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CHAPTER 1

INTRODUCTION AND MAIN RESULTS

1.1 Introduction

1.1.1. Dehn surgery of 3-manifolds. In 3-dimensional topology, Dehn surgery is an operation of mod-

ifying a 3-manifold by cutting off a solid torus and then gluing it back in a different way. The Lickorish-

Wallace theorem, which states that every closed orientable connected 3-manifold can be obtained from the

3-dimensional sphere by performing finitely many Dehn surgeries, serves as a motivation of the study of

Dehn surgeries.

The second step of the surgery, called Dehn filling, can be formalized as follows. LetM be a 3-manifold

with toral boundary. Topologically distinct ways of gluing a solid torus to M are parametrized by free

homotopy classes of essential simple closed curves of ∂M , called slopes. For a slope s, the Dehn filling

M(s) is obtained by attaching a solid torus S1×D2 to ∂M such that ∂D2 is mapped to a curve of the slope

s. The following is a particular case of Thurston’s hyperbolic Dehn filling theorem.

Theorem 1.1.1 ([33, Theorem [TH1]]). Let M be a compact orientable 3-manifold with toral boundary

such thatM\∂M admits a complete finite-volume hyperbolic structure. ThenM(s) is hyperbolic for all but

finitely many slopes s.

1.1.2. Group theoretic Dehn fillings. In group theoretic settings, Dehn filling can be generalized as fol-

lows. LetG be a group, letH be a subgroup ofG, and letN be a normal subgroup ofH . The group theoretic

Dehn filling associated with the data (G,H,N) is the process of forming the quotient groupG/〈〈N〉〉, where

〈〈N〉〉 is the normal closure of N in G.

Under the assumptions of Theorem 1.1.1, let G = π1(M). The natural map π1(∂M) → π1(M) is

injective. We think of π1(∂M) as a subgroup of π1(M) and let H = π1(∂M). Let N �H be the subgroup

generated by the slope s. Then G/〈〈N〉〉 = π1(M(s)) by the Seifert-van Kampen theorem.

Dehn filling is a fundamental tool in group theory. The solution of the virtually Haken conjecture uses

Dehn fillings of hyperbolic groups [2]. For a large number of relatively hyperbolic groups, Dehn fillings are
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used to prove the Farrell-Jones conjecture [5] and solve the isomorphism problem [12]. By considering Dehn

fillings of hyperbolically embedded subgroups, [13] constructs purely pseudo-Anosov normal subgroups of

mapping class groups. Other applications of Dehn fillings can be found in [3, 16].

In group theoretic settings, Thurston’s theorem was first generalized by Osin [27], and independently

by Groves-Manning [15] to Dehn fillings of peripheral subgroups of relatively hyperbolic groups. More re-

cently, Dahmani-Guirardel-Osin [13] proved an analog of Thurston’s theorem in the more general settings of

groups with hyperbolically embedded subgroups (see Theorem 1.1.4 below and the discussion afterwards).

We discuss here some examples and refer to Section 2.5 for the definition. We use H ↪→h G to indicate that

H is a hyperbolically embedded subgroup of G.

Example 1.1.2. If H is a peripheral subgroup of a relatively hyperbolic group G, then H ↪→h G. For

example,

(a) if a group G decomposes as a free product G = A ∗B, then we have A ↪→h G and B ↪→h G;

(b) under the assumptions of Theorem 1.1.1, we have π1(∂M) ↪→h π1(M).

Example 1.1.3. Let G be a group acting acylindrically on a Gromov hyperbolic space and let g be a loxo-

dromic element of G. Then there exists a maximal virtually cyclic subgroup E(g) 6 G containing g such

that E(g) ↪→h G. In particular,

(a) if G is a free group and H is a maximal cyclic subgroup of G, then H ↪→h G;

(b) if G is a hyperbolic group (resp. the mapping class group of a punctured closed orientable sur-

face, outer automorphism group of a finite rank non-abelian free group) and g is a loxodromic (resp.

pseudo-Anosov, fully irreducible) element, then E(g) ↪→h G.

Other examples of hyperbolically embedded subgroups can be found in [13].

Theorem 1.1.4 ([13, Theorem 2.27]). Let G be a group with a subgroup H ↪→h G. Then there exists a

finite setF ⊂ H\{1} such that ifN�H andN∩F = ∅, then the natural homomorphismH/N → G/〈〈N〉〉

maps H/N injectively onto a hyperbolically embedded subgroup of G/〈〈N〉〉.

Under the assumptions of Theorem 1.1.1, the above theorem, together with some basic facts about

relatively hyperbolic groups, implies that π1(M(s)) is non-virtually-cyclic and word-hyperbolic for all but
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finitely many slopes s. Thurston’s geometrization conjecture, proved by Perelman, implies that this algebraic

statement about π1(M(s)) is equivalent to the hyperbolicity of M(s). Thus, the above theorem indeed

provides a generalization of Theorem 1.1.1.

1.1.3. Motivation: a question on group cohomology. Note that in the settings of Thurston’s theorem,

i.e., if G = π1(M), H = π1(∂M), and M(s) admits a hyperbolic structure, we have

H∗(G/〈〈N〉〉; ·) ∼= H∗(π1(M(s)); ·),

which can be computed via M(s). Indeed, as M(s) admits a hyperbolic structure, the universal cover of

M(s) is H3, which is contractible, and thus M(s) is a model of K(G/〈〈N〉〉, 1).

However, there are no analogous methods for Dehn fillings of hyperbolically embedded subgroups. The

main question motivating our research is the following.

Question 1. For a group G with a subgroup H ↪→h G and a normal subgroup N � H , what can be said

about H∗(G/〈〈N〉〉; ·)?

In this thesis, we answer this question and discuss some applications. The first task is to understand

the structure of 〈〈N〉〉, which is solved by Chapter 3. In Chapter 4, we combine structural results obtained

in Chapter 3 and the Lyndon-Hochschild-Serre spectral sequence to compute H∗(G/〈〈N〉〉; ·). In Chapter

5, we estimate the cohomological dimension of G/〈〈N〉〉 and discuss some applications to acylindrically

hyperbolic groups.

1.2 Main results

1.2.1. Cohen-Lyndon type theorems for 〈〈N〉〉. In general, 〈〈N〉〉 does not need to have any particular

structure. Nevertheless, it turns out that if N avoids a finite set of bad elements, then 〈〈N〉〉 enjoys a nice

free product structure. In order to state our main results, we introduce the following terminology.

Definition 1.2.1. Let G be a group with a subgroup H ↪→h G. We say that a property P holds for all

sufficiently deep normal subgroups N �H if there exists a finite set F ⊂ H\{1} such that P holds for all

normal subgroups N �H with N ∩ F = ∅.

3



Definition 1.2.2. Let G be a group with a subgroup H and let N �H . We say that the triple (G,H,N) has

the Cohen-Lyndon property if there exists a left transversal T of H〈〈N〉〉 in G such that 〈〈N〉〉 decomposes

as a free product 〈〈N〉〉 =
∏∗
t∈T N

t, where Ng = gNg−1 for g ∈ G.

The latter definition is motivated by the following result [11, Theorem 4.1], which was later generalized

by [14, Theorem 1.1] to free products of locally indicable groups.

Theorem 1.2.3 (Cohen-Lyndon). Let F be a free group and let C be a maximal cyclic subgroup of F .

Then for all f ∈ C, the triple (F,C, 〈f〉) has the Cohen-Lyndon property.

By Example 1.1.3, we have C = E(f) ↪→h F and thus the above theorem fits in the general framework

of group theoretic Dehn fillings. For general hyperbolically embedded subgroups, a weak version of the

Cohen-Lyndon property is given in [13, Theorem 2.27].

Theorem 1.2.4 (Dahmani-Guirardel-Osin). Let G be a group with a subgroup H ↪→h G. Then for all

sufficiently deep N �H ,

〈〈N〉〉 =
∗∏
t∈T

N t

for some subset T ⊂ G.

The main difference between Theorems 1.2.4 and 1.2.3 is that in Theorem 1.2.4, T is just some subset

of G, instead of being a left transversal of H〈〈N〉〉 in G. Our result improves Theorem 1.2.4.

Theorem 1.2.5. Suppose that G is a group with a subgroup H ↪→h G. Then (G,H,N) has the Cohen-

Lyndon property for all sufficiently deep N �H .

In the special case where G and H are finitely generated and G is hyperbolic relative to H , Theorem

1.2.5 is proved in [16, Theorem 4.8]. The proofs of [13, Theorem 7.15] and [16, Theorem 4.8] use tech-

nicalities such as windmills, very rotating families, and spiderwebs. The proof of Theorem 1.2.5 is easier

and only uses surgeries on van Kampen diagrams and geometric properties of geodesic polygons of Cayley

graphs.

Remark 1.2.6. In fact, we prove Theorem 1.2.5 in much more general settings of a group G with a family

of weakly hyperbolically embedded subgroups (see Definition 2.5.4 for the definition). As an application,

we also obtain Cohen-Lyndon type theorems for graphs of groups, e.g., amalgamated free products and

HNN-extensions (see Corollaries 3.3.8, 3.3.9, and 3.3.10).
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Combining Theorem 1.2.5 and Example 1.1.2, we obtain:

Corollary 1.2.7. Let G be a group acting acylindrically on a Gromov hyperbolic space, and let g ∈ G be a

loxodromic element. Then (G,E(g), N) has the Cohen-Lyndon property for all sufficiently deep N �E(g).

In the case where G = F and H = C, we recover Theorem 1.2.3 for sufficiently deep (but not all)

〈f〉 � C. In the case where G is a free product of locally indicable groups, by considering the action of

G on the corresponding Bass-Serre tree, we also recover [14, Theorem 1.1] for sufficiently deep normal

subgroups.

1.2.2. Structure of relative relation modules. Let Rel(G, 〈〈N〉〉) and Rel(H,N) be the relative relation

modules of the exact sequences

1→ 〈〈N〉〉 → G→ G→ 1

and

1→ N → H → H → 1,

respectively, i.e. Rel(G, 〈〈N〉〉) (resp. Rel(H,N)) is the ZG-module (resp. ZH-module) whose base set is

the abelianization of 〈〈N〉〉 (resp. N ) and the G-action (resp. H-action) is induced by conjugation. If G is

free, then Rel(G, 〈〈N〉〉) is called a relation module. For sufficiently deep N , it follows immediately from

Theorem 1.1.4 that the natural map identifies H with a subgroup of G. We can then further identify ZH

with a subring of ZG. Thus, given any ZH-module A, it makes sense to talk about the induced module of

A from ZH to ZG, which is denoted by IndG
H
A = ZG

⊗
ZH A.

If G = F and H = C, Theorem 1.2.3 directly implies ZG-module isomorphisms

Rel(F, 〈〈f〉〉) ∼= Z[F/C〈〈f〉〉] ∼= IndG
H
Z ∼= IndG

H
Rel(C, 〈f〉).

In general, we have the following corollary of Theorem 1.2.5.

Corollary 1.2.8. Let G be a group with a subgroup H ↪→h G. Then for all sufficiently deep N �H , there

is an isomorphism of ZG-modules

Rel(G, 〈〈N〉〉) ∼= IndG
H
Rel(H,N). (1.1)
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Remark 1.2.9. Merely knowing that 〈〈N〉〉 =
∏∗
t∈T N

t for some subset T ⊂ G is not enough to guarantee

(1.1). For example, let G be any abelian group and let H be a proper subgroup of G. Then for any subgroup

N of H , 〈〈N〉〉 = N =
∏∗
t∈{1}N

t. But Rel(G, 〈〈N〉〉) (resp. Rel(H,N)) is a ZG-module (resp. ZH-

module) with the trivial G-action (resp. H-action) and thus Rel(G, 〈〈N〉〉) 6∼= IndG
H
Rel(H,N).

1.2.3. A spectral sequence for Dehn fillings. Assuming the Cohen-Lyndon property, we obtain a spectral

sequence to compute cohomology of Dehn filling quotients. Let G be a group, let H be a subgroup of G,

and let N be a normal subgroup of H . For simplicity, let G = G/〈〈N〉〉 and H = H/N .

Theorem 1.2.10. If the triple (G,H,N) has the Cohen-Lyndon property, then for every ZG-module A,

there exists a spectral sequence of cohomological type.

Ep,q2 =


Hp(H;Hq(N ;A)) , if q 6= 0

Hp(G;A) , if q = 0

⇒ Hp+q(G;A). (1.2)

Usually, a spectral sequence is used to compute its limit. However, the point of Theorem 1.2.10 is that

information about H∗(G;A) and H∗(H;Hq(N ;A)) can be used to deduce properties of H∗(G;A) and

answer Question 1. To enhance our answer, we also supplement Theorem 1.2.10 by relating the differentials

of (1.2) to the differentials of the standard Lyndon-Hochschild-Serre spectral sequence of the extension

1 → N → H → H → 1 (see Remark 4.0.2). In Chapter 5, we use Theorem 1.2.10 to study certain

homological properties of Dehn fillings.

Remark 1.2.11. In fact, we deal with a general version of the Cohen-Lyndon property which is defined for a

family of subgroups and normal subgroups. The corresponding generalized version of Theorem 1.2.10 turns

out to be useful in Chapter 5 when we construct particular quotients of acylindrically hyperbolic groups.

Remark 1.2.12. Historically, spectral sequences were introduced by Leray [21] in his attempt to compute

cohomology of sheafs. In the proof of Theorem 1.2.10, we make use of the Lyndon-Hochschild-Serre

spectral sequence, which was discovered by Lyndon [22] and then put into its current form by Hochschild-

Serre [17].

Remark 1.2.13. Let G be a group with a subgroup H . Relative cohomology H∗(G,H; ·) was introduced

by [7], which shows that absolute and relative cohomology groups fit into a long exact sequence.
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Proposition 1.2.14 ([7, Proposition 1.1]). Let G be a group and let H be a subgroup of G. Then for every

ZG-module A, there exists a long exact sequence

· · · → H`(G,H;A)→ H`(G;A)→ H`(H;A)→ H`+1(G,H;A)→ · · ·

whose arrows are natural maps of cohomology.

If H ↪→h G, N �H is sufficiently deep, and some additional assumptions are met, [35, Theorem 1.1]

provides a spectral sequence of homological type which computesH∗(G,H;ZG) from certain combination

of homology and cohomology. Clearly, Theorem 1.2.10 (resp. [35, Theorem 1.1]), together with Proposition

1.2.14, can be applied to compute H∗(G,H;ZG) (resp. H∗(G;ZG)). However, (1.2) and the spectral

sequence of [35] are essentially different, as there is no homology involved in (1.2).

It is worth noting that if H has finite cohomological dimension, then Theorem 1.2.10 and Proposition

1.2.14 implyH`(G,H;A) ∼= H`(G;A) for every ZG-moduleA and sufficiently large ` (see Remark 1.2.17

below).

1.2.4. Homological properties of Dehn filling quotients. Recall that the cohomological dimension of a

group G is

cd(G) = sup{` ∈ N | H`(G,A) 6= {0} for some ZG-module A}

(in this paper, the set N of natural numbers contains 0, while the set of positive natural numbers is denoted

as N+). A group G is of type FP∞ if there is a projective resolution

· · · → P1 → P0 → Z→ 0

over ZG such that Pn is finitely generated for each n ∈ N. A group G is of type FP if (a) cd(G) <∞ and

(b) G is of type FP∞.

Theorem 1.2.15. Let H ↪→h G be groups. If N �H is sufficiently deep, then for all ` > cd(H) + 2 and

any ZG-module A, we have

H`(G,A) ∼= H`(G,A)
⊕

H`(H,A). (1.3)

7



In particular,

cd(G) 6 max{cd(G), cd(H) + 1, cd(H)}.

Remark 1.2.16. In case G is a free group and H 6 G is a maximal cyclic subgroup, the direct sum

decomposition (1.3) is proved by [23, Theorem 11.1]. In case G = G1 ∗ G2 is a free product of locally

indicable groups G1, G2 and H 6 G is the cyclic subgroup generated by an element g ∈ G such that g is

not a proper power and does not conjugate into either G1 or G2, (1.3) is proved by [18, Theorem 3]. Note

that in these two cases, H is a hyperbolically embedded subgroup of G by Example 1.1.3. Thus, Theorem

1.2.15 recovers the results of [23, 18] for sufficiently deep (but not all) normal subgroups.

Notice that, (1.3) does not hold for ` 6 cd(H) + 1. For instance, let G be a group freely generated

by two elements x and y and let H = 〈h〉 6 G with h = xyx−1y−1. Then H ↪→h G by Example 1.1.3

and cd(H) + 1 = 2. Let N = 〈hk〉 � H with k large enough so that N is sufficiently deep. By [23,

Theorem 11.1], H2(G;Z) ∼= Z, and it is well-known that H2(G;Z) = {0} and H2(H;Z) ∼= Z/kZ. Thus,

H2(G;Z) 6∼= H2(G;Z)
⊕
H2(H;Z).

Remark 1.2.17. As a by-product of the proof of Theorem 1.2.15, we show that for ` > cd(H)+2, the natural

map H`(G;A)→ H`(H;A), induced by the inclusion H ↪→ G, is surjective, and the kernel of this natural

map can be identified with H`(G;A). This, together with Proposition 1.2.14, implies H`(G,H;A) ∼=

H`(G;A) for ` > cd(H) + 3, and for ` = cd(H) + 2, there is a surjection H`(G,H;A)� H`(G;A).

Theorem 1.2.18. Let H ↪→h G be groups. Suppose that N �H is sufficiently deep and G,H are of type

FP∞ (resp. FP ). If either one of the following conditions holds, then G is also of type FP∞ (resp. FP ).

(a) N is of type FP∞.

(b) H is of the formH = K×F , whereK is a finite group and F is a finite rank free group, andN 6 F .

Remark 1.2.19. The seemingly unnatural condition (b) of Theorem 1.2.18 will be used in Chapter 5 to deal

with acylindrically hyperbolic groups. For acylindrically hyperbolic groups, [13, Theorem 6.14] constructs

hyperbolically embedded subgroups of the form described in condition (b). In most of the interesting cases,

N � H is a free group of infinite rank and thus is not of type FP∞, in which case condition (a) does not

hold. It is unclear to us though whether the conclusion of Theorem 1.2.18 still holds if conditions (a) and

(b) are dropped.
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Remark 1.2.20. In Theorem 1.2.18, the condition that H is of type FP∞ is necessary. Indeed, for suffi-

ciently deep Dehn fillings, H embeds onto a hyperbolically embedded subgroup of G. If G is of type FP∞,

then [13, Theorem 2.11] implies that H is also of type FP∞.

Remark 1.2.21. In fact, we consider the general case of a family of weakly hyperbolically embedded

subgroups. The corresponding general versions of Theorems 1.2.15 and 1.2.18 can be applied to graph of

groups (see Remark 1.2.6).

1.2.5. Quotients of acylindrically hyperbolic groups The notion of acylindrically hyperbolic groups

was introduced by Osin [28] as a generalization of non-elementary hyperbolic and non-elementary relatively

hyperbolic groups. Examples of acylindrically hyperbolic groups can be found in many classes of group that

interest group theorists for years, e.g., mapping class groups of surfaces, outer automorphism groups of free

groups, small cancellation groups, convergence groups, Cremona groups, tame automorphism groups, etc.

We refer to [29] for details and other examples of acylindrically hyperbolic groups.

It is known that acylindrically hyperbolic groups have a lot of quotients. For instance, every acylindri-

cally hyperbolic group G is SQ-universal [13], i.e., every countable group can be embedded into a quotient

ofG. Also, if two finitely generated acylindrically hyperbolic groupsG1 andG2 are given, one can construct

a common acylindrically hyperbolic quotient of G1 and G2 [19]. As an application of our main results, we

study homological properties of those quotients.

For the following theorems, recall that every acylindrically hyperbolic group G has a maximal finite

normal subgroup K(G) [13, Theorem 6.14].

Theorem 1.2.22. Let G be an acylindrically hyperbolic group, and let C be any countable group. Then C

embeds into a quotient G of G such that

(a) G is acylindrically hyperbolic;

(b) cd(G) 6 max{cd(G), cd(C)};

(c) if K(G) = {1}, then for all ` > 3 and any ZG-module A, we have

H`(G;A) ∼= H`(G;A)
⊕

H`(C;A);

(d) if C is finitely generated, then C ↪→h G;
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(e) if G and C are of type FP∞, then so is G.

Theorem 1.2.23. Let G1 and G2 be finitely generated acylindrically hyperbolic groups. Then there exists a

common quotient G of G1 and G2 such that

(a) G is acylindrically hyperbolic;

(b) cd(G) 6 max{cd(G1), cd(G2)};

(c) if K(G1) = K(G2) = {1}, then for all ` > 3 and any ZG-module A, we have

H`(G;A) ∼= H`(G1;A)
⊕

H`(G2;A);

(d) if G1 and G2 are of type FP∞, then so is G.

Remark 1.2.24. Except for the homological conditions, Theorems 1.2.22 and 1.2.23 are proved by [13,

Theorem 8.1] and [19, Corollary 7.4], respectively. The benefit of Theorems 1.2.22 and 1.2.23 is that they

allow constructions of various acylindrically hyperbolic groups satisfying certain homological conditions.
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CHAPTER 2

PRELIMINARIES

We introduce conventions and notations and recall preliminaries in this chapter. In Sections 2.1 and 2.2,

we recall the notation of Cayley graphs and van Kampen diagrams. Section 2.3, whose main references are

[8, 34], reviews the notions of Gromov hyperbolic spaces and Gromov boundaries. In Sections 2.5 through

2.7, whose main references are [13, 29], we recall the definition and basic information about acylindrically

hyperbolic groups and (weakly) hyperbolically embedded subgroups. In Sections 2.6 and 2.7, we review the

concepts of isolated components and diagram surgery, which were introduced by Osin [27] and are useful

in the proof of Cohen-Lyndon type theorems in Chapter 3.

In Section 2.8, we introduce notations related to direct sums and products of abelian group homomor-

phisms. Sections 2.9 through 2.13, whose main references are [10, 31], are devoted to a series of concepts

related to group cohomology. Section 2.14 defines the Cohen-Lyndon property and introduces related no-

tations. Sections 2.15 and 2.16, whose main references are [31, 36], are devoted to spectral sequences and

related concepts, which are used in the Chapter 4 when we study certain spectral sequences with the aid of

the Cohen-Lyndon property.

2.1 Words and Cayley graphs

Let X be an alphabet. Given a word w over X , the length of w, denoted as ‖w‖, is the number of letters

in w. If X is the generating set of a group G, the word length of an element g ∈ G with respect to X ,

denoted as |g|X , is the length of a shortest word (geodesic word) w over X such that w represents g in G. If

X is understood from the context, we will simply write |g| instead of |g|X .

There are two types of equalities for words over X . Given two words u and v over X , the notation

u ≡ v indicates the letter-by-letter equality between u and v and the notation u =G v indicates that u and v

represent the same element of G.

If u is a word over X , then u−1 denotes the inverse of u. If, in addition, g ∈ G and S ⊂ H , then

we write u = g to indicate that u represents g in G, and write u ∈ S to indicate that the element of G

represented by u is in S.
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The Cayley graph Γ(G,X) is the labeled directed graph with vertices labeled by elements of G and

directed edges labeled by elements of X . In G (resp. Γ(G,X)), we use 1 to denote the identity (resp.

identity vertex). The word metric of Γ(G,X) with respect to the alphabet X is denoted as dX . Let p be an

edge path in Γ(G,X). Then `X(p) denotes the length of p under dX . Lab(p) denotes the label of p, i.e.,

Lab(p) is obtained by concatenate labels of edges of p. p− (resp. p+) denotes the initial (resp. terminal)

vertex of p. If S ⊂ Γ(G,X), then diamX(S) denotes the diameter of S under dX . If T is another subset of

Γ(G,X), then dHau(S, T ) denotes the Hausdorff distance between S and T .

2.2 Van Kampen diagrams

Let G be a group given by the presentation

G = 〈A | R〉, (2.1)

where A is a symmetric set of letters and R is a symmetric set of words in A (i.e., for every w ∈ R, every

cyclic shift of w or w−1 belongs toR).

A van Kampen diagram ∆ over (2.1) is a finite oriented connected planar 2-complex with labels on its

oriented edges such that

(a) Each oriented edge of ∆ is labeled by a letter in A ∪ {1};

(b) If an oriented edge e of ∆ has label a ∈ A ∪ {1}, then e−1 has label a−1, where e−1 (resp. a−1) is

the inverse of e (resp. a).

Here, 1 is identified with the empty word over A and thus 1 = 1−1. By convention, the empty word of

A represents the identity of G.

Let p = e1 · · ·ek be a path in a van Kampen diagram over (2.1). The initial vertex (resp. terminal vertex)

of p is denoted as p− (resp. p+). The label of p, denoted as Lab(p), is obtained by first concatenating the

labels of the edges e1, ..., ek and then removing all 1’s, as 1 is identified with the empty word. Therefore,

the label of a path in a van Kampen diagram is a word over A. If w is a word over A, then the notation

Lab(p) ≡ w indicates a letter-by-letter equality between Lab(p) and w.

Remark 2.2.1. Suppose that p is a path in a van Kampen diagram over (2.1) with Lab(p) ≡ w1 · · · wk.

Then we can decompose p in the following way: Let pw1 be the maximal subpath of p such that p−w1
= p−
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and Lab(pw1) ≡ w1. For i = 2, ..., k, let pwi be the maximal subpath of p such that p−wi = p+
wi−1

and

Lab(pwi) ≡ wi.

Edges labeled by letters from A are called essential edges, while edges labeled by the letter 1 are called

non-essential edges. A face of ∆ is a 2-cell of ∆. Let Π be a face of ∆, the boundary of Π is denoted

as ∂Π. Likewise, the boundary of ∆ is denoted by ∂∆. Note that if we choose a base point for ∂Π (resp.

∂∆), then ∂Π (resp. ∂∆) becomes a path in ∆. For a word w over A, we use the notation Lab(∂Π) ≡ w

(resp. Lab(∂∆) ≡ w) to indicate that one can pick a base point to turn ∂Π (resp. ∂∆) into a path p so that

Lab(p) ≡ w.

Remark 2.2.2. Suppose that ∆ is a diagram with Lab(∂∆) ≡ w1 · · · wk. Then we can decompose ∂∆

in the following way: Let pb be vertex of ∂∆ such that when we use pb as the base point of ∂∆, we can

turn ∂∆ into a path p with Lab(p) ≡ w1 · · · wk. And then we use Remark 2.2.1 to decompose p and thus

decompose ∂∆.

Consider the following additional assumption on van Kampen diagrams:

(c) For every face Π of a van Kampen diagram ∆ over the presentation (2.1), at least one of the following

conditions (c1) and (c2) holds.

(c1) Lab(∂Π) is equal (up to a cyclic permutation) to an element ofR.

(c2) ∂Π either consists entirely of non-essential edges or consists of exact two essential edges with mutu-

ally inverse labels (in addition to non-essential edges).

A face satisfying (c2) is called a non-essential face. All other faces are called essential faces. The

process of adding non-essential faces to a van Kampen diagram is called a refinement. Figure 2.1 illustrates

a refinement on a van Kampen diagram, where the unlabeled edges are labeled by 1. The interested readers

are referred to [25] for a formal discussion. By using refinements, we can ensure

(d) Every face is homeomorphic to a disc, i.e., its boundary has no self-intersection.

Assumption 2.2.3. In the sequel, the above assumptions (c) and (d) will be imposed on van Kampen dia-

grams.
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b−1
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a−1

a−1

a

a

bb
b−1 b−1

Figure 2.1: A refinement of a van Kampen diagram over the presentation G = 〈a, b | aba−1b−1 = 1〉

The well-known van Kampen lemma states that a word w overA represents 1 in G if and only if there is

a van Kampen diagram ∆ over (2.1) such that ∆ is homeomorphic to a disc (such diagrams are called disk

diagrams), and that Lab(∂∆) ≡ w.

Remark 2.2.4. If a van Kampen diagram ∆ is homeomorphic to a disc, and O is a vertex of ∆, then there

exists a unique continuous map µ from the 1-skeleton of ∆ to the Cayley graph Γ(G,A) sending O to the

identity vertex, preserving the labels of the essential edges and collapsing non-essential edges to points.

2.3 Gromov hyperbolic spaces and Gromov boundary

Let (S, d) be a geodesic metric space and let ∆ be a geodesic triangle consists of three geodesic segments

γ1, γ2, γ3. For a number δ > 0, ∆ is called δ-slim if the distance between every point of γi and the union

γj ∪ γk is less than δ, where i, j, k ∈ {1, 2, 3}, i 6= j, j 6= k, k 6= i.

Notation 2.3.1. We use (S, d) to denote a space S with metric d. If the metric d is unnecessary or well-

understood, we will omit it and write S for a metric space.

S is called a δ-hyperbolic space if geodesic triangles in S are all δ-slim. S is called a Gromov hyperbolic

space if it is δ-hyperbolic for some δ > 0. Gromov hyperbolic spaces generalize notions such as simplicial

trees and complete simply connected Riemannian manifolds with constant negative sectional curvature while

preserving most of the interesing properties.

Remark 2.3.2. In literature, properness is often part of the definition of a Gromov hyperbolic space. How-

ever, in this thesis, we do not assume that a Gromov hyperbolic space S is proper, i.e. some closed balls of

S might not be compact.
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Let S be a Gromov hyperbolic space. The Gromov product is defined by

(x · y)z = (d(x, z) + d(y, z)− d(x, y))/2.

Pick a point e ∈ S, viewing as the base point of the Gromov product. The Gromov boundary ∂Se of

S with respect to e is defined as follows. A sequence of points {sn}n>1 ⊂ S is called a Gromov sequence

if (si · sj)e → ∞ as i and j → ∞. We say that two Gromov sequences {xn}n>1, {yn}n>1 are equivalent

and write {xn}n>1 ∼ {yn}n>1 if (xn · yn)e →∞ as n→∞. ∂Se is then defined as the set of all Gromov

sequences modulo the equivalence relation ∼. Elements of ∂Se are just equivalence classes of Gromov

sequences in S and we say a sequence {xn}n>1 ∈ S tends to a boundary point x ∈ ∂Se and write xn → x

as n→∞ if {xn}n>1 ∈ x.

If e and f are two points of S, then ∂Se and ∂Sf can be naturally identified [34]. We thus obtain a

well-defined notion of the Gromov boundary ∂S of S.

2.4 Acylindrically hyperbolic groups

Let (S, d) be a Gromov hyperbolic space and let G be a group acting on S by isometries. The action of

G is called acylindrical if for every ε > 0 there exist R,N > 0 such that for every two points x, y with

d(x, y) > R, there are at most N elements g ∈ G satisfying both d(x, gx) 6 ε and d(y, gy) 6 ε. The limit

set Λ(G) of G on ∂S is the set of limit points in ∂S of a G-orbit in S, i.e.

Λ(G) = {x ∈ ∂S | there exists a Gromov sequence in Gs tending to x, for some s ∈ S}.

If Λ(G) contains more than two points, we say the action ofG is non-elementary. Acylindrically hyperbolic

groups are defined in [28].

Definition 2.4.1. A group G is acylindrically hyperbolic if G admits a non-elementary acylindrical action

on some Gromov hyperbolic spaces by isometries.

2.5 Hyperbolically embedded subgroups and group theoretic Dehn fillings

Let G be a group, let {Hλ}λ∈Λ be a family of subgroups of G, let X be a subset of G such that G is

generated by X together with the union of all Hλ, λ ∈ Λ, and let H =
⊔
λ∈ΛHλ. Consider the Cayley
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graph Γ(G,X tH). Note that Γ(G,X tH) is a metric space under the word metric.

Remark 2.5.1. It is possible that X and Hλ, λ ∈ Λ, as subsets of G, have non-empty intersections with

each other. As a consequence, several letters of X tH might represent the same element of G. If this is the

case, the Cayley graph Γ(G,X tH) will have multiple edges corresponding to those letters.

Note that for each λ ∈ Λ, the Cayley graph Γ(Hλ, Hλ) can be identified as the complete subgraph of

Γ(G,X tH) whose vertex set is Hλ, and edges are the ones labeled by letters from Hλ.

Definition 2.5.2. Fix λ ∈ Λ. A (combinatorial) path p in Γ(G,X t H) between vertices of Γ(Hλ, Hλ)

is called Hλ-admissible if it does not contain any edge of Γ(Hλ, Hλ). Note that a Hλ-admissible path

p is allowed to pass through vertices of Γ(Hλ, Hλ). For every pair of elements h, k ∈ Hλ, let d̂λ(h, k) ∈

[0,+∞] be the length of a shortestHλ-admissible path connecting h, k. If no such path exists, set d̂λ(h, k) =

+∞. The laws of summation on [0,+∞) extend naturally to [0,+∞] and it is easy to verify that d̂λ :

Hλ ×Hλ → [0,+∞] defines a metric on Γ(Hλ, Hλ) called the relative metric on Γ(Hλ, Hλ) with respect

to X .

Remark 2.5.3. Let p be a path in Γ(G,X t H) with Lab(p) ≡ h ∈ Hλ, for some λ ∈ Λ. For simplicity,

we denote d̂λ(1, h) by ̂̀λ(p).

Definition 2.5.4. Let G be a group, let {Hλ}λ∈Λ be a family of subgroups of G, let X be a subset of G,

and let H =
⊔
λ∈ΛHλ. We say that {Hλ}λ∈Λ is weakly hyperbolically embedded into (G,X) (denoted as

{Hλ}λ∈Λ ↪→wh (G,X)) ifG is generated by the setX together with union of allHλ, λ ∈ Λ, and the Cayley

graph Γ(G,X tH) is a Gromov hyperbolic space.

If the collection {Hλ}λ∈Λ ↪→wh (G,X) and for each λ ∈ Λ, the metric space (Hλ, d̂λ) is proper,

i.e., every ball of finite radius contains only finitely many elements, then {Hλ}λ∈Λ is called hyperbolically

embedded into (G,X) (denoted as {Hλ}λ∈Λ ↪→h (G,X)).

