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CHAPTER I 

 

INTRODUCTION 

 

1. Background 

 Addiction is a devastating disease that imposes a substantial toll on afflicted 

individuals, close friends and relatives, and society as a whole.  According to the 

American Society of Addiction Medicine, addiction is a primary, chronic disease of 

brain reward, motivation, memory, and related circuitry.  An important 

characteristic of addiction is the inability of a patient to consistently abstain from 

addiction-related behavior despite negative consequences to himself and those 

around him. Each year in the United States, abuse of illicit drugs alone has been 

estimated to exact over $11 billion in direct health care costs and over $193 billion 

related to social and occupational factors (National Drug Intelligence Center, 

2011). Moreover the disease is pervasive and affects all regions, socioeconomic 

classes and ethnicities. In the Nashville Metro Area the average annual prevalence 

of a substance use disorder diagnosis has been estimated to be 9.3% (Figure 1, 

Page 2) (SAMHSA, 2012). 

 Substance use disorders involve the persistent abuse of psychoactive 

drugs, small molecules that affect neuronal function by altering the biochemical 

balance of the brain. Exposure to these agents results in alterations of behavior, 

consciousness and mood; such agents include alcohol, tobacco, cannabinoids, 

opioids, stimulants, hallucinogens, club drugs and some prescription drugs. Non-
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drug addictions have also been described including sex, gambling, and other 

behaviors. Likewise the concept of overindulging in consumption of highly 

palatable foods has been recently debated as constituting an addiction. This 

should not be surprising, since drugs of abuse hijack the natural reward circuitry 

which has been evolutionarily optimized for survival (DiLeone et al., 2012).  

  

 More specifically, addiction is a chronic disease characterized by a cyclical, 

relapse-laden progression through several phases of maladaptive behavior (Koob 

and Volkow, 2010). The cyclical nature of the disease is particularly evident with 

substance abuse patients, who repeatedly progress through periods of binging 

(high levels of consumption), withdrawal (abstinence, in the presence of anxiety 

Figure 1. Annual prevalence of illicit drug use and substance use disorder. Data adapted from 

2012 National Survey on Drug Use and Health Report. Nashville Metro refers to the Nashville, 

Davidson County, Murfreesboro, and Franklin. Rx-type refers to painkillers. SUD, substance use 

disorder. USA, United States of America. (*: p < 0.05 vs Tennessee, #: p < 0.05 vs. USA) 
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and/or negative affect), and preoccupation (intense craving and anticipation of next 

use). Consummatory behavior at disease onset is generally impulsive, and thought 

to be motivated mainly by positive reinforcement (i.e. euphoria obtained from 

substance ingestion). However as the disease progresses, the motivation 

underlying drug-seeking shifts towards negative reinforcement (i.e. relief of 

withdrawal symptoms). Eventually, the drug-taking is maintained by compulsive 

habitual behaviors. While all drugs of abuse act on a final common pathway, the 

sensitization and intensification of these symptoms and phases is thought to recruit 

distinct neural circuits and local networks. Thus, to an extent, it is possible to map 

the phases of addiction-related behaviors onto the function of specific neural 

circuits.  

 

1.1 Neuropharmacology of Abused Substances  

 To understand how abused substances cause durable changes in the brain, 

it is first necessary to introduce how they acutely alter brain function (reviewed by 

Sulzer, 2011). Drugs of abuse elicit their effects through a variety of mechanisms. 

Yet all abused substances recruit the major natural reward pathway of the central 

nervous system, the mesocorticolimbic dopamine system. All drugs of abuse 

directly or indirectly facilitate the release of the neurotransmitter dopamine, 

produced in the ventral tegmental area (VTA) of the midbrain, in the nucleus 

accumbens (NAc) (Di Chiara et al., 2004) (Figure 2, page 5). The receptor targets 

for drugs of abuse have been well defined and most are cell surface receptors, 

however understanding their complex downstream effects remains a challenge 
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and these are described in a subsequent section. Here we will briefly describe the 

targets for well-studied drugs of abuse (Table 1).  

 

Drug(s) of Abuse Primary Action Physiological Effects 

cocaine, methylphenidate, MDPV 
derivatives 

DAT inhibition 
Increased blood pressure and 
heart rate, increased energy and 
alertness, reduced appetite, 
anxiety, paranoia, psychosis 

amphetamine and cathinone 
derivatives 

VMAT inhibition 

nicotine nAchR agonism 
Increased blood pressure, heart 
rate, and alertness 

heroin, morphine, and synthetic 
analogs 

MOR agonism 
Euphoria, drowsiness/sedation, 
nausea, respiratory depression 

Salvia divinorum / 
salvinorin A 

KOR agonism 
Dissociation, hallucinations, 
impaired motor function 

PCP, ketamine 
NMDAR 
antagonism 

Dissociation, delirium, analgesia, 
impaired motor function 

Barbiturates, benzodiazepines, Z-
drugs 

GABAAR 
positive 
modulation 

Sedation, anxiolysis, amnesia, 
impaired coordination, muscle 
relaxation 

Cannabis, THC, and analogs CB1R agonism 
Altered perception, impaired 
memory, increased heart rate 
and appetite 

Tryptamines/phenethylamines (e.g. 
psilocin, mescaline, 
LSD, DOM, DMT) 

5-HT2AR 
agonism 

Altered perception, hallucinations, 
emotional changes, insomnia 

Alcohol (ethanol) 
pleiotropic 
effects 

Relaxation, loss of inhibition, 
drowsiness, impaired 
coordination, amnesia 

Solvents and inhalants 
pleiotropic 
effects 

Stimulation, slurred speech, 
impaired coordination 

 

Table 1. Common Drugs of Abuse. Drugs of abuse, their primary mechanism of action, and 
commonly observed physiological effects. Despite the diversity of primary mechanism of action, all 
drugs of abuse facilitate dopamine release in the nucleus accumbens. 5HT2AR, serotonin receptor 
subtype 2A; CB1R, cannabinoid receptor subtype 1; DAT, dopamine transporter; DMT, N,N-
dimethyltryptamine; DOM, 2,5-dimethoxy-4-methylamphetamine; GABAAR, γ-aminobutyric acid 
receptor subtype A; KOR, kappa opioid receptor; LSD, lysergic acid diethylamide; MOR, mu opioid 
receptor; nAchR, nicotinic acetylcholine receptor; NMDAR, N-methyl-D-aspartate glutamate 
receptor; PCP, phencyclidine; THC, tetrahydrocannabinol; VMAT, vesicular membrane 
monoamine transporter. 

Table 1 
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 Psychostimulants, including cocaine and amphetamines, act directly on the 

presynaptic dopamine-releasing axon terminals of VTA afferents. Cocaine 

impedes the clearance of dopamine from the synaptic cleft by inhibiting plasma 

membrane monoamine transporters, whereas amphetamines alter the function of 

both the vesicular monoamine transporters and plasma membrane transporters 

(Robertson et al., 2009; Sulzer et al., 2005). Nicotine binds to the orthosteric 

binding site of the nicotinic acetylcholine-gated cation channel (nAChR). Nicotine 

is thought to act primarily through activation of α4β2-containing nAChRs on 

dopamine cell bodies and axon terminals, thereby directly leading to dopamine 

release in the NAc (Xi et al., 2009). However, nicotine-mediated activation of α7 

homomers on dopamine axon terminals and presynaptic glutamatergic afferents 

may too be involved.  

Figure 2. All drugs of abuse facilitate DA release in the NAc. Despite heterogeneous molecular 

and cellular targets, all drugs of abuse increase extracellular DA concentrations in the NAc. DA, 

dopamine; GABA, γ-aminobutyric acid; NAc, nucleus accumbens; THC, tetrahydrocannabinol; 

VTA, ventral tegmental area. Image adapted from Lüscher and Malenka, 2011. 
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 Opiates like heroin and morphine activate Gi/o-coupled μ-opioid receptors 

(MOR), which, within the VTA, are expressed mainly on GABAergic interneurons. 

Activation of MORs hyperpolarizes VTA interneurons, leading to disinhibition of the 

dopamine projection neurons and enhanced dopamine release in the NAc (Ting-

A-Kee and van der Kooy, 2012). Similarly, several other classes of abused drugs 

– barbiturates/benzodiazepines, PCP/ketamine, and cannabinoids – are thought 

to facilitate dopamine release in the NAc via similar mechanisms (Lüscher and 

Ungless, 2006). Like other non-stimulant drugs of abuse, ethanol causes a net 

disinhibition of VTA dopaminergic neurons (Marty and Spigelman, 2012), however 

ethanol has a rich pharmacology involving direct interactions with glutamatergic 

and GABAergic ion channels.  

 

1.2 Neurocircuitry of Reward 

Seminal work from Olds and colleagues demonstrated that rodents will work 

to electrically stimulate relatively discrete areas of the brain (Olds and Milner, 

1954). Considering the observation that humans find stimulation of these same 

areas pleasurable, these regions were described as comprising the brain-reward 

circuitry (Wise, 1996). Subsequently, others have shown that animals will work to 

self-administer drugs of abuse (but not other drugs) and that this self-

administration behavior is disrupted by lesioning brain-reward regions (Koob et al., 

1998) (Figure 3, page 7).   
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Figure 3. Simplified schematic of the reward circuitry in the rodent brain emphasizing signaling to 
and from the nucleus accumbens (NAc) and ventral tegmental area (VTA). Glutamatergic 
transmission drives information through the reward and reward-related circuitry (blue arrows). 
GABAergic transmission from NAc and other regions dampens target neuronal activity (red arrows). 
Dopamine release from the VTA and substantia nigra (SN) modulates synaptic transmission in 
target regions (green arrows). These regions are recruited and undergo synaptic, circuit, and 
genetic adaptations in response to drug experience. AMY, amygdala; BNST, bed nucleus of the 
stria terminalis; CeA, central nucleus of the amygdala; DS, dorsal striatum; LDTg, laterodorsal 
tegmentum; LHb, lateral habenula; LH, lateral hypothalamus; PFC, prefrontal cortex; SN, 
substantia nigra; VP, ventral pallidum. 

 

The critical regions in the reward circuitry are now widely accepted to 

include the mesolimbic dopamine system, more specifically the VTA-NAc 

pathways (Kalivas et al., 2005).  Yet, the VTA-NAc pathways comprise only part 

of a series of parallel, integrated circuits, which involve several other key brain 

regions. These other regions include but are not limited to the prefrontal cortex 

(PFC), midline nuclei of the thalamus (mThal), ventral hippocampus (vHipp), and 

basolateral amygdala (BLA) which all provide excitatory drive within the reward 

circuit. Auxiliary regions, including the dorsal striatum and extended amygdala, 

sustain habitual behaviors and stress responses in addiction. 
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1.2.1 Dopamine Centers 

 Dopamine plays a central role in motivation and reward processing. 

However, dopamine-deficient mice still demonstrate a degree of reward learning, 

suggesting the monoamine is not necessary for this process (Wise, 2009). These 

findings illustrate that although dopamine is key to reward, the holistic reward 

system is substantially more complex. Dopamine production occurs in midbrain 

dopamine neurons including the VTA, the retrorubral field and the substantia nigra 

(SN). In addition to dopamine neurons, the VTA contains GABAergic neurons, 

which can regulate VTA dopamine neuron function (Tan et al., 2010), and/or 

project to and modulate NAc cholinergic interneurons (Brown et al., 2012).  In 

addition to having widespread projections throughout the brain, retrograde tracing 

techniques have shown that the VTA receives diverse afferent inputs, which likely 

influence behavioral output differentially (reviewed in Lammel et al., 2013).   

 The SN is a midbrain dopaminergic region closely related to the VTA. Like 

the VTA, electrical stimulation of the SN is rewarding. Additional evidence 

suggests that blockade of glutamatergic or cholinergic signaling into either the SN 

or VTA alters addiction-related habit formation (Wise, 2009). Also, blockade of 

dopamine receptor signaling in the terminal beds of either the VTA (NAc) or the 

SN (dorsal striatum) alters addiction-related behaviors, although to a much greater 

degree in the NAc. Utilization of optogenetics and genetic engineering in rats and 

mice has allowed for more detailed analysis of addiction-related behaviors as the 

light sensitive channels that activate (channelrhodopsins) or inhibit 

(halorhodopsins) cellular excitability can be expressed in a region- and cell type-
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specific manner. For instance, selective photostimulation and subsequent 

excitation of VTA dopamine neurons supports reward related behaviors such as 

conditioned place preference (Tsai et al., 2009; Witten et al., 2011).  

 Like the SN, the VTA also degenerates during the progression of 

Parkinson’s disease (PD) and may explain some of the similarities between the 

PD non-motor symptoms and post-acute-withdrawal syndrome (e.g. 

depression/irritability, cognitive disruptions). Overall, it is well accepted that the 

activity of midbrain dopamine neurons conveys information involved in integration 

of the rewarding vs. aversive properties of environmental stimuli (Lammel et al., 

2013). 

 

1.2.2 Dorsal Striatum and Nucleus Accumbens  

 The striatum is the gate to the basal ganglia, integrating inputs from the 

PFC, as well as thalamic and limbic structures (vHipp and BLA). Consisting of 

multiple nuclei differentiated by their anatomical connections and behavioral 

functions, the striatum is broadly divided into a dorsal region, also known as the 

caudate-putamen, and a ventral region, which mainly consists of the NAc. The NAc 

is further divided into two subregions, the core and the shell with the core being 

more similar to the dorsal striatum and the shell having strong similarities with the 

extended amygdala (described below). Serial connectivity between the NAc, 

midbrain, and dorsal striatum may account for the transition from motivated to 

habitual behaviors observed in the progression of addiction (Belin and Everitt, 

2008; Haber et al., 2000). Thus, drug-evoked changes in synaptic strength and 
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connectivity within the dorsal striatum and the NAc are thought to underlie many 

behavioral components of addiction (Grueter et al., 2012).  

 The known neuronal cell types in the dorsal striatum and NAc include 

GABAergic projection medium spiny neurons (MSNs), multiple types of GABAergic 

interneurons, and cholinergic interneurons. The MSNs can be further subdivided 

into two categories (historically referred to as “direct pathway” (striatonigral) and 

“indirect pathway” (striatopallidal) MSNs) based on projection targets, 

electrophysiology, and expression of neuropeptides and cell surface receptors 

(Figure 4). For instance, dopamine receptor subtype 1 (D1R), muscarinic 

acetylcholine receptor subtype 4 and prodynorphin are expressed by one MSN 

type whereas the other type expresses dopamine receptor subtype 2 (D2R), 

adenosine receptor subtype 2A (A2AR) and proenkephalin.  

 

Figure 4. Simplified schematic of NAc circuity. NAc MSNs are readily divided into two groups. One 

group expresses D1 and projects to the midbrain (and VP) whereas the other expresses A2A and 

D2 and projects to the VP. While some overlap exists with regards to protein expression and 

anatomy, the balance of MSN pathway function is hypothesized to regulate several complex 

behaviors related to motivational state. Because MSNs are quiet and generally rest at 

hyperpolarized potentials, excitatory drive is crucial in driving MSN activity in vivo and modulating 

NAc-related behavioral outcomes. A2A, adenosine receptor subtype 2A; D1, dopamine receptor 

subtype 1; D2, dopamine receptor subtype 2; MSN, medium spiny neuron; mThal, midline nuclei 

of the thalamus; NAc, nucleus accumbens; PFC, prefrontal cortex; SN, substantia nigra; VP, 

ventral pallidum; VTA, ventral tegmental area. 
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D1 MSNs mainly project to dopaminergic midbrain regions, whereas D2 MSNs 

primarily target the pallidum (Smith et al., 2013), although these distinctions are 

far from clear, especially in the NAc shell (Kupchik et al., 2015).  Several studies 

have demonstrated that these parallel circuits can exert opposing or dichotomous 

functional effects on behavior (Francis et al., 2014; Grueter et al., 2013; Kravitz et 

al., 2012; Lobo et al., 2010), whereas others suggest that the pathways may work 

in tandem towards the same functional response (Beutler et al., 2011; Cui et al., 

2013).  

 Excitatory (glutamatergic) drive is critical for MSN output as these neurons 

are relatively quiescent with a resting membrane potential around -80 mV. The 

dorsal striatum receives excitatory inputs primarily from the associative and 

sensorimotor cortex and thalamic nuclei, as well as reciprocal dopaminergic 

innervation from the SN. In contrast, the NAc receives excitatory inputs from the 

prefrontal cortex and limbic regions. Although both the NAc shell and core receive 

inputs from the VTA, the NAc shell sends reciprocal projections to the VTA while 

the NAc core projects back to the SN. An essential role for the NAc in drug-related 

behaviors is evidenced by the demonstration that psychostimulant self-

administration is disrupted by NAc-specific lesions, or local blockade of glutamate 

or dopamine receptors. 

 In addition to its well-characterized role in the rewarding and reinforcing 

properties of drugs of abuse and natural stimuli, the NAc has also been implicated 

in the placebo effect (Scott et al., 2007) and the processing of pleasant emotions 

induced by imagery (Costa et al., 2010) and music (Menon and Levitin, 2005). By 
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contrast overactive or otherwise dysfunctional activity in the mesolimbic system is 

thought to be involved in the manifestation of positive psychotic symptoms (e.g. 

delusions, hallucinations, grandiosity) shared by acute stimulant-induced 

psychosis and psychiatric illnesses like schizophrenia and bipolar disorder. 

 

1.2.3 Glutamatergic Regions of the Reward Circuit 

 The PFC, often divided in rodents into the prelimbic and infralimbic portions, 

comprises the anterior portion of the frontal lobes. Among other functions, the PFC 

is typically and most consistently associated with executive function, an umbrella 

term for higher-order processes such as planning and forethought, problem 

solving, and cognitive flexibility. With respect to addiction, the PFC regulates the 

overall motivational significance and determines the intensity of behavioral 

responding (Goldstein and Volkow, 2011). The output of the PFC is glutamatergic, 

and is modulated by dopamine and other neuromodulators (Van Eden and Buijs, 

2000).  Consistent with involvement of dopaminergic afferents, the activation of the 

PFC by rewarding stimuli is strongly influenced by the predictability of the reward. 

A hypoactive PFC has been associated with loss of impulse control (Chen et al., 

2013), and deficits in PFC function have been observed in patients with a variety 

of psychiatric illnesses including substance abuse (Goldstein and Volkow, 2011) 
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and obesity (Cornier et al., 2013), ADHD (Arnsten, 2009), schizophrenia (Yoon et 

al., 2013), and depression (Koenigs et al., 2008). 

 The hippocampus is a limbic structure that plays a major role in learning 

and memory. The hippocampus sends glutamatergic projections to multiple 

regions within the reward circuitry. In fact, the NAc is innervated by the vHipp 

subiculum, which is thought to convey contextual and memory-related information. 

Consistently, direct stimulation of vHipp axons in the NAc reinforces addiction-

Figure 5. Glutamatergic brain regions projecting to the NAc. Several glutamatergic cortical and 

limbic regions project to the NAc, which serves to integrate potentially distinct components of 

motivational information towards the execution of complex tasks. Over the past 4 years, the PFC, 

vHipp, and BLA inputs to the NAc have been demonstrated to undergo pathological adaptations 

following cocaine exposure. Italics indicate experiments performed in the rat while the other 

citations denote mouse experiments with a D1/D2 transgenic reporter as used in this dissertation. 

Until this body of work, no published account has examined the mThal-NAc circuit in the context of 

cocaine exposure. The background image was taken from the gensat gene atlas and indicates 

expression of the A2A subtype adenosine receptor. BLA, basolateral amygdala; mThal, midline 

nuclei of the thalamus; Nat Neuro, Nature Neuroscience; NAc, nucleus accumbens; Npp, 

Neuropsychopharmacology; PFC, prefrontal cortex; PNAS, Proceedings of the National Academy 

of Sciences; vHipp, ventral subiculum of the hippocampus. 
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related behaviors (Britt et al., 2012) and potentiation of the circuit has been shown 

to be necessary for reinstatement to cocaine-seeking (Pascoli et al., 2014). 

 The BLA is a limbic region thought to be necessary for attributing emotional 

value to cues, thus having an integral role in processing affective (emotional) 

states (Phelps and LeDoux, 2005). In terms of addiction, the amygdala is thought 

to be important for cue- and stress-induced reinstatement of drug-seeking 

behavior. However, lesion studies suggest the BLA is not critical for cocaine self-

administration. Similar modulations of amygdala output occur during extinction of 

fear response and drug-seeking (Peters et al., 2009) and the BLA, along with the 

extended amygdala, is a likely neurobiological substrate underlying the 

comorbidity of addiction and anxiety disorders. The BLA therefore acts to integrate 

the positive or negative value of an environmental stimulus (natural reward, drug 

of abuse, stress). 

 The thalamus has been historically conceptualized as a sensorimotor-

cortical relay, and has received relatively little attention with regards to its capacity 

to modulate complex affective and cognitive behaviors (Vertes et al., 2015). 

Several groups of thalamic nuclei all send and receive information to and from 

other components of the limbic system, but the mThal are most well known for their 

ability to regulate reward-related behaviors. Of the mThal nuclei, the 

paraventricular nucleus (PV) and paratenial nucleus (PT) project most densely to 

the NAc (Berendse and Groenewegen, 1990). The PVT and PT receive 

information from a diverse host of reward-related structures (Li and Kirouac, 2012; 

Phillipson, 1988) including the PFC, vHipp, hypothalamus, bed nucleus of the stria 
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terminalis (BNST), and the VTA and other midbrain regions. Thus the mThal nuclei 

are anatomically positioned to provide essential coordination of learned drug-

induced behaviors. Indeed, lesion or inhibition of the PVT has been demonstrated 

to disrupt behaviors conditioned by drugs of abuse (Browning et al., 2014; Hamlin 

et al., 2008; James et al., 2010; Young and Deutch, 1998), including reinstatement 

of cocaine-seeking and expression of cocaine CPP.  

 Although excitatory drive on the NAc-VTA axis is the key final common 

pathway to addiction, other regions, such as the extended amygdala play a key 

role in distinct addiction-related behaviors (Koob et al., 1998). The extended 

amygdala is composed of several basal forebrain regions including the NAc shell, 

the BNST, and the central nucleus of the amygdala (CeA), all of which have similar 

morphology, immunoreactivity and connectivity.  The extended amygdala is the 

aforementioned area implicated as a key mediator of stress-induced relapse (S 

Erb et al., 2001).  

 Other structures tertiary to the reward circuitry play a role in mediating 

addiction. For instance, the mesolimbic and nigrostriatal pathways are innervated 

by a wide variety of brain regions, whose inputs supply information concerning the 

environment and the animal’s motivational and emotional states. One particular 

region, the hypothalamus, is a highly diverse brain region perhaps best known for 

its close association with the pituitary gland and the endocrine system. The lateral 

hypothalamus (LH) which is reciprocally connected to the NAc shell is a target for 

self-stimulation (Margules and Olds, 1962).  Consistent with the critical role of the 
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LH in metabolic homeostasis and reward, drug valence can be modified by 

metabolic states (for review see Stice et al., 2012).  

 

2. Rodent Models of Addiction-like Behaviors 

 Much of our knowledge of addiction and substance abuse comes from 

preclinical experiments, the vast majority of which are performed in mice or rats. 

The utility of rodent addiction models are exemplified as follows: there are many 

variations of rats and mice with strain-specific traits that are particularly useful for 

modeling aspects of addiction-related behaviors (e.g. high anxiety, alcohol-

preferring) and rodents also engage in complex spontaneous and conditioned 

behaviors that are implicated in substance abuse. Furthermore, mice are highly 

amenable to genetic manipulation allowing for cell type and region specific 

manipulation of protein expression. The use of mice or rats also confers pragmatic 

advantages in that they are small and inexpensive, easy to house and maintain, 

and reproduce readily and rapidly.  

 

2.1 Neurochemistry 

 Several quantitative neurochemical techniques are commonly employed to 

study the neurophysiological effects of abused substances. Microdialysis, in 

conjunction with liquid chromatography/mass spectrometry, allows for 

quantification of dopamine, other biogenic amines, and/or glutamate/GABA 

induced by a substance of abuse. Neurotransmitter collection often occurs while 

the animal is simultaneously performing passive or contingent addiction-related 
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behaviors. Additionally, biosensor technology is very similar to microdialysis, 

except the detection method is enzymatic and allows for more precise 

measurements over shorter intervals. Finally imaging techniques, including 

positron emission tomography and magnetic resonance imaging, are used in 

rodents, primates, and humans to examine how abused substances occupy 

receptors, induce neurotransmitter release, or alter brain region activation or 

connectivity. 

 

2.2 Behavioral Models 

 Unlike most illnesses and some other psychiatric disorders, drug addiction 

is largely defined by its behavioral components. Effectively reproducing these 

behaviors in animals is essential to making clinically relevant scientific discoveries. 

For a complex psychiatric disorder, a comprehensive animal model is likely 

unattainable. Instead, animal models are designed as a means to examine one or 

more particular components of a human disorder. When discussing or creating an 

animal model, there are several types of validity to consider. The first concept, and 

arguably the most relevant one, is construct validity, which refers to how 

meaningfully, interpretably, and powerfully the conclusions drawn from the model 

can apply to the psychiatric condition (Edwards and Koob, 2012). Construct validity 

commonly refers to the similarity between the underlying biology of the animals 

and the patients. Alternatively, construct validity relates to the concept of functional 

equivalence, that a change in one variable (e.g. stress) should similarly affect the 

outcome (e.g. drug-seeking) in the model and the clinical population (Katz and 
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Higgins, 2003). For instance, reinstatement to cocaine-seeking in the rat is 

considered to have a high degree of construct validity relative to relapse since 

stimuli (e.g. stress, cocaine cues, and cocaine itself) that induce reinstatement are 

also known to trigger relapse. Additionally, similar biological underpinnings have 

been identified in humans and rodent models (e.g. deficits in PFC function).   

