
	

Exploring	Computational	Thinking	Concepts,	Practices,	and	Dispositions	in	K-12	Computer	
Science	and	Engineering	

	
By	

Amanda	M.	Bell	

	

Thesis	

Submitted	to	the	Faculty	of	the	

Graduate	School	of	Vanderbilt	University	

in	partial	fulfillment	of	the	requirements	

for	the	degree	of		

MASTER	OF	SCIENCE	

in	

Learning,	Teaching,	and	Diversity	

May	31,	2018	

Nashville,	Tennessee	

	

Approved:	

Melissa	S.	Gresalfi,	Ph.D.	

Douglas	B.	Clark,	Ph.D.	

Corey	E.	Brady,	Ph.D.	

	

	 ii	

TABLE	OF	CONTENTS		

Page	

Introduction	..	1	
Computational	Thinking	in	Society	..	2	
CT	vs.	CS	vs.	Programming	...	4	
Contexts	of	Focus:	Computer	Science	and	Engineering	..	6	

	
Theoretical	Framework	...	8	
	
Literature	Search	...	14	
	
Computational	Thinking	in	Computer	Science	...	15	
Concepts	..	15	
Practices	..	16	
Dispositions	...	20	
Learning	CT	Concepts	and	Practices	in	K-12	Computer	Science	...	22	
CT	Identity	Development	and	Dispositions	in	K-12	Computer	Science	26	

	
Computational	Thinking	in	Engineering	...	31	
Concepts	..	32	
Practices	..	32	
Dispositions	...	36	
Learning	CT	Practices	in	K-12	Engineering	...	37	
CT	Identity	Development	and	Dispositions	in	K-12	Engineering	..	39	

	
Discussion	...	41	
	
Conclusion	..	44	
	
REFERENCES	...	45	

	 1	

Introduction	

	 Increasingly,	educators	and	policymakers	value	computer	science	(CS)	education	for	

its	ability	to	prepare	students	for	the	growing	number	of	jobs	in	computing	fields	and	for	

its	potential	to	equip	learners	with	problem-solving	skills	and	technological	knowledge.	

While	the	traditional	method	of	learning	CS	through	programming	teaches	students	about	

programming	languages	and	algorithms,	students	should	also	have	access	to	the	concepts	

and	practices	computer	scientists	use	to	solve	problems,	referred	to	as	computational	

thinking	(CT).	CT	empowers	learners	to	use	programming	as	a	tool	to	generate	innovative	

solutions	to	problems,	to	become	thoughtful	technology	users	in	their	everyday	lives,	to	

apply	logical	thinking	to	a	variety	of	situations,	and	to	prepare	for	jobs	using	technology	

across	a	variety	of	fields.	

	 New	initiatives	in	CS	education	call	for	the	integration	of	CT	into	K-12	schools.	

President	Obama’s	Computer	Science	for	All	initiative	articulated	the	need	to	expose	all	

students	to	“computational	thinking	skills	that	are	relevant	to	many	disciplines	and	

careers”	(Smith,	2016).	CT	was	one	of	the	five	main	conceptual	strands	in	the	2011	K-12	CS	

standards	developed	by	the	Computer	Science	Teachers	Association	(CSTA).	Now	CSTA,	

along	with	the	Association	for	Computing	Machinery	(ACM),	are	updating	the	CS	standards	

and	integrating	CT	throughout	the	concepts	and	practices	(CSTA	&	ACM,	2016).	At	the	same	

time,	CSTA	and	the	International	Society	of	Technology	in	Education	(ISTE)	created	a	

toolkit	to	help	teachers	and	school	leaders	advocate	for	and	develop	a	CT	curriculum	(ISTE	

&	CSTA,	2011).	These	initiatives	demonstrate	educators’	and	policymakers’	focus	on	CT	as	

an	important	part	of	CS	education	for	all	students.		

	 Taking	CT	learning	a	step	further,	many	researchers	are	beginning	to	explore	the	

integration	of	CT	with	STEM	(science,	technology,	engineering,	and	mathematics)	fields	and	

other	disciplines.	The	Next	Generation	Science	Standards	(NGSS)	also	include	examples	of	

CT	in	their	science	and	engineering	practices	for	grades	K-12	(NGSS,	2013).	By	

incorporating	CT	into	existing	school	subjects,	researchers	hope	to	address	several	factors	

that	hinder	“CT	for	all”	efforts:	(1)	all	students	would	be	exposed	to	CT	if	it	is	part	of	their	

core	subjects	rather	than	an	elective	computing	course;	(2)	it	would	save	time	to	teach	CT	

during	an	existing	subject	rather	than	adding	a	course	to	busy	school	schedules;	(3)	it	may	

	 2	

be	easier	to	train	teachers	if	CT	is	incorporated	as	part	of	what	they	already	do;	and	(4)	not	

all	schools	have	access	to	advanced	technology	to	support	CS	classes	(Horn	et	al.,	2014;	Hu,	

2011;	Sneider,	Stephenson,	Schafer,	&	Flick,	2014;	Weintrop	et	al.,	2016;	Wilensky,	Brady,	

&	Horn,	2014).	In	fact,	a	study	examining	school-wide	integration	of	computing	at	the	

elementary	level	found	that	classroom	teachers	could	only	teach	computing	by	integrating	

it	into	their	content	areas	because	the	pre-existing	curriculum	was	too	time-consuming	to	

introduce	computing	on	its	own	(Israel	et	al.,	2015).	

	 Despite	these	initiatives	in	K-12	education,	researchers	still	do	not	have	a	strong	

consensus	about	what	CT	is	and	how	it	is	applied	in	different	contexts.	A	better	

understanding	of	how	people	use	CT	in	a	variety	of	fields	is	necessary	to	meaningfully	

integrate	CT	across	school	subjects	(Grover	&	Pea,	2018).	Furthermore,	in	order	to	engage	

all	students	in	CT,	not	just	those	predisposed	to	computing,	researchers	need	to	

understand	how	students	can	legitimately	participate	in	a	CT	learning	community	through	

richly	varied	experiences.	Therefore,	my	questions	in	this	paper	are:	what	does	CT	look	

like	in	different	contexts,	and	how	do	learners	engage	in	CT	in	these	different	K-12	

learning	communities?	In	the	section	titled	“Contexts	of	Focus”	below,	I	discuss	why	I	

chose	to	explore	CT	in	the	context	of	computer	science	and	engineering	in	this	paper.	My	

goal	is	to	expand	ideas	of	what	it	means	to	be	a	competent	computational	thinker	by	

identifying	elements	of	CT	from	CS	then	discussing	how	people	use	CT	skills	in	other	

disciplines	outside	CS.	

Computational	Thinking	in	Society	

Computers	are	no	longer	a	specialized	tool	but	are	pervasive	in	our	society.	

Therefore,	“the	ability	to	extend	the	power	of	human	thought	with	computers	and	other	

digital	tools	has	become	an	essential	part	of	our	everyday	lives	and	work”	(Barr,	Harrison,	

&	Conery,	2011,	p.	23).	Computer	scientists	employ	CT	skills	to	ask	questions	and	solve	

problems	across	disciplines	using	computers.	At	a	workshop	organized	by	the	National	

Research	Council	in	2009	to	discuss	the	scope	and	nature	of	CT,	attendees	argued	that	CT	is	

“comparable	in	importance	and	significance	to	the	mathematical,	linguistic,	and	logical	

reasoning	that	society	today	agrees	should	be	taught	to	all	children”	(National	Research	

Council,	2010,	p.	3).	

	 3	

This	emphasis	on	the	importance	of	computing	in	our	society	is	not	new.	For	

decades,	there	have	been	appeals	for	widespread	integration	of	computing	skills	into	all	

levels	and	types	of	education	(Weintrop	et	al.,	2016).	In	1962,	Perlis,	the	first	recipient	of	

the	ACM	Turing	Award,	claimed	that	all	undergraduates	should	learn	programming	

(Guzdial,	2008).	Papert	(1980)	later	argued	for	introducing	a	literacy	of	computing	to	

children,	and	he	used	CT	to	describe	the	ability	of	computing	to	empower	ideas	(Papert,	

1996).	diSessa	(2000)	called	for	a	new	form	of	computational	literacy	that	changes	the	way	

we	all	communicate,	learn,	and	live	with	technology.	More	recently,	there	has	been	a	

resurgence	in	interest	in	CT	from	the	perspective	of	21st	century	skills	preparing	students	

for	a	job	market	that	increasingly	involves	technology	creation	and	use	(Grover	&	Pea,	

2013;	Wing,	2006).	

However,	participation	in	computing	fields	remains	low	in	the	U.S.	By	2024,	there	

could	be	a	predicted	1.1	million	jobs	in	computing	fields	(National	Center	for	Women	and	

Information	Technology,	2017),	but	less	than	17,000	people	graduated	with	computer	

science	or	programming	degrees	in	2015,	including	fewer	than	3,000	women	(Snyder,	

2016).		Exposing	students	to	computer	science	before	they	enter	college	is	essential	for	

increasing	the	number	and	variety	of	computing	majors,	as	students	are	8	times	more	likely	

to	major	in	computer	science	after	taking	an	AP	CS	course	in	high	school	(Mattern,	Shaw,	&	

Ewing,	2011).	Furthermore,	jobs	in	computing	tend	to	be	intellectually	rewarding	and	high	

paying;	the	median	annual	wage	was	over	$80,000	in	2015,	much	higher	than	the	overall	

median	annual	wage	for	all	jobs	of	$36,000	(Bureau	of	Labor	Statistics,	2017).	But	the	vast	

majority	of	those	jobs	are	held	by	men.	The	proportion	of	women	in	computing	jobs	has	

actually	decreased	since	1990,	down	to	25%	in	2015	(NCWIT,	2017).	Just	7%	of	workers	in	

computing	in	2014	identified	as	Black	and	7%	as	Hispanic	(Beckhusen,	2016).	The	high	

wages	of	computing	jobs	highlights	the	value	our	society	places	on	that	work,	but	the	

diversity	of	participation	in	those	jobs	is	limited.		“If	the	population	of	people	creating	

software	is	more	closely	matched	to	the	population	using	software,	the	software	designed	

and	released	will	probably	better	match	users	needs”	(Kelleher	&	Pausch,	2005,	p.	131).		

Computer	scientists	and	engineers	design	tools	that	are	integral	to	lives	across	the	world,	

so	it	makes	little	sense	that	the	vast	majority	of	those	designers	only	represent	one	type	of	

	 4	

person.	The	challenge	we	face	today	is	both	to	increase	engagement	in	technological	

creation	and	to	ensure	the	field	is	representative	of	our	diverse	population.

Stereotypes	of	what	CS	jobs	entail	and	the	image	of	loner,	nerdy,	male	programmers	

still	perpetuate	and	undermine	diversity	in	computing	fields.	Stereotypes	often	serve	as	

gatekeepers	for	women	in	particular,	hindering	learning	(Cheryan,	Master,	&	Meltzoff,	

2015)	and	decreasing	sense	of	belonging	(Master,	Cheryan,	&	Meltzoff,	2016).	K-12	schools	

play	an	important	role	in	introducing	a	variety	of	students	to	CS	and	potentially	changing	

their	perceptions	of	what	CS	is	and	who	can	participate	in	it.	

CT	vs.	CS	vs.	Programming	

	 The	lines	between	CT,	CS,	and	programming	can	sometimes	be	blurred	in	

educational	contexts.	The	best	articulation	of	the	interconnections	among	the	three	I	have	

found	is	a	blog	post	written	by	software	engineer,	author,	and	startup	co-founder	Yevgeniy	

Brikman.	Rather	than	learning	programming,	Brikman	(2014)	articulates	the	importance	of	

learning	to	think.	First,	programming	is	just	what	it	sounds	like:	writing	code,	whether	on	

paper	or	on	the	computer.	Programming	involves	speaking	a	particular	language	to	a	

computer	to	get	the	computer	to	do	something.	It	could	involve	creating	a	piece	of	

software,	an	app,	a	website,	or	it	could	be	as	simple	as	using	a	computer	to	calculate	a	

multiplication	problem.	Programming	is	a	tool	to	help	solve	a	problem	or	perform	a	

computation.	It	is	a	common	tool	used	by	computer	scientists,	but	programming	does	not	

define	what	computer	science	is.	The	brain	is	also	a	tool	for	computation;	it	can	think	

logically,	solve	problems,	and	run	calculations.	

	 Computer	science,	on	the	other	hand,	is	a	broad	discipline	that	includes	software	

engineering,	algorithm	design,	problem	solving,	computational	theory,	artificial	

intelligence,	information	theory,	logic,	and	more.	Every	discipline	involves	particular	ways	

of	thinking,	and	part	of	learning	to	participate	in	a	field	involves	learning	those	ways	to	

think.	For	instance,	physics	gives	us	a	particular	way	of	thinking	about	the	physical	world	

through	calculus	and	in	terms	of	matter,	motion,	and	forces.	Chemistry	gives	us	a	way	of	

thinking	about	matter	in	terms	of	structure,	properties,	and	reactions.	Computational	

thinking	refers	to	the	ways	of	thinking	computer	scientists	use.	The	idea	of	CT	is	to	

articulate	how	computer	scientists	think	and	solve	problems	so	others	can	learn	to	think	in	

	 5	

a	similar	way.	Programming	is	just	one	tool	for	exercising	that	way	of	thinking,	in	the	same	

way	chemists	perform	experiments	using	test	tubes	(Brikman,	2014).	

	 While	chemistry	may	involve	its	own	way	of	thinking	about	the	world,	the	skills	

chemists’	use	also	leak	into	other	fields	of	study,	like	physics,	biology,	medicine,	and	

engineering.	For	instance,	biochemistry	is	a	hybrid	field	that	takes	the	ability	to	think	about	

chemical	processes	and	applies	it	to	living	creatures.	According	to	the	UK	Biochemical	

Society,	this	cross-application	has	contributed	significant	advances	in	the	areas	of	health,	

disease,	technology,	and	more	(Biochemical	Society,	2017),	demonstrating	that	applying	

disciplinary	thinking	skills	across	contexts	creates	innovative	solutions	and	technological	

advances.	In	much	the	same	way,	the	ability	to	think	logically	and	computationally	can	leak	

outside	the	CS	field	and	help	solve	problems	in	other	endeavors.	Regardless	of	the	subject	

matter,	the	constant	increase	in	technology	across	different	cultures	strengthens	the	call	

for	an	understanding	of	how	people	use	CT	to	think	with	and	solve	problems	through	

technology.	

	 Computer	literacy	is	another	term	people	use	around	computing	professions,	but	it	

often	can	refer	to	the	knowledge	of	specific	programs,	like	Word	or	Adobe	Photoshop,	and	

components	of	computers,	like	using	a	mouse	and	keyboard.	Some	researchers	use	the	

term	computational	literacy,	which	is	closer	to	CT	but	not	exactly	the	same.	While	reading	

and	writing	are	fundamental	to	education,	diSessa	(2000)	argues	that	computational	

literacy	is	also	crucial	to	creating	knowledgeable	people.	In	much	the	same	way	the	

invention	of	the	printing	press	changed	mainstream	literacy,	the	proliferation	of	computers	

changes	our	current	structures	of	literacy	and	what	it	means	to	be	a	literate	person.	

Computational	literacy	is	a	“material	intelligence”	that	is	mediated	by	materials	such	as	

symbols	and	representations,	it	involves	the	ways	we	think	in	the	presence	of	those	

materials,	and	it	is	a	social	endeavor,	developing	with	other	individuals	across	time	and	

space	(diSessa,	2000).	The	first	pillar	of	computational	literacy	--	materials	--	is	similar	to	

the	notion	of	programming	as	a	tool	and	programming	languages	as	an	inscription	or	

symbol	system	of	a	computer-based	literacy.	The	second	pillar	--	mental	processes	--	

includes	the	ways	in	which	people	think	and	solve	problems	with	computers	and	

programming	tools,	which	captures	the	essence	of	CT.	The	third	pillar	--	social	aspects	--	

goes	beyond	the	collaborative	processes	central	to	CT	to	describe	the	ways	in	which	

	 6	

knowledge	builds	over	long	periods	of	time	and	with	the	help	of	many	different	people.	

Therefore,	computational	literacy	includes	CT	but	has	the	more	ambitious	goal	of	

fundamentally	changing	modern	education,	which	goes	beyond	the	scope	of	this	paper.	

	 However,	educators	are	increasingly	focused	on	teaching	CT	rather	than	just	

programming.	Whereas	learning	to	program	gives	students	tools	for	exercising	CT,	learning	

how	to	think	like	a	computer	scientist	helps	students	adapt	to	constantly	changing	

technological	innovations	and	computing	problems.	While	researchers	are	still	working	to	

build	a	clear	operational	definition	of	CT	(Grover	&	Pea,	2013),	many	agree	with	the	idea	of	

CT	as	“solving	problems,	designing	systems,	and	understanding	human	behavior,	by	

drawing	on	the	concepts	fundamental	to	computer	science”	(Wing,	2006,	p.	33).	CT	is	a	way	

of	thinking	that	allows	people	to	create	algorithms	or	solutions	to	problems	in	such	a	way	

that	they	can	be	carried	out	by	a	computational	agent,	whether	that	is	a	computer	or	a	

human	(Brennan	&	Resnick,	2012).	Computational	participation	is	another	term	used	to	

emphasize	the	social	and	creative	practices	at	the	core	of	what	computer	scientists	do	

(Kafai,	2016).	Computational	participation	is	also	a	form	of	diSessa’s	(2000)	third	pillar,	

with	its	focus	on	the	social	aspects	of	computing.	Ultimately,	as	students	learn	CT,	they	

develop	ways	of	participating	in	communities	of	learners	and	computational	thinkers	

(National	Research	Council,	2010).		

Contexts	of	Focus:	Computer	Science	and	Engineering	

	 With	initiatives	like	CS	for	All	and	the	inclusion	of	CT	in	computing,	science,	and	

engineering	education	standards,	educators	need	ways	to	get	all	students,	not	just	those	

predisposed	to	computers,	engaged	in	CT	skills.	Many	public	and	private	funding	agencies	

support	STEM	and	STEAM	(integrating	arts	into	STEM	subjects)	projects,	highlighting	the	

public’s	interest	in	engaging	students	in	multidisciplinary	experiences	that	focus	on	not	just	

computing	but	also	integrating	those	skills	across	science,	mathematics,	engineering,	and	

the	arts	(Feldman,	2015;	Handelsman	&	Smith,	2016;	Jagodzinski,	2016).	Research	aimed	at	

better	understanding	how	these	subjects	intersect	is	essential	for	creating	learning	

environments	that	truly	embody	interdisciplinary	mindsets	and	allow	students	to	apply	

problem	solving	strategies	across	disciplines.	While	CT	is	closely	tied	to	the	T	(Technology)	

in	STEAM	through	its	roots	in	computing,	in	this	paper,	I	seek	to	improve	understandings	of	

	 7	

CT	while	advancing	its	integration	with	other	disciplines	by	exploring	connections	to	other	

STEAM	subjects,	namely,	engineering.	

	 To	explore	applications	of	CT	in	technology,	I	focus	on	computer	programming	as	a	

tool	for	engaging	in	CT	skills.	Programming	is	a	common	educational	tool	for	CT.	It	provides	

many	problem-solving	activities	and	empowers	students	to	learn	through	creating	their	

own	artifacts	that	can	be	shared	with	others	(Papert,	1980).	In	other	words,	programming	

can	introduce	students	to	the	tools	used	by	professional	computer	scientists,	but	it	can	also	

empower	students	to	use	CT	skills	to	solve	a	variety	of	computational	problems.	Designers,	

researchers,	and	educators	have	developed	numerous	tools	for	learning	programming,	

both	with	and	without	computers.	

