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CHAPTER 1 

 

INTRODUCTION AND BACKGROUND 

 

1.1 Brain connectivity 

Network organization of the brain 

Information processing in the brain is both localized and distributed. The cortex is regionally 

specialized, but also depends on communication at a distance. Interconnected areas sharing 

common functions are termed brain networks, and the brain as a whole may be considered a 

composite of such networks (Park and Friston, 2013; Sporns et al., 2004). Brain networks also 

extend beyond the cerebral cortex, including the cerebellum and basal ganglia.  

The importance of distributed processing vs. regionally specialized activity is one of the 

oldest debates in neuroscience (Sarter et al., 1996). Early clinical evidence for localization came 

from lesion studies, in which behavioral or sensorimotor dysfunction was linked to focal sites of 

brain damage (Ferrier, 1876). Most famously, Paul Broca demonstrated that speech production 

localizes to the eponymous ventral posterior region of the frontal lobe (Broca, 1861). Other 

founding evidence for localization of function came from electrical stimulation experiments, 

which proved that cortical surface areas have discrete roles in sensation, movement, and cognition 

(Fritsch and Hitzig, 1870). This approach was pioneered in humans by neurosurgeon Wilder 

Penfield, whose tests on epileptic patients resulted in detailed motor cortex maps (Penfield and 

Boldrey, 1937). Lesion and stimulation approaches enabled identification of the primary motor 

cortex, somatosensory cortex, and the visual and auditory cortices.  
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In recent years, simplistic ‘localizationist’ and ‘distributionist’ views have given way to 

the understanding that both regional and network processing are present in brain architecture, and 

that the degree of distribution varies among brain systems. The most important contemporary 

questions concern the anatomical structure of brain networks, their functional correlates, and the 

spatial and temporal scales over which they communicate (Mesulam, 1994).  

Long before the advent of magnetic resonance imaging techniques, it was evident that 

sensorimotor cortex could not account for the full range of cortical activity, and that cognitive, 

behavioral, and emotional processes were not as readily localized. Such diverse mental functions 

are the province of the association cortices, broadly defined as gray matter regions not belonging 

to specific sensorimotor zones. The term ‘association cortex’ has been used rather nonspecifically 

to refer to the entirety of the nonmotor frontal lobe, along with extensive swaths of parietal, 

paralimbic, and temporal cortex (Pandya and Yeterian, 2013).  

The participation of sensorimotor and associative regions in neural networks is evident in 

the physical organization of the cortex, with white matter fibers comprised of bundled axons 

physically linking distant neural populations, allowing the inference of coordinated network 

activity even without the use of in vivo activity measures such as electroencephalography or 

functional MRI.  

Parcellating association areas has often involved cytoarchitectonic properties rather than 

functional identity; for example, the main subdivisions of the orbitofrontal cortex were based on 

histologic markers rather than function (Kringelbach, 2005). More detailed descriptions of such 

regions were problematic until the development of functional MRI, although some inferences 

could be drawn from animal models, particularly from electrophysiological recording in primates 

during task performance. 
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Striato-cortical loops and limbic circuits 

An important set of circuits present in both sensorimotor and associative cortex are the striato-

pallido-thalamo-cortical loops (or striato-cortical loops), a system of feedback projections between 

the basal ganglia and cortex (Haber and Behrens, 2014; Middleton and Strick, 2000). Specific 

frontal cortical regions project to dorsal or ventral striatum, which sends efferents to the globus 

pallidus, which in turn projects to the thalamus and thence back to the cortex, generally targeting 

the same region from which the circuit originated. These pathways are well documented in both 

primate neuroanatomy and human neuroimaging (Draganski et al., 2008). Striato-cortical loop 

function depends on the specific part of the basal ganglia through which the circuit passes: dorsal 

striatum mediates motor and pre-motor loops, central striatum integrates cognitive pathways 

including dorsolateral frontal cortex, and ventral striatum incorporates reward and reinforcement 

processing in limbic loops. These pathways also maintain separation in their thalamic relays, 

allowing extensive parallel feedback serving diverse processes (Pessiglione, 2005), although this 

segregation is incomplete, suggesting that the thalamus performs an integrative function as well, 

exchanging information between sensation, movement, and motivational systems (Haber, 2011; 

McFarland and Haber, 2000).  

Limbic loops, occupying the most ventral regions of the striatum and most medial portions 

of the thalamus, provide cortico-striatal feedback for the ventromedial prefrontal and orbitofrontal 

cortex, along with the anterior cingulate gyrus (Haber, 2011) and the insula, which is considered 

a lateral portion of the limbic lobe, cytoarchitectontically related to the orbitofrontal cortex 

(Morgane and Mokler, 2006). Limbic loops receive input from the dopaminergic system at the 

nucleus accumbens/ventral striatum, integrating the brain’s reward and learning pathways with its 

major cortical-subcortical communication system. Specifically, the ventral striatum exhibits strong 
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reciprocal connections with the ventral tegmental area, the origin of the mesolimbic pathway 

(Haber, 2011). Limbic cortico-striatal loops are strongly implicated in behavioral dysfunctions 

including obsessive-compulsive disorder (Beucke et al., 2013) and substance addictions such as 

cocaine abuse (Hu et al., 2015). Among these regions, the orbitofrontal cortex plays an especially 

prominent role in reward-motivated decision-making processes.  

 

Orbitofrontal cortex function 

The orbitofrontal cortex (OFC) refers to the extensive region occupying the ventral surface of the 

frontal lobe. It combines sensory information about external stimuli such as reward or punishment 

cues with subjective emotional valance in decision-making processes. The OFC serves as an 

integrator of convergent sensory information, receiving auditory, visual, olfactory, gustatory, and 

somatosensory projections (Cavada, 2002). It has extensive connections with other limbic system 

components, including the anterior cingulate gyrus, ventral striatum/nucleus accumbens, and 

amygdala (Zald et al., 2014).  

The OFC’s most frequently described role in behavior is to encode information about 

reinforcers, tracking perceived (O’Doherty et al., 2000) and expected (Gottfried et al., 2003) values 

of rewarding or punishing stimuli, making this region highly salient for classical or operant 

learning processes. In primate studies, activity in individual OFC neurons tracks with flexible 

stimulus-outcome associations, including in reversal learning (Thorpe et al., 1983). The second 

functional category frequently identified with the OFC is the integration of behavior with somatic 

markers (i.e. physiological responses identified with emotional states). Damage to the OFC inhibits 

normal physiological-emotional responding to negative outcomes, leading to inflexible behavioral 

patterns and fixation on risky choices with larger potential rewards, to the detriment of overall 
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success at gaining positive outcomes (Bechara et al., 1994). OFC damage causes impaired 

assessment of consequences, summed up as “myopia for the future” (Bechara and Dolan, 2002). 

A third view posits that OFC activity reflects the subjective economic value of stimuli. Evidence 

for this hypothesis comes from single-neuron recordings where OFC firing correlates with the 

degree of preference for a stimulus, i.e. its perceived value (Padoa-Schioppa, 2011).  

It is important to note that these three major descriptions are not mutually exclusive; rather, 

OFC may combine the processes of stimulus-outcome learning, value perception, and emotional 

processing, enabling a complex set of behavioral responses to environmental cues. It is also likely 

that the OFC’s ability to regulate comportment depends critically on specialization of its sub-

regions, which exhibit different patterns of cytoarchitecture, connectivity, and functional relevance 

(Kringelbach and Rolls, 2004).  

 

Organization of the orbitofrontal cortex 

Evidence from neuroimaging suggests that the OFC is primarily divisible into a medial-

caudolateral network ('medial OFC'), and a lateral-orbital network ('lateral OFC') (Kahnt et al., 

2012; Kringelbach, 2005). These subdivisions perform separate decision-making functions, with 

medial OFC representing rewarding stimuli, and lateral OFC responding to punishing reinforcers 

(Kringelbach, 2005). 

Medial and lateral OFC also involve different white matter pathways; the former is more 

connected with the hippocampus and anterior cingulate cortex, and the latter with the sensory 

cortices (Cavada, 2002). An anterior-posterior gradient is also proposed, with posterior OFC 

responding more strongly to unreinforced primary rewards such as food, and anterior regions to 

more abstract and indirect stimuli, such as monetary incentives (Sescousse et al., 2013). Posterior 
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OFC features extensive connectivity with the amygdala, and is believed to modulate autonomic 

responding in a dopamine-dependent manner (Zikopoulos et al., 2017).  

The idea of medial and lateral OFC subdivisions originated with Brodmann’s famous atlas 

(1909), which divided the ventral OFC surface into three areas: 10, 11, and 47. Area 11 is roughly 

synonymous with the medial OFC, and along with the gyrus rectus consists of six-layered isocortex 

(Henssen et al., 2016). Medial parts of area 47 may also be included in the medial OFC. The lateral 

OFC consists of the central and lateral parts of area 47 and components of area 10 (Barbas, 2010). 

Beyond Brodmann’s general divisions, there is little strong agreement on the nomenclature 

for much of the human OFC, and several divergent naming schemes exist, a situation complicated 

by great variability of gyri and sulci among individuals. However, medial and lateral OFC are 

distinguishable on the basis of cytoarchitectonic, histological, and morphometric properties. These 

include layer IV granularity, cell density, cell size, and cortical thickness, as well as neurofilament 

staining. Cytoarchitecture less specifically distinguishes anterior and posterior OFC, with 

increasing dysgranularity marking the posterior regions near the insula (Uylings et al., 2010).  

The orbitofrontal cortex and the anatomically proximate, functionally related anterior 

cingulate cortex participate in a series of cortico-striatal feedback circuits with the basal ganglia. 

These limbic loops are homologous to the motor loops of the dorsal striatum; however, they are 

primarily mediated via the ventral striatum/nucleus accumbens rather than the caudate and 

putamen (Alexander et al., 1986).  

 

1.2 Imaging approaches to brain connectivity 

Human brain networks such as the cortico-striatal loops described above can be explored with two 

main approaches: functional and structural connectivity. While both of these interpretive strategies 
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can be studied with in vivo MRI, they can derive from fundamentally different modalities: 

functional MRI and diffusion-weighted imaging, respectively. Here, we will detail these methods 

and describe their application to the science of brain connectivity, and also discuss how structure 

and function can provide supporting information about brain organization and physiology, serving 

as mutual checks or sources of validation.  

 

Functional MRI and the BOLD contrast 

Functional MRI (fMRI) techniques seek to reflect measurements of dynamic brain activity rather 

than static tissue properties. Generically, fMRI refers to sequences designed to detect fluctuations 

in the blood oxygenation level-dependent (BOLD) effect resulting from prompted neural responses 

to experimental conditions, although other MRI contrasts may also be used for fMRI. The BOLD 

contrast depends on the difference in magnetic susceptibility between oxygen-bound hemoglobin 

(oxyhemoglobin) and unbound hemoglobin (deoxyhemoglobin) in brain vasculature. The former 

is diamagnetic, and does not distort external magnetic fields, while the latter is slightly 

paramagnetic, distorting adjacent field lines and producing transverse (T2) dephasing. The 

paramagnetism of deoxyhemoglobin changes the fields experienced by water protons, resulting in 

accelerated loss of the MRI signal.  

BOLD fMRI sequences are designed to exploit this effect when measuring vascular 

responses to brain activity (Ogawa et al., 1993, 1990). Increased activity in neuron populations 

causes a rapid elevation of oxygen consumption from the feeding capillary system. Naïvely, this 

leads to the prediction that activity would decrease fMRI signal by increasing the proportion of 

T2-dephasing deoxyhemoglobin. However, this assumption neglects the coupled hemodynamic 

response, a critical but incompletely understood phenomenon in which cerebral blood flow (CBF) 
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rises in response to metabolic demand, delivering increased volumes of oxygenated blood to tissue 

(Buxton et al., 2004). The effect of elevated CBF is a large increase in oxyhemoglobin delivery, 

which overcompensates for the smaller increase in the rate of oxygen consumption. This imbalance 

results in a smaller proportion of deoxyhemoglobin in venous vasculature, and is responsible for 

the BOLD effect. 

The hemodynamic response function in 

fMRI consists of three phases. The first is a 

small, transient dip, likely due to the initial 

increase in oxygen consumption, which occurs 

before the vasculature can respond with 

compensatory blood flow. This is rapidly 

followed by a sustained, higher-magnitude 

increase in fMRI signal as excess oxygen-rich 

arterial blood is directed to the tissue, and 

finally by a post-stimulus undershoot. The net 

result of the hemodynamic response is higher 

oxygenation in draining blood, particularly in 

the veins serving the activated area (Fig. 1-1). 

This venous-side bias is due to the lower 

oxygenation saturation in blood returning to the 

heart: while arterial O2 in healthy subjects is 

consistently near full saturation (~98%), 

oxygenation in veins depends on several 

Fig. 1-1. The hemodynamic response. Illustration of 
the vascular response to neural activity, which is the 
basis for the blood oxygenation dependent (BOLD) 
signal. Increased cerebral blood flow in reaction to 
neural activity results in greater oxygen delivery to 
tissue. This hemodynamic response outweighs the 
smaller increase in metabolic oxygen consumption due 
to neural activity. Consequently, paramagnetic 
deoxyhemoglobin constitutes a smaller proportion of 
the draining vasculature, and the MRI signal is 
increased. 
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metabolic factors. These include CBF, the rate of blood delivery to tissue (ml of blood/100 g 

tissue/minute); cerebral blood volume (CBV), the quantity of blood in brain tissue (ml blood/100 

g tissue); cerebral metabolic rate of oxygen consumption (CMRO2; O2/100g tissue/min) and 

oxygen extraction fraction (OEF), the proportion of arterial oxygen used by the tissue or returned 

to the veins (Duong et al., 2003; Kim et al., 1994).  

Consequently, elevated metabolic demand due to neural activation produces a delayed, 

transient signal increase when measured with long echo-time (TE) acquisitions. Gradient-echo 

sequences in particular maximize the measured BOLD effect by matching TE to tissue effective 

T2 (T2*). While spin echo MRI can be used in fMRI sequences, especially at very high field 

strength, gradient echoes are utilized in the majority of fMRI experiments at field strengths of 3.0 

Tesla or below. Gradient echoes do not refocus spins that are phase-shifted by tissue susceptibility 

gradients and other inhomogeneity effects, therefore they are predominated by T2*-determining 

factors, including deoxyhemoglobin concentration and magnetic field inhomogeneities. 

Applications of T2*-weighted BOLD-sensitive techniques include task-based fMRI and task-free 

(resting-state) functional connectivity. 

 

Limitations of BOLD-fMRI 

Sequences exploiting contrast related to BOLD are necessarily sensitive to susceptibility effects, 

in order to detect subtle variations in deoxyhemoglobin levels. Thus, other sources of magnetic 

inhomogeneity, such as air-tissue interfaces in the sinuses and aural canal, decrease the fMRI 

signal in nearby brain regions including the orbitofrontal cortex and portions of the temporal lobe 

(Ojemann et al., 1997). These T2*-shortening effects cause distortions in echo planar imaging 

sequences generally used in fMRI. In task-based fMRI, susceptibility interferes with detection of 
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true activations, but may also produce spurious activations, as regions of high susceptibility will 

be dominated by structured noise from head movement and physiological sources. While distortion 

effects can be corrected with field mapping, dropout (i.e. signal loss) caused by high susceptibility 

causes partial but irreversible signal loss in parts of the OFC (Deichmann et al., 2002). While fMRI 

activations can still be detected in the ventral prefrontal cortex (Cusack et al., 2005), signal-to-

noise is substantially lower than in surrounding regions, raising the possibility of both false 

negatives and false positives.  

Another limitation of fMRI is the spatial source of the BOLD signal. Due to the consistent 

oxygenation of arterial blood, the venous compartment is overrepresented among signal sources 

when compared with arteries and capillary beds. This is because measured changes in fMRI 

intensity will reflect the compartment with greatest activity-related changes in the proportion of 

deoxyhemoglobin (Duong et al., 2003). This effect can lead to incorrect mapping of fMRI signal 

sources, as the greatest changes occur in large draining veins located downstream of actual neural 

activity sites (Krings et al., 1999). Venous effects can confound measurement of correlated signal 

fluctuation, producing aberrant fMRI experimental results (Boubela et al., 2015). Care must be 

taken both when designing long-echo time pulse sequences such as T2*-weighted BOLD, and 

when interpreting results of these techniques. It is equally important to avoid drawing overly 

detailed mechanistic conclusions from fMRI results, bearing in mind that the relationship between 

cellular activity in the cerebral cortex and BOLD effects is complex and incompletely understood.  
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Arterial spin labeling 

Measurement of functional connectivity depends on the vascular response to neural activity. 

Several interrelated quantities describe hemodynamic responses: cerebral blood flow, blood 

oxygenation, metabolic rate of oxygen consumption, and oxygen extraction fraction. Each of these 

factors contributes to the BOLD signal changes during brain activity. While blood oxygenation is 

the basis for most fMRI, the quantity corresponding most directly to energy consumption in the 

brain is cerebral blood flow (CBF), which is tightly coupled to glucose metabolism (Jueptner and 

Weiller, 1995; Musiek et al., 2012). CBF can be measured in absolute quantitative units using the 

noninvasive MRI technique arterial spin labeling (ASL) (Detre et al., 1992). ASL includes a family 

of perfusion-weighted sequences in which blood water is labeled by adiabatic spin inversion using 

a radiofrequency pulse or a series of rapid pulses. Labeling duration (LD) is typically 1.5-2 s for 

Fig. 1-2. Arterial spin labeling. Illustration of the principle of arterial spin labeling. In the labeled volume, spins 
in flowing blood water passing through the labeling plane are inverted by a radiofrequency pulse or set of pulses. 
The inversion pulse attenuates the MR signal and reduces image intensity upon exchange of blood water with 
tissue. Blood water flows into the head and after a fixed duration a readout is taken at various slices. The 
unlabeled image is formed by following the same imaging procedure without the labeling step. The difference 
between these images is proportional to cerebral  blood flow. Control-label pairs are acquired repeatedly to 
reduce the impact of low signal-to-noise.  
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pseudocontinuous ASL, during which time blood water labeled in the neck flows into the brain for 

a fixed duration, and an image is then acquired. Spin-labeled water acts as a diffusible tracer which 

reduces the signal intensity in the capillaries and extravascular compartment.  

A second image acquisition is then performed without the spin-labeling module, but 

otherwise identical to the labeled scan. This image acts as a control for comparison with the labeled 

image; since spin-labeled water accounts for the only non-noise difference, subtraction results in 

a perfusion-weighted difference-of-magnetization image, which is proportional to blood flow (Fig. 

1-2). This result can be converted to actual blood flow units (e.g. ml blood/100 g tissue/min) by 

means of a Bloch equation modified to include fluid flow (Williams et al., 1992).  

The gap between labeling and acquisition (post-labeling delay; PLD) is typically 1.5-2 s, 

which permits a trade-off between the time needed for water to exchange between capillaries and 

tissue, and signal loss due to dephasing. The combination of LD and PLD results in a longer TR 

than in BOLD fMRI.  

ASL is also characterized by low signal-to-noise ratio (SNR), especially with single-shot 

echo planar imaging (EPI) readouts. SNR can be improved with 3D gradient-and-spin-echo 

(GRASE) readouts, or a higher spatial resolution can be acquired at the same SNR (Gunther et al., 

2005). 

 

Functional connectivity 

Traditional task-based fMRI compares signal intensity between the resting state and one or more 

experimental conditions: motor activity, sensory input, cognition, or behavioral states. In a typical 

experiment, activity or signal change in each volumetric pixel (voxel) in the image is modeled as 

a function of a time regressor representing the experimental design, with alternating periods of 
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activity and rest. This regressor is convolved with the hemodynamic response function to account 

for delayed vascular responses. fMRI voxels with activity conforming to the experimental time 

course are identified as activated in response to the experiment's independent variable, which is 

the sensory stimulus, motor activity, or mental process of interest to the experimenter. This 

activation is presumed to reflect underlying neural activity in the cortical or subcortical gray matter. 

In this context, fMRI signals fluctuating in the absence of an experimental activity are treated as 

noise. However, repeatable patterns in fMRI residuals resulted in the discovery that functionally 

meaningful information exists in these dynamics, leading to a new paradigm for fMRI: resting-

state functional connectivity (Biswal et al., 1995). This field stemmed from the initial observation 

that fMRI signals in the right and left motor cortex are correlated even when participants were not 

engaged in relevant movement.  

This concept led to the term resting-state network (RSN)a. Further experiments would 

demonstrate that the entire brain can be described in terms of a set of spatially discrete RSNs, and 

that an extended fMRI acquisition with no explicit task can resolve RSNs at the level of the single 

participant or across a group (Fox et al., 2005; Smith et al., 2009; Yeo et al., 2011). Such networks 

often correspond to regions of known function, which remain connected when that function is not 

engaged. RSNs include well-defined sensory regions such as the occipital visual cortex and the 

temporal auditory cortex, which exhibit bilateral synchrony. Other frequently encountered RSNs 

are defined by their roles in behavioral and neuropsychological processes, such as the salience 

                                                        
aAn important injunction relates to the term ‘resting-state’—although the phrase is utilized here, it 
should be recognized as a misnomer, since even in the absence of explicit instructions, fMRI 
participants will engage in a variety of sensory, motor, and cognitive functions, and since the MRI 
environment is not ideally stimulus-free (noise, light, and physical sensation are not minimized). 
Other literature may use the phrases ‘intrinsically connected networks’ or ‘baseline connectivity’ 
in place of ‘resting-state’ to clarify this point. 
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network or the central executive network. By contrast, the default mode network was first 

identified by its activity specifically in the absence of externally directed processes, and is thought 

to be associated with introspection and other reflective states. 

 

Major brain networks 

The motor network was the first described RSN, corresponding to areas of previously established 

somatotopic activations in fMRI experiments involving finger-tapping, limb manipulation, etc., 

located on the primary motor cortex. However, bilateral coordinated signal was found even without 

motor activity (Biswal et al., 1995). The proximity of primary motor and sensory cortex makes 

discrimination of the two regions difficult, and thus the term ‘sensorimotor’ is often used to refer 

to the combined regions, which constitute the pre- and post-central gyri.  

The visual network occupies the occipital regions which process information from the 

visual pathway, including the primary and secondary visual cortex, together with adjacent areas 

associated with visual and visuospatial perception. The visual network can be consistently 

activated in fMRI experiments by presentation of high-contrast stimuli such as flashing 

checkerboards; however, the network’s connectivity remains apparent even in an eyes-closed state, 

implying that functional connectivity is not merely a function of sensory co-activation, but rather 

persistent linkage of activity. The visual network consists of several distinct sub-networks, 

including a lateral-superior network comprising the peristriate area, and a more medial part 

consisting of visual regions nearer to the precuneus (Damoiseaux et al., 2006). 

Outside of sensory and motor networks, the brain’s functional architecture is frequently 

described in terms of three major RSNs: default mode network, salience network, and central 

executive network. The default mode network (DMN) is named for its coordinated activity in the 
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absence of directed tasks or major sensory input (Raichle, 2015). It is active during reflective or 

internally focused states, such as mind-wandering. The DMN consists of spatially separated but 

linked nodes: the precuneus-posterior cingulate node, the prefrontal node, and the symmetric, 

bilateral parietal nodes. Default mode network was first identified by its suppression during both 

metabolic PET studies (Shulman et al., 1997) and task-based fMRI, but was also among the first 

networks to be described in terms of 

resting-state functional connectivity 

(Greicius et al., 2003). 

The salience network is 

involved in integrating sensory input to 

guide attention to stimuli, and 

determine the relevance of external 

information to decision-making (Seeley 

et al., 2007). The salience network 

consists of three major hubs: left and 

right anterior insula and ventromedial 

prefrontal cortex, including portions of 

the anterior cingulate and possibly 

orbitofrontal cortex (Peters et al., 2016). 