 The concept of functional equivalence is closely related to predictive 

validity, which more specifically refers to the ability to predict the clinical response 

to an intervention based on the response in the animal model. One should also 

consider face validity, which refers to how well the animal model resembles 

components of the psychiatric disorder. Lastly some have proposed considering 

population validity, an extension of face validity, which dictates that the rate of 

occurrence of a disease-related behavior should reflect epidemiological data 

(Schmidt, 2011). For example, only approximately 20% of cocaine users transition 

to clinical cocaine dependence (Lopez-Quintero et al., 2011), so a model where 

only 20% of animals engaged in addiction-like behavior (see (Deroche-Gamonet 

et al., 2004)) would be said to have a high degree of population validity. Arguably, 

this concept is important to ensure that pathological disease-related behavior is 

being modeled, as opposed to behavior within the normal adaptive range (Steimer, 

2011). 

 Abused substances can be delivered in two ways, contingently (by the 

subject) or passively (by the experimenter). The distinction is important for two 

reasons: (1) pathological substance-seeking is a key component of addiction, 

whereas the prescribed use of medication does not constitute addiction and (2) 
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studies have demonstrated that experimenter-delivered and self-administered 

abused substances can induce profoundly different neurobiological and behavioral 

effects (for examples, see Markou et al., 1999; Wolf and Ferrario, 2010). However, 

not all effects of substances of abuse are dependent upon contingent 

administration thus both contingent and passive treatment regimens have been 

utilized to study each phase of addiction pathology. 

 

2.3 Etiology of Addiction-like Behavior 

 Clinical substance dependence is diagnosed when at least 3-of-7 criteria 

from the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria have 

been met within one year. These criteria include tolerance, withdrawal, escalation, 

persistence, excessive motivation to obtain the substance, giving up other 

activities, and perseverance despite self-harm. Considering these criteria is 

important when discussing an animal model of addiction since, as mentioned, 

behavioral animal models are designed to mimic only a particular facet of the 

disorder. Animal models of addiction typically replicate aspects of fewer than three 

of the DSM criteria, and typically measure only one property of drug action.  

 

2.3.1 Stages of Addiction 

 The binge/intoxication phase of addiction is studied by examining the initial 

effects of substance administration to naïve animals. Acute and short subchronic 

(< 7 days) treatments with abused substances have been shown to transiently or 

semi-permanently perturb normal physiology and behavior. Additionally, in 
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contingent administration paradigms, animals tend to escalate their substance 

intake similarly to humans at the onset of the disorder. Negative affect/withdrawal 

is modeled by continuing the administration of vehicle in lieu of the abused 

substance (i.e. extinction) or, in some cases, by completely removing access. Like 

in patients, drug-seeking behavior in animals often intensifies during the first drug-

free session – this phenomenon is referred to as the “extinction burst”. The 

dwindling of drug-seeking during the extinction phase is not due to a loss, or 

forgetting, of previous drug-related memories, but instead is an active learning 

process (McNally, 2013). Acceleration or enhancement of this extinction learning 

is considered to be a potential avenue for improving clinical outcomes. 

Reinstatement is a phase of administration in animal models that occurs after an 

extinction phase. In animals that have undergone extinction (i.e. those that no 

longer engage in drug-seeking), drug-seeking behavior can be elicited by several 

manipulations relevant to the preoccupation/relapse phase of addiction. These 

reinstatement treatments include: a stressor, a small “priming” drug dose, and a 

cue or context previously paired with substance delivery. All three methods are 

commonly used in efforts to better understand the etiology of relapse.  

 

2.3.2 Reinforcement 

 Reinforcement is the ability of a stimulus to modify a measureable 

dimension of instrumental behavior, typically rate, duration, magnitude, or latency. 

Positive reinforcement occurs when a behavior results in the presentation of an 

absent stimulus (e.g. receiving a foot massage), whereas negative reinforcement 
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occurs when a behavior results in the removal of a present stimulus (e.g. 

scratching an itch). Positive and negative reinforcement are not mutually exclusive 

properties; this is perhaps best evidenced by the development of addiction where 

behavior is initially driven by intoxication and is eventually driven by alleviation of 

withdrawal. The most flexible and robust model of a substance’s reinforcing 

properties is self-administration.  

 In the self-administration paradigm, animals are trained in a specific 

environment such that an instrumental response (e.g. lever-press or hole-poke) 

results in substance delivery. Food, drink, or alcohol are typically delivered by a 

hopper or retractable lever, whereas for drugs of abuse, animals are implanted 

with an intravenous catheter used for systemic drug infusion. A variety of 

manipulations of the required behavior can be made to gain insight into specific 

aspects of addiction. For example a progressive ratio schedule has been used to 

examine motivation, addition of coincidental punishment can be used to study 

persistence, responding in the absence of drug is used to measure compulsive 

drug-seeking, and the reinstatement of extinguished responding is a model of 

relapse (Katz and Higgins, 2003).  Additionally some researchers have correlated 

specific behavioral traits (e.g. persistent or compulsive responding) with changes 

in receptor expression (Kasanetz et al., 2012), neuron excitability (Chen et al., 

2013), and synaptic plasticity (Kasanetz et al., 2010). Patterns of intake during 

acquisition of cocaine self-administration are also strong predictors of developed 

behaviors (Belin et al., 2009). The versatility of the paradigm, in tandem with its 
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validity, perpetuates the view that self-administration is the “gold standard” of 

behavioral addiction research. 

 

2.3.3 Reward 

 Models of reward specifically capture information related to the hedonic 

valence of the drug or stimulus, whether positive or negative. That is, these models 

can readily detect aversive properties of a stimulus since reward and aversion exist 

on one spectrum. The most substantial distinction between models of reward and 

reinforcement is that models of reward typically involve the passive, experimenter-

delivered administration of a stimulus and therefore do not address motivation. 

Intracranial self-stimulation (ICSS) can be used to study reward by pretreating an 

animal with a drug prior to a training session: drugs of abuse act synergistically 

with deep-brain electrical stimulation to facilitate instrumental behavior in the ICSS 

paradigm (Wise, 1996). It is worth noting that, through the advent of optogenetics, 

stimulation of distinct, specific neuronal pathways has been demonstrated to be 

sufficient to reinforce (Britt et al., 2012; Kravitz et al., 2012; Lammel et al., 2012; 

Lobo et al., 2010; Stuber et al., 2011) or punish (Kravitz et al., 2012; Lammel et 

al., 2012; Stamatakis and Stuber, 2012a) instrumental behavior and such 

preparations are an ongoing area of research.  
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 Perhaps the most commonly used paradigm to study reward is place 

conditioning, often referred to as conditioned place preference (CPP) (for reviews, 

see Tzschentke, 2007, 1998). CPP takes advantage of Pavlovian conditioning in 

an apparatus with at least two contextually distinct compartments (Figure 6). 

Animals are conditioned during several training sessions such that a paired 

association is formed between the stimulus of interest (unconditioned stimulus, 

US) and a particular chamber in the apparatus (conditioned stimulus, CS). After 

the completion of the training sessions, the animal is given unrestricted access to 

all chambers of the apparatus and the preference or avoidance of the conditioned 

side is taken as a measure of reward or aversion.  CPP has been used to study 

Figure 6. Assessment of reward learning with place conditioning. Mice, other rodents, and 

primates, can learn to associate the rewarding (or aversive) properties of a stimuli with a particular 

environment. The assay takes advantage of classical Pavlovian conditioning whereby the 

unconditioned stimulus (US) whose properties are to be tested (e.g. cocaine) is paired with an 

otherwise innocuous conditioned stimulus (CS) (e.g. green room). For a place conditioning 

association to be formed, the stimuli must have inherent emotional valence and not disrupt learning 

and memory. 
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not just drugs of abuse, but also the rewarding properties of palatable food and 

drink, novel objects, voluntary exercise, social interaction, copulation, and direct 

neuronal stimulation. On the other hand, place conditioning can been used to study 

the aversive properties of acute drug treatment, drug withdrawal, and painful 

stimuli. Like the self-administration paradigm, CPP can be used to study 

abstinence and relapse by observing extinction learning and reinstatement 

induced by cues, stress, or drug priming. One important caveat to CPP is that the 

expression of a place preference necessitates the learned formation of a paired 

US-CS association, and the effects of amnestic drugs must be interpreted carefully 

(Bardo and Bevins, 2000). 

 Certain anticipatory behaviors have also been used as a measure of the 

rewarding properties of drugs and natural rewards. Measuring these behaviors 

requires conditioning an animal such that the conditions of drug delivery or food 

presentation are held constant and occur at the same manner each time. Like 

Pavlov’s iconic salivating dogs, rodents will engage in specific behaviors in the 

time period immediately before and after reward delivery. These behaviors, 

including such quantifiable events as digging and rearing (Labouèbe et al., 2013) 

and bouts of high-frequency ultrasonic vocalizations (USVs) (Browning et al., 

2011; Wright et al., 2012), are often measured during performance of another task, 

especially self-administration or CPP. Analogous behaviors can also be used to 

study the aversive properties of drugs (Burgdorf et al., 2001) or drug withdrawal 

(Covington and Miczek, 2003).  
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 Novelty-seeking and sensation-seeking are personality traits that have 

been associated with a propensity to use drugs of abuse. There are a few reports 

of modeling these traits in rodents. For example, rats that strongly prefer 

environmental novelty are more likely to develop addiction-like cocaine self-

administration (Belin et al., 2011). A newly developed rodent model is Operant 

Sensation Seeking (OSS), in which an animal actively responds for the 

presentation of dynamic sensory stimuli. OSS performance appears to be 

dependent on similar molecular substrates as psychostimulant self-administration 

(Olsen and Winder, 2009; Olsen et al., 2010). 

 

2.3.4 Interoceptive State and Drug Action 

 The drug discrimination assay is used to model the subjective effects of a 

drug, also referred to as the interoceptive state. In a human drug user or test 

subject, the interoceptive state does not necessarily carry emotional valence (as 

in feeling ‘good’, ‘bad’, or ‘high’), as drugs that are neither rewarding nor aversive 

can still be detected. There are many different ways to implement a drug 

discrimination experiment, but two-choice operant paradigms are most commonly 

used. An animal is trained in a two-choice box where one choice (e.g. left lever 

press) results in food delivery on days when the animal has been administered 

drug, while the other choice (e.g. right lever press) is reinforced when the animal 

has been treated with vehicle. This paradigm is very sensitive and relatively 

specific for particular pharmacological mechanisms. Substitution studies and 

antagonism studies have been used to gain insight into the abuse liability and 
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mechanism of action of psychoactive drugs. Additionally it should be noted that a 

drug need not have rewarding or locomotive properties to be used as a training or 

probe drug in drug discrimination; animals have been successfully trained on 

rewarding (cocaine, morphine), aversive (atropine, naloxone), and neutral 

(buspirone, clozapine, desipramine) agents (Young, 2009).  

 Changes in locomotor activity (i.e. either hyperactivity or sedation) are a 

commonly used measure of drug action as the NAc plays a role in regulating 

locomotor output. These data must be interpreted carefully since high doses of 

particular drugs, especially psychostimulants, produce repetitive stereotypical 

behaviors that interfere with locomotion. In some cases these stereotypies can be 

very informative, as some have been linked to a specific molecular mechanism of 

action (e.g. yawning/D3 receptor, head-bobbing/5-HT2A receptor). One important 

applied paradigm of locomotor activity is sensitization. Like in human addicts (Sax 

and Strakowski, 2001), rodents will become more sensitive to particular properties 

of certain drugs during the initial exposure period. For example locomotion and 

grooming behavior will continue to increase over the first several injects in a 

chronic stimulant period. This is believed to be related to the dose escalation that 

is observed in the initial stages of addiction. 

 

2.3.5 Cognition 

 A wide range of deficits in cognition have been observed in addicted 

patients. Although there are several potential explanations, current evidence 

suggests that drug abuse may cause certain cognitive deficits, and conversely 
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certain cognitive deficits may cause a predisposition to abuse drugs and/or 

become addicted to them. The brain structure most commonly associated with 

these particular cognitive deficits is the PFC, and altered cortical function has been 

observed in both human drug abusers as well as chronically-treated animals. The 

major cognitive deficits generally associated with addiction are related to attention 

and problem solving. Although most clinical studies have been correlational, it is 

generally thought that various cognitive traits confer vulnerability to addiction and 

that substance abuse itself can alter certain aspects of cognition. 

 One such aspect is impulsivity, a personality trait that is characterized by 

the tendency to make quick, rash decisions as well as an inability to cease 

inappropriate behavior. Impulsivity can be broadly split into two major components: 

quick and/or rash decision-making (impulsive choice) and disinhibition of motor 

responses (impulsive action) (Jupp et al., 2013). Impulsive choice is modeled in 

animals primarily via delay discounting, a paradigm that measures the preference 

for small, immediate rewards vs. large, delayed rewards. On the other hand, 

impulsive action is modeled in several paradigms, one of which is the Go/No-Go 

task, where the animal must cease responding when a tone is presented during 

interspersed “no-go” trials (Rodriguez and Wetsel, 2006). 

 Another cognitive domain believed to be involved in addiction is executive 

function. Executive function refers to a group of “higher order” tasks including 

problem solving and cognitive flexibility, and is thought to be mediated in large part 

by the PFC. One commonly-used clinical assay to detect deficits in executive 

function is the Wisconsin Cord Sort Task, while such deficits are assessed in 
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animals in reversal learning paradigms and in the attentional set-shift task (Dias et 

al., 1996).  PFC-mediated “top-down” control of subcortical structures is thought to 

suppress drug-seeking behavior following extinction training (Peters et al., 2009). 

 

2.3.6 Anxiety and Anhedonia 

 Like cognition, a complex bidirectional relationship exists between addiction 

and stress/anxiety. At disease onset, drugs can be sought as a means of relieving 

stress. Eventually drug withdrawal becomes a stressful experience, and, in 

rehabilitated individuals, stress can trigger relapse to drug seeking behavior. While 

many anxiety models exist, the canonical model of anxiety in rodents is the 

elevated plus maze, an arena that consists of one open, vulnerable arm and one 

closed, sheltered arm. When placed in an elevated maze, rodents exhibit an 

approach-avoidance conflict between attraction to novel environments and 

aversion to heightened and/or open spaces. The proportion of time spent in the 

closed arms, taken as a measure of anxiety, is reliably increased and decreased 

by anxiogenic and anxiolytic manipulations, respectively (Rodriguez and Wetsel, 

2006). 

 Major Depressive Disorder, and its anhedonic symptoms in particular, is 

often comorbid with substance use disorders. Anhedonia is an inability to enjoy 

pleasurable activities, and often occurs during acute or protracted withdrawal from 

drugs of abuse. Some of the addiction-related animal models, like ICSS and CPP, 

have even been used to model anhedonia (Lim et al., 2012). Additionally, sucrose 

preference is often used to study anhedonia in rodents. Animals are given equal 
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access to standard drinking water and an otherwise identical solution sweetened 

with sucrose or saccharin. Stressful conditions and drug withdrawal can decrease 

the preference for sucrose, and chronic antidepressant treatment can reverse that 

effect (Der-Avakian and Markou, 2010; Strekalova et al., 2011). 

 

3. Molecular Mediators of Addiction Pathology 

 Addiction is conceptualized as a learning disorder, whereby drugs of abuse 

hijack the same glutamate-dependent cellular mechanisms that enable learning 

and memory. Synaptic plasticity is a collective term for when patterns of neural 

activity alter the strength of the connection between two neurons. Synaptic 

plasticity occurs at both excitatory and inhibitory synapses and may be mediated 

by altering the number of synapses, quantal size, probability of neurotransmitter 

release, or the functional/expression of neurotransmitter receptors. Long term 

changes in synaptic strength and connectivity are also mediated by structural 

changes in form and function, including changes in the expression of receptors 

and channels, the localization of cytoskeletal and scaffolding proteins, and the 

activation state of kinases, phosphatases, and transcription factors (Russo et al., 

2010). 

 

3.1 Structural and Regulatory Proteins  

 Structural proteins are critical for the development, maintenance and 

plasticity of excitatory synapses. As exposure to drugs of abuse leads to 

remodeling of excitatory synapses, it is not surprising that synaptic scaffolding 
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proteins are important proteins implicated in drug-related behaviors. To date, 

postsynaptic structural proteins including (but not limited to) postsynaptic density 

95 (Yao et al., 2004), Kalirin (Wang et al., 2013), activity-regulated cytoskeleton-

associated protein (A. L. Brown et al., 2011), A-kinase anchor protein (Reissner et 

al., 2011), integrins (Wiggins et al., 2011), spinophilin and neurabin (Allen et al., 

2006),  and Homers (Szumlinski et al., 2006) have been implicated in drug related 

behaviors. For the most part, with the exception of Homers discussed below, these 

structural proteins act to form and maintain synapses and also stabilize the 

expression and function of glutamate receptors.  

 One of the most thoroughly studied scaffolding proteins in regards to 

addiction-related phenomena are the Homer proteins. Homers are scaffolding 

proteins that regulate cell signaling by regulating Group 1 metabotropic glutamate 

receptor (mGluR) trafficking and extracellular glutamate concentrations 

(Szumlinski et al., 2008). Homers are also involved in dendritic spine enlargement 

and postsynaptic density maturation. Evidence has pointed towards Homer 

proteins as being crucial for the long-lasting synaptic and behavioral plasticity 

following drug administration. For example, genetic deletion and viral-mediated 

rescue demonstrated that Homer2 is essential for the neuroplastic effects and 

rewarding properties of alcohol (Szumlinski et al., 2005). By contrast, deletion of 

either Homer1 or Homer2, has been shown to sensitize mice to neurochemical and 

behavioral changes induced by cocaine (Szumlinski et al., 2004).  

 Many drugs of abuse directly bind or functionally interact with the ER-

associated intracellular chaperone known as the σ1 receptor (Maurice and Su, 
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2009). The σ1 receptor is thought to co-localize with inositol triphosphate receptors 

and modulate intracellular calcium release. σ1 activity also regulates transporters 

and ligand- and voltage-gated ion channels and has been implicated in the 

reinforcing and addictive properties of psychostimulants (Katz et al., 2011). 

 

3.2 Kinases 

 One of the most pronounced signaling pathways in addiction includes 

elements of the adenylate cyclase, cAMP, and protein kinase A (PKA) signaling 

pathway. PKA is thought to be activated by D1R signaling in response to drug 

exposure. Among other events, this leads to phosphorylation of AMPARs and 

convergence with the protein kinase C pathway onto the extracellular-related 

kinase (ERK) pathway. Activation of this pathway has been reported following 

acute and repeated treatment with cocaine, amphetamine, THC, nicotine, and 

morphine in the VTA, NAc, extended amygdala, and PFC (Zhai et al., 2008). 

Additionally, the ERK pathway is suggested to be dependent on the phosphatase 

inhibitor dopamine- and cAMP-regulated phosphoprotein-32 (Gerfen et al., 2008; 

Zhang et al., 2006). Cyclin-dependent kinase 5 (Cdk5), another key component in 

the pathway, is also implicated in addiction-related behaviors since chronic 

cocaine exposure has been shown to increase Cdk5 levels in the striatum (Bibb et 

al., 2001). This pathway plays a variety of diverse roles in different brain regions 

and disease stages. In the NAc for example, the ERK pathway mediates some of 

the initial effects of cocaine (Pascoli et al., 2012), while in the central amygdala it 

plays a role in the incubation of cocaine craving (Lu et al., 2005). ERK activation 
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has been shown to interact with the epigenetic machinery, including the expression 

of immediate early genes and transcription factors. 

 

3.3 Transcription Factors 

  A variety of epigenetic mechanisms are thought to contribute to the 

persistent plastic changes related to addiction. Histone modification, DNA 

methylation, and the production of non-coding RNA and transcription factors have 

all been implicated in the pathophysiology of substance abuse (Robison and 

Nestler, 2011). The two transcription factors most extensively studied with respect 

to addiction are ΔFosB (Chen et al., 1995; Grueter et al., 2013; Hiroi et al., 1998, 

1997; Lobo et al., 2013) and cAMP response element binding protein (CREB) (T. 

E. Brown et al., 2011; Dong et al., 2006; Huang et al., 2008; Konradi et al., 1996, 

1994). These transcription factors are upregulated following exposure to drugs of 

abuse and likely lead to upregulation of mRNA of Cdk5 (Bibb et al., 2001). 

Overexpression of either ΔFosB (Kelz et al., 1999) or CREB (Larson et al., 2011) 

within the striatum has been shown to potentiate the behavioral effects of cocaine, 

likely through similar mechanisms of gene expression regulation (McClung and 

Nestler, 2003).  Interestingly, a recent study has demonstrated that selective 

overexpression of ΔFosB within D1R-, but not D2R-, expressing neurons in the 

NAc potentiates behavioral responses to cocaine (Grueter et al., 2013). Others 

have shown that ΔFosB is necessary and sufficient for the cocaine-mediated 

synaptic remodeling and CaMKII induction in D1-expressing neurons (Robison et 
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al., 2013). Taken together these data highlight the need for the continued need for 

cell-type specific experimental designs in future research efforts. 

 

3.4 Cell Surface Receptors and Transporters 

 In addition to signaling through ligand-gated ion channels, glutamate also 

sends modulatory signals through mGluRs.  While activation of Group II mGluRs 

has been shown to attenuate reinstatement of seeking of cocaine (Baptista et al., 

2004) and heroin (Bossert et al., 2005), the Gq-coupled Group 1 mGluRs have 

been the most thoroughly studied with respect to drug abuse, particularly mGlu5 

(Grueter BA et al., 2008). Experiments utilizing selective negative allosteric 

modulators or knockout mice have implicated mGlu5 in the rewarding, reinforcing, 

and motivational properties of several classes of abused substances (Amato et al., 

2013; Bird and Lawrence, 2009; Grueter et al., 2007) and also dynamic sensory 

stimuli (Olsen et al., 2010). Furthermore, acute cocaine exposure has been shown 

to lead to intracellular sequestration of mGlu5 via a Homer-dependent manner 

(Szumlinski et al., 2006), while chronic cocaine administration has been shown to 

upregulate mGlu5 in both the NAc (Ghasemzadeh et al., 1999) and hippocampus 

(Freeman et al., 2001). In some brain regions, activation of Group 1 mGluRs has 

also been linked to the production of endocannabinoids (eCBs). 

 In addition to playing a well-known role in stress and anxiety (Ramikie and 

Patel, 2012), the eCB system has been implicated in addiction-related processes 

and behaviors (Tanda, 2007). In fact, drugs of abuse and natural rewards are 

known to alter brain eCB content (Solinas et al., 2007). Endocannabinoids 
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attenuate neurotransmitter release through at least two targets, the Gi/o-coupled 

cannabinoid 1 receptor (CB1R) and the transient receptor potential vanilloid 1 

(TRPV1). In addition to being activated by tetrahydrocannabinol (THC), the 

psychoactive ingredient in marijuana, antagonism or genetic deletion of CB1R has 

been shown to suppress reinstatement of several class of drugs (Serrano and 

Parsons, 2011). Additionally, CB1R activity is required for reinstatement of sucrose 

(Vries et al., 2005) and corn oil (Ward et al., 2007) self-administration, suggesting 

that CB1R mediates a non-selective motivational component of conditioned 

reinforcement. Much less is known about TRPV1 and reward processes, but 

studies utilizing TRPV1 knockout mice suggest that the channel plays a role in the 

behavioral effects of ethanol (Blednov and Harris, 2009) and cocaine (Grueter et 

al., 2010). 

 In clinical populations few targets have been studied as much as the plasma 

membrane dopamine transporter (DAT) and dopamine receptors. PET studies 

have revealed decreased availability of DAT and D2-like receptors in patients who 

abuse several classes of drugs (Volkow et al., 2009) as well as in patients with 

obesity (Wang et al., 2001). It should be noted that the majority of these studies 

were performed using a radiotracer ([11C]-raclopride) with high affinity for both D2 

and D3 subtype receptors. D3R is structurally and functionally homologous to D2R, 

but is more strictly localized to the mesolimbic circuit, specifically the NAc shell and 

the islands of Calleja (Gangarossa et al., 2013). In contrast to the reports using 

labeled raclopride, one recent PET study that used a D3R-preferring ligand 

observed upregulation of D3Rs in methamphetamine abusers (Boileau et al., 
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2012). Additionally, evidence from several preclinical models implicate D3R 

activation in the behavioral effects of psychostimulants (Newman et al., 2012). In 

rodent models, dopamine receptor antagonists decrease the reinforcing effects of 

cocaine when administered peripherally (Caine and Koob, 1994; Everitt and Wolf, 

2002).  Restricted drug infusions have elaborated that the NAc is at least one 

essential region for D1-like and D2-like antagonists to attenuate cocaine 

reinforcement (Bari and Pierce, 2005; Caine et al., 1995). Finally, in addition to 

affecting dopamine receptors and its plasma membrane transporter, 

psychostimulant abuse may perturb the packaging of dopamine into synaptic 

vesicles. Studies have linked both cocaine (Narendran et al., 2012) and 

methamphetamine (Johanson et al., 2006) abuse with decreased vesicular 

monoamine transporter availability in the striatum. 
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CHAPTER II 

 

SYNAPTIC PLASTICITY AND ADDICTION 

 

1. Ionotropic Glutamate Receptors 

 The common thread that links the neuromodulatory systems discussed in 

Chapter I is that their signaling pathways converge on the function of ionotropic 

glutamate receptors (iGluRs). iGluRs provide the vast majority of fast excitatory  

neurotransmission in the CNS, and are therefore the predominant targets of 

processes that govern learning and memory. iGluRs were originally dichotomized 

based on whether they are activated by the glutamate analog N-methyl-D-

aspartate (NMDA). Over the past several decades, major structural and functional 

differences between NMDA-subtype glutamate receptors (NMDARs) and non-

NMDARs have been demonstrated to confer a host of profound differences in their 

biology (Paoletti and Neyton, 2007). One defining feature is that the channel pore 

of most NMDARs is blocked by Mg2+ ions at resting membrane potentials, so the 

receptor remains closed even in the presence of endogenous ligands. 

Depolarization of the cell membrane causes a conformational shift that relieves the 

magnesium block and confers responsiveness to glutamate. For this reason, 

NMDARs have been referred to as molecular coincidence detectors that only open 

in the presence of two agonists as well as coincidental strong neuronal activity. 

