; whereas, the discharge diagnoses 

were applied based on a review of the record by the attending physician and/or other members of the 

health care team. Thus, the discharge diagnoses are a secondary source of data. 

 The sensitivity, specificity, PPV and NPV were examined 3 ICD discharge diagnosis code–based 

classification algorithms: (1) the presence of ICD code 428, (2) the presence of either ICD code 428 or 

402, and (3) the presence of any of the ICD codes listed in the table below: 

 The prevalence of a medical record documented episode of acute CHF was 27.1% when defined 

either by either criteria. The 2 sources of information agreed for 64.4% of the patients classified as having 

clinical evidence of an episode of acute CHF, 24.4% were classified on the basis of medical record 
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notations alone, and 11.2% were classified on the basis of data from the chest radiograph alone; the 

overall agreement of classification was 90.4% (κ = 0.72, P < 0.001). 

 The ICD code 428.x for HF, assigned as the primary or a secondary discharge diagnosis, was 

associated with 62.8% sensitivity, 95.4% specificity, 83.5% positive predictive value, 87.4% negative 

predictive value, and a 24.8% under-estimation of CHF-related hospitalizations. So while the PPV and 

NPV were good, there was an underestimation of the number of CHF cases. There were differences in 

performance across the age spectrum and Goff et al suggested that these performance statistics were 

likely to differ with those observed in a non-CHD population [119].  

 Fisher et al examined the accuracy of ICD 9 codes as performed in the 1985 National DRG 

Validation Study, which carefully re-abstracted and reassigned ICD-9-CM diagnosis and procedure codes 

from a national sample of 7050 medical records, to determine whether coding accuracy had improved 

since the Institute of Medicine studies of the 1970s and to assess the contemporaneous coding accuracy of 

specific diagnoses and procedures [124]. For the identification of CHF among Medicare enrollees, the 

validation standard were ICD 9 codes applied by accredited medical records technicians who were 

blinded to the diagnoses assigned by the hospitals. Ergo, this study could be viewed as an assessment of 

agreement between coders. The sensitivity of any of HF-related ICD codes 402.01, 402.11, 402.91, and 

428-428.9, was reported to be 85% (with a PPV of 87%) when the principal diagnosis was examined for 

the ability to detect the primary reason for admission and 89% when any of the diagnoses were examined 

for the ability to detect a case of HF identified and treated during the admission; specificity was 99% and 

95%, respectively. Thus, greater performance statistics were observed in this Medicare population using a 

different validation strategy.  

 In summary, the results of the validation studies suggest that reliance on ICD codes may 

underestimate the proportion of persons with HF particularly if there is over reliance on a primary claim 

for HF.  
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 In the proposed study, we would use both primary (i.e. code in the first position) and non-primary 

(i.e. code in any position) diagnoses of HF to boost our capture of HF cases. However, we do recognize 

that given there may be some misclassification of cases as non-cases; less so in the reverse direction since 

most studies have shown very high specificity. This may lead to an under-estimation of our incidence 

rates given the reduction of the numerator in the incidence rate calculation.  

 Also, we hypothesize that this misclassification would be non-differential across levels of our 

predictors of interest (race-sex categories; weight-height index and deprivation index). It is known that 

the presence (or absence thereof) of bias when we have non-differential misclassification of a binary 

disease outcome depends on whether we have incomplete ascertainment of outcome (<100% sensitivity) 

or persons without the outcome are misclassified (< 100%specificity) [125]. If the former, the risk ratio 

estimate remains unbiased but the absolute magnitude of the risk difference is biased towards the null by 

a factor equal to the probability of false-negatives. On the other hand if we have imperfect specificity but 

perfect sensitivity the risk ratio is biased towards the null; the risk difference is biased towards the null by 

a factor equal to the false-positive probability. With near-perfect specificity reported in most studies and 

lower sensitivity, there may be little bias in our effect estimates.   

3.7 Predictors and Covariates 

 During recruitment, SCCS participants provided information about demographics (race, sex and 

date of birth/age), socioeconomic characteristics (annual household income and level of education), 

personal and family medical history, anthropometric parameters (height, weight and waist circumference), 

lifestyle factors (tobacco and alcohol use history), marital status and total physical activity.  

 Participants also provided information on their residential address at the time of interview. The 

full address history for SCCS participants was then geocoded by a multi-stage process incorporating both 

batch and interactive processes. The Census 2000 area unit (state, county, census tract and ZIP Code 

Tabulation Areas – ZCTAs) for the geocoded address was determined by a spatial join to TIGER/Line® 

Shapefiles using ESRI ArcMap 10.0 software (ESRI, Redlands, CA). Geocoding of SCCS participants’ 
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addresses and linkage to geographic information datasets such as census tract data, allowed development 

of residence-specific characteristics (and environmental measures using information from external data 

resources) including an SCCS-derived deprivation index.  

 Census Tracts are small, relatively permanent statistical subdivisions of a county or equivalent 

entity that are updated by local participants prior to each decennial census as part of the Census Bureau's 

Participant Statistical Areas Program [126]. Census tracts generally have a population size between 1200-

8000 persons, with an optimum size of 4000.  A census tract usually covers a contiguous area; however, 

the spatial size of census tracts varies widely depending on the density of settlement.  Census tract 

boundaries are delineated with the intention of being maintained over a long time so that statistical 

comparisons can be made from census to census. Census tracts will be used as proxies for neighborhoods 

in these analyses. 

3.7.1 Weight-Height Index (W/Hn)  

 We would derive the appropriate weight-height index for the current cohort based on the 

coefficient of the log weight and log height variables in a bivariate Cox model for the log hazard of HF.  

As previously mentioned, SCCS participants reported their height and weight at baseline. These were 

validated using data from a random sample (n ≈ 14,000) of SCCS participants for whom measured weight 

and height were either a) abstracted from contemporaneous CHC medical records or b) obtained via 

measurements performed by trained interviewers using a SECA 703 digital scale and a stadiometer on the 

day of the interview [107]. There was a very high correlation (r > 0.95) between measured and self-

reported weight and height [18]. 

3.7.2 Deprivation Index  

 The SCCS-derived deprivation index is a clustering of social and economic indicators which 

reflect neighborhood deprivation and that have been linked to adverse health outcomes. It was constructed 

using principal components analysis. 
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 Principal components is a data reduction technique used to create orthogonal (uncorrelated) 

variables – from a group of possibly correlated predictors – that best explain the variation in the 

predictors or “x-space”. These orthogonal variables or eigenvectors are linear combinations of the original 

variables; they described how variables "contribute" to each factor axis and the eigenvalues of each 

orthogonal variable represents how much of the variance of the “X-space” is predicted by the variable in 

question. The variables are often scaled and centered before the computation of the principal components. 

The first principal component, PC1, is the linear combination of the standardized variables having 

maximum variance [127]. The second principal component (PC2) is the linear combination of predictors 

having the second largest variance such that PC2 is orthogonal to PC1. For a total of p predictors, the first 

k PCs (where k < p), will explain only part of the variance in the whole system of p predictors or the “x-

space” unless one or more of the original variables is exactly a linear combination of the remaining 

variables [127]. 

 To construct the PCs for neighborhood-deprivation index in SCCS, 11 census tract-level variables 

representing 4 main dimensions were considered: 

a) Social indicators – percentage of housing units with ≥ 1 occupant per room and percent female 

headed households with dependent children.  

b) Wealth and income – percentage of households with income < $30,000 per year, percentage of 

households with public assistance income, percentage of households with no car and median 

household value, percentage of occupied housing units with renter/owner’s costs > 50% of 

income and percentage of persons with income below the 1999 poverty status. 

c) Education – percentage of persons aged ≥ 25 that did not graduate high school  

d) Occupation – percentage of males and females who are unemployed and percentage males in 

professional occupations.  

 Only the first principal component was retained for the construction of the deprivation index 

given it explained most of the variability in the component measures [128].    
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3.7.3 Socioeconomic Status 

     a. Education: SCCS participants were placed in 8 categories according to their highest level of 

education attained ranging from less than high school to graduate-level degrees.   

     b. Income: Participants reported the range of their total household income for the year prior to 

enrollment and were placed in 5 categories ranging from less than $15 to over $100,000 or more. 

3.7.4 Covariates 

 Participants reported history of tobacco smoking as never, former and current and also in terms of 

number of cigarettes per day and alcohol use in number of drinks per day. The presence of traditional 

cardiovascular risk factors at baseline was based on a self-reported history of physician-diagnosed 

hypertension, diabetes mellitus, high cholesterol, as well as self-reported use of medications for 

hypertension, diabetes mellitus, or high cholesterol.  History of chronic disease occurrence for self-

reported conditions was confirmed via confirmation medical records for a small random sample of SCCS 

participants. Total physical activity was measured as total metabolic equivalent-hours per day spent doing 

light, moderate and strenuous occupational/household work and moderate and vigorous exercise. 

 3.7.4.1 Challenges related to covariate measurements 

  3.7.4.1.1 Determination of covariates at baseline 

  Demographic, anthropometric, and cardiovascular risk factors will be determined by self-report 

of a physician diagnosis and use of medications (for traditional cardiovascular risk factors).  While self-

report may be susceptible to recall and misclassification bias, these methods have been successfully used 

and validated in large epidemiologic cohorts. Many of the questions on the SCCS questionnaire were 

adapted from questionnaires used and validated in other settings, and a series of independent validation 

studies using biomarkers, repeat interviews or medical records have demonstrated the reliability of the 

questionnaire within the SCCS population for variables such as tobacco use status, self-reported diseases 

including diabetes, height and weight. 
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  3.7.4.1.2 Handling changes in covariates over time 

 Another major challenge we’re faced with is the temporal variations in the values of certain 

covariates during the follow-up period particularly smoking status, diabetes status and body weight. 

Ignoring these secular variations in the values of these key covariates could be a potential source of bias 

of our effect estimates and the direction of bias can be difficult to predict.  One option would be to model 

these variables as time-varying covariates (TVCs) in our multivariable Cox Models. There is follow-up 

data for close to 60% of the SCCS cohort. If this proportion is the same for our current sub-cohort (n = 

27078, identified based on our inclusion criteria for the current analyses) we could perform time-

dependent analyses for close to 16,000 persons.  

 However this poses another conundrum; namely: how do we guard against any potential selection 

bias if those with covariate data for these key time-varying covariates differ meaningfully from those 

without ( n ~ 10,000) on other important covariates such demographics and other lifestyle and clinical 

factors? Also, given our goals of investigating differences in measures of frequency (incidence rates) 

across groups defined by race and sex as well as examining potential departures from additivity of effects 

by race and sex, an analyses restricted to this smaller sample may lack sufficient power. Striking an 

optimum bias-precision trade-off in this approach would be crucial. One way of boosting the power and 

precision of these supplemental analyses using TVCs would be to perform multiple imputation of 

covariate values for study participants without covariate data at follow-up, if the data can be considered to 

be “missing at random”. By utilizing multiple imputation in an attempt to “preserve” information we 

would simultaneously reduce bias in estimates and provide estimates of the variance-covariance estimates 

of beta-hat penalized for imputation [127]. 

 Another important consideration in our supplemental analysis would be the selection of the 

functional form for modelling smoking status in relation to post-HF survival. As seen with previous 

studies between smoking status and survival different options e.g. using a step function for “current 

smoking” that is updated at every time point (1 if yes, 0 if no)  or using a time-lagged variable could yield 
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different results [129]. In the Coronary Artery Surgery Study (CASS) in which patients with mild angina 

were randomized to medical treatment or CABG, data on smoking status were collected every 6 months, 

and, for the first analysis, a step function (with 6 months intervals) was used [130]. Much to the surprise 

of the investigators, whilst not statistically significant, the estimated effect of current smoking on survival 

was positive i.e. protective. A closer look at the patient’s smoking histories revealed that most patients 

who died were in fact smokers but many had quit smoking at the last follow-up before their death. In 

several instances this was apparently explainable by hospitalization for a myocardial infarction or 

congestive heart failure and other compelling health reasons that prompted smoking cessation at last 

follow-up. So if smokers with a high risk of death quit just before dying we may have ended up with a 

scenario similar to confounding by indication. By using time-lagged covariates or percentage of time 

during follow-up for which the subject smoked the investigators found an inverse relationship (as 

expected) between smoking and survival. In order to adequately model the confounding effect of smoking 

in our proposed supplemental analyses, similar approaches would have to be employed. 

 Similarly, study participants could likely experience weight gains (or loss) during follow-up 

suggesting it may be appropriate to model weight-height index using TVCs vis-a-vis its relationship with 

post-HF mortality. However, persons who are subsequently diagnosed with HF may experience some 

unintentional weight loss before HF diagnosis (and lower BMI has been found to be associated with 

lower post-HF survival – the “obesity paradox”). Hence, would it be appropriate to utilize their weight 

measurements during follow-up that may be taken just before HF diagnosis? On the other hand if the 

baseline measure is used, would that be a true measure of the exposure experience for persons whose HF 

is diagnosed several years later after enrollment? It may be argued that both approaches have trade-offs 

that have to be weighed-up against each other. 

 Also we would have to give careful thought to our working hypothesis of the relationships 

between our time varying covariates as well as their relationship with HF incidence. For example let’s 

examine the hypothesized relationship between smoking, body weight (or weight-height index) and heart 
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failure risk. First, at baseline there could be an association between smoking status and weight-height 

index, based on a priori epidemiologic evidence suggesting weight loss among smokers. Second, persons 

who have lost weight while smoking may subsequently decide to either a) smoke even more in order to 

foster more weight loss or b) quit; having achieved their goal. The association could be conceived as 

shown below: 

  

 

 

 

 

 

 If these assumptions of the associations between these variables are true, then smoking status at 

baseline could be considered as a confounder of the association between W/Hn and HF risk; while 

smoking status at follow-up would be considered a mediator hence the term “time-varying confounder-

mediator” in some statistics literature. Adjusting for only the baseline or follow-up values of cigarette 

smoking will lead to biased estimates. One option would be to use marginal structural models to estimate 

the effect of weight-height index on HF risk by appropriate control for the effects of time-dependent 

confounders. In these models, the predictor – outcome association is estimated in a regression model that 

is weighted using the inverse probability of treatment weights [131]. 
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characteristics that can be additionally controlled for statistically, would mitigate potential confounding 

by socioeconomic factors of differences in HF risk and post-HF survival by race and sex. 

 However there is always the possibility of residual confounding due to unmeasured factors. One 

such unmeasured factor is the treatment for HF; the latter not be available via linkage with the Medicare 

part A/B carrier and outpatient base files. As an important predictor of heart failure survival, if there are 

unobserved differential patterns in HF treatment between groups defined by race and sex, these could 

confound our findings on the patterns of post-HF survival. Importantly, even if HF therapy didn’t differ 

across levels of any of our predictors of interest, being a strong predictor of the outcome, failing to adjust 

for it moves our hazard ratios towards the null. 

3.8 Statistical analyses 

3.8.1 Data Management and handling of “missingness” 

 Data management and quality control for the SCCS data is performed at the International 

Epidemiology Institute (IEI) which provides de-identified datasets to investigators upon approval of 

proposal applications.   

 Before performing substantive data analyses we will screen all variables for abnormal or 

inconsistent values (e.g. a male subject with an entry for menopausal status) and outliers.  Implausible 

values would be reported to the SCCS data management team at the International Epidemiology Institute 

for appropriate checks and if unresolved, the observation would be considered for case-wise deletion 

given that other measurements for that participant may have been incorrectly entered as well.   

 Proportion of missingness for each variable would be computed and reasons for missingness will 

be examined (e.g. missing value for number of cigarettes smoked per day because participant was a non-

smoker). Logistic models would be used to predict the probability of missingness for each predictor 

variable given the other covariables and the outcome. Patterns of simultaneously missing variables would 

be described; we would perform cluster analyses of the missing value status of all variables. Complete 
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cases would be examined in detail to investigate patterns in the probability of observations being a 

complete vs non-complete case.    

 Assuming data are missing at random we will perform multiple imputation for the missing values 

utilizing the aregImpute algorithm in the Hmisc package in R. The aregImpute algorithm takes all aspects 

of uncertainty in the imputations into account by using the bootstrap to approximate the process of 

drawing predicted values from a full Bayesian predictive distribution [132]. Different bootstrap resamples 

are used for each of the multiple imputations. A flexible additive model, is fitted on a sample with 

replacement from the original data and this model is used to predict all of the original missing and non-

missing values for the target variable, then the imputation models are run. By default, linearity is assumed 

for target variables (variables being imputed) and nk  = 3 knots are assumed for continuous predictors 

transformed using restricted cubic splines. AregImpute uses predictive mean matching with optional 

weighted probability sampling of donors rather than using only the closest match [132].  Predictive mean 

matching works for binary, categorical, and continuous variables without the need for iterative maximum 

likelihood fitting for categorical variables, and without the need for computing residuals or for curtailing 

imputed values to be in the range of actual data. 

 The missing data will be filled-in using these simulations a number of times to create that same 

number of complete datasets.  For each completed dataset, the regression model will be fitted and the 

regression coefficients will be averaged over multiple imputations.   

3.8.2 General analytic approach 

 Descriptive statistics (means and standard deviations for continuous variables and counts and 

percentages for categorical variables) would be computed for HF cases and non-cases.  

 To investigate the incidence of HF, duration of follow-up would be computed from date of entry 

into the SCCS until the date of the first diagnosis of HF, date of death, or December 31, 2010, whichever 

occurred first. Incidence rates (IR) of heart failure would be calculated for white women, black women, 
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white men and black men by dividing the number of HF cases by person-time of follow-up, and the rates 

would be presented per 1,000 person-years.  

 For analyses of post-HF survival among those with a diagnosis of incident HF, follow-up time 

was defined as time from HF diagnosis to death or December 31st 2010 whichever occurred first. Kaplan-

Meier survival curves would be plotted by race and sex. 

 In the multivariable models for both outcomes (HF incidence and post-HF survival), we would 

include indicator variables for white men, black women and black men, with white women as the 

reference group. The covariates would include: BMI, history of diabetes, hypertension, high cholesterol, 

MI/CABG or stroke, household income, education, cigarette smoking, alcohol intake, marital status and 

enrollment source (community health centers vs general population). Tests for interaction of 

anthropometric surrogates (W/Hn) and deprivation index with sex and race will be conducted by adding 

the corresponding cross-product terms (including the linear and non-linear spline terms) to the models.  

3.8.3 Selection of Candidate Confounders and spending degrees of freedom for 

covariates 

 3.8.3.1. General Approach to selecting confounders for the multivariable models. 

 1. Directed acyclic graphs. 

 For each aim we would first develop a conceptual model of the hypothesized relationships 

between the main predictor of interest (race, sex, weight-height index and deprivation index), the outcome 

(heart failure incidence or post-HF death) and the covariates that are potentially associated with both the 

exposure and the outcome based on prior epidemiologic evidence. 

 Second we would develop directed acyclic graphs for each association of interest in other to 

ascertain the full model required to properly adjust for confounding effects without opening backdoor 

paths by adjusting for colliders. 
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 However, in order to avoid compromising precision, we would choose a minimum sufficient set 

of candidate confounders that minimizes bias and maximizes precision hence optimizing the bias-

precision trade-off. Once the minimum sufficient set is fixed models would not be further simplified in 

order to avoid problems related to “phantom” degrees of freedom or potentially introducing bias into the 

models resulting from residual confounding or “incomplete conditioning”. Also we would choose the 

number of degrees of freedom to be spent on each variable based on its predictive promise in order to 

maximize precision.   

 Colliders would not be adjusted for in the models (unless we can close all open-paths which are 

opened by adjusting for these) and variables that are considered to be mediators (diabetes, dyslipidemia 

and hypertension, past history of myocardial infarction and stroke) would only be included subsequently 

during “mediation” analyses.  

 We would use this approach for all 4 aims as this ensures the best bias-precision trade-off. Other 

options are discussed below which we would not consider as each has shortcomings related to residual 

confounding and a less than optimal bias-precision trade-off. 

 2. Including covariates in the Full Model if they are found to be both associated with the exposure 

in the total population and the outcome in the referent group of the predictor of interest (the 

“unexposed”).   

 Hypothetically, for this approach, first any covariate that has a significant association with the 

predictor of interest (which varies from aims 1 through 4) and is also associated with the outcome (HF or 

post-HF death) would be included in the full model. Second, variable removal would be performed by 

backward elimination based on the variable which results in the least change in log hazard ratio of the 

exposure of interest when left out of the full model. The model is refitted and the variable with least 

change in log hazard ratio is removed again until all remaining variables result in a change of more than 

10% of the log hazard ratio. This method is not appropriate as it is likely to leave out some important 
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(albeit weaker) confounders; produce biased estimates of effect; problems related to phantom degrees of 

freedom subsists and the method is unlikely reproducible making results incomparable across studies. 

 3. Selecting covariates for inclusion in the full model based on whether they result in a 10% 

change in estimate (log hazard ratio) when added to a model containing only the predictor of interest.     

  3.8.3.2 Covariates for the association between race (and sex) and heart failure 

incidence (and post-HF survival).    