The salience network participates in 

cortico-striatal loops similar to those in 

the motor system, which provide 

Fig. 1-3. Major brain networks. Simplified schematic of brain 
networks examined in this dissertation. (A) Frequently 
discussed resting-state brain networks include and the salience 
network, default mode network, and central executive 
network, as well as the bilateral sensorimotor and visual 
networks. Mapping of these networks using perfusion signals 
is described in Chapter 4, and this technique is applied to the 
orbitofrontal cortex in Chapter 5. (B) The limbic network 
consists of cortico-striatal loops between the basal ganglia and 
several regions of limbic cortex including the anterior cingulate 
gyrus, insula, and orbitofrontal cortex. The limbic network is 
involved in regulation of reward and motivated behavior, as 
described in Chapter 2. (C) The dentato-rubro-thalamic tract 
connects the cerebellar deep gray matter to the thalamus via 
the red nucleus. It modulates feedback from the cerebellum to 
the cerebral cortex, as described in Chapter 3.  
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feedback between the cortex and basal ganglia.  

The central executive network mediates executive or ‘top-down’ control of cognitive 

processes (Sauseng et al., 2005). Also known as the fronto-parietal network, the central executive 

network is essential in the recruitment of other brain networks. Central executive network, default 

mode network, and salience network are functionally interdependent, as the salience network 

mediates switching between default mode and central executive networks, promoting transition 

between internally directed activities and task-oriented processes (Goulden et al., 2014; Sridharan 

et al., 2008).  

These RSNs are summarized in Fig. 1-3A. While these are commonly described networks, 

they are not exhaustive descriptions of the sensorimotor and associative cortices. It is also 

important to note RSN description depends on the granularity used in the subdivision of networks. 

For instance, the central executive network appears in some studies as a bilateral unitary RSN, 

while in others it may be identified as two separate lateralized networks. Likewise, the default 

mode network may be found as a single structure of as separate frontal and posterior components. 

Because functional connectivity results are very sensitive to the choice of methodology, it is 

essential to understand functional connectivity in the light of the underlying anatomy of 

interconnected gray and white matter.  

 

Structural connectivity 

Structural connectivity is the arrangement of the brain’s axonal pathways. Anatomically, it refers 

to the physical course of white matter bundles linking gray matter structures, including non-

contiguous zones of the cortical ribbon and the basal ganglia, brainstem, and cerebellum. Classical 

methods for mapping structural connectivity include postmortem dissection with white matter tract 
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tracing and anterograde or retrograde labeling of neurons in animal models, in which an injected 

tracer such as a fluorescent protein undergoes axonal transport and its resulting distribution in 

neurons is imaged. In the context of MRI, however, structural connectivity is most often 

characterized in vivo using diffusion-weighted MRI and fiber tractography.  

The principle of diffusion-weighted MRI depends on measuring the movements of water 

molecules. When water is unhindered, it diffuses randomly in all directions from a point of origin 

under Brownian motion. Such diffusion is termed isotropic. However, the presence of barriers on 

the time scale associated with molecular diffusion constrains motion in a non-random fashion. 

This is referred to as anisotropic diffusion (Beaulieu, 2002). The biological structures most 

relevant to this phenomenon are cell and axonal membranes, since the micron-scale diameter of 

membranes impairs water diffusion on time scales associated with conventional diffusion-

weighted MRI sequences.  

Diffusion-weighted imaging requires paired diffusion-sensitizing magnetic field gradients, 

which subject water protons to different fields based on their location in space, causing them to 

dephase in spin-echo diffusion-weighted MRI. Diffusion-sensitizing gradients are applied in a 

paired manner on either side of a refocusing pulse, such that the second gradient reverses phase 

accumulations from the first for non-moving protons across the image (Le Bihan et al., 1986). The 

phases of water protons not diffusing are refocused and the observed signal is unchanged by the 

spatial gradients. Spins associated with diffusing water molecules, however, experience 

incomplete phase reversal because they move relative to the diffusion gradient, and therefore there 

is an observed signal attenuation related to the diffusion coefficient (Mukherjee et al., 2008). The 

amount of diffusion-weighting is prescribed by the gradient strength, time between gradient pulses, 

and duration of the gradients. These determine a numerical factor called the b value, representing 
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the degree of diffusion weighting, and typically ranges from 800 to 2000 s/mm2 (multiple b values 

may also be used). Diffusion-weighted sequences are typically based on spin echoes, utilize 

minimal TE to reduce T2* effects, and are ordinarily acquired at isotropic spatial resolutions from 

1-2 mm.  

A series of measurements are acquired to quantify diffusion along oblique axes, and with 

sufficient directions, orientation distributions of diffusion are estimated (32-64 directions are often 

used for brain studies). Representations of diffusion vary from relatively straightforward 

parameters such as six-component tensors to sophisticated biophysical models representing 

crossing white matter fibers (Behrens et al., 2007). Diffusion tensor imaging is the most widely 

used approach, and decomposes 3D diffusion into orthogonal vectors representing diffusion along 

perpendicular axes.  

From DTI analyses, several structurally relevant quantities can be derived (Kingsley, 2006). 

Fractional anisotropy measures tensor eccentricity, with greater anisotropy corresponding to 

orientationally constrained diffusion, such as along axons in white matter. Lower anisotropy is 

characteristic of regions with less constrained structure, as in gray matter or cerebrospinal fluid. 

Diffusivity is another important quantity, and measured in several ways, each reflecting specific 

tissue properties. Axial diffusivity (AD) a measure of diffusion along the axis of maximum 

molecular motion (i.e. the principal vector) is thought to reflect axon integrity; radial diffusivity 

(RD), diffusion perpendicular to the principal vector, is related to myelination of white matter 

bundles (Song et al., 2002).  
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Diffusion tractography 

The diffusion-weighted MRI application most relevant to brain connectivity is tractography. This 

technique can non-invasively estimate white matter pathways, producing three-dimensional tract 

curves and allowing structural connectivity quantification. Tractography depends on the principle 

that water movement reflects spatial anisotropy in the underlying microstructure (Beaulieu, 2002). 

The basic principle of tractography is to computationally step along putative white matter tracks 

using the modeled diffusion at each point. Streamlines are generated by following the direction of 

preferential diffusion, moving a fixed distance, and iterating this process. Streamlines are seeded 

in a region-of-interest, and axonal fiber bundles are then modeled by the paths these streamlines 

follow.  

There are two major approaches to diffusion tractography: deterministic and probabilistic. 

In the former, streamlines will rigidly follow the principal direction diffusion; in the latter, the 

orientation distribution function is randomly sampled, and rather than a unitary streamline, a set 

of likely of paths is created by repeating this process until a sufficient sample is generated, and 

calculating the proportion of streamlines reaching some endpoint or passing through a waypoint 

(Behrens et al., 2007). Both result in estimates of structural connectivity. As streamlines generally 

align with the underlying white matter, structural connectivity can be taken to represent the 

prevalence of inter-regional axonal connections, although this relationship is indirect.  

 

Limitations of tractographic methods 

Structural connectivity has several important methodological limitations. First, the challenge of 

resolving streamline orientations at regions of fiber crossing, or where separate axonal pathways 

run in parallel, has not been fully addressed. One approach is to use orientation distribution 
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functions that permit multiple peaks of diffusion for a given voxel (Wedeen et al., 2008). However, 

even with multi-fiber models the issue of crossing pathways remains significant. 

Further, the problem of false positives must be considered (Yamada, 2009). Tractography 

parameters should be chosen to reduce anatomically unlikely tracts, such as those with sharp bends 

and recursive loops. As with other noninvasive approaches, it is essential to interpret results in 

light of known anatomical information from sources such as postmortem tract tracing (Hein et al., 

2016). It is imperative that structural connectivity not be interpreted as providing conclusive, direct 

evidence for the existence or non-existence of white matter tracts. Rather, tractographic data can 

better define connectivity between structures already known to have valid links, possibly 

supplemented by functional connectivity or separate observations from non-imaging approaches 

(Meola et al., 2016; Seehaus et al., 2013). 

As with functional connectivity, the resulting numerical quantities should be understood in 

relative terms, e.g. connectivity between areas A and B is greater than between A and C. This is 

because some streamlines can be found between any two regions with sufficiently permissive 

thresholding. As with functional connectivity, which is not described in absolute units, structural 

connectivity is understood in statistical terms. Functional connectivity is quantified from the 

correlations of spontaneous activity between two areas; analogously, structural connectivity is 

described by the fraction of streamlines between areas. These quantities are unitless, and not 

necessarily in direct proportion to any single property of the underlying tissue, metabolic or 

microstructural. Rather, connectivity metrics should be conceptualized as useful but indirect stand-

ins for the biological properties they depend on. 
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Relationships between structural and functional connectivity 

Relationships between fMRI-based co-activation patterns and diffusion-based structural 

inferences are complex (Honey et al., 2009). Persistent coordinated activity does not strictly imply 

the presence of direct connections between cerebral regions; rather, functional linkage may be 

mediated by common structural pathways to a third area. The relationship between structural and 

functional connectivity is asymmetric: it is easier to infer functional connectivity from anatomical 

connectivity than the other way around. For instance, (Koch et al., 2002) used complementary 

fMRI and diffusion methods to study the motor cortex, and found the two measures to be correlated. 

However, they observed strong functional connectivity in the absence of tractographic connections, 

but not vice versa.  

Nonetheless, it is possible to predict anatomical pathways from functional connectivity. 

For instance, in a landmark study, (Greicius et al., 2009) determined the existence of tractographic 

pathways connecting the nodes of the default mode network, which was previously described by 

functional correlation. The medial-prefrontal portion of the default mode network was shown to 

structurally connect with one subsection of the posterior cingulate/precuneus node, while the more 

inferior parts of the network were connected with a different sub-region of the same node. Thus, 

structural connectivity can confirm and refine conclusions drawn from functional connectivity.  

Importantly, connectivity values from these modalities are continuous gradations rather 

than binary—for instance, to assert that two regions exhibit connectivity indicates that they meet 

a certain threshold for number of fibers or degree of synchronous activity. The continuous nature 

of connectivity allows structural-functional correlations to be determined. For instance, the degree 

of anisotropy in the white matter bundle connecting frontal and posterior default mode network is 
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proportional to the partial correlation in these regions’ fMRI signals, after accounting for signals 

from other connected regions-of-interest (Van Den Heuvel et al., 2009).  

This continuous relationship is not limited to single white matter pathways or specific 

RSNs, but rather a significant correspondence across all gray matter voxels in the brain (Skudlarski 

et al., 2008). The same conclusion was reached in two ROI-based studies using whole-brain 

approaches: (Honey et al., 2009) and (Hagmann et al., 2008), in which graph theoretical analysis 

was performed on the signal correlations among regions across the whole cerebrum. Again, 

structural connectivity was a more reliable predictor of functional connectivity than vice versa. It 

is also important to consider that inconsistencies between functional and structural connectivity 

may result from either false-positive or false-negative results, such as functional connectivity 

artifacts due to head motion or spurious tractography due to insufficient modeling of crossing 

fibers (Damoiseaux and Greicius, 2009). 

These methods are complementary, reflecting different aspects of the same biological 

systems. The truism that in the nervous system “what wires together fires together” is as applicable 

to macro-scale neuroimaging as to microscopic circuits: co-active brain networks are often linked 

by dense, coherent white matter pathways, and thus structural and functional connectivity are 

expected to support one another. Nonetheless, divergent results from these approaches do not 

necessarily indicate a deficiency in one method, but rather reflect their fundamentally different 

sources of information. When different connectivity techniques produce congruent results, it 

should be understood as a robust, though not conclusive, description of an underlying neural 

pathway. 
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1.3 Network dysfunction in neurological disorders of movement and cognition 

These neuroimaging techniques can aid in the understanding of function and dysfunction in a 

variety of neurological conditions by revealing changes to key brain networks. This can offer 

insights into the mechanisms of symptomatology and progression of neuropathology. 

 

Parkinson's disease 

Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by the death of 

dopaminergic neurons in the substantia nigra of the midbrain. PD is the second-most-common 

neurogenerative disorder, affecting approximately one percent of the population older than 60 

years (NINDS, 2015), and results in reduced life expectancy, with a mortality ratio approximately 

twice that of the unaffected population (Poewe et al., 2008). Loss of the substantia nigra pars 

compacta results in dopamine insufficiency at the basal ganglia, particularly the caudate and 

putamen, which are the target of nigro-striatal projections, and the sites of dopamine release 

associated with motor feedback loops.  

PD is a proteopathy characterized by the formation of cytoplasmic inclusions called Lewy 

bodies, which are comprised primarily of toxic aggregates of the protein alpha-synuclein. It is a 

disease of dopaminergic system degeneration, which causes both movement symptoms—tremor, 

rigidity, gait problems, postural instability, and slowed movement (bradykinesia)—and cognitive 

impairments, including reduced executive function, failure of abstract thinking, inattention, 

visuospatial difficulties, and working memory loss (Jankovic, 2008).  

Dopamine insufficiency is treated using the precursor molecule L-DOPA, which is 

converted to dopamine by the enzyme dopamine decarboxylase, and in intransigent cases with 

dopamine agonists, which mimic the neurotransmitter by binding to its cell-surface receptors, 
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particularly D2/D3-class receptors prevalent in mesostriatal brain areas (Murray et al., 1994). 

Dopamine in these circuits is essential for both movement and reward-motivated behavioral 

control, especially in the mesolimbic and mesocortical projections from the ventral tegmental area 

of the midbrain to the nucleus accumbens and frontal cortex, respectively (Ghahremani et al., 

2012).  

Although PD is identified symptomatically, its effects on brain structure and function can 

be examined using neuroimaging techniques including MRI and PET. A radioligand with binding 

affinity for the dopamine transporter (DAT) may aid in differentiating PD from other conditions. 

However, there is no definitive imaging test for PD diagnosis, which is frequently misidentified 

as related movement disorders such as progressive supranuclear palsy (PSP). Nonetheless, a 

variety of characteristic PD symptoms produce signature changes in structure (especially of the 

dopaminergic midbrain) and function identifiable by neuroimaging. Positron emission tomography 

(PET) reveals dopamine receptor changes associated with disease progression. D2/D3 receptor 

availability is extensively reduced in patients with PD compared to healthy controls, not only in 

the striatum, where these receptors are highly expressed (Antonini et al., 1997), but also in 

extrastriate regions including the locus coeruleus and the temporal lobes, where the function of 

dopamine remains largely unknown (Stark et al., 2018b).  

 

MRI applications in PD 

Various MRI contrasts provide information related to neurologic deficits in PD, especially in the 

midbrain. Changes in longitudinal relaxation rates due to iron deposition in the substantia nigra 

correlate with motor impairment (Gorell et al., 1995), and iron in the basal ganglia is also higher 

in PD patients than controls (Wallis et al., 2008), an effect evident in susceptibility-weighted MRI 
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(Gupta et al., 2010). Volumetric analysis of the diminished substantia nigra also shows promise as 

a discriminative method for PD, especially in combination with diffusion-based structural 

connectivity (Menke et al., 2009). The presence of the pigment neuromelanin in the substantia 

nigra also offers potential for PD diagnosis, as NM-containing structures are detectable using MRI 

sequences sensitive to magnetization transfer effects (Tambasco et al., 2016). Recently developed 

quantitative magnetization transfer methods may augment the description of progressive nigra and 

locus coeruleus degeneration (Trujillo et al., 2015). While these methods may reveal localized sites 

of neurodegeneration in PD, this disease must also be considered in terms of network dysfunction. 

Structural and functional connectivity may provide insights inaccessible to static measures of 

tissue integrity.  

 Functional connectivity abnormalities in PD have been extensively studied, providing 

information about dysfunction in dopaminergic networks of motor control (Tahmasian et al., 2015). 

These studies highlight the importance of dopamine replacement therapy in modulating network 

synchrony. Several seed-based functional connectivity studies have focused on the basal ganglia 

and subcortical structures. (Hacker et al., 2012) observed decreased connectivity in striato-

thalamo-cortical loops and between the putamen and midbrain, pons, and cerebellum. A broader 

range of brain regions were examined in (Dubbelink et al., 2014), which found widespread network 

disruptions over three years compared to elderly healthy controls, including connectivity decreases 

correlated with cognitive decline. Studies have also examined how connectivity relates to altered 

cognition. For example, poor performance on the Stroop task and more severe PD symptoms 

correspond to disturbed connectivity of the caudate nucleus, putamen, globus pallidus, and 

thalamus, the major components of cortico-striatal feedback loops (Müller-Oehring et al., 2015).  
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Independent component analyses of resting fMRI data have also been reported in the 

literature. ICA revealed decreased connectivity in regions including the temporal lobes and the 

default mode network in PD, the latter correlating with cognitive scores (Tessitore et al., 2012). 

Symptom-modifying therapies may also restore functional linkage. Performance of computer-

assisted cognitive training for PD patients improves brain connectivity, particularly the central 

executive network and an attentional network involving the superior parietal cortex (Cerasa et al., 

2014).  

The studies highlighted above were conducted while on dopamine replacement medication. 

This is a key consideration, as dopamine levels are major determining factors in both 

symptomatology and network function in the mesocorticolimbic pathways. Additional studies of 

PD effects have been conducted in an off-dopamine state, and merit separate consideration. Altered 

connectivity of the bilateral striatum was found in PD patients off dopamine replacement therapy, 

with posterior putamen connectivity to sensorimotor network, and increased anterior putamen 

connectivity to motor regions and parietal cortex (Helmich et al., 2010). Compared to healthy 

controls, another study found decreased putamen connectivity with cortico-striatal and mesolimbic 

circuits (Luo et al., 2014).  

Circuit connectivity is likely related to dopamine receptor status. Striatal dopamine levels 

in the putamen as measured by PET are correlated with functional connectivity of that structure, 

suggesting that functional dynamics are responsive to neurotransmitters (Baik et al., 2014).  

Amygdala functional connectivity has also been examined, though to a lesser extent. 

Connectivity between the whole amygdala (i.e. central and basolateral) and supplementary motor 

area is elevated in PD, implying that non-striatal limbic structures may also be affected in 

dopamine depletion, and suggesting that compensatory connectivity to motor-associated cortex 
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may play a role in movement disorders (Yu et al., 2013). The major conclusions of the existing 

body of literature highlight the importance of altered linkage between the striatum and cerebral 

cortex, and the sensitivity of such changes to the pharmacology of dopamine replacement therapy. 

Impulsive-compulsive behaviors (ICBs) are associated with dopaminergic therapy for PD, 

particularly the administration of non-ergot dopamine agonist drugs, which preferentially target 

D2/D3 receptors, with relatively high affinity for D3. ICBs include binge eating, gambling addiction, 

compulsive shopping or hobby participation, and hypersexuality (Claassen et al., 2011; Voon et 

al., 2011; Weintraub et al., 2015). The common factor in ICBs is excessive participation in 

rewarding activities. Association of ICBs with artificially increased dopamine tone suggests 

activity changes in mesocorticolimbic pathways mediating addiction and reinforced learning. 

Specifically, they may involve dopamine projections between the ventral tegmental area of the 

midbrain, the ventral striatum, and limbic loops related to incentive salience and reward-motivated 

behavior (Fig. 1-3B). ICB-related changes in network connectivity are addressed in detail in 

Chapter 2.  

 

Progressive supranuclear palsy and Parkinson-plus syndromes 

Parkinson-plus syndromes refer to a cluster of neurodegenerative movement disorders with 

progressive clinical features similar to PD, but with additional and distinguishing symptoms and 

different underlying molecular pathologies. These diseases include progressive supranuclear palsy 

(PSP), corticobasal syndrome, and multiple systems atrophy. Parkinson-plus syndromes are either 
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synucleinopathies like PD or tauopathies (characterized by accumulation of the protein tau) (Mark, 

2001).  

Progressive supranuclear palsy (PSP), also called Steele-Richardson-Olszewski Syndrome, 

is a Parkinson-plus syndrome that manifests with progressive impairments to movement and 

cognition. Over time, these result in disability and death, with a median survival less than 10 years 

(Golbe et al., 1988). Although its cause is unknown, PSP a neurodegenerative tauopathy, linked to 

a haplotype of the tau protein-encoding gene (Baker et al., 1999). PSP progression is characterized 

by tau aggregation (i.e. neurofibrillary tangles) in several brain regions, including the dentate 

nucleus of the cerebellum (Hauw et al., 1994; Williams et al., 2007).  

The dentato-rubro-thalamic tract (DRTT) is a major pathway originating in the dentate 

nucleus and passing through the superior cerebellar peduncle (SCP) to reach the red nucleus, 

thalamus, and connecting with ascending pathways to the cerebral cortex (Fig 1-3C). The DRTT 

carries motor and nonmotor feedback signals from cerebellum to cortex. The dentate nucleus is 

the primary deep gray matter structure of the cerebellum and is marked by distinct 

pathophysiological processes in PSP. In addition to tau protein aggregation, the dentate nucleus 

undergoes grumose degeneration (accumulation of eosinophilic clusters), with microgliosis, 

demyelination, and axonal degeneration (Ishizawa et al., 2000).  

Diffusion MRI studies have consistently identified PSP-related changes in DRTT 

microstructure. In this pathway, the dentate nucleus passes axons through the SCP, the main 

efferent white matter structure of the cerebellum. Compromised integrity of the SCP has been 

repeatedly linked to PSP progression: its diameter is reduced, with evidence of deterioration in 

diffusion-weighted MRI. White matter degeneration in the DRTT, together with evidence of 

dentate tauopathy, and motor, oculomotor, and visuospatial symptoms, imply that this tract plays 
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a critical role in PSP. However, the effects of DRTT degeneration on functional connectivity of 

the dentate nucleus have not been directly characterized. In Chapter 3 we test the hypothesis that 

in PSP, pathological white matter microstructural changes to the DRTT correspond to reduced 

functional connectivity of the dentate nucleus. We hypothesize that the relationship between 

microstructure and DRTT connectivity is related to disease severity and progression, and therefore 

examine longitudinal trends in structural integrity, measured by diffusion-weighted imaging. 

 

1.4 Summary 

Imaging contrasts sensitive to hemodynamic activity, diffusion, and perfusion are a toolkit 

allowing inferences to be drawn about connectivity within and between brain regions, and to 

answer questions about the complex relationship between structure and function in a variety of 

neural networks. It is crucial to remember that while the flexibility of MRI permits a vast range of 

neuroimaging contrasts, each individual technique reflects specific but narrow physical or 

functional aspects of brain organization. This fact is especially relevant in disease processes where 

degeneration or dysfunction in isolated brain regions cause cascading pathological effects 

throughout the brain. For instance, the most readily observed neural phenotype in PD is 

degeneration of substantia nigra neurons; however, effects of this localized degeneration are 

systemic, with altered connectivity patterns in extended regions of cortex.  

 In this dissertation, we will investigate structural and functional connectivity both in 

specific networks and across the brain. Fig 1-3 provides an overview of the major brain networks 

that will be examined. The aim of this work is to expand our knowledge of networks in both healthy 

function and in pathology. In Chapter 2, we will investigate the relevance of frontal limbic 

networks to aberrant reward-motivated behavior caused by medical management of PD. In Chapter 
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3, we will examine the major circuit linking the cerebellum with the cerebrum, and detail novel 

findings about the connectivity of a newly discovered branch of this pathway. We will also 

describe preliminary evidence suggesting that structure and function of this tract undergo parallel 

impairment in PSP. Chapter 4 will report an alternative approach to the identification of functional 

brain networks, which relies on dynamic perfusion signal in the brain’s gray matter. Finally, in 

Chapter 5 this method will be applied to a longstanding question about the neuroanatomy of a key 

limbic region, the orbitofrontal cortex. 
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CHAPTER 2 

 

MESOLIMBIC FUNCTION AND CONNECTIVITY IN PATIENTS WITH REWARD-

BASED COMPULSIVE BEHAVIORS 

 

2.1 Purpose 

Functional connectivity can probe not only the architecture of co-active functional brain networks, 

but also the neural correlates of altered behavior and cognition in neuropsychological disorders. 

