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Chapter 1 Introduction 

1.1 Economic and Environmental Motivation for Renewables 

For both economic and environmental reasons, the global energy infrastructure has begun to change 

from a fossil fuel base to a renewable and distributed system.  Initially environmental reasons, such as 

mitigating CO2 emissions, were the driving forces to produce energy from renewable sources such as 

solar, wind, biofuels and hydroelectric.  As these technologies and policies regarding them have evolved, 

there is now an additional economic incentive.  Solar and wind are now the same price or cheaper in over 

thirty countries (Figure 1.1).1   

 
Figure 1.1 Levelized cost of energy for power generation 
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Even states that rely heavily on the coal and gas industry such as Texas understand the economic 

importance of renewables as they are also the largest wind producing state.  Under Governor Rick Perry 

(now Secretary of Energy) wind power surged, with over eighteen GW installed and another five GW 

under construction according to the American Wind Energy Association.2, 3  Competitive energy costs 

completely change the incentive of renewables from environmental to an economic driver that can 

provide both jobs and cheaper energy.  In fact, in Q1 and Q2 of 2016, 374,000 solar jobs were added in 

the US, more than in the generation of nuclear, fossil fuels, or advanced gas (Figure 1.2).4   

 
Figure 1.2 New jobs related to power generation broken down by industry 

  

One of the biggest changes from coal and natural gas power generation to renewable generation is 

the ability to provide energy on demand.  Coal and natural gas plants can ramp up and down as needed 

and there are plants designed to specifically come online when demand is high.  This is not the case for 
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renewables since it is much more difficult to tell the sun to shine or the wind to blow.  A crucial part of 

the renewable infrastructure is the storage and release of these intermittent.  Also, as more wind and solar 

are installed, a larger percentage of the power produced from these sources is wasted because of its 

unpredictability, known as curtailment (Figure 1.3a).5, 6  Batteries are the solution to these problems.  

Batteries are needed for both short term and long term storage of energy when there is excess and 

releasing power to the grid when needed (Figure 1.3b).7  Unfortunately, batteries were not a major focus 

during the boom of wind and solar so the cost and performance of batteries is insufficient for renewable 

grid storage.    

 
Figure 1.3 a) Real power output data from Tucson Electric Power over one full day in summer (3 June 

2004) at one min sampling frequency. b) Excess solar produced during that day that can be stored and 

released by batteries in demand 

  

Another growing application for batteries is electric vehicles (EVs), requiring over 20 GWh of 

lithium ion batteries (LIBs) in 2016 with over 400 GWh expected in 2025.8  Although EVs are becoming 

more popular in the US, foreign nations are the main driving forces.  The United Kingdom and France 

have announced that by 2040 gasoline and diesel cars will not be sold in their countries.  The Chinese 

government has proposed production quotas on their auto manufacturers with the goal of generating a 

market for 5 million new energy cars between 2016 and 2020.9  The market in the US is dominated by 

Tesla and Panasonic who have partnered on the Tesla Gigafactory with an expected production of 



4 

 

 

500,000 EVs per year.  Batteries are still prohibitively expensive in full electric vehicles, to the point 

where the annualized cost to the consumer is higher for full electric vehicles than hybrid electric or 

combustion vehicles.10  This means that the upfront price of the battery is so high that it is not balanced by 

the gas savings over the lifetime of the car.  A sensitivity analysis of EV costs on battery price shows that 

meeting the DOE 2030 price goal would make EVs cost competitive with other technologies (Figure 1.4). 

The battery price is critical for full electric vehicles to have both economic and environmental benefits 

and to become a competitor in the transportation market. 

 
Figure 1.4 Sensitivity Analysis of Battery Cost on Annualized Cost to Consumer for City Driving. 

Reproduced from ref. 10 with permission from Elsevier 
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 The growing importance of both renewable energy and electric vehicles has dramatically 

increased the demand for batteries, particularly lithium ion batteries.11  Unfortunately, the cost and 

performance of LIBs both need to be improved before batteries can really thrive in EV and renewable 

applications.  I decided to get my PhD to specifically tackle these issues.  Before graduate school I had 

worked at a solar cell and panel manufacturer and it became clear that competitive solar technologies 

existed while competitive batteries did not.  One of my favorite parts of my job was the interdisciplinary 

nature of the work where I learned new ideas in chemistry, physics, statistics, and more.  In graduate 

school I tried to continue this by learning about many different fields. My dissertation will focus on 

methods to produce a less expensive battery with new materials for alternative ion batteries.  My research 

has been guided by trying to solve the main engineering challenges of these systems by first 

understanding the fundamental storage mechanisms and then leveraging that knowledge to improve the 

performance. 

1.2 The Lithium Ion Battery 

The battery technology best poised for both EVs and renewable storage is the lithium ion battery.  

The modern LIB was invented in 1976 by Stanley Whittingham who found that lithium ions could be 

shuttled back and forth between high energy lithium metal (the anode) and low energy TiS2 (the 

cathode).12  Despite his discovery, commercial success of this design was limited due to the instability of 

lithium metal both in air and upon repeated stripping and plating while the battery was being used.  It was 

not until after the replacement of the cathode with LiCoO2 and the anode with graphite in the 1990s that 

Sony was able to manufacture the modern LIB.  These materials are still commonly used in LIBs today, 

although development of alternative cathodes such as LiNi1-x-yMnxCoyO2 (NMC) and LiNi1-x-yCoxAlyO2 

(NCA) can provide energy, cost, and safety benefits.13 

A LIB operates by shuttling Li+ through a lithium salt containing electrolyte between electrodes in 

a high energy and low energy state.  Using a charged LiCoO2/graphite LIB as an example (Figure 1.5), in 
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a charged state, the lithium ions are stored in the anode as LiC6 while the cathode has the lithium deficient 

state of Li0.5CoO2. Upon discharging lithium ions and electrons are removed from the graphite at ~0.1 V 

vs Li/Li+.  The lithium ions then travel through the electrolyte to the cathode while the electrons travel 

through an external circuit and provide power to the car, house, or any attached device.  The e- then 

reduces Co3+ to Co2+ and the Li+ is inserted into the cathode to maintain charge balance at ~4V vs Li/Li+. 

(voltage and energy are inversely related, so a higher voltage means the electrons are lower energy).  The 

voltage difference between the two electrodes is the operating voltage of the battery which must be 

smaller than the electrochemical window of the electrolyte otherwise the electrolyte will be depleted 

through oxidation or reduction.  The number of ions stored in an electrode is referred to as its capacity 

and is reported in mAh/g (a fancy way of stating the amount of charge stored per mass of electrode).  

LiCoO2 can only reversibly form Li0.5CoO2 yielding a capacity of 136 mAh/g.  Further Li+ removal 

causes irreversible structural changes.  Graphite on the other hand has a theoretical capacity of 372 

mAh/g when forming LiC6.   
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Figure 1.5 Operation of a standard lithium 

ion battery upon discharge. Reproduced from 

ref. 11 with permission from Nature 

 

1.2.1 Challenges for Lithium Ion Batteries 

As LIB demand is rapidly increasing there are mounting cost and material concerns.  Lithium is 

the 33rd most abundant element and is not well distributed in the earth’s crust, both of which contribute to 

its relatively high price (Figure 1.6).14  Although Australia is the biggest exporter of lithium, most of the 

reserves are found in Chile and China, countries that can be politically challenging for the US to work 

with.15  For these reasons, concern has arisen about potential Li shortages and price increases in the 

future. Although there is enough Li on Earth to meet the near term demands for LIBs, there is a major lag 

time between building a mine and exporting lithium.  The demand for batteries is rapidly increasing due 
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to EV sales and storage of renewables and if the mining operation cannot keep up, the price of Li will 

drastically increase.16 

 
Figure 1.6 Major lithium deposits 

 

Another limitation of current LIBs is that the general design has not changed much since its initial 

introduction in the 90s.  The cost of LIBs has dropped due to cell technology advancement and economies 

of scale, but they are closing in on their minimum.  Further advances in energy density and cost must 

come from materials changes. 

1.3 Alternative Ion Batteries 

The challenges facing LIBs has motivated the field of alternative ion batteries that substitute 

lithium with more abundant metals whose raw material costs are well below that of lithium, such as 

sodium,17, 18 potassium,19-22 or aluminum.23 Sodium, potassium, and lithium are all alkali metals and in 

many cases, this enables direct application of knowledge gained from LIB research to be readily applied 

in sodium ion battery (SIB)  and potassium ion battery (PIB) systems since common cathodes, such as 

transition metal oxides or phosphates, have Na or K equivalents.18,4,24  Sodium and potassium are around 

800 times more abundant and around twenty times cheaper than Li while also having a wider distribution 
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in the earth’s crust (Figure 1.7a,b).18, 25  These alternative ion batteries operate very similarly to a LIB 

where the ion is inserted and extracted from two electrodes, but new challenges arise mostly due to the 

larger ionic radii of the K+ and Na+.   

 
Figure 1.7 a) Abundance in the earth’s crust. b) Cost of relevant precursors. c) theoretical capacity in 

graphite 

1.3.1 Challenges for Sodium Ion Batteries 

The major challenge for SIBs arises from the lack of Na+ storage in graphite.  While graphite has 

a capacity of 372 mAh/g in an LIB, it only has a capacity of 37 mAh/g in a SIB because only NaC60 can 

be formed (Figure 1.7c).26, 27  Sodium is unique in its inability to be stored in graphite in large quantities, 

since many other graphite intercalation compounds can be formed with larger cations and anions such as 

K+, AlCl4
-, Cs+, and others.28-30  The origin of the low sodium capacity in graphite arises from the 

diverging trends between ionization energy, binding energy, and carbon straining in increasing alkali and 

alkali earth metals.  Even though larger ions have a higher carbon strain energy, they also have a much 

more favorable decohesion and binding energy that allows for a favorable formation energy.  For Na+ 

however, the less favorable binding energy becomes the driving force for poor formation energy.31 

This underlines the need for the exploration of new electrode materials for SIBs that can be 

competitive in performance with commercially available lithium-ion cells.  SIB research has focused on 

alternative electrodes that can replace graphite such as hard carbons25, 32 or other layered materials beyond 

graphite such MoS2
33, 34 or expanded graphite.35  Whereas efforts are being made to develop and 
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understand sodium storage in carbons, typically mediated by defects, the non-conventional storage 

processes associated with such materials (e.g. pore filling and defect-activated storage) are still being 

understood.36  Chapter two will introduce transition metal dichalcogenides as sodium ion battery 

electrodes and will show the first use of layered WSe2 as a low overpotential conversion reaction 

electrode through electrochemical testing and ex-situ characterization.   

1.3.2 Challenges for Potassium Ion Batteries 

Compared to SIBs, K-based battery systems have significant appeal due to (1) the known formation 

of a stage I graphite intercalation compound (KC8), (2) comparable earth abundance to sodium, and (3) a 

standard reduction potential 0.2 V lower than sodium, allowing for higher energy densities.20  Also, the 

lower charge density of K+ can provide increased mobility within the electrolyte and electrodes compared 

to Li+.37 The ability to use graphite, the commercial LIB anode, means that it may be possible to transfer 

existing battery manufacturing approaches to K-ion without significant manufacturing limitations. This is 

in stark contrast to other emerging battery technologies such as lithium sulfur that offer promises of high 

capacities and energy densities but require very different electrode processing methodologies that may 

limit manufacturing efforts.38  

In this spirit, only in late 2015 have studies emerged demonstrating the electrochemical 

intercalation of K+ into graphite using organic solvents.39, 40  Whereas earlier studies had confirmed the 

presence of K-ion GICs formed by heat and vacuum treatment, the work of Jian et al. and Luo et al. 

demonstrate that electrochemical processes can be used to achieve KC8 (stage I) potassium ion storage in 

graphite materials for the first time.  These studies demonstrate in excess of 250 mAh/g during cycling at 

slow rates (< 50 mA/g).   

Compared to LIBs and SIBs, very little is known about the electrochemical storage mechanism of 

PIBs.  The only previous insight into the mechanism comes from ex-situ x-ray diffraction (XRD) and 

density functional theory (DFT) calculations.  Ex-situ XRD at different states of charge revealed peaks 
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attributed to the structural signature of stages III, II, and I that correspond to KC36, KC24, and KC8.39  

However, no studies have been performed that elucidate the real-time electrochemical pathways for K-ion 

insertion into graphitic carbons or to understand the staging characteristics in comparison to Li-ion or Na-

ion batteries.  Besides for better understanding of K+ storage in graphite, the capacity and rate capability 

are still lower than Li+ in graphite and need to be improved.  

