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PREFACE 

 

 In this dissertation, I discuss the role the Activin A signaling cascade plays in the 

initiation and progression of esophageal and head and neck squamous cell carcinomas. The 

works described in Chapters 1 through 4 have been published in scientific peer-reviewed 

journals and are presented in the format of their publication. I introduce Activin A signaling and 

Activin receptor-like kinases, followed by a discussion, specifically, regarding the initial actions 

of the ligand Activin A as a member of the tumor microenvironment and its interaction with 

esophageal squamous cells (dysplastic and squamous cell carcinoma) (Chapter 3-4). Next, I 

examine the contribution of Activin receptor type IB/Activin receptor-like kinase 4 

(ACVRIB/ALK4) in this oncogenic phenotype (Chapter 4-5). Chapter 5 is being prepared for 

publication and is presented in the format of its pending submission. Though the focus of my 

dissertation has been on the role of Activin A signaling in squamous tissues, further work has 

been conducted investigating this pathway in an additional histotype of esophageal carcinoma: 

adenocarcinoma. This work, which has also been published, is presented in Appendix A.  

 Chapter 1, titled “Intertwining of Activin A and TGFβ signaling: dual roles in cancer 

progression and cancer cell invasion” provides an introduction to the currently known functions 

of Activin A in development and cancer. Activin A has been studied substantially and is well 

defined in a variety of contexts, including cell differentiation and wound healing; however, its 

role becomes much more controversial in the context of cancer. In some cases, Activin A 

signaling functions as a tumor suppressor, while in others it operates in an oncogenic manner. 

Chapter 2 adds further to the complexity of this family of signaling pathways by discussing the 

role that the type I receptors, the Activin receptor-like kinases, play in initiating and 
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disseminating a collection of signals to induce an array of downstream activities. Taken 

together, Chapters 1 and 2 offer a comprehensive study of the ligand-receptor interactions of 

the TGFβ superfamily. 

 Chapter 3, entitled “Activin A balance regulates epithelial invasiveness and 

tumorigenesis”, discusses the ability of Activin A to induce downstream Smad signaling, which 

controls or contributes epithelial cell invasion. In this work, crosstalk between esophageal 

squamous epithelial cells and stromal fibroblasts was necessary to observe epithelial cell 

invasion into an underlying three-dimensional stroma. In this context, Activin A participates in 

autocrine and paracrine signaling to induce such an effect. Treatment with Activin A 

antagonists further demonstrated the necessity for Activin A signaling in this process. 

 Chapter 4, entitled “Esophageal squamous cell carcinoma invasion is inhibited by 

Activin A in ACVRIB-positive cells”, furthers the work presented in Chapter 3. An array of 

tissue samples from esophageal squamous cell carcinoma (ESCC) patients indicated that 

individuals with high stromal Activin A had decreased expression of epithelial ACVRIB. 

Experimentally, stromal-derived Activin A inhibits ESCC migration and invasion when ACVRIB 

is intact, however in cell lines, such as the ESCC cell line TE-11, where ACVRIB is lost Activin 

A is unable to exert this effect. These results denote a novel role of the Activin A-ACVRIB 

signaling complex in ESCC. 

 Chapter 5, entitled “Loss of ACVRIB leads to increased squamous cell carcinoma 

aggressiveness through alterations in adhesion proteins” focuses more specifically on the 

importance of ACVRIB in mediating cell migration and invasion. Using small interfering RNA 

and CRISPR/Cas9 systems to knockdown or knockout ACVRIB expression, respectively, we 

found that loss of ACVRIB in ESCC or head and neck squamous cell carcinoma (HNSCC) 
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results in increased proliferation, migration, and invasion in both two- and three-dimensional 

systems. ACVRIB appears to influence the structure of the actin cytoskeleton and, therefore, 

expression of cell surface receptors. In particular, proteins involved in cell-cell and cell-

extracellular matrix adhesion were altered in cells with loss of ACVRIB.  

 Appendix A, titled “Activin A signaling regulates cell invasion and proliferation in 

esophageal adenocarcinoma”, describes the actions of Activin A in a closely related, yet 

distinct cancer: esophageal adenocarcinoma. Esophageal adenocarcinoma occurs along a 

spectrum, beginning with dysplasia, progressing to Barrett’s esophagus and, eventually, 

adenocarcinoma. Using cell lines representative of each of these steps, we found that the 

impact of Activin A in this context occurred in a cell line-dependent manner. From our panel, 

Activin A effected cell lines with mesenchymal characteristics in an oncogenic manner, while 

Activin A acted as a tumor suppressor in those cell lines that retained epithelial characteristics. 

Overall, we showed a role for autocrine Activin A signaling in the regulation of colony 

formation, cell migration and invasion in the progression from Barrett's esophagus to 

tumorigenesis. 

The summary of this work provides a comprehensive description and characterization of 

the Activin A signaling pathway, particularly the actions of Activin A through the type I receptor, 

ACVRIB.   
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CHAPTER I 
 
 

AN INTRODUCTION TO ACTIVIN A SIGNALING 
Intertwining of Activin A and TGFβ signaling: dual role in cancer progression and 

cancer cell invasion 
 

Authors: Holli A. Loomans and Claudia D. Andl 

 

This work is presented as it appears in manuscript form in Cancers 2014 (open access). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381251/ 

 

Abstract 

In recent years, a significant amount of research has examined the controversial role of Activin 

A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is 

best characterized for its function during embryogenesis in mesoderm cell fate, differentiation, 

and reproduction. During embryogenesis, TGFβ superfamily ligands (TGFβs, bone 

morphogenic proteins (BMPs) and Activins) act as potent morphogens. Similar to TGFβs and 

BMPs, Activin A is a protein that is highly systemically expressed during early embryogenesis; 

however, post-natal expression is overall reduced and remains under strict spatiotemporal 

regulation. Of importance, normal post-natal expression of Activin A has been implicated in the 

migration and invasive properties of various immune cell types, as well as endometrial cells. 

Aberrant Activin A signaling during development results in significant morphological defects 

and premature mortality. Interestingly, Activin A has been found to have both oncogenic and 

tumor suppressive roles in cancer. Investigations into the role of Activin A in prostate and 



	 2 

breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck 

squamous cell carcinoma it has been consistently shown that Activin A expression is 

correlated with increased proliferation, invasion, and poor patient prognosis. Activin A signaling 

is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the 

microenvironment. 

 

Introduction 

As a growing body of research has unraveled the functional consequences of transforming 

growth factor β (TGFβ) superfamily signaling, it has also revealed the complexity of these 

signaling networks and their pleiotropic effects. This family of ligands consists of TGFβ, bone 

morphogenic proteins (BMPs), Activins and anti-Müllerian hormone (AMH) proteins. Of these 

proteins, TGFβ and BMPs have been well characterized for their roles in development, 

angiogenesis and epithelial-to-mesenchymal transition (EMT) during cancer, particularly 

regarding cell migration and invasion (1-7). Conversely, Activin A signaling is less well 

understood. Activins are homo- or heterodimers of Activin β subunits. Currently, there are 

three known bioactive Activin dimers: Activins A (βAβA), B (βBβB) and AB (βAβB) (8-15). Activin 

A is best understood for its function in embryogenesis and reproduction; however, its role 

during cancer progression is still not well documented. This review focuses on the current 

understanding of normal Activin A signaling, the functional similarities and differences between 

Activin A and TGFβ and how this signaling pathway becomes dysregulated during cancer 

progression, influencing cell migration and invasion. Understanding the regulatory mechanism 

of Activin A in cell migration and invasion will allow for better insight into its role in cancer 

initiation and progression. 
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Signaling regulation  

Activin A and TGFβ signaling  

Though Activin A and TGFβ show structural similarity, Activin A is secreted as an active 

protein, whereas TGFβ is secreted as an inactive precursor that requires activation (16). 

Multiple proteins have been identified that can activate latent TGFβ, including proteolytic 

processing by plasmin and cathepsin D, as well as nonproteolytic processing by heat and 

detergents (17). Not only do TGFβ superfamily ligands share structural similarity (they share 

six to nine cysteine residues that form disulfide bonds), the receptor complexes often overlap 

ligand specificity and downstream signal transduction (18). TGFβ receptor complexes are 

heteromeric complexes that consist of a type I and type II receptor homodimer (19). Type II 

and I receptors are distinguished by their sequence. Type II receptors are constitutively active 

transmembrane serine/threonine kinases (20). These receptors initially bind a TGFβ 

superfamily ligand to recruit a type I receptor and begin the signal transduction cascade. The 

number of known type II receptors is limited: transforming growth factor β receptor II (TGFβRII) 

preferentially binds TGFβ; bone morphogenic protein receptor II (BMPRII) is known to bind 

multiple ligands, including inhibin A; Activin receptor type II and IIB (ActRII/IIB) bind several 

ligands, of particular interest Activin A, inhibin A/B, and Nodal; and the Müllerian inhibitory 

substance type II receptor (MISRII), which is only known to bind AMH (summarized in (21)). 

Type I receptors, commonly termed Activin receptor-like kinases (ALKs), contain highly-

conserved kinase domains and a glycine-serine rich juxtamembrane domain, a necessary 

component for their phosphorylation and activation (22,23). To date, seven ALKs (ALK1-7) are 

known and have been characterized. These receptors have been succinctly summarized 

elsewhere (21). TGFβ has been shown to preferentially signal through ALK5 (TβRI), while 
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Activin A signals primarily via 

ALK4 (ACVRIB) (24). Interestingly, 

ALK5 and ALK4 show almost 

identical kinase domains; however, 

they dimerize with different type II 

receptors (25).  

Focusing specifically on 

Activin A signaling, the signaling 

pathway begins with an active 

Activin A ligand secreted from the 

cell. Activin A binds to ActRII/IIB, 

which recruits a type I receptor, 

preferentially ALK4, to form a 

signal transducing heterodimer 

(9,26-28). In a similar mechanism 

to TGFβ signaling, Smad2/3 is 

recruited and phosphorylated by 

ALK4. Active Smad2/3 is released into the cytoplasm and complexes with the co-Smad, 

Smad4. This complex translocates to the nucleus, where it binds to Smad binding elements, 

with the consensus sequence CAGA, to drive transcription of downstream effectors (Figure 1-

1A). In addition to this canonical Activin A pathway, non-canonical signaling, such as Akt/PI3K, 

MAPK/ERK and Wnt/β-catenin, have been associated with Activin A function independently of 

Smad activation (Figure 1-1B) (29,30). Despite their overlapping Smad-dependent or non-

Figure 1-1. Schematic of Activin A signaling. (A) Canonical Activin A signaling 
occurs through the phosphorylation and activation of the Smad proteins, leading to 
downstream gene transcription. (B) Non-canonical Activin A signaling has been 
postulated through a variety of pathways, including PI3K/Akt, MAPK/ERK and β-
catenin/p300. 
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canonical pathways, Activin A and TGFβ operate through common, as well as distinct, 

downstream transcriptional targets, resulting in different functional consequences (31-35).  

Due to the overlapping signal transduction pathway of Activin A and TGFβ, it is difficult 

to untangle specific downstream transcriptional targets for the respective pathways. The best-

defined differential downstream targets of Activin A and TGFβ signaling are in the context of 

human embryonic stem cells (hESCs). In hESCs, Activin A drives downstream transcription of 

Nanog, whereas TGFβ signaling in this context induces the transcription of SRY-box 2 (Sox2) 

and octamer binding protein-4 (Oct4) to induce self-renewal and differentiation, which is 

negatively regulated through the activation of BMP signaling (36-39). In adult tissues, 

discerning between Activin A and TGFβ signaling is more difficult. Both Activin A and TGFβ, 

via the Smad2/3/4 complex, have been shown to regulate various cell cycle and extracellular 

matrix proteins, such as p15, plasminogen activator-1 (PAI-1) and collagen I (40). With the 

advent of new methodologies, future research should focus on unweaving differential Activin A 

and TGFβ signaling in post-natal tissues. 

 

Mechanisms of Activin A regulation  

Activin A expression is tightly regulated. Regulators of the Activin A signaling cascade can be 

found in the extracellular matrix, at the cell membrane and intracellularly (Figure 2A-B) (41-43). 

As there are numerous mechanisms of Activin A regulation, we have focused specifically on 

the most studied, best understood mechanisms of Activin A regulation, follistatin and inhibin A, 

endogenous inhibitors found at the cell membrane and in circulation (44-47). Follistatin is 

expressed in three forms, follistatin-288, follistatin-303 and follistatin-315 (48,49), with different 

modes of action (Figure 1-2A). Two follistatin proteins surround and inhibit Activin A by 
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blocking access to both the Activin receptor type I and II binding sites (45,50,51). Follistatin-

288, which is mainly found at the cell membrane, sequesters Activin A, resulting in endocytosis 

and lysosomal degradation (1-7,51-54).	 Follistatin-288 function itself can be regulated through 

cleavage at the cell surface by heparin and function in circulation (8-15,51,54,55). Follistatin-

303 is produced in 

relatively low 

abundance 

compared to the 

other follistatin 

isoforms and has 

moderate affinity 

for cell surface 

proteoglycans, but 

can bind Activin A 

in circulation, as 

well as at the cell 

membrane 

(1,9,26-28,37,49). 

The effects of 

Activin A signaling 

can also be 

counteracted by a 

structurally-related 

Figure 1-2. Extra- and intracellular regulation of Activin A signaling. (A) Activin A is tightly regulated 
at the extracellular level by both extracellular matrix (follistatin-288, follistatin-315, follistatin-related 
protein, α2-macroglobin, left-right determination factor 1 (Lefty1), inhibin A) and membrane-bound 
proteins (betaglycan, Cripto, BAMBI, INHBP/inhibin B, follistatin-288). (B) In the cytoplasm, canonical 
Activin A signaling is controlled during each step of the Smad cascade.  
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ligand, inhibin A. Inhibin A is a heterodimer composed of inhibin α and βA subunits 

(29,30,56,57). Inhibin A, bound to the transmembrane receptor betaglycan (TBRIII), dimerizes 

with ActRII/IIB, preventing Activin A binding (31-35,58,59). TGFβ signaling demonstrates 

similar levels of regulation, indicating the importance of maintaining the signaling balance of 

this superfamily (2,4,6,41-43,60,61). Additional mechanisms of Activin A regulation on the 

extra- and intracellular levels are shown in Figure 1-2. 

 

Hijacked developmental processes and their contributions in tumorigenesis  

Early development and stem cell biology  

Embryonic development requires particular populations of cells to undergo EMT, migration and 

complete implantation and gastrulation (44-47,56,62). Activin A plays a significant part in this 

process. Initially described as XTC-MIF, Activin A was found to be a potent morphogen and 

inducer of the mesodermal patterning (11,13,15,26,48,49,63,64). With increasing 

concentrations, Activin A can induce mesodermal cell differentiation, inducing epidermal cell 

fate at the lowest concentrations, as well as Spemann organizer patterning at the highest 

concentrations (9,26-28,45,50,51,61,65,66). Spatial patterning occurs via a diffusible Activin A 

concentration gradient in the extracellular matrix (ECM) (29,67). Interestingly, TGFβ plays a 

minor role in these developmental processes. Similar to Activin A, TGFβ diffuses along a 

similar gradient; however, it does not induce the same spectrum of cell fates as Activin A does 

and requires a much higher concentration of TGFβ ligand (29,51,54,68).  

In human development, Activin A is necessary to maintain pluripotency and the 

subsequent differentiation of human pluripotent stem cells (hPSC) (50,69). Prolonged 

treatment of hPSCs with Activin A induces definitive endoderm differentiation (52,70). During 
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early hPSC differentiation, Activin/Nodal signaling is critical to induce epithelial-mesodermal 

switching, indicated by the loss of the epithelial marker, CD326 (epithelial cell adhesion 

molecule, EPCAM), and upregulation of mesodermal marker CD56 (neural cell adhesion 

molecule 1, NCAM1) (55,59,71). Activin A, in concert with Nodal, signals through Smad2/3 to 

induce Nanog expression, which is necessary to maintain the expression of genes involved in 

pluripotency (1,3,7,37). Maintaining pluripotency in cells is necessary not only to achieve 

proper development, but also to initiate and sustain tumorigenesis. Activin A has been shown 

to be necessary for the maintenance of self-renewal in human embryonic stem cells (hESC) 

through the induction of Oct4, Nanog, Nodal and wingless-type MMTV integration site family 

member 3 (Wnt3) (36) and, more importantly, the induction of basic fibroblast growth factor 2 

(FGF-2) and suppression of BMP7 (72). Suppression of the downstream target inhibitor of 

DNA binding 2 (ID2) by Activin A and TGFβ is central in the induction of EMT, which is 

antagonized by BMPs (73). Of interest, EMT is associated with the acquisition of malignant 

traits and stem cell markers, therefore linking TGFβ signaling to the regulation of cancer stem 

cells (74).  

 

EMT vs. Collective Migration  

Different members of the TGFβ superfamily (TGFβ1, TGFβ2, TGFβ3, Activin A or BMP7) have 

been analyzed for their potential to induce EMT in epithelial cells of different origins. While 

TGFβ1, TGFβ2 and TGFβ3 induce characteristic features of EMT in the mammary and lung 

cells along with the downregulation and delocalization of E-cadherin, Activin A does not induce 

EMT in mammary cells or keratinocytes, but causes the scattering and spindle-like morphology 

of lung cells (75). As EMT is widely recognized to lead to increased cell invasion, loss of E-
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cadherin is a hallmark of EMT (76). TGFβ participates in the EMT process through the 

regulation of transcription factors, such as Snail family zinc finger 1 (Snail), zinc finger E-box 

binding homeobox 1 (ZEB1) and Twist family BHLH transcription factor 1 (Twist), which 

suppress the E-cadherin expression. E-cadherin repressors function as EMT inducers on 

multiple levels, but when cells at the invasive front lose E-cadherin expression, single cell 

migration occurs (77). Yet, cell migration in a cohesive group is a hallmark of the tissue 

remodeling events that underlie embryonic morphogenesis, wound repair and cancer invasion 

(78). The mode of sheet migration relies on the cooperative guidance of leader and follower 

cells throughout the collective group. TGFβ has been shown to stimulate collective migration 

primarily through extracellular-regulated kinase 1/2 (ERK1/2) activation (79). On the other 

hand, using a three-dimensional organotypic culture system, we have described that inhibition 

of TGFβ signaling increases collection into the underlying extracellular matrix in a fibroblast- 

and MMP-dependent manner (80). Additional research has demonstrated that tumor cell 

knockout of TGFβ signaling, through deletion of the type II receptor, drives fibroblast-

stimulated collective migration and metastasis (81). 

 

Wound Healing and Regeneration  

Embryogenesis and wound healing enlist similar processes, such as the programmed death of 

unneeded or damaged cells and cell migration. Wound healing is an elaborate, tightly 

regulated process. Briefly, following tissue injury, growth factors and cytokines are released at 

the wound site. Injured vessels begin to clot due to the deposition of ECM proteins, such as 

fibronectin and collagen, and form granulation tissue. Over the course of the next several days 

to weeks, immune cells and fibroblasts infiltrate the granulation tissue, ridding it of debris and 
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rebuilding the matrix (10,12,14,56). Throughout the process, all cell types require the ability to 

move, replace and reform tissue. In zebrafish, Activin A is required for tissue regeneration 

following injury, while inhibition of signaling completely blocks regeneration (58,82-84). In a 

mouse model of wound repair, increased Inhba, which encodes the mouse βA subunit, was 

observed in wound granulation tissue within one day of injury and was sustained for seven 

days (2,4,6,9,61,85). As follistatin levels increased concurrently with inhibin βA levels, it has 

been suggested that the availability of the Activin A ligand, not receptor occupation, regulates 

the wound response (9,26,28,56,85). Activin A levels become quickly elevated in wounded 

tissues, likely due to the early inflammatory response (11,13,15,26,63,64,86). However, as 

demonstrated in embryogenesis, Activin A operates in a concentration-dependent manner. 

When Activin A is overexpressed in the skin, wounds heal more quickly, however this is 

associated with substantial fibrosis (27,61,66,87-89).  

TGFβ has been highly characterized to promote a reactive stroma (65,89,90). Similarly 

to Activin A, TGFβ can support all aspects of wound granulation tissue, such as attracting 

macrophages and fibroblasts to the injury site, initiate wound angiogenesis and stimulate ECM 

deposition and inflammation (50,67,91). During wound healing, Activin A and TGFβ function in 

similar roles.  

 

Contributions to tumorigenesis  

Harold Dvorak elegantly described cancer as being “the wound that does not heal”. Activin A 

and TGFβ are excellent examples of this phenomenon, as they both show similar functions in 

development and wound healing to that observed in cancer initiation and progression. 

Interestingly, both ligands demonstrate cell type and context-dependent roles within the tumor 
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microenvironment, illustrated below (Figure 1-3).  

 

Epithelial tumors  

As the role of Activin A has been explored in a variety of epithelial tumors, differences in action 

have emerged between cancers. It has been shown that Activin A can exert a primarily 

protective function (51,52,54,68,92). Experiments utilizing patient-derived prostate cancer cells 

and non-invasive LNCaP cells have demonstrated that treatment with Activin A results in cell 

Figure 1-3. Tumor microenvironmental interactions of Activin A. Activin A promotes a variety of behaviors in a cell-type and 
context-dependent manner. 
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cycle arrest (45,93-95). Interestingly, LNCaP cells showed no response when treated with the 

exogenous TGFβ ligand (96,97). In contrast, Activin A treatment of the more aggressive 

prostate cancer cell line PC3 resulted in an increase in proliferation (69,98). Recent evidence 

has implicated endoglin, a TGFβ type III receptor and co-receptor, in cancer cell invasion in 

prostate cancer cell lines via Activin A signaling, though endoglin has primarily been shown to 

propagate the signal by forming a complex with TGFβ and its receptors (99). Co-expression of 

endoglin and ActRIIA, when expressed on PC3 or DU-145 cells, has shown suppressed 

cancer cell invasion, while co-expression of endoglin with ActRIIB, BMP and TGFβ does not 

exhibit this effect. This functional effect is likely mediated through non-canonical Smad 

signaling; however, the mechanism of action needs to be further explored (100). Additionally, 

TGFβ has an oncogenic effect on PC3 cells, as well as the breast cancer cell line, MDA-MB-

231. When acting via the non-canonical MAPK/TRAF6 pathway, TGFβ induces a pro-

migratory, invasive phenotype (70,101). An in vitro analysis of 15 breast cancer cell lines 

detected Activin A expression in only four cell lines (59,71,102). Functionally, when treated 

with Activin A, T47D cells showed the induction of cyclin-dependent kinase inhibitors p21 and 

p27 and the cell cycle control protein p15INK4B, as well as the downregulation of cyclin A, 

resulting in increased apoptosis and cell cycle arrest. Similarly, MCF7 cells, which have no 

detectable endogenous Activin A, are highly sensitive to the growth inhibitory effects of Activin 

A (1,2,5,7). In early tumorigenesis, TGFβ has been shown to have a similar effect. In an 

overlapping pathway to Activin A signaling, TGFβ induces cell cycle arrest through the 

induction of the cyclin-dependent kinase inhibitors p15INK4B, p16INK4A, p21 and p27 

(8,10,12,14). However, in some cancers, tumor cells lose their ability to respond to the growth 

inhibitory effects of both Activin A and TGFβ. This occurs primarily through mutation or 
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downregulation of the receptor; however this is not always the case (2,4,6,82-84,103).  

In contrast to its characteristic growth inhibitory effects, Activin A expression has also 

been associated with inducing an invasive phenotype in certain cancers (Figure 1-3). In lung 

adenocarcinoma and oral squamous cell carcinomas, for example, Activin A overexpression is 

correlated with positive lymph node status and poor patient prognosis (9,11,13,15,85,104,105). 

In head and neck squamous cell carcinoma, increased Activin A has been hypothesized to be 

an independent prognostic marker of survival (9,26-28,85,106). In vitro treatment of the lung 

cancer cell lines, H460 and SKLU1, with recombinant Activin A showed increased proliferation 

(26,29,30,63,86,107-109). Additionally, treatment with recombinant Activin A increased 

invasion in the ovarian cancer cell lines SKOV-3 and OCC1 without impacting proliferation 

(110).  

MMP-7, a matrix metalloproteinase capable of degrading many components of the ECM 

and activating additional MMPs responsible for increased cell invasion, is upregulated in the 

presence of Activin A (31-35,87-89,109). This occurs through c-Jun/Smad activity inducing 

MMP-7 transcription via the AP-1 promoter region (41-43,89,90,111). Additionally, in vitro and 

clinical evidence suggest that Activin A may drive cell invasion by upregulating N-cadherin, a 

marker of mesenchymal cells and invasiveness (44-47,50,91,112). N-cadherin expression is 

positively correlated with Activin A, regardless of E-cadherin expression (48,49,52,92,113-

115).  

In a similar mechanism to Activin A, TGFβ has also been shown to promote cancer cell 

progression. TGFβ is a potent inducer of EMT through its canonical Smad signaling pathway, 

as demonstrated in various cancer cell types. TGFβ prompts the expression of Snail family 

zinc finger 2 (Slug), Snail and Twist, which act to repress E-cadherin expression (8,51-
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54,116,117). EMT can also be induced through TGFβ non-canonical signaling pathways. It has 

been recently demonstrated that TGFβ can act through TRAF6 to promote receptor cleavage 

of ALK5/TβRI, which allows for the cleaved intracellular domain to translocate to the nucleus 

and, in association with p300, drive transcription of various invasion-promoting genes (8,51-

54,116,117). Increased expression of TGFβ has been noted in various cancers, such as lung, 

breast and gastric cancers, and has been associated with poor patient prognosis 

(51,54,55,96,118). Additionally, TGFβ can stimulate and alter MMP expression from epithelial 

cells. Several groups have shown that TGFβ can negatively regulate MMP-1 and MMP-7 

through canonical Smad signaling, while stimulating the production of MMP-2 and MMP-9 

through non-canonical p38 and NFκB signaling pathways (1,37,49,98,119). MMP production 

and activation are necessary for degrading ECM components, allowing for cell migration and 

further invasion into the stroma.  

When overexpressed in the tumor, Activin A confers differential effects. Some cancers, 

such as lung and head and neck squamous cell carcinoma, develop insensitivity to the growth 

inhibitory effects of Activin A, one of the hallmarks of cancer (56,57,101,120). During cancer 

progression, cells in the tumor microenvironment, such as T-helper 1 (Th-1) cells and 

fibroblasts, increase their production of Activin A in an attempt to inhibit the growth of the 

tumor; however, the cancer cells adapt and evade these signals. Tumor cells that show 

resistance to Activin A may do so by downregulating ALK4, which is responsible for signal 

transduction, or by upregulating follistatin or inhibin A production; however, these areas need 

to be further explored (58,59,102,121).  
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Immune Cells  

Activin A plays a key role in the maturation and activation of the innate and adaptive immune 

systems (Figure 1-3). In the normal immune response, Activin A is on the forefront of fighting 

infection (1,2,4-6,60,61,122). In the humoral immune response, Activin A is secreted by and 

plays a significant role in the function of adaptive immune cells. In the T-cell population, Activin 

A is secreted specifically by activated CD4+CD25- (CD25: interleukin 2 receptor α) T-helper 2 

(Th-2) cells (8,56,62,123,124). However, Activin A also contributes to the switching of 

CD4+CD25-Foxp3- (Foxp3: forkhead box P3) cells to CD4+CD25+Foxp3+ T-regulatory (Treg) 

cells, which correlates with immunosuppression in patients with B-cell acute lymphoblastic 

leukemia (11,13,15,26,63,64,103,125). Treg cells downregulate the actions of Th-1, Th-2 and 

T-helper 17 (Th-17) cells, limiting their ability to recognize and potentially destroy cancer cells. 

Similarly, TGFβ induces a similar Foxp3+ Treg cell phenotype (9,27,61,67,105,126,127). 

Together, T-cells induced by either Activin A or TGFβ promote a pro-tumor microenvironment.  

Activin A induces stage-dependent effects on B-cells (9,26,28,65,106,127). This has 

been demonstrated in a variety of studies, where exogenous treatment of B-cells derived from 

marrow stem cells, cultured cell lines and mature B-cells can induce apoptosis in the former 

and proliferation and antibody secretion in the latter (29,65,67,107-109). Additionally, Activin A 

is secreted by activated B-cells which, in turn, stimulates the production of IgE antibodies 

(29,51,54,68,109,128,129). TGFβ performs a similar function as Activin A and inhibits the 

proliferation of progenitor B-cells; however, it also has the ability to induce growth arrest during 

B-cell maturation (41,45,95,111). Conversely, TGFβ can drive B-cell differentiation and 

stimulate the production of IgE and, in some cells, IgG (44,46,47,51,53,54,112,130,131).  

The effect of Activin A in the immune system has been most heavily studied in 
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macrophages, though Activin A has also been shown to affect mast cells, natural killer cells 

and dendritic cells (48,97,113-115). As discussed above, Activin A is secreted by Th-2-helper 

cells, which also secrete high levels of interleukin-4 (IL-4) and interleukin-13 (IL-13). IL-4 and 

IL-13 promote the alternative activation pathway of macrophages, M2, that is commonly 

associated with wound healing and cancer (8,50,58,69,103). Interestingly, in vitro Activin A 

stimulation promoted the M2 macrophage phenotype, suggesting its functional similarities to 

IL-4 and IL-13 in tumor promotion (8,52,70,117). TGFβ also polarizes macrophages to the 

alternative M2 phenotype, promoting an immunosuppressive microenvironment 

(55,59,71,118). These M2 macrophages secrete cytokines and MMPs that promote a 

favorable tumor microenvironment (132).  

Condeelis and Pollard, in their review of the multifaceted nature of macrophages, 

succinctly stated that “tumors recruit macrophages and create a microenvironment that causes 

macrophages to suppress immune functions and, instead, adapt trophic roles found during 

development and repair” (1,3,7,37,119). This involves creating a favorable environment for 

tumor cell invasion and recruitment of fibroblasts and endothelial cells to the 

microenvironment. For example, secretion of interleukin-2 (IL-2) and interferon-α (IFN-α) from 

T-cells drive the release of basic fibroblast growth factor, leading to the subsequent induction 

of endothelial cell and fibroblast migration (36,120). Activin A and TGFβ play important roles in 

this process, reasserting developmental function in the incorrect context and promote 

pathogenesis.  

 

Fibroblasts  

Fibroblasts in the tumor microenvironment contribute to the creation of a reactive stroma or the 
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transformed state of the stroma in response to disrupted homeostasis, wounding or cancer 

initiation (72,121). In normal physiology, fibroblasts typically express Activin A at negligible 

levels (73,123). Activin A stimulates proliferation of mouse 3T3 fibroblasts, airway smooth 

muscle cells and lung fibroblasts (74,123,124). Interestingly, we have shown that 

overexpression of Activin A by normal esophageal fibroblasts in a pre-neoplastic 

microenvironment inhibits proliferation in both an autocrine and paracrine manner; however, it 

switches to a tumor promoter in the presence of malignant cells (133). A similar phenotype has 

been noted in the context of TGFβ signaling (75,126).  

Tumor-associated myofibroblasts (TAMs) of oral squamous cell carcinoma, which 

express markers of activation (e.g., α-smooth muscle actin (αSMA), platelet-derived growth 

factor-α (PDGFα), fibroblast activating protein (FAP)), secrete increased levels of Activin A 

(76,127,128). This was associated with increased secretion of collagen I, MMP-1, MMP-2, 

MMP-9 and MMP-13, as well as increased proliferation and in vivo tumor volume (77,128). In 

comparison, the development of a reactive stroma has been correlated with increased 

secretion of TGFβ by pre-neoplastic cells (65,78). However, it has been consistently shown 

that fibroblasts that lose responsiveness to TGFβ promote collective cell invasion 

(79,129,130). These results suggest that, in contrast to Activin A, TGFβ signaling in the tumor 

stroma is necessary to maintain an intact microenvironment and prevent tumor cell invasion, 

though it has been suggested that TGFβ may act through the reactive stroma, not the epithelial 

cell compartment, to promote tumor angiogenesis (2,4,6,80,134). This is a significant point 

where the functional consequences of TGFβ and Activin A diverge.  

TAMs secrete proinflammatory cytokines and proteases to drive EMT and proliferation 

and migration of epithelial and endothelial cells (11,13,15,81,135,136). These results suggest 
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that TAMs can prime the tumor microenvironment for epithelial cancer cell invasion by 

rearranging the ECM. Additionally, TAMs have been associated with the recruitment of 

immunosuppressive cells to the tumor front (10,12,14,27,56,98). The localization of 

myofibroblasts to the tumor has been indicative of poor patient prognosis (30,58,82-

84,137,138). The recruitment and activation of fibroblasts at the tumor front results in an 

aggressive and invasive phenotype, as tumor cells use fibroblasts to alter the ECM.  

 

Endothelial cells  

In contrast to its tumor promoting function in immune cells, Activin A has been consistently 

shown to operate as a potent anti-angiogenic factor (Figure 1-3). Treatment of endothelial cells 

demonstrated decreased tube formation and inhibition of proliferation via induction of p21 and 

decreased expression of cyclin D1 and Rb (2,4,6,9,32-35,61,85,139,140). This effect can be 

overcome by silencing of p21. Additionally, fibroblast-derived overexpression of Activin A 

downregulates vascular endothelial growth factor (VEGF) expression, one of the key 

components of tumor angiogenesis (141). Previous research has shown that most endothelial 

cells express ActRII/IIB and are therefore able to respond to Activin A ligand binding 

(9,26,28,42,43,56,85,140). Activin A treatment of endothelial cells results in a dose-dependent 

inhibition of proliferation. Experiments utilizing chick chorioallantoic membrane demonstrated a 

complete loss of capillary development and fibrosis when treated with Activin A 

(11,13,15,26,45,63,64,86,142). In our experiments, conditioned media from normal 

esophageal fibroblasts that overexpress Activin A completely inhibits the tube formation of 

endothelial cells (133). In vivo, breast cancer cells expressing Activin A develop larger though 

less vascularized, tumors compared to cells expressing follistatin, which form smaller, better 
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vascularized tumors (27,49,61,66,87-89,143).  

Due to its potent anti-angiogenic nature, cancer cells have developed mechanisms to 

counteract Activin A activity. Activin A expression in neuroblastoma results in elevated cyclin-

dependent kinase inhibitors and decreased vascular endothelial growth factor receptor 2 

(VEGFR2) (45,51,65,89,90,144). Therefore, the oncogene N-Myc, which is consistently 

overexpressed in neuroblastoma, stifles this effect by directly inhibiting transcription of the 

inhibin βA subunit and, subsequently, Activin A homodimer formation (27,50,51,54,67,91,142). 