To understand the causes of reward-motivated behavior including pathologically altered activity, 

we examined the dopaminergic pathways of the limbic system in the context of exogenous 

dopamine replacement therapy. The goal of this study was to identify whether the brain’s reward 

circuits have different functional connectivity in patients susceptible to atypical drug responding, 

and whether this predisposition is related to changes in reward-incentivized learning. 

 

2.2 Summary 

A subgroup of Parkinson’s disease (PD) patients treated with dopaminergic therapy develop 

compulsive reward-driven behaviors, which can result in life-altering morbidity. The 

mesocorticolimbic dopamine network guides reward-motivated behavior; however, its role in this 

treatment-related behavioral phenotype is incompletely understood. Here, mesocorticolimbic 

network function in PD patients who develop impulsive and compulsive behaviors (ICB) in 

response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that 

network connectivity between the ventral striatum and the limbic cortex is elevated in patients 

with ICB and that reward-learning proficiency reflects the extent of mesocorticolimbic network 
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connectivity. To evaluate this hypothesis, 3.0 T BOLD-fMRI was applied to measure baseline 

functional connectivity on and off dopamine agonist therapy in age and sex-matched PD patients 

with (n=19) or without (n=18) ICB. An incentive-based task was administered to a subset of 

patients (n=20) to quantify positively or negatively-reinforced learning. Whole-brain voxelwise 

analyses and region-of-interest-based mixed linear effects modeling were performed. Elevated 

ventral striatal connectivity to the anterior cingulate gyrus (p=0.013), orbitofrontal cortex 

(p=0.034), insula (p=0.044), putamen (p=0.014), globus pallidus (p<0.01), and thalamus (p=0.024) 

was observed in patients with ICB. A strong trend for elevated amygdala-to-midbrain connectivity 

was found in ICB patients on dopamine agonist. Ventral striatum-to-subgenual cingulate 

connectivity correlated with reward learning (p<0.01), but not with punishment-avoidance 

learning. These data indicate that PD-ICB patients have elevated network connectivity in the 

mesocorticolimbic network. Behaviorally, proficient reward-based learning is related to this 

enhanced limbic and ventral striatal connectivity. 

 

2.3 Introduction 

Motor symptoms in patients with Parkinson’s disease (PD) improve with dopamine replacement 

therapy, but patients can develop debilitating reward-driven impulsive and compulsive behaviors 

(ICB). Dopamine agonist (DAA) use in particular is the greatest risk factor for this behavior, where 

prevalence estimates indicate approximately 15 percent of patients on DAA therapy develop these 

symptoms (Weintraub et al., 2015). Consequent maladaptive activities include hypersexuality, 
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compulsive gambling, shopping, and binge eating (Perez-Lloret et al., 2011) (American 

Psychiatric Association, 2013).  

Medication effects likely target the mesocorticolimbic incentive-learning network, an 

integrated system of cortical and subcortical structures in which the ventral striatum plays a central 

role (Haber and Behrens, 2014). More specifically, the ventral striatum receives dopaminergic 

projections from the ventral tegmental area of the midbrain, and mediates behavior-reinforcing 

effects of rewarding activities. Analogous to the nucleus accumbens in lower order species, the 

ventral striatum is important in motivation and reward-associative learning (Ikemoto and Panksepp, 

1999; Olds and Milner, 1954) and is consistently implicated in drug addiction (Pierce and 

Kumaresan, 2006). Additionally, the amygdala, traditionally identified with associative learning 

involving fear or negative emotional valance, is a key mesolimbic structure. The amygdala encodes 

affective and motivational significance to rewarding events, mediates reward-learning (Tye et al., 

2008), and interacts with the ventral striatum dopamine system to connect reward-association 

effects with behavior (Cador et al., 1989). While these structures have been studied extensively in 

the context of normal function and disease states, the behavioral outcomes of dopaminergic 

therapy for PD patients present a unique opportunity to investigate pathological activity in these 

networks, and related behavior, under differing pharmacologic conditions. 

In this context, the effect of DAA-linked ICB on functional neural networks remains poorly 

understood. It is unclear why a subset of individuals receiving DAA therapy develop these altered 

behaviors. As DAAs show a preference for D2-like receptors, which localize to the ventral striatum 

and mediate its activity (Claassen et al., 2017; Murray et al., 1994), altered connectivity within 

this region to other mesocorticolimbic structures may have relevance. We have previously shown 

that administration of DAAs to patients with ICBs results in a greater increase in cerebral blood 
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flow to the ventral striatum than in the non-ICB population, indicating a greater metabolic response 

in this region (Claassen et al., 2017) (Fig. 2-1). A clearer understanding of circuits that may be 

altered in patients with these behaviors could inform better clinical practices to mitigate the impact 

of these side effects.  

It is unknown whether DAAs produce ICB by directly reshaping brain connectivity, or by 

acting upon pre-existing group differences in network activity. Only one previous study examined 

striatal functional connectivity in PD-ICB patients (Carriere et al., 2015) and found functional 

disconnection in striato-cortical circuits. However, this study did not evaluate on and off 

Fig. 2-1. Hemodynamic response to dopamine agonists is specific to the ventral striatum. Blood flow on and off 
DAA therapy was quantified in (A) all cortical gray matter, (B) subcortical nuclei including the caudate (shown 
here), putamen, amygdala, and thalamus, and (C) the ventral striatum/nucleus accumbens. The percent change 
in blood flow when resuming DAA administration after washout is not different between ICB+ and ICB- in total 
gray matter (D) or other subcortical regions-of-interest (E), but was significantly greater for ICB+ patients than 
ICB- patients in the ventral striatum (F) (Claassen, 2017). 
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medication states nor did it examine connectivity between subcortical structures (rather than 

exclusively between the basal ganglia and cortical surface) or include the amygdala.  

As ICB manifestations are often categorized as behavioral addictions (Dagher and Robbins, 

2009; Voon and Fox, 2007), we hypothesized that DAA-treated PD patients with this behavioral 

phenotype have increased functional connectivity between the ventral striatum and components of 

the limbic striato-pallido-thalamo-cortical loop, including pathways to the anterior cingulate gyrus 

and orbitofrontal cortex. To test this hypothesis, we applied pharmacological baseline blood 

oxygenation level-dependent (BOLD) fMRI to measure regional connectivity of the hemodynamic 

signal between the ventral striatum and mesocorticolimbic regions implicated in incentive salience, 

motivation, and addiction. Because amygdala activity has also been linked with reward-motivated 

behaviors (Hitchcott et al., 1997; Murray, 2007) on and off DAA, we additionally examined 

amygdala connectivity with reward network components. Finally, since striato-cortical networks 

are implicated in action choice and reward valuation (Bogacz and Gurney, 2007; Tanaka et al., 

2004), we tested whether functional connectivity was linked to differences in incentive-based 

learning. To our knowledge, this is the first study to test ICB-related connectivity differences while 

modeling controlled on-DAA and off-dopaminergic medication states. 

 

2.4 Methods 

Patients with PD (n=37; gender=12F/25M; age=61.8±8.4 years) were recruited from the 

Vanderbilt University Movement Disorders Clinic and provided informed, written consent for this 

prospective study. Participants met the following inclusion criteria: no history of (1) non-PD-

related neurological disease; (2) psychiatric disease including bipolar affective disorder, 

schizophrenia, or other condition known to compromise executive cognitive functions; (3) 
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moderate-to-severe depression, based on the Center for Epidemiological Studies Depression 

Scale-Revised; (4) medical conditions known to interfere with cognition (e.g., diabetes, pulmonary 

disease), and (5) confounding medical therapies such as antipsychotics or acetylcholinesterase 

inhibitors. All participants reported stable mood functioning, absence of major depression, and did 

not meet clinical criteria for mild cognitive impairment or dementia based on a neurological exam.  

Patients completed the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-

Rating Scale (QUIP-RS). To measure PD severity, a clinical examination was administered by a 

board-certified neurologist (D.O.C.). The Movement Disorders Society’s United Parkinson’s 

Disease Rating Scale (UPDRS) part II (Goetz et al., 2008) was used to assess self-reported disease 

severity. Patients’ current prescribed dosages of dopaminergic medication, including Levodopa 

and DAAs, were converted to levodopa equivalent daily dosage (LEDD) (Tomlinson et al., 2010).  

Patients were categorized as ICB+ (n=19) or ICB- (n=18) according to previous methods 

(Weintraub, 2009) based on a structured behavioral interview with the patient and spouse. ICB+ 

patients were defined as those exhibiting one or more of the following behaviors that emerged 

after the initiation of DAA medication: compulsive eating, compulsive gambling, compulsive 

shopping, hypersexuality, and compulsive hobbyism. In this sample, most commonly encountered 

problematic behaviors were hypersexuality and compulsive eating; no patients exhibited 

compulsive gambling. ICB- patients served as the control group, since the object was to identify 

ICB-specific (rather than PD-specific) connectivity patterns.  

Patients were required to refrain from taking all dopaminergic medications prior to the off-

dopamine therapy scan (16 hours Levodopa-free, 36 hours DAA-free, due to differential drug 

kinetics) to reduce circulating drugs and abrogate residual drug effects. For the on-DAA scan, 
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patients took their prescribed DAA dosage (but not levodopa) such that the clinical testing and 

exam were performed in the on-DAA-only state.  

A subset of participants (n=8 ICB+; n=12 ICB-) completed an action-valence learning task, 

both on-DAA and off-dopamine. Participants were exposed to new stimuli in each visit, so each 

session required new learning. Stimulus order within each session was randomized. For a detailed 

description of the trials, see Van Wouwe et al., 2017. Subjects were instructed that the goal of this 

task was to learn to act or withhold action in response to each of four cartoon characters to 

maximize earnings by gaining rewards (+25 cents) and avoiding losses (i.e., punishments, -25 

cents).  

Unbeknownst to the subjects, two of the cartoon characters provided outcomes that were 

rewarded or unrewarded, and the other two cartoon characters provided outcomes that were either 

punished or unpunished. Thus, the former two characters were associated with reward learning, 

whereas the latter two characters were associated with punishment avoidance learning. Also 

unknown to the subject, one character from each set of two produced the optimal outcome (i.e., 

either gain reward or avoid punishment) when the subject acted, but the other character from each 

set produced the optimal outcome when the subject withheld action.  

This setup orthogonalized both reward/punishment valence and action/inaction. The 

optimal response was probabilistically rewarded (A and B), or not punished (C and D) 80% of the 

time, whereas the non-optimal response always yielded the undesired outcome (either no reward 

in A and B or a punishment in condition C and D). Subjects were unaware of the exact probabilities 

of each action-outcome association, but they were instructed that each action associated with a 

particular stimulus would lead to a particular outcome most of the time, but not always. Before the 
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actual experiment, participants performed 15 practice trials during which they experienced the 

probabilistic nature of the task. 

Subjects completed 160 learning trials, divided into four 40-trial blocks. Accuracy was 

defined by the percentage of trials in which the subject selected the optimal response. To confirm 

that participants learned throughout the task, performance across the four learning blocks was first 

analyzed. Subsequent analyses were performed on the final block, reflecting asymptotic maximum 

learning. 

Scans were performed at 3 Tesla (3.0T) in separate on-DAA and off-dopamine conditions 

using a Philips Achieva scanner (Philips Healthcare, Best, the Netherlands) with body coil 

transmission and 8-channel SENSE array head coil reception. The multimodal imaging protocol 

included a standard T1-weighted anatomical (3D MPRAGE; spatial resolution=1x1x1 mm3; 

TR/TE=8.9/4.6 ms), T2-weighted FLAIR (3D T2-weighted turbo-spin-echo; spatial 

resolution=1x1x1 mm3; TR/TI/TE=4000/2800/120 ms), and BOLD (spatial 

resolution=3.5x3.5x3.5 mm3; single shot gradient echo planar imaging; TR/TE=2000/35 ms; flip 

angle=75°, duration=5 min). The BOLD field-of-view was 224 x 224 x 122.5 mm (matrix size = 

64 x 64 x 35) and was oriented to have a 30° angle between the anterior commissure – posterior 

commissure line and the plane of the imaging volume (chosen to reduce the spatial extent of phase 

heterogeneity and signal dropout beyond lower frontal lobe voxels). The slice acquisition order 

was interleaved ascending. 

Image pre-processing was performed using standard routines from the FMRIB software 

library (FSL) (Smith et al., 2004). The first three volumes of each scan were removed to ensure 

the signal was at steady-state, leaving 147 frames. Next, BOLD scans were motion-corrected by 

registration to the central frame, slice-time corrected, spatially smoothed with a Gaussian kernel 
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(full-width-half-maximum (FWHM)=5 mm), and bandpass filtered to exclude frequencies below 

0.01 Hz (scanner drift) and above 0.15 Hz (high-frequency nuisance fluctuations).  

Next, to reduce contributions from residual motion and nuisance fluctuations, a 

conservative data-driven approach similar to COMPCOR (Behzadi et al., 2007) was applied. Here, 

FSL MELODIC was used to decompose the voxel-wise time courses into 25 independent 

components. Next, fsl_regfilt was applied to regress out components found to be artifactual using 

the following criteria (1) no resemblance to known functional networks, e.g. those described in 

(Smith et al., 2009) or (2) localization to the skull. Nuisance regressors were selected to remove a 

similar percentage of explained 

variance in all subjects and variance 

removed was similar between ICB 

groups (ICB+: 27.3%; ICB-: 25.2%; 

not significant in a two-tailed t-test). 

Next, anatomical T1-weighted 

images were skull-stripped and 

automatically segmented and seed 

regions in ventral striatum and 

amygdala were defined by FSL FIRST 

outputs (Patenaude et al., 2011) (Fig. 2-

2A). All seed regions were bilateral. 

T1-space masks were examined by a 

board-certified neurologist (D.O.C) 

and neuroradiologist (R.K.) to confirm 

Fig. 2-2. Mesocorticolimbic regions-of-interest. (A) 
Representative seed regions determined by FSL-FIRST. 
Green=ventral striatum, red=amygdala. (B) All 
mesocorticolimbic ROIs used in group-level analysis. ROIs were 
defined using the IBASPM116 segmentation tool implemented 
in the WFU pick-atlas Matlab toolbox. Orbitofrontal cortex (1), 
ventromedial prefrontal cortex (2), insula (3), dorsal anterior 
cingulate gyrus (4), subgenual anterior cingulate (5), caudate 
(6), putamen (7), globus pallidus (8), thalamus (9), midbrain 
(10), occipital lobe (11), ventral striatum (12), and amygdala  
(13). 
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that the segmentation was representative of the structure. Seed region masks were then transformed 

to the BOLD scans and used to extract the seed time courses from the pre-processed BOLD images. 

This procedure was used to reduce confounds in which time courses are modified as a result of co-

registration and resampling. The use of subject-derived seed masks reduces confounding partial 

volume effects due to variability in shape, size, and relative position of brain structures that are 

difficult to account for when using standard space atlases, but are common in older patients with 

neurodegeneration (Cherubini et al., 2009; Zhang et al., 2014). 

Next, subject-level connectivity modeling was performed using FSL-FEAT. Seed time 

courses were used as explanatory variables in a voxelwise linear regression in native space. Each 

voxel’s z-statistic was calculated using Fisher’s z-transform. Subject-level connectivity maps were 

registered to native T1 space and subsequently to the 2-mm Montreal Neurological Institute (MNI) 

152 standard brain atlas. These MNI-space connectivity z-statistic maps were then used as inputs 

in a group-level analysis.  

To determine whether regions outside of the mesocorticolimbic network are differently 

connected with the ventral striatum or amygdala in ICB patients, a group-level analysis was 

performed using voxelwise statistics in standard space using Statistical Parametric Mapping (SPM), 

with familywise error rate correction for multiple comparisons. Explanatory variables were ICB 

status (+/-) and drug status (on-DAA/off-dopamine). Age was treated as a covariate of no interest.  

Image pre-processing for the ROI-based analysis was identical to methods in voxelwise 

analysis, except in two respects. First, a smaller spatial smoothing kernel was applied (FWHM=3 

mm), as the ROI-based approach did not require as high a signal-to-noise ratio, and the goal was 

to avoid partial volume effects between the ventral striatum and lateral ventricles. 3-5 mm spatial 

smoothing is used routinely in fMRI analyses. Secondly, global signal regression was used rather 
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than data-driven denoising in this analysis to ensure that voxelwise results were not due to bias in 

the selection of noise components. To extract global signal, whole-brain masks were created using 

FSL BET applied to the motion-corrected fMRI image. Global signal was then included as an 

additional regressor of no interest to account for residual motion effects and spatially non-specific 

physiological noise.  

ROI-based connectivity analysis was performed using a mixed-effects linear model 

implemented in R Statistical Software version 3.3.2 (Foundation for Statistical Computing). 

Explanatory variables were ICB status (+/-), drug status (on-DAA/off-dopamine), and drug-ICB 

interaction. Twelve target ROIs were tested, as motivated by our study hypotheses: orbitofrontal 

cortex, ventromedial prefrontal cortex, insula, dorsal anterior cingulate gyrus, subgenual anterior 

cingulate gyrus (inferior to the genu of the corpus callosum), caudate, putamen, globus pallidus, 

thalamus, midbrain (ventral tegmental area and substantia nigra), occipital lobe (negative control), 

and ventral striatum (for the amygdala seed) or amygdala (for the ventral striatum seed) (Fig. 2-

2B). ROIs were defined using the Wake Forest University pick-atlas tool Individual Brain Atlases 

using Statistical Parametric Mapping Software (IBASPM)-116 definitions (Maldjian, 1994). All 

target ROIs were bilateral. 

Continuous measurements of patient demographics (Table 1) were compared between 

groups using the Mann-Whitney U test. Hypothesis 1, that ICB+ individuals would exhibit 

increased ventral striatal connectivity with reward network components while on DAA, was tested 

using both a voxelwise analysis with familywise error rate correction and an ROI-based approach 

with false discovery rate (FDR) correction. For the ROI analysis, a mixed-effects linear model was 

employed since the assumption of independence in a general linear model was violated by repeated 

measurements (on- and off-drug scans). Connectivity differences were considered significant at  



 

 42 

Variable  PD ICB-   PD ICB+   p-value 

N  18  19   
Gender (Male/Female)  13/5  12/7   
Age (years)  62.7±10.1  61.0±7.1  0.56 
Disease Duration (years)  6.1±4.5  6.2±3.7  0.91 
CES-D  15.1±7.2  17.4±11.2  0.46 
MDS-UPDRS Part II  23.2±7.7  22.3±9.6  0.75 
QUIP-RS Total  18.9±11.1  35.9±9.7  <0.001* 
ICB Symptom Distribution        
                Hobbyism  0/19  12/19   
                Eating  0/19  13/19   
                Sex  0/19  12/19   
                Shopping  0/19  4/19   
                Gambling  0/19  0/19   
Dopamine Replacement Therapy       
               Total LEDD (mg/day)  609.8±390.3  639.1±417.1  0.82 
               Agonist Single Dose 

Equivalent (mg/day)  103.9±65.1  117.6±73.7  0.47 

 

FDR=0.10, a threshold recommended by Benjamini (Benjamini and Hochberg, 1995; Genovese et 

al., 2002). The voxelwise parametric analysis was performed using multiple regression with ICB 

group and drug status as covariates of interest, and age as a covariate of no interest. Voxels were 

thresholded at p<0.001. Clusters were considered significant at family-wise error corrected p<0.05. 

To test Hypothesis 2, that while on-DAA, ICB+ patients exhibit elevated reward-based 

learning, but not punishment avoidance-based learning, a mixed ANOVA was performed, with 

three within-subject factors; Action (action, inaction), Valence (reward, punishment avoidance), 

Medication (on-DAA, off-dopamine); and one between-subjects factor, Group (ICB+, ICB-). 

To test Hypothesis 3, that ventral striatal connectivity relates to incentive learning, ventral 

striatal connectivity values with mesocorticolimbic ROIs were used as independent variables in 

Table 1. Parkinson’s disease group demographics, behavioral and cognitive traits. Values 
reported as mean +/- one standard deviation or fractions of subjects. *Meets significance criteria of 
two-sided p<0.05. 
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least absolute shrinkage and selection operator (LASSO) regressions, where task score was the 

dependent variable. LASSO regression performs variable selection to determine what covariates 

are important in explaining the dependent variable, setting less-important terms to zero (Tibshirani, 

1996). This analysis was collapsed across drug status, since the goal was to compare connectivity 

and reward learning independent of drug effects. LASSO regression was performed using the 

glmnet package (Friedman et al., 2010) and bootstrapped in R. LASSO regression was performed 

with two different datasets: reward vs. ventral striatum connectivity, and punishment vs. ventral 

striatum connectivity. In each regression, ICB status was included as a non-penalized explanatory 

variable (i.e. controlled for). The LASSO regression was performed on 500 bootstrap samples per 

condition, and the number of times each seed-target pair was chosen reported. Seed-target pairs 

were considered highly important if they were chosen in 80 percent or more bootstraps. For any 

seed-target pairs thus categorized, Spearman’s ρ was calculated. 

 

2.5 Results 

Demographics 

Table 1 summarizes non-imaging study values. ICB+ and ICB- groups were matched (p>0.05) for 

age, disease severity (UPDRS part II), depression (CES-D), disease duration, and dosage (LEDD 

or DAA single dose equivalent). QUIP-RS was significantly greater for ICB+ patients after 

correction for multiple comparisons (p<0.001).  

 

Hypothesis 1: network connectivity in PD-ICB 

The voxelwise analysis and ROI-based analysis yielded largely consistent results. In the voxelwise 

approach, we found increased ventral striatal connectivity with two significant clusters in ICB+ 
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patients. Cluster 1 extended from the right thalamus through the basal ganglia (esp. globus pallidus 

and putamen) into the subgenual anterior cingulate gyrus as well as lateral orbitofrontal and 

dorsolateral prefrontal cortex. Cluster 2 mirrored cluster 1 in the left prefrontal cortex (Fig. 2-3).  

In the ROI-based analysis, the ventral striatum of ICB+ patients exhibited increased 

connectivity with dorsal anterior cingulate gyrus (p=0.013), orbitofrontal cortex (p=0.034), insula 

(p=0.044), putamen (p=0.014), globus pallidus (p<0.01), and thalamus (p=0.024) (all reported p-

values significant after FDR correction) (Fig. 2-4A). No main effect was observed for drug. An 

ICB-drug interaction effect between the amygdala and the midbrain was observed, such that off-

dopamine, ICB+ status is associated with decreased connectivity, but on-DAA, ICB+ status is 

associated with increased connectivity. This effect was individually significant, but was not 

significant after FDR correction (p=0.011) (Fig. 2-4B).  

 

Fig. 2-3: Effects of impulsive and compulsive behaviors on voxelwise connectivity. Ventral striatum connectivity 
between ICB groups. No DAA effect was observed. Only clusters significant after family-wise error correction are 
shown. 
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Hypothesis 2: incentive learning 

All patients showed an increase in learning across blocks, both on- and off-medication (off-

dopamine, p<0.001; on-DAA, p<0.002). Learning proficiency was higher on average in ICB+ 

patients (91% correct responses) than in ICB- patients (79%) (p<0.01). There were no significant 

main effects of Medication or 

Action, nor any significant 

interaction between these two 

factors. Based on our hypothesis 

that ICB+ patients will 

particularly excel at learning from 

rewards, we compared reward and 

punishment learning (across 

medication states and action-

learning conditions) separately 

between ICB groups. Reward 

learning was more proficient 

(p<0.01) in ICB+ patients (90%) 

compared to the ICB- patients 

(73%). ICB+ patients also tended 

to be more proficient on 

punishment avoidance learning 

(93%) than the ICB- patients 

Fig. 2-4: Effects of impulsive and compulsive behaviors on ROI-based 
connectivity. Connectivity differences between ICB and DAA groups. 
(A): Ventral striatum connectivity between ICB groups. No DAA effect 
was observed. Asterisk indicates seed-target pairs significant after 
multiple comparisons correction. (B): Amygdala connectivity among 
ICB groups and drug states. Bar with p-value represents a DAA-ICB 
interaction effect not significant after multiple comparisons 
correction. Error bars represent standard error of the mean. These 
data support the idea of increased connectivity in cortico-striatal 
circuits involving the ventral striatum. 
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(84%), but this did not meet significance criteria (p=0.07).  