Further, the collection {Hλ}λ∈Λ is called weakly hyperbolically embedded into (resp. hyperbolically

embedded into) G, denoted as {Hλ}λ∈Λ ↪→wh G (resp. {Hλ}λ∈Λ ↪→h G), if there exists some subset

X ⊂ G such that {Hλ}λ∈Λ ↪→wh (G,X) (resp. {Hλ}λ∈Λ ↪→h (G,X)).

Remark 2.5.5. Note that if the family {Hλ}λ∈Λ ↪→wh (G,X) for some subset X ⊂ G and Y = X ∪X−1,

then we also have {Hλ}λ∈Λ ↪→wh (G, Y ). In the sequel, we always assume that the relative generating set

X is symmetric, i.e., X = X−1.

16



Notation 2.5.6. Let G,H be groups and let X ⊂ G. If {H} ↪→h (G,X), then we drop braces and write

H ↪→h (G,X) and H ↪→h G. If H is not a subgroup of G but there is a subgroup K ↪→h G such that

H ∼= K, then we will slightly abuse notation and write H ↪→h G.

Examples of hyperbolically embedded subgroups can be found in acylindrically hyperbolic groups. In

particular, we have the following.

Theorem 2.5.7 ([13, Theorem 6.14]). Let G be an acylindrically hyperbolic group. Then G has a maximal

finite normal subgroup K(G). Moreover, for n ∈ N, there exists a free group F of rank n such that

F ×K(G) ↪→h G.

Remark 2.5.8. If a group G can be decomposed as a free product G = G1 ∗G2, then

{G1, G2} ↪→h (G, ∅)

by [13, Example 4.12]. In this case, the relative metrics

d̂1 : G1 ×G1 → [0,+∞], d̂2 : G2 ×G2 → [0,+∞]

with respect to ∅ satisfy

d̂1(1, 1) = d̂2(1, 1) = 0, d̂1(1, g1) = d̂2(1, g2) = +∞

for g1 ∈ G1\{1}, g2 ∈ G2\{1}.

Note that if G = G1 ∗G2, then we also have

G1 ↪→h (G,G2).

Proposition 2.5.9 ([13, Proposition 4.35]). If G,H,K are groups and X ⊂ G, Y ⊂ H such that K ↪→h

(H,Y ) and H ↪→h (G,X), then K ↪→h (G,X ∪ Y ).

Theorem 2.5.10 ([13, Theorem 4.24]). Let G be a group with a family of subgroups {Hλ}λ∈Λ and let

X ⊂ G. Then the following are equivalent.

(a) {Hλ}λ∈Λ ↪→h (G,X).
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(b) There exists a strongly bounded relative presentation ofG with respect toX and {Hλ}λ∈Λ with linear

relative isoperimetric function.

For the definition of a strongly bounded relative presentation (resp. a linear relative isoperimetric func-

tion), the reader is referred to [13, Definition 4.22] (resp. [13, Section 3.3]).

Definition 2.5.11. Suppose that G is a group with a family of subgroups {Hλ}λ∈Λ ↪→wh (G,X) for some

subset X ⊂ G. For λ ∈ Λ, let d̂λ be the relative metric on Γ(Hλ, Hλ) with respect to X . We say that a

property P holds for all sufficiently deep Dehn fillings of {Hλ}λ∈Λ (or for all sufficiently deepNλ�Hλ, λ ∈

Λ,) if there exists a number C > 0 such that if Nλ�Hλ and d̂λ(1, n) > C for all n ∈ Nλ\{1}, λ ∈ Λ, then

P holds.

One remarkable property of weakly hyperbolically embedded subgroups is the following group theoretic

Dehn filling theorem.

Theorem 2.5.12 ([13, Theorem 7.15]). LetG be a group with a family of subgroups {Hλ}λ∈Λ ↪→wh (G,X)

for some subset X ⊂ G. Then for all sufficiently deep Nλ �Hλ, λ ∈ Λ, we have:

(a) For each λ ∈ Λ, the natural homomorphism iλ : Hλ/Nλ → G/〈〈N〉〉 is injective (i.e., Hλ ∩ 〈〈N〉〉 =

Nλ ), where N =
⋃
λ∈ΛNλ.

(b) {iλ(Hλ/Nλ)}λ∈Λ ↪→wh (G/〈〈N〉〉, X), where X is the image of X under the quotient map G →

G/〈〈N〉〉.

(c) There exist subsets Tλ ⊂ G,λ ∈ Λ, such that 〈〈N〉〉 =
∏∗
λ∈Λ,t∈Tλ N

t
λ, whereN t

λ = tNλt
−1 for λ ∈ Λ

and t ∈ Tλ.

2.6 Isolated components

Let us assume, until the end of Section 2.7, thatG is a group with a family of subgroups {Hλ}λ∈Λ ↪→wh

(G,X) for some symmetric subset X ⊂ G. For each λ ∈ Λ, let d̂λ be the relative metric on Γ(Hλ, Hλ)

with respect to X , and letH =
⊔
λ∈ΛHλ. The following terminology goes back to [26].

Definition 2.6.1. Let p be a path in Γ(G,X tH). Fix λ ∈ Λ. An Hλ-subpath q of p is a nontrivial subpath

of p labeled by a word over the alphabet Hλ (if p is a cycle, we allow q to be a subpath of some cyclic
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shift of p). An Hλ-subpath q of p is called an Hλ-component if q is not properly contained in any other

Hλ-subpath. Two Hλ-components q1, q2 of p are called connected if there exists a path c in Γ(G,X t H)

such that c connects a vertex of q1 to a vertex of q2, and that Lab(c) is a letter from Hλ. An Hλ-component

q of p is called isolated if it is not connected to any other Hλ-component of p.

The key property of isolated components is that, in a geodesic polygon (i.e., a polygon in Γ(G,X t

H) with geodesic sides) p, the total ̂̀-length of isolated components is uniformly bounded above by a

linear function of the number of sides. The following result is proved in [13, Proposition 4.14], which is a

straightforward generalization of [27, Proposition 3.2].

Lemma 2.6.2 (Dahmani-Guirardel-Osin). There exists a positive numberD satisfying the following prop-

erty: Let p be an n-gon in Γ(G,X tH) with geodesic sides p1, ..., pn and let I be a subset of the set of sides

of p such that every side pi ∈ I is an isolated Hλi-component of p for some λi ∈ Λ. Then

∑
pi∈I

̂̀
λi(pi) 6 Dn.

Remark 2.6.3. Theorem 2.5.12 asserts the existence of a constant C such that if d̂λ(1, n) > C for every

n ∈ Nλ\{1} and λ ∈ Λ, then Hλ ∩ 〈〈N〉〉 = Nλ for all λ ∈ Λ. In fact, one can let C = 4D, where D is the

constant provided by Lemma 2.6.2 (see [13]).

2.7 Diagram surgery

The diagram surgery surveyed in this section was first introduced by Osin [27], where he proved a

group theoretic Dehn filling theorem for relatively hyperbolic groups. Later, Dahmani et al. generalized this

technique to deal with weakly hyperbolically embedded subgroups [13].

Consider a symmetric setR of words over the alphabet X tH such that G has the presentation

G = 〈X tH | R〉, (2.2)

and that for all λ ∈ Λ,R contains all words over the alphabet Hλ which represent the identity.

Suppose that Nλ is a normal subgroup of Hλ for each λ ∈ Λ. Denote the union of Nλ, λ ∈ Λ, by N .

The normal closure of N in G, denoted as 〈〈N〉〉, is the smallest normal subgroup of G containning N .
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Killing 〈〈N〉〉 in G is equivalent to adding, to R, all words over Hλ which represent elements of Nλ, for all

λ ∈ Λ, to form a new presentation

G = G/〈〈N〉〉 = 〈X tH,R∪ S〉, (2.3)

where S =
⋃
λ∈λ Sλ and Sλ consists of all words over Hλ representing elements of Nλ in G.

In the sequel, let D be the set of all van Kampen diagrams ∆ over (2.3) such that:

(D1) Topologically ∆ is a disc with k > 0 holes. The boundary of ∆ can be decomposed as ∂∆ = ∂ext∆∪

∂int∆, where ∂ext∆ is the boundary of the disc, and ∂int∆ consists of disjoint cycles (connected

components) c1, ..., ck that bound the holes.

(D2) For i = 1, ..., k, ci is labeled by a word from S.

(D3) Each diagram ∆ is equipped with a cut system that is a collection T = {t1, ..., tk} of disjoint paths

(cuts) t1, ..., tk in ∆ without self-intersections such that, for i = 1, ..., k, the two endpoints of ti belong

to ∂∆, and that after cutting ∆ along ti for all i = 1, ..., k, one gets a disc van Kampen diagram ∆̃

over (2.2).

See Figure 2.2 for an illustration of a diagram in D.

Lemma 2.7.1. A word w over X t H represents 1 in G if and only if there is a diagram ∆ ∈ D such that

Lab(∂ext∆) ≡ w.

Proof. Let w be a word over X tH. If there is a diagram ∆ ∈ D such that ∂ext∆ ≡ w, by filling the holes

of ∆ with faces whose boundaries are labeled by words from S, one creates a disc van Kampen diagram

over (2.2), whose boundary is labeled by w. Conversely, if w represents 1 in G, then there exists a disc

van Kampen diagram ∆ over (2.2) with Lab(∂∆) ≡ w. By removing all faces of ∆ labeled by words

from S, we obtain a diagram ∆′ satisfying (D1) and (D2). To produce a cut system, choose a vertex O in

∂ext∆
′. Connect O with each component of ∂int∆′ by a path so that these paths do not cross each other

(although they do intersect each other). By passing to a refinement of ∆′, one can separate these paths so

that they no longer intersect each other and thus creates a diagram ∆ satisfying (D1), (D2), and (D3) with

Lab(∂ext∆) ≡ w.
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O

∆′ ∆

Figure 2.2: How to produce a cut system

Figure 2.2 illustrates the last step of the above proof. The left half shows the diagram ∆′ with red and

blue paths connect O with two components of ∂int∆′. By thickening these paths with a refinement, we

obtain the right half. The red and blue regions consist of non-essential faces, while the outside red and blue

paths form a cut system.

Let ∆ be a diagram in D and let ∆̃ be the disc van Kampen diagram resulted from cutting ∆ along its

set of cuts. Define κ : ∆̃ → ∆ to be the map that “sews” the cuts. Fix an arbitrary vertex O in ∆̃ and let µ

be a map sending the 1-skeleton of ∆ to Γ(G,X tH), as described by Remark 2.2.4.

Definition 2.7.2. Let ∆1 and ∆2 be two diagrams of D and let Γ1 (resp. Γ2 ) be the subgraph of the 1-

skeleton of ∆1 (resp. ∆2 ) consisting of ∂∆1 (resp. ∂∆2 ) and all cuts of ∆1 (resp. ∆2 ). We say that ∆1

and ∆2 are equivalent if there exists a graph isomorphism Γ1 → Γ2 which preserves labels and orientations

of edges, and maps the cuts and boundary of ∆1 to the cuts and boundary of ∆2, respectively.

The following Lemmas 2.7.3 and 2.7.8 are results from [13], which are straightforward generalizations

of results of [27]. Note that the authors of [13] assume that the presentation (2.2) has a linear relative

isoperimetric function, but this assumption is not used in the proofs of those lemmas.

Lemma 2.7.3 ([13, Lemma 7.11] ( see also [27, Lemma 4.2])). Let a, b be two vertices on ∂∆ and let ã, b̃

be two vertices on ∂∆̃ such that κ(ã) = a, κ(̃b) = b. Then for any path p in Γ(G,X tH) connecting µ(ã)
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to µ(̃b), there is a diagram ∆1 ∈ D with the following properties:

(a) ∆ and ∆1 are equivalent.

(b) There is a path q in ∆1 without self-intersections such that (1) q connects a and b, (2) q has no

common vertices with the cuts of ∆1 except possibly for a, b, and (3) Lab(q) ≡ Lab(p).

Definition 2.7.4. Fix λ ∈ Λ. An Hλ-subpath in ∂∆ (resp. ∂∆̃) for some ∆ ∈ D is a path labeled by

a nontrivial word over Hλ. An Hλ-subpath p of ∂∆ (resp. ∂∆̃) is called an Hλ-component if p is not

properly contained in any other Hλ-subpath. Two Hλ-components p, q of ∂∆ are connected if there exist

Hλ-components a, b in ∂∆̃ such that κ(a) (resp. κ(b)) is a subpath of p (resp. q), and that µ(a), µ(b) are

connected in Γ(G,X tH) (in the sense of Definition 2.6.1).

Remark 2.7.5. The definitions of Hλ-subpaths, Hλ-components, and connected Hλ-components in ∂∆ for

a van Kampen diagram ∆ ∈ D or ∂∆̃ do not depend on the pre-chosen vertex O.

Definition 2.7.6. The type of ∆ is defined by the formula

τ(∆) = (k,
k∑
i=1

‖Lab(ti)‖),

where k is the number of holes in ∆ and t1, ..., tk are the cuts. We order the types of diagrams in D

lexicographically: (k1, `1) < (k2, `2) if and only if either k1 < k2 or k1 = k2 and `1 < `2.

Definition 2.7.7. For any word w over X t H, let D(w) be the set of diagrams ∆ ∈ D such that

Lab(∂ext∆) ≡ w.

Lemma 2.7.8 ([13, Lemma 7.17] (see also [27, Lemma 5.2])). Suppose that for every λ ∈ Λ and n ∈

Nλ\{1}, we have d̂λ(1, n) > 4D, where D is the constant given by Lemma 2.6.2. Let w be a geodesic word

over X t H representing 1 in G, and let ∆ be a diagram in D(w) of minimal type. Then there exist λ ∈ Λ

and a connected component c of ∂int∆ such that c is connected to an Hλ-component of ∂ext∆.

2.8 Direct sums and products of abelian group homomorphisms

Let fλ : Xλ → Y, λ ∈ Λ, be homomorphisms between abelian groups. The domain sum of fλ, λ ∈ Λ,

denoted as
Dom⊕
λ∈Λ

fλ :
⊕
λ∈Λ

Xλ −→ Y,
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is defined as follows. For every λ ∈ Λ, let iλ : Xλ →
⊕

λ∈ΛXλ be the natural inclusion. Then
⊕Dom

λ∈Λ fλ

is the unique abelian group homomorphism such that

Dom⊕
λ∈Λ

fλ ◦ iλ = fλ

for λ ∈ Λ.

If fλ : Xλ → Yλ, λ ∈ Λ, are abelain group homomorphisms, then we define the domain-target sum of

fλ, denoted as
DT⊕
λ∈Λ

fλ :
⊕
λ∈Λ

Xλ −→
⊕
λ∈Λ

Yλ,

by the following rule. For each λ ∈ Λ, let pλ :
⊕

λ∈Λ Yλ → Yλ be the natural projection. Then
⊕DT

λ∈Λ fλ is

the unique abelian group homomorphism such that

pλ ◦
DT⊕
λ∈Λ

fλ ◦ iλ = fλ

for λ ∈ Λ.

In contrast, if fλ : X → Yλ, λ ∈ Λ, are homomorphisms between abelian groups, then the target

product of fλ, λ ∈ Λ, denoted as
Tar∏
λ∈Λ

fλ : X −→
∏
λ∈Λ

Yλ,

is defined as follows. For each λ ∈ Λ, let πλ :
∏
λ∈Λ Yλ → Yλ be the coordinate projection. Then

∏Tar
λ∈Λ fλ

is the unique abelian group homomorphism such that

πλ ◦
Tar∏
λ∈Λ

fλ = fλ

for λ ∈ Λ.

If fλ : Xλ → Yλ, λ ∈ Λ, are abelain group homomorphisms, then we define the domain-target product

of fλ, denoted as
DT∏
λ∈Λ

fλ :
∏
λ∈Λ

Xλ −→
∏
λ∈Λ

Yλ,

by the following rule. Every element of
∏
λ∈ΛXλ is a tuple (xλ)λ∈Λ. We demand that

∏DT
λ∈Λ fλ sends each
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(xλ)λ∈Λ ∈
∏
λ∈ΛXλ to (fλ(xλ))λ∈Λ ∈

∏
λ∈Λ Yλ.

2.9 Chain complexes

Let R be a ring. A graded abelian group (resp. R-module) is an abelian group (resp. R-module) A

equipped with a direct sum decomposition A =
⊕

`∈ZA`. By referring to A as a graded abelian group or

R-module and writing A =
⊕

`>k A` for some k ∈ Z, we assume implicitly that A` = {0} for ` < k.

A morphism f : A → B between graded abelian groups (resp. R-modules) of degree s ∈ Z is a group

(resp. R-module) homomorphism such that f(A`) ⊂ B`+s. For ` ∈ Z and a morphism f : A → B of

degree s between graded abelian groups or R-modules A =
⊕

`∈ZA` and B =
⊕

`∈ZB`, we write f` for

the `-component of f , i.e.,

f` : A` → B`+s, f`(a) = f(a)

for all a ∈ A`. A chain complex (A, d) of abelian groups (resp. R-modules) is a graded abelian group (resp.

R-module) A equipped with a morphism d : A→ A of degree −1 such that d ◦ d = 0. This morphism d is

called the differential of A. We call A an exact chain complex if ker(d) = im(d).

In certain cases, we will write a graded abelian group or R-module as A =
⊕

`∈ZA
`. If f : A→ B is a

morphism between graded abelian groups or R-modules A =
⊕

`∈ZA
` and B =

⊕
`∈ZB

`, then we write

f ` for the `-component of f . A cochain complex (A, d) of abelian groups (resp. R-modules) is a graded

abelian group (resp. R-module)A =
⊕

`>0A
` equipped with a morphism d : A→ A (the differential ofA)

of degree 1, where superscripts are used instead of subscripts to indicate cochain complexes. A chain map

f : (A, dA) → (B, dB) between chain or cochain complexes A and B is a graded abelian group morphism

of degree 0 such that f ◦ dA = dB ◦ f .

Remark 2.9.1. We write (A, d) for a chain or cochain complex. However, if the differential d is understood,

we will simply write A instead of (A, d).

2.10 Resolutions and Ext functor

A projective (resp. free) resolution of an R-module S over R is an exact chain complex P =
⊕

`>−1 P`

of R-modules such that P−1 = S and P` is a projective (resp. free) R-module for ` > 0. Such a projective

resolution is denoted as P → S. In the case where R is the group ring ZG for some group G, the standard
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free resolution P → Z of Z over ZG is a free resolution (P, ∂) such that P` is the abelian group freely

generated by ordered (`+ 1)-tuples of G and the boundary operator ∂ satisfies

∂`(g0, · · ·, g`) =
∑̀
i=0

(−1)`(g0, · · ·, gi−1, gi+1, · · ·, g`)

for all g0, · · ·, g` ∈ G.

Given a projective resolution P → S over a ring R and an R-module M , we can apply the functor

HomR(·,M) to P → S to form a deleted cochain complex

HomR(P,M) : 0 −→ HomR(P0,M) −→ HomR(P1,M) −→ · · ·

whose arrows (except for the left most one) are induced by the differential of P . In contrast, the non-deleted

cochain complex is

0 −→ HomR(S,M) −→ HomR(P0,M) −→ HomR(P1,M) −→ · · ·

By definition, for ` > 0, the groupExt`R(S,M) is the cohomology group of the deleted cochain complex

HomR(P,M) at dimension `. Note that Ext`R(S,M), ` > 0, form a graded abelian group

Ext∗R(S,M) =
⊕
`>0

Ext`R(S,M).

Let R′ be a ring and let S′,M ′ be R′-modules. Suppose that a ring homomorphism R′ → R is given.

Then S and M can be regarded as R′-modules. The homomorphism R′ → R induces a chain map

HomR(P,M) −→ HomR′(P,M).

Suppose further that R′-module homomorphisms S′ → S and M → M ′ are given. Let P ′ → S′ be a

projective resolution over R′. Then S′ → S induces a chain map from P ′ → S′ to P → S, which further

induces a chain map

HomR′(P,M) −→ HomR′(P
′,M).
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Finally, the module homomorphism M →M ′ gives rise to a chain map

HomR′(P
′,M) −→ HomR′(P

′,M ′).

The composition of the above three chain maps gives rise to a chain map

HomR(P,M) −→ HomR′(P
′,M ′),

which induces a 0-degree morphism of graded abelian groups

NTR : Ext∗R(S,M) −→ Ext∗R′(S
′,M ′).

It is well-known that the definition of NTR does not depend on the choices of resolutions (for example,

see [31, Theorem 6.17]). NTR is called the natural map induced by R→ R′, S′ → S, and M →M ′.

Remark 2.10.1. If R = R′, we will simply say that NTR is induced by S′ → S and M →M ′. Moreover,

we treat the cases S = S′ and M = M ′ in the same manner.

Suppose that R = ZG and R′ = ZH for some groups G > H and the ring homomorphism R′ → R is

induced by the inclusion H ↪→ G, we will say that NTR is induced by H ↪→ G instead of ZH → ZG.

Similarly, an injective resolution of theR-moduleM overR is an exact cochain complex I =
⊕

`>−1 I
`

of R-modules such that I−1 = M and I` is an injective R-module for ` > 0. Such an injective resolution

is denoted as M → I . Given an injective resolution M → I over a ring R, we can apply the functor

HomR(S, ·) to M → I to form a deleted cochain complex

HomR(S, I) : 0 −→ HomR(S, I0) −→ HomR(S, I1) −→ · · ·

whose arrows (except for the leftmost one) are induced by the differential of I . In contrast, the non-deleted

cochain complex is

0 −→ HomR(S,M) −→ HomR(S, I0) −→ HomR(S, I1) −→ · · ·

One can use injective resolutions to give an alternative definition of Ext∗R(S,M). For ` > 0,
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Ext`R(S,M) is the cohomology group of the cochain complex HomR(S, I) at dimension `. It is well-

known that the Ext groups given by the above two definitions can be naturally identified (for example, see

[31, Theorem 7.8]).

Furthermore, if M ′ → I ′ is an injective resolution over R′, then M → M ′ induces a chain map from

M → I to M ′ → I ′, which further induces a chain map

HomR′(S
′, I) −→ HomR′(S

′, I ′).

The composition of HomR(S, I) → HomR′(S, I), HomR′(S, I) → HomR′(S
′, I), and

HomR′(S
′, I)→ HomR′(S

′, I ′) is a chain map

HomR(S, I) −→ HomR′(S
′, I ′). (2.4)

The natural map NTR can also be defined as the cohomology map induced by (2.4) (for example, see

[31, Theorem 7.8]).

Remark 2.10.2. Ext∗R(S,M) is the standard notation for Ext groups. However, in case of computations,

we might need to use the resolution P → S (resp. M → I) and thus write H∗(HomR(P,M)) (resp.

H∗(HomR(S, I))) instead of Ext∗R(S,M).

Remark 2.10.3. We focus on the case R = ZG for some group G. In this case, we write HomG (resp.

Ext∗G) instead of HomZG (resp. Ext∗ZG). If R = Z, then we will simply use Hom in place of HomZ.

Similarly, if A and B are two R-modules, then we use A ∼=R B to indicate that A is isomorphic to B as

R-modules. In the case R = ZG for some group G, we will simply write A ∼=G B instead of A ∼=ZG B

2.11 Group cohomology

Let G be a group and let A be a ZG-module. We use the dot notation · to denote the action of G on A.

The cohomology group of G with coefficients in A is defined as

H∗(G;A) = Ext∗G(Z, A).

Suppose that A′ is another ZG-module. The set of abelian group homomorphisms Hom(A,A′) natu-
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rally admits a G-action defined by

gf(a) = g · f(g−1 · a)

for all g ∈ G, f ∈ Hom(A,A′), and a ∈ A. It is not hard to see that HomG(A,A′) is a G-invariant subset

of Hom(A,A′) and thus naturally admits a G-action.

Remark 2.11.1. For clearness, a superscript is used to indicate an action ofG, as g ·f(a) shall be interpreted

as g ∈ G applied to f(a) ∈ A′ rather than g first applied to f to obtain a function gf , and then gf applied to

a.

Let K be a normal subgroup of G with G = G/K, and let P → A be a projective resolution over ZG.

As K 6 G, every projective module over ZG is automatically a projective module over ZK. Thus, P → A

can also be regarded as a projective resolution over ZK. By applying the functor HomK(·, A′) to P → A

and computing the cohomology of the resulted deleted cochain complex HomK(P,A′), we obtain

Ext∗K(A,A′) = H∗(HomK(P,A′)).

It is easy to check thatK acts onHomK(P,A′) trivially (i.e.,K fixes every function ofHomK(P,A′)).

Therefore, HomK(P,A′) naturally admits a structure of ZG-module. The G-action on HomK(P,A′) pre-

serves cocycles and coboundaries of HomK(P,A′). Hence, Ext∗K(A,A′) also naturally admits a structure

of a ZG-module. Explicitly, if g ∈ G and an element [f ] ∈ Ext∗K(A,A′) is represented by a cocycle

f ∈ HomK(P`, A
′) for some ` > 0, let g ∈ G such that g is mapped to g under the quotient map G → G.

Then

g[f ] = [gf ].

A standard fact in group cohomology is that the module structure on ExtK(A,A′) does not depend on

particular choices of projective resolutions (for example, see [10, Chapter III.8]). Thus, we obtain a well-

defined ZG-module structure on Ext∗K(A,A′). In particular, if A = Z, then we obtain a well-defined ZG-

module structure on H∗(K;A′). The iterative cohomology H∗(G;H∗(K;A′)) is computed with respect to

this module structure.

Remark 2.11.2. Let B,B′ be ZG-modules with ZG-module homomorphisms B → A, A′ → B′. Direct
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computation shows that the natural map

NTR : Ext∗K(A,A′) −→ Ext∗K(B,B′),

induced by B′ → A′ and A→ B is a ZG-module homomorphism.

2.12 Coinduced modules

Let G be a group, let H be a subgroup of G, and let A be a module over ZH . The coinduced module of

A from ZH to ZG is

CoIndGHA = HomH(ZG,A).

There is a standard projection

π : CoIndGHA −→ A, π(f) = f(1)

for all f ∈ CoIndGHA.

Notation 2.12.1. In the sequel, we consider iterative functions and frequently refer to an element f ∈

Hom(A,Hom(B,C)) for some abelian groups A,B,C. For a ∈ A and b ∈ B, the notation f(a, b) is used

to indicate that we first apply the function f to a ∈ A and obtain a function f(a) ∈ Hom(B,C), and then

apply f(a) to b ∈ B and obtain f(a, b) ∈ C.

Suppose that G,H are groups and the ZH-module A is a function module, i.e., A is a ZH-submodule

of Hom(A1, A2) for some ZH-modules A1 and A2. Then for every f ∈ CoIndGHA and x ∈ ZG, f(x) is a

function in Hom(A1, A2). For a ∈ A1, f(x, a) ∈ A2 is the element obtained by applying f(x) to a.

Recall that ZG is also a right ZG-module and hence the coinduced module CoIndGHA naturally admits

a G-action given by

g • f(x) = f(x · g)

for all f ∈ CoIndGHA, g ∈ G, and x ∈ ZG, turning CoIndGHA into a ZG-module.

2.13 A generalization of Shapiro’s lemma

Suppose that G is a group, {Hλ}λ∈Λ is a family of subgroups of G, and Aλ is a ZHλ-module for every

λ ∈ Λ. For µ ∈ Λ, the composition of the standard projection CoIndGHµAµ � Aµ and the coordinate
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projection
∏
λ∈ΛCoInd

G
Hλ
Aλ � CoIndGHµAµ is a map

pµ :
∏
λ∈Λ

CoIndGHλAλ −→ Aµ.

Let A be a ZG-module. Consider the abelian group HomG(A,
∏
λ∈ΛCoInd

G
Hλ
Aλ). Every element of

this group is a function f̃ from A to
∏
λ∈ΛCoInd

G
Hλ
Aλ. Define a map

Shaλ : HomG(A,
∏
λ∈Λ

CoIndGHλAλ) −→ HomHλ(A,Aλ), Shaλ(f̃) = pλ ◦ f̃

for f̃ ∈ HomG(A,
∏
λ∈ΛCoInd

G
Hλ
Aλ). Let

Sha =

Tar∏
λ∈Λ

Shaλ : HomG(A,
∏
λ∈Λ

CoIndGHλAλ) −→
∏
λ∈Λ

HomHλ(A,Aλ).

Let us construct an inverse of Sha. For (fλ)λ∈Λ ∈
∏
λ∈ΛHomHλ(A,Aλ) and every λ ∈ Λ, let

f̃λ ∈ HomHλ(A,CoIndGHλAλ) such that

f̃λ(a, x) = fλ(x · a)

for all a ∈ A and x ∈ ZG, where we employ notations defined in Notation 2.12.1. Let

f̃ =
Tar∏
λ∈Λ

f̃λ ∈ Hom(A,
∏
λ∈Λ

CoIndGHλAλ).

Direct computation shows f̃ ∈ HomG(A,
∏
λ∈ΛCoInd

G
Hλ
Aλ). Let

ρ :
∏
λ∈Λ

HomHλ(A,Aλ) −→ HomG(A,
∏
λ∈Λ

CoIndGHλAλ)

be the map sending each (fλ)λ∈Λ to the corresponding f̃ .

It is easy to check that Sha and ρ are mutual inverses. Thus, Sha is an isomorphism of abelian groups.

The map Sha is called Shapiro’s isomorphism. The following lemma is a generalization of the well-known

Shapiro’s lemma.

Lemma 2.13.1. LetG be a group, let {Hλ}λ∈Λ be a family of subgroups ofG, and letAλ be a ZHλ-module
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for every λ ∈ Λ. Then the Shapiro’s isomorphism Sha defined above induces an isomorphism

Sha∗ : H∗(G;
∏
λ∈Λ

CoIndGHλAλ) −→
∏
λ∈Λ

H∗(Hλ;Aλ).

Proof. Let P → Z be a projective resolution of Z over ZG. For every λ ∈ Λ, as Hλ 6 G, P → Z can also

be regarded as a projective resolution of Z over ZHλ.

By applying functors HomG(·,
∏
λ∈ΛCoInd

G
Hλ
Aλ) and

∏
λ∈ΛHomHλ(·, Aλ) to P → Z, we obtain

cochain complexes HomG(P,
∏
λ∈ΛCoInd

G
Hλ
Aλ) and

∏
λ∈ΛHomHλ(P,Aλ). The cohomology groups

of the these cochain complexes are H∗(G;
∏
λ∈ΛCoInd

G
Hλ
Aλ) and

∏
λ∈ΛH

∗(Hλ;Aλ). It is easy to see

that the Shapiro’s isomorphism Sha is a chain isomorphism and thus induces an isomorphism between

cohomology groups.

2.14 Group triples and Cohen-Lyndon property

Let G be a group and let H be a subgroup of G. Denote by LT (H,G) (resp. RT (H,G)) the left (resp.

right) transversal of H in G. The notation

G =

∗∏
λ∈Λ

Gλ

is used to indicate that G is the free product of its subgroups Gλ, λ ∈ Λ.

Definition 2.14.1. Let G be a group with a family {Hλ}λ∈Λ of subgroups. For λ ∈ Λ, let Nλ be a normal

subgroup of Hλ. Then the triple (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) is called a group triple.

Notation 2.14.2. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple. Denote
⋃
λ∈ΛNλ by N and write G for

G/〈〈N〉〉. For λ ∈ Λ, write Hλ for Hλ/Nλ. Let A be a ZG-module. For λ ∈ Λ, denote by

NTRHλ : H∗(G;A) −→ H∗(Hλ;A)

the natural map induced by Hλ ↪→ G. Let

NTRG =
Tar∏
λ∈Λ

NTRHλ : H∗(G;A) −→
∏
λ∈Λ

H∗(Hλ;A).
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For λ ∈ Λ and q ∈ Z, denote by

NTRqNλ : Hq(〈〈N〉〉;A) −→ Hq(Nλ;A)

the natural map corresponding to the inclusion Nλ ↪→ 〈〈N〉〉, and by

NT q
Hλ

: Hq(G;A) −→ Hq(Hλ;A)

the natural map induced by the natural homomorphism Hλ → G. Let

NT q
G

=
∏
λ∈Λ

NT q
Hλ

: Hq(G;A) −→
∏
λ∈Λ

Hq(Hλ;A).

For p, q ∈ Z, let

NTRp,q
Hλ

: Hp(G;Hq(〈〈N〉〉;A)) −→ Hp(Hλ;Hq(Nλ;A))

be the natural map corresponding to the natural homomorphism Hλ → G and NTRqNλ . Let

NTRp,q
G

=
Tar∏
λ∈Λ

NTRp,q
Hλ

: Hp(G;Hq(〈〈N〉〉;A)) −→
∏
λ∈Λ

Hp(Hλ;Hq(Nλ;A)).

Definition 2.14.3. A group triple (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) has the Cohen-Lyndon property if there exists a

left transversal Tλ ∈ LT (Hλ〈〈N〉〉, G) for every λ ∈ Λ such that

〈〈N〉〉 =
∗∏

λ∈Λ,t∈Tλ

N t
λ.

2.15 Spectral sequences of cohomological type

Definition 2.15.1. A bigraded abelian groupA =
⊕

p,q∈ZA
p,q is a direct sum of abelian groupsAp,q, p, q ∈

Z.

Remark 2.15.2. As for graded abelian groups, for k, ` ∈ Z, we write A =
⊕

p>k,q>`A
p,q to indicate that

Ap,q = {0} if either p < k or q < `.
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Definition 2.15.3. Let A =
⊕

p,q∈ZA
p,q and B =

⊕
p,q∈ZB

p,q be bigraded abelian groups. A group

homomorphism f : A → B is called a morphism between bigraded abelian groups of bidegree (k, `) for

some k, ` ∈ Z if f(Ap,q) ⊂ Bp+k,q+` for all p, q ∈ Z.

For p, q ∈ Z, the (p, q)-component of f is the map

fp,q : Ap,q −→ Bp+k,q+`, fp,q(a) = f(a)

for all a ∈ Ap,q.

Moreover, for q ∈ Z (resp. p ∈ Z), the q-th row (resp. p-th column) of A is denoted as A∗,q (resp. Ap,∗),

i.e., A∗,q =
⊕

p∈ZA
p,q (resp. Ap,∗ =

⊕
p∈ZA

p,q). Note that A∗,q and Ap,∗ are graded abelian groups. We

denote the domain-target sum
⊕DT

p∈Z f
p,q : A∗,q → B∗,q+` (resp.