 Based on the hypothesized relationships between the variables we would use the following 

approach for adjusting for important covariates when examining the association between race, sex and HF 

incidence (and post-HF survival): 

 Three models would be constructed, with white women as the referent category: model 1 would 

include indicator variables for white men, black women and black men and age (restricted cubic splines 

with 4 knots); model 2 would be additionally adjusted for body mass index (restricted cubic splines with 4 

knots), and history of diabetes, hypertension, high cholesterol, MI/CABG or stroke (all yes/no); model 3 

would be additionally adjusted for the following covariates: household income (<$15000, $15000-$24999 

& ≥$25000); education (< high school, high school/vocational training/junior college, college degree or 

higher), smoking status (4 categories: never/former/current <19.5 pack-years/current ≥ 19.5 pack-years), 

alcohol intake (linear), total physical activity in MET-hours (linear & quadratic terms), marital status 

(married/living as married with partner, separated/divorced, widowed, single/never married) and 

enrollment source (community health centers vs general population). The knots for the splines would be 

equally spaced based on Harrell’s recommended percentile distribution.  

 3.8.3.3 Covariates for the association between neighborhood deprivation and HF incidence  

 Based on the conceptual model in figure 2 we would use the following approach for adjusting for 

important covariates when examining the association neighborhood deprivation index and HF incidence  
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 Four models would be constructed, model 1 would include deprivation index (1df), age (restricted 

cubic splines with 4 knots) race and sex and interaction terms between deprivation index and race and 

sex. Model 2 would be additionally adjusted for household income (<$15000, $15000-$24999 & 

≥$25000); education (< high school, high school/vocational training/junior college, college degree or 

higher). Model 3 would be additionally adjusted for body mass index (restricted cubic splines with 4 

knots), smoking status (4 categories: never/former/current <19.5 pack-years/current ≥ 19.5 pack-years), 

alcohol intake (linear), total physical activity in MET-hours (linear & quadratic terms) and history of 

diabetes, hypertension, high cholesterol, MI/CABG or stroke (all yes/no).  

 3.8.3.4 Covariates for the association between weight-height index and heart failure 

incidence (and post-HF survival) 

 Based on the DAG in figure 1 we would use the following approach for adjusting for important 

covariates when examining the association weight-height index and HF incidence/post-HF survival.  

 Three models would be constructed; model 1 would include weight-index (restricted cubic splines 

with 5 knots), age (restricted cubic splines with 4 knots), race and sex. Model 2 would be additionally 

adjusted for household income (<$15000, $15000-$24999 & ≥$25000); education (< high school, high 

school/vocational training/junior college, college degree or higher), smoking (4 categories: 

never/former/current <19.5 pack-years/current ≥ 19.5 pack-years) and alcohol intake (linear) and total 

physical activity in MET-hours (linear & quadratic terms). Model 3 would include model 2 variables + 

history of diabetes, hypertension, high cholesterol, MI/CABG or stroke (all yes/no); in order to 

investigate the effect of mediators. Interaction terms to test for additivity of effects by race and sex would 

be included. 

 3.8.3.5. Rationale for the number of degrees of freedom spent on certain covariates 

Annual household Income 
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 Over 68.6% of study participants in this SCCS sub-cohort (n= 27,078) have annual household 

income <$15,000, 17.8% have income between $15,000-24,999, 12.1% have income ≥ $25,000 and 1.5% 

have missing income data. Thus, using more than 3 categories for income, may raise statistical concerns 

related to sparse cells and model instability in the multivariable models. Income would therefore be 

modelled using 3 categories <$15,000, $15,000-$24,999 and ≥$25,000. However, we acknowledge that 

there may be some residual confounding and potential bias in our effect estimates. 

Level of Education 

 Education would be modelled using 3 categories defined as: < High school, High 

school/Vocational training/Junior college and College degree or higher. For this variable as well, we are 

making decisions based on a trade-off between spending degrees of freedom to adequately control for 

confounding and avoiding sparse cells for the higher educational levels. These categorization of the 

income and education variables would be used for all multivariable models in aims 1 to 4 

 Alternatively, we could choose our categories based on the functional form of the variable that 

best suits the “dose-response” relationship (using all 7 categories) with outcome (HF). The latter approach 

has obvious shortcomings related to decreased precision and data sparseness as earlier mentioned. 

Cigarette Smoking 

 In light of the fact that a) we’re principally interested in the smoking variable as a confounder 

rather than as a main predictor and b) the literature suggests that the effect of smoking on the occurrence 

of coronary heart disease (CHD) is much more preponderant than the progression towards HF (and hence 

it could be considered a “weak” confounder of the obesity-HF link), we would consider approaches which 

spend the least degrees of freedom in our multivariable models.  

 In all models, smoking would be modelled using 4 categories – never/former/current <19.5 pack-

years/current ≥ 19.5 pack-years; 19.5 the median pack-years among current smokers. 

Alternatively, we could consider the following approaches: 
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a) 3 categories for smoking status: never, former and current. 

b) Using these 3 categories and further splitting both former and current categories at specific cut-

points (e.g. the median) of pack-years (and the number of cigarettes smoked per day).  

c) A more parsimonious approach with 2 categories (never vs ever) + 1 continuous variable for 

cigarette-years (or pack years) [133]. By using this approach, the effect of pack-years would be 

estimated by comparing only subjects who had the same value for smoking status, that is, only 

smokers. In addition, one would center pack-years by subtracting the mean pack-years value 

from the original value for all smokers, while keeping 0 for never smokers. Such a linear 

transformation of pack-years does not change its estimated effect, but it allows the effect of ever 

smoking to compare average smokers with never smokers, since both groups are assigned a 

value of 0 for centered cigarette-years [133]. Without this transformation of cigarette-years, the 

estimated hazard ratio for ever smoking would be more difficult to interpret, as it would compare 

never smokers and hypothetical smokers with 0 cigarette years. Thus, the model using both 

variables provides interpretable estimates of both the qualitative effect of smoking status and the 

quantitative effects of smoking exposure.  

Sensitivity analyses would be performed to observe any changes in parameter estimates with varying 

functional forms of the smoking variable. 

 For all other covariates, in the final models, the degrees of freedom to be spent on each variable 

would be modified depending on the predictive “promise” of each variable based on the Spearman rank 

correlations (equivalent to the Kruskall Wallis test for categorical variables) between each covariate and 

the outcome without performing any hypothesis tests. 

3.8.4 Substantive analyses for Aim 1 

 To investigate differences in a) the incidence of HF and b) post-HF survival between groups 

defined by race and sex; more specifically: white women, black women, white men and black men. 
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 To investigate the incidence of HF, duration of follow-up would be computed from date of entry 

into the SCCS until the date of the first diagnosis of HF, date of death, or December 31, 2010, whichever 

occurred first. Incidence rates (IR) of heart failure were calculated for white women, black women, white 

men and black men by dividing the number of HF cases by person-time of follow-up, and the rates are 

presented per 1,000 person-years. The 95% confidence intervals (CI) would be calculated using the 

quadratic approximation to the Poisson log likelihood for the log-rate parameter [134]. To account for age 

differences between the demographic categories, age-standardized rates would be computed using the age 

distribution of the SCCS participants.  

 Multivariable Cox models would be utilized to test whether differences in crude IRs between 

categories defined by race and sex persisted after adjustment for baseline covariates. Three models would 

be constructed, with white women as the referent category: model 1 would include indicator variables for 

white men, black women and black men and age (restricted cubic splines with 4 knots). The covariates for 

models 2 and 3 and the cumulative number degrees of freedom spent for each model are tabulated below: 

 Covariates Functional form Degrees of 

freedom 
Model 1 Race and Sex 4 categories - white women (ref), white 

men, black women & black men. 

3 

 Age Restricted cubic splines (nk = 4) 3 

Model 2 Model 1 variables   

 BMI Restricted cubic splines (nk = 4) 3 

 History of diabetes, 

hypertension, high cholesterol, 

MI/CABG, stroke 

 

All (yes/no) 

5 

Model 3 Model 2 variables   

 Income (<$15000, $15000-24999 & ≥$25000) 2 

 Education < HS, HS/vocational training/junior 

college, college degree or higher) 

2 

 Smoking Status never/former/current <19.5 pack-

years/current ≥ 19.5 pack-years 

3 

 Alcohol intake Linear  1 

 Physical activity in met-hrs Linear + quadratic 2 

Total   24 
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The knots for the splines would be equally spaced based on Harrell’s recommended percentile distribution 

[127].  

 For analyses of post-HF survival among those with a diagnosis of incident HF (n = 4341), follow-

up time would be defined as time from HF diagnosis to death or December 31st 2010 whichever occurred 

first. When date of death is coincident with date of HF diagnosis, follow-up time was set to 0.5 days. We 

computed cumulative mortality for both HF cases and non-cases using contingency tables. Kaplan-Meier 

survival curves would be plotted by race and sex. Cox models would be used to investigate differences in 

cumulative hazard for death (all-cause mortality) using white women as the referent group. Model 1 

would comprise indicator variables for white men, black women and black men and age (restricted cubic 

splines with 4 knots). Variables included in models 2 and 3 would be the same as described previously. P-

values for race-by-sex interaction would be computed in models for HF incidence and post-HF survival. 

3.8.5. Substantive analyses for Aim 2 

 To investigate whether neighborhood characteristics (defined by a composite deprivation index) 

predict the risk of a) incident heart failure b) post-HF survival in SCCS beyond individual-level 

socioeconomic status (defined by household income and highest level of education attained).  

 In our data, individuals (level-1 units) are nested within census tracts (level-2 units) and the social 

and economic characteristics of the latter were used to assess neighborhood deprivation. Several options 

are available for modelling this data; each having important trade-offs.  

 3.8.5.1 Multilevel Modelling (MLM) 

   3.8.5.1.1 Multilevel Cox proportional hazards model 

 Given the nested structure of the data, a multilevel Cox proportional hazards model [135] could 

be considered appropriate to model the association between deprivation index measured at the census 

track level and log hazard of incident HF.  
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 Using MLM, we will test for the effects of neighborhood deprivation index (the level-2 predictor) 

on the risk of incident HF after adjustment for individual-level factors (level-1 predictors) including 

household income (and education) and demographics (age, gender and race). 

 The reduced-form of the multi-level model is as follows [135, 136]: 
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 Where hij(t) represents the hazard function, γ00(t) represents the intercept, and h0(t) represents the 

baseline hazard function whose distribution is unspecified. Time t is defined as the number of days from 

the participant’s entry into the study to the first diagnosis of incident heart failure. Wkj represents the 

neighborhood variable, level-2 predictor (deprivation index), and Xij represents the set of individual-level 

variables, level-1 predictors (age, gender, race, income and education). U0j represents the intercept 

random effect, and Rij represents the individual residual. The subscript j represents our level-2 units – the 

census tracts and the subscript i represents individuals. 

 The intra-class correlation coefficient would be computed (using the latent variable approach) and 

used to estimate the proportion of variance explained by differences at the census-tract level. This 

approach uses the closed form solution of the ICC in the multi-level logistic model to make an 

approximate estimation of the ICC in the multi-level Cox Proportional hazards model.  
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, where 00 = group-level variance [137].  

 Neighborhood deprivation index would be modeled as a continuous variable with 1df to preserve 

parsimony. In separate unadjusted multi-level models, we would also use restricted cubic splines (with 4 

knots) and quartiles to explore the functional form of the association between deprivation index and 

incident heart failure. 
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 In the minimally adjusted models we will estimate the age-, race- and sex-adjusted hazard ratios 

between neighborhood deprivation and incident heart failure. We would also investigate cross-level 

interactions between deprivation index and race and sex. Individual-level socioeconomic characteristics 

(income and education) will then be added.  

 All multilevel analyses will be performed using Multilevel modeling for Windows (MLwiN) 

version 1.10.0007, using the macro for the survival models [138, 139]. The first-order marginal quasi-

likelihood (MQL) estimation procedure would be used to obtain preliminary estimates then a predictive 

quasi-likelihood approach (PQL) (combined with a second-order Taylor expansion series) would be 

utilized to obtain more accurate estimates [136]. Effect estimates would be presented as hazard ratios with 

95% confidence intervals. 

 3.8.5.1.2 Other MLM Approaches 

 We would consider alternative approaches to fit the baseline hazard and examine differences in 

the estimates of our coefficients based on certain distributional assumptions.  

 First, we will consider fitting a multilevel Poisson regression model that assumes a piece-wise 

constant function for the distribution for the baseline hazard using STATA (version 13, Stata Corp, 

College Station, Texas, USA) .  

 Second, we would consider the “stgenreg” package by Crowther et al to build a multilevel 

exponential proportional hazards model [140]. For both models we would estimate the hazard ratios for 

deprivation index adjusting for individual level factors.  

 The advantage of the Poisson and parametric models is that they are more parsimonious, we 

obtain smooth hazard functions that can be estimated at any point and if our distributional assumptions 

are correct we may obtain more accurate parameter estimates. In recent years the incidence rate of heart 

failure in the US has been relatively constant with improved survival being the major driver of the 
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increased prevalence; so an exponential distribution (which assumes constant hazard throughout the study 

period) for the baseline hazard may not be  inappropriate.  

 3.8.5.1.3 Pitfalls of the MLM Approaches 

 While MLM approaches could be an acceptable fit given the hierarchical structure of our data, 

there are some limitations to their use in light of certain peculiarities of our data.  

 First, based on our preliminary analyses, there are 4666 census tracts in the data with the number 

of persons per census track varying between 1 and 21+. Ergo, there are many census tracks or level-2 

units with singleton data points and worse some with zero cases of HF. This may lead to a few problems 

including: 

a) In non-linear models, simulations done using multi-level logistic models have suggested that in 

cases of unbalanced data with a very small group size (⩽2), the group level variance components 

are over estimated by over 30%, with an upwards bias that is most accentuated when dealing 

with unbalanced data [141]. 

b) In addition, the fixed effect coefficients are biased up by as much as 16% [141]. 

c) There may be some issues related to stability of parameter estimates and convergence of the 

models especially in the light of singleton data points with zero cases in some census tracts.  

 In addition, based on the evidence from previous studies investigating the contribution of 

neighborhood effects on other HF and CVD outcomes [137], we do not anticipate a high ICC (> 0.5), 

hence having some very small clusters is not the ideal scenario for considering multi-level modeling. 

 MLM would be considered as 1 of the options for sensitivity analyses as this would allow an 

assessment of the robustness of our findings while using an approach with larger variances and more 

random components.  

 We will consider other modelling options that take into account the correlation of the data of the 

individuals nested within census tracks. However, we would still utilize MLM to compute the ICC as it is 
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provides information – the proportion of the variance that is explained by differences across 

neighborhoods – not captured by other methods.  

 3.8.5.2 Cox Proportional hazards model adjusting for Non-Independence using Huber-

White sandwich Estimators. 

 Given the non-independence of the data points within each census track, and the limitations of a 

multilevel modelling approach in this setting, our primary statistical analysis approach for aim 2 will be a 

Cox proportional hazards model that takes into account non-independence using the Huber-White cluster 

Sandwich estimator of variance, Hc  [127] whose general formula for linear and nonlinear models is given 

below:  

 

 Where I is the information criteria i.e. the second derivative of the log likelihood, log L [127]: 

 

and U is the score statistic i.e. the first derivative of log L [127] 

 

Log L is computed under the null hypothesis, Ho: equal sample proportions, P1 (s1/n1) = P2 (s2/n2) = P as: 

 

 In the specific case of the Cox Model, the cluster sandwich estimator, Hc uses special score 

residuals for U (the score vector) given there are no per-observation score contributions [127, 142]. 

 We would fit the following models successively: 
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 Covariates Functional form Degrees of freedom 

Model 1 Deprivation index Restricted cubic splines (nk = 4) 3 

Age Restricted cubic splines (nk = 4) 3 

Race and sex Race (whites vs blacks); Sex  2 

Model 2 Model 1 variables   

Income (<$15000, $15000-24999 & ≥$25000)  2 

Education < HS, HS/vocational training/junior 

college, college degree or higher) 

2 

Model 3 Model 2 variables   

 Smoking Status never/former/current <19.5 pack-

years/current ≥ 19.5 pack-years 

3 

 Alcohol intake Linear  1 

 BMI Restricted cubic splines (nk = 4) 3 

 History of diabetes, 

hypertension, high 

cholesterol, 

MI/CABG, stroke 

 

All yes/no 

 

5 

 Physical activity in 

met-hrs 

Linear + quadratic 2 

Total   26 

 

 We would equally present the ICC (computed using the latent variable approach) as it is provides 

information about the proportion of the variance that is explained by differences across neighborhoods 

which has a greater public health relevance. Hazard ratios for 1 interquartile range increase in deprivation 

index would equally be presented as these have an intuitive interpretation: i.e. the hazard of the event 

occurring for a typical person in the middle of the upper half of the distribution to the hazard of the event 

for a typical person in the middle of the lower half of the distribution. 

3.8.6 Substantive analyses for Aim 3 

 For aim 3, we would first derive the appropriate weight-height index (W/Hn) for the current 

cohort based on the coefficient of the log weight and log height variables in a bivariate Cox model for the 

log hazard of HF.  

 Hypothetically, by regressing a dependent variable, y on the natural logarithm of (W/Hn) i.e. 

log𝑒 𝑊 𝐻𝑛⁄   we get the following (natural logs are implied throughout so the e is dropped): 
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𝑦 = 𝑐 + log 𝑊 𝐻𝑛⁄ , assuming a slope of 1. 

𝑦 = 𝑐 + log 𝑊 + log 𝐻−𝑛  

𝑦 = 𝑐 + log 𝑊 − nlog 𝐻  

 So the absolute value of the ratio of the coefficients of log W and log H is n. 

 In the case specific case of the Cox Model for the log hazard of HF (with no intercept), when log 

hazard of HF is regressed on log W and log H we get 

𝑦 =  𝛼1 log 𝑊 + 𝛼2 log 𝐻  

Where y = log hazard (HF), 𝛼2 is negative if y and W/Hn are positively correlated and vice versa. 

And n would be given by |𝛼2 𝛼1⁄ | 

 Second, in separate Cox models, we would regress the restricted cubic splines of the natural log 

of the data-derived weight-height index and that of BMI on the log hazard of HF. Then, model fit 

statistics (LR chi square, χ² and AIC) would be used to compare the performance of the data-derived 

weight-index versus that of BMI in relation to a model utilizing restricted cubic splines of log weight and 

log height.  

 Third, we would run models with log BMI and log height to see if log height is still significant in 

a model containing BMI. We would also compare the effect size for a 1 interquartile range increase in 

BMI and the computed W/Hn index. 

 Fourth, we would use multivariable Cox models which take into account nonlinearity and non-

additivity to model a flexible dose-response association between the better performing weight-height 

index (W/Hn) (modelled using restricted cubic splines with 5 evenly spaced knots) and HF risk adjusting 

for relevant covariates in a sequential fashion as shown in the table below:   
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 Covariates Functional form Degrees of 

freedom 
Model 1 Weight-height index Restricted cubic splines (nk = 5) 4 

Age Restricted cubic splines (nk = 4) 3 

Race and sex Race (whites vs blacks); Sex 

(women vs Women) 

2 

 W/Hn×race terms  Linear + non-linear interaction 

terms. 

4 

Model 2 Model 1 variables   

Income (<$15000, $15000-24999 & 

≥$25000)  

2 

Education < HS, HS/vocational training/junior 

college, college degree or higher) 

2 

 Smoking Status never/former/current <19.5 pack-

years/current ≥ 19.5 pack-years 

3 

 Alcohol intake Linear  1 

 Physical activity in MET-hrs Linear + quadratic 2 

Model 3 Model 3 variables   

 History of diabetes, 

hypertension, high cholesterol, 

MI/CABG, stroke 

 

All yes/no 

 

5 

Total   28 

  

 Interactions between W/Hn and race as well as sex would be tested. Fourth, we would repeat the 

multivariable models for the relationship between waist circumference and HF. We would present plots of 

predicted probabilities (or HRs) of incident heart failure versus weight-height index stratified by race 

and/or sex. These analyses would be repeated using waist circumference. 

 For the analyses for WC, we have data for 3304 participants and there are 251 cases observed 

among these participants. Using the rule of thumb of 10-15 cases per df (or parameter to be estimated) 

that leaves us with 17-25 degrees of freedom allowed in our model. We would reduce the df spent on 

some less important covariates (based on prior literature). Below is the proposed df to be spent in the 

multivariable cox model for WC. Formal power calculations for WC are presented in section 4.9. 
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 Covariates Functional form Degrees of freedom 

Model 1 WC Restricted cubic splines (nk = 4) 3 

Age Restricted cubic splines (nk = 4) 3 

Race and sex Race (whites vs blacks); Sex  2 

Model 2 Model 1 variables   

Income (<$15000, ≥$15000)  1 

Education < HS, HS/vocational training/junior 

college, college degree or higher) 

2 

 Smoking Status Never, former and current  2 

 Alcohol intake Linear  1 

 Physical activity in MET-hrs Linear + quadratic 2 

Model 4 Model 3 variables   

 History of diabetes, 

hypertension, high 

cholesterol, MI/CABG, 

stroke 

 

All yes/no 

 

5 

Total   21 

 

 For the association between (W/Hn) and post-HF survival we would perform similar analyses as 

we did for the association with HF risk. Hazard ratios for 1 interquartile range increase in W/Hn, WC and 

BMI would equally be presented as these have an intuitive interpretation: i.e. the hazard of the event 

occurring for a typical person in the middle of the upper half of the distribution to the hazard of the event 

for a typical person in the middle of the lower half of the distribution. 