 

  
Subgenual 
anterior 
cingulate 

Occipital 
cortex Insula Midbrain 

Dorsal 
anterior 
cingulate 

Reward 
learning 91.0† 63.2 54 53 25.2 

Punishment 
learning 30.8 5.8 4.4 22.8 1.8 

 
Putamen Amygdala Pallidum Orbitofrontal 

cortex 

Ventromedial 
prefrontal 
cortex 

Reward 
learning 16.6 10.4 0.4 0.2 0.2 

Punishment 
learning 1.2 5.4 5.8 63.8 4.4 

 

Hypothesis 3: network connectivity and incentive learning 

Ventral striatum connectivity was tested for a relationship with incentive learning. This analysis 

controlled for ICB status, since learning scores were different between ICB groups. For reward 

score, ventral striatum to subgenual cingulate was highly important, chosen in the LASSO 

regression in 91% of bootstrapped samples. Ventral striatum to subgenual anterior cingulate 

connectivity was positively correlated with reward learning performance (ρ=0.43, p<0.01). No 

other seed-target connectivity pair exceeded the 80% threshold, nor did any regions exceed this 

threshold for punishment avoidance. Table 2 summarizes LASSO regression results. 

 

2.6 Discussion 

In this study, we asked: are mesocorticolimbic networks altered in patients with medication-

induced impulse control disorder? We used baseline fMRI to test for altered brain connectivity in 

Table 2. Incentive learning and connectivity regression results. Values represent the percentage of 
bootstrapped LASSO regressions in which connectivity between ventral striatum and the given ROI was 
chosen as important for explaining reward or punishment learning. The regression was collapsed across 
drug states, and controlled for impulse control disorder. Results exceeding 80 percent are indicated with 
(†). 
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impulsive and compulsive individuals and found heightened connectivity between the ventral 

striatum and the limbic loop to the anterior cingulate gyrus and orbitofrontal cortex, as well as to 

other limbic structures. We found evidence in support of the strength of this connection relating to 

reward-based learning.  

Altered striato-cortical connectivity is associated with an array of behavioral disorders 

involving impulse control problems including cocaine addiction (Hu et al., 2015) and obsessive-

compulsive disorder (Beucke et al., 2013; Menzies et al., 2008). Such connectivity is known to be 

dopamine-sensitive (Cole et al., 2013). Thus, we hypothesized that impulsive PD patients would 

exhibit altered limbic connectivity, especially while on-DAA. The ventral striatum is the target of 

the mesolimbic pathway classically implicated in incentivized behavior, response to reward cues, 

and reward-based learning (Ikemoto and Panksepp, 1999; Olds and Milner, 1954). DAAs can 

alleviate motor impairment in PD patients by mimicking endogenous dopamine effects on the 

dorsal striatum. However, exogenous dopamine also activates the ventral striatum, modifying 

reward and behavioral circuit activity, including striatal feedback loops serving non-motor cortical 

regions (Cools et al., 2007, 2001). The involvement of the ventral striatum in ICB is substantiated 

by our finding of increased cerebral blood flow to this structure in ICB+ patients (Claassen et al., 

2017). 

Carriere et al., 2015, observed altered striato-cortical connectivity in PD-related ICB; 

however, they identified ICB-related functional disconnection only in the dorsal striatum, 

especially the putamen. Our results build on these studies and demonstrate the importance of 

increased ventral striatum connectivity as a correlate and potential driver of ICB. The difference 

in these findings may be due to the prior study’s inclusion of the ventral caudate and putamen in 

the ventral striatum seed region, rather than the nucleus accumbens alone, as in our study. 
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Surprisingly, our analysis did not indicate a DAA effect on ventral striatum connectivity. 

It is thus possible that DAAs act upon pre-existing group differences in connectivity. Alternatively, 

the absence of a direct drug effect may suggest that the impact of DAA on functional connectivity 

persists during the 36-hour drug washout we employed. Future studies with longer off-dopamine 

periods may resolve this question. Our results nonetheless reveal that elevated connectivity in 

striatal-limbic cortex pathways reflects enhanced incentive-based learning and impulse control 

problems.  

Parts of the anterior cingulate gyrus and orbitofrontal cortex participate in a cortico-striatal-

pallido-thalamo-cortical loop, one of a series of parallel feedback pathways between the cortex 

and striatum (Alexander et al., 1986) (Fig. 2-5A). Unlike other cortical areas which connect via 

Fig. 2-5: Schematic representation of ICB-related network changes. (A) The limbic or affective striato-pallido-
thalamo-cortical loop. Arrows represent anatomical connections as described in Alexander, 1986. The loop 
consists of the ventral striatum (green), the globus pallidus (magenta), the thalamus (yellow), and limbic cortical 
structures such as the orbitofrontal cortex (blue) and anterior cingulate gyrus (red). We propose that this 
structural and functional network is involved in incentive valuation and reward-driven behavioral modification. 
(B) Increased functional connectivity correlates of ICB. Bands indicate select regions of significantly increased 
connectivity, generally corresponding to the cortico-striatal-pallido-thalamo-cortical loop, which is highly 
connective in ICB+ PD individuals. Dashed connecting line between ventral striatum and subgenual ACC 
represents functional connectivity related to reward-incentivized learning. 
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the caudate or putamen, the limbic loop between the basal ganglia and the limbic cortex passes 

through ventral, rather than dorsal, striatum. Johansen-Berg et al. (2008) used diffusion tensor 

tractography to evaluate structural connectivity between the nucleus accumbens and the anterior 

cingulate. Our findings are consistent with functional connectivity between these regions reflecting 

positively reinforced learning in humans.  

Since the ventral striatum-anterior cingulate network is more synchronous in individuals 

with ICB, and ICB involves heightened sensitivity to reward outcomes and more proficient 

learning, this suggests a mechanism whereby DAA medication may influence the development of 

problematic reinforced behaviors. The anterior cingulate is involved in decision-making and 

outcome evaluation (Bush et al., 2000), and its activity is modulated by expected reward (Amiez 

et al., 2005). Moreover, in primates, it has been implicated not only in reward valuation and 

decision-making (Shima and Tanji, 1998), but in reward learning (Hadland et al., 2003).  

Similarly, activity of the orbitofrontal cortex has been linked to both cued and uncued 

impulsive choices (Zeeb et al., 2010). Along with the cingulate cortex, it contributes to reward 

valuation processes, and may mediate hedonic experiences (Kringelbach, 2005; Dolan, 2007). An 

important caveat is that the orbitofrontal cortex is prone to signal dropout and geometric distortion 

in long echo time gradient echo sequences due to its proximity to the sinuses (Deichmann et al., 

2002); this effect can produce spurious results due to signal dropout. The insula is also associated 

with decision-making and risk evaluation (Bossaerts, 2010; Clark et al., 2008), and is activated 

when taking risks, especially when the gamble is successful (Xue et al., 2010). 

Our results show a pattern of ventral striatal functional involvement with cortical areas 

known to affect action choice when outcomes are uncertain but potentially rewarding or 

reinforcing. Based on these data, we propose a model in which DAAs activate ventral striatum 
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D2/3 receptor-bearing neurons, leading to increased connectivity in feedback pathways between the 

ventral striatum and limbic cortex (Fig. 2-5B). This, in turn, intensifies reward-learning behavior, 

leading to decision-making that is highly reward-sensitive and hedonic.  

It is important to avoid drawing overly detailed mechanistic conclusions from functional 

connectivity studies, especially in striatal networks, where inhibitory and excitatory stop-and-go 

circuits function in parallel in the same space. However, the relationship between the limbic loop 

and reward-learning argues that our functional connectivity findings mirror basic 

neuropsychological processes which may help explain the singular behavior of individuals with 

ICBs.  

The amygdala, like other limbic system components, has been repeatedly linked to reward-

guided learning (Murray, 2007), and one study showed that its effects on reward-based learning 

vary with the application of D3 agonist (Hitchcott et al., 1997). The amygdala receives 

dopaminergic connections from the midbrain (Hyman et al., 2009), and functional and structural 

connectivity between the two regions has been implicated in feedback-guided learning (M. X. 

Cohen et al., 2008). Unexpectedly, we found a strong trend toward increased connectivity between 

these regions in ICB, but only when on-DAA. This indicates a second limbic substrate upon which 

DAAs may act to promote impulsivity. Further studies are needed to identify how striato-cortical 

and amygdala-midbrain networks differ in their contributions to impulse control problems.  

These findings should also be considered in the context of several limitations. While this 

study was powered to examine differences in ICB phenotypic groups, it is possible that drug effects 

on ventral striatal connectivity might be revealed by a larger sample size. A future study might 

also examine potential network differences between more risk-related ICB manifestations such as 

gambling (our study did not include any problem gamblers) and more hedonic variants such as 
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binge eating. Additionally, the performance of the incentive-learning task was limited to a subset 

of patients (n=20) outside of the scanner. The task was designed to limit the impact of between-

session learning by several means, including practice sessions to ensure task familiarity on both 

study days, and new reward-stimulus associations on the second day to prevent a cumulative 

learning effect. Nonetheless, we cannot rule out the possibility of some inter-session learning 

unrelated to drug or ICB group.  

Another possible limitation of the incentive-learning task is the observation that ICB 

patients trended toward superior punishment avoidance-learning as well as reward-learning. This 

suggests that they may be more learning-proficient in general, although we note that punishment-

based learning was not found to be strongly related to reward circuit connectivity. Future studies 

that use a task-based fMRI paradigm may provide insights into acute activity changes experienced 

by impulsive and compulsive drug-responders when evaluating potential outcomes of risky 

choices, and adapting behavior to seek rewards. Finally, only BOLD connectivity patterns are 

reported here, which provide insights with regard to network connectivity differences but limited 

information on underlying mechanisms. Ongoing work is focused on understanding these findings 

in the context of dopamine availability and 18F PET studies, cerebral blood flow CBF using arterial 

spin labeling MRI (Claassen et al., 2017), and neurotransmission using magnetic resonance 

spectroscopy.  

 

2.7 Conclusions 

These results illustrate important relationships between reward circuits, D2-like agonists, and 

behavioral phenotypes in PD. The findings of enhanced connectivity in the striato-pallido-

thalamo-cortical network in patients with compulsive reward-driven behaviors has long been 
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biologically suspected, but we can now localize an anatomic network to defined behavioral 

changes in PD patients. The relationship between connectivity of the ventral striatum and anterior 

cingulate with improved incentive learning provides important clinical relevance to BOLD 

findings. Furthermore, the finding that DAA therapy may augment amygdala to midbrain 

connectivity emphasizes that these key regions, the ventral striatum, cingulate cortex, and 

amygdala, act together in concert to regulate reward-driven behaviors, where alterations to these 

connected regions may fundamentally change an individual’s ability to regulate comportment.  
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CHAPTER 3 

 

STRUCTURE-FUNCTION RELATIONSHIP OF THE  

DENTATO-RUBRO-THALAMIC TRACT 

 

3.1 Purpose 

While functional connectivity is a potent tool to examine the dynamic activity of brain networks 

in behavior and neurological conditions, examination of structural connectivity enables more 

precision in the identification of specific white matter pathways. This is especially important in a 

surgical context, where localization of key pathways may prevent both unnecessary tissue damage 

and erroneous placement of electrical leads. Here, we utilize complementary structural and 

functional relationships to examine the detailed neuroanatomy of a critical pathway linking the 

cerebellum and cerebrum.  

 

3.2 Summary 

The dentato-rubro-thalamic tract (DRTT) regulates motor control, connecting the cerebellum to 

the thalamus. This tract is modulated by deep-brain stimulation in the surgical treatment of 

medically refractory tremor, especially in essential tremor, where high-frequency stimulation of 

the thalamus can improve symptoms. The DRTT is classically described as a decussating pathway, 

ascending to the contralateral thalamus. However, the existence of a nondecussating (i.e. ipsilateral) 

DRTT in humans was recently demonstrated, and these tracts are arranged in distinct regions of 

the superior cerebellar peduncle. We hypothesized that the ipsilateral DRTT is connected to 

specific thalamic nuclei and therefore may have unique functional relevance. The goals of this 
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study were to confirm the presence of the decussating and nondecussating DRTT pathways, 

identify thalamic termination zones of each tract, and compare whether structural connectivity 

findings agree with functional connectivity. Diffusion-weighted imaging was used to perform 

probabilistic tractography of the decussating and nondecussating DRTT in young healthy subjects 

from the Human Connectome Project (n=91) scanned using multi-shell diffusion-weighted 

imaging (270 directions; TR/TE=5500/89 ms; spatial resolution=1.25 mm isotropic). To define 

thalamic anatomical landmarks, a segmentation procedure based on the Morel Atlas was employed, 

and DRTT targeting was quantified based on the proportion of streamlines arriving at each nucleus. 

In parallel, functional connectivity analysis was performed using resting-state functional MRI 

(TR/TE=720/33 ms; spatial resolution=2 mm isotropic). It was found that the decussating and 

nondecussating DRTTs have significantly different thalamic endpoints, with the former 

preferentially targeting relatively anterior and lateral thalamic nuclei, and the latter connected to 

more posterior and medial nuclei (p<0.001). Functional and structural connectivity measures were 

found to be significantly correlated (r=0.45, p=0.031). These findings provide new insight into 

pathways through which unilateral cerebellum can exert bilateral influence on movement and raise 

questions about the functional implications of ipsilateral cerebellar efferents. 

  

3.3 Introduction 

The dentato-rubro-thalamic tract (DRTT) links cerebellar efferents with white matter tracts 

ascending from the thalamus to the motor cortex, premotor cortex (Middleton and Strick, 1998), 

and supplementary motor area (Wiesendanger and Wiesendanger, 1985), where they regulate fine 

movement. The DRTT is one of the major outflow pathways of the cerebellum. It originates in the 

dentate nucleus, a major gray matter deep cerebellar structure, passes through the superior 
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cerebellar peduncle, decussates in the midbrain and contacts the contralateral red nucleus. From 

the red nucleus, the DRTT ascends to the thalamus, and connects to the ventral intermediate 

nucleus, where it synapses with neurons ascending to the cortex. 

The classically described DRTT is a decussating pathway (d-DRTT); however, recent work 

applying deterministic fiber tractography in healthy subjects and human brain microdissection has 

shown the existence of an ipsilateral or nondecussating DRTT (nd-DRTT) (Meola et al., 2016). 

The discovery of uncrossed fibers in humans is an important advance in cerebellar anatomy. While 

primate (Wiesendanger and Wiesendanger, 1985), rodent (Aumann and Horne, 1996), and feline 

(Flood and Jansen, 1966) anatomical studies have demonstrated the existence of some non-

crossing fibers from the dentate nucleus to the ipsilateral cortex, the nd-DRTT in humans remains 

virtually unstudied. 

To ascertain the function of this pathway, it is essential to better characterize its structure. 

Meola et al. noted that the d-DRTT and nd-DRTT occupied different portions of their shared white 

matter bundles, with the nd-DRTT following a more dorsal trajectory in the superior cerebellar 

peduncle (SCP). This finding suggests that spatial segregation of the pathways may extend beyond 

the peduncle and into the thalamus. The thalamus is a dense and anatomically complex structure 

containing numerous white and gray matter sub-regions. In such a heterogeneous area, it is critical 

to know precisely which thalamic loci serve which cerebellar motor circuits. 

Dysfunction of the DRTT is implicated in the emergence of tremor, which thalamic-

targeted deep-brain stimulation can ameliorate. Clinical correlates of DRTT impairment include 

essential tremor, the most common adult movement disorder, Parkinson’s disease (Alesch et al., 

1995), multiple sclerosis (Torres et al., 2010), and progressive supranuclear palsy (Surova et al., 

2015). For electrode-placement surgery, diffusion tractography can preoperatively define the 



 

 56 

thalamic endpoint of the DRTT (Coenen et al., 2014, 2011; Fenoy and Schiess, 2017), and 

successful DRTT stimulation is associated with improved motor outcomes (Schlaier et al., 2015). 

However, previous studies employing tractography measures have focused exclusively on the d-

DRTT (e.g. Kwon et al., 2011; Anthofer et al., 2014), even though unilateral cerebellar activity 

exerts bilateral effects on movement and cortical activity (Amrani et al., 1996; Cho et al., 2012; 

Cui et al., 2000; Immisch et al., 2003; Küper et al., 2012).  

The conservation of the nd-DRTT across mammalian taxa suggests an unknown functional 

role for this pathway, perhaps in the coordination of bilateral movements, or as a compensatory 

system for movement after unilateral cerebellar damage. To identify the nd-DRTT’s functional 

role, its subcortical anatomy must first be defined in greater detail. Thus, we examined its thalamic 

connectivity in comparison to the d-DRTT. We utilized 1.25-mm-resolution multi-shell diffusion-

weighted magnetic resonance imaging (MRI) data from the Human Connectome Project (HCP) to 

identify thalamic nuclei that are preferentially targeted by the d-DRTT and nd-DRTT. To test 

whether functional connectivity between the cerebellar dentate nuclei and their ipsilateral and 

contralateral thalamic targets reflects d-DRTT and nd-DRTT structure, we utilized baseline 

(resting-state) blood oxygenation level-dependent (BOLD) functional MRI (fMRI) to quantify 

functional connectivity both ipsilaterally and contralaterally in the same cohort of healthy subjects. 

 

3.4 Methods 

Imaging  

HCP data for healthy subjects were obtained from the WU-Minn consortium 500 subjects release 

(Van Essen et al., 2013) (n=91; age=29.3±3.3 years; sex=54 F, 38 M). HCP diffusion-weighted 

brain images were acquired at 3.0 Tesla in a Siemens Skyra scanner. HCP images were acquired 
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using 2D echo-planar readout with 270 directions (TR/TE=5500/89 ms; spatial resolution=1.25 

mm isotropic). A multishell diffusion scheme was used with b-values of 1000, 2000, and 3000 

sec/mm2 (Sotiropoulos et al., 2013; Uǧurbil et al., 2013). Scan time was approximately 55 minutes. 

Resting-state BOLD fMRI scans were acquired (TR/TE=720/33 ms; 1200 volumes; spatial 

resolution=2 mm isotropic) (Smith et al., 2013) in the same volunteers. 

 

Image processing 

Diffusion and functional images were pre-processed by the Human Connectome Project according 

to the procedures described in (Glasser et al., 2013). As part of the pre-processing pipeline, 

diffusion data were corrected for motion, echo planar imaging distortion, and eddy currents. fMRI 

pre-processing included distortion correction, motion correction, intensity normalization, and 

registration of fMRI series to Montreal Neurological Institute (MNI) 2-mm standard space. 

Subsequent image processing and analysis were performed using the FMRIB software library 

(FSL) (FMRIB, Oxford, UK) and custom Matlab scripts. We brain-extracted the pre-processed 

diffusion images with the ‘BET’ utility with fractional intensity threshold set to 0.3 (Smith, 2002). 

T1- and T2-weighted images were also brain-extracted using ‘BET.’ Fractional anisotropy (FA) 

values were calculated from the diffusion images, b-values, and b-vectors using the ‘dtifit’ tool.  

To reduce contribution from cardiac and respiratory signals in fMRI, as well as random 

high-frequency fluctuations, we also applied high-pass and low-pass temporal filtering to exclude 

frequencies outside the 0.01-0.15 Hz range. fMRI data were spatially smoothed using a Gaussian 

kernel with a full-width-half-maximum of 5 mm. 
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Tractographic seed and waypoint regions for all subjects were hand-drawn excepting the 

thalami, which were automatically segmented, and inspected by a board-certified neurologist 

(DOC). The dentate nucleus was drawn on FA images in the coronal view, identified as a 

hypointensity in local FA values, representing a gray matter region surrounded by white matter, 

approximately 15 mm from the midline, lateral and posterior to the fourth ventricle. The superior 

cerebellar peduncle waypoint masks were drawn in single coronal slices on the FA maps, while 

the red nucleus was defined in axial T2-weighted images as the hypointense ellipsoid area in the 

medial brainstem. The gross thalamus was segmented in native T1 space using FSL-‘FIRST’ 

(Patenaude et al., 2011). All regions were drawn or segmented bilaterally.  

Intrathalamic segmentation was carried out with a novel statistical shape model method 

constructed using high-field (7.0T) MR images from 9 healthy volunteers (Liu et al., 2015). The 

inputs to the thalamic shape model are the whole thalamus, previously segmented by ‘FIRST,’ and 

a known correspondence between the native T1 space and the shape model space, which was 

generated by a combination of rigid (Maes et al., 1997) and nonrigid (Rohde et al., 2003) 

registration. The final segmentation results are 23 distinct intrathalamic nuclei on each hemisphere 

in the native T1 image space. An example of thalamic segmentation is shown in Fig. 3-1. Further 

comment on the validity and accuracy of this method can be found in section 3.6. 

T1-weighted images were linearly registered to diffusion space using FSL’s ‘flirt’ tool with 

12 degrees of freedom (Jenkinson et al., 2002). The inverses of the resultant affine matrices were 

used to transform thalamus and red nucleus masks to diffusion space. T1-weighted images were 

also non-linearly registered to the 2-mm MNI-152 brain using FSL’s ‘fnirt’ tool, and warp 

parameters preserved.  
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The DRTT was defined by probabilistic fiber tractography with FSL’s diffusion toolbox 

‘Fdt’ (Behrens et al., 2007, 2003), which allows multiple fibers per voxel, permitting robust 

detection of crossing fibers. Probabilistic tractography was utilized in lieu of deterministic 

tractography since the goal was to build a quantitative distribution of fiber endpoints in the 

thalamus rather than to find a single small zone of maximum connectivity. First, diffusion 

parameters at each voxel were modeled using ‘bedpostx,’ which builds up a distribution of 

diffusion directions at each voxel using Bayesian estimation. Then, fiber-tracking was performed 

with ‘probtrackx2.’ Four tracts were defined per subject: left d-DRTT (i.e. originating in left 

dentate and terminating in right thalamus), right d-DRTT, left nd-DRTT, right nd-DRTT. The 

Fig. 3-1. Thalamic segmentation. Example of thalamic sub-segmentation using shape-fitting model based on 
Morel atlas. Displayed in MNI-1mm space; z represents slice number, not millimeters. VA=ventral anterior, 
CL=central lateral, MT=mammillothalmic tract, PF=parafascicular nucleus, CM=centromedian, VPM=ventral 
posterior medial, VPI=ventral posterior inferior, LI=limitans, AP=anterior pulvinar, VPL=ventral posterior lateral, 
MIP=medial+inferior pulvinar, LP=lateral pulvinar, AM=anteromedial, CML=central medial, HB=habenular, 
MD=mediodorsal, VLP=ventral lateral posterior, VLA=ventral lateral anterior, AV=anteroventral, LPO=lateral 
posterior, LD=lateral dorsal, PV=paraventricular, VM=ventral medial. 
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dentate nuclei served as the seed regions, with the SCP, red nucleus, and thalamus as sequential 

forced-order waypoints. Step length was set at 0.5 mm with a maximum of 320 steps per fiber (this 

value was empirically determined as sufficient for both d-DRTT and nd-DRTT to reach the 

thalamus). No curvature threshold was set, since the presence of three waypoint masks was 

sufficient to exclude any streamlines deviating from the main track. 5000 streamlines were 

calculated per tract, per subject. Track maps were then registered to subject T1 space, and then to 

MNI space, using the affine transformation matrix and then the warp coefficients generated from 

structural image registration. 