Additionally, Activin A may be negatively regulated by interleukin-32 (IL-32), which promotes 

proliferation and endothelial cell function during tumor promotion. This effect is overcome with 

the silencing of IL-32, which results in the upregulation of Activin A (51,52,54,68,92,145).  

TGFβ has been consistently shown to both induce and inhibit angiogenesis. In contrast 

to Activin A’s function, TGFβ directly stimulates the pro-angiogenic protein, vascular 

endothelial growth factor A (VEGF-A), via Smad3, while the angiogenesis inhibitor, 

thrombospondin-1 (THBS1), is induced via phosphorylated Smad2 (45,49,93-95,145,146). 

These separate signaling pathways suggest differential effects of TGFβ signaling in cancer 

development and metastasis. Interestingly, TGFβ-induced angiogenesis can be blocked 

through treatment with TGFβ inhibitors, latent activating protein (LAP) and BMP and Activin 

membrane-bound inhibitor (BAMBI) (57,96,97,134,147). It may be suggested that TGFβ 

promotes endothelial cell migration and tube formation via a VEGF-dependent pathway, as it is 

well established that VEGF is a potent driver of tip cell migration (59,69,98,148). However, 

recent research has shown that TGFβ has the ability to bind to ALK1 and ALK5 on the 

endothelium, which may then dimerize with endoglin to activate Smad1/5/8, the typical BMP 

signaling pathway, and inhibit endothelial cell proliferation; however, these results remain 
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controversial (149,150).  

 

Conclusions and future directions 

As discussed above, Activin A plays pleiotropic roles in basic physiology and pathogenesis. 

Normal Activin A function induces embryonic cell fate, wound healing and inhibits proliferation. 

During tumorigenesis, Activin A acts as a suppressor of cancer angiogenesis, as a promoter of 

tumor-associated macrophages and T-cells and exerts mixed effects on epithelial tumor cells, 

further exemplifying the context- and cell type-dependent effects of Activin A signaling. Based 

on the evidence presented, the overall functional consequences of Activin A signaling alone 

are not sufficient to either suppress or drive cancer progression and, therefore, must work in 

collaboration with other pathways to dictate a particular phenotype. This may include working 

in cooperation with other TGFβ ligands, such as BMP4, or synergistically with other pathways, 

such as MAPK/ERK (37,59,62,71,102,151). Further investigation into the mechanism of Activin 

A signaling and the intertwining of different pathways to promote cancer progression is needed 

to unravel the complex signaling processes. 
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Abstract 

The role and function of the members of the TGFβ superfamily has been a substantial area of 

research focus for the last several decades. During that time, it has become apparent that 

aberrations in TGFβ family signaling, whether through the BMP, Activin, or TGFβ arms of the 

pathway, can result in tumorigenesis or contribute to its progression. Downstream signaling 

regulates cellular growth under normal physiological conditions yet induces diverse processes 

during carcinogenesis, ranging from epithelial-to-mesenchymal transition to cell migration and 

invasion to angiogenesis. Due to these observations, the question has been raised how to 

utilize and target components of these signaling pathways in cancer therapy. Given that these 

cascades include both ligands and receptors, there are multiple levels at which to interfere. 

Activin receptor-like kinases (ALKs) are a group of seven type I receptors responsible for 

TGFβ family signal transduction and are utilized by many ligands within the superfamily. The 

challenge lies in specifically targeting the often-overlapping functional effects of BMP, Activin, 

or TGFβ signaling during cancer progression. This review focuses on the characteristic 
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function of the individual receptors within each subfamily and their recognized roles in cancer. 

We next explore the clinical utility of therapeutically targeting ALKs as some have shown 

partial responses in Phase I clinical trials but disappointing outcomes when used in Phase II 

studies. Finally, we discuss the challenges and future directions of this body of work. 

 

Introduction 

The TGFβ superfamily has long been of interest in elucidating the mechanisms of normal 

physiological development and the development of cancer. This family portrays a seemingly 

simplistic mechanism of action: the ligand binds to a type II receptor dimer, which then forms a 

tetramer with a type I receptor dimer and transduces a signal through Smad2/3 or Smad1/5/8, 

ultimately driving nuclear transcription. However, there are numerous family members and 

several layers of regulation, which complicate the effects following signaling initiation. 

The TGFβ superfamily is made up of greater than 30 ligands, which are subdivided into 

further groups according to structural and mechanistic similarities: transforming growth factor β 

ligands (TGFβ), bone morphogenic proteins (BMPs), Activins, growth and differentiation 

factors (GDFs), and anti-Müllerian hormones (AMH) (reviewed in (152,153)). In contrast to the 

large family of signaling ligands, there are a small number of receptors to transduce these 

signals: five type II receptors and seven type I receptors (reviewed in (154)). As there are sub-

stantially more ligands than available receptors, there is overlap in the combination of ligands 

and receptors. Though the focus of this review is on the type I receptors that transduce these 

signals, it is important to recognize the magnitude of inputs coming into these receptors, 

resulting in a diverse set of biological outputs, including cell growth suppression, epithelial to 

mesenchymal transition, and migration and invasion. 



	 23 

Type I receptors 

The type I receptors, known collectively as Activin receptor-like kinases (ALKs), are more 

similar to each other than to the type II receptors, hence their separate classification. The two 

classes share only approximately 40% amino acid sequence similarity (155). In humans, seven 

ALKs have been identified. This class of kinases is approximately 40-60% homologous and 

share structural elements including a cysteine-rich extracellular domain with glycosylation site, 

a transmembrane domain, and a cytoplasmic tail with an active serine/threonine kinase 

domain (156-159). Due to their similarities, or, potentially, their differences, the type I receptors 

form heterotetrameric complexes (160,161). This results in differential downstream signaling 

and translational control through pairing with various type II receptors (161). As there are 

substantial differences in the biological and functional effects of the type I receptors, the focus 

of this review will describe their primary function as well as their involvement in cancer and 

therapeutic potential. However, though this review will focus on ALKs, it is important to note 

the TGFβ type II receptors, as they play a necessary part in this signaling cascade. The tumor 

suppressive function of the TGFβ type II receptors have been extensively documented. 

Several studies have illustrated the presence of TGFβ type II receptor mutations and inactiva-

tions. Of particular note, approximately 90% of microsatellite (MS) unstable and 15% of MS 

stable colorectal cancers have TGFBR2 inactivating mutations (162). TGFBR2 inactivation is 

more frequently observed in MS unstable cancer types, such as gastric cancer and glioma, 

than in MS stable cancer (163). Interestingly, this does not appear to be a phenomenon that 

occurs among ALKs. 

In contrast to the previously stated MS unstable colorectal cancer observations, 

individuals suffering from hereditary nonpolyposis colorectal cancer, which frequently have 
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TGFBR2 inactivating mutations, often have overall better outcomes than those with sporadic 

colorectal cancer, suggesting a protective effect of TGFBR2 inactivation in these cases 

(163,164). For a more complete review of the literature, please see (163,165). The potential 

duality of function of the TGFβ family receptors is not unique and is a characteristic that 

translates to ALKs. 

As there are differences in the biological and functional effects of the ALKs, the focus of 

this review will describe their primary tasks as well as the involvement of ALKs in cancer and 

therapeutic potential.  

 
ALK1 

Function 

ALK1 (ACVL1) has been well studied for its role in vasculogenesis. ALK1 primarily acts as a 

BMP receptor due to the high binding affinity of BMP9 and BMP10, which leads to type II 

receptor/ALK1 complex formation. Upon activation, ALK1 signals via Smad1/5/9 most com-

monly in endothelial cells, contributing to both angiogenesis and lymphatic vessel formation 

(166-168). Interestingly, TGFβ has also been found to induce Smad1/5/9 signaling in 

endothelial cells, however the co-receptor endoglin and ALK5 are required for full activation 

(169). During wound healing, ALK1 expression increases to induce blood vessel branching 

and, upon wound closure its expression is downregulated (170). Inhibition of endothelial ALK1 

signaling through the use of an ALK1 neutralizing antibody substantially reduces 

vasculogenesis and angiogenesis, even when growth factors, such as vascular endothelial 

growth factor (VEGF) and basic fibroblast growth factor (bFGF), are present (171). 

Interestingly, some studies have indicated that ALK1/Smad1/5/9 works synergistically 
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with the Notch pathway to regulate angiogenesis (172). Rostama and colleagues found that 

Delta-like ligand 4 (Dll4)/Notch with BMP9/ALK1 activation induces cell quiescence through 

p21 and thrombospondin-1 (THBS-1), as well as induces the expression of Hey genes in lung 

endothelial cells. Additionally, upon loss of Dll4, ALK1/Smad1/5/9 becomes upregulated, 

therefore compensating for the loss of Notch signaling (172). Similarly, treatment of primary 

human endothelial cells with BMP9 induces Hey1 and Hey2 genes through cooperation with 

Notch, however treatment with soluble ALK1 inhibited expression, demonstrating the close 

relationship of these two pathways (173). 

Loss of function of ALK1 is a primary cause of autosomal dominant vascular dysplasia 

syndrome, as known as hereditary hemorrhagic telangiectasia type 2 (HHT2) (171). With an 

incidence of 1 in 8000, approximately 80-90% of HHT2 cases have mutations in ALK1 or 

endoglin (TBRIII), a TGFβ family co-receptor (166). Mutation of ALK1 in HHT2 results in a 

haploinsufficency, where the affected ALK1 allele can then induce mRNA synthesis or 

degradation of the non-functional protein (166). 

 
Role in cancer and therapeutic potential  

As ALK1 has a well-established role in vasculogenesis, as described above, investigating the 

potential contribution of ALK1 in cancer seems like a logical step. Alk1 global knockout mice 

are phenotypically similar to BMP9 knockout mice, presenting with enlarged lymphatic vessels 

and development of cancer (168). ALK1 expression is induced in the vasculature of breast 

tumors (170). Several strategies have been explored to block ALK1 signaling in endothelial 

cells, thereby downregulating or inhibiting tumor angiogenesis. In vivo, the extracellular domain 

of ALK1, coupled to a mouse-derived Fc region (ALK1-Fc), has been used as a ligand trap for 

BMP9/10, thus blocking their binding to endothelial ALK1 (170). Similarly, dalantercept (ACE-
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041) is a soluble form of ALK1 that 

binds to BMP9/10, therefore 

preventing the activation of 

endogenous ALK1 and inhibiting 

signaling complex formation (174,175). 

Dalantercept/ACE-041 showed 

potential in a Phase I dose-escalation 

study, where 14 of 29 patients had 

partial response or stable disease 

(175). However, when it was used in 

Phase II for recurrent or persistent 

endometrial carcinoma, it was deemed 

ineffective as a single-agent therapeutic (176). Combination therapy of dalantercept with the 

vascular endothelial growth factor receptor (VEGFR) inhibitor sunitinib has shown some 

promise in metastatic renal cell carcinoma in vivo. When combined with sunitinib, dalantercept 

induced tumor necrosis, stifled cellular growth and revascularization, and downregulated the 

expression of pro-angiogenic genes, as well as endothelial cell-specific Notch pathway genes 

(177). 

An additional approach to blocking ALK1 signaling has been through the use of a 

monoclonal antibody specifically targeting ALK1. PF-03446962 prevents BMP and TGFβ 

ligands from binding to the ALK1 extracellular domain (167). It was tested in a Phase I study 

for advanced solid tumors and has since been approved for use in colorectal cancer, mesothe-

lioma, and endometrial cancer (167,174). Most recently, PF-03446962 was used in a Phase I 

Table 2-1. Comprehensive list of the inhibitors discussed in this review. 
(Adapted from Loomans & Andl, 2016) 
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study for hepatocellular carcinoma. While the majority of patients had adverse effects related 

to the treatment, 50% of those treated had stable disease, however no complete or partial 

responses were observed (178). Collectively, these studies have indicated that ALK1 may be a 

feasible therapeutic target for advanced solid tumors. For a complete list of ALK1 inhibitors 

and additional inhibitors discussed in this review, please refer to Table 2-1. 

 

ALK2 

Function 

ALK2 (ACVR1) is a bone fide BMP receptor. Various TGFβ, Activin, and BMP ligands, such as 

BMP9 and Activin B, have been found to induce ALK2 signaling (179,180). In Leydig cells, 

which are found in the testes, ALK2 can inhibit signaling by blocking Activin A access to the 

type II receptor by forming a type II/type I receptor complex in the absence of ligand (181). 

When it acts in this manner, ALK2 has an inhibitory function. Interestingly, induction of 

signaling through non-TGFβ family ligands has been noted. For example, Tsai and colleagues 

found that stress-induced phosphoprotein 1 (STIP1) can bind directly to ALK2, independent of 

a type II receptor, to induce downstream Smad signaling (179). 

Primarily studied for its role in osteogenesis and chondrogenesis, ALK2 is required for 

chondrocyte proliferation and differentiation (182). This role has been illustrated using an Alk2 

knockout mouse model, in which Alk2 was conditionally deleted in cartilage. These mice show 

defects in bone formation, as observed by shortened cranial bases and hypoplastic cervical 

vertebrae. Adult Alk2 conditional knockout mice develop progressive kyphosis, or convex 

curvature of the spine (182). 

The importance of ALK2 in osteogenesis is fully grasped in the development of 
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fibrodysplasia ossicans progressive (FOP). FOP is a sporadic, rare disease (incidence of 1 in 2 

million) that is characterized by progressive ossification of muscles, tendons, ligaments, and 

connective tissues (183,184). The progression of FOP results in chronic pain and growth 

impediments, often leading to difficulty breathing and, ultimately, death (184). Gain-of-function 

mutations in ALK2 have been identified as the cause of FOP. Approximately 50% of the 

identified ALK2 mutations occur in the GS activating domain, a serine/threonine rich sequence 

near the kinase domain of these type I receptors (184). Of the GS mutations, the R206H 

mutation comprises approximately 90% (185). Though many of the ALK2 mutations occur in 

the same region, genotype-phenotype correlations seem to exist, as the clinical presentation of 

FOP varies depending on the ALK2 mutation (184). Interestingly, the type II receptor is 

required for the gain-of-function effect (186). Therefore, it stands to reason that not only may 

the location of the ALK2 mutation dictate the severity of FOP, but also the expression level of 

the BMP type II receptor may contribute to its phenotype. 

 

Role in cancer and therapeutic potential 

Few examples of alterations in ALK2 signaling are have been found in the context of cancer. 

One of the best-known examples occurs in diffuse intrinsic pontine glioma (DIPG), a rare type 

of childhood tumor. Buczkowicz and colleagues found that approximately 20% of DIPG tumor 

samples had mutations similar to those found in FOP, indicating ALK2 gain-of-function (187). 

Hyperactivation of ALK2 signaling has also been noted in ovarian cancer. ALK2 activation, via 

autocrine BMP9 signaling, induces transcription of ID1 and ID3, thus increasing proliferation 

(179,188). Though BMP9 can also signal through ALK1, as discussed above, Herrera and 

colleagues found that this proliferative phenotype was specific to ALK2 signaling in 
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immortalized ovarian surface epithelial cells and ovarian cancer lines (188). 

In contrast, maintaining ALK2 signaling has been indicated as a regulator of tumor 

suppression. Olsen and colleagues found that treatment of primary multiple myeloma samples 

with BMP9 resulted in signaling through ALK2 and the induction of apoptosis (189). In 

melanoma, treatment with BMP7 upregulates ALK2, inducing mesenchymal-to-epithelial 

transition via downregulation of Twist, leading to an overall reduction of invasion (190). 

Specifically targeting ALK2 in therapeutics has proven challenging. DMH1 is a 

dorsomorphin analog and selective inhibitor of ALK2 (191). It reduces the ability of ALK2 to 

phosphorylate Smad1/5/9 without affecting other kinases such as ALK5, AMPK, or VEGFR 

(191-193). DMH1, however, has not been reported for use yet in the clinic. An additional 

dorsomorphin analog, LDN-212854, has been used as a means to treat or prevent FOP, yet 

this inhibitor also non-specifically inhibits ALK1 and ALK3 (194). Thus far, the most effective 

ALK2 inhibition strategy has been through the use of K02288, a 2-aminopyridine compound 

with high affinity for both ALK1 and ALK2. This inhibitor binds to a conserved binding pocket in 

ALK1 and ALK2, which results in reduced angiogenesis and vessel sprout in vitro (195). 

Targeting ALK2, along with the non-specific inhibition of the other ALK kinases ALK2 and 

ALK3, has been shown as an effective strategy in vitro, one that may show efficacy upon 

further clinical testing. 

 

ALK3 

Function 

Though some functions of ALK3 (BMPR1A) suggest similarity to ALK2, this protein has sub-

stantial sequence similarity with a different ALK family member, ALK6 (196). Currently, it is 

known that many BMPs (BMP2, 4, 5, 6, 7, 8, 14, 15), GDF6, GDF7, and AMH can bind to 
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ALK3 with some affinity to initiate differential downstream action (reviewed in (197)). Global 

knockout of Alk3 is embryonic lethal (198). ALK3 is expressed in cells of the osteo lineage and 

bone marrow and is necessary for post-natal bone formation; as such, it is suggested that the 

main function of ALK3 is osteogenesis (183). Mice with conditional knockout of Alk3 in carti-

lage lack growth of the long bones, however this tissue gets replaced with bone-like tissue, 

supporting a role for ALK3 in cell fate and osteogenesis (199). Conditional deletion of Alk3 

from osteoblasts produces a similar phenotype. These mice have increased bone formation in 

the trabecular bone, vertebrae, tail, and ribs, coupled with a reduction in osteoclastogenesis 

(200). 

Unlike ALK2, ALK3 has additional critical roles in development. Deletion of alk3 in 

Xenopus results in dorsalized embryos and defects in the eye (201). Myocardial- and neural 

crest-specific knockouts of ALK3 show drastic developmental defects (reviewed in (202)). 

Epicardial-specific deletion of Alk3 in mice results in atypical developmental of the 

atrioventricular sulcus and annulus fibrosis within the cardia (203). Additionally, when Alk3 is 

deleted early (at weaning or early adulthood) from the foregut, mice have improper gastric 

patterning, as well as a reduced number of parietal cells and increased number of endocrine 

cells (204). 

Affecting another area of the gastrointestinal tract, the loss of or mutations in 

ALK3/BMPR1A has been associated with the development of juvenile polyposis syndrome 

(JPS), a hereditary condition that is characterized by the presence of hamartomatous polyps 

and associated with an increased risk for colorectal cancer. Germ line mutations in ALK3 are 

found in approximately 20% of JPS cases, while 45% of cases have mutations in ALK3 and/or 

the co-Smad, Smad4, therefore contributing to loss of ALK3 signaling (205,206). Additionally, 
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case reports of JPS have reported ALK3 mutations occurring independently of Smad4 

mutations (207,208). 

 

Role in cancer and therapeutic potential 

Loss of ALK3 is best known to contribute to increased risk for colorectal cancer (CRC). As 

described above, individuals with JPS, which is associated with loss of ALK3 signaling, have 

an increased risk of cancer development, particularly CRC. However, it has also been noted 

that loss of ALK3 has also been associated increased risk of esophageal carcinoma, adrenal 

hamartoma, and Wilm’s tumors (207,209). Without JPS as a predisposition, mutations in 

ALK3, along with several other mismatch repair genes including Smad4, account for less than 

5% of CRC (210). Chang and colleagues found similar results. In a cohort of 103 patients, one 

patient was found to have a de novo mutation in ALK3 (211). Similarly to CRC, individuals with 

loss of ALK3, but unaffected Smad4 expression in pancreatic ductal adenocarcinoma, had 

significantly poorer survival compared to those who are ALK3-positive (212). 

In contrast to loss of signaling contributing to CRC, abrogation of ALK3 in other cancer 

contexts appears to promote aggressiveness. Pickup and colleagues found that conditional 

knockout of ALK3 in breast cancer cell lines results in delayed tumor onset in vivo, however 

these cells acquire more mesenchymal markers. Analysis of patient data from The Cancer 

Genome Atlas indicated that individuals with high ALK3 expression had overall poorer survival, 

regardless of subtype (213). Additionally, BMP2-induced ALK3 signaling in liposarcoma has 

been associated with increased extracellular matrix remodeling, disease progression, and, 

therefore, poorer patient outcome (214). 

As the role of ALK3 in cancer is a double-edged sword, the feasibility of targeting this 
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receptor in vivo remains uncertain. Currently, the only reported ALK3 inhibitors in use are LDN-

193189, DMH2, and VU0465350. These inhibitors have been used to treat liver disease by 

enhancing liver regeneration (215). 

 

ALK4 

Function 

ALK4 (ACVR1B) is a versatile receptor that has a critical role in development. In Xenopus, 

ALK4 activates both sides of the developmental pathway: the TGFβ-driven left side with the 

ligands Xnrl and derriere and the BMP-driven right side with the ligand Vgl (216). This 

activation modulates mesoderm induction and dorsoanterior/ventroposterior development 

during primary axis formation (216). Constitutive activation of ALK4 induces Xenopus 

mesodermal and dorsoanterior markers, similarly to Activin expression models (217). 

In mouse models, global knockout of Alk4 (Acvr1b) is embryonic lethal due to develop-

mental impairment of the epiblast and extraembryonic ectoderm, leading to improper gas-

trulation (218). Activation of ALK4 can occur through a multitude of ligands, such as Activins, 

GDFs, and Nodal (219). Conditional knockouts of Alk4 in various adult tissues have been 

generated to analyze the impact of Alk4 systemically. Activin A signaling, mediated via ALK4, 

has a substantial role in reproduction. Trophoblast invasion is regulated through a canonical 

ALK4-mediated pathway, where upregulated Snail induces MMP-2 expression; knockdown of 

ALK4 attenuated this effect (220). 

Conditional knockout of uterine Alk4 results in subfertility due to defects in placental 

development (221). Signaling through ALK4/ALK7 in the male reproductive tract is required for 

germ cell development and Sertoli cell proliferation (222). This may be initiated by Nodal or 
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GDFs, along with Cripto, as these mechanisms can trigger downstream phosphorylation of 

Smad2 (223,224). 

Additional conditional mouse models have been generated to examine the tissue 

specific effects of ALK4. Squamous cell deletion of Alk4 leads to substantial hair loss, 

increased epidermal thickness, and growth stunting in approximately 25% of Alk4-null mice. 

Interestingly, this appears to have a dose-dependent effect, as those with the highest Cre-

driven Alk4 expression had the most severe phenotype. Molecularly, Alk4-deleted tissues had 

increased expression of the transcription factor Lef1, which regulated hair-specific expression 

of keratin, and increased proliferation (225). A subsequent conditional model of Alk4 in adult 

tissues has also been developed, with Alk4 loss observed in skin, liver, spleen, pancreas, and 

kidney (226). 

 

Role in cancer and therapeutic potential 

The best-characterized alterations of ALK4 expression have been noted in pituitary and 

pancreatic cancers. Alternatively spliced forms of ALK4 have been identified in somatotroph, 

corticotroph, and nonfunctioning pituitary adenomas, which are generally not found in normal 

tissue (227). These splice variants of ALK4 are truncated, lacking the kinase domain and 

therefore cannot propagate anti-proliferative signals (227,228). Restoration of full-length ALK4 

reverses these effects (228). Conversely, rather than alternative splicing, pancreatic cancers 

frequently show ALK4 deletions. Su and colleagues identified loss of heterozygosity of ALK4 in 

34% of cancer xenografts and 45% of pancreatic cancer cell lines, supporting the hypothesis 

that ALK4 acts as a tumor suppressor in this cancer type (229). In ALK4-positive pancreatic 

cancer cell lines, invasion could be inhibited through treatment with SB-431542, a chemical 
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inhibitor of ALK4/5/7 (230). 

Though the role of ALK4 has not been comprehensively explored in most cancer 

contexts, several studies have suggested that ALK4 expression can have either oncogenic or 

tumor suppressive influences. Both prostate cancer cell lines and testicular carcinomas have 

been shown to retain variable levels of ALK4 expression (231,232). Landis and colleagues 

found that, in ErbB2/Her2/Neu positive tumors, TGFβ signaling through ALK5 was frequently 

lost, however ALK4-mediated Activin A signaling remained active along the invasive front of 

the tumor (233). Similarly, B16 melanoma cells, upon treatment with Activin A, showed dose-

dependent regulation of CDH1 and HMGA2 expression. However, in metastatic cultured B16 

cell lines, ALK4 expression was substantially reduced (234). 

Targeting ALK4 in therapeutics appears to be, generally, an unfeasible target, as most 

noted alterations in ALK4 signaling are deletions or inactivations. In some cancers, such as 

prostate, testicular, or Her2-positive breast cancers, as discussed above, targeting ALK4 may 

have potential. However, the existing inhibitors not only target ALK4, but the additional type I 

receptors ALK5 and/or ALK7. SB-505124 and SB-431542 potently inhibit ALK4/5/7, as shown 

by decreased phosphorylation of Smad2 and Smad1/5/9 (235,236). These two inhibitors are 

not currently used clinically. Additional inhibitors, such as LY-362947, LY-2157299, and SD-

208, among others, have also been developed (reviewed in (237)).  

 

ALK5 

Function 

Similar to the previously discussed receptors, ALK5 (TGFBR1) plays critical roles in develop-

ment and reproduction. ALK5 has been best characterized as the primary receptor for the 
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TGFβ ligands (TGFβ1, TGFβ2, TGFβ3), however GDF8 and GDF9 have been additionally 

reported to signal through this receptor (238,239). GDF8 can signal via ALK5 to activate 

Smad3, ERK1/2, and steroidogenic acute regulatory protein (StAR) in granulosa cells. This 

effect can be blocked by inhibition of ALK5 (238). GDF9 signals through BMPRII and ALK5 

recruiting Smad2 and Smad3 to activate adrenocortical and Sertoli cells (239); both are 

required for folliculogenesis (238,240). 

ALK5 is required for proper embryonic development; Alk5 knockout mice are embryonic 

lethal (241). Even Alk5 mutant mice with a D266A knock-in mutation in the L45 loop, therefore 

not allowing for Alk5 to phosphorylate Smad2, only survive until E10.5 due to defects in vascu-

lature formation (242). Targeted deletion of Alk5 in the neural stem compartment is embryonic 

lethal at E15 due to failure of upper lip palate closure (243). Because of its embryonic lethality, 

investigators have utilized conditional knockouts of Alk5 to examine its role in the development 

of various tissues. Deletion of Alk5 in the endocardium, using Tie2-Cre in vitro and in vivo, 

demonstrated that this signaling pathway is necessary for not only epithelial-to-mesenchymal 

transition of the cardiac cells, but also differentiation and maintenance of tight junctions, as 

observed through downregulation of N-cadherin and VE-cadherin (244). Additional vascular 

defects were noted in mice with Alk5 knockout in skin lymphatic endothelial cells. These 

vascular networks lacked organization and complexity and were hyperproliferative (245). 

Previously, we discussed that ALK5 is necessary for reproductive function. Mice with 

conditional knockout of Alk5 in the uterus are sterile. Deletion of Alk5 disrupts development of 

the oviductal diverticula and myometrium. Additionally, these mice have hyperproliferative 

uteruses and irregular glands (246). This phenotype is exemplified during implantation, as tro-

phoblasts lack organization, the uterine natural killer cell population is reduced, and arterial 
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remodeling diminished (221). These results suggest that ALK5 is necessary to not only 

transduce TGFβ family signaling, but that it is also needed to mediate part of the uterine 

immune response. Though loss of Alk5 expression in the uterus results in defective processes, 

constitutive expression of the receptor is additionally problematic. Conditional gain-of-function 

of uterine Alk5 resulted in increased myometrium thickness, causing hypermuscularized uteri. 

In the endometrium, constitutive activity of Alk5 promoted fibroblast differentiation and a 

smooth muscle gene signature. Interestingly, deletion of Alk5 in the uterus had substantial 

epithelial effects, while constitutive activation heavily altered the uterine microenvironment 

(247). 

 

Role in cancer and therapeutic potential 

Though research suggests that alterations of ALK5 promote cancer progression, ALK5 alone 

appears not to be sufficient for this process and needs to cooperate with an oncogenic driver. 

Examples of this have been explored in breast, colorectal, head and neck squamous 

(HNSCC), and pancreatic cancers. Landis and colleagues found that phosphorylation of 

Smad2 was substantially downregulated in a mammary cancer model of ErbB2/Her2/Neu 

amplification, a result of Alk5 loss (233). APC is mutated in approximately 70% of sporadic 

CRC and is often described as the “first hit” (248). The commonly used APCmin mouse model, 

combined with loss of heterozygosity of Alk5, develop approximately three times more tumors 

than APCmin/Alk5 wild-type mice, indicating that diminished Alk5 signaling can be a second-hit 

accelerating tumor formation in CRC. Alk5 wild-type and knockout mice alone did not develop 

CRC tumors (249). Alterations in ALK5 in CRC frequently occurs through the deletion of three 

alanines located in a nine alanine repeat, termed TGFBR1*6A (250). Homozygous variants of 
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TGFBR1*6A has been associated with increased risk of CRC, though a more substantial rate 

of this deletion has been observed in CRC metastases, compared to primary tumors 

(249,250). 

In HNSCC, PI3K pathway mutations occur at a frequency of approximately 30% (251). 

Of the PI3K pathway mutations, loss of PTEN expression is common (252). Additionally, 

HNSCC patient samples and cell lines have marked reduction in ALK5 protein expression. A 

combination of these two models, knockout of Pten and Alk5, in HNSCC promoted the 

expansion of the cancer stem cell niche, reduced cellular senescence, and increased cancer-

associated inflammation (253). This association of ALK5 has also been strengthened in a 

mouse model of pancreatic cancer. Homozygous loss of Alk5, with mutant Kras, led to the 

development of pre-cancerous lesions at 100% frequency. While only 50% of Alk5 het-

erozygotes showed pre-cancerous lesions, those that were developed were larger than those 

in knockout mice (254). 

Though loss of ALK5 often confers a tumor cell advantage, ALK5 activation has been 

noted in osteosarcoma and sex-cord stromal tumors, indicating a dual role for this signaling 

receptor. Treatment of the osteosarcoma cell line MG63 with TGFβ, which acts primarily 

through ALK5, induced cellular proliferation via the Smad2/3/4 axis. This effect could be 

inhibited through treatment with SB-431542 (255). Additionally, constitutively active Alk5 in 

ovarian granulosa cells, described previously, promoted the development of sex-cord stromal 

tumors within two months. These tumors also had elevated expression of the Hedgehog 

proteins Gli1 and Gli2 (256). 

As described above, ALK5 deletion or mutation in tumors appears to be the common 

form of pathway alteration. That being said, efforts have been directed at inhibiting the ALK5 
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cascade and, surprisingly, have had some success. Several of these inhibitors such as LY-

2157299, SB-505124, and GW6604 have been tested in Phase I and Phase II clinical trials 

(reviewed in (257)). These inhibitors target the ATP binding pocket of the kinase, removing its 

signal transduction ability. A limitation of several ALK5 inhibitors is their lack of selectivity 

between ALKs; for example, SB-431542 inhibits not just ALK5, but also ALK4 and ALK7 (236).  

However, these off-target effects of inhibitors can be utilized. Dasatinib, a commonly 

used Src inhibitor, has also been used in vitro to inhibit ALK5 in pancreatic ductal 

adenocarcinoma; it has been shown to inhibit Smad2 phosphorylation and cell invasion, simi-

larly to that observed following treatment with the ALK4/5/7 inhibitor SB-431542 (258). Efforts 

have been directed at developing ALK5-specific inhibitors. EW-7197 has been used as an in 

vitro treatment for melanoma. Use of EW-7197 enhanced the number of tumor-infiltrating 

lymphocytes, particularly CD8+ cytotoxic T-cells (257,259), thereby stimulating the immune 

response. 

 
 
ALK6 

Function 

ALK6 (BMPRIB) acts primarily as a BMP receptor, with preferential binding to BMP2, BMP4, 

BMP6, BMP7, BMP15 and GDF5, however ligand binding of Müllerian-inhibiting substance 

(MIS) has also been observed (260,261). In Xenopus, the necessity of ALK6 during develop-

ment has been shown, as loss of ALK6 causes defects in neural crest formation and pigmen-

tation, resulting in an embryonic lethal phenotype (201). 

In vertebrate development, expression of ALK6 is tightly controlled, and primarily found 

in mesenchymal pre-cartilage, chondrocytes and osteoblasts. During osteoblast differentiation, 
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ALK6 expression is upregulated, indicating a role for this protein in bone formation (183). This 

is further indicated in the association of ALK6 mutations in the development of brachydactyly 

type A1 and type A2. Brachydactyly is an autosomal domain disorder affecting the digits. Type 

A1 is an inherited disorder characterized by malformation of the middle 2-5 fingers, while type 

A2 is autosomal and characterized by shortening of the index fingers and, sometimes, the first 

and second toes (262,263). Two heterozygous mutations in ALK6 have been identified in 

association with the development of type A1, which work to halt kinase function (263). 

Similarly, linkage analysis of two families identified mutations falling within the GS and kinase 

domains. Interestingly, only the GS domain mutation rendered the protein kinase-dead, while 

the kinase domain mutations appeared to have no effect on activity, indicating that these 

mutations differentially effect ALK6 function (262). Additional evidence implicating ALK6 in 

bone formation is the development of the skeletal disorders Grebe dysplasia and 

acromesomelic du Pan dysplasia (261,264). Various mutations affecting the activity of the 

ALK6 kinase domain have been associated with these disorders (261,265). ALK6 expression 

is highest in the brain, lung, and ovary in adult tissues (reviewed in (196)). In the ovaries, ALK6 

is necessary for folliculogenesis. Its expression fluctuates throughout the stages, however 

reduced or disrupted ALK6 expression on the granulosa cell surface has been associated with 

reduced growth of the follicles (266). Adult sheep with a point mutation in ALK6 have impaired 

follicle development and an increased ovulation rate (267). 