 NMDARs are composed of two obligatory d-serine/glycine-binding GluN1 

subunits and two glutamate-binding GluN2A-D subunits (Paoletti et al., 2013). The 

milieu of synaptic NMDAR subtypes can strongly influence the induction of 
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synaptic plasticity. While d-serine/glycine presence is required for NMDAR 

activation and several Grin1 splicing variants are common, variation in expression 

of the GluN2 subunit is thought to convey most of the functional diversity observed 

in native NMDARs. GluN2A and GluN2B are the most abundantly expressed 

GluN2 subunits in the CNS (Paoletti and Neyton, 2007), and assemble as both 

homodimers (i.e. GluN1-GluN1-GluN2A-GluN2A and GluN1-GluN1-GluN2B-

GluN2B) and heterotrimers (GluN1-GluN1-GluN2A-GluN2B). GluN2B-expressing 

NMDARs are also enriched at silent synapses (Lee and Dong, 2011), which are 

essential components of CNS development and have an increasingly-appreciated 

role in learning and memory in adults. In addition to subunit-specific protein-protein 

interactions (Robison et al., 2005; Sanz-Clemente et al., 2013), GluN2B-containing 

NMDARs exhibit prolonged decay kinetics and therefore flux more calcium per 

channel opening event (Paoletti et al., 2013; Traynelis et al., 2010). Although less 

abundantly expressed, NMDARs containing GluN2C and GluN2D display even 

longer decay kinetics than those expressing GluN2B or GluN2A (Vicini et al., 

1998). Additionally, GluN2C- and GluN2D-containing NMDARs pass relatively 

more current at hyperpolarized potentials, and may even open at resting 

membrane potentials (Schwartz et al., 2012; Seif et al., 2013). 

 Aside from NMDARs, the major iGluR class involved in excitatory 

postsynaptic signaling complexes is the AMPA-subtype receptor (AMPAR), 

glutamate-gated ion channels that flux sodium and other potassium resulting in 

depolarization of the synaptic membrane. AMPARs are considered to be the 

“workhorse” of the excitatory synapse responsible for basal transmission. AMPAR-
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dependent depolarization of the neuron can lead to action potential firing and thus 

propagation of the electrochemical signal through the circuit. Sufficient AMPAR-

mediated depolarization can relieve the magnesium block of NMDARs; therefore 

NMDARs open following strong and/or coincidental synaptic activation. Unlike 

most AMPARs, NMDARs play a key role in synaptic plasticity due to the fact that 

they are permeable to calcium. Calcium flux through NMDARs results in the 

activation of calcium-dependent signaling cascades that can lead to transient or 

long-lasting changes in synaptic strength (Shonesy et al., 2014) (Figure 7). 

Metabotropic interactions between NMDARs and plasticity-related signaling 

partners (e.g. Src) have also been identified.  

 

  

  

 Persistent increases or decreases in synaptic strength can be classified as 

either long-term potentiation (LTP) or long-term depression (LTD), respectively 

(Malenka and Bear, 2004). A wide variety of studies have demonstrated that 

Figure 7. Simplified schematic of excitatory 

synapse in NAc. Glutamate is released from 

terminals after which it binds N-methyl-D-aspartate 

receptors (NMDARs) and α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptors 

(AMPARs). At resting membrane potentials, 

NMDARs are gated by Mg2+. However, following 

strong and/or coincidental synaptic activity, 

depolarization relieves the Mg2+ block, permitting 

NMDAR activation and subsequent Ca2+ influx. 

Elevations of synaptic Ca2+ can then precipitate a 

variety of signaling cascades, some of which alter 

the function of AMPARs. NMDAR-mediated 

strengthening and weakening of AMPAR surface 

expression (i.e, long-term potentiation, LTP, and 

long-term depression, LTD) are two major 

molecular mechanisms underlying learning and 

memory. 
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substances of abuse dynamically modulate synaptic transmission within several 

brain regions, including the VTA and NAc (Lüscher and Malenka, 2011), 

supporting the concept that synaptic plasticity is a key molecular constituent of 

experience-dependent behavioral plasticity.  

 

2. Plasticity in the VTA 

 VTA neurons integrate reward and aversion related information from distinct 

excitatory inputs (Lammel et al., 2012). Since the first account of drug-induced 

synaptic plasticity (Ungless et al., 2001), which demonstrated that a single dose of 

cocaine could precipitate LTP-like changes at VTA dopaminergic neurons, many 

iterations of the phenomena have been uncovered (Lüscher and Malenka, 2011). 

Similar results have since been obtained following administration of other drugs of 

abuse including amphetamine, morphine, nicotine, and ethanol (Saal et al., 2003). 

Importantly, such changes in VTA synaptic transmission were not observed 

following similar treatment with non-addictive, psychoactive drugs such as the 

antidepressant fluoxetine (Saal et al., 2003). Additionally, LTP of GABAergic 

synapses (i-LTP) has been observed at NAc-VTA synapses following cocaine 

exposure (Bocklisch et al., 2013). 

 

3. Plasticity in the NAc 

3.1 First Accounts 

 In the NAc changes in excitatory synaptic strength have proven to be more 

complex. Increasing evidence advocates that dynamic changes in synaptic 
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function occur in a synapse-specific and experience-dependent manner (Grueter 

et al., 2012). The foundation for current research lies in seminal studies that 

suggest synaptic strength at excitatory synapses onto NAc shell MSNs decreases 

following re-exposure to cocaine (Thomas et al., 2001). This first report did not 

detect any changes in excitatory synaptic strength in the NAc core. Two primary 

findings suggested that cocaine sensitization decreased synaptic strength in the 

NAc shell. For one, the authors reported diminished induction of NMDAR-

dependent LTD (3 bouts of 3 min, 5 Hz stimulation). The authors also determined 

that the amplitude of asynchronous EPSCs (asEPSCs) elicited in strontium-

replaced artificial cerebrospinal fluid (aCSF) was decreased following cocaine 

sensitization. Interestingly, the amplitude of miniature EPSCs (mEPSCs) was 

unaffected, and the authors concluded that – given the placement of the 

stimulating electrode – asEPSCs primarily reflected PFC-NAc shell quantal size. 

Taken together these data suggest that a sensitized cocaine challenge decreases 

the function of AMPARs at PFC-NAc shell synapses.  

 Of note, these early experiments were all performed in the context of a 

cocaine challenge injection (5 x sal + coc challenge vs. 5 x coc + coc challenge). 

Later research would reveal that the state of cocaine exposure dynamically 

modulates synaptic strength in the NAc. Kourrich et al. elaborated on the initial 

findings and revealed that excitatory signaling in the NAc shell is potentiated 

following extended withdrawal, and then subsequently depressed following drug 

re-exposure. A single injection of cocaine (while exerting a pronounced effect on 

mGlu5 function (Fourgeaud et al., 2004; Grueter et al., 2010), was demonstrated 
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to minimally affect iGluR function in the NAc shell. Other groups have since 

corroborated these findings via biochemistry (Boudreau and Wolf, 2005; Boudreau 

et al., 2007; Ghasemzadeh et al., 2003; Robison et al., 2013). A variety of salient 

stimuli, including stressors, novelty, amphetamine, and other experiences linked 

to relapse, have also been demonstrated to generate changes in NAc synaptic 

physiology similar to those induced by cocaine (Jedynak et al., 2015; Rothwell et 

al., 2011a, 2011b) 

 Demonstrating a causal relationship between abnormal behavior and 

altered synaptic plasticity has been a persistent challenge in the field of behavioral 

neuroscience. In 2005, Brebner et al. became the first to publish a test a causal 

relationship between AMPAR surface expression and locomotor sensitization. The 

authors first characterized a putative NMDAR-dependent LTD protocol (8 min, 

1Hz, paired with depolarization). By using dominant negative dynamin and GluA2 

peptides, the authors characterized this LTD as proceeding through clathrin-

dependent AMPAR endocytosis. Then, when delivered systemically or locally into 

the NAc, the (Tat-fused) GluA2 peptide inhibited the expression of locomotor 

sensitization to amphetamine. Peptide infusion into the VTA exerted no effect, 

emphasizing that excitatory synaptic plasticity in the NAc is paramount for long-

lasting behavioral effects of psychostimulants. Despite concerns over the GluA2 

peptide specificity, these experiments were the first to suggest that NAc LTD is not 

only correlated with behavioral sensitization, but is in fact a necessary mechanistic 

component. 
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 Although locomotor sensitization has been proposed to model certain facets 

of substance use disorders, it is inarguable that drug self-administration more 

closely recapitulates the human condition. One phenomenon that has been 

particularly well-studied is the incubation of cocaine craving (Caprioli et al., 2015; 

Conrad et al., 2008; Lee et al., 2013; Loweth et al., 2014; Lu et al., 2005; Ma et al., 

2014). After rodents have been trained to self-administer cocaine, incubation refers 

to the enhancement of cue-induced drug-seeking observed following extended 

abstinence. The first link between incubation of cocaine craving and NAc AMPAR 

function was published by Conrad et al., 2008. Extended withdrawal from cocaine 

self-administration was associated with an increase in GluA1 and GluA3 

expression in the NAc as assessed by Western Blot.  

 Assembly of AMPARs containing only GluA1 and GluA3 (sometimes called 

GluA2-lacking AMPARs) is of special interest due to their low basal expression in 

the MSNs, high channel conductance, and permeability to calcium. For the last 

reason, they are referred to as calcium-permeable AMPARs (CP-AMPARs). 

Conrad et al. functionally corroborated that abstinence from cocaine self-

administration enhanced function of NAc CP-AMPARs by an increase in AMPAR 

inward rectification and sensitivity to 1-napthylacetylspermine (Naspm), a selective 

CP-AMPAR blocker. Furthermore, local infusion of Naspm into the NAc inhibited 

incubation of cocaine craving. Since this report, others have demonstrated that 

mGlu1 activation in the NAc shell can internalize CP-AMPARs and similarly blunt 

cue-induced cocaine-seeking (Loweth et al., 2014). Also, individual differences in 

addiction-like self-administration have been linked to impairments in PFC-NAc 
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LTD (Kasanetz et al., 2010) and Layer V pyramidal neuron excitability (Chen et al., 

2013). 

 

3.2 Cell Type Specificity 

 Since the development of BAC transgenic reporter mouse lines, several 

groups have reported that cocaine-induced changes to NAc excitatory signaling 

are localized to D1 MSNs (Bock et al., 2013; Dobi et al., 2011; Pascoli et al., 2014, 

2012), although changes to D2 MSNs have also been reported (Bock et al., 2013; 

MacAskill et al., 2014). Dobi et al. found that non-contingent cocaine administration 

potentiated glutamate synapses specifically on D1-expressing MSNs, and that 

withdrawal was not required for some of these observed synaptic effects. Of note, 

the authors measured spine density in parallel to corroborate the 

electrophysiological findings. Since then, two independent reports have used 

glutamate uncaging to demonstrated that cocaine exposure modulates AMPAR 

surface function specifically on D1-MSNs (Bock et al., 2013; Khibnik et al., 2015).  

 Maintenance of synaptic potentiation following cocaine exposure has been 

hypothesized to require long-lasting increases in the expression of transcription 

factors (Russo et al., 2010). The upregulation of many such factors has been 

reported to occur mainly on D1-MSNs following drug exposure (Lobo and Nestler, 

2011). For example, cocaine administration has been demonstrated to increase 

the phosphorylation of extracellular signal-regulated kinase (p-ERK), mitogen- and 

stress-activated kinase-1 (p-MSK1), and histone H3 (p-H3) specifically in D1-

MSNs (Bertran-Gonzalez et al., 2008). Induction of c-fos and zif268 was also 
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localized to D1-MSNs. Another transcription factor heavily implicated in NAc-

dependent synaptic and behavioral plasticities is ΔFosB (Hiroi et al., 1997; 

McClung and Nestler, 2003). Cocaine and other salient stimuli are well-known to 

induce ΔFosB expression in the NAc, and recent work has localized this induction 

specifically to D1-MSNs (Lobo et al., 2013). Consistently, overexpression of ΔFosB 

in NAc D1-MSNs recapitulates alterations in synaptic physiology induced by 

cocaine and enhances the acquisition of cocaine conditioned place preference 

(Grueter et al., 2013). Despite these advancements in isolating how distinct NAc 

neuron populations are affected by drug exposure, understanding the contributions 

of the various NAc glutamate afferents has only just begun. 

 

3.3 Input Specificity 

 In addition to examining the cell type-specificity of these phenomena, 

several recent studies have demonstrated that cocaine-induced dysregulation of 

glutamatergic signaling occurs at specific afferents to the NAc and is necessary 

for relapse-related behaviors (Britt et al., 2012; Lee et al., 2013; Ma et al., 2014; 

Pascoli et al., 2014). While not targeting specific MSN types, Britt et al. analyzed 

the synaptic and behavioral profile of the PFC, BLA, and vHipp afferents to the 

NAc shell. The authors found that vHipp afferents were the densest of the three 

and accordingly elicited the largest EPSCs in the region. While exhibiting similar 

AMPAR function at baseline (AMPAR/NMDAR and asEPSC amplitude), vHipp 

synapses were uniquely potentiated following experimenter-delivered cocaine 

administration. Furthermore, activation and inhibition of vHipp-NAc terminals using 
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in vivo optogenetics was demonstrated to enhance and suppress the cocaine-

induced hyperlocomotion. Finally, stimulation of each of any glutamate terminal in 

the NAc was found to be both rewarding and reinforcing by performance on a real-

time place preference task and operant self-administration (in contrast to Stuber 

et al., who did not find the PFC-NAc pathway to be reinforcing).  

 Since Britt et al. published the first ex vivo physiology study to tease apart 

distinct NAc input functions, a flurry of reports has surfaced. In 2012, Pascoli et al. 

published that a single injection of cocaine potentiates NAc shell D1-MSN AMPAR 

function one week later, as assessed by mEPSC amplitude. The authors also 

reported occlusion of NMDAR- and ERK-dependent LTP – a notoriously difficult 

process to elicit in the NAc reported to occur only in young mice (Schramm et al., 

2002). Nonetheless, the authors set out to depotentiate these synapses through 

the use of optogenetics. Indeed, they found that PFC-NAc shell synapses exhibited 

enhanced LFS-LTD (10 min, 1 Hz) following cocaine exposure. Finally, to test the 

causative relationship between the potentiated state of NAc shell synapses and 

cocaine-conditioned behaviors, they applied the PFC-NAc LFS in vivo and were 

able to block the expression of locomotor sensitization. 

 Further work from the Luscher lab aimed to examine excitatory signaling at 

the specific NAc shell inputs in the context of reinstatement to drug seeking. The 

authors found that D1-MSNs were selectively altered following cocaine self-

administration at inputs from the PFC and vHipp, but not BLA. PFC-D1(+) NAc 

shell synapses were characterized by enhanced expression of CP-AMPARs, while 

vHipp-D1(+) by increased EPSC size and AMPAR/NMDAR. The authors then 
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characterized 1 Hz and 13 Hz plasticity at each input, and found the protocols 

induced 4 qualitatively different of homosynaptic and heterosynaptic plasticities 

When applied in vivo, each stimulation differentially affected aspects of cue-

induced cocaine-seeking behavior, with 13 Hz PFC stimulation abolishing all drug 

seeking. Of note, PFC-NAc shell LFS (10 min, 1 Hz) – as featured in the 2012 

report – induced less LTD following cocaine exposure and did not affect drug-

seeking, supposedly emphasizing differences between non-contingent and 

contingent drug-administration paradigms. 

 Despite these potential differences, a recent report out of Pascoli’s lab 

(Terrier et al., 2015) confirmed that PFC-D1(+) NAc shell synapses display CP-

AMPARs following self-administered cocaine, and extended those findings to a 

single experimenter-delivered injection of cocaine. While these findings 

corroborate one report from the Luscher lab (Mameli et al., 2009), they remain at 

odds with those from other groups (Kourrich et al., 2007; McCutcheon et al., 2011). 

Like the labs of Mark Thomas and Marina Wolf, I did not observe altered AMPAR 

rectification on NAc shell D1-MSNs following non-contingent cocaine exposure, 

after searching with PFC-specific, mThal-specific, and electrical stimulation 

(unpublished results, data not shown). Nonetheless, in addition to changes in CP-

AMPAR assembly on D1-MSNs following any form of cocaine exposure, the 

authors noted that self-administration of an extremely high dose of cocaine (1.5 

mg/kg/infusion) enhanced CP-AMPAR function on D2-MSNs. They continued by 

identifying the relevant source of glutamate as the BLA. The authors attributed this 

phenomenon as resultant from the aversive properties of such a high dose. 
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Consistently, AMPAR potentiation at PVT-D2(+) NAc shell synapses following 

morphine withdrawal has recently been reported (Zhu et al., 2016). 

 Adam Carter and his lab have taken a unique biophysical approach to 

understanding neurocircuit functions. In an initial account (MacAskill et al., 2012), 

his group discovered that while all NAc MSNs receive afferents from each region 

examined (PFC, mThal, vHipp), vHipp connections onto D2-MSNs were uniquely 

weak, as evidenced by minimal spike probability and diminished EPSC amplitudes 

relative to paired D1-MSNs. The weak connection of the vHipp-D2(+) circuit was 

then attributed to unique subcellular connections, in that vHipp inputs were 

connected to smaller spines located further away from the soma. While these 

experiments provide intriguing physical context for basal differences in excitatory 

NAc circuit function, the relevance for drug-related memory formation and behavior 

was not addressed.  

 In a follow-up study (MacAskill et al., 2014), the group examined how vHipp- 

and BLA-NAc shell circuit function is altered during short-term abstinence (3 days) 

from 5 days of cocaine exposure. The paradigm increased mEPSC frequency and 

spine density on D1 MSNs, suggesting a reorganization of excitatory connectivity 

during this transformative period. The authors then demonstrated that the cocaine-

induced increase in spine density occurred specifically at BLA-D1(+) synapses, 

whereas vHipp-D1(+) synapses displayed decreases in spine volume. Finally, 

chemogenetic inhibition of the BLA during cocaine administration inhibited the 

BLA-NAc reorganization and the expression of behavioral sensitization, but did not 

affect changes to vHipp-NAc synaptic architecture. In contrast, inhibition of the 
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vHipp during cocaine administration maintained vHipp-NAc connectivity, but did 

not prevent BLA-NAc restructuring or the expression of locomotor sensitization. 

Taken together these experiments revealed several fascinating physical 

processes that ultimately underlie drug-induced learning and memory. 

 As a whole the body of work illustrates that long-term physiological and 

behavioral changes induced by cocaine exposure require LTP-like changes in the 

NAc, consistently including the functional upregulation of AMPARs. In fact, rapid 

LTD-like internalization of AMPARs may be required the for the retrieval of drug-

conditioned memory (Brebner et al., 2005).  Many groups, but not all, have 

reported that cocaine experiences increase the expression of calcium-permeable, 

GluA2-lacking AMPARs in the NAc, especially (and specifically) following self-

administered cocaine (Boudreau and Wolf, 2005; Conrad et al., 2008; Lee et al., 

2013; Ma et al., 2014; McCutcheon et al., 2011; Pascoli et al., 2014).   

 

4. NMDAR Function 

 Most of the changes to excitatory synaptic strength or plasticity that occur 

have been proposed to require NMDAR activity during the cocaine experience 

(Cahill et al., 2014; MacAskill et al., 2014; Pascoli et al., 2012).  However the data 

describing how cocaine may alter NMDAR function is less clear. Many studies of 

NAc iGluRs following cocaine exposure have failed to detect long-term changes in 

NMDAR function (Bock et al., 2013; Kourrich et al., 2007; Thomas et al., 2001), 

while other more recent efforts have not addressed the question (Britt et al., 2012; 

Dobi et al., 2011; Mameli et al., 2009; Pascoli et al., 2014, 2012).  To the best of 
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our knowledge, long-term functional changes in NAc NMDAR activity following 

cocaine exposure have never been published, and reports employing biochemical 

techniques have yielded mixed results (Mao et al., 2009; Schumann and Yaka, 

2009). However, recent work from the lab of Woody Hopf has shown that the 

GluN2C-containing NMDARs pass current at hyperpolarized potentials following 

compulsive-like alcohol consumption (Seif et al., 2013). Genetic deletion of Grin2C 

was shown to eliminate compulsive alcohol intake, and further work has shown 

that pharmacological inhibition of these receptors recapitulates those behavioral 

effects (Seif et al., 2015). 

 Prior to (and perhaps facilitating) the long-term synaptic changes that occur 

following extended withdrawal is the generation of GluN2B-containing silent 

synapses (T. E. Brown et al., 2011; Huang et al., 2009a; Koya et al., 2012; Lee et 

al., 2013; Ma et al., 2014). Silent synapses, defined by the absence of functional 

AMPARs, are thought to be a substrate for increasing neuronal connectivity and 

may be important for drug-induced behavioral changes. Silent synapses are 

abundant in the developing brain, but their expression wanes as the brain matures 

and is considered to be minimal in adulthood. The primary direct measurement of 

silent synapses is known as a minimal stimulation assay. For this assay, a 

threshold intensity is selected such that approximately half of the stimuli evoke 

measureable AMPAR-EPSCs (~50% failure rate). The cell is then depolarized so 

NMDAR components can be observed, and the fraction of stimuli resulting in an 

EPSC is also measured. Populations containing many silent synapses will 
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generate relatively few NMDAR component failures, and the proportion of silent 

synapses in a neuron population can be subsequently calculated.  

 In a landmark paper, Huang et al. discovered that non-contingent cocaine 

administration generated an increase in NAc shell silent synapse function during 

subsequent short-term abstinence. The phenomenon peaked (~30% silent 

synapses) 3 days following the last cocaine exposure and returned to normal levels 

(~10%) 5-7 days later. Results from the minimal stimulation assay were confirmed 

by a ratiometric assessment of the coefficient of variation of the NMDAR 

component (Malenka and Nicoll, 1997). Furthermore, the increase in silent 

synapses was associated with enhanced GluN2B expression and function as 

assessed by Western Blot and sensitivity to the antagonist Ro 25-6981. 

Furthermore Brown et al. found that infusion of Ro 25-6981 into the NAc prevented 

the development of locomotor sensitization to cocaine. While not addressing 

D1/A2A cell type-specificity, others have demonstrated that these silent synapses 

are generated only in “neuronal ensembles” that express Fos following cocaine 

administration (Koya et al., 2012). 

 More recent experiments from the lab of Yan Dong have examined 

synaptogenesis in the context of self-administered cocaine. Lee et al., 2013, found 

that immediately following cocaine self-administration, BLA-NAc shell synapses 

display an enhanced proportion of silent synapses. As these synapses waned over 

time, and incubation of cocaine craving developed over time, a coincident 

upregulation of CP-AMPARs was observed. The authors then characterized BLA-

specific NMDAR-dependent LFS LTD (3 min, 5 Hz), that selectively internalized 



51 
 

CP-AMPARs. When applied in vivo, the LTD eliminated incubation of cocaine 

craving, consistent with a direct role for CP-AMPARs in promoting that behavior.  

 Another study from the lab examined inputs from the PFC. Infralimbic (IL) 

projections to the NAc shell and prelimbic (PL) projections to the NAc core have 

been hypothesized to exert opposing effects on reinstatement and other drug-

related behaviors (Peters et al., 2009). Therefore Ma et al. examined these two 

circuits in parallel in the context of cocaine self-administration. The authors 

observed increases in silent synapses at both IL-NAc shell and PL-NAc core 

synapses during short term abstinence, however at extended withdrawal CP-

AMPARs were only observed at IL-NAc shell. LFS (10 min, 1 Hz) induced NMDAR- 

and mGlu1-dependent LTD of CP-AMPARs at IL-NAc shell synapses, and 

enhanced the expression of incubation of cocaine craving when applied in vivo. In 

contrast, LFS induced NMDAR-dependent, mGlu1-indepenent LTD of AMPARs at 

PL-NAc core synapses and inhibited cue-induced lever pressing. 

 Because MSNs in vivo reach stably depolarized  plateaus following 

coincidental activity of inputs (O’Donnell and Grace, 1995), NAc synaptic NMDARs 

have been suggested to be activated without localized co-expression of AMPARs 

(Lee and Dong, 2011). Increases in GluN2B expression are also notable due to 

their increased conductance (Gielen et al., 2009; Paoletti et al., 2013) as well as 

enhanced coupling with downstream effectors such as calcium/calmodulin-

dependent kinase II (Strack and Colbran, 1998; Strack et al., 2000). For these 

reasons, the transient upregulation of GluN2B-containng silent synapses has been 

proposed as a necessary mediator of long-term changes in NAc synaptic strength 
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following cocaine exposure (Lee and Dong, 2011). However, while the data 

provide more compelling evidence for the role of NAc AMPAR upregulation in the 

long-term behavioral effects of cocaine, the transient increase in silent synapses 

and GluN2B function remains largely coincidental. Aside from the NAc infusion of 

Ro 25-6981, none of these experiments have demonstrated the causal relationship 

between silent synapse function and the development of cocaine-conditioned 

behaviors. An alternative hypothesis, whereby GluN2B-containing NMDAR serve 

a feedback role to attenuating excessive drug-induced plasticity, remains equally 

plausible. 

 

5. Summary 

Addiction is clearly a complicated disease that recruits many neural circuits 

and intracellular signaling pathways. While this overview of addiction and current 

research strategies to study addiction-related phenomena has been broad, the 

complexities of the addicted brain are likely to depend on intricate temporal 

interactions between brain regions and signaling cascades. Nonetheless, it can be 

argued that addiction research has provided one of the most advanced 

understandings of experience-dependent plasticity, since models of addiction can 

be simplified as the effects of a substance (drugs of abuse) on a biological 

substrate (the brain). As such, addiction is one of the most powerful tools 

neuroscientists have to study learning and memory under controlled 

circumstances. As opposed to developmental or aging related diseases, exposure 
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to drugs of abuse is an inducible model under the temporal control of the 

experimenter. 

The incorporation of cell type- and circuit-specific approaches to study 

neuroscience allow for rapid advancements in our understanding of addiction. 