Chapter four will show the first in-situ characterization for the electrochemical intercalation of K+ 

into graphite, providing fundamental understanding of the staging process.  The staging of K+ is compared 

to Li+. Chapter five will then build upon that knowledge to improve the capacity and rate capability of the 

graphite anode by engineering the graphite electrode with nitrogen defects.  Performance on par with 

LIBs is achieved.  The role of these defects is explored with in-situ Raman spectroscopy. 

1.4 Introduction to Water Desalination 

Another major social issue I have been able to apply battery technology to is water scarcity.  Water 

scarcity is a serious problem facing the world with over one third of the world’s population currently living 

in water-stressed countries, with an expected increase to nearly two thirds by 2025.41  Cities like Cape Town 

are perpetually staving off the arrival of Day Zero when the water taps will be completely emptied despite 

the cities location near the huge reservoir of water in the ocean.42  Current technologies such as reverse 

osmosis (RO) have been deployed to process salt water into drinking water consuming three to four Wh/L, 

but the cost of these systems increases dramatically for small-scale distributed systems.43, 44  The advantages 

of delocalized water infrastructure are similar to a distributed electrical grid such as mitigation of large 

scale disruptions and lower susceptibility to attacks that can disrupt the critical water supply. 

Electrochemical desalination techniques such as capacitive deionization (CDI) have the potential to provide 

a more cost and energy effective distributed desalination system.45, 46  Although CDI can operate at high 

rates, it is typically used with lower concentration brine solutions instead of high concentration feeds like 

seawater due to the limited number of ions that can be stored in the double layer of carbons.47   
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1.5 A Desalination Battery 

A new electrochemical desalination method, coined “a desalination battery” was first proposed by 

Pasta et al. using Na2-xMn5O10 nanorods and Ag microparticles as a Na+ intercalation electrode and Cl- 

removal electrode respectively.48  A desalination battery operates by removing ions from the electrolyte 

through Faradaic reactions, storing energy during the charge cycle while releasing the ions into a waste 

brine solution and simultaneously releasing energy during discharge (Figure 1.8). A desalination battery 

can enable a distributed desalination system for processing seawater with higher total dissolved solids 

because Faradaic electrodes can store more ions compared to the double layers storage on high surface area 

carbons in CDI.  Although a desalination battery will likely encounter solution resistance issues as the total 

dissolved solids are significantly lowered during charging, this system could be used as a low energy first 

stage in series with other desalination techniques that require significantly less energy to process lower 

concentration feeds.   

 
Figure 1.8 Operation of a desalination battery. Reproduced from 

ref. 48 with permission from ACS 
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Aqueous sodium ion battery research has been directly applied to desalination battery research with 

papers exploring Na+ electrodes such as NaTi2(PO4)3,49
 Na0.7MnO2,50

 and Prussian Blue analogues.51-54  

Suss and Presser recently published a short review of Faradaic water desalination, highlighting the use of 

alternative ion battery knowledge for cation desalination but also pointing out the lack of research on 

chloride removal electrodes.47  Development and understanding of Cl- electrodes is of equal importance to 

Na+ electrodes but little work has focused on optimizing these materials for a desalination battery since 

most desalination papers have focused on Na+ intercalation and there is only a limited selection chloride 

ion battery papers.55, 56  Silver has been the chloride capturing electrode used in almost every desalination 

battery and has shown stable performance for 200 cycles while also reducing the voltage gap between the 

charge and discharge curves, leading to a lower desalination energy.49, 57, 58   

Whereas researchers have used nanoscale materials in desalination battery electrodes, there 

remains little understanding regarding how controlled nanoscale dimensions can steer energetics and 

kinetics dictating desalination battery performance.  Specifically for Ag electrodes, this is important 

because AgCl nucleates as a new phase at the surface of the Ag particle, leading to size dependent 

diffusion processes and nucleation energetics.59-61  Chapter three will discuss my work using size-

controlled Ag NP electrodes to modulate energy consumption and kinetics enabling a desalination battery 

with 40% reduced energy consumption.    

1.6 Description of Electrochemical Tests 

The electrochemists first tool when probing electrochemical reactions is cyclic voltammetry (CV).  

In a CV the voltage is increased or decreased at a constant scan rate while the current is measured (Figure 

1.9a, b).62  The current changes to satisfy the Nernst equation as the concentration of the oxidized or reduced 

species changes as a result of an electrochemical reaction.63  For a typical diffusion limited CV the current 

will decay proportional to time-1/2.  An increase current during a positive sweep of the voltage corresponds 

to an oxidation reaction while a decrease in current during the negative sweep is the result of a reduction 
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reaction.  While a CV can provide information related to the kinetics of electrochemical reactions and 

diffusion coefficients of electroactive species, it is not the best test for quantitative assessment of an 

electrode’s ability to store ions. 

 
Figure 1.9a) During a CV the voltage is constantly increased or decreased at a certain rate.  b) The 

measured current output during a CV where the peaks correspond to electrochemical reactions 

The other main electrochemical test for batteries is a galvanostatic (constant current) charge-

discharge (Figure 1.10).  In this test, a plateau in a charge-discharge curves corresponds to an 

electrochemical reaction.  A longer the plateau means more ions are being stored.  The number of ions 

stored is quantified as the capacity.  The charge or discharge time is easily converted into capacity in mAh/g 

by multiplying by the charging rate.   
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Figure 1.10 An example of a galvanostatic charge-

discharge curve where the plateaus correspond to 

electrochemical reactions 
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Chapter 2 Tungsten Diselenide (WSe2) as a High Capacity, Low Overpotential Conversion Electrode 

for Sodium Ion Batteries  

2.1 Introduction 

The transition metal dichalcogenides (TMDs) are a family of materials that have recently gained 

significant attention for their ability to store metal ions such as Li, Na, and Mg.64-66  TMDs (MX2 where 

M=Mo, W and X=S, Se, Te) have a lamellar structure (space group P63/mmc) similar to graphite but with 

larger interlayer spacing more appropriate for Na+ intercalation.  Of all TMDs, MoS2 has been the most 

widely studied for sodium ion batteries,67, 68 where storage has been identified to occur through both a 

high voltage intercalation reaction (products: NaxMoS2 (x<0.5)) and a low voltage conversion reaction 

(products: Na2S + Mo),65 the former of which is highly reversible.69  The intercalation reaction shows a 

2H (semiconductor) to 1T (metallic) transition while the conversion reaction produces amorphous Mo and 

a sodium/sulfide species.70   

Research in TMD-based electrodes for SIBs outside of MoS2 is limited despite research in other 

energy-related applications correlating TMD composition to catalytic or chemical performance,70 due to 

physical reactivity tuned by the metal to chalcogen composition.71  For SIBs, MoSe2 yolk shell 

microspheres and MoSe2 nanoplates have shown high capacities and good cyclability,72, 73 and WS2 

crystals distributed on graphene sheets have indicated high rate capabilities.74  However, no studies have 

been performed to date to assess the ability for WSe2 to store sodium ions.   

In this study, we investigate WSe2 as a conversion electrode for SIBs for the first time.  Bulk 

WSe2 is used instead of synthesized nanostructures in order to assess the material properties as opposed to 

structural effects (SEM of WSe2 Figure 2.1). Whereas TMDs containing heavier elements such as W or 

Se may not intuitively be expected to exhibit high specific capacities, our work demonstrates superior 

energetics of WSe2 compared to WS2, and comparable or better specific capacity in comparison to other 
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TMDs containing lighter elements.  We highlight the chemical nature of the conversion reaction, 

speculating on similarities and differences between WSe2 and heavily studied MoS2 materials that give 

promise to WSe2 as a candidate material for next-generation SIB platforms.   

 
Figure 2.1 a, b) SEMs of WSe2 particles. Reproduced from ref. 75 with permission from RSC 

2.2 Experimental Methods 

Commercial TMD powders (WS2, 99%, two µm, and WSe2, 99.8%, 20 µm) were acquired from 

Sigma Aldrich and Alfa Aesar.  Working electrodes were prepared by combining the TMD (60 

wt.%), super P carbon (20 wt.%) and either PVDF (Alfa Aesar) or CMC (Sigma Aldrich, 

MW=90,000) binder (20 wt.%) in NMP for PVDF or water for CMC, sonicating for ten minutes, 

and then drying the slurry on a stainless-steel disk for at least twelve hours at 55°C.  Half cell 

batteries were assembled in an Ar filled glove box using a coin cell with a Na metal (Sigma 

Aldrich, 99.95%) electrode, 1M NaPF6 (Strem, 99%) in anhydrous PC (Sigma Aldrich, >99.7%), 

anhydrous EC/DEC in a four: six ratio (Sigma Aldrich, 99%, >99%), or anhydrous diglyme 

(Sigma Aldrich, 99.5%) as the electrolyte, and a Whatman grade GF/F glass fiber microfiber 

filter separator (Sigma Aldrich).  Cyclic voltammetry (CV) was performed on a Metrohm 

Autolab multichannel electrochemical workstation.  Galvanostatic rate and cycling studies from 

0.1 V to 2.5 V were performed on an MTI eight channel battery analyzer.  Immediately prior to 
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all electrochemical tests, the batteries were allowed to reach open circuit voltage over three 

hours.  All electrochemical measurements are normalized to the mass of the TMD.  Raman 

measurements were performed using a Renishaw inVia Raman spectrometer with a 785 nm laser.  

X-ray diffraction was performed using a Scintag XGEN 4000 system with a CuKα (λ=0.154 nm) 

radiation source. A FEI Tecnai Osiris TEM with EDX capability was used for elemental 

analysis.  To prepare ex-situ samples, coin cells were disassembled in an Ar filled glovebox and 

the working electrode was removed and either washed in PC or untreated and then dried under 

vacuum for 24 hours.  Raman measurements were carried out in a homemade air tight system. 

2.3 Electrochemical Results 

Previous studies have indicated that PVDF with carbonate electrolytes can compromise the integrity of 

the electrode through unwanted side reactions.76, 77 Recently, Wang et al studied the effect of binders on 

microscale MoS2 in EC/DEC and found that CMC had the highest capacity and also degraded much less 

than PVDF.78  In this manner, our first efforts aim to identify WSe2 electrode, binder, and electrolyte 

combinations that yield the best battery performance (Figure 2.2).  Figure 2.2a-c and d-f show differential 

capacity plots and cycling data for each electrolyte combined with PVDF and with CMC respectively 

(charge-discharge profiles Figure 2.3).   
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Figure 2.2 a) dQ/dE for PVDF binder with 1M NaPF6 in EC/DEC, diglyme, and PC b) Cycling capacity 

at 100 mA/g for PVDF with all three electrolytes c) Capacity retention based on PVDF samples at 100 

mA/g d) dQ/dE for CMC binder with 1M NaPF6 in EC/DEC, diglyme, and PC e) Cycling capacity at 100 

mA/g for CMC with all three electrolytes f) Capacity retention based on CMC samples at 100 mA/g 

 
Figure 2.3 Charge-discharge curves for the first, second, fifteenth, and thirtieth cycle for 

each electrolyte/binder combination.  The electrolyte/binder combinations have no effect 

on the energetics of the reaction, only the performance. CMC with a) EC/DEC b) diglyme 

c) PC. PVDF with d) EC/DEC, e) diglyme, f) PC 
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Differential capacity data are obtained by differentiation of galvanostatic charge-discharge profiles.  

These provide the same information as the charge-discharge profiles but more obviously highlights the 

energetics of the reaction.  In each case, the sodiation and desodiation reactions remain invariant across 

the different electrolytes, even in the case of diglyme where solvent co-intercalation reactions can occur 

that drastically change the energetics.79  Galvanostatic charge-discharge cycling tests were carried out for 

thirty cycles at 100 mA/g (Figure 2.2 b,e), which distinguish the stability of different electrolyte-binder 

combinations in this system.  In all cases, the capacity of CMC-based electrodes is comparable to or 

greater than the equivalent system with PVDF.  For both binders, diglyme electrolytes exhibit higher 

capacity for the first few cycles but the capacity quickly fades by over 50% after ~ten cycles with a final 

capacity of 118 mAh/g with PVDF and 117 mAh/g with CMC after thirty cycles.  Propylene carbonate 

electrolytes combined with both CMC and PVDF binders also exhibit rapid capacity fade over thirty 

cycles, while EC/DEC electrolytes lead to a stable capacity through thirty cycles following the first few 

cycles.  We attribute the adverse cycling performance of both PC and diglyme electrolytes to irreversible 

side reactions occurring between the electrolyte and binder.  Such irreversible side reactions are also 

apparent for PC electrolytes through the low Coulombic efficiency between charge and discharge.  