 For all our models we would verify the PHM assumption by utilizing Schoenfeld residuals from 

the Cox Models and log (-log) plots. Martingale residuals and dfbetas would be used to investigate the 

functional form of predictor variables and influential observations respectively. 
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3.9 Power Calculations 

 Based on our preliminary findings, the number of incident HF cases (identified in Medicare 

between March, 2002 and September, 2010) among SCCS participants in our sub cohort (N= 27078) are 

801, 511, 1940 and 1089 among white women (n =5252), white men (n=3202), black women (n=11688) 

and black men (n = 6936) respectively making a total of 4341 incident HF cases.       

3.9.1 Aim 1 

 We plan to investigate survival and mortality risk among SCCS participants diagnosed with 

incident HF by race and sex. There are close to 952 deaths amongst the 4341 incident HF cases.  

  3.9.1.1 Aim 1a 

 Using white women as the referent group, we can compute the power to investigate differences in 

log hazard for HF for white men, black men and black women at an alpha of 0.05 as follows: 

a. White women vs White men 

 Cumulative Incidence of CHF among whites = 0.155. Proportion of women among whites = 0.62. 

With P1 = 0.62, SD (P1) = √0.62*0.38 = 0.49. With number of events = 1312 and assuming an R-square 

of 0.20 for the correlation (to get conservative estimates of power; given that pseudo r-square from 

logistic regression was 0.10) with candidate covariates we get 97% power to detect a HR of 1.3 

 Power Events HR SD Alpha* R2 

0.77 1312 1.2 0.49 0.05 0.20 

0.97 1312 1.3 0.49 0.05 0.20 

0.99 1312 1.4 0.49 0.05 0.20 

0.99 1312 1.5 0.49 0.05 0.20 

0.99 1312 1.6 0.49 0.05 0.20 

0.999 1312 1.7 0.49 0.05 0.20 

0.999 1312 1.8 0.49 0.05 0.20 

0.999 1312 1.9 0.49 0.05 0.20 

0.999 1312 2.0 0.49 0.05 0.20 

 

b. White women vs Black men 

 Cumulative Incidence of CHF among these 2 groups = 0.155. Proportion of women = 0.43. With 

P1 = 0.43, SD (P1) = √0.43*0.57 = 0.495. With number of events = 1890 and assuming an R-square of 0.2 

for the correlation with candidate covariates we get 94% power to detect a HR of 1.2 
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 Power Events HR SD Alpha* R2 

0.94 1890 1.2 0.495 0.05 0.20 

0.99 1890 1.3 0.495 0.05 0.20 

0.99 1890 1.4 0.495 0.05 0.20 

0.999 1890 1.5 0.495 0.05 0.20 

0.999 1890 1.6 0.495 0.05 0.20 

0.99 1890 1.7 0.495 0.05 0.20 

0.999 1890 1.8 0.495 0.05 0.20 

0.999 1890 1.9 0.495 0.05 0.20 

0.999 1890 2.0 0.495 0.05 0.20 

 

 

c. White women vs. Black women 

 

Cumulative Incidence of CHF among these 2 groups = 0.162. Proportion of white women = 0.31. With P1 

= 0.31, SD (P1) = √0.31*0.69 = 0.46. With number of events = 2741 and assuming an R-square of 0.2 for 

the correlation with candidate covariates we get 94% power to detect a HR of 1.2 

 Power Events HR SD Alpha* R2 

0.98 2741 1.2 0.495 0.05 0.20 

0.99 2741 1.3 0.495 0.05 0.20 

0.999 2741 1.4 0.495 0.05 0.20 

0.999 2741 1.5 0.495 0.05 0.20 

0.999 2741 1.6 0.495 0.05 0.20 

0.999 2741 1.7 0.495 0.05 0.20 

0.999 2741 1.8 0.495 0.05 0.20 

0.999 2741 1.9 0.495 0.05 0.20 

0.999 2741 2.0 0.495 0.05 0.20 

 

 

 3.9.1.2 Aim 1b 

 Again, with white women as the referent group, we would compute the power to investigate 

differences in log hazard for all-cause mortality among HF cases for white men, black men and black 

women at an alpha of 0.05 as follows: 

a. White women vs White men, with HF 

 Cumulative Incidence of death among white HF cases = 0.226. Proportion of women among 

white cases = 0.61. With P1 = 0.61, SD (P1) = √0.61*0.39 = 0.49. With number of deaths = 296 and 

assuming an R-square of 0.10 for the correlation with candidate covariates we get 90% power to detect a 

HR of 1.5 
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 Power Events HR SD Alpha* R2 

0.31 296 1.2 0.49 0.05 0.10 

0.55 296 1.3 0.49 0.05 0.10 

0.78 296 1.4 0.49 0.05 0.10 

0.90 296 1.5 0.49 0.05 0.10 

0.96 296 1.6 0.49 0.05 0.10 

0.99 296 1.7 0.49 0.05 0.10 

0.997 296 1.8 0.49 0.05 0.10 

0.999 296 1.9 0.49 0.05 0.10 

0.999 296 2.0 0.49 0.05 0.10 

 

b. White women vs Black men, with HF 

 Cumulative mortality among these 2 groups = 0.242. Proportion of women = 0.42. With P1 = 

0.42, SD (P1) = √0.42*0.58 = 0.49. With number of events = 457 and assuming an R-square of 0.1 for the 

correlation with candidate covariates we get 94% power to detect a HR of 1.2 

 Power Events HR SD Alpha* R2 

0.45 457 1.2 0.493 0.05 0.10 

0.75 457 1.3 0.493 0.05 0.10 

0.92 457 1.4 0.493 0.05 0.10 

0.98 457 1.5 0.493 0.05 0.10 

0.997 457 1.6 0.493 0.05 0.10 

0.99 457 1.7 0.493 0.05 0.10 

0.999 457 1.8 0.493 0.05 0.10 

0.999 457 1.9 0.493 0.05 0.10 

0.999 457 2.0 0.493 0.05 0.10 

 

 

c. White women vs. Black women, with HF 

 

Cumulative Incidence of death among these 2 groups = 0.178. Proportion of white women = 0.29. With 

P1 = 029, SD (P1) = √0.29*0.71 = 0.45. With number of events = 487 and assuming an R-square of 0.1 for 

the correlation with candidate covariates we get 89% power to detect a HR of 1.4 
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 Power Events HR SD Alpha* R2 

0.40 487 1.2 0.45 0.05 0.10 

0.70 487 1.3 0.45 0.05 0.10 

0.89 487 1.4 0.45 0.05 0.10 

0.97 487 1.5 0.45 0.05 0.10 

0.993 487 1.6 0.45 0.05 0.10 

0.999 487 1.7 0.45 0.05 0.10 

0.999 487 1.8 0.45 0.05 0.10 

0.999 487 1.9 0.45 0.05 0.10 

0.999 487 2.0 0.45 0.05 0.10 

3.9.2 Aim2 

 3.9.2.1 Power for main analyses 

 a) Association between deprivation index and HF risk 

 We would be investigating the association between deprivation index and the log hazard of HF. 

neighborhood deprivation index data was available for 26818 persons and 4300 cases were observed 

among these participants; hence the probability of an event, Pr (E) = 0.1603. We obtained the r-squared 

for the association between deprivation index and all the other covariates using a multiple linear 

regression model; R2 = 0.2307. We then computed the power to detect a range of hazard ratios for a 1 

standard deviation increase in deprivation index for alpha = 0.05 and got over 99% power to detect a HR 

of 1.1. These estimates may be inflated considering our data are clustered in census tracks and our SEs are 

larger than would be otherwise. 

Power E HR SD Alpha* Pr(E) R2 

0.999 4300 1.1 1 0.05 0.1603 0.2307 

0.999 4300 1.2 1 0.05 0.1603 0.2307 

0.999 4300 1.3 1 0.05 0.1603 0.2307 

0.999 4300 1.4 1 0.05 0.1603 0.2307 

0.999 4300 1.5 1 0.05 0.1603 0.2307 

0.999 4300 1.6 1 0.05 0.1603 0.2307 

0.999 4300 1.7 1 0.05 0.1603 0.2307 

0.999 4300 1.8 1 0.05 0.1603 0.2307 

0.999 4300 1.9 1 0.05 0.1603 0.2307 

0.999 4300 2 1 0.05 0.1603 0.2307 

 

 b) Association between deprivation index and post-HF all-cause mortality 
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 We would also be investigating the association between deprivation index and the log hazard of 

all-cause mortality among HF cases. Neighborhood deprivation index data is available for 4300 cases and 

940 deaths were observed among these participants; hence the probability of death, Pr (E) = 0.2186. We 

obtained the r-squared for the association between deprivation index and all the other covariates using a 

multiple linear regression model; R2 = 0.2179. We then computed the power to detect a range of hazard 

ratios for a 1 standard deviation increase in deprivation index for alpha = 0.05 and got over 99% power to 

detect a HR of 1.1. In truth, our power estimates would be a little more modest given we have clustered 

data and our SEs are larger than would be otherwise. 

Power E HR SD Alpha* Pr(E) R2 

0.999 940 1.1 1 0.05 0.2186 0.2179 

0.999 940 1.2 1 0.05 0.2186 0.2179 

0.999 940 1.3 1 0.05 0.2186 0.2179 

0.999 940 1.4 1 0.05 0.2186 0.2179 

0.999 940 1.5 1 0.05 0.2186 0.2179 

0.999 940 1.6 1 0.05 0.2186 0.2179 

0.999 940 1.7 1 0.05 0.2186 0.2179 

0.999 940 1.8 1 0.05 0.2186 0.2179 

0.999 940 1.9 1 0.05 0.2186 0.2179 

0.999 940 2 1 0.05 0.2186 0.2179 

 

 3.9.2.2 Power for multilevel modelling 

The power for the multi-level analysis was estimated using simulations in MLPowSim. Based on our 

preliminary analyses we have over 4666 census tracts covered by the 27,078 participants included in our 

ancillary study. So we estimated that that we have on average 6 persons per census track. For our 

calculations we used a range of 5-7 persons per census track and 4000-4250 census track in order to be 

conservative in our power estimates. We used a Poisson distribution for the baseline hazard, standard 

normal distribution for the deprivation index (mean =0, variance =1) and a beta coefficient of 0.1 per unit 

change in deprivation index with an intercept of 0.1. We performed 50 simulations at alpha = 0.05 

specifying a penalized quasi-likelihood (PQL) approach for estimating our regression coefficients and we 

got over 99% power for all scenarios.  
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# of Census 

tracts 

n per 

census tract 

Power for 

Intercept 

Power for 

Slope 

4000 5 0.99 0.99 

4000 7 0.99 0.99 

4050 5 0.99 0.99 

4050 7 0.99 0.99 

4100 5 0.99 0.99 

4100 7 0.99 0.99 

4150 5 0.99 0.99 

4150 7 0.99 0.99 

4200 5 0.99 0.99 

4200 7 0.99 0.99 

4250 5 0.99 0.99 

4250 7 0.99 0.99 

 

 

3.9.3 Aim3 

 3.9.3.1 BMI (or W/Hn) and HF Incidence 

 For this aim, we’re investigating the association between BMI (or W/Hn) and the log hazard of 

HF. Weight and height data was available for 26713 persons and 4268 cases were observed among these 

participants; hence the probability of an event, Pr (E) = 0.1598. We obtained the r-squared for the 

association between BMI and all the other covariates using a multiple linear regression model; R2 = 

0.2088. We then computed the power to detect a range of hazard ratios for a 1 standard deviation increase 

in BMI for alpha = 0.05 and got over 99% power to detect a HR of 1.1. 

Power E HR SD Alpha* Pr(E) R2 

0.999 4268 1.1 1 0.05 0.1598 0.2088 

0.999 4268 1.2 1 0.05 0.1598 0.2088 

0.999 4268 1.3 1 0.05 0.1598 0.2088 

0.999 4268 1.4 1 0.05 0.1598 0.2088 

0.999 4268 1.5 1 0.05 0.1598 0.2088 

0.999 4268 1.6 1 0.05 0.1598 0.2088 

0.999 4268 1.7 1 0.05 0.1598 0.2088 

0.999 4268 1.8 1 0.05 0.1598 0.2088 

0.999 4268 1.9 1 0.05 0.1598 0.2088 

0.999 4268 2 1 0.05 0.1598 0.2088 
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 3.9.3.2 Waist circumference and HF Incidence 

 Waist circumference data was available for 3395 persons and 251 cases were observed by the end 

of follow-up; hence the probability of an event, Pr (E) = 0.0739. We obtained the r-squared for the 

association between WC and all the other covariates using a multiple linear regression model; R2 = 

0.1253. We then computed the power to detect a range of hazard ratios for a 1 standard deviation increase 

in WC given E = 251, N= 3395 and alpha = 0.05 and got at least 97% power to detect a HR of 1.3.  

Power E HR SD Alpha* Pr(E) R2 

0.29 251 1.1 1 0.05 0.0739 0.1253 

0.77 251 1.2 1 0.05 0.0739 0.1253 

0.97 251 1.3 1 0.05 0.0739 0.1253 

0.99 251 1.4 1 0.05 0.0739 0.1253 

0.99 251 1.5 1 0.05 0.0739 0.1253 

1 251 1.6 1 0.05 0.0739 0.1253 

1 251 1.7 1 0.05 0.0739 0.1253 

1 251 1.8 1 0.05 0.0739 0.1253 

1 251 1.9 1 0.05 0.0739 0.1253 

1 251 2 1 0.05 0.0739 0.1253 

  
 3.9.3.3 BMI (or W/Hn) and post-HF survival 

 Weight and height data was available for 4268 HF cases and 934 deaths were recorded among 

these participants; hence the probability of death, Pr (E) = 0.2188. We obtained the r-squared for the 

association between BMI and all the other covariates using a multiple linear regression model; R2 = 

0.2085. We then computed the power to detect a range of hazard ratios for a 1 standard deviation increase 

in BMI for alpha = 0.05 and got over 99% power to detect a HR of 1.2.  

Power E HR SD Alpha* Pr(E) R2 

0.736 934 1.1 1 0.05 0.2188 0.2085 

0.999 934 1.2 1 0.05 0.2188 0.2085 

0.999 934 1.3 1 0.05 0.2188 0.2085 

0.999 934 1.4 1 0.05 0.2188 0.2085 

0.999 934 1.5 1 0.05 0.2188 0.2085 

0.999 934 1.6 1 0.05 0.2188 0.2085 

0.999 934 1.7 1 0.05 0.2188 0.2085 

0.999 934 1.8 1 0.05 0.2188 0.2085 

0.999 934 1.9 1 0.05 0.2188 0.2085 

0.999 934 2 1 0.05 0.2188 0.2085 
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Abstract 

Background  

There is a paucity of data regarding HF incidence among low-income and minority populations. Our 

objective was to investigate HF incidence and post-HF survival by race and sex among low-income adults 

in the southeastern US. 

Methods  

Participants were 27,078 white and black men and women enrolled during 2002-2009 in the Southern 

Community Cohort Study (SCCS) who had no history of HF and were receiving Centers for Medicare or 

Medicaid services (CMS).  Incident HF diagnoses through December 31, 2010 were ascertained using 

ICD-9 codes 428.x via linkage with CMS research files.  

Results 

Most participants were black (68.8%), women (62.6%) and earned < $15,000/year (69.7%); mean age 

was 55.5 (10.4) years. Risk factors for HF were common: hypertension (62.5%), diabetes (26.5%), 

myocardial infarction (8.6%) and obesity (44.8%).  Over a median follow-up of 5.2 years, 4,341 

participants were diagnosed with HF.  The age-standardized incidence rates were 34.8, 37.3, 34.9 and 

35.6 PY/1000 in white women, white men, black men and black women, respectively, remarkably higher 

than previously reported. Among HF cases, 952 deaths occurred over a median follow-up 2.3 years. Men 

had lower survival; hazard ratios and 95% confidence intervals were 1.63 (1.27-2.08), 1.38 (1.11-1.72) 

and 0.90 (0.73-1.12) for white men, black men and black women compared with white women.  

Conclusions 

In this low-income population, HF incidence was higher for all race-sex groups than previously reported 

in other cohorts. The SCCS is a unique resource to investigate determinants of HF risk in a segment of the 

population underrepresented in other existing cohorts.  
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Introduction 

 There are over 26 million persons living with heart failure (HF) worldwide [1].  In the US, over 

5.7 million adults (≈ 2.5% of the US adult population) are estimated to have HF [2].  About half of 

persons diagnosed with HF die within 5 years and the estimated total costs of HF in the US exceeded $30 

billion in 2012 [3, 4].  Several established cardiovascular disease (CVD) cohorts have investigated HF 

incidence and mortality, including the Framingham Heart Study (FHS), Cardiovascular Health Study 

(CHS), Multi-ethnic Study of Atherosclerosis (MESA) and Atherosclerosis Risk in Communities (ARIC) 

[5-8]. The FHS included predominantly white individuals.  Other cohorts, including CHS, MESA, and 

ARIC, enrolled multi-ethnic middle-class populations from select communities and their relatively small 

sample sizes limited assessment of differential risk patterns between demographic groups defined by both 

race and sex.  

 While data from these previous cohorts suggest differences in HF incidence rates and post-HF 

survival between population subgroups, knowledge gaps persist regarding the magnitude and direction of 

these differences, particularly in multi-ethnic low income populations with high burden of CVD risk 

factors.  The prospective Southern Community Cohort Study (SCCS) provided a valuable opportunity to 

investigate differences in the incidence of HF as well as in post-HF survival between groups defined by 

race and sex: white women, black women, white men and black men [18].  

 

 

 

 

 

 



101 
 

Methods 

Study sample 

 The SCCS is a prospective cohort study designed to investigate the incidence of cancer and other 

chronic diseases, including differential patterns by race and sex, in a low-income under-insured 

population underrepresented in previous studies.  Between 2002 and 2009, the SCCS enrolled 

approximately 86,000 adults (≈ two-thirds black) aged 40-79 living in 12 southeastern states to 

investigate various chronic disease outcomes [18].  Approximately 86% of participants were recruited at 

community health centers (CHC), which provide primary health and preventive care services for low-

income populations so that the cohort is made up of a segment of society (minority, poor, rural) seldom 

included in sizeable numbers in previous cohort studies; particularly those investigating CVD [18, 20].  

The remaining 14% were recruited via mail-based general population sampling.  Data on socioeconomic, 

demographic (including self-reported race), lifestyle, and anthropometric characteristics, as well as 

personal medical history, were ascertained at cohort enrollment via standardized computer-assisted 

personal interviews for CHC participants, and via self-administered mailed questionnaire for general 

population participants. Detailed description of SCCS methods has been previously published [18, 20]. 

SCCS participants (n = 27,078) included in the current analyses were individuals aged ≥ 65 years 

(n = 7001) at cohort enrollment, or persons < 65 years (n = 20,077) at enrollment who: a) reported being 

covered by Medicaid (which provides medical benefits to low-income adults and uninsured persons) on 

the baseline questionnaire; or b) reported being covered by Medicare (the primary health insurance 

program for persons aged ≥ 65) on the baseline questionnaire; or c) did not report Medicare or Medicaid 

on the baseline questionnaire but had a Centers for Medicare and Medicaid Services (CMS) claim within 

90 days of being enrolled in SCCS.  The restriction to these groups ensures that participants would likely 

have continuous coverage in Medicare and/or Medicaid from the time of SCCS enrollment to the end of 

the follow-up period (December 31st, 2010), for the ascertainment of incident HF events.  Analyses were 
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restricted to self-reported African American or black and non-Hispanic white SCCS participants, since 

too few persons in other racial groups were available for stable statistical analysis. 

Outcome ascertainment 

 Heart failure events were ascertained via linkage of the SCCS cohort with CMS Research 

Identifiable Files (which include Medicare institutional and non-institutional files, and the Medicaid 

Analytic Extract files).  Incident HF was defined as the first occurrence of a medical claim with an 

International Classification of Diseases, 9th revision, discharge code of 428.x (428.0 to 428.9) within the 

Medicare institutional (Medicare Provider Analysis and Review, MEDPAR, which includes inpatient, 

outpatient and skilled nursing facility base files), Part B carrier (includes non-institutional physician 

services and durable medical equipment), or outpatient-based claims files or the Medicaid Analytic 

Extract (MAX) Inpatient and Other Services claims files, from the date of SCCS enrollment through 

December 31st, 2010. Detailed description of the CMS research files are published elsewhere [143].   