Powerful tools including transgenic mice and optogenetics have revolutionized 

basic neuroscience research over the past decade (reviewed by Stamatakis and 

Stuber, 2012b).  Optogenetic techniques have made it possible to dissect the 

function of different inputs to the VTA (Lammel et al., 2013, 2012) and NAc (Britt 

et al., 2012; Lee et al., 2013; Ma et al., 2014; Pascoli et al., 2014, 2012; Stuber et 

al., 2011) and in intact animals. These and similar approaches will continue to 

illuminate how synapses formed by these various inputs may be differentially 

modulated by drugs of abuse.  

Prior to beginning my dissertation, few input-specific studies of excitatory 

synaptic physiology in the NAc had been reported in peer-reviewed journals. In 

three years, more than a dozen high-profile series of experiments have been 

published regarding NAc glutamatergic synaptic physiology (Britt et al., 2012; 

MacAskill et al., 2012) and pathophysiology in the context of alcohol (Seif et al., 

2015, 2013) and cocaine (Creed et al., 2015; Lee et al., 2013; Ma et al., 2014; 

MacAskill et al., 2014; Pascoli et al., 2014, 2012; Stefanik et al., 2013; Suska et 

al., 2013; Terrier et al., 2015) abuse. Despite the rich interest in NAc synaptic 

physiology, these recent reports have by and large neglected to report on afferents 

from the mThal and how they may be modulated following drug exposure. 

Therefore we addressed this gap in knowledge with the aim of studying how 
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NMDAR function underlies cocaine-dependent alterations in NAc plasticity. We 

also generated and evaluated cell type-specific NMDAR genetic deletions to 

assess how striatal iGluR signaling contributes to reward-related behaviors. Our 

data support the leading hypotheses in the field, that NMDAR-dependent changes 

in D1 MSN function are requisite for long-term changes in physiology and behavior 

induced by cocaine exposure. However the work also provides the first 

characterization of mThal projections to the NAc and identifies GluN2C-containing 

NMDARs as novel mediators of cocaine-induced neuroplastic changes. By 

contrast A2A MSN NMDAR function may play a subtle role in reward-related 

behaviors, but was demonstrated to modulate behavioral despair. Together these 

data emphasize the divergent behavioral contributions of MSN cell types and 

identify the mThal-NAc pathway as potential target for ameliorating the persistent 

synaptic and behavioral changes brought about by cocaine. 
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CHAPTER III 

 

METHODS AND MATERIALS 

 

1. Mice 

Bacterial artificial chromosome (BAC) adult (6–12 week) mice were used in 

all experiments and were housed together in groups of two-to-five per cage on a 

12/12-hr light/dark cycle (lights on at 06:00), with food and water available ad 

libitum. Transgenic floxed GluN1 (Grin1lox/lox) mice possess loxP sites flanking the 

transmembrane domain and C-terminal region (Tsien et al., 1996). Transgenic 

floxed Grin2B (Grin2Blox/lox) mice were prepared as described (Brigman et al., 

2010). Grin1lox/lox and Grin2Blox/lox mice were crossed with bacterial artificial 

chromosome (BAC) transgenic mice expressing Cre recombinase under the 

regulation of Drd1a (Gong et al., 2007; Nelson AB et al., 2012) and/or adenosine 

receptor subtype Adora2a (A2AR) promoters, and backcrossed to homozygosity 

of Grin1lox/lox or Grin2Blox/lox. We elected to use A2AR as a marker for “indirect 

pathway” MSNs because A2AR is more selective than D2R, which is expressed 

by some striatal interneurons and as an autoreceptor on midbrain dopaminergic 

neurons. Mice used for electrophysiology also expressed tdTomato under the 

control of the Drd1a promoter (Gong et al., 2003; Shuen et al., 2008). Mice have 

been backcrossed onto a C57BL/6J background for >10 generations.  

The open field test and cocaine conditioned place preference were 

performed in the Vanderbilt Mouse Neurobehavioral Core, where only male mice 
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were utilized. All other procedures were performed in the Grueter laboratory space. 

For the EPM, NIH, TST, and FST, both male and female mice were used. Sexes 

were housed, tested, and analyzed separately. Results generated from males and 

females were not statistically different, therefore the data was pooled and 

subsequently analyzed together. All experiments were done in accordance with 

the policies set out by the Institutional Animal Care and Use Committees (IACUC) 

at Vanderbilt University and in accordance with the National Institutes of Health 

guide for the care and use of laboratory animals.  

 

2. Stereotaxic Injections  

At 4-5 weeks of age, some mice underwent stereotaxic surgery for viral-

mediated gene transfer of channelrhodopson-2-EYFP (ChR2).  Mice were 

anesthetized with a dexmetometidine-

ketamine mixture (0.5-80 mg/kg, i.p.). 

Bilateral 250-400 nL injections of 

AAV5-CaMKII-ChR2-EYFP (UNC Viral 

Vector Core) were delivered into the 

target region through a pulled glass 

pipette at 100 nL/min. Injection site 

coordinates were as follows (relative to 

bregma): mThal [ML: ± 0.3, AP: -1.2, 

DV: -3.0], PFC [ML: ± 0.3, AP: -1.75, 

DV: -2.75], BLA [ML: ± 3.1, AP: -1.25, 

Figure 8. Representative AAV-ChR2-EYFP 

expression. (A) Coronal slice containing thalamus 

(thal) and hippocampus. (B) Robust EYFP 

expression is observed at the injection site. (C) 

Slice containing nucleus accumbens (NAc), dorsal 

striatum, and prefrontal cortex. (D) Expression of 

EYFP-labeled axon terminals is observed 4 weeks 

following viral-mediated gene transfer. AAV, 

adeno-associated virus; ChR2, channel-

rhodopsin-2; EYFP, enhanced yellow fluorescent 

protein 
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DV: -4.75]. Atipamazole (1.0 mg/kg, s.c.) and ketoprofen (10 mg/kg, s.c.) were 

administered as a reversal agent and an analgesic. Mice were sacrificed for ex 

vivo electrophysiology 4-6 weeks following surgery to allow sufficient time for 

ChR2-EYFP expression in axon terminals within the NAc core and other regions 

innervated by the mThal (Figure 8, page 56). 

 

3. Behavioral Procedures 

3.1 Cocaine Conditioned Place Preference 

3.1.1  Grin1 Experiments 

The place conditioning procedure was conducted in activity chambers 

identical to those used for the open field (ENV-510, Med Associates). Prior to the 

place conditioning pretest, mice were habituated to behavioral testing with a one-

hour exposure to similar activity chambers. For place conditioning studies, a two-

chambered insert with contextually distinct metal floors (ENV-3013-2, Med 

Associates, Figure 9) was placed in the activity chambers. All place conditioning 

sessions were 20 minutes in duration, and the amount of time spent in each zone 

was recorded. Conditioning sessions 

were conducted twice daily, separated 

by 4 hours, and treatment order was 

counterbalanced across groups. All 

mice received vehicle injections (0.9% 

saline, 10 µL/g, i.p.) prior to 

confinement in one compartment 

Figure 9. Apparatus used for GluN1-/- conditioned 

place preference experiments. To minimize 

variability, cocaine was always paired with the 

side with bar floors (left) while saline was paired 

with the side with grid floors (right). 
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(mesh grid floor) and cocaine (20 mg/kg) immediately prior to confinement in the 

other compartment (parallel bar floor). Following the test of place preference 

expression, mice underwent extinction training. Subjects that did not express a 

place preference (<10%) were removed from the study. On days 1 and 3 of 

extinction, mice underwent saline conditioning sessions on both sides of the 

apparatus. One days 2 and 4 of extinction, standard test sessions occurred. Mice 

that did not adequately extinguish their place preference (>10%) on the second 

extinction test were removed prior to reinstatement. No difference in the proportion 

of mice removed from the study was observed across genotypes. To reinstate the 

place preference, mice received a lower priming dose of cocaine (10 mg/kg) 

immediately prior to the test session. Locomotor activity (distance traveled, 

stereotypic counts, vertical counts, and time at rest) was measured during all 

sessions. 

 

3.1.2 Grin2B Experiments 

These experiments were performed in the Grueter laboratory space in open 

field activity chambers (ENV-510, Med Associates). Overhead video recordings of 

mouse activity were analyzed with automated software (EthoVision XT, Noldus). 

The chamber was divided into two contextually distinct environments based on 

floor and wall (rough floor and vertical bar wall vs. smooth floor and checkerboard 

wall). Unlike the Grin1 experiments, no innate preference for either side was 

consistently observed, therefore a predetermined design was not employed (i.e. 

cocaine was paired with the less-preferred side for each mouse). We assessed 
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sub-maximal cocaine CPP following one cocaine pairing, maximal cocaine CPP 

following 3 additional pairings, and maintenance of the reward-related memory at 

extended time points. 

 

3.2  Open Field Assay 

Mice were placed in an open field activity chamber (ENV-520, Med 

Associates) equipped with infrared beams and detectors for  one hour, Each 

chamber was housed within a sound attenuating cabinet (ENV-022MD, Med 

Associates). A software interface (Activity Monitor, Med Associates) monitored the 

two-dimensional horizontal position of the mouse as well as beam breaks of a bar 

raised 4cm from the floor. 

 

3.3  Elevated Plus Maze 

The EPM was based on the model described by Lister (Lister, 1987). The 

EPM was comprised of two open and two closed arms (5 cm wide x 30 cm long) 

that meet in the center to form a plus. The floors were opaque and the walls were 

made of tinted black plastic. The arms of the EPM were elevated 40 cm above a 

platform. Animals were placed on an open platform facing the center and remained 

in the maze for 5 min. Visual recordings of mouse movement were obtained with 

an overhead video camera. Mouse location and movement were assessed in real 

time with automated software (EthoVision XT, Noldus). Subsequent analyses 

determined the duration of time the center-point of each mouse was in the open 

arms, closed arms, or center. 
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3.4  Novelty-induced Hypophagia 

The NIH assay was based on a previously published procedure 

(Louderback et al., 2013). Briefly, mice were conditioned for 4 days to have limited 

(30 minutes) access to a tasty beverage (Ensure, home-made vanilla shake flavor) 

in their home cages while group housed. On the testing day, each mouse was 

transferred to an individual open field activity chamber and given access to Ensure 

for 30 minutes. The latency to drink and amount consumed throughout the session 

were measured. 

 

3.5  Tail Suspension and Forced Swim Tests 

The TST and FST were based on a previously published procedure (Lim et 

al., 2012). For the TST each mouse was suspended 20 cm above a surface with 

tape placed 1-2 cm from the base of the tail. For the FST, mice were placed in 2-

L beakers half-filled with room temperature water that was changed between 

sessions. All trials were videotaped and scored by one-of-two trained observers. 

The interrater correlation (Pearson Product-Moment Correlation Coefficient, r) was 

calculated to be 0.978 (TST) and 0.941 (FST) by linear regression. Approximately 

75% of analyses were performed blinded to genotype. Mice were considered 

immobile when, for more than 0.5 seconds, they: (TST) exhibited no body 

movement and hung passively or (FST) engaged in minimal movements to stay 

afloat with no escape behavior. Total immobility was scored as the sum of all 

immobility over the 6 minute trial. Latency was scored as the time of completion of 

the first uninterrupted 10-second bout of immobility.  
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3.6 Cocaine Conditioning  

Mice were conditioned with injections of cocaine prior to 

electrophysiological recordings. Conditioning sessions began 2-3 weeks following 

surgery during the day phase of the light cycle. Following 2 days of habituation, 

mice underwent 5 daily injections with cocaine (15 mg/kg)  or vehicle (Grueter et 

al., 2010; Kourrich et al., 2007; Thomas et al., 2001). Cocaine injections were 

administered immediately prior to placing the mouse in an open field activity 

chamber (ENV-510, Med Associates). Overhead video recordings of mouse 

activity were analyzed with automated software (EthoVision XT, Noldus). 

 

4. Electrophysiology  

4.1 Slice Preparation 

Parasagittal slices (250 μm) containing the NAc core were prepared from 

naïve mice or from mice 10-14 days following the last cocaine/saline injection.  

Mice were anaesthetized with isoflurane and decapitated. Brains were quickly 

removed and placed in an ice-cold low-Na+, sucrose-based cutting solution (in 

mM): 183 sucrose, 20 NaCl, 0.5 KCl, 2.0 CaCl2, 1.0 MgCl2, 1.2 NaH2PO4, 10 

glucose, and 26 NaHCO3. Slices were prepared using a Leica VT 1200S vibratome 

and immediately transferred for 10-15 minutes to a heated (37 ± 1 °C) bath 

containing an N-methyl-D-glucamine (NMDG)-based recovery solution (in mM): 93 

NMDG, 20 HEPES, 2.5 KCl, 0.5 CaCl2, 10 MgCl2, 1.2 NaH2PO4, 25 glucose, 30 

NaHCO3, 5 Na-ascorbate, and 3 Na-pyruvate. Slices were then allowed to recover 

for at least 60 minutes at room temperature (23 ± 1 °C) in a holding chamber aCSF 
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(in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgCl2, 1 NaH2PO4, 11 glucose, and 26 

NaHCO3. Slices were removed from the holding chamber and placed in the 

recording chamber where they were continuously perfused with oxygenated (95% 

O2 / 5% CO2) aCSF at a rate of 2 ml/min at 30 ± 2°C. Picrotoxin (50 μM) was added 

to the recording aCSF to block GABAAR–mediated inhibitory synaptic currents.  

 

4.2 MSN Identification and Glutamate Release 

Whole-cell voltage-clamp recordings were obtained as described (Grueter 

et al., 2013). Briefly, D1(+) MSNs were identified visually by the presence of 

tdTomato following excitation with 535 nm light (pE-2, CoolLED) (Figure 10). 

Neurons lacking any detectable tdTomato signal were defined as D1(-) MSNs 

rather than D2(+) because the absence of detectable fluorescence in this mouse 

line does not demonstrate that a cell is a MSN expressing D2Rs. Recordings were 

made with 3.0–6.0 MΩ glass electrodes pulled on a P-1000 Flaming/Brown puller 

(Sutter Instruments) filled with (in mM): 120 CsMeSO4, 15 CsCl, 8 NaCl, 10 

Figure 10. Representative D1-tdTomato expression. (A) Low magnification sagittal section 

displaying tdTomato expression in the dorsal striatum and nucleus accumbens (NAc). (B) High 

magnification image of the NAc core showing expression of tdTomato in cell bodies. Not pictured 

are D1(-) MSNs which do not express dopamine receptor subtype 1. 
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HEPES, 0.2 EGTA, 10 TEA-Cl, 4 MgATP, 0.3 NaGTP, 0.1 spermine, and 5 QX-

314.  

Where noted, excitatory afferents were locally stimulated (0.25-0.30 ms 

duration) with a bipolar nichrome wire electrode placed at the border between the 

NAc core and cortex. For optogenetic experiments, ChR2-dependent synaptic 

activity was driven using whole 470 nm field illumination for 1-3 ms. Recordings 

were performed using a Multiclamp 700B (Molecular Devices), filtered at 2 kHz 

and digitized at 10 kHz. Peak EPSC amplitudes of 100–600 pA were evoked at a 

frequency of 0.1-0.2 Hz while cells were voltage-clamped at -70 mV unless 

otherwise stated.  

 

4.3 Experimental Protocols 

For NMDAR/AMPAR ratios and coefficient of variation (CV) analyses, 25-

30 stable consecutive responses at -70 mV and +40 mV were obtained. The 

NMDAR-component was defined as the magnitude of the +40 mV dual component 

EPSC at 50 ms following EPSC onset. The AMPAR-EPSC was defined as the 

peak amplitude of the EPSC at -70 mV. NMDAR/AMPAR was obtained by a ratio 

of the two components, and CV was calculated by dividing the standard deviation 

of the responses by the mean. To determine the current-voltage relationship and 

decay kinetics, NMDAR-EPSCs were isolated in the presence of 10 µM NBQX and 

corrections were made for the calculated liquid junction potential (-9.4 mV). For 

CIQ wash-on, NMDAR-EPSCs were elicited in CSF with no added Mg2+ (Weitlauf 

et al., 2004). Peak NMDAR-EPSC amplitudes ranged from 50-400 pA. For 
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asynchronous EPSC experiments, longer light durations were used (3-5 ms) and 

equimolar Sr2+ (2.5 mM SrCl2) replaced Ca2+ in the aCSF. Asynchronous events 

were identified using a predefined template search in the 200 ms window following 

the initial evoked release event. NMDAR-dependent long-term depression was 

elicited by 600 pulses of 470 nm light at 1 Hz. Depolarization-induced suppression 

of excitation (DSE) was elicited by depolarizing to +30 mV for 10 seconds while 

patching with a modified potassium-based internal solution lacking BAPTA and 

QX-314 (Shonesy et al., 2013). Approximately 70% of experiments were 

performed blinded to treatment, however blinding to injection site was not possible. 

Data acquisition and analysis were performed using pClamp 10.4 software (Axon 

Instruments). Membrane properties were monitored continuously throughout the 

duration of experiments, and experiments in which changes in series resistance 

were greater than 20% were not included in the analysis.  

 

5.  Data Analysis 

Data are expressed as mean ± SEM (N = number of animals and n = 

number of cells), or as [minimum, lower quartile, median, upper quartile, maximum] 

for box and whiskers plots. For electrophysiology each data point represents the 

average value from one cell. One- or two-way ANOVA or two-tailed Student’s t-

test were used when indicated. Repeated measures or paired tests were 

performed when appropriate. The Mantel-Cox log-rank test was used to assess 

differences between cumulative distributions. All post-tests employed Bonferroni 
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corrections for multiple comparisons and p < 0.05 was considered statistically 

significant. 

 

6.  Drugs 

Cocaine HCl, picrotoxin, and d-cycloserine were purchased from Sigma-

Aldrich. NBQX and D-AP5 were purchased from Tocris. (+)-CIQ was purchased 

from Brandt Labs. 
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CHAPTER IV 

 

GLUN1 DELETIONS IN D1- AND A2A-EXPRESSING CELL TYPES REVEAL 

DISTINCT MODES OF BEHAVIORAL REGULATION 

 

1.  Abstract 

 NMDARs are profound regulators of glutamate neurotransmission and 

behavior. To coordinate components of the limbic system, the dorsal and ventral 

striatum integrate cognitive and emotional information towards the execution of 

complex behaviors. Striatal outflow is conveyed by MSNs, which can be 

dichotomized by expression of D1 or A2A. To examine how striatal NMDAR 

function modulates reward-related behaviors, we generated D1- and A2A-specific 

genetic deletions of the obligatory GluN1 subunit. Interestingly, we observed no 

differences in any GluN1-/- genotype in reward learning as assessed by acquisition 

or extinction of cocaine place conditioning. Control and A2A-GluN1-/- mice 

exhibited robust cocaine-primed reinstatement, however this behavior was 

markedly absent in D1-GluN1-/- mice. Interestingly, dual D1-/A2A-GluN1-/- mice 

displayed an intermediate reinstatement phenotype. Next, we examined models of 

exploration, anxiety, and despair, states often associated with relapse to addiction-

related behavior, to determine NMDAR contribution in D1 and A2A cell types to 

these behaviors. D1-GluN1-/- mice displayed aberrant exploratory locomotion in a 

novel environment, but the phenotype was absent in dual D1/A2A-GluN1-/- mice. 

In contrast A2A-GluN1-/- mice displayed a despair-resistant phenotype, and this 

phenotype persisted in dual D1/A2A-GluN1-/- mice. These data support the 
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hypothesis that cell type-specific NMDAR signaling regulates separable behavioral 

outcomes related to locomotion, despair, and relapse. 

 

2.  Introduction 

Adaptations involved in the development of addiction-like behaviors share 

common mechanisms with learning and memory processes (Grueter et al., 2012; 

Joffe et al., 2014; Koob and Volkow, 2010; Lüscher and Malenka, 2011). In 

particular, NMDARs have been extensively studied as mediators of drug 

experience-dependent memory formation (T. E. Brown et al., 2011; Kalivas and 

Alesdatter, 1993; Karler et al., 1989; Wolf and Khansa, 1991). NMDARs are 

glutamate-gated, calcium-permeable channels that provide major regulation of 

synaptic plasticity throughout much of the central nervous system (Traynelis et al., 

2010), transforming transient patterns of neurotransmission into persistent 

changes in synaptic strength that underlie cognitive functions (Paoletti et al., 2013). 

Because constitutive genetic deletion of GluN1 is lethal (Tsien et al., 1996), 

probing NMDAR function in vivo necessitates cell type- and/or region-specific 

approaches. 

One key brain complex that subserves reward-related behaviors is the 

striatum, which is conceptualized as a gatekeeper of descending 

neurotransmission relating to motor control, reward, and reinforcement (Grueter et 

al., 2012; Joffe et al., 2014; Kreitzer and Malenka, 2008). Throughout the dorsal 

and ventral striatum, GABAergic medium spiny neurons (MSNs) comprise 90-95% 

of neurons and provide the output from the structures. Striatal MSNs are often 
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dichotomized into two groups by biochemistry, anatomy, and function (Lobo and 

Nestler, 2011), commonly depicted by expression of D1 or A2A,  which overlaps 

with D2-expressing MSNs. When selectively activated in vivo, D1 and A2A/D2 

MSNs in the dorsal striatum and NAc have been shown to exert  opposing or 

divergent effects on locomotor (Kravitz et al., 2010), stress-induced (Francis et al., 

2014), and reward-related (Kravitz et al., 2012; Lobo et al., 2010) behaviors. For 

example, driving NAc D1 MSNs conferred CPP to a subthreshold cocaine regimen, 

whereas activation of NAc A2A/D2 MSNs blocked the preference induced by a 

rewarding dose.  

Although much remains to be learned, NMDAR signaling in NAc D1 MSNs 

has been demonstrated to be necessary for the development of psychostimulant-

conditioned behaviors (Beutler et al., 2011; Cahill et al., 2014; Heusner and 

Palmiter, 2005).  However, these experiments did not assess whether D1-NMDAR 

signaling underlies reinstatement, a model of relapse to drug seeking. Additionally, 

how A2A MSN NMDARs modulate psychostimulant-conditioned behaviors has not 

been addressed. In fact, without limit to drug-related behaviors, the behavioral 

relevance of NMDAR signaling in A2A-expressing neurons remains unknown. 

Given that NMDAR signaling is important for experience-driven changes in D1 

MSN function, a hypothesis is that A2A MSN NMDAR function regulates stress-

related behaviors. Moreover, with recent efforts towards developing NMDAR 

antagonists and related pharmacotherapies as treatments for Major Depressive 

Disorder (Krystal et al., 2013; Maeng et al., 2008), the literature requires a better 
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understanding of how cell type-specific NMDAR function modulates despair- and 

anxiety-like behaviors. 

The GluN1 subunit is essential to the formation of functioning NMDARs 

(Paoletti et al., 2013). Although splicing variants are common, all GluN1 protein is 

produced from a single gene, Grin1. Therefore we ablated functional NMDARs in 

D1- and/or A2A-expressing neurons by generating mice homozygous for floxed 

Grin1 (Grinlox/lox) that co-expressed Cre recombinase under control of the D1 

and/or A2A promotors. MSN expression of D1 and A2A is by and large mutually 

exclusive (Gangarossa et al., 2013; Lu et al., 1998). Although D1 is expressed in 

other components of the limbic system, like the prefrontal cortex and amygdala 

(Boyson et al., 1986; Zhou et al., 1990), the neuronal expression of A2A is highly 

localized to the striatum (Fink et al., 1992; Schiffmann et al., 1991), where co-

expression with D1 or interneuron markers is minimal (Schiffmann and 

Vanderhaeghen, 1993). Therefore, relative to the D1-specific deletion, the double 

knockout from D1- and A2A-expressing cell types induces identical impairments in 

NMDAR signaling across MSN types while exerting minimal additional extrastriatal 

off-target effects. After generating D1-, A2A-, and dual D1/A2A-GluN1-/- mice, we 

used targeted whole-cell electrophysiology to validate cell type specificity in the 

NAc core. We then assessed reward-related associative learning through cocaine 

CPP. All genotypes acquired, expressed, and extinguished cocaine CPP, however 

cocaine-primed reinstatement was markedly absent in D1-GluN1-/- mice. Dual D1-

/A2A-GluN1-/- mice displayed a partial rescue, suggesting that both D1 MSNs and 

extrastriatal D1-expressing neurons may be involved in cocaine-primed 
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reinstatement. We then examined models of exploration, anxiety, and behavioral 

despair. D1-GluN1-/- mice displayed aberrant exploratory locomotion in a novel 

environment, but the phenotype was absent in dual D1/A2A-GluN1-/- mice. In 

contrast, A2A-GluN1-/- mice displayed an antidepressant-like phenotype that 

persisted in dual D1/A2A-GluN1-/- mice. These data suggest that balanced 

NMDAR signaling across striatal MSNs underlies aspects of locomotion, but that 

A2A MSN NMDAR function regulates despair in a more complex manner. 

 

3.  Results 

3.1.  Functional Verification of GluN1 Genetic Deletions 

To confirm selectivity of the genetic deletions, we measured EPSCs in 

targeted NAc core MSNs from control animals which expressed either Cre or 

Grin1lox/lox, but not both and D1-GluN1-/- and A2A- GluN1-/- mice. MSNs were 

identified as either D1-expressing (+) or D1-non-expressing (-) by presence or 

absence of td-Tomato fluorescence. In control MSNs held at -70 mV, the EPSC 

exhibits fast decay kinetics and is mediated by AMPARs (Figure 11A: left, page 

71). When held at +40 mV, the dual component EPSC is much slower and at 50 

ms post EPSC onset, reflects current passing solely through NMDARs. In control 

slices, measurable NMDAR currents (>20% of peak) were obtained in all NAc core 

MSNs (D1(+): n = 23/23, D1(-): n = 20/20). In contrast, in slices prepared from D1-

GluN1-/- mice, NMDAR currents were obtained from D1(-) MSNs (n = 6/6) but not 

from D1(+) MSNs (n = 0/6, 5A: top right). In A2A-GluN1-/- mice, the reverse was 

observed: NMDAR currents were not observed in D1(-) MSNs (n = 0/11, 1A: 
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bottom right), but remained intact in D1(+) MSNs (n = 5/5). Fisher’s exact test 

revealed a significant deviation from observed outcome frequencies across groups 

(p < 0.001 Figure 11B). 