EC/DEC samples have the highest capacities at the end of thirty cycles for both PVDF (155 mAh/g) and 

CMC (190 mAh/g), with stable cycling performance.  This allows us to establish the best electrolyte-

binder combination for WSe2 electrodes, which is EC/DEC combined with CMC binders.  This 

combination shows virtually no capacity fade over the last twenty-five cycles and exhibits the highest 

reversible capacity of all electrolyte-binder combinations following five cycles of consecutive cycling.  

Even after sixty cycles this best battery composition has a capacity around 100 mAh/g (Figure 2.4). 

Therefore, this binder/electrolyte combination was used for the rest of the testing.   
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Figure 2.4 Capacity for 60 cycles at 100 mA/g of 

WSe2 with CMC in EC/DEC.  The capacity after 60 

cycles is around 100 mAh/g.   

 

Cyclic voltammetry (CV) curves for WSe2 taken at a scan rate of 0.5 mV/s are shown in Figure 

2.5a for the first, second, and third cycles with sodiation and desodiation processes labeled.  The first 

sodiation involves a reaction peak at low voltages (< 0.25 V vs. Na/Na+) without any signature of higher 

voltage chemical processes.  The second cycle also shows this low voltage signature combined with two 

higher voltage reaction peaks between 1.2 and 1.85 V vs. Na/Na+.  In the third cycle, the low voltage 

peak is absent, and only a series of two peaks between 1.2 and 1.85 V are observed.    
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Figure 2.5 a) CV scans for the first three cycles from WSe2 devices with CMC and EC/DEC b) CV 

scans comparing the energetics of chemical storage in WSe2 and WS2 during the third cycle c) dQ/dE 

of a WSe2 electrode at 10 mA/g, inset) charge discharge curves at 10 mA/g d) Galvanostatic rate study 

at 20, 40, 100, 200, and 400 mA/g 

 

Based on this result, we infer that this low voltage (<0.25V vs Na/Na+) signature is evidence of 

Na+ intercalation into WSe2, which upon sodiation goes through a reversible conversion reaction.  After 

the second CV cycle, the absence of this low voltage peak indicates a fully converted WSe2 electrode 

material.  The conversion reaction proposed for TMDs, which we later confirm with STEM EDS 

mapping, produces a Na/chalcogenide conversion product.  In the case of WSe2, the reaction would be  

WSe2 + 2x Na+ + 2x e- ↔ 2 NaxSe + W (1) 
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The second and third cycles display a cathodic peak at 1.25 V and anodic peak at 1.85 V that correspond 

to a coupled reaction centered near 1.6 V vs. Na/Na+.  At scan rates of 0.5 mV/s, the energetics of this 

redox process are far better than that observed during chemical conversion of WS2 (Figure 2.5b).  

Tungsten disulfide displays an anodic peak also near 1.8 V but a cathodic peak centered near 0.4 V, 

yielding a much higher overpotential that would bottleneck the energy efficiency of a full cell device.  

The chemical conversion reaction is further isolated through galvanostatic measurements, where charge 

and discharge profiles are differentiated with respect to voltage to yield plots of dQ/dE (Figure 2.5c).  The 

charge-discharge curves for the dQ/dE can be found in the inset.  Analogous to CV curves, a low 

overpotential (0.26V) conversion reaction is isolated at currents of ten mA/g.  Low overpotentials are 

critical to the operation of an electrode in a full cell configuration where energy efficiency is a benchmark 

for performance, and our work distinguishes the low overpotential for the WSe2 conversion reaction from 

both WS2 as well as other studied TMDs such as MoS2 which has an overpotential of 1.3 V for the 

intercalation reaction and 0.4 V for the conversion reaction.65  

In addition to the cyclability and energetics another important characteristic of an electrode 

material is the rate capability (Figure 2.5d).  Tungsten diselenide was tested at 20, 40, 100, 200, and 400 

mA/g (Figure 2.6).  Capacities of WSe2, which range from over 200 mAh/g at the lowest rate to near 135 

mAh/g at the highest rates, are higher than the best results reported for bulk MoS2, the most studied TMD 

in SIBs.34, 65  This is notable since both W and Se are heavier elements than Mo and S, which implies 

WSe2 to have superior volumetric storage capacity compared to MoS2 – an important concept for many 

emerging energy storage applications.  Tungsten diselenide displays a large average extraction capacity of 

228 mAh/g at 20 mA/g and maintains over 60% capacity (130 mAh/g) at a 20x faster charging rate of 400 

mA/g.  The average capacity of the final five cycles at 20 mA/g show only two percent degradation 

compared to the average capacity of the initial five cycles.   
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Figure 2.6 Charge-discharge curves of WSe2 with CMC in EC/DEC at 

different charging rates.  The overpotential increases at faster charging 

rates due to resistive effects.   

 

2.4 Characterization of the Mechanism through Ex-Situ Techniques 

Whereas the premise of this work thus far is that WSe2 exhibits a conversion reaction in a manner 

consistent with that observed in MoS2 materials, ex-situ analysis of sodiated WSe2 materials was 

performed to assess the signature of the conversion products.  A combination of electron dispersive x-ray 

(EDS) analysis in the transmission electron microscope (TEM), XRD, and Raman spectroscopy was 

utilized to analyze products following the fifth discharge for EDS, fifth discharge and fifth charge for 

XRD, and the first discharge for Raman.  The fifth cycle was chosen to characterize for EDS and XRD to 

ensure full conversion of the WSe2. Analysis of the fifth discharge products with XRD indicates the 

presence of numerous crystalline products that are not associated with the initial WSe2/PVDF/carbon 

black electrode (Figure 2.7a).  The low angle peaks at 11.8° and 17.0° corresponding to an interlayer 

spacing of 7.48 Å and 5.21 Å are likely attributed to a hexagonal NaxSe material that forms upon 
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sodiation. The improved crystallinity of WSe2 conversion products compared to MoS2 conversion 

products could lead to lower resistance within the electrode.  Additional peaks at 27.9° and 32.4° are 

consistent with Na2O (JCPDS card no. 03-1074), likely formed due to the air exposure during the 

measurement.  No peaks related to W metal are observed, indicating that W products may form 

amorphous or poorly crystalline domains.70  X-ray diffraction after the fifth charge cycle reveals a change 

in the low angle peak compared to the previous sodiated state (Figure 2.7b).  The peaks at 11.8° and 17.0° 

are no longer present but the main WSe2 (002) peak at 13.6° is apparent.  The intensity of the WSe2 peak 

is lower than the initial state due to a loss in crystallinity but it is obvious that WSe2 is reformed after 

sodium extraction.   

 
Figure 2.7 a) XRD pattern of the initial WSe2, the NaxSe product formed after the fifth discharge, and 

the less crystalline WSe2 formed after the fifth charge b) The same spectrum in Fig 3a but zoomed into 

only the lower angle peaks 

  

Ex-situ Raman spectroscopy (Figure 2.8) supports the formation of a new crystalline product 

upon sodiation.  The initial spectrum has two main peaks at 251 and 254 cm-1 corresponding to the E2G 

and A1G WSe2 peaks (inset Figure 2.8).80  After the first discharge, the WSe2 peaks are no longer present 

and new peaks arise at 247 cm-1, 329 cm-1, 816 cm-1, and 930 cm-1.  We attribute these to NaxSe 
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conversion products formed during sodiation, even though these peaks are not due to cubic Na2Se (165 

cm-1, 225 cm-1)81 or Se (235 cm-1).82   

 
Figure 2.8 Raman spectra of the initial electrode and the 

electrode after the first discharge.  The inset shows the two-

peak fit of the WSe2 Raman modes 

 

Analysis of EDS data from TEM analysis (Figure 2.9a-c) indicates a picture consistent with 

reports on conversion products in MoS2 materials.70  Composite EDS maps of the material before 

conversion shows a homogenous mix of W and selenide species throughout the sample.  EDS maps after 

the fifth discharge elucidates the formation of isolated W domains adjacent to regions that contain 

selenides (Figure 2.9b).  The Na species is located in the same spatial region as the selenides, supporting 

the formation of NaxSe (Figure 2.9c).  The separation of the domains is likely due to W diffusion through 

the lattice.83  This supports the storage of Na through the conversion reaction discussed in eqn. (1), where 

domains of NaxSe and W reversibly interchange between sodiated (W + NaxSe) and mostly desodiated 

(NaxWSe2) states.  Since the capacities we measure are comparable to MoS2 despite the heavy nature of 

both W and Se compared to Mo and S, we speculate that the improved conductivity of metal selenides 
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compared to metal sulfides could play a role to improve the electrical connectivity of sodium-storage 

converted products in bulk matrices of TMD materials.84   

 
Figure 2.9 a) EDS composite map of a WSe2 electrode before cycling, scale bar = 100 nm b) EDS 

composite map of a WSe2 battery electrode after the fifth discharge showing W and Se, scale bar = 100 

nm c) The same EDS spectrum as Fig 5b but with the Na added d) Schematic illustrating the storage 

mechanism of Na in WSe2.  Upon Na+ insertion segregated domains of NaxSe and W form.  After the 

Na+ has been removed, WSe2 is reformed but it is less crystalline than in its original state. 

 

 Therefore, based on both electrochemical data and the direct assessment of sodiated products 

through EDS in the TEM, Raman spectroscopy, and XRD, we propose a mechanism of eqn. (1) where 

crystalline WSe2 is converted into sodiated products of NaxSe and poorly crystalline or amorphous W 

metal.  Upon removing the sodium, WSe2 is reformed but is less crystalline than the original sample.  

This mechanism is illustrated in Figure 2.9d. This general conversion reaction is consistent with previous 

studies for MoS2 materials, even though WSe2 exhibits an efficient conversion reaction characterized by a 

crystalline product, low overpotential, good cyclability even in bulk, and improved specific capacity 

despite the use of a compound with heavier elements.  This distinguishes WSe2 as a strong candidate for 

high efficiency sodium ion battery electrodes mediated by a sodium-selenium conversion reaction 

yielding comparable specific capacity and better volumetric capacity compared to widely studied MoS2 

materials. 
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2.5 Conclusion 

In closing, WSe2 is demonstrated as an efficient electrode material for a sodium ion battery for 

the first time.  Six different binder/electrolyte combinations have been studied and CMC binder with a 

NaPF6 in EC/DEC electrolyte has been shown to have the highest capacity (190 mAh/g) and best capacity 

retention (72 %) after 30 cycles with virtually negligible capacity change over the last 25 cycles. Directly 

comparing the energetics of WSe2 to WS2 electrodes, we observe a significantly reduced overpotential of 

0.26 V, making the energetics of this conversion reaction practical for high energy efficiency devices.  

WSe2 electrodes exhibit over 200 mAh/g reversible specific capacity at 20 mA/g rates and maintain 60% 

capacity at 400 mA/g.  Based on performance alone, this material exhibits storage capability comparable 

to previous reports on MoS2, despite the heavier W and Se elemental components – hence improved 

volumetric capability.  Ex-situ analysis including EDS in the TEM, XRD, and Raman spectroscopy 

indicate the conversion mechanism as the formation of poorly crystalline or amorphous W domains 

alongside NaxSe products, which we speculate is enhanced for WSe2 due to the more conductive nature of 

Se-based conversion products compared to S-based products.  This work highlights WSe2 as a highly 

promising and practical electrode material for SIB applications, with a multitude of routes such as 

nano/microstructuring,85  surface modification through ALD passivation,86, 87 or forming graphene-WSe2 

composites,88-90 to allow for further improving and optimizing the already promising performance for 

broad impact of this TMD in next-generation battery technology.    
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Chapter 3 Tuning Silver Nanoparticle Size to Reduce Energy Consumption of a Desalination Battery 

3.1 Introduction 

Another exciting application of SIB technology has been desalination in aqueous systems using 

Na+ intercalation compounds.  The vast majority of Faradaic desalination research has focused on Na+ 

electrodes, with far fewer papers taking a critical look at the Cl- electrode.  Silver has been the electrode of 

choice for the anode in virtually every paper.  Nam and Choi have proposed the only other Faradaic chloride 

removal electrode consisting of Bi/BiOCl showing stable capacity over 200 cycles but these electrodes 

require a large overpotential (~1V) leading to a high desalination energy, while also needing an acidic 

environment during discharge.91  Further research of aqueous chloride capturing electrodes could be very 

promising.  System level designs using anion exchange membranes have bypassed the need for a chloride 

removal electrode but they rely on heavily engineered and potentially expensive membranes.92, 93 

 The major limitation in desalination systems is the desalination energy.  In desalination batteries, 

the energy is partially limited by the formation of AgCl, an electronically and ionically resistive material.  