	 I	chose	to	explore	engineering	(the	E	in	STEAM)	as	the	second	disciplinary	context	

for	defining	CT	for	several	reasons.	Given	the	recent	increase	in	engineering	education	in	

U.S.	classrooms	(Catterall,	2013;	National	Academy	of	Engineering	and	National	Research	

Council,	2009;	Robelen,	2013),	it	is	important	to	understand	how	engineering	connects	to	

other	school	subjects,	including	CS.	Engineering	can	improve	student	learning	in	other	

STEAM	contexts	by	connecting	disciplinary	concepts	and	practices	to	real-world	problems	

(Catterall,	2013;	NAE	&	NRC,	2009).	At	the	same	time,	engineering	“can	provide	a	way	to	

integrate	the	STEM	disciplines	meaningfully”	(Moore	et	al.,	2014,	p.	2)	by	applying	skills	

from	mathematics,	science,	and	CS	to	create	solutions	to	problems.	Thus,	engineering	may	

be	a	powerful	context	for	learning	and	applying	CT	concepts	and	practices.	One	branch	of	

engineering,	software	engineering,	is	part	of	the	computer	science	field	and	involves	

significant	programming	work.	But	beyond	software	engineering,	recent	NGSS	standards	

illustrated	connections	between	CT	and	broader	engineering	practices	(NGSS,	2013).	CT	

and	CS	education	have	roots	in	constructionism,	which	emphasizes	learning	through	the	

design,	building	and	discovery	practices	at	the	core	of	engineering	(Lucas,	Hanson,	Claxton,	

&	Centre	for	Real	World	Learning,	2014;	Papert,	1980).	It	then	follows	that	CT	would	have	

deep	connections	to	engineering	processes,	making	the	engineering	field	a	strong	

candidate	for	exploring	what	CT	is	and	how	it	overlaps	with	different	disciplines.			

	

	 8	

Theoretical	Framework	

By	looking	at	how	CT	is	re-contextualized	in	CS	and	engineering,	I	seek	to	

understand	how	students	can	engage	in	CT	in	rich	and	meaningful	ways.	Both	students	who	

like	programming	and	those	with	interests	outside	computing	should	be	able	to	participate	

in	the	practices	of	CT	and	take	on	legitimate	roles	in	the	CT	learning	community.	I	am	

curious	about	how	students	can	participate	in	CT	in	rich	and	meaningful	ways	and	how	

participation	relates	to	students’	interests	in,	experiences	with,	and	beliefs	about	

computing.	Therefore,	in	the	next	sections,	I	draw	on	perspectives	of	situated	learning	and	

legitimate	peripheral	participation	(Lave	&	Wenger,	1991)	to	understand	what	it	means	to	

be	a	computational	thinker	in	different	contexts.		

Historically,	research	in	education	focused	on	understanding	the	knowledge	

students	acquire	and	how	they	learn	it.	The	development	of	situative	theories	

demonstrates	that	knowledge	and	practices	are	tied	together,	and	the	activities	people	

engage	in	are	central	to	and	make	up	the	knowledge	being	developed	(Cobb	&	Bowers,	

1999).	In	situative	perspectives,	learning	involves	a	change	in	participation	with	a	set	of	

resources	or	activities	in	addition	to	changes	in	ways	of	thinking	(Gresalfi,	Martin,	Hand,	&	

Greeno,	2009;	Hand	&	Gresalfi,	2015;	Lave	&	Wenger,	1991;	Nasir	&	Cooks,	2009).	Essential	

to	this	framework	is	the	idea	that	productive	learning	happens	through	legitimate	

peripheral	participation	(LPP),	that	is,	when	people	have	access	to	the	core	practices	of	a	

community	of	practitioners	and	opportunities	to	participate	more	fully	over	time	(Lave	&	

Wenger,	1991).	LPP	asks	what	kinds	of	social	situations	provide	a	context	for	learning,	

rather	than	what	cognitive	processes	take	place	in	the	individual.	LPP	describes	

engagement	in	social	practice	as	distributed	among	co-participants	in	a	learning	context,	

with	a	focus	on	participation	in	the	social	world.	In	this	way,	learning	occurs	through	

interactions	in	communities	of	practice	both	inside	and	outside	the	formal	classroom.	

Communities	of	practice	(CoP)	are	groups	of	people	engaging	in	a	similar	craft	or	

profession	(Lave	&	Wenger,	1991;	Wenger,	2010).	Through	sharing	information	and	

experiences,	members	learn	from	each	other	and	develop	their	identities	in	relation	to	a	

broader	community.	People	in	a	CoP	are	active	practitioners,	as	opposed	to	a	community	of	

interest	that	involves	people	with	a	shared	interest	without	dependence	on	expertise	or	

	 9	

practice	(Wenger,	2010).	CoPs	involve	relations	among	people,	activities,	and	the	world	

across	time	and	space.	Different	communities	overlap	with	one	another,	and	people	are	

members	of	multiple	communities	at	a	time.	

During	the	learning	process,	the	community	itself	changes.	It	is	not	just	the	novice	

who	learns,	but	the	expert	and	the	skill	itself	also	change	in	some	way.	LPP	moves	learners	

toward	fuller	participation	in	a	community.	People	start	by	participating	in	tasks	that	are	

meaningful	and	productive	to	the	community	but	have	minimal	risk.	Through	this	work,	

novices	slowly	become	familiar	with	the	languages,	tasks,	and	practices	of	a	community.	As	

they	continue	to	participate	over	time,	they	take	on	more	aspects	and	responsibilities,	and	

their	participation	becomes	more	central	to	the	functioning	of	the	community.	The	

legitimate	peripheral	nature	implies	that	learners	can	change	perspectives	in	the	

community	as	part	of	learning	and	developing	identities,	and	there	is	no	single	core	to	the	

community.	There	are	different	ways	of	being	full	participants.	

As	an	example	of	learning	through	LPP,	we	can	think	about	the	trajectory	of	a	

doctoral	student.	First	year	graduate	students	working	as	research	assistants	may	start	by	

reading	papers	written	by	their	advisors	and	correcting	typos	or	filling	in	missing	

references	in	the	bibliography.	This	work	is	necessary	and	important,	which	allows	the	

newcomer	to	contribute	to	the	academic	community	even	in	a	peripheral	way,	but	it	is	not	

too	costly	if	mistakes	are	made.	Over	time,	the	graduate	student	may	contribute	to	writing	

a	paper	with	an	advisor,	collect	data	with	a	research	team,	then	eventually	conduct	their	

own	research	and	publish	their	own	papers.	In	their	first	year	of	study,	a	student	may	not	

feel	like	an	important	member	of	the	community,	but	over	years	of	becoming	a	fuller	

participant,	they	may	develop	a	closer	relationship	and	sense	of	belonging	with	the	

academic	community.	In	this	way,	the	graduate	students	are	learning,	changing	their	forms	

of	participation	and	roles	within	the	community,	and	constructing	identities	in	relation	to	

the	community	of	academic	practitioners	in	their	field.	It	may	not	always	feel	like	it	to	

graduate	students,	but	as	long	as	they	have	access	to	expert	mentors	and	authentic	

practices,	they	are	slowly	transforming	their	identities	and	learning	to	become	real	

researchers	and	full	members	of	the	field.	Thus,	learning	involves	becoming	a	member	of	a	

community	and	results	in	a	change	in	relationship	with	respect	to	a	community.	A	

	 10	

newcomer’s	“changing	knowledge,	skill,	and	discourse	are	part	of	a	developing	identity”	

(Lave	&	Wenger,	1991,	p.	122).	

Many	scholars	point	to	issues	of	identity	as	critical	to	learning	and	engagement	(e.g.	

Boaler	&	Greeno,	2000;	Hand	&	Gresalfi,	2015;	Holland,	Lachicotte,	Skinner,	&	Cain,	1998;	

Wenger,	1998).	In	mathematics	education,	researchers	have	argued	for	the	importance	of	

understanding	how	students	develop	views	of	themselves	as	members	in	the	discipline	and	

as	capable	of	learning	and	doing	mathematics	(Martin,	2000;	Nasir,	2002;	Nasir	&	de	

Royston,	2013).	How	learners	view	themselves	affects	how	they	engage	in	learning	

contexts,	and	their	engagement	is	shaped	by	the	opportunities	afforded	for	participation	

(Nasir	&	de	Royston,	2013).	

In	LPP,	identity	and	learning	are	inextricably	tied	to	changes	in	participation	with	

resources	and	activities	in	a	particular	social	context	(Greeno	&	Gresalfi,	2008;	Hand	&	

Gresalfi,	2015;	Lave	&	Wenger,	1991;	Nasir	&	Cooks,	2009).	In	other	words,	both	learning	

and	identity	are	the	result	of	participation	in	communities	of	practice	(Wenger,	1998).	

Identities	form	through	participation,	and	learning	involves	becoming	a	legitimate	

participant	and	member	of	the	community	(Lave	&	Wenger,	1991).	Learning	involves	a	

shift	in	participation	with	artifacts	or	resources,	while	the	ways	in	which	resources	are	

used	and	participation	occurs	depend	on	the	learner’s	identity	(Nasir	&	Cooks,	2009;	

Gresalfi	et	al.,	2009).	Learning	involves	changes	in	ways	of	acting	in	relation	to	the	norms	

and	resources	of	a	community,	and	at	the	same	time,	identity	affects	what	people	learn,	

how	they	engage,	and	what	they	choose	to	pursue	(Bishop,	2012).

Identities	“play	a	fundamental	role	in	enhancing	(or	detracting	from)	our	attitudes,	

dispositions,	emotional	development,	and	general	sense	of	self”	(Bishop,	2012,	pp.	34–35).	

Rather	than	a	single,	static	sense	of	self,	identity	is	a	mixture	of	changing	representations	

negotiated	based	on	how	people	view	themselves,	how	they	are	positioned	by	others,	their	

engagement	with	norms,	practices,	cultural	tools,	past	experiences,	ways	of	participating,	

feelings	and	beliefs,	and	the	particular	social	context	(Bishop,	2012;	Gee,	2000;	Hand	&	

Gresalfi,	2015;	Holland	et	al.,	1998;	Wenger,	1998).	Any	individual	has	many	identities	

across	communities	that	are	negotiated	and	inform	each	other	(Holland	et	al.,	1998).	

Individuals	can	control	their	identities	in	some	ways	but	they	are	limited	by	relations	of	

structure	and	power	in	the	broader	context	of	participation	(Brickhouse	&	Potter,	2001).	A	

	 11	

student	may	claim	an	identity	but	their	interactions	with	others	may	adjust	the	strength	or	

form	of	that	identity	as	it	is	enacted	over	time	and	space.

CS	learning	contexts,	such	as	the	classroom	or	informal	club,	are	particular	

communities	of	practice	where	learning	occurs	through	changes	in	participation	in	relation	

to	the	norms	and	practices	of	the	community.	At	the	same	time,	identities	develop	

according	to	“who	students	are,	who	they	can	be,	and	who	they	want	to	be,	as	sanctioned	

by	the	norms	of	the	classroom”	(Tan,	Calabrese	Barton,	Kang,	&	O’Neill,	2013,	p.	1145).	

Identity	involves	how	people	see	themselves	in	relation	to	the	community,	but	also	how	

others	see	them	and	how	they	are	allowed	to	participate	and	contribute	to	the	community.	

Both	individual	and	shared	identities	are	continuously	negotiated	through	interaction	with	

others	and	through	engaging	in	the	practices	of	a	community. Students’	engagement,	

persistence,	and	goals	mediate	both	identity	and	learning	(Nasir	&	Cooks,	2009).

Nasir	&	Hand	(2008)	use	the	term	“practice-linked	identities”	to	refer	to	this	notion	

of	identity	as	a	sense	of	self	tied	to	activity.	These	“are	the	identities	that	people	come	to	

take	on,	construct,	and	embrace	that	are	linked	to	participation	in	particular	social	and	

cultural	practices”	(p.	147).	This	view	of	identity	is	tied	to	the	notion	of	engagement.	

Various	practices	afford	different	types	of	engagement,	which	support	practice-linked	

identity	development	in	different	ways.	For	instance,	when	an	individual	feels	a	close	

connection	between	their	developing	sense	of	self	and	the	practices	of	a	community,	the	

individual	is	more	likely	to	be	engaged	and	to	participate	intensely	(Nasir	&	Hand,	2008).	

Hence,	some	settings	support	engagement	for	particular	individuals	better	than	others	do.	

At	the	same	time,	some	activities	may	afford	more	ways	of	participating	than	others,	

allowing	students	to	engage	in	different	ways.	This	in	turn	supports	students	to	see	

themselves	as	capable	of	participating	in	those	practices	and	developing	a	productive	sense	

of	self	in	relation	to	the	particular	community.	

As	work	on	identity	construction	reveals,	membership	in	a	community	is	mediated	

by	the	possible	forms	of	participation	people	have	access	to,	including	physical	and	social	

tools.	Learners	must	have	opportunities	to	use	the	tools	and	participate	in	the	activities	of	a	

community	to	develop	understanding	and	a	sense	of	belonging.	For	instance,	if	novices	can	

directly	observe	expert	practice,	then	they	have	a	better	understanding	of	the	organization	

of	the	community	and	where	their	work	fits	in.	But	if	newcomers	have	little	access	to	the	

	 12	

tools	and	broader	community,	they	can	stagnate	in	the	same	role	over	many	years	and	

never	achieve	fuller	participation	(Lave	&	Wenger,	1991).	Thus,	access	to	resources	and	

opportunities	to	learn	are	essential.	Therefore,	we	must	first	understand	what	the	

community’s	tools	and	activities	are	before	we	can	design	for	learning.	In	the	case	of	

integrating	CT	into	K-12	schools,	researchers	must	first	identify	the	central	characteristics	

of	the	professional	computing	community,	including	the	domain	of	knowledge,	the	

practices	or	activities,	and	the	ways	of	approaching	activity	within	the	community.	

In	the	LPP	framework,	changes	in	participation	occur	in	three	different	ways.	First,	

the	tools	or	resources	people	leverage	to	solve	problems	change	as	they	develop	new	

knowledge	and	better	understandings.	Instead	of	tools,	I	use	the	term	concepts	in	this	

paper	to	reflect	the	language	most	researchers	use	to	classify	what	people	learn	when	they	

engage	in	CT	(e.g.	Barr	&	Stephenson,	2011;	Brennan	&	Resnick,	2012;	Weintrop	et	al.,	

2016).	Learning	also	involves	engaging	in	disciplinary	practices.	That	is,	learners	make	use	

of	the	core	activities	or	processes	used	by	the	community.	Finally,	over	time,	learners	

develop	identities	towards	the	disciplinary	community.	The	activities	children	experience	

in	formal	and	informal	learning	contexts	help	form	their	identities	in	relation	to	different	

disciplines,	which	affects	the	ways	in	which	students	use	their	knowledge	and	approach	

new	problems	(Boaler,	2002).	Boaler	(2002)	calls	this	type	of	identity	a	“disciplinary	

relationship.”	These	identities	describe	relationships	to	others,	ways	of	being,	or	views	of	

oneself	in	relation	to	the	discipline.	In	this	paper,	I	use	the	term	dispositions	to	connect	this	

type	of	disciplinary	identity	with	work	on	productive	dispositions.	Research	on	productive	

dispositions	claims	that	students	need	to	develop	thinking	skills	along	with	the	appropriate	

dispositions	to	use	those	skills	(Gresalfi	&	Cobb,	2006;	McLeod,	1992;	Schoenfeld,	1992).	

Making	use	of	knowledge	depends	on	the	practices	students	have	engaged	in	and	whether	

they	have	a	productive	relationship	or	disposition	towards	the	discipline	(Boaler,	2002).	

My	use	of	the	term	disposition	also	corresponds	with	Brennan	and	Resnick’s	(2012)	focus	

on	dispositions	in	their	assessments	of	CT	skills.		

As	mentioned	briefly,	this	framework	of	concepts,	practices,	and	dispositions	

corresponds	with	how	many	researchers	now	talk	about	CT	in	educational	contexts	(Barr	&	

Stephenson,	2011;	Brennan	&	Resnick,	2012;	Shute,	Sun,	&	Asbell-Clarke,	2017;	Weintrop	

et	al.,	2016).	CT	concepts	are	notions	or	ideas	used	as	tools	in	the	construction	of	

	 13	

algorithms	and	problem	solutions.	CT	practices	include	processes	of	constructing	

algorithms	or	solutions.	While	concepts	describe	knowledge	and	understandings,	practices	

describe	how	people	participate	and	use	concepts	while	creating	solution	processes.	At	the	

same	time,	learners’	dispositions	towards	CT	affect	their	engagement	and	ways	of	

participating	in	activities	involving	CT.	Learners	need	not	only	the	skills	and	knowledge	of	

a	community	but	also	the	inclination	to	recognize	when	skills	are	useful	and	the	willingness	

to	use	them	(Halpern,	1999).	Brennan	and	Resnick	(2012)	refer	to	these	understandings	of	

oneself	and	relationships	with	the	discipline	of	CT	as	“perspectives.”	However,	in	this	paper	

I	use	the	more	familiar	term	“dispositions”	as	it	connects	to	work	on	productive	

engagement	and	productive	disciplinary	relationships	in	the	broader	field	of	education.		

I	use	these	categories	of	concepts,	practices,	and	dispositions	to	describe	what	it	

means	to	know	and	participate	in	CT	in	different	contexts.	In	other	words,	participating	in	

CT	involves	using	one	or	more	of	the	CT	practices,	and	knowing	CT	involves	understanding	

CT	concepts	or	being	able	to	describe	and	engage	in	CT	practices.	At	the	same	time,	CT	

dispositions	affect	whether	people	can	productively	engage	in	those	practices	and	develop	

understandings	of	CT	concepts.		

In	this	paper,	I	draw	on	the	framework	of	LPP	with	the	goal	of	broadening	ideas	of	

what	it	means	to	be	competent	or	legitimate	computational	thinkers.	First,	I	describe	the	

ways	in	which	researchers	define	CT	in	CS	contexts,	and	then	I	look	to	engineering	to	see	

how	people	in	the	field	legitimately	use	CT	practices	when	designing	solutions	to	problems.	

By	highlighting	the	overlaps	between	CT	and	other	disciplines,	I	illustrate	how	people	can	

legitimately	engage	in	CT	and	act	as	competent	computational	thinkers	outside	the	

traditional	boundaries	of	computing.	While	I	separate	learning	and	identity	in	the	sections	

below	on	CT	in	engineering	and	CS	to	better	structure	and	clarify	the	literature	review,	

learning	and	identity	are	intricately	tied	together	in	LPP.	They	influence	one	another,	and	

both	change	as	a	consequence	of	participation.				

	

	

	 14	

Literature	Search	

	 I	first	wanted	to	look	at	how	researchers	and	policy	makers	characterize	CT	and	CT	

learning	in	CS	and	in	engineering.	For	the	CT	in	CS	track,	I	started	with	highly	cited	anchor	

readings,	including	Wing	(2006;	2008)	and	Grover	&	Pea	(2013),	and	I	collected	articles	

based	on	their	citations	as	well	as	articles	citing	them.		I	continued	looking	at	those	

subsequent	articles’	citations	to	find	further	work.	Much	of	what	I	found,	especially	for	

empirical	work,	came	from	conference	proceedings.	I	then	searched	for	CT	education	

standards,	and	I	looked	for	national	CS	standards	with	CT	embedded	in	them.		

	 For	CT	in	engineering,	there	were	no	anchor	papers	to	base	the	search	on,	and	I	

found	a	dearth	of	work	on	learning	engineering	in	K-12	in	general.	Therefore,	I	extended	

my	search	beyond	CT	specifically	to	articles	that	talk	about	general	engineering	practices.	I	

also	searched	for	national	engineering	education	standards	that	incorporate	CT	and	focus	

on	design,	since	design	is	where	the	overlap	with	CT	applies	across	engineering	fields.		

	 I	did	not	find	many	papers	in	the	CS	or	CT	fields	that	talked	about	identity	in	the	way	

I	conceptualize	it	here.	Instead,	I	found	papers	looking	at	beliefs,	motivation,	and	interest,	

so	I	include	those	constructs	in	my	literature	review	on	CT	identity	below.	On	the	other	

hand,	there	is	a	significant	amount	of	literature	about	identity	in	engineering	fields.	