Figure 11. Selectivity of cell type-specific GluN1 deletions. (A) Representative traces of dual 

component EPSCs obtained from control (left) and GluN1-/- (right) NAc core MSNs. D1(+) MSNs 

are displayed on the top and D1(-) MSNs on the bottom. Scale bars denote 100 pA and 50 ms. The 

EPSC component at 50 ms or later is mediated by NMDARs. (B) Summary graph displaying percent 

D1(+) (red) and D1(-) (white) neurons with NMDAR currents (p < 0.001, Fisher’s exact test). The 

number of cells examined is included under each bar. 
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3.2.  Cocaine Place Conditioning in GluN1 Deletion Models 

To determine the contribution of NMDAR 

signaling at D1- and A2A-cell types in the rewarding 

properties of cocaine, we performed cocaine place 

conditioning. During the conditioning sessions, 

locomotor activity was recorded. D1-GluN1-/- mice 

display diminished cocaine-induced hyperactivity 

(D1: 2837 ± 666 cm vs. control: 5170 ± 592 cm, p < 

0.05, Figure 12), however the phenotype was 

absent in D1/A2A-GluN1-/- mice (5222 ± 704 cm,). 

All mice exhibited robust place preferences on the 

expression test day (Figures 13A-D), and no 

difference across genotypes was observed (F(3,33) 

= 0.9733, n.s.,).  

Figure 12. Locomotor response to 

cocaine. Distance traveled in the 

last cocaine conditioning session 

by control (black circles), D1-

GluN1-/- (red triangles), A2A-

GluN1-/- (blue squares), or 

D1/A2A-GluN1-/- (purple triangles) 

mice. D1-GluN1-/- exhibited 

attenuated locomotor response to 

cocaine relative to controls 

(different from control, *: p<0.05, 

Bonferroni post-test).  

 

Figure 13. Expression of cocaine conditioned place preference. (A-D) Absolute time spent by 

control, D1-GluN1-/-, A2A-GluN1-/-, or D1/A2A-GluN1-/- mice on cocaine-paired side before (Pre) and 

after (Post) cocaine conditioning (**: p < 0.01, ***: p < 0.001, paired t-test). (E) Place preference 

following conditioning with 20 mg/kg i.p. cocaine in control (black), D1-GluN1-/- (red), A2A-GluN1-/- 

(blue), or D1/A2A-GluN1-/- (purple) mice. 



73 
 

Mice then underwent extinction 

training, and no differences were 

observed (F(3,26) = 1.161, n.s., Figure 

14). Finally, to examine a facet of CPP 

related to relapse, mice were 

administered 10 mg/kg cocaine 

immediately prior to a place preference 

session. Control mice exhibited robust 

cocaine-primed reinstatement of CPP 

(432 ± 75 s, p < 0.001, Figure 15A, page 

74). In contrast, D1-GluN1-/- mice 

exhibited a pronounced lack of reinstatement (-5 ± 136 s, n.s, Figure 15B.). Like 

the controls, the A2A-GluN1-/- mice reinstated the place preference (463 ± 54 s, p 

< 0.001, Figure 10C), and the D1/A2A-GluN1-/- mice also displayed intact cocaine-

induced reinstatement (274 ± 62 s, p < 0.01, Figure 15D), rescuing the phenotype 

displayed by the D1-GluN1-/- animals. Although the D1/A2A-GluN1-/- mice 

displayed cocaine-primed reinstatement, the magnitude of the preference was less 

relative to the control group so we performed a between-groups analysis (Figure 

15E). A one-way ANOVA revealed a main effect of genotype on reinstatement 

(F(3,22)  = 10.17, p < 0.001). Subsequent Bonferonni post-tests against controls 

confirmed the significant impairment of reinstatement in D1-GluN1-/- mice (t = 

4.550, p < 0.001) and also revealed a blunted phenotype in the D1/A2A-GluN1-/- 

group (t = 2.698, p < 0.05). This suggests that drug-primed reinstatement of 
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Figure 14. Extinction of cocaine conditioned 

place preference. The change in time spent on 

the cocaine-paired side was measured during a 

4-day extinction protocol in control (black), D1-

GluN1-/- (red), A2A-GluN1-/- (blue), or D1/A2A-

GluN1-/- (purple) mice. No differences in 

extinction learning were observed. 
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cocaine CPP requires NMDARs in D1-expressing cells, and that balanced striatal 

signaling is, at most, influential over the behavior. 

 

3.3.  Open Field Test in GluN1 Deletion Models 

To examine a range of locomotor-based behaviors, we assessed 

spontaneous activity in an open field chamber. When placed in a novel 

environment, mice display a burst of horizontal locomotor activity during the first 5-

10 minutes that declines substantially over time (F(11,374)  = 34.06, p < 0.0001, 

Figure 16A, page 75). A two-way repeated measures ANOVA revealed a 

significant interaction between the locomotor time course and genotype (F(33,374)  

= 6.818, p < 0.0001). Post-tests determined that D1-GluN1-/- mice exhibited 

attenuated novelty-induced hyperlocomotion (0-5 min, 553 ± 95 cm vs. control: 

1139 ± 140 cm). On the other hand, this behavior remained intact in A2A-GluN1-/- 

mice. D1-GluN1-/- mice also displayed atypical habituation to the novel 
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Figure 15. Reinstatement of cocaine conditioned place preference. (A-D) Absolute time spent by 

WT, D1-GluN1-/-, A2A-GluN1-/-, or D1/A2A-GluN1-/- mice on cocaine-paired side after extinction 

(Ext) and priming with 10 mg/kg cocaine (Reinst) (**: p < 0.01, ***: p < 0.001, paired t-test). Data 

points without paired reinstatement values represent mice that did not meet extinction criterion and 

were subsequently excluded. (E) Place preference in control (black), D1-GluN1-/- (red), A2A-GluN1-

/- (blue), or D1/A2A-GluN1-/- (purple) mice following reinstatement primed by 10 mg/kg i.p. cocaine 

(different from control, *: p < 0.05, ***: p < 0.001, Bonferroni post-test). 
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environment, as evidenced by elevated locomotor activity towards the end of the 

hour session (50-55 min, 532 ± 55 cm vs. control: 238 ± 77 cm). Both of these 

phenotypes were rescued in the D1/A2A-GluN1-/- mice, suggesting that 

imbalanced striatal signaling underlies the D1-GluN1-/- locomotor phenotypes. 

When summated over the entire hour-long test, no differences in total locomotion 

were observed (F(3,34)  = 1.244, n.s., Figure 16B).  

 

Figure 16. Open field assay. (A) Novelty-induced hyperactivity and habituation in control (black 

circles), D1-GluN1-/- (red triangles), A2A-GluN1-/- (blue squares), or D1/A2A-GluN1-/- (purple 

triangles) mice (different from control, *: p<0.05, ***: p<0.001, Bonferroni post-test). (B) Total one-

hour locomotor activity in control (black), D1-GluN1-/- (light grey), A2A-GluN1-/- (dark grey), or 

D1/A2A-GluN1-/- (white) mice. (C) Vertical beam breaks binned over 5 minute periods (different 

from control, **: p<0.01, ***: p<0.001, Bonferroni post-test). (D) Total vertical beam breaks obtained 

during the open field assay (different from control, ***: p<0.001, Bonferroni post-test).   
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During the same open field session, vertical beam breaks were also 

measured, having been described previously in relation to exploratory behavior 

(Fonio et al., 2009). We found that vertical counts varied significantly by time (F 

(11,374) = 2.455, p < 0.01, genotype (F(3,34) = 6.681, p < 0.01), and an interaction 

(F(33,374)  = 5.657, p < 0.0001). Subsequent analyses revealed that D1-GluN1-/- 

mice displayed increased vertical counts during the second half of the hour session 

(Figure 16C). The increase in vertical counts is also evident when summated 

across the entire session (D1: 1588 ± 698 vs control: 673 ± 143, p < 0.001, Figure 

16D).  Similar to the aberrations in horizontal locomotion, the vertical count 

phenotype was rescued by the D1/A2A-GluN1-/- manipulation, without significant 

contribution of the A2A-specific knockout alone. Together these data suggest that 

D1-NMDAR function can modulate locomotor activity by disrupting the balance of 

signaling across MSN cell types. 

We assessed the time spent in the center of the chamber during the open 

field test and found significant differences across genotypes (F(3,34) = 4.050, p < 

0.05, Figure 17A, page 77). Control and D1-GluN1-/- mice both spent 

approximately 35% and 29% of the session in the center zone, respectively 

(control: 1260 ± 151 s, D1: 1034 ± 184 s). In contrast, A2A-GluN1-/- mice displayed 

increased thigmotactic behavior and spent only 18% of the session in the center 

zone (643 ± 46s, p < 0.05). Like the altered locomotor behaviors in the D1-GluN1-

/- mice, the center time phenotype of the A2A-GluN1-/- was absent in the D1/A2A-

GluN1-/- mice (37%, 1340 ± 149 s). Because decreases in center time often reflect 

increased anxiety, we hypothesized that A2A-GluN1-/- mice display a high-anxiety-
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like phenotype and proceeded to assess anxiety- and depressive-like behaviors in 

more targeted assays. 

 

3.4.  Elevated Plus Maze and Novelty-induced Hypophagia in GluN1 

Deletion Models 

To examine anxiety-like behavior, we first utilized the elevated plus maze 

(EPM). The EPM takes advantage of the innate tendency of rodents to avoid open 

spaces. No significant differences in open arm time during the EPM session were 

observed across genotypes (F(3,45)  = 0.8393, n.s.) (Figure 17B): control and all 

Figure 17. Anxiety-like behavior assays. (A) Time spent in center of arena during first open field 

assay in control (black circles), D1-GluN1-/- (red triangles), A2A-GluN1-/- (blue squares), or D1/A2A-

GluN1-/- (purple triangles) mice (different from control, *: p<0.05, Bonferroni post-test). (B) Time 

spent in open arms during elevated plus maze (EPM). (C) Total distance traveled during elevated 

maze session. (D) Cumulative distribution of latency to consume palatable drink during novelty-

induced hypophagia (NIH) test session. (E) Total amount of drink consumed (normalized to 

bodyweight) during test session. 
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GluN1-/- mice also spent similar amounts of time in the closed arms (58%, control: 

176 ± 7 s, D1: 192 ± 11 s, A2A: 164 ± 15 s, D1/A2A: 188 ± 6 s; F(3,45) = 1.386, 

n.s.; data not shown). No significant differences in locomotor activity during the 

EPM session were observed across genotypes (F(3,45) = 2.163, n.s., Figure 17C). 

As a complimentary assessment of anxiety-like behavior, we examined novelty-

induced hypophagia (NIH). We employed a version of NIH in which non-food 

restricted mice must approach a highly palatable drink in a novel environment, and 

the latency to consume the liquid is taken as a measure of anxiety-like behavior. 

A Mantel-Cox log-rank test determined that control and all GluN1-/- mice exhibited 

similar latency distributions (χ2 = 5.281, df = 3, n.s., Figure 17D). Furthermore no 

difference in mean latency (control: 164 ± 22 s, D1: 136 ± 31s, A2A: 120 ± 13s, 

D1/A2A: 196 ± 29 s; F(3,43)  = 2.119, n.s.) or overall drink consumption was 

observed (F(3,43) = 1.617, n.s., Figure 17E). 
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3.5.  Tail Suspension and Forced Swim Tests in GluN1 Deletion Models 

We performed the tail suspension and forced swim tests, models of 

behavioral despair. In each of these tests, mice attempt to remove themselves 

from compromising, yet inescapable positions. The animals eventually assume an 

immobile posture, and the latency to hang/float is taken as a behavioral correlate 

of despair. No differences in immobility between controls and any GluN1-/- mice 

were observed in the TST when measured in total (F(3,69) = 2.129, n.s., Figure 

18A). However a significant effect of genotype on the latency to immobility was 

observed (F(3,67) = 5.415, p < 0.05, Figure 18B), and post-tests revealed an 

increased mean latency in the A2A-GluN1-/- mice (181 ± 20 s vs control: 100 ± 9 

s, p < 0.01).  

 

Under conditions of greater duress in the FST (Solich et al., 2008), 

significant genotypic differences in total immobility were observed (F(3,75) = 

Figure 18. Behavioral despair assays. 

(A) Total time spent immobile during tail 

suspension test (TST) in control (black 

circles), D1-GluN1-/- (red triangles), 

A2A-GluN1-/- (blue squares), or D1/A2A-

GluN1-/- (purple triangles) mice. (B) 

Latency to hang immobile for 10 s 

(different from control, *: p<0.05, **: 

p<0.01, Bonferroni post-test). (C) Total 

time spent immobile during forced swim 

test (FST) (different from control, **: 

p<0.01, ***: p<0.001, Bonferroni post-

test). (D) Latency to float immobile for 10 

s (different from control, **: p<0.01 

Bonferroni post-test).  
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5.722, p < 0.01, Figure 18C). Specifically, A2A-GluN1-/- mice exhibited a decrease 

in total immobility (125 ± 10 s vs control: 183 ± 10 s, p < 0.001) consistent with an 

increased mean latency to float (214 ± 21 s vs control: 121 ± 12 s, p < 0.01, Figure 

18D). In each of these tests and measures, D1-GluN1-/- mice did not differ from 

controls (TST total: 161 ± 6 s, latency: 149 ± 21 s; FST total: 156 ± 14 s, latency: 

170 ± 25 s). Interestingly, D1/A2A-GluN1-/- mice behaved similarly to A2A-GluN1-

/- mice and different from controls on all measures. That is, restoring striatal 

NMDAR balance did not rescue the A2A-GluN1-/- phenotype: D1/A2A-GluN1-/- 

mice exhibited an increased latency to hang during the TST (165 ± 23 s), p < 0.05 

and to float during the FST (218 ± 25 s, p < 0.01), as well as decreased total 

immobility during the FST (133 ± 13 s, p < 0.01). 

 

4.  Discussion 

Striatal NMDAR signaling has been implicated in the pathophysiology of 

drug addiction and other psychiatric diseases with motivational or affective 

components (Beutler et al., 2011; Cahill et al., 2014; Lim et al., 2012; Pascoli et 

al., 2014; Schwartz et al., 2014). In this report, we demonstrate separable roles for 

cell type-specific NMDAR function in the regulation of complex behaviors. These 

data support the hypothesis that balanced signaling across MSN subtypes 

regulates some locomotor-dependent behaviors, while providing further evidence 

that a more complex model is required to describe reward-related and depressive-

like outcomes. 
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We observed no effect of any genotype on the acquisition of cocaine CPP. 

These findings may appear to disagree with published literature, where similar 

impairments of NMDAR function resulted in blunted psychostimulant CPP (Beutler 

et al., 2011; Heusner and Palmiter, 2005), however specific methodological 

differences (i.e. background strain, apparatus, and drug) can readily explain minor 

discrepancies. To summarize, the published accounts and present data 

collectively demonstrate that a moderate dose of cocaine does not require D1-

NMDAR function to generate reward learning. We did observe that D1-GluN1-/- 

mice exhibited a stark impairment of drug-primed reinstatement of cocaine CPP. 

These data are in accordance with recent findings, where putative NMDAR-

dependent modifications on NAc D1 MSNs were demonstrated to be essential for 

cue-induced reinstatement of cocaine seeking (Pascoli et al., 2014). Our data 

corroborate the mechanistic underpinnings of those findings and support the 

importance of D1 MSN NMDARs in drug-primed reinstatement. Moreover we 

observed that dual D1/A2A-GluN1-/- mice retained cocaine-primed reinstatement, 

suggesting that balanced NMDAR signaling across striatal projection neurons may 

underlie this phenomenon. On the other hand, the dual knockout mice did exhibit 

blunted reinstatement relative to control mice, suggesting that NMDARs in 

extrastriatal D1-expressing neurons may contribute to drug-primed reinstatement. 

Consistently, Sanchez and Sorg (Sanchez et al., 2003) demonstrated that 

reinstatement of cocaine CPP was blocked by infusion of a D1 antagonist into the 

PFC. D1-expressing neurons in the orbitofrontal cortex (Capriles et al., 2003; 
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Lasseter et al., 2013) and amygdala (Alleweireldt et al., 2006; S. Erb et al., 2001; 

Mashhoon et al., 2009) represent other intriguing candidate substrates. 

To assess movement-based adaptive learning, we examined locomotor 

activity in a novel environment. D1-GluN1-/- mice displayed a substantial 

attenuation of hyperactivity during the first five minutes, and did not habituate 

normally as evidenced by increased activity after 50 minutes. During the same 

task, D1-GluN1-/- mice displayed a robust increase in vertical counts, which have 

been described as a form of exploratory behavior (Fonio et al., 2009). Neither of 

these locomotor phenotypes were present in D1/A2A-GluN1-/- mice, supporting the 

conclusion that balanced MSN NMDAR signaling regulates exploration and 

habituation. We also observed that A2A-GluN1-/- mice spent less time in the center 

of the arena than controls. Since thigmotactic behavior can be indicative of an 

anxiety-like phenotype, we followed up with more targeted assays. Contrary to our 

working hypothesis, A2A-GluN1-/- mice performed similarly to controls on both the 

EPM and NIH. We therefore conclude that A2A-GluN1-/- mice display atypical 

patterns of horizontal locomotion, and hypothesize that more rigorous 

assessments of movement (for example, see Paulus and Geyer, 1991) would 

reveal subtle differences in unconditioned locomotion. 

Since depressive symptoms are often comorbid with drug abuse and 

addiction (Joffe et al., 2014; Volkow, 2010), we assessed behavioral despair in two 

parallel assays, the TST and the FST. Due to previously observed genotype-sex 

interactions in these behaviors (Kokras and Dalla, 2014) we ran separate cohorts 

of male and female mice. We observed similar results in both sexes: A2A-GluN1-



83 
 

/- mice displayed a prolonged latency to immobility in both assays and increased 

total immobility in the FST. These findings suggest that A2A-GluN1-/- mice exhibit 

a despair-resistant or “resilient” phenotype. Ionotropic glutamate receptor signaling 

in the NAc has been heavily implicated in depressive-like behaviors (Bagot et al., 

2015; Francis et al., 2014; Lim et al., 2012; Robison et al., 2014; Schwartz et al., 

2014; Vialou et al., 2010). Our data suggest that these characterized physiological 

processes may proceed largely through A2A MSNs, consistent with recent findings 

that the development of amotivation induced by chronic pain proceeds through 

NMDAR signaling on NAc A2A MSNs (Schwartz et al., 2014). Together these data 

support the hypothesis that A2A MSN NMDARs signaling promotes depressive-

like behavior. Conversely, the antidepressant efficacy of fluoxetine requires 

downregulation of the NMDAR signaling partner, CaMKII (Robison et al., 2005; 

Shonesy et al., 2014). Whether changes to A2A MSN NMDAR signaling are 

required for the behavioral efficacy of SSRIs and other antidepressants remains 

untested and merits further study. Interestingly D1/A2A-GluN1-/- mice also 

displayed the anti-despair phenotype exhibited by A2A-GluN1-/- mice. Unlike the 

locomotor-based assays, these results suggest that A2A MSNs contribute to 

despair-like behavior in a manner that cannot be distilled to balanced MSN 

NMDAR signaling. One intriguing possibility is that A2A MSNs, or their targets, 

project to a region outside of the canonical basal ganglia that modulates negative 

affective behaviors.  

If indeed striatal balance is required for the expression of some 

psychostimulant and novelty-related behaviors, it begs the question: why did A2A-
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GluN1-/- mice not display unusual drug-related behaviors? We propose two, non-

exclusive explanations. For one, from a practical perspective, we may have 

encountered ceiling effects in the selected classical conditioning paradigms. 

Operant behavioral paradigms would be expected to provide a greater signal 

window for detecting increases in drug reinforcement and susceptibility to relapse. 

Accordingly, following chemogenetic inhibition of NAc A2A MSNs, Bock et al. 

observed enhanced motivation to obtain cocaine as assessed by lever-pressing 

behavior. Alternatively, following a sub-threshold training protocol or priming dose, 

A2A-GluN1-/- mice might display or reinstate CPP under conditions where control 

mice would not.  
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CHAPTER V 

 

COCAINE EXPERIENCE ENHANCES THALAMO-ACCUMBENS N-METHYL-

D-ASPARTATE RECEPTOR FUNCTION 

 

1. Abstract 

 Excitatory synaptic transmission in the NAc is a key biological substrate 

underlying behavioral responses to psychostimulants and susceptibility to relapse. 

Recent studies have demonstrated that cocaine induces changes in glutamatergic 

signaling at distinct inputs to the NAc. However, consequences of cocaine 

experience on synaptic transmission from the mThal to the NAc have yet to be 

reported. To examine synapses from specific NAc core inputs, we recorded light-

evoked EPSCs following viral-mediated expression of ChR2 in the mThal, PFC, or 

BLA from acute brain slices. To identify NAc MSN subtypes we utilized mice 

expressing tdTomato driven by the promoter for the D1. We recorded NMDAR and 

AMPAR properties to evaluate synaptic adaptations induced by cocaine 

experience, a 5-day cocaine exposure followed by 2-weeks of abstinence. We 

determine that excitatory inputs to the NAc core display differential NMDAR 

properties. Furthermore, cocaine experience uniquely alters AMPAR and NMDAR 

properties at mThal-D1(+), mThal-D1(-), and PFC-D1(+) synapses, while sparing 

PFC-D1(-) synapses. Finally, at mThal-D1(+) synapses, we demonstrate that 

cocaine enhances GluN2C/D function and NMDAR-dependent synaptic plasticity. 
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Our results identify contrasting cocaine-induced AMPAR and NMDAR 

modifications at mThal- and PFC-NAc core synapses. These changes include an 

enhancement of NMDAR function and plasticity at mThal-D1(+) synapses. 

Incorporation of GluN2C-containing NMDARs most likely underlies these 

phenomena and represents a potential therapeutic target for psychostimulant use 

disorders. 

 

2. Introduction 

Addressing the persistent vulnerability of relapse to drug-seeking behavior 

remains an essential obstacle impeding the treatment of substance abuse 

disorders (Joffe et al., 2014). The long-lasting urges and maladaptive behaviors 

conditioned by cocaine use are associated with changes in excitatory transmission 

throughout the mesolimbic dopamine system, including within the NAc (Grueter et 

al., 2012; Robison and Nestler, 2011). Recent studies have supported the 

hypothesis that alterations in NAc AMPAR signaling are essential towards 

promoting maladaptive drug-associated behaviors (Lee et al., 2013; Ma et al., 

2014; Pascoli et al., 2014, 2012). 

Seminal findings by Thomas et al (Thomas et al., 2001) demonstrated that 

AMPAR function in the NAc shell is altered by cocaine history. Since then, we and 

others have demonstrated circuit-specific, experience-dependent changes in NAc 

synaptic function by utilizing reporter mouse lines that label neuron populations 

and optogenetic approaches to drive specific excitatory afferents. The output 

neurons of the NAc, MSNs, are largely distinguished by expression of D1 or D2. 
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While both D1 (Bock et al., 2013; Dobi et al., 2011; Jedynak et al., 2015; Khibnik 

et al., 2015; MacAskill et al., 2014; Pascoli et al., 2014, 2012) and D2 (Bock et al., 

2013; Grueter et al., 2010; MacAskill et al., 2014) NAc MSN subtypes have been 

shown to undergo drug-induced changes in AMPAR function, these changes occur 

in an experience-, subregion-, and input-specific manner. In contrast to AMPARs, 

drug-induced changes in NAc NMDAR function have been less well documented. 

Following a short-term abstinence from cocaine exposure Huang et al, and others, 

have reported a transient increase in the expression of silent synapses (T. E. 

Brown et al., 2011; Huang et al., 2009b; Koya et al., 2012; Lee et al., 2013; Ma et 

al., 2014), synapses that exhibit robust NMDAR-mediated EPSCs but 

undetectable AMPAR-EPSCs (Kerchner and Nicoll, 2008; Malenka and Nicoll, 

1997). These silent synapses are thought to be due in large part to the insertion of 

NMDARs containing the GluN2B subunit. Conversely, at 14 days following chronic 

amphetamine, decreased expression of GluN2B-containing NMDARs has been 

reported (Mao et al., 2009). Also, longer-lasting increases in NAc 

hyperpolarization-active GluN2C-containing NMDARs are implicated in alcohol 

seeking (Seif et al., 2015, 2013), but their role in cocaine-related experience is 

unclear. Since NMDAR subunit composition can have a profound effect on 

synaptic function, the molecular stoichiometry of NMDARs in drug- and synapse-

specific models warrants further investigation.  

The NAc core and shell receive excitatory input from the PFC, BLA, and the 

vHipp (Britt et al., 2012; Brog et al., 1993; O’Donnell and Grace, 1995). 

Dysregulated plasticity of AMPARs has been identified as a substrate that 
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promotes reward-driven and addiction-like behaviors at NAc synapses from each 

of these inputs (Britt et al., 2012; Lee et al., 2013; Ma et al., 2014; Pascoli et al., 

2014, 2012). Projections from the mThal also innervate the NAc (Berendse and 

Groenewegen, 1990; Vertes et al., 2015), yet whether drug experience alters these 

synapses remains to be shown. 

The thalamus is described as a sensorimotor-cortical relay, and has 

received relatively little attention with regards to its capacity to modulate complex 

affective and cognitive behaviors (Vertes et al., 2015). The thalamic PVT and 

paratenial nucleus receive inputs from multiple brain regions implicated in 

addiction-related behavior and project to the NAc (Berendse and Groenewegen, 

1990; Li and Kirouac, 2012; Phillipson, 1988). Thus the mThal nuclei are 

anatomically positioned to provide essential coordination of learned drug-induced 

behaviors. Indeed, lesion or pharmacological inhibition of the PVT has been 

demonstrated to disrupt NAc-dependent behaviors including reinstatement of 

cocaine-seeking and expression of cocaine conditioned place preference 

(Browning et al., 2014; Hamlin et al., 2008; James et al., 2010; Young and Deutch, 

1998). Therefore, to begin to address the role of mThal-NAc pathways in drug-

related behaviors, we sought to test the hypothesis that cocaine exposure alters 

mThal-NAc AMPAR and NMDAR function. 