Most papers have used either Ag foils or Ag microparticles in excess to mitigate this issue.  There has not 

been a critical look at the mitigation of resistive effects upon de-chlorination of water.  The increased ionic 

and electronic resistance upon AgCl formation can be mitigated by the use of smaller nanoparticles where 

the size of the AgCl layer formed is inherently limited by the size of the Ag nanoparticles (NPs).  In this 

work, I study how size-controlled Ag NP electrodes can modulate energy consumption and kinetics to 

enable a desalination battery more energy efficient during operation than RO.   My results show that 25 nm 

Ag particles require 30-40% less energy than 326 nm particles with desalination energies as low at 0.09 

Wh/L.  Overall, the findings emphasize how nanoscale engineering can be a powerful tool in fine tuning 

the energetics for Faradaic reactions. 
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3.2 Experimental Details 

3.2.1 Synthesis of Ag Nanoparticles 

The synthesis of Ag NPs was similar to the procedure described by Kim et al. but the reaction times 

and quenching methods were varied to achieve different particle sizes.94  To summarize, a 50 mL round 

bottom flask with a stir bar was immersed into a Silicone oil bath on a hot plate. Ten mL of ethylene glycol 

(ReagentPlus, >99%, Sigma Aldrich) was added to a round bottom flask.  0.030 g of polyvinyl pyrrolidone 

(MW=10k, Sigma Aldrich) was added and vigorously stirred until dissolved, approximately ten minutes.  

The stirring rate was reduced to 700 RPMs.  0.424 g of AgNO3 (ACS, Sigma Aldrich) was then added to 

the round bottom flask.  The temperature of the hot plate was controlled to maintain a heating rate of ~six 

°C/min.  25 nm particles were synthesized by quenching the reaction with DI H2O when the solution turned 

grey/green, typically around 117°C.  62 nm particles were made by quenching the reaction with DI H2O 

when the temperature reached 120°C.  326 nm particles were synthesized by stopping the reaction five 

minutes after the temperature reached 120°C, followed by cooling in air.  After cooling, the particles were 

centrifuged three times, removing the supernatant and washing with DI H2O after each cycle.  25 nm 

particles were centrifuged for ten minutes at 10,000 RPMs while the other particles were centrifuged at 

6000 RPMs for ten minutes.  The final concentrated solution of Ag NPs was pipeted onto a glass slide and 

dried overnight on a hot plate at 50°C. 

3.2.2 Preparation of the Electrode 

Ag NPs were annealed in a reducing environment of H2 (100 sccm) in a homemade chemical vapor 

deposition reactor.  The temperature and time varied depending on the particle size.  25 nm particles were 

annealed at 150°C for five minutes while the 62 nm and 326 nm particles were annealed and 250°C for one 

hour.  Ag NPs, carbon black, and polyvinylidene difluoride (PVDF) were combined in a glass vial in a mass 

ratio of eight:one:one.  NMP was added and mixed for one hour on a stir plate followed by bath sonication 
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for thirty minutes.  The electrode slurry was painted onto carbon cloth (fuelcellstore.com) and dried under 

vacuum overnight. 

3.2.3 Characterization of Materials 

SEM imaging was performed using a Zeiss MERLIN with GEMINI II SEM.  XRD was performed 

using a Rigaku SmartLab XRD.  TEM was performed using a FEI Tecnai Osiris TEM with elemental 

mapping capabilities. 

3.2.4 Electrochemical Testing 

All electrodes were pretreated with high rate (5.0 A/g for 25 nm particles and 2.5 A/g for 62 nm and 

326 nm particles) galvanostatic testing between -0.15 and 0.15 V vs SCE.  The pretreatment stabilized the 

performance and was found to be necessary to activate the electrodes and achieve a high salt removal 

capacity.  The fast pretreatment is thought to provide a large number of small AgCl nucleation sites that 

allow for better utilization of the Ag at slower rates, although the exact mechanism is still being studied.  

Cyclic voltammograms and galvanostatic pretreatment tests were performed using a Metrohm Autolab 

Multichannel analyzer between -0.15 and 0.15 V vs SCE.  Galvanostatic testing was limited to removing 

53 mg Cl-/g Ag (581 sec at 0.25 A/g and 58.1 sec at 2.5 A/g) in an intermediate range where the particles 

never become fully chlorination or dechlorinated to minimize large changes in voltage arising from 

nucleation overpotential and as the reaction reaches completion.  This testing method enables a clearer 

assessment of energy efficiency.  All samples were tested in a three-electrode electrochemical cell using Pt 

foil as a counter electrode and SCE as the reference electrode.  0.6 M NaCl was used as the electrolyte.  

3.3 Characterization of Silver Nanoparticles 

Ag NPs with average diameters of 25 nm (n = 227), 62 nm (n = 136), and 326 nm (n = 55) were 

synthesized by varying the reaction time and cooling method in a polyol synthesis based on a recipe 

developed by Kim et al (insets Figure 3.1a-c).94  The 326 nm particles have a bimodal distribution with 
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average diameters around 220 and 400 nm as a result of continuing Ostwald ripening as the reaction time 

increases. The different particles sizes are shown in SEMs in Figure 3.1a-c.   

 
Figure 3.1 (a-c) Scanning electron microscope images of the Ag nanoparticles grown in the three 

syntheses with particle size distributions, n = sample size (insets) Scale bars = 100 nm. (d-f) Cyclic 

voltammogram from -0.15 to 0.15 V vs SCE at 0.1, 0.5, 1, 5, 10, and 20 mV/s for each of the 

corresponding Ag nanoparticle sizes. 

X-ray diffraction (XRD) of the nanoparticles shows peaks at 38.1°, 44.3°, 64.5°, and 77.2° 

corresponding to the (111), (200), (220), and (311) peaks of silver, confirming the synthesis of Ag NPs 

(Figure 3.2).  A transmission electron microscope (TEM) image of a nanoparticle from the 25 nm synthesis 

reveals a NP containing multiple grains (Figure 3.2 inset), potentially providing diffusion pathways and 

reactive nucleation sites for AgCl formation during desalination.   
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Figure 3.2 XRD pattern of Ag NPs after synthesis.  The peaks correspond 

to Ag, PDF 604629. Inset. TEM of a NP from the 25 nm synthesis 

 

Before electrode assembly, all Ag NPs were annealed at elevated temperatures under hydrogen to 

remove any oxide that may have developed on the surface.95  Slight sintering of the NPs occurred at the 

elevated temperatures used, allowing the NPs to form a well-connected network while maintaining their 

size (Figure 3.3a-c).  Since the melting point and surface energy of a metal changes with nanoparticle size, 

a lower temperature was used for the smallest particles to maintain their size while still producing a 

nanoparticle network through sintering.96, 97  TEM image of the NPs after annealing reveal the slight 

rearrangement of grain boundaries within the particles (Figure 3.3d). 
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Figure 3.3 SEM images of 25 nm (a, scale bar = 100 nm), 62 nm (b, scale bar = 300 nm), and 326 nm 

(c, scale bar = 1 µm) Ag NPs after annealing under H2. d) TEM of 25 nm particles after annealing 

under H2. Scale bar = 20 nm 

3.4 Cyclic Voltammetry 

Electrochemical testing was used to assess changes in energetics and kinetics as a function of NP 

size.  Cyclic voltammograms (CVs) at 0.1, 0.5, 1, 5, 10, and 20 mV/s were performed between -0.15 V and 

0.15 V vs SCE for all NP sizes (Figure 3.1d-f).  One oxidation and reduction peak can be seen in the CVs.  

XRD confirms the oxidation peak forms AgCl (Figure 3.4) through the net reaction Ag + Cl- → AgCl + e- 

while the reduction peak is the reverse reaction.  The 25 nm and 62 nm CVs look similar at all rates but the 

shape of the curves for the larger particles drastically deviates from ideal behavior even at slower scan rates.  

The change from a typical duck shaped CV is indicative of a quasi-reversible reaction that can occur 

because of diffusion or kinetic limitations.98, 99  Even at rates as low as 0.5 mV/s the 326 nm particles appear 
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to reach a quasi-reversible regime while the 25 nm and 62 nm particles remain reversible until around ten 

mV/s.   

 
Figure 3.4 XRD after chlorination of Ag NPs.  Peak correspond to both AgCl (PDF 64734), Ag (PDF 

53760), and the carbon cloth current collector 

Although the net reaction is Ag + Cl- → AgCl + e-, during the oxidation process there is an 

electrochemical reaction (Ag0 → Ag+ + e-) followed by a chemical reaction (Ag+ + Cl- → AgCl), with the 

opposite occurring during the reduction.  Broadening of the CV peaks indicates a kinetic limitation 

occurring in the chemical reaction 

 𝐴𝑔+ + 𝐶𝑙−  
𝑘𝑟
←
𝑘𝑓
→  𝐴𝑔𝐶𝑙 
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where kf is the rate constant of the forward reaction and kr is the rate constant of the reverse reaction.  The 

continued reversible behavior of smaller NPs at higher rates indicates that this system is able to mitigate 

the diffusion and kinetic limitations occurring during the forward and reverse reactions, as discussed later. 

According to the Randles-Sevcik equation, an electrochemically reversible system, where the electron 

transfer kinetics are fast compared to mass transport, has a slope of ½ when log(peak current) is plotted vs 

log(scan rate).63, 99 Figure 3.5 shows the slope for both the max current and minimum current of all particles 

is nearly 0.5, indicating an electrochemically reversible system. 

 
Figure 3.5 log of peak current vs log scan rate.  According to the 

Randel-Sevcik equation, an electrochemically reversible reaction has a 

linear relationship between ip and υ1/2. 

𝑖𝑝 = 0.446𝑛𝐹𝐴𝐶
𝑜 (
𝑛𝐹𝜈𝐷𝑜
𝑅𝑇

)
1/2

 

Peak splitting between the oxidation and reduction peaks is proportional to the desalination energy 

requirements and is affected by ionic and electronic resistances.  Figure 3.6a shows the clear distinctions in 

overpotential between the different size NPs.  At 5 mV/s the overpotential of the 326 nm particles is 0.24 
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V while the smaller particles have an overpotential of only ~0.1 V.  Faster scan rates reveal continued 

improvements in energetics as particle size is reduced with 25 nm particles having lower overpotential than 

62 nm particles.  Interestingly all particle sizes have larger increases in the reduction voltage than the 

oxidation voltage as the scan rate increases (Figure 3.6b).  Although the oxidation voltages of 25 nm and 

62 nm particles are similar at all scan rates, the reduction voltage increases less for the smaller NPs, leading 

to the reduced overpotential. The potential mechanism explaining the lower reduction voltage will be 

discussed in more detail below, but likely arises because the smaller NPs have shorter diffusion lengths, 

mitigating ionic and ohmic losses.  The energetics and shapes of the CVs highlight the importance of smaller 

NPs for maintaining lower desalination energies, especially at faster desalination rates.   

 
Figure 3.6 (a) Overpotential versus scan rate for each particle size. (b) Changes in the oxidation 

reduction peak voltages as a function of scan rate for all particle sizes. 

3.5 Galvanostatic Charge-Discharge 

The desalination energy of the Ag NPs is directly assessed through galvanostatic testing at 0.25 A/g 

(Figure 3.7a) and 2.5 A/g (Figure 3.7b) with a salt removal capacity of 53 mg Cl-/ g Ag.  Galvanostatic 

testing was only performed using 25 nm and 326 nm particles because of the larger changes in energy 

consumption.  The salt removal capacity is on par with the highest salt removal capacities reported and are 

significantly higher than CDI capacities.  To put these rates in context, assuming a full cell with a Na 
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electrode of the same capacity (40 mAh/g or 34.4 mg Na+/g), at 2.5 A/g a desalination battery could produce 

fresh water at a rate of ~1850 L/day/kg.  Figure 3.7a shows charge discharge curves for 25 nm and 326 nm 

particles at 0.25 A/g with the 25 nm particles clearly having a lower overpotential due to lower oxidation 

and reduction voltages.  At 2.5 A/g (Figure 3.7b) this trend continues.  While charging, the voltage increases 

linearly due to increased resistance of the AgCl layer, as reported previously.100  The desalination energies 

in Wh/L for 25% Cl- removal are shown in Figure 3.7c and are calculated using the area between the charge 

and discharge curves.  The energy consumed for 25% Cl- removal is calculated to compare to other literature 

and because the solution resistance will increase when a large percentage of the ions are removed, causing 

an increase in energy requirements.  The desalination energies of 25 nm and 326 nm particles at 0.25 A/g 

are 0.09 and 0.15 Wh/L and at 2.5 A/g are 0.26 and 0.39 Wh/L respectively.  Notably, the desalination 

energy of 25 nm particles is 0.06 Wh/L and 0.13 Wh/L lower at the different rates, a decrease of 30-40%.  