 Deaths, including dates and causes of death, were ascertained via linkage of the SCCS cohort 

with both the Social Security Administration (SSA) vital status service for epidemiologic researchers and 

the National Death Index (NDI) through December 31st, 2010. Both NDI and SSA are well-established 

and reliable means of identifying deaths in the US, and are expected to capture nearly all deaths [51, 122, 

123]. 

Statistical Analysis 

 Descriptive statistics (means and standard deviations for continuous variables and counts and 

percentages for categorical variables) were computed for all study participants by race and sex.  

 To investigate the incidence of HF, duration of follow-up was computed from date of entry into 

the SCCS until the date of the first diagnosis of HF, date of death, or December 31st, 2010, whichever 

occurred first.  Incidence rates (IR) of heart failure were calculated for white women, black women, white 

men and black men by dividing the number of HF cases by person-time of follow-up, presented per 1,000 
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person-years. The 95% confidence intervals (CI) were calculated using the quadratic approximation to the 

Poisson log likelihood for the log-rate parameter [134].  To account for age differences between the 

demographic categories, age-standardized rates were computed using the overall age distribution of the 

SCCS participants.  

 Multivariable Cox models were utilized to test whether differences in crude IRs between 

categories defined by race and sex persisted after adjustment for baseline covariates.  Three models were 

constructed, with white women as the referent category: model 1 included indicator variables for white 

men, black women and black men and age (restricted cubic splines with 4 knots); model 2 additionally 

adjusted for body mass index (restricted cubic splines with 4 knots), and history of diabetes, hypertension, 

high cholesterol, MI/CABG or stroke (all yes/no); model 3 additionally adjusted for the following 

covariates: annual household income (<$15,000; $15,000-$24,999; ≥$25,000); education (< high school, 

high school/vocational training/junior college, college degree or higher), smoking (never, former, current 

<19.5 pack-years, current ≥ 19.5 pack-years, 19.5 being the median pack-years among current smokers), 

alcohol intake (linear and quadratic term), marital status (married/living as married with partner, 

separated/divorced, widowed, single/never married) and enrollment source (community health centers vs 

general population). Knots were placed at quantiles of covariate distributions, equally spaced in sample 

size [144].  

 For analyses of post-HF survival among those with a diagnosis of incident HF, follow-up time 

was defined as time from HF diagnosis to death or December 31st 2010 whichever occurred first.  When 

date of death was coincident with date of HF diagnosis, follow-up time was set to 0.5 days.  We 

computed cumulative mortality for both HF cases and non-cases using contingency tables. Age-adjusted 

estimates of the survivor functions (adjusted to the mean age of SCCS participants diagnosed with HF) 

were obtained from a stratified Cox model fit and plotted for all race-sex groups.  Cox models were used 

to investigate differences in cumulative hazard for death (all-cause mortality) using white women as the 

referent group.  Model 1 comprised indicator variables for white men, black women and black men and 
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age (restricted cubic splines with 4 knots).  Variables included in models 2 and 3 are the same as 

described previously.  P-values for race-by-sex interaction were computed in models for HF incidence 

and post-HF survival; and a p-value < 0.05 was considered statistically significant.  Model assumptions 

were verified using Schoenfeld residuals and log (-log) plots. 

 All analyses were performed using STATA (version 12.1, Stata Corp, College Station, Texas, 

USA) and the ‘rms’ package for R version 3.1.1 (R Core Team 2014) [144, 145]. 

Ethics statement 

 SCCS participants provided written informed consent, and protocols were approved by the 

Institutional Review Boards of Vanderbilt University Medical Center and Meharry Medical College. 

 

Results 

 Among the 27,078 SCCS participants included in this study, 68.8% were black, 62.6% were 

women, 69.7% had annual household income < $15,000 and 38.4% had less than a high school education.  

The mean (SD) age at enrollment was 55.5 (10.4) years. At baseline, risk factors for HF were common: 

hypertension (62.5%); diabetes (26.5%); myocardial infarction (8.6%); and obesity, BMI ≥ 30 kg/m2 

(44.8%) (Table 1).  

 Overall, white men were older and had the highest prevalence of MI and stroke at baseline (Table 

1).  In contrast, black women were more likely to be obese at baseline and report a history of diabetes and 

hypertension.   
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Table 1. Comparison* of baseline characteristics of 27, 078 SCCS participants who were receiving 

Medicare or Medicaid during follow-up between 2002 and 2010, according to race and sex  

 Overall  

N = 27,078 

White Women 

n = 5,252 

White Men  

n = 3,202 

Black Women  

n = 11,688 

Black Men  

n = 6,936 

Age (SD), years 55.5 (10.4) 57.7 (10.6)  58.7 (10.5) 54.4 (10.4) 54.3 (9.5)  

Age Categories %      

  40-54 51.2 41.9 38.0 56.1 56.1 

  55-64 22.9 23.6 22.7 21.5 24.9 

  ≥ 65 25.9 34.5 39.3 22.4 18.9 

BMI (kg/m2) (SD) 30.4 (7.8) 30.7 (8.2) 28.7 (6.4) 32.4 (8.2) 27.7 (6.1) 

BMI Categories %       

   < 18.5 1.7 2.2 1.1 1.4 2.0 

   18.5 - < 25.0 24.0 23.6 28.2 16.5 35.0 

   25 - < 30.0 29.5 28.0 36.4 25.4 34.3 

   ≥ 30.0 44.8 46.2 34.3 56.7 28.8 

History of MI % 8.6 8.6 17.7 6.1 8.6 

History of Stroke % 9.6 10.0 10.8 9.1 9.4 

Diabetes % 26.5 24.3 23.8 29.8 23.8 

Hypertension % 62.5 57.0 56.7 67.6 60.5 

High Cholesterol % 39.5 49.5 47.1 38.0 31.0 

Education %      

 < High school (HS) 38.4 32.0 29.0 40.4 44.2 

   HS/Junior college/VT  53.1 58.7 53.1 52.1 49.0 

   ≥ College degree  8.5 9.4 17.9 6.5 6.8 

Annual Income < $15,000, % 69.7 65.9 53.4 74.5 71.8 

Smoking %      

   Never 34.7 37.0 21.7 45.1 21.3 

   Former 25.3 26.8 40.4 20.5 25.3 

   Current  40.1 36.2 37.9 34.5 53.4 

Alcohol Intake %      

  0 drink per day 54.9 66.8 48.8 61.0 38.5 

>0-2 drinks per day 33.2 29.7 35.6 31.4 37.6 

>2 drinks per day 11.9 3.5 15.6 7.5 23.9 

* All comparisons between demographic groups were significant (p=0.02 for stroke; p<0.0001 for all other baseline 

variables).  

VT: Vocational Training; MI: Myocardial Infarction; SD: Standard Deviation 
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HF incidence 

 Over a median (25th, 75th percentile) follow-up time of 5.2 (3.1, 6.7) years, 4,341 participants 

(16%) developed incident HF (IR: 32.8/1000 person-years; 95% CI: 31.8-33.8).  White men had the 

highest age-standardized IR, 37.3/1000 PY, compared with 34.8, 34.9 and 35.6 in white women, black 

men and black women, respectively (Table 2). 

 In models adjusted for age and other risk factors for HF, black women had a significantly lower 

risk of HF when compared with white women [HR=0.89; 95% CI: 0.82-0.98].  The risk of HF was similar 

among white men (HR=1.09; 95% CI: 0.97-1.23) and black men (HR=1.04; 95% CI: 0.94-1.15) 

compared with white women (Table 2).  There was no evidence of race-by-sex interaction [p = 0.22]. 

Table 2. Risk of incident heart failure among participants in the Southern Community Cohort Study, 

overall and stratified by race and sex 

 

Model 1: Includes age (restricted cubic splines with 4 knots), race and sex. Model 2: Model 1 + BMI (restricted 

cubic splines with 4 knots), history of diabetes, hypertension, high cholesterol, MI and stroke (all yes/no). Model 3: 

Model 2 + annual household income (<$15000, $15000-$24999 & ≥$25000), education (< high school, high 

school/vocational training/junior college, college degree or higher), smoking (never, former, current < 19.5 pack-

years, current ≥ 19.5 pack-years) and alcohol intake (linear and quadratic term), marital status (married/living as 

married with partner, separated/divorced, widowed, single/never married) and enrollment source (community health 

centers vs general population). P-value for race×sex interaction = 0.22. CI: Confidence Interval 

 Overall 
N = 27,078 

White Women  
n = 5,252 

White Men 
n = 3,202  

Black Women 
n = 11,688 

Black Men 
n = 6,936 

Incident HF cases (n) 4,341 801 511 1,940 1,089 

Person-Years (PY) 132,500 23,339 13,934 60,639 34,589 

Cumulative  

Incidence (%) 
16.0 15.3 16.0 16.6 15.7 

Incidence Rate/1000PY (95% CI)  

Crude 32.8 (31.8, 33.8) 34.3 (32.0, 36.8) 36.7 (33.6, 40.0) 32.0 (30.6, 33.4) 31.5 (29.7, 33.4) 

Age-adjusted 35.1 (34.1, 36.2) 34.8 (32.4, 37.2) 37.3 (34.0, 40.6) 35.6 (33.9, 37.2) 34.9 (32.7, 37.1) 

Hazard Ratio (95% CI) 

Model 1  1.00 1.04 (0.93, 1.16) 1.02 (0.94, 1.11) 0.99 (0.91, 1.09) 

Model 2  1.00 1.02 (0.91, 1.14) 0.91 (0.83, 0.99) 1.06 (0.97, 1.17) 

Model 3  1.00 1.09 (0.97, 1.23) 0.89 (0.82, 0.98) 1.04 (0.94, 1.15) 
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Post-HF survival 

 Among the 4,341 individuals who developed incident HF, 952 died (cumulative mortality = 

21.9%) over a median (25th, 75th percentile) post-HF follow-up time of 2.3 (0.9, 4.2) years (Table 3).  

Men had higher percent mortality than women (29% vs. 18%), with little difference by race.  In persons 

without HF (n= 22,737), there were 1,929 deaths, corresponding to a percent mortality of 8.5%.  

 Figure 1 shows age-adjusted survival curves for persons diagnosed with HF stratified by race and 

sex.  The 5-year post-HF survival probability was significantly lower among white men (0.55; 95% CI: 

0.49-0.61) and black men (0.64; 95% CI: 0.60-0.67) compared with white women (0.73; 95% CI: 0.69-

0.78) and black women (0.77; 95% CI: 0.74-0.79), respectively [p < 0.0001].  Racial differences within 

sex groups were not statistically significant. Similar patterns were observed for 1-year and 3-year survival 

probabilities.  

 Compared with white women, the risk of death was 60% (95% CI: 27%-202%) higher in white 

men and 35% (95%CI: 9%-65%) higher in black men in analyses adjusted for age, BMI, hypertension, 

diabetes, high cholesterol, past history of MI/CABG and stroke (Table 3).  These findings were robust to 

further adjustment for lifestyle factors and enrollment source.  In contrast, comparisons between black 

women and white women suggested minimal non-significant relative differences in risk by race in all 

models. The race-sex interaction term was not statistically significant [p = 0.92]. 
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Table 3. Percent mortality of SCCS participants according to heart failure status, overall and stratified by 

race and sex 

 

Model 1: Includes age (restricted cubic splines with 4 knots); race and sex. Model 2: Model 1 + BMI (restricted 

cubic splines with 4 knots), history of diabetes, hypertension, high cholesterol, MI and stroke (all yes/no). Model 3: 

Model 2 + annual household income (<$15000, $15000-$24999 & ≥$25000); education (< high school, high 

school/vocational training/junior college, college degree or higher), smoking (never, former, current < 19.5 pack-

years, current ≥ 19.5 pack-years) and alcohol intake (linear and quadratic term), marital status (married/living as 

married with partner, separated/divorced, widowed, single/never married) and enrollment source (community health 

centers vs general population). P-value for race×sex interaction = 0.92. CI: Confidence Interval 

 

 

 

 

 

 

 

 

 

 

 Overall 
N = 4,341 

White Women 
n = 801 

White Men 
n = 511 

Black  Women 
n = 1,940 

Black  Men 
n = 1,089 

Deaths (n) 952 144 152 343 313 

Percent Mortality 

(%) 
21.9 18.0 29.7 17.7 28.7 

Risk of death: Hazard ratio (95% CI) 

Model 1  1.00 (ref) 1.73 (1.37, 2.17) 0.91 (0.75, 1.10) 1.61 (1.32, 1.96) 

Model 2  1.00 (ref) 1.60 (1.27, 2.02) 0.89  (0.73, 1.09) 1.35 (1.09, 1.65) 

Model 3  1.00 (ref) 1.63 (1.27, 2.08) 0.90 (0.73, 1.12) 1.38 (1.11, 1.72) 
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Figure 1:  Age-adjusted Survival curves for SCCS participants diagnosed with HF stratified by race and 

sex 

 

The adjusted survival estimates were computed at the mean age (58 years) of all participants with HF (n = 

4341).  Compared with white women and black women, white men and black men had significantly lower 

survival (p<0.0001).  The 1-year, 3-year and 5-year age-adjusted survival estimates were (0.91, 0.83, 

0.77); (0.90, 0.82, 0.74); (0.84, 0.71, 0.64) and (0.85, 0.73, 0.58) for black women, white women, black 

men and white men respectively. 
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Discussion 

 We investigated heart failure incidence and post-HF mortality in a large multi-ethnic low-income 

sample from the southeastern United States.  Our principal findings are: 1) the incidence rate for HF was 

remarkably high across all race and sex groups in the SCCS, 2) there was no significant difference in age-

adjusted incidence rates across groups defined by race and sex but after full adjustment for socioeconomic 

status and traditional cardiovascular risk factors black women had the lowest risk of HF, and 3) higher 

post-HF mortality among men with no significant racial differences. 

 The incidence rates for heart failure in the SCCS exceeded those previously reported from 

established CVD cohorts (Table 4).  In CHS (n = 5,888; age range: ≥ 65 years) for example, the age-

standardized HF incidence rates after 10 years of follow-up among white men, black men, white women 

and black women were 30.2, 19.2, 27.5 and 22.6 per 1000 PY respectively [5].  In ARIC (n = 14,933; age 

range: 45-64), Loehr et al found IRs of 6.0, 9.1, 3.4 and 3.8 per 1000 PY, respectively, in these race-sex 

groups [8].  The FHS and MESA reported even lower IRs (7.2 and 4.2 per 1000 PY in men and women in 

FHS and 3.1 per 1000 PY overall in MESA) [6, 7].  The higher SCCS HF incidence could be explained in 

part by notably higher prevalence of CVD risk factors (in particular hypertension, diabetes, obesity, prior 

history of MI) in the SCCS study sample at baseline compared with ARIC, CHS, FHS and MESA (Table 

5).  In addition, SCCS participants were largely of low socioeconomic status, with over two-thirds having 

annual household income <$15,000.  Prior evidence suggests a strong independent association between 

socioeconomic status and HF risk; [9, 10, 105, 146] thus participants in SCCS may be at higher risk of 

unfavorable societal stressors and an elevated risk of adverse cardiovascular outcomes including HF.  

 White men had the highest crude incidence rate of HF in the SCCS, consistent with findings from 

the CHS.  However, minimal differences in age-adjusted incidence rates and HF risk between groups after 

adjustment for CVD risk factors (except for black women who had significantly lower risk) suggest 

homogeneity of HF risk profile. Similarly, in ARIC, crude racial and sex differences in incidence density 

were attenuated by adjustment for CVD risk factors [8].  
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Table 4: Comparison of heart failure incidence between SCCS, ARIC, MESA and CHS cohorts 

 HF Incidence Rates (IR) per 1000 PY 

  SCCS* 

45-64 yrs 

ARIC[8] 

45-64 yrs  

SCCS* 

65-79 yrs 

CHS[5] ** 

≥ 65 yrs  

 
SCCS* 

40-79 yrs 

MESA[6] 

45-84 yrs 
 n = 15,321 n = 14,933 n = 7,001 

 

n = 5,888 

5-yr                 10-yr 

 n = 27,078 n = 6,814 

Overall 35.8 5.7 39.5 19.3 24.0 Overall 33.7 3.4 

White Women 38.3 3.4 34.6 14.5 19.2    

White Men 39.7 6.0 38.3 24.9 30.2 Whites 34.3 2.4 

Black Women 35.1 8.1 42.4 19.6 22.6    

Black Men 34.0 9.1 41.9 23.5 27.5 Blacks 33.4 4.6 

 

*Incidence rates computed for SCCS participants aged 45-64, 65-79 and 40-79 for comparability with the ARIC, 

CHS and MESA cohorts respectively. In addition, the rates are standardized to the age distribution of the SCCS 

study participants within these age ranges. 

**The tabulated values are computed from values presented in Arnold et al and standardized to the age distribution 

of CHS participants. 

ARIC: Atherosclerosis Risk in Communities; CHS: Cardiovascular Health Study; MESA: Multi-ethnic Study of 

Atherosclerosis; SCCS: Southern Community Cohort Study. 
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Table 5: Comparison of baseline characteristics of SCCS, MESA, ARIC and CHS participants 

 
SCCS   

(n= 27,078) 

ARIC[8]  

(n= 14,993) 

CHS[5]  

(n= 5,888) 

MESA[6]  

(n = 5,923)† 

FHS[7]  

(n=9,405)‡ 

Age (years)* 55.5 (10.4) 54 (6) 72.8 (5.6) 61.8 (10.3) 41 (10) 

Women (%) 62.6 54 57.6 53 53 

Blacks (%) 68.8 27 15.7 26.1 ≈ 0 

Education (<high school) (%) 38.4 24 29.5 16 56§ 

BMI (kg/m2)* 30.4 (7.8) 27.3 (5.1) 26.7 (4.7) 28.0 (5.4) 24.9 (3.8)|| 

Obese (BMI > 30) % 44.8 26 19 32 10.8|| 

Diabetes (%) 26.5 11 16.4 11.6 4.1 

Hypertension (%) 62.5 33 57.7 42 7 

Myocardial infarction (%) 8.6 4 9.6 n/a 1.6# 

Stroke (%) 9.6 1.4 4.2 n/a 0.5** 

Ever smoked cigarettes (%) 65.3 58.2 53.5 49 57.3§ 

 

*Tabulated values are mean (SD). n/a = not applicable.  

†
By design, participants enrolled in MESA were free of CVD at baseline so the prevalence of MI and stroke at baseline in this 

cohort may be best described as not applicable.  

‡
The baseline data for the FHS pertains whenever available to both the original cohort and the offspring cohort given this larger 

sample was utilized to compute HF incidence rates referenced in the manuscript. In the absence of such data, we have presented 

data from the original cohort (or subsamples thereof) as a proxy and indicated so in each case. 

§
Obtained from a subsample of the parental FHS cohort data (n=1037, 45-62yrs and CHD-free at baseline). 

||
Obtained from a subsample of the parental FHS cohort data (n=2922, 30-62yrs and CHD-free at baseline). 

#
Obtained from the parental FHS cohort data (n=5209) and pertains to the composite of MI, CHD-related sudden death and 

angina pectoris. 

**Obtained from the parental FHS cohort data (n=5209). 

ARIC: Atherosclerosis Risk in Communities; CHS: Cardiovascular Health Study; SCCS: Southern Community 

Cohort Study; MESA: Multi-ethnic Study of Atherosclerosis; FHS: Framingham Heart Study.  

 

 

 



113 
 

 Overall, the 5-year post-HF survival in SCCS was higher than the 52% previously reported (data 

from the Olmsted county study) [3].  This may be due in part to the fact that SCCS participants had 

shorter post-HF follow-up time, were younger at baseline (55.5 vs 74 years) and temporal trends 

suggesting improved post-HF survival [3] related to recent improvements in therapeutic options.  In 

addition, participants in the Olmsted county study were mostly non-Hispanic Whites who may be at 

higher risk of HF with reduced ejection fraction (HFrEF), which has a less favorable prognosis compared 

with heart failure with preserved ejection fraction (HFpEF) [22, 23]. 

 The relative patterns of post-HF survival for the four demographic subgroups in SCCS were 

substantially different from those seen in ARIC and CHS.  In ARIC, compared with white men and 

women, black men and women had the lowest survival probability following admission for HF.  The 5-

year case fatality for white women, white men, black women and black men were 35.8%, 41.2%, 46.1% 

and 51.8%, respectively.  The racial differences were significant, with black men having the highest all-

cause mortality following admission, but the differences by sex were non-significant.  In CHS, the 

mortality rate in white women, white men, black women and black men were 35.5, 40.5, 33.6 and 44.4 

per 100 PY respectively.  After full adjustment for covariates there were no significant racial differences, 

but women had a 15% lower risk of all-cause mortality [HR: 0.85; 95% CI: 0.73, 0.99] [51].  In SCCS, 

white men had the lowest 5-year survival post-HF diagnosis; but after full adjustment, there were mainly 

sex-differences in post-HF mortality with higher risk of death among men and no significant racial 

differences. This could be explained in part by the higher prevalence of MI among men.  MI is associated 

with greater risk for the development of HFrEF which is known to have a worse prognosis compared with 

HFpEF [22, 23].  However, MI does not fully account for the higher risk of post HF mortality among 

men, as this risk persisted even after full adjustment for relevant baseline covariates (including history of 

MI).  