To better understand mThal inputs to NAc core we compared AMPAR and 

NMDAR properties at mThal, PFC, and BLA synapses. We expressed ChR2 in 

BAC transgenic D1-tdTomato mice and performed targeted, input-specific, whole-

cell voltage-clamp recordings in acute slices of the NAc core. Synaptic 
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NMDAR/AMPAR ratios differed based on glutamatergic input. At mThal-D1(+) 

synapses, cocaine experience, defined as abstinence from 5 days of cocaine 

exposure, enhanced AMPAR function and altered NMDAR properties, while at 

mThal-D1(-) synapses the cocaine-induced changes were consistent with 

generation of silent synapses. In contrast to mThal-NAc synapses, inputs from the 

PFC to NAc core D1(+) MSNs, but not D1(-) MSNs, exhibited larger 

NMDAR/AMPAR ratios following cocaine experience. Finally, we found that 

cocaine experience enhanced GluN2C/D function and unmasked NMDAR-

dependent long-term depression (LTD) at mThal-D1(+) synapses. These results 

suggest that cocaine experience generates changes in NMDAR function at mThal-

NAc core synapses and identifies these adaptations as targets with therapeutic 

potential for the treatment of psychiatric disorders associated with dysfunction of 

the reward system. 

 

3. Results 

3.1 Circuit-specific AMPAR and NMDAR Properties of NAc Core MSNs 

To characterize synaptic AMPAR and NMDAR properties in the NAc core 

in a circuit-specific manner, we virally expressed ChR2 in the mThal, PFC, or BLA 

of D1-tdTomato marker mice. After 3 weeks robust expression of ChR2 was 

observed at the injection site and in the NAc (Figure 19A, page 91). Utilizing 

visualized whole-cell voltage-clamp techniques, we recorded light-evoked EPSCs 

at D1(+) and D1(-) MSNs. To compare AMPAR function across NAc core inputs, 

we elicited asEPSCs in low-Ca2+ aCSF supplemented with Sr2+. asEPSCs are 
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quantal-like events that reflect synaptic expression of AMPARs. The asEPSC 

amplitudes were similar across inputs onto D1(+) (Figure 19B1) and D1(-) (Figure 

19B2) MSNs.  

To better understand mThal-NAc core synaptic composition, we compared 

NMDAR/AMPAR ratios to those recorded following PFC and BLA stimulation. The 

NMDAR-mediated component was recorded at 50 ms post onset (when the 

AMPAR component is minimal) and normalized to the AMPAR EPSC peak 

amplitude for each cell (Grueter et al., 2010; Kreitzer and Malenka, 2007). mThal 

synapses on D1(+) and D1(-) cell types exhibited smaller NMDAR/AMPAR ratios 

relative to the PFC (mThal-D1(+): 0.325 ± 0.029 vs. PFC-D1(+): 0.564 ± 0.066, p 

< 0.01, Figure 19C1; mThal-D1(-): 0.322 ± 0.029 vs. PFC-D1(-): 0.576 ± 0.042, p 

< 0.001, Figure 19C2). D1(-) synapses from the BLA also exhibited smaller 

NMDAR/AMPAR ratios relative to the PFC (BLA-D1(-): 0.372 ± 0.043, p < 0.01).  
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Figure 19. Basal AMPAR and NMDAR properties of NAc core synapses. (A) ChR2-EYFP 

expression in D1-tdTomato brain slice following viral-mediated gene transfer directed at the mThal. 

Wide field sagittal section (top) and high magnification merged confocal image (bottom) are 

displayed. (B-D) Input-specific AMPAR and NMDAR properties onto D1(+/-) neurons: (B) 

Amplitude of asEPSCs at D1(+) (B1) and D1(-) (B2) synapses following stimulation of terminals 

from the mThal (light red/grey), PFC (medium red/grey) or BLA (dark red/grey) in the presence of 

Sr2+. (n = 7-9 / N = 4 per group). (C) Ratio of NMDAR component relative to AMPAR EPSC while 

recording from D1(+) (C1) and D1(-) (C2) neurons. Representative input-specific EPSCs at -70 mV 

and +40 mV are displayed on the left. Inputs from mThal exhibited lower NMDAR/AMPAR than 

from the PFC (**: p < 0.01; ***: p < 0.001, post-tests). (n = 10-13 / N = 5-10 per group). (D) Silent 

synapse CV analysis. CV-NMDAR normalized to CV-AMPAR at D1(+) (D1) and D1(-) (D2) 

synapses. 
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As mentioned above, silent synapses are putative substrates for long-term 

potentiation that are characterized by the functional presence of NMDARs but not 

AMPARs (Kerchner and Nicoll, 2008; Malenka and Nicoll, 1997). Silent synapses 

are abundant in the developing brain, and recent work has demonstrated that 

cocaine exposure transiently increases silent synapses in the NAc (T. E. Brown et 

al., 2011; Huang et al., 2009b; Koya et al., 2012; Lee et al., 2013; Ma et al., 2014).  

Therefore, we analyzed CV-N/CV-A, a measure inversely related to the proportion 

of silent synapses (Huang et al., 2009b; Kullmann, 1994). We found no difference 

in CV-N/CV-A across inputs onto D1(+) (Figure 19D1) or D1(-) MSNs (Figure 

19D2). Analysis of CV measurements in isolation can be found at the end of this 

chapter. Taken together, these data are consistent with the interpretation that 

glutamatergic inputs to the NAc core display basal differences in NMDAR function. 

This led us to assess whether cocaine experience would alter NMDAR function at 

these specific NAc core synapses.  

 

3.2 Cocaine Experience Does Not Alter Electrically-evoked NAc core 

AMPAR or NMDAR Properties 

 In order to investigate consequences of cocaine experience on NAc 

synaptic properties we conditioned mice with 5-days of cocaine injections outside 

of the home cage. Repeated injections of cocaine induced robust increases in 

locomotor activity (F = 27.46, df = 6, p < 0.001, Figure 20A, page 93). Following a 

10-14 day drug-free period, we performed targeted whole-cell recordings of 

electrically-evoked EPSCs in the NAc core. We observed no effects of this cocaine 
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conditioning paradigm on NMDAR/AMPAR ratios or properties within the NAc core 

on either D1(+) (Figure 20B1-E1) or D1(-) MSNs (Figure 20B2-E2). 

Figure 20. Cocaine exposure and abstinence does not affect electrically-evoked NAc core NMDAR 

or AMPAR function. (A) Top, schematic of behavioral conditioning and targeted approach. Slices 

were prepared 10-14 days after mice were conditioned with saline (filled circles) or cocaine (open 

circles) and EPSCs were elicited with a local electrode. Bottom, mice exhibited a sensitized 

locomotor response to cocaine (*: p < 0.05; ***: p < 0.001, post-test vs. day 1). (N = 20 saline; 16 

cocaine). (B) Amplitude of asEPSCs from both D1(+) (B1) and D1(-) (B2) neurons. (n = 7-9 / N = 

4-6 per group). (C) Ratio of NMDAR component to AMPAR EPSC following while recording from 

D1(+) (C1) or D1(-) (C2) neurons. (n = 9-14 / N = 7-9 per group). (D) CV-NMDAR normalized to 

CV-AMPAR in D1(+) (D1) and D1(-) (D2) cell types. (E) Isolated NMDAR current-voltage 

relationship from both D1(+) (E1) and D1(-) (E2) neurons. (n = 8-16 / N = 5-8 per group). 
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3.3 Cocaine Experience Alters AMPAR and NMDAR Function at mThal-

D1(+) NAc Core Synapses 

 To investigate potential changes in excitatory drive specific to thalamic 

inputs following cocaine experience, we examined AMPAR and NMDAR function 

at mThal-D1(+) NAc core synapses (Figure 21A, page 95). We observed that 

cocaine experience increased the amplitude of AMPAR-mediated asEPSCs at 

these synapses relative to saline controls (sal: 23.9 ± 1.6 pA vs coc: 31.2 ± 2.6 pA, 

p < 0.05, Figure 21B). We expected that cocaine experience would result in a 

corresponding decrease in NMDAR/AMPAR. However mThal-D1(+) 

NMDAR/AMPAR at mThal-D1(+) from cocaine-treated mice was indistinguishable 

from saline controls (Figure 21C). Also, no change in CV-N/CV-A between the 

cocaine- and saline-treated groups was observed (Figure 21D). Given that we 

observed a cocaine-induced increase in AMPAR function, we hypothesized that 

cocaine treatment would be associated with a concomitant increase in NMDAR 

function at these synapses, and proceeded to analyze pharmacologically-isolated 

NMDAR EPSCs (Figure 21E). The current-voltage relationship of NMDAR EPSCs 

is generally determined by the biophysical properties of GluN2 subunits expressed 

at the synapse (Paoletti et al., 2013). After normalizing to the peak NMDAR-EPSC 

at +30 mV, we observed that cocaine exposure increased the relative mThal-D1(+) 

NMDAR current passed at -30 mV (sal: -0.334 ± 0.057 vs coc: -0.465 ± 0.041, p < 

0.05). This change in the current-voltage relationship is consistent with the 

interpretation that cocaine experience altered the functional subunit stoichiometry 

of mThal-D1(+) NMDARs, potentially by increasing the expression of GluN2C 
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isoforms (Kuner and Schoepfer, 1996). Overall, mice with a cocaine history 

exhibited a potentiation of synaptic strength/connectivity at mThal-D1(+) synapses, 

despite no observed change in the NMDAR/AMPAR ratio. 

Figure 21. Cocaine enhances mThal-D1(+) AMPAR and NMDAR function. (A) D1(+) neurons were 

targeted in slices prepared 10-14 days after mice were conditioned with saline (filled squares) or 

cocaine (open squares), and glutamate was released from the mThal. (B) Cocaine conditioning 

increased the amplitude of asEPSCs at mThal-D1(+) NAc core synapses (p < 0.05). (n/N = 6/4 

saline; 7/4 cocaine). (C) Left, dual component EPSCs obtained at -70 mV and +40 mV in slices 

from mice conditioned with saline (black) or cocaine (grey) mice. The NMDAR component is 

normalized to the AMPAR EPSC. Scale bars denote 100 pA and 50 ms. Right, summary data of 

NMDAR/AMPAR ratios. (n/N = 8/8 saline; 10/10 cocaine). (D) CV-NMDAR normalized to CV-

AMPAR. (E) Left, isolated NMDAR current-voltage relationship. Scale bars denote 50 pA and 50 

ms. Right, mThal-D1(+) NAc core synapses exhibited an altered NMDAR current-voltage 

relationship following in vivo cocaine conditioning (**: p < 0.01). (n/N = 6/6 saline; 9/7 cocaine). 
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3.4 NMDAR Function at PFC-D1(+) NAc Core Synapses Is Increased 

Following Cocaine Experience 

 To probe how cocaine experience affects cortical inputs to the NAc core, 

we examined AMPAR and NMDAR properties utilizing ChR2 expressed in axon 

terminals from the PFC (Figure 22A, page 97). In contrast to mThal inputs, we 

found no difference in asEPSC amplitude between cocaine- and saline-treated 

mice (Figure 16B). However, PFC-D1(+) NMDAR/AMPAR ratio was greater 

following cocaine experience relative to the saline-treated group (sal: 0.388 ± 

0.040 vs coc 0.550 ± 0.067, p < 0.05, Figure 22C). To determine whether silent 

synapses may contribute to the increase in NMDAR/AMPAR ratio we analyzed 

CV-N/CV-A, but found no difference between cocaine and vehicle groups (Figure 

22D). Finally, we examined NMDAR biophysical properties to address potential 

differences in subunit stoichiometry across groups. We also found no differences 

in current-voltage relationship (Figure 22E) suggesting that NMDAR subunit 

stoichiometry at PFC-D1(+) inputs is not modified by cocaine experience. Together 

these data indicate that at PFC-D1(+) NAc core synapses, cocaine experience 

yields an upregulation of NMDAR function without increasing silent synapses or 

altering subunit stoichiometry. 
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Figure 22. Cocaine experience enhances PFC-D1(+) NMDAR function. (A) D1(+) neurons were 

targeted in slices prepared 10-14 days after mice were conditioned with saline (filled triangles) or 

cocaine (open triangles), and glutamate was released from the PFC. (B) asEPSC amplitude of 

PFC-D1(+) synapses. (n/N = 9/4 saline; 8/4 cocaine). (C) Left, dual component EPSCs obtained 

at -70 mV and +40 mV. Scale bars denote 100 pA and 50 ms. Right, cocaine exposure and 

abstinence increased NMDAR/AMPAR relative to saline controls (p < 0.05). (n/N = 12/6 saline; 9/5 

cocaine). (D) CV-NMDAR normalized to CV-AMPAR. (E) Left, isolated NMDAR current-voltage 

relationship. Scale bars denote 50 pA and 50 ms. Right, Summary data of NMDAR current-voltage 

relationships. (n/N = 6/3 saline; 4/3 cocaine). 
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3.5 mThal-D1(-) NAc Core Synapses Exhibit Functional Properties 

Consistent with More Silent Synapses Following Cocaine Experience 

 In parallel to recordings from D1(+) MSNs, we assessed consequences of 

cocaine experience on AMPAR and NMDAR properties at mThal-D1(-) synapses 

(Figure 23A, page 99). The asEPSC amplitude did not differ between cocaine and 

saline treatment groups (Figure 23B). However unlike mThal-D1(+), 

NMDAR/AMPAR at mThal-D1(-) synapses was larger in the cocaine-treated group 

(sal: 0.309 ± 0.045 vs coc: 0.422 ± 0.024, p < 0.05, Figure 23C). Furthermore, we 

observed a much smaller CV-N/CV-A ratio following cocaine experience (sal: 

1.224 ± 0.167 vs coc: 0.609 ± 0.050, p < 0.01, Figure 23D). Cocaine experience 

did not alter mThal-D1(-) NMDAR stoichiometry as measured by current-voltage 

relationship (Figure 23E), however silent synapses are not known to be enriched 

in NMDARs with abnormal current-voltage relationships. 

 

3.6 Cocaine Experience Does Not Alter PFC-D1(-) NAc Core AMPAR or 

NMDAR Properties 

 We also examined whether cocaine treatment induced changes in AMPAR 

or NMDAR function at PFC-D1(-) NAc core synapses. No differences in asEPSC 

amplitude, NMDAR/AMPAR ratiometric measures, or NMDAR current-voltage 

relationship at PFC-D1(-) synapses (Figure 24A-E, page 100) were observed 

following cocaine experience.  
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Figure 23. Cocaine history induces changes consistent with more silent synapses at mThal-D1(-) 

synapses in NAc core. (A) D1(-) neurons were targeted in slices prepared 10-14 days after mice 

were conditioned with saline (filled squares) or cocaine (open squares), and glutamate was 

released from the mThal. (B) Amplitude of asEPSCs elicited in Sr2+-replaced aCSF. (n/N = 7/4 

saline; 7/4 cocaine). (C) Left, the NMDAR component is normalized to the AMPAR-EPSC. Scale 

bars denote 100 pA and 50 ms. Right, cocaine exposure increased NMDAR/AMPAR at mThal-D1(-

) synapses (p < 0.05). (n/N = 8/8 saline; 8/8 cocaine). (D) CV-NMDAR (CV-N) normalized to CV-

AMPAR (CV-A). Cocaine conditioning decreased CV-N/CV-A at mThal-D1(-) NAc core synapses 

(p < 0.01). (E) Left, isolated NMDAR current-voltage relationship. Scale bars denote 50 pA and 50 

ms. Right, summary data of NMDAR current-voltage relationships. (n/N = 7/5 saline; 7/4 cocaine). 
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Figure 24. Cocaine experience does not alter PFC-D1(-) synapses. (A) D1(-) neurons were 

targeted in slices prepared 10-14 days after mice were conditioned with saline (filled triangles) or 

cocaine (open triangles), and glutamate was released from PFC. (B) asEPSC amplitude of PFC-

D1(-) synapses. (n/N = 9/4 saline; 7/4 cocaine). (C) Left, dual component EPSCs obtained at -70 

mV and +40 mV. Scale bars denote 100 pA and 50 ms. Right, summary data of NMDAR/AMPAR 

ratios. (n/N = 8/5 saline; 14/8 cocaine). (D) CV-NMDAR normalized to CV-AMPAR. (E) Left, isolated 

NMDAR current-voltage relationship. Scale bars denote 50 pA and 50 ms. Right, summary data of 

NMDAR current-voltage relationships. (n/N = 6/3 saline; 5/3 cocaine). 
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3.7 Functional Upregulation of GluN2C/D at mThal-D1(+) Synapses 

Following Cocaine Experience 

In order to investigate the cocaine-induced changes in NMDAR current-

voltage relationship, we utilized the positive allosteric modulator CIQ (Mullasseril 

et al., 2010; Ogden et al., 2014) to probe GluN2C/2D function. Washing on CIQ 

exerted no effect on the size of the mThal AMPAR EPSCs on D1 MSNs from either 

cocaine-treated mice or controls (Figure 25B, page 102), so we proceeded to 

assess isolated NMDAR currents in low-Mg2+ aCSF containing NBQX (Figure 

20C). Application of CIQ did not affect mThal-D1(+) NMDAR-EPSCs from control 

animals (96.0 ± 9.2%, Figure 25D), but potentiated NMDAR currents at mThal-

D1(+) synapses from cocaine-conditioned mice (130.3 ± 12.0%, p < 0.05 vs. sal).  

To confirm that the effect of CIQ occurs in standard, Mg2+-containing aCSF, 

we examined NMDAR/AMPAR ratios in a separate set of slices (Figure 25E). In 

control D1 MSNs, mThal NMDAR/AMPAR was not affected by the presence of 

CIQ (Figure 25F). However CIQ generated an increase in mThal NMDAR/AMPAR 

in D1 MSNs from cocaine-conditioned animals, (aCSF: 0.394 ± 0.030 vs CIQ: 

0.531 ± 0.044, p < 0.05). To further investigate the contribution of GluN2C-

containing NMDARs, we isolated NMDAR-EPSCs in the presence of d-

cycloserine, a GluN2C-preferring agonist (Dravid et al., 2010; Seif et al., 2015; 

Sheinin et al., 2001). Bath application of d-cycloserine abrogated the cocaine-

induced alteration in NMDAR current-voltage relationship at mThal-D1(+) 

synapses (Figure 26, page 103). The findings from these convergent 
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pharmacological experiments are consistent with the interpretation that cocaine 

exposure enhanced the function of GluN2C-containing NMDARs. 

Figure 25. CIQ application reveals GluN2C/D function following cocaine experience.  

(A) Acute NAc core slices were prepared 2 weeks after mice were conditioned for 5 days with saline 

or cocaine. D1(+) neurons were targeted and glutamate was released at terminals from the mThal. 

(B) CIQ, a GluN2C/D positive allosteric modulator, did not alter EPSC amplitude after mice were 

treated with either saline (filled squares) or cocaine (open squares). (n/N = 4/3 saline; 3/3 cocaine). 

(C) Representative traces. Isolated NMDAR-EPSCs were elicited in low-Mg2+ aCSF and NBQX. 

Scale bars denote 100 pA and 50 ms. (D) Bath application of CIQ potentiated mThal-D1(+) 

NMDAR-EPSCs following cocaine experience. (n/N = 5/3 saline; 6/3 cocaine). (E) Representative 

traces. The NMDAR component was normalized to the AMPAR-EPSC in the presence of CIQ or 

aCSF. Scale bars denote 100 pA and 50 ms. (F) Left, CIQ did not affect mThal-D1(+) 

NMDAR/AMPAR in control slices. (n/N = 5/3 CSF; 7/3 CIQ). Right, CIQ enhanced NMDAR/AMPAR 

at mThal-D1(+) NAc core synapses following in vivo cocaine experience (p < 0.05). (n/N = 6/3 CSF; 

6/3 CIQ). 
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3.8 Cocaine Experience Unmasks NMDAR-dependent LTD at mThal-

D1(+) NAc Core Synapses  

 Synaptic plasticity is commonly accepted as a substrate for learning and 

memory. Metaplasticity is an adaptation that promotes greater dynamic change in 

synaptic strength and connectivity. After determining that cocaine alters the 

stoichiometry of mThal-D1(+) NMDARs, we sought to test their function by 

analyzing synaptically-evoked NMDAR-dependent long-term plasticity (Brebner et 

al., 2005; Ma et al., 2014; Pascoli et al., 2012). In slices from mThal-ChR2 mice, 1 

Figure 26. Inclusion of d-cycloserine in aCSF abrogates cocaine-induced difference in mThal-

D1(+) NMDAR function. The NMDAR current-voltage relationship was assessed by eliciting 

isolated NMDAR-EPSCs at 20 mV steps and normalizing to the maximum outward current for each 

cell. D-cycloserine (10 µM) was added to the aSCF. Left, optically-evoked mThal-D1(+) NMDAR 

current-voltage plot. Right, electrically-evoked non-specific D1(+) NMDAR current-voltage plot.  

(n = 5-7 / N = 3 per group). 
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Hz 470 nm light stimulation for 10 minutes (low frequency stimulation; LFS) did not 

decrease the EPSC amplitude in D1(+) NAc core MSNs (sal: 94.0 ± 7.6%, Figures 

27A-27D, page 105). However, LFS induced LTD of mThal-D1(+) EPSCs in slices 

from cocaine-conditioned mice (coc:  68.1 ± 6.2%, p < 0.05 vs. sal). Bath 

application of D-AP5 during LFS blocked LTD in D1(+) MSNs from cocaine-treated 

animals (92.6 ± 10.7%, Figure 28, page 106), corroborating an NMDAR-dependent 

mechanism of LTD. Since we observed that cocaine exposure induced changes in 

NMDAR function at a moderately depolarized holding potential, we paired the LFS 

with depolarization and expected to observe enhanced NMDAR function. Indeed 

paired LFS induced greater LTD at mThal-D1(+) synapses from cocaine-

conditioned animals (sal: 83.9 ± 9.1% vs coc:  54.2 ± 7.5%, p < 0.05, Figures 27E-

G). These data provide further evidence that cocaine experience alters NMDAR 

function at mThal-D1(+) NAc core synapses and identify a circuit-based substrate 

underlying pathophysiological learning and memory processes. 
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Figure 27. Cocaine exposure unmasks NMDAR-dependent synaptic plasticity in NAc core at mThal 

synapses on D1(+) neurons. (A) Top, schematic of behavioral conditioning and circuit-specific 

approach. Bottom, representative traces displaying low frequency stimulation (LFS: 1 Hz) of mThal-

specific EPSCs at resting and depolarized holding potentials. (B) Representative LTD experiments 

following 10 minutes mThal-specific LFS. LFS exerted no effect on mThal-D1(+) EPSC amplitude 

in control cells (black) but induced LTD in D1(+) MSNs from cocaine-conditioned mice (grey). (C) 

Summary time course of NMDAR-LTD. (n/N = 7/7 saline; 8/7 cocaine). (D) Left, representative 

traces from the baseline (pre) and final 10 minutes of recording (post). Right, average EPSC 

amplitude during last 10 minutes. Cocaine exposure permits NMDAR-LTD (p < 0.05). (E) 

Representative LTD experiments. mThal-specific LFS was paired with depolarization. Paired LFS 

generated modest LTD in control D1(+) MSNs but greater LTD in cells from cocaine-conditioned 

animals. (n/N = 8/6 saline; 6/5 cocaine). (F) Time course of paired NMDAR-LTD. (G) Left, 

representative traces from the baseline and end of LTD recording. Right, average EPSC amplitude 

during last 10 minutes. Cocaine treatment enhanced LTD induction (p < 0.05). 
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4. Discussion 

In this report we investigated AMPAR and NMDAR function across several 

NAc synapses, and further demonstrated that cocaine experience exerts disparate 

outcomes on these circuits. We highlighted changes in excitatory synaptic 

transmission from the mThal to the NAc core, as this overlooked projection could 

yield important insight into the integration of sensorimotor information towards the 

execution of motivated behaviors. As reported by MacAskill et al.(MacAskill et al., 

2012), AMPAR function at mThal-D1(+) and mThal-D1(-) is similar to the synapses 

from other inputs under basal conditions. However, our results suggest differences 

in NMDAR function across inputs to the NAc core. We proceeded to assess how 

cocaine exposure and abstinence altered NAc core NMDAR function in a circuit-

specific manner. 

Consistent with previous reports (Dobi et al., 2011; Thomas et al., 2001), 

we found that cocaine exposure and withdrawal did not induce discernable 

Figure 28. mThal-NAc LFS generates LTD via activation of NMDARs. Recordings were made from 

D1(+) NAc core MSNs in slices prepared from cocaine-conditioned animals. An NMDAR antagonist 

(D-AP5, 50 µM) was applied during the LTD induction period and prevented the protocol from 

decreasing the amplitude of the evoked mThal-D1(+) response. (n/N = 6/4). 
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changes in electrically-evoked  AMPAR or NMDAR function within the NAc core. 

Notably, these results differ from Jedynak et al.  who noted that the same cocaine 

conditioning paradigm enhanced AMPAR function in the NAc core as assessed by 

electrically-evoked AMPAR/NMDAR and mEPSC amplitude. These discrepancies 

may be explained by technical differences, biology, or both. For one, Jedynak et 

al recorded peak isolated NMDAR currents at room temperature, whereas the 

values used in the present study reflect the late-phase dual component EPSC in a 

heated bath. As temperature is known to alter NMDAR decay kinetics (Losi et al., 

2002), our methods were geared towards detecting differences in GluN2 subunit 

stoichiometry. Secondly, although asEPSCs and mEPSCs each reflect synaptic 

AMPAR function, nuanced differences between the measurements (exemplified 

by Thomas et al.) may explain the discrepancy in interpretations. From a biological 

standpoint, recordings made by Jedynak et al were performed in the medial NAc 

core (ML:  0.72-0.96 mm), whereas those from the present study were more lateral 

(ML: 1.0-1.25), and entirely dorsal to the anterior commissure. Relatively little 

attention has been paid to subregion-specific differences in NAc function (Al-

Hasani et al., 2015; Britt et al., 2012), but these subtle anatomical/physiological 

gradations merit further study. Notwithstanding these minor differences, the 

present data emphasize the importance of considering input specificity when 

interrogating NAc physiology. When isolating mThal-D1(+) NAc core synapses, we 

observed that cocaine exposure and abstinence enhanced AMPAR function 

without affecting ratiometric measurements. By augmenting AMPAR function at 

mThal-D1(+) synapses, a previous cocaine history is expected to promote future 
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D1-MSN activation and associated reward-related behaviors (Lobo and Nestler, 

2011), similar to inputs from the PFC, BLA, and vSub to the NAc shell (Lee et al., 

2013; Ma et al., 2014; Pascoli et al., 2014, 2012).  