 
Role in cancer and therapeutic potential 

As is a recurrent theme in the TGFβ family, the role of ALK6 in cancer appears to be both 

tumor promoting and suppressive. Examples of the oncogenic properties of ALK6 have been 

explored in chronic myeloid leukemia (CML), epithelial ovarian cancer, luminal breast cancer, 
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and CRC. Upregulation or overexpression of ALK6 has been identified on CML cells, 

compared to healthy donors. It is suggested that microenvironmental influence of BMP2 and 

BMP4 contribute to the noted change in ALK6 expression (268). A similar observation has 

been made in epithelial ovarian cancers, where patient samples with ALK6 expression had a 

worse prognosis compared to patients without ALK6 expression (260). In the investigation of 

ALK6-ligand interactions in cancer, BMP2 binding and signaling through ALK6, in conjunction 

with IL-6, has been shown to promote the development of luminal breast cancer through the 

upregulation of Smad5 and GATA3, as well as downregulation of FOXC1 (269). Using 

MCF10A cells, Chapellier and colleagues demonstrated increased colony formation in soft 

agar and greater ability to form tumors in vivo (270). Functionally, in vitro knockdown of ALK6 

in SW480 CRC cells, which are Smad4 positive, decreased invasion (271). 

Though seemingly oncogenic, ALK6 appears to act as a tumor suppressor in gliomas 

and glioblastomas. Expression of ALK6 is downregulated in various malignant gliomas, 

including astrocytomas and glioblastomas, compared to normal astrocytes, as measured by 

mRNA expression and reduced phosphorylation of Smad1/5/9. Re-expression of ALK6 

decreased the ability of these cells to have anchorage-independent growth (272). Additionally, 

treatment of glioblastoma samples with BMP7 decreased proliferation and sphere number 

(273). These studies indicate that when the ALK6 pathway is active in gliomas and glio-

blastomas, it acts as a suppressor. Interestingly, the function of this pathway is likely 

dependent upon the activating ligand, as stimulation with BMP2 and BMP7 appears to have 

differential effects. That being said, despite having limited therapeutic options in development 

or available, treatment with BMP ligands themselves shows some potential in vitro (274-276). 
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ALK7 

Function 

Little is known regarding ALK7 (ACVR1C). Until recent years, the type II receptor and ligands 

interacting with ALK7 were unknown (277). Several ligands have now been identified, including 

GDF3, Activin B, and Activin AB (278-280). ALK7 shows high sequence similarity to ALK4 and 

ALK5, however, the structure of the extracellular domain diverges from the other type I 

receptors (159,277). Similarly to other ALKs, ALK7 substantially impacts development. In 

Xenopus, active ALK7 is associated with the induction of the mesoendodermal markers (281). 

In post-natal development and adulthood, ALK7 is primarily expressed in the central nervous 

system, where the signaling pathway is suggested to be involved in neuronal proliferation and 

differentiation, as well as the pancreas and colon (157,277). Alk7 knockout mice have been 

shown to metabolic issues, including reduced insulin sensitivity, impaired glucose tolerance, 

and enlargement of pancreatic islands (279). 

 

Role in cancer and therapeutic potential 

Loss of ALK7 in cancer has been, thus far, consistently associated with poor outcomes. In 

gallbladder cancer, expression of ALK7 has been associated with better survival compared to 

patients with ALK7-negative squamous cell, adenosquamous, and adenocarcinomas of the 

gallbladder (282). A similar pattern was found in breast cancer, where ALK7 expression is lost 

with increased cancer grade and stage (283). In vitro utilization of a triple negative breast 

cancer cell line showed that re-expression of ALK7, along with Activin B treatment, can restore 

the functional effects of this pathway and inhibit proliferation. A more molecular examination of 

ALK7 in ovarian cancer has indicated that ALK7 signaling, via the Smad2/3 axis, can 
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upregulate and downregulate cyclin G2 and Skp1 and Skp2, respectively, whereby inhibiting 

cell cycle and acting as a tumor suppressor (284). ALK7 regulation in cancer may be a result 

of post-transcriptional regulation. Ye and colleagues found that loss of ALK7 in ovarian cancer 

patient samples was associated with high expression of mir376c. Additionally, high levels of 

mir376c were found in patients who exhibited chemoresistance. In vitro overexpression of 

ALK7 could partially overcome cisplatin-induced cell death (285). 

As previously discussed, specific inhibition of ALK7 has proven no small feat. Of the 

current inhibitors, SB-431542 and SB-505124 are the most highly utilized in the laboratory, 

with SB-505124 being used in Phase I clinical trials (234,235). However, as these are not 

specific inhibitors (also target ALK4 and ALK5), there is no sure way to know if targeting ALK7 

is yet beneficial, or if targeting the combination of receptors is more efficacious. 

 

Conclusion 

As presented here, signaling of the TGFβ signaling family is mediated by the formation of het-

eromeric complexes of type I and type II receptors. Downstream signaling occurs upon ligand 

binding and affects various cellular processes in normal cells with implications for tumorigen-

esis through the regulation of apoptosis, migration and invasion, angiogenesis and the immune 

response. The promise of using ALKs as therapeutic targets has been successful in Phase I 

clinical trials, yet the challenge lies in restoring homeostasis in the face of multiple overlapping 

downstream signaling cascades and the potential of off-target effects resulting in serious side 

effects. Additional difficulties are met by the similarity of these receptors and the aim to 

specifically inhibit one type of receptor. Aside from the receptor inhibition as described in this 

review, other pre-clinical tests aimed to neutralize the ligands. A neutralizing antibodies against 
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TGFβ, 1D11, demonstrated successful suppression of metastasis in a mouse breast cancer 

model (286). Clinical trials testing a number of approaches to inhibit TGFβ signaling are 

recruiting or ongoing (clinicaltrials.gov). Ligand traps consisting of extracellular domains of 

human ACVR (mostly type 2) have been developed and are valuable in Activin-induced 

muscle wasting, cachexia, one of the main complications of cancer. 

Taken together, although most cancers show alterations of the TGFβ pathway, use of 

inhibitors has shown some encouraging early results, yet many hurdles must be overcome 

before they could be considered for first-line treatments. 
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Preface 

The Activin A signaling pathway has been an area of continuous research over the last several 

decades. Since the isolation of Activin A and its characterization in regards to folliculogenesis 

and embryonic development, the role of Activin A in post-natal tissues has been widely 

disputed. Due to its similarities to the TGFβ pathway, there have been substantial arguments 

suggesting that Activin A may act in a comparable manner to the dual role of TGFβ (also 

known as the ‘TGFβ switch’) in the context of normal physiology and, subsequently, disease. 

In this work, we examined this relationship in the context of esophageal homeostasis. Working 

in close collaboration with Dr. Gregoire Le Bras, a post-doctoral fellow in the lab, we 

investigated and determined that Activin A works to regulate cell invasion through the 

maintenance of epithelial homeostasis along the spectrum of normal (E-cadherin expressing) 

to dysplastic (E-cadherin and TGFβ receptor type II dominant negative) esophageal squamous 

cells. Maintaining the delicate balance of Activin A expression is critical for the preservation of 
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the esophageal epithelium and stromal microenvironment. The work presented in this chapter 

laid the groundwork for work described in the succeeding chapters. 

 

Abstract 

Activin A is a member of the TGFβ superfamily. Activin A and TGFβ have multiple common 

downstream targets and have been described to merge in their intracellular signaling cascades 

and function. We have previously demonstrated that coordinated loss of E-cadherin and TGFβ 

receptor II results in epithelial cell invasion. When grown in three-dimensional organotypic 

reconstruct cultures, esophageal keratinocytes expressing dominant-negative mutants of E-

cadherin and TGFβ receptor II showed activated Smad2 in the absence of functional TGFβ 

receptor II. However, we could show increased levels of Activin A secretion and recombinant 

Activin A was able to induce Smad2 phosphorylation. Growth factor secretion can activate 

autocrine and paracrine signaling, which affects crosstalk between the epithelial compartment 

and the surrounding microenvironment. We show that treatment with the Activin A antagonist 

follistatin or with a neutralizing Activin A antibody can increase cell invasion in organotypic 

cultures in a fibroblast- and MMP-dependent manner. Similarly, suppression of Activin A with 

shRNA increases cell invasion and tumorigenesis in vivo. Therefore, we conclude that 

maintaining a delicate balance of Activin A expression is critical for homeostasis in the 

esophageal microenvironment. 

 

Introduction 

Activin A (Act A), like other members of the TGFβ superfamily, is a regulator of embryonic 

development and tumorigenesis (287-289). Act A binds to type II Activin receptors, ActRII/IIB, 

that have intrinsic serine/threonine kinase activity. Binding of Act A results in the recruitment of 
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Activin receptor type I, ALK4, and the subsequent phosphorylation and activation of Smad 2/3 

(290,291). TGFβ and Activin A signaling intersect at the level of Smad2/3 resulting in common 

downstream effector activation. 

Previous research has shown that coordinated loss of E-cadherin and TGFβ receptor II 

(TβRII) occurs in the majority of esophageal squamous cell cancers (292). Based upon this 

evidence, we have established an organotypic culture model system utilizing esophageal 

keratinocytes expressing dominant-negative mutants of E-cadherin and TβRII to investigate 

the biological consequences of their loss. Keratinocytes expressing dominant-negative forms 

of E-cadherin and TβRII and tumor tissues with coordinated loss of E-cadherin and TβRII 

retained the expression of phosphorylated Smad2, thus suggesting that Act A compensates for 

the loss of TGFβ signaling and induces the activation of Smad2. 

Similar to TGFβ, Act A is described as having pro- and anti-tumorigenic functions. 

Members of the TGFβ family, including Act A, can downregulate E-cadherin, promoting cell 

invasion (293). Our previous study showed increased cell invasion in Boyden chamber assays 

in response to Act A stimulation through an E-cadherin-dependent increase of the CD44 

variant form in the esophageal cancer cell line TE-11 (294). In the current study, we further 

demonstrate the increased secretion of Act A in invasive organotypic cultures. Act A can 

suppress proliferation in different tumor cells (7,295,296), mainly through the induction of 

p15INK4B (297), while others describe an oncogenic role for Act A (289,298-301). From these 

reports and similar observations made for TGFβ1, which also has been shown to have dual 

functions (302,303), Act A is likely to have a role in the regulation of epithelial homeostasis. 

Interestingly, other studies demonstrated that Act A is necessary for the maintenance of self-

renewal in human embryonic stem cells through the induction of Oct4, Nanog, Nodal, Wnt3, 
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and FGF-2 and by suppressing BMP signaling (72). These observations illustrate Act A 

function as a mediator of stemness with the potential for being a cancer stem cell marker 

(304,305). Furthermore, suppression of ID2, a downstream target of Act A and TGFβ1, is 

central to the induction of epithelial-mesenchymal-transition (73), a mechanism known to 

induce single-cell invasion, which is antagonized by BMP. Another Act A target, ID1, regulates 

epidermal homeostasis (306). However, the role of ID1 in proliferation could only be 

demonstrated in three-dimensional cultures, not in monolayer experiments (306).  

To better understand the complex role of Act A in esophageal cell invasion, we 

employed three-dimensional organotypic cultures to reconstitute the epithelium with squamous 

esophageal epithelial cells expressing wild-type full-length E-cadherin (E), dominant-negative 

mutant E-cadherin  (EC) or dominant-negative mutant E-cadherin and TGFβ receptor II 

(ECdnT). We found that Act A secretion is increased in ECdnT cells. In addition, altered cell 

invasion of ECdnT cells in vitro was dependent upon fibroblasts and MMP activation. In vivo, 

we show that loss of Act A can initiate tumorigenesis using xenograft models. Overall, our data 

indicate that Act A concentrations contribute to homeostasis in the esophageal 

microenvironment and, in the absence of functional TGFβ signaling, can shift the balance 

towards tumor invasiveness. 

 

Material and Methods 

Cell culture and tissues 

Primary esophageal epithelial cells (keratinocytes) from normal human esophagus were 

established as described previously (292). Fetal esophageal fibroblasts were isolated as 

previously described (292) and head and neck cancer-associated fibroblasts were purchased 
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from Asterand (Detroit, MI). Fibroblasts were grown in DMEM with 5% fetal bovine serum 

(FBS, Hyclone, Thermo Fisher Scientific, Waltham, MA), 100 units/mL penicillin, and 100 

µg/mL streptomycin (Gibco, Invitrogen, Carlsbad, CA). Human umbilical vein endothelial cells 

(HUVEC) were grown in EBM-2 basal media (Lonza Biosciences, Walkersville, MD) 

supplemented with endothelial growth medium 2 (EGM-2) growth factors (Lonza Biosciences). 

A tissue microarray with 83 spotted squamous esophageal tissues, AccuMax Tissue 

Microarray, was purchased from ISU Abxis (distributed by Accurate Chem, Westbury, NY). 

 

Lentivirus infection 

shRNA-mediated loss of Act A in esophageal squamous cells was performed using shRNA 

directed towards three different target sequences. Act A shRNA and control pGIPZ plasmids 

were purchased from Thermo Scientific. Virus was generated using HEK293T cells. Cells were 

then transduced and sorted using flow cytometry prior to experimental use. 

 

Xenograft animal experiments 

The current study protocol was reviewed and approved by the Vanderbilt University Animal 

Care and Use Committee. Briefly, a total of 1×10^6 cells (INHBA-high with normal esophageal 

fibroblasts) were suspended in 150 µl of Matrigel (BD Bioscience, Franklin Lakes, NJ) and kept 

on ice prior to subcutaneous injection into the flanks of 8–10 week old female NOD/SCID mice 

(The Jackson Laboratory, Bar Harbor, ME). Tumor growth was monitored weekly by caliper 

measurements. 
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Organotypic Culture 

Organotypic reconstructs were grown as previously described (292) with the exception that 

each culture was rinsed in 1xPBS and incubated with Epidermalization 3 medium lacking 

serum for two more days before harvesting. The following treatments were added to the 

organotypic cultures at the time of epithelial seeding and renewed with every media change: 5 

ng/ml recombinant human TGFβ1, 10ng/ml Activin A, 100 ng/ml follistatin and 600 ng/ml 

neutralizing antibody against Act A (all from R&D Systems, Minneapolis, MN), or 1 µM A83-01 

(Tocris, Bristol, UK) and 1 µM GM6001 (Millipore EMD, Billerica, MA). Puromycin treatment at 

5 µg/ml on day 5 was applied to induce fibroblast cell death. The culture matrix was washed 

serially with 1xPBS, before the epithelial cells were seeded. 

 

Spheroid formation 

Spheroid assays were performed as described previously (292). In brief, cells were 

resuspended in 2% Matrigel and then cultured on a Matrigel layer in chamber slides (Nalgene 

Nunc, Naperville, IL). Cells were fixed in 4% paraformaldehyde (Fisher Scientific, Hampton, 

NJ) overnight at 4°C. Incubation with Alexa568–conjugated phalloidin was overnight at 4°C. 

 

Proliferation assays 

Cells were plated at 500 cells per well in a 96-well plate for proliferation assays. WST-1 

reagent (Roche, Nutley, NJ) was added to each well at the time points indicated and incubated 

at 37°C for a minimum of 1 hour. Absorbance measurements at 450 nm were taken using a 

BioTek Synergy 4 plate reader (Winooski, VT). Measurements were taken in 24-hour 

increments. 
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Immunofluorescence 

Organotypic culture tissue, previously fixed in formalin for 24 hours and embedded in paraffin, 

was sectioned at 5 µm, deparaffinized and heated in 1xTBE buffer in a pressure cooker for 12 

minutes for antigen retrieval. Samples were blocked in 1xPBS with 5% Bovine Serum Albumin 

(1xPBS-BSA 5%, Sigma-Aldrich, Saint Louis, MO) for 1 hour prior to incubation with primaries 

antibody in 1xPBS-BSA 5% overnight at 4°C. Tissues were then rinsed three times in 1xPBS 

and incubated with secondary antibodies in 1xPBS-BSA 5% for 1 hour at room temperature. 

After additional rinses with 1xPBS, the sections were mounted with Vectashield mounting 

medium containing DAPI (Vector Laboratories, Burlingame, CA). Images were taken on a 

Zeiss microscope, using Axiocam and Axiovision software (Carl Zeiss Microscopy, Thornwood, 

NY). 

Immunohistochemistry for TβRII and pSmad2 in the tissue microarrays and OTC 

samples was done using the Vectastain Elite kit (Vector Laboratories) following the 

manufacturer's protocol. 

 

Western Blot 

Western blots were performed as previously described (294). The results are representative of 

at least three independent experiments. 

 

Flow cytometry 

Flow cytometry was used to separate lentivirus-transduced from the non-transduced 

population based upon GFP+ status. Gates were set to divide high and low GFP+ expressing 

cells. Flow cytometry experiments were performed using a BD AriaIII flow cytometer (BD 
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Biosciences, Franklin Lakes, NJ) in the VUMC Flow Cytometry Shared Resource. After sorting, 

the cells were returned to culture for future experiments. 

 

ELISA 

Capture ELISAs for Act A and TGFβ1 were purchased from R&D Systems. The protocols were 

performed according to the manufacturers instructions. 

 

Invasion assays 

Matrigel-based invasion chamber assays were purchased from BD Biosciences and performed 

according to manufacturer’s directions. Act A was added either to the top insert or the bottom 

chamber to assess hapto- versus chemotactic invasion during 16–24 hours of incubation. 

For trans-endothelial invasion assays (xCELLigence system, Roche Diagnostics), 

Roche E-plates (Roche Diagnostics) were treated with 100 µl of 0.1% sterile gelatin (Sigma-

Aldrich) overnight at 4°C. Plates were washed once with sterile 1xPBS before the addition of 

HUVEC cells (Lonza Biosciences). 25,000 HUVEC cells/100 µl were seeded on E-plates and 

incubated for 18 hours at 37°C. The cell index was monitored on the xCELLigence system 

while the monolayer was formed. Following the formation of the HUVEC monolayer, which is 

indicated by the plateau in the cell index, the endothelial cell growth medium EGM-2 was 

removed and 100 µl of RPMI containing 5% serum media was added. The cell index was 

monitored for 4 hours and allowed to stabilize. Then, esophageal epithelial cells pre-treated 

with Act A for 24 hours were added to each well at a density of 5,000 cells/100 µl. The cell 

index was normalized to the HUVEC monolayer and invasion was monitored over time as 

epithelial cells disrupt the endothelial cell layer (changes in initial slope). Rate of invasion of 
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the cell lines were calculated in real time according to the RTCA software version 1.2. 

 

Zymography 

Zymography was performed as previously described (294). Briefly, conditioned medium was 

separated by SDS-PAGE at 4°C in gel containing gelatin. The gels were then washed in Triton 

2.5% (v/v) in ddH2O twice for 30 min and incubated overnight in at 37°C in a development 

buffer (0.05M Tris-HCl pH 8.8, 5mM CaCl2, 0.02% NaN3). Then, the gels were stained in 0.1% 

Coomassie Blue R-250 for an hour and destained in methanol/acetic acid/water solution (10%: 

20%: 70%, v:v:v). Images were taken on Gel Doc XR system (Bio-Rad, Hercules, CA). 

 

Antibodies and other reagents 

Alexa568-conjugated Phalloidin (Invitrogen), αSMA (Sigma-Aldrich) and podoplanin 

(eBioscience, San Diego, CA) were used for immunofluorescence. Anti-TβRII (clone L21), PAI-

1 (Santa Cruz Biotechnologies, Santa Cruz, CA), Ki67 (Vector Laboratories). and phospho-

Smad2 (Cell Signal Technologies, Danvers, MA) were used for immunohistochemistry. 

Antibodies used to 

detect protein by 

Western blotting 

were E-cadherin 

(BD Biosciences) 

and vimentin 

(Sigma-Aldrich); 

Table 3-1. Information about Oncomine/Nextbio datasets used for INHBA expression analysis. 
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total Smad 2, phospho-Smad2, were purchased from Cell Signaling Technologies; α-tubulin 

was purchased from Abcam (Cambridge, MA). 

 

Dataset analysis 

Datasets made publicly available from Oncomine (http://www.oncomine.org/), GEO Datasets 

(http://www.ncbi.nlm.nih.gov/gds/; (307)), and NextBio (http://www.nextbio.com/b/nextbio.nb; 

(308)) were used to query clinical correlations with Act A (Table 3-1). The collected information 

from each dataset was analyzed and visualized in Prism version 6.00 for Mac (GraphPad 

software, La Jolla, California, www.graphpad.com). 

 

Biostatical analysis 

Biostatistical analysis was performed using Prism version 6.00 for Mac. In vitro and in vivo 

experiments were analyzed using Student’s t-tests or one-way ANOVAs. Statistical 

significance was set at p<0.05. All experiments were done in triplicates with at least three 

biological replicates. 

 
Results 

Increased epithelial cell invasion is associated with increased Act A secretion 

The R-Smads (Smad2 and Smad3) are common downstream mediators of both TGFβ and Act 

A signaling. We performed immunohistochemistry using antibodies against TβRII and pSmad2 

to determine their expression in non-invasive and invasive organotypic cultures. Keratinocytes 

expressing wild-type E-cadherin (E) form a non-invasive epithelial sheet, while expression of 

dominant-negative E-cadherin (EC) or combined expression of dominant-negative E-cadherin 

and TβRII (ECdnT) led to a gradual increase of invasiveness, as shown previously (294). We 
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have previously shown that expression of dominant-negative E-cadherin correlates with lower 

TβRII levels in EC cells, potentially due to a lack of its stabilization at the cell membrane (292). 

Even though the signal for TβRII was lower in EC and ECdnT cells than in the normal control 

epithelium, represented by the E cells (Figure 3-1a), we observed a strong signal of nuclear 

pSmad2 in invasive ECdnT cells. Nuclear localization of pSmad2 in the absence of TβRII 

staining supports the notion that Smad2 can be activated and phosphorylated through a 

separate signaling pathway, when TβRII expression is low or disrupted. We subsequently 

Figure 3-1. Activin A (Act A) specifically stimulates phosphorylation of Smad2 and Act A upregulation is common in esophageal 
squamous cell carcinoma (ESCC). (a) Immunohistochemistry staining with antibody against phosphorylated Smad2 (pSmad2) and 
TGFβ receptor II (TβRII) showed increased nuclear signal for pSmad2 in the invasive dominant-negative E-cadherin and TβRII (ECdnT) 
organotypic cultures. Scale bar, 50µm. (b) Analysis of immunohistochemistry staining for TβRII and pSmad2 in 83 ESCC cases in a tissue 
microarray showed no significant correlation. Fisher’s exact test, two-tailed p=0.3182. (c) Five paired normal adjacent and ESCC tissues 
(GSE17531) were analyzed for INHBA mRNA expression, which identified upregulation of INHBA in four ESCC samples. (d) Waterfall plot 
of a publically available data set (GSE23400) represented upregulation of INHBA in the ESCC (gray bars) samples versus normal (black 
bars). 
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analyzed 83 esophageal squamous cell carcinoma tissues (ESCC) for E-cadherin (292), TβRII 

and pSmad2 expression. Seventy-one percent of the tumor tissues retained Smad2 activation 

in the absence of TβRII (Figure 3-1b). To determine the levels of Act A gene expression in 

ESCC, we analyzed published datasets and identified upregulation of Act A in ESCC tumor 

samples compared to normal tissues (Figure 3-1c,d; Table 3-1) (309,310). 

As esophageal epithelial cells invade in a fibroblast-dependent manner (292,294), we 

Figure 3-2. Increased epithelial cell invasion is associated with higher levels of secreted Activin A. (a) Esophageal epithelial cells 
expressing full-length E-cadherin (E), dominant-negative mutant E-cadherin (EC), or dominant-negative mutant E-cadherin and TGFβ 
receptor II (ECdnT) were grown in organotypic cultures with either fetal esophageal fibroblasts (FEF) or cancer-associated fibroblasts 
(CAF) embedded in the underlying matrix. Immunofluorescence staining with antibody against αSMA (green) and podoplanin (red) 
showed similar expression patterns in the cultures. Scale bar, 50µm. (B) Act A concentration in conditioned media from organotypic 
cultures is higher in invasive cultures as measured using indirect ELISA. *p=0.003, **p=0.005, ***p=0.03 (c) Stimulation of epithelial cells 
with Act A in monolayer plastic culture demonstrated phosphorylation of Smad. Neutralized antibody (nAb) against Act A prevented the 
induction of pSmad2 by Act A. Following stimulation with Act A or with conditioned media from organotypic culture increased expression of 
vimentin after 48h by Western blot. The increase was reversed in the presence of nAb. (d) Inhibition with the Act A antagonist, follistatin, 
or a pan-TGFβ inhibitor A83-01 suppressed MMP-9 secretion in E, EC, and ECdnT cells as measured by gelatin zymography. Upper 
bands reflect pro-MMP, lower bands activated, cleaved MMP (arrow). 



	 56 

employed organotypic cultures comparing the effects of the presence of embedded fetal 

esophageal fibroblasts (FEF) and cancer-associated fibroblasts (CAF) on cell invasion and Act 

A secretion (Figure 3-2a,b). E or EC cells grown in organotypic cultures with FEFs or CAFs 

had minimal invasive potential, while ECdnT cells showed cell invasion in either context 

(Figure 3-2a). Immunofluorescence staining with antibodies against the fibroblast-specific 

marker αSMA (green) exclusively labeled FEFs and CAFs in the matrix, while podoplanin (red) 

expression, a putative marker of collective invasion, stained the basal membrane of the 

epithelial cells (Figure 3-2a). 

Since our analysis of human ESCC samples implicated Act A in the regulation of 

Smad2 and cell invasion (Figure 3-1), we determined the levels of Act A in the conditioned 

media from organotypic cultures with different levels of invasion. We performed ELISA and 

observed a positive association between Act A secretion levels and epithelial cell invasion 

(Figure 3-2b). To test for specificity of Act A-mediated phosphorylation of Smad2 in this model 

system, we isolated protein from keratinocytes grown in a monolayer on plastic for Western 

blot analysis. We compared protein lysates from conditions with Act A stimulation or 

neutralizing antibody (nAb) to demonstrate that phosphorylation of Smad2 could be induced by 

Act A with high specificity. Increased signal for pSmad2 was detected following Act A 

stimulation, which was reduced in the presence of the neutralizing antibody. Similarly, treating 

ECdnT cells with Act A or conditioned media from organotypic cultures induced vimentin, a 

mesenchymal cytoskeleton component and a marker of tumor cell invasion. Conversely, Act A 

neutralizing antibody inhibited vimentin expression (Figure 3-2c). 

We speculated that Act A may alter extracellular matrix degradation, since epithelial cell 

invasion is strongly associated with the digestion of the extracellular matrix by matrix 
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metalloproteases. Therefore, we collected conditioned media from cells grown in monolayer 

and analyzed the secretion of the collagen-digesting matrix metalloproteases MMP-9 and 

MMP-2 using gelatin-zymography (Figure 3-2d). When using recombinant follistatin, the 

endogenous inhibitor of Act A (311), or A83-01 (an inhibitor for ALK4/5/7), MMP-9 secretion 

was reduced compared to untreated or Act A stimulated monolayer cultures (Figure 3-2d). 

 

Stimulation with Act A increases spheroid size and cell invasion in vitro 

To identify the functional consequences of Act A-mediated Smad2 signaling, we grew E, EC 

Figure 3-3. Stimulation with Activin A increases spheroid size and cell invasion in vitro. (a) Esophageal epithelial cells, when grown 
embedded in 2% Matrigel, form spheroids. Immunofluorescence with Alexa568-conjugated Phalloidin stained the actin cytoskeleton. DAPI 
(blue) was used as a counterstain for nuclei. Scale bar, 50µm. Stimulation with recombinant Act A increased spheroid size and number as 
quantified in the graph, * and **p<0.0001. (b) Transendothelial cell migration was measured after stimulation of esophageal epithelial cells 
with Act A, ***p<0.0001 (c) Haptotactic (stimulation in top chamber) and chemotactic (addition to the media in the bottom chamber) 
invasion of ECdnT cells in response to Act A was measured in Boyden chamber assays. kSFM is media only control, *p<0.0001 (d) 
Proliferation index was determined after stimulation with two concentrations of Act A using the WST-1 assay. Cell proliferation was 
unchanged by stimulation with Act A. 
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and ECdnT cells embedded in 

Matrigel to induce spheroid 

formation (Figure 3-3a). In the 

presence of Act A, ECdnT 

cells form more and larger 

spheroids compared to E and 

EC cells (Graph and Table 3-2). In a transendothelial invasion assay, we observed decreased 

impedance as a measure of cell invasion through the endothelial cell layer (Figure 3-3b). 

Epithelial cells pre-treated with Act A were seeded on a layer of endothelial cells (HUVEC) and 

a significant disruption of the HUVEC layer was observed with Act A stimulation in normal E 

cells. More invasive EC and ECdnT cells disrupted the HUVEC layer to a comparable degree 

with or without Act A stimulation. 

When assessing Act A function in Boyden chamber invasion assays (Figure 3-3c), we 

added Act A either to the top chamber to act as a stimulant for the ECdnT cells or to the 

bottom to act as a chemoattractant. Act A increased haptotactic as well as chemotactic cell 

invasion. This observation was in line with our previous report that Act A increased cell 

invasion in esophageal cancer cell lines (294). 

Finally, we show that the increased cell invasion is independent of cell proliferation, as 

WST-1 assays did not show differences in proliferation index in response to two different 

concentrations of Act A stimulation compared to untreated normal media (Figure 3-3d).  

 

Imbalance of Act A induces epithelial cell invasion 

Organotypic cultures allow us to measure the effects of the stromal compartment and epithelial 

Table 3-2. Biostatistical analysis of spheroid size for each treatment. 
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cell homeostasis in a physiologically relevant context, while modifying signaling activation 

(Figure 3-4). As described earlier, wild-type E-cadherin expressing cells grow as a normal 

stratified epithelium without invasion into the matrix (Figure 3-4a). When treated with Act A, 

epithelium formation of E cells remained unchanged (Figure 3-4a). However, the addition of 

follistatin induced cell invasion, while Act A neutralizing antibody did not. Similarly, EC cells, 

Figure 3-4. Imbalance of Activin A induces epithelial cell invasion. (a) Esophageal epithelial cells expressing wild-type full-length E-
cadherin (E), dominant-negative mutant E-cadherin (EC), or dominant negative E-cadherin and TβRII (ECdnT) were grown in organotypic 
cultures in the presence of recombinant Act A, its antagonist follistatin or a neutralizing antibody (nAb) against Act A; H&E staining. 
Stimulation with Act A inhibited invasion of E and EC cells, but failed to suppress ECdnT cell invasion. Follistatin increased cell invasion 
in all cell types, whereas the nAb prevented invasion of E and EC cells, without an effect on ECdnT cells. (b) Immunohistochemistry 
staining with a Ki67 antibody showed no differences in cell proliferation. Scale bars, 50µm. (c) Indirect ELISA with antibody against Act A 
measured increased levels after addition of recombinant Act A in fetal esophageal fibroblasts (FEF) and ECdnT. Untreated ECdnT cells 
(Control) secreted higher baseline levels of Act A than FEF, which were reduced by follistatin. (d) TGFβ1 concentration was increased in 
response to stimulation with Act A and overall baseline secretion was higher in control ECdnT cells than fibroblasts, as measured by 
indirect ELISA. Follistatin inhibited TGFβ1 secretion. 
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which have minimal invasive potential, show slightly increased invasion when treated with 

follistatin. However, Act A treatment or addition of the neutralizing Act A antibody prevented 

EC cell invasion. This strongly supports our idea that the cells are sensitive to changes in Act 

A and show differential responses when exposed to varying Act A concentrations in a context-

dependent manner. 

ECdnT cells have the highest potential for cell invasion and could be considered 

dysplastic or pre-malignant ((294), unpublished data). In contrast to E and EC cells, treatment 

with Act A did not inhibit ECdnT cell invasion. Conditions that disrupt Act A function, such as 

follistatin treatment or Act A neutralizing antibody, enhanced ECdnT cell invasion. Although the 

degree of cell invasion varied between the cell lines and treatment, the proliferation index as 

analyzed by staining for Ki67-positive cells was unchanged (Figure 3-4b). Again, invasion and 

changes in Act A signaling were not dependent on cell proliferation. However, as disruption of 

Act A signaling using follistatin or the neutralizing Act A antibody had differential effects, the 

balance of Act A signaling appeared to be integral for the induction of cell invasion. 

In organotypic cultures, the respective treatments affected stromal as well as epithelial 

compartments. To analyze the role of Act A in autocrine and paracrine signaling, we 

determined Act A secretion levels in conditioned media from fibroblast and epithelial 

monolayer cultures stimulated with Act A or treated with the inhibitor follistatin (Figure 3-4c). 

FEFs did not secrete Act A though ELISA could detect the exogenous addition of Act A. 

Follistatin treatment had no effect on fibroblasts. Act A levels in ECdnT indicate endogenous 

expression and secretion, which was reduced in the presence of follistatin. Treatment with 

recombinant Act A elevated the levels measured by ELISA. Interestingly, TGFβ1 levels were 

influenced by Act A treatment in a similar pattern. Endogenous TGFβ1 secretion was at a 
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detectable level in fibroblasts, albeit higher in ECdnT. Follistatin reduced TGFβ1 secretion in 

both cell types. This may indicate a feedback mechanism of Act A and TGFβ signaling. 

 

Induction of cell invasion by Act A is fibroblast- and MMP-dependent 

Epithelial cells grown in a monolayer on plastic have different gene expression patterns and 

behaviors compared to cells grown in a physiological context, such as three-dimensional 

organotypic cultures. We have previously shown that fibroblast-secreted factors are necessary 

Figure 3-5. Regulation of cell invasion by Activin A is fibroblast- and MMP-dependent. (a) Separating the cellular matrix and 
epithelium of the organotypic cultures growing ECdnT cells through a collagen I layer, dashed lines, prevented cell invasion in the 
absence (control) and presence of Act A (+Act A). When the cellular matrix of the organotypic culture was treated with puromycin to kill the 
embedded fibroblasts before the ECdnT cells were seeded, epithelial formation occurred but invasion was inhibited with and without Act A 
stimulation. (b) Treatment of ECdnT organotypic cultures with a pan-MMP inhibitor, GM6001, suppressed cell invasion, which was not 
restored in the presence of Act A. Untreated (No tx) control ECdnT cells in organotypic culture invaded into the underlying matrix. TGFβ1 
treatment inhibited epithelial cell invasion. Scale bars, 50µm. (c) Immunohistochemistry showed nuclear localization of phosphorylated 
Smad (pSmad2, red) in control and Act A-stimulated conditions. Collagen IV (red) was disrupted in invasive cultures after Act A treatment. 
Loss of the fetal esophageal fibroblasts (FEF), labeled green with antibody against vimentin (no staining in lower panels), had no effect on 
the nuclear localization of pSmad2. The collagen IV layer was not disrupted in noninvasive cultures in the absence of FEFs. 
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to induce cell invasion of ECdnT cells (294), yet we observed that Act A could initiate ECdnT 

invasion in Boyden chamber assays in the absence of fibroblasts or fibroblast-conditioned 

media (Figure 3-3b,c). We aimed to create an environment to address epithelial-fibroblast 

crosstalk and its effects on cell invasion. First, we overlaid the cellular matrix with a collagen I 

layer to prevent direct physical interaction of the epithelial cells with the embedded fibroblasts 

and potentially minimizing access to fibroblast-secreted factors (Figure 3-5a). ECdnT cells did 

not invade into the stroma in the presence of a collagen I layer, regardless of Act A stimulation. 