However,	almost	all	the	work	focuses	on	adults	(college	students	and	professionals)	and	

primarily	around	belief	and	identification,	which	is	different	from	the	conceptualization	

based	on	participation	that	I	use	in	this	paper.	I	use	the	existing	literature	to	highlight	

potential	findings	related	to	CT	identity	from	work	on	beliefs,	interest,	and	motivation	in	CS	

and	engineering,	and	I	point	to	opportunities	for	further	exploration.		

	

	

	

	

	 15	

Computational	Thinking	in	Computer	Science	

	 Following	the	idea	that	learning	to	program	also	helps	people	learn	how	to	think,	

this	section	aims	to	identify	some	of	the	concepts	and	practices	involved	in	learning	to	

think	computationally	through	computer	programming.	CT	and	programming	are	deeply	

intertwined	here,	as	efforts	to	define	CT	have	started	by	looking	at	the	skills	programmers	

use	to	solve	problems	and	formulate	solutions.	In	this	context,	“solution”	refers	to	the	

process	of	coming	to	an	answer	rather	than	the	answer	itself.	While	algorithms	or	

programs	are	not	answers	on	their	own,	they	are	solutions	that	can	be	carried	out	by	a	

computational	agent	to	produce	an	answer	to	a	question	or	problem.	

Concepts	

In	essence,	“an	algorithm	is	an	abstraction	of	a	step-by-step	procedure	for	taking	

input	and	producing	some	desired	output”	(Wing,	2008,	p.	3718).	Since	CT	helps	solve	

problems	by	creating	algorithms,	abstraction	is	at	its	core	(Wing,	2006;	2008).	Abstraction	

involves	deciding	what	to	pay	attention	to	and	what	to	ignore	in	representing	and	

processing	data	(Weintrop	et	al.,	2016).	For	example,	when	you	want	to	print	something	

from	your	computer,	you	only	need	to	worry	about	finding	the	“print”	button;	you	do	not	

need	to	think	about	or	understand	the	mechanics	behind	how	a	printer	works,	how	data	is	

sent	to	the	printer,	etc.	In	essence,	much	of	the	printing	process	is	in	a	“black	box”	that	

users	can	ignore;	you	need	only	see	the	“print”	button	on	your	computer	screen.	Therefore,	

“the	print	command	is	an	abstraction	that	shows	the	user	only	what	he	or	she	needs	to	see”	

(National	Research	Council,	2004,	p.	16).	

While	abstraction	is	central	to	CT,	it	is	still	a	broad	concept	and	does	not	help	

educators	understand	how	to	implement	CT	and	what	to	pay	attention	to.	Some	

researchers	have	suggested	that	CT	is	similar	to	notions	of	procedural	thinking	developed	

by	Seymour	Papert	(National	Research	Council,	2010).	Procedural	thinking	involves	

thinking	in	and	about	procedures	for	performing	actions.	These	could	be	everyday	actions	

like	giving	someone	directions	or	more	complex	tasks	like	developing	programming	

algorithms.	Procedural	thinking	helps	people	break	down	complex	tasks	into	smaller	

components	and	debug	errors	in	the	solution	processes	(Papert,	1980).		

	 16	

Using	Scratch,	a	block-based	programming	language	developed	based	on	principles	

from	Papert’s	Logo	language,	Brennan	and	Resnick	(2012)	specified	the	connections	

between	CT	and	procedural	thinking.	Specifically,	CT	concepts	that	programmers	use	to	

think	procedurally	and	create	algorithms	include:	(i)	creating	and	following	sequences	of	

instructions;	(ii)	parallel	instructions	(executing	multiple	sets	of	instructions	at	the	same	

time);	(iii)	using	and	organizing	data;	(iv)	operating	on	data;	and	(v)	elements	of	control	

flow	like	looping	sets	of	instructions,	conditionals	(if	this	is	true	then	do	this),	and	events	

(when	this	happens	then	do	this)	(Brennan	&	Resnick,	2012;	CSTA,	2017;	Grover	&	Pea,	

2013).	An	analysis	of	programmers	with	years	of	experience	in	the	Scratch	online	

community	(https://scratch.mit.edu)	showed	that	they	make	use	of	a	wide	variety	of	

Scratch	blocks	that	involve	all	of	the	concepts	listed	above	(Brennan	&	Resnick,	2012).	

Furthermore,	Bers	and	colleagues	(2014)	demonstrated	that	children	as	young	as	four	can	

engage	in	these	CT	concepts,	like	sequencing	instructions	and	control	flow,	through	

tangible	programming	activities.	Thus,	even	novice	programmers	can	legitimately	

participate	in	the	CT	community	by	accessing	these	core	concepts	through	CS	education.	

Practices	

Beyond	understanding	programming	concepts,	CT	is	ultimately	a	way	of	thinking	

that	describes	“processes	of	construction”	(Brennan	&	Resnick,	2012,	p.	6)	used	to	solve	

problems.	Solving	problems	using	procedural	thinking	from	programming	involves	actively	

developing,	representing,	testing,	and	debugging	procedures	or	algorithms	(Papert,	1980).	

These	procedural	thinking	practices	map	onto	similar	CT	practices.	First,	developing	

procedures	or	algorithms	in	CT	involves	the	practice	of	being	incremental	and	iterative	

(Brennan	&	Resnick,	2012;	CSTA,	2017;	Grover	&	Pea,	2018;	Shute,	Sun,	&	Asbell-Clarke,	

2017).	For	example,	designing	an	algorithm	is	not	a	consecutive	process	but	involves	

adapting	plans	and	going	through	cycles	of	brainstorming	and	creating.	Even	experienced	

programmers	are	likely	to	make	errors	when	they	first	write	new	procedures,	so	revision	is	

expected	and	not	an	indication	of	someone’s	lack	of	programming	ability.	Instead,	both	

novice	and	expert	programmers	code	a	little	bit,	try	it	out,	and	adjust	it	or	move	forward	

based	on	what	they	find	and	the	new	ideas	they	generate	(Brennan	&	Resnick,	2012).	

Hence,	the	process	involves	iterating	on	solution	ideas.	

	 17	

Another	practice	many	programmers	use	when	developing	procedures	involves	

reusing	or	remixing	solutions	from	others	(Brennan	&	Resnick,	2012;	CSTA,	2017.	

“Remixing”	involves	starting	with	a	procedure	someone	else	has	written	and	changing	it	in	

some	way	to	achieve	a	new	goal.	New	technologies	allow	programmers	to	easily	exchange	

ideas,	access	each	other’s	work,	and	engage	in	reusing	and	remixing	practices.	Stack	

Overflow	(http://stackoverflow.com/)	is	just	one	example	of	a	popular	online	community	

where	programmers	of	all	levels	help	each	other	solve	problems	and	share	samples	of	code.	

Scratch	also	has	its	own	online	community	(https://scratch.mit.edu/)	for	programmers	to	

view,	comment	on,	and	remix	each	other’s	projects.	These	communities	give	learners	

access	to	the	knowledge,	skills,	and	work	of	more	experienced	members	of	the	community.	

Newcomers	and	oldtimers	can	exchange	thoughts,	and	newcomers	can	develop	an	

understanding	of	the	kinds	of	participation	they	are	moving	towards	as	they	see	examples	

of	oldtimers’	work	and	the	kinds	of	interactions	that	are	considered	legitimate	in	the	larger	

community	of	practitioners.	Hence,	these	resources	support	learning	and	progression	

toward	fuller	participation	in	the	programming	and	CT	community	(Lave	&	Wenger,	1991).	

During	the	iterative	development	process,	programmers	test	and	debug	to	refine	

their	solutions	(Papert,	1980).	“Debugging”	is	a	process	of	finding	and	fixing	errors	(Bers	et	

al.,	2014;	Brennan	&	Resnick,	2012;	CSTA,	2017;	Grover	&	Pea,	2013;	2018;	Shute,	Sun,	

Asbell-Clarke,	2017).	Debugging	starts	by	recognizing	that	something	is	not	working	as	

expected,	then	involves	choosing	to	continue	working	towards	the	original	goal	or	changing	

the	desired	goal.	If	the	programmer	decides	to	fix	the	problem,	they	will	develop	

conjectures	about	what	caused	the	problem,	then	finally	attempt	to	solve	the	problem.	This	

four-step	debugging	procedure	can	even	be	used	by	kindergarten-aged	children	(Bers	et	al.,	

2014),	showing	that	this	core	practice	is	accessible	to	novice	computational	thinkers.	

Along	with	developing	solutions,	representing	procedures	or	solutions	so	they	can	

be	carried	out	by	a	computational	agent	is	a	core	part	of	CT.	In	programming,	the	

computational	agent	is	usually	a	mechanical	computer.	Programmers	use	several	related	

skills	in	this	process.	One	skill	involves	reworking	problems	so	they	can	be	solved	by	a	

computer	(ISTE	&	CSTA,	2011;	Wing,	2006).	Even	after	developing	an	idea	that	solves	a	

problem,	procedures	must	be	specific,	clear,	and	written	in	a	particular	way	depending	on	

the	programming	language	and	computational	agent.	In	many	cases,	efficiency	of	solutions	

	 18	

is	an	important	consideration.	The	practice	of	working	towards	efficient	solutions	involves	

addressing	constraints	such	as	time	it	takes	a	solution	to	compute,	the	space	the	program	

takes	to	run	and	store,	and	even	the	simplicity	of	instructions	so	they	can	be	reused	and	

understood	by	others	(Barr,	Harrison,	&	Conery,	2011;	Grover	&	Pea,	2013;	Wing,	2008).	

These	core	CT	practices	fundamentally	depend	on	the	computational	agent	being	used	to	

carry	out	the	solution,	so	programmers	must	consider	and	use	them	in	various	ways	across	

programming	contexts.	Thus,	part	of	learning	to	participate	in	the	programming	

community	involves	developing	the	ability	to	adapt	practices	of	design	in	different	

situations.	This	is	especially	true	as	learners	gain	expertise	and	move	beyond	a	single	

programming	language	or	environment.	

Because	expert	programmers	must	adapt	to	many	different	environments,	

especially	to	keep	up	with	the	changing	technologies	and	languages	used	to	create	

programs,	it	is	helpful	if	their	solutions	can	transfer	across	a	variety	of	problems.	Hence,	

some	researchers	now	identify	the	practice	of	generalizing	a	solution	into	a	problem	

solving	process	as	an	important	part	of	CT	(Barr,	Harrison,	&	Conery,	2011;	Hu,	2011;	

Shute,	Sun,	Asbell-Clarke,	2017).	Instead	of	a	specific	solution	that	only	applies	to	a	

particular	computational	agent	or	programming	language,	these	general	processes	are	less	

formal	and	specific	so	they	can	be	adapted	to	different	environments.	For	instance,	over	the	

years,	programmers	have	developed	general	algorithms	for	sorting	lists	of	numbers.	

Programmers	learn	these	algorithms	and	explain	how	they	work	using	pseudo-code,	

images	and	diagrams,	or	paragraphs	of	text.	With	that	general	understanding	of	the	

algorithms	for	sorting	numbers,	programmers	can	then	consider	the	environment	and	

constraints	they	have,	choose	which	algorithm	is	most	appropriate,	and	code	it	in	the	

specific	programming	language	they	need.	For	novices	then,	it	does	not	make	sense	to	

memorize	the	procedures	for	sorting	numbers	in	many	different	languages.	Instead,	

learners	should	develop	knowledge	of	general	sorting	algorithms	and	engage	in	the	

practice	of	reformulating	and	specifying	those	algorithms	across	contexts.	

This	practice	of	generalizing	solutions	relates	to	the	idea	of	modularizing	code.	In	

modularizing,	programmers	break	the	problem	down	into	simpler	tasks	and	group	lines	of	

code	according	to	the	functions	they	perform	(CSTA,	2017).	These	groups	are	often	called	

“functions”	or	“methods”	in	object-oriented	programming.	As	an	example	of	modularization	

	 19	

in	a	novice	programming	context,	the	Scratch	learning	environment	allows	learners	to	

engage	in	this	practice	of	modularization	by	creating	separate	stacks	of	code	that	run	in	

response	to	an	event	that	occurs	in	the	larger	program.	For	instance,	Brennan	and	Resnick	

(2012)	illustrate	how	a	learner	in	the	Scratch	community	uses	modularization	to	split	her	

code	into	three	stacks.	The	first	stack	controls	an	object’s	movement,	the	second	stack	

control’s	its	visual	appearance,	and	the	third	stack	controls	other	events	that	occur	in	

response	to	the	object,	like	resetting	a	level	in	the	game	when	the	object	collides	with	

something.	In	this	example,	the	learner	also	uses	the	concept	of	parallel	procedures	as	all	

three	of	her	stacks	are	set	to	start	when	they	receive	the	same	event	command.	

Modularization	is	a	type	of	abstraction	in	which	programmers	build	something	

complicated	by	combining	smaller	parts	together	(Brennan	&	Resnick,	2012;	CSTA,	2017).	

The	practice	of	representing	and	using	data	also	draws	on	abstraction	(Barr,	Harrison,	&	

Conery,	2011;	CSTA,	2017;	Grover	&	Pea,	2013;	Hu,	2011;	NRC,	2010;	Wing,	2006;	ISTE	&	

CSTA,	2011;	Shute,	Sun,	&	Asbell-Clarke,	2017).	“All	information	stored	and	processed	by	a	

computing	device	is	referred	to	as	data…	As	students	use	software	to	complete	tasks	on	a	

computing	device,	they	will	be	manipulating	data”	(CSTA,	2017,	p.	2).		Two	ways	

programmers	commonly	work	with	different	representations	of	data	is	by	using	different	

data	types	and	structures,	like	arrays	and	lists,	and	by	transforming	data	to	make	it	more	

usable	(CSTA,	2017).	While	newcomers	do	not	typically	start	out	by	learning	data	

structures,	children	can	work	with	data	in	the	form	of	variables.	For	instance,	in	Scratch,	

learners	can	explicitly	use	variables	to	store	information	and	perform	calculations.	

Variables	can	store	data	in	the	form	of	numbers	or	text.	Scratch	users	can	also	choose	to	

display	the	data	in	different	ways,	using	a	simple	bar	showing	the	value	of	the	variable,	

having	characters	say	the	value	of	a	variable,	or	by	changing	a	visual	or	auditory	output	in	

response	to	a	data	value.	In	this	way,	novices	can	participate	in	a	legitimate	but	peripheral	

form	of	the	data	use	practice	until	they	develop	fuller	understandings	of	data	in	

computational	contexts.	

This	section	discussed	several	CT	practices	from	programming,	namely:	being	

incremental	and	iterative,	reusing	or	remixing	solutions	from	others,	testing	and	

debugging,	representing	procedures	so	they	can	be	carried	out	by	a	computational	agent,	

generalizing	a	solution	into	a	problem	solving	process,	modularizing,	and	representing	

	 20	

data.	The	next	section	dives	into	the	dispositions	CT	researchers	are	beginning	to	recognize	

from	studying	programming.	

Dispositions	

CT	dispositions	affect	learners’	views	of	themselves,	their	ways	of	participating,	

their	attitudes	towards	technology,	and	their	perspectives	on	CT.	Productive	dispositions	

help	learners	engage	and	make	progress	in	their	learning	as	they	shift	towards	fuller	

participation	in	the	community.	Drawing	on	programming	and	computer	science	at	a	

meeting	to	develop	an	operational	definition	of	CT,	researchers	and	educators	called	

attention	to	several	relevant	dispositions.	These	dispositions	include	dealing	with	

complexity,	persisting	on	difficult	problems,	dealing	with	ambiguity	and	open-ended	

problems,	and	collaborating	with	others	on	a	shared	goal	(Barr,	Harrison,	&	Conery,	2011;	

Barr	&	Stephenson,	2011;	ISTE	&	CSTA,	2011).	Brennan	and	Resnick	(2012)	used	examples	

from	programming	in	Scratch	to	describe	two	additional	CT	dispositions:	using	

computation	for	self-expression	and	questioning	the	world	about	and	with	technologies.	

First,	it	is	not	clear	exactly	what	the	differences	are	between	the	dispositions	labeled	

as	dealing	with	complexity,	dealing	with	open-ended	problems,	and	persisting	on	difficult	

problems.	They	all	seem	to	overlap,	and	they	are	all	mentioned	together	several	times	in	

the	CSTA	K-12	Computer	Science	Standards	(CSTA,	2013).	They	all	involve	characteristics	

like	patience,	adaptability,	accepting	challenges,	and	ability	to	tinker	or	try	things	out	

(CSTA,	2013).	They	describe	recognized	ways	of	approaching	problems	and	characteristics	

of	successful	problem	solvers	from	other	fields,	including	metacognitive	skills	and	beliefs	

(Lester,	1994;	Mayer,	1998).	Therefore,	these	three	CT	dispositions	can	be	combined	to	

describe	productive	characteristics	for	approaching	open-ended	and	complex	problems	in	

programming	(CSTA,	2013).	More	research	is	needed	to	understand	what	these	

dispositions	entail,	how	they	affect	learning	and	engagement,	and	how	to	foster	them	

productively	in	educational	programming	environments.		

The	next	disposition	highlights	the	importance	of	collaboration	in	programming	and	

CT.	Collaboration	occurs	in	both	K-12	classrooms,	such	as	through	pair	programming	and	

group	projects,	and	in	the	workplace,	also	in	pair	programming	and	through	divisions	of	

labor	(Grover	&	Pea,	2018).	In	educational	contexts,	collaboration	gives	students	access	to	

	 21	

others	in	the	community	as	a	resource	for	learning	through	asking	questions,	observing	

practices,	and	developing	a	broad	overview	of	other	roles	and	ways	of	participating	in	CT	

(Lave	&	Wenger,	1991).	For	young	learners,	these	connections	can	occur	when	creating	

projects	both	with	others	and	for	others	(Brennan	&	Resnick,	2012).	For	instance,	

collaborating	with	others	allows	novice	programmers	to	ask	questions	of	their	peers,	reuse	

others’	code,	and	create	lasting	partnerships.	By	creating	projects	for	others	to	use,	

learners	must	engage	in	new	skills	and	concepts	involved	in	understanding	their	audience,	

defining	their	goals,	and	disseminating	their	work.	As	another	example,	the	Scratch	online	

community	supports	similar	collaborations	among	participants	of	all	levels	(Brennan	&	

Resnick,	2012;	Resnick	et	al.,	2009).	In	order	to	collaborate	in	these	ways,	participants	

must	be	able	to	give	each	other	feedback,	make	use	of	feedback	in	their	work,	understand	

different	perspectives,	and	create	both	social	and	working	relationships	with	other	

members	of	the	programming	community	(CSTA,	2013;	2017).	These	dispositions	help	

learners	take	on	new	roles	as	they	productively	engage	with	other	programmers	and	

computational	thinkers.	

While	learning	to	program,	students	should	also	develop	a	disposition	towards	

expressing	ideas	with	technology.	Rather	than	just	consuming	existing	technologies,	like	

browsing	the	Internet	or	texting	friends,	programmers	can	actually	create	and	adapt	

technologies	to	solve	problems	in	new	ways	(CSTA,	2017;	Grover	&	Pea,	2018).	For	

programmers,	“computation	is	something	they	can	use	for	design	and	self-expression.	A	

computational	thinker	sees	computation	as	a	medium”	for	creativity	and	exploration	

(Brennan	&	Resnick,	2012,	p.	10).	Experienced	programmers	with	well-developed	

knowledge	and	skills	can	create	many	different	types	of	projects	depending	on	their	

interests,	professional	work,	and	confidence	in	their	abilities.	But	even	novices	can	express	

themselves	through	programming	in	Scratch	by	creating	simple	stories	and	by	importing	

their	own	content	like	music,	images,	and	voice	recordings	(Resnick	et	al.,	2009).	