In addition to increasing mThal-D1(+) AMPAR function, cocaine experience 

drove changes in NMDAR properties that enhanced their function. Specifically we 

found that following cocaine exposure, mThal-D1(+) NMDARs pass relatively more 

current at moderately hyperpolarized potentials and induce greater changes in 

downstream signaling. As the observed changes in  NMDAR current-voltage 

relationship are consistent with the incorporation of GluN2C/D-containing 

NMDARs, we employed the GluN2C-preferring ligands, CIQ (Mullasseril et al., 

2010; Ogden et al., 2014) and d-cycloserine (Dravid et al., 2010; Sheinin et al., 

2001) to assess NMDAR subunit stoichiometry. CIQ selectively potentiated mThal-

D1(+) isolated NMDAR EPSCs and NMDAR/AMPAR from cocaine-conditioned 

mice. Moreover, inclusion of d-cycloserine in the aCSF eliminated the cocaine-

induced difference in NMDAR current-voltage relationship. In the context of alcohol 

abuse, PFC-NAc core GluN2C function has been demonstrated to promote 

compulsive drug-seeking (Seif et al., 2015, 2013). The present data provide the 

first evidence for the involvement of these NAc NMDAR receptors in 

psychostimulant exposure, and we speculate that the incorporation of GluN2C 

subunits at mThal-D1(+) synapses may be a permissive step towards the 

development of pathological drug-seeking behaviors. One interesting caveat is 

that d-cycloserine acts as an NMDAR partial antagonist when extracellular glycine 

concentrations are elevated (Hood et al., 1989; Krystal et al., 2011; Watson et al., 
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1990), raising the possibility that NAc glycinergic transmission may be involved in 

the actions of cocaine (Achat-Mendes et al., 2012). Nonetheless, the convergent 

biophysical and pharmacological data presented here support a role for the 

GluN2C subunit in the pathophysiological effects of cocaine experience. However 

in cell lines (Paoletti et al., 2013; Siegler Retchless et al., 2012) and in NAc MSNs 

following alcohol intake (Seif et al., 2015, 2013), GluN2C subunits contribute to the 

EPSC at resting membrane potentials – a phenomenon we did not observe at 

mThal-D1(+) synapses. Instead our data resemble differences observed at 

thalamic inputs onto cortical principal neurons, which contributed greatly to the 

postsynaptic membrane potential and subsequent spiking (Hull et al., 2009). The 

unusual (but not unprecedented) difference in the current-voltage relationship 

suggests that cocaine experience enriches non-canonical GluN2C-containing 

receptors (i.e. heterotrimeric receptors) at mThal-D1(+) synapses. Testing this 

hypothesis requires tools not yet readily available (Paoletti and Neyton, 2007; 

Paoletti et al., 2013), but GluN2C-containing NMDARs represent an intriguing 

potential mediator of behaviors related to relapse. 

At PFC-D1(+) synapses, we observed increased NMDAR/AMPAR in 

cocaine treated groups without a consistent change in the AMPAR-mediated 

component as measured by asEPSC amplitude. Further unlike the mThal-D1(+) 

synapses, PFC-D1(+) synapses did not exhibit any changes in NMDAR current-

voltage relationship following cocaine experience. These findings suggest that 

cocaine experience increases NMDAR expression without altering subunit 

stoichiometry. Alternatively, enhancement of the NMDAR-EPSC may have been 
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generated by changes in the phosphorylation (Pascoli et al., 2011) and/or 

localization (Ghasemzadeh et al., 2009; Ortinski et al., 2013) of the receptors. A 

recent report demonstrated that abstinence from cocaine self-administration 

enhanced relapse-preventing NMDAR-dependent LTD at prelimbic PFC-NAc core 

synapses (Ma et al., 2014). Our data provide an explanation whereby an increase 

in NMDAR function provided the cell type-specific molecular mechanism required 

for the light-induced reversal of cocaine craving. We also found that cocaine 

experience had no detectable effect on AMPAR or NMDAR function at PFC-D1(-) 

synapses. These data support continuing translational efforts towards restoring 

pathophysiological changes induced on D1-expressing MSNs, and emphasize that 

interactions between NMDARs and D1-MSN-specific proteins provide a target for 

developing pharmacological therapies for addiction-related disorders. 

The current body of literature supports the view that the majority of drug-

induced adaptive changes in synaptic function occur in D1(+) and not D1(-) MSNs 

in the NAc (Lobo and Nestler, 2011). To the best of our knowledge, only one report 

has illustrated that psychostimulant exposure induced a change in AMPAR or 

NMDAR function at D1(-)/D2(+) NAc core MSNs (Bock et al., 2013). However, 

experiments following ablation (Durieux et al., 2009), transient inhibition (Bock et 

al., 2013), or activation (Bock et al., 2013; Lobo et al., 2010) of D2(+) NAc MSNs 

provide compelling evidence that these neurons do modulate the behavioral 

responses to psychostimulants. Our data indicate that excitatory synaptic 

transmission onto D1(-) MSNs is affected by cocaine experience, as we observed 

enhanced NMDAR/AMPAR at mThal-D1(-) synapses. This finding is 
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fundamentally different from our other observations of enhanced NMDAR function: 

the change in mThal-D1(-) NMDAR/AMPAR was accompanied by a decrease in 

CV-N/CV-A, suggestive of an increased proportion of silent synapses. Previous 

findings demonstrated that cocaine-generated silent synapses are important for 

persistent adaptations but exist themselves only temporarily (T. E. Brown et al., 

2011; Huang et al., 2009b; Lee et al., 2013; Ma et al., 2014). Our data are the first 

to suggest that some populations of NAc silent synapses may persist beyond 

short-term abstinence. One intriguing hypothesis is that mThal-D1(-) silent 

synapses provide a substrate for subsequent strengthening of mThal-to-NAc core 

D1(-) MSN connectivity that might promote resilience to drug-seeking (Bock et al., 

2013). In sum, the changes we described not only uncovered novel molecular 

processes and circuitry affected by cocaine experience, but provide mechanistic 

explanations for several impactful recent findings. 
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Table 2 

5.  Coefficient of Variation Analysis 

Fig 13       

  mThal PFC BLA Two-way ANOVA 

CV-N D1 (+) 
0.227 ± 
0.025 

0.141 ± 
0.017 

0.170 ± 
0.019 

Input: F (2, 59) = 10.46, 
p < 0.0001 

Cell type: F = 0.14, 
Interaction: F = 0.09 

 D1 (-) 
0.243 ± 
0.026 

0.140 ± 
0.016 

0.174 ± 
0.019 

          

CV-A D1 (+) 
0.206 ± 
0.023 

0.144 ± 
0.010 

0.168 ± 
0.017 

Input: F (2, 59) = 4.55, 
p < 0.02 

Cell type: F = 0.71, 
Interaction: F = 1.03 

 D1 (-) 
0.226 ± 
0.025 

0.183 ± 
0.025 

0.150 ± 
0.019 

 
Fig 14 

     
 

  electric     

  saline cocaine     

D1 (+) CV-N 
0.204 ± 
0.033 

0.182 ± 
0.013 

  
  

 CV-A 
0.169 ± 
0.020 

0.170 ± 
0.020 

  
  

        

D1 (-) CV-N 
0.258 ± 
0.067 

0.180 ± 
0.036 

  
  

 CV-A 
0.236 ± 
0.030* 

0.166 ± 
0.016* 

  
  

        
        

Figs 15-18 mThal PFC 

  saline cocaine saline cocaine 

D1 (+) CV-N 
0.216 ± 
0.017 

0.186 ± 
0.034 

0.149 ± 
0.015 

0.133 ± 
0.016 

 CV-A 
0.213 ± 
0.016 

0.197 ± 
0.039 

0.159 ± 
0.022 

0.133 ± 
0.014 

        

D1 (-) CV-N 
0.224 ± 
0.029 

0.172 ± 
0.022 

0.167 ± 
0.025 

0.178 ± 
0.031 

  

 CV-A 
0.198 ± 
0.023* 

0.279 ± 
0.028* 

0.133 ± 
0.017 

0.141 ± 
0.017 

  
Table 2. Isolated CV analysis. CV of optically-evoked EPSCs in NAc core vary based upon input 
but not MSN type. Cocaine experience alters CV-A at D1(-) MSNs. BLA, basolateral amygdala; 
CV, coefficient of variation; CV-A, CV of AMPAR-EPSC; CV-N, CV of NMDAR component; mThal, 
midline nuclei of the thalamus; PFC, prefrontal cortex. 
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Across isolated inputs to the NAc core, we observed significant differences 

in AMPAR-CV and in NMDAR-CV, irrespective of MSN type or an interaction 

(Figure 29). According to quantal theory of neurotransmission (Kerchner and 

Nicoll, 2008), CV is inversely proportional to n (the number of synapses recruited) 

and p (presynaptic release probability), or collectively as n*p (quantal content). 

These data may suggest that mThal inputs display low quantal content relative to 

the PFC and BLA, however several caveats and confounds impair a clean 

interpretation. For one, these data cannot resolve whether differences may be due 

to n, p, or both. We did not measure the percentage of neurons expressing ChR2 

in the mThal/PFC/BLA or the density of fibers reaching the NAc, so differences in 

expression fidelity could underlie variability in CV. Although we did not make 

rigorous evaluations, we consistently observed that mThal-NAc ChR2-EYFP 

Figure 29. CV-NMDAR (CV-N) and AMPAR (CV-A) components of the circuit-specific EPSCs in 

NAc core. For both CV-N and CV-A, a two-way ANOVA revealed a main effect of input but the 

targeted cell type or an interaction. Inputs from the mThal displayed a greater CV-N and CV-A than 

inputs from the PFC and BLA (*: p < 0.05, ***: p < 0.001, post-tests). As depicted in Figure 1, the 

ratio of CV-N/CV-A was not different than 1 for any circuit under basal conditions. (n = 10-13 / N = 

5-10 per group). 
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expression appeared brighter than that of NAc terminals from the PFC or BLA. 

Lower light intensities were also required to titer mThal-specific stimulation to yield 

EPSCs with small amplitudes (100 - 600 pA). Controlling stimulation parameters 

in this way is important for the interpretation of synaptic AMPAR and NMDAR 

properties. However we may have artificially decreased measurable quantal 

content relative to the other inputs, consistent with the greater CV we obtained 

from mThal inputs. With the exception of cocaine-conditioned mThal-D1(-) 

synapses, no population displayed a CV-NMDAR/CV-AMPAR different from 1. 

These data are consistent with the prevailing hypothesis that the adult NAc harbors 

minimal silent synapses under basal conditions (Lee and Dong, 2011). Examining 

CV-AMPAR and CV-NMDAR separately affirmed those findings. The isolated 

analyses also determined that electrically-evoked quantal content of AMPAR-

containing synapses may actually increase on D1(-) MSNs following cocaine 

experience, however caution must be exercised when interpreting these data (*: p 

< 0.05, t-test). 

 

6. In vivo optogenetics 

We aimed to test a causal link between mThal-specific potentiation and 

locomotor sensitization (see Pascoli et al., 2012), by applying mThal-NAc NMDAR-

dependent LTD (as characterized in Figures 27-28, pages 105-10) in vivo. Mice 

were injected with AAV-ChR2 or AAV-GFP in the mThal and conditioned with 5 

days of cocaine or saline identically as those for electrophysiology. Midway 

through the abstinence period, a second surgery was performed to implant 
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chronically indwelling fiberoptic cannulae in the NAc core (relative to bregma, ML: 

± 1.0, AP: 1.3, DV -4.0). On day 14, we applied 600 4-ms pulses at 1 Hz through 

the fiberoptic cannulae in the home cage. After the procedure and 30 minutes rest, 

mice were re-exposed to a challenge dose of cocaine and their locomotor activity 

was monitored, but no effect of the light treatment was observed (Figure 30). An 

unfortunate caveat to this and many in vivo optogenetic approaches is that a 

negative result is difficult to interpret. ChR2-EYFP expression in NAc axon 

terminals as well as cannulae placement were confirmed after all included 

experiments. 

Figure 30. Top left, Locomotor response to cocaine. 

Prior to the challenge dose of cocaine, mice were 

administered 5 injections of cocaine and sham light 

treatment (coc + sham, black circles), 5 injections of 

cocaine and mThal-NAc 1 Hz stimulation (coc + LFS, 

blue circles), or 5 injections of saline and mThal-NAc 

1 Hz stimulation (sal + LFS, filled black circles). Top 

right, Sensitization index (Locomotor activity of 

challenge injection normalized to Day 1) computed for 

groups that received prior cocaine exposure. Lower 

left, representative images of brain slices from two 

experimental mThal-NAc ChR2-EYFP mice with 

overlaid placement of fiberoptic cannulae. 
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CHAPTER VI 

 

DISCUSSION 

 

1. Summary 

The rewarding and reinforcing properties of cocaine and other drugs of 

abuse are largely mediated by activity within the NAc, a key component of the 

mesolimbic dopamine system. Excitation of neurons in the NAc has been 

described as the final common pathway for natural rewards and drugs of abuse 

(Joffe et al., 2014; Kalivas et al., 2005). Additionally, persistent drug- and 

withdrawal-induced synaptic changes in the NAc are thought to underlie the 

generation of maladaptive behaviors observed in addiction (Grueter et al., 2012). 

Synaptic plasticity involving NMDARs is being recognized as an important process 

in the development of addiction-like behaviors, but much remains to be learned 

about the specific circuitry involved. The work described in this dissertation adds 

to the literature by providing the first thorough account of drug-related changes to 

the mThal-NAc pathway as well as evidence for the contribution of D1(+) GluN2C-

containing NMDARs to relapse-related behaviors. 

 

1.1 D1 MSNs 

To examine synapses from specific NAc core inputs, we recorded light-

evoked EPSCs from acute brain slices following viral-mediated expression of 

ChR2 in the mThal, PFC, or BLA. To identify NAc MSN subtypes we utilized mice 
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expressing tdTomato driven by the D1R promoter, and we recorded AMPAR and 

NMDAR properties to evaluate synaptic adaptations induced by cocaine 

experience, a 5-day cocaine exposure followed by 2-weeks of abstinence. Cocaine 

experience induced contrasting changes in AMPAR and NMDAR properties at 

mThal-D1(+), mThal-D1(-), and PFC-D1(+) synapses, while PFC-D1(-) iGluR 

properties were unaffected. At mThal-D1(+) synapses, we demonstrated that 

cocaine alters the NMDAR current-voltage relationship and enhances NMDAR-

dependent synaptic plasticity, consistent with an upregulation of GluN2C-

containing NMDARs. 

We uncovered that cocaine exposure induced long-term changes in 

NMDAR function on D1(+) NAc core MSNs at two distinct inputs. Interestingly 

these changes were qualitatively different. For one, enhanced NMDAR function at 

mThal-D1 synapses was accompanied by an increase in quantal size, whereas 

AMPAR function in the PFC-D1 circuit appeared unaffected. Secondly cocaine 

exposure altered the NMDAR current-voltage relationship at mThal-D1 synapses 

but not at PFC-D1, and further pharmacological experiments implicated GluN2C-

containing NMDARs in this phenomenon. To assess whether NMDARs on D1R-

expressing MSNs contribute to reward-related behaviors, we generated cell type-

specific deletions by targeting the obligatory GluN1 subunit. Despite expressing 

typical cocaine reward learning, D1-GluN1-/- mice displayed a pronounced 

impairment of reinstatement, which suggests that these specific NMDARs may 

underlie susceptibility to relapse following cocaine exposure and abstinence.  
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Certainly, further experiments are required to ascertain causative 

relationships. For one, based on these experiments alone it is unclear that D1-

NMDARs in the NAc core underlie reinstatement to cocaine seeking. Several 

complimentary approaches could be taken to evaluate this concern. For one site-

directed viral-mediated manipulations of NMDAR function would provide enhanced 

spatial and temporal resolution. Rescuing reinstatement of cocaine CPP in D1-

GluN1-/- mice by viral delivery of Cre-dependent Grin1 to the NAc would address 

two concerns inherent to the genetic deletion: poor regional specificity and 

potential gross developmental abnormalities. On the other hand, a Cre-dependent 

viral-mediated knock-down would circumvent both of these concerns, but may not 

provide the sufficient efficiency required to observe behavioral effects. RNA 

interference directed at the GluN2C subunit (Seif et al., 2013) could yield valuable 

mechanistic insight potentially corroborating the observed electrophysiological 

changes. 

A second approach would utilize in vivo optogenetics. We characterized that 

cocaine exposure unmasks NMDAR-dependent LTD at mThal-D1(+) synapses. 

Ma et al., 2014 described a similar phenomenon at inputs from the PFC and went 

on to demonstrate that its application in vivo altered incubation for cocaine-

seeking. Applying such protocols in the NAc core prior to reinstatement for CPP 

would test that these specific NMDAR-dependent modifications are required for 

pathophysiological behavior, and we could control for cell type-specificity by also 

performing the experiment in GluN1-/- mice. We could combine this approach with 
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subunit-specific pharmacology (Acker et al., 2011; Costa et al., 2009; Lozovaya et 

al., 2014) to pinpoint the involvement of GluN2C-containing NMDARs 

Despite these potential follow up experiments, an unresolved question 

would remain. Do NMDAR-dependent modifications in the NAc ultimately promote 

relapse or is NMDAR function itself required for the expression of maladaptive 

relapse-like behavior? Put another way, what is the final common pathway of the 

final common pathway: AMPAR function or NMDAR function? In reality, this is 

likely a false dichotomy. Several recent experiments have used in vivo LTD 

protocols to demonstrate that depotentiation of NAc excitatory synapses prevents 

relapse-like behaviors (Lee et al., 2013; Ma et al., 2014; Pascoli et al., 2014, 2012). 

The conclusions drawn from these experiments have been that abnormal NAc 

AMPAR function subserves reinstatement, but the impact of these LFS protocols 

on NMDAR function (and mGluR function) has been ignored. Conventional wisdom 

dictates that AMPAR function is more fluid, but the surface expression and 

localization of NMDARs is dynamically regulated nonetheless (Papouin et al., 

2012). With the present research and other recent accounts (Seif et al., 2015, 

2013), we hope the hypothesis that NAc NMDAR function promotes addiction-like 

behavior is more thoroughly tested. 

Some of the most meaningful data from this work may be that cocaine 

exposure increases the function of mThal-D1-NMDARs at resting potentials. Even 

when the MSN was clamped near a typical MSN resting membrane potential, we 

could generate NMDAR-dependent LTD at mThal-D1(+) synapses following 

cocaine conditioning. Pharmacological experiments confirmed upregulation of 
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GluN2C-containing NMDARs, however the change in the current-voltage 

relationship was admittedly unusual. In cell lines, GluN1/GluN2C homodimers 

typically pass more current at all hyperpolarized potentials, including those near 

the resting membrane potential (Paoletti et al., 2013). In contrast to canonical data, 

the change in the current-voltage relationship we observed occurred specifically at 

moderately hyperpolarized potentials (e.g. -30 mV). There are several possible 

hypotheses that could explain the unique change we observed. For one, protein-

protein interactions and/or modifications that affect NMDAR current-voltage 

relationship (Chen and Huang, 1992; Lu et al., 1999) could be affected by a prior 

cocaine experience. Second, local concentrations of Mg2+ could be altered 

following cocaine. And finally, although the tools to best test this hypothesis are 

lacking (Paoletti and Neyton, 2007), triheteromeric NMDARs with uncharacterized 

biophysical properties could be assembling in the NAc core. In fact, we have 

obtained preliminary evidence that points towards the GluN2B subunit as a key 

regulator of voltage dependence in the NAc core. 

 

1.1.1  Verification of Cell Type-specific GluN2B Deletions 

 We generated cell type-specific deletions of the GluN2B subunit by crossing 

mice expressing Grin2Blox/lox with D1- and A2A-BAC-Cre mice, in an analogous 

strategy as to the GluN1-/- lines. However for the electrophysiological verification 

of this line, we also crossed these mice to Ai9 mice, which contain a Cre-inducible 

tdTomato construct under control of the ubiquitously expressed Rosa26 promotor. 

Therefore for the verification of Glun2B-/-, MSNs in the NAc core were A2A(+) and 
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A2A(-) MSNs were assumed equivalent to D1(-) and D1(+) MSNs respectively. 

GluN2B-containing NMDARs exhibit longer decay kinetics than GluN2A 

counterparts, therefore we isolated NMDAR-EPSCs from targeted MSNs to 

evaluate the specificity of the genetic deletions. Indeed NMDAR-EPSCs from both 

D1-Glun2B-/- and A2A-Glun2B-/- MSNs exhibited faster decay times than WT 

control cells (Figure 31).  

 

We also analyzed the I-V relationship of NMDAR EPSCs. In cell lines 

GluN1/GluN2B homodimers display similar I-V relationships to GluN1/GluN2A 

receptors. Surprisingly we observed that genetic deletion of GluN2B from NAc core 

MSNs altered the current-voltage relationship of NMDAR EPSCs at both D1 and 

A2A cell types (Figure 32, page 122). Subsequent post tests revealed differences 

in moderately hyperpolarized resting potentials, similar to the change we described 

following cocaine exposure at mThal-D1 synapses. Although rigorous examination 

of heterotrimeric receptors in native systems has proven elusive, the collective 

findings in this dissertation suggest that GluN1/GluN2B/GluN2C NMDARs may 
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Figure 31. GluN2B deletions reduce NMDAR decay 

kinetics. Isolated NMDAR currents were evoked at 

+40 mV. Genetic deletion of GluN2B increased the 

time to decay 50% in both D1 (A) and A2A (B) NAc 

core MSNs. (*: p < 0.05, **: p < 0.01, t-tests). 
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assemble in NAc core MSNs. Further biochemical and functional experiments are 

needed to test this hypothesis. 

 

1.1.2 Assessment of Cocaine Reward Learning in GluN2B-/- Mice 

To examine how MSN GluN2B signaling modulates the rewarding 

properties of cocaine, we performed cocaine CPP. We used a modified one-pairing 

procedure to assess submaximal reward learning. Following the pretest on day 1, 

mice were conditioned on day 2 with one pairing of cocaine (20 mg/kg, i.p.) in the 

less-preferred context. On day 3 mice were given free access to both sides of the 

chamber, and the increase in time spent was taken as an index of cocaine reward. 

We observed a modest degree of cocaine CPP in WT mice (127 ± 50 s, p < 0.05, 

Figure 32. GluN2B genetic deletions modulate NMDAR current-voltage relationships. Current-

voltage relationship of NMDAR currents in D1 (a) or A2A (b) NAc core MSNs. All currents are 

normalized to the peak current elicited at +40 mv. Control MSNs display characteristic inward 

rectification at hyperpolarized potentials. Knockout of GluN2B from either D1 or A2A MSNs further 

decreases the current passed at hyperpolarized potentials (**: p < 0.01, ***: p < 0.001, Bonferonni 

post tests). n = 6-7/group. 
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Figure 33A) and no differences were observed across genotypes (F(2, 31) = 

0.1282, n.s.). We then followed up with 3 additional pairings of cocaine and vehicle, 

which generates maximal CPP in our laboratory. Again, and consistent with the 

data we obtained with GluN1-/- mice, all groups of mice exhibited CPP to a similar 

degree (F(2, 34) = 0.4594, n.s., Figure 33B), indicating that cell type-specific 

GluN2B function is not required for the acquisition of cocaine CPP.  
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Figure 33. Expression and maintenance of cocaine CPP in GluN2B-/-. (A) Submaximal 

cocaine CPP following one pairing of 20 mg/kg cocaine. (B) Saturated CPP following 4 total 

cocaine pairings. (C) Maintenance of cocaine CPP after 4 weeks. D1-GluN2B-/- mice exhibit 

enhanced retention of cocaine CPP relative to WT and A2A-GluN2B-/- (**: p < 0.01, Bonferonni 

post tests). (D) CPP at maintenance time point relative to expression test. WT and A2A -

GluN2B-/- mice lost cocaine CPP 4 weeks after 4 weeks elapsed whereas D1-GluN2B-/- mice 

retained memory (**: p < 0.01, Bonferonni post tests). N = 8-10/group. 
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NAc GluN2B-expressing silent synapses have been implicated in the 

development of long-term behavioral effects of cocaine (i.e. incubation of cocaine-

seeking). Therefore we sought to measure the maintenance of reward-related 

memory as assessed by retention of CPP 4 weeks later. Interestingly we observed 

a main effect of genotype on the maintenance of cocaine CPP at 4 weeks (F(2, 

23) = 8.186, p < 0.01, Figure 33C). Follow-up comparisons revealed that D1-

Glun2B-/- mice exhibited enhanced CPP at 4 weeks relative to WT controls and 

A2A-Glun2B-/- (D1: 384 ± 59 s vs WT: 121 ± 40 s, p < 0.01; A2A: 112 ± 63 s, p < 

0.01). Differences at an intermediate 2-week time point were not observed (data 

not shown). We proceeded to compare the 4 week time point to the original test 

session in order to evaluate whether D1-Glun2B-/- mice exhibit “incubation” of 

cocaine reward or resistance to memory weakening (Figure 33D). At 4 weeks 

following the test session, WT mice displayed a reduction in cocaine CPP (Maint: 

121 ± 40 s vs Test: 303 ± 34 s, p < 0.01). In contrast, 4 weeks elapsed time did 

not affect the CPP exhibited by D1-GluN1-/- mice (Maint: 384 ± 59 s vs Test: 278 

± 41 s, n.s.). Similar to WT mice, A2A -Glun2B-/- mice displayed a loss of cocaine 

CPP over the 4 week period (Maint: 112 ± 63 s vs Test: 237 ± 51 s, p < 0.01). 