 Limitations of our study should be noted.  Our study sample may not be representative of the 

background population of the Southeastern states as the recruitment and sampling scheme utilized by the 
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SCCS was tailored towards low-income, rural and under-insured populations not often included in 

sizeable numbers in other cohorts investigating chronic disease outcomes. Also, HF was ascertained via 

linkage with CMS Research Identifiable Files using ICD-9 codes 428.x, rather than independent 

physician adjudication.  However, the diagnosis codes (ICD-9 428.x) algorithm for identification of HF 

used in this study has been previously validated and utilized in other cohorts [119-121].  A review of the 

detection of HF in administrative claims data that included eight studies conducted among Medicare 

beneficiaries reported positive predictive values (PPVs) between 76% and 99%, with the majority of the 

studies reporting PPVs over 90% [119].  These codes have also been used with high specificity in a 

number of studies [120, 121]  even though no independent validation was conducted by the SCCS 

investigators.  An over-representation of groups with elevated HF risk (persons > 65 and persons < 65 

receiving Medicare) in our SCCS sub-cohort compared with the SCCS base population, may have 

contributed to higher HF incidence rates than would be expected for the total SCCS cohort. However with 

the mean age of the total cohort being ≈ 52.6 years [107] versus 55.5 years for our sub-cohort, the small 

age difference between both populations may have had less than dramatic effects on the HF incidence. In 

addition, with studies suggesting that the sensitivity of ICD-9 code 428.x for HF ascertainment varies 

between 62.8 and 89% [119, 124], it is plausible that we may have underestimated the incidence rate of 

HF in our sub-cohort.  Also, when contrasting the incidence rates between our study and previous CVD 

cohorts (like ARIC and CHS) we used data for comparable age groups between studies (Table 4).  

However, the fact that HF represents a myriad of clinical conditions, the lack of universality in the 

definition of HF and the heterogeneity in the methods for HF ascertainment between studies makes head-

to-head comparisons between studies difficult.  Our analyses required assumptions regarding the 

continuous coverage in CMS of persons less than 65 years, raising the possibility of incomplete capturing 

of HF events in this age stratum of the SCCS cohort.  However, we found that over 81.9% of persons 

aged < 65 who reported CMS coverage at baseline had a claim for any condition within 90 days of being 

enrolled in SCCS.  This suggests that an even greater proportion of participants included in this study 

filed at least one claim at some point during follow-up from 2002 to 2010 and thus any HF event would 
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likely have been captured if it occurred.  Data on baseline covariates (including anthropometric and 

cardiovascular risk factors) were based on self-report of a physician diagnosis and use of medications 

(diabetes and hypertension).  While self-report may be susceptible to recall and misclassification bias, 

these methods have been successfully used and validated in large epidemiologic cohorts, including the 

SCCS. Many of the questions on the SCCS questionnaire were adapted from questionnaires used and 

validated in other settings; and a series of independent validation studies using biomarkers, repeat 

interviews or medical records have demonstrated the reliability of the questionnaire within the SCCS 

population for variables such as smoking status, self-reported diseases including diabetes, height and 

weight [18]. 

 The SCCS cohort is comprised of a substantial number of individuals from minority and low-

income populations who are traditionally under-represented in most studies investigating CVD and heart 

failure in particular.  The incidence rates for HF in the SCCS exceeded that of most existing 

cardiovascular cohorts.  Therefore, the SCCS provides an unparalleled opportunity to investigate patterns 

in HF incidence and mortality among the highest risk individuals.  In addition, both black and white 

participants included in this cohort had minor differences in income and education levels thereby 

curtailing confounding by socioeconomic differences.  The availability of a large sample of participants 

and HF cases provided the opportunity to adequately explore differential patterns across sex and racial 

categories.  Also, linkage with the NDI and SSA allowed for robust ascertainment of all-cause mortality.  

In conclusion, in this low-income multiethnic population, we found higher incidence rates for HF in all 

race-sex groups than previously reported in other CVD cohorts which was paralleled by high prevalence 

of CVD risk factors at baseline. This suggests that SCCS can be a unique resource to investigate 

determinants of HF risk in a segment of the population underrepresented in other existing cohorts. 

 

 

 



116 
 

 Neighborhood deprivation predicts heart failure risk in a low-income population of blacks 

and whites in the southeastern United States 

Elvis A. Akwo, MD, MS1,5; Edmond K. Kabagambe, DVM, PhD1, 5; Frank E. Harrell, PhD2, 5; William J. 

Blot, PhD1, 3; Justin M. Bachmann, MD, MPH4,5; Thomas J. Wang, MD4,5; Deepak K. Gupta, MD* 4, 5, 

Loren Lipworth, ScD* 1, 5 

1 Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, 

Nashville, Tennessee, 37203. 

2 Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37203.  

3 International Epidemiology Institute, Rockville, Maryland, 20850.  

4 Division of Cardiovascular Medicine, Vanderbilt Heart & Vascular Institute, Department of Medicine, 

Vanderbilt University School of Medicine, Nashville, Tennessee, 37203. 

5Vanderbilt Center for Translational and Clinical Cardiovascular Research (V-TRACC), Vanderbilt 

University School of Medicine, Nashville, Tennessee, 37203. 

Address correspondence to: 

Dr. Loren Lipworth 

Division of Epidemiology 

Department of Medicine 

Vanderbilt University School of Medicine 

2525 West End Avenue, Suite 600 

Nashville, TN 37203 

Phone : 615-343-0639 

Fax : 615-343-5938 

loren.lipworth@vanderbilt.edu 

Word Count: Manuscript (4966), abstract (346). 

Running Title: Neighborhood deprivation and heart failure. 

AHA Journal Subject Terms: [Epidemiology] [Heart failure] 

 

 

mailto:loren.lipworth@vanderbilt.edu


117 
 

Abstract 

Background  

Recent data suggest that neighborhood socioeconomic environment predicts heart failure (HF) hospital 

readmissions, yet evidence for the association with HF incidence and post-HF mortality is scant. We 

sought to investigate whether neighborhood deprivation predicts the risk of incident HF and post-HF 

survival beyond individual socioeconomic status (SES) in a low-income population. 

Methods  

Participants included in this study were 27,078 white and black men and women recruited during 2002-

2009 in the Southern Community Cohort Study (SCCS), who had no history of HF and were receiving 

Centers for Medicare or Medicaid services (CMS).  Incident HF diagnoses through December 31, 2010 

were ascertained using ICD-9 codes 428.x via linkage with CMS research files. Participant residential 

information was geocoded and the census tract was determined by a spatial join to the US Census 

Bureau’s TIGER/Line Shapefiles using geographic information systems technology. The neighborhood 

deprivation index was constructed using principal components analysis based on census tract-level 

socioeconomic variables. Cox models with Huber-White cluster sandwich estimator of variance were 

utilized to investigate the association between deprivation index and both HF risk and post-HF mortality. 

Results 

The study sample was predominantly middle-age (mean 55.5 years), black (69%), female (63%), and of 

low income (70% earned < $15,000/year).  Over half of the participants lived in the most deprived 

neighborhoods. Over a median follow-up of 5.2 years, 4,300 participants were diagnosed with HF. After 

adjustment for demographic, lifestyle and clinical factors, a 1 interquartile (IQR) increase in deprivation 

index was associated with a 12% increase in the risk of HF [HR= 1.12; 95% CI: 1.07-1.18] and 4.7% of 

the variance in HF risk [ICC = 4.8; 95% CI: 3.6-6.4] was explained by neighborhood deprivation. Among 
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HF cases, 940 deaths occurred over a median follow-up 2.3 years. In multivariable-adjusted models 

deprivation index was not associated with the risk of post-HF mortality [HR= 1.05; 95% CI: 0.95-1.17].  

Conclusions 

In this low-income population, scant neighborhood resources compound the risk of HF above and beyond 

individual socioeconomic status and traditional cardiovascular risk factors. Improvements in community 

resources may be a significant axis for curbing the burden of HF. 
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Introduction 

 Heart failure (HF) is a major public health problem, particularly in the southeastern United States 

(US) which has been described as the “heart failure belt” [147].  This region of the US has the highest 

high prevalence of established HF risk factors (including coronary heart disease, high blood pressure, 

diabetes and obesity) which themselves may be associated with socioeconomic characteristics that 

influence health outcomes. While evidence from middle-class persons suggests that individual 

socioeconomic status (SES) contributes to HF risk,[9, 10, 105, 146] recent data support that neighborhood 

factors may also predict HF readmissions independent of individual-level SES [11].  However, it is not 

known whether such neighborhood factors are independent predictors of other HF outcomes such as HF 

incidence and post-HF mortality among persons with already low individual SES.   

The Southern Community Cohort Study is a prospective cohort study that recruited persons of 

low individual SES from 12 states in the southeastern United States.  Within this cohort, we tested the 

hypothesis that neighborhood characteristics (defined by a composite deprivation index) predict the risk 

of incident HF and post-HF survival beyond individual-level socioeconomic status (defined by annual 

household income and highest level of education attained). 
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Methods 

Design and study population 

 The SCCS is a prospective cohort study designed to investigate the incidence of cancer and other 

chronic diseases, including differential patterns by race and sex, in a resource-limited under-insured 

population underrepresented in previous studies [18].  A total of 84,797 participants aged 40-79 were 

enrolled into the SCCS between March 2002 and September 2009 [148].  Approximately 86% of 

participants were recruited at community health centers (CHC), which provide primary health and 

preventive care services for resource-limited populations such that the cohort is made up of a segment of 

society seldom included in substantial numbers in previous cohort studies; particularly those investigating 

cardiovascular disease (CVD) [18, 20].  The remaining 14% were recruited via mail-based sampling of 

the general population.  Demographic, socioeconomic, lifestyle, and anthropometric data, as well as 

personal medical history, were ascertained at cohort enrollment via standardized computer-assisted 

personal interviews for CHC participants, and via self-administered mailed questionnaire for persons 

recruited from the general population. Detailed description of SCCS methods has been previously 

published [18, 20, 107]. 

 For the current analyses, we included 27,078 participants who were either ≥ 65 years old at cohort 

enrollment (n = 7,001), or < 65 years at enrollment (n = 20,077) and: a) reported being covered by 

Medicaid (which provides medical benefits to low-income adults and uninsured persons) on the baseline 

questionnaire; or b) reported being covered by Medicare (the primary health insurance program for 

persons aged ≥ 65) on the baseline questionnaire; or c) did not report Medicare or Medicaid on the 

baseline questionnaire but had a Centers for Medicare and Medicaid Services (CMS) claim within 90 

days of being enrolled in SCCS.  The restriction to these groups increases the likelihood of participants 

having continuous coverage in Medicare and/or Medicaid from the time of SCCS enrollment to the end of 

the follow-up period (December 31st, 2010), for the ascertainment of incident HF events.  Analyses were 
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restricted to self-reported African American or black and non-Hispanic white SCCS participants, since 

too few persons in other racial groups were available for stable statistical analyses. 

Census tracts  

 Census tracts were used as proxies for neighborhoods in this study.  Census tracts are small, 

relatively permanent statistical subdivisions of a county or equivalent entity that are updated by local 

participants prior to each decennial census as part of the US Census Bureau's Participant Statistical Areas 

Program [126].  Census tract boundaries are delineated with the intention of being maintained over a long 

time period so that statistical comparisons can be made from census to census. Across the US, census 

tracts usually cover a contiguous area and generally have a population size between 1200-8000 persons, 

with an optimum size of 4000.  The 27,078 SCCS participants included in the current analyses resided in 

4,666 census tracts.    

 At the time of the SCCS baseline interview, study participants provided information on their 

residential address which was then geocoded by a multi-stage process incorporating both batch and 

interactive processes [149].  The census tract for the geocoded address was then determined by a spatial 

join to the US Census Bureau’s Topologically Integrated Geographic Encoding and Referencing 

(TIGER/Line®) Shapefiles [150] using ESRI ArcMap 10.0 software (ESRI, Redlands, CA) that utilizes 

GIS (geographic information systems) technology. Geocoding of SCCS participants’ addresses and 

linkage to geographic information datasets such as census tract data allowed development of residence-

specific metrics including the SCCS-derived deprivation index.   

Neighborhood deprivation Index  

 The SCCS-derived deprivation index is a clustering of social and economic indicators which 

reflect neighborhood deprivation and have been linked to adverse health outcomes.  It was constructed 

using principal components analysis based on 11 census tract-level variables representing 4 main 

dimensions [128, 151]: 1) Social indicators: percentage of housing units with ≥1 occupant per room, 
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percentage of occupied housing units with renter/owner costs >50% of income and percent female-headed  

households with dependent children;  2) Wealth and income: percentage of households with income 

<$30,000 per year, percentage of persons with income below the 1999 poverty status, percentage of 

households with public assistance income, percentage of households with no car and median value of 

owner-occupied housing units;  3) Education: percentage of persons aged ≥25 that did not graduate high 

school; and  4) Occupation: percentage of males and females who are unemployed and percentage males 

in professional occupations.  

 In the original description of the neighborhood deprivation index by Messer et al using data from 

across 8 study areas, the first principal component was retained, as it explained over 67% of the variance 

(while the second principal component explained less than 10% of the variance) with component loadings 

ranging between 0.2-0.4, suggesting similar contribution of each of the component variables to the first 

principal component [128]  Signorello et al found that in the SCCS, the first principal component 

explained most of the variability (over 60%) in the component measures as well, as such it was retained 

for the construction of the deprivation index in the SCCS [151].  

Individual socioeconomic variables and other covariates  

 SCCS participants reported their highest level of education attained, in 8 categories ranging from 

less than high school to graduate-level degrees. Participants also reported the range of their total 

household income for the year prior to enrollment, in 5 categories ranging from less than $15,000 to over 

$100,000 or more. History of tobacco smoking was self-reported as never, former and current and also in 

terms of number of cigarettes per day and alcohol use in number of drinks per day. The presence of 

traditional cardiovascular risk factors at baseline was based on a self-reported history of physician-

diagnosed hypertension, diabetes mellitus, high cholesterol, as well as self-reported use of medications for 

hypertension, diabetes mellitus, or high cholesterol.  History of myocardial infarction and stroke was 

based on self-report and confirmed via medical records for a small random sample of SCCS participants. 

While self-report of baseline covariates may be susceptible to recall bias, these methods have been 
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successfully used and validated in large epidemiologic cohorts, including the SCCS.[18] Many of the 

questions on the SCCS questionnaire were adapted from questionnaires used and validated in other 

settings; and a series of independent validation studies using biomarkers, repeat interviews or medical 

records have demonstrated the reliability of the questionnaire within the SCCS population for variables 

such as smoking status, self-reported diseases including diabetes, height and weight [18]  Total amount of 

moderate and vigorous exercise was measured in metabolic equivalent-hours per day. 

Outcome ascertainment 

 Heart failure events were ascertained via linkage of the SCCS cohort with CMS Research 

Identifiable Files (which include Medicare institutional and non-institutional files, and the Medicaid 

Analytic Extract files).  Incident HF was defined as the first occurrence of a medical claim with an 

International Classification of Diseases, 9th revision, discharge code of 428.x within the Medicare 

institutional (Medicare Provider Analysis and Review, MEDPAR, which includes inpatient, outpatient 

and skilled nursing facility base files), Part B carrier (includes non-institutional physician services and 

durable medical equipment), or outpatient-based claims files or the Medicaid Analytic Extract (MAX) 

Inpatient and Other Services claims files, from the date of SCCS enrollment through December 31st, 

2010. Detailed description of the CMS research files are published elsewhere [143].   

 Deaths, including dates and causes of death, were ascertained via linkage of the SCCS cohort 

with both the Social Security Administration (SSA) vital status service for epidemiologic researchers and 

the National Death Index (NDI) through December 31st, 2010. Both NDI and SSA are well-established 

and reliable means of identifying deaths in the US, and are expected to capture nearly all deaths [51, 122, 

123].  When date of death was coincident with date of HF diagnosis, follow-up time was set to 0.5 days.  

Statistical Analysis 

 Descriptive statistics (means and standard deviations for continuous variables and counts and 

percentages for categorical variables) were computed for all study participants overall and by tertiles of 
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deprivation index.  Tertile cut-points were based on the distribution of the values of deprivation index for 

census tracts (n = 4666) covered by the population included in the current analyses. 

Covariate selection and spending degrees of freedom  

 The selection of variables to be included in the multivariable models was based on the 

hypothesized relationships between the baseline covariates in question, deprivation index and the 

outcomes of interest (HF incidence and post-HF death).  The functional form of the covariates (i.e. 

degrees of freedom spent) and deprivation index was based on a priori knowledge and the rank 

correlations between the covariate and the outcomes. 

Modelling hierarchical data 

 For the current analyses, the data were organized in a hierarchical fashion comprising 2 levels 

with individual participants (level-1units) nested within census tracts (level-2 units).  Given the nested 

structure of the data, the non-independence of the data points within each census track and the limitations 

of a multilevel modelling approach in this setting (unbalanced data with many small clusters), we utilized 

a Cox proportional hazards model that accounts for non-independence using the Huber-White cluster 

sandwich estimator of variance, Hc [127] whose general formula for linear and nonlinear models is given 

below: 

 

where I is the information matrix (the second derivative of the log likelihood, log L) [127] and U is the 

score statistic –  the first derivative of log L. In the specific case of the Cox model, the cluster sandwich 

estimator, Hc uses special score residuals for U (the score vector) given there are no per-observation score 

contributions [127, 142]. 
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 The proportion of variance explained by differences at the census-tract level was estimated from 

the intra-class correlation coefficient (ICC), which was computed based on the latent variable approach.  

This approach uses the closed-form solution of the ICC in the multi-level logistic model to make an 

approximate estimation of the ICC in the multi-level Cox proportional hazards model.  

00

2

00 3
ICC



 



, where 00 = group-level variance [137].  

Deprivation Index and Heart Failure Incidence  

 Multivariable-adjusted Cox analyses were used to model a flexible association between 

deprivation index (modelled using restricted cubic splines with 4 knots) and HF accounting for 

nonlinearity and non-additivity of effects by race.  The fully adjusted model was then used to dynamically 

create plots of log relative hazard of incident HF versus deprivation index by race.  The covariates 

included in the full model were: age at enrollment (restricted cubic splines with 4 knots), race 

(white/black), deprivation index×race interaction terms (linear and nonlinear), sex (men/women), 

cigarette smoking (never, former, current <19.5 pack-years, current ≥ 19.5 pack-years, 19.5 being the 

median pack-years among current smokers), alcohol intake (linear), total MET-hours of moderate or 

greater exercise (linear and quadratic term), body mass index (BMI, restricted cubic splines with 4 knots), 

history of diabetes, hypertension, high cholesterol, MI/CABG or stroke (all yes/no), annual household 

income (<$15,000; $15,000-$24,999; ≥$25,000) and education (< high school, high school/vocational 

training/junior college, college degree or higher). 

 In further analyses, multivariable Cox models assuming linearity of effects (with deprivation 

index modelled as a rescaled continuous variable using the interquartile range, IQR) were used to estimate 

the effect of a 1 IQR increase in deprivation index on HF incidence while adjusting for relevant covariates 

in a sequential fashion.  Hazard ratios (HR) for a 1 interquartile range increase in deprivation index (as a 

continuous measure) compare the hazard of the event occurring for a typical person in the middle of the 

upper half (the 75th percentile) of the distribution of deprivation index to the hazard of the event for a 
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typical person in the middle of the lower half (25th percentile) of the distribution.  Model 1 included 

deprivation index (as a linear IQR-rescaled predictor), age at enrollment (restricted cubic splines with 4 

knots), race (white/black), sex (men/women) and the deprivation index×race interaction term.  Model 2 

additionally adjusted for lifestyle and clinical covariates including: cigarette smoking (never, former, 

current <19.5 pack-years, current ≥ 19.5 pack-years, 19.5 being the median pack-years among current 

smokers), alcohol intake (linear), total MET-hours of moderate or greater exercise (linear and quadratic 

term), body mass index (restricted cubic splines with 4 knots), history of diabetes, hypertension, high 

cholesterol, MI/CABG or stroke (all yes/no).  In model 3, annual household income (<$15,000; $15,000-

$24,999; ≥$25,000) and education (< high school, high school/vocational training/junior college, college 

degree or higher) were added to investigate the potential mediating effects of individual-level SES.  Knots 

were placed at quantiles of covariate distributions, equally spaced in sample size [127].   

 We conducted a sensitivity analysis (using similar multivariable models) excluding HF cases 

diagnosed within 2 years of follow-up.  The exclusion of incident HF within the first 2 years of follow up 

limits the possibility that HF cases occurring soon after enrollment in the SCCS may not have been 

influenced by baseline values of neighborhood deprivation.  

Deprivation Index and Post-HF Survival  

 Multivariable-adjusted Cox analyses as described previously for HF incidence were utilized to 

model the relationship between deprivation index and post-HF survival. Model assumptions were verified 

using Schoenfeld residuals and log (-log) plots. 