As the collagen I layer could alter the pliability and stiffness of the matrix affecting cell invasion, 

we next performed the experiment without the collagen I layer, however treated the stromal 

layer with the antibiotic puromycin to kill the embedded fibroblasts. Fibroblasts were allowed to 

crosslink and contract the collagen I/Matrigel matrix during the initial 5 days of culture then 

fibroblasts were killed by puromycin-treatment. ECdnT cells in the absence of fibroblasts did 

not invade into the extracellular matrix in control or Act A stimulated cultures (Figure 3-5a). 

This supports our previous observation that fibroblast paracrine signaling is important for 

epithelial cell invasion. 

As MMP-9 secretion was induced by Act A treatment and correlated with increased cell 

invasion of ECdnT cells in organotypic cultures, we set out to determine if MMPs are 

necessary for Act A-induced ECdnT cell invasion. Using a pan-MMP activity inhibitor GM6001, 

we could abolish ECdnT cell invasion which could not be restored by Act A addition (Figure 3-

5b). This finding indicates that blocking MMP activity downstream of Act A disrupts the 

signaling cascade necessary for ECdnT cell invasion. As a control, we treated ECdnT cells 

with TGFβ1, which inhibited ECdnT cell invasion (Figure 3-5b). These data show that Act A 

and TGFβ1 have independent functions in this cell system, but also highlight the complexity of 
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their balance. Immunofluorescence staining with antibodies against pSmad2 showed a strong 

nuclear signal in untreated control and Act A stimulated-organotypic cultures (Figure 3-5c). 

Collagen IV (red) was deposited at the basement membrane, but was disrupted after Act A 

treatment. The collagen IV layer was not disturbed in non-invasive conditions without 

fibroblasts regardless of Act A stimulation. Absence of fibroblasts (lack of vimentin-positive 

cells, green), while inhibiting cell invasion, only marginally diminished pSmad2-positive signal 

in the epithelial layer. 
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Figure 3-6. shRNA-mediated loss of Activin A promotes epithelial cell migration and invasion. (a) ECdnT cells transfected with 
shRNA-INHBA-GFP constructs (shINHBA3 through 5) were sorted by flow cytometry for positivity and low/high expression (left versus right 
gating). (b) Boyden chamber migration assays were performed using shINHBA-high and shINHBA-low expressing cells. Both shINHBA-high 
and shINHBA-low showed overall increased in vitro migration compared with parent and empty vector (pGIPZ-high and -low) cells. Migrated 
cells are depicted as the number of cells counted per high-powered field. Analysis was performed using a one-way ANOVA and subsequent 
Student’s t-test. (c) shINHBA and empty vector control cells (pGIPZ-high) were grown in organotypic cultures with normal fetal esophageal 
fibroblasts (FEF). shINHBA cultures had increased epithelial cell layer thickness and increased collective cell invasion into the underlying 
stroma, compared with control cultures. Scale bars, 50µm. (d) NOD/SCID flank injections were performed using shINHBA high and control 
(parent and empty vector pGIPZ high) cells in co-culture with FEF. After 6 weeks post injection, shINHBA high cells showed overall greater 
tumor growth, compared to parent and pGIPZ high control cells. 
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Act A knockdown results in cell invasion and tumorigenesis 

Our data obtained in monolayer and organotypic cultures thus far have suggested that the pro-

invasive role of Act A was in part driven by the presence of fibroblasts and the induction of 

MMP expression. Therefore, we next set out to determine if ECdnT cells would exhibit an 

invasive phenotype without Act A secretion and signaling. To answer this question, ECdnT 

cells were transduced with three distinct clones to stably express shRNA specifically targeting 

Act A, shINHBA. Following transduction, the cells were sorted by flow cytometry to select for 
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Figure 3-7. Images of ECdnT cells transduced with shRNA against Act A, shINHBA, and empty control pGIPZ vector. Brightfield 
and corresponding fluorescent images shown had low (left panel) and high (right panel) GFP expression in each of the three clonal cell 
lines. 
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GFP-positive populations. To examine if Act A exerts distinct functions at different expression 

levels, we sorted the stable shRNA and empty vector control clones by GFP-low (shINHBA-

low) and GFP-high (shINHBA-high) expression (Figure 3-6a; Figure 3-7). In Boyden chamber 

migration assays, shINHBA-high and shINHBA-low cells showed increased chemotactic 

migration compared to parent and empty vector (pGIPZh) control cells (Figure 3-6b; Figure 3-

8a). shINHBA-high and shINHBA-low cells showed no proliferation differences compared to 

controls (Figure 3-8b). Interestingly, shINHBA-low cells showed increased migration compared 

to shINHBA-high cells, suggesting a dose-dependent effect of Act A signaling. Dose-

dependent effects of Act A signaling have been previously described, primarily in 

embryogenesis (9,28,312). Similarly to the effect observed in the Boyden chambers, 

organotypic reconstructs of shINHBA-high cells showed thicker epithelial cell layers and 

increased invasion into the underlying stroma compared to the pGIPZ-high control (Figure 3-

6c). 

 

Figure 3-8. Migration, invasion and proliferation of shINHBA cells, compared to pGIPZ control. (a) Images of Boyden chamber 
migration assays demonstrate increased motility of cells lines transduced with shRNA against Act A, shINHBA. Crystal violet staining of 
the membranes after cell migration. (b) Proliferation of shINHBA cell lines compared to pGIPZ control vector. WST-1 assays were 
performed on three different INHBA knockdown cell lines and showed no differences in proliferation index compared to empty vector 
control. 
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Finally, as we were able to observe an effect after loss of Act A in epithelial cells in vitro, 

we set out to explore functional consequences of Act A suppression in vivo. Utilizing a 

Matrigel-plug xenograft model, we subcutaneously injected shINHBA-high, pGIPZ-high, and 

parent ECdnT cells with FEF into the flanks of female NOD/SCID mice. After six weeks of 

growth, mice injected with shINHBA-high cells had larger tumors compared to pGIPZ-high and 

parental control cells (Figure 3-6d). Therefore, we conclude that Act A function is context- and 

concentration-dependent and can either promote or inhibit epithelial cell migration, invasion, 

and tumor growth. 

 

Discussion 

Keratinocyte differentiation in the esophagus has much in common with other squamous 

tissues, such as the interfollicular skin and the oropharynx, making the esophagus an 

outstanding model to understand squamous epithelial homeostasis and disease (9,28,312). 

We have previously shown that the coordinated loss of the cell adhesion molecule E-cadherin 

and TGFβ receptor II is a frequent event in ESCC and results in increased cell invasion (292). 

Esophageal cancer has a high mortality rate, with 5-year survival remaining static at 19% 

(313); the current treatment options for patients are limited. The identification of mechanisms 

that disrupt esophageal homeostasis advances our understanding of the development and 

progression of pre-neoplastic lesions and has clinical significance.  

Little is known about Act A and its involvement in esophageal disease. Act A expression 

is associated with lymph node metastasis, staging, poor patient prognosis (314), and 

concomitant upregulation of N-cadherin (315). Act A has been associated with ESCC 

aggressiveness. This increase in aggressiveness is accompanied by increased proliferation 

(316) and MMP-7 activity (317). We observed increased epithelial levels of MMP-9 in response 
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to Act A stimulation, while MMP-2, which is mainly secreted by the fibroblasts in our system 

(data not shown), remained largely unaffected. While treatment with follistatin and A83-01 

enhanced cell invasion, it results in reduced MMP-9 and MMP-2 secretion as well as activity, 

indicating that other mechanisms are involved in cell invasion independent of MMP-9 and 

MMP-2 (unpublished data). Analysis of publicly available datasets identified frequent 

upregulation of Act A, but does not allow us to identify which subcellular compartment (tumor 

or stromal) is responsible Act A expression or secretion. Our data indicate that Act A exerts 

paracrine function on the fibroblasts resulting in a feedback loop required for epithelial cell 

invasion, since depletion of the fibroblasts in the organotypic cultures inhibits Act A-mediated 

cell invasion. 

Our unique opportunity to analyze Act A function using three-dimensional organotypic 

cultures is highlighted by the differences in Act A signaling regulation as measured by its target 

ID1 in monolayer and three-dimensional cultures (306). Act A and TGFβ overlap in their 

intracellular signaling cascades (307) and function, as demonstrated by deletions of TGFβ2, 

TGFβ3 and the Act A subunit, inhibin βA, which result in cleft palate defects in the respective 

mouse models (308-311). Furthermore, analysis of the Act A- and TGFβ-induced 

transcriptome demonstrate multiple common downstream targets (92). Mutations in the 

TGFβ/BMP signaling axis are frequent events in different types of cancer. Similar to a 10-bp 

polyadenine tract within the TGFβ receptor type II gene that results in a frameshift mutation in 

GI cancers, a biallelic mutation in ACVR2 has been identified in colorectal and pancreatic 

cancer (89). ACVR1B is mutated in pancreatic cancer (318). In a majority of sporadic 

colorectal cancers, BMPR2 expression is impaired (319). BAMBI (BMP and Activin Membrane-

bound Inhibitor) is upregulated in colorectal cancer, is under direct regulation of the Wnt 
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pathway (229) and is part of a gene expression profile that predicts metastasis (320). 

Interestingly, stimulation of organotypic cultures with TGFβ1 resulted in suppressed 

ECdnT invasion, while recombinant Act A was unable to inhibit cell invasion. Treatment with 

Act A or Act A neutralizing antibody had no effect in “normal” organotypic epithelia retaining E-

cadherin expression and intact TGFβ signaling. In these normal epithelial cells, only the 

addition of follistatin induced cell invasion demonstrating the importance of a balance between 

the Act A-mediated signaling and BMP pathways. Follistatin, while binding Act A with high 

affinity, can also antagonize BMP signaling, in particular BMP2, 4, 7 and 11, as well as 

myostatin. BMPs, like Act A, signal through surface receptor complexes containing type I 

(ALK2, ALK3, ALK6) and type II (BMPRII, ActRII, ActRIIB) receptors. While the BMPs, 

particularly BMP2 and BMP4, have higher affinity for their type I receptors, they can still 

stimulate signaling through the shared type II receptors (291). These observations indicate that 

changes in the balance between Act A- and BMP-mediated signaling can affect the phenotype 

in a context-dependent manner. ECdnT organotypic cultures, which model a pre-malignant 

phenotype, showed enhanced invasion in the presence of neutralizing antibody and follistatin, 

compared to untreated cells. While neutralizing Act A in EC cells suppressed invasion, it failed 

to inhibit ECdnT cell invasion, indicating that more invasive cells might be less responsive to 

the invasion-suppressive functions of Act A. Follistatin, on the other hand, increased invasion 

in all cell lines tested. 

Follistatin is an antagonist of myostatin (GDF8), in addition to inhibiting Act A. In an 

analysis of publically available esophageal and head and neck squamous cell carcinoma 

datasets (GDS2520, GDS3838), myostatin, unlike INHBA, is not differentially expressed in 

cancer compared to normal tissues. There is no evidence in the literature to suggest that 
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myostatin contributes to collective invasion or the initiation of ESCC, however myostatin is a 

key player in later stages of cancer progression through its role in cancer cachexia (321,322). 

High serum levels of follistatin have been detected in patients with ovarian (323) and 

metastatic prostate cancer (324). In oral squamous cell carcinoma, serum levels of follistatin 

and Act A were not significantly different in the cancer patients compared to control groups 

(104). Interestingly, follistatin, as well as Act A, was overexpressed in tumor tissues from these 

patients. In the same study, Act A expression was shown to correlate with poor prognosis 

overall and disease-free survival, while follistatin was not (104). This observation further 

highlights that follistatin may have independent roles other than antagonizing Activin A. In 

other studies, however, follistatin upregulation has been positively correlated with cell motility, 

invasion and metastasis (325), while other groups have demonstrated that follistatin can also 

inhibit experimental metastasis in SCID mice (326). 

Knockdown of Act A in ECdnT cells using shRNA demonstrated epithelial cell-

dependent effects of Act A, whereas the response of the stromal cells remained unaltered. 

Furthermore, cells with low levels of Act A knockdown were more invasive than with high levels 

of suppression, indicating a dose-dependent phenotype. As the observations for the use of 

neutralizing antibody in the different cell lines appear contradictory, a possible explanation is 

that final Act A activity may vary following neutralization and, therefore, initiate differential 

cellular responses. Increased tumor initiation and invasion, as observed with ECdnT cells, 

supports the notion that endogenous Act A may suppress tumor initiation. Based on mouse 

models targeting Act A expression in the skin, it has been shown that Act A overexpression 

leads to epidermal hyperplasia (327). However, when Act A-overexpressing mice were bred 

with transgenic animals carrying dominant-negative deletion of the kinase-domain in the 
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ActRIB, hyperplasia, hyperproliferation and abnormal keratinocyte organization could be 

rescued (328). These data elude to the importance of Act A levels in the regulation of epithelial 

architecture. Interestingly, the same group observed differential results for Act A effects in vitro 

and in vivo, not only in regard to epithelial cell proliferation, but also migration. Act A promoted 

migration in the wounded skin, but showed no pro-migratory effect in vitro (323). 

These observations, along with our results, indicate that follistatin and shRNA against 

Act A could increase invasion and tumorigenesis depending on the cellular context. 

Exogenous Act A treatment in the background of mutant TβRII did not inhibit cell invasion, an 

additional hint at signal regulation through Act A gradients. Previous research regarding the 

role of Act A in embryogenesis may allow for the elucidation of the functional consequences of 

Act A during tumorigenesis, as the reactivation of essential developmental pathways have 

been found to contribute significantly to cancer initiation and development. Xenopus models 

have shown the dose-dependent effect of Act A in endo-mesoderm development. Act A 

induces specific gene expression signatures at increasing concentrations, thus inducing 

distinct cell fates (26,28,329,330). 

This process occurs through long-

range Act A diffusion through the 

extracellular matrix, and has been 

shown to signal in a cell-specific 

manner (330,331). The effect of 

Act A is further complicated 

through its intermingling with 

additional signaling pathways, such 

Table 3-3. Gene expression analysis. Gene expression analysis after laser-
microdissection of invasive and non-invasive ECdnT cells compared to E cells 
demonstrated misregulation of TGFβ, Act A and BMP signaling targets as validated 
by mass spectrometry. 
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as Wnt (332). Therefore, based upon ours and previous studies, we conclude that the balance 

of Act A concentration is crucial to exert its potentially dose-dependent dual function on 

invasion and growth. 

Of note, laser-capture microdissection RNA expression analysis of invasive untreated 

ECdnT cells identified changes in multiple members of the TGFβ family (Table 3-3). Most of 

these targets have been validated in mass-spectrometry analysis using conditioned media 

from ECdnT organotypic cultures. While BMP2 itself was downregulated, Gremlin 1 was found 

to be upregulated. Similarly, the inhibitory pseudo-receptor BAMBI and latent-binding protein 1 

(LTBP1) was upregulated, indicating potential TGFβ signaling suppression. Further, Activin A 

inhibitors such as follistatin and follistatin-like were downregulated. These observations further 

highlight the importance of maintaining the equilibrium between intersecting pathways in the 

regulation of cell invasion and potentially tumorigenesis. 

In summary, we showed that overexpression and exogenous Act A treatment result in 

MMP-dependent invasion requiring the presence of fibroblasts. However, as follistatin induced 

epithelial cell invasion and knockdown of Act A similarly resulted in enhanced cell invasion and 

tumorigenesis, we propose that low levels of Act A result in elevated motility or invasive 

potential, while high Act A levels, depending on the cellular context, results in less invasion. In 

conclusion, shifting the balance between Act A and follistatin can disrupt epithelial 

homeostasis. 
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Preface 

In this chapter, we expanded upon the work completed in Chapter 3. In addition to examining 

the role that Activin A plays in the context of the esophageal squamous cell microenvironment, 

we looked further into the ligand-receptor interaction that is responsible for the initiation of such 

a phenotype. To do so, I studied three separate conditions: dysplastic esophageal squamous 

cells, and ACVRIB-positive and ACVRIB-negative esophageal squamous cell carcinoma 

(ESCC) cells. I tested these cell types using a three-dimensional organotypic reconstruct 

model to investigate not only how these dysplastic and ESCC cells respond to high stromal 

Activin A expression in the presence or absence of ACVRIB, but also the autocrine and 

paracrine effects of stromal Activin A. The results presented in this chapter ultimately identified 

a new role for the Activin A-ACVRIB receptor complex in regulating esophageal squamous cell 

invasion. 

 

Abstract 

Background: Esophageal squamous cell carcinoma (ESCC) is a global public health issue, as 
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it is the eighth most common cancer worldwide. The mechanisms behind ESCC invasion and 

progression are still poorly understood and warrant further investigation into these processes 

and their drivers. In recent years, the ligand Activin A has been implicated as a player in the 

progression of a number of cancers. The objective of this study was to investigate the role of 

Activin A signaling in ESCC. 

Methods: To investigate the role Activin A plays in ESCC biology, tissue microarrays 

containing 200 cores from 120 ESCC patients were analyzed using immunofluorescence 

staining. We utilized three-dimensional organotypic reconstruct cultures of dysplastic and 

esophageal squamous tumor cells lines, in the context of fibroblast-secreted Activin A, to 

identify the effects of Activin A on cell invasion and determine protein expression and 

localization in epithelial and stromal compartments by immunofluorescence. To identify the 

functional consequences of stromal-derived Activin A on angiogenesis, we performed 

endothelial tube formation assays. 

Results: Analysis of ESCC patient samples indicated that patients with high stromal Activin A 

expression had low epithelial ACVRIB, an Activin type I receptor. We found that 

overexpression of stromal-derived Activin A inhibited invasion of esophageal dysplastic 

squamous cells, ECdnT, and TE-2 ESCC cells, both positive for ACVRIB. This inhibition was 

accompanied by a decrease in expression of the extracellular matrix (ECM) protein fibronectin 

and podoplanin, which is often expressed at the leading edge during invasion. Endothelial tube 

formation was disrupted in the presence of conditioned media from fibroblasts overexpressing 

Activin A. Interestingly, ACVRIB-negative TE-11 cells did not show the prior observed effects 

in the context of Activin A overexpression, indicating a dependence on the presence of 

ACVRIB for this phenotype. 
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Conclusions: We describe the first observation of an inhibitory role for Activin A in ESCC 

progression that is dependent on the expression of ACVRIB. 

 

Background 

Esophageal cancer is the eighth most prevalent cancer and sixth most common cause of 

cancer-related deaths globally (333,334). The different subtypes of esophageal cancer are 

esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). 

Though the prevalence of EAC has now surpassed that of ESCC in North America and 

Europe, ESCC remains the dominant subtype globally (~80%), with the highest incidence and 

mortality occurring in developing countries in Asia (334-336). ESCC poses a great public 

health challenge, as little progress has been made in improving diagnosis and outcomes for 

patients. Approximately 80% of ESCC is diagnosed in late stage and has only a 15% 5-year 

survival rate; these statistics have remained stagnant over the last 20 years (333-335). Though 

the list of targeted therapies is constantly growing, therapeutic resistance and recurrence 

continues to occur (334-337). To address this problem, an examination of new diagnostic and 

prognostic indicators, as well as the mechanisms underlying progression, is needed to provide 

further insight into new methods to combat ESCC.  

Activin A, a homodimer of inhibin βA subunits, has been indicated as a key player in 

ovarian, prostate and breast cancers (338,339). A member of the TGFβ superfamily, Activin A, 

upon binding an Activin type II (ActRII/B) and type I (ACVRI/B) receptor, subsequently 

activates the Smad cascade thereby driving transcription of target genes (reviewed in (340)). 

Activin A was initially discovered as a gonadotroph, where it acts as a potent inducer of cell 

cycle arrest (7,341). In vivo knockdown of inhibin βA in mice leads to incomplete development 
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(87) and defects in squamous tissue wound healing (327). Although previously linked to 

carcinogenesis (342), the mechanism and precise contribution of Activin A to initiation and 

progression remains to be elucidated. Studies in gastric cancer have shown Activin A to be a 

potent inhibitor of angiogenesis and inducer of apoptosis (139,343); however, similar to TGFβ, 

Activin A can act as a tumor suppressor or promoter in different contexts. In breast cancer, 

some reports have indicated that Activin A can induce cell growth and epithelial-mesenchymal 

transition (EMT) (344), whereas other studies have demonstrated that Activin A treatment 

induces cell cycle arrest and inhibits growth (7,345). This “dual role” phenomenon has also 

been observed in prostate (346) and lung (347,348) cancers.  

In the esophagus, clinical and experimental evidence has indicated that Activin A 

promotes cancer progression. Clinical studies have correlated increased Activin A expression 

with tumor aggressiveness, differentiation status (349), and poor patient prognosis (317). 

Several explanations have been suggested to explain the mechanisms induced by Activin A. In 

ESCC, one such proposal for the Activin A contribution to tumor progression is through the 

induction of N-cadherin with subsequent loss of E-cadherin, a feature that has been associated 

with increased tumor aggressiveness (92). Additional evidence has suggested that Activin A 

can upregulate MMP-7 expression, which has been correlated with gastric and colorectal 

cancers (350) via the transcription factor AP-1, a non-canonical pathway (89). 

Taken together, contrary to its characterization as an inhibitor of angiogenesis and as a 

growth suppressor, overexpression of Activin A indicates that, during ESCC progression, this 

signaling pathway switches function from anti-tumorigenic to pro-tumorigenic regulation. Of 

particular importance is the contribution of the microenvironment in this context, which is 

investigated here. Activin A has been shown to not only exert functional effects on tumor cells, 
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but also on stromal cells located within the microenvironment, where Activin A can induce a 

“wound healing” phenotype (reviewed in (351)). 

To address the contrasting roles of Activin A, a growth inhibitor known to be highly 

expressed in several cancers, we aimed to determine the source of Activin A (stromal versus 

epithelial-secreted) and to mimic stromal overexpression in an organotypic reconstruct culture 

system. In this study, we show that, in a dysplastic esophageal microenvironment, fibroblast-

secreted Activin A, as one source of stromal Activin A, suppresses cell invasion through the 

inhibition of epithelial cell proliferation and the regulation of extracellular matrix components. 

We further observe that esophageal TE-2 tumor cells respond to fibroblast-derived Activin A 

with inhibition of cell invasion similar to the dysplastic cells, yet this effect was not observed in 

the Activin receptor IB (ACVRIB)-negative ESCC cell line TE-11. We conclude that during 

cancer progression, in concordance with upregulated stromal Activin A expression, ACVRIB is 

frequently downregulated in ESCC cells, allowing an escape from the inhibitory effects of 

Activin A as a novel mechanism of esophageal tumorigenesis. 

 

Methods 

Cell lines and cell culture 

Fetal esophageal fibroblasts were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

(Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS) (Atlanta 

Biologicals, Norcross, GA) and 1% penicillin and streptomycin (P/S) (Gibco) (294). Primary 

esophageal keratinocytes expressing dominant-negative mutants of E-cadherin and TβRII 

(ECdnT), established as previously described (292), were cultured in keratinocyte serum-free 

media (KSFM) supplemented with 40 µg/mL bovine pituitary extract, 1 ng/mL epidermal growth 
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factor (EGF), and 1% P/S (Gibco). The ESCC cell lines TE-2 and TE-11 were grown in RPMI 

and DMEM (Gibco), respectively, and supplemented with 10% FBS and 1% P/S (352). The 

endothelial cell line HMEC-1 were cultured in MCDB131 (Gibco) supplemented with 10% FBS, 

10 ng/ml EGF, 1 µg/ml hydrocortisone (Sigma-Aldrich, St. Louis, MO), and 1% P/S (353). 

 

Retrovirus infection 

Overexpression of Activin A was performed using a retroviral construct containing cDNA for 

INHBA, the sequence that encodes the inhibin βA subunit, as previously described (354). The 

vector backbone pBABE-zeo was purchased from AddGene (plasmid #1766 (355)) and inhibin 

βA cDNA was inserted at the multiple cloning site. Virus was generated using Φ-Ampho 

HEK293T cells (ATCC CRL-3213). Fibroblasts (Fibro-ActA) were then transduced and 

selected using Zeocin (Life Technologies) at a concentration of 800 µg/ml. Fibroblasts 

transduced with an empty pBABE-zeo vector (Empty) and untransfected parent fibroblasts 

(Parent) were used as controls. Activin A overexpression was validated by ELISA. 

 

Cell contraction assay 

Cell contraction assay was performed according to the manufacturers’ protocol (Cell Biolabs, 

Inc., San Diego, CA). 3-butanedione monoxime (BDM) was used as a control. 

 

ELISA 

Capture ELISAs for Activin A were purchased from R&D Systems (Minneapolis, MN) and 

performed using conditioned media according to the manufacturers’ instructions. 
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Organotypic culture 

Organotypic reconstruct cultures were performed as previously described (356). Briefly, 

parental, empty, or Fibro-ActA were seeded into a 3D matrix (75,000 cells/well) containing 

collagen I and Matrigel (BD Biosciences, Franklin Lakes, NJ) and allowed to incubate for 7 

days at 37 °C. Following incubation, ECdnT, TE-2, or TE-11 cells were seeded on top of the 

fibroblast matrix (500,000 cells/well). Cultures were then allowed to incubate an additional 10 

days. Treatments were added to the cultures beginning two hours following epithelial cell 

seeding and refreshed every two days. A neutralizing antibody against Activin A (nAb; R&D 

Systems) and A83-01, a chemical inhibitor of TGFβ/Activin A/BMP type I receptors 

(ACVRIB/TβRI/ALK7) (Tocris, Bristol, UK), were used for treatment. 

 

 

Table 4-1. Antibodies used for immunofluorescence.  
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Staining 

Immunofluorescence of FFPE sections 

At time of harvest, organotypic cultures were fixed in 10% formalin and embedded in paraffin. 

Cultures were cut to 5 µm sections, deparaffinized, and heated for 12 minutes in 1XTE buffer 

in a pressure cooker to perform antigen retrieval. Sections were blocked with 1XPBS 

containing 5% bovine serum albumin (1XPBS + BSA; Sigma-Aldrich) for one hour at room 

temperature. The sections were incubated with primary antibody diluted in 1XPBS + BSA 

overnight at 4°C. The following day, sections were washed three times with 1XPBS, and 

incubated with a secondary antibody with a conjugated fluorophore (anti-rabbit Texas Red 

1:200, Vector Laboratories, Burlingame, CA; anti-mouse DyLight Alexa488 1:200, Vector 

Laboratories; anti-rat Alexa594 1:200, Life Technologies), diluted in 1XPBS + BSA, for 1–2 

hours at room temperature. Sections were washed three times and mounted using ProLong 

Gold anti-fade with DAPI (Life Technologies). Sections were imaged on a Zeiss microscope, 

using Axiocam and AxioVision software (Carl Zeiss Microscopy, Thornwood, NY). Antibodies 

used for immunofluorescence are listed in Table 4-1. 

 

Endothelial tube formation assay 

Growth factor-reduced Matrigel (Corning Inc., Corning, NY) was added to each well of a 96-

well plate and allowed to solidify at 37°C for approximately 30 minutes. HMEC-1 cells, in the 

appropriate conditioned media treatment, were seeded at 15,000 cells/well in triplicate to the 

Matrigel-containing wells and incubated for 18 hours at 37°C. Following incubation, bright field 

images of each well were taken and analyzed using Angiogenesis Analyzer for ImageJ (357). 

This software allows network organization analysis of a skeleton or tree, extremities or nodes 
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and junctions in a binary image (http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-

Analyzer-for-ImageJ&lang=en&artpage=3-7#outil_sommaire_3). Statistical analysis was 

performed by one-way ANOVA in GraphPad (GraphPad, San Diego, CA). 

 

ESCC tissue microarray 

Microarrays were purchased from US Biomax (Rockville, MD). Following immunofluorescence 

staining, cores were quantified using the “Measure Stained Area Fluorescence” algorithm as 

part of the Leica Microsystems Tissue IA version 4.0.6 program (Buffalo Grove, IL). 

Fluorescence area was measured in µm2. Antibodies used for immunofluorescence are listed 

in Table 4-1. 

 

Statistical analysis 

Experimental results were analyzed using Student’s t-test or one-way ANOVA and expressed 

as the mean +/- standard deviation. Statistical analysis of the in vitro experiments was 

performed in Prism 6.0 (GraphPad). ESCC microarrays were analyzed using linear 

generalized estimating equations (GEE) or Kruskal-Wallis tests. For matched samples, 

Wilcoxon signed rank tests were used. Results are expressed as the mean +/- standard 

deviation. Statistical analysis of the microarrays was performed using SPSS (IBM, Armonk, 

NY). 
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Results 

Epithelial ACVRIB expression levels are dependent upon expression of stromal Activin 

A in ESCC  

It has been well established that Activin A expression in normal physiology is low, with 

increased expression occurring in invasive cancer (298,317,358,359). We first aimed to 

determine the localization and expression level of Activin A in ESCC tissues. Using 

commercially purchased tissue microarrays, we stained 200 esophageal tissues (cancer 

adjacent, squamous cell carcinoma, and lymph node [LN] metastases) from 120 patients for 

Activin A and ACVRIB, the primary type I receptor involved in Activin A signaling (Figure 4-1a). 

Additional staining for keratin 14 (K14) to determine squamous cells, vimentin (Vim) to identify 

mesenchymal cells, and collagen as well as CD68, a glycoprotein expressed on monocytes, 

were used as controls. These markers allowed us to compartmentalize the localization of 

Activin A and ACVRIB localization to epithelial/tumor or stroma. Data are quantified in Figure 

4-2. Using Kruskal-Wallis tests and generalized estimating equations (GEE), we found that 

Activin A expression alone was not associated with tumor stage in this set of tumor tissues, 

similarly ACVRIB expression alone varied between stage and was not a predictor of tumor 

stage (data not shown). However, we identified that after controlling for epithelial ACVRIB 

expression, Activin A expression in the stroma was, indeed, a significant predictor of stage, 

when analyzed by multivariable GEE (Figure 4-1b). Therefore, we determined that with 

increasing stromal Activin A expression, epithelial ACVRIB expression decreased within this 

patient data set, thereby, promoting a more aggressive ESCC phenotype, as illustrated by 

increased stage. This relationship is illustrated in Figure 4-1c. We next examined 9 commonly 

utilized ESCC cell lines for protein expression of ACVRIB 
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Figure 4-1. Epithelial expression in ESCC patient samples is dependent upon the expression of Activin A. (a) Representative 
immunofluorescence staining of microarray samples (whole section image shown of tumor tissues Stage I-IV and lymph node [LN]) for 
INHBA/Activin A, ACVRIB, K14, and vimentin (Vim). (b) Using a linear generalized estimating equation (GEE), a significant interaction 
was found between total Activin A expression and epithelial ACVRIB as a predictor of stage. Though epithelial ACVRIB expression was 
not a predictor of stage alone, we found that stromal INHBA/Activin A and epithelial ACVRIB expression showed a significant 
interaction. Analysis of immunofluorescence was performed on the whole tissue section. (TMA = 200 cores) (c) Graphical illustration of 
the relationship between epithelial expression of ACVRIB and stromal expression of ACVRIIB, measured by intensity in µm

2
, in the TMA 

samples. Each dot represents a single patient sample. (d) Western blot of ACVRIB and ACVRIIB of the TE series of ESCC cell lines. β-
actin was used as a loading control. 
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and ACVRIIB, the 

primary Activin A type 

II receptor (Figure 4-

1d). ACVRIB 

expression was low in 

3 out of 9 cell lines 

and barely detectable 

in 4 out of 9, 

indicating decreased 

expression in 7 out of 

9 ESCC cell lines. On 

the contrary, 

ACVRIIB was 

downregulated in only one cell line, TE-5. To reconcile the high Activin A levels in the context 

of decreased ACVRIB expression and the functional consequences, we next grew dysplastic 

and TE-2 and TE-11 cancer cell lines in organotypic cultures.  