Taken together these data suggest that loss of GluN2B function specifically from 

D1-expressing cells enhances long-term maintenance of cocaine reward memory. 

This phenomenon could arise from impairment of a memory weakening machinery 

or the initial formation of a more persistent memory.  

The finding that D1-GluN2B function promotes the weakening of reward 

memory raises an interesting question about the cocaine-conditioned changes we 
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observed in NMDAR biophysical properties at mThal-D1(+) NAc core synapses. 

Does enhanced NMDAR function drive “forgetting” or extinction learning of reward 

memories? Perhaps instead of contributing to the likelihood of relapse, the 

enhanced expression of GluN2C-containing NMDARs serves as a feedback 

mechanism. In that case, the unmasked LTD we observed may be analogous to a 

process that occurs endogenously over the following weeks or months to attenuate 

long-term effects of cocaine exposure. Although much less is known about 

GluN2C-containing NMDARs, GluN2B subunits in other brain regions have been 

implicated in behavioral flexibility (Brigman et al., 2013; Dalton et al., 2011) and 

the extinction of fear (Dalton et al., 2012; Sotres-Bayon et al., 2009) and drug (Otis 

et al., 2014) memories. Together, these data suggest the possibility that NMDARs 

containing GluN2B (and potentially GluN2C/D) assemble after highly salient 

experiences and act to weaken, extinguish, or even reverse those memories. 

The incubation of cocaine seeking in operant tasks has been characterized 

as requiring the presence of GluA2-lacking AMPARs (Conrad et al., 2008; Lee et 

al., 2013; Loweth et al., 2014, 2013; Ma et al., 2014).  We hypothesize that GluA2-

lacking AMPARs assemble in NAc MSNs following loss of GluN2B function, and 

thus promote the maintenance or “incubation” of the cocaine CPP memory. Their 

formation would be expected to increase the persistence of the cocaine-related 

memory duration and could explain the enhanced maintenance of the memory at 

4 weeks. Alternatively, a more durable reward memory could have been formed 

due to enhanced connectivity, consistent with the finding that GluN2B knockdown 

increased the number of synaptic contacts In developing CA1 pyramidal neurons 
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(in contrast to GluN2A knockdown which modulated quantal size) (Gray et al., 

2011). NAc NMDAR activity is generally considered to be a key player in the 

acquisition of reward-related memories and behaviors, but clearly, more 

experiments need to be performed to address whether NAc NMDARs act to 

enhance extinction or drive reinstatement (or both!). Cell type-specific deletions of 

NMDARs represent an attractive tool set to carefully craft studies that examine the 

electrophysiological, biochemical, and morphological changes induced in NAc 

MSNs by rewarding experiences. 

 

1.2 A2A MSNs 

 Consistent with the literature (Bock et al., 2013; Dobi et al., 2011; Pascoli 

et al., 2014, 2012), we observed that cocaine exposure induced modest 

electrophysiological effects on D1(-) MSNs. For one, no differences between the 

cocaine and control groups were identified following local electrical or PFC-specific 

stimulation. However when eliciting glutamate release from mThal afferents, we 

observed that cocaine exposure induced changes most consistent with the 

incorporation of silent synapses. Silent synapses express functional NMDARs in 

the absence of AMPAR currents (Malenka and Nicoll, 1997) and are likely pivotal 

substrates for future plasticity due to their abilities to undergo major changes in 

synaptic strength (Kerchner and Nicoll, 2008). Despite the finding that cocaine 

exposure upregulates NMDAR function at mThal-D1(-) synapses, neither A2A-

specific genetic deletion of GluN1 nor GluN2B affected cocaine reward learning as 

assessed by CPP. We speculate that these silent synapses may mature following 
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longer durations of cocaine exposure, drug self-administration, or co-

administration with an aversive stimulus. For example, a recent report 

demonstrated that neither passive cocaine administration nor self-administration 

of a moderate-high dose of cocaine induced changes in AMPAR function on A2A 

NAc MSNs (Terrier et al., 2015). However long access self-administration of a very 

high dose (1.5 mg/kg/inf), which likely has some aversive properties, did drive 

increases in GluA2-lacking AMPAR function on A2A MSNs. As suggested by other 

studies (Lee et al., 2013; Ma et al., 2014), GluN2B-enriched silent synapses may 

exist as a necessary intermediate. Therefore the silent synapses generated at 

mThal-D1(-) NAc synapses could provide an essential transition step between 

initial cocaine exposure and addiction-like behaviors such as punishment-resistant 

drug seeking 

 In contrast to reward-related behaviors, A2A-NMDARs do modulate 

behavioral despair. Specifically A2A-GluN1-/- mice displayed less immobility in the 

TST and FST relative to WT controls. These results are consistent with a report 

from Schwartz et al., 2014 who demonstrated that the expression of anhedonia 

following chronic pain requires NMDAR-mediated plasticity on A2A MSNs. The 

present data provide evidence that even short-term stress-related behavioral 

adaptations may necessarily proceed through A2A-NMDARs. Functional 

experiments must be performed in order to assess the basal state of A2A-GluN1-

/- mice and how NMDAR and AMPAR function in the NAc is affected by acute 

stressors. The mThal nuclei are highly interconnected with stress-related 

structures such as the BNST and BLA (Li and Kirouac, 2012; Penzo et al., 2015; 
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Phillipson, 1988; Vertes and Hoover, 2008), and represent an excellent candidate 

source of glutamate promoting behavioral despair and anhedonia. Future 

experiments should be directed at the potential role of the mThal-NAc pathway in 

responses to stress and the expression of anhedonia.  

 The present data provide further evidence for divergent behavioral 

influences exerted by D1 and A2A MSNs. A natural extension of this work is to 

examine how MSN efferent projections, and related inhibitory synaptic plasticity, 

regulate long-term behavioral adaptations related to stress and reward. Of 

particular interest is the VP, which receives input from both D1 and A2A MSN types 

(Kupchik et al., 2015). In turn, the VP sends projections to the mediodorsal 

thalamus (MD) (Donnell et al., 1997; Groenewegen, 1988; Mogenson et al., 1987). 

The MD then sends projections to the lateral NAc and ventral caudate-putamen 

(Berendse and Groenewegen, 1990; Cheatwood et al., 2003), producing a 

lateralizing ascending spiral analogous to the serial reciprocal circuits that link the 

midbrain and striatum (Belin and Everitt, 2008; Haber et al., 2000). Despite 

increased awareness of VP regulation of affective states and reward behaviors, 

much remains to be learned about the circuit-level logic that integrates NAc 

projections to the VP. 

 In the dorsal and ventral striatum, MSNs have been classically 

dichotomized by protein expression and anatomy. Conventional wisdom dictated 

that D1-expressing, striatonigral MSNs project to the midbrain (“direct pathway”), 

while A2A/D2-expressing, striatopallidal MSNs project to pallidal regions (“indirect 

pathway”), and exert differential control over motor activity (Groenewegen, 2003; 



129 
 

Kreitzer and Malenka, 2008; Smith et al., 2013). However in recent years several 

studies have come to question the legitimacy of separating of “direct” and “indirect” 

pathway neurons, especially in the NAc (Cazorla et al., 2014a; Saunders et al., 

2015). In particular Kupchik et al., 2015, demonstrated that the distinction does not 

apply well to NAc MSNs, in that half of VP neurons received input from D1 MSNs 

(almost all VP neurons received input from D2 MSNs). Moreover, VP neurons that 

project to the MD also received inhibitory projections from D1 MSNs. These data 

pose many questions about how VP neuron populations may vary based on NAc 

afferent, or targets, and how these different populations may be recruited by 

rewarding and/or aversive experiences. For example, Mahler et al. demonstrated 

that inhibition of rostral VP neurons (which receive projections from the NAc shell), 

but not caudal VP neurons (which receive projections from the NAc core), blocks 

the response to cocaine associated cues. We speculate that these drug cue-

associated behaviors may necessarily proceed through a thalamo-striatal-pallidal 

loop, but this hypothesis and its mechanistic underpinnings remain to be tested. 

 

2. Future Examinations of mThal Function 

2.1 mThal-NAc Presynaptic Function 

The work described in this dissertation is focused on postsynaptic changes 

induced by cocaine exposure, but changes to the presynaptic release machinery 

can play a major role in synaptic plasticity and learning and memory (Malenka and 

Bear, 2004). With that in mind these findings pose many questions about how 

glutamate release probability may be altered at mThal-NAc synapses by in vivo 
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cocaine exposure. Presynaptic release probability can be assessed by a variety of 

measures, each with their own set of caveats. These measurements include: (1) 

frequency of miniature EPSCs (mEPSCs), (2) paired-pulse ratios (PPR), and (3) 

multiple probability fluctuation analysis (MPFA). (Suska et al., 2013) demonstrated 

that both non-contingent and self-administered cocaine exposure enhances 

glutamate release probability in the NAc shell specifically from the PFC and not 

BLA. To date, no other thorough examinations of input-specific NAc glutamate 

release probability have been published in peer-reviewed journals. However 

Neumann et al presented that cocaine self-administration enhanced release 

probability at PVT-NAc shell synapses at the most recent Society for Neuroscience 

Annual Meeting (Neumann PA, Graziane N, Huang YH, Xu W, Sesack SR, Nestler 

EJ, Schluter OM, 2015). 

To further probe drug-related changes in presynaptic release machinery, 

future studies should examine short- and long-term synaptic plasticity. Within the 

striatum several neurotransmitter receptors participate in presynaptic plasticity, 

including CB1R, Group II mGluRs, and opioid receptors. These receptors 

decrease presynaptic release probability through Gi/o-proteins, whose signaling 

acts to inhibit cAMP production, interfere with SNARE complexes, and modulate a 

host of potassium and calcium channels. As a first assessment of mechanisms 

that regulate mThal-NAc presynaptic release probability, we elected to study the 

function of CB1R. 
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2.1.1  CB1R  

 To assess canonical CB1R-mediated short-term plasticity, we examined 

DSE from targeted MSNs (Shonesy et al., 2013). DSE occurs when depolarization 

of the clamped postsynaptic neuron generates a retrograde feedback signal that 

temporarily dampens presynaptic glutamate release. While we did not confirm a 

CB1R mechanism underlying LTD at these synapses, DSE has never been 

demonstrated to occur through other signaling pathways. When selectively 

releasing glutamate from mThal terminals, we successfully elicited DSE on both 

D1(+) and D1(-) MSNs (Figure 34A, page 132). A two-way ANOVA revealed a 

main effect of time (F(35, 175) = 7.429, p < 0.0001), as well as a significant 

interaction between time and cell type (F(35, 175) = 1.617, p < 0.05), likely owing 

to differences in the initial magnitude of the short term plasticity. DSE can also be 

elicited at both NAc core MSN types following PFC-specific or local electrical 

stimulation (data not shown).  

  To test that in vivo cocaine experience modulates presynaptic short-term 

plasticity, we elicited mThal-specific DSE from MSNs prepared from mice with a 

cocaine history or saline controls. When recording from mThal-D1(+) NAc core 

synapses, saline control cells exhibited a similar degree of DSE to non-conditioned 

naïve controls. However prior cocaine treatment increased the magnitude of short-

term depression induced by DSE (coc: 62.4 ± 4.4% vs. sal: 75.8 ± 2.7%, p < 0.05, 

Figure 34B). In contrast, DSE generated at mThal-D1(-) synapses was unaffected 

by prior cocaine history (coc: 60.9 ± 3.2% vs. sal: 56.2 ± 5.0%, n.s., Figure 34C). 

After 4 weeks abstinence, the short-term depression at mThal-D1(+) synapses 
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returns to control values (coc: 69.1 ± 4.1% vs. sal: 74.3 ± 2.8%, n.s., data not 

shown).  

 

Figure 34. Cocaine exposure enhances mThal-D1(+) depolarization-induced suppression of 
excitation (DSE). (A) DSE can be elicited from mThal projections to both D1(+) and D1(-) MSNs in 
NAc core. (n = 4 D1(+); 3 D1(-)). (B) Abstinence from cocaine exposure enhances DSE at mThal-
D1(+) synapses (*: p < 0.05). (n/N = 5/3 saline; 6/3 cocaine). (C) Summary mThal-D1(-) DSE from 
naïve controls, saline controls, and cocaine-conditioned mice. (n/N = 7/4 saline; 8/4 cocaine). 

 

These data describe an additional means by which cocaine exposure 

perturbs normal function of mThal-D1(+) synapses. Enhanced DSE at mThal-

D1(+) synapses is consistent with the increase in quantal size observed insofar as 

potentiated synapses are expected to permit greater relative short-term 

depressions. An alternative intriguing hypothesis is that tonic eCB or opioid 

production may normally occlude DSE at mThal-NAc synapses. Consistently, 

cocaine exposure has been shown to impair mGlu5-mediated eCB production at 

these or nearby synapses (Fourgeaud et al., 2004; Grueter et al., 2010; Swanson 

et al., 2001; Szumlinski et al., 2004). If following cocaine exposure tonic mGlu5-

dependent eCB production is lost, but activity-dependent eCB production remains, 

we would expect to observe an enhancement of DSE. Future experiments will be 
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needed to assess the mechanism of this short-term plasticity and to contrast the 

molecular mediators with those in the mGlu5-CB1R-TRPV1 pathway. 

 

2.1.2 mGlu2/3  

 Other regulators of glutamate release relevant to drug abuse behaviors and 

found in NAc terminals are the Group II mGluRs, mGlu2 and mGlu3. These targets 

have received significant attention in recent years (Johnson and Lovinger, 2015; 

Moussawi and Kalivas, 2010), and mGlu2-selective positive allosteric modulators 

(PAMs) represent exciting potential clinical candidates (Salih et al., 2015). Two 

parallel recent studies have demonstrated than a selective mGlu2 PAM inhibits 

drug-seeking behaviors in both rats (Caprioli et al., 2015) and squirrel monkeys 

(Justinova et al., 2015), but a better understanding of the relevant neurocircuitry is 

required to tailor treatments and mitigate off-target effects. 

 Inhibition of glutamate release by Group II mGluRs have been observed 

throughout the limbic system (Grueter et al., 2005; Liechti et al., 2007; Robbe et 

al., 2002). In the NAc, Group II mGluR-mediated depression of synaptic 

transmission occurs with a concomitant increase in PPR and specific reduction of 

mEPSC frequency, consistent with a presynaptic site of action (Manzoni et al., 

1997). Perfusion of an mGlu2/3 antagonist increases glutamate efflux in the NAc 

(Xi et al., 2002), suggestive of tonic a basal level of activation from tonic glutamate 

levels. Throughout the corticolimbic system, exposure to drugs of abuse has been 

shown to uncouple mGlu2/3 from G-proteins (Liechti et al., 2007), likely through 

activator of G-protein signaling 3. Thus mGlu2/3 receptors carefully buffer 
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glutamate release, and their impairment by drug exposure may be related to 

behavioral inflexibility observed in clinical populations. 

 The PVT nucleus expresses very high levels of Group II mGluRs, especially 

mGlu2 (Ohishi et al., 1998, 1993; Petralia et al., 1996). Functionally, mGlu2/3 

activation has been shown to reduce excitability of PVT neurons through coupling 

to potassium channels, but their role at mThal-NAc terminals and in drug-related 

behaviors remains known. However we hypothesize that positive allosteric 

modulation of mGlu2/3 attenuates neurotransmission at mThal-NAc core synapses 

and contributes to the observed anti-relapse behavioral effects. Furthermore, 

although the pharmacology used in historical studies was non-selective, newly 

developed compounds (i.e. mGlu3 NAMs) permit the demarcation of Group II 

mGluR function (Walker et al., 2015; Wenthur et al., 2013) , and the testing of 

exciting hypotheses with translational relevance.  

 

2.1.3 Opioid Receptors 

 As currently described, the opioid system consists of four distinct receptor-

ligand systems (Mu, Delta, Kappa, and opioid receptor like-1), each of which have 

demonstrated action in the NAc (Al-Hasani and Bruchas, 2011). As the target of 

heroin and morphine, the Mu opioid receptor (MOR) is well known for its role in 

reward and reinforcement. One well-known dichotomy in striatal opioid signaling is 

that D1 MSNs express dynorphin (KOR agonist) whereas A2A/D2 MSNs express 

enkephalin (DOR agonist) (Le Moine et al., 1990; Lobo and Nestler, 2011). 

However the site of action of these peptides remains unclear, as the receptors are 
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expressed on multiple striatal cell types as well as on various axon terminals in the 

region. Within the dorsal striatum, recent research has demonstrated that Delta 

opioid receptor (DOR) mRNA expression colocalizes with Drd2, whereas MOR 

transcript is found in both MSN types, but to a greater degree in D1 MSNs 

(Banghart et al., 2015; Cui et al., 2014).  

In humans MOR availability is greater in the thalamus than other MOR-

expressing brain regions (Sprenger et al., 2005), and in the rat the PVT nucleus 

contains the highest levels of MOR immunoreactivity in the thalamus. The mThal 

is enriched with transcripts for MOR and KOR, but not DOR.  Additionally, agonists 

of MOR, but not DOR, have been shown to directly hyperpolarize mThal neurons 

(Brunton and Charpak, 1998). Consistent with these early findings, a recent paper 

from the lab of David Lovinger (Atwood et al., 2014) demonstrated that in the dorsal 

striatum, MOR-LTD is expressed specifically at excitatory inputs from the thalamus 

but not from the motor cortex. In contrast, DOR-LTD was expressed at motor 

cortex terminals but not at projections from the thalamus. Furthermore 

thalamostriatal MOR-LTD was lost in the dorsal striatum following in vivo morphine 

exposure, and similar opioid signaling has been observed in the NAc (Hoffman 

and Lupica, 2001). These findings suggest that maladaptive opioid signaling at 

mThal-NAc terminals may underlie some of the behavioral effects of drugs of 

abuse. Although these findings raise many questions about opioid signaling at 

mThal-NAc synapses, this area of research remains largely unexplored.  

One intriguing hypothesis is that the opioid systems may induce divergent 

behavioral effects in part through their actions on distinct elements of striatal 
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circuitry. For example recent work by Al-Hasani et al., 2015, demonstrated that, 

through KOR, stimulation of dynorphinergic NAc shell neurons can be either 

rewarding or aversive based on dorsal-ventral location. Afferents to the NAc are 

known to exhibit differential patterns of innervation along various anatomical 

gradients (Britt et al., 2012; Friedman et al., 2002; Phillipson and Griffiths, 1985). 

As KOR activation can inhibit neurons in the anterior PVT (Chen et al., 2015), one 

potential explanation is that the aversive actions of dynorphin are mediated 

through inhibition of PVT afferents to the ventral shell, but that KOR receptors in 

the dorsal shell promote reward through an alternative source of glutamate. Circuit-

specific opioid signaling in the NAc remains a fascinating area of research, with 

implications for the regulation of complex behaviors and unresolved mechanisms 

of circuit-level and cellular signaling  

 

2.2 mThal Neuron Function 

 In general, much remains to be learned about how the function of mThal 

neurons is altered following drug-related experiences in vivo. Little is known about 

the excitability of these neurons, and even less is known about the synaptic 

physiology of the inputs into this region. For simplicity, this discussion will be 

restricted to cover the PV, which has been the best characterized of the mThal 

nuclei. However future studies aimed at examining the PT and other mThal nuclei 

are certainly warranted. 
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2.2.1 Synaptic Physiology 

 Early anatomical studies showed that the PVT receives projections from 

hindbrain regions that are associated with function of the autonomous nervous 

system (Chen and Su, 1990; Cornwall and Phillipson, 1988). The PVT receives 

major input from the PFC and insular cortices, as well as relatively minor input from 

the BNST and amygdalae (Groenewegen, 1988; Li and Kirouac, 2012; Vertes et 

al., 2015). Additionally, the PVT receives dense afferents from several distinct 

hypothalamic areas (Matzeu et al., 2014), including orexininergic neurons 

important for the regulation of arousal and food reward (Hsu et al., 2014). Although 

it is known that the PVT is activated following salient experiences like drug 

exposure and stress (Bubser and Deutch, 1999; Penzo et al., 2015; Young and 

Deutch, 1998), the contributions of its afferents remain unresolved. Furthermore, 

whether durable memories are encoded by these salient experiences merits 

investigation. 

 In addition to fast neurotransmission, the PVT receives substantial 

piptidergic input, especially from regions of the hypothalamus. For example, the 

action of cocaine- and amphetamine-related transcript (CART) has been 

demonstrated to attenuate cocaine-primed reinstatement (James et al., 2010), 

potentially though its ability to suppress spontaneous transmission in the PVT 

(Yeoh et al., 2014). In contrast, PVT orexinergic transmission is thought to promote 

relapse (Hsu et al., 2014) in part through depolarization of PVT neurons  (Ishibashi 

et al., 2005). These findings illustrate that PVT neuron activity plays a role in 

promoting drug-seeking, but raise many questions about the underlying molecular 
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and cellular specificity. Are all PVT neurons responsive to CART and orexins or 

are they distinguished by projection target? Which nuclei provide the 

neuropeptides, and at which synapses does CART inhibit fast neurotransmission? 

Do salient experiences in vivo alter the action of neuropeptides in the PV? These 

types of questions have not been asked in the PV, and future experiments will 

need to be directed at examining the function of fast neurotransmitters and 

neuromodulators in a mechanistic, circuit-directed approach. 

 

2.2.2 Neuron Differentiation 

 There are several appropriate ways to tease apart PVT neuron function, 

however the approaches are not as straightforward as in the striatum and other 

limbic regions. For one the PVT is not believed to contain classical inhibitory 

interneurons, as expression of neither GABA nor parvalbumin was observed in the 

medial thalamus (Bentivoglio et al., 1991). Most PVT neurons are believed to 

express glutamate or aspartate as excitatory neurotransmitters (Arcelli et al., 1996; 

Christie et al., 1987), but many neurons in the region were found to contain neither. 

Some reports have found the expression of neuropeptides including enkephalin 

and galanin in the PVT (Arluison et al., 1994; Melander et al., 1986), but it remains 

to be tested whether these are co-expressed by glutamatergic projections or in 

some other population(s) of neurons. A combination of genetic and viral 

approaches, as well as targeted electrophysiology would be best suited to 

interrogating the function of potentially distinct PVT populations. 
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 Another means of segregating PVT populations is through anatomy. For 

example, some PVT neurons project to the NAc, some project to the PFC, and 

some project to both (Otake and Nakamura, 1998). A dual retrograde viral 

approach could be taken to label each of these populations in order to examine 

functional differences in excitability, synaptic physiology, protein expression, and 

transcription. Examining the transcriptomics of PVT neurons based on anatomy is 

an exciting approach that could yield insight into PVT subpopulations. For 

example, ribosomal proteins tagged with HA can be introduced in a Cre-dependent 

manner and subsequently exploited for cell-type specific ChIP/qRT-PCR 

(Quintana et al., 2012). Driving Cre expression to target subpopulations defined by 

genetics (e.g. Penk-Cre) or projection target (e.g. NAc-RV-Cre) are promising 

avenues towards untangling PVT circuit function.  

 

3. Conclusion 

A growing hypothesis in the field, which this body of work supports, is that 

the striatal balancing act is not bidirectional for drug-related behaviors. That is, 

drugs of abuse exert more pronounced changes onto D1 MSNs, and changes in 

the A2A pathway may have little effect on drug-conditioned behaviors due to a lack 

of subsequent circuit-level changes. There are several non-exclusive potential 

mechanistic explanations. For one, while we and others have demonstrated the 

importance of striatal D1-NMDAR signaling, NMDARs may not generate the most 

prominent form of synaptic plasticity on A2A MSNs. In the NAc core and dorsal 

striatum, eCB-mediated plasticity has been documented on A2A MSNs, whereas 
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it is absent on D1 MSNs (Grueter et al., 2010; Kreitzer and Malenka, 2007). 

Cocaine-induced synaptic modifications may therefore proceed preferentially 

through NMDARs on D1 MSNs but through eCB signaling on A2A MSNs. 

Additionally, A2A MSNs may not play a major role in psychostimulant-related 

behaviors due to anatomy. A2A NAc MSNs send inhibitory projections primarily to 

the ventral pallidum (VP), but the VP also receives substantial innervation from D1 

NAc MSNs (Kupchik et al., 2015). These projections may lie such that following 

psychostimulant administration, D1 MSN activity dominates the circuit-level logic 

and precludes small changes in A2A MSN function from being observed at the 

behavioral level. An exciting hypothesis is that VP neurons receiving projections 

from both MSN classes are involved in stimulant/locomotor-based behaviors, while 

those innervated strictly by A2A MSNs are involved in affective behaviors. Future 

experiments will need to be directed towards the targets of these A2A MSNs to 

examine the mechanistic basis of responses to stressful and reward-related 

stimuli. A combination of biochemistry and slice and in vivo electrophysiology, 

would be ideal to uncover how NMDAR signaling in each MSN population guides 

behavioral outcomes at the circuit level. 

While the studies presented in this dissertation illuminate mThal-NAc 

projections as important for the persistent behavioral effects of cocaine exposure, 

much work needs to be continued to evaluate this circuitry in the regulation of long-

term memories related to drug abuse and other motivational disorders. At mThal-

D1(+) NAc core synapses, the metaplastic adaptations induced by cocaine 

facilitate GluN2C function and subsequent signaling. As its expression is limited in 
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the striatum and forebrain (Paoletti et al., 2013), modulation of GluN2C represents 

a potential novel treatment strategy for cocaine use disorders that may exert few 

off target effects. Additionally, because cocaine experience unmasks NMDAR-LTD 

at mThal-D1(+) NAc core synapses, a deep brain stimulation-like approach might 

be suitable for restoring synaptic function and generating beneficial behavioral 

outcomes without grossly affecting striatal circuity. Despite being largely 

overlooked in recent years, the mThal-NAc circuit clearly merits further 

investigation for its involvement in the pathophysiology of addiction and other 

psychiatric disorders. The circuits described in this dissertation provide an 

opportunity for the development of deep brain stimulation-like approaches to treat 

drug abuse disorders, and the unique molecular players identified could serve as 

viable targets for a pharmacological approach. In sum these studies 

simultaneously build upon the existing literature and drive the field forward towards 

a better understanding of addiction pathophysiology. 
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