For each MNI-space track-map, a thalamic center-of-gravity measure was calculated to 

estimate the locus of maximum connectivity for each tract. Center-of-gravity measures for d-

DRTT and nd-DRTT were obtained by weighting all intra-thalamic voxels by the number of 

streamlines passing through each, and computing a weighted mean, thus producing a single 

Cartesian point, per subject, representing the ‘center’ of d-DRTT or nd-DRTT structural 

connectivity. These computations were performed on MNI-space-transformed tracks for spatial 

comparability.  

 

Structural connectivity  

Mapping structural connectivity to thalamic nuclei was performed in subject T1-weighted space. 

Because more streamlines completed tracking for the nd-DRTT than the d-DRTT, likely due to 

hindrance by crossing fibers in the d-DRTT, statistical analysis was performed on the percentage 

of the total streamlines arriving at each thalamic nucleus rather than the absolute number of 

streamlines. Because thalamic nuclei differed in size, percentage structural connectivity was 

adjusted proportionally to size of the target nucleus. A custom Matlab script was used to calculate 
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the adjusted percentage for each thalamic nucleus; this measure defined structural connectivity. 

Left and right structural connectivity values were averaged, as laterality was not of interest. Nuclei 

accounting for 5% or more of the total structural connectivity with the d-DRTT, nd-DRTT, or both 

were considered to have high structural connectivity. This threshold was chosen because the 

median structural connectivity accounted for by a given nucleus was 1.9% and 1.2% for d-DRTT 

and nd-DRTT, respectively (see Results), and hence nuclei with 5% or higher had structural 

connectivity several times greater than the typical value. Finally, for each thalamic nucleus, we 

calculated the ratio of d-DRTT structural connectivity to nd-DRTT structural connectivity, a 

quotient we term structural d/nd ratio. A ratio above 1 indicates that a greater proportion of 

decussating fibers contact a given nucleus, while a ratio below 1 indicates the opposite. For 

instance, a nucleus in which a typical voxel received 12% of d-DRTT streamlines and 6% of nd-

DRTT streamlines would have a structural d/nd ratio of 2.0.  

 

Functional connectivity  

All functional connectivity analysis was performed in standard space. Time courses were extracted 

from the left and right dentate nuclei, which were defined in MNI space using a probabilistic atlas 

available in FSL (Diedrichsen et al., 2011). These time courses were then used as inputs in subject-

level connectivity modeling using FSL-fMRI Expert Analysis Tool (‘FEAT’), in which the activity 

at each brain voxel is fit to the dentate nucleus time course. Voxelwise group-level functional 

connectivity was assessed with a 1-sample t-test using FSL’s randomise function. Thalamic voxels 

with mean functional connectivity values (i.e. temporal correlations with the dentate timeseries) 

greater than 0.3 or less than -0.3 were included in group-level analysis, and t-statistics reported. 

We employed this threshold to eliminate weak correlations, similar to the approach in (Long et al., 
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2016). To assign functional connectivity according to the thalamic shape atlas, z-statistics for each 

nucleus were calculated using the Fisher transform. Functional d/nd ratio was defined for each of 

the 23 nuclei by dividing the d-DRTT z-statistic by the nd-DRTT z-statistic.  

 

Statistics and hypothesis testing 

The major hypothesis was that the d-DRTT and nd-DRTT differ in thalamic connectivity. This 

hypothesis was tested by comparing thalamic centers of gravity between d-DRTT and nd-DRTT. 

Center-of-gravity x- and y-coordinates in MNI space for the d-DRTT and nd-DRTT were 

compared using two-tailed t-tests, and p-values reported. To compare structural connectivity for 

each of 23 thalamic nuclei, we used a two-tailed, paired Student’s t-test to assess whether d-DRTT 

connectivity was significantly different from nd-DRTT connectivity. Resultant p-values were then 

corrected for multiple comparisons using false discovery rate (FDR)<0.05 (Benjamini and 

Hochberg, 1995). Only p-values significant after FDR correction are reported. Structural and 

functional d/nd values were compared across the 23 nuclei using a Spearman’s correlation. 

 

3.5 Results 

Structural connectivity 

Probabilistic tractography for the d-DRTT and nd-DRTT was successful in all subjects, in that at 

least some fibers completed tracking from the dentate to the thalamus. 54.5% more streamlines 

completed tracking from dentate to thalamus for the mean nd-DRTT than the mean d-DRTT.  
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Fig. 3-2 depicts both pathways in axial slices, as well as in a three-dimensional streamline 

representation. Fig. 3-2B was generated using Diffusion Toolkit and TrackVis (Cui et al., 2000).  

The nd-DRTT structural centers-of-gravity were more posterior in the thalamus than the d-

DRTT by an average of 1.8 mm in MNI space (p<0.001), and more medial by 2.42 mm (p<0.001). 

(Table 3).  

8 of 23 thalamic nuclei 

examined exhibited high structural 

connectivity with either d-DRTT, nd-

DRTT, or both. These were: 

centromedian, parafascicular, ventral 

anterior, ventral lateral anterior, 

ventral medial, ventral posterior lateral, 

ventral posterior medial, and ventral 

posterior inferior. Of these 8 nuclei, all 

exhibited statistically significant 

biases in d/nd ratio, either toward the 

d-DRTT (4/8; ventral anterior, ventral 

lateral anterior, ventromedial, and 

ventral posterior inferior), or nd-

DRTT (4/8; centromedian, 

parafascicular, ventral posterior lateral, 

and ventral posterior medial) (p<0.001 

for all) (Fig. 3-3). 

Fig. 3-2. The decussating and nondecussating DRTTs. (A) Axial 
slices showing the d-DRTT (red) and nd-DRTT (blue), thresholded 
to include the top 10% of nonzero voxels by structural 
connectivity for each tract. For clarity, only the DRTT tracks 
arriving at the left thalamus (i.e. right decussating and left 
nondecussating tracts) are depicted. Figure has been up-
sampled to 0.5mm isotropic resolution for better visualization 
clarity. Insets are enlargements of the same axial slices. (B) A 3-
dimensional visualization of the DRTT pathways originating in 
the left dentate nucleus and arriving at the ipsilateral (blue) and 
contralateral (red) thalamus. View is from the posterior aspect, 
with coronal and saggital slices of T1-weighted image shown for 
reference. Streamline coloration is based on fiber orientation, 
where blue is superior-inferior, green is anterior-posterior, and 
red is left-right, per convention. 
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 Center-of-gravity of structural 

connectivity values in thalamus 

X Y Z 

d-DRTT (l) 37.6 56.4 35.1 

d-DRTT (r) 51.9 55.8 35.1 

nd-DRTT (l) 50.9 55.0 35.2 

nd-DRTT (r) 38.9 55.4 35.1 

d-DRTT mean n/a 56.1 35.1 

nd-DRTT mean n/a 55.2 35.2 

d- minus nd-* 1.2 voxels 0.9 voxels 0.1 voxels 

mm difference 2.4 mm 1.8 mm 0.2 mm 

p-value <0.001 <0.001 n.s. 

Table 3. Thalamic mean centers of 
gravity for DRTT tractography in 2-mm 
MNI space. *Note: because x coordinates 
reflect left or right thalamus position, 
rather than location within the thalamus, 
x-coordinates were compared by 
distance from the midline (medial-
lateral), rather than by absolute x-
coordinate.  
 
These values are first reported 
unilaterally for left and right tracts, then 
for the mean of left and right. Next, the 
difference in x, y, and z coordinates 
between the two tracts is reported in 
voxels and mm. Finally, p-values from 
two-tailed t-tests are reported.  
 

Fig. 3-3. DRTT thalamic structural connectivity. Map of structural d/nd ratios for thalamic nuclei with high (>5%) 
structural connectivity, and significant bias towards d-DRTT or nd-DRTT, in 1-mm MNI space. Blue indicates bias 
toward nd-DRTT, red indicates bias toward d-DRTT. Color intensity corresponds to degree of bias. 
Abbreviations: CM=centromedian; PF=parafascicular; VA=ventral anterior; VLA=ventral lateral anterior; 
VM=ventral medial; VPL=ventral posterior lateral; VPM=ventral posterior medial; VPI=ventral posterior inferior.  
These results represent a connectivity difference between d-DRTT and nd-DRTT, although they also include a 
substantial amount of overlap between the two thalamic termini. 
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Functional connectivity 

Within the thalamus, significant functional connectivity with the dentate nucleus occurred in a 

distinctive band which traversed the medial aspect of the bilateral thalami, regardless of ipsilateral 

or contralateral dentate seeding (Fig. 3-4). While the functional connectivity did not display the 

same clear anterior/posterior bifurcation 

between d-DRTT and nd-DRTT 

targeting as did structural connectivity, 

there was a statistically significant 

correlation between structural d/nd ratio 

and functional d/nd ratio across the 23 

nuclei (Spearman’s ρ=0.45, p=0.031) 

(Fig. 3-5), which indicates that for 

cerebello-thalamic connectivity, 

structural and functional measures 

independently confirm d-DRTT and nd-

DRTT patterns of thalamic targeting. 

One nucleus (ventral posterior inferior) 

was an outlier for functional d/nd ratio 

according to Grubbs’ test, and was 

omitted from this analysis; however, its 

inclusion or exclusion did not affect the 

statistical significance of the relationship.  

 

Fig. 3-4. Dentato-thalamic functional connectivity. 
Voxelwise functional connectivity of the unilateral dentate 
nucleus with bilateral thalamus in 2-mm MNI space. Left 
dentate connectivity displayed. 1-mm MNI equivalent z-slices 
listed in parentheses for comparison with Figs. 3-1 and 3-2.  
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3.6 Discussion  

We have shown that the decussating and nondecussating DRTT pathways connect to distinct 

regions of the thalamus, and linked these to probable thalamic nuclei. The nd-DRTT sends a 

greater proportion of its fibers to regions which are more posterior and medial than the classical d-

DRTT, suggesting that these two pathways may participate in discrete cerebello-cerebral circuits. 

This finding was reinforced by the identification of a strong positive relationship with functional 

connectivity measurements. These results are consistent with the idea of separable cerebellar 

“output channels” performing different functions in parallel (Middleton and Strick, 1998). Further 

Fig. 3-5. Relationship between DRTT structural and functional connectivity decussating / nondecussating bias 
across nuclei. Structural connectivity d/nd ratio shown on x-axis for 23 thalamic nuclei, functional d/nd shown 
on y-axis (unitless). Colors and labels correspond to Fig. 3-1. Enlarged points represent nuclei receiving 5% or 
more of streamlines after adjustment for size. One nucleus (VPI) was a statistical outlier according to Grubb’s 
test and has been omitted from this figure; however, its inclusion or exclusion did not affect the statistical 
significance of the relationship. 
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tractography studies, with streamlines originating in the various thalamic nuclei, may help to test 

the hypothesis that the d-DRTT and nd-DRTT have different cortical termination zones. 

Conversely, the substantial overlap between the d-DRTT and nd-DRTT in medial thalamic zones 

argues that the two pathways also participate in some shared circuits, which may explain how 

unilateral signals in the thalamus can exert effects on bilateral limb movements (Ellerman et al., 

1994; Jäncke et al., 1999; Soteropoulos and Baker, 2008), and how surgical intervention in 

unilateral thalamus can result in bilateral cerebellar ataxia (Chun and Chang, 2017). 

These findings are likely to influence our understanding of the mechanisms of tremor 

reduction in deep-brain stimulation. It is probable that a thalamic electrode placed unilaterally in 

the thalamus will activate some fibers of both the d-DRTT and nd-DRTT, thus exerting a more 

direct influence on bilateral cerebellar pathways that would be predicted from commissural 

interhemispheric connections alone. A straightforward way to test this principle would be to 

inactivate one-sided electrodes in subjects with bilateral movement disorders, such as essential 

tremor, and monitor tremor severity in both the ipsilateral and contralateral limb to determine if 

stimulation effects are bilateral when performing reaching and grabbing tasks.  

It is important to note that diffusion-based tractography alone is insufficient to fully 

establish or refute the existence of a white-matter pathway. The existence of the nd-DRTT was 

shown by a prior study which performed human brain microdissections in addition to diffusion 

imaging (Meola et al., 2016). We make no claim to have independently verified the existence of 

this pathway, but rather offer comment on its anatomy in light of prior existential claims. Our 

observations likely warrant a future examination of the thalamic termination of the pathway in 

post-mortem brains coupled with high-resolution diffusion imaging.  
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This finding should be considered in the context of several limitations. First, the thalamic 

segmentation applied here was an interpolative estimate based on a model created using high-field 

structural MRI. At typical field strength (3.0 Tesla or less), accurate and consistent intrathalamic 

segmentation on T1 images is challenging due to insufficient contrast. Therefore, although our 

model is a reasonable approximation of thalamic nuclei, some inconsistencies with the actual 

structures are likely. Our method can identify 23 distinct nuclei according to the Morel convention 

(Morel et al., 1997). Cross-validation on a leave-one-out basis on 9 subjects confirmed that this 

hierarchical statistical shape model significantly improved upon simple single-atlas and multi-atlas 

segmentation methods and agreed most strongly with the manual delineations of the nuclei. 

Structural connectivity data on a separate cohort of 43 healthy subjects also validated the 

segmentation of the pulvinar nucleus (Chakravorti et al., 2018), one of the largest nuclei of the 

thalamus. This approach has thus been shown to perform accurately and reliably on healthy 

volunteers, and therefore was chosen for our segmentation purposes.  

The size of some thalamic nuclei presents another challenge. For smaller nuclei, such as 

the habenula, with a volume of around 30 mm3, precise determination of connectivity from these 

images may be difficult, as has been noted with regards to fMRI studies (Lawson et al., 2013), 

since the structure is only a few voxels in size. Our findings are best interpreted in terms of broader 

spatial patterns of connectivity rather than narrowly at each thalamic nucleus. Nevertheless, the 

consistent results between structural and functional connectivity support the conclusion that even 

for relatively small connectivity targets, repeatable connectivity measures are obtainable, even 

with divergent imaging modalities.  
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3.7 Clinical application 

Multiple neurological diseases are linked to DRTT dysfunction. While our work on essential 

tremor has shown DRTT-related diffusion changes indicating microstructural pathology in the 

superior cerebellar peduncle (SCP) (Juttukonda et al., 2019), the role of this tract in the 

neurodegenerative Parkinsonian disorder progressive supranuclear palsy (PSP) is equally 

important but less extensively described. PSP is a tauopathy characterized by degeneration of 

white matter pathways, particularly the DRTT. To date, however, no study has linked this 

phenotype directly to changes in cerebellar functional connectivity.  

We hypothesized that in PSP, (1) damage to DRTT white matter microstructure is 

associated with reduced functional connectivity between the dentate nucleus of the cerebellum, 

where the DRTT originates, and the thalamus, which is its terminus. We further hypothesized that 

(2) DRTT functional connectivity at baseline is predictive of longitudinal progression of white 

matter degeneration as measured by diffusion tensor imaging (DTI) metrics including diffusivity 

and anisotropy.  

PSP patients (n=45) were curated from the 4 Repeat Tauopathy Neuroimaging Initiative 

(4RTNI) (age at baseline=69.6±7.4; 24 F/21 M). Patients were enrolled at four sites, The 

University of California-San Francisco, The University of California-San Diego, Massachusetts 

General Hospital, and the University of Toronto, which followed identical procedures for clinical 

testing and MRI. This patient cohort has previously been described in Gardner et al., 2013; Dutt 

et al., 2016; and Zhang et al., 2016.  

Patients underwent functional, structural, and diffusion MRI at the baseline visit and 6-

month follow-up. MRI was conducted at 3.0 Tesla and included a standard T1-weighted sequence, 

diffusion-weighted imaging (TR/TE=9200/82ms, spatial resolution=2.7 mm isotropic, 41 
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diffusion directions), and resting-state BOLD fMRI (TR/TE=2000/27 ms, spatial resolution=2.5 × 

2.5 x 3 mm, slice gap=0.6mm). Diffusion-weighted MRI was eddy-corrected and motion-corrected, 

tensors were fit, and fractional anisotropy (FA) and mean diffusivity (MD) were calculated and 

mapped onto a common white-matter skeleton in standard space using tract-based spatial statistics 

(TBSS). The left superior cerebellar peduncle region-of-interest was defined using Johns Hopkins 

University white matter atlas (Mori et al., 2005), and the thalamus was defined using FSL FIRST. 

FA and MD values were extracted from the skeletonized DTI values within these regions.  

Resting fMRI data preprocessing were performed using methods similar to those described 

in Chapter 2. Briefly, BOLD fMRI series were motion-corrected, spatially smoothed 

(FWHM=5mm), and co-registered to subject T1 space and to the standard 2-mm MNI atlas. 

Functional connectivity was calculated using FEAT, with the combined bilateral dentate nuclei as 

the seed region in voxel-wise linear regression analyses. Motion parameters and the global signal 

were used as covariates of no interest. Z-statistics from subject-level modeling were averaged 

within the thalamus and these values were utilized as inputs in group-level statistics. 

 

Statistics and hypothesis testing 

Relationships between functional connectivity and structural measures of DRTT integrity were 

examined at baseline.  

To test Hypothesis 1, that functional connectivity reflects white matter degeneration in the 

DRTT, we correlated baseline dentate-thalamus functional connectivity and DTI measures along 

this tract. FA and MD were calculated in the bilateral SCP and thalamus, and compared with 

subject-level dentate-thalamus connectivity z-statistics (FC).  
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Hypothesis 2 stated that functional connectivity is associated with future changes in DRTT 

white matter microstructure. Specifically, higher dentate-thalamus connectivity at baseline is 

hypothesized to reflect better DRTT function, and to correlate with smaller changes in DTI metrics. 

This hypothesis was tested by calculating 6-month changes in FA and MD in the SCP and thalamus 

(∆FA and ∆MD) and correlating these values with functional connectivity at baseline. These 

analyses were conducted using Spearman’s correlations to reduce the effects of outliers endemic 

to parametric tests. The false discovery rate was controlled at 0.10. 

 

Results 

Disease duration at baseline was 4.8±3.3 years (duration data were available for 32/45 patients). 

Baseline disease severity was assessed using PSP Rating Scale (PSPRS), with a mean score of 

34.5±13.5 (PSPRS scores were available for 38/45 patients). In 6 months, PSPRS scores increased 

by a mean of 9.4±7.8 in this subset.  

 Hypothesis 1 indicated that functional connectivity and DRTT white matter integrity are 

positively related. Therefore, it predicts that white matter degeneration (lower FA, higher MD) is 

correlated with decreased functional connectivity between the dentate nucleus and thalamus. We 

found that dentato-thalamic functional connectivity was negatively correlated with MD in the SCP 

(rho=-0.41; p=0.0049) and thalamus (rho=-0.33; p=0.025), but was not correlated with FA in either 

of these regions.  

 Hypothesis 2 was that dentate-thalamus functional connectivity at baseline is associated 

with 6-month changes in white matter integrity. Baseline dentato-thalamic connectivity was not 

correlated with ∆FA or ∆MD in the SCP, but was positively correlated with ∆FA in the thalamus 
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(rho=0.34; p=0.023), meaning that greater functional connectivity at initial measurement is related 

to less severe declines in thalamic white mater DTI over 6 months longitudinal follow-up. 

 

Discussion 

Both the dentate nucleus and SCP are susceptible to degeneration in PSP, and are possible 

biomarkers of disease severity (Agosta et al., 2014; Knake et al., 2010; Surova et al., 2015; 

Whitwell et al., 2014; Zhang et al., 2016). The dentate is especially vulnerable to tau aggregation 

(Kanazawa et al., 2009), however, no studies have linked longitudinal microstructural changes 

with functional connectivity in this pathway using the same subject cohort. We hypothesized that 

functional synchrony between the origin and terminus of this pathway reflect structural changes to 

the underlying white matter.  

Our data suggest that in PSP, DRTT white matter degeneration is related to decreased 

cerebellar-cerebral functional connectivity. Further, baseline DRTT connectivity appears to 

correlate with white matter changes longitudinally, suggesting that DTI in this region could serve 

as a prognostic biomarker of PSP severity. The DRTT has previously been implicated as 

susceptible in PSP (Whitwell et al., 2011), a condition characterized by reduced thalamic 

functional connectivity with premotor cortex and cerebellum (Whitwell et al., 2011) and decreased 

connectivity between the brainstem and cortex (Gardner et al., 2013). These data are consistent 

with the hypothesis that PSP patients have reduced cerebellar efferent signaling, consistent with 

the finding of diminished motor cortex response to transcranial magnetic stimulation of the 

cerebellum (Shirota et al., 2010).  

We identified correspondences between white matter microstructure in the SCP, and 

functional connectivity between the dentate and thalamus. However, future work should also 
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measure connectivity between the dentate nucleus and basal ganglia, as previous studies have 

observed that changes in diffusion coefficients in the putamen, globus pallidus, and caudate 

nucleus distinguish PSP from Parkinson’s disease (Seppi et al., 2003).  

It is a reasonable inference that PSP-related white matter degeneration, coupled with tau 

aggregation and neural death in the dentate nucleus, may cause the observed decline in cerebellar 

functional connectivity; however, it is worth remarking that the correlative analysis performed 

here does not strictly imply a causal relationship between degeneration of the white matter and 

decreased functional connectivity.  

Nonetheless, this work identifies a potentially important link between longitudinal 

degradation of the DRTT and disease-related dysfunction in a key white matter pathway 

connecting the cerebellum to the cerebral cortex. Future studies should examine the clinical impact 

of this relationship on the development of motor and cognitive symptoms. 

 

3.8 Conclusions  

These findings demonstrate how pathological changes to white matter neuroanatomy may 

influence activity in distributed functional networks. The DRTT is an excellent example of how 

dysfunction and degeneration in a constrained anatomical region can influence neural activity 

dynamics in broader cortical networks, especially when white matter tracts contact essential neural 

hubs like the thalamus. Further studies of other Parkinson’s-plus syndromes, such as corticobasal 

syndrome, may determine whether these findings are generalizable to the broader spectrum of 

movement disorders. Additionally, this work should be contextualized by examination of cortical 

gray matter changes which may be relevant to the degenerative process; for instance, in the motor 

cortex.   
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CHAPTER 4 

 

FUNCTIONAL BRAIN NETWORK DETECTION STRATEGIES FOR ARTERIAL SPIN 

LABELING PERFUSION MRI 

 

4.1 Purpose 

While traditional fMRI methods are useful for the interpretation of broad-based neural networks, 

the dependence of these approaches on the blood oxygenation level-dependent contrast presents 

substantial technical problems. In this chapter, an alternative approach is explored: arterial spin 

labeling-based functional connectivity. The use of perfusion-based signal for identification of 

brain connectivity patterns offers the possibility of detecting novel information about brain 

networks. Perfusion dynamics allow more quantitative approach to connectivity measurement, and 

the use of single-shot readouts with both gradient and spin echoes allows perfusion imaging with 

less vulnerability to susceptibility artifacts and mislocalized vascular signal sources.  

 

4.2 Summary 

Functionally connected brain resting-state networks (RSNs) are commonly identified using 

susceptibility-weighted blood oxygenation level-dependent (BOLD) contrast, which originates 

primarily from venous blood water. Arterial spin labeling (ASL)-based functional connectivity 

(ASL-FC) measures perfusion fluctuations at the capillary level and is less susceptibility-weighted. 