 

Fibroblast-secreted Activin A inhibits cell invasion of dysplastic esophageal cells and 

regulates extracellular matrix protein expression 

Fibroblasts play a substantial role in inflammation, wound healing, and extracellular matrix 

(ECM) deposition (126,360). In the context of cancer, fibroblasts are recruited by cancer cells 

via epithelial-mesenchymal crosstalk to rearrange the ECM to create a ‘reactive’ stroma, which 

provides an environment conducive to cell invasion (33,361). Microenvironment-derived Activin 

Figure 4-2. Epithelial and stromal markers do not vary between ESCC patient samples, by stage; 
control staining and analysis of TMA data. A comparison of ESCC patient samples, using 
immunofluorescence staining on a prepared microarray, showed that epithelial keratin 14 (K14) (a), stromal 
vimentin (b), the extracellular matrix protein collagen (c), and monocyte marker CD68 (d) expression did not 
significantly differ between stage and esophageal squamous cell carcinoma (SCC) versus lymph node 
metastasis (LN Met). 
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A has been implicated as part of the reactive stroma phenotype (127,362). Considering 

elevated levels of Activin A are found in the stroma despite the characteristic function of Activin 

A as an inducer of growth arrest, we first aimed to investigate the role of microenvironment-

derived Activin A 

in a three-

dimensional 

organotypic 

reconstruct (OTC) 

model in the 

presence of 

dysplastic 

esophageal 

keratinocytes 

(ECdnT) (292). As 

normal 

esophageal 

fibroblasts secrete 

low to negligible 

levels of Activin A 

((356) and data 

not shown), we 

retrovirally 

transduced 

Figure 4-3. Overexpression of Activin A, validated by ELISA, was persistent and did not affect 
fibroblast contractility; validation of assays by ELISA and cell contractility assay. (a) Overexpression 
of Activin A was validated following each retrovirus transduction. Levels of secreted Activin A protein, 
measured in conditioned media, were significantly higher in Act A compared to parent and empty vector 
control, ECdnT, TE-2, and TE-11 cells in 2D monolayer. Overexpression of Activin A was validated 
throughout the 17-day organotypic culture with ECdnT (b), TE-2 (c), and TE-11 (d). Fibro-ActA had 
sustained increased expression of Activin A during this time period. (e) Parent, empty, and Fibro-ActA had 
comparable ability to contract collagen, indicating that overexpression of Activin A alone did not hinder the 
fibroblasts ability to contract the extracellular matrix. 3-butanedione monoxime (BDM) was used as an 
assay control. (f) Quantification (percent) of fibroblast matrix contraction from (e). (One-way ANOVA, 
*p<0.05). 
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Figure 4-4. Overexpression of Activin A in the dysplastic esophageal microenvironment inhibits extracellular matrix protein 
reorganization. (a-c) Hematoxylin and eosin staining of parent, empty, and Fibro-ActA organotypic cultures. (d-f) Three-dimensional 
organotypic Fibro-ActA cultures exhibit no alterations in epithelial ECdnT E-cadherin (E-cad) expression, however vimentin (Vim) is 
downregulated in the fibroblasts, as examined by immunofluorescence. (g-i) αSMA expression was substantially downregulated in the 
fibroblasts, while podoplanin (PDPN) expression was downregulated in both epithelial cells and fibroblasts. The asterisks(*) in the parental 
and empty vector cultures denote co-localization of αSMA and PDPN, a common characteristic of cancer-associated fibroblasts. (j-l) 
Fibronectin (FN) deposition was decreased in Fibro-ActA cultures compared to parent and empty vector controls. (m-r) Ki67, a marker of 
proliferation, and laminin 5γ2, a marker of basal cell differentiation, was unchanged between conditions. (s-u) Collagen IV deposition, a 
primary component of basement membrane deposition, was decreased in Fibro-ActA compared to control. (v-x) Collagen IV staining, 
higher magnification of boxed region in (s-u). Arrows indicate the collagen IV basement membrane, laid by the epithelial cells. (Short scale 
bar = 20 µm; long scale bar = 5 µm) (n = 4) 
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fibroblasts with INHBA to achieve Activin A overexpression levels similar to those observed in 

cancer-associated fibroblasts (127,356). Upon 

embedding Activin A overexpressing fibroblasts (Fibro-

ActA) in the organotypic culture matrix, we validated 

overexpression and secretion of Activin A by ELISA 

(Figure 4-3a). Fibro-ActA secreted significantly more 

Activin A than the tested epithelial cells, ensuring that 

the majority of Activin A in OTC would be derived from 

the fibroblasts. To confirm that Activin A 

overexpression was maintained during the course of 

each OTC (17 days), we collected media every 2 days 

and measured Activin A concentrations by ELISA 

(Figure 4-3b-d). Parent and empty vector fibroblasts 

were used as controls. 

ECdnT cells showed collective cell invasion and 

keratin pearl formation characteristic of an invasive 

ESCC when cultured with control parent and empty 

vector fibroblasts (Figure 4-4a,b). When cultured with 

Fibro-ActA, ECdnT cell invasion was suppressed 

(Figure 4-4c). Immunofluorescence staining was 

performed with anti-E-cadherin (E-cad) antibody to 

identify the epithelial compartment. An examination of 

fibroblast protein expression by immunofluorescence 

Figure 4-5. Activin A overexpression 
reduced proliferation of TE-2, but not 
ECdnT and TE-11 cells. Quantification of 
Ki67 from ECdnT, TE-2, and TE-11 
organotypic cultures in Fig.s 4-4, 4-7, and 4-8. 
Proliferation of (a) ECdnT, (b) TE-2, and (c) 
TE-11 esophageal cells, as measured by 
nuclear Ki67 immunofluorescence staining, in 
three-dimensional organotypic cultures with 
parent, empty, and Fibro-ActA. (One-way 
ANOVA, *p<0.05). 
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showed that vimentin (Vim), a mesenchymal marker, and αSMA and podoplanin (PDPN), 

markers of fibroblast differentiation and activation, were downregulated in Fibro-ActA cultures 

(Figure 4-4d-i). We also observed substantial downregulation of the ECM protein fibronectin 

(FN) (Figure 4-4j-l). Interestingly, the ability of Fibro-ActA to interact with and contract the ECM 

was not altered until the epithelial cells were seeded (Figure 4-3e,f), indicating the necessity of 

epithelial-mesenchymal crosstalk to modify contractility. Epithelial cell proliferation, measured 

by Ki67 staining, did not change between conditions (Figure 4-4m-o, 4-5a). Interestingly, in all 

conditions, epithelial cells deposited laminin 5γ2, a squamous epithelium basement membrane 

marker (363), and collagen IV, a major basement membrane component (Fig. 2p-r) (364). 

Collagen IV localization to the basement membrane, however, was slightly reduced in Fibro-

ActA cultures (Figure 4-4s-x, arrows). These results support the role of Activin A as an 

invasion suppressor and indicate Activin A-dependent regulation of ECM-associated proteins. 

 

Inhibition of Activin A signaling during dysplasia restores extracellular matrix protein 

expression 

To demonstrate Activin A-dependence and specificity of epithelial invasion inhibition and the 

expression of several ECM proteins, we used two separate approaches for Activin A inhibition: 

a neutralizing antibody specific for the Activin A ligand (nAb) and A83-01, a chemical inhibitor 

of TGFβ/Activin A/BMP type I receptors (ACVRIB/TβRI/ALK7) (365). We have previously 

shown the ability of nAb and A83-01 to neutralize Activin A signaling in this model system 

(80,356). Treatment with nAb increased cell invasion in dysplastic empty vector control cells, 

yet could not overcome the inhibition of cell invasion in the context of Fibro-ActA cultures 

(Figure 4-6a-d). Similarly, A83-01 treatment, while increasing cell invasion in the ECdnT 
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cultures with empty vector control, could not restore cell invasion in the Fibro-ActA cultures 

(Figure 4-6e,f). When we examined ECM protein expression in these cultures by 

immunofluorescence, treatment with nAb could restore expression of fibrillar FN in Fibro-ActA, 

similar to that observed in empty vector untreated cultures, yet A83-01 their restoration; we 

also observed restoration of PDPN (Figure 4-6g-r). This indicates the necessity of Activin A 

signaling to induce expression of these proteins. Laminin 5γ2 was upregulated in the Fibro-

ActA cultures treated with both nAb and A83-01, the 

Figure 4-6. Inhibition of the Activin A ligand, but not the receptor, restores extracellular matrix protein expression. (a-f) 
Hematoxylin and eosin (H&E) staining shows that ECdnT cells did not invade in any of the Fibro-ActA cultures, however invasion was 
increased in empty vector cultures treated with an Activin A neutralizing antibody (nAb) or A83-01. (g-l) Epithelial cell podoplanin (PDPN) 
expression was restored to control levels in Fibro-ActA cultures following treatment with nAb. (m-r) Treatment of Fibro-ActA cultures with 
nAb partially restored stromal fibrillar fibronectin (FN) expression (asterisks) to compared untreated empty vector control levels. This effect 
was not observed following treatment with A83-01. (s-x) Laminin 5γ2 expression was increased in Fibro-ActA cultures treated with nAb 
and A83-01. (y-d’) Ki67 staining remained relatively unchanged between conditions. (e’-j’) Collagen IV deposition at the basement 
membrane was restored to the expression level of the control upon treatment of Fibro-ActA with nAb. This deposition was not observed in 
Fibro-ActA cultures treated with A83-01. (k’-p’) Collagen IV staining, higher magnification of boxed region in (e’-j’). Arrows indicate the 
collagen IV basement membrane, laid by the epithelial cells. (Short scale bar = 20 µm; long scale bar = 5 µm) (n = 2) 
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only tested marker to do so (Figure 4-6s-x). This result indicates that one potential mechanism 

of regulating laminin 5γ2 expression is through the Activin A-ACVRIB axis. Epithelial cell 

proliferation, measured by Ki67, was inhibited with the addition of A83-01 to all cultures, but 

was unaltered in the presence of nAb (Figure 4-6y-d’). Interestingly, when we examined the 

basal epithelial layer of the Fibro-ActA cultures treated with nAb, we also found collagen IV 

deposition at the basement membrane (Figure 4-6e’-h’). This was not observed in cultures 

treated with A83-01 (Figure 4-6i’,j’; higher magnification Figure 4-6k’-p’). We, therefore, 

conclude that the blocking of Activin A-receptor binding is necessary to inhibit the observed 

ECM alterations, yet not sufficient to induce cell invasion. 

 

Stromal Activin A inhibits TE-2 cell invasion in three-dimensional culture 

As we observed that fibroblast-derived overexpression of Activin A inhibited cell invasion in 

premalignant cells, we aimed to investigate if Activin A had a similar effect on cancer cells. We 

cultured the ESCC cell line TE-2 with Fibro-ActA. TE-2 cells express the Activin A receptor 

complex components, ACVR2B and ACVRIB (Figure 4-1d). Similar to the dysplastic model, 

TE-2 cells were unable to invade into the stromal layer when cultured with Fibro-ActA, 

compared to controls (Figure 4-7a-c). As in the ECdnT cultures (Figure 4-4), E-cadherin marks 

the epithelial layer and vimentin labels the fibroblasts in the stromal compartment (Figure 4-7d-

f). Interestingly, we observed co-localization of αSMA and PDPN in the control fibroblasts 

(Figure 4-7g,h, asterisks), not seen in the Fibro-ActA fibroblasts, suggesting differentiation to a 

myofibroblast lineage in the invasive tumor cultures (366). 

Unlike the ECdnT cultures, we observed differences in Ki67 staining between TE-2 

Fibro-ActA and control cultures indicating significantly decreased proliferation compared to 
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Figure 4-7. Overexpression of Activin A shows similar extracellular matrix protein regulation in ACVRIB-expressing ESCC. (a-c) 
Hematoxylin and eosin (H&E) staining of parent, empty, and Fibro-ActA organotypic cultures, cultured with TE-2 ESCC cells. (d-f) Three-
dimensional organotypic Fibro-ActA cultures exhibit no alterations in epithelial ECdnT E-cadherin (E-cad) expression, however vimentin 
(Vim) was downregulated in the fibroblasts, as examined by immunofluorescence. (g-i) αSMA and podoplanin (PDPN) expression was 
significantly downregulated in the fibroblasts and epithelial cells, respectively. The asterisks(*) in the parental and empty vector cultures 
denote co-localization. (j-l) Fibronectin (FN) deposition was decreased in Fibro-ActA cultures compared to parent and empty vector 
controls. (m-o) Ki67 staining was decreased in epithelial TE-2 cells cultured with Fibro-ActA, compared to parent and empty vector 
cultures (quantified in Figure 4-5). (p-r) Laminin 5γ2, a marker of basal cell differentiation, was unchanged between conditions. (s-u) 
Collagen IV deposition, a primary component of basement membrane deposition, was decreased in Fibro-ActA compared to control. (v-x) 
Collagen IV staining, higher magnification of boxed region in (s-u). Arrows indicate the collagen IV basement membrane, laid by the 
epithelial cells. (Short scale bar = 20 µm; long scale bar = 5 µm) (n = 2) 
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controls, as indicated by Ki67 staining (Figure 4-7m-o; Figure 4-5b). Similar to our 

observations in the premalignant ECdnT model, laminin 5γ2 expression was unchanged 

between conditions (Figure 4-7p-r). Collagen IV deposition in the basal layer was 

downregulated in Fibro-ActA (Figure 4-7s-x). Overall, these observations suggest that the TE-2 

ESCC cell line responds to the overexpression of Activin A by the fibroblasts in a similar 

manner to the dysplastic premalignant ECdnT model. This prompted us to analyze the effects 

of Fibro-ActA on the TE-11 ESCC cell lines, which we determined has low ACVRIB protein 

expression (Figure 4-1d). 

 

Cell invasion and regulation of the ECM proteins requires intact Activin A signaling 

Cancer cells have the ability to adapt in response to environmental factors. One such 

mechanism of adaptation is cancer cell clonal expansion, where one cancer cell with a 

particular advantage is able to survive and expand (367). Downregulation or loss of 

components of the TGFβ signaling cascade, such as TβRII, has been noted in several cancers 

and associated with increased aggressiveness (292,367,368). Similar observations have been 

made regarding the members of the Activin A signaling cascade (83). Given the observation 

that Activin A levels are high in the tumor setting and Activin A acts as an invasion suppressor 

for TE-2 cells, we used a ACVRIB-negative cell line, which has disrupted Activin A signaling 

due to the lost receptor complex component, to provide validation and mechanistic insight to 

the patient sample observations (Figure 4-1). As ACVRIB is the primary signaling kinase for 

the Activin A cascade, as discussed above, we chose the cell line TE-11 which had low 

ACVRIB expression (Figure 4-1d) to evaluate the response of ACVRIB-negative cells to 

fibroblast-derived Activin A. TE-11 cells invaded into the stroma, shown by H&E staining, in 
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Figure 4-8. ACVRIB-negative ESCC shows epithelial alterations, however extracellular matrix protein expression remains 
unaltered. (a-c) Hematoxylin and eosin staining of parent, empty, and Fibro-ActA organotypic cultures, cultured with TE-11 ESCC cells. 
Fibro-ActA cultures show increased keratin deposition in the epithelial layer, compared to parent and empty vector controls. (d-f) Three-
dimensional organotypic Fibro-ActA cultures exhibit no alterations in epithelial E-cadherin (E-cad) or stromal vimentin (Vim) expression, as 
examined by immunofluorescence. (g-i) αSMA and podoplanin (PDPN) expression was unchanged between conditions. Co-localization of 
the markers is denoted by asterisks(*). (j-l) Fibronectin (FN) deposition, (m-o) Ki67, and (p-r) laminin5γ2 expression was not different 
between control (parent and empty) and Fibro-ActA. (s-u) Collagen IV deposition, a primary component of basement membrane 
deposition, was decreased in Fibro-ActA compared to control. (v-x) Collagen IV staining, higher magnification of boxed region in (s-u). 
Arrows indicate the collagen IV basement membrane, laid by the epithelial cells. (Short scale bar = 20µm; long scale bar = 5µm) (n = 2) 
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both Fibro-ActA and control cultures (Figure 4-8a-c). By immunofluorescence, we examined 

the same epithelial, stromal, and ECM markers used in the previous experiments (Figures 4-4; 

Figure 4-6; Figure 4-7). As expected, in the TE-11 cultures, Activin A secretion by the 

fibroblasts did not alter the overall expression of vimentin, αSMA, PDPN, and FN (Figure 4-8d-

l). Similarly to the TE-2 cultures, co-localization of αSMA and PDPN was observed, however 

this was noted in all cultures, including Fibro-ActA (Figure 4-8g-i, asterisks). Ki67 and laminin 

5γ2 expression was unchanged between conditions (Figure 4-8m-r). Deposition of collagen IV, 

a common characteristic of cancer cells (369), was increased overall in TE-11 (Figure 4-8s-x) 

(83). In a related study analyzing Activin A signaling in head and neck squamous cell 

carcinoma (HNSCC), we observed similar alterations of ECM proteins induced by Activin A 

stimulation, which could no longer be detected upon utilizing knockout of ACVRIB in the 

HNSCC lines (data not shown). 

Taken together, we show that in contrast to the dysplastic ECdnT cells and the TE-2 

ESCC cell line, fibroblast-secreted Activin A could not suppress TE-11 cell invasion nor were 

ECM components altered, indicating the necessity of intact Activin A signaling to mediate 

these effects. In the absence of ACVRIB, we presume the tumor cells can escape Activin A-

mediated regulation with reciprocal consequences on the ECM itself. This would additionally 

explain the observation of increased tumor stage in the human tissue set for which stromal 

Activin A was high in tumors with low ACVRIB expression. 

 

Angiogenesis assessed by endothelial tube formation is significantly inhibited following 

treatment with conditioned media from Activin A overexpression cultures 

Because matrix metalloproteases (MMP) are known to be regulated by TGFβ signaling 
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pathways and have long been implicated as necessities for epithelial cell invasion, we 

performed gelatin zymography to examine total and active MMP-2 and MMP-9 expression. We 

found that expression of pro- and cleaved MMP-2 were reduced in Fibro-ActA cultures from 

ECdnT and TE-2 cells, yet their expression in TE-11 was not affected by fibroblast 

overexpression of Activin A throughout the 17-day culture (Figure 4-9a). Overall, MMP-9 

expression and activity remained largely unchanged in the different culture conditions, aside 

from an increase in active MMP-9 in the TE-2 cells at the end of the culture (day 17) in the 

presence of Fibro-ActA. These results suggest that, even in the presence of MMPs, which 

promote epithelial cell invasion, Activin A is able to suppress this effect. 

As MMPs, particularly MMP-2 and MMP-9, are necessary for tumor angiogenesis 

Figure 4-9. Fibro-ActA conditioned media from three-dimensional organotypic cultures inhibits in vitro angiogenesis. (a) Gelatin 
zymography of conditioned media collected from 3D-organotypic cultures at day 7 (fibroblasts alone), day 9 (media collection following the 
addition of epithelial cells), and day 17 (final collection). Arrows indicate the locations of pro- and cleaved MMP-2 and MMP-9. (b) 
Representative images of endothelial tube formation assays using HMEC-1 cells. HMEC-1 endothelial cells cultured with day 9 
conditioned media from ECdnT/Fibro-ActA and TE-2/Fibro-ActA cultures had less overall tube formation, compared to parent and empty 
vector controls. This effect was not observed upon treatment with TE-11/Fibro-ActA conditioned media. Quantification of endothelial 
extremities, nodes, junctions, and branches for the assays with ECdnT (c-f), TE-2 (g-j), and TE-11 (k-n) conditions shown in (b) 
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(reviewed in (370)) and Activin A has been characterized as a potent inhibitor of this process 

(139,144), we next examined the effect of Activin A overexpressing cultures on endothelial 

tube formation. We found that treatment of HMEC-1 endothelial cells with conditioned media 

from dysplastic ECdnT cultured with Fibro-ActA showed reduced tube formation, compared to 

parent and empty vector control conditioned media (Figure 4-9b). This effect was also 

observed when using TE-2 conditioned media from Fibro-ActA (Figure 4-9b). Quantitative 

analysis of the assay images showed that HMEC-1 cells treated with Fibro-ActA conditioned 

media from ECdnT and TE-2 cultures formed significantly less extremities, nodes, junctions, 

and branches, compared to parent and empty vector control (Figure 4-9c-j). These results 

indicate that overexpression of Activin A, and its crosstalk with the epithelial cell compartment 

in this context, results in the inhibition vessel formation ultimately leading to suppression of 

tumor cell expansion. Conditioned media from TE-11 cells cultured with Fibro-ActA, however, 

failed to reduce tube formation and only a significant reduction of nodes was observed (Figure 

Figure 4-10. Endothelial tube formation assays following treatment with recombinant proteins and the chemical inhibitor, A83-01; 
endothelial tube formation assays and quantification following treatment. (a) Bright field images of HMEC-1 endothelial tube formation 
assays treated with recombinant protein (TGFβ, Act A, or follistatin) or the chemical inhibitor A83-01. (b) Treatment of HMEC-1 cells with 
Activin A, follistatin, or A83-01, but not TGFβ, increased the number of formed endothelial extremities. (c-d) Compared to media control, 
treatment with recombinant protein (TGFβ, Act A, follistatin) or A83-01 increased the number of endothelial tube nodes and junctions, 
respectively. (e) Treatment of HMEC-1 cells with Activin A, Follistatin, or A83-01, but not TGFβ, increased the number of formed 
endothelial extremities. (One-way ANOVA, *p<0.05; scale bar = 200 µm).  
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4-9b,k-n). Interestingly, treatment of HMEC-1 cells with recombinant protein (TGFβ, Activin A, 

or the Activin A antagonist follistatin) or A83-01 were equally effective at inducing tube 

formation (Figure 4-10a-e). These results indicate that Activin A alone may not directly inhibit 

angiogenesis, however it may regulate the expression of several anti-angiogenic proteins to 

control this process through epithelial-mesenchymal crosstalk. 

 

Discussion 

It has been well documented that TGFβ receptors, which are closely related to Activin 

receptors, are downregulated as a means to evade growth suppression. In colorectal cancer, 

aside from loss of Smad4, TβRI and TβRII are commonly downregulated or lost (371). Similar 

observations have been made in laryngeal (372) and gastric cancers (reviewed in (373)). The 

downregulation of these receptors occurs concurrently with TGFβ upregulation (371). As there 

are significant similarities between these two pathways, the analogous observations made 

between the TGFβ pathway, as shown in the literature, and the Activin A pathway, 

demonstrated here, are not surprising. ACVR2 mutations have been described to attenuate 

Activin A signaling in prostate cancer (374) and microsatellite unstable colon cancer (375). The 

mutations identified are similar to the well-characterized frameshift mutations in TGFBR2 

(319). Inactivation of ACVRIB so far has only been identified in pancreatic cancer as a 

consequence of a somatic mutation (229), and homologous deletion is associated with an 

aggressive phenotype in pancreatic cancer (84). Based on the 120 esophageal squamous 

tumor tissues we analyzed in this study, we found that ACVRIB can also be lost in ESCC. 

Furthermore, while ACVRIB loss has not been described to contribute to esophageal cancer, 

the overexpression of Activin A has been identified previously to be associated with enhanced 

matrix metalloprotease expression (89) and ESCC aggressiveness (300), partially through 
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upregulated of N-cadherin (92). We have additionally addressed the loss of ACVRIB in the 

context of head and heck squamous cell carcinoma and have observed results similar to the 

data presented here (data not shown). 

In our study we found not only that Activin A is increased, but also that its proximity to 

the stroma is important to its function. When overexpressed in the tumor, Activin A confers 

differential effects. Some cancers, such as lung and head and neck squamous cell carcinoma, 

develop insensitivity to the growth inhibitory effects of Activin A, one of the hallmarks of cancer 

(56,57,101,120). In prior studies, we have described that treatment of premalignant cultures 

with recombinant Activin A induces esophageal cell invasion (356). In this context, however, 

signaling was not directional, as both epithelial and stromal compartment were exposed to the 

recombinant Activin A. In the current study, we mimicked a stromal source of Activin A, which 

we observed in the patient tissues. The fibroblast-secreted Activin A therefore contrasts 

stimulation of the whole culture with recombinant protein Activin A, showing inhibition of 

esophageal cell invasion. This inhibition is a consequence of intact Activin A signaling; 

however, loss of ACVRIB allows esophageal cancer cells, such as the cell line TE-11, to 

escape Activin A-dependent regulation.  

Though the results of our study provide significant insight into the role of Activin A 

signaling in cancer progression, limitations remain. The three-dimensional organotypic 

reconstruct culture system is an efficient way to examine cellular crosstalk in vitro, however it 

is a simplified environment and does not account for additional components of the 

microenvironment, such as endothelial cells or leukocytes. Activin A may be secreted by and 

signal within a variety of cell types, including those listed. In our study, we used fibroblasts as a 

source of stromal Activin A, therefore accounting for Activin A expression alone, but not the 
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effects within assorted cell types. The integration of different cell types into this system will 

provide further insight into the systemic effects of Activin A during cancer progression. We 

aimed to focus on angiogenesis as one example of the complex microenvironment and to 

identify the functional consequences of fibroblast-derived Activin A overexpression using the 

endothelial tube formation assay. Activin A has been consistently shown to function as a 

potent anti-angiogenic factor, contrary to reports indicating its oncogenic role. Treatment of 

endothelial cells with Activin A showed reduced tube formation possibly through inhibition of 

proliferation (2,4,9,32-35,61,85,139,140,336). In this study, we described a reduction of tube 

formation, as measured by the number of nodes, junctions and branches, dependent on intact 

Activin A signaling. Additionally, we observed that fibroblast-derived overexpression of Activin 

A downregulates vascular endothelial growth factor expression (VEGF), one of the key 

components of tumor angiogenesis (data not shown). Previous research identified that the 

majority of endothelial cells expresses ActRII/IIB and are therefore able to respond to Activin A 

ligand binding (9,26,28,42,43,56,85,140). However, as we used conditioned media from 

fibroblast-derived Activin A organotypic cultures, the effects we measured on tube formation 

may be indirect. In vitro co-culture studies of fibroblasts and endothelial cells in the presence of 

ESCC cells have shown that tumor cell-secreted TGFβ can activate fibroblasts resulting in 

VEGF secretion and increased formation of endothelial network formation (376). A number of 

pro-angiogenic factors were downregulated when we performed angiokine arrays (data not 

shown), which may be under the direct regulation of Activin A. Additionally, Activin A has been 

found to regulate several secreted factors, such as IL-8, VEGF, GnRH, and PTGS2 (377-379). 

Therefore, it can be difficult to conclude that Activin A overexpression alone is responsible for 

all of the observed effects in our experiments, particularly since contradictory evidence has 
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been previously observed (356). However, our study investigates a long-term stable 

overexpression of Activin A in a three-dimensional context, rather than the utilization of 

recombinant Activin A for in vitro treatments. Therefore, in this study, we were able to 

investigate the paracrine signaling effects due to epithelial-fibroblast crosstalk.  

In this paper, we showed that Activin A plays a necessary role in controlling 

mechanisms of esophageal squamous cell carcinoma invasion and, most likely, tumor 

progression. Activin A signaling from the stroma, e.g. fibroblasts, regulates expression of 

extracellular matrix proteins and thus signaling pathways involved in cell invasion. It has been 

found the expression of Activin type I receptors (ActRI and ACVRIB) and type II receptor 

(ActRII) mediates Activin A effects in collagen gel contraction using human lung fibroblasts 

(380). In pancreatic stellate cells, autocrine Activin A signaling induces activation and collagen 

secretion (381). We observed the loss of podoplanin and fibronectin in response to 

overexpression of Activin A, but also αSMA and podoplanin double positive fibroblasts in the 

invasive cultures. In the context of fibrosis, which is characterized by the presence of 

myofibroblasts, Activin A has been shown to regulate myofibroblast differentiation mediated by 

integrin α11β1, a collagen receptor expressed on fibroblasts (382). 

Interestingly, we believe that Activin A, when unable to bind and signal through 

ACVRIB, is then free to associate with other receptor complexes, such as BMPR2 or 

BMPR1/ALK2, to propagate a signal (383,384). This data highlights, for the first time, the 

importance of maintaining an intact Activin A signaling pathway to control ESCC invasion. 

Previous literature has shown that Activin A can bind with low affinity and transduce a signal 

through subsequent TGFβ family receptors, of particular note the BMP receptors (385). 

Substantial research has demonstrated that induction of the BMP pathway can result in 
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production of collagens, commonly leading to bone formation (386,387). In fact, Activin A has 

been reported to regulate ECM mineralization, as well as enhance BMP-induced formation of 

bone and collagen (311,388). This may be a mechanism to control ECM formation aside of 

ACVRIB-dependent Activin A signaling. 

 

Conclusion 

In conclusion, we have demonstrated that in a dysplastic esophageal squamous 

microenvironment, Activin A works to inhibit cell invasion into the stroma, however when the 

pathway becomes dysregulated, such as through the downregulation of ACVRIB, cells are 

rendered unresponsive. Dysregulation of the Activin A pathway may be a way in which cancer 

cells can adapt to circumvent inhibitory environmental factors. 
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CHAPTER V 
 
 

LOSS OF ACVRIB LEADS TO INCREASED SQUAMOUS CELL CARCINOMA 
AGGRESSIVENESS THROUGH ALTERATIONS IN ADHESION PROTEINS 

 
Authors: Holli A. Loomans, Shanna A. Arnold, Kate Hebron, Chase J. Taylor, Andries Zijlstra, 

and Claudia D. Andl 

 

Preface 

In Chapter 4, we established the considerable role of the Activin A signaling pathway in 

regulating cell invasion in ESCC, as well as noting this effect is necessitated by Activin 

receptor type IB, ACVRIB. Naturally, the work presented in Chapter 4 led us to investigate how 

the lack of squamous cell carcinoma (SCC) response to Activin A due to the absence of 

ACVRIB alters cell behavior and overall function. To begin this investigation into Activin A-

ACVRIB signaling, I first used the head and neck SCC (HNSCC) cell line OSC-19 to generate 

a CRISPR/Cas9 cell line with genetic deletion of ACVRIB (ACVRIB-KO) to investigate the 

long-term, stable effects of loss of ACVRIB. Following validation, I tested these cells in a 

variety of in vitro assays (proliferation, migration, invasion, organotypic culture) to examine the 

biological effects of ACVRIB deletion. Small interfering RNA (siRNA) was used an additional 

cell line, KYSE520, to validate my observations. Interestingly, I found that not only does loss of 

ACVRIB lead to a more invasive, aggressive phenotype in three-dimensional culture, but also 

that ACVRIB appears to mediate this effect through the regulation of cell-cell and cell-ECM 

adhesion. The results of this chapter suggest a novel role of ACVRIB in the maintenance of 

cellular adhesion. 
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Abstract 

Squamous cell carcinomas of the head and neck (HNSCC) and esophagus (ESCC) pose a 

global public health issue, particularly in less developed regions. Unfortunately, over the 

course of the last several decades, little progress has been made in improving overall HNSCC 

or ESCC outcomes. This may, in part, be due to our lack of understanding the mechanisms 

that drive HNSCC and ESCC progression. Therefore, greater effort needs to be invested in 

identifying these processes. In recent years, the Activin A signaling pathway has been 

implicated in a number of cancers. The role of the Activin A signaling pathway, on its own, 

remains poorly understood. We have previously discovered that the ligand Activin A acts as a 

tumor suppressor when epithelial ACVRIB remains intact in ESCC. However, the tumor 

suppressive effects of Activin A are lost when squamous cell ACVRIB expression is 

downregulated. Therefore, we decided to further investigate the function of ACVRIB in the 

regulation of HNSCC and ESCC migration and invasion. To investigate the role of ACVRIB in 

SCC biology, cell lines with ACVRIB knockout (ACVRIB-KO) or knockdown (siACVRIB) were 

first generated using CRISPR/Cas9 or siRNA, respectively. These cells lines were then used in 

an array of in vitro assays to study the functional effects of loss of ACVRIB. Finally, we 

examined the protein expression profiles and signaling pathways thought to mediate the 

observed functional effects by immunofluorescence and Western blot. Interestingly, we found 

that ACVRIB-KO and siACVRIB cells show a greater capacity to proliferate, migrate, and 

invade in two- and three-dimensional cultures. Additionally, ACVRIB-KO cells grew in foci 

rather than the typical cobblestone morphology of squamous cells and exhibited an altered 

actin cytoskeleton, leading to increased formation of laemellopodia. Based upon these 

observations, we examined the protein profiles of these cells and found variant expression of 
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cell-cell and cell-extracellular matrix adhesion proteins, such as E-cadherin, αv integrin and β4 

integrin, as well as differentiation proteins. These effects may be mediated through ACVRIB-

independent signaling through downstream Smad1/5/8 and MAPK/ERK signaling. Therefore, 

we present a novel mechanism for Activin A in the absence of ACVRIB in HNSCC and ESCC, 

suggesting a previously unknown flexibility of this ligand. 

 

Introduction 

Activin receptor-like kinases (ALKs) have a long-standing role in organism development and 

cancer. ALKs are a family of seven type I receptors that share high sequence homology (40-

60%) and structural similarities, including an extracellular glycosylation site, transmembrane 

domain, and cytoplasmic tail with a serine/threonine kinase domain (reviewed in (389)). ALKs 

operate as the primary signal transducing receptor for the superfamily ligands, among which 

include TGFβs, Activins, and BMPs, which will be further described in detail. As there are 

greater than 45 ligands in the TGFβ superfamily with only seven type I receptors, there is 

ligand-receptor overlap (30).  

ACVRIB, also known as ALK4, is an example of the ligand-receptor overlap noted in the 

ALK family, as it is the primary type I signaling receptor for several TGFβ superfamily ligands, 

including growth and differentiation factor (GDF) 1, GDF3, Activin A, Activin B, 

GDF8/myostatin, and GDF11 (133,390-394). ACVRIB participates in ligand-dependent 

signaling when a ligand, such as those described above, binds to a type II receptor (i.e. ActRII 

or ActRIIB) homodimer, and then phosphorylates a downstream Smad (Smad2/3 or 

Smad1/5/8), which forms a complex with Smad4. The Smad complex translocates to the 

nucleus to drive gene transcription. The above described pathway is considered the canonical 
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ACVRIB pathway, however there are non-canonical pathways in which ACVRIB has been 

shown to participate, including MAPK/ERK, Akt/PI3K, Wnt/β-catenin (30,340,395). 

Complicating our understanding of the downstream signaling activation is the fact that 

pSmad1/5/8 (also delineated pSmad1/5/9), which is a bona fide target of BMP signaling, can 

also be phosphorylated in response to Activin A stimulation (217). This leads to the 

assumption that possible complexes can be formed between different type I and type II 

receptors, as demonstrated in some recent reports (396-399). 

ALKs have been found to play critical roles in both development and cancer. Existing 

evidence has demonstrated participation of ALKs in vasculogenesis, angiogenesis, 

osteogenesis, chondrogenesis, gastrulation, germ cell differentiation, and folliculogenesis in 

development (166-168,182,183,199,218,222,238,239,242,243). ACVRIB, in particular, has 

been implicated in specific processes, such as morphogenesis and differentiation (400). The 

essential function of ACVRIB has been additionally demonstrated in mouse models, as global 

knockout of Acvr1b results in embryonic lethality (218). Therefore, several conditional 

knockouts were developed to assess the role of ACVRIB (225,401). Conditional deletions of 

Acvr1b in squamous tissues (i.e. oral cavity, esophagus, and skin) result, primarily, in 

alterations in hair follicle cycling. Amongst these mice, several phenotypes were observed, 

including stunted growth, hair loss, and increased proliferation in the epidermis, however no 

alterations of the oral cavity or esophagus were noted (225). The results of these models 

indicate that ACVRIB is necessary for proper embryonic and post-natal development.  