Finally,	programmers	have	the	ability	to	ask	questions	about	technology	and	with	

technology.	Rather	than	taking	technology	for	granted,	programmers	can	use	computation	

to	make	sense	of	how	technologies	work,	their	limitations,	and	how	to	improve	them	in	

response	to	real-world	situations	(Brennan	&	Resnick,	2012).	For	novices,	this	can	start	out	

as	a	disposition	towards	wondering	how	things	work.	Or	it	can	develop	over	time	as	

	 22	

programmers	realize	their	abilities	to	adapt	technologies	for	their	own	and	others’	needs.	

Questioning	empowers	computational	thinkers	to	modify	technologies,	consider	the	

affordances	and	constraints	of	existing	tools,	and	discuss	the	impacts	of	technology	on	the	

world	(CSTA,	2013;	2017).		

Learning	CT	Concepts	and	Practices	in	K-12	Computer	Science	

In	this	paper,	I	am	conceptualizing	learning	as	a	change	in	participation	in	a	

community	of	practice	that	occurs	through	interactions	with	the	tools,	practices,	and	

participants	in	a	community.	But	that	conceptualization	is	not	how	researchers	in	CS	

always	talk	about	learning.	Early	ideas	of	CT	came	from	suggestions	that	while	learning	to	

program	computers,	students	also	learn	powerful	thinking	skills	applicable	to	broader	

problems	(Papert,	1980;	Nickerson,	1983).	In	the	1980s,	many	researchers	interested	in	

programming	education	claimed	to	also	engage	children	in	general	problem-solving	skills,	

supported	by	qualitative	analyses	and	case	studies	(e.g.	Gorman,	Jr.	&	Bourne,	Jr.,	1983;	

Papert,	1980;	Soloway,	1986;	Yelland,	1995).	However,	quantitative	studies	on	the	

cognitive	effects	of	learning	programming	languages,	including	problem	solving,	creativity,	

logical	reasoning,	and	more,	showed	mixed	results	(Gorman,	Jr.	&	Bourne,	Jr.,	1983;	

Kalelioglu	&	Gülbahar,	2014;	Pea,	1983;	Pea	&	Kurland,	1984;	Pea,	Kurland,	&	Hawkins,	

1985;	Swan,	1989).	Most	of	the	changes	to	students’	thinking	skills	appeared	when	the	

skills	were	assessed	in	a	near	transfer	task	or	were	closely	related	to	the	specific	

programming	language	students	learned	(Clements	&	Gullo,	1984;	Mayer,	Dyck,	&	Vilberg,	

1986;	Midian	Kurland,	Pea,	Clement,	&	Mawby,	1986).	This	is	not	surprising	from	a	

situative	perspective	in	which	knowledge	and	understanding	are	fundamentally	tied	to	the	

context	and	practices	in	which	people	participate.	Furthermore,	much	of	this	work	studied	

the	effects	of	learning	a	specific	programming	language,	and	results	suggest	that	general	

problem	solving	and	thinking	practices	may	not	spontaneously	arise	from	learning	a	

programming	language	on	its	own	(Pea,	1983).	This	finding	confirms	work	in	mathematics	

education	that	specifies	that	skills	(in	this	case,	being	able	to	use	a	particular	programming	

language)	and	practices	(in	this	case,	CT	practices)	are	not	the	same	thing	(Greeno,	1991).	

In	contrast,	recent	work	on	CT	favors	instruction	on	general	thinking	skills	in	the	

context	of	programming	or	other	disciplines	in	order	to	develop	computational	thinkers	

	 23	

who	can	solve	problems	in	different	contexts.	In	other	words,	CT	emphasizes	the	

importance	of	learning	practices	while	solving	problems	in	different	environments	rather	

than	learning	a	programming	language	and	hoping	the	practices	arise.	In	this	sense,	the	act	

of	programming	is	a	useful	tool	for	supporting	engagement	in	CT	(Grover	&	Pea,	2013).	

Programming	affords	opportunities	for	children	to	think	about	their	own	thinking	because	

they	“must	make	processes	explicit	in	order	to	teach	the	computer	how	to	perform	a	given	

task”	(Cejka,	Rogers,	&	Portsmore,	2006,	p.	712).	For	example,	research	on	creating	digital	

games	through	programming	demonstrated	positive	effects	on	motivation,	creativity,	

problem	solving,	and	critical	thinking	(e.g.	Carolyn	Yang	&	Chang,	2013).	

The	value	of	learning	programming,	beyond	preparing	a	diverse	workforce	in	

computing,	comes	from	empowering	children	to	create	their	own	solutions	and	use	CT	

skills	to	solve	personally	meaningful	problems.	This	sounds	promising	in	theory,	but	what	

do	students	actually	learn	by	engaging	in	CT	through	programming?	And	what	do	we	know	

about	students’	identity	development	in	relation	to	CT	when	engaged	in	the	context	of	

programming?	Much	of	the	work	on	CT	has	focused	on	designing	learning	environments	to	

support	CT	concepts	and	practices.	This	paper	asks	how	these	designs	can	support	the	

apprenticeship	of	people	into	the	CT	community	using	LPP.			

Studies	of	educational	programming	environments	have	shown	that	even	young	

newcomers	to	the	CT	community	can	engage	in	CT	practices.	Tangible	programming	

environments,	which	use	physical	(rather	than	digital)	blocks	to	code,	have	shown	promise	

for	preschool	and	kindergarten-aged	children.	These	environments	allow	learners	to	easily	

create	a	functioning	project	with	little	introduction	time	(Bers,	2010;	Horn	&	Jacob,	2007;	

Kelleher	&	Pausch,	2005;	Wang,	Wang,	&	Liu,	2014;	Wyeth	&	Purchase,	2002).	

Programming	languages	with	simple	syntactical	structures	give	newcomers	immediate	

access	to	legitimate	concepts	and	skills	(Resnick	et	al.,	2009),	creating	a	space	for	learning	

through	LPP.		

For	example,	5-9	year	old	children	using	T-Maze,	a	maze-building	and	puzzle-

solving	programming	environment	using	physical	blocks,	were	able	to	use	the	CT	practices	

of	abstraction,	automation,	and	problem	decomposition	(Wang,	Wang,	&	Liu,	2014).	

Children	understood	the	relationship	between	physical	blocks	of	code	and	virtual	squares	

in	the	maze	on	the	screen,	a	form	of	abstracting	information.	From	evidence	in	students’	

	 24	

talk,	researchers	concluded	that	students	realized	the	computer	automated	their	programs	

in	the	virtual	space	by	executing	the	instructions	they	created	using	the	physical	blocks.	In	

terms	of	concepts,	students	learned	to	create	sequential	instructions,	and	researchers	later	

introduced	the	concept	of	loops	to	children.	Additionally,	there	was	some	evidence	of	

problem	decomposition,	such	as	when	a	student	separated	the	maze	problem	into	two	sub-

problems:	moving	forward	and	turning.	While	tangible	programming	is	promising	for	

introducing	CT	to	young	children,	it	is	not	clear	how	learners	who	start	with	tangible	

programming	move	towards	becoming	fuller	participants	in	the	community	over	time.	We	

need	to	consider	how	to	connect	CT	skills	across	different	educational	tools	so	students	can	

build	on	their	CT	learning	as	they	use	more	advanced	programming	environments,	like	

professional	text-based	languages.		

Studies	with	middle	school	students	using	visual	programming	tools	(digital	block-

based	environments)	have	also	demonstrated	some	successful	CT	learning.	For	example,	

Storytelling	Alice	is	a	mixture	of	block-based	and	text-based	programming	that	allows	

learners	to	create	detailed	stories	and	games.	As	early	as	fifth	grade,	students	using	

Storytelling	Alice	can	apply	the	CT	concepts	of	loops,	conditionals,	sequences	of	

instructions,	variables,	and	data	types	(Kelleher	&	Pausch,	2007).	Even	within	two	hours	of	

using	the	tool	in	one	study,	all	students	were	able	to	create	a	working	sequential	program,	

and	some	used	loops	and	variables	(Kelleher	&	Pausch,	2007).	

Other	research	on	Scratch,	a	block-based	programming	tool,	has	shown	that	

learners	of	all	ages	and	experience	levels	can	engage	in	almost	all	of	the	CT	concepts	and	

practices	discussed	above	(Brennan	&	Resnick,	2012).	Using	the	Scratch	online	community	

(https://scratch.mit.edu/),	novices	can	develop	a	broad	picture	of	what	the	community	

does	and	where	their	learning	might	take	them	as	they	participate	more	fully	through	LPP.

These	different	roles	and	opportunities	to	engage	leave	open	questions	about	how	the	

variations	affect	student	learning.	In	what	ways	do	learners	use	CT	in	different	roles	within	

the	programming	community	(e.g.	people	who	remix	work	might	learn	different	concepts	

and	skills	than	those	who	always	make	their	own	projects)?	One	study	looked	at	amount	of	

participation	in	the	Scratch	online	community	and	found	no	correlation	between	level	of	

involvement	(including	a	mixture	of	downloading	projects,	commenting,	remixing,	and	

friending	other	users)	and	types	of	CT	concepts	used	in	the	users’	projects	(Fields,	Giang,	&	

	 25	

Kafai,	2014).	Not	much,	if	any,	work	has	been	done	on	a	closer	level	to	understand	the	

relationship	between	different	ways	of	participating	in	the	community	and	students’	CT	

learning.		

Remixing	also	plays	a	role	in	learning.	Through	remixing	others’	projects,	

newcomers	are	exposed	to	different	ways	of	solving	problems	and	can	see	strategies	used	

by	old-timers	in	the	community.	Learners	can	also	practice	their	own	skills	in	a	low-stakes	

environment	by	starting	with	projects	that	already	work	and	building	off	them	to	add	new	

code.	In	Scratch,	the	remixed	projects	are	automatically	saved	in	a	new	file,	so	any	changes	

do	not	affect	the	original	creator’s	work,	which	lowers	the	pressure	for	newcomers	to	

produce	accurate	and	efficient	work.	Not	surprisingly,	the	more	learners	remix	others’	code	

in	Scratch,	the	more	CT	concepts	they	use	in	their	own	projects	(Dasgupta	et	al.,	2016).		

At	the	same	time,	a	study	of	over	5,000	users	in	the	Scratch	online	community	found	

that	length	of	membership	in	the	programming	community	does	not	always	predict	the	

amount	of	programming	concepts	used	(Fields,	Giang,	&	Kafai,	2014).	In	other	words,	some	

people	with	less	than	one	year	of	experience	with	Scratch	used	just	as	many	CT	concepts,	

like	loops,	conditionals,	variables,	and	Booleans,	as	old-timers	with	years	of	experience	in	

Scratch.	However,	most	girls	in	the	study	remained	at	the	beginner	level	in	Scratch,	only	

using	simple	loops	in	their	projects,	while	more	boys	created	projects	using	several	

different	CT	concepts.		

To	summarize,	work	on	learning	CT	in	programming	contexts	demonstrates	that	

children	as	young	as	five	can	learn	CT	concepts,	and	visual	programming	tools	work	well	to	

introduce	CT	concepts	to	newcomers	in	middle	school	grades	and	above.	Visual	tools	allow	

newcomers	to	quickly	participate	in	legitimate	ways	by	creating	new	projects	without	

memorizing	complicated	syntax.	Online	communities,	like	Scratch,	support	a	variety	of	

types	of	participation.	Within	those	communities,	learners	can	participate	on	the	periphery	

by	remixing	existing	projects,	or	they	can	engage	in	other	legitimate	types	of	participation	

by	commenting,	sharing,	and	“friending”	other	users.	Regardless	of	the	level	of	

participation,	learners	in	Scratch	use	many	CT	concepts.	In	fact,	Scratch	has	been	shown	to	

support	a	variety	of	learners	to	participate	in	CT	concepts,	practices,	and	dispositions.		

The	studies	reviewed	above,	focusing	on	learning	CT	through	CS,	include	a	mixture	

of	in-school	and	out-of-school	contexts.	However,	the	in-school	studies	do	not	explain	how	

	 26	

the	activities	were	integrated	into	the	classroom	system.	To	implement	CT	instruction	in	

ways	that	encourage	diversity	and	meaningful	learning,	we	need	a	better	understanding	of	

the	role	of	the	teacher,	the	integration	of	CT	activities	into	the	discipline	of	the	overall	

course,	and	classroom	norms.	Additionally,	most	of	this	work	on	CT	learning	has	focused	on	

CT	concepts	rather	than	practices	or	dispositions.	The	next	section	discusses	some	

connections	to	CT	dispositions	and	identity	development,	but	more	research	needs	to	

explore	how	learners	participate	in	CT	practices	and	how	their	participation	changes	over	

time	as	they	become	fuller	members	of	the	community	(or,	in	many	cases,	choose	to	

distance	themselves	from	the	CS	community).		

From	research	on	learning	CT	through	programming,	we	see	that	there	are	different	

ways	learners	can	legitimately	engage	in	CT	practices	and	use	CT	concepts.	There	are	many	

roles	for	computational	thinkers	within	the	programming	community,	including	creating	

algorithms,	debugging	projects,	and	managing	others’	work.	These	variations	in	roles	and	

ways	of	participating	in	the	CT	community	invite	questions	about	identity	development.	

For	instance,	how	do	different	types	of	programming	projects	affect	students’	identity	

development	in	relation	to	CT,	especially	in	relation	to	students’	prior	interests	and	

experiences?	Some	scholars	have	used	storytelling	to	capture	girls’	interests	in	

programming	(e.g.	Kelleher,	2009;	Pinkard,	Erete,	Martin,	&	McKiney	de	Royston,	2017),	

but	it	is	not	clear	whether	and	how	those	initial	learning	experiences	lead	to	long-term	

identity	development	and	productive	relationships	with	computing.	Additionally,	it	is	not	

clear	how	participating	in	different	roles	while	learning	CT	through	programming	supports	

identity	and	persistence	in	the	field.	Can	we	change	students’	views	of	what	computational	

thinkers	do	and	broaden	participation	in	computing	by	exposing	students	to	the	variety	of	

meaningful	and	legitimate	ways	to	participate?	This	is	an	open	question	in	the	field.	Maybe	

someone	who	dislikes	creating	procedures	but	enjoys	testing	and	looking	for	errors	in	

others’	work	will	be	surprised	to	learn	that	finding	errors	still	involves	CT	skills,	and	then	

learn	to	recognize	themselves	as	a	computational	thinker.		

CT	Identity	Development	and	Dispositions	in	K-12	Computer	Science	

I	conceptualize	identity	in	this	paper	as	the	development	of	dispositions	or	

regularities	in	the	ways	people	participate	in	practices	and	their	views	of	those	practices	

	 27	

and	themselves	in	relation	to	a	community.	To	date,	little	research	has	focused	on	identity	

towards	CT	as	it	is	conceptualized	here,	but	some	studies	have	explored	students’	interests	

and	motivations	in	CT	learning	environments.	I	draw	on	the	literature	on	interest	and	

motivation	here	because	it	influences	people’s	views	of	the	discipline	and	their	views	of	

themselves,	both	part	of	the	framework	of	identity	from	LPP.	Specifically,	interest	and	

motivation	have	been	shown	to	lead	to	meaningful	engagement	and	increased	persistence,	

which	are	related	to	feelings	of	competence,	productive	disciplinary	relationships,	and	

productive	sense	of	self	in	relation	to	the	discipline	(Kaplan	&	Flum,	2009;	McCaslin,	2009;	

Potvin	&	Hasni,	2014;	Renninger,	2009;	Waterman,	2004;	Wigfield	&	Wagner,	2005).	

Having	a	reason	for	learning	CT	and	a	social	context	for	using	it	are	important	for	

motivating	students	and	addressing	sociological	barriers	to	learning	(Kelleher	&	Pausch,	

2005).	By	seeing	CT	as	a	tool	for	accomplishing	their	own	goals,	students	have	agency	over	

what	they	create	and	how	they	engage	with	computers	in	and	beyond	the	classroom.	The	

goal	is	to	create	positive	experiences	and	to	support	students	to	feel	a	sense	of	belonging	in	

the	community	by	exploring	factors	related	to	identity	and	dispositions.	

Several	design	characteristics	of	CS	learning	environments	have	been	shown	to	

support	the	development	of	productive	elements	of	identity,	including	communities,	

mentors	and	role	models,	collaborative	work,	and	programming	contexts	like	stories	or	

games.	First,	as	an	example	of	community,	the	Scratch	online	community	is	a	place	where	

people	can	engage	in	CT	in	many	different	ways.	It	is	a	community	of	learners	and	

practitioners	of	all	different	levels	of	experience,	making	it	an	important	resource	for	

learning	and	identity	development	through	LPP.	When	users	create	projects,	post	online,	

comment	on	others’	work,	or	remix	existing	projects,	they’re	engaging	in	a	form	of	

apprenticeship	learning	by	participating	in	the	community	and	interacting	with	other,	

more	experienced	practitioners.	Members	of	the	Scratch	community	can	take	on	different	

roles	and	participate	in	different	ways,	depending	on	what	they	are	interested	in	and	

where	their	prior	experiences	take	them.	These	choices	for	participation	give	students	

some	agency	over	their	own	engagement	and	allow	students	to	define	their	roles	while	still	

acting	as	legitimate	members	of	the	community.	However,	more	research	is	needed	to	

understand	how	these	different	roles	affect	what	students	learn.	Someone	who	spends	

more	time	commenting	on	and	critiquing	projects	would	most	likely	develop	different	skills	

	 28	

and	understandings	from	someone	who	creates	projects	but	doesn’t	engage	in	

commenting.	It	seems	likely	that	K-12	educators	would	want	students	to	explore	all	the	

roles	to	support	the	development	of	different	concepts	and	practices,	but	it	is	also	

important	that	educators	value	students’	interests	and	preferences	for	participation	so	

students	can	participate	in	legitimate	roles	in	the	learning	community.		

Highlighting	the	social	nature	of	computing	in	environments	like	Scratch,	with	its	

online	community,	can	create	positive,	gender-inclusive	educational	experiences	for	

newcomers	(Mark,	1992;	Resnick	et	al.,	2009).	Even	interactions	with	fictional	characters	

can	support	positive	disciplinary	relationships.	For	instance,	in	Digital	Youth	Divas,	

researchers	designed	characters	to	imitate	actual	middle	school	girls	with	a	variety	of	

interests,	body	types,	and	stories	(Pinkard,	Erete,	Martin,	&	McKiney	de	Royston,	2017).	

The	relatable	characters	and	situations	offer	ideational	resources	to	support	girls’	

identification	with	CT.	Researchers	found	the	narratives	motivated	girls	to	work	on	

projects,	while	the	characters	provided	a	community	of	relatable	(but	fictional)	girls	

interested	in	STEM,	igniting	and	confirming	students’	own	interests	in	STEM	fields	

(Pinkard	et	al.,	2017).	The	study	did	not	report	on	participants’	use	of	CT	concepts	and	

practices.	But	the	results	did	point	to	several	factors	related	to	identity	and	dispositions,	

including	girls’	increased	interests	in	working	on	the	projects,	opportunities	to	exercise	

agency	in	design	challenges,	and	changes	in	views	of	themselves	in	relation	to	STEM.		

Teaching	CT	through	programming	stories,	dances,	and	games	are	other	popular	

ways	to	connect	to	students’	interests	and	create	gender-inclusive	learning	environments.	

One	study	using	the	language	Alice	to	program	characters	to	perform	a	dance	showed	

increased	motivation	for	some	girls	in	the	class,	but	it’s	not	clear	what	they	learned	about	

programming	or	CT	(Daily	et	al.,	2014).	Other	research	has	shown	that	storytelling	is	a	

particularly	interesting	context	for	girls	learning	to	program	and	can	increase	the	time	they	

spend	persisting	on	a	programming	project	(Kelleher,	2009;	Kelleher	&	Pausch,	2007).	

Programming	stories	also	allows	learners	to	develop	productive	CT	dispositions.	Students	

can	express	themselves	through	their	stories,	developing	a	disposition	towards	using	

computational	tools	for	expression.	Students	can	also	use	computational	tools	to	connect	

with	others,	by	sharing	their	stories	with	friends,	family,	and	their	classroom	peers,	to	

develop	productive	dispositions	for	collaboration.