The desalination energies of 25 nm particles at both rates are lower or comparable to reverse osmosis and 

the initial desalination battery.44, 48  The lower overpotentials in smaller Ag NPs is partially due to lower 

strain accommodation energy and lower free energy barriers to nucleating AgCl, similar to size effects of 

LiFePO4 cathodes hydriding/dehydriding Pd cubes.101, 102  Pairing the small Ag NPs with an energy efficient 

anode such as Na3V2(PO4)3 or NaTi2(PO4)3 (assuming an overpotential of 50 mV for the Na+ electrode at 

1C) could allow for salt water desalination with extremely low desalination energies around 0.3 Wh/L for 

25% salt removal, minimizing energy costs throughout the lifetime of the device.49, 103   



39 

 

 

 
Figure 3.7 (a, b) Galvanostatic charge discharge for 53.3 mg Cl- / g Ag for 25 nm and 326 nm particles 

at 0.25 and 2.5 A/g respectively.  (c) The desalination energy calculated from Figures 3a, b using the 

area between the charge and discharge curves.  (d) Changes in the oxidation and reduction voltages as a 

function of charging rate. 

A closer examination of the charge discharge curves reveals similar trends as seen in the CVs where 

the main improvement in overpotential for the 25 nm particles arises from smaller changes in the reduction 

voltages.  The average oxidation voltage increases by similar amounts (17 mV and 20 mV) for smaller and 

larger particles, however the reduction voltage of 326 nm NPs increases in magnitude by 39 mV, while the 

smaller particles’ reduction voltage only increases by 25 mV (Figure 3.7d).  This yields a six mV difference 

between the two particle sizes at 0.25 A/g but 20 mV at 2.5 A/g.  The drastically decreased voltage during 
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the reduction of AgCl arises from a thinner AgCl layer formed on smaller NPs.  The thinner layer provides 

shorter diffusion lengths, decreasing both ionic and electronic resistances. 

3.6 Characterization and Mechanism 

EDS maps and TEM images confirm the thin AgCl layer grown on 25 nm particles after chlorination 

at 53 mg/g.  Figure 3.9a shows a five to seven nm layer of AgCl grown on top of a small Ag NP with 

individual maps and a line scan shown in Figure 3.9b-d highlighting the sparse AgCl coating.  Although 

there is overlap between the Ag and Cl peaks in EDS, a survey spectrum of AgCl has a much higher Cl/Ag 

ratio than Ag (Figure 3.8a).   

 
Figure 3.8 a) Spectra from the Ag and AgCl regions of the nanoparticle.  Although there is an overlap 

between a Ag and Cl peak, the Cl/Ag ratio is much higher in the AgCl region. b) HAADF of the Ag NP 

where the contrast between Ag and AgCl arises from the lower density of AgCl. 

TEM of the same particle in the EDS map reveals lattice fringes of both Ag and AgCl (Figure 3.9e).  

A diffraction pattern for the Ag region shows reflections for the (111) and (220) planes of Ag with an 

interlayer spacing of 0.232 and 0.148 nm (left inset Figure 3.9e).  The diffraction pattern of the AgCl region 

shows the same Ag spots but an additional reflection corresponding to the (220) planes of AgCl with 

interlayer spacing of 0.198 nm (right inset Figure 3.9e).  
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Figure 3.9 (a) STEM image of a chlorinated Ag nanoparticle with the arrow indicating the direction of 

the line scan in d). (b-c) Individual elemental maps for Ag and Cl. (d) Line scan of the chlorinated 

particle in a). (e) TEM of the same Ag NP in a.  left inset) Diffraction pattern from the Ag region. right 

inset) Diffraction patter from the AgCl region. f) Schematic of the various process in the 

electrochemical Ag/AgCl reaction that are influenced by the size of Ag nanoparticle electrodes.  All 

scale bars = 5 nm. 

The thin AgCl layer leads to shorter diffusion lengths and smaller ionic and ohmic resistances, 

enabling lower desalination energies (Figure 3.9f).  While there is not complete agreement in the literature 

of the Ag/AgCl electrochemical mechanism, it is generally accepted that during AgCl formation, the first 

step is the oxidation of Ag0 to Ag+ at the Ag/AgCl interface followed by diffusion of Ag+ and Cl- either in 

solution through microchannels or through the solid state of AgCl, leading to ionic resistances.100, 104, 105  
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The Ag NPs used for desalination also have electronic resistance because there is not necessarily a 

conductive pathway from the Ag to the conductive carbon black after AgCl films have formed.  This work 

has not focused on determining whether ionic or ohmic resistances are most limiting, but regardless of 

which ion or charge carrier is most diffusion limited, all the diffusion lengths are reduced when using 

smaller Ag NPs, decreasing both ionic and ohmic resistances.  After diffusion occurs there is a chemical 

reaction of Ag+ + Cl- → AgCl at the AgCl/electrolyte interface.  Some authors suggest that AgCl islands 

nucleate and grow outward until a complete layer is formed and then the AgCl continues to grow thicker.104  

During AgCl reduction, the opposite process occurs but the net reaction occurs at the Ag/AgCl interface as 

opposed to the AgCl/electrolyte interface during oxidation.  The larger increase in reduction voltage than 

oxidation voltage when going from 0.25 A/g to 2.5 A/g shows that the reduction process is more resistive 

than the oxidation process.  Therefore, using smaller NPs has a more drastic effect on energy during the 

reduction of AgCl.  Another possible reason for the differences between the oxidation and reduction 

voltages at higher currents is the kinetic limitations of the chemical reaction Ag+ + Cl- →AgCl.   The rate 

constant of the reverse reaction is likely smaller than the forward reaction, leading to a kinetic limitation as 

supported by the CV data.  Smaller particles have a higher surface energy and enhance the kinetics of the 

chemical reaction, mitigating this bottle neck, further reducing the overpotential at faster rates.60  This 

highlights the decreased resistance and improvement of sluggish reduction kinetics when using smaller 

NPs.   

3.7 Conclusion 

The size dependence of the desalination energy of Ag NP electrodes has been shown to decrease with 

nanoparticle size. 25 nm nanoparticles require 30-40% lower energy to remove 53 mg Cl-/g Ag than 326 

nm particles.  This work connects the size dependence of electrochemical and chemical reactions to the 

performance of a desalination battery.  The lower energy requirements are a result of a lower nucleation 

barrier and decreased diffusion lengths leading to lower ionic and ohmic resistances.  A greater 
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improvement in the limiting process during the reduction reaction was the major contributing factor for 

lower desalination energies.  Controlling the nanoparticle size for both Na+ and Cl- electrodes in a 

desalination battery could continue to reduce the desalination energy and improve high rate desalination 

capacities.    
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Chapter 4 Mechanism of Potassium Ion Intercalation Staging in Few-Layer Graphene from in-situ 

Raman Spectroscopy 

4.1 Introduction 

As mentioned earlier, potassium ion batteries are an emerging field with the potential of achieving 

lower costs than LIBs through the use of more abundant and cheaper active materials.  Since this field is 

relatively new, although the performance of graphite anodes in a PIB have been proven, there is little 

understanding of the staging process. In this work, we experimentally assess the staging characteristics of 

K-ion batteries by performing in-situ Raman spectroscopy on few-layered graphene materials during K-

ion intercalation.  Although the chemical deintercalation of K-ions from graphite in a high vacuum and 

high temperature (>200 °C) process has been well studied with Raman,106 this work focuses on a room 

temperature electrochemical process.  As Raman spectroscopy provides a sensitive and non-invasive 

probe to assess structural and chemical effects occurring during intercalation, we identify a staging 

mechanism where K-ions first arrange into a dilute stage I compound, followed by a sequence of ordered 

staged intercalation compounds that transition from KC72 to stage I at KC8.  Raman spectra can be 

directly used to identify the stage number, as confirmed by X-ray diffraction.106, 107 This provides greater 

understanding of the reactions occurring at the peaks and plateaus during electrochemical testing.  Our 

work highlights a mechanism for staging that provides a pathway for a straightforward transition on the 

anodic side to K-ion batteries building upon the current understanding of Li-ion staging mechanisms.    

4.2 Staging of Li+ in Graphite 

The prevalence of a graphite anode in a LIB has preempted many studies on the insertion 

mechanism of Li+ in graphite, known as intercalation.  Intercalation proceeds through an ordered process 

known as staging where the stage number is the number of graphene layers between layers of intercalants.  

It becomes energetically favorable for the ions to fill galleries between the same layers of graphene before 
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filling galleries between new graphene layers.108  Staging proceeds from stage VI → V → IV→ III → II 

→ I.  Upon reaching a stage I graphite intercalation compound (GIC), every graphene layer is adjacent to 

two layers of intercalants.  The Daumas-Herold model provides a realistic model for intercalation to 

explain the transition between stages when lithium ions can only move within a plane and not through 

plane (Figure 4.1).109  The enhanced strain in the bending of graphene layers around intercalants proposed 

by the Daumas-Herold model can be seen through sensitive techniques such as Raman spectroscopy.  

 
Figure 4.1 Comparison of the idealized view 

(modele Classique, left) of various stage phases for 

a metal GIC with the sketch of the realistic model 

(showing the Daumas-Herold-type defects, modele 

propose, right). Reproduced from ref. 108 with 

permission from RSC 

 

 Raman spectroscopy is a technique that probes phonon vibrational modes in a material.110  

Carbon materials are particularly useful to study with Raman spectroscopy because changes in local bond 

configuration, electronic properties, defects, and more can all be detected (Figure 4.2).111  In-situ Raman 

spectroscopy has been extensively used to study carbon nanotube growth112, 113 and Li+ intercalation into 

graphite.107, 114, 115  
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Figure 4.2 Raman spectra from different types of sp2 nanocarbons. 

Reproduced from ref. 111 with permission from ACS 

 When a LASER interacts with a material, most of the photons are absorbed and reemitted at the 

same wavelength, known as Rayleigh or elastic scattering.  Raman scattering occurs when the excited 

electron reemits a photon of slightly lower energy and a phonon is produced to maintain the conservation 

of energy (Figure 4.3).110  In a Raman spectrometer, specialized filters are used to block Rayleigh 

scattering, allowing the lower energy photons to be detected.  The resulting spectra showing the phonon 

energies of a material can act as a fingerprint to identify and to track changes in the material as it is tested.  

For example, graphene has a few characteristic peaks known as the G and 2D peaks at ~1580 and ~2700 

cm-1 respectively.110  The G peak arises from the in-plane E2G optical phonon mode while the 2D peak is a 

defect mediated double resonance mode.110  The relative intensities of the 2D/G peaks can be used to 

identify the number of graphene layers, with single layer graphene having a maximum intensity ratio 
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around four.116  The peak location, full width at half maximum (FWHM), and intensities all give insight 

into the local atomic and electronic environment.  For example, increased biaxial strain causes a red 

shifting of the G peak position.106  For these reasons, Raman spectroscopy has been extensively used to 

study LIB anodes. 

 
Figure 4.3 Rayleigh and Raman scattering 

processes. Reproduced from ref. 110 with 

permission from Nature 

 In LIBs, staging can be tracked with Raman spectroscopy because graphene layers adjacent to 

intercalant layers become highly charged, causing a blue shifted G-peak to arise, known as the G-charged 

or Gc.107, 115, 117  Charging causes the G peak to blue shift due to increased carrier concentration.114, 118, 119  

As staging progresses, the Gc peak becomes larger as more layers become charged while the Guc peak 

shrinks.  The intensity ratio of the Gc and Guc peaks is correlated to the stage number.  Although the 

increased charge carrier density causes a blue shifted G peak, increased interlayer strained explained by 

the Daumas-Herold model can be seen through red shifting of the peak positions.  Even though a K+ is 

similar to a Li+, the presumption that these ions stage through a similar process should not be assumed.  

Staging for Li+ is drastically changed from carbonate to ether-based solvents.120 

4.3 Experimental Details 

4.3.1 Growth of Few Layer Graphene on Nickel Foam 

FLG was grown on Ni foam using a homemade chemical vapor deposition (CVD) reactor.  The 

Ni was placed under vacuum (2.0x10-1 torr) and heated to 750°C in Ar (250 sccm) and H2 (two sccm) and 

then exposed to C2H2 (one sccm) for 25 minutes at thirty torr before cooling.   
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4.3.2 Assembly and testing of batteries 

Batteries were assembled in an Ar glove box using a K metal electrode on a stainless-steel disk, 

0.8 M KPF6 in one:one EC/DEC (v:v) electrolyte, a Whatman grade GF/A glass microfiber filter 

separator, and CVD grown FLG on Ni foam, all encapsulated in a coin cell.  Galvanostatic cycling studies 

from 1.5 V to 0.01 V were performed on an MTI 8 channel battery analyzer.  Immediately prior to all 

electrochemical tests, the batteries were allowed to reach open circuit voltage over one hour.  The 

capacity is normalized to the mass of the FLG and all voltages reported are vs K/K+. 