⊕DT
q∈Z f

p,q : Ap,∗ → Bp+k,∗) by f∗,q

(resp. fp,∗).

Definition 2.15.4. A (first quadrant) spectral sequence (of cohomological type) is a sequence of pairs E =

{(Er, dr)}r>a for some a ∈ N+ such that the following properties hold for r > a.

(a) Er =
⊕

p,q>0E
p,q
r is a bigraded abelian group.

(b) dr : Er → Er is morphism between bigraded abelian groups of bidegree (r, 1−r) such that dr ◦dr =

0.

(c) for p, q ∈ Z, Ep,qr+1 = ker(dp,qr )/ im(dp−r,q+r−1
r ).

The bigraded abelian groups Er, r > a are called pages of E.

Definition 2.15.5. Let E = {(Er, dr)}r>a and E′ = {(E′r, d′r)}r>a be spectral sequences. A map MSS :

E → E′ is called a morphism between spectral sequences if for every r > a, MSS restricts to a bigraded

abelian group homomorphism MSSr : Er → E′r of bidegree (0, 0) such that

MSSr ◦ dr = d′r ◦MSSr

and MSSr+1 is the cohomology map induced by MSSr.

If there exists R > a such that for all p, q ∈ Z, MSSp,qR is an isomorphism, then MSS is called an

isomorphism between spectral sequences.
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Definition 2.15.6. Let G be an abelian group. A filtration of G is a sequence (FkG)k∈Z of abelian groups

such that

{0} ⊂ · · · ⊂ Fk+1G ⊂ FkG ⊂ · · · ⊂ F0G = G.

If k < 0, then FkG = G by default.

Definition 2.15.7. We say that a spectral sequence E = {(Er, dr)}r>a converges to a graded abelian group

H =
⊕

`>0H
`, denoted as Ep,qa ⇒ Hp+q, if for every ` > 0, there exist R > 0 and a filtration

0 = F`+1H
` ⊂ · · · ⊂ F0H

` = H`

of H` such that FkH`/Fk+1H
` ∼= El−k,kr for r > R.

Remark 2.15.8. In the notation Ep,qa ⇒ Hp+q, the indexes p and q indicate that for sufficiently large r,

Ep,qr appears as the quotient of certain terms in a filtration of Hp+q. One can use differnet letters for the

indexes, say, writing Ek,`a ⇒ Hk+` instead of Ep,qa ⇒ Hp+q.

Remark 2.15.9. Note that if p, q > 0, p + q = ` and r > max{a, ` + 2}, then the target of dp,qr is

Ep+r,q−r+1
r = {0} and the domain of dp−r,q−r+1

r is Ep−r,q+r−1
r = {0}. Thus,

Ep,qr+1 = ker(dp,qr )/ im(dp−r,q−r+1
r ) ∼= Ep,qr .

Therefore, it suffices to let R = max{a, `+ 2} in Definition 2.15.7.

Definition 2.15.10. LetE1 = {(E1,r, d1,r)}r>a andE2 = {(E2,r, d2,r)}r>a be two spectral sequences such

that

Ep,q1,a ⇒ Hp+q
1 , Ep,q2,a ⇒ Hp+q

2

for some graded abelian groups H1 =
⊕

`>0H
`
1 and H2 =

⊕
`>0H

`
2, let MSS : E1 → E2 be a morphism

between spectral sequences, and let f : H1 → H2 be a morphism between graded abelian groups of degree

0. We say that MSS and f are compatible if for every ` > 0, there exist R > 0 and filtrations

{0} = F`+1H
`
1 ⊂ · · · ⊂ F0H

`
1 = H`

1, {0} = F`+1H
`
2 ⊂ · · · ⊂ F0H

`
2 = H`

2

such that f(FkH
`
1) ⊂ FkH

`
2 for k = 0, ..., ` + 1, and that for every r > R and k = 0, ..., `, there exist
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isomorphisms

σ : FkH
`
1/Fk+1H

`
1 −→ El−k,k1,r , τ : FkH

`
2/Fk+1H

`
2 −→ El−k,k2,r

with MSSl−k,k ◦ σ = τ ◦ f , where

f : FkH
`
1/Fk+1H

`
1 −→ FkH

`
2/Fk+1H

`
2

is the map induced by f .

Remark 2.15.11. By Remark 2.15.9, it suffices to let R = max{a, `+ 2} in Definition 2.15.10.

Lemma 2.15.12 ([36, Comparison Theorem 5.2.12]). Let E1 = {(E1,r, d1,r)}r>a and E2 =

{(E2,r, d2,r)}r>a be two spectral sequences such that

Ep,q1,a ⇒ Hp+q
1 , Ep,q2,a ⇒ Hp+q

2

for some graded abelian groups H1 =
⊕

`>0H
`
1 and H2 =

⊕
`>0H

`
2, let MSS : E1 → E2 be an

isomorphism between spectral sequences, and let f : H1 → H2 be a morphism between graded abelian

groups. Suppose that MSS and f are compactible, then f is an isomorphism.

Definition 2.15.13. Let Eλ = {(Eλ,r, dλ,r)}r>a, λ ∈ Λ, be spectral sequences. The product of Eλ, λ ∈ Λ,

is a sequence E = {(Er, dr)}r>a such that for all p, q ∈ Z and r > a,

Ep,qr =
∏
λ∈Λ

Ep,qλ,r, dp,qr =
DT∏
λ∈Λ

dp,qλ,r.

Remark 2.15.14. The product of spectral sequences is a spectral sequence as products of exact sequences

are exact.

Lemma 2.15.15. Suppose that Eλ = {(Eλ,r, dλ,r)}r>a, λ ∈ Λ, are spectral sequences and Hλ, λ ∈ Λ, are

graded abelian groups with Ep,qλ,a ⇒ Hp+q
λ for λ ∈ Λ. Let E = {(Er, dr)}r>a be the product of Eλ, λ ∈ Λ.

Then Ep,qa ⇒
∏
λ∈ΛH

p,q
λ .

Moreover, let E = {(Er, dr)}r>a be a spectral sequence and let H =
⊕

`>0H
` be a graded abelian

group with Ep,qa ⇒ H
p+q. For λ ∈ Λ, let MSSλ : E → Eλ be a morphism of spectral sequences and let

fλ : H → Hλ be a degree-0 morphism of graded abelian groups. If for λ ∈ Λ, MSSλ is compatible with
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fλ. Then the maps
Tar∏
λ∈Λ

MSSλ : E → E,
Tar∏
λ∈Λ

fλ : H →
∏
λ∈Λ

Hλ

are also compatible.

Lemma 2.15.15 can be proved by taking products of filtrations. We leave the details to the reader.

Definition 2.15.16. Suppose that Ei = {(Ei,r, di,r)}r>a, i ∈ I, form a directed system of spectral se-

quences. The direct limit of {Ei}i∈I is a spectral sequence E = {(Er, dr)}r>a such that, for p, q ∈ Z and

r > a, Ep,qr = lim−→Ep,qi,r and dp,qr = lim−→ dp,qi,r .

Remark 2.15.17. The direct limit of spectral sequences is a spectral sequence as lim−→ is an exact functor on

the category of abelian groups.

Lemma 2.15.18. Suppose that Ei = {(Ei,r, di,r)}r>a (resp. Hi), i ∈ I, form a directed system of spectral

sequences (resp. graded abelian groups). Let E (resp. H) be the direct limit of {Ei}i∈I (resp. {Hi}i∈I ). If

for i ∈ I , Ep,qi,a ⇒ Hp+q
i and for i, j ∈ I with i < j, the morphisms Ei → Ej , Hi → Hj are compatible,

then Ep,qa ⇒ Hp+q.

Lemma 2.15.18 can be proved by taking direct limits of filtrations and then using the fact that lim−→ is an

exact functor. We leave the details to the reader.

Definition 2.15.19. A double complex (C, hd, vd) (of cohomological type) is a bigraded abelian group C

with homomorphisms hd, vd : C → C between bigraded abelian groups of bidegree (1, 0) and (0, 1),

respectively, such that

hd ◦ hd = vd ◦ vd = hd ◦ vd+ vd ◦ hd = 0.

The map hd (resp. vd) is called the horizontal (resp. vertical) differential of C. C is called a first quadrant

double complex if Cp,q = {0} whenever either p or q is strictly less than 0.

Notation 2.15.20. When we refer a double complex (C, hd, vd), if the differentials are clear from the con-

text, we will simply write C.

Definition 2.15.21. Let (C1, hd1, vd1) and (C2, hd2, vd2) be double complexes. A morphism MDC :

C1 → C2 between double complexes is a morphism between bigraded abelian groups C1, C2 of bidegree

(0, 0) such that

MDC ◦ hd1 = hd2 ◦MDC, MDC ◦ vd1 = vd2 ◦MDC.
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Definition 2.15.22. Let (C, hd, vd) be a first quadrant double complex. The total complex TC =
⊕

`∈Z TC
`

of C is a cochain complex with TC` =
⊕

p+q=`C
p,q. The differential of TC is d = hd+ vd.

The row filtration of TC is

{0} ⊂ · · · ⊂ hFk+1TC ⊂ hFkTC ⊂ · · ·hF0TC = TC,

where hFkTC =
⊕

q>k C
p,q. For ` ∈ N, let

hFkTC
` = hFkTC ∩ TC`.

Then

hFkTC =
⊕
`>0

hFkTC
`

is a cochain complex under the differential induced by d.

Similarly, the column filtration of TC is

{0} ⊂ · · · ⊂ vFk+1TC ⊂ vFkTC ⊂ · · ·vF0TC = TC,

where vFkTC =
⊕

p6k C
p,q. For ` ∈ N, let

vFkTC
` = vFkTC ∩ TC`.

Then

vFkTC =
⊕
`>0

vFkTC
`

is a cochain complex under the differential induced by d.

Definition 2.15.23. A exact couple (D,E, α, β, γ) (of cohomological type) of degree r ∈ N is a commuta-

tive triangle
E

D D

γ

α

β
(2.5)

such that
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(a) D and E are bigraded abelian groups;

(b) α, β, and γ are morphisms between bigraded abelian groups of bidegree (−1, 1), (r − 1, 1 − r), and

(1,0), respectively;

(c) exactness holds at each vertex of the triangle diagram (2.5).

Suppose that (D,E, α, β, γ) is an exact couple of degree r. Let d = β ◦ γ, let

E1 =
⊕
p,q∈Z

Ep,q1

be the bigraded abelian group with

Ep,q1 = ker(dp,q)/ im(dp−r,q+r−1),

and let

D1 =
⊕
p,q∈Z

Dp,q
1

be the bigraded abelian group with

Dp,q
1 = im(αp+1,q−1).

Define morphisms

α1 : D1 → D1, β1 : D1 → E1, γ1 : E1 → D1

between bigraded abelian groups by the following rule. Let α1 be the restriction of α to D1. Fix integers

p, q. For every y ∈ Dp,q
1 , there exists x ∈ Dp+1,q−1 such that

αp+1,q−1(x) = y.

Let βp,q1 (y) be the cohomology class of Ep+r,q−r1 represented by βp+1,q−1(x). For [z] ∈ Ep,q1 , there exists

z ∈ Ep,q representing [z]. Let γp,q1 ([z]) = γ(z).

Lemma 2.15.24 ([31, Theorem 11.9]). The maps α1, β1, γ1 constructed above are well-defined. Moreover,

(D1, E1, α1, β1, γ1) is an exact couple of degree r + 1.
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Definition 2.15.25. The exact couple (D1, E1, α1, β1, γ1) in Lemma 2.15.24 is called the derived couple of

(D,E, α, β, γ).

Definition 2.15.26. A morphism

MEC : (D,E, α, β, γ) −→ (D′, E′, α′, β′, γ′)

between exact couples consists of two maps

MECD : D −→ D′, MECE : E −→ E′

with the following properties.

(a) (D,E, α, β, γ) and (D′, E′, α′, β′, γ′) are exact couples of the same degree.

(b) MECD and MECE are maps between bigraded abelian groups of bidegree (0, 0).

(c) The following diagram commutes.

D D′

E E′

D D′

MECD

α α′
MECE

γ

γ′

MECD

β

β′

Moreover, we call MECD (resp. MECE) the D-component (resp. E-component) of MEC.

Suppose that

MEC : (D,E, α, β, γ) −→ (D′, E′, α′, β′, γ′)

is a morphism between degree r exact couples. Let (D1, E1, α1, β1, γ1) (resp. (D′1, E
′
1, α
′
1, β
′
1, γ
′
1)) be the

derived couple of (D,E, α, β, γ) (resp. (D′, E′, α′, β′, γ′)). By restricting MECD to D1, we get a map

MEC1,D1 : D1 −→ D′1.
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Recall that E1 (resp. E′1) is the cohomology of E (resp. E′) with respect to β ◦ γ (resp. β′ ◦ γ′). Let

MEC1,E1 : E1 −→ E′1

be the map on cohomology induced by MECE . It is easy to check that MEC1,D1 and MEC1,E1 form a

morphism

MEC1 : (D1, E1, α1, β1, γ1) −→ (D′1, E
′
1, α
′
1, β
′
1, γ
′
1)

between degree-(r + 1) exact couples. To sum up,

Lemma 2.15.27. Suppose that

MEC : (D,E, α, β, γ) −→ (D′, E′, α′, β′, γ′)

is a morphism between degree-r exact couples. Then MEC induces a morphism

MEC1 : (D1, E1, α1, β1, γ1) −→ (D′1, E
′
1, α
′
1, β
′
1, γ
′
1)

between the derived couples.

Lemma 2.15.28 ([31, Theorem 11.10]). Suppose that (D1, E1, α1, β1, γ1) is an exact couple of degree 1.

For every r > 1, let (Dr+1, Er+1, αr+1, βr+1, γr+1) be the derived couple of (Dr, Er, αr, βr, γr), and let

dr = βr ◦ γr. Then the pairs (Er, dr), r > 1, form a spectral sequence.

Definition 2.15.29. For r > 1, the exact couple (Dr, Er, αr, βr, γr) in Definition 2.15.28 is called the

(r − 1)-th derived couple of (D1, E1, α1, β1, γ1) (the 0-th derived couple is just (D1, E1, α1, β1, γ1)).

The spectral sequence {(Er, dr)}r>1 in Lemma 2.15.28 is called the induced spectral sequence of the

exact couple (D1, E1, α1, β1, γ1).

Let

MEC1 : (D1, E1, α1, β1, γ1) −→ (D′1, E
′
1, α
′
1, β
′
1, γ
′
1)

be a morphism between degree-1 exact couples. By using Lemma 2.15.27 iteratively, we see that MEC1
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induces morphisms

MECr : (Dr, Er, αr, βr, γr) −→ (D′r, E
′
r, α
′
r, β
′
r, γ
′
r), r > 1

between the derived couples. The Er-components MECr,Er , r > 1, form a morphism

MSS : {(Er, dr)}r>1 −→ {(E′r, d′r)}r>1

between spectral sequences, where {(Er, dr)}r>1 (resp. {(E′r, d′r)}r>1) is the induced spectral sequence of

(D1, E1, α1, β1, γ1) (resp. (D′1, E
′
1, α
′
1, β
′
1, γ
′
1)).

Lemma 2.15.30. Let

MEC : (D1, E1, α1, β1, γ1) −→ (D′1, E
′
1, α
′
1, β
′
1, γ
′
1)

be a map between degree-1 exact couples. Then MEC induces a morphism

MSS : {(Er, dr)}r>1 −→ {(E′r, d′r)}r>1

between the induced spectral sequences.

Let C1 be a first quadrant double complex. Consider the row filtration

{0} ⊂ · · · ⊂ hFk+1TC1 ⊂ hFkTC1 ⊂ · · ·hF0TC1 = TC1

of its total complex TC1. By Definition 2.15.22, hFkTC1 is a cochain complex for every k ∈ Z. The short

exact sequence

0 −→ hFk+1TC1 −→ hFkTC1 −→ hFkTC1/hFk+1TC1 −→ 0

of cochain complexes gives rise to a long exact sequence

· · · −→ H`(hFk+1TC1)
α1,1−−→ H`(hFkTC1)

β1,1−−→ H`(hFkTC1/hFk+1TC1)
γ1,1−−→ · · ·
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of cohomology groups. It follows that (D1,1, E1,1, α1,1, β1,1, γ1,1) is an exact couple of degree 1, where

Dp,q
1,1 = Hp+q(hFpTC1), Ep,q1,1 = Hp+q(hFpTC/hFp+1TC1)

for p, q ∈ Z. (D1,1, E1,1, α1,1, β1,1, γ1,1) is called the exact couple induced by the row filtration of TC1.

Let E1 = {(E1,r, d1,r)}r>1 be the induced spectral sequence of (D1,1, E1,1, α1,1, β1,1, γ1,1). We call

E1 the spectral sequence induced by the row filtration of TC1. Similarly, the column filtration of TC1 also

induces a spectral sequence, which is called the spectral sequence induced by the column filtration of TC1.

We summarize the above discussion by the following.

Lemma 2.15.31 ([31, Corollary 11.12]). If C is a double complex, then the row (resp. column) filtration of

TC induces an exact couple and a spectral sequence.

Lemma 2.15.32. Let C be a double complex and let E be the spectral sequence induced by the row (resp.

column) filtration of TC. Then Ep,q1 ⇒ Hp+q(TC).

More precisely, let (D1, E1, α1, β1, γ1) be the exact couple induced by the row (resp. column) filtration

of TC and let (Dr, Er, αr, βr, γr) be the (r − 1)-th derived couple of (D1, E1, α1, β1, γ1) for r > 1. Then

for every k ∈ N,

0 = D−k−1,2k+1
2k+3 ⊂ D−k−1,2k+1

2k+2 ⊂ · · · ⊂ D−k−1,2k+1
k+3 ⊂ D−k−1,2k+1

k+2 = Hk(TC) (2.6)

is a filtration for Hk(TC) and for r = k + 2, ..., 2k + 2, βr induces an isomorphism

D−k−1,2k+1
r /D−k−1,2k+1

r+1 −→ Er−k−2,2k−r+2
r . (2.7)

Proof. This is proved in [31, Theorem 11.13] except that the indexes of theD andE terms in (2.6) and (2.7)

are not computed there. In order to prove the next Lemma, it is convenient to have those indexes. The reader

is encouraged to follow the proof of [31, Theorem 11.13], find the indexes, and check (2.6), (2.7).

Suppose that another first quadrant double complex C2 is given. Then the row filtration

{0} ⊂ · · · ⊂ hFk+1TC2 ⊂ hFkTC2 ⊂ · · ·hF0TC2 = TC2
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of its total complex TC2 also induces a spectral sequence E2. Suppose further that there is a morphism

MDC : C1 → C2 between double complexes. Then MDC induces a map between the cohomology long

exact sequences corresponding to the short exact sequences

0 −→ hFk+1TC1 −→ hFkTC1 −→ hFkTC1/hFk+1TC1 −→ 0,

0 −→ hFk+1TC2 −→ hFkTC2 −→ hFkTC2/hFk+1TC2 −→ 0

for every k ∈ Z. Therefore,MDC induces a morphism between the induced exact couples and thus induces

a morphism between the induced spectral sequences.

Note that MDC also induces a cohomology map

MDC∗ : H∗(TC1) −→ H∗(TC2).

For k ∈ N and r = k + 2, ..., 2k + 2, by Lemma 2.15.32, Er−k−2,2k−r+2
1,r (resp. Er−k−2,2k−r+2

2,r ) is a

subquotient (quotient of a submodule) of H∗(TC1) (resp. H∗(TC2)). Thus, MDC∗ induces a map

Er−k−2,2k−r+2
1,r −→ Er−k−2,2k−r+2

2,r .

Lemma 2.15.33. LetMDC : C1 → C2 be a morphism between first quadrant double complexesC1, C2, let

E1 = {(E1,r, d1,r)}r>1 and E2 = {(E2,r, d2,r)}r>1 be the spectral sequences induced by the row filtrations

of TC1 and TC2, respectively, let MDC∗ : H∗(TC1)→ H∗(TC2) be the cohomological map induced by

MDC, and let MSS : E1 → E2 be the morphism between spectral sequences induced by MDC. Then

MDC∗ and MSS are compatible. More precisely, for k ∈ N and r = k + 2, ..., 2k + 2, the map

Er−k−2,2k−r+2
1,r −→ Er−k−2,2k−r+2

2,r

induced by MDC∗ can be identified with MSSr−k−2,2k−r+2
r .

Moreover, the same conclusion holds with column filtration in place of row filtration.

Proof. We only consider row filtrations. The proof for column filtrations is exactly the same.

Let (D1,1, E1,1, α1,1, β1,1, γ1,1) (resp. (D2,1, E2,1, α2,1, β2,1, γ2,1)) be the exact couple induced
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by the row filtration of TC1 (resp. TC2). For r > 1, let (D1,r, E1,r, α1,r, β1,r, γ1,r) (resp.

(D2,r, E2,r, α2,r, β2,r, γ2,r)) be the (r − 1)-th derived couple of (D1,1, E1,1, α1,1, β1,1, γ1,1) (resp.

(D2,1, E2,1, α2,1, β2,1, γ2,1)), let

MECr : (D1,r, E1,r, α1,r, β1,r, γ1,r) −→ (D2,r, E2,r, α2,r, β2,r, γ2,r)

be the morphism between exact couples induced by MDC, and let MECD,r be the D1,r-component of

MECr. By definition, the E1,r-component of MECr is just MSSr for r > 1.

Fix k ∈ N and let r ∈ {k + 2, ..., 2k + 3}. By definition, the map

MEC−k−1,2k+1
D,r : D−k−1,2k+1

1,r −→ D−k−1,2k+1
2,r

is the restriction of

MEC−k−1,2k+1
D,1 : D−k−1,2k+1

1,1 −→ D−k−1,2k+1
2,1

to D−k−1,2k+1
1,r . Thus,

MEC−k−1,2k+1
D,1 (D−k−1,2k+1

1,r ) ⊂ D−k−1,2k+1
2,r .

The morphism MECr gives rise to a commutative digram

· · · D−k,2k1,r D−k−1,2k+1
1,r Er−k−2,2k−r+2

1,r Dr−k−1,2k−r+2
1,r · · ·

· · · D−k,2k2,r D−k−1,2k+1
2,r Er−k−2,2k−r+2

2,r Dr−k−1,2k−r+2
2,r · · ·

α1,r β1,r

MEC−k−1,2k+1
D,1

γ1,r

MSSr

α2,r β2,r γ2,r

Note that

Dr−k−1,2k−r+2
1,r =

r−1 times︷ ︸︸ ︷
α1,1 ◦ · · · ◦ α1,1(D2r−k−2,2k−2r+3

1,r )

=

r−1 times︷ ︸︸ ︷
α1,1 ◦ · · · ◦ α1,1(Hk+1(hF2r−k−2TC1)) = {0},

Dr−k−1,2k−r+2
2,r =

r−1 times︷ ︸︸ ︷
α2,1 ◦ · · · ◦ α2,1(D2r−k−2,2k−2r+3

2,1 )
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=

r−1 times︷ ︸︸ ︷
α2,1 ◦ · · · ◦ α2,1(Hk+1(hF2r−k−2TC2)) = {0},

as 2r − k − 2 > 4k + 4− k − 2 > k + 1.

Therefore, β1,r, β2,r induce isomorphisms

β1,r : D−k−1,2k+1
1,r /α1,r(D

−k,2k
1,r ) −→ Er−k−2,2k−r+2

1,r ,

β2,r : D−k−1,2k+1
2,r /α2,r(D

−k,2k
2,r ) −→ Er−k−2,2k−r+2

2,r ,

respectively. Note that

α1,r(D
−k,2k
1,r ) = D−k−1,2k+1

1,r+1 , αλ,r(D
−k,2k
2,r ) = D−k−1,2k+1

2,r+1 .

As

MEC−k−1,2k+1
2,1 (D−k−1,2k+1

1,r+1 ) ⊂ D−k−1,2k+1
2,r+1 ,

the following diagram commutes

D−k−1,2k+1
1,r /D−k−1,2k+1

1,r+1 Er−k−2,2k−r+2
1,r

D−k−1,2k+1
2,r /D−k−1,2k+1

2,r+1 Er−k−2,2k−r+2
2,r

β1,r

MSSr

β2,r

where the vertical map on the left is induced by MEC−k−1,2k+1
D,1 .

Thus, MSS : E1 → E2 is compatible with MEC−k−1,2k+1
D,1 . By definition,

MEC−k−1,2k+1
D,1 = MDC∗.

Thus, the map MSS : E1 → E2 is compatible with MDC∗.
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2.16 Cartan-Eilenberg resolutions

Definition 2.16.1. Let R be a ring and let (C, d) be a cochain complex of R-modules. An injective Cartan-

Eilenberg resolution (CE resolution) of C over R is a double complex (I, hδ, vδ) with the following proper-

ties.

(a) If Cp = {0} for some p, then Ip,q = {0} for all q ∈ Z.

(b) Ip,q = {0} for all q < 0.

(c) Note that the 0-th row of I

I∗,0 : · · · −→ Ip,0 −→ Ip+1,0 −→ · · ·

is a cochain complex. We demand that there is an injective chain map f (the augmentation map) from

the cochain complex C to I∗,0.

(d) For p > 0, let

hZ
p = ker(dp), hB

p = im(dp−1), hH
p = hZ

p/hB
p

be the cocycles, coboundaries, and cohomology of C, respectively. For p, q > 0, let

hZ
p,q = ker(hδ

p,q), hB
p,q = im(hδ

p−1,q), hH
p,q = hZ

p,q/hB
p,q.
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Then the following sequences

0 Cp Ip,0 Ip,1 · · ·,

0 hZ
p

hZ
p,0

hZ
p,1 · · ·,

0 hB
p

hB
p,0

hB
p,1 · · ·,

0 hH
p

hH
p,0

hH
p,1 · · ·,

f vδp,0 vδp,1

f vδp,0 vδp,1

f vδp,0 vδp,1

are injective resolutions over R, where the unlabeled arrows are the cohomology maps induced by f

or vδ. For every p, q ∈ Z, hZp,q (resp. hBp,q, hH
p,q) is called the horizontal cocycle (resp. horizontal

coboundary, horizontal cohomology) of I at position (p, q).

Moreover, the notation (I, hδ, vδ)
f−→ (C, d) (or briefly I

f−→ C, I → C, etc.) indicates that I is a CE

resolution of C and f is the augmentation.

Definition 2.16.2. Let

(I1, hδ1, vδ1)
f1−→ (C1, d1), (I2, hδ2, vδ2)

f2−→ (C2, d2)

be CE resolutions. A morphism

MCER : I −→ J

between CE resolutions is a morphism between double complexes I and J .

Let F : C1 → C2 be a chain map. We say that MCER and F are compatible if

MCER ◦ f1 = f2 ◦ F.

Lemma 2.16.3 ([36, Lemma 5.7.2]). Every cochain complex has a CE resolution.

Lemma 2.16.4 ([36, Exercise 5.7.2]). Let R be a ring, let C1 and C2 be cochain complexes of R-modules,
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and let I1 → C1, I2 → C2 be CE resolutions over R. Then for every chain map f : C → D, there exists a

morphism MCER : I1 → I2 between CE resolutions such that MCER and f are compatible.

Let (I, hδ, vδ) be a CE resolution of some cochain complex over a ring R. As for ordinary resolutions,

when we say “apply the functor HomR(Z, ·) to I to form a deleted double complex (C, hd, vd)”, we mean

that

C =
⊕
p,q>0

HomR(Z, Ip,q)

and hd, vd are induced by hδ, vδ, respectively.
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CHAPTER 3

COHEN-LYNDON TYPE THEOREMS

The main goal of this chapter is to prove the following generalization of Theorem 1.2.5.

Theorem 3.0.1. Let G be a group with a family of subgroups {Hλ}λ∈Λ ↪→wh G. Then the Cohen-Lyndon

property holds for all sufficiently deep Dehn fillings of {Hλ}λ∈Λ.

Assuming Theorem 3.0.1, we prove Theorem 1.2.5.

Proof of Theorem 1.2.5. By assumption, H ↪→h (G,X) for some subset X ⊂ G. Let d̂ be the relative

metric on Γ(H,H) with respect to X . Theorem 4.0.1 provides a constant C such that if N � H and

d̂(n) > C for all n ∈ N\{1}, then (G,H,N) possesses the Cohen-Lyndon property. As H ↪→h (G,X), d̂

is locally finite. In particular,

F = {h ∈ H\{1} | d̂(h) 6 C}

is a finite set. By Theorem 3.0.1, ifN�H andN ∩F = ∅, then (G,H,N) has the Cohen-Lyndon property,

and the desired result follows.

After the proof of Theorem 3.0.1, we will discuss the application of the Cohen-Lyndon property on

relative relation modules.

3.1 Construction of the transversals

Let G be a group with a family of subgroups {Hλ}wh ↪→wh (G,X) for some subset X ⊂ G. For

λ ∈ Λ, let d̂λ be the relative metric with respect to X . The proof of Theorem 3.0.1 relies on constructing a

particular left transversal Tλ ∈ LT (Hλ〈〈N〉〉, G) for each λ ∈ Λ. It is convenient to construct a collection

{Tλ}λ∈Λ of sets of words over X tH satisfying the following properties (P1) through (P3), and think of Tλ

as a transversal in LT (Hλ〈〈N〉〉, G) (identifying words over X t H and the elements of G represented by

those words) for λ ∈ Λ. Recall that ‖w‖ is the length of w for a word w over X tH , and that |g| denotes

the length of a geodesic word over X tH representing an element g ∈ G.
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(P1) [{Tλ}λ∈Λ is transversal] For each λ ∈ Λ, Tλ ∈ LT (Hλ〈〈N〉〉, G).

(P2) [{Tλ}λ∈Λ is geodesic] If w ∈ Tλ for some λ ∈ Λ, and gHλ〈〈N〉〉 = wHλ〈〈N〉〉 for some g ∈ G, then

‖w‖ 6 |g|. This implies that, for all λ ∈ Λ, every w ∈ Tλ is a geodesic word over X tH.

(P3) [{Tλ}λ∈Λ is prefix closed] Let λ, µ ∈ Λ. If a word w ∈ Tλ can be decomposed as w ≡ uhv with

h ∈ Hµ\{1} (u, v are allowed to be empty words), then u ∈ Tµ and d̂µ(1, h) 6 d̂µ(1, h′) for all

h′ ∈ hNµ.

Lemma 3.1.1. There exists a collection {Tλ}λ∈Λ satisfying (P1), (P2), and (P3).

Proof. LetW be the poset of collections {Wλ}λ∈Λ of words satisfying (P2) and (P3), while instead of (P1),

we only demand that the words of Wλ represent a subset of a transversal in LT (Hλ〈〈N〉〉, G) for every

λ ∈ Λ. We orderW by index-wise inclusion, i.e., {Uλ}λ∈Λ is less than {Vλ}λ∈Λ if and only if Uλ ⊂ Vλ for

every λ ∈ Λ. W is non-empty because the collection {Wλ}λ∈Λ with each Wλ consisting of only the empty

word is a member ofW . Moreover, the union of any chain ofW is again a member ofW . Therefore, Zorn’s

lemma implies thatW has a maximal member {Tλ}λ∈Λ. Suppose that {Tλ}λ∈Λ does not satisfy (P1), i.e.,

there exist λ0 ∈ Λ and g ∈ G such that no element of the coset gHλ0M is represented by a word in Tλ0 .

Without loss of generality, let us assume that if g′ is an element of G such that |g′| < |g|, then for each

λ ∈ Λ, g′Hλ〈〈N〉〉 ∩ Tλ 6= ∅.

Let w be a geodesic word over X t H representing g. Consider the collection {Uλ}λ∈Λ constructed as

follows. For every λ ∈ Λ\{λ0}, let Uλ = Tλ, and construct Uλ0 by the following manner: If w contains no

letter fromH, let Uλ0 = Tλ0 ∪ {w}. If w contains at least one letter fromH, then w can be decomposed as

w ≡ uhv such that h ∈ Hλ\{1} for some λ ∈ Λ and v contains no letter from H (u, v are allowed to be

empty words). As ‖u‖ < ‖w‖ = |g|, there exists a word u′ ∈ Tλ such that u′ ∈ uHλ〈〈N〉〉. Let h′ be an

element of Hλ such that u〈〈N〉〉 = u′h′〈〈N〉〉 and let h′′ be an element of Hλ such that (a) h′′Nλ = h′hNλ

and (b) if k ∈ h′′Nλ, then d̂λ(1, h′′) 6 d̂λ(1, k). Set Uλ0 = Tλ0 ∪ {u′h′′v}.

It is straight-forward to verify that {Uλ}λ∈Λ is an element of W . There is a word in Uλ0 representing

an element in gHλ0〈〈N〉〉, while Tλ0 has no such words. It follows that {Uλ}λ∈Λ is strictly greater than

{Tλ}λ∈Λ, contradicting the choice of {Tλ}λ∈Λ.
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3.2 Proof of Theorem 3.0.1

Suppose that the assumptions of Theorem 3.0.1 are met. Recall that Lemma 2.6.2 provides a number

D > 0 to estimate the total length of isolated components in a geodesic polygon, and that Theorem 2.5.12

and Remark 2.6.3 implies that if d̂λ(1, n) > 4D for every n ∈ Nλ\{1} and λ ∈ Λ, then Hλ ∩ 〈〈N〉〉 = Nλ

for all λ ∈ Λ. We assume the following condition.

(24D) d̂λ(1, n) > 24D for all n ∈ Nλ\{1} and λ ∈ Λ.

We prove that (24D) implies the Cohen-Lyndon property of (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ). Let {Tλ}λ∈Λ be

a collection of words over X tH satisfying (P1), (P2), and (P3) (by Lemma 3.1.1, such a collection exists)

and think of each Tλ as a left transversal in LT (Hλ〈〈N〉〉, G). For every λ ∈ Λ, we extend Tλ to a set T exλ .

Roughly speaking, T exλ is the set of words obtained from Tλ by replacing letters from Hλ with other letters

from the same coset of Nλ in Hλ.