Aside from the aforementioned roles of ACVRIB and the other ALK family members in 

development, ALKs have been described in cancer initiation and progression in a variety of 

cancers, including breast cancer, melanoma, colorectal cancer, esophageal carcinoma, head 
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and neck squamous cell carcinoma, pituitary adenomas, and pancreatic cancer, among others 

(170,190,210,227,229,230,233,254). Interestingly, in the case of ACVRIB, loss of this receptor 

is associated with cancer progression in pituitary and pancreatic cancers. In pituitary cancer, 

splice variants of ACVRIB have been detected. These variants lack the kinase domain and 

cannot, therefore, propagate signal even in the presence of ligand and following receptor 

complex formation (227,228). In pancreatic cancer, loss or deactivation of ACVRIB occurs in 

approximately 2% of cancers (229,402). Though not as prevalent as Smad4 loss, which occurs 

at a frequency of approximately 45%, identified receptor loss suggests a role for ACVRIB as a 

tumor suppressor (229,403,404). Similarly, ACVRIB mutations and loss of protein, 

respectively, have been documented in head and neck and esophageal cancers (133,405)  

 The focus of this study was to induce ACVRIB loss and analyze the subsequent 

functional consequences for SCC based on our previous observation that ACVRIB loss occurs 

in advanced ESCC (133). We have previously shown that there is a coordinated upregulation 

of stromal INHBA/Activin A with loss of epithelial ACVRIB expression across stage, suggesting 

that ACVRIB is responsible for mediating the tumor suppressive effects of Activin A (133). As 

described in Chapter 4, we demonstrated in the ESCC cohort using immunofluorescence 

staining that INHBA is upregulated. This has been additionally shown in ESCC patient samples 

where approximately 59% had upregulated INHBA compared to normal tissues (406). In both 

ESCC and oral squamous cell carcinoma (OSCC), overall increased Activin A expression is 

associated with tumor prognosis, lymph node metastasis, and poor prognosis 

(85,89,92,104,225). While Sobral and colleagues have shown that stromal myofibroblast-

derived Activin A promotes OSCC proliferation and migration, another study in HNSCC has 

suggested that one potential mechanism for the promotion of migration and invasion could 
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occur is through the induction of RUNX2 (127,407). However, neither study determined that 

these effects were mediated by ACVRIB. Based on our findings in ESCC, we hypothesized 

that loss of ACVRIB leads to tumor progression as the absence of growth regulation by Activin 

A induces alterations in cell-to-cell adhesion and cell invasion. In this study, we deleted or 

knocked down ACVRIB in ESCC and HNSCC cell lines to examine the role of this type I 

receptor in cell migration and invasion. We found that not only do cells with reduced 

expression of ACVRIB demonstrate increased in vitro proliferation, migration, and invasion, but 

also that this occurs through the regulation of proteins involved in cell-cell and cell-ECM 

interactions. Overall, the results of this study indicate a novel role for ACVRIB in the 

maintenance of the epithelial and stromal compartments. 

 

Materials and Methods 

Cell culture 

The head and neck squamous carcinoma cell line OSC-19 and oral cancer-associated 

fibroblasts (CAF) were cultured in DMEM, supplemented with 10% fetal bovine serum (FBS) 

and 1% penicillin and streptomycin (P/S) (Gibco, Grand Island, NY), as previously described 

(408,409). The esophageal squamous cell carcinoma cell line KYSE520 were cultured in RPMI 

and supplemented with 10% FBS and 1% P/S (Gibco), as previously described (410).  

 

CRISPR/Cas9 cell line generation 

Knockout of ACVRIB in OSC-19 cells was generated using the Genome-Wide knockout kit 

purchased from Origene (cat. no. KN206920) and performed according to the manufacturer’s 

protocol. Following transfection, OSC-19 cells were selected with puromycin (2 µg/ml) and 

single clones isolated. Clones were screened by Western blot and validated by flow cytometry.  
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siRNA transfection 

KYSE20 cells were seeded in a 6-well plate at a density of 200,000 cells per well. The 

following day, KYSE520 cells were transfected with 10 nM ON-TARGETplus siRNA SmartPool 

or non-targeting control (GE Dharmacon, Lafayette, CO) diluted with Lipofectamine RNAiMax 

(Life Technologies, Carlsbad, CA) in OPTI-MEM (Gibco). Cells were either trypsinized and 

reseeded for assays after 24 hours or harvested for RNA or protein after 48 hours. 

 

Flow cytometry 

ACVRIB flow 

Flow cytometry experiments were performed by the Vanderbilt Medical Center Flow Cytometry 

Shared Resource. To discern the ACVRIB-KO population, OSC-19 cells were first trypsinized, 

washed with 1xPBS and resuspended at 5x10^6 cells/ml in 1xPBS. In a separate tube, 100 µl 

of the cell suspension was transferred and ACVRIB antibody (cat. no. ab109300; Abcam, 

Cambridge, UK) was added to a final concentration of 1:100. Cells were incubated for 30 

minutes at room temperature, then washed with 1xPBS and centrifuged. The anti-rabbit 

secondary antibody Alexa647 (Life Technologies) was added at 1:1000 and incubated at room 

temperature for 20 minutes. Cells were washed with 1xPBS, centrifuged, and resuspended in 

flow cytometry buffer. Unstained cells and ACVRIB-positive cells were used to set gates. 

 

Propridium iodide cell cycle analysis 

Cell cycle analysis, determined by propridium iodide (PI) staining, was performed as follows. 

OSC-19 and KYSE520 cells were trypsinized, washed with 1xPBS, and resuspended at 

2x10^6 cells/ml in ice cold 1xPBS. Following resuspension, 9 ml of ice cold 70% ethanol was 



	 110 

added and cells were incubated at -20°C overnight. Cells were washed with cold 1xPBS, 

centrifuged and resuspended in 500 µl PI staining solution (0.1% Triton X-100, 2 mg RNAse A, 

400 µl 500 µg/ml PI in 1xPBS) overnight at room temperature. The following day, cells were 

analyzed in the Vanderbilt Medical Center Flow Cytometry Shared Resource on a 5-laser BD 

LSRII. Cell cycle analysis is depicted using BD FACSDiva 8.0 software (BD Biosciences, San 

Jose, CA).   

 

Western blot 

Cells were plated in 6-well plates at an initial density of 200,000 cells/well. Prior to beginning 

treatment, cells were serum-starved overnight at 37°C. Following overnight starvation, cells 

were pre-treated with 250 nM DMH1 (ALK2i, Tocris, Bristol, UK) or kept in serum-free media 

overnight at 37°C. The next day, cells were treated with Activin A (ActA: 10 ng/ml, R&D 

Systems), follistatin (FST: 100 ng/ml, R&D Systems), or kept in serum-free media for 30 

minutes. Cell lysates were collected and Western blots performed as previously described 

(356). 

 

Hematoxylin and eosin staining  

Hematoxylin and eosin staining was performed by the Vanderbilt University Medical Center 

Translational Pathology Shared Resource.  
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Immunofluorescence 

Formalin-fixed, paraffin-embedded sections 

Staining of formalin fixed paraffin-embedded sections were performed as previously described 

(133). 

 

Phalloidin 

Phalloidin staining was performed using CytoPainter Phalloidin-iFluor 488 (Abcam), according 

to the manufacturers’ instructions, and mounted with ProLong Gold Anti-fade with DAPI (Life 

Technologies).  

 

Proliferation 

EdU  

ACVRIB-KO or control cells were seeded at low density on 0.02% gelatin-coated coverslips in 

growth media. Following adherence, coverslips were washed with 1xPBS and incubated with 5 

µM EdU (Abcam) in growth media. Next, cells were fixed for 30 minutes with 4% 

paraformaldehyde at room temperature and washed three times for five minutes each with 

1xPBS. Cells were permeabilized for 30 minutes using 0.5% Triton-X 100 diluted in 1xPBS. 

Subsequently, cells were incubated with the EdU development cocktail (100mM Tris-buffered 

saline pH 7.6, 4mM CuSO4, 5µM sulfo-cyanine 3 azide, 100µM sodium ascorbate). Finally, 

cells were rinsed with 1xPBS, three times for five minutes each, and mounted on slides using 

ProLong Gold anti-fade with DAPI (Life Technologies). Slides were imaged on an Olympus 

BX61WI (Center Valley, PA) upright fluorescent microscope, using Volocity Imaging Software 

(Perkin Elmer, Waltham, MA). 
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 Cell counting 

To further investigate proliferation, cells were first seeded in 6-well plates at a density of 

10,000 cells/well (day 1). At 48 hour intervals, cells were dissociated using 0.25% trypsin 

(Gibco) and counted using a hemacytometer and 0.4% Trypan Blue solution (Gibco). Fold-

change, relative to day 1, was calculated. 

 

Magnetically attachable stencil (MAts) migration assay 

MAts assays were performed as previously described (411). Briefly, MAts were fabricated and 

coated with 1% pluronic solution diluted in 1xPBS. Prior to use, MAts were rinsed, sterilized 

under UV light, and added to a gelatin coated 12-well plate. Then, 200,000 or 250,000 cells 

were seeded in each well. After cells adhered to the plate, they were washed and serum-

starved overnight. The MAts were then removed using a forceps. Images were taken upon 

MAts removal and at 12-hour intervals. Results were calculated using TScratch (NIH, 

Bethesda, MD), as previously described (411). 

 

Boyden chamber assays 

Migration 

Boyden chamber assays were performed in 24-well format according to the manufacturer’s 

instructions. Briefly, cells were trypsinized, centrifuged, and resuspended at 100,000 cells/ml. 

A chemoattractant (growth media [DMEM with 10% FBS] or cancer-associated fibroblast 

conditioned media [CAF CM]) was added to the bottom chamber at 750 µl/well. 500 µl (50,000 

cells) were added to the top chamber. The plates were incubated at 37°C for approximately 24 

hours. Cells were then washed with 1xPBS, the top chambers swabbed with a cotton-tipped 
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applicator to remove non-migrated cells, and fixed using 100% methanol at -20°C for 10 

minutes. Chambers were immediately moved to a 0.1% crystal violet solution and stained, 

while rocking, overnight. The next day, the chambers were removed from the crystal violet 

solution, washed with water, cleaned again with a cotton-tipped applicator, and allowed to dry. 

When the membranes were dry, they were carefully removed with a scalpel and mounted on 

slides using Permount (Fisher, Hampton, NH). Slides were allowed to dry overnight before 

being imaged. Cells were counted, presented as number of cells per high-powered field (hpf), 

and data analyzed by Student’s t-test. 

 

Invasion 

Boyden chamber invasion assays were described as above, with the exception that chambers 

were rehydrated with serum-free media for 2 hours at 37°C prior to cell seeding. 

 

Adhesion assay 

Twenty four-well plates were coated overnight with various extracellular matrix substances at 

the following concentrations: bovine serum albumin (BSA; 5% in 1xPBS), gelatin (0.02% in 

1xPBS, Sigma, St. Louis, MO), collagen I (1 mg/ml, Corning), fibronectin (FN; 1 µg/ml, R&D 

Systems), vitronectin (VTN; 10 µg/ml, R&D Systems), osteopontin (OPN; 2 µg/ml, R&D 

Systems). The wells were then aspirated, washed with 1xPBS, and blocked with 5% BSA. 

Cells were seeded at 50,000 cells per well and imaged at intervals to observe cellular 

adherence. 
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Organotypic reconstruct cultures 

Organotypic cultures (OTC) were performed as previously described (356). In addition to the 

referenced protocol, OTCs were treated with several recombinant proteins or chemical 

inhibitors beginning at day 7 of the OTC protocol. Treatments (10 ng/ml Activin A, R&D 

Systems; 1 µM A83-01, Tocris; 250 nM DMH1, Tocris) were refreshed every two days during 

the treatment period.  

 

Biostatistical Analysis 

Experimental results were analyzed using Student’s t-test or one-way ANOVA and expressed 

as the mean +/- standard deviation. Statistical analysis of the in vitro experiments was 

performed in Prism 6.0 (GraphPad, San Diego, CA).  
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Results 

Loss of ACVRIB initiates a proliferative phenotype in OSC-19 cells 

As discussed above, loss of ACVRIB has been documented in a variety of cancers, including 

pituitary, pancreatic, head and neck squamous, and esophageal squamous cell cancers, and 

has been suggested to act as a tumor suppressor (133,229,403,405,412). We have previously 

Figure 5-1. Validation of ACVRIB knockout in OSC-19 head and neck squamous cells. Cells were validated by several methods. 
Flow cytometry showing (A) background stain (B) control and (C) ACVRIB-KO populations. Immunofluorescence staining of ACVRIB in 
(D) control and (E) ACVRIB-KO cells. (E) Western blot of control and ACVRIB-KO OSC-19 cells. α-tubulin was used as a loading control. 
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shown that there is a coordinated upregulation of stromal INHBA/Activin A with loss of 

epithelial ACVRIB expression across stage, suggesting that ACVRIB is responsible for 

mediating the tumor suppressive effects of Activin A (133); however, the functional effects of 

loss of ACVRIB have yet to be fully elucidated. Therefore, we decided to investigate the 

consequences of loss of ACVRIB, initially in the HNSCC cell line OSC-19. Following validation 

of a CRISPR/Cas9 model of ACVRIB loss (ACVRIB-KO) in OSC-19 cells by flow cytometry, 

immunofluorescence, and Western blot (Figure 5-1), we examined the proliferative capabilities 
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of these cells. Several groups have shown that the Activin A signaling axis via ACVRIB works 

as a growth inhibitor (413). Here, we validated this phenotype in ACVRIB-KO cells through 

utilizing 5-ethynyl-2’-deoxyuridine (EdU) incorporation and Trypan Blue cell counting, showing 

increased proliferation of ACVRIB-KO cells compared to controls (Figure 5-2A,B). Interestingly, 

ACVRIB-KO cells, compared to control, had smaller nuclei, grew in clusters and developed foci 

(Figure 5-2A). To further our investigation into the proliferative phenotype of ACVRIB-KO cells, 

we next performed cell cycle analysis by propridium iodide (PI) staining in flow cytometry 

(Figure 5-2C). Intriguingly, we found a significantly decreased number of cells in G1 and an 

increased number of cells in S and G2/M phases, further confirming the proliferative phenotype 

observed by EdU and cell counting (Figure 5-2D). These results suggest that loss of Activin A 

signaling through ACVRIB allows for increased SCC proliferation and clonal expansion, 

however whether this is through the upregulation of pro-growth proteins, such as cyclins or 

p21, or the downregulation of cell cycle inhibitors is not yet known.  

 

Cell motility is increased in the absence of ACVRIB 

As we have confirmed enhanced proliferation in the absence of ACVRIB, we now sought to 

investigate the migration and invasion capabilities of these cells. Several studies have 

suggested that Activin A signaling can drive migration and invasion. For example, Yoshinaga 

and colleagues showed that overexpression of Activin A in ESCC cell lines had increased in 

vivo tumorgenicity than mock transfected cells, and Howley and colleagues demonstrated 

increased EMT in inhibin βA-upregulated mammary epithelial cells, however these studies 

focused on the immediate action of the Activin A ligand, not the signaling complex (300,414). 

In contrast, we have shown that Activin A overexpression in ESCC with intact Activin A 
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signaling cascade inhibits cell migration and invasion in three-dimensional organotypic culture 

(133). Therefore, we decided to investigate the mobility (migration, invasion) of ACVRIB-KO 

cells to mediate these observations. Using magnetic attachable stencils (MAts) on gelatin-

coated plates, we first examined the ability of the loss of ACVRIB to perform directional 

migration. ACVRIB-KO cells had less open area in the MAts void at 12 hours, compared to 

control cells (Figure 5-3A, quantified in B). After 24 hours, the void was completely closed for 

both ACVRIB-KO cells and controls (data not shown). We additionally tested directional 

migration using MAts in the esophageal squamous cell carcinoma cell line KYSE520 with small 

interfering RNA (siRNA) knockdown of ACVRIB (siACVRIB). Similarly to the OSC-19 ACVRIB-

KO, KYSE520 cells with siACVRIB significantly decreased the open void area by 12 and 24 

hours, compared to control transfection (siNT) (Figure 5-4A,B).  

Figure 5-3. Migration and invasion capabilities of OSC-19 cells are enhanced with ACVRIB loss. (A) Directional migration, 
investigated by MAts assay and assessed over the course of 12 hours, was enhanced in ACVRIB-KO cells (left), compared to control 
(right). Cells were seeded on a gelatin-coated surface. (B) ACVRIB-KO cells significantly reduced the open area of the MAts by 12 hours, 
compared to control (Student’s t-test, p<0.001). (C) ACVRIB-KO cells demonstrated increased chemotactic migration (left) and invasion 
(right), using growth and cancer-associated conditioned media (CAF CM) as chemoattractant in Boyden chamber assays. (D) Statistical 
analysis, per high-powered field (hpf) of (C) (Migration - left; invasion – right; Student’s t-test, p<0.05). 
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Next, we tested ACVRIB-KO and control OSC-19 cells in Boyden chamber migration 

and invasion in the presence of growth media, which was used as a positive control, or oral 

cancer-associated fibroblast conditioned media (CAF CM, Figure 5-3C). ACVRIB-KO cells 

showed increased ability to migrate and invade in the presence of both growth and CAF CM 

(Figure 5-3D). Interestingly, CAF CM was a more potent chemoattractant for the ACVRIB-KO 

and control cells, suggesting a substantial role for epithelial-mesenchymal crosstalk in this 

process (reviewed in (415)). A similar effect was observed with the KYSE520 cells. Though the 

Growth media CAF CM
0

50

100

150

#m
ig

ra
te

d 
ce

lls
/h

pf

siNT
siACVRIB 

*

Growth media CAF CM
0

50

100

150

#m
ig

ra
te

d 
ce

lls
/h

pf

siNT
siACVRIB 

*

*

Growth media CAF CM
0

20

40

60

#i
nv

ad
ed

 c
el

ls
/h

pf

siNT
siACVRIB 

*

Growth media CAF CM
0

2

4

6

8

#i
nv

ad
ed

 c
el

ls
/h

pf

siNT
siACVRIB 

*

Figure 5-4. Knockdown of ACVRIB by siRNA in KYSE520 enhances motility. (A) By 12 hours and 24 hours, siACVRIB knockdown 
cells close more open MAts area than non-targeting control (siNT). (B) Quantification of MAts assay shown in (A) (C) Quantification of 
number of migrated KYSE520 siACVRIB or siNT cells per high-powered field (hpf). Cells were stained with 0.1% crystal violet and 
counted. There were less KYSE520 siACVRIB cells that migrated through the Boyden chamber cmpared to siNT. (D) Similar to (C), 
quantification of number of invaded KYSE520 cells per high powered field. KYSE520 siACVRIB cells invaded more in Boyden chamber 
assay than siNT. (E) qRT-PCR of ACVRIB in KYSE520. *p<0.05 

A 

0 12 24
0

50

100

150

200

Time (hr)

O
pe

n 
ar

ea
 (%

)

siNT
siACVRIB

p=0.001 p=0.019

KYSE520

0 12
0

50

100

150

Time (hr)

O
pe

n 
ar

ea
 (%

)

OSC19

p<0.001

siNT siACVRIB B 

0hr 

12hr 

24hr 

Growth media CAF CM
0

50

100

150

#m
ig

ra
te

d 
ce

lls
/h

pf

siNT
siACVRIB 

*

Growth media CAF CM
0

50

100

150

#m
ig

ra
te

d 
ce

lls
/h

pf

siNT
siACVRIB 

*

*

Growth media CAF CM
0

20

40

60

#i
nv

ad
ed

 c
el

ls
/h

pf

siNT
siACVRIB 

*

Growth media CAF CM
0

2

4

6

8

#i
nv

ad
ed

 c
el

ls
/h

pf

siNT
siACVRIB 

*

D C E 

Fo
ld

-c
ha

ng
e 

ACVRIB 

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 

KYSE520 

siNT 

siACVRIB 



	 120 

siACVRIB condition did not exhibit significantly more migration in the presence of CAF CM 

compared to control, siACVRIB showed more potent invasion when CAF CM was used as a 

chemoattractant (Figure 5-4C,D). Validation of siRNA knockdown of ACVRIB is shown in 

Figure 5-4E. Overall, our data suggests that loss of ACVRIB function, through either deletion 

or knockdown, enhances the ability of SCCs to migrate and invade.  

As we observed increased migration and invasion in ACVRIB-KO and siACVRIB cells, 

we decided to further examine the morphology and structure of these cells. An examination by 

bright field microscope showed that the control cells made an epithelial layer with cobblestone-

like morphology, characteristic of squamous epithelium (Figure 5-5A,B) (416). Upon loss of 

ACVRIB, OSC-19 cells form small clusters with lamellopodial projections (Figure 5-5C,D, 

arrowheads). This led us to examine the composition of the ACVRIB-KO actin cytoskeleton by 

immunofluorescent phalloidin staining. Compared to control cells, which showed high actin 

density along the cell surface, ACVRIB-KO cells had protrusions at the cell surface (Figure 5-

5E-H). This data suggests that ACVRIB is involved in the composition of the actin 

cytoskeleton, which impacts cellular motility.
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Figure 5-5. OSC-19 with deletion of ACVRIB exhibit morphological alterations in the actin cytoskeleton which are associated 
with migration. (A) Control OSC-19 cells have a characteristic squamous cell morphology, showing a cobblestone structure. (B) Higher 
magnification of boxed area in (A). (C) Following deletion of ACVRIB, OSC-19 cells form small clusters and develop protrusions around 
the outer edge of the cells. (D) Higher magnifcation of boxed area in (C). (E) Phalloidin stain of control cells. (F) Higher magnification of 
(E). (G) Phalloidin stain of ACVRIB-KO. (H) Higher magnification of (G).  
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Loss of ACVRIB enhances cellular invasion and adhesion to extracellular matrix 

substrates  

As discussed above, we found that OSC-19 cells with deleted ACVRIB exhibit augmented 

migration and invasion in Boyden chamber, as well as increased actin projections along the 

cell membrane. Therefore, we next decided to examine the ability of these cells to interact with 

ECM substrates, as the constituents of the tumor microenvironment ECM heavily impact 
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Figure 5-6. Deletion of ACVRIB alters cell adhesion to extracellular matrix proteins. 24-well plates were coated with various 
extracellular matrix substrates to determine the adhesive capabilities of control and ACVRIB-KO cells. Plates were coated with 
gelatin (30 minutes: A-B, 4 hours: C-D), fibronectin (FN; 30 minutes: E-F, 4: hours G-H), osteopontin (OPN; 30 minutes: I-J, 4 hours: 
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cancer cell motility (369,417). Additionally, research has shown interactions between TGFβ 

superfamily signaling and cell-matrix (418,419). We focused on several ECM substrates 

(collagen, fibronectin [FN], osteopontin [OPN], vitronectin [VTN]), which are bound by different 

cell surface proteins, such as integrins. ACVRIB-KO and control cells exhibited similar 

adhesive abilities during the first 30 minutes (Figure 5-6A-H). However, interestingly, we found 

that over a four-hour incubation, ACVRIB-KO cells showed an increased ability to bind to 

gelatin (collagen), FN, and OPN, but not VTN (Figure 5-6I-P). This suggests an upregulation of 

expression and activity of integrins that bind to these substrates, which may include α5, αv, β1, 

β3, or β4 integrins (420,421).  

 To further investigate these phenomena, we next decided to investigate the ability of 

ACVRIB-KO cells to invade in a three-dimensional structure, using organotypic reconstruct 

cultures. An examination of the cultures by hematoxylin and eosin (H&E) staining shows not 

only increased overall invasion into the underlying stroma, but a combination of collective and 

single cell invasion (Figure 5-7A,B, insets). This initial assessment of the three-dimensional 

cultures confirmed our observations in Boyden chamber assays (Figure 5-3C,D; Figure 5-

4C,D).  

 We next decided to use immunofluorescence to assess potential dysregulation of cell-

cell and cell-matrix adhesion proteins. Laboratory and clinical evidence has suggested 

alterations in integrin expression, a main group of cell surface proteins responsible for 

adherence to the ECM, occurs in SCC. de Moraes et al. found reduced expression of β1, a 

marker commonly used as a stem cell marker, is correlated with lymph node metastasis in oral 

SCC, however a separate study found increased expression of β1 in oral SCC compared to 
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Figure 5-7. Loss of ACVRIB enhances cell invasion in three-dimensional organotypic culture. Hematoxylin and eosin (H&E) 
staining of (A) control and (B) ACVRIB-KO cultures. Additional immunofluorescence staining for integrins (C-D) α2, (E-F) α5, (G-H) αv, (I-
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expression in neoplastic oral mucosa (422,423). Additional integrin pairings, such as αvβ3 and 

αvβ5, are upregulated and thought to help confer therapeutic resistance in oral SCC (424). 

Therefore, we decided to examine a panel of integrins suggested to be involved in the 

progression of SCC. As discussed above, we focused on the expression of integrins implicated 

in the progression of ESCC and HNSCC. By immunofluorescence staining, we found 

dysregulation (i.e. loss of expression) of several integrins, including α2, α5, αv, and β4 (Figure 

5-7C-H,M,N, insets). β1 integrin was expressed at low to undetectable levels in OSC-19 

control and ACVRIB-KO cells (Figure 5-7I,J). However, though there was no change in 

expression, localization of β3 integrin differed between control and ACVRIB-KO cells, moving 

from cytoplasmic to membranous expression (Figure 5-7K,L, insets). Intriguingly, those 

integrins with membranous localization in the control cells (α2, α5, αv, and β4) were 

downregulated in ACVRIB-KO cells. This result suggests that ACVRIB may regulate 

cytoskeleton stability, and thus expression of integrins on the cell surface. 

 

Differentiation of OSC-19 cells correlates with invasion phenotype  

Integrin expression and epithelial cell differentiation are closely tied processes (425,426). 

Therefore, as we observed drastic alterations in OSC-19 integrin expression with loss of 

ACVRIB, we next decided to investigate if the differentiation status of these cells was modified 

as well. Downregulation of E-cadherin expression and cytokeratins have been associated with 

various differentiation statuses of squamous epithelial cells. For example, downregulated E-

cadherin expression has been noted in several HNSCC studies and was associated with poor 

prognosis (427,428). This observation has been validated in several other cancers, including 

ESCC (292). To further examine the differentiation status of these squamous cells, we decided 
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to also focus on cytokeratin 13 (K13), a marker of differentiated squamous epithelial cells, and 

cytokeratin 19 (K19), a marker of dedifferentiated squamous epithelial cells. K13 

downregulation and K19 upregulation by both RNA and protein has been noted in esophageal 

and oral SCC (429-432).  Prior to exploring E-cadherin and cytokeratin expression, we stained 

for Ki67 by immunofluorescence. Compared to the control cells, ACVRIB-KO cells had a 

concentrated number of proliferative cells along the invasive edge of the epithelial layer (Figure 

5-8A,B). To see if these proliferative cells corresponded to the basal layer of the squamous 

epithelium, we stained for E-cadherin, K13 and K19.  ACVRIB-KO cells showed a substantial 

downregulation, however not complete absence, of E-cadherin (Figure 5-8C-D, insets). Within 

the ACVRIB-KO invasive cells, E-cadherin expression was retained between the cell-cell 

junctions, but not around the parts of the cell membrane in contact with the ECM. Additionally, 

the control cells had similar levels of K13 expression throughout the epithelial layer, however 

K13 was absent in the basal layer of the ACVRIB-KO squamous and upregulated in the middle 

of the squamous layer (Figure 5-8E,F, insets). K19 expression was concentrated along the 

basal layer of the control cells, but was located in the medial and upper portion of the ACVRIB-

KO squamous epithelium (Figure 5-8G-H, insets). Additional cytokeratins (K14, K15, K18) 

were examined as well with no discernable differences between conditions (data not shown). 

 

In the absence of ACVRIB, Activin A can induce invasion through alternative signaling 

As we had now generated an understanding of the functional changes that occur in the 

absence of ACVIRB, such as increased migration, invasion, and proliferation, we next sought 

to investigate which Activin type I receptor could be facilitating this effect. Though ACVRIB is 

the primary receptor facilitating Activin A signaling, recent evidence has suggested that Activin 
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Figure 5-9. Inhibition of Activin type I receptors, by chemical inhibition, alters the invasive capabilities of OSC-19 ACVRIB-
KO through the regulation of Smad1/5/8 and ERK signaling. Control OSC-19 cells in organotypic culture (OTC) with no 
treatment (A,H) was used to compare ACVRIB-KO treatments. Hematoxylin and eosin (H&E) staining of control (A) and ACVRIB-KO 
(B-G) OTCs, with and without treatments. Treatment conditions were as follows: Control (A), ACVRIB-KO no treatment (No tx) (B), 
the ALK2/Activin receptor type IA inhibitor DMH1 (ALK2i) (C), recombinant Activin A (ActA) (D), the ALK4/5/7 inhibitor A83-01 (E), 
A83-01 and ALK2i (F), and combination ActA, A83-01, and ALK2i (G). The same conditions were stained for E-cadherin, vimentin, 
and nuclear DAPI (H-N). Short-term (30 minute treatment) downstream Smad (pSmad2 and pSmad1/5/8) and ERK signaling 
following treatment with ALK2i, ActA, follistatin (FST), or combinations was examined by Western blot (O). 

Control No treatment +ActA +ALK2i 

+A83-01/ALK2i +ActA/A83-01/ALK2i +A83-01 

E-
ca
d/
vi
m
/D
A
PI

 

ACVRIB-KO 

H I J K 

L M N 

Control No treatment +ActA +ALK2i 

+A83-01/ALK2i +ActA/A83-01/ALK2i +A83-01 

H
&
E

 

A B C D 

E F G 

ACVRIB-KO    Control 

pERK1/2 

ERK1/2 

pSmad1/5/8 

pSmad2 

α-tubulin 

ALK2i 
ActA 
FST 

     -            +         -         -          -          +        +          +        
     -            -          +        -          +         +        -           + 
     -            -          -         +         +         -         +          + 

-          +         -         -           -         +          +         +        
-          -          +        -           +        +          -          + 
-          -          -         +          +        -           +         + 

O 

Smad2 



	 127 

A has the ability to propagate signals via other Activin type I receptors with low affinity, such as 

the BMP receptor ALK2 (ACVRI/ACVRIA). ALK2 and ACVRIB signal through distinct 

downstream pathways; ALK2 preferentially phosphorylates Smad1/5/8 (Smad1/5/9), while 

ACVRIB primarily phosphorylates Smad2 (217). However, recent evidence has suggested 

crossover between Activin A-induced signaling through ACVRIB and ALK2 (433,434). 

Therefore, we decided to explore Activin A could signal through ALK2 as an alternate receptor 

in the absence of ACVRIB.  

Using a three-dimensional organotypic culture as our model in this setting, we elected to 

treat the cultures with recombinant Activin A, the ALK2 inhibitor DMH1 (ALK2i), and/or the 

ALK4/5/7 chemical inhibitor A83-01, and examined E-cadherin and vimentin expression by 

immunofluorescence (192,365). Similar to that observed previously, control OSC-19 cells 

expressed substantial levels of E-cadherin, while ACVRIB-KO cells showed increased 

epithelial cell invasion, minimal E-cadherin staining, and upregulation of epithelial cell vimentin 

staining, suggesting possible EMT (Figure 5-7C,D; Figure 5-9A,B). Interestingly, none of the 

treatments or combinations were able to restore E-cadherin expression, suggesting potential 

intrinsic alterations that occurred within the OSC-19 cells following ACVRIB knockout. 

However, we did note invasion in the cultures treated with ALK2i, ActA, or ActA/A83-01/ALK2i 

(Figure 5-9C-D, G). Particularly, the cultures treated with only ALK2i or all three treatments 

(ActA/A83-01/ALK2i) showed larger invasive clusters compared to the ActA only treatment. 

With solely the addition of A83-01, not only was there limited epithelial cell invasion into the 

underlying stroma, but also the stromal layer itself appears thinner (Figure 5-9E). A similar 

observation occurred within the cultures treated with A83-01/ALK2i, with the additional note 

that the OSC-19 epithelial layer was also thinner than that of the other conditions, potentially 
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suggesting an effect of TGFβ pathway inhibition in combination with ACVRIB inhibition, as 

A83-01 can additionally target ALK5 and ALK4 (Figure 5-9F). These results suggest that a 

balance of the TGFβ/Activin/BMP signaling pathways is required to maintain squamous 

epithelium integrity and control cell invasion. Additionally, the loss of ACVRIB may upend this 

balance and, therefore, reroute Activin A to induce other arms of pathways or potentially signal 

through receptors outside of this family of receptors (Figure 5-9G). 

 In addition to exploring the functional effects of Activin A signaling independently of 

ACVRIB, we decided to examine alterations in downstream signaling. As mentioned above, 

ACVRIB primarily phosphorylates Smad2 to induce downstream gene transcription (7,435). 

However, we speculated that, in the absence of ACVRIB, perhaps Activin A signaling could 

induce other signaling molecules, which would then shine light on the functional alterations (i.e. 

migration, invasion, proliferation) that we had previously observed. To explore this, we treated 

control or ACVRIB-KO cells in vitro with ALK2i, recombinant Activin A (ActA), or the Activin A 

antagonist follistatin (FST) to block Activin A prior to receptor binding. Control cells had 

phosphorylated Smad2 (pSmad2) following treatment with ActA and ALK2i, however 

phosphorylation of Smad2 was blocked when ActA and FST were added together, showing the 

efficacy of FST as an Activin A inhibitor (Figure 5-9H, left panel). Phosphorylated Smad1/5/8 

was unchanged between control conditions. In the ACVRIB-KO cells, ActA treatment induced 

pSmad2, except when treated in combination with FST (Figure 5-9H, right panel). Interestingly, 

ACVRIB-KO cells had increased baseline pSmad1/5/8 compared to control cells, indicating 

active BMP signaling. Upon treatment of these cells with ALK2i, pSmad1/5/8 expression was 

abolished, suggesting successful inhibition of BMP signaling. Therefore, we conclude from 

these experiments that Activin A, in the absence of ACVRIB,  retains activity through the 
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phosphorylation of Smad2 and 

that phosphorylation of 

Smad1/5/8 occurs in an Activin 

A-dependent manner via ALK2.  

Finally, we examined 

alterations in MAPK/ERK 

signaling, as Activin A and ERK 

signaling are suggested to work 

together to enhance native 

pluripotency and promote 

proliferation (436). 

Phosphorylation of ERK1/2 

(pERK1/2) was unchanged 

across conditions in the control 

cells (Figure 5-9H, left panel). 

ACVRIB-KO cells, however, 

had considerable alterations 

across conditions. Though all treatment conditions induced pERK1/2 to some extent, 

compared to ACVRIB-KO no treatment, treatment with ALK2i/ActA or ALK2i/ActA/FST showed 

the highest level of phosphorylation (Figure 5-9H, right panel). These results may indicate an 

interaction between non-canonical Activin A signaling via Smad2, Smad1/5/8 and the 

MAPK/ERK pathway. 