Here, ASL preprocessing strategies were systematically investigated and ASL-FC spatiotemporal 

information compared to BOLD-FC for common RSNs in healthy participants (n=20; 

age=29.5±7.3 years, sex=10M/10F). Pseudo-continuous ASL with a 3D gradient-and-spin-echo 
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(GRASE) readout (TR/TE=3900/13 ms, label duration=1800 ms, post-labeling delay=1800 ms) 

and gradient-echo BOLDb (TR/TE=1400/35 ms) at matched spatial resolution (3.8 mm isotropic) 

were acquired using 3T MRI. Seed-based connectivity was performed with various ASL 

preprocessing strategies: surround subtraction, frequency filtering, global signal regression, 

motion regression, component-based noise correction (CompCor), and spatial smoothing. ASL-

based independent component analysis (ASL-ICA) was also performed, and results were spatially 

compared to canonical literature RSNs using Dice coefficients (significance: p<0.05 after false 

discovery rate correction). Spatial characteristics were contrasted between methods by calculating 

the center of mass, and temporal features quantified by calculating network power over the 

detectable frequency ranges. Surround subtraction, spatial smoothing, and CompCor significantly 

increased spatial overlap between ASL and BOLD RSNs. These were combined into a single ASL-

FC preprocessing pipeline, which improved group-level ASL RSN consistency with BOLD, 

increasing the mean ASL-to-BOLD Dice score from 0.20 to 0.31. ASL-ICA RSNs were largely 

consistent with database BOLD RSNs reported in the literature, with spatial overlap similar to 

BOLD-ICA maps from this study (ASL mean Dice=0.49, BOLD mean=0.42). Spatial differences 

between ASL and BOLD RSNs included closer cortical localization for ASL-FC. Spectral analysis 

showed that ASL-FC contains power over a broad, constant low-frequency regime (0-0.06 Hz) 

compared to BOLD-FC, which peaked at 0.02 Hz following standard processing. Study findings 

are used to propose improved ASL-FC processing strategies and demonstrate that when these 

strategies are applied, ASL-FC provides unique spatial and temporal information. 

 

                                                        
b Strictly, the blood oxygenation level-dependent (BOLD) effect refers to the physiological phenomenon which is 
often the basis for fMRI. For brevity, in this chapter the term BOLD will also be used as a shorthand for T2*-
weighted sequences sensitive to this effect, which typically utilize gradient echoes and 2D echo-planar imaging. 
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4.3 Introduction 

Human brain functional connectivity is most commonly evaluated using blood oxygenation level-

dependent (BOLD) contrast, in which temporal correlations between BOLD signals are assessed 

in seed-based (Biswal et al., 1995; Fox et al., 2005) or independent component analyses (ICA) 

(Beckmann et al., 2005; McKeown et 

al., 1998) to identify co-activation 

patterns, defined broadly as resting-

state networks (RSNs). 

BOLD signal fluctuations 

originate from changes in water 

relaxation near diamagnetic 

oxyhemoglobin and paramagnetic 

deoxyhemoglobin. Because arterial 

blood is consistently near full oxygen 

saturation, variations in oxygenation 

largely localize to capillary and venous 

vasculature (Duong et al., 2003). 

BOLD is therefore highly sensitive to 

changes in effective venous T2 and T2*, 

which may not always co-localize with 

neuronal activity (Kim et al., 1994). 

Such contrast can also extend into 

Fig. 4-1. Comparison of ASL and T2*-weighted echo planar 
imaging modalities. Orthogonal representations of (A) T2*-
weighted blood oxygenation level-dependent (BOLD)-sensitive 
image with TE=35 ms, (B) unsubtracted arterial spin labeling 
(ASL) 3D GRASE with TE=13 ms, and (C) pair-wise subtracted 
cerebral blood flow (CBF)-weighted map from the ASL 
acquisition. Owing to the long TE in (A), distortion and dropout 
is apparent in regions of high susceptibility, such as the 
orbitofrontal cortex (green cross). These artifacts reduce when 
ASL is used, which may allow for brain connectivity and 
activation to be detected with higher fidelity in these regions. 
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water in the extravascular spaces or cerebrospinal fluid (Donahue et al., 2011).  

To exploit this contrast, BOLD sequences must be heavily susceptibility-weighted, and 

therefore are sensitive to magnetic susceptibility artifacts and distortion near air-tissue boundaries 

(e.g., Fig. 4-1). BOLD signal is also not a direct correlate of neural metabolism, but depends on 

multiple physiological parameters, including regional cerebral blood flow (CBF) and oxygen 

extraction fraction (Buxton et al., 1998; Ogawa et al., 1993; van Zijl et al., 1998). BOLD also 

requires multiple preprocessing steps, including removal of global artifacts, motion parameters, 

respiratory correction, and baseline drift detrending (Rane et al., 2014; Weissenbacher et al., 2009). 

In principle, many of these limitations can be reduced with ASL-based functional 

connectivity (ASL-FC). ASL is an established non-invasive MRI technique for CBF measurement 

(Alsop et al., 2015; Williams et al., 1992), and uses radiofrequency pulses to invert magnetic spins 

in arterial blood water, which then act as an endogenous, diffusible tracer. By comparing labeled 

and unlabeled images, CBF-weighted signal is obtained, which can be quantified in absolute units 

(ml blood/100g tissue/minute) upon application of the solution to the flow-modified Bloch 

equation. ASL may provide more specific indicators of neural activity than BOLD, as CBF is 

tightly coupled to cortical glucose metabolism (Jueptner and Weiller, 1995; Musiek et al., 2012). 

Due to shorter echo times, CBF-weighted images have fewer susceptibility artifacts and may 

improve connectivity estimates in iron-rich regions with rapid T2(*) dephasing, such as the 

cerebellar dentate nucleus (Deistung et al., 2016). Finally, ASL should not require identical 

preprocessing strategies to BOLD due to the acquisition design, in which spin-labeled and 

unlabeled volumes are interleaved. Subtraction of alternating images inherently compensates for 

instrument drift and other low-frequency noise. This approach is additionally advantageous 
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because low-frequency activity may represent functionally meaningful information excised in 

typical BOLD preprocessing (Viviani et al., 2011).  

However, ASL-based connectivity poses methodologic challenges. Because the signal 

contributions from labeled blood water constitute a small fraction of background intensity, ASL 

signal-to-noise ratio (SNR) is generally low compared to BOLD (cortical SNR=1-12). This can be 

improved by the use of 3D readouts (Gunther et al., 2005; Petersen et al., 2017) and pseudo-

continuous ASL (pCASL) labeling (Dai et al., 2008). Additionally, ASL has poor temporal 

resolution due to the long combined labeling duration and post-labeling delay (typically 3500-

4500 ms) and subtraction of control-label pairs, which produces an effective temporal resolution 

of 7000-9000 ms.  

Here, previously unexamined preprocessing strategies were examined for RSN detection 

in ASL. Spatial and frequency information were compared between ASL-FC and BOLD-FC. The 

objectives were to identify preprocessing steps that improve ASL-FC fidelity in commonly 

observed networks, and to understand how these approaches provide additional spatiotemporal 

information compared to BOLD.  

 

4.4 Methods 

Imaging  

Healthy participants (n=20; age=29.5±7.3 years, sex=10M/10F) provided informed, written 

consent in compliance with the Institutional Review Board. Participants were scanned at 3.0 Tesla 

(Philips, Best, The Netherlands) using body coil transmission and SENSE 32-channel phased array 
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reception. Participants were instructed to remain awake with eyes open for the duration of the scan 

session.  

The imaging protocol included a 20-minute (300-volume) resting-state pCASL scan 

(TR/TE=3900/13 ms, PLD=1800 ms, label duration=1800 ms, in-plane acceleration=3, through-

plane acceleration=2, field-of-view=80x80x25, spatial resolution=3.8 mm isotropic). ASL 

implementation followed recent guidelines (Alsop et al., 2015). A 3D GRASE Cartesian readout 

was applied with in-plane and through-plane acceleration to reduce readout duration and 

associated signal smearing; a single-shot rather than multi-shot readout was utilized to improve 

the temporal resolution. To understand how ASL-based networks compared with those detected 

from BOLD, a 20-minute (840 volume) BOLD acquisition with single-shot gradient echo planar 

imaging readout (TR/TE=1400/35 ms) at identical spatial resolution (3.8 mm isotropic, field of 

view=80x80x25) was acquired. To test whether arousal may vary due to habituation to the MRI 

environment between the first and second scans, heart rate and respiration were monitored in a 

subset of participants (n=4) using a pulse oximeter and respiration bellows. Standard T1-weighted 

magnetization-prepared rapid gradient-echo (MPRAGE) scans (TR/TE=8.9/4.6 ms, spatial 

resolution=1 mm isotropic) were acquired for co-registration. 

 

ASL-FC and BOLD-FC pre-processing 

The approach for this work was to apply systematic pre-processing steps in sequence to the pCASL 

data and compare network detection performance from each of these steps to standard BOLD-FC.  

Image preprocessing and connectivity analyses were performed using the FMRIB Software 

Library (FSL) (Smith et al., 2004) and custom Matlab scripts (Mathworks, Natick MA). For all 

analyses, data were motion-corrected using MCFLIRT (Jenkinson et al., 2002) and motion 
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parameters preserved. From these motion-corrected data, seven preprocessing steps were 

individually tested for their effect on the spatial organization of five common RSNs: default mode 

network (DMN), visual network (VN), sensorimotor network (SMN), salience network (SN), and 

central executive network (CEN), also referred to as fronto-parietal network. These networks were 

chosen because they are routinely detected in functional connectivity studies. DMN and SN were 

also selected for having nodes adjacent to high-susceptibility limbic cortical regions. 

Preprocessing steps were: 

1. Surround subtraction, in which each spin-labeled volume was subtracted from the mean of 

the preceding and following unlabeled volumes. 

2. Moderate low-pass filtering (cutoff=0.10 Hz). 

3. Strict low-pass filtering (cutoff=0.05 Hz). 

4. Motion regression. Motion parameters (three translation, three rotation) were added as 

covariates to connectivity analysis; motion correction was performed on unsubtracted images, 

therefore displacement for labeled and unlabeled volumes were averaged for each subtracted 

pair. 

5. Global signal regression (GSR).  

6. Component-based noise correction (CompCor). White matter (WM) and lateral ventricular 

CSF regions were identified from T1-weighted images using FSL-FAST. WM regions were 

eroded by 3 mm to avoid gray matter partial voluming. The combined WM-CSF mask was 

registered to ASL and BOLD scans. MELODIC (Beckmann and Smith, 2004) was used to 

decompose signals in this region into independent components. The top three components by 

explained variance were regressed from the whole brain.  

7. Spatial smoothing (FWHM=5 mm). 
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To provide a standard for comparison, BOLD images were subject to preprocessing steps 

reflecting typical practices in functional connectivity literature. BOLD images were motion 

corrected using MCFLIRT, bandpass filtered (0.01-0.10 Hz), spatially smoothed (FWHM=5 mm), 

denoised using CompCor (nuisance components=3), and motion and global signal regressed.  

 

Seed-based functional connectivity analysis  

Using the ASL and BOLD pre-processed images, seed-based connectivity was performed in native 

space. Seed regions (diameter=5 voxels) were placed in the posterior cingulate cortex for DMN, 

right occipital pole for VN, right primary motor cortex for SMN, right anterior insula for SN, and 

right dorsolateral prefrontal cortex for CEN using standard anatomical landmarks. The same seed 

regions were used for ASL and BOLD. Voxel-wise regression analyses were performed with 

FEAT (Woolrich et al., 2001). Resultant maps were converted to z-statistics by Fisher’s transform, 

and voxels with a z-statistic greater than two standard deviations above the mean of all voxels 

were included in the binary RSN mask. Such proportional thresholding can produce more stable 

network measures than thresholding at a fixed, arbitrary numerical value (Garrison et al., 2015). 

BOLD-FC maps were thresholded in the same manner. RSNs were compared using Sørensen–

Dice coefficients (Dice, 1945; Sørensen, 1948). Paired t-tests with false discovery rate (FDR)=0.05 

(Benjamini and Hochberg, 1995) were applied to determine significant differences between Dice 

coefficients. Finally, a combined preprocessing strategy was created which incorporated all 

preprocessing steps that significantly improved ASL-BOLD overlap for at least 40% of RSNs. 
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This pipeline was used for comparison of spatial and temporal ASL-FC features in subsequent 

analyses.  

We next calculated group-level RSNs from the non-preprocessed ASL, combined-

preprocessing ASL, and BOLD data. For group-level analyses, data were transferred to the 2-mm 

MNI152 brain using T1-weighted images as registration intermediates. T1-weighted images were 

nonlinearly warped to MNI space using FNIRT (Andersson et al., 2007), and this warp was then 

applied to subject RSNs. A one-sample permutation test was applied with the Randomise function 

running 500 permutations and threshold-free cluster enhancement (TFCE) (Smith and Nichols, 

2009). Finally, group-level connectivity maps were binarized by inclusion of all voxels with z-

score>1.5.  

ASL-FC and BOLD-FC RSNs were examined for spatial differences by taking center-of-

mass measures in specific nodes and calculating the distance to the cortical surface. ASL and 

BOLD were also compared temporally by calculating power spectra for combined-preprocessing 

ASL and BOLD time courses using the Fslpspec function. Mean power in each RSN was extracted 

for the interval between 0 and 0.10 Hz, and normalized for comparison, with a mean fixed at unity. 

To measure ASL-FC reproducibility, a subset of participants returned for follow-up scans on 

different days. Images were acquired and processed as above. Resulting binary RSN maps were 

registered to the first-day ASL scan using the T1-weighted images for reference. Dice scores were 

calculated to measure inter-session reproducibility. 

To ensure that RSN identification from ASL-FC is not due to BOLD contamination, ASL-FC 

analysis was repeated on unlabeled (control) ASL volumes exclusively. These images lacked 

perfusion weighting and are expected to be predominated by any possible residual BOLD effects 
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at the short-to-intermediate TE=13 ms used. Dice coefficients were calculated to compare 

unlabeled ASL to subtracted ASL in terms of spatial overlap with BOLD.  

ASL and BOLD were matched for duration, and therefore ASL included fewer volumes 

(150) than BOLD (840). To test whether this affected connectivity results, BOLD time courses 

were modified to approximate ASL by sampling every fifth BOLD volume (effective TR=7.0s) 

and reducing the final length to 150 volumes. Seed-based functional connectivity analysis was 

performed as before on downsampled BOLD. 

 

Independent component analysis 

While the main focus of this study was on seed-based connectivity, for completeness data-driven 

ICA was also investigated. ASL images were preprocessed using the optimal strategy found above, 

transformed to 2-mm MNI space, temporally concatenated, and decomposed into independent 

components using MELODIC. RSNs were identified by comparing the calculated components 

with the five canonical networks above. In cases where multiple components corresponded to a 

single RSN (e.g., right and left sub-networks), these were combined to yield a single composite 

network. Components were normalized and thresholded as in the seed-based analysis. 

Downsampled BOLD series were concatenated and ICA was conducted in the same manner. 

Downsampled images were used for BOLD-ICA because the number of components supported 

depends on input matrix size, and matching the input volume count reduces bias between methods. 

These networks were compared to results from three datasets previously presented in the 

literature: Smith et al., (2009) utilized (1) resting-state BOLD and (2) BrainMap, which cataloged 

activations from over 30,000 fMRI participants, to show that similar networks could be derived 

from resting fluctuations and task-based functional co-activations; while (3) Yeo et al., (2011) 
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utilized a clustering approach on 1,000 resting BOLD datasets to parcellate the brain into stable 

co-active networks. From Smith et al.’s 20-component resting-state results, DMN (map 420) and 

SMN (620) were selected without modification. Occipital and medial VN (120, 220), and left and 

right CEN (fronto-parietal network) (920, 1020) were combined. From the 70-component 

decomposition, anterior insula and the ventromedial/anterior cingulate node (1970, 2170) were 

combined into SN. From the BrainMap analysis, the same component numbers were used for all 

networks except SN, for which no component was identified. Components were thresholded 

identically to the original paper. From Yeo et al., DMN (map 77), VN (17), SMN (27), SN (47) from 

the 7-network decomposition were used without modification, while (1217 and 1317) from the 17-

network decomposition were combined into CEN. 

 

Fig. 4-2. ASL and BOLD-derived networks. (A) Representative arterial spin labeling (ASL) difference 
magnetization (∆M) map from a 24-year-old female and blood oxygenation level-dependent (BOLD) image with 
34-year-old male showing detection of the default mode network on a single-subject basis. Seed regions (volume 
= 1.81 mL) are demarcated in white. (B) Time-courses from seed regions and networks over the 20 min 
acquisition. Y-axis scales for ASL and BOLD differ as mean image intensity is several orders of magnitude higher 
for BOLD than subtracted ASL. Note that the TR was 1400 ms for BOLD and 7800 ms for one ASL control-label 
pair and that the vertical axes are scaled differently between ASL and BOLD owing to the large difference in mean 
signal intensity. Z-statistic scale differs between modalities because the mean z-statistic was higher for BOLD 
than ASL, and thus the threshold for inclusion in the network was higher. 
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4.5 Results 

Demographics 

Twenty healthy subjects (age=29.5±7.3 years, sex=10M/10F) were included in the study, of whom 

8 (age=27.6±4.7 years, sex=4M/4F) returned for follow-up imaging (mean interval=30.1±32.1 

days). Representative ASL and BOLD images, single-subject RSNs, and time series are shown in 

Fig. 4-2. In the subset of participants with physiological monitoring, the cardiac and respiratory 

frequencies were not significantly different between ASL and BOLD scans, nor between scans 

that were performed first vs. second (cardiac frequency: ASL=1.30±0.10 Hz, BOLD=1.25±0.15 

Hz, p=0.32; respiration frequency: ASL=0.28±0.04 Hz, BOLD=0.27±0.03 Hz, p=0.22). 

 

 

 

  none 
surround 
sub. 

bandpass 
<0.10 

bandpass 
<0.05 GSR 

motion 
reg. CompCor smoothing combined 

DMN 0.124 0.133 0.119 0.097 0.132 0.121 0.146 0.147 0.184 
p-val.   0.0415 0.331 <0.001*** 0.280 0.265 0.018* <0.001*** <0.001*** 
VN 0.183 0.205 0.170 0.130 0.197 0.178 0.192 0.231 0.255 
p-val.   0.010* 0.040 <0.001*** 0.328 0.073 0.152 <0.001*** 0.004** 
SMN 0.130 0.135 0.122 0.096 0.149 0.129 0.146 0.154 0.173 
p-val.   0.108 0.019* <0.001*** 0.052 0.527 0.029* <0.001*** 0.001** 
SN 0.088 0.101 0.116 0.112 0.089 0.088 0.082 0.096 0.141 
p-val.   0.003** <0.001*** 0.006** 0.895 0.624 0.217 0.001** <0.001*** 
CEN 0.161 0.164 0.143 0.111 0.149 0.153 0.170 0.191 0.158 
p-val.   0.456 <0.001*** <0.001*** 0.051 0.140 0.009** <0.001*** 0.654 

Table 4. Subject-level ASL-BOLD Dice scores. Mean subject-level Dice scores for each preprocessing 
strategy and resting-state network. P-values comparing each strategy to baseline listed below. 
Abbreviations: GSR=global signal regression, DMN=default mode network; VN=visual network; 
SMN=sensorimotor network; SN=salience network; CEN=central executive network. Significance key: 
*=p<0.05, **=p<0.01,***=p<0.001. Only comparisons surviving false discovery rate=0.05 correction 
are highlighted.  
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Seed-based functional connectivity.  

Of the seven ASL preprocessing strategies, three met the criteria for significantly improving ASL-

BOLD spatial overlap at the subject level: surround subtraction, CompCor, and spatial smoothing 

(Table 4). These were included in a combined preprocessing pipeline. Bandpass filtering, motion 

regression, and global signal regression did not improve ASL-BOLD overlap. In comparison with 

unpreprocessed ASL, the combined pipeline improved group-level ASL-BOLD Dice scores for all 

five networks; mean Dice score increased from 0.20 to 0.31 (Fig. 4-3; Table 5). To test whether 

results depended on the different number of volumes between ASL and BOLD, overlap between 

RSNs from ASL-FC and those from downsampled (150-volume) BOLD were calculated. ASL 

preprocessing similarly increased Dice scores for 

all five networks, from a mean of 0.23 to 0.37. 

 

  
ASL-FC vs.  
BOLD-FC (seed-based) 

  Unprocessed 
Combined 
preprocessing 

DMN 0.21 0.34 
VN 0.19 0.37 
SMN 0.11 0.17 
SN 0.19 0.34 
CEN 0.29 0.32 
Mean± 
standard 
deviation 0.20±0.06  0.31±0.08 

Fig. 4-3. Effects of ASL preprocessing on network 
overlap. The combined ASL preprocessing pipeline 
improved overlap between group ASL RSNs and 
group BOLD RSNs for all five networks. Error bars 
represent one standard deviation above and 
below the mean. 

Table 5. Seed-based group-level ASL-BOLD Dice 
scores for five resting-state networks. These data 
correspond to Fig. 4-3. At the group level the 
combined ASL preprocessing strategy improved 
overlap between ASL and BOLD-derived 
networks substantially. We note that the 
sensorimotor network (SMN) was not as well 
detected in the seed-based analysis as in 
independent component analysis (see Table 6).  
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 RSNs derived from ASL and BOLD differed spatially. Group-level DMN from ASL 

included a prefrontal node with center of mass located 5 mm closer to the cortical surface (anterior) 

than the BOLD-derived network (Fig. 4-4A). VN center of mass was localized 15 mm closer to 

the cortical surface (posterior) in ASL  

 than BOLD (Fig. 4-4B). SMN center of mass was 11 mm closer to the surface (superior) 

in ASL than BOLD (Fig. 4-4C). The medial SN node’s center of mass was 9 mm closer to the 

orbitofrontal cortex (inferior) in ASL than BOLD (Fig. 4-4D). Finally, the CEN’s center of mass 

was 12 mm closer to the cortical surface (superior) in ASL than BOLD (Fig. 4-4E). 

ASL frequency profiles differed from BOLD. For all five RSNs, BOLD power spectra 

showed a peak near 0.02 Hz, with power decreasing above and below that value. ASL power 

spectra showed consistent power between 0 and 0.06 Hz, including frequencies below 0.01 Hz, 

and reducing above 0.06 Hz (Fig. 4-5). This cutoff corresponds to the Nyquist frequency for the 

ASL acquisition.  

ASL-FC inter-session reproducibility was improved by combined preprocessing in four of 

five RSNs. DMN Dice increased from 0.14 to 0.18. VN Dice increased from 0.19 to 0.29. SMN 

Fig. 4-4. Seed-based group-level results for (A) default mode network, (B) visual network, (C) sensorimotor network, (D) 
salience network, and (E) central executive network, derived from arterial spin labeling (ASL) and blood oxygenation level-
dependent (BOLD) functional connectivity analysis. 2-mm MNI coordinates (x,y,z): A: (41,31,48); B: (50,20,40); C: (63,47,57), 
D: (43,73,36), E: (24,69,54). 
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Fig. 4-5. Power spectra analysis for arterial spin labeling (ASL) and blood 
oxygenation level-dependent (BOLD) in (A) default mode network, (B) visual 
network, (C) sensorimotor network, (D) salience network, and (E) central executive 
network. Each color represents one participant, with the mean power for each 
participant fixed at 1.0 (i.e. normalized) for comparison. The thicker black line 
represents mean across all participants.  
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Dice increased from 0.18 to 0.25. CEN Dice increased 

from 0.17 to 0.24. By contrast, SN Dice decreased from 

0.30 to 0.16. Fig. 4-6 summarizes an example of RSNs 

derived from repeated scans.  

Subtracted (perfusion-weighted) ASL 

significantly outperformed unlabeled ASL at 

identification of DMN, VN, SMN, and CEN (p<0.001 for 

each), the exception being SN, in which perfusion-

weighting performed slightly worse than unlabeled ASL 

(p=0.008). These data on average are inconsistent with 

the RSN origin being primarily due to residual BOLD 

contamination in the moderate-TE 3D GRASE readout. 

 

Independent component analysis  

ASL data were preprocessed for ICA using the combined 

strategy, excluding CompCor, since ICA identifies 

orthogonal components including structured noise. 