Definition 3.2.1. For every λ ∈ Λ, let T exλ be the set of words with the following property: Every word

w ∈ T exλ admits a decomposition w ≡ w1h1 · · · wkhkwk+1 (w1, ..., wk+1 are allowed to be empty words)

such that for every i ∈ {1, ..., k}, there exists λi ∈ Λ with the following properties.

(a) For i = 1, ..., k, hi is an element of Hλi (hi is allowed to equal 1).

(b) There exists an element h′i ∈ Hλi\{1} such that h′iNλi = hiNλi for i = 1, ..., k, and that the

concatenation w1h
′
1 · · · wkh′kwk+1 is a word in Tλ.

Remark 3.2.2. If k = 0 in the above definition, conditions (a) and (b) will be satisfied trivially. Thus, Tλ is

a subset of T exλ for every λ ∈ Λ.

Definition 3.2.3. Let w be a word over X t H and let λ ∈ Λ. If w ∈ T exλ , let rankλ(w) be the minimal

number k obtained from the decompositionsw ≡ w1h1 · · ·wkhkwk+1 satisfying Definition 3.2.1. Ifw 6∈ Tλ,

let rankλ(w) =∞.

For every word w over X tH, the rank of w, denoted as rank(w), is the number minλ∈Λ{rankλ(w)}.

Lemma 3.2.4. Let w be a word in T exλ for some λ ∈ Λ. Suppose that w can be decomposed as w ≡ uhv

with h ∈ Hµ\{1} for some µ ∈ Λ. Let h′′ be an element of Hµ such that h′′Nµ = hNµ. Then uh′′v ∈ T exλ .
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Proof. Let w ≡ w1h1 · · · wkhkwk+1 be a decomposition satisfying Definition 3.2.1 and let h′1, ..., h
′
k be as

in (b) of Definition 3.2.1.

Without loss of generality, we may assume that h = hi for some number i ∈ {1, ..., k}. Then uh′′v can

be decomposed as

uh′′v ≡ w1h1 · · · wi−1hi−1wih
′′wi+1hi+1wi+2hi+2 · · · wkhkwk+1.

By replacing hj with h′j for j 6= i and h′′ with h′i, we obtain a word in Tλ and thus uh′′v ∈ T exλ .

Lemma 3.2.5. Let w be a word in T exλ for some λ ∈ Λ with a decomposition w ≡ w1h1 · · · wkhkwk+1

satisfying Definition 3.2.1. Then w1 ∈ Tλ1 .

Proof. Let h′1, ..., h
′
k be as in (b) of Definition 3.2.1. Note that the word w1h

′
1 · · · wkh′kwk+1 can be

decomposed as

w1h
′
1...wkh

′
kwk+1 ≡ w1h

′
1(w2h

′
2 · · · wkh′kwk+1).

By (P3), w1 ∈ Tλ1 .

It will be shown that 〈〈N〉〉 =
∏∗
λ∈Λ,t∈Tλ N

t
λ. For the moment, let

K = 〈N t
λ, t ∈ Tλ, λ ∈ Λ〉 6 G.

Lemma 3.2.6. Let w be a word in
⋃
λ∈Λ T

ex
λ , and let n be an element of Nλ0 for some λ0 ∈ Λ. Then

wnw−1 ∈ K.

Proof. Let µ be an element of Λ with rank(w) = rankµ(w). Thus, w admits a decomposition w ≡

w1h1 · · · wkhkwk+1 satisfying Definition 3.2.1 with k = rank(w). We perform induction on rank(w). If

rank(w) = 0, then w ∈ Tµ and thus wnw−1 ∈ K.

Suppose that, for allw′ ∈
⋃
λ∈Λ T

ex
λ with rank(w′) < rank(w) and all n′ ∈

⋃
λ∈ΛNλ, w′−1n′w′ ∈ K.

Let h′1, ..., h
′
k be as in (b) of Definition 3.2.1. Thus, there exists n1 ∈ Nλ1 such that n1h

′
1 = h1 (note that

Nλ1 is a normal subgroup of Hλ1). Notice that

w =G (w1n1w
−1
1 )(w1h

′
1w2h2 · · · wkhkwk+1)
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and thus

wnw−1 =G (w1n1w
−1
1 )(w′nw′−1)(w1n1w

−1
1 )−1, (3.1)

where w′ ≡ w1h
′
1w2h2 · · · wkhkwk+1.

By replacing hj with h′j for j = 2, ..., k, we can turn w′ into a word in Tµ. Thus, w′ ∈ T exµ and

rank(w′) 6 k − 1 < rank(w). It follows from the induction hypothesis that w′n(w′)−1 ∈ K. By Lemma

3.2.5, w1 ∈ Tλ1 and thus w1n1w
−1
1 ∈ K. By (3.1), wnw−1 represents a product of elements of K.

For the next two lemmas, recall that ‖w‖ denotes the length of a wordw overXtH, and that |g| denotes

the length of a geodesic word over X tH representing an element g ∈ G.

Lemma 3.2.7. Let λ be an element of Λ, let u be a word in T exλ , let h be a letter of Hλ\{1}, and let v be a

word over X t H with ‖v‖ = ‖u‖. Suppose that every element m′ ∈ 〈〈N〉〉 with |m′| < 2‖u‖ + 1 belongs

to K. If the concatenation uhv ∈ 〈〈N〉〉, then uhv ∈ K.

Proof. If uhv is not a geodesic word, the desired result will follow from the assumptions trivially. So let us

assume that uhv is geodesic. Consider a diagram ∆ ∈ D(w) of minimal type (see Definition 2.7.6).

We prove Lemma 3.2.7 by an induction on the number of holes in ∆. If ∆ has no holes, then it will be

a disk van Kampen diagram over (2.2) with boundary labeled by uhv and thus uhv represents 1 ∈ K.

Suppose that ∆ has k > 1 holes. By Lemma 2.7.8, there exists µ ∈ Λ and a connected component c of

∂int∆ such that c is connected to anHµ-component of ∂ext∆. Let w be the label of c. Then w is a word over

Hµ representing an element n ∈ Nµ. As Lab(∂ext∆) ≡ uhv, we can use Remark 2.2.2 to decompose ∂ext∆

as the concatenation puphpv of three paths pu, ph, and pv with Lab(pu) ≡ u, Lab(ph) ≡ h, Lab(pv) ≡ v.

Depending on where c is connected to, there are three possible cases.

Case 1: c is connected to an Hµ-component of pu.

In other words, u can be decomposed as u ≡ u1h1u2 with h1 ∈ Hµ\{1}, and pu can be decom-

posed as a concatenation pu1ph1pu2 of three paths pu1 , ph1 , and pu2 such that Lab(pu1) ≡ u1, Lab(ph1) ≡

h1, Lab(pu2) ≡ u2 and c is connected to ph1 (see Remark 2.2.1). By Lemma 2.7.3, passing to an equivalent

diagram if necessary, we may assume that there exists a path ph2 in ∆ with Lab(ph2) ≡ h2 ∈ Hµ, connect-

ing the common vertex of ph1 and pu1 to a vertex of c. Note that the conjugate n1 = h2nh
−1
2 ∈ Nµ. Let h3

be the letter from Hµ such that h3 =G n1h1. Then

uhv ≡ u1h1u2hv =G (u1n
−1
1 u−1

1 )(u1h3u2hv). (3.2)
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As h1 6= 1, we have ‖u1‖ 6 ‖u‖ − 1 and thus ‖u1n
−1
1 u−1

1 ‖ 6 2‖u1‖ − 1 < 2‖u‖ + 1. Note that

u1n
−1
1 u−1

1 ∈ 〈〈N〉〉. By the induction hypothesis, u1n
−1
1 u−1

1 ∈ K.

Let u4 ≡ u1h3u2. Note that ‖u4‖ 6 ‖u‖. As uhv, u1n
−1
1 u−1

1 ∈ 〈〈N〉〉, it follows from (3.2) that

u4hv ∈ 〈〈N〉〉. If ‖u4‖ < ‖u‖, then ‖u4hv‖ < 2‖u‖ + 1 and thus u4hv ∈ K, by assumption. So let us

assume that ‖u4‖ = ‖u‖. By Lemma 3.2.4, u4 ∈ T exλ . Let Σ be a disc van Kampen diagram over (2.2) such

that

Lab(∂Σ) ≡ h2wh
−1
2 h1h

−1
3 .

Cut ∆ along the path ph2 to produce a diagram ∆1 ∈ D with

Lab(∂ext∆1) ≡ u1h2wh
−1
2 h1u2hv.

Glue Σ to ∆1 by identifying the paths with label h2wh
−1
2 h1 (perform refinements if the non-essential edges

of the two paths do not match) to construct a diagram ∆2 ∈ D with

Lab(∂ext∆2) ≡ u4hv

(see Figure 3.1). Note that the number of holes in ∆2 is strictly less than that of ∆. By the induction

hypothesis, u4hv ∈ K. By (3.2), uhv is a product of elements of K.

Case 2: c is connected to an Hµ-component of pv.

This case is symmetric to Case 1 and the proof is left to the reader.

Case 3: c is connected to ph.

In other words, µ = λ and h ∈ Hλ\{1}. By Lemma 2.7.3 and passing to an equivalent diagram

if necessary, we may assume that there exists a path in ∆, labeled by a letter h1 ∈ Hλ, connecting the

common vertex of ph and pu to a vertex of c. Note that the conjugate n1 = h1nh
−1
1 ∈ Nλ. Let h2 be a letter

from Hλ such that h2 =G n1h. Consider the equality

uhv =G (un−1
1 u−1)(uh2v). (3.3)

As u ∈ T exλ , Lemma 3.2.6 implies that un−1
1 u−1 ∈ K. An analysis similar to the one in Case 1 (with

uh2v in place of u4hv) shows that uh2v ∈ K. By (3.3), uhv is a product of elements of K.
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w

h2

h

v

w

v

h

u2

h1

u2

h2

h−1
2

h3

∆ ∆2
Figure 3.1: An illustration of Case 1 in the proof of Lemma 3.2.7

Definition 3.2.8. Let w be a word representing an element of 〈〈N〉〉. Define the number k(w) to be the

minimal number of holes of a diagram ∆ ∈ D(w). The type of w is the pair τ(w) = (‖w‖, k(w)). We order

the set of types lexicographically (see Definition 2.7.6).

Remark 3.2.9. If w is a word representing an element of 〈〈N〉〉 and ∆ is a diagram in D(w) of minimal

type, then ∆ necessarily has k(w) holes.

Proposition 3.2.10. 〈〈N〉〉 = K.

Proof. Clearly, each of the groups N t
λ, t ∈ Tλ, λ ∈ Λ, is contained in 〈〈N〉〉 and thus K 6 〈〈N〉〉. Let w be

a word over X t H such that w ∈ 〈〈N〉〉. Let us show that w ∈ K by performing induction on the type of

w. Note that the base case ‖w‖ = k(w) = 0 is trivial.

Suppose that, for every word w′ over X t H with w′ ∈ 〈〈N〉〉, τ(w′) < τ(w) implies that w′ ∈ K.

If w is not a geodesic word, the induction hypothesis will imply w ∈ K. Thus, we may assume that w is

geodesic. Consider a diagram ∆ ∈ D(w) of minimal type.

By Lemma 2.7.8, there exist λ ∈ Λ and a connected component c of ∂int∆ connected to an Hλ-

component of ∂ext∆. In other words, w can be decomposed as uhv with h ∈ Hλ\{1} (u, v are allowed

to be empty words), and ∂ext∆ can be decomposed as a concatenation puphpv of three paths pu, ph, and

pv such that Lab(pu) = u, Lab(ph) = h, Lab(pv) = v and c is connected to ph (see Remark 2.2.2). By

Lemma 2.7.3 and passing to an equivalent diagram if necessary, we may assume that there exists a path ph1

in ∆ with Lab(ph1) ≡ h1 ∈ Hλ, connecting the common vertex of ph and pu to a vertex of c.
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Note that, as h 6= 1, at least one of ‖u‖ and ‖v‖ is at most (‖w‖ − 1)/2. Without loss of generality, we

may assume that ‖v‖ 6 (‖w‖ − 1)/2. The case ‖u‖ 6 (‖w‖ − 1)/2 can be analyzed in almost the same

way (or just by considering w−1 and reversing every edge of ∆ if one wishes).

Let w1 ≡ Lab(c). Thus, w1 ∈ Nλ. Let h2 be a letter from Hλ such that h2 =G hh1nh
−1
1 . There exists

t ∈ Tλ such that t and v−1 are in the same left Hλ〈〈N〉〉-coset. In other words, there exists h3 ∈ Hλ such

that th3v ∈ 〈〈N〉〉. Let n1 be a letter in Nλ such that n1 =G h3h1n
−1h−1

1 h−1
3 .

Consider the equality

w ≡ uhv =G (uh2v)(v−1h−1
3 t−1)(tn1t

−1)(th3v). (3.4)

Note that uh2v ∈ 〈〈N〉〉, as all other brackets in (3.4) represents elements of 〈〈N〉〉. As in the proof of

Lemma 3.2.7, let Σ be a disc van Kampen diagram over (2.2) with

Lab(∂Σ) ≡ hh1w1h
−1
1 h−1

2 .

Cut ∆ along ph1 to produce a diagram ∆1 ∈ D with Lab(∂ext∆1) ≡ uhh1w1h
−1
1 v. Glue ∆1 to Σ,

identifying the paths labeled by hh1w1h
−1
1 (perform refinements if the non-essential edges of the two paths

do not match). Denote the resulting diagram by ∆2. Clearly, ∆2 ∈ D and Lab(∂ext∆2) ≡ uh2v. Note that

the number of holes in ∆2 is strictly less than that of ∆, and that ‖uh2v‖ 6 ‖u‖ + ‖v‖ + 1 = ‖uhv‖, as

uhv is a geodesic word. Thus, τ(uh2v) < τ(w) and the induction hypothesis implies uh2v ∈ K.

Clearly, tn1t
−1 ∈ K. Note also that th3v ∈ K. Indeed, if either ‖t‖ < ‖v‖ or h3 = 1, then ‖th3v‖ <

2‖v‖ + 1 = ‖w‖ and the induction hypothesis implies that th3v ∈ K. If ‖t‖ = ‖v‖ and h3 6= 1, then

Lemma 3.2.7 implies th3v ∈ K.

As v−1h−1
3 t−1 ≡ (th3v)−1, we also have v−1h−1

3 t−1 ∈ K. By (3.4), w is a product of elements of

K.

The cutting process in the proof of Lemma 3.2.10 is exactly the same as the one for Lemma 3.2.7. See

Figure 3.1 for an illustration.

The goal of the rest of this section is to prove the following.

Proposition 3.2.11. 〈〈N〉〉 =
∏∗
λ∈Λ,t∈Tλ N

t
λ.
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Proof. Assume, for the contrary, that there exists a word

z ≡
k∏
i=1

tinit
−1
i (3.5)

representing 1 ∈ G such that

(Z1) k > 2;

(Z2) for i = 1, ..., k, there exists λi ∈ Λ such that ni ∈ Nλi\{1} and ti ∈ Tλi ;

(Z3) ti 6≡ ti+1 for i = 1, ..., k (subscripts are modulo k, i.e., nk+1 = n1, t0 = tk, etc.).

Without loss of generality, we may also assume

(Z4) z is minimal, i.e., has the minimal k among all other words of the form (3.5) representing 1 in G and

satisfying (Z1), (Z2), and (Z3).

The main idea of the proof of Lemma 3.2.11 is to show that the existence of such a word z contradicts

Lemma 2.6.2. For this purpose, it is convenient to first cyclically permute z and consider the word

w ≡ t−1
k (

k−1∏
i=1

tinit
−1
i )tknk.

In what follows, subscripts are modulo k. Let pw be the path in Γ(G,X t H) with Lab(p) ≡ w

and p− = 1. We use pni , pt±1
i

to denote subpaths of pw labeled by ni, t±1
i , respectively. More precisely,

pni (resp. pti , pt−1
i

) will denote the path in the Cayley graph Γ(G,X t H) with Lab(pni) = ni (resp.

Lab(pti) = ti, Lab(pt−1
i

) = t−1
i ) and p−ni = t−1

k (
∏i−1
j=1 tjnjt

−1
j )ti (resp. p−ti = t−1

k (
∏i−1
j=1 tjnjt

−1
j ), p−

t−1
i

=

t−1
k (
∏i−1
j=1 tjnjt

−1
j )tini).

Recall that the collection {Tλ}λ∈Λ satisfies (P1), (P2), and (P3). Note that, for every λ ∈ Λ and every

word t ∈ Tλ, the word t does not end with a letter fromHλ, by (P2). It follows that pni is anHλi-component

of pw for i = 1, ..., k. Being a cyclic permutation of z, the word w represents 1 in G and thus the terminal

vertex of pw is 1. Hence, pw is a geodesic 3k-gon. As ̂̀λi(pni) = d̂λi(1, ni) for i = 1, ..., k, by Lemma

2.6.2 and (24D), there exists some i ∈ {1, ..., k} such that pni is not an isolated Hλi-component of pw.

The rest of the proof is divided into several lemmas. All of them are stated under the assumptions (and

using the notations) of Proposition 3.2.11.
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Lemma 3.2.12. If pni is not an isolated Hλi-component of pw for some i ∈ {1, ..., k}, then there are only

three possibilities:

(a) pni is connected to an Hλi-component of pti+1 , but not connected to any Hλi-component of pt−1
i−1

.

(b) pni is connected to an Hλi-component of pt−1
i−1

, but not connected to any Hλi-component of pti+1 .

(c) pni is connected to both an Hλi-component of pti+1 and an Hλi-component of pt−1
i−1

.

Proof. Without loss of generality, let us assume that pn1 is not isolated in pw. There are six cases to consider

(see Figure 3.2 for an illustration).

Case 1: pn1 is connected to anHλ1-component of either pt1 or pt−1
1

. In this case, some terminal segment

of t1 represents an element of Hλ1 , which contradicts (P2).

Case 2: pn1 is connected to either pn2 or pnk . If pn1 is connected to pn2 , then λ1 = λ2, which in turn

implies t1, t2 ∈ Tλ1 . The assumption that pn1 is connected to pn2 also implies t−1
1 t2 ∈ Hλ1 . By (P1),

t1 ≡ t2, contradicting (Z3). The analysis for the subcase where pn1 is connected to pnk is similar.

Case 3: pn1 is connected to pni for some i ∈ {3, ..., k − 1}. In other words, there exists h ∈ Hλ1 such

that the word

u ≡ t−1
1 (

i−1∏
j=2

tjnjt
−1
j )tih

represents 1 in G. As
∏i−1
j=2 tjnjt

−1
j ∈ 〈〈N〉〉 � G, we have t−1

1 ti ∈ Hλ1〈〈N〉〉. The assumption that pn1 is

connected to pni also implies n1, ni ∈ Nλ1 and thus t1, ti ∈ Tλ1 . By (P1), t1 ≡ ti. Thus, the word

u′ ≡ t1ht−1
1 (

i−1∏
j=2

tjnjt
−1
j )

is a cyclic permutation of u and represents 1 in G. It follows that t1ht−1
1 ∈ 〈〈N〉〉. By Theorem 2.5.12,

Remark 2.6.3, and Condition (24D), we have h ∈ Nλ1 . Then the word t1ht−1
1 (
∏i−1
j=2 tjnjt

−1
j ) represents 1

in G, contradicting (Z4).

Case 4: pn1 is connected to an Hλ1-component of pti for some i ∈ {3, ..., k}. Thus, ti can be decom-

posed as ti ≡ t′ih′t′′i with h′ ∈ Hλ1\{1} and there exists h ∈ Hλ1 such that the word

u ≡ t−1
1 (

i−1∏
j=2

tjnjt
−1
j )t′ih
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Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

n1

t1 t−1
1

t2

n2
t−1
2t3

n3

t−1
3

t4

n4

t−1
4

Figure 3.2: Cases 1 through 6 in the proof of Lemma 3.2.12

represents 1 in G. By (P3), t′i belongs to Tλ1 . Arguing as in Case 3, we conclude that the word

t1ht
−1
1 (
∏i−1
j=2 tjnjt

−1
j ) represents 1 in G, contradicting (Z4).

Case 5: pn1 is connected to an Hλ1-component of pt−1
i

for some i ∈ {2, ..., k − 1}. This case can be

reduced to Case 4 by considering w−1.

Thus, the only possibilities left are (a), (b), and (c).

Lemma 3.2.13. If pni is connected to an Hλi-component of pti+1 , then ti+1 can be decomposed as ti+1 ≡

uhv with h ∈ Hλi\{1} (u, v are allowed to be empty words), ti ≡ u, and d̂λi(1, nih) > 12D.

Proof. By Definition 2.6.1, ti+1 can be decomposed as ti+1 ≡ uhv with h ∈ Hλi\{1} such that pni is

connected to the path ph in Γ(G,X t H) with Lab(ph) ≡ h and p−h = t−1
k (
∏i
j=1 tjnjt

−1
j )u. By (P3),

u ∈ Tλi . The assumption that pni is connected to ph also implies t−1
i u ∈ Hλi and thus ti ≡ u, by (P1).

Another consequence of (P3) is

d̂λi(1, h) 6 d̂λi(1, h(h−1nih)) = d̂λi(1, nih).

Therefore, the triangle inequality implies

d̂λi(1, ni) 6 d̂λi(1, nih) + d̂λi(1, h
−1) = d̂λi(1, nih) + d̂λi(1, h) 6 2d̂λi(1, nih)
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and thus

d̂λi(1, nih) > d̂λi(1, ni)/2 > 12D,

by (24D).

The next lemma follows from Lemma 3.2.13 by considering w−1.

Lemma 3.2.14. If pni is connected to an Hλi-component of pt−1
i−1

, then ti−1 can be decomposed as ti−1 ≡

uhv with h ∈ Hλi\{1} (u, v are allowed to be empty words), ti ≡ u, and d̂λi(1, h
−1ni) > 12D.

Lemma 3.2.15. If pni is connected to anHλi-component of pti+1 , then pni+1 is not connected to anyHλi+1
-

component of pt−1
i

. If pni is connected to an Hλi-component of pt−1
i−1

, then pni−1 is not connected to any

Hλi−1
-component of pti .

Proof. If pni is connected to an Hλi-component of pti+1 , then ti equals some prefix of ti+1, by Lemma

3.2.13. If, in addition, pni+1 is connected to an Hλi+1
-component of pt−1

i
, then ti+1 equals some prefix of

ti, by Lemma 3.2.14. Thus, ti ≡ ti+1, contradicting (Z3).

The second assertion of the Lemma can be proved by considering w−1.

Recall that we assume the existence of a word z satisfying (Z1) through (Z4) and construct w, pw from

z. The previous several lemmas reveal some properties of pw and we are now ready to construct a geodesic

polygon p from pw so that p violates Lemma 2.6.2, and then we can conclude that z does not exist and prove

Proposition 3.2.11. The idea is to merge all Hλi-components connected to pni to form an isolated Hλi-

component for i = 1, ..., k − 1. Of course, one can also merge pnk with the Hλk -components connected to

it. We do not perform this merging only because it makes the construction more complicated. Pick elements

h1, ..., hk−1 ∈ H and g1,1, g1,2, g2,1, g2,2, ..., gk−1,1, gk−1,2 ∈ G by the following procedure.

Procedure 3.2.16. For i = 1, ..., k − 1, perform the following.

(a) If pni is an isolated Hλi-component in pw, let gi,1 ∈ G (resp. gi,2 ∈ G) be represented by the word

t−1
k (
∏i−1
j=1 tjnjt

−1
j )ti (resp. t−1

k (
∏i−1
j=1 tjnjt

−1
j )tini), and let hi = ni.

(b) If, in pw, pni is connected to an Hλi-component of pti+1 , but not connected to any Hλi-component of

pt−1
i−1

, then by Lemma 3.2.13, ti+1 can be decomposed as ti+1 ≡ uih
′
ivi with h′i ∈ Hλi\{1}, ti ≡ ui,

and d̂λi(1, nih
′
i) > 12D. Let hi be a letter from Hλi such that hi =G nih

′
i, and let gi,1 ∈ G (resp.

gi,2 ∈ G) be represented by the word t−1
k (
∏i−1
j=1 tjnjt

−1
j )ti (resp. t−1

k (
∏i−1
j=1 tjnjt

−1
j )tihi).
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(c) If in pw, pni is connected to an Hλi-component of pt−1
i−1

, but not connected to any Hλi-component

of ti+1, then by Lemma 3.2.14, ti−1 can be decomposed as ti−1 ≡ uih
′
ivi with h′i ∈ Hλi\{1},

ti ≡ ui, and d̂λi(1, h
′−1
i ni) > 12D. Let hi be a letter from Hλi such that hi =G h′−1

i ni, and

let gi,1 ∈ G (resp. gi,2 ∈ G) be represented by the word t−1
k (
∏i−2
j=1 tjnjt

−1
j )ti−1ni−1v

−1
i (resp.

t−1
k (
∏i−2
j=1 tjnjt

−1
j )ti−1ni−1v

−1
i hi).

(d) If in pw, pni is connected to both an Hλi-component of pti+1 and an Hλi-component of pt−1
i−1

, then

by Lemmas 3.2.13 and 3.2.14, ti+1 (resp. ti−1) can be decomposed as ti+1 ≡ uih
′
ivi (resp. ti−1 ≡

u′ih
′′
i v
′
i) with h′i ∈ Hλi\{1} (resp. h′′i ∈ Hλi\{1}), ti ≡ ui (resp. ti ≡ u′i). Let hi be a letter

from Hλi such that hi =G h′′−1
i nih

′
i, and let gi,1 ∈ G (resp. gi,2 ∈ G) be represented by the word

t−1
k (
∏i−2
j=1 tjnjt

−1
j )ti−1ni−1(v′i)

−1 (resp. t−1
k (
∏i−2
j=1 tjnjt

−1
j )ti−1ni−1(v′i)

−1hi).

Lemma 3.2.17. gi,1 and gi,2 are vertices on pw for i = 1, ..., k − 1. Moreover, the order in which pw visits

these vertices is g1,1, g1,2, g2,1, g2,2, ..., gk−1,1, gk−1,2.

Proof. The first assertion follows directly from the choices of those vertices. Clearly, the path pw visits gi,1

before visiting gi,2 for i = 1, ..., k − 1. Thus, the second assertion will be proved once we show that, for all

i, j ∈ {1, ..., k − 1} with i < j, the path pw visits gi,2 before visiting gj,1.

Suppose, for the contrary, that for some i, j ∈ {1, ..., k − 1} with i < j, the path pw visits gj,1 before

visiting gi,2. By Lemma 3.2.12, there is only one possibility for this case: j = i+ 1, pni is connected to an

Hλi-component of pti+1 , and pni+1 is connected to an Hλi+1
-component of pt−1

i
. By Lemma 3.2.15, if pni

is connected to an Hλi-component of pti+1 , then pni+1 is not connected to any Hλi+1
-component of pt−1

i
, a

contradiction.

Lemma 3.2.18. For i = 1, ..., k − 2, the subpath of pw from gi,2 to gi+1,1 consists of at most two geodesic

segments.

Lemma 3.2.18 follows immediately from the choices of the vertices gi,1 and gi,2, 1 6 i 6 k− 1. We are

now ready to construct a geodesic polygon p from pw.

Construction 3.2.19. For i = 1, ..., k − 1, let phi the edge of Γ(G,X t H) with Lab(phi) = hi and

p−hi = gi,1. Let p be the path in Γ(G,X t H) satisfying: p− is the identity vertex. p first follows the path

of pw (in the direction of pw) until p visits g1,1, and then p travels along ph1 and arrives at g1,2. And then p

follows the path pw (in the direction of pw) until p arrives at g2,1 (Lemma 3.2.17 guarantees that p will arrive
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Figure 3.3: The construction of p

at g2,1), where p travels along ph2 and then arrives at g2,2. The path p continues traveling in this manner

until arriving at gk−1,2. Finally, p follows the path pw (in the direction of pw) and comes back to the identity

vertex.

Figure 3.3 illustrates how to construct the geodesic polygon p. In Figure 3.3, the outside boundary with

label t−1
4 t1n1t

−1
1 t2n2t

−1
2 t3n3t

−1
3 t4n4 is the geodesic polygon pw. In the outside boundary, pn2 is an isolated

Hλ2-component, pn1 (resp. pn4) is connected to an Hλ1-component (resp. Hλ4-component) of pt2 (resp.

pt1), and pn3 is connected to both an Hλ3-component of pt−1
2

and an Hλ3-component of pt4 . By Lemma

3.2.13, t−1
1 cancels with a prefix of t2. After this cancellation, pn1 merges with an Hλ1-component of pt2

to form ph1 . Similarly, pn3 merges with both an Hλ3-component of pt−1
2

and an Hλ3-component of pt4 to

form ph3 . The merging process does nothing to n4, although n4 is not an isolated Hλ4-component. Finally,

pw becomes p, the boundary of the shaded region.

Remark 3.2.20. It follows easily from the above construction that phi is an isolated Hλi-component of p

for i = 1, ..., k − 1.

Note that the subpath of pw from 1 to gi,1 consists of at most 2 geodesic segments, and the subpath of pw

from gk−1,2 to 1 consists of at most 3 geodesic segments. Together with Lemma 3.2.18, these observations

imply that p is a polygon in Γ(G,X tH) with at most 3k geodesic sides.

Consider the following partition of {1, ..., k − 1} = I1 t I2. A number 1 6 i 6 k − 1 belongs to I1
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if in pw, pni is connected to both an Hλi-component of pt−1
i−1

and an Hλi-component of pti+1 . Otherwise, i

belongs to I2.

Lemma 3.2.21. card(I1) 6 (k − 1)/2.

Proof. First suppose card(I1) > k/2. Then there exists a number i such that both i and i+ 1 belong to I1,

contradicting Lemma 3.2.15. Thus, card(I1) 6 k/2.

Suppose card(I1) = k/2. Then k is even and I1 = {1, 3, ..., k − 3, k − 1}. For every even number

i ∈ {2, 4, ..., k − 2, k}, Lemma 3.2.15 implies that pni is an isolated Hλi-component of pw. Note that̂̀
λi(pni) = d̂λi(1, ni) > 24D for i = 1, ..., k, by (24D). Therefore, Lemma 2.6.2, applied to the geodesic

3k-gon pw, yields

24Dk

2
< ̂̀λ2(pn2) + ̂̀λ4(pn4) + · · ·+ ̂̀λk−2

(pnk−2
) + ̂̀λk(pnk) < 3kD,

a contradiction.

Thus, card(I2) = k− 1− card(I1) > (k− 1)/2. For each i ∈ I2, phi is an isolated Hλi-component of

p with ̂̀λi(phi) = d̂λi(1, hi) > 12D, by Procedure 3.2.16 and Construction 3.2.19. Lemma 2.6.2, applied

to the geodesic polygon p, yields

6D(k − 1) = 12D(k − 1)/2 <
∑
i∈I2

̂̀
λi(phi) 6 3kD. (3.6)

In other words, k < 2, contradicting (Z1). Proposition 3.2.11 is proved.

Finally, Theorem 4.0.1 follows from Proposition 3.2.10 and Proposition 3.2.11.

Remark 3.2.22. The proof of Theorem 4.0.1 implies that if {Hλ}λ∈Λ ↪→wh G, Nλ � Hλ for λ ∈ Λ, and

(24D) holds, then for every collection {Tλ}λ∈Λ satisfying (P1), (P2), and (P3), we have

〈〈N〉〉 =

∗∏
λ∈Λ,t∈Tλ

N t.

Remark 3.2.23. In fact, one can show that if {Hλ}λ∈Λ ↪→wh G, Nλ � Hλ for λ ∈ Λ, and following

condition

(4D) d̂λ(1, n) > 4D for all n ∈ Nλ\{1} and λ ∈ Λ

63



holds, then the triple (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) possesses the Cohen-Lyndon property. For the proof, one

needs to merge pnk with theHλk -components connected to it in the construction of p, and sharpen the coarse

estimate (3.6).

3.3 Relative relation modules

LetH be a group with a normal subgroupN and letH = H/N . The relative relation moduleRel(H,N)

of the exact sequence

1→ N → H → H → 1

is the abelianization N
:

= N/[N,N ] equipped with the H-action by conjugation. More precisely, denote by

n: the image of an element n ∈ N under the quotient map N → N
:

. Then there is an action of H on N
:

given

by h�n: = hnh−1
:

for all h ∈ H,n: ∈ N:. Notice that if h belongs to N , then h�n: = hnh−1
:

= h
:
n:h
:−1 = n:

for all n: ∈ N:, as h
:

commutes with n:. Hence, the action of H gives rises to an action of H , turning N
:

into

a ZH-module. If H is a free group, then Rel(H,N) is called a relation module.

The main goal of this section is to prove Proposition 3.3.1, which, together with Theorem 1.2.5, implies

Corollary 1.2.8.

Proposition 3.3.1. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple satisfying the Cohen-Lyndon property.

Employ the notation defined in Notation 2.14.2. If Nλ 6= {1} for every λ ∈ Λ, then

(a) for every λ ∈ Λ, the natural map Hλ → G is injective (i.e., Hλ ∩ 〈〈N〉〉 = Nλ), identifying Hλ with

a subgroup of G;

(b) Rel(G, 〈〈N〉〉) ∼=G

⊕
λ∈Λ Ind

G
Hλ
Rel(Hλ, Nλ).

Remark 3.3.2. If Nλ0 = {1} for some λ0 ∈ Λ, then we can consider the subset Λ′ such that Nλ 6= {1}

for every λ ∈ Λ′. It is easy to see that (G, {Hλ}λ∈Λ′ , {Nλ}λ∈Λ′) has the Cohen-Lyndon property and thus

Proposition 3.3.1 can be applied to (G, {Hλ}λ∈Λ′ , {Nλ}λ∈Λ′).

Suppose that the assumptions of Proposition 3.3.1 are satisfied. Let Tλ, λ ∈ Λ, be the transversals

provided by Definition 2.14.3. Fix some λ ∈ Λ for the moment. Suppose h ∈ Hλ ∩ 〈〈N〉〉. Then h ∈
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N〈〈N〉〉(Nλ), the normalizer of Nλ in 〈〈N〉〉. Note that

〈〈N〉〉 =

∗∏
µ∈Λ,t∈Tµ

N t
µ = Nλ ∗ (

∗∏
t∈Tλ\{1}

N t
λ ∗

∗∏
µ∈Λ\{λ},t∈Tµ

N t
µ)

and Nλ 6= {1}. Note also the following general fact.