	 29	

Along	with	opportunities	to	share	projects,	the	Digital	Youth	Divas	program	

structures	in-person	mentorship	and	conversations	with	peers	into	the	curriculum	

(Pinkard	et	al.,	2017).	Students	talk	informally	while	working	on	their	projects,	but	they	

also	participate	in	structured	check-ins	with	mentors	at	the	beginning	of	each	lesson.	

Mentors	share	cultural	connections	with	students	and	encourage	engagement,	goal	setting,	

and	communication.	Digital	materials	built	into	the	narrative	environment	mediate	

discussions	and	relationship	building.	Conversations	with	mentors	and	fictional	characters	

in	the	online	narrative	encourage	students	to	reflect	on	their	STEM	experiences	and	racial	

and	social	issues	related	to	STEM.	Researchers	point	to	a	potential	link	between	these	on-	

and	offline	conversations	with	a	sense	of	connection	and	positive	engagement	within	a	

classroom	STEM	learning	community	(Pinkard	et	al.,	2017).	Future	research	should	explore	

the	role	of	this	personal	mentorship	in	CT	for	K-12	students.	How	can	teachers	incorporate	

mentors	into	their	classrooms?	It	might	be	difficult	for	some	teachers,	particularly	those	in	

rural	communities,	to	have	access	to	mentors	and	role	models	with	professional	experience	

in	CT.	In	those	instances,	mentors’	close	social	and	cultural	connections	with	students	

would	be	particularly	important.	Virtual	mentorships	or	even	pen	pals	might	be	a	way	of	

supporting	students	who	don’t	have	access	to	in-person	role	models.	How	long	do	

mentorship	experiences	need	to	last,	and	how	can	they	be	implemented	in	ways	that	truly	

affect	students’	views	of	themselves	and	interests	in	persisting	in	CT?

Besides	mentorship,	pair	programming	is	another	common	in-person	collaborative	

programming	task,	building	the	CT	disposition	for	collaboration	and	communication.	Pair	

programming	involves	two	people	working	at	a	computer	at	the	same	time.	One	person	

acts	as	the	“driver”	by	typing	at	the	computer	while	the	other	acts	as	the	“navigator”	by	

observing	and	critiquing	the	driver.	Both	participants	collaborate	on	solving	problems	and	

often	switch	roles	(Williams	et	al.,	2002).	While	making	programming	a	more	collaborative	

experience,	pair	programming	also	gives	authority	to	students	as	they	solve	their	own	

problems.	This	type	of	interaction	allows	students	to	learn	from	differences	in	each	other’s	

knowledge	and	experiences.	Rather	than	asking	an	expert	for	the	answer,	students	can	

work	with	their	peers	to	solve	a	problem	or	search	for	answers	from	other	sources,	like	

online	forums.	Both	are	valuable	skills	in	professional	computational	work,	so	it	legitimizes	

students’	roles	as	computational	problem	solvers.	Pair	programming	in	classroom	settings	

	 30	

apprentices	students	into	the	act	of	pair	programming	that	also	occurs	in	professional	

settings.	By	working	together	to	develop	solutions,	students	can	see	themselves	as	capable	

of	participating	in	the	CT	community.	This	is	in	contrast	with	expecting	an	answer	from	an	

expert	TA,	which	positions	students	as	less	competent	and	less	qualified	to	participate	

legitimately	in	the	community	of	practitioners.	Most	pair	programming	research	focuses	on	

college-level	courses,	but	how	successful	is	it	for	middle	or	high	school	students?	

Intentionally	pairing	students	with	different	kinds	of	knowledge	or	experiences	in	

programming	might	help	them	collaborate	and	learn	from	each	other,	but	what	happens	in	

an	introductory	course	when	students	have	no	prior	computing	experience?	What	is	the	

role	of	the	instructor	in	supporting	productive	collaborations,	and	what	should	the	

instructor	do	when	students	struggle?	These	are	all	important	questions	to	think	about	if	

pair	programming	is	going	to	support	a	variety	of	learners	in	K-12	settings.		

Non-stereotypical	approaches	to	programming	instruction,	like	the	storytelling	and	

dance	examples	here,	can	potentially	reduce	gender	disparities	in	computational	subjects	

by	sparking	girls’	interests.	The	Digital	Youth	Divas	program	also	demonstrated	the	value	

of	role	models,	whether	real	or	fictional,	for	interest	and	personal	identity	construction	

(Pinkard	et	al.,	2017).	Additionally,	a	recent	study	found	that	even	reducing	stereotypical	

objects	in	computing	classrooms	(e.g.	replacing	Star	Wars	posters,	electronic	parts,	and	

tech	magazines	with	art,	plants,	and	general	magazines)	can	increase	girls’	sense	of	

belonging	and	interest	in	a	high	school	computing	course	without	lowering	boys’	existing	

interests	(Master,	Cheryan,	&	Meltzoff,	2016).	Non-stereotypical	learning	environments,	

activities,	and	role	models	–	all	designed	to	minimize	and	challenge	stereotypes	-	affect	

students’	sense	of	belonging	in	CT	contexts	(Cheryan,	Master,	&	Meltzoff,	2015).	

Much	of	this	work	focuses	on	motivation	and	interest,	particularly	for	girls,	but	it	is	

not	clear	how	these	different	approaches	affect	long-term	identity	development	and	

persistence	in	CT.	There	is	also	a	lack	of	research	on	marginalized	racial	groups	in	

computing.	Future	work	should	consider	the	intersection	of	race,	gender,	and	other	

institutional	factors	that	influence	students’	experiences	and	identities	both	inside	and	

outside	the	classroom.	To	truly	break	away	from	stereotypical	views	of	computational	

thinkers,	researchers	need	to	look	even	beyond	programming	to	see	how	learners	can	

engage	in	CT	in	other	contexts.		

	 31	

Computational	Thinking	in	Engineering	

According	to	the	Royal	Academy	of	Engineering,	engineering	covers	many	different	

industries,	from	buildings	to	food	to	medicine,	and	it	involves	making	things	work	and	

designing	solutions	to	meet	the	needs	of	society	(Brophy,	Klein,	Portsmore,	&	Rogers,	2008;	

Royal	Academy	of	Engineering,	2017).	Some	researchers	see	CT	as	a	way	of	thinking	that	

creates	a	bridge	between	computer	science	and	engineering	(NRC,	2010).	CT	“inherently	

draws	on	engineering,	given	that	[computer	scientists]	build	systems	that	interact	with	the	

real	world”	(Wing,	2006,	p.	35).	Computational	thinking	and	engineering	both	involve	

solving	problems	and	making	things	(Wing,	2008),	but	engineering	is	inherently	

constrained	by	the	physical	world	in	ways	that	CT	is	not	(Shute,	Sun,	Asbell-Clarke,	2017;	

Wing,	2010).	Engineering	design	thinking	“focuses	on	product	specification	and	the	

requirements	imposed	by	both	the	human	and	the	environment—i.e.,	practical	problems.	

CT	is	not	always	limited	by	physical	constraints,	enabling	people	to	solve	theoretical	as	well	

as	practical	problems”	(Shute,	Sun,	Asbell-Clarke,	2017,	p.	8).	This	distinction	is	meant	to	

highlight	the	idea	that	people	can	think	computationally	about	problems	in	imaginative	

ways	without	being	tied	to	rules	of	the	physical	world,	while	engineers	ultimately	aim	to	

implement	their	ideas	in	the	physical	world	so	their	work	cannot	be	separated	from	those	

constraints.	However,	when	people	use	CT	to	create	procedures	for	a	computational	agent	

to	carry	out,	whether	that	agent	is	a	mechanical	computer	or	the	human	brain,	they	must	

consider	the	capabilities	of	the	agent.	As	an	example	of	someone	considering	the	

limitations	and	capabilities	of	a	computational	agent,	a	programmer	using	Scratch	could	

not	make	a	word	processing	software	or	a	website,	but	they	could	make	a	story	or	game.	If	

an	important	part	of	CT	is	considering	and	testing	solutions	with	a	computational	agent,	

then	it	does	overlap	with	engineering	in	its	consideration	of	the	physical	and	digital	world.	

	 Educators	and	policymakers	are	starting	to	recognize	these	connections	between	

designing	in	CT	and	engineering.	The	NGSS	now	include	a	CT	progression	within	their	K-12	

engineering	standards	(NGSS,	2013).	Additionally,	research	already	shows	that	engaging	

students	in	design	is	useful	for	learning.	Design-based	activities	can	help	learners	develop	

deep	conceptual	understandings	and	inquiry	skills	(Crismond,	2001;	Kimmel	et	al.,	2006;	

Kolodner	et	al.,	2003;	Roth,	1995;	Sadler,	Barab,	&	Scott,	2007).	To	better	understand	the	

	 32	

role	of	CT	in	design,	the	next	section	draws	on	LPP	to	explore	how	engineers	use	CT	

concepts,	practices,	and	dispositions	in	their	work.	The	discussion	also	mentions	some	

ways	in	which	learners	can	access	those	skills	through	engineering	education.	

Concepts	

In	specifying	the	concepts	from	CT,	researchers	looked	to	programming	instead	of	

the	broad	field	of	computer	science	with	its	many	different	domains	of	knowledge.	

Similarly,	it	is	difficult	to	list	the	specific	concepts	involved	in	engineering	because	it	

encompasses	many	different	sub-fields	with	their	own	core	concepts.	Engineers	use	

concepts	from	across	STEM	disciplines,	with	programming	included	as	one	of	the	areas	

some	engineers	may	draw	on	(Brophy,	Klein,	Portsmore,	&	Rogers,	2008;	Royal	Academy	of	

Engineering,	2017).	In	particular,	software	engineering	involves	computer	programming	in	

the	development	and	maintenance	of	computer	software.	Thus,	software	engineers	use	the	

CT	concepts	from	programming	described	above,	but	being	an	expert	engineer	may	involve	

knowing	many	other	STEM	concepts	outside	the	scope	of	CT.		

However,	engineers	do	use	CT	concepts	related	to	data	collection,	organization,	and	

representation.	When	testing	different	designs,	engineers	collect	data	to	determine	the	best	

option	that	meets	the	constraints	of	the	problem	(NRC,	2012).	Both	engineers	and	

computer	scientists	use	technology	to	collect	and	interpret	data.	They	must	understand	

how	to	collect	the	data,	how	to	use	the	appropriate	tools,	how	to	appropriately	organize	the	

data,	and	how	to	interpret	the	results.		

Since	this	paper	focuses	on	how	people	use	CT	in	different	disciplines,	it	is	outside	

the	scope	of	this	work	to	spend	time	describing	all	the	other	concepts	used	by	engineers.	

Instead,	the	rest	of	this	section	looks	at	broader	processes	of	design	and	problem	solving	

used	across	engineering	fields	to	generate	an	overview	of	CT	practices	and	dispositions	in	

the	context	of	general	engineering	skills,	particularly	those	specified	in	learning	standards	

and	curricula.		

Practices	

Central	to	the	work	of	engineers	is	the	Engineering	Design	Process	(Haik,	

Sivaloganathan,	&	Shahin,	2015).	This	is	the	iterative	process	engineers	use	to	design	

	 33	

artifacts	based	on	specific	needs	or	goals	(NASA’s	Best,	2016).	It	is	a	cyclical	process	that	

includes	identifying	a	problem	or	asking	a	question,	imagining	a	solution,	designing	a	

prototype,	testing	the	designs,	and	improving	the	solution	(EiE,	2017a;	NASA’s	Best,	2016;	

NGSS,	2013).	One	CT	practice	from	programming	involves	generalizing	solutions	into	a	

problem	solving	process	that	can	be	applied	to	a	variety	of	problems	(Barr,	Harrison,	&	

Conery,	2011;	Hu,	2011),	which	is	what	the	Engineering	Design	Process	already	is.	It	is	a	

way	of	solving	problems	that	engineers	can	draw	on	in	any	situation.	Ultimately,	CT	is	also	

about	designing	solutions	to	problems,	and	each	of	these	elements	of	the	Engineering	

Design	Process	overlap	with	other	CT	practices	used	in	creating	computer	programs.	

First,	engineers	start	by	identifying	a	problem	or	question	they	want	to	address.	In	

both	professional	and	educational	environments,	the	problem	may	be	defined	by	the	

engineer	or	may	be	assigned	by	another	person,	like	a	manager,	funder,	or	teacher.	In	any	

case,	the	engineer	must	work	to	understand	the	constraints	of	the	situation	and	learn	about	

how	others	have	approached	similar	problems	(EiE,	2017a).	There	may	be	limitations	in	

the	materials	that	can	be	used,	the	number	of	prototypes	that	can	be	tested,	and	the	

timeframe	for	completing	the	project.	The	goal	in	this	phase	is	to	ask	questions	of	a	client	

and	about	prior	approaches	to	similar	problems	to	understand	the	problem	in	as	much	

detail	as	possible	(NASA’s	Best,	2016).	The	same	can	be	true	about	solving	programming	

problems	using	CT,	although	there	are	usually	fewer	physical	constraints	to	consider	

(Shute,	Sun,	Asbell-Clarke,	2017).	Both	novice	and	expert	programmers	must	identify	a	

problem	and	define	their	goals	at	the	beginning	of	the	computational	problem-solving	

process.	In	programming,	some	of	this	work	may	involve	reworking	the	problem	into	one	

that	can	be	solved	by	a	computer	(ISTE	&	CSTA,	2011;	Wing,	2006),	while	in	engineering,	it	

may	involve	reworking	the	problem	into	one	that	can	be	solved	with	the	available	

materials	and	within	current	technological	capabilities.	

The	second	and	third	parts	of	the	design	process	involve	imagining	a	solution	and	

implementing	the	solution	by	creating	a	model	or	prototype.	These	are	the	processes	of	

building	something	in	engineering	or	writing	a	procedure	in	programming.	While	creating	

designs,	both	programmers	and	engineers	have	to	consider	the	efficiency	of	their	solutions,	

a	practice	many	label	as	part	of	CT	(Barr,	Harrison,	&	Conery,	2011;	Grover	&	Pea,	2013;	

Wing,	2008).	Engineers	have	to	consider	limitations	on	materials,	cost,	and	time	to	both	

	 34	

build	and	work	efficiently.	Another	CT	practice	both	engineers	and	programmers	use	in	

design	is	reusing	others’	work	(Brennan	&	Resnick,	2012).	To	develop	ideas,	engineers	can	

draw	on	previous	attempts	to	solve	the	same	problem	or	existing	solutions	from	related	

problems.	To	engage	in	this	practice,	engineering	students	can	give	feedback	and	suggest	

ideas	to	their	peers,	and	they	can	investigate	related	designs	created	by	more	experienced	

engineers.	For	instance,	in	a	bridge-design	task,	students	do	not	have	to	start	from	scratch	

but	can	look	to	real-world	bridges	for	ideas	about	materials,	functionality,	and	strength.	

The	final	two	elements	of	the	Engineering	Design	Process	are	testing	and	refining	

designs.	Engineers	may	rely	on	models	or	simulations	when	testing	designs.	Both	types	of	

abstractions	are	also	considered	part	of	CT	(Grover	&	Pea,	2013;	Hu,	2011;	NRC,	2010;	

Wing,	2006;	ISTE	&	CSTA,	2011).	Additionally,	engineers	may	work	with	data	

representations	to	organize	the	outcomes	of	their	trials,	another	practice	in	CT	(Barr,	

Harrison,	&	Conery,	2011;	Grover	&	Pea,	2013;	Hu,	2011;	NRC,	2010).	But	the	central	

component	of	testing	and	refining	in	engineering,	like	in	CT,	is	the	debugging	process	(Bers	

et	al.,	2014;	Brennan	&	Resnick,	2012;	Grover	&	Pea,	2013).	Engineers	debug	their	

prototypes	by	finding	and	fixing	errors	and	preparing	them	for	further	testing.	This	

practice	drives	the	iterative	nature	of	the	design	process.	Debugging	also	offers	

opportunities	for	productive	struggle	and	failure,	which	have	shown	to	help	students	

develop	metacognitive	skills	and	perform	better	on	other	open-ended	problem	solving	

tasks	(Bullmaster-day,	2015;	Hung,	Chen,	&	Lim,	2009;	Kapur,	2008).	Specifically,	“the	

steps	of	testing	and	improving,	which	require	debugging,	are	particularly	important	in	

establishing	a	learning	environment	where	failure	--	rather	than	immediate	success	--	is	

expected	and	seen	as	necessary	for	learning.	With	the	Engineering	Design	Process,	children	

are	not	expected	to	‘get	it	right’	the	first	time”	(Bers	et	al.,	2014,	p.	149).	Debugging	allows	

students	to	get	things	wrong	but	still	legitimately	participate	in	CT	and	engineering.	In	fact,	

testing	solutions	gives	students	a	space	to	tinker	by	building	things	on	the	fringes	of	

professional	engineering	while	also	apprenticing	into	a	core	practice	of	the	engineering	and	

CT	communities.	In	other	words,	the	processes	of	testing	and	refining	allow	learners	to	

participate	both	legitimately	and	peripherally	in	CT	and	engineering	disciplines	(Lave	&	

Wenger,	1991).	

	 35	

Engineers	engage	in	the	practice	of	reusing	and	remixing	others’	work	when	

troubleshooting	or	reverse	engineering	existing	designs.	“Troubleshooting	and	reverse	

engineering	require	investigating	someone	else’s	designs	to	either	repair	it,	replicate	it,	or	

refine	it”	(Brophy	et	al.,	2008,	p.	375).	Engineering	students	engaging	in	this	process	should	

evaluate	the	quality	of	an	existing	product	by	analyzing	the	original	designer’s	intentions	

and	constraints.	

To	expose	learners	to	the	practices	of	the	Engineering	Design	Process,	curricula	are	

usually	created	to	move	students	systematically	through	all	phases	of	the	process	(EiE,	

2017a).	However,	professional	engineers	may	work	within	a	couple	of	the	phases,	and	then	

pass	their	work	onto	other	engineers	to	continue	the	process.	Thus,	the	work	becomes	

more	specialized	as	engineers	take	on	different	roles	within	the	community.	The	phases	

themselves	are	flexible	and	can	be	completed	in	different	orders	and	in	multiple	ways.	

When	considering	connections	between	engineering	and	CT,	engineers	in	different	roles	

will	use	different	CT	practices	in	their	work	depending	on	how	they	use	the	Engineering	

Design	Process.	In	other	words,	it	makes	sense	that	engineering	students	may	use	some	CT	

practices	but	not	others.	Educators	want	to	expose	novices	to	all	the	core	practices	used	by	

the	engineering	community,	but	they	should	also	consider	the	different	ways	of	

legitimately	acting	as	an	engineer.	Students	can	still	be	competent	computational	thinkers	

even	if	they	do	not	make	use	of	all	the	CT	practices	in	their	work.	If	a	student	does	not	like	

the	debugging	or	testing	process,	they	should	not	be	discouraged	from	being	an	engineer	or	

computational	thinker.	Instead,	educators	should	demonstrate	that	there	are	other	ways	of	

legitimately	participating.	Students	could	specialize	in	defining	problems	or	creating	

solutions	and	still	have	important	roles	as	computational	thinkers	in	the	engineering	(or	

programming)	communities.	