 

Figure 5-10. Model of ACVRIB-dependent and -independent Activin A signaling. A 
schematic depicting the ACVRIB-dependent (A) and –independent (B) signaling and its 
functional consequences.  

A 

B 

ACVRIB-dependent 

ACVRIB-independent 
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Discussion    

In the current study, we characterized the functional consequences of loss of ACVRIB, and 

thus canonical Activin A signaling, in HNSCC and ESCC. The Activin A signaling cascade has 

been long studied for its critical role in development across species (437,438), however its 

actions in cancer have been widely disputed as the functions of Activin A appear to be almost 

entirely cell-type and context dependent (reviewed in (340)). To better explore the 

responsibilities of this pathway in HNSCC and ESCC, we decided to direct our focus to 

ACVRIB, the primarily receptor for transducing Activin A-induced signals, as we had previous 

described the inverse correlation between Activin A/ INHBA and ACVRIB expression in 

advanced ESCC (133). By working with a model that eliminated Activin A signaling via 

knockout of ACVRIB, we were able to discern the functional effects of loss of canonical Activin 

A signaling. Interestingly, we found that loss of canonical Activin A signaling mediated by 

ACVRIB results in increased proliferation, migration, and invasion. These effects appear to 

occur through a combination of pSmad2, pSmad1/5/8, and MAPK/ERK downstream signaling. 

Ultimately, dysregulation of ACVRIB expression and canonical Activin A signaling led to 

reorganization of the actin cytoskeleton and, thus, expression of cell surface proteins involved 

in cell-cell and cell-ECM interaction. We have, therefore, defined a novel role for ACVRIB-

dependent Activin A signaling in SCC (Figure 5-10). 

 The suggestion that type II and type I Activin receptors are involved in the maintenance 

of epithelial homeostasis is not a unique idea. Our group has previously described that 

coordinated loss of TβRII and E-cadherin can promote invasion of esophageal keratinocytes in 

three-dimensional organotypic culture (292). This invasive phenotype could, however, be 

controlled through the induction of the Activin A pathway, thus restoring homeostatic balance 
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(133). Additional research has suggested that dominant negative ActRII, achieved through 

truncation of the protein, can block Activin A signaling in pancreatic cells, providing evidence 

for the role of this signaling pathway in endocrine and exocrine cell differentiation (439). 

Among the Activin type I receptors, little is noted regarding their downregulation or absence in 

cancer (reviewed in (389)). ACVRIB (ALK4) is amongst the most highly studied in terms of 

Activin type I receptors in cancer. Overall, loss of ACVRIB leads to increased tumorigenesis, 

particularly of the primary tumor (84,412,440). The role of ACVRIB in metastasis, however, 

remains to be truly clarified. Research has suggested that though loss of ACVRIB may be 

beneficial for the primary tumor, retention of cells with expression of ACVRIB could be required 

for metastasis (440). Collectively, this evidence insinuates the necessity of tumor 

heterogeneity, as originally described by Gloria Heppner several decades ago (441). In the 

case of ACVRIB, it appears that downregulation of ACVRIB may be beneficial for the primary 

tumor, however re-expression/plasticity or retention of the protein in some clones may be 

necessary for progression. In HNSCC and ESCC, it remains unknown where loss of ACVRIB 

occurs, whether it is at the genomic, RNA, or protein levels. The ESCC cell line TE-11 lacks 

ACVRIB protein, however continues to express ACVRIB mRNA ((133) and data not shown). 

Therefore, further examination of the mechanism of ACVRIB regulation is needed, particularly 

in HNSCC and ESCC, as majority of the evidence regarding ACVRIB loss resides in other 

cancers.  

 Targeting ACVRIB in vitro, however, remains a challenge. Due to the sequence and 

structural similarities between the ALKs, developing specific inhibitors for the individual family 

members is difficult (reviewed in (389)). In the current study, we treated SCC cells in vitro 

using the chemical inhibitor A83-01, which targets ALK4/5/7. Because of the multifaceted 
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effects of this inhibitor, we cannot say for certain that the phenotype we observed in three-

dimensional organotypic was solely the responsibility of ACVRIB inhibition (Figure 5-9). TGFβ 

signaling, via ALK5, has an established role in cancer and the tumor microenvironment. 

Therefore, inhibiting ALK5 in our organotypic culture model may affect the makeup of the 

stroma (442-444). Though not much is known about the functional effects of ALK7, particularly 

in ESCC or HNSCC, we also cannot rule out the inhibition of ALK7 in this context as well. 

Unfortunately, at this time no inhibitors specifically target ALK4, as other available inhibitors 

also target other ALKs (389). Therefore, using the CRISPR/Cas9 system to knockout ACVRIB, 

as demonstrated here, is the closest that we have come to selectively targeting ACVRIB, 

though this is currently not feasible in the clinical context. 

 A main finding of this study was the regulation of the actin cytoskeleton and cell surface 

proteins. In respect to ACVRIB, little to no evidence has been published exploring such 

functional effects. Some investigation, however, has described the actions of Activin A during 

some of these processes, though not in cancer. Riedy and colleagues described that 

stimulation of rat aortic smooth muscle cells with Activin A leads to migration and the formation 

of actin stress fibers and focal adhesions, particularly through the phosphorylation of paxillin 

and p130cas (445). A similar effect was investigated in adipose stromal cells, where stimulation 

with Activin A could promote differentiation along the smooth muscle cell lineage which exhibit 

characteristic cytoskeletal actin fibers through the induction of α-smooth muscle actin (αSMA) 

and calponin. Treatment with an ALK4/5/7 inhibitor could block such effects (446). An 

additional study investigated a similar phenomenon using NMuNG epithelial breast cells, 

however F-actin cytoskeleton rearrangements following stimulation with Activin A were not 

observed; this was only seen following treatment with TGFβ (447). In this context, Piek and 
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colleagues suggested that the lack of effect may be due to limited availability of Activin A 

signaling receptors on these cells, reinforcing the theme of cell-type and context dependent 

Activin A signaling (447).  

 Though we have unearthed a new role for Activin A-ACVRIB signaling in HNSCC and 

ESCC, there remain many questions. We have just begun to scratch the surface of non-

canonical Activin A signaling in the absence of ACVRIB, potentially through an alternate 

Activin type I receptor. Therefore, further delineation and investigation into the mechanism of 

Activin A in this context is necessary to contribute to our deeper understanding of the pathway 

as well as potential ways to use this information for targeted therapeutics. If it is indeed the 

case that Activin A, working through an alternate pathway in the absence of ACVRIB, exerts 

oncogenic effects, the utilization of an Activin A ligand trap, such as follistatin, may aide in 

improving patient outcome in HNSCC and/or ESCC. In addition, attaining a better 

understanding of the role of the Activin A-ACVRIB interaction in a more complex physiological 

context, such as ACVRIB-KO cells in the presence of endothelial cells, immune cells, 

fibroblasts, neurons, etc., may provide a more complete understanding to how Activin A 

operates without epithelial expression of ACVRIB. Though Activin A either does not signal or 

induce signal transduction via an alternate pathway in ACVRIB-absent epithelial cells, this 

alteration does not impede Activin A signaling in other cells in the surrounding 

microenvironment. In fact, this may free up Activin A to bind and induce signaling in other cell 

types. Therefore, investigation into the microenvironmental consequences of ACVRIB-KO may 

provide a larger, systemic picture of the impact of this signaling pathway. 
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Conclusion 

Despite the remaining questions surrounding the relationship between Activin A and ACVRIB, 

in this study we provided evidence showing the necessity of ACVRIB-dependent Activin A 

signaling in the regulation of HNSCC and ESCC. When this system becomes disrupted 

through downregulation of ACVRIB, HNSCC and ESCC become more aggressive. Clinically, 

this would lead to an ultimately worse overall prognosis for patients afflicted with this deletion. 

Therefore, further investigation into the consequences and potential therapeutic options 

revolving around Activin A-ACVRIB may promote better clinical outcomes in HNSCC and 

ESCC.  
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The work presented here provides valuable insight into the role of the Activin A 

signaling pathway, particularly that which takes place via the Activin A-ACVRIB receptor 

complex, in the progression of esophageal (ESCC) and head and neck (HNSCC) squamous 

cell carcinoma. In Chapters 3-4, we examined the downstream effects of the Activin A ligand in 

regulating and maintaining homeostasis in the esophageal microenvironment. Towards the 

end of Chapter 4, we unearthed that these effects are mediated through the preservation of the 

Activin A-ACVRIB signaling complex. When this signaling complex is disrupted, such as 

through the downregulation of ACVRIB, the regulatory ability of Activin A signaling is lost. We 

examined this further in Chapter 5, where we genetically deleted ACVRIB in HNSCC cells 

using a CRISPR/Cas9 system and downregulated ACVRIB using siRNA in ESCC. In these 

contexts, we found that loss or downregulation of ACVRIB led to increased SCC 

aggressiveness, demonstrated by increased cell migration and invasion, as well as an 

alteration of the adhesion protein profile of the cells. Overall, from this work, we have 

concluded that in cancer alterations of the Activin A signaling pathway, likely through the 

downregulation of receptor complex components such as ACVRIB, circumvents the cells’ 

ability to respond to the characteristic growth inhibitory signals of Activin A. 

Though the work presented here identifies a novel form of cellular resistance in ESCC 

and HNSCC, there are several questions that remain to be answered. The Activin A field, 

however not new, paints a complicated picture. First, in the context of Activin A 
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overexpression, we observed alterations in the behavior of both the epithelial cell and the 

stromal compartment, i.e. fibroblasts. The primary goal of our work regarding Activin A 

overexpression was focused on the inhibitory effects on the epithelial cells; however, it is well 

documented that Activin A not only acts in a paracrine manner, but also in an autocrine 

fashion. Therefore, when overexpression of Activin A is observed in the stroma, what effect 

does it have on the fibroblasts? This is a question that can be answered fairly easily in our 

three-dimensional organotypic reconstruct culture system. Nevertheless, to investigate this 

question in a more physiologically relevant context, we would need to incorporate other 

stromal components, such as immune cells (T-cells, B-cells, macrophages, NK cells, etc.), 

endothelial cells, or smooth muscle cells. Such a question may be answered using a more 

complicated three-dimensional organotypic model or through the utilization of an in vivo model. 

Second, at what part during the oncogenic cascade (i.e. initiation, progression, metastasis) 

does receptor downregulation occur? In Chapter 4, we found that Activin A-mediated effects 

persist in normal tissue and dysplasia. What occurs in the switch between esophageal 

dysplasia to squamous cell carcinoma to induce receptor downregulation? Parsing this 

phenomenon apart may shed light on potential ways to keeping this signaling pathway intact, 

and thus determine a new therapeutic approach. 

In Chapter 5, we more thoroughly investigated the effects of loss of Activin A signaling 

via the loss of ACVRIB. In the absence of ACVRIB, we observed alterations of both the 

modified epithelial cells and the stromal microenvironment. Our observations suggest that the 

downregulation of ACVRIB not only alters the makeup of the actin cytoskeletion, but also 

appears to regulate motility via cell adhesion proteins, such as E-cadherin and integrins. 

Though the focus of this chapter was on the characterization of loss of ACVRIB in ESCC and 
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HNSCC, many questions have emerged regarding the molecular mechanisms that facilitated 

these modifications. In the absence of canonical Activin A signaling through ACVRIB, does 

Activin A bind and signal through a different type II-type I receptor complex? Though in our 

hands ACVRIB-KO cells did not secrete significantly more Activin A than control cells (data not 

shown), even low levels of Activin A will ultimately find a location to bind. One report has 

suggested that alternative binding is possible, such as through the BMP type I receptor ALK2. 

Future research should be dedicated to investigating these additional complexes and the 

downstream signaling pathways that are initiated in response. Moreover, does ACVRIB-

induced instability of the actin cytoskeleton influence the integrins present on the cell surface? 

And did those integrins that were, and now no longer, present on the cell surface undergo 

degradation? What we have uncovered in regards to the relationship between ACVRIB and 

integrin expression in a novel finding in the context of cancer and requires additional 

investigation.  

 The exploration into the Activin A pathway in cancer has been long and convoluted. 

Activin A exerts an array of effects, both tumor suppressing or promoting, depending on the 

context. However, the work that we have presented here perhaps provides some insight into 

the role of this signaling pathway in the context of esophageal squamous dysplasia, ESCC, 

and HNSCC. And though we have provided some clarity into the actions of Activin A and 

ACVRIB, this area of research is still in its infancy with many new avenues to explore.    
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Preface 

Though the bulk of the work presented here has investigated the role of Activin A in 

esophageal squamous cell carcinoma, we have extended our research to examine the 

similarities and differences, compared to our previous observations, of Activin A function in 

esophageal adenocarcinoma. As esophageal adenocarcinoma develops along a spectrum, 

beginning with Barrett’s esophagus and ending at adenocarcinoma, similarly to the 

development of esophageal squamous cell carcinoma, we utilized a comparable model of 

Activin A overexpression for this investigation, including overexpression of Activin A and three-

dimensional organotypic reconstruct cultures. However, in this context, overexpression of 

Activin A was derived from the epithelial cells, rather than the stromal compartment. The 

results of this project indicate that Activin A acts in a cell-type and context-specific manner in 

esophageal adenocarcinoma; however, in cell types with a mesenchymal phenotype, Activin A 
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acts as a tumor promoter. This suggests an additional similarity of Activin A to the TGFβ 

pathway, where the tumor suppressive properties of Activin A undergo a ‘switch’.   

 

Abstract 

TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's 

esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member 

Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by 

factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we 

aimed to determine if epithelial cell-derived Activin A affects initiation and progression 

differently than Activin A stimulation from a mimicked stromal source. Using the Barrett's 

esophagus cell line CPB and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we 

showed that Activin A reduces colony formation only in CPB cells. Epithelial cell 

overexpression of Activin A increased cell migration and invasion in Boyden chamber assays 

in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the 

CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 

cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been 

associated with the acquisition of stem cell-like features, we analyzed the expression and 

localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 

cells. 

In conclusion, we show a role for autocrine Activin A signaling in the regulation of colony 

formation, cell migration and invasion in Barrett's tumorigenesis. 
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Introduction 

Esophageal adenocarcinoma (EAC) is often thought to arise from a clonal stem-like population 

of cells, which is potentially responsible for its poor prognosis. Transforming growth factor β 

(TGFβ) and Notch signaling pathways play important roles in regulating self-renewal of stem 

cells and cell-fate determination. Both pathways are frequently implicated in Barrett's 

tumorigenesis (448). It has been shown that loss of members of the TGFβ signaling cascade, 

such as Smad4 and β2 spectrin, can contribute to the initiation of Barrett's esophagus and the 

progression to esophageal adenocarcinoma through concomitant upregulation of Notch targets 

Hes1 and Jagged1 (449). Similarly, analysis of a panel of esophageal adenocarcinoma cell 

lines demonstrated failed cell cycle arrest after TGFβ stimulation, as they did not respond with 

the expected downregulation of c-Myc or the induction p21 (450). The disruption of 

TGFβ/Smad-dependent signaling during the progression of esophageal adenocarcinoma was 

confirmed by a report that showed Smad4 mRNA expression was progressively reduced in the 

metaplasia-dysplasia-adenocarcinoma sequence by promoter methylation (451). In the same 

study, the authors demonstrated the loss of TGFβ-dependent induction of p21 and 

downregulation of mini-chromosome maintenance protein 2 (MDM2) in the majority of Barrett's 

tumorigenesis (451). Interestingly, in a series of resected adenocarcinomas of the distal 

esophagus, TGFB1 mRNA was expressed at significantly higher levels in tumor tissues 

compared to squamous epithelium and Barrett's mucosa. Additionally, univariant survival 

analysis has shown that TGFB1 overexpression was associated with poor prognosis (452). 

It is generally assumed that in esophageal metaplasia, the normal squamous 

esophageal epithelium undergoes transdifferentiation to resemble the columnar epithelium of 

the gastric tract and the intestine. Bone morphogenetic protein (BMP) 4, a member of the 
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TGFβ family, has been shown to regulate the processes involved in this metaplastic 

transformation (453,454). The effects of BMP4 are tightly regulated by its natural antagonist, 

Noggin, which prevents the BMP-regulated development of the columnar epithelium in the 

esophagus during embryogenesis (455,456). BMPs, as well as another morphogen, Sonic 

hedgehog, are typically not expressed in the normal adult esophagus (457), BMP4, however, 

has been shown to be re-expressed in esophagitis and Barrett's esophagus (453,457). 

Interestingly, Sonic hedgehog can induce BMP4 secretion in stromal cells with myofibroblast 

morphology in response to acid injury (458). 

Hedgehog signaling and epithelial-mesenchymal transition (EMT) have been implied in 

the morphogenesis of embryonic and adult tissues. When Hedgehog signaling is blocked, 

esophageal keratinocyte differentiation and squamous esophageal cancer cell invasion and 

growth are inhibited (459). These findings suggest that the “mesenchymal gene expression” of 

undifferentiated cells is maintained or strengthened in cancer cells by Hedgehog-mediated 

signaling (459). The analysis of other markers of EMT in gastroesophageal junction tumors 

has shown that the E-cadherin repressors Slug (460), Snail, and Twist (461) are associated 

with the malignant progression of esophageal adenocarcinomas. TGFβ is known to induce 

EMT through downregulation of E-cadherin and upregulation of mesenchymal markers (462). 

A less studied member of the TGFβ family, the ligand Activin A, has been shown to be 

upregulated in the progression from Barrett's esophagus to dysplasia and, ultimately, 

esophageal adenocarcinoma (463). When Activin A signaling was inhibited with siRNA 

targeting the Activin A gene, INHBA, or with the Activin A antagonist follistatin, esophageal 

adenocarcinoma cell lines demonstrated suppressed proliferation (463). In a previous study 

analyzing Activin A function in esophageal squamous cell carcinoma, we showed that the 
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effects of Activin A are largely context- and dose-dependent (356). Herein, we describe the 

role of Activin A in Barrett's esophagus and esophageal adenocarcinoma cells, especially with 

respect to cell invasion and crosstalk within the microenvironment. 

 

Results 

The Inhibin βA subunit of Activin A is increased in the progression to esophageal 

adenocarcinoma 

TGFβ and Activin A have both been implicated in the pathology of esophageal 

adenocarcinoma  (EAC) (449,450,463). While TGFβ function is context-dependent, little is 

known about the role of Activin A in Barrett's tumorigenesis. We first queried publicly available 

Figure A-1. INHBA expression levels increase during the progression from normal esophagus to Barrett's esophagus and 
esophageal adenocarcinoma. Comparison of INHBA and TGFB1 expression was based on a publicly available GEO dataset (accession 
number GDS1321). Values for INHBA and TGFB1 were measured from extracted and purified RNA, shown here as arbitrary units. A trend 
line for INHBA expression (dashed line) was calculated (Y = 0.6436x + 0.2666). P-values for INHBA normal vs. BE, p = 0.248; NE vs. 
EAC, p = 0.932; BE vs. EAC, p = 0.437. 
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datasets to investigate the 

expression of Activin A (a 

homodimer of inhibin 

βA subunits), TGFβ, and 

components of their 

signaling cascade during the 

progression from normal 

esophagus to esophageal 

adenocarcinoma. Analysis 

of 24 samples of normal 

squamous esophagus, 

Barrett's esophagus, and 

adenocarcinoma (n = 8 per 

group) for Activin A 

expression, encoded by 

the INHBA gene, showed a 

trending increase of 

expression during the 

progression to EAC (GDS1321, Figure A-1). Interestingly, although previously shown to be 

involved in the subsequent metaplastic events, TGFB1 expression remained unchanged 

(Figure A-1). Expression of Inhibin A (INHA), an Activin A inhibitor formed through inhibin 

βA and α subunit heterodimers, and the antagonist follitstatin, were also unchanged (Figure A-

2). Analysis of other downstream targets of the signaling pathway showed that Smad2 and 

Figure A-2. Analysis of expression levels of components of the Activin A signaling 
pathways in the progression from normal esophagus to Barrett’s esophagus and 
esophageal adenocarcinoma. Comparison of the expression for INHA (the inhibin α 
subunit that forms heterodimers with inhibin β

A
, resulting in the Inhibin A ligand, an Activin A 

inhibitor), the antagonist FST and downstream canonical signaling targets SMAD4, SMAD2 
and SMAD3 based a publicly available GEO dataset (accession number GDS1321). Values 
were measured from extracted and purified RNA, shown here as arbitrary units. Pearson’s 
correlation coefficients were calculated: INHA y = −0.1002x+1.0347, r2=0.43832; FST y = 
−0.0513x +1.3548, r2=0.01021; SMAD4 y = −0.195x+1.2125, r2=0.97645; SMAD2 y = 
−0.232x+1.2591, r2=0.96066; SMAD3 y = −0.2543x+1.2773, r2=0.97617. 
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Smad3, as well as the common effector Smad4, were downregulated in the dataset used. 

While these observations do not exclude TGFβ1 ligand function as an important factor in the 

biology of EAC, they emphasize the significance of the components of these overlapping 

pathways and led us to more closely investigate the role of Activin A signaling. 

 

Overexpression of Activin A (INHBA) in esophageal model cell lines results in cell type 

specific alterations of canonical and non-canonical pathways 

Gene expression data from human tissue samples rarely allow insight into the cellular source 

of the RNA. As tumor samples are often comprised of epithelial tumor cells and stroma, the 

analyzed RNA is derived from both sources. To model epithelial Activin A overexpression, we 

chose the dysplastic cell line CPB and the EAC cell lines OE33 and FLO-1 and transduced 

them with an INHBA retroviral plasmid (two subunits of Inhibin βA encoded by the INHBA 

gene result in the Activin A protein). INHBA overexpression was validated by ELISA in CPB, 

OE33 and FLO-1 cells. All three INHBA-overexpressing cell lines secreted significantly higher 

levels of Activin A compared to control (Figure A-3A). Interestingly, when normalized to the 

number of cells at the end of the collection period (48 hours), Activin A concentration was 

higher in OE33 INHBA cells than CPB INHBA cells, while FLO-1 INHBA cells secreted the 

highest levels of Activin A overall. To identify if INHBA overexpression affected TGFβ1 

secretion levels, we performed ELISA to measure TGFβ1 in the conditioned media. Levels of 

secreted TGFβ1 significantly increased in the INHBA-overexpressing cells compared to control 

(Figure A-3B). As the function and availability of Activin A can be regulated by secreted 

factors, such as the antagonists follistatin and Inhibin A, we also measured the concentrations 

of follistatin (pan-antibody recognizing all three follistatin isoforms FS288, FS300 and FS315) 
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and Inhibin A in the collected conditioned media by ELISA. The levels of these factors were 

below the limit of assay sensitivity when compared to the positive controls (data not shown). 

To identify which downstream signaling targets were activated in response 

to INHBA overexpression, we collected protein lysates of untreated cells, as well as cells 

treated with recombinant TGFβ1 as a positive control and FS288. Smad2, a downstream 

target of Activin A and TGFβ phosphorylated upon signal transduction, was not activated in 

any of the INHBA-overexpressing cell lines, leading us to conclude that continuous exposure

 

Figure A-3. Overexpression of INHBA in esophageal model cell lines results in cell type specific alterations of canonical and 
non-canonical pathways. (A) Activin A concentration in conditioned media after overexpression of Activin A (INHBA) compared to empty 
vector control was assessed by ELISA, and normalized to the cell number at time of collection. Highest overexpression levels were 
achieved in FLO-1 cells. (B) TGFβ concentration in conditioned media after overexpression of Activin A (INHBA) compared to empty 
vector control as assessed by ELISA. (C) Protein expression of pSmad2, total Smad2, pSmad1,5,8, pERK1/2 and total ERK1/2, as well as 
pAkt and Akt was analyzed by Western blot. (D) Antibodies against markers of epithelial-mesenchymal transition showed the expression 
of mesenchymal markers, such as standard form of CD44, high MT1-MMP and vimentin in CPB and FLO-1. OE33 cells expressed the 
variant CD44 isoform (arrowhead) and had high E-cadherin (E-cad). * p value < 0.05. 
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to Activin A desensitizes the cells to signal induction (Figure A-3C). Stimulation with TGFβ1 as 

a control, however, elicited phosphorylation of Smad2 within 30 minutes. TGFβ1 stimulation 

resulted in phosphorylation of Smad2 in OE33 and FLO-1 cells. We also analyzed 

phosphorylation of Smad1/5/8 (Smad1,5,8), which is typically induced by BMP2 and BMP4. 

Interestingly, OE33 cells, which express more epithelial markers and less mesenchymal 

markers than CPB and FLO-1 cells (Figure A-3D), had high baseline phosphorylation of 

Smad1/5/8 (pSmad1,5,8) and pERK1/2. pSmad1/5/8 was increased by TGFβ1 in both control 

and INHBA expressing OE33 cells, and overall INHBA-overexpressing OE33 cells showed the 

strongest signal for pSmad1/5/8 among the three cell lines. In FLO-1 cells, pSmad1/5/8 was 

suppressed by INHBA overexpression, but present in control cells treated with TGFβ1 or 

FS288. FLO-1 cells showed no activation of the ERK pathway. CPB cells, which showed no 

pSmad1/5/8 phosphorylation, had a strong signal for pERK1/2. pAkt levels were similar 

amongst control and INHBA overexpressing cells and were not altered with any of the 

treatments. 

Analysis of EMT markers showed a lack of E-cadherin in CPB and FLO-1, which 

generally exhibit a more mesenchymal phenotype than OE33 cells. OE33 typically show a 

cobblestone growth appearance and express high levels of E-cadherin. Accordingly, CPB and 

FLO-1 cells expressed the mesenchymal markers vimentin and MT1-MMP, as well as the 

mesenchymal variant of CD44. Upon INHBA overexpression, we observed increased levels of 

CD44 and MT1-MMP in CPB cells, which were further enhanced 48 hours after TGFβ1 

stimulation. While the mesenchymal variant of CD44 is not expressed in OE33 cells, the 

standard form is (arrowhead to upper band, (294,464)). MT1-MMP, a membrane anchored 

matrix metalloprotease, was also increased in response to TGFβ1 in FLO-1 cells and 
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upregulated in INHBA-expressing FLO-1 cells. CD44 was expressed at similar levels in the 

FLO-1 empty vector and INHBA cell lines. INHBA overexpression resulted in higher levels of 

vimentin in FLO-1 cells compared to empty vector control (Figure A-3D). E-cadherin 

expression levels were largely unchanged in OE33 cells. 

To identify if changes in the receptor complex components occur in these cells lines, we 

Figure A-4. Protein expression of receptor complex components is unchanged upon INHBA overexpression, yet proliferation is 
altered. (A) Protein lysates were collected after 48 hours after treatment with TGFβ1 or follistatin and used for Western blot. Analysis of 
components of the Activin A and TGFβ receptor complexes (TGFBR2, ACVR1B, AVCR2 AVCR2B) showed no changes in expression 
following INHBA overexpression. Smad4 expression is lower in OE33 cells than CPB and FLO-1 cells. TGFBR2, ACVRIB, AVCR2B were 
probed on the same membrane as α-tubulin for Smad4 (bottom panel). Cell viability was measured by WST-1 assay over the course of 96 
hours. (B) CPB cells with INHBA overexpression have higher proliferation rates, which are reduced in the presence of follistatin, but not an 
Activin A neutralizing antibody (nAb). (C) OE33 cells and OE33-INHBA cells respond to follistatin with reduced proliferation rates, but not 
nAb. Overall, INHBA overexpression increases cell growth. (D) FLO-1 cells with INHBA overexpression have higher proliferation rates, 
which are reduced in the presence of follistatin, but not Act A neutralizing antibody. Data from three independent replicates were pooled 
and two-way ANOVA performed. All proliferation treatment conditions were normalized to their respective 24-hour time-point and the fold 
change was calculated from this value. *p < 0.05. 
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analyzed the expression of TGFBR2, ACVRIB, ACVR2, ACVR2B and the common 

downstream target Smad4. Aside from low levels of Smad4 in OE33 and low TGFBR2 in FLO-

1 cells, all components were present in the analyzed cells (Figure A-4A). 

In conclusion, we assessed the contributions of Smad-dependent canonical and non-

canonical signaling targets, and showed phosphorylation of Smad2 only in response to TGFβ1, 

leading us to assume that INHBA overexpression does not alter baseline activation of Smad2. 

CPB INHBA cells had a stronger pSmad2 signal than control cells when treated with TGFβ1. 

We thus conclude that overexpression of INHBA in pre-malignant cells may increase the 

sensitivity to TGFβ1 signaling. Non-canonical pathway induction was measured by 

phosphorylation of ERK1/2 and Smad1/5/8, showing pSmad1/5/8 to be activated in OE33 and 

increased in the presence of INHBA overexpression, yet downregulated in FLO-1 INHBA cells 

upon TGFβ1 stimulation as well as with follistatin inhibition when compared with respective 

FLO-1 vector controls. 

 

INHBA overexpression increases cell invasion in CPB and FLO-1, which exhibit 

mesenchymal features 

Next, we assessed functional alterations of the INHBA-expressing cell lines compared to their 

control cells. To analyze growth rates in response to INHBA overexpression, we performed 

WST-1 viability assays over 96 hours and showed that overexpression of INHBA increased 

proliferation compared to control empty vector cells in all three cell lines (Figure A-4B-D). 

Addition of FS288 during the incubation period decreased growth by 96 hours. Interestingly, an 

Activin A neutralizing antibody could not inhibit growth, indicating that the functional effects of 

follistatin could be mediated by other targets. Folllistatin has been shown to bind with low 
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affinity to several other members of the TGFβ superfamily, including growth and differentiation 

facto 9 (GDF9), myostatin (GDF8), and several of the BMPs (465,466). Although follistatin 

does not bind to TGFβ1 or 2, binding to TGFβ3 has been reported (467). 

Using colony formation assays to examine the cell survival and self-renewal capacities 

of INHBA-expressing cells, we detected reduced colony formation in CPB cells; however, no 

Figure A-5. INHBA overexpression impacts colony formation, migration and invasion potential in a cell-type specific manner. (A) 
INHBA overexpression inhibited colony formation of CPB cells compared to control (ctr), but not in the esophageal adenocarcinoma cell 
lines, OE33 and FLO-1. (B) Scratch assays showed high migration capabilities for OE33 cells, independent of INHBA status. INHBA 
overexpression enhanced scratch closure in FLO-1 cells (FLO-1 INHBA). (C) Migration measured in transwell chamber assays towards a 
full medium gradient showed inhibition of OE33 migration after INHBA overexpression (OE33 INHBA). (D) CPB INHBA and FLO-1 INHBA 
had an increased invasion potential compared to empty vector control cells (ctr) when grown in Boyden chamber invasion assays. OE33 
INHBA invasion was equal to empty vector control (ctr). Statistical analysis was performed using Student's t-test, *p < 0.05. 
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effect on OE33 and FLO-1 cells was observed (Figure A-5A). The response of CPB cells 

to INHBA overexpression indicated that premalignant cells or cells at an early stage of EAC 

progression reduce their capability for cell survival or self-renewal while cancer cell lines evade 

an Activin A-mediated response. 

To investigate the migratory and invasive potential of these cells, we employed two 

approaches: one that would account for gradient-independent migration - the scratch assay - 

and the other the chemotaxis-dependent Boyden chamber assays (Figures A-5B–5D). Of the 

tested cell lines, OE33 cells had the greatest migratory potential in scratch assays, yet no 

differences between INHBA-expressing and control cells were observed (Figure A-5B). 

However, cell migration in scratch assays was increased in INHBA-expressing FLO-1 cells 

(Figure A-5B). Migration in Boyden chamber assays with full media as a chemoattractant 

showed no changes in migration for CPB and FLO-1 INHBA and control 

cells. INHBA overexpression reduced Boyden chamber migration of OE33 cells (Figure A-5C). 

Invasion assays, in which cells have to digest a Matrigel matrix in a MMP-dependent process, 

demonstrated significantly higher invasion in INHBA-expressing CPB and FLO-1 cells, but not 

OE33 cells (Figure A-5D). As we have shown higher levels of CD44 and MT1-MMP in CPB 

and FLO-1 cells, the increased cell invasion could be dependent on the expression of these 

mesenchymal markers and the greater capability for digesting the matrix. FS288 and Activin A 

neutralizing antibody were used as additional controls in this assay to demonstrate the 

specificity of the function of Activin A in cell invasion (Figure A-6). The antagonist follistatin 

reduced cell invasion in control and INHBA-overexpressing cells, but the Activin A neutralizing 

antibody had an even greater effect (Figure A-6). This observation is interesting in light of the 

greater efficacy of follistatin in reducing cell growth compared to the neutralizing antibody 
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(Figure A-3B-D). We postulate that the corroboration of different pathways controls the diverse 

functions of proliferation and invasion. 

 

Stimulation with exogenous Activin A results in downstream activation of canonical and 

non-canonical pathway components 

To explore the differences between paracrine and autocrine signaling effects, we next added 

recombinant Activin A to the culture media. In this set of experiments, we aimed to investigate 

Figure A-6. Cell invasion of control and INHBA overexpressing cells is inhibited by follistatin and neutralizing antibody against 
Activin A. Empty vector control (ctr) and INHBA overexpressing cells were grown in Boyden chamber invasion assays in the presence or 
absence of follistatin (Folli) or Activin A neutralizing antibody (nAb) and compared to untreated controls (no tx). Both treatments reduced 
the invasive capabilities of the cells, yet nAb is more effective than follistatin. Statistical analysis was performed using Student’s t-test, *p < 
0.05. 
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if the model cell lines exhibit differential responses when stimulated with recombinant Activin 

A, a model of non-epithelial-derived Activin A. Using ELISA, we measured Activin A and TGFβ 

concentrations in conditioned culture media collected from untreated cells, cells treated with 

recombinant Activin A, or cells treated with the TGFβ receptor inhibitor A83-01 (Figure A-7A, 

B). Activin A levels were found to be higher in Activin A-stimulated CPB cells than in OE33 and 

FLO-1 cells (Figure A-7A). As the concentration of Activin A, when normalized to the amount of 

cells at the end of the 48-hour incubation period concentration, was much lower than expected 

in the OE33 and FLO-1 cells, we speculate that the availability is lower either due to decreased 

stability or increased uptake by the cells. The TGFβ1 concentration in the conditioned media 

was increased upon exogenous Activin A stimulation in CPB and OE33 cells, but not FLO-1 

cells (Figure A-7B). The addition of A83-01 had no effect on TGFβ1 secretion in in all three cell 

lines. 