Lemma 3.3.3. Let A,B 6= {1} be groups. Then NA∗B(A) = A.

Proof. Suppose that there exists a ∈ A\{1} and g ∈ A ∗ B\A such that ag ∈ A. Consider the Bass-Serre

tree Tr corresponding to A ∗B. Denote the A ∗B action on Tr by ♦. The vertex group A fixes a vertex v

of Tr and thus ag fixes v. Clearly, the vertex g♦v is also fixed by ag. As g ∈ A ∗ B\A, g♦v 6= v and thus

ag fixes a nontrivial path between v and g♦v. In particular, ag fixes an edge of Tr and thus conjugates into

the unique edge subgroup {1} of A ∗B. It follows that ag = 1, which is in contradiction with a 6= 1.

Therefore, N〈〈N〉〉(Nλ) = Nλ and h ∈ Nλ. We conclude:

Lemma 3.3.4. For every λ ∈ Λ, Hλ ∩ 〈〈N〉〉 = Nλ.

Let us consider the relative relation modules Rel(G, 〈〈N〉〉) and Rel(Hλ, Nλ), λ ∈ Λ. For every λ ∈ Λ,

let Mλ be the subgroup of G generated by N t
λ, t ∈ Tλ. Note that Mλ =

∏∗
t∈Tλ N

t
λ for every λ ∈ Λ, as

〈〈N〉〉 =
∏∗
λ∈Λ,t∈Tλ N

t
λ. Note also that 〈〈N〉〉 =

∏∗
λ∈ΛMλ.

For every λ ∈ Λ, the composition of natural maps Mλ ↪→ 〈〈N〉〉 → 〈〈N〉〉
:

maps Mλ into the abelian

group 〈〈N〉〉
:

and thus factors through

iλ : Mλ
: → 〈〈N〉〉
:

.

The homomorphisms iλ, λ ∈ Λ, extend to an abelian group homomorphism

i :
⊕
λ∈Λ

Mλ
: → 〈〈N〉〉
:

.

It is well-known that i is an abelian group isomorphism (for example, see [30, Problem 4 of Exercise 6.2]).

Thus, we identify Mλ
:

with its image iλ(Mλ
:

) for every λ ∈ Λ and write

Rel(G, 〈〈N〉〉) = 〈〈N〉〉
:

=
⊕
λ∈Λ

Mλ
:

.
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Fix λ ∈ Λ for the moment. By the same argument as the one above, we write

Mλ
:

=
⊕
t∈Tλ

N t
λ

:
.

Lemma 3.3.5. Mλ
:

is a ZG-submodule of Rel(G, 〈〈N〉〉) =
⊕

λ∈ΛMλ
:

. The G-action on Mλ
:

transitively

permutes the summands N t
λ

:
, t ∈ Tλ, and its isotropy group of Nλ

:
is Hλ, i.e., an element g ∈ G satisfies

g�n: ∈ Nλ
:

for all n: ∈ Nλ
:

if and only if g ∈ Hλ.

Proof. Fix t0 ∈ Tλ and g ∈ G. There exists t1 ∈ Tλ, h ∈ Hλ, and m ∈ 〈〈N〉〉 such that

gt0 = t1hm. (3.7)

Consider the summand N t0
λ

:
. For all n ∈ Nλ,

g�t0nt
−1
0

:
= gt0nt

−1
0 g−1
:

= t1hmnm
−1h−1t−1

1

:
= t1hnh

−1t−1
1

:
∈ N t1

λ

:
,

where the fact that the action of 〈〈N〉〉 acts trivially on Rel(G, 〈〈N〉〉) is used in the second equality. Hence,

g�N t0
λ

:
⊂ N t1

λ

:
. As Mλ
:

=
⊕

t∈Tλ N
t
λ

:
, it follows that Mλ

:
is G-invariant and thus Mλ

:
is also G-invariant.

The above paragraph shows that g maps N t0
λ

:
into N t1

λ

:
. Actually, g�N t0

λ

:
= N t1

λ

:
. Indeed, given n ∈ Nλ,

we find an element x of N t0
λ such that g�x: = nt1

:
. Let x = nt0h

−1
. Note that nh

−1 ∈ Nλ, as Nλ is normal

in Hλ. Thus, x ∈ N t0
λ . Direct computation shows

g�x: = gxg−1
:

= gt0(h−1nh)t−1
0 g−1
:

= t1hm(h−1nh)m−1h−1t−1
1

:
= t1h(h−1nh)h−1t−1

1

:
= nt1
:
,

where the fact that the action of 〈〈N〉〉 on Rel(G, 〈〈N〉〉) is trivial is used in the second equality. Hence,

g�x: = nt1
:

.

As a consequence, g�N t0
λ

:
= N t1

λ

:
, i.e., the action of G on Mλ

:
permutes the summands N t

λ

:
, t ∈ Tλ. In

fact, this permutation is transitive: Let t be any element of Tλ. We wish to find an element of G which maps

N t0
λ

:
to N t

λ

:
. This can be done by tt−1

0 :

tt−1
0 �N

t0
λ

:
= N t

λ

:
.

Thus, the action of G on Mλ
:

transitively permutes the summands N t
λ

:
, t ∈ Tλ. The same is thus true for
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the action of G on Mλ
:

.

Clearly, for the action ofG onMλ
:

, the isotropy group ofNλ
:

containsHλ〈〈N〉〉. Observe that in equation

(3.7), if t0 = 1 and g 6∈ Hλ〈〈N〉〉, then t1 6= 1 as t−1
1 g ∈ Hλ〈〈N〉〉. It follows that

g�Nλ
:

= N t1
λ

:
6= Nλ
:
,

i.e., g does not fix Nλ
:

setwise. Therefore, for the action of G on Mλ
:

, the isotropy group of Nλ
:

is Hλ〈〈N〉〉.

As a consequence, for the action of G on Mλ
:

, the isotropy group of Nλ
:

is Hλ.

Recall that if O is a ring, D is a subring of O, and A is a D-module, the induced module of A from

D to O, denoted as IndODA, is the tensor product O
⊗
D A. If O,D are integral group rings, we simplify

notations by dropping Z, e.g., we write IndGH instead of IndZGZH . For λ ∈ Λ, Lemma 3.3.5, together with

the following Proposition 3.3.6, which is a well-known characterization of induced modules (for example,

see [10, Proposition 5.3 of Chapter III]), implies Mλ
: ∼=G Ind

G
Hλ
Rel(Hλ, Nλ).

Proposition 3.3.6. Let G be a group and let A be a ZG-module. Suppose that the underlying abelian group

of A is a direct sum
⊕

i∈I Ai and that the G-action transitively permutes the summands. If H 6 G is the

isotropy group of Aj for some j ∈ I . Then Aj is a ZH-module and A ∼= IndGHAj as ZG-modules.

Proof of Proposition 3.3.1. For every λ ∈ Λ, Mλ
: ∼=G Ind

G
Hλ
Rel(Hλ, Nλ). Thus,

Rel(G, 〈〈N〉〉) =
⊕
λ∈Λ

Mλ
: ∼=G

⊕
λ∈Λ

IndG
Hλ
Rel(Hλ, Nλ),

as desired.

Example 3.3.7. Let G be a graph of groups, let π1(G) be the fundamental group of G, let {Gv}v∈V G be the

collection of vertex subgroups, and let {Ge}e∈EG be the collection of edge subgroups. By [13, Example

4.12], {Gv}v∈V G ↪→wh π1(G) with respect to any subset X consisting of stable letters (i.e., generators

corresponding to edges of G\TG, where TG is a spanning tree of G), and the corresponding relative metric

on a vertex group Gv corresponding to a vertex v ∈ V G is bi-Lipschitz equivalent to the word metric with

respect to the union of the edge subgroups of Gv corresponding to edges incident to v. Thus, we have the

following corollary of Theorems 2.5.12, 4.0.1 and Proposition 3.3.1.
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Corollary 3.3.8. Let G be a graph of groups, let π1(G) be the fundamental group of G, let {Gv}v∈V G be

the collection of vertex subgroups, and let {Ge}e∈EG be the collection of edge subgroups. Suppose that, for

every v ∈ V G, Nv is normal subgroup of Gv with

Nv ∩ 〈Ge, v ∈ e〉 = ∅.

Then the group triple (G, {Gv}v∈V G , {Nv}v∈V G) has the Cohen-Lyndon property, and

Rel(G, 〈〈N〉〉) ∼=G

⊕
IndG

Gv
Rel(Gv, Nv),

where N =
⋃
v∈V G Nv, G = G/〈〈N〉〉, and Gv = Gv/Nv for v ∈ V G.

In particular,

Corollary 3.3.9. Let G = A ∗C B be an amalgamated free product. If N � A and N ∩ C = {1}, then

(G,A,N) has the Cohen-Lyndon property, and

Rel(G, 〈〈N〉〉) ∼=G Ind
G
A
Rel(A,N),

where G = G/〈〈N〉〉 and A = A/N .

Corollary 3.3.10. Let G = H∗t be an HNN-extension with associated subgroups A,B 6 H . If N �H and

N ∩ (A ∪B) = {1}, then (G,H,N) has the Cohen-Lyndon property, and

Rel(G, 〈〈N〉〉) ∼=G Ind
G
H
Rel(H,N),

where G = G/〈〈N〉〉 and H = H/N .

Alternatively, Corollary 3.3.9 can be deduced from [20] and both of Corollaries 3.3.9, 3.3.10 can be

deduced from the Bass-Serre theory.
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CHAPTER 4

COHEN-LYNDON PROPERTY AND SPECTRAL SEQUENCES

The goal of this chapter is the following more general and precise version of Theorem 1.2.10.

Theorem 4.0.1. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple satisfying the Cohen-Lyndon property. Em-

ploy the notations defined in Notation 2.14.2, and let A be a ZG-module. Then there are spectral sequences

Ep,qG,2 = Hp(G;Hq(〈〈N〉〉;A))⇒ Hp+q(G;A),

Ep,qH,2 =
∏
λ∈Λ

Hp(Hλ;Hq(Nλ;A))⇒
∏
λ∈Λ

Hp+q(Hλ;A),

of cohomological type and there is a morphism

MSS : EG −→ EH

between spectral sequences such that

(a) MSS and NTRG are compatible;

(b) MSSp,02 can be identified with NT p
G

;

(c) for p ∈ Z and q ∈ Z\{0}, MSSp,q2 is an isomorphism.

Assuming Theorem 4.0.1, we prove Theorem 1.2.10.

Proof of Theorem 1.2.10. Apply Theorem 4.0.1 for the case |Λ| = 1 and let

Ep,qG,2 = Hp(G;Hq(〈〈N〉〉;A))⇒ Hp+q(G;A), Ep,qH,2 = Hp(H;Hq(N ;A))⇒ Hp+q(H;A)

be the spectral sequences in that theorem. Then there is a morphism MSS : EG → EH such that

MSSp,q2 : Hp(G;Hq(〈〈N〉〉;A)) −→ Hp(H;Hq(N ;A))
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is an isomorphism for p ∈ Z and q ∈ Z\{0}. Replace Ep,qG,2 = Hp(G;Hq(〈〈N〉〉;A)) with

Hp(H;Hq(N ;A)) for p ∈ Z and q ∈ Z\{0}. For p ∈ Z and q = 0, as MSSp,02 can be identified with

NT p
G

, we have Ep,0G,2 ∼= Hp(G;A) and thus we can replace Ep,0G,2 with Hp(G;A). After these replacements,

we obtain the spectral sequence (1.2).

Remark 4.0.2. We can describe the differentials of (1.2) as follows. Let dr, r > 2, be the differential of the

spectral sequence (1.2). Then dr is induced by dH,r. More precisely, we think of MSS : EG → EH as a

morphism from the spectral sequence (1.2) to EH and we have a commutative diagram for r > 2:

Er EH,r

Er EH,r

MSSr

dr dH,r

MSSr

4.1 Idea towards proving Theorem 1.2.10

In this section, we sketch, without assuming Theorem 4.0.1, the proof of Theorem 1.2.10. The proof of

Theorem 4.0.1 is a generalization of the following argument.

Sketched proof of Theorem 1.2.10. The Lyndon-Hochschild-Serre spectral sequence for a ZG-module A

and the group extension

1→ 〈〈N〉〉 → G→ G→ 1

takes the form

Ep,q2 = Hp(G;Hq(〈〈N〉〉;A))⇒ Hp+q(G;A). (4.1)

The Cohen-Lyndon property of (G,H,N) gives rise to the following.

Proposition 4.1.1. If (G,H,N) has the Cohen-Lyndon property, then for q ∈ Z\{0},

Hq(〈〈N〉〉;A) ∼=G CoInd
G
H
Hq(N ;A). (4.2)

Thus, Shapiro’s lemma implies
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Proposition 4.1.2. If (G,H,N) has the Cohen-Lyndon property, then for p ∈ Z and q ∈ Z\{0},

Hp(G;Hq(〈〈N〉〉;A)) ∼= Hp(H;Hq(N ;A)). (4.3)

Notice that for q = 0,

Ep,02 = Hp(G;H0(〈〈N〉〉;A)) ∼= Hp(G;A〈〈N〉〉) ∼= Hp(G;A), (4.4)

where A〈〈N〉〉 is the 〈〈N〉〉-fixed-points of A. As A is a ZG-module, the 〈〈N〉〉-action on A fixes every point

and thus A〈〈N〉〉 = A.

(1.2) is obtained by substituting terms of (4.1) with the terms on the right-hand side of (4.3) and (4.4).

A natural way to prove Propostion 4.1.1 is to decompose Hq(〈〈N〉〉;A) into a direct product∏
t∈T H

q(N t;A), which can be achieved by starting with a model X of the classifying space of N and

taking wedge sum of copies of X to obtain a model of the classifying space of 〈〈N〉〉. The problem with this

approach is that one loses information about the action G y Hq(〈〈N〉〉;A) and thus cannot derive Propo-

sition 4.1.1. Therefore, we take another approach and consider Extq〈〈N〉〉(Z[G/H], A). By manipulating

different projective resolutions, we prove the following ZG-module isomorphisms

Hq(〈〈N〉〉;A) ∼=G Ext
q
〈〈N〉〉(Z[G/H], A) ∼=G CoInd

G
H
Hq(N ;A)

for q 6= 0.

4.2 Isomorphism of iterative cohomology groups

The goal of this section is the following generalization of Proposition 4.1.2.

Proposition 4.2.1. Suppose that (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) is a group triple satisfying the Cohen-Lyndon

property. Employ the notations defined in Notation 2.14.2. Then for p ∈ Z and q ∈ Z\{0}, NTRp,q
G

is an

isomorphism.

Remark 4.2.2. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple and let Λ′ = {λ ∈ Λ | Nλ 6= {1}}. It

is easy to see that (G, {Hλ}λ∈Λ′ , {Nλ}λ∈Λ′) also has the Cohen-Lyndon property and if the conclusion of
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Proposition 4.2.1 holds for (G, {Hλ}λ∈Λ′ , {Nλ}λ∈Λ′), then it also holds for (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ). Thus

we will only prove Proposition 4.2.1 for the case where Nλ 6= {1} for all λ ∈ Λ.

Assuming Proposition 4.2.1, we prove Proposition 4.1.2.

Proof of Proposition 4.1.2. The isomorphism (4.3) is the special case |Λ| = 1 of Proposition 4.2.1.

The proof of Proposition 4.2.1 is a combination of Lemma 2.13.1 and the following generalization of

Proposition 4.1.1.

Proposition 4.2.3. Suppose that (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) is a group triple satisfying the Cohen-Lyndon

property andNλ 6= {1} for λ ∈ Λ. Employ the notations defined in Notation 2.14.2 and think ofHλ, λ ∈ Λ,

as subgroups of G. Then there is a ZG-module homomorphism

η : H∗(〈〈N〉〉;A) −→
∏
λ∈Λ

CoIndG
Hλ
H∗(Nλ;A)

such that, for ` > 1, η maps H`(〈〈N〉〉;A) isomorphically onto
∏
λ∈ΛCoInd

G
Hλ
H`(Nλ;A).

Moreover, for every µ ∈ Λ, let

Proµ :
∏
λ∈Λ

CoIndG
Hλ
H∗(Nλ;A) −→ CoIndG

Hλ
H∗(Nµ;A)

be the coordinate projection, and let

πµ : CoIndG
Hλ
H∗(Nµ;A) −→ H∗(Nµ;A)

be the standard projection. Then NTRNµ = πµ ◦ Proµ ◦ η.

Assuming Proposition 4.2.3, we prove Proposition 4.1.1.

Proof of Proposition 4.1.1. Without loss of generality, we may assume that N 6= {1}. In this case, the

isomorphism (4.2) is the special case |Λ| = 1 of Proposition 4.2.3.

4.2.1. Ext∗〈〈N〉〉(Z[G/Hλ], A) ∼=G CoInd
G
Hλ
H∗(Nλ;A)

In Section 4.2.1.and the following Section 4.2.2., let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple. We

employ the notations definied in Notation 2.14.2. Suppose
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(N1) for all λ ∈ Λ, Hλ ∩ 〈〈N〉〉 = Nλ and thus the natural homomorphism

Hλ = Hλ/Nλ −→ G = G/〈〈N〉〉

is injective, identifying Hλ with a subgroup of G.

For λ ∈ Λ, we will slightly abuse notations and use Hλ to denote the subgroup of G identified with Hλ.

Let A be a ZG-module, and let P → Z be the standard free resolution over ZG with boundary operator

∂. Fix λ ∈ Λ for the moment. Note that P → Z can also be thought of as a free resolution of Z over ZHλ,

and thus H∗(Nλ;A) can be identified with H∗(HomNλ(P,A)). We use the notation H∗(HomNλ(P,A))

to perform calculations (see Remark 2.10.2).

Consider the cochain complex CoIndG
Hλ
HomNλ(P,A) whose differential is given by

df̂(x, p) = f̂(x, ∂p)

for all f̂ ∈ CoIndG
Hλ
HomNλ(P,A), x ∈ ZG, and p ∈ P . Denote the cohomology groups associated with

CoIndG
Hλ
HomNλ(P,A) by H∗(CoIndG

Hλ
HomNλ(P,A)). Clearly,

x • (df̂) = d(x • f̂)

for all x ∈ ZG and f̂ ∈ CoIndG
Hλ
HomNλ(P,A) and thus the cocycles and coboundaries of

CoIndG
Hλ
HomNλ(P,A) have natural structures of ZG-modules.

It turns out that the order of the operations CoIndG
Hλ

and H∗ can be switched. More precisely, let us

consider the map

SCHλ : H∗(CoIndG
Hλ
HomNλ(P,A)) −→ CoIndG

Hλ
H∗(HomNλ(P,A))

constructed as follows. Let

[f̂ ] ∈ H`(CoIndG
Hλ
HomNλ(P,A))

for some ` > 0. Then there exists f̂ ∈ CoIndG
Hλ
HomNλ(P`, A) representing [f̂ ]. It follows that df̂ = 0,

i.e., f̂(x) is a cocycle in HomNλ(P,A) for every x ∈ ZG. Denote by Z (resp. B) the set of cocycles
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(coboundaries) of HomNλ(P,A) and let Quo be the quotient map sending Z to H∗(HomNλ(P,A)). Then

Quo ◦ f̂ ∈ CoIndG
Hλ
H∗(HomNλ(P,A)).

Let SCHλ be the function sending every [f̂ ] ∈ H∗(CoIndG
Hλ
HomNλ(P,A)) to the correspondingQuo◦f̂ .

It is easy to check that SCHλ is well-defined, i.e., independent of the choice of the representative f̂ of the

cohomology class [f̂ ].

Lemma 4.2.4. SCHλ is a ZG-module isomorphism.

Proof. Clearly, SCHλ is a ZG-module homomorphism. Let us show that SCHλ is injective. Suppose

[f̂ ] ∈ H`(CoIndG
Hλ
HomNλ(P,A))

for some ` > 0 such that SCHλ[f̂ ] = 0. Let f̂ ∈ CoIndG
Hλ
HomNλ(P`, A) be a representative of [f̂ ]. It

follows that Quo ◦ f̂ = 0, i.e., f̂(x) ∈ B for every x ∈ ZG. Let S ∈ RT (Hλ, G). For every s ∈ S, let

F̂s ∈ HomNλ(P`−1, A) such that F̂s ◦ ∂ = f̂(s).

Let F̂ be a function sending every s ∈ S to F̂s. As a ZHλ-module, ZG is freely generated by s ∈ S

and thus we can ZHλ-linearly extend F̂ to a function (still denoted by)

F̂ : ZG→ HomNλ(P`−1, A).

Clearly, F̂ ∈ CoIndG
Hλ
HomNλ(P`−1, A). Moreover, F̂ ◦ ∂ = f̂ and thus [f̂ ] = 0.

Let us show that SCHλ is also surjective. Given

f ∈ CoIndG
Hλ
H∗(HomNλ(P,A)),

for every s ∈ S, choose a function f̃s ∈ Z representing f(s) ∈ H∗(HomNλ(P,A)). Let f̃ be a function

sending every s to f̃s. As a ZHλ-module, ZG is freely generated by s ∈ S and thus we can ZHλ-linearly

extend f̃ to a function (still denoted by)

f̃ : ZG→ HomNλ(P`, A).
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Clearly, f̃ ∈ CoIndG
Hλ
HomNλ(P`, A). As f̃s ∈ Z, we have f̃ ◦ ∂ = 0 and thus f̃ represents an element

[f̃ ] ∈ H∗(CoIndG
Hλ
HomNλ(P,A)). Moreover, Quo ◦ f̃ = f . Thus, SCHλ[f̃ ] = f .

Remark 4.2.5. Let

π̃λ : CoIndG
Hλ
HomNλ(P,A) −→ HomNλ(P,A)

be the standard projection. Then π̃λ induces a map

π̃∗λ : H∗(CoIndG
Hλ
HomNλ(P,A)) −→ H∗(HomNλ(P,A)).

Consider the diagram

H∗(CoIndG
Hλ
HomNλ(P,A)) H∗(HomNλ(P,A))

CoIndG
Hλ
H∗(HomNλ(P,A))

π̃∗λ

SCHλ
πλ (4.5)

where

πλ : CoIndG
Hλ
H∗(HomNλ(P,A)) −→ H∗(HomNλ(P,A))

is the standard projection. We claim that (4.5) commutes. Indeed, given

f ∈ CoIndG
Hλ
H∗(HomNλ(P,A)),

use the second part of the proof of Lemma 4.2.4 to construct an f̃ ∈ CoIndG
Hλ
HomNλ(P,A) such that

SCHλ[f̃ ] = f . It is easy to check that π̃λ(f̃) = f(1). As π̃λ(f̃) represents π̃∗λ ◦ SCH
−1
λ (f), we have

π̃∗λ ◦ SCH
−1
λ = πλ.

Tensoring P → Z with Z[G/Hλ] produces a chain complex

(P
⊗

Z[G/Hλ], ελ) : · · · ελ−−→ P1

⊗
Z[G/Hλ]

ελ−−→ P2

⊗
Z[G/Hλ]

ελ−−→ Z[G/Hλ] −→ 0,
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where ελ = ∂ ⊗ idZ[G/Hλ]. G acts on P`
⊗

Z[G/Hλ] by a diagonal action:

g · (p⊗ g′Hλ) = g · p⊗ gg′Hλ

for all g, g′ ∈ G and p ∈ P . Thus, P
⊗

Z[G/Hλ] is a ZG-module.

Lemma 4.2.6. Suppose that E is a basis for the ZG-module P and S ∈ LT (Hλ, G). Then the ZG-module

P
⊗

Z[G/Hλ] is freely generated by the set Ẽ = {e⊗ sHλ | e ∈ E, s ∈ S}.

Proof. For e ∈ E, let 〈e〉P be the ZG-submodule of P generated by e. As P =
⊕

e∈E〈e〉P , we have

P
⊗

Z[G/Hλ] ∼=G

⊕
e∈E

(
〈e〉P

⊗
Z[G/Hλ]

)
.

The desired conclusion follows from the fact that, for each e ∈ E, 〈e〉P
⊗

Z[G/Hλ] is freely generated

by elements of the form e⊗ sHλ, s ∈ S.

Thus, P
⊗

Z[G/Hλ] −→ Z[G/Hλ] is a free resolution of Z[G/Hλ] over ZG. By definition,

the cohomology group associated with the deleted cochain complex Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A) is

Ext∗〈〈N〉〉(Z[G/Hλ], A). We use Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A) to perform computations (see Remark

2.10.2).

Lemma 4.2.7. H∗(Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A)) ∼=G H
∗(CoIndG

Hλ
HomNλ(P,A)).

Proof. Construct a chain map

Isoλ : Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A) −→ CoIndG
Hλ
HomNλ(P,A).

By the following procudure. Let

f̃ ∈ Hom〈〈N〉〉(P`
⊗

Z[G/Hλ], A)

for some ` > 0. Recall thatHom〈〈N〉〉(P`
⊗

Z[G/Hλ], A) is ZG-module and a superscript is used to denote

the G-action (see Remark 2.11.1). As an abelian group, ZG is freely generated by elements of G and thus
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there exists a unique abelian group homomorphism

f ∈ Hom(ZG,HomNλ(P,A))

such that

f(g, p) = gf̃(p⊗Hλ) = g · f̃(g−1 · p⊗ g−1Hλ)

for every g ∈ G, p ∈ P`, and g ∈ G such that g is mapped toG under the quotient mapG→ G (see Notation

2.12.1). Let Isoλ be the map sending each f̃ ∈ Hom〈〈N〉〉(P`
⊗

Z[G/Hλ], A) to the corresponding f .

Claim 1. If f̃ ∈ Hom〈〈N〉〉(P`
⊗

Z[G/Hλ], A) for some ` > 0, then

Isoλf ∈ CoIndGHλ
HomNλ(P,A).

Proof of Claim 1. It suffices to prove

Isoλf̃(hg, p) = h · Isoλf̃(g, h−1 · p)

for every h ∈ Hλ, g ∈ G, p ∈ P`, and h ∈ Hλ such that h is mapped to h under the quotient map G→ G.

Let g ∈ G such that g is mapped to g by the quotient map G→ G. Direct computation shows

(Isoλf̃)(hg, p) =hgf̃(p⊗Hλ)

=hg · f̃(g−1h−1 · p⊗ g−1Hλ) as h ∈ Hλ

=h · Isoλf̃(g, h−1 · p),

as desired.

Claim 2. Isoλ is a ZG-module homomorphism.

Proof of Claim 2. Claim 2 follows from the following equality

Isoλ(g1 f̃)(g2, p) = g2g1 f̃(p⊗Hλ) = Isoλf̃(g2g1, p) = (g1 • Isoλf̃)(g2, p)
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for ` > 0, g1, g2 ∈ G, p ∈ P`, and f̃ ∈ Hom〈〈N〉〉(P`
⊗

Z[G/Hλ], A).

Claim 3. Isoλ is a chain map.

Proof of Claim 3. Claim 3 follows from the following equality

Isoλ(f̃ ◦ ελ)(g, p) = g · f̃((g−1 · ∂p)⊗ s−1Hλ) = Isoλf̃(g, ∂p)

for ` > 0, g ∈ G, f̃ ∈ Hom〈〈N〉〉(P`
⊗

Z[G/Hλ], A), p ∈ P`+1, and g ∈ G such that g is mapped to g by

the quotient map G→ G.

It follows that Isoλ induces a ZG-module homomorphism

Iso∗λ : H∗(Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A)) −→ H∗(CoIndG
Hλ
HomNλ(P,A)).

To show that Iso∗λ is in fact an isomorphism, it suffices to construct an inverse of Isoλ. Fix S ∈

RT (Hλ, G). Let f ∈ CoIndG
Hλ
HomNλ(P`, A) for some ` > 0. As an abelian group, Z[G/Hλ] is freely

generated by {s−1Hλ | s ∈ S} and thus P
⊗

Z[G/Hλ], as an abelian group, is freely generated by elements

of the form p⊗ s−1Hλ, where p ranges over all (`+ 1)-tuples of G and s ∈ S. It follows that there exists a

unique abelian group homomorphism

f̃ ∈ Hom(P
⊗

Z[G/Hλ], A)

such that

f̃(p⊗ s−1Hλ) = s−1 · f(s, s · p)

for all p ∈ P` and s ∈ S. Let

τλ : CoIndG
Hλ
HomNλ(P,A) −→ Hom〈〈N〉〉(P

⊗
Z[G/Hλ], A)

be the map sending each f ∈ CoIndG
Hλ
HomNλ(P,A) to the corresponding f̃ . Clearly, τλ and Isoλ are

mutual inverses and we are done.
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4.2.2. Proof of Proposition 4.2.3

Further suppose

(N2) for every λ ∈ Λ, there exists a left transversal Tλ ∈ LT (Hλ〈〈N〉〉, G) such that

〈〈N〉〉 =
∗∏

λ∈Λ,t∈Tλ

N t
λ.

Definition 4.2.8. Let m ∈ 〈〈N〉〉. If m 6= 1, then m can be uniquely factorized as

m =

k∏
i=1

ntii (4.6)

with ti ∈ Tλi , ni ∈ Nλi\{1}, and λi ∈ Λ for 1 6 i 6 k. (4.6) is called the factorization of m. The number

of factors of m, denoted as ω(m), is the number k in (4.6). If m = 1, we let ω(m) = 0.

Apply Hom〈〈N〉〉(·, A) to the resolution P → Z to produce a deleted cochain complex Hom〈〈N〉〉(P,A),

whose cohomology group isH∗(Hom〈〈N〉〉(P,A)) = H∗(〈〈N〉〉;A). We useH∗(Hom〈〈N〉〉(P,A)) for com-

putation (see Remark 2.10.2).

Fix λ ∈ Λ for the moment. Consider a ZG-module homomorphism

Fgλ : Z[G/Hλ] −→ Z, Fgλ(gHλ) = 1

for every left coset gHλ (Fgλ “forgets” the coset information). Fgλ induces a natural ZG-module homo-

morphism (see Remark 2.11.2)

Fg∗λ : H∗(Hom〈〈N〉〉(P,A)) −→ H∗(Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A)).

Extend Fgλ to a chain map (still denoted by)

Fgλ : P
⊗

Z[G/Hλ] −→ P, Fgλ(p⊗ gHλ) = p
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for all p ∈ P and left coset gHλ. Then Fg∗λ is the cohomology map induced by the chain map Fgλ. Let

Fg =

Dom⊕
λ∈Λ

Fgλ :
⊕
λ∈Λ

(P
⊗

Z[G/Hλ]) −→ P.

Lemma 4.2.9. The composition

π∗λ ◦ Iso∗λ ◦ Fg∗λ : H∗(Hom〈〈N〉〉(P,A)) −→ H∗(HomNλ(P,A))

is the cohomology map induced by the natural embedding

Hom〈〈N〉〉(P,A) ↪→ HomNλ(P,A)

and thus is the natural map induced by Nλ ↪→ 〈〈N〉〉.

Proof. In the level of cochains, π∗λ ◦ Iso∗λ ◦ Fg∗λ is induced by

πλ ◦ Isoλ ◦ Fgλ : Hom〈〈N〉〉(P,A) −→ HomNλ(P,A).

Direct computation shows that πλ ◦ Isoλ ◦ Fgλ(f) = f for all f ∈ Hom〈〈N〉〉(P,A).

Let λ vary in Λ. We construct two auxiliary resolutions

R −→
⊕
λ∈Λ

Z[G/Hλ], R̃ −→ Z.

For every λ ∈ Λ, let Qλ =
⊕

`>−1Qλ,` be the graded ZNλ-module such that for each ` > −1, Qλ,` is

the ZNλ-submodule of P`
⊗

Z[G/Hλ] generated by elements of the form p⊗Hλ, where p ranges over all

(`+ 1)-tuples of elements of Nλ. Clearly, the boundary operator

ελ : P
⊗

Z[G/Hλ] −→ P
⊗

Z[G/Hλ]

restricts to a boundary operator (still denoted by) ελ : Qλ → Qλ, which turns Qλ into a chain complex. For

λ ∈ Λ, the map Fgλ sends the chain complex Qλ isomorphically onto the standard free resolution of Z over

ZNλ. In particular, the chain complex Qλ is exact.
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For every λ ∈ Λ and every t ∈ Tλ, let Xλ,t be the set consisting of elements of 〈〈N〉〉 whose factoriza-

tions do not end with a factor from N t
λ. Note that

Xλ,t ∈ LT (N t
λ, 〈〈N〉〉).

Let Rλ =
⊕

`>−1Rλ,` be the graded abelian group such that for each ` > −1, Rλ,` is the subgroup of the

abelian group P`
⊗

Z[G/Hλ] generated by elements of the form

xt · p⊗ xtHλ,

where t ∈ Tλ, x ∈ Xλ,t, and p ranges over (` + 1)-tuples of the elements of Nλ. Note that Rλ splits as a

direct sum

Rλ =
⊕

t∈Tλ,x∈Xλ,t

(xt ·Qλ)

of graded abelian groups. For each summand xt ·Qλ, the boundary operator ελ on P
⊗

Z[G/Hλ] restricts

to a boundary operator on xt · Qλ, turning xt · Qλ into a chain complex. As a consequence, ελ induces a

boundary operator ε′λ on Rλ. Moreover, the left multiplication of (xt)−1 maps the chain complex xt · Qλ

isomorphically onto Qλ and thus xt ·Qλ is exact. Thus, Rλ, as a direct sum of exact chain complexes, is an

exact chain complex. As 〈〈N〉〉 is a normal subgroup of G, it is not hard to show that, for every λ ∈ Λ and

t ∈ Tλ, the 〈〈N〉〉-action on
⊕

x∈Xλ,t(xt ·Qλ) permutes the summands xt ·Qλ and thus
⊕

x∈Xλ,t(xt ·Qλ)

is a Z〈〈N〉〉-module.