4.3.3 Characterization using Raman spectroscopy 

Raman measurements were performed using a Renishaw inVia Raman spectrometer with a 532 

nm laser.  All Raman spectra are fit with a linear baseline to remove background noise and flatten the 

spectra.  In-situ Raman spectroscopy was performed using a modified coin cell with a hole drilled in the 

top.  After the coin cell was assembled and crimped in a glove box, a thin cover glass slide with epoxy 

was placed over the hole, with care taken to seal the glass slide to the coin cell, preventing air exposure, 

and not to expose the electrolyte to epoxy.  A picture of the in-situ cell is shown in Figure 4.4.  Since no 

electrochemical reactions occur above 0.5 V the voltage was set to 0.5 V and held for one hour.  Then a 

linear sweep voltammogram (LSV) was carried out at 0.05 mV/s scan rate from 0.5 V to 0.01 V.  Raman 

spectra were taken every 720 seconds from 0.5 to 0.37 V and every 110 seconds between 0.37 and 0.01 

V.   
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Figure 4.4 Picture of the in-situ Raman cell 

 

4.4 Electrochemical Data 

Few layer graphene on Ni foam is well-suited for in-situ Raman spectroscopy since the Ni foam 

backbone is both a structural support and current collector, and the high foam porosity allows good 

electrolyte penetration.  A scheme of the general in-situ Raman spectroscopy setup, a characteristic 

Raman spectrum, and a characteristic transmission electron microscope (TEM) image of the FLG material 

are shown in Figure 4.5a-c, respectively.  Raman spectroscopy using a 532 nm laser reveals two peaks, 

the G peak at 1582 cm-1 and the 2D peak at 2705 cm-1
 (Figure 4.5b).  The G peak arises from the in-plane 

E2g vibrational mode of sp2 carbons while the 2D mode is a two-phonon band whose position, shape, and 

intensity elucidate the number of graphene layers.121  Due to the crystalline nature of the FLG, no D peak 

from defective sp3 carbons is observed.  A Raman map of 100 points over a 40 µm by 40 µm area has an 

average 2D/G ratio of 0.75 indicative of few layer graphene (Figure 4.6).121  This is consistent with TEM 

images (Figure 4.5c).  There is little spot to spot variation, seen the normally distributed G peak positions 

with an average of 1582.4 cm-1 and a low standard deviation of 0.66 cm-1, justifying the isolation of a 

single point for analysis.  
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Figure 4.5 a) Schematic of the battery testing with in-situ Raman spectroscopy b) Raman spectrum of 

FLG on Ni foam. c) TEM of the few layer graphene. Scale bar = 10 nm. Reproduced from ref. 122 with 

permission from RSC 
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Figure 4.6 a) 2D/G intensity scatterplot of carbonized nickel foam taken over a 40 µm x 40 µm area. b) G 

peak variation over the Raman map.  The peak positions are normally distributed with an average position 

of 1582.4 cm-1 and a standard deviation of 0.66 cm-1.  The low standard deviation exemplifies the small 

spot to spot variation and justifies the use of a single point during the in-situ testing. 

A differential capacity plot (Figure 4.7a) and corresponding charge-discharge curves (inset Figure 

4.7a) from galvanostatic testing at 50 mA/g reveal behavior consistent with previous reports using 

carbon-based anodes.39, 40  The main reduction peak occurs from 0.2 to 0.01 V with a small shoulder 

around 0.18 V, while a small reduction peak around 0.8 V on the first cycle is due to SEI formation.  

Until now the electrochemical processes causing these peaks has not been well understood, but as a result 

of the in-situ Raman analysis presented here, we assign the shoulder to the formation of stages VI to II 

while the majority of the reduction peak is due to the transition from stage II to I.  Similarly, there are two 

oxidation peaks at 0.32 V and 0.42 V due to the reverse staging process during de-intercalation.  Notably, 

literature reports indicate disagreement between the formation of a stage II compound as KC24 or KC16.39, 

40  During the second charge, ~ 110 mAh/g and 40 mAh/g of capacity are associated with the first and 

second plateaus respectively.  The ratio of the capacities for these peaks is around three, which would 

correspond to a transition from KC24 to KC8 and not KC16 to KC8 which have a capacity ratio of around 

two. 100 charge-discharge cycles at 100 mA/g reveals expected cycling behavior for this material with an 
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initial decrease in capacity and a stable capacity around 140 mAh/g (Figure 4.7b).  Rate testing at 50, 100, 

and 200 mA/g can be found in Figure 4.8 and shows agreement with that observed in other reports.39  

 
Figure 4.7 a) Differential capacity plot at 50 mA/g, inset) corresponding charge-discharge curves.  b) 

Cycling data at 100 mA/g 

 

 
Figure 4.8 Galvanostatic rate study with five cycles at each of 50, 100, and 200 mA/g 
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4.5 In-situ Raman 

The LSV during the in-situ study (Figure 4.12a, top) has a similar shape to the dQ/dE plot (Figure 

4.7a) with a small peak around 0.18 V and a larger peak around 0.08 V.  Relaxation times during 

galvanostatic intermittent titration technique (GITT) were used to ensure the electrode is near equilibrium 

throughout the LSV at the very slow rate of 0.05 mV/s (Figure 4.9).  

 
Figure 4.9 a) Galvanostatic intermittent titration technique (GITT) using a galvanostatic pulse at C/10 

(27.8 mA/g) for 30 minutes followed by a one hour relaxation (inset Figure 4.9).  The relaxation period 

in GITT allows the electrode to reach equilibrium, as seen by the potential plateau.  This relaxation 

period can be used to assess the time it takes to reach equilibrium.  For each relaxation period, the 

amount of time to reach 80% of the final relaxed voltage was calculated.  This was plotted versus the 

final pulse voltage (Figure 4.9b).  The maximum time in the voltage range used for Raman analysis is 

300 sec, although the time to reach equilibrium during the main peak in the CV (<0.15 V) is below ten 

seconds.  During the 0.05 mV/s CV used for the in-situ Raman experiments, the maximum relaxation 

time of 300 sec (an overestimate) corresponds to a 0.015 V change, within the resolution of the spectra 

shown in Figure 4.12b.  Below 0.075 V the relaxation time increases but by that voltage the metallic 

nature of the near stage I GIC interferes with the Raman spectra and does not provide additional 

information.   

 

The relaxation time during the main electrochemical reaction is only a few seconds and is much 

smaller than the Raman scan times.  The G peak positions and intensities are shown in the bottom and 

middle of Figure 4.12a respectively.  An analogous plot for the 2D peak can be found in Figure 4.10.   
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Figure 4.10 In-situ peaks fit data for the 2D peak 

 

Selective Raman spectra are shown in Figure 4.12b for different states of charge indicated in 

Figure 4.12a.  Figure 4.12c displays all Raman spectra taken from 0.37 V to 0.01 V in a waterfall plot.  

Together these plots help visualize and quantify the distinct peaks shifts and intensity changes of the 

Raman spectra.  A D peak around 1336 cm-1 can arise due to degradation of the FLG but throughout the 

experiment, no D peak is observed (Figure 4.11).120  
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Figure 4.11 Selective Raman spectra from the in-situ experiment with a larger range of 

wavenumbers.  A D peak around 1336 cm-1 is not observed during the in-situ study. 

An initial scan taken at 2.0 V reveals a similar spectrum to FLG containing 2D and G peaks with 

the G peak at 1582 cm-1.  At 0.37 V the G peak blue shifts to 1589 cm-1 attributed to the formation of a 

dilute stage I GIC.  The shift of the G peak to higher frequencies occurs because of a breakdown of the 

adiabatic Born-Oppenheimer approximation in graphene causing a stiffening of the E2g mode as the 

carrier concentration increases uniformly.123  From 0.37 to 0.25 V minimal change is observed in both the 

electrochemical and Raman data attributed to the sparse ion composition of the dilute stage I compound.  

Near 0.24 V the first reduction peak occurs in the LSV as ordered staging begins, indicated by a higher 

frequency shoulder on the G peak and a decrease in 2D intensity.  Initially, charge is equally distributed 

between all layers and only a single uncharged G peak (Guc) is present.  When cations start to intercalate 

into graphite, the charge density increases on layers adjacent to the intercalants, forming an up-shifted Gc 
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(G charged) peak.118, 120, 124  The graphene layers not adjacent to the ions continue to show the Guc peak 

leading to a doublet in the Raman spectra at staging above stage II.107, 117  At 0.24 V the Gc/Guc intensity 

ratio is indicative of stage VI KC72.106  From 0.24 V to 0.15 V the Gc peak increases in intensity, the Guc 

and 2D peaks decrease, and all peaks red shift.   The opposite behavior of the Gc and Guc intensities is due 

to continued staging where more graphene layers become charged and fewer uncharged layers remain.  

Both the Guc peak and 2D peak have vanished by 0.15 V.  The graphene 2D peak position and intensity 

changes can be explained by the increase in electron concentration during intercalation.125, 126   Stage II no 

longer involves any uncharged graphene layers, correlating the disappearance of the Guc peak to the 

emergence of a stage II compound.  From 0.15 V to 0.01 V the Raman spectra evolve from a symmetrical 

G peak to an asymmetric fano-resonance shape due to interference between the metallic like behavior of 

stage I GICs and the resonant phonon scattering process.106  Optical microscope images of the FLG at 

open circuit voltage and 0.01 V also supports the formation of stage I KC8, seen by the change of color 

from grey to bright orange (inset Figure 4.12a).  



57 

 

 

 
Figure 4.12 a) Top, LSV measured during the in-situ Raman experiment.  The colored circles indicate 

the state of charge for the Raman spectra in Fig 3b.  Middle, peak intensities for the Guc and Gc peaks. 

Bottom, peak positions for the Guc and Gc peaks. Inset) Optical microscope image of the FLG coated 

foam initially and fully potassiated.  Scale bar = 20 µm b) Selective Raman spectra taken at different 

states of charge as indicated in the LSV. c) Waterfall plot of all Raman spectra taken between 0.37 V 

and 0.01 V.   
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The proposed staging mechanism is pictorially represented in Figure 4.13.  Here, grey carbon 

layers in the schematic represent lightly strained/charged areas while orange layers represent more 

strained/charged sections.  Raman modes are observed to red shift during potassiation due to biaxial strain 

that is common in electron donating GICs28 due to expansion of the in-plane C-C bond.127, 128  The strain 

originates from increasing electron density and possibly steric hindrance from intercalated ions.  This is 

illustrated in Figure 4.13, in agreement with the Daumas-Hérold model which accounts for flexible 

graphene layers that can deform around intercalants.129  Our in-situ Raman analysis corroborates the 

following staging sequence: (1) a dilute stage I compound at voltages greater than 0.24 V, (2) a transition 

from a stage IV compound at 0.24 V (KC72) to a stage II compound at 0.15 V (KC24), and (3) the 

formation of a stage I (KC8) compound below 0.15 V.  Despite the very different driving force between 

high temperature chemical potassiation and room temperature electrochemical potassiation of graphite, 

they proceed through similar mechanisms.  Notably, this sequence is distinguished from staging of Na+ in 

graphite, but is similar to the electrochemical stage of Li+ in graphite.114, 130 This elucidates a picture of 

potassium storage in graphitic materials that builds upon an extensive picture of lithium storage in 

graphitic materials that has emerged over the past few decades.   
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Figure 4.13 Schematic representing the staging mechanism revealed by the in-situ Raman experiments.  

The schematic shows the changes that occur in the FLG anode during potassiation. Grey graphene 

represents slightly charged/strained areas while orange graphene represents highly charged/strained 

sections.  

4.6 Conclusion 

In summary, we demonstrate an in-situ Raman spectroscopic analysis of electrochemical K-ion 

storage in FLG materials that reveals the first real time demonstration of staging in this system.  We 

observe the formation of a dilute stage I compound that then transitions from ordered stage IV (KC72) → 

stage II (KC24) → stage I (KC8) and are able to assign voltage ranges for each stage.  This staging process 
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is notably different than that observed with Na+ intercalation into graphitic materials, but similar to Li+ 

intercalation.  The similarities between staging in Li+ and K+, combined with ~ 1000X greater abundance 

of K in the earth’s crust, and a higher operating voltage for K-ion compared to Na-ion elucidate a 

pathway for K-ion grid storage systems that can maintain performance, overcome manufacturing 

limitations, and build on an extensive set of knowledge obtained in past decades from the development of 

Li-ion systems.    