 All analyses were performed using STATA (version 12.1, Stata Corp, College Station, Texas, 

USA) and the ‘rms’ package for R version 3.1.1 (R Core Team 2014) [144, 145]. 
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Ethical approval 

 Participants enrolled in SCCS provided written informed consent, and protocols were approved 

by the Institutional Review Boards of Vanderbilt University Medical Center and Meharry Medical 

College. 

Results 

Characteristics of the study population 

 Among the 27,078 SCCS participants with CMS data, 260 (0.96%) had missing values for 

deprivation index and were therefore excluded from these analyses.  Baseline characteristics of the 26,818 

included participants are shown in Table 1, overall and by tertiles of deprivation index.  Tertile cut-points 

were based on the distribution of deprivation index at the census tract-level (not individuals).  Tertile 1 

represents the least deprived census tracts (i.e. the neighborhoods with the most community resources), 

while tertile 3 represents the most deprived.  The inequality in the number of individuals per tertile of 

deprivation index is explained in part by the wide variation in the number of persons per census tract 

(mean = 6; range: 1-243) and that census tracts with higher deprivation tended to have more individuals 

per census tract, i.e. more persons lived in the most disadvantaged neighborhoods. 

 The mean (SD) age of the study participants at cohort enrollment was 55.5 (10.4) years, 62.7% 

were women, 69.0% were black, 69.9% had annual household income < $15,000, 38.6% had less than a 

high school education and 44.8% were obese (BMI ≥ 30 kg/m2).  There was a modest negative correlation 

between neighborhood deprivation and annual household income (Spearman’s rank correlation 

coefficient, ρ = - 0.23) as well as education (ρ = - 0.17).  Compared with persons living in the least 

deprived neighborhoods (tertile 1), participants living in the most deprived neighborhoods (tertile 3) were 

more likely to be younger, black, and obese, have less than a high school education, earn less than 

$15,000 a year, and be current smokers.  They were also more likely to report a history of diabetes and 

hypertension at baseline, but they were less likely to report a history of MI or high cholesterol.  
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Table 1. Baseline characteristics of SCCS participants receiving Medicare or Medicaid during follow-up 

between 2002 and 2010, overall and by tertileǂ of deprivation index 

  
 Deprivation Index 
 Overall  Tertile 1 Tertile 2 Tertile 3  
 0.85 (1.21) -0.76 (0.34) 0.03 (0.21) 1.61 (0.93) 

Census tracts, n 4,666 1, 556 1, 555 1, 555 

Participants, n N = 26, 818 n = 4, 256 n = 6, 478 n = 16, 084 

Age, years (SD) 55.5 (10.4)  58.1 (10.7) 56.8 (10.4) 54.2 (10.1) 

Age quartiles, %     

          40-46 24.8 19.0 20.3 28.1 

          47-53 26.6 22.0 24.7 28.6 

          54-64 22.9 21.0 24.8 22.6 

          ≥ 65 25.7 38.0 30.2 20.7 

Women, % 62.7 60.0 64.6 62.6 

Blacks, % 69.0 37.3 49.8 85.2 

Education %     

          < High school  38.6 25.5 36.4 42.9 

         HS/Junior college/VT§ 53.1 57.0 55.0 51.3 

         ≥ College degree  8.3 17.5 8.6 5.8 

Annual Income, %     

         < $15,000 69.9 53.3 65.0 76.2 

         $15, 000-24, 999 17.9 18.2 20.6 16.8 

         ≥$25, 000 12.2 28.5 14.4 7.0 

Smoking, %     

        Never 34.6 34.6 36.6 33.9 

        Former 25.2 32.7 28.4 22.0 

        Current  19.7 32.7 35.0 44.2 

Alcohol Intake, %     

        0 drink per day 55.0 53.6 62.1 52.5 

        >0-2 drinks per day 33.1 36.8 29.8 33.5 

        >2 drinks per day 11.9 9.6 8.1 14.0 

Physical exerciseϙ, met-hrs/day, (SD) 0.87 (2.3) 1.12 (2.6) 0.77 (2.1) 0.85 (2.3) 

BMI, kg/m2 (SD) 30.4 (7.8) 29.9 (7.4) 30.7 (7.6) 30.4 (7.9) 

BMI Categories, %      

        Underweight, BMI < 18.5 1.7 1.4 1.6 1.7 

        Lean, BMI 18.5 - < 25.0 24.0 24.6 21.3 24.9 

        Overweight, BMI 25 - < 30.0 29.5 32.5 30.4 28.4 

        Obese, BMI ≥ 30.0 44.8 41.5 46.7 45.0 

Diabetes, % 26.5 24.5 28.1 26.4 

Hypertension, % 62.5 58.4 63.4 63.3 

High Cholesterol, % 39.5 45.4 44.3 35.9 

History of MI, % 8.6 10.0 10.1 7.6 

History of Stroke, % 9.6 9.4 9.9 9.5 
* Other than for physical activity (p = 0.66), all comparisons between tertiles of deprivation index were significant (p < 0.0001 

for all comparisons). ϙPhysical Exercise = Total moderate and vigorous exercise in MET-hours.  

ǂ Tertile cut-points were based on the distribution of deprivation index at the census tract-level (not individuals). The 3rd tertile 

(with higher mean deprivation index) is the most deprived i.e. represents census tracts with the least community resources while 

tertile 1 is the most affluent. The inequality in the number of individuals per tertile of deprivation index is explained in part by the 

significant variation in the number of persons per census tract and the fact that census tracts with the higher deprivation had more 

individuals per census tract i.e. there were more persons living in the most disadvantaged neighborhoods. 

§VT: Vocational training. 
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Deprivation Index and HF incidence 

 Over a median (25th, 75th percentile) follow-up time of 5.2 (3.2, 6.8) years, 4,300 participants 

(16%) developed incident HF.  SCCS participants in the 3rd tertile of deprivation index had the highest 

cumulative incidence of HF, 17%, compared with 13% and 15.7% for persons in tertiles 1 and 2, 

respectively. 

 Figure 1 shows a graph of the log relative hazard (Xβ) of HF plotted against deprivation index.  

Among whites, the log relative hazard of HF rises sharply with increasing deprivation index then levels-

off after a deprivation index of approximately 0.5.  Among blacks on the other hand, the curve has a more 

gradual slope and it plateaus at higher values of deprivation index (approximately 2.0).  

 Table 2 shows the risk of incident HF associated with neighborhood deprivation index adjusted 

for relevant covariates in a sequential fashion (models 1 to 3).  Overall, after adjustment for age, sex and 

race, a 1 IQR increase in deprivation index was associated with a 14% increase in the risk of HF [HR= 

1.14; 95% CI: 1.09 to 1.19].  Subsequent adjustment for lifestyle and clinical factors was associated with 

a minimal change in the point estimate [HR= 1.15; 95% CI: 1.05 to 1.21].  In the full model, further 

adjustment for the individual level SES factors of income and education (in addition to demographics, 

lifestyle and clinical factors) showed only a modest attenuation of the strength of the association; namely, 

a 1 IQR increase in deprivation index was associated with a 12% increase in the risk of HF [HR= 1.12; 

95% CI: 1.07 -1.18].  The ICC was 4.8% [95% CI: 3.6-6.4], suggesting that 4.% of the variance in HF 

risk was explained by neighborhood deprivation. 

 The race stratified analyses showed similar patterns of increased risk of HF per 1 IQR increase in 

deprivation index.  In the full models, there was a 20% increase in the risk [HR= 1.20; 95% CI: 1.07 -

1.34] of HF per 1 IQR increase in deprivation index among whites and an 11% increase among blacks 

[HR= 1.11; 95% CI: 1.05 -1.17], p for interaction = 0.0005.   
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 In sensitivity analyses excluding HF cases diagnosed within 2 years of follow-up, the effect 

estimates were similar, with a HR of 1.13 [95% CI: 1.06 -1.20] for the overall cohort in fully adjusted 

models. 

 Fig 1. Plot of Log Relative Hazard (Xβ) for incident heart failure versus deprivation index among black 

and white individuals in the Southern Community Cohort Study. 
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 Table 2: Hazard ratios for incident heart failure per 1 interquartile range increase in deprivation index, 

overall and by race 

 Overall 
N = 26, 818 

Whites 
n = 8, 303 

Blacks 
n = 18, 515 

Model 1 1.14 (1.09, 1.19) 1.34 (1.21, 1.47) 1.09 (1.04, 1.15) 

Model 2 1.15 (1.05, 1.21) 1.27 (1.14, 1.41) 1.12 (1.06, 1.18) 

Model 3 1.12 (1.07, 1.18) 1.20 (1.07, 1.34) 1.11 (1.05, 1.17) 

 
Data presented as hazard ratio (95% confidence interval).  Model 1: Includes deprivation index, age (restricted cubic 

splines with 4 knots), race and sex.  Model 2: Model 1 + smoking (never, former, current < 19.5 pack-years, current 

≥ 19.5 pack-years), alcohol intake (linear) and Total moderate and vigorous sports in MET-hours (linear + 

quadratic) + BMI (restricted cubic splines with 4 knots), diabetes (yes/no), hypertension (yes/no), high cholesterol 

(yes/no), history of MI (yes/no) and history of stroke (yes/no).  Model 3: Model 2 + annual household income 

(<$15000, $15000-$24999 & ≥$25000) and education (< high school, high school/vocational training/junior college, 

college degree or higher.  P-value for deprivation index×race interaction = 0.0005. 

Intra-class correlation coefficient = 4.8% (95% CI: 3.6, 6.4) 

CI: Confidence interval; HR: Hazard ratio; HF: Heart failure; BMI: Body mass index 

 

 

Deprivation Index and Post-HF Survival 

 Among the 4,300 SCCS participants who developed incident HF, 940 died (cumulative mortality 

= 21.9%) over a post-HF median (25th, 75th percentile) follow-up time of 2.3 (0.9, 4.2) years.   

Participants in the 3rd tertile of deprivation index had the highest cumulative mortality, 22.9% compared 

with 21.2% and 19.6 for persons in tertiles 1 and 2, respectively.  

 Figure 2 shows a graph of the log relative hazard (Xβ) of post-HF mortality plotted against 

deprivation index.  While the initial portions of the plots of log relative hazard of post-HF mortality 

against deprivation index in blacks and whites were suggestive of a gradual slope, they were mostly flat 

for the range of observed values of deprivation index. 

 Overall, in the full model adjusted for demographics, individual SES, lifestyle and clinical factors 

at baseline, a 1 IQR increase in deprivation index was associated with a nonsignificant 5% increase in the 

risk of all-cause mortality post-HF [HR= 1.05; 95% CI: 0.95 -1.17] (Table 3).  A similar finding was 
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observed among blacks [HR= 1.07; 95% CI: 0.94 -1.21] while the hazard ratio was close to unity among 

whites [HR= 1.00; 95% CI: 0.79 -1.25].   

Fig 2. Plot of Log Relative Hazard (Xβ) of post-heart failure death versus deprivation index among black 

and white individuals in the Southern Community Cohort Study. 
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Table 3: Hazard ratios for post-heart failure death per 1 interquartile range increase in deprivation index, 

overall and by race 

 Overall 
N = 4, 300 

Whites 
n = 1, 290 

Blacks 
n = 3, 010 

Model 1 1.11 (1.00, 1.23) 1.11 (0.90, 1.38) 1.10 (0.98, 1.24) 

Model 2 1.07 (0.97, 1.19) 1.05 (0.84, 1.31) 1.08 (0.96, 1.22) 

Model 3 1.05 (0.95, 1.17) 1.00 (0.79, 1.25) 1.07 (0.94, 1.21) 

 
Data presented as hazard ratio (95% confidence interval).  Model 1: Includes deprivation index, age (restricted cubic 

splines with 4 knots), race and sex.  Model 2: Model 1 + smoking (never, former, current < 19.5 pack-years, current 

≥ 19.5 pack-years), alcohol intake (linear) and Total moderate and vigorous sports in MET-hours (linear + 

quadratic) + BMI (restricted cubic splines with 4 knots), diabetes (yes/no), hypertension (yes/no), high cholesterol 

(yes/no), history of MI (yes/no) and history of stroke (yes/no).  Model 3: Model 2 + annual household income 

(<$15000, $15000-$24999 & ≥$25000) and education (< high school, high school/vocational training/junior college, 

college degree or higher. P-value for deprivation index×race interaction = 0.96. 

Intra-class correlation coefficient = 5.7% (95% CI: 2.6, 12.1) 

CI: Confidence interval; HR: Hazard ratio; HF: Heart failure; BMI: Body mass index 

 

 

Discussion 

 We investigated the association between neighborhood deprivation index and HF incidence as 

well as post-HF mortality in a large population of low-income blacks and whites from the southeastern 

United States.  Our main findings were: 1) persons living in the most deprived neighborhoods appear to 

have a greater burden of CVD risk factors, 2) higher levels of neighborhood deprivation are significantly 

associated with an increase in HF risk independent of individual SES and traditional CVD risk factors, 

and 3) there is no strong evidence of an association between neighborhood deprivation and post-HF 

mortality. 

 The existing literature provides evidence of a strong independent association between individual 

socioeconomic characteristics, such as income, education and occupation, and HF risk [9, 10, 105, 146].  

In addition, recent data suggests that neighborhood SES also plays a significant role in predicting HF 
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outcomes including HF admissions and readmissions, [11, 152] but evidence for the association with HF 

incidence has been scant.  The current investigation demonstrates an independent association between 

increasing neighborhood deprivation and increased risk of HF with a non-negligible proportion of the 

variance (~ 5%) of HF incidence in this population explained by neighborhood socioeconomic factors.  

Furthermore, the dose-response curve indicates increasing HF risk with increasing levels of neighborhood 

deprivation in both blacks and whites before the curve plateaus.  Neighborhood factors have been shown 

to predict the incidence of coronary heart disease (CHD) [136, 137, 153] and we now extend this to heart 

failure.  Further, given that our study was conducted within a population with relatively low individual 

SES, under-represented in previous studies, it is particularly noteworthy to find that a dearth of 

community-level resources further compounds the risk of HF in this population.  

 The neighborhood deprivation index utilized for this study was a composite obtained from 11 

components using principal component analysis.  Thus, it remains uncertain what specific neighborhood 

characteristics are responsible for our findings, but several hypotheses may explain the impact of scant 

community resources on health outcomes.  The availability of exercise facilities, healthy food outlets, 

institutional resources (including healthcare facilities), and tobacco advertising vary considerably across 

neighborhoods [154-156].  If food deserts are more preponderant in the most deprived neighborhoods, 

that could reduce access to healthier food choices and potentially increase the consumption of high-

calorie foods and foods with high sodium content.  Also, the combination of fewer physical activity 

resources, unaffordable gym memberships, and higher crime rate may predispose persons living in these 

communities to reduced physical activity and sedentariness.  The combined influence of poor nutritional 

habits and physical inactivity could explain the higher rates of obesity that have been observed in poverty-

dense counties in the US [12, 157].  The high rates of obesity are paralleled by high prevalence of 

obesity-related comorbid conditions including diabetes and high blood pressure (possibly abetted in part 

by the consumption of foods with high salt content) which further compound the risk of HF in these 

communities.  
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 In the current cohort, compared with the neighborhoods with the most resources, the more 

deprived neighborhoods each had higher prevalence of obesity, hypertension and diabetes at baseline and 

this may have contributed to the observed trend of increasing HF risk with worsening deprivation.  But 

the similar prevalence of these risk factors across the two upper tertiles of neighborhood deprivation may 

explain in part the plateau observed in the dose-response curve for HF incidence after an initial increase.  

However, we did observe higher proportions of persons with previous history of MI in the neighborhoods 

with the most resources which may have been due in part to an overrepresentation of older persons and 

whites (who have a higher risk of MI) in these areas.  Nevertheless, after adjustment for all these factors, 

a strong independent association between neighborhood deprivation and HF risk persisted, which could 

not be explained by mediation via CVD risk factors or individual SES.  This suggests that some of the 

correlates of neighborhood deprivation may be less tangible and harder to measure.  Some authors have 

hypothesized that persons living in deprived neighborhoods may be at higher risk of unfavorable societal 

stressors like noise, air pollution and violence which may culminate in chronic psychological stress and 

predispose individuals to adverse health outcomes including HF [153, 158].  Marked institutional 

deficiencies in resource-limited settings are usually mirrored by reduced access to quality education, 

occupational opportunities and health facilities.  These could expose individuals in these communities to 

reduced scholarship, income and logistics and hence curtail individual ability to seek preventative care, 

self-management and adherence to recommended treatment guidelines (evidence-based lifestyle strategies 

and multifactorial medical management approaches) for conditions such as diabetes and hypertension – 

predisposing them to elevated risk of HF.  Finally, reduced social ties and community perceptions about 

health in low SES communities could mitigate health-seeking behaviors including early screening for 

diabetes and hypertension, adherence to therapy and holistic management of these chronic conditions 

which is pivotal to improve outcomes.  

 While previous data found an association between neighborhood factors and mortality in the 

general population, [159] among persons with HF, we found no evidence of an association with all-cause 
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mortality.  Meanwhile, significant associations have been observed between neighborhood characteristics 

and lower adherence to therapy, worse quality of care, and worse outcomes (including rehospitalizations) 

among patients with HF [160-167].  As these intermediate outcomes may be correlated with death among 

persons with HF, we may have expected to find a significant association between neighborhood SES and 

post-HF mortality.  However we had a relatively limited post-HF follow-up time (~2.3 years) and it is 

plausible that a longer time is required to notice the impact of socioeconomic environment on long-term 

outcomes such as death.  In future studies, it may be relevant to re-visit the association with all-cause 

mortality and investigate the association with cardiovascular death after a more significant post-HF 

follow-up time. 

 The current study has a few noteworthy limitations.  Some authors consider a ‘neighborhood’ to 

be a spatially defined collection of people, infrastructures, and institutions influenced by common 

environmental, sociocultural, and economic forces [168].  The extent to which a census tract is a rational 

proxy for ‘neighborhood’ remains uncertain. However, as a relatively permanent statistical subdivision of 

a county or equivalent entity, census tracts cover a contiguous area with long term boundaries, and harbor 

an optimum population close to 4000 persons on average.  Thus, using them as proxies for neighborhoods 

appears reasonable for the purpose of investigating the health outcomes of a population with shared 

socioeconomic environment.  Most of our covariate data (past history of MI, stroke, hypertension, 

diabetes and high cholesterol) were based on self-report of a physician diagnosis and use of medications.   

While self-report could be susceptible to recall and misclassification bias, these methods have been 

validated in the SCCS as well as other epidemiologic studies [18].  Several of the questions on the SCCS 

questionnaire were adapted from questionnaires that were validated in other settings; and a series of 

independent validation studies using biomarkers, repeat interviews or medical records have demonstrated 

the reliability of the questionnaire within the SCCS population for variables such as smoking status and 

self-reported diseases including diabetes [18].  HF was ascertained by linking our baseline SCCS data 

with CMS Research Identifiable Files using ICD-9 codes 428.x, rather than independent physician 
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adjudication.  Nonetheless, the diagnosis codes algorithm for identification of HF used in this study has 

been previously validated and utilized in other cohorts [119-121].  A review of the detection of HF in 

administrative claims data that included studies conducted among Medicare beneficiaries reported 

positive predictive values (PPVs) mostly over 90% [119].    

 Our study leverages data from a large biracial cohort with a sizable number of low-income 

participants living in resource-limited settings and who are traditionally under-represented in previous 

cohorts investigating HF outcomes.  Thus, it provided the unique opportunity to investigate the role of 

neighborhood factors on HF risk and post-HF survival in a sample of people already having scant 

individual resources.  The ability to perform geocoding of participant residential information and linkage 

to geographic information datasets such as census tract data allowed development of residence-specific 

metrics including the SCCS-derived deprivation index which we were able to utilize as a proxy for 

neighborhood SES.  The large number of level-2 units (census tracts) covered by the study participants 

allowed for stable statistical analyses and provided some credence to the representativeness of the whole 

SCCS cohort by the sub-sample utilized for the current analysis.  

 In conclusion, we found that neighborhood socioeconomic factors significantly predict HF 

incidence independent of individual income and education level and traditional CVD risk factors, but 

longer follow-up may be needed to examine the association with post-HF survival.  The American Heart 

Association and other cardiovascular societies recognize that improvements in cardiovascular health 

requires strategies that target the entire spectrum of the healthcare system including public policy, 

prevention, acute care, chronic care and rehabilitation.  However, the more “upstream measures” which 

focus on public policy and prevention may have the greatest potential to mitigate the burden of CVD and 

improve human health.  Areas with the most acute socioeconomic deprivation are most likely at the 

highest risk for CVD (including HF) and CVD mortality and hence may benefit most from such 

improvements in public health policies including, but not limited to, improvements in community-level 

resources. 
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Abstract 

Background  

Previous studies have used body mass index (BMI) as the default weight-height index for the prediction 

of heart failure (HF) risk and mortality and have assumed linearity of effects or utilized BMI categories.  

We sought to propose an empirically-derived weight-height index (W/Hn) and investigate the dose-

response relationship between weight-height indices (as proxies for total adiposity) and HF risk as well 

post-HF mortality. 