In fact,
⊕

x∈Xλ,t(xt ·Qλ) is a free Z〈〈N〉〉-module. Indeed, let E be the set consist of tuples of G of the

form (1, g1, ..., g`), ` > 0. Then E is a basis for the ZG-module P . Let S ∈ LT (Hλ, G). Then the set

Ẽ = {e⊗ sHλ, e ∈ E, s ∈ S}

freely generates P
⊗

Z[G/Hλ] as a ZG-module, by Lemma 4.2.6. Let U ∈ LT (〈〈N〉〉, G). Then

P
⊗

Z[G/Hλ], as a Z〈〈N〉〉-module, is freely generated by the set

U · Ẽ = {u · e⊗ usHλ | u ∈ U, e ∈ E, s ∈ S}.
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Note that
⊕

x∈Xλ,t(xt ·Qλ) is generated by a subset of U · Ẽ and thus is a free Z〈〈N〉〉-module. It follows

that for every λ ∈ Λ, Rλ is a free Z〈〈N〉〉-module as it is a direct sum of free Z〈〈N〉〉-modules.

Lemma 4.2.10. For every λ ∈ Λ, {xt | t ∈ Tλ, x ∈ Xλ,t} ∈ LT (Hλ, G).

Proof. We first prove that {xt | t ∈ Tλ, x ∈ Xλ,t} contains a left transversal of Hλ. Given any g ∈ G and

λ ∈ Λ, there exists t ∈ Tλ,m ∈ M , and h ∈ Hλ such that g = tmh. Let m′ = mt. Then g = m′th. As

〈〈N〉〉 is normal in G, m′ belongs to 〈〈N〉〉. As Xλ,t ∈ LT (N t
λ, 〈〈N〉〉), there exists x ∈ Xλ,t and n ∈ Nλ

such that m′ = xnt. Let h′ = nh ∈ Hλ. Then

g = m′th = xtnt−1th = xtnh = xth′.

Next, we verify that any two elements of {xt | t ∈ Tλ, x ∈ Xλ,t} comes from different left cosets of

Hλ. Suppose that for some λ ∈ Λ, there exist t1, t2 ∈ Tλ, x1 ∈ Xλ,t1 , x2 ∈ Xλ,t2 with t−1
1 x−1

1 x2t2 ∈ Hλ.

Note that x−1
1 x2 is an element of 〈〈N〉〉, and thus m = t−1

2 x−1
1 x2t2 is an element of 〈〈N〉〉. It follows that

t−1
1 t2 = (t−1

1 x−1
1 x2t2)m−1 ∈ Hλ〈〈N〉〉

and thus t1 = t2. Hence,

t−1
1 x−1

1 x2t2 = t−1
1 x−1

1 x2t1 ∈ 〈〈N〉〉.

The assumption t−1
1 x−1

1 x2t2 ∈ Hλ then implies

t−1
1 x−1

1 x2t2 ∈ 〈〈N〉〉 ∩Hλ = Nλ,

where the last equality follows from the assumption at the beginning of Section 4.2.1.. In other words,

x−1
1 x2 ∈ N t1

λ . As neither of the factorizations of x1 and x2 ends with a factor from N t1
λ , the only possibility

for x−1
1 x2 ∈ N t1

λ is x1 = x2. As a consequence, x1t1 = x2t2.

For λ ∈ Λ, note that Rλ,−1 is generated by {xtHλ | t ∈ Tλ, x ∈ Xλ,t} and thus Rλ,−1 = Z[G/Hλ]. It

follows that Rλ is a free resolution of Z[G/Hλ] over Z〈〈N〉〉. Let

iλ : Rλ → P
⊗

Z[G/Hλ]
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be the embedding of Rλ into P
⊗

Z[G/Hλ]. As P
⊗

Z[G/Hλ] → Z[G/Hλ] and Rλ → Z[G/Hλ] are

both free resolutions over Z〈〈N〉〉, we have

Lemma 4.2.11. For λ ∈ Λ, iλ induces a group isomorphism

i∗λ : H∗(Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A)) −→ H∗(Hom〈〈N〉〉(Rλ, A)).

Let

R =
⊕
λ∈Λ

Rλ, ε′ =

DT⊕
λ∈Λ

ε′λ : R −→ R,

i∗ =

DT∏
λ∈Λ

i∗λ :
∏
λ∈Λ

H∗(Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A)) −→
∏
λ∈Λ

H∗(Hom〈〈N〉〉(Rλ, A)).

Clearly, R →
⊕

λ∈Λ Z[G/Hλ] is a free resolution under the boundary operator ε′. By Lemma 4.2.11, i∗ is

an isomorphism.

Applying Hom〈〈N〉〉(·, A) to R and let Hom〈〈N〉〉(R,A) be the resulted cochain complex. The obvious

isomorphism
∏
λ∈ΛHom〈〈N〉〉(Rλ, A)→ Hom〈〈N〉〉(R,A) gives rise to an isomorphism

j :
∏
λ∈Λ

H∗(Hom〈〈N〉〉(Rλ, A)) −→ H∗(Hom〈〈N〉〉(R,A)).

We construct the second auxiliary resolution. Let R̃ =
⊕

`>−1 R̃` be the graded Z〈〈N〉〉-module such

that for every ` > 1, R̃` = R`, and that R̃0 = Z〈〈N〉〉, R̃−1 = Z. Consider the boundary operator ε̃ : R̃→ R̃

constructed as follows. For all ` > 2, let ε̃` = ε′`. For ` = 1, note that

R̃1 = R1 =
⊕
λ∈Λ

 ⊕
t∈Tλ,x∈Xλ,t

(xt ·Qλ,1)

 .

If r ∈ xt ·Qλ,1 for some λ ∈ Λ, t ∈ Tλ, and x ∈ Xλ,t, let

ε̃1(r) = (Fgλ ◦ ε′1(r)) · t−1.

Here, Fgλ ◦ ε′1(r) is an element of P0 = ZG and thus we can multiply it by t−1 on the right. Finally, let ε̃0

be the augmentation of Z〈〈N〉〉 sending R̃0 = Z〈〈N〉〉 onto Z.
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Lemma 4.2.12. ε̃ is a Z〈〈N〉〉-module homomorphism.

Proof. It suffices to prove that ε̃1 is a Z〈〈N〉〉-module homomorphism. Note that R̃1 can be decomposed as

a direct sum

R̃1 =
⊕
λ∈Λ

⊕
t∈Tλ,x∈Xλ,t

(xt ·Qλ,1)

of Z〈〈N〉〉-modules. Each direct summand
⊕

x∈Xλ,t(xt · Qλ,1) is a Z〈〈N〉〉-module, on which ε̃1 is the

composition of Fgλ, ε′λ, and the right multiplication of t−1. The maps Fgλ and ε′λ are Z〈〈N〉〉-module

homomorphisms, and right multiplications are automatically homomorphisms of left modules. Thus, ε̃1 is a

Z〈〈N〉〉-module homomorphism on each summand
⊕

t∈Tλ,x∈Xλ,t(xt ·Qλ,1) of R̃1.

Direct computation shows that, under the boundary operator ε̃, R̃ becomes a chain complex. Clearly, R̃

is exact at R̃` for every ` > 2. Note that ε̃(R̃1) is a Z〈〈N〉〉-submodule of Z〈〈N〉〉 generated by elements

of the form xnt − x with t ∈ Tλ, x ∈ Xλ,t, n ∈ Nλ, λ ∈ Λ, and thus ε̃(R̃1) is the augmentation ideal of

Z〈〈N〉〉. Therefore, R̃ is also exact at R̃0.

Lemma 4.2.13. ker(ε̃1) = ker(ε′1).

Proof. For every λ ∈ Λ, t ∈ Tλ, and x ∈ Xλ,t, denote by ε′1,λ,t,x the restriction of ε′1 to xt ·Qλ. Note that

ker(ε′1) =
⊕

λ∈Λ,t∈Tλ,x∈Xλ,t

ker(ε′1,λ,t,x).

The restriction of ε̃1 on xt · Qλ is Fgλ ◦ ε′1,λ,t,x composed with the right multiplication of t−1. Thus, for

every λ ∈ Λ, t ∈ Tλ, and x ∈ Xλ,t, ker(ε′1,λ,t,x) is contained in ker(ε̃1). It follows that ker(ε′1) ⊂ ker(ε̃1).

In order to prove the converse containment, we introduce the following concepts. For λ ∈ Λ, let Eλ be

a set of pairs of elements of Nλ such that

(a) every pair of the form (n, n), n ∈ Nλ belongs to Eλ;

(b) if n1, n2 are distinct elements of Nλ, then Eλ contains exactly one of (n1, n2) and (n2, n1).

Let

S = {(xtn1, xtn2)⊗ xtHλ | λ ∈ Λ, t ∈ Tλ, x ∈ Xλ,t, (n1, n2) ∈ Eλ} ⊂ R1.

For

s = (xtn1, xtn2)⊗ xtHλ ∈ S,
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let

Ω(s) = max{ω(xnt1), ω(xnt2)},

where ω is the number of factors of elements of 〈〈N〉〉 (see Definition 4.2.8).

For every λ ∈ Λ, note that Eλ is a basis for the abelian group Qλ,1. As a consequence, S is a basis for

the abelian group R1 and thus every element r ∈ R1 can be uniquely written in the form

r =
∑
s∈S

Cr,ss

where Cr,s ∈ Z and the above sum makes sense as there are only finitely many non-zero terms.

We call the number Cr,s in the above equation the coefficient of r with respect to s. Let rank : R1 → N

by the function summing the absoute values of the coefficients:

rank(r) =
∑
s∈S
|Cr,s|, r ∈ R1.

Let r ∈ ker(ε̃1). We prove r ∈ ker(ε′1) by an induction on rank(r). The base case rank(r) = 0

implies r = 0 and thus r ∈ ker(ε′1). So let us suppose that rank(r) > 0 and that, for all r′ ∈ ker(ε̃1) with

rank(r′) < rank(r), we have r′ ∈ ker(ε′1).

Let

s0 = (x0t0n1, x0t0n2)⊗ x0t0Hλ0 ∈ S

such that Cr,s0 6= 0 and that

(max Ω) if s ∈ S satisfying Cr,s 6= 0, then Ω(s0) > Ω(s).

If n1 = n2, consider the element r′ ∈ R1 such that Cr′,s = Cr,s for s ∈ S\{s0} and Cr′,s0 = 0. Direct

computation shows

rank(r′) < rank(r), ε̃1(r − r′) = ε′1(r − r′) = 0.

Thus, ε̃1(r′) = 0 and the induction hypothesis implies ε′1(r′) = 0. It follows that

ε′1(r) = ε′1(r − r′) + ε′1(r′) = 0.

Therefore, r ∈ ker(ε′1).
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Thus, without loss of generality, let us assume n1 6= n2. It follows that at least one of n1 and n2 is not

the identity of G. Without loss of generality, we may further assume n1 6= 1 (the case n2 6= 1 is similar), in

which case

Ω(s0) = ω(x0t0n1t
−1
0 ).

Let us also assume Cr,s > 0 (otherwise, consider −r). Note that

ε̃1(r) =
∑
s∈S

Cr,sε̃1(s). (4.7)

On the right-hand side of (4.7),

Cr,s0 ε̃1(s0) = Cr,s0(x0t0n2t
−1
0 − x0t0n1t

−1
0 ).

Thus, s0 contributes a negative number of x0t0n1t
−1
0 to ε̃1(r). As ε̃1(r) = 0, there exists some s1 ∈ S

which contributes a positive number of x0t0n1t
−1
0 to ε̃1(r). In other words, at least one of the following

cases happens

(a) s1 = (x1t1n3, x1t1n4)⊗ x1t1Hλ1 with Cr,s1 < 0, n3 6= n4, and x1t1n3t
−1
1 = x0t0n1t

−1
0 .

(b) s1 = (x1t1n3, x1t1n4)⊗ x1t1Hλ1 with Cr,s1 > 0, n3 6= n4, and x1t1n4t
−1
1 = x0t0n1t

−1
0 .

Let us suppose that Case (a) happens (Case (b) can be treated in the same manner). Note that n3 6= 1 in

this case. Indeed, if n3 = 1, then n4 6= 1 since n4 6= n3. It follows that

Ω(s1) > ω(x1t1n3t
−1
1 ) as n3 = 1, n4 6= 1, x1 ∈ Xλ1,t1

=ω(x0t0n1t
−1
0 ) as x1t1n3t

−1
1 = x0t0n1t

−1
0

=Ω(s0),

which contradicts the choice of s0. Thus, n3 6= 1, which, together with the assumption x1 ∈ Xλ1,t1 , implies

that the factorization of x1t1n3t
−1
1 ends with t1n3t

−1
1 .

As x0 ∈ Xλ0,t0 , the factorization of x0t0n1t
−1
0 ends with t0n1t

−1
0 . Since x1t1n3t

−1
1 = x0t0n1t

−1
0 , we

have

t0n1t
−1
0 = t1n3t

−1
1 ∈ t0Nλ0t

−1
0 ∩ t1Nλ1t

−1
1 .
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As n1 6= 1, we have

t0Nλ0t
−1
0 ∩ t1Nλ1t

−1
1 6= {1}. (4.8)

(N2) and (4.8) imply λ1 = λ0, t1 = t0, which, together with x1t1n3t
−1
1 = x0t0n1t

−1
0 , implies n1 =

n0, x1 = x0 and thus

s1 = (x0t0n1, x0t0n4)⊗ x0t0Hλ0 .

Exactly one of (n2, n4) and (n4, n2) is in Eλ0 . Without loss of generality, we assume that (n2, n4) ∈

Eλ0 (the other case is similar). Let

s2 = (x0t0n2, x0t0n4)⊗ x0t0Hλ0 ,

let r′ ∈ R1 such that Cr′,s = Cr,s for s ∈ S\{s0, s1, s2}, and let

Cr′,s0 = Cr,s0 − 1, Cr′,s1 = Cr,s1 + 1, Cr′,s2 = Cr,s2 − 1.

As Cr,s0 > 0, Cr,s1 < 0, and ε̃1(r) = 0, direct computation shows

rank(r′) < rank(r), ε̃1(r − r′) = ε′1(r − r′) = 0.

Thus, ε̃1(r′) = 0 and the induction hypothesis implies ε′1(r′) = 0. It follows that

ε′1(r) = ε′1(r − r′) + ε′1(r′) = 0,

that is, r ∈ ker(ε′1).

By Lemma 4.2.13, the chain complex R̃ is also exact at R̃1 and thus is a free resolution of Z over Z〈〈N〉〉.

Note that P → Z is also a free resolution over Z〈〈N〉〉. Let

σ = Fg ◦
DT⊕
λ∈Λ

iλ : R −→ P.
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Then σ gives rise to a chain map

· · · R̃2 R̃1 Z〈〈N〉〉 Z 0

· · · P2 P1 ZG Z 0

ε̃ ε̃

σ

ε̃

σ

ε̃

idZ

∂ ∂ ∂ ∂

Lemma 4.2.14. σ induces a group isomorphism

σ∗ : H∗(Hom〈〈N〉〉(P,A)) −→ H∗(Hom〈〈N〉〉(R̃, A)).

Consider the cochain complexes Hom〈〈N〉〉(R,A) and Hom〈〈N〉〉(R̃, A). The map idR induces a map

id∗R between these cochain complexes, except at dimension 0:

· · · Hom〈〈N〉〉(R2, A) Hom〈〈N〉〉(R1, A) Hom〈〈N〉〉(R0, A) 0

· · · Hom〈〈N〉〉(R̃2, A) Hom〈〈N〉〉(R̃1, A) Hom〈〈N〉〉(R̃0, A) 0

(ε′)∗ (ε′)∗

id∗R

(ε′)∗

id∗R

ε̃∗ ε̃∗ ε̃∗

Here, the maps (ε′)∗ and ε̃∗ are the duals of ε′ and ε̃, respectively. id∗R induces a group homomorphism (still

denoted by)

id∗R :
⊕
`>1

H`(Hom〈〈N〉〉(R,A)) −→
⊕
`>1

H`(Hom〈〈N〉〉(R̃, A)).

Clearly, for ` > 2, id∗R maps H`(Hom〈〈N〉〉(R,A)) isomorphically onto H`(Hom〈〈N〉〉(R̃, A)).

Consider the coboundaries of R and R̃ at dimension 1. Let f ∈ Hom〈〈N〉〉(R0, A), let λ ∈ Λ, let t ∈ Tλ,

let x ∈ Xλ,t, and let n1, n2 ∈ Nλ. Denote (n2n
−1
1 )xt by m. Then

((ε′)∗f)((xtn1, xtn2)⊗ xtHλ)

=f(xtn2 ⊗ xtHλ)− f(xtn1 ⊗ xtHλ)

=f(m · (xtn1 ⊗ xtHλ))− f(xtn1 ⊗ xtHλ) as n1, n2 ∈ Nλ �Hλ

=m · f(xtn1 ⊗ xtHλ)− f(xtn1 ⊗ xtHλ) as m ∈ 〈〈N〉〉, f ∈ Hom〈〈N〉〉(R0, A)

=f(xtn1 ⊗ xtHλ)− f(xtn1 ⊗ xtHλ) as the 〈〈N〉〉 − action on A is trivial

=0.

88



Thus, ε∗f is the 0-function on R1.

Let f̃ ∈ Hom〈〈N〉〉(R̃0, A). Then

ε̃∗f̃((xtn1, xtn2)⊗ xtHλ)

=f(xtn2t
−1)− f(xtn1t

−1)

=f(m · (xtn1t
−1))− f(xtn1t

−1)

=m · f(xtn1t
−1)− f(xtn1t

−1) as m ∈ 〈〈N〉〉, f̃ ∈ Hom〈〈N〉〉(R̃0, A)

=f(xtn1t
−1)− f(xtn1t

−1) as the 〈〈N〉〉 − action on A is trivial

=0.

Thus, ε̃∗f̃ is also the 0-function on R̃1. Therefore,

H1(Hom〈〈N〉〉(R,A)) = ker(ε∗1)/ im(ε∗0) = ker(ε∗1) = ker(ε̃∗1)

= ker(ε̃∗1)/ im(ε̃∗0) = H1(Hom〈〈N〉〉(R̃, A)).

Lemma 4.2.15. For ` > 1, id∗R maps H`(Hom〈〈N〉〉(R,A)) isomorphically (in the sense of abelian groups)

onto H`(Hom〈〈N〉〉(R̃, A)).

Proof of Proposition 4.2.3. Fix ` > 1. It is easy to check that the following diagram commutes.

H`(Hom〈〈N〉〉(P,A))
∏
λ∈ΛH

`(Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A))

H`(Hom〈〈N〉〉(R̃, A)) H`(Hom〈〈N〉〉(R,A))

Fg∗

σ∗ j∗◦i∗

id∗R

(4.9)

In (4.9), Fg∗ is a ZG-module homomorphism. By Lemmas 4.2.11, 4.2.14, and 4.2.15, σ∗, j◦i∗, and id∗R

are group isomorphisms. Thus, Fg∗ is also a group isomorphism and thus is a ZG-module isomorphism.

Recall that Lemma 4.2.7 constructs a ZG-module isomorphism Iso∗λ. Let

Iso∗ =

DT∏
λ∈Λ

Iso∗λ :
∏
λ∈Λ

H∗(Hom〈〈N〉〉(P
⊗

Z[G/Hλ], A)) −→
∏
λ∈Λ

H∗(CoIndG
Hλ
HomNλ(P,A)).
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Denote SCH ◦ Iso∗ ◦ Fg∗ by η. Lemmas 4.2.4 and 4.2.7 imply that the map

η : H∗(Hom〈〈N〉〉(P,A)) −→
∏
λ∈Λ

CoIndG
Hλ
H∗(HomNλ(P,A))

is a ZG-module homomorphism and maps H`(Hom〈〈N〉〉(P,A)) isomorphically onto∏
λ∈ΛCoInd

G
Hλ
H`(HomNλ(P,A)).

Fix µ ∈ Λ. Let

π̃∗µ : CoIndG
Hλ
H∗(HomNµ(P,A)) −→ H∗(HomNµ(P,A))

be the standard projection. Then

πµ ◦ Proµ ◦ η =πµ ◦ Proµ ◦ SCH ◦ Iso∗ ◦ Fg∗

=πµ ◦ SCHµ ◦ Iso∗µ ◦ Fg∗µ

=π̃∗µ ◦ SCH−1
µ ◦ SCHµ ◦ Iso∗µ ◦ Fg∗µ by Remark 4.2.5

=π̃∗µ ◦ Iso∗µ ◦ Fg∗µ

=NTRµ by Lemma 4.2.9,

as desired.

4.2.3. Proof of Proposition 4.2.1

Suppose that the assumptions of Proposition 4.2.1 hold. By Remark 4.2.2, we may assume that Nλ 6=

{1} for λ ∈ Λ. Let

Sha∗ : H∗(G;
∏
λ∈Λ

CoIndG
Hλ
H∗(Nλ;A)) −→

∏
λ∈Λ

H∗(Hλ;H∗(Nλ;A))

be the isomorphism given by Lemma 2.13.1, and let NTRG be the natural map defined in Notation 2.14.2.

Fix p ∈ Z and q ∈ Z\{0}. By Proposition 4.2.3 and the definition of Sha∗, there is a commutative
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diagram

Hp(G;Hq(〈〈N〉〉;A))
∏
λ∈ΛH

p(Hλ;Hq(Nλ;A))

Hp(G;
∏
λ∈ΛCoInd

G
Hλ
Hq(Nλ;A))

NTRp,q
G

η∗
Sha∗

where η∗ is the natural map induced by the map η : H∗(〈〈N〉〉;A)→ CoIndG
Hλ
H∗(Nλ;A).

η maps Hq(〈〈N〉〉;A) isomorphically onto CoIndG
Hλ
Hq(Nλ;A) and thus η∗ maps

Hp(G;Hq(〈〈N〉〉;A)) isomorphically onto Hp(G,
∏
λ∈ΛCoInd

G
Hλ
Hq(Nλ;A)). As Sha∗ is an iso-

morphism, we deduce that NTRp,q
G

is an isomorphism.

4.3 Morphisms of Lyndon-Hochschild-Serre spectral sequences

4.3.1. Lyndon-Hochschild-Serre spectral sequences

Until the end of Section 4.3.3., let (G,H,N) be a group triple such that the natural map

H = H/N −→ G = G/〈〈N〉〉

is injective. We think of H as a subgroup of G. Let A (resp. B) be a ZG-module (resp. ZH-module), and

let L : A→ B be a ZH-linear map.

The Lyndon-Hochschild-Serre (LHS) spectral sequence for the triple (G, 〈〈N〉〉, A) is a spectral sequence

hE
p,q
G,2 = Hp(G;Hq(〈〈N〉〉;A))⇒ Hp+q(G;A)

constructed as follows. Choose an injective resolution A→ IA over ZG. Apply the functor Hom〈〈N〉〉(Z, ·)

to A→ IA to obtain a deleted cochain complex (Hom〈〈N〉〉(Z, IA), εG). Let

(JG, hδG, vδG)
fG−−→ (Hom〈〈N〉〉(Z, IA), εG)

be a CE resolution over ZG. Apply the functor HomG(Z, ·) to JG to form a deleted double complex
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(CG, hdG, vdG). Let (TCG, dG) be the total complex of CG. By Lemma 2.15.31, the row filtration of TCG

induces a spectral sequence

hEG = {(hEG,r, hdG,r)}r>1.

The LHS spectral sequence for (G, 〈〈N〉〉, A) is the spectral sequence {(hEG,r, hdG,r)}r>2 resulted from

deleting the E1 page of hEG.

Remark 4.3.1. There is no essential reason for deleting the E1 page in the construction of LHS spectral

sequences. We take this approach only because it simplifies the construction of spectral sequence morphism

in the proof of Theorem 4.0.1.

Similarly, there is an LHS spectral sequence

hE
p,q
H,2 = Hp(H;Hq(N ;B))⇒ Hp+q(H;B)

for the tuple (H,N,B) constructed as follows. Pick an injective resolution B → IB over ZH . Apply the

functor HomN (Z, ·) to B → IB to obtain a deleted cochain complex (HomN (Z, IB), εH). Let

(JH , hδH , vδH)
fH−−−→ (HomN (Z, IB), εH)

be a CE resolution over ZH . Apply the functor HomH(Z, ·) to JH to form a deleted double complex

(CH , hdH , vdH). Let (TCH , dH) be the total complex of CH . By Lemma 2.15.31, the row filtration of

TCH induces a spectral sequence

hEH = {(hEH,r, hdH,r)}r>1.

The LHS spectral sequence for (H,N,B) is the spectral sequence {(hEH,r, hdH,r)}r>2 resulted from delet-

ing the E1 page of hEH .

As H 6 G, every injective ZG-module is automatically an injective ZH-module. Thus, A → IA can

also be regarded as an injective resolution over ZH . L gives rise to a chain map IA → IB , which induces a

chain map

L∗ : Hom〈〈N〉〉(Z, IA) −→ HomN (Z, IB).

As H 6 G, every injective ZG-module is automatically an injective ZH-module. Thus, JG can be
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regarded as a CE resolution over ZH . By Lemma 2.16.4, L∗ induces a morphism

MCER : JG −→ JH

between CE resolutions. MCER induces a morphism

MDC : CG −→ CH

between double complexes, which further induces a morphism

hMSS : hEG −→ hEH

between spectral sequences. For future reference, we note the following lemma.

Lemma 4.3.2. Under the above assumptions, L∗ and the inclusion H ↪→ G induces a morphism hMSS :

hEG → hEH between spectral sequences.

Note that MDC also induces a cohomology map

MDC∗ : H∗(TCG) −→ H∗(TCH).

Notation 4.3.3. Let

NABG : H∗(G;A) −→ H∗(H,B)

be the natural map induced by the inclusion H ↪→ G.

For q ∈ Z, let

NABq
N : Hq(〈〈N〉〉;A) −→ Hq(N ;B)

be the natural map induced by L and the inclusion N ↪→ 〈〈N〉〉.

For p, q ∈ Z, let

NABp,q

G
: Hp(G;Hq(〈〈N〉〉;A)) −→ Hp(H;Hq(N ;B))

be the natural map induced by NABq
N and the inclusion H ↪→ G.
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The goal of the upcoming Sections 4.3.2.and 4.3.3.is the following.

Proposition 4.3.4. Under the above assumptions,

(a) hMSS is compatible with NABG;

(b) for p, q ∈ Z, hMSSp,q2 can be identified with NABp,q

G
.

Proposition 4.3.4 should be well-known, but we are unable to find a reference for it, so we provide the

proof for the convenience of the reader.

4.3.2. Compatibility of hMSS and NABG

The goal of Section 4.3.2.is to prove part (a) of Proposition 4.3.4. By Lemma 2.15.33, hMSS and

MDC∗ are compatible. Thus, it suffices to identify MDC∗ with NABG.

Recall that A → IA is an injective resolution over ZG. Applying HomG(Z, ·) to this resolution gives

rise to a deleted cochain complex

HomG(Z, IA) : 0 −→ HomG(Z, I0
A) −→ HomG(Z, I1

A) −→ · · · (4.10)

Consider the column filtration of TCG

{0} ⊂ · · · ⊂ vFp+1TCG ⊂ vFpTCG ⊂ · · · ⊂ vF0TCG = TCG. (4.11)

By Lemma 2.15.31, (4.11) gives rise to a spectral sequence

vEG = {(vEG,r, vdG,r)}r>1.

Note that the 0-th row of vEG,r is a cochain complex

vE
∗,0
G,1 : 0 −→ vE

0,0 vdG,1−−−→ vE
1,0 vdG,1−−−→ · · · (4.12)

We construct a chain map

vChG : HomG(Z, IA) −→ vE
∗,0
G,1
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by the following procedure. Let

x ∈ HomG(Z, IpA) ⊂ Hom〈〈N〉〉(Z, I
p
A)

for some p > 0. Recall that

(JG, hδG, vδG)
fG−−→ (Hom〈〈N〉〉(Z, IA), εG)

is a CE resolution. Let y ∈ Hom(Z, Jp,0G ) such that y(k) = kfG(x) for all k ∈ Z. As fG is a ZG-module

homomorphism, y is in fact an element of Cp,0G = HomG(Z, Jp,0G ).

Lemma 4.3.5. dG(y) ∈ vFp+1TCG, i.e., vdG(y) = 0.

Proof. By Definition 2.16.1,

0 −→ Hom〈〈N〉〉(Z, I
p
A)

fG−−→ Jp,0G
vδG−−−→ Jp,1G

vδG−−−→ · · ·

is an injective resolution of Hom〈〈N〉〉(Z, I
p
A) over ZG. Thus, after applying the functor HomG(Z, ·), the

resulted non-deleted cochain complex

0 −→ HomG(Z, Hom〈〈N〉〉(Z, I
p
A))

f∗G−−→ Cp,0G
vdG−−−→ Cp,1G

vdG−−−→ · · · (4.13)

is still exact at Cp,0G , where f∗G is the map induced by fG.

Let

y′ ∈ HomG(Z, Hom〈〈N〉〉(Z, I
p
A))

such that y′(k) = kx for all k ∈ Z. Direct computation shows y = f∗G(y′). As (4.13) is exact at Cp,0G , we

have vdG(y) = vdG ◦ f∗G(y′) = 0.

Recall that vE
p,0
G,1 = Hp(vFpTCG/vFp+1TCG) and the cohomology is computed with respect to the

differential induced by dG = hdG+ vdG (see Lemma 2.15.31). Thus, every element of vE
p,0
G,1 is represented

by an element z ∈ vFpTC
p
G such that dG(z) ∈ vFp+1TC

p+1
G . Note that y ∈ Cp,0G ⊂ vFpTC

p
G. By Lemma

4.3.5, y represents an element [y] ∈ vE
p,0
G,1. Let vChG be the map such that, for every p > 0 and every

x ∈ HomG(Z, Ip), vChG maps x to the corresponding [y] ∈ vE
p,0
G,1.
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We note the following.

Lemma 4.3.6 ([31, Theorem 11.38]). vChG : HomG(Z, IA)→ vE
∗,0
G,1 is a chain isomorphism.

Remark 4.3.7. In [31], the cochain complexes HomG(Z, IA) and vE
∗,0
G,1 are identified with the chain map

being implicit. For the purpose of this paper, we need an explicit description of the chain map. The reader

is encouraged to read the proof in [31] and check that the identification is given by vChG.

Similarly, the column filtration

{0} ⊂ · · ·vFp+1TCH ⊂ vFpTCH ⊂ · · ·vF0TCH = TCH

gives rises to a spectral sequence

vEH = {(vEH,r, vdH,r)}r>1

by Lemma 2.15.31. The 0-th row of vEH,1

vE
∗,0
H,1 : 0 −→ vE

0,0
H,1

vdH,1−−−−→ vE
1,0
H,1

vdH,1−−−−→ · · ·

is a cochain complex.

As above, we construct a chain map

vChH : HomH(Z, IB) −→ vE
∗,0
H,1

by the following procedure. Let

x ∈ HomH(Z, IpB) ⊂ HomN (Z, IpB)

for some p > 0. Recall that

JH
fH−−−→ HomN (Z, IB)

is a CE resolution. Let y ∈ Hom(Z, Jp,0H ) such that y(k) = kfH(x) for all k ∈ Z. As fH is a ZHλ-module

homomorphism, y is in fact an element of Cp,0H = HomH(Z, Jp,0H ). Moreover, by the same argument as

the one above, we see that y represents an element [y] ∈ vE
p,0
H,1. Let vChH be the map such that, for
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every p > 0 and every x ∈ HomH(Z, IpB), vChH maps x to the corresponding [y] ∈ vE
p,0
H,1. We note the

following lemma (see also Remark 4.3.7).

Lemma 4.3.8 ([31, Theorem 11.38]). vChH : HomH(Z, IB)→ vE
∗,0
H,1 is a chain isomorphism.

Recall that L∗ induces morphisms MCER and MDC. MDC further induces a morphism

vMSS : vEG −→ vEH

between spectral sequences.

Lemma 4.3.9. For p > 0, the diagram

HomG(Z, IpA) HomH(Z, IpB)

vE
p,0
G,1 vE

p,0
H,1

L∗

vChG vChH

vMSS1

commutes.

Proof. Given x ∈ HomG(Z, IpA) for some p > 0, let y ∈ Cp,0G such that y(k) = kfG(x) and let [y] ∈

vE
p,0
G,1 be the cohomology class represented by y. By definition, vChG(x) = [y]. Let z ∈ Cp,0H such that

z = MDC(y). Then

dH(z) = dH ◦MDC(y) = MDC ◦ dG(y) ∈ vFp+1TCH

and thus z represents an element of vE
p,0
H,1. Let [z] ∈ vE

p,0
H,1 be the cohomology class represented by z. As

vMSS is induced by MCER, we have

vMSS1 ◦ vChG(x) = vMSS1([y]) = [MCER ◦ y] = [z].

Note that L∗(x) ∈ HomH(Z, IpB). Let z′ ∈ Cp,0H such that z′(k) = kfH ◦ L∗(x). Then z′ represents an

element of vE
p,0
H,1. Let [z′] ∈ vE

p,0
H,1 be the cohomology class represented by z′. Then [z′] = vChH ◦L∗(x),

by definition.
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Since MDC is induced by MCER, we have

z(k)

=MCER ◦ y(k)

=kMCER ◦ fG(x)

=kfH ◦ L∗(x) as MCER is induced by L∗

=z′(k).

Therefore, z = z′.

As a matter of fact, vE
p,q
G,2 = vE

p,q
H,2 = {0} for all q 6= 0 (for example, see [31, Theorem 11.38]).

Thus, Lemma 2.15.32 implies that Hp(TCG) (resp. Hp(TCH)) can be identified with vE
p,0
G,2 (resp. vE

p,0
H,2).

Lemma 2.15.33 implies that the cohomology map MDC∗ can be identified with

vMSS∗,02 =
DT⊕
p∈Z

vMSSp,0H,2 : vE
∗,0
G,2 −→ vE

∗,0
H,2.

By Lemmas 4.3.6, 4.3.8, and 4.3.9, the cochain complex vE
∗,0
G,1 (resp. vE

∗,0
λ,1) can be identified with

HomG(Z, IpA) (resp. HomH(Z, IpB)) via the chain map vChG (resp. vChH ), while the chain map vMSS1

can be identified with L∗. By Definition 2.15.27, vMSS∗,02 is the cohomology map induced by vMSS1.

Note that the cohomology map induced by L∗ is NABG. We conclude this subsection by the following.