Group ASL-ICA yielded 56  

Fig. 4-6. ASL-FC Reproducibility. Participants underwent an 
identical imaging protocol an average of 25.6 days after the 
initial visit. Resulting networks were subject to seven 
preprocessing approaches (the combined approach is shown 
here). Examples of ASL-derived subject-level (A) default mode 
network, (B) visual network, (C) sensorimotor network, (D) 
salience network, and (E) central executive network are shown 
for both imaging sessions. Subject-level reproducibility scores 
were highest for visual network. As seen in (C; Session 2), not all 
networks could be clearly identified in each individual session. 
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 independent components, and BOLD-ICA yielded 71, including components identified with the 

five common RSNs. 

 Our ASL-ICA spatially reflected RSNs from Smith et al., with Dice scores comparable to, 

or slightly higher than, those for BOLD-ICA (ASL-FC mean=0.49, BOLD-FC mean=0.42). ASL-

ICA also performed comparably to our BOLD-ICA in reflecting the clustering-based RSNs from 

Yeo et al., with higher Dice scores for four of five networks (ASL-FC mean=0.41, BOLD-FC 

mean=0.34) (Fig. 4-7, Table 6). Finally, ASL-ICA also spatially reflected BrainMap-derived 

activation networks. Dice scores for our ASL-ICA were higher than for our BOLD-ICA in the four 

examined networks (ASL-FC mean=0.46, BOLD-FC mean=0.33).  

 

Fig. 4-7. Group-level independent component analysis (ICA) results for (A) default mode network, (B) visual 
network, (C) sensorimotor network, (D) salience network, and (E) central executive network, derived from 
arterial spin labeling (ASL) and blood oxygenation level-dependent (BOLD) functional connectivity analysis. 
RSNs from Smith et al. and Yeo et al. are shown for comparison. 2-mm MNI coordinates (x,y,z): A: (41,31,48); B: 
(50,20,40); C: (63,47,57), D: (43,73,36), E: (24,69,54). 
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 4.6 Discussion 

This study applied perfusion-weighted ASL-FC to healthy subjects to characterize spatial and 

temporal features of canonical brain networks. The goal was to determine whether ASL-FC 

preprocessing could largely replicate spatial patterns of BOLD RSNs, and if so, whether this 

approach provides new information on spatial or temporal features of RSNs. Systematic 

investigation of multiple preprocessing procedures demonstrated the effectiveness of surround 

subtraction, spatial smoothing, and regression of noise components from non-gray matter tissue. 

This approach improved seed-based ASL-BOLD spatial matching for the five distinct RSNs: 

DMN, VN, SMN, SN, and CEN. Residual differences between ASL and BOLD results also 

emphasize potential advantages of ASL-FC. ASL RSNs appear to localize more closely to cortical 

regions than BOLD RSNs, and include more information in frontal and orbitofrontal areas where 

poor BOLD SNR  reduces detectability. These results may also be partially attributable to the 

broader range of contributing frequencies for ASL-FC than BOLD-FC. As with seed-based 

analysis, ASL-ICA identified major networks described in the BOLD literature, both RSNs from 

task-free fMRI and co-activation networks from task-based fMRI.  

  
ICA vs. RSNs from 
Smith et al. 

ICA vs. BrainMap 
activation networks 

ICA vs. RSNs from 
Yeo et al. 

  ASL BOLD ASL BOLD ASL BOLD 
DMN 0.55 0.45 0.36 0.26 0.44 0.36 
VN 0.55 0.58 0.57 0.52 0.59 0.47 
SMN 0.70 0.38 0.56 0.33 0.41 0.26 
SN 0.22 0.34 n/a n/a 0.15 0.28 
CEN 0.42 0.34 0.36 0.19 0.44 0.31 
Mean± 
standard deviation 0.49±0.18 0.42±0.10 0.46±0.12 0.33±0.14 0.41±0.16 0.34±0.08 

Table 6. Independent component analysis group-level Dice scores vs Smith et al. RSNs, BrainMap 
activation networks from Smith et al., and Yeo et al. RSNs. These results indicate that ASL-FC with proper 
preprocessing can describe canonical brain networks at accurately as BOLD-FC at the group level. 
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ASL-FC was first proposed by Biswal et al. in 1997, but it remains relatively understudied. 

While CBF fluctuations from ASL correlate in the SMN (Chuang et al., 2008) and DMN (Zou et 

al., 2009), most previous studies have not taken advantage of both high-efficiency labeling and 

volumetric readouts, suggesting that gains in image quality and network sensitivity are achievable 

with recent perfusion imaging developments; such as pseudocontinuous labeling, background 

suppression (Maleki et al., 2012), and 3D readouts; which collectively increase SNR multi-fold 

and enable individual measurements to be used for connectivity analysis. Jann et al. (2013, 2015) 

utilized pCASL-based ICA to demonstrate that networks derived from ASL and BOLD were 

spatially similar, while Li et al. (2018) found that ASL-FC from pCASL with single-shot readout 

and BOLD-FC were similar in many RSNs. Likewise, Dai et al. (2016) found that pCASL-ICA 

produced fewer spurious, non-neural components than BOLD-ICA. These findings suggest that 

ASL-FC is reliable and offers unique advantages compared to typical methods. However, image 

analysis approaches have differed extensively, demonstrating the need for systematic development 

of analytic procedures tailored for ASL-FC.  

 

Importantly, it cannot be assumed that a single preprocessing strategy will result in optimal 

detection of all RSNs. Heterogeneous results could be attributable to differences in vascular 

density and blood arrival times between RSNs (e.g., RSNs perfused by posterior circulation vs. 

anterior circulation, which have differences in arrival time of 200-500 ms). Thus, we synthesized 

the most advantageous approaches from individual networks into a generally applicable method, 

and showed that this produced improvements for all group-level RSNs  

(Fig. 4-3). Of these, spatial smoothing produced improvement in the greatest number of networks. 

This smoothing is applied in addition to blurring already present in the 3D GRASE readout, which 
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we calculated as FWHM=7.8 mm from T2 effects in the z-direction, using the formula PSF 

(FWHM)=√"
#
∆𝑥 &'

&(
, with the spatial resolution Dx=3.8 mm, readout duration Ts=300 ms, and gray 

matter parenchyma T2=80 ms (Haacke et al., 1999, eq. 13.65). In our preprocessing Gaussian 

smoothing was applied equally in three dimensions, but the impact of smoothing in orthogonal 

directions may vary slightly owing to the differing effects of blurring from the readout combined 

with smoothing from the spherical Gaussian kernel.  

For completeness, we performed ASL preprocessing using several strategies common in 

BOLD-FC, including some which proved ineffective for ASL. Motion regression may be less 

relevant to ASL-FC because some effects of gradual head movements will be cancelled by image 

subtraction.  

GSR does not remove as much spurious non-neural signal from ASL as from BOLD, since 

this contrast originates mainly in gray matter. While the ASL signal is dominated by gray matter 

perfusion signal due to the longer arrival times and lower perfusion in white matter, white matter 

as well as CSF can still contribute noise to the final perfusion-weighted image. Partial voluming 

effects from white matter and CSF may also variably contribute, especially given the large voxel 

volumes used in typical ASL acquisitions (3-5 mm). Global signal is a major source of structured 

noise in ASL (Dai et al., 2016), and its removal has been shown to increase temporal SNR of ASL 

and test-retest reliability in CBF measurement (Wang, 2012) However, CBF quantification and 

ASL-FC depend on different parameters: the mean of the ASL signal, and its temporal variance, 

respectively. Therefore, it is not entirely clear from these data how GSR may influence ASL-FC.  

Finally, low-pass frequency filtering was generally ineffective at both 0.05 and 0.10 Hz, 

likely because ASL-FC depends on a broad and consistent frequency regime as seen in power 

spectrum results. The effective sampling rate for ASL was 0.128 Hz, and hence 0.064 Hz is the 
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upper limit of signal detection per the Nyquist theorem. However, bandpass filtering will still 

smooth the MRI time series at frequencies above this limit, and so high-pass filtering even at 0.10 

Hz may affect the resulting correlation-dependent RSN maps. 

Detection also depended on the use of seed-based or data-driven approaches. For instance, 

SMN detection was inaccurate in the seed-based analysis (Fig. 4-4C), but comparable to BOLD 

in ICA (Fig. 4-7C). Group-level ASL-ICA approximated results derived from two highly-cited 

studies, Smith et al. and Yeo et al., which used 30,000 activation fMRI datasets and 1,000 resting-

state fMRI datasets, respectively. ASL-FC recapitulated these canonical RSNs with fidelity 

comparable to, or slightly better than, our BOLD-FC pipeline, indicating that ASL-ICA is a 

promising approach to describing the architecture of intrinsically connected networks.  

We also demonstrate that ASL-FC and BOLD-FC produce RSNs with systematic spatial 

differences. While RSNs from the two modalities should have some degree of correspondence, 

discrepancies may also represent detection of different physiological information. We note that 

ASL RSNs typically localized nearer to the gray matter ribbon than BOLD RSNs. This may reflect 

network activity localized to the capillaries rather than venous vasculature, and therefore ASL-FC 

may more closely co-localize with regions of metabolic activity. For example, the prefrontal node 

of the DMN was located closer to the frontal pole of the brain in the preprocessed ASL RSN, 

possibly due to lower signal contribution from the anterior cerebral veins and more general venous 

pooling that may contribute to BOLD RSNs (Fig. 4-4A). Similarly, the ASL-derived VN featured 

less extension into the precuneus and posterior cingulate, potentially due to reduced contribution 

from posterior-circulation draining vasculature such as the straight sinus and inferior sagittal sinus 

(Fig. 4-4B). 
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ASL is also less affected by susceptibility artifact due to the comparatively short echo time, 

an effect reduced further when spin echo rather than gradient echo readouts are used. Consequently, 

signal is higher in regions near air-tissue boundaries, such as the orbitofrontal cortex. This is 

evident in the medial-frontal node of the SN, which extends markedly further into the ventral-most 

part of the frontal cortex (Fig. 4-4D). Detection of such novel spatial features in known RSNs may 

motivate future ASL-FC studies, especially in these functionally eloquent regions. The 

orbitofrontal cortex is critical for a variety of reward-processing and decision-making processes, 

yet this network remains incompletely characterized from existing BOLD methods. 

These results should be interpreted in the context of limitations in imaging method and 

study design. First, even with recent improvements, SNR in ASL is low compared to BOLD, as 

CBF-related image intensity difference is 1-2% of equilibrium signal intensity. This may decrease 

sensitivity to correlated neural activity fluctuations, although SNR can be improved 2-4 fold with 

3D readouts such as GRASE (Petersen et al., 2017) or stack of spirals (Dai et al., 2016; Vidorreta 

et al., 2017), and with pCASL labeling and background suppression (Gunther et al., 2005; Oshio 

and Feinberg, 1991). Correspondingly, subject-level ASL reproducibility was relatively low. This 

finding is consistent with (Jann et al., 2013), who measured lower between-session and between-

scanner reproducibility for ASL than BOLD. Therefore, ASL-FC in its present state may be most 

useful at the group level. Future work may increase our sample of healthy subjects to further refine 

group-level network identification.  

Second, ASL also has lower temporal resolution than BOLD, with a TR of 3500-4000 ms 

for pCASL. However, ASL-FC can access temporal dynamics inaccessible to BOLD-FC, 

including very low frequencies removed by baseline drift correction (less than 0.01 Hz) (Fig. 4-5). 

Future work may focus on understanding the physiological and functional origins of very-low-
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frequency connectivity, expanding our understanding of the time-scales on which distant brain 

regions communicate. It is also important to note that the recommended parameters for perfusion 

imaging from the ISMRM perfusion study group, which call for a segmented 3D GRASE readout, 

result in a temporal resolution too low for robust RSN detection (approximately 16s). Therefore, 

this work extends information provided in the white paper to provide parameter and post-

processing suggestions when RSN detection is of interest.  

Third, scan order was not completely randomized; ASL preceded BOLD for 80% of scan 

sessions. Physiological monitoring in a subset of participants showed no evidence in support of 

differences in cardiac or respiratory frequencies between first and second scans, suggesting that 

habituation to the scan environment is likely not a major confound. Further, recent work has shown 

that effects of the cardiac cycle on pCASL signal stability are minimal (Verbree and van Osch, 

2018). As such, we do not believe that this is a major confound in our data. However, it should be 

noted that in dynamic acquisitions such as ASL-FC where each image is of interest (i.e., rather 

than a time-averaged CBF-weighted composite map), these effects may contribute differently to 

the network detection and therefore future work that extends cardiac gating to ASL-FC studies 

may be warranted.  

Finally, while short-to-intermediate TE 3D GRASE ASL is less sensitive to susceptibility 

effects than conventional longer-TE gradient echo BOLD, some residual T2* and T2 effects are 

nonetheless possible. However, since ASL-FC analysis performed on unlabeled images resulted 

in lower spatial consistency with BOLD-FC for four of five tested networks, we believe that this 

effect is unlikely to be the major contributor to ASL network contrast reported in this study.  

Despite these limitations, our results demonstrate the ability to visualize canonical RSNs 

from ASL-FC data and to measure connectivity in regions prone to poor SNR in conventional 
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BOLD acquisitions. Future studies that address the above limitations are needed, however, and if 

successful should improve network detection fidelity further. 

 

4.7 Conclusions 

We demonstrated that ASL-FC, including seed-based and ICA approaches, provides novel insights 

into the spatial and temporal features of functionally connected brain networks inaccessible to 

traditional methods. ASL-FC benefits from several denoising strategies, which produce 

improvements in network detection. While preprocessing of ASL-FC can improve spatial 

coherence between RSNs derived from ASL and BOLD, areas of difference between the two 

modalities may also reflect meaningful physiological phenomena, such as contrast 

compartmentalization to different vascular sources (e.g., capillary vs. venular) or distinct 

frequency information. One area of potential application is mapping the connectivity of regions 

that are problematic in BOLD imaging due to susceptibility-weighted image dropout, such as the 

orbitofrontal cortex, a functionally important region involved in the processing of reward, 

decision-making, and executive function, or the dentate nucleus, a key hub in motor and non-motor 

cerebellar feedback pathways.  
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CHAPTER 5 

 

ARTERIAL SPIN LABELING REVEALS MEDIAL-LATERAL DIVISION IN 

ORBITOFRONTAL CORTEX CONNECTIVITY 

 

5.1 Purpose 

The previous chapter established that ASL-FC can identify canonical resting-state networks 

serving critical neural roles, and describe novel spatial and temporal features of such systems. This 

recently developed technique offers the potential to investigate regions that are problematic for 

BOLD fMRI approaches, providing insights into areas with high magnetic susceptibility and 

distortion or large draining veins. An important region with relatively poor image quality in 

traditional functional neuroimaging is the ventral frontal cortex, particularly the orbitofrontal 

cortex (OFC) near the ventral striatum, insula, and subgenual anterior cingulate gyrus. This zone 

is especially relevant to behavioral dysfunctions of reward valuation and aberrant learning. It is a 

site with strong dopaminergic connectivity, including direct projections to and from the ventral 

striatum/nucleus accumbens. In Chapter 2, we described elevated functional connectivity between 

the OFC and ventral striatum, part of a larger pattern of increased synchrony between limbic frontal 

cortex and the basal ganglia. However, a more complete understanding of OFC connectivity is 

necessary before these broad findings can be fully interpreted. This necessitates the application of 

novel perfusion-based connectivity methods to determine the constituent sub-regions of the OFC, 

a functionally diverse section of the frontal lobe.  
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5.2 Summary 

The orbitofrontal cortex (OFC) is involved in reinforcement learning, decision-making, valuation 

of stimuli, and subjective pleasure. Subdivisions of the OFC are based on anatomy and 

cytoarchitectonics, but connectivity-based parcellations have also been proposed. To date, 

attempts to describe OFC functional connectivity have been limited by a severe signal dropout 

artifact in T2*-weighted blood oxygenation level-dependent (BOLD) fMRI due to high 

susceptibility in the lower frontal lobe.  

Here, an alternative approach is utilized to describe OFC connectivity and test the 

hypothesis that this region is divided into two major zones: a medial-caudal region and a lateral-

orbital one. Arterial spin labeling (ASL) is an MRI technique to noninvasively measure cerebral 

blood flow, and can provide fMRI contrast. In healthy subjects (n=20), 20-minute resting-state 

ASL scans (TR/TE=3900/13 ms; spatial resolution=3.8 mm isotropic) were acquired. ASL was 

used to conduct seed-based connectivity analysis at every gray matter OFC voxel, and k-means 

clustering was applied to group the voxels based on their connectivity with all brain regions 

excluding the OFC itself. This approach bifurcated the OFC into two clusters, one combining 

medial and caudolateral zones, and one located in more anterior, orbital regions, confirming our 

hypothesis. These clusters correspond to results of previous meta-analyses of functional 

activations and more broadly with morphological divisions. Connectivity of the clusters was 

quantified; the medial cluster was most strongly associated with the ventromedial prefrontal cortex 

and insula, approximating the salience network, while the lateral cluster was associated with 

regions of dorsolateral prefrontal and parietal cortex.  

These functional connectivity findings suggest an underlying structural connectivity 

difference between the two regions. We tested this hypothesis using tractography in high-
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resolution diffusion-weighted imaging from the Human Connectome Project, and results 

confirmed the major hypothesis, with the medial OFC more structurally connected to ventromedial 

prefrontal cortex and insula. Medial-lateral differences in structural connectivity were found to 

correlated with differences in functional connectivity. This study provides the first in vivo evidence 

for the functional subdivision of a high-susceptibility frontal region on the basis of blood perfusion 

dynamics, and confirms a long-standing hypothesis in orbitofrontal neuroanatomy. 

 

5.3 Introduction  

The orbitofrontal cortex (OFC) occupies the ventral surface of the brain’s frontal lobe. Its best-

described functions are integration of sensory information with reward circuitry, and monitoring 

the values of environmental stimuli in the context of learning and decision-making (Kringelbach, 

2005). The OFC is extensively connected with the limbic system, including the ventral 

striatum/nucleus accumbens and the amygdala (Barbas and Zikopoulos, 2010). The OFC also 

receives convergent sensory information from olfactory, gustatory, and somatosensory cortex 

(Rolls, 2002). Its position at the nexus of cognitive processing, affective function, and sensory 

integration enables the OFC to mediate behavioral responding to environmental stimuli. The most 

frequently described function of the OFC is to encode the value or expected value of reinforcers 

by linking sensory processes to limbic circuits. The OFC and the anatomically proximate anterior 

cingulate cortex participate in limbic loops modulating feedback between cortex and basal ganglia 

(Alexander et al., 1986).  

Functionally, evidence from meta-analysis of fMRI studies suggests that the OFC is 

divisible into a medial-caudolateral network, termed ‘medial OFC’, and a lateral-orbital network 

termed 'lateral OFC'. These subdivisions are thought to perform different roles in decision-making, 
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with medial OFC attuned to positive reinforcers or rewarding stimuli, and lateral OFC more 

responsive to negative reinforcers and punishment stimuli (Kringelbach, 2005). An anterior-

posterior gradient is also proposed, with more posterior regions responding to simpler primary 

rewards such as food, and anterior regions to more abstract, indirect reinforcers (Sescousse et al., 

2013). Posterior OFC has more extensive connectivity with the amygdala, and is believed to 

modulate autonomic responding in a manner sensitive to dopamine levels (Zikopoulos et al., 2017). 

However, most OFC connectivity data are derived from anatomical studies using primate models, 

post-mortem human tissue histology, or in vivo diffusion tractography. The functional connectivity 

of the OFC remains poorly understood because the limbic cortex, particularly the caudal OFC, is 

subject to a profound signal dropout due to magnetic field inhomogeneity induced by air-tissue 

interfaces in the sinuses (Deichmann et al., 2002). Therefore, the signal-to-noise ratio in traditional 

BOLD fMRI sequences is very low compared to surrounding cortical regions. 

 Thus, a novel method is needed to accurately measure functional connectivity between the 

OFC and the rest of the brain. Arterial spin labeling (ASL) is a noninvasive MRI technique 

weighted to measure cerebral blood flow (CBF). ASL reflects neural activity in the underlying 

tissue, and scales linearly with glucose metabolism (Musiek et al., 2012). Due to shorter echo times, 

ASL is less susceptibility-weighted and therefore less vulnerable to signal dropout in high-

susceptibility regions such as the OFC, the cerebellar dentate nucleus, and the temporal lobes 

adjacent to the aural canals. ASL is a novel but promising alternative contrast for functional 

connectivity, as its signal source is more weighted toward capillary than venous vasculature. In 

the previous chapter it was shown that ASL-based functional connectivity (ASL-FC) can 

recapitulate brain resting-state networks with fidelity comparable to BOLD-FC after optimized 

preprocessing.  
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Here, we utilize this method to examine the functional connectivity of the OFC and test the 

hypothesis that it contains distinct medial-caudal and lateral-orbital sub-regions. We employ a 

clustering-based parcellation method similar to that described in (Kahnt et al., 2012). Clustering-

based parcellation of resting-state MRI data is an established technique to identify discrete cortical 

zones based on their connectivity profiles. Unsupervised clustering techniques have been used to 

define networks spanning the whole brain (A. L. Cohen et al., 2008) as well as in specific regions, 

such as Broca’s area (Kelly et al., 2010), the supplementary motor area (Kim et al., 2010), insula 

(Cauda et al., 2011; Deen et al., 2011; Nelson et al., 2010), precuneus (Zhang and Li, 2012), and 

amygdala (Mishra et al., 2014). Functional connectivity-based parcellation was recently reviewed 

by (Eickhoff et al., 2015).  

  

5.4 Methods  

Image acquisition protocols for this work are described in the previous chapter. Functional 

connectivity was performed using ASL-FC, which we have shown is useful for detecting RSNs in 

both brain regions with high signal-to-noise ratio and those with high susceptibility artifacts. 

Briefly, healthy participants (n=20; age=29.5±7.3 years, sex=10M/10F) underwent 20-minute 

resting-state pseudo-continuous ASL scans (TR/TE=3900/13 ms, post-labeling delay=1800 ms, 

label duration=1800 ms, field-of-view=80x80x25, spatial resolution=3.8 mm isotropic) with 3D 

GRASE readout. Structural connectivity was measured using fiber tractography in Human 

Connectome Project data using methods similar to those described in Chapter 3.  

 For an overview of the strategy applied here, see Fig. 5-1. Image processing and data 

analysis were performed using the FMRIB Software Library (FSL) (Smith et al., 2004) and custom 

Matlab scripts (Mathworks, Natick MA). The OFC was drawn on axial slices of the T1-weighted 
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images. The region extended in the rostral-caudal direction from the frontal pole to the anterior 

boundary of the insula at its separation from the temporal lope. In the inferior-superior direction it 

extended from the lowest extent of the frontal lobe to no higher than the bottom of the corpus 

collosum genu. FAST was then used to segment the T1-weighted image into gray and white matter; 

white matter voxels were excluded from the OFC mask. T1-weighted images were linearly 

registered to the mean ASL image using FLIRT, and the OFC binary mask was then transferred to 

ASL space using the same affine transformation matrix.  

ASL images were motion-corrected using MCFLIRT. Surround subtraction was applied: 

each spin-labeled image was subtracted from the mean of the preceding and following unlabeled 

images. This method was preferable to simple paired subtraction because it reduces frame-to-frame 

variability and residual BOLD effects (Lu et al., 2006), and has been shown to improve resting-

Fig. 5-1. Orbitofrontal cortex connectivity study design. 20 resting-state ASL scans were acquired in healthy 
subjects. OFC masks were hand-drawn, and white matter voxels were defined by FSL-FIRST and removed. The OFC 
was parcellated both on the basis of extrinsic seed-based connectivity (top) and intrinsic independent component 
analysis (bottom). Both of these results were used for separate group-level clustering using k-means algorithms. 
The functional connectivity (top-right) and structural connectivity (bottom-right) of the resulting clusters was then 
mapped and compared. Functional connectivity of the clusters was derived from the ASL-FC data used to define 
those clusters. Structural connectivity (tractography) analysis was performed using Human Connectome Project 
diffusion-weighted data. Structural and functional results were correlated against one another. This figure is a 
schematic of the study design and not intended to directly reflect results. 
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state network identification (Chapter 4). Global signal regression was applied to remove whole-

brain signals, as these can outweigh the effects of the subtle local fluctuations needed for separation 

of spatially proximate signal sources. ASL data were smoothed using a full width at half-maximum 

(FWHM)=5-mm Gaussian kernel.  