Even	young	children	can	engage	in	planning,	making,	and	evaluating	their	solutions	

in	design-based	engineering	activities	(Fleer,	1999;	2000).	In	Fleer’s	study,	preschool	

children	were	given	an	open-ended	task	to	design	a	home	for	a	mythical	creature	the	

teacher	imagined	living	in	her	garden.	Young	children	often	begin	these	activities	with	an	

unspecified	design	goal	that	emerges	as	they	build	things	(Brophy	et	al.,	2008;	Johnsey,	

1995).	By	second	grade	however,	students	who	have	been	engaging	in	design	processes	for	

several	years	are	able	to	plan	their	designs	by	considering	materials	and	constraints	of	the	

	 36	

task	(Roden,	1999).	This	work	demonstrates	that	it	is	reasonable	for	novices	to	engage	in	

making	and	testing	practices	first,	since	“the	natural	cycle	of	iterative	design	places	

students	in	a	continuous	cycle	of	test	and	evaluation”	(Brophy	et	al.,	2008,	p.	373).	After	

gaining	some	experience	with	the	design	cycle,	then	learners	can	practice	planning	their	

designs	and	specifying	their	goals	ahead	of	time.	Content	knowledge	also	seems	to	affect	

the	number	of	iterations	of	the	design	cycle.	Experts	have	more	prior	knowledge	and	

experiences	to	draw	on	when	planning	their	designs,	so	they	are	more	likely	than	novices	

to	come	up	with	an	accurate	plan	the	first	time	(Roth,	1996;	Wineburg,	1991).	However,	

like	with	debugging	programs,	even	experts	are	expected	to	find	errors	and	make	changes	

through	cycles	of	design.				

Dispositions	

 One	of	the	dispositions	Brennan	and	Resnick	(2012)	identified	as	important	to	

learning	CT	in	programming	is	the	ability	to	deal	with	open-ended	problems.	Similarly,	

designing	solutions	to	open-ended	problems	is	central	to	the	work	of	engineering.	“Design	

and	troubleshooting	represent	the	types	of	ill-structured,	or	open-ended,	problems	on	

which	engineers	enjoy	spending	intellectual	energy”	(Brophy	et	al.,	2008,	p.	371).	

Engineers	serving	different	roles	in	the	design	cycle	have	to	respond	to	open-ended	

problems	in	different	ways.	Some	may	focus	on	planning	and	brainstorming	solutions,	

while	others	may	focus	on	testing	and	debugging	solutions.	Like	computer	scientists,	

engineers	must	welcome	open-ended	problems	as	a	challenge	and	persist	in	solving	them.	

But	this	raises	a	question	about	transferability.	If	students	develop	the	disposition	to	

persist	on	engineering	problems,	will	they	also	persist	on	open-ended	problems	in	CS	and	

other	disciplines?	The	disposition	may	start	out	as	context-specific,	but	as	it	becomes	part	

of	learners’	identities	over	time,	they	may	be	able	to	use	similar	approaches	to	problems	in	

different	contexts.	Longitudinal	studies	are	needed	to	investigate	the	construction	of	

dispositions	over	years	of	learning	and	identity	development.		

	 Questioning	is	another	CT	disposition	from	programming	that	overlaps	with	the	

core	of	engineering.	The	goal	of	engineering	is	to	address	social	needs	and	solve	problems	

through	design.	Rather	than	taking	existing	tools	and	technologies	as	given,	engineers	ask	

how	they	can	improve	and	re-conceptualize	those	tools	to	solve	new	problems	and	

	 37	

improve	solutions	to	old	problems	(NGSS,	2013).	They	also	use	technologies	as	part	of	the	

design	process,	to	model	situations	and	test	solutions.	Thus,	engineers	ask	questions	both	

about	and	with	technologies.	More	research	is	needed	to	understand	whether	and	how	

students	learning	CS	and	engineering	develop	these	questioning	mindsets.	Is	it	a	

disposition	that	all	students	develop	when	they	see	they	can	create	new	things	with	

technology,	or	are	some	students	more	apt	to	look	at	technology	in	this	way	than	others	

are?	It	seems	like	the	latter	is	more	likely,	since	the	disposition	aligns	with	masculine	forms	

of	competence	and	stereotypes	of	makers	that	enjoy	taking	things	apart	to	see	how	they	

work.	However,	this	broader	view	of	questioning	in	CT	involves	asking	not	only	how	

technologies	work	but	also	what	new	technologies	we	can	create.		

	 Stereotypes	in	both	engineering	and	CS	include	visions	of	lonely	individuals	working	

on	their	own	to	solve	problems.	Earlier	I	described	how	the	ability	and	willingness	to	

collaborate	with	others	is	actually	an	important	mindset	of	computational	thinkers	in	CS,	

and	the	same	can	be	said	in	engineering.	Learning	to	collaborate	with	others	is	built	into	K-

12	engineering	education	standards	and	curricula	(EiE,	2017b;	NRC,	2012;	NGSS,	2013).	

Collaboration	and	communication	with	others	are	also	considered	engineering	“habits	of	

mind”	or	attitudes	associated	with	engineering	(NAE	&	NRC,	2009).	Multiple	engineers	

often	work	on	the	same	problem	by	designing	and	testing	different	ideas,	then	

collaborating	to	choose	the	most	promising	solution	(NRC,	2012).	Engineers	must	learn	to	

evaluate	and	compare	each	other’s	ideas	and	formulate	arguments	based	on	data	and	

testing.	They	also	need	to	communicate	their	ideas	clearly	so	their	solutions	can	be	

understood	by	outside	clients	as	well	as	engineers	serving	other	roles	in	the	design	process	

(NRC,	2012).			

Learning	CT	Practices	in	K-12	Engineering	

Learning	engineering	in	K-12	and	its	integration	with	other	STEM	disciplines	is	

understudied	(Moore	et	al.,	2014;	Rogers,	Wendell,	&	Foster,	2010),	including	the	idea	of	

learning	CT	through	engineering.	K-12	engineering	education	is	still	quite	new	and	not	

widely	implemented	in	the	U.S.	(NAE	&	NRC,	2009).	In	the	curricula	that	have	been	

developed	for	K-12	engineering,	the	content	centers	on	design	(NAE	&	NRC,	2009).	

Likewise,	the	previous	section	outlining	the	connections	between	CT	and	engineering	

	 38	

demonstrates	that	most	of	the	overlaps	occur	in	the	engineering	design	process.	So	what	do	

we	know	about	learning	the	engineering	design	process	in	K-12?	We	know	very	little	about	

it,	actually.	Research	in	engineering	education	tends	to	focus	on	the	presentation	of	

educational	tools	or	curricula,	or	on	identity	development.	Very	few	engineering	education	

studies	have	focused	on	students’	understandings	of	concepts	and	practices.	Researchers	

suggest	that	engineering	learning	occurs	best	when	students	have	extended	time	to	design	

and	iterate	on	projects	(Rogers,	Wendell,	&	Foster,	2010)	and	when	tools	(e.g.	software,	

computational	tools)	are	meaningfully	integrated	into	problem-solving	activities	(NAE	&	

NRC,	2009).	However,	there	is	little	empirical	evidence	to	back	those	claims.		

The	idea	of	learning	CT	through	engineering	is	a	gap	in	the	literature	and	an	

important	space	for	future	exploration.	The	small	amount	of	research	that	exists	occurs	in	

the	context	of	e-textiles,	and	that	work	is	framed	as	learning	CT	through	craft	rather	than	

engineering	(Kafai	et	al.,	2010;	2013;	2014;	Kafai,	Searle,	Martinez,	&	Brayboy,	2014;	Fields,	

Searle,	&	Kafai,	2016;	Lui	et	al.,	2016;	Rode	et	al.,	2015;	Searle,	Fields,	Lui,	&	Kafai,	2014).	I	

touch	on	the	literature	briefly	here	because	it	is	a	form	of	engineering;	engineers	use	

science	concepts	to	design	solutions	to	problems,	and	e-textiles	projects	draw	on	circuitry	

and	materials	science	concepts	through	design.		

E-textiles	allow	makers	to	incorporate	electronic	hardware	(e.g.	lights,	sensors,	

microcomputers,	and	buzzers)	into	fabric	designs.	One	study	using	e-textiles	with	high	

school	students	showed	that	students	used	several	CT	concepts	and	practices	in	their	work,	

including	sequences,	conditionals,	loops,	variables,	remixing,	and	debugging	(Kafai	et	al.,	

2014).	However,	students	in	that	study	programmed	e-textile	projects	using	Arduino	code.	

Thus,	the	CT	skills	students’	employed	largely	occurred	in	the	context	of	programming,	

with	the	exception	of	debugging,	which	students	engaged	in	throughout	the	design	process.	

Little	is	known	about	how	students	use	CT	concepts	and	practices	in	engineering	activities	

without	computer	programming	and	how	students’	participation	changes	over	time	as	they	

become	members	of	the	engineering	community.	Thus,	an	open	question	is,	how	might	

students	engage	in	CT	in	ways	that	are	legitimate	to	the	engineering	community	and	thus	

support	students	to	learn	through	meaningful	participation?	

	

	 39	

CT	Identity	Development	and	Dispositions	in	K-12	Engineering	

While	few	studies	of	engineering	have	deeply	considered	learning,	more	have	

focused	on	students’	identities	in	relation	to	engineering.	Much	of	the	work	on	engineering-

related	identities	has	studied	university	level	engineering	students	and	their	persistence	in	

engineering	occupations	(e.g.	McGee	&	Martin,	2011;	Meyers	et	al.,	2012;	Pierrakos	et	al.,	

2009;	Tate	&	Linn,	2005),	or	on	professional	identities	of	working	engineers	(e.g.	Anderson	

et	al.,	2010;	Hatmaker,	2013;	Jorgenson,	2002).	On	the	college	level,	sense	of	belonging	and	

recognition	affect	students’	identification	with	engineering	(Meyers	et	al.,	2012).	

Additionally,	university	students	who	persist	in	engineering	majors	tend	to	have	more	

knowledge	of	the	profession,	greater	exposure	to	engineering	(e.g.	through	family	members	

or	friends),	and	some	productive	relationships	with	engineering	faculty	and	peers	

(Pierrakos	et	al.,	2009).	Persistence	is	also	influenced	by	the	intersection	of	academic	and	

social	identities,	illustrated	in	studies	focusing	on	the	roles	of	gender	and	race	in	

engineering	programs	(Tate	&	Linn,	2005).	Although	this	research	on	university	and	

professional	engineers	is	a	helpful	starting	point	in	response	to	pipeline	issues,	researchers	

need	a	better	understanding	of	how	K-12	engineering	education	affects	students’	views	of	

engineering,	development	of	productive	dispositions,	and	sense	of	self	in	relation	to	

engineering.		

As	an	example	of	how	design	activities	can	affect	high	school	students’	views	and	

identities,	work	on	learning	CT	with	e-textiles	in	high	school	classrooms	demonstrates	that	

alternative	ways	of	approaching	CT	can	change	students’	perceptions	of	computing	and	

their	views	of	themselves	in	relation	to	computing	(Kafai	et	al.,	2013).	After	making	

projects	using	programmable	e-textiles	materials,	high	school	students	saw	CS	as	more	

relevant	to	their	lives,	gained	confidence	in	their	programming	skills,	and	developed	better	

understandings	of	what	the	computing	field	involves	(Kafai	et	al.,	2014).	Furthermore,	e-

textiles	activities	have	been	shown	to	engage	all	students,	regardless	of	race	or	gender,	in	

CT	(Kafai	et	al.,	2013;	2014).	While	this	work	connects	to	engineering	design	processes,	it	

still	explicitly	engages	students	in	CT	through	computer	programming.	Questions	remain	

about	how	students	use	CT	in	engineering	contexts	without	programming,	and	how	other	

engineering	activities	affect	students’	perceptions	of	CT	and	technology	fields.		

	 40	

Other	studies	in	high	school	and	university	engineering	have	drawn	explicitly	on	

LPP	to	study	aspects	of	identity	development.	In	one	study	using	LPP	as	a	framework	to	

look	at	university	engineering	students’	engagement	in	industrial	vocation	work,	Jawitz,	

Case,	and	Ahmed	(2005)	found	that	opportunities	to	participate	legitimately	in	meaningful	

activity	influenced	students’	sense	of	belonging	and	views	of	themselves	in	relation	to	

engineering.	Not	surprisingly,	the	mentoring	or	supervising	engineers	significantly	

influenced	access	to	meaningful	activities,	and	they	affected	each	student’s	sense	of	self	by	

advocating	for	or	against	the	student’s	role	as	a	legitimate	participant.	In	another	study	

looking	at	mentorship	in	a	high	school	context,	researchers	demonstrated	that	

communities	of	practice	are	essential	for	supporting	persistence	in	science	and	engineering	

fields	through	mentorship	and	role	models	(Aschbacher,	Li,	&	Roth,	2010).	Along	with	

outside	mentors,	K-12	teachers	have	significant	influence	over	students’	identity	

development	and	learning	in	their	roles	as	mentors	and	supervisors.	Thus,	it	is	imperative	

that	researchers	take	into	account	the	role	of	the	teacher	in	facilitating	legitimate	

participation	for	all	learners	to	develop	productive	identities	as	computational	thinkers.		

While	mentors	clearly	influence	learning	and	identity,	more	research	is	needed	to	

understand	how	to	implement	mentorship	communities	that	support	productive	

engagement	and	sense	of	belonging	for	students	even	before	they	reach	high	school.	In	

general,	few	studies	have	focused	on	learning	and	identity	development	in	engineering	

with	elementary	and	middle	school	students	(Capobianco,	Diefes-Dux,	Mena,	&	Weller,	

2011),	which	is	not	surprising	given	the	lack	of	emphasis	on	formal	engineering	instruction	

for	young	children.	

	

	

	

	

	 41	

Discussion	

The	goal	of	this	paper	was	to	develop	a	better	understanding	of	the	concepts,	

practices,	and	dispositions	involved	in	CT	and	how	people	can	learn	it	by	looking	at	how	CT	

is	defined	in	CS	then	exploring	the	overlaps	with	another	context,	namely	engineering.	I	

chose	engineering	because	of	its	ties	to	other	STEM	content	areas	and	the	ability	to	

practically	apply	STEM	content,	including	CS,	through	engineering	design	problems,	along	

with	the	fact	that	CT	is	beginning	to	appear	in	K-12	engineering	education	standards.	

Engineering	offers	an	opportunity	to	understand	how	people	use	CT	in	connection	with	

other	STEM	disciplines	that	do	not	necessarily	involve	mechanical	computers	or	computer	

programming.		

From	my	review	of	literature	defining	CT	in	CS	contexts,	I	identified	common	CT	

concepts,	practices,	and	dispositions	that	overlap	with	CS.	Then	I	explored	how	those	

elements	of	CT	overlap	with	the	literature	on	design	processes	in	engineering.	First,	CT	

concepts	that	overlap	with	both	CS	and	engineering	include:	data	collection,	organization,	

and	representation	(many	other	concepts	from	CS	and	programming	are	traditionally	

included	in	CT	but	do	not	necessarily	overlap	with	different	engineering	fields).	Second,	CT	

practices	that	overlap	with	both	CS	and	engineering	include:	(i)	generalizing	solutions	into	

a	problem	solving	process,	(ii)	reworking	the	problem	so	it	can	be	solved	by	a	

computational	agent,	(iii)	considering	efficiency	and	performance	constraints,	(iv)	reusing	

or	remixing	others’	work,	(v)	creating	and	using	abstractions,	and	(vi)	debugging	and	

testing	solutions.	Finally,	CT	dispositions	that	overlap	with	both	CS	and	engineering	

include:	(i)	dealing	with	open-ended	problems,	(ii)	questioning	about	and	with	

computational	tools,	and	(iii)	collaborating	and	communicating	with	others. 	

Much	of	the	overlap	between	CT	as	it	is	defined	in	CS	and	its	application	in	

engineering	can	be	seen	in	the	engineering	design	process.	So	this	begs	the	question,	is	CT	

really	just	design	thinking	or	problem	solving?	The	answer	to	this	question	is	not	

completely	clear	from	the	current	literature	on	CT.	Without	a	clear,	agreed-upon	vision	of	

what	we	want	students	to	learn	about	CT,	it’s	hard	to	articulate	what	those	differences	

really	are.	The	recent	introduction	of	the	term	“computational	making”	(Rode	et	al.,	2015),	

with	ties	to	maker	spaces	and	the	maker	movement,	shifts	CT	even	more	in	the	direction	of	

	 42	

design	and	creation.	Given	the	concepts,	practices,	and	dispositions	explored	here,	it	seems	

like	CT	might	be	a	specific	form	of	problem	solving	or	design,	with	some	specific	concepts	

that	come	from	CS	and	programming.	It	could	be	that	CT	adds	logical	thinking	and	data	use	

concepts	to	traditional	design	practices	and	dispositions.	In	other	words,	CT	seems	to	be	

about	logical	thinking	(many	of	the	concepts	from	CS)	plus	design	practices.	CT	may	

potentially	be	a	useful	combination	of	concepts,	practices,	and	dispositions	that	prepares	

students	for	jobs	across	fields	involving	design	and	problem	solving.	But	these	and	related	

claims	about	CT’s	ability	to	empower	children	to	solve	problems	(e.g.	ISTE	&	CSTA,	2011;	

Papert,	1980;	Wing,	2006)	are	highly	theoretical	at	this	point,	until	more	work	can	be	done	

to	define	CT	in	use	and	distinguish	it	from	other	forms	of	thinking.		

In	general,	more	research	on	CT	learning	and	identity	development	in	K-12	contexts	

is	needed.	Most	research	on	CT	in	K-12	has	occurred	in	informal	education	settings	(Lye	&	

Koh,	2014).	Given	the	recent	development	of	CT	in	K-12	educational	standards,	such	as	in	

the	CSTA	and	ISTE	Computer	Science	Standards	and	in	the	Next	Generation	Science	

Standards,	CT	is	clearly	becoming	part	of	formal	K-12	education	for	all,	not	just	an	element	

of	select	after-school	activities.	Thus,	researchers	need	to	understand	how	to	design	for	in-

school	learning	environments	and	to	productively	incorporate	CT	into	classrooms.		

There	has	been	some	empirical	work	on	learning	CT	in	programming	or	CS	contexts,	

but	virtually	nothing	in	K-12	engineering.	Research	in	CS	demonstrates	that	young	children	

can	learn	CT	concepts	using	visual	and	block-based	programming	tools,	and	online	

communities	of	practice	support	different	forms	of	legitimate	participation	and	roles	

within	the	community.	Studies	using	Scratch	in	particular	have	demonstrated	that	students	

in	a	variety	of	grade	levels	can	engage	in	almost	all	the	CT	concepts,	practices,	and	

dispositions	listed	in	this	paper.	However,	we	don’t	know	much	about	how	these	learning	

tools	are	integrated	into	K-12	classroom	systems	and	how	classrooms	can	support	

engagement	in	meaningful	activities	that	continue	to	legitimize	students’	roles	in	

communities	that	use	CT.	In	the	case	of	engineering,	educators	are	just	beginning	to	

incorporate	engineering	in	K-12	classrooms	across	the	U.S.,	so	there	are	few	empirical	

studies	on	learning	engineering	in	K-12	classrooms,	let	alone	learning	CT	through	

engineering.	There	is	work	on	learning	CT	with	e-textiles,	but	those	studies	are	framed	as	

CT	in	the	context	of	craft	rather	than	engineering.	Additionally,	that	work	looks	at	CT	

	 43	

learning	through	programming	in	Arduino,	so	it	is	still	unclear	how	or	what	students	learn	

about	CT	in	engineering	(or	even	craft)	contexts	that	do	not	involve	programming	

mechanical	computers.		

When	it	comes	to	identity	development,	relevant	literature	in	both	CS	and	

engineering	highlights	the	fact	that	CT	education	“is	not	just	a	matter	of	quantity	but	also	

one	of	quality	of	engagement”	(Fields,	Giang,	&	Kafai,	2014,	p.	8).	Researchers	have	

contextualized	problems	in	narratives,	dance,	and	games	to	motivate	students	to	

participate	in	CT.	Some	studies	have	demonstrated	students’	productive	engagement	in	CT	

dispositions	when	programming	stories	or	games,	including	expressing	ideas,	collaborating	

and	communicating	with	others,	and	asking	questions	with	computational	tools.	However,	

it	is	not	clear	how	framing	CT	through	these	contexts	affects	long-term	persistence,	beliefs	

about	CT,	and	students’	views	of	themselves	in	relation	to	CT.		