Lemma 4.3.10. MDC∗ can be identified with NABG.

4.3.3. Identifying hMSSp,q2 with NABp,q

G

The goal of Section 4.3.3.is to finish the proof of Proposition 4.3.4. Recall that the row filtration

{0} ⊂ · · ·hFp+1TCG ⊂ hFpTCG ⊂ · · ·hF0TCG = TCG.

induces the spectral sequence hEG. Note that the 0-th row of hEG,1

hE
∗,0
G,1 : 0 −→ hE

0,0
G,1

hdG,1−−−→ hE
1,0
G,1

hdG,1−−−→ · · ·
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is a cochain complex.

Recall that

(JG, hδG, vδG)
fG−−→ (Hom〈〈N〉〉(Z, IA), εG)

is a CE resolution. For p, q ∈ Z, let

hZ
p,q
G = ker(hδ

p,q
G ), hB

p,q
G = im(hδ

p−1,q
G ), hH

p,q
G = hZ

p,q
G /hB

p,q
G

be the horizontal cocycle, coboudnary, and cohomology of JG at position (p, q), respectively. Fix q > 0 for

the moment. By Definition 2.16.1, the vertical differential vδG induces an injective resolution

0 −→ Hq(〈〈N〉〉;A) −→ hH
q,0
G −→ hH

q,1
G −→ · · ·

Applying HomG(Z, ·) to this resolution gives rise to a deleted cochain complex

HomG(Z, hHq,∗
G ) : 0 −→ HomG(Z, hHq,0

G ) −→ HomG(Z, hHq,1
G ) −→ · · ·.

We construct a chain map

hChG : HomG(Z, hHq,∗
G ) −→ hE

∗,0
G,1

by the following procedure. Let x ∈ HomG(Z, hHq,p
G ) for some p > 0. Note that every term in the short

exact sequence

0 −→ hB
q,p
G −→ hZ

q,p
G −→ hH

q,p
G −→ 0

is an injective module (see Definition 2.16.1). Thus, after applying HomG(Z, ·), the resulted sequence

0 −→ HomG(Z, hBq,p
G ) −→ HomG(Z, hZq,pG ) −→ HomG(Z, hHq,p

G ) −→ 0

is still exact. In particular, there exists y ∈ HomG(Z, hZq,pG ) such that y(k) ∈ hZ
q,p
G represents x(k) ∈

hH
q,p
G for every k ∈ Z. As

hZ
q,p
G ⊂ C

q,p
G ⊂ hFpTCG,
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we may think of y as an element of hFpTC
p+q
G . By the same argument as the one in Lemma 4.3.5, dG(y) ∈

hFp+1TCG and thus y represents an element

[y] ∈ hE
p,q
G,1 = Hp+q(hFpTCG/hFp+1TCG).

Let hChG be the map such that, for every p > 0, hChG maps every x ∈ HomG(Z, hHq,p
G ) to the corre-

sponding [y] ∈ hE
p,q
G,1. It is easy to check that hChG is well-defined, i.e., hChG(x) does not depend on the

choice of y ∈ HomG(Z, hZq,pG ) such that y(k) ∈ hZ
q,p
G represents x(k) ∈ hH

q,p
G for k ∈ Z.

Lemma 4.3.11 ([31, Theorem 11.38]). hChG is a chain isomorphism.

Remark 4.3.12. In [31], the cochain complexes HomG(Z, hHq,∗
G ) and hE

∗,0
G,1 are identified with the chain

map being implicit. The reader is encouraged to read the proof in [31] and check that the identification is

given by hChG.

Recall that the row filtration

{0} ⊂ · · ·hFp+1TCH ⊂ hFpTCH ⊂ · · ·hF0TCH = TCH .

induces the spectral sequence hEH . The 0-th row of hEH,1

hE
∗,0
H,1 : 0 −→ hE

0,0
H,1

hdH,1−−−→ hE
1,0
H,1

hdH,1−−−→ · · ·

is a cochain complex.

Recall that

(JH , hδH , vδH)
fH−−−→ (Hom〈〈N〉〉(Z, IB), εH)

is a CE resolution. For p, q ∈ Z, let

hZ
p,q
H = ker(hδ

p,q
H ), hB

p,q
H = im(hδ

p−1,q
H ), hH

p,q
λ = hZ

p,q
H /hB

p,q
H

be the horizontal cocycle, coboudnary, and cohomology of JH at position (p, q), respectively. Fix q > 0 for
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the moment. By Definition 2.16.1, the vertical differential vδH induces an injective resolution

0 −→ Hq(N ;A) −→ hH
q,0
H −→ hH

q,1
H −→ · · ·

Applying HomH(Z, ·) to this resolution gives rise to a deleted cochain complex

HomH(Z, hHq,∗
H ) : 0 −→ HomH(Z, hHq,0

H ) −→ HomH(Z, hHq,1
H ) −→ · · ·.

We construct a map

hChH : HomH(Z, hHq,∗
H ) −→ hE

∗,0
H,1

by the following procedure. Let x ∈ HomH(Z, hHq,p
H ) for some p > 0. By the same argument as the one

above, there exists y ∈ HomH(Z, hZq,pH ) such that y(k) ∈ hZ
q,p
H represents x(k) ∈ hH

q,p
H for every k ∈ Z.

As

hZ
q,p
H ⊂ C

q,p
H ⊂ hFpTC

p+q
H ,

we may think of y as an element of hFpTC
p+q
H . By the same argument as the one in Lemma 4.3.5, dH(y) ∈

hFp+1TCH and thus y represents an element

[y] ∈ hE
p,q
H,1 = Hp+q(hFpTCH/hFp+1TCH).

Let hChH be the map such that, for every p > 0, hChH maps every x ∈ HomH(Z, hHq,p
H ) to the corre-

sponding [y] ∈ hE
p,q
H,1. It is easy to check that hChH is well-defined, i.e., hChH(x) does not depend on the

choice of y ∈ HomH(Z, hZq,pH ) such that y(k) ∈ hZ
q,p
H represents x(k) ∈ hH

q,p
H for k ∈ Z.

Lemma 4.3.13 ([31, Theorem 11.38] (see also Remark 4.3.7)). hChH is a chain isomorphism.

Recall that the chain map L∗ induces morphisms MCER,MDC, and hMSS. MCER induces a map

MCER : hH
q,∗
G −→ hH

q,∗
H ,

which further induces a chain map

MCER
∗

: HomG(Z, hHq,∗
G ) −→ HomH(Z, hHq,∗

H ).
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Lemma 4.3.14. For p > 0, the diagram

HomG(Z, Hq,p
G ) HomH(Z, Hq,p

H )

hE
p,q
G,1 hE

p,q
H,1

hChG

MCER
∗

hChH

hMSS1

commutes.

Proof. Given x ∈ HomG(Z, Hq,p
G ) for some p > 0, let y ∈ HomG(Z, hZq,pG ) such that y(k) ∈ hZ

q,p
G

represents x(k) ∈ hH
q,p
G for all k ∈ Z, and let [y] ∈ hE

p,q
G,1 be the cohomology class represented by y. By

definition, hChG(x) = [y].

Let

z = MCER ◦ y ∈ HomH(Z, Jq,pH ).

As MCER is a morphism of double complexes, z in fact belongs to HomH(Z, hZq,pH ) and thus represents

an element [z] ∈ hE
p,q
H,1. By definition, hMSS1 ◦ hChG(x) = [z].

Note thatMCER
∗
(x) = MCER◦x. AsMCER is a morphism between double complexes, for every

k ∈ Z, z(k) ∈ hZ
q,p
H represents MCER ◦ x(k) ∈ hH

q,p
H . By definition, hChH ◦MCER

∗
(x) = [z].

Therefore, hMSS1 ◦ hChG = hChH ◦MCER
∗.

As MCER is induced by L∗, the following diagram commutes.

0 Hom〈〈N〉〉(Z, I
q
A) Jq,1G Jq,2G · · ·

0 HomN (Z, IqB) Jq,1H Jq,2H · · ·

fG

L∗

vδG

MCER

vδG

MCER

fH vδH vδH
(4.14)
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As fG, fH , and L∗ are chain maps, (4.14) induces a commutative diagram

0 Hq(〈〈N〉〉;A) hH
q,1
G hH

q,2
G · · ·

0 Hq(N ;B) hH
q,1
H hH

q,2
H · · ·

fG

L∗ MCER MCER

fH
(4.15)

where fG, fH ,L∗ are the maps induced by fG, fH ,L∗, respectively.

Applying the functors HomG(Z, ·) and HomH(Z, ·) to (4.15) gives rise to

0 HomG(Z, Hq(〈〈N〉〉;A)) HomG(Z, hHq,1
G ) · · ·

0 HomH(Z, Hq(N ;B)) HomH(Z, hHq,1
H ) · · ·

fG

fH
(4.16)

In (4.16), the leftmost vertical map is NABq
N and all other vertical maps are MCER

∗. It follows that

the cohomology map induced by MCER
∗ is NAB∗,q

G
=
⊕DT

p∈ZNAB
p,q

G
.

By Lemmas 4.3.11, 4.3.13, and 4.3.14, the cochain complex hE
q,∗
G (resp. hE

q,∗
H ) can be identified with

HomG(Z, hHq,∗
G ) (resp. HomH(Z, hHq,∗

H )) via the chain map hChG (resp. hChH ), while the chain map

hMSS1 can be identified with MCER
∗. By Definition 2.15.27, hMSS2 is the cohomology map induced

by hMSS1. Thus,

Lemma 4.3.15. For p, q ∈ Z, hMSSp,q2 can be identified with NABp,q

G
.

Proof of Proposition 4.3.4. Proposition 4.3.4 is a combination of Lemmas 2.15.33, 4.3.10, and 4.3.15.

4.4 Proof of Theorem 4.0.1

Under the assumptions of Theorem 4.0.1, let EG = {(EG,r, dG,r)}r>2 be the LHS spectral sequence

for the triple (G, 〈〈N〉〉, A). For λ ∈ Λ, let EHλ = {(EHλ,r, dHλ,r)}r>2 be the LHS spectral sequence for
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the triple (Hλ, Nλ, A). Recall that EG (resp. EHλ) results from deleting the E1 page of {(EG,r, dG,r)}r>1

(resp. {(EHλ,r, dHλ,r)}r>1).

Employ notations defined in Notation 2.14.2. Let us first construct, for every λ ∈ Λ, a morphism

MSSλ : EG → EHλ of spectral sequences.

Let Λ′ = {λ ∈ Λ | Nλ 6= {1}}. Note that the group triple (G, {Hλ}λ∈Λ′ , {Nλ}λ∈Λ′) has the Cohen-

Lyndon property. By Proposition 3.3.1, for λ ∈ Λ′, we may think of Hλ as a subgroup of G. By Lemma

4.3.2, the inclusion Hλ ↪→ G induces a morphism

{(EG,r, dG,r)}r>1 −→ {(EHλ,r, dHλ,r)}r>1

between spectral sequences. By restricting the domain of this morphism to EG and the target of this mor-

phism to EHλ , we obtain a morphism

MSSλ : EG −→ EHλ

between LHS spectral sequences.

Let λ ∈ Λ\Λ′. Then for r > 2,

Ep,qHλ,r =


Hp(Hλ;H0({1};A)) if q = 0

0 if q 6= 0.

Note that Ep,0Hλ,r can be naturally identified with Hp(Hλ;A).

For r > 2, define a bigraded abelian group homomorphism MSSλ,r : EG,r → EHλ,r by the following.

(1) MSSp,qλ,r is the identically zero map for all p ∈ Z and q ∈ Z\{0}.

(2) For q = 0, let R > r be sufficiently large such that Ep,0G,R naturally embeds into Hp(G;A) (such an

R exists as Ep,qG,2 ⇒ Hp+q(G;A)). By the definition of spectral sequences, there is a natural quotient

map Ep,0G,r → Ep,0G,R. Let MSSp,0λ,r be the composisition

Ep,0G,r → Ep,0G,R → Hp(G;A)→ Hp(Hλ;A) ∼= Ep,0Hλ,r
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(the definition of MSSp,0λ,r does not depend on the choice of R).

It is easy to check that MSSλ,r, r > 2, constructed above form a morphism MSSλ : EG → EHλ between

spectral sequences.

Claim. For λ ∈ Λ,

(a) MSSλ is compatible with NTRHλ;

(b) for p, q ∈ Z, MSSp,qλ,2 can be identified with NTRp,q
Hλ

.

Proof of the claim. If λ ∈ Λ′, then (a) and (b) follow from Proposition 4.3.4. If λ ∈ Λ\Λ′, then (a) and (b)

follow directly from the definition of MSSλ.

Let EH be the product of EHλ , λ ∈ Λ, and let

MSS =

Tar∏
λ∈Λ

MSSλ : EG −→ EH.

By Lemma 2.15.15 and the claim above, MSS is compatible with NTRG. For p, q ∈ Z, MSSp,q2 can be

identified with NTRp,q
G

. By Proposition 4.2.1, for p ∈ Z and q ∈ Z\{0}, NTRp,q
G

is an isomorphism and

thus MSSp,q2 is also an isomorphism.

For q = 0 and p ∈ Z, it is well-known that H0(〈〈N〉〉;A) can be natrually identified with the 〈〈N〉〉-

fixed-points of A, and for λ ∈ Λ, H0(Nλ;A) can be naturally identified with the Nλ-fixed-points of A. As

A is a ZG-module, the 〈〈N〉〉-action on A fixes every point. Thus, we have natural isomorphisms

Hp(G;H0(〈〈N〉〉;A)) ∼= Hp(G;A),

∏
λ∈Λ

Hp(Hλ;H0(Nλ;A)) ∼=
∏
λ∈Λ

Hp(Hλ;A),

and NTRp,0
G

can be natrually identified with NT p
G

. Thus, MSSp,02 can be identified with NT p
G

.
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CHAPTER 5

APPLICATIONS

Theorem 4.0.1 provides a morphism between spectral sequences with special properties. In this chapter,

we first perform computations with spectral sequences to extract certain information from such a morphism.

And then we use the extracted information to prove Theorems 1.2.15, 1.2.18, 1.2.22, and 1.2.23.

5.1 Computations with spectral sequences

Let E1 = {(E1,r, d1,r)}r>2, E2 = {(E2,r, d2,r)}r>2 be two spectral sequences and let

MSS : E1 → E2

be a morphism between spectral sequences. Recall that, for r > 2, the differentials d1,r, d2,r and the map

MSSr are morphisms between bigraded abelian groups, and we use superscripts to denote the components.

The following lemma is an immediate consequence of our assumptions.

Lemma 5.1.1. For p, q ∈ Z and r > 2,

MSSp,qr (ker(dp,q1,r)) ⊂ ker(dp,q2,r), MSSp,qr (im(dp−r,q+r−1
1,r )) ⊂ im(dp−r,q+r−1

2,r ).

As MSSr+1 is the cohomology map induced by MSSr, it follows that

(a) MSSp,qr+1 is surjective if and only if

MSSp,qr (ker(dp,q1,r)) + im(dp−r,q+r−1
2,r ) = ker(dp,q2,r);

(b) MSSp,qr+1 is injective if and only if the preimage of im(dp−r,q+r−1
2,r ) underMSSp,qr is im(dp−r,q+r−1

1,r ).

Suppose that MSSp,q2 is an isomorphism for p ∈ Z and q ∈ Z\{0}. Ideas of this section are illustrated

by the example below.

Example 5.1.2. Suppose
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(a) Ep,q1,2 ⇒ Hp+q
1 and Ep,q2,2 ⇒ Hp,q

2 for some graded abelian groups H1 =
⊕

p>0H
p
1 and H2 =⊕

p>0H
p
2 ;

(b) There is a morphism f : H1 → H2 compatible with MSS.

For simplicity, let us further assume

(c) Ep,q1,2 = Ep,q2,2 = {0} whenever q 6= 0, 1.

Under these additional assumptions, we derive properties of E1, E2, and MSS. Recall that for p ∈ Z,

fp denotes the p-component of f .

The only possibly nontrivial differentials at the second page of E1 or E2 are the ones going from the

first row to the 0-th row. Two such maps are shown in Figure 5.1, where the unlabeled arrows are dp−2,1
1,2 and

dp−2,1
2,2 , respectively. After finishing the computations at the second page, we obtain the third page, which

is shown by Figure 5.2. In Figure 5.2, the line segment connecting coker(dp−3,0
1,2 ), ker(dp−2,1

1,2 ), and Hp−1
1

indicates the exact sequence

1→ coker(dp−3,0
1,2 )→ Hp−1

1 → ker(dp−2,1
1,2 )→ 1,

which is a consequence of Ep,q1,2 ⇒ Hp+q
1 . Similarly, other line segments in Figure 5.2 indicate different

consequences of the limits of E1 and E2.

Ep−2,1
1,2 Ep−1,1

1,2 Ep,11,2 Ep−2,1
2,2 Ep−1,1

2,2 Ep,12,2

Ep−2,0
1,2 Ep−1,0

1,2 Ep,01,2 Ep−2,0
2,2 Ep−1,0

2,2 Ep,02,2

MSS2

Figure 5.1: The second pages of E1 and E2

For p ∈ Z, the map MSSp−2,1
3 results from MSSp−2,1

2 by restricting the domain to ker(dp−2,1
1,2 ) and

restricting the target to ker(dp−2,1
2,2 ). Thus,

Observation 1. MSSp−2,1
3 is injective as MSSp−2,1

2 is.

In general, MSSp−2,1
3 need not be surjective, although MSSp−2,1

2 is surjective. For instance, if

ker(MSSp,02 ) ∩ im(dp−2,1
1,2 ) 6= {0}
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Hp−1
1 Hp

1

ker(dp−2,1
1,2 ) ker(dp−1,1

1,2 ) ker(dp,11,2)

coker(dp−4,1
1,2 ) coker(dp−3,1

1,2 ) coker(dp−2,1
1,2 )

Hp−1
2 Hp

2

ker(dp−2,1
2,2 ) ker(dp−1,1

2,2 ) ker(dp,12,2)

coker(dp−4,1
2,2 ) coker(dp−3,1

2,2 ) coker(dp−2,1
2,2 )

MSS3

Figure 5.2: The third pages of E1 and E2

Then there exists x ∈ Ep−2,1
1,2 such that

dp−2,1
1,2 (x) ∈ ker(MSSp,02 )\{0}.

Let y = MSSp−2,1
2 (x). Then

dp−2,1
2,2 (y) = dp−2,1

2,2 ◦MSSp−2,1
2 (x) = MSSp,02 ◦ dp−2,1

1,2 (x) = 0.

Thus, y ∈ ker(dp−2,1
2,2 ). We claim that y has no preimage under MSSp−2,1

3 . Indeed, MSSp−2,1
3 is a

restriction of MSSp−2,1
2 , and MSSp−2,1

2 is injective. Therefore, the only candidate for the preimage of y

under MSSp−2,1
3 is x. But x 6∈ ker(dp−2,1

1,2 ) and thus x is not in the domain of MSSp−2,1
3 .

Observation 2. By the above argument, if MSSp−2,1
3 is surjective (for example, if fp−1 is surjective), then

ker(MSSp,02 ) ∩ im(dp−2,1
1,2 ) = {0}, that is, MSSp,02 maps im(dp−2,1

1,2 ) injectively into Ep,02,2 .
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Let us make some other observations. Note that MSSp,02 maps im(dp−2,1
1,2 ) onto

im(MSSp,02 ◦ dp−2,1
1,2 ) = im(dp−2,1

2,2 ◦MSSp−2,1
2 ).

By assumption, MSSp−2,1
2 is an isomorphism. In particular, MSSp−2,1

2 is surjective. If dp−2,1
2,2 is also

surjective (for example, if Hp
2 = {0} and thus coker(dp−2,1

2,2 ) = {0}), then dp−2,1
2,2 ◦ MSSp−2,1

2 will be

surjective, which will imply the surjectivity of MSSp,02 ◦ dp−2,1
1,2 . Therefore,

Observation 3. If Hp
2 = {0}, then MSSp,02 maps im(dp−2,1

1,2 ) surjectively onto Ep,02,2 .

Now suppose that for some p, fp−1 is surjective and Hp
2 = {0}. By Observations 2 and 3, MSSp,02

maps im(dp−2,1
1,2 ) isomorphically onto Ep,02,2 . It follows that

(1) 1→ ker(MSSp,02 )→ Ep,01,2 → Ep,02,2 → 1 is a split exact sequence;

(2) Ep,01,2 = ker(MSSp,02 )
⊕

im(dp−2,1
1,2 ) and thus coker(dp−2,1

1,2 ) ∼= ker(MSSp,02 ).

As Ek,`2,2 ⇒ Hk+`
2 , another implication of Hp

2 = {0} is ker(dp−1,1
2,2 ) = {0}. By Observation 1,

MSSp−1,1
3 is injecitve. Thus, a consequence of ker(dp−1,1

2,2 ) = {0} is ker(dp−1,1
1,2 ) = {0}, which, together

with Ek,`1,2 ⇒ Hk+`
1 , implies Hp

1
∼= coker(dp−2,1

1,2 ). Thus,

Observation 4. If for some p, fp−1 is surjective and Hp
2 = {0}, then

Ep,01,2 = ker(MSSp,02 )
⊕

im(dp−2,1
1,2 ) ∼= Hp

1

⊕
Ep,02,2 .

Now drop the assumption Hp
2 = {0} and instead assume that fp−1 and fp are isomorphisms. As

Ek,`1,2 ⇒ Hk+`
1 , Ek,`2,2 ⇒ Hk+`

2 ,

we have

ker(dp−2,1
1,2 ) ∼= ker(dp−2,1

2,2 ), coker(dp−2,1
1,2 ) ∼= coker(dp−2,1

2,2 ).
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Thus, the five lemma and the commutative diagram

1 ker(dp−2,1
1,2 ) Ep,01,2 coker(dp−2,1

1,2 ) 1

1 ker(dp−2,1
2,2 ) Ep,02,2 coker(dp−2,1

2,2 ) 1

MSS2 MSS2 MSS2

imply

Observation 5. If for some p, fp−1 and fp are isomorphisms, then Ep,01,2
∼= Ep,02,2 .

The rest of this section aims to prove Observations 4 and 5 in full generality. The following Lemma

5.1.3 is a generalization of Observation 1.

Lemma 5.1.3. For r > 2,

(a) MSSp,qr is injective for all p ∈ Z and q ∈ Z\{0};

(b) MSSp,qr is an isomorphism if p ∈ Z and q > r − 1.

Proof. We prove these statements by induction on r. The base case r = 2 follows from the assumptions.

Suppose that (a) and (b) hold for r = R > 2. Consider the case r = R+ 1. The following Claims 1 and

2 follow directly from the induction hypothesis and Lemma 5.1.1.

Claim 1. For all p ∈ Z and q > 1, MSSp,qR maps ker(dp,q1,R) injectively into ker(dp,q2,R). If q > R, then

MSSp,qR maps ker(dp,q1,R) isomorphically onto ker(dp,q2,R).

Claim 2. For all q > R, MSSp+R,q−R+1
R maps im(dp,q1,R) isomorphically onto im(dp,q2,R).

(a) and (b) are immediate consequences of Claims 1,2 and Lemma 5.1.1.

Fix p > 2. Note that for all r > 2, dp,01,r is a map from Ep,01,r to Ep+r,1−r1,r = {0}. It follows that

ker(dp,01,r) = Ep,01,r and thus Ep,01,r+1 is a quotient of Ep,01,r . Similarly, Ep,02,r+1 is a quotient of Ep,02,r for all r > 2.

For r = 2, ..., p+ 1, let

Q1,r : Ep,01,r → Ep,01,r+1, Q2,r : Ep,02,r → Ep,02,r+1

be the corresponding quotient maps.
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To simplify notations, we also let Q1,1 : Ep,01,2 → Ep,01,2 , Q2,1 : Ep,02,2 → Ep,02,2 be the identity maps. For

r = 1, ..., p+ 1, let CQ1,r (resp. CQ2,r) be the composition of Q1,i (resp. Q2,i) for 1 6 i 6 r, i.e.,

CQ1,r = Q1,r ◦ · · ·Q1,1 : Ep,01,2 → Ep,01,r+1, CQ2,r = Q2,r ◦ · · ·Q2,1 : Ep,02,2 → Ep,02,r+1.

Remark 5.1.4. For r = 2, ..., p+1, Q1,r (resp. Q2,r) is the cohomology map sending every x ∈ Ep,01,r (resp.

y ∈ Ep,02,r ) to the cohomology class in Ep,01,r+1 (resp. Ep,02,r+1) represented by x (resp. y). Thus,

ker(Q1,r) = im(dp−r,r−1
1,r ), ker(Q2,r) = im(dp−r,r−1

2,r ),

MSSp,0r+1 ◦Q1,r = Q2,r ◦MSSp,0r , MSSp,0r+1 ◦ CQ1,r = CQ2,r ◦MSSp,02 .

Lemma 5.1.5.

(a) If MSSp−r−1,r
r+2 : Ep−r−1,r

1,r+2 → Ep−r−1,r
2,r+2 is surjective for r = 1, ..., p − 1, then CQ1,p+1 maps

ker(MSSp,02 ) injectively into ker(MSSp,0p+2).

(b) If Ep,02,p+2 = {0}, then MSSp,02 maps ker(CQ1,p+1) surjectively onto Ep,02,2 .

Proof.

(a) By Remark 5.1.4, CQ1,p+1 maps ker(MSSp,02 ) into ker(MSSp,0p+2). It remains to prove that CQ1,p+1

maps ker(MSSp,02 ) injectively into Ep,01,p+2. Suppose that this is not true. As CQ1,p+1 is the composi-

tion of Q1,r, there exists 1 6 r 6 p such that Q1,r+1 does not map CQ1,r(ker(MSSp,02 )) injectively

into Ep,01,r+2. We prove that MSSp−r−1,r
r+2 is not surjective, which contradicts our assumption. By

Lemma 5.1.3, MSSp−2r−2,2r
r+1 is an isomorphism. It follows that

MSSp−r−1,r
r+1 (im(dp−2r−2,2r

1,r+1 ))

= im(MSSp−r−1,r
r+1 ◦ dp−2r−2,2r

1,r+1 )

= im(dp−2r−2,2r
2,r+1 ◦MSSp−2r−2,2r

r+1 ) as MSS is a morphism of spectral sequences

= im(dp−2r−2,2r
2,r+1 ) as MSSp−2r−2,2r

r+1 is an isomorphism.
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In view of Lemma 5.1.1, it suffices to show

MSSp−r−1,r
r+1 (ker(dp−r−1,r

1,r+1 )) 6= ker(dp−r−1,r
2,r+1 ).

By the Remark 5.1.4, we have ker(Q1,r+1) = im(dp−r−1,r
1,r+1 ). This, together with the assumption that

Q1,r+1 does not map CQ1,r(ker(MSSp,02 )) injectively into Ep,01,r+2, implies

CQ1,r(ker(MSSp,02 )) ∩ im(dp−r−1,r
1,r+1 ) 6= {0}. (5.1)

Let W be the preimage of CQ1,r(ker(MSSp,02 )) under dp−r−1,r
1,r+1 . Note that

dp−r−1,r
2,r+1 ◦MSSp−r−1,r

r+1 (W )

=MSSp,0r+1 ◦ d
p−r−1,r
1,r+1 (W ) as MSS is a morphism of spectral sequences

⊂MSSp,0r+1 ◦ CQ1,r(ker(MSSp,02 ))

=CQ2,r ◦MSSp,02 (ker(MSSp,02 )) by Remark 5.1.4

={0}.

Thus,

MSSp−r−1,r
r+1 (W ) ⊂ ker(dp−r−1,r

2,r+1 ).

(5.1) implies

ker(dp−r−1,r
1,r+1 ) (W.

By Lemma 5.1.3, MSSp−r−1,r
r+1 is injective. Thus,

MSSp−r−1,r
r+1 (ker(dp−r−1,r

1,r+1 )) (MSSp−r−1,r
r+1 (W ) ⊂ ker(dp−r−1,r

2,r+1 ).

(b) Suppose, for the contrary, that

MSSp,02 (ker(CQ1,p+1)) 6= Ep,02,2 .
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Compare the following two sequences:

{MSSp,0r+1 ◦ CQ1,r(ker(CQ1,p+2))}p+1
r=1, {Ep,02,r+1}

p+1
r=1.

Note that

MSSp,02 ◦ CQ1,1(ker(CQ1,p+1)) = MSSp,02 (ker(CQ1,p+1)) 6= Ep,02,2 ,

but

MSSp,0p+2 ◦ CQ1,p+1(ker(CQ1,p+1)) = Ep,02,p+2 = {0}.

Thus, there exists 1 6 r 6 p such that

MSSp,0r+1 ◦ CQ1,r(ker(CQ1,p+1)) 6= Ep,02,r+1, (5.2)

MSSp,0r+2 ◦ CQ1,r+1(ker(CQ1,p+1)) = Ep,02,r+2. (5.3)

Let x ∈ Ep,02,r+1. Then Q2,r+1(x) ∈ Ep,02,r+2. By (5.3), there exists y ∈ ker(CQ1,p+2) such that

MSSp,0r+2 ◦ CQ1,r+1(y) = Q2,r+1(x).

Note that

0 =MSSp,0r+2 ◦ CQ1,r+1(y)−Q2,r+1(x)

=MSSp,0r+2 ◦Q1,r+1 ◦ CQ1,r(y)−Q2,r+1(x) by the definition of CQ1,r+1

=Q2,r+1 ◦MSSp,0r+1 ◦ CQ1,r(y)−Q2,r+1(x) by Remark 5.1.4

=Q2,r+1(MSSp,0r+1 ◦ CQ1,r(y)− x).

In other words,

MSSp,0r+1 ◦ CQ1,r(y)− x ∈ ker(Q2,r+1).
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By Remark 5.1.4, there exists z ∈ Ep−r−1,r
2,r+1 such that

dp−r−1,r
2,r+1 (z) = MSSp,0r+1 ◦ CQ1,r(y)− x.

By Lemma 5.1.3, MSSp−r−1,r
r+1 is an isomorphism. Thus, there exists t ∈ Ep−r−1,r

1,r+1 such that

MSSp−r−1,r
r+1 (t) = z. By Remark 5.1.4 again,

dp−r−1,r
1,r+1 (t) ∈ ker(Q1,r+1) ⊂ CQ1,r(ker(CQ1,p+1)).

Thus,

x =MSSp,0r+1 ◦ CQ1,r(y) + dp−r−1,r
2,r+1 (z)

=MSSp,0r+1 ◦ CQ1,r(y) + dp−r−1,r
2,r+1 ◦MSSp−r−1,r

r+1 (t)

=MSSp,0r+1 ◦ CQ1,r(y) +MSSp,0r+1 ◦ d
p−r−1,r
1,r+1 (t)

=MSSp,0r+1(CQ1,r(y) + dp−r−1,r
1,r+1 (t))

∈MSSp,0r+1 ◦ CQ1,r(ker(CQ1,p+1)).

As x is arbitrary, we have

MSSp,0r+1 ◦ CQ1,r(ker(CQ1,p+1)) = Ep,02,r+1,

contradicting (5.2).

Lemma 5.1.6. Let r ∈ {0, ..., p− 1} and let R > r+ 2. If MSSp−r−1,r
R+1 is surjective, then MSSp−r−1,r

R is

also surjective.

Proof. Suppose that MSSp−r−1,r
R is not surjective. Note that the target of dp−r−1,r

1,R is Ep+R−r−1,r−R+1
1,R =

{0}. Thus,

ker(dp−r−1,r
1,R ) = Ep−r−1,r

1,R .
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Similarly,

ker(dp−r−1,r
2,R ) = Ep−r−1,r

2,R .

As MSSp−r−1,r
R is not surjective, we have

MSSp−r−1,r
R (ker(dp−r−1,r

1,R )) 6= ker(dp−r−1,r
2,R ). (5.4)

By Lemma 5.1.3, MSSp−r−R−1,r+R−1
R is an isomorphism. It follows that

MSSp−r−1,r
R (im(dp−r−R−1,r+R−1

1,R ))

= im(MSSp−r−1,r
R ◦ dp−r−R−1,r+R−1

1,R ) (5.5)

= im(dp−r−R−1,r+R−1
2,R ◦MSSp−r−R−1,r+R−1

R ) as MSS is a morphism of spectral sequences

= im(dp−r−R−1,r+R−1
2,R ) as MSSp−r−R−1,r+R−1

R is an isomorphism.

(5.4), (5.5), and Lemma 5.1.1 imply that MSSp−r−1,r
R+1 is not surjective, contradicting our assumption.

Let us further suppose that

Ep,q1,2 ⇒ Hp+q
1 , Ep,q2,2 ⇒ Hp+q

2

for some graded abelian groups H1 =
⊕

`>0H
`
1, H2 =

⊕
`>0H

`
2 and there is a degree-0 morphism

f : H1 → H2 compactible with MSS. The following Lemmas 5.1.7 and 5.1.8 are generalizations of

Observations 4 and 5, respectively.

Lemma 5.1.7. If fp−1 is surjective and Hp
2 = {0}, then MSSp,02 is surjective with ker(MSSp,02 ) ∼= Hp

1 .

Moreover,

Ep,01,2
∼= Ep,02,2

⊕
Hp

1 .

Proof. If p 6 −1, then Ep,01,2 = Ep,02,2 = {0}. If p = 0, then E0,0
1,2
∼= H0

1 as Ek,`1,2 ⇒ Hk+`
1 , and E0,0

2,2
∼= H0

2 =

{0} as Ek,`2,2 ⇒ Hk+`
2 . Thus, the lemma holds in these two cases.

Suppose p = 1. By assumption, H1
2 = {0}. It follows from Remark 2.15.9 and Ek,`2,2 ⇒ Hk+`

2 that

E0,1
2,3 = E1,0

2,3 = {0}.
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The same argument as the one in Remark 2.15.9 shows

E1,0
2,2 = E1,0

2,3 = {0}.

By Lemma 5.1.3, MSS1,0
3 maps E0,1

1,3 injectively into E0,1
2,3 and thus E0,1

1,3 = {0}. Therefore,

E1,0
1,2

=E1,0
1,3 by the same argument as the one in Remark 2.15.9

∼=H1
1 by E0,1

1,3 = {0}, Ek,`1,2 ⇒ Hk+`
1 , and Remark 2.15.9

∼=E1,0
2,2

⊕
H1

1 as E1,0
2,2 = {0}.