Methods  

Study participants were black and white enrollees (n = 27,078) of the Southern Community Cohort Study 

with no history of HF at baseline and who were receiving Centers for Medicare and Medicaid Services 

(CMS).  Incident HF diagnoses through December 31, 2010 were ascertained using ICD-9 codes 428.x 

via linkage with CMS research files.  For W/Hn, n was defined as the ratio of the coefficients of the log 

height and log weight parameters from a Cox model for the log relative hazard of HF and post-HF 

mortality.  Cox models were used to investigate the dose-response relationship between surrogate 

measures of adiposity – W/Hn, BMI and waist circumference (WC) – and both HF risk and post-HF 

mortality. 

Results 

For incident HF, n was found to be 1.81 among whites and 1.21 among blacks while for post-HF 

mortality, the corresponding values were 4.02 and 2.68 respectively.  In models for predicting HF risk or 

post-HF mortality, log W/Hn yielded better model fit (smaller AIC) compared to log BMI especially 

among blacks. After full adjustment for baseline covariates, a 1 interquartile range (IQR) increase in 

W/Hn remained associated with a significant 31% increase in the risk of incident HF [HR = 1.31; 95% CI: 

1.22-1.39] among whites and a 33% increase in risk [HR= 1.33; 95% CI: 1.27-1.39] among blacks. 

Similar findings were observed for BMI. For WC, the HR was 1.66 [95% CI: 1.29 -2.14] among whites 

and 1.46 [95% CI: 1.20 -1.77] among blacks. The plot of log relative hazard of HF vs. BMI was J-shaped; 
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the nadir for the curve for blacks occurred at a higher BMI (30 versus 25kg/m2). There was an inverse 

nonlinear dose-response trend between post-HF mortality risk and BMI which mostly plateaus beyond a 

BMI ≈ 30kg/m2. 

Conclusions 

Empirically-derived weight-height indices offered a better model fit for the prediction of incident HF and 

post-HF mortality compared to BMI. There were unique nonlinear dose-response patterns observed 

between BMI and both HF risk and post-HF mortality that could potentially inform current clinical 

guidelines or recommendations regarding risk stratification. 
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Introduction 

 Data from a variety of communities across the US suggest that poverty-dense counties have high 

levels of obesity which are paralleled by high prevalence of cardio-metabolic conditions including 

cardiovascular disease (CVD) and heart failure (HF) [12].  Thus, it is important to critically examine the 

link between obesity and HF particularly among populations with scant resources.  

 Prior epidemiologic evidence is suggestive of an association between excess body weight and 

increased risk of HF [13-15] as well as a contrasting decrease in the risk of post-HF mortality – a 

phenomenon coined as the obesity paradox [109, 111, 112, 114, 117]  However, most studies 

investigating these relationships utilized categories of body mass index (BMI) or assumed linearity of 

effects thereby limiting the elucidation of the natural dose-response relationship between measures of 

obesity and HF risk as well as post-HF survival.  

 More importantly, less thought has been given to the suitability of BMI – weight (W)/height (H)2 

– in investigating the link between obesity and both HF risk and post-HF survival despite differences in 

the performance of various weight-height indices across population groups defined by race and sex [16, 

17].  Additionally, predictors with “pleiotropic” effects usually have differential functional relationships 

with varying outcomes suggesting the need to use the data to empirically derive an appropriate weight-

height index for each outcome. Such approaches may be utilized to adequately model the intricacies in 

these data and reveal novel insights that may improve our understanding of anthropometry and general 

obesity in relation to HF risk and post-HF survival.    

 The Southern Community Cohort Study (SCCS) [18] provided the opportunity to investigate: a) 

the appropriate functional form of a data-derived weight-height index (W/Hn) for the association with 

incident HF and post-HF survival, and b) the dose-response relationships between W/Hn (as a surrogate 

measure of general obesity) and waist circumference (WC, a surrogate for visceral fat), with incident HF 

and post-HF survival in a large sample of blacks and whites drawn from resource-limited settings.   
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Methods 

Design and Study Population 

 The SCCS is a unique ongoing prospective investigation tracking a population of 84,797 adults, 

two-thirds black, aged 40-79, recruited in 12 southeastern states between 2002 and 2009 to investigate the 

incidence of cancer and other chronic diseases [18, 148]  Over 86% of the participants in the SCCS were 

identified from community health centers (CHC), institutions providing primary health and preventative 

services mainly to low-income populations [18, 20], so that the cohort is made up of a segment of society 

(minority, poor, rural) seldom included in sizeable numbers in previous cohort studies; particularly those 

investigating CVD.  The remaining 14% were recruited via mail-based sampling of the general 

population.  Data on demographic, socioeconomic, lifestyle, and anthropometric characteristics, as well as 

personal medical history, were obtained at cohort enrollment using standardized computer-assisted 

personal interviews for CHC participants, and via self-administered mailed questionnaire for persons 

recruited from the general population.  Detailed description of SCCS methods has been previously 

published [18, 20, 107].  

 Participants (n = 27,078) included in the current analyses were SCCS enrollees aged ≥ 65 (n = 

7001) at cohort enrollment, or persons < 65 years (n = 20,077) at enrollment who: a) reported being 

covered by Medicaid (which provides medical benefits to low-income adults and uninsured persons) on 

the baseline questionnaire; or b) reported being covered by Medicare (the primary health insurance 

program for persons aged ≥ 65) on the baseline questionnaire; or c) did not report Medicare or Medicaid 

on the baseline questionnaire but had a Centers for Medicare and Medicaid Services (CMS) claim within 

90 days of being enrolled in SCCS. The restriction to these groups maximizes the likelihood that 

participants would have continuous coverage in Medicare and/or Medicaid from the time of SCCS 

enrollment to the end of the follow-up period (December 31st, 2010), for the ascertainment of incident HF 

events. Analyses were restricted to self-reported African American or black and non-Hispanic white 



143 
 

SCCS participants, since too few persons in other racial groups were available for stable statistical 

analysis. 

Assessment of anthropometric data  

 SCCS participants reported their height and weight at baseline.  These were validated using data 

from a random sample (n ≈ 14,000) of SCCS participants for whom measured weight and height were 

either a) abstracted from contemporaneous CHC medical records or b) obtained via measurements 

performed by trained interviewers using a SECA 703 digital scale and a stadiometer on the day of the 

interview [107]  There was a very high correlation (r > 0.95) between measured and self-reported weight 

and height [18].  The latter were used to compute W/Hn and BMI – weight (kg)/height (m)2 – the main 

predictors for the current analyses. 

 Waist and hip circumferences were measured for a subset of the cohort using a standardized 

protocol with a tape measure over a single layer of clothing [107]  Of the 27,078 SCCS participants in the 

current study, 3304 had WC data. 

Outcome ascertainment 

 Ascertainment of HF events was performed via linkage of the SCCS cohort with CMS Research 

Identifiable Files (which include Medicare institutional and non-institutional files, and the Medicaid 

Analytic Extract files).  Incident HF was defined as the first occurrence of a medical claim with an 

International Classification of Diseases, 9th revision, discharge code of 428.x (428.0 to 428.9) within the 

Medicare institutional (Medicare Provider Analysis and Review, MEDPAR, which includes inpatient, 

outpatient and skilled nursing facility base files), Part B carrier (includes non-institutional physician 

services and durable medical equipment), or outpatient-based claims files or the Medicaid Analytic 

Extract (MAX) Inpatient and Other Services claims files, from the date of SCCS enrollment through 

December 31st, 2010.  Detailed description of the CMS research files are published elsewhere.[143]   



144 
 

 Deaths, including dates and causes of death, were ascertained via linkage of the SCCS cohort 

with both the Social Security Administration (SSA) vital status service for epidemiologic researchers and 

the National Death Index (NDI) through December 31st, 2010. Both NDI and SSA are well-established 

and reliable means of identifying deaths in the US, and are expected to capture nearly all deaths [51, 122, 

123]. 

Statistical Analysis 

 Descriptive statistics (means and standard deviations for continuous variables and counts and 

percentages for categorical variables) were computed for all study participants, overall and by race.  

 For all participants included in the current study, duration of follow-up for incident HF was 

computed from date of enrollment into the SCCS until the date of the first diagnosis of HF, date of death, 

or December 31, 2010, whichever occurred first.  For HF cases, post-HF follow-up time was defined as 

time from HF diagnosis to death or December 31st 2010 whichever occurred first.  When date of death 

was coincident with date of HF diagnosis, follow-up time was set to 0.5 days. 

 To investigate the association between W/Hn and incident HF, the following analyses were 

performed in a step-wise fashion. 

a. Deriving the value of n and computing W/Hn.   

 The log relative hazard of incident HF, Y, regressed on the logarithm of a generic weight-height 

index (W/Hn) in a Cox model (with no intercept) could be expressed as follows: 

𝑌 = log 𝑊 𝐻𝑛⁄ , assuming a slope of 1. 

𝑌 = log 𝑊 + log 𝐻−𝑛  

𝑌 = log 𝑊 − nlog 𝐻  

So the absolute value of the ratio of the coefficients of log H and log W is n. 
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 Thus, if a bivariate Cox model for the log relative hazard of incident HF, with the latter regressed 

on log W and log H yields α1 and α2 as their regression coefficients: 

𝑌 =  𝛼1 log 𝑊 + 𝛼2 log 𝐻 , 

where Y = log relative hazard (incident HF), then n is given by the absolute value of the ratio of the 

coefficients:  

n = |𝛼2 𝛼1⁄ | 

 This approach was used to obtain the value of n and compute W/Hn for all participants included 

in the current analyses.  

b. Comparing the performance of W/Hn and BMI in HF risk prediction 

 First, we constructed a bivariate Cox model for the log relative hazard of HF comprising the 

natural log of BMI and log height, both modelled as restricted cubic splines with 5 knots.  A Chunk test 

was performed for the linear and nonlinear terms of log height at alpha of 0.05 to test if the height 

variable contributes significant additional information to the single-predictor model containing BMI.   

 Second, in separate Cox models, we regressed the restricted cubic splines of the natural log of 

W/Hn and that of BMI on the log relative hazard of HF.  Then, model fit statistics (LR chi square, χ² and 

AIC) were computed and used to compare the performance of W/Hn versus that of BMI vis-à-vis a model 

utilizing restricted cubic splines of both log weight and log height as the latter was expected to preserve 

the most information.  

c. Investigating the association between W/Hn and HF risk  

 Multivariable Cox models accounting for nonlinearity and non-additivity were utilized to model a 

flexible dose-response association between W/Hn (modelled using restricted cubic splines with 5 evenly 

spaced knots) and HF risk adjusting for relevant covariates.  Model 1 included W/Hn, age at enrollment 

(restricted cubic splines with 4 knots), race (white/black), sex (men/women) and W/Hn×race interaction 
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terms.  Model 2 additionally adjusted for annual household income (<$15,000; $15,000-$24,999; 

≥$25,000); education (< high school, high school/vocational training/junior college, college degree or 

higher), smoking (never, former, current <19.5 pack-years, current ≥ 19.5 pack-years, 19.5 being the 

median pack-years among current smokers), alcohol intake (linear) and total physical activity in met-

hours (linear + quadratic term).  Model 3 additionally adjusted for the following covariates: history of 

diabetes, hypertension, high cholesterol, MI/CABG or stroke (all yes/no). Knots were placed at quantiles 

of covariate distributions, equally spaced in sample size.[127]  Plots of log relative hazard of incident HF 

versus W/Hn stratified by race were constructed based on data from the variable-rich model.  

 Similar multivariable Cox models (models 1 through 3) were used to estimate the effect of an 

interquartile range (IQR) increase in W/Hn (modelled as a linear IQR-rescaled predictor) on incident HF.  

The hazard ratio (HR) and 95% confidence interval (CI) for a 1 interquartile range increase in W/Hn (as a 

continuous measure) compares the hazard of the event occurring for a typical person in the middle of the 

upper half (the 75th percentile) of the distribution of W/Hn to the hazard of the event for a typical person 

in the middle of the lower half of the distribution.  P-values for the interactions between weight-height 

indices and race were computed. 

 Steps a through c were repeated for the association between W/Hn and post-HF mortality. 

d. Investigating the association between WC and HF risk  

 Similar analyses (models, effect estimation and plots) were performed for the association between 

WC and HF risk.  However, given the reduced amount of data available for the analyses involving WC, 

models 1 through 3 were simplified to reduce the degrees of freedom spent and preserve power.   

 Model 1 included WC (restricted cubic splines with 4 knots), age (restricted cubic splines with 4 

knots), race (white/black), sex (men/women) and WC×race interaction terms.  Model 2 additionally 

adjusted for annual household income (<$15,000/≥$15,000); education (< high school, high 

school/vocational training/junior college, college degree or higher), smoking (never, former, current), 
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alcohol intake (linear) and total physical activity in met-hours (linear).  Model 3 additionally adjusted for 

the following covariates: history of diabetes, hypertension, high cholesterol, MI/CABG or stroke (all 

yes/no).  

 All analyses were performed using STATA (version 12.1, Stata Corp, College Station, Texas, 

USA) and the ‘rms’ package for R version 3.1.1 (R Core Team 2014) [144, 145]. 

Ethics statement 

 Participants enrolled in SCCS provided written informed consent, and protocols were approved 

by the Institutional Review Boards of Vanderbilt University Medical Center and Meharry Medical 

College. 

 

Results 

Characteristics of the Study Population 

 Table 1 shows the distribution of baseline characteristics of the 27, 078 participants included in 

the current study, overall and by race.  The mean (SD) age of the study participants at cohort enrollment 

was 55.5 (10.4) years; 68.8 % were black, 62.6% were women, 69.7% had annual household income < 

$15,000, 38.4% had less than a high school education and 44.8% were obese (BMI ≥ 30Kg/m2).  Overall, 

black SCCS participants were younger, more likely to be obese and to have less than a high school 

education, less than $15,000 annual income, a past history of high blood pressure and diabetes at baseline.  

White SCCS participants on the other hand were more likely to be heavy smokers and report a past 

history of high cholesterol, myocardial infarction and stroke at baseline. 
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Table 1. Comparison* of baseline characteristics of 27, 078 SCCS participants who were receiving 

Medicare or Medicaid during follow-up between 2002 and 2010, by race  

 Overall Whites Blacks 

 n = 27,078 n = 8,454 n = 18,624 

Age (SD), years 55.5 (10.4)  58.0 (10.6) 54.3 (10.1) 

Age quartiles %    

  40-46 24.6 18.2 27.5 

  47-53 23.7 19.9 25.4 

  54-64 25.9 25.6 26.0 

  ≥ 65 25.8 36.3 21.1 

Women % 62.6 62.1 62.8 

Education %    

 < High school (HS) 38.4 30.9 41.8 

   HS/Junior college/VT**  53.1 56.5 51.6 

   ≥ College degree  8.5 12.6 6.6 

Annual Income < $15,000, % 69.7 61.1 73.5 

Smoking %    

   Never 34.7 31.3 36.2 

   Former 25.3 31.9 22.3 

   Current & pack-years < 19.5 19.6 9.3 24.3 

   Current & pack-years ≥ 19.5 20.4 27.6 17.2 

Alcohol Intake %    

    0 drink per day 54.9 60.0 52.7 

    >0-2 drinks per day 33.2 31.9 33.7 

    >2 drinks per day 11.9 8.1 13.6 

Total Physical Activity (SD), met-hrs  17.2 (15.6) 16.6 (14.9) 17.4 (15.9) 

BMI (kg/m2) (SD) 30.4 (7.8) 30.0 (7.6) 30.6 (7.8) 

BMI Categories %     

        Underweight, BMI < 18.5 1.7 1.8 1.6 

        Lean, BMI 18.5 - < 25.0 24.0 25.3 23.4 

        Overweight, BMI 25 - < 30.0 29.5 31.2 28.7 

        Obese, BMI ≥ 30.0 44.8 41.7 46.3 

History of MI % 8.6 12.1 7.0 

History of Stroke % 9.6 10.3 9.2 

Diabetes % 26.5 24.1 27.6 

Hypertension % 62.5 56.9 65.0 

High Cholesterol % 39.5 48.6 35.4 

 

* Other than for sex (p = 0.32), all comparisons between racial groups were statistically significant (p = 0.004 for 

stroke, p = 0.0001 for total physical activity and p<0.0001 for all other baseline variables).  

**VT: Vocational training.
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Empiric weight-height indices used to investigate HF risk and Post-HF mortality 

 For incident HF, the calculated exponent of height, n, in the empiric weight-height index (W/Hn) 

was found to be 1.81 among whites and 1.21 among blacks while for post-HF mortality, the 

corresponding values were 4.02 and 2.68 respectively (Table 2).  Table 2 shows the distribution of the 

empiric weight-height indices and their correlations with BMI and WC.  The W/Hn index for the 

association with HF risk was strongly correlated with WC (and BMI) in both whites and blacks while 

BMI appeared weakly correlated with WC among blacks.  Similar patterns (correlations with BMI) were 

observed for empiric weight-height indices used to investigate post-HF mortality but there were limited 

data to compute reliable correlation coefficients with WC.  
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Table 2: Empiric weight-height indices derived for both Incident HF and post-HF mortality in SCCS 

 
Incident HF Post-HF mortality 

 Whites 
n* = 8,454 

 

 

 

Blacks 
n* = 18,624 

 

 

Whites 
nϙ = 1,312 

 

 

 

Blacks 
nϙ = 3,029 

 

 

 BMI W/H1.81 BMI W/H1.21 BMI W/H4.07 BMI W/H2.68 

Range 13.2 – 78.3 14.5 – 86.8 11.4 – 80.7 15.3 – 121.5 14.0 – 78.3 4.4 – 29.0 14.5 – 80.7 9.9 – 56.7 

Mean (SD) 30.0 (7.6) 33.1 (8.4) 30.6 (7.8) 46.3 (11.4) 32.1 (8.5) 11.4 (3.6) 32.6 (8.8) 22.9 (6.4) 

Median (IQR) 28.5 (9.1) 31.6 (9.9) 29.3 (10.0) 44.5 (14.5) 30.6 (10.8) 10.6 (4.5) 31.2 (11.6) 22.0 (8.6) 

Pearson’s correlations (ρ)     

W/Hn § 0.99 1.00 0.98 1.00 0.91 1.00 0.99 1.00 

WCǂ 0.85 0.85 0.78 0.80     

 

* Out of the 27, 078 whites and blacks included in these analyses, 365 (1.35%) had missing weight and/or height data at baseline.  

ϙ Out of the 4,341 persons who were diagnosed with HF on follow-up, 73 (1.7%) had missing weight and/or height data.  

ǂ WC: waist circumference; data were available for 1406 White and 1962 Black participants. There were insufficient WC data among HF cases to compute 

correlations with empiric weight-height indices derived for the association with post-HF mortality. 

§ For Incident HF, the exponent of height in W/Hn = 1.81 among whites and 1.21 among blacks. For post-HF mortality, the exponent of height in W/Hn = 4.02 

among whites and 2.68 among blacks. 
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Model fit for models utilizing W/Hn to investigate HF risk and post-HF mortality 

 Model fit statistics for separate Cox models utilizing log weight + log height, log W/Hn or log 

BMI to predict HF risk and post-HF mortality are presented in Table 3.  For predicting HF risk, using log 

W/Hn yielded better model fit statistics (smaller AIC and higher LR χ²) compared to using log BMI 

especially among blacks. A similar pattern was observed for models predicting post-HF mortality in 

blacks and whites.  

Table 3: Model fit statistics for models utilizing weight-height indices for predicting HF risk and post-HF 

mortality 

Incident HF Post-HF Mortality 

Whites Whites 

Model* LR χ² AIC LR χ² AIC 

Log W + Log 

H 

141.08 22274.60 57.55 3839.73 

Log W/Hn 125.29 22282.40 45.51 3843.77 

Log BMI 125.12  22282.56  38.91  3850.37  

Blacks Blacks 

Model* LR χ² AIC LR χ² AIC 

Log W + Log 

H 

224.46 55959.06 121.46 9488.58 

Log W/Hn 218.01 55957.51 110.63 9491.42 

Log BMI 207.75  55967.77  108.94  9493.11  

 

*All variables were modelled using restricted cubic splines with 5 knots. 

§ For Incident HF, the exponent of height in W/Hn = 1.81 among whites and 1.21 among blacks. For post-HF 

mortality, the exponent of height in W/Hn = 4.02 among whites and 2.68 among blacks. 
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Association between surrogate measures of total and visceral adiposity with HF risk  

 Over a median follow-up time of 5.2 (range: 0.1 – 8.9) years, 4,341 incident cases of HF were 

ascertained corresponding to a cumulative incidence of 16%.  Table 4 shows the HR (and 95% CI) for 

incident HF per 1 IQR increase in W/Hn and BMI adjusted for demographic, lifestyle and clinical factors 

in a sequential fashion (models 1 to 3).  After adjustment for age and sex, a 1 IQR increase in W/Hn was 

associated with a 49% increase in the risk of HF [HR= 1.49; 95% CI: 1.41-1.58] among whites and a 43% 

increase [HR= 1.43; 95% CI: 1.37-1.49] in risk among blacks. For BMI, similar effect estimates were 

observed with HRs of 1.51 [95% CI: 1.42 -1.60] and 1.44 [95% CI: 1.38-1.51] among whites and blacks 

respectively.  After full adjustment for relevant covariates, a 1 IQR increase in W/Hn remained associated 

with a significant 31% increase in the risk of incident HF [HR = 1.31; 95% CI: 1.22-1.39] among whites 

and a 33% increase in risk [HR= 1.33; 95% CI: 1.27-1.39] among blacks. Similar findings were observed 

for BMI. 