Mentorship	also	plays	a	significant	role	in	identity	development	through	LPP	in	both	

CS	and	engineering	contexts.	Mentors	shape	students’	views	about	what	CT	is,	who	can	

participate	in	it,	and	whether	they	have	access	to	legitimate	roles	within	the	community.	

Given	the	important	role	teachers	play	as	mentors	and	supervisors,	we	need	more	research	

to	understand	how	teachers	can	implement	and	be	part	of	successful	mentorship	

communities	in	K-12	settings	to	support	meaningful	participation	for	all	students,	not	just	

those	already	represented	by	the	majority	of	CS	and	engineering	professionals.			

While	this	paper	illustrates	that	CT	overlaps	with	design	processes	in	disciplines	

other	than	CS,	engineering	is	still	a	male-dominated	profession.	Only	14%	of	engineers	in	

2016	identified	as	female	(The	Economics	Daily,	2017).		To	truly	expand	notions	of	

competence	and	participation	in	CT	for	students	who	do	not	already	match	with	the	

stereotypes	in	technology	fields,	this	work	needs	to	connect	CT	with	contexts	that	are	

dominated	by	other	groups	of	people.	Therefore,	I	plan	to	explore	CT	in	traditionally	

feminine	contexts	of	craft	in	future	work.	

	

	

	 44	

Conclusion	

Research	into	CT	in	STEM	and	even	humanities	in	K-12	contexts	is	just	beginning	to	

emerge.	This	is	an	important	area	for	future	work	that	has	the	potential	to	expand	access	to	

CT	learning	opportunities.	It	will	also	help	refine	the	definition	of	CT	and	improve	

understandings	of	what	CT	looks	like	in	different	contexts.	The	way	Deanna	Kuhn	

described	scientific	thinking	helps	explain	how	researchers	might	expand	the	role	of	CT	in	

K-12	education	and	our	lives.	Kuhn	explained,	

Scientific	thinking	tends	to	be	compartmentalized,	viewed	as	relevant	
and	accessible	only	to	the	narrow	segment	of	the	population	who	
pursue	scientific	careers.	If	science	education	is	to	be	successful,	it	is	
essential	to	counter	this	view	and	establish	the	place	that	scientific	
thinking	has	in	the	lives	of	all	students.	A	typical	approach	to	this	
objective	has	been	to	try	to	connect	the	content	of	science	to	
phenomena	familiar	in	students’	everyday	lives.	An	ultimately	more	
powerful	approach	may	be	to	connect	the	process	of	science	to	thinking	
processes	that	figure	in	ordinary	people’s	lives	(1993,	p.	333).			

	
By	connecting	scientific	processes	to	the	thinking	processes	in	our	everyday	lives,	it	

highlights	the	relevance	of	scientific	thinking,	points	to	the	need	to	engage	in	the	practice	of	

thinking	to	enhance	the	quality	of	thinking,	and	makes	social	dialogue	a	place	to	externalize	

thinking	strategies	(Kuhn,	1993).	In	this	view	of	thinking	processes,	it	is	okay,	and	even	

ideal,	that	CT	overlaps	with	other	processes,	including	design	thinking,	problem	solving,	

critical	thinking,	systems	thinking,	and	algorithmic	thinking,	because	it	connects	the	ways	

in	which	computer	scientists	think	to	other	thinking	processes	people	use	in	a	variety	of	

contexts.	A	focus	on	thinking	processes	demands	work	on	the	nature	and	role	of	CT	in	

contexts	outside	of	computing,	with	a	variety	of	learners,	and	in	everyday	processes.	It	is	

still	unclear	what	the	role	of	computers	in	engaging	in	CT	really	is,	and	whether	people	can	

legitimately	practice	CT	without	mechanical	computers	(Weintrop	et	al.,	2016).	This	work	

connecting	CT	to	other	contexts	will	advance	the	field	towards	a	richer	understanding	of	

the	concepts	and	practices	collected	under	CT,	many	of	which	are	not	yet	clearly	defined,	

and	the	practical	utility	of	CT	as	a	construct	within	K-12	education.		

	

	 45	

REFERENCES	

Anderson,	K.	J.	B.,	Courter,	S.	S.,	McGlamery,	T.,	Nathans-Kelly,	T.	M.,	&	Nicometo,	C.	G.	
(2010).	Understanding	engineering	work	and	identity:	a	cross-case	analysis	of	engineers	
within	six	firms.	Engineering	Studies,	2(3),	153-174.	

Aschbacher,	P.	R.,	Li,	E.,	&	Roth,	E.	J.	(2010).	Is	science	me?	High	school	students’	identities,	
participation	and	aspirations	in	science,	engineering,	and	medicine.	Journal	of	Research	in	
Science	Teaching,	47(5),	564–582.		

Barr,	B.	D.,	Harrison,	J.,	&	Conery,	L.	(2011).	Computational	Thinking :	A	Digital	Age.	
Learning	&	Leading	with	Technology,	5191(March	/	April),	20–23.	

Barr,	V.,	&	Stephenson,	C.	(2011).	Bringing	computational	thinking	to	K-12.	ACM	Inroads,	
2(1),	111–122.		

Beckhusen,	J.	(2016).	Occupations	in	Information	Technology:	American	Community	Survey	
Reports	(Vol.	1980).	Washington,	D.C.:	U.S.	Census	Bureau.		

Bers,	M.	U.	(2010).	The	TangibleK	robotics	program:	Applied	computational	thinking	for	
young	children.	Early	Childhood	Research	and	Practice,	12(2),	1–20.	

Bers,	M.	U.,	Flannery,	L.,	Kazakoff,	E.	R.,	&	Sullivan,	A.	(2014).	Computational	thinking	and	
tinkering:	Exploration	of	an	early	childhood	robotics	curriculum.	Computers	and	Education,	
72,	145–157.		

Biochemical	Society	(2017).	What	is	biochemistry?	Retrieved	from	
http://www.biochemistry.org/?TabId=456.		

Bishop,	J.	P.	(2012).	“She’s	Always	Been	the	Smart	One.	I’ve	Always	Been	the	Dumb	One”:	
Identities	in	the	Mathematics	Classroom.	Journal	for	Research	in	Mathematics	Education,	
43(1),	34–74.		

Boaler,	J.	(2002).	The	development	of	disciplinary	relationships:	knowledge,	practice,	and	
identity	in	mathematics	classrooms.	For	the	Learning	of	Mathematics,	22(1),	42–47.		

Boaler,	J.,	&	Greeno,	J.	G.	(2000).	Identity,	agency,	and	knowing	in	mathematics	
worlds.	Multiple	perspectives	on	mathematics	teaching	and	learning,	171-200.	

Brennan,	K.,	&	Resnick,	M.	(2012).	New	frameworks	for	studying	and	assessing	the	
development	of	computational	thinking.	In	annual	AERA	meeting,	Vancouver,	BC,	Canada	
(pp.	1–25).		

Brickhouse,	N.	W.,	&	Potter,	J.	T.	(2001).	Young	Women’s	Scientific	Identity	Formation	in	an	
Urban	Context.	Journal	of	Research	in	Science	Teaching,	38(8),	965–980.	

	 46	

Brikman,	Y.	(2014).	Don’t	learn	to	code.	Learn	to	think.	[Blog	post].	Retrieved	from	
https://www.ybrikman.com/writing/2014/05/19/dont-learn-to-code-learn-to-think/.		

Brophy,	S.,	Klein,	S.,	Portsmore,	M.,	&	Rogers,	C.	(2008).	Advancing	Engineering	Education	
in	P-12	Classrooms.	Journal	of	Engineering	Education,	(July),	369–387.	

Bullmaster-Day,	M.	L.	(2015).	Productive	Struggle	for	Deeper	Learning.	Triumph	Learning.	

Bureau	of	Labor	Statistics	(2017).	Computer	and	information	technology	occupations.	
Retrieved	from	https://www.bls.gov/ooh/computer-and-information-
technology/home.htm.		

Capobianco,	B.	M.,	Diefes-Dux,	H.	A.,	Mena,	I.,	&	Weller,	J.	(2011).	What	is	an	Engineer?	
Implications	of	Elementary	School	Student	Conceptions	for	Engineering	Education.	Journal	
of	Engineering	Education,	100(2),	304–328.	

Carolyn	Yang,	Y.	T.,	&	Chang,	C.	H.	(2013).	Empowering	students	through	digital	game	
authorship:	Enhancing	concentration,	critical	thinking,	and	academic	achievement.	
Computers	and	Education,	68,	334–344.		

Catterall,	J.	(2013).	Getting	real	about	the	E	in	STEAM.	The	STEAM	Journal,	1(1),	Article	6.		

Cejka,	E.,	Rogers,	C.,	&	Portsmore,	M.	(2006).	Kindergarten	Robotics:	Using	Robotics	to	
Motivate	Math,	Science,	and	Engineering	Literacy	in	Elementary	School.	International	
Journal	of	Engineering	Education,	22(4),	711–722.	

Cheryan,	S.,	Master,	A.,	&	Meltzoff,	A.	N.	(2015).	Cultural	stereotypes	as	gatekeepers:	
Increasing	girls’	interest	in	computer	science	and	engineering	by	diversifying	stereotypes.	
Frontiers	in	Psychology,	6(FEB),	1–8.		

Clements,	D.	H.,	&	Gullo,	D.	F.	(1984).	Effects	of	Computer	Programming	on	Young	
Children’s	Cognition.	Journal	of	Educational	Psychology,	76(6),	1051–1058.	

Cobb,	P.,	&	Bowers,	J.	(1999).	Cognitive	and	situated	learning	perspectives	in	theory	and	
practice.	Educational	researcher,	28(2),	4-15.	

Crismond,	D.	(2001).	Learning	and	using	science	ideas	when	doing	investigate-and-
redesign	tasks:	A	study	of	naive,	novice,	and	expert	designers	doing	constrained	and	
scaffolded	design	work.	Journal	of	Research	in	Science	Teaching,	38(7),	791–820.	

CSTA.	(2013).	CSTA	K-12	Computer	Science	Standards:	Mapped	to	Common	Core	State	
Standards		for	Mathematical	Practice.	Retrieved	from	
http://www.csta.acm.org/Curriculum/sub/CurrFiles/CSTA_Standards_Mapped_to_Commo
nCoreStandards.pdf	

	 47	

CSTA.	(2017).	CSTA	K-12	Computer	Science	Standards.	Retrieved	from	
http://www.csteachers.org/page/standards	

CSTA	&	ACM	(2016).	Interim	CSTA	K-12	computer	science	standards.	New	York,	NY:	CSTA	&	
ACM.	Retrieved	from	
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/Docs/Standards/2016
StandardsRevision/INTERIM_StandardsFINAL_07222.pdf.		

Daily,	S.	B.,	Leonard,	A.	E.,	Jörg,	S.,	Babu,	S.,	&	Gundersen,	K.	(2014).	Dancing	Alice:	Exploring	
embodied	pedagogical	strategies	for	learning	computational	thinking.	In	Proceedings	of	the	
45th	ACM	technical	symposium	on	Computer	science	education	-	SIGCSE	’14	(pp.	91–96).	
Atlanta,	GA:	ACM.	

Dasgupta,	S.,	Hale,	W.,	Monroy-	Hernandez,	A.,	&	Hill,	B.	M.	(2016).	Remixing	as	a	Pathway	
to	Computational	Thinking.	In	CSCW	(pp.	1438–1449).	San	Francisco,	CA.	

diSessa,	A.	(2000).	Changing	Minds:	Computers,	Learning,	and	Literacy.	Cambridge,	MA:	MIT	
Press.	

EiE	(Engineering	is	Elementary)	(2017a).	The	engineering	design	process.	Retrieved	from	
https://www.eie.org/overview/engineering-design-process.		

EiE	(Engineering	is	Elementary)	(2017b).	Trajectories	for	preschool-middle	school	
engineering	activities.	Retrieved	from	https://eie.org/overview/engineering-trajectories.		

Feldman,	A.	(2015).	STEAM	rising:	Why	we	need	to	put	the	arts	into	STEM	education.	Slate.	
Retrieved	from	
http://www.slate.com/articles/technology/future_tense/2015/06/steam_vs_stem_why_w
e_need_to_put_the_arts_into_stem_education.html.		

Fields,	D.	A.,	Giang,	M.,	&	Kafai,	Y.	(2014).	Programming	in	the	wild.	In	Proceedings	of	the	9th	
Workshop	in	Primary	and	Secondary	Computing	Education	on	-	WiPSCE	’14	(pp.	2–11).	
Berlin,	Germany.		

Fields,	D.	A.,	Searle,	K.	A.,	&	Kafai,	Y.	B.	(2016).	Deconstruction	Kits	for	Learning:	Students	’	
Collaborative	Debugging	of	Electronic	Textile	Designs.	In	FabLearn	(pp.	82–85).	Stanford,	
CA.	

Fleer,	M.	(1999).	Children’s	alternative	views:	Alternative	to	what?	International	Journal	of	
Science	Education,	21(2),	119–35.		

Fleer,	M.	(2000).	Working	technologically:	Investigations	into	how	young	children	design	
and	make	during	technology	education.	International	Journal	of	Technology	and	Design	
Education,	10(1),	43–59.	

	 48	

Gee,	J.	P.	(2000).	Chapter	3:	Identity	as	an	analytic	lens	for	research	in	education.	Review	of	
research	in	education,	25(1),	99-125.	

Gorman,	H.,	&	Bourne,	L.	E.	(1983).	Learning	to	think	by	learning	LOGO:	Rule	learning	in	
third-grade	computer	programmers.	Bulletin	of	the	Psychonomic	Society,	21(3),	165–167.		

Greeno,	J.	G.	(1991).	Number	sense	as	situated	knowing	in	a	conceptual	domain.	Journal	for	
Research	in	Mathematics	Education,	22(3),	170–218.	

Greeno,	J.	G.,	&	Gresalfi,	M.	S.	(2008).	Opportunities	to	learn	in	practice	and	identity.	In	P.	A.	
Moss,	D.	C.	Pullin,	J.	P.	Gee,	E.	H.	Haertel,	&	L.	J.	Young	(Eds.),	Assessment,	Equity,	and	
Opportunity	to	Learn.	New	York:	Cambridge	University	Press.		

Gresalfi,	M.	S.,	&	Cobb,	P.	(2006).	Cultivating	students’	discipline-specific	dispositions	as	a	
critical	goal	for	pedagogy	and	equity.	Pedagogies,	1(1),	49–57.	

Gresalfi,	M.,	Martin,	T.,	Hand,	V.,	&	Greeno,	J.	(2009).	Constructing	competence:	an	analysis	
of	student	participation	in	the	activity	systems	of	mathematics	classrooms.	Education	
Studies	in	Mathematics,	70(1),	49–70.		

Grover,	S.,	&	Pea,	R.	(2013).	Computational	Thinking	in	K-12:	A	Review	of	the	State	of	the	
Field.	Educational	Researcher,	42(1),	38–43.		

Grover,	S.,	&	Pea,	R.	(2018).	Computational	Thinking:	A	competency	whose	time	has	come.	
In	S.	Sentance,	E.	Barendsen,	&	C.	Schulte	(Eds.),	Computer	Science	Education:	Perspectives	
on	Teaching	and	Learning.	London:	Bloomsbury.	

Guzdial,	M.	(2008).	Education:	Paving	the	way	for	computational	thinking.	Communications	
of	the	ACM,	51(8),	25–27.		

Haik,	Y.,	Sivaloganathan,	S.,	and	Shahin,	T.M.	(2015).	Engineering	Design	Process	(3rd	Ed.).	
Boston,	MA:	Cengage	Learning.		

Halpern,	D.	F.	(1999).	Teaching	for	critical	thinking:	Helping	college	students	develop	the	
skills	and	dispositions	of	a	critical	thinker.	New	directions	for	teaching	and	
learning,	1999(80),	69-74.	

Hand,	V.,	&	Gresalfi,	M.	(2015).	The	Joint	Accomplishment	of	Identity.	Educational	
Psychologist,	50(3),	190–203.		

Handelsman,	J.	and	Smith,	M.	(2016,	February	11).	STEM	for	all	[Blog	post].	The	White	
House	Blog.	Retrieved	from	
https://obamawhitehouse.archives.gov/blog/2016/02/11/stem-all.		

Hatmaker,	D.	M.	(2013).	Engineering	identity:	Gender	and	professional	identity	negotiation	
among	women	engineers.	Gender,	Work	&	Organization,	20(4),	382-396.	

	 49	

Holland,	D.,	Lachicotte,	W.,	Skinner,	D.,	&	Cain,	C.	(1998).	Identity	and	agency	in	cultural	
worlds.	History.	Cambridge,	MA:	Harvard	University	Press.	

Horn,	M.	S.,	Brady,	C.,	Hjorth,	A.,	Wagh,	A.,	&	Wilensky,	U.	(2014,	June).	Frog	pond:	A	
codefirst	learning	environment	on	evolution	and	natural	selection.	In	Proceedings	of	the	
2014	conference	on	Interaction	design	and	children	(pp.	357-360).	ACM.		

Horn,	M.	S.,	&	Jacob,	R.	J.	K.	(2007).	Designing	Tangible	Programming	Languages	for	
Classroom	Use.	In	Proceedings	of	the	1st	International	Conference	on	Tangible	and	Embedded	
Interaction	(pp.	159-162).	ACM.		

Hu,	C.	(2011).	Computational	thinking	–	What	it	might	mean	and	what	we	might	do	about	it.	
ITiCSE	’11:	Proceedings	of	the	16th	Annual	Joint	Conference	on	Innovation	and	Technology	in	
Computer	Science	Education	(pp.	223–227).		

Hung,	D.,	Chen,	V.,	&	Lim,	S.	H.	(2009).	Unpacking	the	hidden	efficacies	of	learning	in	
productive	failure.	Learning	Inquiry,	3(1),	1–19.		

Israel,	M.,	Pearson,	J.	N.,	Tapia,	T.,	Wherfel,	Q.	M.,	&	Reese,	G.	(2015).	Supporting	all	learners	
in	school-wide	computational	thinking:	A	cross-case	qualitative	analysis.	Computers	and	
Education,	82(March),	263–279.		

ISTE,	&	CSTA.	(2011).	Operational	Definition	of	Computational	Thinking.	Retrieved	from	
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pd
f.		

Jagodzinski,	A.	(2016,	June	30).	STEAM	on	the	rise:	The	growing	importance	of	arts	
education	[Blog	post].	Art	Force.	Retrieved	from	http://artforce.org/steam-on-the-rise/.		

Jawitz,	J.,	Case,	J.,	&	Ahmed,	N.	(2005).	Smile	nicely,	make	the	tea	-	But	will	I	ever	be	taken	
seriously?	Engineering	students’	experiences	of	vacation	work.	International	Journal	of	
Engineering	Education,	21(1),	134–138.	

Johnsey,	R.	(1995).	The	place	of	the	process	skill	making	in	design	and	technology:	Lessons	
from	research	into	the	way	primary	children	design	and	make.	In	Proceedings	of	the	
IDATER95:	International	Conference	on	Design	and	Technology	Educational	Research	and	
Curriculum	Development,	Loughborough,	UK.		

Jorgenson,	J.	(2002).	Engineering	selves:	Negotiating	gender	and	identity	in	technical	
work.	Management	Communication	Quarterly,	15(3),	350-380.	

Kafai,	Y.	B.	(2016).	From	computational	thinking	to	computational	participation	in	K–12	
education.	Communications	of	the	ACM,	59(8),	26–27.		

	 50	

Kafai,	Y.	B.,	Lee,	E.,	Searle,	K.,	&	Fields,	D.	(2014).	A	crafts-oriented	approach	to	computing	
in	high	school:	Introducing	computational	concepts,	practices,	and	perspectives	with	
electronic	textiles.	ACM	Transactions	on	Computing	Education,	14(1),	1–20.		

Kafai,	Y.	B.,	Peppler,	K.	A.,	Burke,	Q.,	Moore,	M.,	&	Glosson,	D.	(2010).	Fröbelʼs	forgotten	gift:	
Textile	construction	kits	as	pathways	into	play,	design	and	computation.	In	Interaction	
Design	and	Children,	Barcelona,	Spain.		