  



61 

 

 

Chapter 5 Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery 

Anodes 

5.1 Introduction 

Recent studies have identified the staging sequence in K-ion intercalation into graphitic carbons to 

closely resemble that of lithium intercalation.  However, the bottleneck of maximum storage capacity 

associated with a KC8 stage I GIC still poses a challenge to using this material as a replacement for Li-ion 

batteries since graphitic carbon anodes for Li-ion batteries exhibit over 30% increased capacity (LiC6 – 

372 mAh/g versus KC8 – 278 mAh/g).  To overcome this barrier, additional storage mechanisms beyond 

traditional staging are needed.  Cathode research for PIBs is also limited.  The larger K+ size can make 

reversible intercalation into traditional cathodes like transition metal oxides and iron phosphates even 

more difficult so research has mostly focused on organic cathodes with inherently large interstitial sites.21, 

40, 131, 132  As one of the main advantages of PIBs is the use of the already commercialized graphite anode, 

cathode research should also be focused on adapting commercialized electrodes. 

One effective strategy that has shown promise to increase the anode performance of graphitic 

carbons for Li-ion batteries is the introduction of charged defects or doping sites into the carbon lattice.133  

Dopants such as N alter the electronic structure and increase the reactivity by producing locally accessible 

active sites in the graphite lattice.134, 135  Wang et al. doped graphene nanosheets with around 2% N and 

found a drastic improvement in the capacity and rate capability of a LIB.136  At C/20 the capacity 

increased from 550 mAh/g to 900 mAh/g.  Cho et al. formed nitrogen doped graphene layers deposited on 

silicon nanowires as lithium ion battery anodes.137  Using both experimental results and DFT calculations 

they showed that both graphitic N and pyridine-like N can increase battery performance compared to 

undoped graphene.  They proposed that the increased capacity is due to the formation of vacancies and 

dangling bonds around the N defects.  Notably, recent efforts have also explored nitrogen doping for 
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sodium ion batteries and demonstrated the ability to improve performance even in the absence of the 

formation of a sodium ion GIC.138, 139   

The scalability and control afforded by different synthetic routes of N doped graphene is important 

to the potential manufacturability of PIBs.  Two common methods to produce doped graphene are through 

direct synthesis in one step such as that used in this study or doping of the graphene post synthesis 

through thermal or plasma treatment.  Anywhere between one and ten atomic percent of N dopants are 

commonly achieved through either strategy.135  Post synthesis treatment is particularly useful for battery 

manufacturing as the carbon electrodes currently being manufactured could be doped and improved using 

this method. Post synthesis methods also provide control of the bonding configuration of N dopants 

incorporated into the carbon.140  Using plasma enhanced CVD for different amounts of time, Jeong et al 

showed that different N configurations have varying effects on ion storage, highlighting the importance of 

controlling the doping process to produce an optimized electrode.   

In this study, we combine the use of graphitic anodes for potassium ion batteries with nitrogen 

doping techniques to overcome storage capacity limitations of KC8 which bottleneck K-ion anodes from 

being competitive with the storage capacity of Li-ion batteries.  We demonstrate that N-doping of few-

layered graphene (FLG) can enable potassium storage capacity exceeding 350 mAh/g, compared to 278 

mAh/g maximum capacity of KC8, and through control studies and in-situ Raman studies identify the 

mechanistic role of N-doping to be related to local storage of K at N-doping sites during a staging 

sequence that remains invariant between doped and doped FLG.   

5.2 Experimental Methods 

5.2.1 Growth of FLG, N-FLG, and d-FLG 

 All samples were grown on Ni foam (110 ppi, >99.99% from MTI) using a homemade CVD reactor in a 

Lindberg Blue one inch tube furnace.  In all cases the carbon was grown under vacuum (2.0x10-1 torr).  

To grow FLG the Ni was heated to 750°C in Ar (250 sccm) and H2 (2 sccm) and then exposed to C2H2 (1 
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sccm) for 25 minutes before cooling.  To grow d-FLG, the Ni foam was placed in a magnetic quartz boat.  

The Ni was heated to 650°C in Ar (250 sccm) and H2 (100 sccm) then exposed to C2H2 (10 sccm) for five 

minutes.  Fast cooling was achieved by removing the Ni foam from the furnace using the magnetic boat.  

To grow N-FLG the Ni foam was heated to 550°C under Ar (250 sccm) and H2 (100 sccm) and held for 

ten minutes.  The temperature was then increased to 750°C.  Liquid CH3CN contained in a cylinder was 

opened for five minutes then closed for five minutes.  The opening and closing of the cylinder was 

repeated two more times before slowly cooling.  

5.2.2 Material Analysis 

XPS analyses were performed in an Ulvac-PHI Versaprobe 5000 using monochromatic Al Κα x-rays 

(1486 eV), a 100 µm diameter x-ray spot, and a takeoff angle of 60 degrees off sample normal.  Pass 

energies of 187.7 eV and 23.5 eV were used for the survey and high-resolution acquisitions, respectively.  

Charge neutralization was accomplished using 1.1 eV electrons and 10 eV Ar+ ions.  The energy scales of 

the high-resolution spectra were calibrated by placing the C-C type bonding in the carbon 1s spectrum at 

284.8 eV.   Relative atomic concentrations were calculated using peak areas and PHI handbook sensitivity 

factors.141  Bonding configurations of nitrogen were assigned following the work of Kabir and 

coworkers.142 Transmission electron microscopy was performed using an Osiris TEM at a beam voltage 

of 200 kV. 

5.2.3 Assembly and Electrochemical Testing of Batteries 

Batteries were assembled in an Ar glove box using a K metal electrode on a stainless-steel disk, 0.8 M 

KPF6 in one:one EC/DEC (v:v) electrolyte, a Whatman grade GF/A glass microfiber filter separator, and 

a working electrode of FLG, N-FLG, or d-FLG on Ni foam, all encapsulated in a coin cell.  Galvanostatic 

cycling and rate studies from 1.5 V to 0.01 V were performed on an MTI eight channel battery analyzer.  

CVs were performed using a Metrohm Aultolab Multichannel analyzer between 1.5 V and 0.01 V.  The 

capacity is normalized to the mass of the carbon and all voltages reported are vs K/K+. 
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5.2.4 In-Situ Raman Spectroscopy 

Raman measurements were performed using a Renishaw inVia Raman spectrometer with a 532 nm laser 

and 1200 l/mm grating.  All Raman spectra were baselined to remove background and normalized to the 

largest peak.  In-situ Raman spectroscopy was performed using a modified coin cell with a hole drilled in 

the top described previously.122 After the coin cell was assembled and crimped in a glove box, a thin 

cover glass slide with epoxy was placed over the hole, with care taken to seal the glass slide to the coin 

cell, preventing air exposure, and not to expose the electrolyte to epoxy.  The voltage was set to 0.01 V 

for one hour and a stage I GIC was formed (seen by an orange color and an asymmetric fano-resonance 

line shape Raman spectrum).  The battery was held at the desired voltage for thirty minutes before taking 

a Raman spectrum. 

5.3 Material Characterization 

Nitrogen doped few layer graphene (N-FLG) was grown on Ni foam using acetonitrile in a CVD 

process in a manner building from other reports and outlined in the methods section.140, 143  The Raman 

spectra of N-FLG using a 532 nm laser is typical for that reported with N doped graphene and has 

multiple peaks including the G (1588 cm-1), D (1365 cm-1) , D’ (1626 cm-1), and 2D (2713 cm-1) peaks 

(Figure 5.1a).140   
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Figure 5.1 a) Raman spectra of nitrogen doped few layer graphene. b) TEM of nitrogen doped few 

layer graphene, scale bar = 5 nm. c) XPS data for the N1s spectra with 4 peaks from different nitrogen 

configurations in the lattice. d) Schematic for the different types of nitrogen defects in few layer 

graphene including graphitic nitrogen (N-Q), pyrrole-like nitrogen (N-5), and pyridine-like nitrogen 

(N-6). Reproduced from ref. 144 with permission from ACS 

The G peak arises from in-plane sp2 carbons while the D and D’ are modes activated by the defects 

induced from N doping.  In undoped samples the 2D/G ratio can be used to estimate the number of layers 

but the introduction of defects prevents such straightforward analysis in doped samples.145  To assess this, 

TEM micrographs confirm the few-layer nature of N-FLG (Figure 5.1b) with generally 5-25 layers, 

similar to the number of layers in undoped FLG indicated by the 2D/G ratio and TEM (Figure 5.2a).  X-

ray photoelectron spectroscopy (XPS) was used to estimate the amount of nitrogen in N-FLG and to 
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determine the nitrogen bonding configurations in this material.  Figure 5.2b displays the survey spectrum 

collected from the N-FLG, which contains no peaks from unexpected elements.  Analysis of the XPS data 

determined the relative concentration of N to be approximately 2.2 at%.  Four bonding configurations of 

the nitrogen were identified through deconvolution of the N1s spectrum (Figure 5.1c).  Nitrogen with 

binding energies of 403.8 eV, 402.0 eV, 400.9 eV, and 398.7 eV were assigned to nitrogen-oxygen, 

graphitic nitrogen, pyrrolic nitrogen, and pyridinic nitrogen following the methodology of Kabir and 

coworkers.142  Approximately 42.4% of the nitrogen is bonded as pyridinic nitrogen (N-6), 33.6% as 

pyrrolic nitrogen (N-5), 14% as graphitic nitrogen (N-Q), and 10% as N-O (Figure 5.1d).146  Pyridinic N 

in particular can result in a local electron deficiency with a particularly high affinity for the electron from 

a nearby K atom.  This can result in an increase in the number of ions stored in a given volume compared 

to undoped graphene.147  
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Figure 5.2 a) TEM micrograph of undoped FLG showing the few-

layer structure, scale bar = 10 nm. b) XPS survey spectrum of 

nitrogen doped few layer graphene 

 

5.4 Electrochemical Testing 

To characterize the effect of N-FLG versus pristine FLG, electrochemical tests were carried out in 

a half-cell versus K/K+ using CR2032 coin cells.  Galvanostatic measurements were performed for five 
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cycles each at rates of 50, 100, and 200 mA/g (Figure 5.4) with charge-discharge profiles at 50 and 100 

mA/g shown in Figure 5.3a and b respectively.   

 
Figure 5.3 a) Galvanostatic charge-discharge curves at 50 mA/g for PIBs made from undoped and N 

doped few layer graphene. b) Galvanostatic charge-discharge curves at 100 mA/g c) Cyclic 

voltammetry at 0.1 mV/s for FLG and N-FLG d) Cycling at 100 mA/g for both FLG and N-FLG.  

 

At rates of 50 mA/g, the initial anodic charge (depotassiation) capacity is around 350 mAh/g and 

remains constant over the five cycles measured at this rate.  Notably, this is the highest capacity for a PIB 

carbon anode to date and well beyond the theoretical capacity of a stage I KC8 GIC, approaching the 

theoretical Li capacity in graphite of 372 mAh/g.  This is compared to the (undoped) FLG charge capacity 

of <200 mAh/g measured at the same rate.  The capacities and charge-discharge profiles for FLG are very 

similar to those for graphite shown in literature.39, 40  Galvanostatic testing at high rates up to 200 mA/g 

indicates capacities for the N-FLG that are over six times improved from FLG with capacity at 100 mA/g 

of ~200 mAh/g (N-FLG) versus ~30 mAh/g (FLG), and capacity at 200 mA/g of over 50 mAh/g (N-FLG) 
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versus < 5 mAh/g (FLG).  This data elucidates key points that (1) N-FLG enables capacities evidently 

greater than that achievable in a stage I KC8 GIC, and (2) the kinetics of K storage in N-FLG are faster 

than FLG.  The charge-discharge curves for N-FLG in Figure 5.3a and b reveal an additional reaction 

plateau at higher voltages that accounts for a large amount of the increased capacity.  The energetics 

associated with the improved K storage in N-FLG are further analyzed with cyclic voltammetry at 0.1 

mV/s (Figure 5.3c).  The general potassiation energetics appear to be similar in both FLG and N-FLG 

with small peaks around 0.18 V and larger peaks centered on 0.02 V vs. K/K+.  Although the potassiation 

energetics are similar, depotassiation reveals many new peaks in N-FLG not evident in FLG.  Both 

samples exhibit a notable depotassiation peak near 0.35 V, but N-FLG further exhibits a series of 

additional peaks over the range of 0.4 V - 0.8 V, in agreement with the charge-discharge curves.  As this 

emerges as the key difference in the energetics of N-FLG versus FLG K-ion storage, this is be attributed 

to the enhanced storage capacity observed.122 

 
Figure 5.4 Galvanostatic rate study of N-FLG and FLG for five cycles at 

each rate of 50, 100, and 200 mA/g 
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Further studies of cycling performance for N-FLG compared to FLG (Figure 5.3d) at rates of 100 

mA/g also indicates a stable, higher storage capacity for N-FLG compared to FLG.  N-FLG initially starts 

with a capacity near 270 mAh/g and after 100 cycles remains above 210 mAh/g while FLG exhibits an 

initial capacity near 190 mAh/g and final capacity of only 150 mAh/g.  The coulombic efficiency of N-

FLG is consistently higher than FLG due to a more stable SEI and both improve over 50 cycles until 

steady values of 96.5% (N-FLG) and 94% (FLG) are reached.  