 For WC, the association with incident HF appeared stronger with HRs of 1.74 [95% CI: 1.38 -

2.18] among whites and 1.60 [95% CI: 1.36 -1.89] among blacks in the minimally-adjusted model and 

HRs of 1.66 [95% CI: 1.29 -2.14] among whites and 1.46 [95% CI: 1.20 -1.77] among blacks in the fully 

adjusted model (Table 5). 

 The plot of log hazard of HF versus W/Hn (on a standardized scale) appears to have a J-shape 

with lower values associated with increased risk of HF in both blacks and whites then both curves rise 

sharply after a nadir – which occurs earlier in the curve for whites compared to that of blacks (Figure 1a).  

The plot for BMI is almost identical to the former with the troughs found at ≈ 25Kg/m2 among whites and 

≈ 30 Kg/m2 among blacks (Figure 1b). Figure 1c shows the plot for WC.  Among blacks, the plot is 

suggestive of an ostensibly linear increase in log hazard of HF with increasing WC.  Among whites, 

whilst the curve appears nonlinear with a trough at ≈ 90cm, in the region where we have the most data 

(and tighter confidence bands), the risk of HF increases in a seemingly linear fashion.   
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Fig 1a. The log relative hazard of HF plotted against a 

standardized weight-height index among Blacks and 

Whites in SCCS.  

Fig 1b. The log relative hazard of HF plotted against BMI 

among Blacks and Whites in SCCS.  

                                                                                                      

 

Fig 1c. The log relative hazard of HF plotted 

against waist circumference among Blacks and 

Whites in SCCS. 

Fig 1. The log relative hazard of HF plotted against 3 

surrogate measures of obesity among Blacks and Whites 

in SCCS. 
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Association between surrogate measures of total adiposity and post-HF mortality  

 Among the 4,341 SCCS participants who developed incident HF, 952 died (a cumulative 

mortality of 21.9%) over a median follow-up time of 2.3 (range: 0 – 8.8) years.  The HR (and 95% CI) for 

post-HF mortality per 1 IQR increase in W/Hn and BMI are shown in Table 4. After adjustment for age 

and sex, a 1 IQR increase in W/Hn was associated with a 27% decrease in the risk of all-cause mortality 

after a HF diagnosis [HR= 0.73; 95% CI: 0.61 – 0.87] among whites and a 37% decrease [HR= 0.63; 95% 

CI: 0.55 – 0.71] in risk among blacks.  Similar effect estimates were observed for BMI with HRs of 0.73 

[95% CI: 0.62 – 0.87] and 0.63 [95% CI: 0.56 – 0.72] among whites and blacks respectively.  After full 

adjustment for relevant covariates, a 1 IQR increase in W/Hn remained associated with a significant 30% 

decrease in the risk of post-HF mortality [HR = 0.70; 95% CI: 0.58 – 0.85] among whites and a 33% 

decrease in risk [HR= 0.67; 95% CI: 0.58 – 0.77] among blacks.  Comparable estimates were obtained for 

BMI. 

 The plot of log relative hazard of post-HF mortality versus W/Hn (on a standardized scale) was 

suggestive of a negative nonlinear relationship between W/Hn and the risk of all-cause mortality 

following a HF diagnosis (Figure 2a).  Among whites the risk decreased sharply with increasing values 

of W/Hn then plateaued, whereas among blacks, the initial sharp decrease was followed by a more gentle 

decrease throughout the range of values of W/Hn.  An identical pattern was observed for the plot of BMI 

with the plateau observed among whites occurring at a BMI ≈ 30 Kg/m2 (Figure 2b).  
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Table 4: Hazard ratios for incident HF and post-HF mortality per 1 IQR increase in weight-height indices 

Incident HF 

 Whites Blacks 

 BMI W/Hn BMI W/Hn 

Model 1 1.51 (1.42, 1.60) 1.49 (1.41, 1.58) 1.44 (1.38, 1.51) 1.43 (1.37, 1.49) 

Model 2 1.49 91.40, 1.58) 1.48 (1.39, 1.57) 1.46 (1.39, 1.53) 1.45 (1.39, 1.52) 

Model 3 1.32 (1.23, 1.40) 1.31 (1.22, 1.39) 1.33 (1.27, 1.40) 1.33 (1.27, 1.39) 

Post-HF Mortality 

 Whites Blacks 

 BMI W/Hn BMI W/Hn 

Model 1 0.73 (0.62, 0.87) 0.73 (0.61, 0.87) 0.63 (0.56, 0.72) 0.63 (0.55, 0.71) 

Model 2 0.76 (0.64, 0.91) 0.75 (0.62, 0.90) 0.71 (0.62, 0.81) 0.70 (0.61, 0.80) 

Model 3 0.70 (0.58, 0.84) 0.70 (0.58, 0.85) 0.68 (0.59, 0.78) 0.67 (0.58, 0.77) 

 

Model 1: Includes age (restricted cubic splines with 4 knots), race and sex. Model 2: Model 1 + annual household 

income (<$15000, $15000-$24999 & ≥$25000) and education (< high school, high school/vocational training/junior 

college, college degree or higher, smoking (never, former, current < 19.5 pack-years, current ≥ 19.5 pack-years), 

alcohol intake (linear) and total physical activity in MET-hours (linear + quadratic). Model 3: Model 2 + diabetes 

(yes/no), hypertension (yes/no), high cholesterol (yes/no), history of MI (yes/no) and history of stroke (yes/no). P-

value for BMI×race interaction = 0.24. P-value for W/Hn ×race interaction = 0.24. CI: Confidence Interval 

 

Table 5: Hazard ratios for incident HF per 1 IQR increase in WC, overall and by race 

 
Overall Whites Blacks 

Model 1 1.65 (1.45, 1.89) 1.74 (1.38, 2.18) 1.60 (1.36, 1.89) 

Model 2 1.64 (1.43, 1.88) 1.80 (1.42, 2.28) 1.58 (1.33, 1.88) 

Model 3 1.53 (1.32, 1.78) 1.66 (1.29, 2.14) 1.46 (1.20, 1.77) 

 

Model 1: Includes age (restricted cubic splines with 4 knots), race and sex. Model 2: Model 1 + annual household 

income (<$15000, $15000-$24999 & ≥$25000) and education (< high school, high school/vocational training/junior 

college, college degree or higher, smoking (never, former, current < 19.5 pack-years, current ≥ 19.5 pack-years), 

alcohol intake (linear) and total physical activity in MET-hours (linear + quadratic). Model 3: Model 2 + diabetes 

(yes/no), hypertension (yes/no), high cholesterol (yes/no), history of MI (yes/no) and history of stroke (yes/no). 
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Fig 2a. The log relative hazard of post-HF mortality plotted 

against a standardized weight-height index among Blacks 

and Whites in SCCS.  

Fig 2b. The log relative hazard of post-HF mortality 

plotted against BMI among Blacks and Whites in SCCS.  

  

 

Fig 2. The log relative hazard of post-HF mortality plotted against weight-height indices among Blacks and Whites in 

SCCS. 
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Discussion 

 In this large sample of low-income blacks and whites from the southeastern US, we investigated 

the association between surrogate measures of obesity and incident HF as well as post-HF mortality.  Our 

principal findings were: 1) Compared to BMI, empirically-derived weight-height indices offer a better 

model fit when investigating the association with incident HF and post-HF mortality; 2)  There exists an 

independent positive nonlinear association between surrogate measures of general (weight-height indices) 

as well as visceral obesity (waist circumference) and incident HF; and 3)  There is an independent 

negative nonlinear dose-response relationship between surrogate measures of general obesity (weight-

height indices) and post-HF mortality. 

 Most previous studies investigating the association between obesity and both HF risk and post-

HF survival have utilized BMI (W/H2) as a surrogate measure of total adiposity [105, 169]  Meanwhile, 

some investigators have suggested that other weight-height indices including the ponderal index, W/H 

and W/H3 could be equally appropriate depending on the demographic characteristics of the study 

population [16, 17, 82].  In the current study we propose a novel empirically-derived weight-height index 

(W/Hn) that utilizes information from the outcome measure to inform its functional form.  We obtained 

better model fit statistics using the empiric index in models used to predict both HF risk and post-HF 

survival.  This suggests that for the purpose of predicting HF outcomes it may be more apropos to use 

empirical indices rather than BMI which has been the default proxy for total adiposity utilized in 

prediction models including the HF risk calculator (C index = 0.741) developed by the Meta-Analysis 

Global Group in Chronic Heart Failure (MAGGIC) [169].  More so, in multivariable logit models for 

post-HF mortality in SCCS we obtained slightly higher C-statistics utilizing W/Hn compared to BMI (data 

not shown). 

 However, when investigating dose-response patterns and computing summary effect estimates for 

the obesity-HF association, we did observe similar patterns for either index – BMI or W/Hn.  Overall, 

there was a significant independent association of comparable magnitude between both indices and HF 
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risk (with no evidence of heterogeneity of effects by race) which is corroborated by findings from 

previous studies.  For example, using data from the Framingham Heart Study, Kenchaiah et al found HRs 

(95%CI) of 1.05 (1.02-1.09) and 1.07 (1.04-1.10) per kg/m2 among men and women respectively after 

full adjustment for demographic variables, traditional cardiovascular (CV) risk factors (including 

smoking, diabetes, hypertension, past history of MI, total cholesterol) and left ventricular (LV) 

hypertrophy [13].  Using data from the Atherosclerosis Risk in Communities study, Ndumele et al found 

a HR of 1.32 per 5kg/m2 after adjusting for traditional CV risk factors, N-terminal pro b-type natriuretic 

peptide (NT-BNP) and estimated glomerular filtration rate (eGFR) [15].  Ndumele et al also found a 

strong independent association between BMI and cardiac troponin T, a biomarker of subclinical 

myocardial injury which has been linked with incident HF [15].  This could explain in part the 

independent association between BMI and HF after adjusting for causal intermediaries like diabetes and 

hypertension.  

 In addition to that, obesity has been shown to be independently associated with impaired 

myocardial contractile function and relaxation as well as structural myocardial abnormalities [170, 171].  

The most common structural changes observed include concentric remodeling, LV hypertrophy (which 

includes concurrent cardiac myocyte hypertrophy, fibrosis and apoptosis at the cellular level), dilated 

cardiomyopathy and increased right ventricular (RV) wall thickness which occur in varying degrees 

depending on obesity class and the presence or absence of hypertension [90, 92-99].  The presence of LV 

hypertrophy predisposes obese persons to abnormalities in diastolic function including increased LV end-

diastolic pressure [90, 92] and abnormal load-dependent myocardial strain [103].  Data from animal 

models suggest that the structural and functional changes seen in obese individuals are related to 

metabolic derangements including decreased insulin sensitivity, decreased serum adiponectin levels, 

increased sympathetic tone, activation of the Renin Angiotensin Aldosterone System (RAAS) and low-

grade systemic inflammation (increased C - reactive protein and Tumor Necrosis Factor, TNF) [14].   
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 Still, in contrast to previous investigations on the obesity-HF association, which have either 

assumed a linear dose-response or reported effect estimates based on pre-specified categories (including 

those defined by the World Health Organization, WHO), we found a nonlinear J-shaped dose-response 

curve between BMI and HF risk. This J-shape pattern (suggestive of higher HF risk at very low or high 

values of BMI or W/Hn) mirrors patterns observed for the association between BMI and other outcomes 

including end-stage renal disease and all-cause mortality [172-174].  Elevated HF risk with increasing 

BMI maybe explained by abnormalities associated with increasing levels of adiposity including chronic 

myocardial injury and myocardial dysfunction [14].  This hypothesis is bolstered by the quasi-linear dose-

response curve (in the BMI range where we have the most data) observed for the association between WC 

(a proxy for visceral adiposity) and HF risk.  On the other hand, the underlying reasons behind higher risk 

at very low BMI remain uncertain and could be related to frailty and reduced lean mass.  Importantly, 

while the nadir for the dose-response curve for blacks occurred at a BMI ≈ 30kg/m2, that for whites 

occurred at a lower BMI, ≈ 25kg/m2.  If we utilized the WHO BMI categories as a referent framework, 

this would imply that among whites, the risk of HF rises with increasing BMI close to the cut-point for 

persons considered ‘overweight’; meanwhile, among blacks, HF risk surges closer to the threshold for the 

‘obese’ category.  This would be consistent with previous data suggesting differential body composition 

by race whereby on average, whites have higher visceral fat and percent body fat (as well as higher risk of 

adverse outcomes including ESRD [175], atrial fibrillation [108] and cardiovascular mortality [107]) than 

blacks at similar BMI [176, 177] – another argument against the ubiquitous utilization of pre-specified 

BMI categories for risk stratification.  

 While the epidemiologic data linking obesity to increased HF risk and the biologic evidence for 

the nefarious effects of excess body weight on the myocardium appear to be compelling, several studies 

have suggested that overweight and obese persons with HF have a demonstrably higher survival 

compared to leaner subjects – a phenomenon coined as the obesity paradox [109, 111, 112, 114, 117].  

For example, in a meta-analysis of 9 observational studies, Oreopoulos et al found a 33% lower risk [HR 
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= 0.67; 95% CI: 0.62 - 0.73] of all-cause mortality among obese persons with HF compared to persons 

with ‘normal’ weight [112].   Overall, our findings appear to corroborate this paradox for either index 

(BMI and W/Hn). Several hypotheses have been suggested to explain this phenomenon. Obese persons 

appear to have a higher metabolic reserve while leaner patients with HF may have a higher likelihood of 

being cachectic and thus could be at a higher risk of death [113].  Also, compared to persons with 

‘normal’ weight, overweight and obese persons were found to have lower atrial natriuretic peptide levels 

which was correlated with having higher muscle mass and muscle strength [116].  The latter have been 

associated with improved survival in other patient populations and this may be analogous to patients with 

congestive HF as well [117].  Finally, certain underlying biological characteristics of obese persons with 

HF may play a role including the secretion of soluble TNF-α receptors which have beneficial neutralizing 

effects and elevated blood pressure which raises the tolerance of obese individuals to higher doses of 

cardio-protective agents including beta blockers, aldosterone antagonists and RAAS inhibitors [114, 115]. 

 In light of existing data suggesting that in persons with HF, intentional weight loss mitigates 

some of the concurrent hemodynamic abnormalities and reduces left ventricular (LV) mass [90, 92, 93, 

100, 114, 118], some cardiovascular societies recommend intentional weight reduction, albeit at higher 

cut-points for BMI [114].  The American Heart Association, the Heart Failure Society and the European 

Society of Cardiology recommend intentional weight loss in persons with HF at BMI cut-points of 40, 35 

and 30 kg/m2, respectively [114].  Importantly, one of the unique aspects of the nonlinear dose-response 

relationship observed between BMI at cohort entry and post-HF mortality in the current investigation of 

the SCCS data was that the initial inverse trend mostly plateaus beyond a BMI ≈ 30kg/m2.  While this is 

not clinical trial data, this observation appears to lend some credence to the above recommendations. 

Nevertheless, the ubiquitous utilization of BMI cut-points to guide patient care remains somewhat 

contentious as it seemingly assumes discontinuities in risk.  An alternative decision-making paradigm 

may be to develop a highly discriminant prediction model for HF-related outcomes (including post-HF 

mortality and hospitalizations) using the relevant anthropometric, lifestyle, clinical and demographic 
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factors and using the estimates of predicted risk for individuals and cost-effectiveness ratios of efficacious 

interventions to make decisions in clinical or public heath settings.  In addition, for any such models 

including the HF risk calculator developed by the MAGGIC (C index = 0.741), it would be interesting to 

explore differences in model fit (as well as discriminant and calibration properties) when utilizing BMI 

versus empiric weight-height indices derived for specific race-sex groups or more robust measures of 

adiposity whenever available. 

 Limitations of the study include the utilization of self-reported height and weight for calculation 

of weight-height indices but a prior SCCS validation study showed very high correlation (r > 0.95) 

between self-reported and measured weight and height [18].  Data from the National Health and Nutrition 

Examination Survey (NHANES) also suggest that BMI based on self-report has good concordance with 

BMI from measured values.[178]  Data on baseline covariates (including CVD risk factors) were based 

on self-report of a physician diagnosis and use of medications.  While self-report could be susceptible to 

recall and misclassification bias, these methods have been successfully utilized and validated in large 

epidemiologic cohorts, including the SCCS.  Several of the questions on the SCCS questionnaire were 

adapted from questionnaires that were validated in other settings; and a series of independent validation 

studies using biomarkers, repeat interviews or medical records have demonstrated the reliability of the 

questionnaire within the SCCS population for variables such as smoking status and self-reported diseases 

including diabetes [18].  Another potential drawback is that for the analyses of weight-height indices in 

relation to post-HF mortality, we relied exclusively on the anthropometric and covariate data at cohort 

entry and we lacked these data at the time of HF diagnosis and these may have changed over time.  Also, 

HF was ascertained via linkage with CMS Research Identifiable Files using ICD-9 codes 428.x (428.0 – 

428.9), rather than independent physician adjudication.  Nonetheless, the diagnosis codes algorithm for 

identification of HF used in this study has been previously validated and utilized in other cohorts [119-

121].  A review of the detection of HF in administrative claims data that included studies conducted 

among Medicare beneficiaries reported positive predictive values (PPVs) mostly over 90% [119].  These 
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codes have also been used with high specificity in a number of studies [120, 121] even though no 

independent validation was conducted by the SCCS investigators.   Data on the utilization of medication 

(ACE Inhibitors, beta blockers, statins etc), devices, investigations and procedures would have been 

useful in informing the analyses and these were unavailable from the linkages performed with the 

administrative claims data. In addition information on important predictors like LV ejection fraction 

(LVEF), NT proBNP, eGFR, or New York Heart Association class may have influenced the observed 

dose-response curves and summary effect estimates for post-HF mortality.  Similarly additional clinic 

data on blood pressure values, HbA1c and serum lipid levels may have informed the analyses for the 

association with HF risk but we did adjust for past history of diabetes and hypertension and high 

cholesterol at baseline.   

 The current investigation leverages data from a large multiethnic cohort with a sizable number of 

participants from minority and low-income populations who are traditionally under-represented in 

previous cohorts investigating CVD and HF in particular.  With a large burden of CVD risk factors at 

baseline including obesity, this cohort provides a unique opportunity to investigate dose-response 

between surrogate measures of obesity and HF-related outcomes in a population that is at a particularly 

high risk of adverse CVD outcomes.  The availability of a large sample of participants and HF cases 

afforded the opportunity to adequately explore flexible dose-response patterns across racial categories. 

 In this low-income biracial cohort, empirically-derived weight-height indices (utilized as a 

surrogate of general obesity) offered a better model fit when investigating the association with incident 

HF and post-HF mortality compared to the default index – BMI.  However, weight appears to be the more 

predominant component of the composite weight-height index (W/Hn) hence small changes in n – the 

exponent of the height variable – based on information provided by the outcome data may have modest 

effects on model fit statistics and predictions but do not change summary effect estimates and dose-

response curves.  More importantly, there were unique nonlinear dose-response patterns observed 

between BMI and both HF risk and post-HF mortality that could potentially inform current clinical 
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guidelines or add to the knowledge base required to improve the existing recommendations regarding risk 

stratification and the holistic management of the nutritional status and energy balance of persons with HF.  
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Appendix  

Appendix 1 shows a DAG for the association between weight-height index (as a surrogate for total body 

fat) and HF risk  

Appendix 2 – 5: Causal diagrams showing the hypothesized association between clusters of variables 

representing anthropometric, socioeconomic, neighborhood, lifestyle & cardio-metabolic factors, CVD 

and incident HF (and post-HF survival).
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Appendix 1: Directed acyclic graph showing the hypothesized relationships between anthropometric, socioeconomic, lifestyle, 

cardiometabolic factors and Incident HF. 
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Appendix 2: Causal Diagram showing a summarized version of the hypothesized association between clusters of anthropometric, 

socioeconomic, lifestyle & cardiometabolic factors, CVD and Incident HF 
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Appendix 3: Causal Diagram showing a summarized version of the hypothesized association between clusters of anthropometric, 

socioeconomic, lifestyle & cardiometabolic factors, CVD and Post-HF Survival 
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Appendix 4: Causal Diagram showing a summarized version of the hypothesized association between clusters of anthropometric, 

socioeconomic, lifestyle & cardiometabolic factors, CVD and Incident HF (or post-HF survival) 
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Appendix 5: Causal Diagram showing a summarized version of the hypothesized association between clusters of neighborhood, 

socioeconomic, lifestyle & cardiometabolic factors, CVD and Incident HF (or post-HF survival). 

 