Western blot analysis showed no phosphorylation of Smad2 in any of the three cell lines 

tested when untreated (Figure A-7C). Stimulation with Activin A induced phosphorylation of 

Smad2 in CPB and FLO-1 cells, but not in OE33 cells. TGFβ1, which was used as a positive 

control for the induction of Smad2 phosphorylation, resulted in robust Smad2 activation across 

all tested cell lines. pSmad1/5/8 was detected at high levels in OE33 cells independent of 

Activin A stimulation or inhibition. CPB and FLO-1 cells showed increased pSmad1/5/8 only 

upon TGFβ1 stimulation. pERK1/2 and pAKT remained unchanged in response to the different 

treatments. Again, overall pERK1/2 was higher in CPB and OE33 cells compared to FLO-1, 

similar to our observations in the INHBA overexpression model (Figure A-3C). The epithelial 

marker E-cadherin was expressed in OE33 and increased expression was detected upon 

inhibition of Activin A with follistatin or TGFβ1 inhibition by A83-01. CPB and FLO-1 expressed 
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the standard form of CD44, while OE33 expressed the variant form, which is commonly 

associated with a more epithelial phenotype (arrowhead, Figure A-7D). MT1-MMP had the 

highest expression in FLO-1 cells. While CPB cells also expressed MT1-MMP, OE33 only 

showed a signal after TGFβ1 stimulation. Both CPB and FLO-1 had expression of the

 

Figure A-7. Stimulation with recombinant Activin A regulates TGFβ1 secretion and induces canonical downstream signaling in 
CPB and FLO-1 cells. (A) Activin A concentration in conditioned media after stimulation with recombinant Activin A (Act A) or the TGFβ 
receptor inhibitor A83-01, as assessed by ELISA and normalized per 100,000 cells after 48 hour incubation. (B) TGFβ1 concentration in 
conditioned media after stimulation with recombinant Activin A or the TGFβ receptor inhibitor A83-01, was assessed by ELISA. TGFβ1 
concentration was increased in response to stimulation with recombinant Activin A and reduced with A83-01 in CPB and OE33, but not in 
FLO-1. Concentrations were normalized to cell number at time of collection. (C) Antibody against phospho-Smads (pSmad2; pSmad1,5,8) 
and total Smad2, as well as pERK1/2 and pAkt compared to total ERK1/2 and Akt were used for Western Blot analysis. pSmad2 is 
induced in response to Activin A and TGFβ1 in CPB and FLO-1, but only with TGFβ1 in OE33. (D) Antibodies against markers of 
epithelial-mesenchymal transition showed increased expression of the variant form of CD44 (arrowhead) in epithelial OE33 cells following 
stimulation with follistatin (Folli) and Activin A, as well as TGFβ1. MT1-MMP was increased mainly with recombinant TGFβ1 in OE33. 
FLO-1 cells, which exhibit a mesenchymal phenotype, had a further increase in vimentin expression with Activin A, but also with addition 
of A83-01 and TGFβ1. Statistical analysis was performed using ANOVA, *p < 0.05. 
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mesenchymal marker vimentin, which was absent in OE33 cells. Interestingly, Activin A 

increased vimentin expression in FLO-1 cells, which was reduced after the addition of 

follistatin, demonstrating specificity of the Activin A-mediated effect (Figure A-7D). Analysis of 

the receptor expression confirmed the low levels of TGFBR2 in FLO-1 cells (Figure A-8A). 

Overall, TGFBR2 expression levels were unaffected by stimulation with Activin A or by the use 

of the antagonists and inhibitors, but upon TGFβ1 stimulation, TGFBR2 expression was 

downregulated in CPB cells, possibly due to receptor internalization or degradation upon 

signaling induction. The unchanged expression levels for the signaling receptors are not 

unexpected as the regulation of receptor function depends mostly on phosphorylation events, 

localization within the cells, and endocytosis upon ligand binding to ensure recycling of the 

receptors. Yet deletion, mutation, and epigenetic silencing can lead to the loss of expression 

and, therefore, evasion of a cytostatic response has been reported in the literature (468). 

 

Activin A stimulation increased cell invasion in OE33 cells 

As the stroma can be a major source of chemokines and cytokines regulating tumor growth 

and invasion, we measured the effects of recombinant Activin A treatment on cell viability 

(Figure A-8B-D), colony formation, cell migration (scratch assay), and chemotaxis-dependent 

cell migration and invasion (Boyden chamber). When we examined cell growth after treatment 

with recombinant Activin A, follistatin, an Activin A neutralizing antibody, and combinations of 

Activin A with the respective antagonists, we observed largely unchanged cell growth with the 

different conditions (Figure A-8B-D). CPB cells showed an increase after treatment with 

follistatin, but not neutralizing antibody (Figure A-8B). OE33 cells exhibited a decrease in 

growth in the presence of Activin A together with follistatin. FLO-1 cells, while unresponsive to 
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Figure A-8. Protein expression level of receptor complex components are unchanged upon Activin A treatment, however 
proliferation is altered. (A) Protein lysates were collected after 48 hours and antibodies against TGFBR2, ACVRIB, ACVR2, ACVR2B, 
and Smad4 used to determine if changes in protein expression occur following stimulation with Activin A, TGFβ (as a positive control), 
follistatin (Folli), or A83-01. No changes were noted aside from TGFBR2, which was downregulated in CPB cells upon TGFβ stimulation. 
Membrane for ACVRIB is the same as for Smad4. α-tubulin on the bottom panel serves as ACVRIB loading control. Cell viability was 
measured by WST-1 assay over the course of 96 hours. Cells were treated with either Activin A (Act A), the combination of Act A and 
follistatin, Act A and Activin A neutralizing antibody (nAb) or each alone. (B) CPB cells, in response to follistatin showed increased cell 
proliferation. (C) OE33 cell proliferation was decreased in response to the combination of Act A and follistatin. (D) FLO-1 cells in response 
to Activin A stimulation showed increased cell proliferation in the presence of Activin A and follistatin or the combination of Act A and 
neutralizing antibody (nAb). Data from three experiments were pooled and a two-way ANOVA was performed. All proliferation treatment 
conditions were normalized to their respective 24-hour time point and the fold change was calculated from this value. *p < 0.05. 

Figure A-9. Stimulation with recombinant Activin A affects colony formation, migration and invasion potential in a cell-type 
specific manner. (A) Activin A overexpression inhibited colony formation of CPB cells, but not in esophageal adenocarcinoma cell lines, 
OE33 and FLO-1. (B) Scratch assays showed high migratory capabilities for OE33 cells. (C) Migration measured in transwell chamber 
assays towards a full medium gradient showed no effect from Activin A stimulation. (D) Using Activin A as a chemoattractant increased the 
invasive capability of OE33 cells when measured in Boyden chamber invasion assays (SFM: serum-free medium; Act A: serum-free 
medium with Act A). t-test was used to calculate significance, p-value < 0.05. 
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Activin A stimulation, showed increased cell growth in the presence of Activin A and its 

antagonists (Figure A-8D). These results are in contrast to the overall induction of proliferation 

in all cell lines after INHBA overexpression (Figure A-3B). Similar to the data observed 

with INHBA overexpression, colony formation was reduced in CPB cells in the presence of 

recombinant Activin A (Figure A-9A). Activin A, however, had no effect on the EAC lines OE33 

and FLO-1 (Figure A-9A), indicating that Activin A exerts colony reduction in dysplastic but not 

tumor cells. 

When we studied the response to Activin A in scratch assays, we found that while OE33 

had the highest migratory potential in the scratch assays, Activin A stimulation had no effect 

compared to untreated controls (Figure A-9B). No significant differences were observed 

between untreated and Activin A treated cells in chemotaxis migration (Figure A-9C), however 

cell invasion assays using Activin A as a chemoattractant increased OE33 cell invasion 

(Figure A-9D). When follistatin in combination with Activin A was used, FLO-1 cells 

demonstrated a diminished potential for invasion, indicating a dependence on signaling 

targeted by follistatin inhibition such as Activin A, and potentially other pathways such as BMP. 

Other treatments including neutralizing antibody surprisingly had no effect on cell invasion 

(Figure A-10), possibly hinting at the necessity for additional growth factors to contribute to this 

phenotype. Fetal bovine serum as a positive control elicited considerable invasion in all three 

cell lines. 

In all, Activin A concentrations in the ELISA assay (Figure A-7A) identified that FLO-1 

cells had the lowest measurable Activin A concentration 48 hours after treatment and therefore 

the lack of response in the functional assays could be dependent on Activin A availability. 
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Interestingly, Activin A media concentrations were lower for OE33 cells than CPB after Activin 

A stimulation, yet cell invasion could be induced in OE33 cells. 

Overall, comparison of the results for Activin A stimulation and the retroviral 

overexpression of INHBA suggest that the Barrett's cell line CPB is responsive to Activin A as 

a modulator of cell survival, which ultimately resulted in reduced colony formation. However, 

only overexpression of INHBA enhances cell invasion in CPB and FLO-1 cells, while 

stimulation with recombinant Activin A does for OE33 cells. A limitation to the approach 

comparing overexpression as a model for autocrine signaling and stimulation for paracrine 

signaling is not only the variability of ligand availability and dosage, as can be seen by the 

differences in concentration by ELISA, but also long-term versus acute exposure to the ligand. 

It appears, however, that while Activin A stimulation (acute response) can elicit functional 

changes, only overexpression can result in intrinsic cellular changes, which ultimately 

becomes the driver for events such as cell invasion after long-term exposure (Figure A-3). 

While the stroma as a source of Activin A seems to effect migration and invasion less than 

autocrine functions of tumor-secreted Activin A, the elicited functional responses are potentially 

influenced by acute versus chronic exposure and crosstalk with other pathways. This 

hypothesis is supported by the variable regulation of Activin A-dependent functions in the 

presence of follistatin or Activin A neutralizing antibody, but will require additional 

experimentation. 

 

Columnar keratins are differentially expressed in organotypic reconstruct cultures 

The previous assays allowed for the analysis of epithelial cells in vitro, but these methods do 

not account for epithelial cell crosstalk with matrix components and mesenchymal cell types. 
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Figure A-10. Cell invasion is inhibited when adding Activin A in combination with follistatin in FLO-1 cells. Cells were grown in 
serum-free media in Boyden chamber invasion assays with either Activin A (ActA), the combination of Activin A and follistatin (Folli), 
Activin A and an Activin A neutralizing antibody (nAb) or each alone in the bottom chamber. FBS was used as a positive control. The 
invasive potential of OE33 cells was increased by the combination of ActA and follistatin. In FLO-1 cells, ActA and follistatin reduced the 
invasive potential, while FBS increased it in all cell lines. Post-hoc statistical analysis comparing all the conditions was performed using 
one-way ANOVA. *p < 0.05. 

Figure A-11. Barrett's esophagus and esophageal adenocarcinoma cells in organotypic reconstruct cultures. (A) OE33 cells had 
increased Alcian Blue staining upon A83-01 treatment (arrows). OE33 cells were also positive for the columnar marker cytokeratin 19 
(keratin 19). (B) CPB and FLO-1 cells, which have a mesenchymal phenotype, express no E-cadherin, but OE33 showed positive E-
cadherin staining by immunofluorescence. Anti-keratin 8 antibody showed that the signal increased in CPB following stimulation with 
Activin A or treatment with A83-01. Keratin 8 signal was weaker in FLO-1 cells in the presence of A83-01. 
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For that reason, we grew CPB, OE33, and FLO-1 cells in the presence or absence of Activin A 

in organotypic cultures on a collagen/Matrigel matrix with embedded fibroblasts to mimic a 

physiological stromal context. CPB and FLO-1 cells, which have a mesenchymal phenotype, 

were unable to form a multilayered epithelium due to the lack of cell-cell adhesion. However, 

stimulation of the culture with Activin A, as well as inhibition of TGFβ with A83-01, induced 

overall epithelium formation in CPB and FLO-1 cells. Both cell types were negative for Alcian 

Blue staining, which was used to detect mucin-secreting cells, and the columnar marker 

cytokeratin 19 (CK19) (Figure A-11A). The epithelial adenocarcinoma cell line OE33 exhibited 

Alcian Blue-positive cells, indicating the presence of mucin secreting goblet cells (arrows, 

Figure A-11A), and positive staining for CK19 (Figure A-11A) in Activin A-treated and control 

organotypic cultures. 

When stained for E-cadherin and for the columnar keratin, cytokeratin 8 (CK8), CPB 

cells showed no signal for E-cadherin, validating the Western blot data (Figure A-7E). CK8, 

however, could be detected and increased following treatment with Activin A and A83-01 

(Figure A-11B). OE33 cells were positive for both E-cadherin and CK8 independent of the 

treatment conditions. No E-cadherin staining could be detected in FLO-1 cells, and only a few 

cells of the epithelium were positive for CK8 (Figure A-11B). Cytokeratin 14, a squamous 

marker, was not detected by immunofluorescence (data not shown). 

Columnar cytokeratins CK8 and CK19 are expressed in glandular, non-squamous 

epithelium, including Barrett's Esophagus (469), and therefore demonstrate the shift towards a 

columnar phenotype compared to normal squamous esophageal tissue. 
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Activin A regulates SOX9 nuclear localization 

We further aimed to determine the expression of SOX9 in response to Activin A signaling. 

SOX9 is known to drive columnar differentiation of the esophageal squamous epithelium (470) 

and has been described to attribute stem cell-like properties to esophageal cancer cells (471). 

We hypothesized that because mesenchymal cells have more stem cell-like features, SOX9 

should be detected with higher frequency in the nuclei of CPB and FLO-1 cells. To address the 

Figure A-12. Activin A induces nuclear SOX9 in FLO-1 cells. (A) In organotypic cultures, CPB cells showed nuclear SOX9 
(arrowheads) with and without Activin A (Act A) stimulation; the signal was reduced with A83-01. OE33 cells show no nuclear SOX9 in any 
of the conditions. The intensity for SOX9 staining was low in FLO-1 control cells with no nuclear localization, but increased with Activin A 
(Act A) and A83-01, as shown by the white arrowheads. (B) In monolayer, CPB control and INHBA overexpressing cells had a nuclear 
SOX9 signal. OE33 cells showed no nuclear SOX9 in any of the conditions. The intensity for SOX9 staining was low in control cells with 
no nuclear localization in FLO-1 cells, but increased in FLO-1 INHBA. (C) SOX9-positive nuclei were counted and calculated as 
percentage per total nuclei per field. Four fields per replicate image were counted. (D) The publicly available GEO dataset (accession 
number GDS1321) was used for analysis of SOX9 expression and showed overall increased SOX9 expression in the progression from 
Barrett's esophagus to esophageal adenocarcinoma. 



	 162 

expression and localization of SOX9 in response to Activin A and TGFβ signaling, we 

performed immunofluorescence staining with an anti-SOX9 antibody on the organotypic 

cultures. In untreated cultures, CPB cells were positive for nuclear SOX9, while few OE33 and 

FLO-1 cells were positive (white arrowheads, Figure A-12A). Upon stimulation with Activin A, 

SOX9 expression was unaffected in CPB cells, though the number of SOX9-positive nuclei in 

the fibroblasts increased. Organotypic cultures of OE33 cells showed increased positive SOX9 

signal in the fibroblasts, but not in the OE33 cells themselves. Increased nuclear staining was 

observed in FLO-1 cells and the surrounding fibroblasts after Activin A stimulation (white 

arrowheads, Figure A-12A). TGFβ inhibition by A83-01 decreased nuclear SOX9 in the CPB 

cultures, but did not inhibit SOX9 nuclear localization in the FLO-1 cells (Figure A-12C). 

Interestingly, when INHBA-overexpressing cells were grown on plastic, nuclear SOX9 was also 

high in CPB and low in OE33 cells, but SOX9-positive nuclei were less frequent in 

CPB INHBA cells than in the Activin A-stimulated cells grown in organotypic cultures (Figure A-

12B). In FLO-1 cells, which showed an increased number of SOX9-positive nuclei upon Activin 

A and A83-01 treatments, we still detected an increase in SOX9-postitive nuclei in INHBA-

overexpressing cells (Figure A-12B), but not to the same extent as in cultures treated with 

recombinant Activin A (Figure A-12C). These observations show that expression and nuclear 

SOX9 localization in CPB cells are TGFβ signaling–dependent, demonstrated by suppression 

of TGFβ signaling by A83-01 in organotypic culture. Conversely, the INHBA-dependent 

increase of nuclear SOX9 in FLO-1 cells was not reversible through inhibition of TGFβ by A83-

01. Differences in numbers between organotypic cultures and plastic indicate a role of the 

stroma in the regulation of the signaling pathways resulting in SOX9 activation. Using the 

same dataset as in Figure A-1, we showed an increase in SOX9 expression during the 
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progression from Barrett's esophagus to esophageal adenocarcinoma (Figure A-12D). 

Together, we believe that these data indicate the importance of the microenvironment for 

signal transduction and SOX9 protein expression. 

 

Discussion 

Esophageal adenocarcinoma (EAC) has a poor patient outcome, with a 5-year survival of only 

14% (472). A recognized risk factor for EAC is Barrett's esophagus, which has been shown to 

progress from a pre-malignant lesion to EAC in 5–10% of cases (473). EACs can arise rapidly 

in patients diagnosed with Barrett's esophagus, even under careful surveillance. It is thought 

that the transformation of non-dysplastic to dysplastic Barrett's esophagus, and ultimately 

esophageal adenocarcinoma, is driven by a stepwise accumulation of mutations or specific 

oncogenic events that underlie progression. Yet, most of the commonly mutated genes in 

EAC—except TP53 and SMAD4—have also been found in non-dysplastic Barrett's esophagus 

that did not progress towards cancer (474). These findings and the fact that targeted therapies 

brought little improvement due to reactivation of the targeted pathway, hyperactivation of 

alternative pathways, and cross-talk with the microenvironment (475) highlight that aside from 

genomic catastrophes, such as gene inactivation through chromosomal rearrangements and 

telomere integrity (476,477), other important mechanisms are at play in EAC progression. 

We have focused here on the activation of canonical and non-canonical signaling by 

Activin A to identify the contributions of this TGFβ family member to the pathology of EAC. 
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Signaling 

Activins and BMPs are classified as members of the TGFβ superfamily, and bind to related 

transmembrane receptors, resulting in overlap in their intracellular signaling cascades and 

downstream function (87,318,478,479). This has been shown by deletions of TGFβ2, TGFβ3 

and inhibin βA, which all result in cleft palate defects in the respective mouse model. Similar to 

a 10-bp polyadenine tract within the TGFβ receptor type II gene (TGFBR2) that is prone to 

frameshift mutations in gastrointestinal cancers, mutations in ACVR2 have been identified in 

colorectal and pancreatic cancers (319). Additionally, ACVR1B is commonly mutated in 

pancreatic cancer (229), and in a majority of sporadic colorectal cancers BMPR2 expression is 

impaired (320). Conversely, BMP and Activin Membrane-bound Inhibitor, BAMBI, is 

upregulated in colorectal cancer and under direct regulation of the Wnt pathway, (321) a 

component of a gene expression profile that predicts metastasis (322). Exome and whole-

genome sequencing of EAC has identified recurrent driver events with high frequency, such as 

mutations in TP53 and CDKN2A, but also PTEN and SMAD4 (480,481). Interestingly, Activin 

A, which canonically signals through the Smad cascade, but utilizes a different set of receptors 

(ACVR2A or ACVR2B), was able to activate Smad2 in CPB and FLO-1 cells, but failed to do 

so in OE33 cells. OE33 cells, on the other hand, showed overall non-canonical activity of the 

MAPK/ERK pathway, as well as activation of BMP signaling as measured by pSmad1/5/8, the 

latter being increased upon INHBA overexpression. This could indicate that these signaling 

pathways are somewhat promiscuous and that ligands can utilize undesignated receptors 

(384,482). Furthermore, stimulation with TGFβ1 upon overexpression of INHBA resulted in 

activation of the canonical and non-canonical pathways (for OE33 and FLO-1 cancer cells). 

TGFβ1 has been shown to induce phosphorylation of Smad1/5/8 in endothelial cells mediated 
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by TGFBR1 and ACVL1 (482). Interestingly, although functional consequences, such as a 

decrease in clonogenicity, were observed in both acute and long-term exposure settings for 

Barrett’s esophagus cells, we could not measure meaningful canonical and non-canonical 

signaling activation in INHBA overexpressing cells. This could be potentially due to an 

acquired insensitivity after prolonged exposure, yet we observed increased cell invasion, 

possibly due to intrinsic cell changes. 

 

Tumorigenicity and invasion 

In esophageal squamous cell carcinoma, Activin A has been associated with tumor 

aggressiveness and increased MMP-7 expression. This increase in aggressiveness is 

accompanied by increased proliferation (300) and MMP-7 activity (89). However, when the 

microenvironment is taken into account, the regulation of Activin A through its inhibitor 

follistatin or a TGFβ receptor inhibitor has differential effects when keratinocytes and 

fibroblasts were grown in organotypic cultures (356). Our previous study showed that while cell 

invasion was increased upon Activin A stimulation in a premalignant cell model, inhibition of 

Activin A and TGFβ1 further enhanced cell invasion. Based on the importance of the balance 

between Activin A/TGFβ and BMP signaling, squamous epithelial homeostasis appears to be 

regulated by fine-tuning the concentrations and activity of the different growth factors and their 

functions (356). Here we show that activation of Activin A signaling results in decreased cell 

migration of OE33 cells in the context of autocrine signaling (Boyden chamber), yet increased 

OE33 cell invasion upon stimulation with Activin A, suggesting a stromal contribution. Invasion 

of CPB and FLO-1 cells was increased upon INHBA overexpression, but was unaffected by 

stimulation. Given the variability in Activin A concentration between overexpression and 
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recombinant stimulations in the FLO-1 cells, the results could be dependent on a lower 

concentration of Activin A. Overall, we speculate that the source of Activin A elicits different 

cellular responses in a context-dependent manner. Aside from the source, an important 

consideration is the amount of Activin A available, as sudden influx and receptor occupancy in 

an acute setting will activate signaling; yet during long-term exposure, low-affinity ligand 

receptor interactions could lead to more promiscuity. 

The microenvironment has been recognized as playing an increasingly important role in 

carcinogenesis. Gene ontology analysis has identified a strong inflammatory component in 

Barrett's tumorigenesis, and key pathways included are cytokine-receptor interactions and 

TGFβ (483,484). We extrapolate from our data that the endogenous production of Activin A 

may result in different phenotypic and functional outcomes than the mimicked paracrine 

stimulation of the cells. At the same time, similar to the differential effects on multiple cell lines 

as described above, we found profound variation when analyzing models of EAC progression 

between dysplastic cells (CPB) and esophageal adenocarcinoma cell lines with an epithelial 

(OE33) or mesenchymal phenotype (FLO-1) and their responses to Activin A. 

Wang et al. have shown that squamous-to-columnar metaplasia can occur when bile-

induced injury reactivates latent developmental pathways (485). Hedgehog signaling in 

squamous epithelial cells upon bile-induced injury stimulated stromal expression of BMP4 by 

esophageal fibroblasts, resulting in epithelial SOX9 expression (485). Given the activation of 

pSmad1/5/8, the fine balance between Activin A and BMP signaling might be regulating the 

context-dependent functional outcomes. 
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Stemness and resistance 

Activin A has been identified as necessary for the maintenance of self-renewal in human 

embryonic stem cells through the induction of Oct4, Nanog, Nodal, and Wnt3, but, more 

importantly, through the induction of basic FGF and the suppression of BMP (72). These data 

indicate the role of Activin A as a mediator of stemness and potentially as a cancer stem cell 

marker. Suppression of the downstream target ID2 by Activin A and TGFβ is central in the 

induction of EMT (73), which is antagonized by BMP. Supporting the important role in 

regulating self-renewal of stem cells and cell-fate determination in the initiation and 

progression of Barrett's esophagus to EAC, it has been shown that in the normal esophagus, 

small clusters of Oct3/4-positive cells are nested in the basal cell layer, representing a pool of 

progenitor cells. Concomitant with the activation of Notch and TGFβ signaling in esophageal 

adenocarcinoma, an expansion of the Oct3/4 positive cell clusters can be observed (449). 

SOX proteins, documented as stem cell markers, also exhibited increased expression in 

esophageal adenocarcinoma cells (449). 

SOX9 has been implicated in the induction of a cancer stem cell phenotype in 

esophageal cancer (449,470). Expression of SOX9 in squamous epithelial cells has been 

shown to induce the formation of a columnar-like epithelium with the expression of columnar 

differentiation markers such as cytokeratin 8, demonstrating that columnar dedifferentiation 

and expression of intestinal markers reminiscent of Barrett's esophagus can be driven by 

SOX9 (470). The involvement of bile reflux injury in the context of Barrett's tumorigenesis has 

been shown in acid treatment experiments using normal esophageal squamous, OE33 cells, 

and a mouse model of bile reflux. Acid or bile exposure led to an induction of stromal BMP4 

and epithelial SOX9 resulting in conversion from squamous to columnar epithelium along with 
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the expression of columnar cytokeratins (486). Nuclear SOX9 was also detected in a surgical 

model of reflux by esophagojejunostomy (487). Additional support that SOX9 may be an 

important early event in the development of Barrett's tumorigenesis is seen in the activation of 

SOX9 following loss of β2-spectrin, which induces a TGFβ signaling switch from tumor 

suppressor in normal cells to tumor promoter in fibroblasts and EACs (471). Upstream of 

SOX9, YAP1 has been shown to be a major determinant of cancer stem cell properties in non-

transformed and esophageal cancer cells. YAP-induced upregulation of SOX9 was 

concomitant with the acquisition of stem cell properties (488). 

Our data show that induction of nuclear SOX9 is potentially associated with a 

mesenchymal phenotype, as epithelial OE33 cells are negative for SOX9. Activin A 

stimulation, as well as its overexpression, resulted in increased nuclear SOX9 localization and 

may be associated with stem cell-like features, such as the expression of EMT markers. Stem 

cell-like properties have been attributed to the mediation of therapy resistance (489). Kim Ah et 

al. (490) reported that, in response to ionizing radiation, TGFβ downregulates c-Myc mRNA 

expression and inhibits the growth of OE33 EAC cells in vitro. While TGFβ enhanced 

radioresistance of OE33 cells, it did not affect the radiosensitivity of squamous carcinomas 

KYSE and OE21. The TGFβ-enhanced radioresistant phenotype was associated with induced 

G0/G1 cell cycle arrest and upregulation of the G1 cyclin-dependent kinase inhibitor p27kip1, 

as well as downregulation of c-Myc protein expression. Interestingly, conditioned medium 

obtained from unirradiated OE33 cells enhanced radioresistance compared with fresh medium. 

This enhancement was abrogated by pre-incubation of conditioned medium with a neutralizing 

anti-TGFβ antibody, suggesting endogenous TGFβ production by OE33 cells. Given the 

reports of submucosal metaplasia after Barrett's esophagus radioablation, it remains to be 
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seen if SOX9 expression coupled with high Activin A serum levels would be useful as an early 

detection marker. 

Taken together, we aimed to determine the role of tumor-derived and stromal Activin A 

during sequential events of esophageal transdifferentiation promoting Barrett's tumorigenesis. 

We demonstrated that aside from known mutational or epigenetic alterations, activation of 

signaling is pleiotropic and context-dependent, thereby highlighting the complex crosstalk with 

the microenvironment. 

 

Methods 

Cell culture 

The Barrett's esophagus cell line CPB (CRL-4028) was purchased from American Type 

Culture Collection (ATCC) and cultured with epithelial cell medium 2 (ScienCell, Carlsbad, CA) 

supplemented with 5% fetal bovine serum (FBS, Hyclone, GE Healthcare, Pittsburgh, PA) and 

antibiotics, 100 units/mL penicillin and 100 µg/mL streptomycin (Gibco, Carlsbad, CA). The 

esophageal adenocarcinoma cell lines, OE33 and FLO-1, were derived by Dr. David Beer 

(491) and grown in RPMI and DMEM (Invitrogen, Carlsbad, CA), respectively, with 10% FBS 

at 37°C in 5% CO2. Fibroblasts were grown in DMEM with 5% FBS (Hyclone), 100 units/mL 

penicillin, and 100 µg/mL streptomycin (Gibco). For treatment with growth factors 5 ng/ml 

recombinant human TGFβ1, 10 ng/ml Activin A, 100 ng/ml follistatin-288 (FS288), 100 ng/ml 

Nodal (all R&D Systems, Minneapolis, MN Systems) or 1 µM A83-01 (Tocris, Bristol, UK) were 

used. Overexpression of Activin A (INHBA) was achieved by retroviral transfection of cells with 

viral supernatant containing pBABE plasmid with zeocin resistance (Addgene, Cambridge, MA) 

encoding the INHBA gene sequence (Origene, Rockville, MD). 
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Organotypic culture 

Organotypic reconstructs were grown as previously described (294,356) with the exception 

that each culture was rinsed in 1XPBS and incubated with Epidermalization 3 medium lacking 

serum for two additional days prior to harvesting. The following treatments were added to the 

organotypic cultures at the time of epithelial seeding and renewed with every media change: 5 

ng/ml recombinant human TGFβ1, 10 ng/ml Activin A, 100 ng/ml FS288 (all from R&D 

Systems) or 1 µM A83-01 (Tocris). 

 

Scratch assays 

Cells were grown to 100% confluence then a scratch was introduced using a 200 µl pipette tip. 

Measurement areas were marked at six different locations along the scratch. Cells were 

imaged at 0, 6, and 24 hours post-scratch and distance of cells traveled was measured using 

the Axiovision software (Carl Zeiss Microscopy, Thornwood, NY). 

 

Colony formation 

Colony formation assays were performed by plating 500 cells in six-well plates and maintaining 

them in complete media for 7–8 days (492). Cells were then fixed with 100% methanol for 10 

minutes at −20°C and stained overnight in 0.1% crystal violet at room temperature. Colony 

counts were assessed using the GelCount™ system and software (Oxford Optronix, Abingdon, 

UK), courtesy of the Vanderbilt Digital Histology Shared Resource. 
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Cell migration and invasion assays 

Migration and Matrigel invasion chamber assays were purchased from BD Biosciences 

(Franklin Lakes, NJ) and performed according to manufacturer's direction. After removal of 

cells from the top of the membrane, cells were fixed in 100% methanol at −20°C for 10 

minutes, then rinsed once in 1XPBS. For quantification, cells were stained with 0.3% Janus 

green (Sigma, St. Louis, MO, cat. no. 201677) for 5 minutes at room temperature. Upon 

washing, cells were destained with 0.5 M HCl for 10 minutes at room temperature. The HCl 

solution was collected and transferred to a 96-well plate and absorbance read at 595 nm on a 

BioTek Synergy 4 microplate reader (BioTek Instruments, Inc., Winooski, VT). Subsequently, 

cells were stained in 0.1% crystal violet overnight, mounted, and imaged as previously 

described (356). 

 

Proliferation assays 

Cells were plated at 1000 cells per well in a 96-well plate for proliferation assays. WST-1 

reagent (Roche, Nutley, NJ) was added to each well at the time points indicated and incubated 

at 37°C for 1 hour. Absorbance measurements at 450 nm were taken using a BioTek Synergy 

4 plate reader (BioTek Instruments, Inc.). Measurements were taken in 24-hour increments. 

 

ELISA 

Cells were seeded at 166,000 cells per 6-well insert with full medium. The next day, cells either 

underwent treatment or culture media were changed to serum-free media before conditioned 

media was harvested 48 hours thereafter. Cell number was determined and concentration per 

one ml media was calculated and normalized per 100,000 cells. Capture ELISAs for Activin A, 
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TGFβ1 and pan-follistatin (FS288, FS300, FS315) were purchased from and performed 

following manufacturer's instructions (R&D Systems). INHA was measured using an ELISA kit 

purchased from Cloud Clone Corp (Houston, TX). 

 

Western blot 

Western blots were performed as previously described (356). Cells undergoing treatment with 

Activin A, FS288, A83-01, or TGFβ1 had the individual growth factors added to serum-free cell 

culture media for 30 minutes or 48 hours, followed by protein lysis. The results are 

representative of at least three independent experiments. 

 

Immunofluorescence 

Organotypic culture tissue, previously fixed in 10% neutral buffered formalin for 24 hours and 

embedded in paraffin, was sectioned at 5 µm, deparaffinized, and heated in 1XTE buffer in a 

pressure cooker for 12 minutes for antigen retrieval. Samples were blocked in 1XPBS with 5% 

Bovine Serum Albumin (Sigma), 1XPBS-BSA, for one hour prior to incubation with primary 

antibodies in 1XPBS-BSA overnight at 4°C. Tissues were then rinsed three times in 1XPBS 

and incubated with secondary antibodies in 1XPBS-BSA for one hour at room temperature. 

After additional rinses with 1XPBS, the sections were mounted with Vectashield mounting 

medium containing DAPI (Vector Laboratories, Burlingame, CA). Images were taken on a 

Zeiss microscope, using Axiocam and Axiovision software (Carl Zeiss Microscopy). Alcian Blue 

Staining was performed by the Translational Pathology Shared Resource at Vanderbilt 

University Medical Center. 
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Antibodies and other reagents 

SOX2, total Smad 2, phospho-Smad2, phospho-Smad1/5/8, total ERK1/2, phospho-ERK1/2, 

total Akt, and phospho-Akt were purchased from Cell Signaling Technologies (Danvers, MA), 

and α-tubulin from Abcam (Cambridge, MA). Anti-TGFBR2 (clone L21) was purchased from 

Santa Cruz Biotechnologies (Santa Cruz, CA), E-cadherin and Keratin 8 from BD Bioscience, 

and vimentin from Sigma. Other antibodies used: MT1-MMP (Epitomics, Cambridge, MA) and 

anti-CD44 clone 2C5 (R&D Systems); SOX9 (EMD Millipore, Rockland, MA); Keratin K13 

(Novus Biologicals, Littleton, CO). 

 

Dataset analysis 

Dataset GDS1321 was used to query clinical correlations with Activin A, publicly available from 

GEO Datasets (http://www.ncbi.nlm.nih.gov/gds/). The collected information from each dataset 

was analyzed and visualized in Prism version 6.00 for Mac (GraphPad software, La Jolla, 

California). 

 

Biostatical analysis 

Biostatistical analysis was performed using Prism version 6.00 for Mac (GraphPad). In 

vitro and in vivo experiments were analyzed using Student's t-tests, one- or two-way ANOVAs. 

Statistical significance was set at p < 0.05. Pearson's correlation coefficients were calculated. 

All experiments were done in triplicate with at least three biological replicates. 
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