Functional connectivity analysis for OFC parcellation was then performed using two 

complementary methods with mutually exclusive input data. First, functional connectivity was 

performed on the basis of extrinsic connectivity of OFC voxels with non-OFC brain regions, and 

clustering analysis was applied to these results. Second, parcellation was performed using 

independent components analysis of only intrinsic OFC connectivity, i.e. between voxels inside 

the OFC gray matter, omitting non-OFC areas. This pairing of methods was used to ensure that 

results were not due to the particular features of one approach, and to demonstrate that 

physiologically distinct sub-regions are identifiable on the basis both of internally similar activity 

patterns, and congruent connections with the rest of the brain. 

While clustering analysis can produce a connectivity map corresponding to a given cluster, 

these results cannot be used to test the hypothesis that two clusters have different connectivity, as 

this would involve circular reasoning or ‘double-dipping,’ since connectivity maps were used to 

derive the original clusters (Eickhoff et al., 2015). Therefore, a second modality is necessary to 

test for differences in connectivity. For this purpose, we used structural connectivity in a separate 

cohort of 91 healthy individuals from the Human Connectome Project (Sotiropoulos et al., 2013). 

These high-resolution datasets were acquired with multiple b-values and 270 directions, providing 

precise estimates of the orientation distribution function at each brain voxel.  
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Extrinsic functional connectivity 

Extrinsic functional connectivity analysis was performed using FEAT (Woolrich et al., 2001). A 

separate functional connectivity analysis was performed using each OFC voxel as a seed region. 

Thus, for each scan, n connectivity maps were generated, where n is the number of OFC voxels. 

These maps were converted to z-statistics using Fisher’s transform. For each subject, OFC voxels 

were clustered on the basis of their connectivity with non-OFC brain voxels. A connectivity matrix 

of size [n * (b-n)] was constructed, where b is the total number of voxels in the brain. k-means 

clustering with k=2 was performed to decompose the OFC into two spatial clusters.  

Next, the resulting clusters were transferred to subject T1-weighted images using the 

inverse affine matrix, and normalized to the 2-mm MNI152 brain by nonlinearly warping the T1-

weighted image using FNIRT. To produce group-level results, MNI-space single-subject clusters 

were used as inputs in group-level k-means clustering. The resulting clusters constituted the group-

level OFC parcellation.  

Next, the connectivity patterns between the clusters and the rest of the brain were 

determined. Group-level medial and lateral clusters were back-transformed from MNI space to 

each subject native space using the inverse warps. Native-space medial and lateral clusters were 

then used as seed regions in FEAT to determine the connectivity of the whole cluster. Thus, for 

each scan, a single medial OFC and single lateral OFC connectivity map was created. Finally, 

medial and lateral connectivity maps from subject-level clusters were normalized to MNI space 

and input into a one-sample permutation test using Randomise with 500 permutations and 

threshold-free cluster enhancement (Smith and Nichols, 2009) to produce final composite group-

level connectivity maps. It is important to note that this analysis describes the connectivity pattern 

corresponding to each cluster, but should not be treated as a statistical comparison between clusters. 
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Intrinsic functional connectivity 

Functional connectivity within the OFC was calculated on ASL series using independent 

component analysis with FSL’s MELODIC tool. ASL images were multiplied by the OFC gray 

matter binary mask to exclude all voxels outside this region. MELODIC decomposed each image 

into two independent components, whose spatial maps were then transformed to MNI space using 

the T1-weighted image as a registration intermediate. Finally, group-level clusters were generated 

using second-order clustering as described for the extrinsic connectivity analysis above.  

 

Structural connectivity 

Structural connectivity was performed using probabilistic tractography in FSL’s fiber-tracking 

program ‘Fdt’ (Behrens et al., 2007, 2003). Probabilistic tractography allows a statistical 

comparison of the differential connectivity of a seed to various target regions. Diffusion 

parameters at each voxel were modeled with ‘bedpostx,’ which uses Bayesian estimation to build 

the voxelwise orientation distributions. Fiber-tracking was performed with ‘probtrackx2’ using the 

group-level medial and lateral OFC clusters as seed regions. Step length was set at 0.5 mm, and a 

curvature threshold of 0.2 was used to exclude streamlines with sharp bends. 300 streamlines were 

calculated per tract, per subject. To determine whether significant differences in structural 

connectivity exist between the medial and lateral clusters, paired permutation tests were performed 

using Randomise with threshold-free cluster enhancement and correction for multiple comparisons.  

 



 

 107 

Functional vs. structural connectivity 

To determine if differences between the functional networks that defined the medial and lateral 

OFC clusters were related to the structural connectivity in those same clusters, the difference of 

connectivity with the medial and lateral OFC for all non-OFC voxels was taken. For functional 

connectivity, we calculated the difference in connectivity z-score with the medial and lateral OFC, 

while for structural connectivity, we calculated the difference between the number of streamlines 

arriving from the medial vs. lateral OFC. Across all non-OFC brain voxels, these were correlated 

in a Spearman’s rank test to mitigate outlier effects.  

 

5.5 Results 

Extrinsic functional connectivity  

Clustering analysis resulted in the identification of two major OFC subdivisions. A medial cluster 

included the straight gyrus and orbital medial gyrus and the caudal parts of the OFC. A lateral 

OFC cluster consisted of the areas anterior to the orbital sulcus (Fig. 5-2A).  

 

Fig. 5-2. Orbitofrontal cortex clustering results. (A) Orbitofrontal clusters derived from extrinsic perfusion-
based functional connectivity. Red cluster corresponds to medial OFC, blue cluster to lateral OFC. (B) 
Orbitofrontal clusters derived from intrinsic perfusion-based functional connectivity analysis. Red cluster 
corresponds to medial OFC, blue cluster to lateral OFC.  
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Intrinsic functional connectivity 

Results from independent component analysis of voxels within the OFC produced results spatially 

similar to the extrinsic connectivity analysis: the two group-level components corresponded to 

medial-caudolateral and lateral-orbital zones similar to those derived from extrinsic connectivity 

(Fig. 5-2B). Therefore, we conclude that two separate approaches to perfusion-based functional 

connectivity, using different input data but no anatomical priors, produce similar estimates of the 

most parsimonious division of the OFC.  

 

Fig. 5-3. Functional connectivity maps of orbitofrontal clusters. (A) Group-level connectivity for medial OFC. 
Corrected p-values from a 1-sample permutation test with significance determined clusterwise are displayed. (B) 
Group-level connectivity for lateral OFC using the same statistical procedure.  
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Medial and lateral OFC connectivity 

The functional networks associated with these two clusters differed spatially. The medial OFC 

cluster was functionally connected primarily with the ventromedial prefrontal cortex as well as the 

bilateral insular cortex (Fig. 5-3A). The lateral OFC cluster connected with a broader region of 

frontal and parietal cortex (Fig. 5-3B). 

Tractography-based structural connectivity using Human Connectome Project data also 

indicated differing connectivity of medial and lateral clusters. The medial OFC cluster was 

structurally connected with regions associated with the salience network, including ventromedial 

Fig. 5-4. Structural connectivity differences between orbitofrontal clusters. (A) Regions of greater structural 
connectivity with medial OFC than lateral OFC. Corrected p-values from a 2-sample permutation test with 
significance determined clusterwise are displayed. (B) Regions of greater structural connectivity for lateral OFC 
than medial OFC created using the same statistical procedure.  
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prefrontal cortex and bilateral insular cortex, results similar to the functional  connectivity analysis 

(Fig. 5-4A). The lateral OFC cluster connected with a broader region of frontal and parietal cortex 

(Fig. 5-4B). The apparent laterality seen here, with lateral OFC seeming to have greater 

connections with left-sided structures, is likely due to slight asymmetries in the seed clusters and 

potentially artifactual. 

Across all non-OFC brain voxels, the difference in functional connectivity between medial 

and lateral OFC was significantly correlated with the difference in structural connectivity between 

medial and lateral OFC (Spearman’s rho=0.20, p<0.001) (Fig. 5-5). 

 

Fig. 5-5. Functional vs. structural orbitofrontal connectivity. Medial-lateral differences in structural vs. 
functional connectivity across all standard-space brain voxels outside the OFC.  X-axis represents functional 
connectivity z-score differences between medial and lateral OFC connectivity with a given voxel. Y-axis 
represents structural connectivity streamline count differences between medial and lateral  OFC connectivity. 
Spearman’s rho=0.20, p<0.001. 
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5.6 Discussion 

In this study, we found that multiple functional connectivity methods can parcellate the human 

OFC on the basis of resting-state perfusion fluctuations, and that independent extrinsic and 

intrinsic connectivity methods yield highly congruent results. We utilized data-driven clustering 

analysis to subdivide the OFC, meaning that no anatomical priors were incorporated in the 

clustering algorithm. Both extrinsic and intrinsic functional connectivity identified two major 

clusters corresponding to separable medial and lateral zones, confirming our major hypothesis. 

The connectivity of these clusters with the rest of the brain was determined, demonstrating that the 

medial cluster is defined by high connectivity with components of the ventromedial prefrontal 

cortex and the bilateral insula, regions corresponding to the well-described salience network 

(Seeley et al., 2007). The lateral OFC was marked by greater connectivity to symmetrical regions 

of dorsolateral prefrontal cortex and corresponding nodes in the parietal cortex, matching the 

definition of the central executive/fronto-parietal network, although the right-sided parietal node 

fell just short of significance (corrected peak p-value=0.054). We have shown in the previous 

chapter that both salience and central executive networks are readily identifiable using ASL-FC.  

Our results confirm a longstanding hypothesis about the OFC, that the major functional 

division of this region is into medial and lateral zones. This idea was previously supported by the 

results of a meta-analysis of activations from fMRI experiments, which used coordinates from 

task-based fMRI reported in BrainMap (Laird et al., 2005) as a data source for functional 

connectivity (Zald et al., 2014). This study found that medial and lateral OFC are co-activate with 

different brain regions, with medial OFC connective with default mode network and limbic regions, 

and lateral OFC with dorsolateral prefrontal cortex. However, this study defined medial and lateral 

regions a priori rather than using data to determine parcellation.  
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A second set of findings arguing for functional division of the OFC is derived from the 

fMRI activations mapped within the OFC itself, a method more similar to our intrinsic connectivity 

analysis, although using task-based fMRI rather than the resting state. fMRI stimuli associated 

with rewards tend to produce increased in activity in the medial part of the OFC, while those 

associated with punishing or aversive stimuli belong to more lateral regions (Kringelbach, 2005). 

Though simplistic, this distinction is nonetheless powerfully explanatory of the observed data, with 

very well-defined clusters evident for both positive and negative reinforcement categories. 

A third line of evidence for this medial-lateral distinction came from a clustering-based 

connectivity study which utilized BOLD fMRI to parcellate the OFC using methods similar to our 

extrinsic connectivity approach. This study also found a broad medial-lateral distinction, although 

parcellation into more fine-grained nodes was also described (Kahnt et al., 2012). Despite these 

important findings, this method is limited by the poor signal-to-noise ratio of T2*-weighted 

sequences in the ventral frontal cortex.  

Finally, existing tractography data provide evidence for medial-lateral OFC separation, 

with the orbital-lateral region receiving inputs from higher sensory areas and projecting to the 

lateral striatum, and the medial zone connected more strongly with the hypothalamus and medial 

PFC (Price, 2010). 

Here, we confirm and extend these findings using a novel perfusion-dependent approach 

to connectivity-based clustering. Results from two different data-driven methods with no 

anatomical inputs—intrinsic and extrinsic OFC parcellation—confirm the appearance of two main 

subdivisions, a contiguous one centered on the midline, and one separated between the lateral 

ventral surfaces of both hemispheres. These clusters are distinguished by their differential 

connectivity to broader regions of the cerebral cortex. Medial OFC was more was connected with 
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regions generally described as the salience network, including the ventromedial prefrontal cortex 

and bilateral insula, while the lateral OFC had greater connectivity to the dorsolateral prefrontal 

cortex, and regions of the parietal lobes corresponding to the fronto-parietal or central executive 

network. 

These findings are confirmed by the use of structural connectivity in a different 

neuroimaging dataset: high-resolution diffusion-weighted MRI from the Human Connectome 

Project. Clusters defined by ASL-FC approaches were used to seed tractography, and the resulting 

structural connectivity maps allowed testing of the hypothesis that the medial and lateral OFC 

areas belonged to different anatomical networks. The results of structural connectivity were highly 

similar to functional connectivity, indicating that the observed resting fMRI signal patterns 

reflected underlying white matter pathways. While the use of a second dataset suggests that 

connectivity results are generalizable beyond the perfusion images acquired for this study, this 

approach also presents a potential limitation, as it only permits structure-function comparison at 

the group level rather than within the same subject. Therefore, it would be enlightening to obtain 

both long-acquisition perfusion scans and high-resolution diffusion-weighted imaging in the same 

participants, whether healthy individuals or persons with altered OFC connectivity due to 

conditions such as Parkinson’s disease-related impulsive-compulsive behaviors.  

Another important point is that the medial OFC network described here and the extended 

salience network of Chapter 4 correspond closely with regions of relatively high perfusion and 

short blood bolus arrival time (Donahue et al., 2014). This suggests a potential confounding effect, 

where different perfusion properties of these areas may partially account for their apparent 

synchrony. However, differences in bolus arrival times are much shorter than the time scales 

contributing to our ASL-FC results, less than one TR in our imaging sequence. Arrival time varies 
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by about 0.7 s from shortest to longest, and is thus not likely to account for the longer synchrony 

effects described here. It is possible that the medial OFC and its network are indeed served by 

different vasculature than the lateral network, which could partly explain their functional 

separation from lateral OFC, alongside their white matter connections. Future studies will examine 

variable blood arrival times and mean perfusion rates in these networks. 

 

5.7 Conclusions 

While these results support the conclusions of previous imaging and anatomical studies, they also 

provide new insights into the structure and function of the OFC. We have utilized a novel modality: 

connectivity-based clustering of perfusion-weighted MRI, which has several advantages for OFC 

imaging and functional connectivity analysis, including low susceptibility, less venous bias, and a 

more quantitative relationship between signal and neural activity. The appearance of the same two 

major clusters using both extrinsic and intrinsic connectivity and a novel ASL-based parcellation 

approach is strong evidence in support of the validity of the long-debated concept that the OFC is 

primarily divisible into medial and lateral regions. Moreover, the parallel use of diffusion 

tractography in a large, well-validated dataset of healthy controls, the Human Connectome Project, 

argues that these clusters represent divisions of the underlying neural architecture.  
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE DIRECTIONS  

 

Taken together, these experiments demonstrate the utility of structural and functional approaches 

to brain network mapping.  

Reward-incentivized impulsive and compulsive behaviors (ICBs) are linked with fMRI 

synchrony in the mesocorticolimbic network. In Chapter 2, connectivity in pathways between the 

basal ganglia and ventral frontal cortex was shown to reflect learning of reinforced cue associations. 

This suggests a mechanism by which increased ventral striatal connectivity in PD patients with 

ICBs leads to heightened reward sensitivity, and to altered behavior. This network effect is 

potentially caused by ICB-linked differences in the ventral striatum itself. Individuals with ICBs 

have an altered pharmacological profile in the nucleus accumbens, with reduced D2/D3 receptor 

availability (Stark et al., 2018a) and abnormal hemodynamic properties. Greater ventral striatal 

blood flow changes after dopaminergic therapy indicate enhanced neural responses to dopamine 

agonists in the ICB+ population (Claassen et al., 2017).  

 Future studies of mesocorticolimbic connectivity should focus on the specific roles of 

single regions of frontal associative cortex. While we observed increased functional connectivity 

with the orbitofrontal cortex, insula, and anterior cingulate gyrus, separate contributions of these 

components remain undetermined. Moreover, while these regions all participate in reinforced 

learning and reward-motivated decision-making, the conclusions described here do not 

discriminate among their constituent sub-regions, which may profoundly differ in function.  
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In particular, it would be illuminating to identify which of two major orbitofrontal networks 

is responsible for our finding of elevated connectivity with ventral striatum in ICBs. It is also 

possible that changes in both medial and lateral OFC are involved in the various impulsive or 

perseverative behaviors caused by dopamine replacement, since persons with ICBs evince both 

heightened responses to rewarding stimuli and decreased concern with negative social or economic 

consequences. Another intriguing question is the relevance of an anterior-posterior gradient in 

stimulus representation, separating abstract reinforcers from directly rewarding ones (Kouneiher 

et al., 2009; Kringelbach and Rolls, 2004). As ICBs revolve around a gamut of activities, ranging 

from hypersexuality to problem gambling, discrete cortico-striatal networks may contribute to 

distinct ICB types. Alternatively, various ICBs may be manifestations of dysfunction in the same 

network. Application of ASL-FC methods described in Chapters 4 and 5 will enable quantitative 

and spatially precise hypothesis testing about ICB-related synchrony changes. 

While frontal circuits rely on the basal ganglia to modulate cognitive and behavioral 

processes, cortico-striatal loops are not the only major feedback system serving the cerebral cortex. 

The cerebellum performs an analogous role in receiving cortical input, processing signals via 

intricate multistep computational transforms, and sending reciprocal feedback to the cortex via the 

thalamus. Like cortico-striatal loops, cerebellar connections also operate in parallel channels, with 

the same sections of cortex sending afferents to, and receiving efferents from, the cerebellum 

(Middleton and Strick, 1998). While these arcs are traditionally associated with motor control, 

increasing evidence also implicates cerebellar loops in a host of nonmotor processes, including 

learning, executive control, attention, and language (Strick et al., 2009).  

The core cerebellar output system is comprised of the white matter fibers of the dentato-

rubro-thalamic tract (DRTT), sometimes called the dentato-thalamic tract. The DRTT is the major 
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cerebellar efferent, integrating Purkinje cell input at the deep gray matter dentate nucleus, and 

sending projections to the thalamus via the superior cerebellar peduncle and red nucleus. Chapter 

3 combined structural and functional connectivity to characterize the precise neuroanatomy of its 

newly described nondecussating (ipsilateral) branch, the nd-DRTT (Meola et al., 2016). These 

ipsilateral projections target different thalamic sub-regions than the contralateral pathway, 

suggesting that the two tracts may be functionally differentiable, while still retaining some overlap 

in communication.  

In parallel with tractography, seed-based functional connectivity was used to show linkage 

between unilateral cerebellar dentate and bilateral thalamus, arguing independently for the 

existence of ipsilateral DRTT fibers. Across various thalamic sub-nuclei, functional connectivity 

bias toward ipsilateral and contralateral connectivity correlated with bias in structural connectivity, 

arguing that results are not limited by the particularities of one analysis method or imaging 

modality.  

Future studies may involve anatomical examination of this tract in postmortem brains of 

individuals with previously acquired in vivo tractography. This approach should include patients 

with diseases affecting the DRTT, to determine whether physical evidence supports the hypothesis 

that both d-DRTT and nd-DRTT undergo degeneration in movement disorders such as essential 

tremor or progressive supranuclear palsy. Our results suggest a possible in vivo experiment; in 

patients with essential tremor and bilateral thalamic DBS leads, inactivation of one side’s electrode 

would ordinarily be expected to disinhibit tremor on the contralateral side. However, our 

observations of the nd-DRTT implies that effects may be bilateral.  

Preliminary evidence in progressive supranuclear palsy also suggests that structural 

changes in the DRTT are linked to altered functional connectivity between cerebellum and 
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cerebrum, though the functional implications of these changes remain unclear. Future studies 

should test whether declines in DRTT white matter microstructure are linked with loss of gray 

matter thickness in sensorimotor cortical regions that receive projections from the cerebellum and 

DRTT via the thalamus. 

While we have shown that conventional connectivity approaches provide insights into both 

the limbic frontal network and DRTT, novel methods are required to examine more susceptible 

regions. In Chapter 4, we systematically developed an approach to correlate perfusion fluctuations 

across the brain. Due to shorter echo times, arterial spin labeling (ASL) is less sensitive to magnetic 

field inhomogeneity, allowing detection of activity in such areas. ASL allows the in vivo 

measurement of cerebral blood flow, which has a consistent relationship with neuronal energy 

utilization, and can be used as an alternative fMRI modality. To test this approach, we first 

examined several well-known sensory, motor, and cognitive brain networks. We demonstrate that 

canonical RSNs such as the default mode network and sensorimotor network can be delineated 

from physiological noise with accuracy comparable to conventional BOLD-based, T2*-weighted 

scans. We developed an optimized preprocessing pipeline for ASL-FC, and showed that it 

improved detection accuracy for each of five examined networks. We found that both seed-based 

approaches and independent component analysis can be utilized for ASL-FC, and that the latter 

produces RSNs well-matched with networks derived from large sets of resting-state and task-based 

fMRI. 

This work is extended further in Chapter 5 with the application of ASL-FC to the 

identification of orbitofrontal cortex (OFC) sub-regions. The OFC is critical to regulation of 

behavior, reward-motivated learning, and decision-making. In Chapter 2 we described the OFC as 

having increased ventral striatal functional connectivity in ICBs, although that finding is qualified 
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by the presence of major signal artifacts. We hypothesized that the foremost OFC 

structural/functional division is between medial and lateral regions. To test this proposition, we 

developed a new approach based on model-free clustering of ASL signal fluctuations. To our 

knowledge, this was the first study to perform clustering-based parcellation on perfusion-weighted 

resting-state data.  

Based on connectivity of OFC voxels with the cerebral cortex generally, and on the OFC’s 

internal perfusion correlations, we conclude that the hypothesis is confirmed. The medial OFC is 

more connected with regions corresponding to the salience network, while the lateral OFC has 

greater connectivity with fronto-parietal regions and central executive network. To confirm this 

conclusion, we again utilized high-resolution diffusion-weighted images from the Human 

Connectome Project to perform tractography, building structural connectivity maps of the medial 

and lateral OFC for comparison with functional connectivity. We found that medial and lateral 

regions exhibited significantly different structural connectivity, with the former sending more 

streamlines to ventromedial prefrontal cortex and insula. This confirmed that ASL-FC-derived 

clusters correspond to divisions of the underlying neuroanatomy.  

ASL-FC and BOLD-FC were obtained for this cohort; however, we have not yet compared 

the results of OFC clustering between the two modalities. While (Kahnt et al., 2012) found a two-

cluster OFC solution similar to ours using BOLD-FC, performing this analysis on the same group 

of subjects will allow a more direct assessment of the similarities and differences between the two 

methods.  

These studies illustrate the importance of multimodal approaches to human brain mapping. 

The problem of false positives inherent in both functional imaging (due to spurious noise-related 

correlations) and structural imaging (due to imprecision in tractography) can be substantially 
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ameliorated by checking one method against the other. While functional connectivity can exist 

absent direct white matter links due to intermediate synapses, the presence of a detectable white 

matter path between two functionally correlated regions provides at least qualifying evidence that 

connectivity is non-artifactual. Conversely, fMRI correlation between two regions may help to 

validate tractographic paths. For example, convergent structural and functional results are 

illustrated by the ipsilateral branch of the DRTT and its thalamic target. The mutual support of 

structure and function is also illustrated in the case of OFC parcellation, where a hypothesis 

generated by functional connectivity was tested and supported using structural tractography on an 

independent dataset. 

Future work in this vein should apply the multimodal imaging methods described here to 

the study of brain networks in disease states. OFC connectivity should be examined not only in 

healthy brains, but in the context of dopaminergic dysfunction in PD-related ICBs. Evidence from 

conventional neuroimaging in Chapter 2 suggests that ventral striatal connectivity with this 

dopamine-responsive region is increased in patients with ICB; however, the application of ASL-

FC might allow this hypothesis to be tested with greater precision.   
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