Kafai,	Y.	B.,	Searle,	K.,	Martinez,	C.,	&	Brayboy,	B.	(2014).	Ethnocomputing	with	Electronic	
Textiles:	Culturally	Responsive	Open	Design	to	Broaden	Participation	in	Computing	in	
American	Indian	Youth	and	Communities.	In	SIGCSE/14,	Atlanta,	GA.	

Kafai,	Y.	B.,	Searle,	K.,	Fields,	D.	A.,	Kafai,	Y.,	Searle,	K.,	Fields,	D.,	&	Lui,	D.	(2013).	Cupcake	
cushions,	Scooby	Doo	shirts,	and	soft	boomboxes:	E-textiles	in	high	school	to	promote	
computational	concepts.	In	SIGCSE’13	(pp.	311–316),	Denver,	CO.		

Kalelioǧlu,	F.,	&	Gülbahar,	Y.	(2014).	The	effects	of	teaching	programming	via	Scratch	on	
problem	solving	skills:	A	discussion	from	learners’	perspective.	Informatics	in	Education,	
13(1),	33–50.	

Kaplan,	A.,	&	Flum,	H.	(2009).	Motivation	and	identity:	The	relations	of	action	and	
development	in	educational	contexts	–	An	introduction	to	the	special	issue.	Educational	
Psychologist,	44(2),	73-77.		

Kapur,	M.	(2008).	Productive	failure.	Cognition	and	Instruction,	26(3),	379–424.		

Kelleher,	C.	(2009).	Barriers	to	programming	engagement.	Advances	in	Gender	and	
Education,	1,	5–10.	

Kelleher,	C.,	&	Pausch,	R.	(2005).	Lowering	the	barriers	to	programming:	A	taxonomy	of	
programming	environments	and	languages	for	novice	programmers.	ACM	Computing	
Surveys,	37(2),	83–137.	

Kelleher,	C.,	&	Pausch,	R.	(2007).	Using	storytelling	to	motivate	programming.	
Communications	of	the	ACM,	50(7),	58.		

Kimmel,	H.,	Carpinelli,	J.,	Alexander,	L.B.,	and	Rockland,	R.	(2006).	Bringing	engineering	into	
k-12	schools:	A	problem	looking	for	solutions?	In	Proceedings	of	the	American	Society	for	
Engineering	Education	Annual	Conference	and	Exposition,	Chicago,	IL.	

Kolodner,	J.	L.,	Camp,	P.J.,	Crismond,	D.,	Fasse,	B.,	Gray,	J.,	Holbrook,	J.,	Puntambekar,	S.,	and	
Ryan,	M.	(2003).	Problem-based	learning	meets	case-based	reasoning	in	the	middle-school	
science	classroom:	Putting	learning	by	design™	into	practice.	Journal	of	the	Learning	
Sciences,	12(4),	495–547.	

	 51	

Kuhn,	D.	(1993).	Science	as	Argument :	Implications	for	Teaching	and	Learning	Scientific	
Thinking.	Science	Education,	77(3),	319–337.	

Lave,	J.,	&	Wenger,	E.	(1991).	Situated	learning:	Legitimate	peripheral	participation.	
Cambridge,	U.K.:	Cambridge	university	press.	

Lester,	F.	K.	(1994).	Musings	about	mathematical	problem-solving	research:	1970-
1994.	Journal	for	research	in	mathematics	education,	25(6),	660-675.	

Lucas,	B.,	Hanson,	J.,	Claxton,	G.,	and	Centre	for	Real-World	Learning	(2014).	Thinking	like	
an	engineer:	Implications	for	the	education	system.	UK:	Royal	Academy	of	Engineering.		

Lui,	D.,	Litts,	B.	K.,	Widman,	S.,	Walker,	J.	T.,	&	Kafai,	Y.	B.	(2016).	Collaborative	Maker	
Activities	in	the	Classroom:	Case	Studies	of	High	School	Student	Pairs’	Interactions	in	
Designing	Electronic	Textiles.	In	FabLearn	(pp.	74–77),	Stanford,	CA.	

Lye,	S.	Y.,	&	Koh,	J.	H.	L.	(2014).	Review	on	teaching	and	learning	of	computational	thinking	
through	programming:	What	is	next	for	K-12 ?	Computers	in	Human	Behavior,	41,	51–61.		

Mark,	J.	(1992).	Beyond	equal	access:	Gender	equity	in	learning	with	computers.	Women’s	
Educational	Equity	Act	Publishing	Center	Digest,	1-2-7.	

Martin,	D.	B.	(2000).	Mathematics	Success	and	Failure	among	African-American	Youth:	The	
Roles	of	Sociohistorical	Context,	Community	Forces,	School	Influence,	and	Individual	Agency.	
Mahwah,	NJ:	Lawrence	Erlbaum	Associates.	

Master,	A.,	Cheryan,	S.,	&	Meltzoff,	A.	N.	(2016).	Computing	whether	she	belongs:	
Stereotypes	undermine	girls’	interest	and	sense	of	belonging	in	computer	science.	Journal	
of	Educational	Psychology,	108(3),	424–437.		

Mattern,	K.	D.,	Shaw,	E.	J.,	&	Ewing,	M.	(2011).	Advanced	Placement®	Exam	Participation:	Is	
AP®	Exam	Participation	and	Performance	Related	to	Choice	of	College	Major?	Research	
Report	No.	2011-6.	College	Board.	

Mayer,	R.	E.	(1998).	Cognitive,	metacognitive,	and	motivational	aspects	of	problem	solving.	
Instructional	Science,	26,	49–63.	

Mayer,	R.	E.,	Dyck,	J.	L.,	&	Vilberg,	W.	(1986).	Learning	to	program	and	learning	to	think:	
what’s	the	connection?	Communications	of	the	ACM,	29(7),	605–610.		

McCaslin,	M.	(2009).	Co-Regulation	of	Student	Motivation	and	Emergent	Identity.	
Educational	Psychologist,	44(2),	137–146.		

McGee,	E.	O.,	&	Martin,	D.	B.	(2011).	‘‘You	Would	Not	Believe	What	I	Have	to	Go	Through	to	
Prove	My	Intellectual	Value!"	Stereotype	Management	among	Academically	Successful	

	 52	

Black	Mathematics	and	Engineering	Students.	American	Educational	Research	Journal,	
48(6),	1347–1389.		

McLeod,	D.	B.	(1992).	Research	on	affect	in	mathematics	education:	A	
reconceptualization.	In	D.A.	Grouws	(Ed.),	Handbook	of	research	on	mathematics	teaching	
and	learning	(pp.	575-596).	Macmillan.		

Meyers,	K.	L.,	Ohland,	M.	W.,	Pawley,	A.	L.,	Silliman,	S.	E.,	&	Smith,	K.	A.	(2012).	Factors	
relating	to	engineering	identity.	Global	Journal	of	Engineering	Education,	14(1),	119–131.	

Midian	Kurland,	D.,	Pea,	R.	D.,	Clement,	C.,	Mawby,	R.,	&	Mawby,	R.	A.	(1986).	A	study	of	the	
development	of	programming	ability	and	thinking	skills	in	high	school	students.	Journal	of	
Educational	Computing	Research,	2(4),	429–458.		

Moore,	T.	J.,	Glancy,	A.	W.,	Tank,	K.	M.,	Kersten,	J.	A.,	&	Smith,	K.	A.	(2014).	A	Framework	for	
Quality	K-12	Engineering	Education:	Research	and	Development.	Journal	of	Pre-College	
Engineering	Education,	4(1),	Article	2.		

NASA’s	BEST	(2016).	The	engineering	design	process.	NASA.	Retrieved	from	
www.nasa.gov/foreducators.	

Nasir,	N.	I.	S.	(2002).	Identity,	goals,	and	learning:	Mathematics	in	cultural	
practice.	Mathematical	thinking	and	learning,	4(2-3),	213-247.	

Nasir,	N.	I.	S.,	&	Cooks,	J.	(2009).	Becoming	a	hurdler:	How	learning	settings	afford	
identities.	Anthropology	&	Education	Quarterly,	40(1),	41-61.	

Nasir,	N.	S.,	&	de	Royston,	M.	M.	(2013).	Power,	identity,	and	mathematical	practices	
outside	and	inside	school.	Journal	for	Research	in	Mathematics	Education,	44(1),	264–287.		

Nasir,	N.	S.,	&	Hand,	V.	(2008).	From	the	court	to	the	classroom:	Opportunities	for	
engagement,	learning,	and	identity	in	basketball	and	classroom	mathematics.	Journal	of	the	
Learning	Sciences,	17(2),	143–179.		

National	Academy	of	Engineering	(NAE)	and	National	Research	Council	(NRC).	(2009).	
Engineering	in	K-12	Education:	Understanding	the	Status	and	Improving	the	Prospects.	
Washington,	D.C.:	The	National	Academies	Press.		

National	Center	for	Women	and	Information	Technology	(NCWIT).	(2017).	By	the	Numbers.	
Retrieved	from	https://www.ncwit.org/resources/numbers.		

National	Research	Council	(NRC).	(2004).	Computer	Science:	Reflections	on	the	Field,	
Reflections	From	the	Field.	Washington,	D.C.:	The	National	Academies	Press.	

National	Research	Council	(NRC).	(2010).	Report	of	a	Workshop	on	the	Scope	and	Nature	of	
Computational	Thinking.	Washington,	D.C.:	The	National	Academies	Press.	

	 53	

National	Research	Council	(NRC).	(2012).	A	framework	for	K-12	science	education:	Practices,	
crosscutting	concepts,	and	core	ideas.	Washington,	D.C.:	The	National	Academies	Press.		

NGSS.	(2013).	Science	and	Engineering	Practices.	Washington,	D.C.:	The	National	Academies	
Press.		

Nickerson,	R.	S.	(1983).	Computer	programming	as	a	vehicle	for	teaching	thinking	
skills.	Thinking:	The	Journal	of	Philosophy	for	Children,	4(3/4),	42-48.	

Papert,	S.	(1980).	Mindstorms:	Children,	computers,	and	powerful	ideas.	New	York,	NY:	Basic	
Books.	

Papert,	S.	(1996).	An	Exploration	in	the	Space	of	Mathematics	Educations.	International	
Journal	of	Computers	for	Mathematical	Learning,	1(1),	95–123.	

Pea,	R.	D.	(1983).	Logo	Programming	and	Problem	Solving.	In	American	Educational	
Research	Symposium	(pp.	2–10),	Montreal,	Canada.	

Pea,	R.	D.,	&	Kurland,	D.	M.	(1984).	On	the	cognitive	effects	of	learning	computer	
programming.	New	Ideas	in	Psychology,	2(2),	137–168.		

Pea,	R.	D.,	Kurland,	D.	M.,	&	Hawkins,	J.	(1985).	Logo	and	the	Development	of	Thinking	
Skills.	In	M.	Chen	&	W.	Paisley	(Eds.),	Children	and	Microcomputers:	Research	on	the	Newest	
Medium	(pp.	193–317).	Sage.	

Pierrakos,	O.,	Beam,	T.	K.,	Constantz,	J.,	Johri,	A.,	&	Anderson,	R.	(2009).	On	the	
Development	of	a	Professional	Identity:	Engineering	Persisters	Vs	Engineering	Switchers.	
In	39th	ASEE/IEEE	Frontiers	in	Education	Conference	(pp.	1–6),	San	Antonio,	TX.	

Pinkard,	N.,	Erete,	S.,	Martin,	C.	K.,	&	McKinney	de	Royston,	M.	(2017).	Digital	Youth	Divas:	
Exploring	Narrative-Driven	Curriculum	to	Spark	Middle	School	Girls’	Interest	in	
Computational	Activities.	Journal	of	the	Learning	Sciences,	26(3),	477-516.			

Potvin,	P.,	&	Hasni,	A.	(2014).	Interest,	motivation	and	attitude	towards	science	and	
technology	at	K-12	levels:	a	systematic	review	of	12	years	of	educational	research.	Studies	
in	Science	Education,	50(1),	85–129.		

Renninger,	K.	A.	(2009).	Interest	and	Identity	Development	in	Instruction:	An	Inductive	
Model.	Educational	Psychologist,	44(2),	105–118.		

Resnick,	M.,	Maloney,	J.,	Monroy-Hernández,	A.,	Rusk,	N.,	Eastmond,	E.,	Brennan,	K.,	…	Kafai,	
Y.	(2009).	Scratch:	Programming	for	All.	Communications	of	the	ACM,	52,	60–67.		

Robelen,	E.	W.	(2013).	K-12	Bolsters	Ties	to	Engineering.	Education	Week,	32(26),	1-18.	

	 54	

Rode,	J.	A.,	Weibert,	A.,	Marshall,	A.,	Aal,	K.,	Von	Rekowski,	T.,	El	Mimoni,	H.,	&	Booker,	J.	
(2015).	From	Computational	Thinking	to	Computational	Making.	In	UbiComp	(pp.	239–
250),	Osaka,	Japan.		

Roden,	C.	(1999).	How	children’s	problem	solving	strategies	develop	at	key	stage	1.	The	
Journal	of	Design	and	Technology	Education,	4(1),	21–27.		

Rogers,	C.	B.,	Wendell,	K.,	&	Foster,	J.	(2010).	A	Review	of	the	NAE	Report,	Engineering	in	K-
12	Education.	Journal	of	Engineering	Education,	(April),	179–181.	

Roth,	W.	M.	(1995).	From	“wiggly	structures”	to	“unshaky	towers”:	Problem	framing,	
solution	finding,	and	negotiation	of	courses	of	actions	during	a	civil	engineering	unit	for	
elementary	students.	Research	in	Science	Education,	25(4),	365–381.	

Roth,	W.	M.	(1996).	Knowledge	diffusion	in	a	grade	4–5	classroom	during	a	unit	on	civil	
engineering:	An	analysis	of	a	classroom	community	in	terms	of	its	changing	resources	and	
practices.	Cognition	and	Instruction,	14(2),	179–220.		

Royal	Academy	of	Engineering	(2017).	What	is	engineering?	Retrieved	from	
http://www.raeng.org.uk/education/what-is-engineering.		

Sadler,	T.,	Barab,	S.,	and	Scott,	B.	(2007).	What	do	students	gain	by	engaging	in	
socioscientific	inquiry?	Research	in	Science	Education,	37(4),	371–91.	

Schoenfeld,	A.	H.	(1992).	Learning	to	think	mathematically:	Problem	solving,	
metacognition,	and	sense	making	in	mathematics.	In	D.	Grouws	(Ed.),	Handbook	for	
Research	on	Mathematics	Teaching	and	Learning	(pp.	334–370).	New	York,	NY:	Macmillan.	

Searle,	K.	A.,	Fields,	D.	A.,	Lui,	D.	A.,	&	Kafai,	Y.	B.	(2014).	Diversifying	high	school	students’	
views	about	computing	with	electronic	textiles.	In	ICER	(pp.	75–82),	Glasgow,	UK.		

Shute,	V.	J.,	Sun,	C.,	&	Asbell-Clarke,	J.	(2017).	Demystifying	computational	
thinking.	Educational	Research	Review,	22,	142-158.		

Smith,	M.	(2016,	January	30).	Computer	science	for	all	[Blog	post].	The	White	House	Blog.	
Retrieved	from	https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-
science-all.		

Sneider,	C.,	Stephenson,	C.,	Schafer,	B.,	&	Flick,	L.	(2014).	Computational	thinking	in	high	
school	science	classrooms.	The	Science	Teacher,	81(5),	53-59.		

Snyder,	T.	D.	(2016).	Digest	of	Education	Statistics:	2015.	National	Center	for	Education	
Statistics.		

Soloway,	E.	(1986).	Learning	to	program	=	learning	to	construct	mechanisms	and	
explanations.	Communications	of	the	ACM,	29(9),	850–858.		

	 55	

Swan,	K.	(1989).	Programming	objects	to	think	with:	Logo	and	the	teaching	and	learning	of	
problem	solving.	In	Annual	Meeting	of	the	American	Educational	Research	Association,	San	
Francisco,	CA.	

Tan,	E.,	Calabrese	Barton,	A.,	Kang,	H.,	&	O’Neill,	T.	(2013).	Desiring	a	career	in	STEM-
related	fields:	How	middle	school	girls	articulate	and	negotiate	identities-in-practice	in	
science.	Journal	of	Research	in	Science	Teaching,	50(10),	1143–1179.		

Tate,	E.	D.,	&	Linn,	M.	C.	(2005).	How	Does	Identity	Shape	the	Experiences	of	Women	of	
Color	Engineering	Students?	Journal	of	Science	Education	and	Technology,	14(5/6),	483–
493.		

The	Economics	Daily	(2017).	Women	in	architecture	and	engineering	occupations	in	2016.	
Bureau	of	Labor	Statistics.	Retrieved	from	https://www.bls.gov/opub/ted/2017/women-
in-architecture-and-engineering-occupations-in-2016.htm.		

Wang,	D.,	Wang,	T.,	&	Liu,	Z.	(2014).	A	tangible	programming	tool	for	children	to	cultivate	
computational	thinking.	The	Scientific	World	Journal,	2014.		

Waterman,	A.	S.	(2004).	Finding	Someone	to	Be:	Studies	on	the	Role	of	Intrinsic	Motivation	
in	Identity	Formation.	Identity:	An	International	Journal	of	Theory	and	Research,	4(3),	209–
228.		

Weintrop,	D.,	Beheshti,	E.,	Horn,	M.,	Orton,	K.,	Jona,	K.,	Trouille,	L.,	&	Wilensky,	U.	(2016).	
Defining	Computational	Thinking	for	Mathematics	and	Science	Classrooms.	Journal	of	
Science	Education	and	Technology,	25(1),	127–147.		

Wenger,	E.	(1998).	Communities	of	practice:	Learning,	meaning,	and	identity.	Cambridge,	
UK:	Cambridge	University	Press.	

Wenger,	E.	(2010).	Communities	of	practice	and	social	learning	systems:	The	career	of	a	
concept.	In	C.	Blackmore	(Ed.),	Social	Learning	Systems	and	Communities	of	Practice	(pp.	
179–198).	London:	Springer.		

Wigfield,	A.,	&	Wagner,	A.	L.	(2005).	Competence,	motivation,	and	identity	development	
during	adolescence.	In	A.	J.	Elliot	&	C.	S.	Dweck	(Eds.),	Handbook	of	Competence	and	
Motivation	(pp.	222–239).	New	York:	Guilford	Press.	

Wilensky,	U.,	Brady,	C.	E.,	&	Horn,	M.	S.	(2014).	Fostering	Computational	Literacy	in	Science	
Classrooms.	Communications	of	the	ACM,	57(8),	24–28.		

Wineburg,	S.	S.	(1991).	Historical	problem	solving:	A	study	of	the	cognitive	processes	used	
in	the	evaluation	of	documentary	and	pictorial	evidence.	Journal	of	Educational	Psychology,	
83,	73–87.	

	 56	

Williams,	L.,	Wiebe,	E.,	Yang,	K.,	Ferzli,	M.,	&	Miller,	C.	(2002).	In	Support	of	Pair	
Programming	in	the	Introductory	Computer	Science	Course.	Computer	Science	Education,	
12(3),	197–212.		

Wing,	J.	M.	(2006).	Computational	thinking.	Communications	of	the	ACM,	49(3),	33–35.		

Wing,	J.	M.	(2008).	Computational	thinking	and	thinking	about	computing.	Philosophical	
Transactions	the	Royal	Society	of	London	A,	366(1881),	3717–3725.		

Wyeth,	P.,	&	Purchase,	H.	C.	(2002).	Tangible	Programming	Elements	for	Young	Children.	In	
CHI’02	extended	abstracts	on	Human	factors	in	computing	systems	(pp.	774–775).	ACM.	

Yelland,	N.	J.	(1995).	Encouraging	young	children’s	thinking	skills	with	Logo.	Childhood	
Education,	71(3),	152–155.	

	