5.5 Deconvoluting Carbon and Nitrogen Defects 

At this point, one may enquire as to the origin of the observed enhancement from N-FLG being 

simply related to a sp3 “defect” site in the carbon lattice or being correlated with the specific presence of 

N dopants in the graphitic carbon lattice.  The D peak in the Raman spectrum of N-FLG (Figure 5.1a) can 

arise from both N defects and C sp3 defects, and such C defects have been shown to improve storage for 

SIBs.36  Ding et al investigated this C defect storage mechanism by producing carbon nanosheets with a 

range of D/G intensity ratios.148  All samples displayed a combination of a nanopore filling mechanism 

and a pseudo graphitic reaction mechanism with Na+.  The ratio of these two mechanisms changed with 

D/G ratio, indicating that defective carbons contributed to the storage of Na+.  In order to determine how 

carbon defects affect K+ storage defective undoped few layer graphene (d-FLG) was grown on Ni foam 

using acetylene. D-FLG contains sp3 carbon defects but not N-doping, allowing for these two effects to be 

deconvoluted.  
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Figure 5.5 a) Raman spectra of defective, nitrogen doped, and undoped few layer graphene. b) 

Galvanostatic cycling at 100 mA/g for d-FLG, N-FLG, and FLG. 

 

Representative Raman spectra of these three FLG materials (Figure 5.5a) indicate the distinctions 

in the relevant phonon modes that distinguish these materials. Both undoped samples have a G peak 

position near 1579 cm-1 while the N-FLG G peak is located at 1584.5 cm-1.  This peak is blue shifted in 

N-FLG due to the increased carrier concentration from doping.123  Similarly, both the N-FLG and d-FLG 

exhibit a clear D peak compared to pristine FLG that exhibits no noticeable D peak.  To address the role 

of sp3 carbon sites versus N-doping sites on the electrochemical performance, galvanostatic testing at 100 

mA/g rates was carried out (Figure 5.5b).  This evidences that d-FLG exhibits a significantly 

compromised storage capacity in comparison to N-FLG and FLG.  This provides an important distinction 

between K-ion and Na-ion storage in carbons, where Na-ion storage is mediated by defects in the absence 

of a stable GIC,39, 149 while K-ion storage is compromised by the presence of carbon defects.  This 

comparison emphasizes that N doping sites and not C defects are the source of improved capacities in N-

FLG. 
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5.6 Characterization Using In-Situ Raman 

 
Figure 5.6 a, b) CVs at 0.05 mV/s for N-FLG and FLG respectively with indicators of the sampled 

voltages. c, d) Raman spectra at selected voltages for N-FLG (c) and FLG (d) with the color of the 

spectra corresponding to the colored circles in a, b. e, f) Schematic of the staging and defect storage 

mechanism in N-FLG (e) compared to traditional staging of FLG (f). 
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On the premise that the enhanced performance is correlated with N-doping sites, and not carbon 

defects, the mechanism for enhanced storage in N-FLG was further examined with in-situ Raman 

spectroscopy.  In-situ Raman spectroscopy is a non-invasive technique for probing the electronic and 

structural changes in graphene and graphite and has been a powerful tool in efforts to establish a detailed 

understanding of Li+ staging in carbons.107, 114  In a staging process, the stage number refers to the number 

of graphene layers between intercalant layers. Graphene layers adjacent to intercalant layers become 

highly charged due to bonding between the ion and the graphene.  This causes a blue shift of the 

uncharged G (Guc) peak and produces the charged G (Gc) peak.28  As staging progresses the peaks red 

shift and the intensity ratio of Guc/Gc decreases which can be directly used to estimate the stage 

number.106  To carry out in-situ Raman analysis, potentiostatic testing was used at different voltages, with 

an equilibration of 30 minutes at that voltage prior to collecting Raman spectra.  Figure 5.6a, b show CV 

scans taken at 0.05 mV/s for N-FLG and FLG respectively over the voltage range used for in-situ testing.  

Spectra are shown in Figure 5.6c, d for N-FLG and FLG respectively, with line color corresponding to the 

circles in Figure 5.6a, b.  Qualitatively, both samples have both Gc and Guc peaks with the Gc peak 

decreasing in intensity and Guc increasing in intensity as voltage increases.  Therefore, staging can be 

readily assessed from the Raman spectra.  At 0.01 V both samples exhibit an asymmetric Fano-resonance 

line shape arising due to interference between the metallic stage I compound and the phonon scattering 

process.106 Both FLG and N-FLG are stage II at 0.3 V where all graphene layers are charged thus there is 

no Guc or 2D peaks.  From 0.3 to 0.7 V the Raman spectra for FLG and N-FLG are strikingly similar.  

Both the increasing Guc/Gc intensity ratio and blue shifting peak positions follow the expected trends for a 

deintercalation process from a staged GIC (Figure 5.7).106   
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Figure 5.7 Peak fit data from the in-situ Raman testing for N-FLG.  As expected during deintercalation, 

the Guc/Gc intensity ratio (a) increases and both peaks blue shift (b). 

By 0.4 V, the D peak (~1350 cm-1) reemerges in N-FLG but no D peak appears in FLG through the 

entire voltage range (Figure 5.8). The higher order staging compounds evident from 0.4 V to 0.8 V (KC36 

to KC72) do not significantly contribute to the capacity of a battery and cannot explain the large peak in 

the N-FLG CV in that range.  Therefore, the invariant staging sequence observed in N-FLG compared to 

FLG implies that N-sites do not incur a change in the staging properties of the graphitic carbon.  This 

elucidates the role of N doping as providing sites distributed in the carbon matrix that can locally store K-

ions in a manner that is not disruptive to the formation of a stage I GIC.  Based on our electrochemical 

assessment, this is in contrast to the role of sp3 carbon defect sites in d-FLG which compromise the 

capacity to levels significantly lower than that expected for a stage I GIC and hence inhibit the formation 

of a fully stage I GIC.  A schematic representing the staging process and the role of N-doping sites in the 

graphitic carbon during staging is shown in Figure 5.6e, f.   
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Figure 5.8 a) Raman spectra of N-FLG at 0.4 V showing the D peak. b) Even after depotassiation the 

Raman spectra of FLG does not show a D peak  

5.7 Conclusion 

Overall, the results that are presented in this study imply a key idea that atomically precise 

fabrication of materials can be a practical route to engineer the capacity of electrode materials for next-

generation batteries. The ability to augment the storage capability of a GIC such as KC8 with additional 

dopant-enabled storage sites that do not hinder the GIC storage capacity presents an exciting optimization 

challenge for both an experimental and theoretical researcher that stretches beyond the scope of our 

current study.  Similar enhancements would be expected for dopants such as boron and phosphorus that 

can change the electronic band structure and increase localized reactivity.150-152  Questions arise regarding 

the necessary relative location of dopant sites and the maximum density of dopant sites to reach the 

maximum possible storage capacity of an electrode material, which we observe is > 350 mAh/g for K-ion 

storage in N-FLG.   

In summary, N-FLG has been shown in this work to overcome the limitation of K-ion storage in 

graphitic carbons (FLG) and exhibit storage capacity greater than 350 mAh/g – the highest reported PIB 

anode capacity thus far.  Our results reveal this enhanced capacity to be specifically associated with N-

doping sites, as undoped defective FLG leads to compromised capacity compared to crystalline FLG.    
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Electrochemical data combined with in-situ Raman spectroscopy present a mechanistic role of N-doping 

to simultaneously activate distributed storage sites in the carbon lattice while sustaining the energetic 

pathway for the formation of a stage I GIC (KC8).  This study presents an advance that can enable 

graphitic carbons to be an anode for potassium ion batteries with storage capability matching that of 

lithium ion battery anodes.  This is one of many critical steps needed to address the need for lower cost 

rechargeable energy storage in a manner synergistic with the current state of battery manufacturing 

technology.   
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Chapter 6 Conclusion 

The chapters contained in this dissertation aim to tackle the biggest challenges in the field of sodium 

ion batteries, potassium ion batteries, and desalination batteries.  Through the application of 

electrochemical testing, ex-situ, and in-situ spectroscopy, I provided solutions and mechanistic 

understanding to advance each of these fields.   

In chapter two, my goal was to solve the lack of sodium intercalation into graphite by using WSe2 an 

alternative layered material.  I was the first to demonstrate WSe2 as an efficient electrode for sodium ion 

batteries.  A high reversible capacity above 200 mAh/g was observed at 20 mA/g rate, with over 250 

mAh/g capacity measured in the first sodium extraction.  Assessment of electrolyte and binder materials 

on performance was examined and an EC/DEC electrolyte with CMC binder emerged to yield the highest 

capacity and cycling retention.  Comparison between WS2 and WSe2 distinguished WSe2to exhibit 

superior performance due to more efficient energetics bearing a small overpotential < 0.30 V. Ex-situ 

analysis and imaging after cycling confirmed a sodium-mediated conversion reaction that yielded isolated 

domains of W metal or NaxSe and reformation of WSe2 upon sodium extraction, enabling insight into the 

chemical storage pathway.  This work highlighted the promise of WSe2 comparted to other conversion-

based transition metal dichalcogenides as a practical material for sodium ion batteries. 

In chapter three, I focused on controlling the energy intensive process of Faradaic removal of 

chloride ions from salt water.  I showed that smaller Ag nanoparticles lead to thinner AgCl layers, shorter 

diffusion lengths, reduced ionic and electronic resistances, and improved kinetics.  During the removal of 

53 mg Cl-/g Ag, 25 nm Ag nanoparticles consume 30-40% less energy than 326 nm particles, requiring 

0.09 Wh/L and 0.26 Wh/L at 0.25 A/g and 2.5 A/g respectively.  Electrochemical testing revealed the 

kinetic and resistive limitations are particularly prevalent during the reduction of AgCl back to Ag.  These 

findings revealed how nanostructures can be engineered to control the energetics and kinetics of 

electrochemical reactions. 
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 In chapter four, I delved into potassium ion batteries and leveraged the strong Raman 

spectroscopic response of few-layered graphene to provide the first in-situ insight into the electrochemical 

staging sequence for K+ ions in graphitic carbons. My analysis revealed the signature of a dilute stage I 

compound that precedes formation of ordered intercalation compounds transitioning from stage VI 

(KC72), stage II (KC24), and stage I (KC8) and correlated electrochemical responses to the stage formation.  

Overall, my study emphasized a minimum barrier to transfer the general understanding acquired for 

lithium-ion battery anodes to cheaper, earth abundant K-ion battery systems ideally suited for grid-scale 

storage. 

 Finally, in chapter five, my goal was to break the barrier of the theoretical capacity of K+ in 

graphite of 278 mAh/g and produce capacities on par with Li+ storage in graphite. I demonstrated that 

nitrogen doping of few-layered graphene can increase the storage capacity of potassium to over 350 

mAh/g, the highest reported anode capacity so far for PIBs.  Control studies distinguished the importance 

of nitrogen dopant sites as opposed to sp3 carbon defect sites to achieve the improved performance, which 

also enabled greater than 6 times increase in rate performance of doped vs undoped materials.  Finally, in-

situ Raman spectroscopy studies elucidated the staging sequence for doped and undoped materials and 

demonstrated the mechanism of the observed capacity enhancement to be correlated with distributed 

storage at local nitrogen sites in a staged KC8 compound.  This study demonstrated a pathway to 

overcome the limitations of graphic carbons for anodes in potassium ion batteries by atomically precise 

engineering of nanomaterials.  Further improvement could be achieved through controlling the type and 

number of N dopants. 

 I hope that others are able to use what I have learned from these projects to advance these fields 

even further.  One of the most rewarding experiences in graduate school has been to see the works 

published by others that build upon my research to provide additional understanding and improvement. 
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