Let us assume p > 2. As fp−1 is surjective and MSS is compatible with f , Remark 2.15.11 implies

that for r = 1, ..., p − 1,MSSp−r−1,r
p+1 is surjective. By succesively applying Lemma 5.1.6, we see that

MSSp−r−1,r
r+2 is also surjective. It follows from Lemma 5.1.5 that CQ1,p+1 maps ker(MSSp,02 ) injectively

into Ep,01,p+2. Thus,

ker(CQ1,p+1) ∩ ker(MSSp,02 ) = {0}. (5.6)

By Remark 2.15.9, Ek,`2,2 ⇒ Hk+`
2 , andHp

2 = {0}, we have Ep,02,p+2 = {0}. It follows from Lemma 5.1.5

that MSSp,02 maps ker(CQ1,p+1) surjectively onto Ep,02,2 . Together with (5.6), this implies

Ep,01,2 = ker(CQ1,p+1)
⊕

ker(MSSp,02 ) (5.7)

and

ker(CQ1,p+1) ∼= Ep,02,2 .

We have already shown that CQ1,p+1 maps ker(MSSp,02 ) injectively into Ep,01,p+2. Thus, (5.7) implies

that CQ1,p+1 maps ker(MSSp,02 ) isomorphically onto Ep,01,p+2.

For r = 1, ..., p, as Ek,`2,2 ⇒ Hk+`
2 and Hp

2 = {0}, we have Ep−r,r2,p+2 = {0} by Remark 2.15.9. By Lemma

5.1.3, MSSp−r,rp+2 maps Ep−r,r1,p+2 injectively into Ep−r,r2,p+2. Thus, Ep−r,r1,p+2 = {0}. As Ek,`1,2 ⇒ Hk+`
1 , Remark

2.15.9 implies

Hp
1
∼= Ep,01,p+2

∼= ker(MSSp,02 ).
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Therefore,

Ep,01,2
∼= ker(CQ1,p+2)

⊕
ker(MSSp,02 ) ∼= Ep,02,2

⊕
Ep,01,p+2

∼= Ep,02,2

⊕
Hp

1 .

Lemma 5.1.8. If fp−1 is surjective and fp is an isomorphism, then MSSp,02 is an isomorphism.

Proof. If p 6 0, then Remark 2.15.9, Ek,`1,2 ⇒ Hk+`
1 , and Ek,`2,2 ⇒ Hk+`

2 imply

Ep,01,2
∼= Hp

1 , Ep,02,2
∼= Hp

2 .

As fp is an isomorphism and MSS is compatible with fp, Remark 2.15.11 implies that MSSp,02 is an

isomorphism.

Let us suppose p > 1. As MSS is compatible with f and fp−1 is surjective, MSSp−r−1,r
p+1 is surjective

for r = 0, ..., p − 1, by Remark 2.15.11. It follows from Lemma 5.1.6 that MSSp−r−1,r
r+2 is surjective for

r = 0, ..., p− 1. By Lemma 5.1.5, CQ1,p+1 maps ker(MSSp,02 ) injectively into ker(MSSp,0p+2).

By Remark 2.15.11 and the assumption that fp is an isomorphism, MSSp,0p+2 is injective. Thus,

ker(MSSp,0p+2) = {0}. As CQ1,p+1 maps ker(MSSp,02 ) injectively into ker(MSSp,0p+2), we have

ker(MSSp,02 ) = {0}, i.e., MSSp,02 is injective.

By Remark 2.15.11 and the assumption that fp is an isomorphism, MSSp,0p+2 is surjective. By succes-

sively applying Lemma 5.1.6 (with p in place of p−1 in part (a)), we see that MSSp,02 is surjective and thus

is an isomorphism.

5.2 Cohomology of Dehn filling quotients

Theorem 5.2.1. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple satisfying the Cohen-Lyndon property. Em-

ploy the notations defined in Notation 2.14.2 and let A be a ZG-module. Suppose that for some p ∈ N,∏
λ∈ΛH

p(Hλ;A) = {0} and NTRG maps Hp−1(G;A) surjectively onto
∏
λ∈ΛH

p−1(Hλ;A). Then

NT p
G

is surjective with ker(NT p
G

) ∼= Hp(G;A). Moreover,

Hp(G;A) ∼=

(∏
λ∈Λ

Hp(Hλ;A)

)⊕
Hp(G;A). (5.8)
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Proof. Let MSS be as in Theorem 4.0.1. Note that MSS and NTRG satisfy the assumptions of Lemma

5.1.7, which yields (5.8) and shows thatMSSp,02 is surjective. By Theorem 4.0.1, MSSp,02 can be identified

with NT p
G

and thus NT p
G

is surjective.

Recall that for a group G, the cohomological dimension of G is

cd(G) = sup{` ∈ N | H`(G,A) 6= {0} for some ZG-module A}.

If (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) is a group triple, let

cd(H) = sup
λ∈Λ
{cd(Hλ)}, cd(H) = sup

λ∈Λ
{cd(Hλ)}.

Also recall the following result of [7] concerning relative cohomology groups.

Proposition 5.2.2 ([7, Proposition 1.1]). Let G be a group with a family of subgroups {Hλ}λ∈Λ. Then for

every ZG-module A, there is a long exact sequence

· · · → H`(G, {Hλ}λ∈Λ;A)→ H`(G;A)
NTRG−−−−→

∏
λ∈Λ

H`(Hλ;A)→ H`+1(G, {Hλ}λ∈Λ;A)→ · · ·

where NTRG is the natural map defined in Notation 2.14.2.

Corollary 5.2.3. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple satisfying the Cohen-Lyndon property.

Then for all ` > cd(H) + 3 and every ZG-module A, there is an isomorphism

H`(G, {Hλ}λ∈Λ;A) ∼= H`(G;A).

For ` = cd(H) + 2, there is a surjection H`(G, {Hλ}λ∈Λ;A)� H`(G;A).

Proof. By Proposition 5.2.2, there is a long exact sequence

· · · → H`(G, {Hλ}λ∈Λ;A)→ H`(G;A)
NT `

G−−−→
∏
λ∈Λ

H`(Hλ;A)→ H`+1(G, {Hλ}λ∈Λ;A)→ · · ·

By Theorem 5.2.4, if ` > cd(H) + 2, then NT `
G

is surjective and ker(NT `
G

) ∼= H`(G;A), which implies

the desired result.
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Corollary 5.2.4. Let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple satisfying the Cohen-Lyndon property.

Then

cd(G) 6 max{cd(G), cd(H) + 1, cd(H)}.

Proof. If cd(G) 6 cd(H) + 1, then the desired conclusion already holds. Thus, let us assume that cd(G) >

cd(H) + 2. Let ` > cd(H) + 2, and let NTRG be the natural map defined by Notation 2.14.2, then∏
λ∈ΛH

`(Hλ;A) = {0} and NTRG maps H`−1(G;A) surjectively onto
∏
λ∈ΛH

`−1(Hλ;A) = {0}. It

follows from Theorem 5.2.1 that

H`(G;A) ∼=

(∏
λ∈Λ

H`(Hλ;A)

)⊕
H`(G;A),

which implies cd(G) 6 max{cd(G), cd(H)}.

Proof of Theorem 1.2.15. By Theorem 3.0.1, for sufficiently deep N � H , the group triple (G,H,N) has

the Cohen-Lyndon property. Thus, Theorem 1.2.15 follows from the case |Λ| = 1 of Theorem 5.2.1 and

Corollary 5.2.4.

Our next result concerns another finiteness property. Recall that a group G is of type FP∞ if there is a

projective resolution P → Z over ZG such that P` is finitely generated for ` ∈ N. Also recall the following

characterization of FP∞.

Theorem 5.2.5 ([10, Chapter VIII Theorem 4.8] (see [9, Theorem 3] for a proof)). A group G is of type

FP∞ if and only if H∗(G; ·) preserves direct limits.

Lemma 5.2.6. Let F be a free group of finite rank, let N be a normal subgroup of F , let F = F/N , let

{Ai}i∈I be a directed system of ZF -modules, and let A = lim−→Ai. If F is of type FP∞, then for p, q ∈ Z,

the natural maps Ai → A, i ∈ I, induce an isomorphism

lim−→Hp(F ;Hq(N ;Ai)) ∼= Hp(F ;Hq(N ;A)). (5.9)

Proof. Let

Ep,q2 = Hp(F ;Hq(N ;A))⇒ Hp+q(F ;A)
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be the LHS spectral sequence for the triple (F,N,A). For i ∈ I , let

Ep,qi,2 = Hp(F ;Hq(N ;Ai))⇒ Hp+q(F ;Ai)

be the LHS spectral sequence for the triple (F,N,Ai).

Being a subgroup of the free group F , N is also free. By the Stallings-Swan theorem [32, Corollary to

Theorem 1], cd(N) 6 1. It follows that

(CD1) Ep,qi,2 = Ep,q2 = {0} whenever q 6∈ {0, 1}.

Thus, if q 6∈ {0, 1}, then both sides of (5.9) are {0}. Therefore, it suffices to prove (5.9) for q ∈ {0, 1}.

Note that if p 6 −1, then both sides of (5.9) are {0}, and if q = 0, then (5.9) follows from Theorem

5.2.5 as there are natural isomorphisms

H0(N ;A) ∼= A, H0(N ;Ai) ∼= Ai, for i ∈ I.

Thus, it suffices to prove (5.9) for p > 0 and q = 1.

By Proposition 4.3.4, the maps Ai → A, i ∈ I, induce morphisms

MSSi : Ei → E

between spectral sequences. For i ∈ I and p ∈ Z, Proposition 4.3.4 implies that the map

MSSp,1i,2 : Ep,1i,2 → Ep,12

can be identified with the natural map

Hp(F ;H1(N ;Ai))→ Hp(F ;H1(N ;A))

induced by Ai → A. It suffices to show that for p > 0,

lim−→MSSp,1i,2 : lim−→Hp(F ;H1(N ;Ai))→ Hp(F ;H1(N ;A)). (5.10)
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is an isomorphism.

Fix p > 0. We have the following commutative diagram.

Ep,1i,2 Ep,12

Ep+2,0
i,2 Ep+2,0

2

MSSp,1i

dp,1i,2 dp,12

MSSp+2,0
i

(5.11)

Note that Hp+2(F ;A) = {0}. As Ek,`2 ⇒ Hk+`(F ;A), we have Ep+2,0
r = {0} for sufficiently large

r. By (CD1) and the definition of spectral sequences, Ep+2,0
r = Ep+2,0

3 for all r > 3. Thus, Ep+2,0
3 = {0}

and, as a consequence, dp,12 is surjective. Similarly, dp,1i,2 is surjective.

If p > 1, then as Hp+1(F ;A) = {0} and Ek,`2 ⇒ Hk+`(F ;A), we have Ep,1r = {0} for sufficiently

large r. By (CD1), Ep,1r = Ep,13 for all r > 3. Thus, Ep,13 = {0}. Using (CD1) once again, we see that dp,12

is injective and thus is an isomorphism. Similarly, dp,1i,2 is an isomorphism.

Taking direct limit of (5.11), we obtain

lim−→Ep,1i,2 Ep,12

lim−→Ep+2,0
i,2 Ep+2,0

2

(5.12)

By Theorem 5.2.5, the lower horizontal map of (5.12) is an isomorphism. Being direct limits of isomor-

phisms, the vertical maps of (5.12) are isomorphisms. Thus, the upper horizontal map of (5.12) is also an

isomorphism, which proves that lim−→MSSp,1i,2 is an isomorphism for p > 1.

Suppose p = 0. Then dp,1i,2 = d0,1
i,2 and dp,12 = d0,1

2 are not necessarily injective. Let keri (resp. ker) be

the kernel of d0,1
i,2 (resp. d0,1

2 ). By Remark 2.15.9 and Ek,`2 ⇒ Hk+`(F ;A), there is an exact sequence

1→ E1,0
3 → H1(F ;A)→ ker→ 1. (5.13)

By the same argument, we see that there is an exact sequence similar to (5.13) holds for every i ∈ I . As
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E−1,1
i,2 = E−1,1

2 ={0}, we have

E1,0
i,3 = E1,0

i,2 , E1,0
3 = E1,0

2 .

Combining these observations, we obtain a commutative diagram

1 E1,0
i,2 H1(F ;Ai) keri 1

1 E1,0
2 H1(F ;A) ker 1

MSS1,0
i,2 MSS0,1

i,2
(5.14)

By taking direct limit of (5.14) and using the fact that lim−→ is an exact functor, we obtain the following

commutative diagram with exact rows.

1 lim−→E1,0
i,2 lim−→H1(F ;Ai) lim−→ keri 1

1 E1,0
2 H1(F ;A) ker 1

(5.15)

As F has finite rank, F is of type FP∞. By Theorem 5.2.5, the first and the second vertical maps

of (5.15) are isomorphisms. Thus, the five lemma implies that the last vertical map of (5.15) is also an

isomorphism.

Consider the commutative diagram

1 keri E0,1
i,2 E2,0

i,2 1

1 ker E0,1
2 E2,0

2 1

MSS0,1
i,2

d0,1i,2

MSS0,1
i,2 MSS2,0

i,2

d0,12

(5.16)

By taking direct limit of (5.16) and using the fact that lim−→ is an exact functor, we obtain the following
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commutative diagram with exact rows.

1 lim−→ keri lim−→E0,1
i,2 lim−→E2,0

i,2 1

1 ker E0,1
2 E2,0

2 1

(5.17)

We have already proved that the first vertical map of (5.17) is an isomorphism. By Theorem 5.2.5 and the

assumption that F is of type FP∞, the last vertical map of (5.17) is an isomorphism. Thus, the five lemma

implies that the second vertical map of (5.17) is also an isomorphism, which proves that lim−→MSS0,1
i,2 is an

isomorphism.

Lemma 5.2.7. Let K be a finite group, let F be free group of finite rank, let H = K×F , let N be a normal

subgroup of F , let H = H/N , let {Ai}i∈I be a directed system of ZH-modules, and let A = lim−→Ai. If H

is of type FP∞, then for p, q ∈ Z, the natural maps Ai → A induce an isomorphism

lim−→Hp(H;Hq(N ;Ai)) ∼= Hp(H;Hq(N ;A)).

Proof. Note that F = F/N has finite index in H and thus F is of type FP∞. Fix p, q ∈ Z. Lemma 5.2.6

asserts that the natural maps Ai → A induce an isomorphism

lim−→Hp(F ;Hq(N ;Ai)) ∼= Hp(F ;Hq(N ;A)). (5.18)

Notice that F � H and H/F ∼= K is a finite group. In particular, H/F is of type FP∞. For i ∈ I ,

let Ei the LHS spectral sequence for the triple (H,F ,Hq(N,Ai)). Let E be the LHS spectral sequence for

the triple (H,F ,Hq(N,A)), let lim−→Ei be the direct limit of {Ei}i∈I , and let MSS : lim−→Ei → E be the

morphism induced by Ai → A, i ∈ I . Then

Ek,`2

∼=Hk(H/F ;H`(F ;Hq(N ;A)))

∼=Hk(H/F ; lim−→H`(F ;Hq(N ;Ai))) by (5.18) (5.19)

∼= lim−→Hk(H/F ;H`(F ;Hq(N ;Ai))) as H/F is of type FP∞
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∼= lim−→Ek,`2,i .

The isomorphisms involved above are natural maps. Thus, MSS2 : lim−→E2,i → E2 is an isomorphism

of bigraded abelian groups. It follows thatMSS is an isomorphism between spectral sequences. AsEk,`i,2 ⇒

Hk+`(H;Hq(N ;Ai)) and Ek,`2 ⇒ Hk+`(H;Hq(N ;A)), (5.19) and Lemmas 2.15.12, 2.15.18 imply the

desired result.

Theorem 5.2.8. Let Λ be a finite index set and let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple satisfying the

Cohen-Lyndon property. Employ the notations defined in Notation 2.14.2. Suppose that G,Hλ, λ ∈ Λ, are

of type FP∞. If, for each λ ∈ Λ, either one of the following conditions holds, then G is of type FP∞.

(F1) Nλ is of type FP∞.

(F2) Hλ is of the form Kλ × Fλ, where Kλ is finite and Fλ is a finite rank free group, and Nλ 6 Fλ.

Proof. By Theorem 5.2.5, it suffices to prove that the functor H∗(G; ·) preserves direct limits. Let {Ai}i∈I

be a directed system of ZG-modules and let A = lim−→Ai. For i ∈ I , let Ei = {(Ei,r, di,r)}r>2 be the LHS

spectral sequence for the triple (G, 〈〈N〉〉, Ai). Let E = {(Er, dr)}r>2 be the direct limit of {Ei}i∈I . Also

let EA = {(EA,r, dA,r)}r>2 be the LHS spectral sequence for the triple (G, 〈〈N〉〉, A).

By Lemma 2.15.18, Ep,q2 ⇒ lim−→Hp+q(G;Ai). The maps Ai → A, i ∈ I , induce

(a) a morphism

MSS : E → EA

between spectral sequences, by Proposition 4.3.4,

(b) a natural map

NAG : lim−→H∗(G;Ai)→ H∗(G;A)

(c) a natural map

NAp,q
G

: lim−→Hp(G;Hq(〈〈N〉〉;Ai))→ Hp(G;Hq(〈〈N〉〉;A))

for p, q ∈ Z.
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As there are natural isomorphisms

H0(〈〈N〉〉;A) ∼= A, H0(〈〈N〉〉;Ai) ∼= Ai, for i ∈ I,

for p ∈ Z, NAp,0
G

can be identified with the natural map lim−→Hp(G;Ai)→ Hp(G;A) induced by the maps

Ai → A, i ∈ I . Thus, it suffices to show that NAp,0
G

is an isomorphism, which is done by using Lemma

5.1.8.

For p ∈ Z and q 6 −1, NAp,q
G

is clearly an isomorphism as it is just a map from {0} to {0}.

Fix p ∈ Z and q > 1. Let i, j ∈ I with i < j. Consider the following commutative diagram

Hp(G;Hq(〈〈N〉〉;Ai)) Hp(G;Hq(〈〈N〉〉;Aj))

∏
λ∈ΛH

p(Hλ;Hq(Nλ;Ai))
∏
λ∈ΛH

p(Hλ;Hq(Nλ;Aj))

∼= ∼= (5.20)

where the horizontal maps are induced by Ai → Aj , and the vertical isomorphisms are given by Proposition

4.2.1. Let i, j vary in I . (5.20) induces a commutative diagram corresponding to direct limits

lim−→Hp(G;Hq(〈〈N〉〉;Ai)) Hp(G;Hq(〈〈N〉〉;A))

lim−→
∏
λ∈ΛH

p(Hλ;Hq(Nλ;Ai))
∏
λ∈ΛH

p(Hλ;Hq(Nλ;A))

NAp,q
G

∼= ∼= (5.21)

whose vertical maps, being direct limits of isomorphisms, are themselves isomorphisms.

Fix λ ∈ Λ. Consider the natural map

lim−→Hp(Hλ;Hq(Nλ;Ai))→ Hp(Hλ;Hq(Nλ;A)) (5.22)

induced by the maps Ai → A, i ∈ I .

If (F1) holds for λ, then Theorem 5.2.5 implies that (5.22) is an isomorphism.

If (F2) holds for λ, then Lemma 5.2.7 implies that (5.22) is an isomorphism.
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Let λ vary in Λ. By taking direct product of (5.22), we obtain an isomorphism

∏
λ∈Λ

lim−→Hp(Hλ, H
q(Nλ, Ai)) ∼=

∏
λ∈Λ

Hp(Hλ, H
q(Nλ, A)). (5.23)

As |Λ| < ∞, the operations
∏
λ∈Λ and lim−→ commute with each other and thus isomorphism (5.23)

implies that the lower horizontal map of (5.21) is an isomorphism. By Proposition 4.3.4, MSS and NAG

are compatible and for p, q ∈ Z, MSSp,q2 can be identified with NAp,q
G

. As G is of type FP∞, Theorem

5.2.5 implies that NAG is an isomorphism. Thus, Lemma 5.1.8 implies that NAp,0
G

is an isomorphism for

all p ∈ Z.

Recall that a group G is of type FP if (a) cd(G) < ∞ and (b) G is of type FP∞. The following

corollary follows from Corollary 5.2.4 and Theorem 5.2.8.

Corollary 5.2.9. Let Λ be a finite index set and let (G, {Hλ}λ∈Λ, {Nλ}λ∈Λ) be a group triple satisfying the

Cohen-Lyndon property. Suppose that G,Hλ, λ ∈ Λ, are of type FP . If, for each λ ∈ Λ, either one of the

following conditions holds, then G also is of type FP .

(F1) Nλ is of type FP∞.

(F2) Hλ is of the form Kλ × Fλ, where Kλ is finite and Fλ is a finite rank free group, and Nλ 6 Fλ.

Proof of Theorem 1.2.18. By Theorem 3.0.1, for sufficiently deep N � H , the group triple (G,H,N) has

the Cohen-Lyndon property. Thus, Theorem 1.2.18 follows from the case |Λ| = 1 of Theorem 5.2.8 and

Corollary 5.2.9.

5.3 Cohomology and embedding theorems

We prove Theorem 1.2.22 in this section. Given any acylindrically hyperbolic groupG,G has a maximal

finite normal subgroup K(G) by Theorem 2.5.7. G0 = G/K(G) is again acylindrically hyperbolic [19,

Lemma 5.10] and K(G0) = {1}. By Theorem 2.5.7, there is a non-abelian free group F ↪→h G0. It is well-

known that F is SQ-universal and thus given any countable group C, there is a normal subgroup N � F

such that C ↪→ F/N . The main idea of the proof of Theorem 1.2.22 is to choose a particular N so that all

statements of Theorem 1.2.22 hold for G = G0/〈〈N〉〉, where 〈〈N〉〉 is the normal closure of N in G0.
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Lemma 5.3.1. Let F3 be a free group of rank 3, let F ⊂ F3 be a finite set, and let C be a countable group

with cd(C) > 2. Then C embeds into a quotient R of F3 such that

(1) card(R) =∞;

(2) the natural homomorphism F3 → R is injective on F;

(3) cd(R) 6 cd(C);

(4) for all ` > 3 and any ZR-module A, we have H`(R;A) ∼= H`(C;A);

(5) if C is finitely generated, thenR is hyperbolic relative to C (for the definition of relative hyperbolicity,

see [13, Definition 3.6]);

(6) if C is of type FP∞, then so is R.

Remark 5.3.2. Except for assertions (3), (4), and (6), Lemma 5.3.1 is proved in [13, Lemma 8.4]. We refine

the method of [13] so that we can impose homological conditions.

Proof. Let {x, y, t} be a free basis of F3, let {ci}i∈I be a generating set of C, and let wi, vi, i ∈ I, be freely

reduced words over the alphabet {x, y} such that

(a) the words ciwi, i ∈ I, satisfy the C ′(1/2) small cancellation condition over the free product 〈x〉 ∗

〈y〉 ∗ C;

(b) the words vi, i ∈ I, satisfy the C ′(1/2) small cancellation condition over the alphabet {x, y};

(c) the words tciwit−1vi, i ∈ I, satisfy the C ′(1/6) small cancellation condition over the free product

〈x〉 ∗ 〈y〉 ∗ 〈t〉 ∗ C.

Let N be the normal subgroup of F3 ∗ C generated by tciwit−1vi, i ∈ I , and let

R = (F3 ∗ C)/N.

For i ∈ I , let t (resp. ci, wi, vi) be the image of t (resp. ci, wi, vi) under the quotient map F3 ∗ C → R.

Note that tciwit
−1
vi = 1 and we can rewrite this equation as ci = t

−1
v−1
i tw−1

i . Thus, R is generated by

t, wi, vi, i ∈ I, and hence is a quotient of F3. Let

Q : F3 → R
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be the corresponding quotient map. We can also think ofQ as the restriction of the quotient map F3∗C → R

to F3. It follows from the Greendlinger’s lemma for free products [24, Chapter V Theorem 9.3] that if

‖wi‖, ‖vi‖, i ∈ I, are sufficiently large, then Q is injective on F and thus (2) is guaranteed.

Let L = 〈x〉 ∗ 〈y〉 ∗C, let W 6 L be the subgroup generated by the elements ciwi, i ∈ I , and let V 6 L

be the subgroup generated by the elements vi, i ∈ I .

Claim. W is freely generated by ciwi, i ∈ I .

Proof of the claim. Let

u ≡
n∏
k=1

(cikwik)εi

be a nontrivial freely reduced word over the alphabet {ciwi}i∈I , where ik ∈ I and εk = ±1 for k = 1, ..., n.

Think of u as a word over the alphabet 〈x〉 ∪ 〈y〉 ∪C and then reduce u to its normal form u corresponding

to the free product 〈x〉 ∗ 〈y〉 ∗ C (see [24, Chapter IV] for the definition of normal forms). By (a), for each

factor (cikwik)εi of u, a non-empty subword of (cikwik)εi survives in u. In particular, u is a non-empty word

and thus u represents a nontrivial element of L.

Similarly, V is freely generated by vi, i ∈ I . In particular, W and V are free groups of the same rank

card(I).

Note that the relations tciwit
−1
vi = 1, i ∈ I, can be rewritten as tciwit

−1
= v−1

i , i ∈ I . Thus,

R is the HNN-extension of L with associated subgroups W and V . In particular, L embeds into R. As

card(L) =∞, we have card(R) =∞, that is, (1) holds.

Since C embeds into L, C embeds into R. By [6, Theorem 3.1], there is a long exact sequence

· · · → Hp−1(W ;A)→ Hp(R;A)→ Hp(L;A)→ Hp(W ;A)→ · · · (5.24)

for any ZR-module A.

As W is free, for p > 3, (5.24) implies

Hp(R;A) ∼= Hp(L;A) ∼= Hp(C;A),

which implies (4). Combining (4) with cd(C) > 2, we see that cd(R) 6 cd(C). Hence, (3) holds.

If C is finitely generated, then we can construct R using a finite generating set of C. Then R is the quo-

128



tient of F3 ∗C by adding finitely many relations tciwit−1vi, i ∈ I and thus has a finite relative presentation

over C. The Greendlinger’s lemma for free products implies that the relative isoperimetric function of R

with respect to C is linear. Thus, R is hyperbolic relative to C, which is (5).

If C is of type FP∞, then C is finitely generated and we can construct R using a finite generating set of

C, that is, card(I) <∞. Note that the rank of the free groupW is card(I). Thus, W is of type FP∞. Note

also that L is the free product of a finite rank free group F3 with C and thus is of type FP∞. By Theorem

5.2.5, H∗(W ; ·) and H∗(L; ·) preserve direct limits. By the five lemma and (5.24), H∗(R; ·) also preserves

direct limit. It follows from Theorem 5.2.5 that R is of type FP∞. Thus, (6) also holds.

Proof of Theorem 1.2.22. Recall that by Theorem 2.5.7, G has a maximal finite normal subgroup K(G).

Let G0 = G/K(G). By [19, Lemma 5.10], G0 is acylindrically hyperbolic.

If cd(C) = 0, then C = {1}. Let G = G0. By Theorem 2.5.7, C ↪→h G. Conclusions (a), (b), (c), and

(d) hold trivially. As G and G are quasi-isometric, [4, Corollary 9] implies (e).

If cd(C) = 1, then by the Stallings-Swan theorem [32, Corollary to Theorem 1], C is free. By Theorem

2.5.7, there exists a finitely generated non-cyclic free group F such that F ↪→h G0. Let G = G0. It is

well-known that the free group C embeds into F . Thus, C also embeds into G. Once again, conclusions

(a), (b), (c), and (e) hold trivially. If, in addition, C is finitely generated, then C is a finite rank free group

and we can let F = C. Thus, (d) also holds.

Let us assume cd(C) > 2. By Theorem 2.5.7, there exists a rank-3 free subgroup F3 ↪→h G0. By

Theorems 2.5.12 and 3.0.1, there exists a finite set F ⊂ F3\{1} such that if N � F3 satisfies N ∩ F = ∅,

then

(HE) F3/N ↪→h G0/〈〈N〉〉, where 〈〈N〉〉 is the normal closure of N in G0;

(CL) the group triple (G0, F3, N) has the Cohen-Lyndon property.

By Lemma 5.3.1, C embeds into an infinite quotient R of F3 such that cd(R) 6 cd(C) and the quotient

map F3 → R is injective on F . Let N be the kernel of the quotient map F3 → R. Then N ∩ F = ∅ and

thus (HE) and (CL) hold. Let G = G/〈〈N〉〉.

As R = F3/N is infinite, (HE) implies that G is acylindrically hyperbolic, that is, statement (a) holds.

As C embeds into R, C also embeds into G.
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Consider statement (b). Corollary 5.2.4 implies

cd(G) 6 max{cd(G0), cd(F3) + 1, cd(R)}.

If K(G) 6= {1}, then G has torsion and thus cd(G) = ∞ by [10, Chapter VIII Corollary 2.5], in which

case (b) is a void statement. Thus, let us assume K(G) = {1} and thus G0 = G. As cd(R) 6 cd(C) and

cd(C) > 2, we have

cd(G) 6 max{cd(G), cd(F3) + 1, cd(R)} 6 max{cd(G), 2, cd(C)} = max{cd(G), cd(C)}.

Thus, (b) holds. Moreover, (c) follows from Theorem 5.2.1 and statement (4) of Lemma 5.3.1.

If C is finitely generated, then Lemma 5.3.1 implies that R is hyperbolic relative to C. By [13, Proposi-

tion 4.28], C ↪→h R. As R ↪→h G, we have C ↪→h G by Proposition 2.5.9. Thus, statement (d) holds.

If C is of type FP∞, then Lemma 5.3.1 implies that R is of type FP∞. We have already seen that G0

is of type FP∞. As F3 has finite rank, Theorem 5.2.8 implies that G is also of type FP∞. Thus, statement

(e) also holds.

5.4 Common quotients of acylindrically hyperbolic groups

LetG1 andG2 be finitely generated acylindrically hyperbolic groups. In this section, we aim to construct

a common quotient G of G1 and G2 satisfying the conclusions of Theorem 1.2.23.

By Theorem 2.5.7, G1 (resp. G2) has a maximal finite normal subgroup K(G1) (resp. K(G2)). Let

G10 = G1/K(G1), G20 = G2/K(G2), and G̃ = G10 ∗ G20. As G1 and G2 are infinite, G10 and G20 are

also infinite and thus there exists k ∈ N such that

(AB1) there exists a finite generating set A = {a1, ..., ak} (resp. B = {b1, ..., bk}) of G10 (resp. G20);

(AB2) if w is a word over A (resp. B) of length 1 or 2, then w 6= 1.

Below, we fix a number k and sets A,B such that they satisfy (AB1) and (AB2) above.

Lemma 5.4.1. There exists a rank-(k + 2) free subgroup H1 ↪→h G10 (resp. H2 ↪→h G20) such that if

g ∈ G10 (resp. g ∈ G20) satisfying 1 6 |g|A 6 2 (resp. 1 6 |g|B 6 2), then g 6∈ H1 (resp. g 6∈ H2).
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Proof. By [19, Lemma 5.10],G10 is acylindrically hyperbolic andK(G10) = {1}. Thus, by Theorem 2.5.7,

there is a rank-(k + 2)((2k + 1)2 + 1) free subgroup F ↪→h G10. We can decompose F into a free product

F =
∗∏

16i6(2k+1)2+1

Fi,

where each Fi is a free group of rank k + 2. Note that Fi ∩ Fj = {1} for 1 6 i < j 6 (2k + 1)2 + 1.

There are less than (2k + 1)2 elemenets g ∈ G10 such that 1 6 |g|A 6 2. Therefore, at least one of the

F ′is, say F1, does not contain any of such elements. Let H1 = F1. As H1 is a free factor of F , we have

H1 ↪→h F by Remark 2.5.8. As F ↪→h G10, Proposition 2.5.9 implies H1 ↪→h G10.

The proof for G20 is identical and is left to the reader.

Let H1 < G10 and H2 < G20 be the subgroups provided by Lemma 5.4.1. There exists X1 ⊂ G10 and

X2 ⊂ G20 such that

H1 ↪→h (G10, X1), H2 ↪→h (G20, X2).

By [13, Corollary 4.27], we may assume that X1 (resp. X2) contains all words over A (resp. B) of length

at most 2. By Theorem 2.5.10, there exists a strongly bounded relative presentation of G10 (resp. G20)

with respect to X1 and H1 (resp. X2 and H2) with linear relative isoperimetric function. By combining

the above strongly bounded relative presentations, we obtain a strongly bounded relative presentation of

G̃ = G10 ∗ G20 with respect to X1 ∪ X2 and {H1, H2} with linear relative isoperimetric function. By

Theorem 2.5.10,

{H1, H2} ↪→h (G̃,X1 ∪X2) (5.25)

Let C = {c1, ..., ck+2} (resp. D = {d1, ..., dk+2}) be a basis for the free group H1 (resp. H2). The

Cayley graphs Γ(H1, C) and Γ(H2, D) are Gromov hyperbolic spaces. Let

X = X1 ∪X2 ∪ C ∪D.

By (5.25) and [1, Theorem 5.15], we have

(HQ) the Cayley graph

S = Γ(G̃,X)
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under the word metric dX is a Gromov hyperbolic space and the natural embeddedings

Γ(H1, C) ↪→ S, Γ(H2, D) ↪→ S

are (λ, µ)-quasi-isometric embeddedings for some λ, µ > 2.

We note the following structure of G̃ and X , which helps us estimate length of paths in S.

(FPS) G̃ = G10 ∗G20, X1 ∪ C ⊂ G10, X2 ∪D ⊂ G20.

Let H̃1, H̃2 be the subgroups of G̃ generated, respectively, by

C̃ = {b1c1, ..., bkck, ck+1, ck+2}, D̃ = {a1d1, ..., akdk, dk+1, dk+2}.

We are going to prove

{H̃1, H̃2} ↪→h G̃.

By [13, Theorem 4.42] (see also [13, Remark 4.41]), it suffices to show the following conditions hold for

the action of G̃ on S.

(C1) For i = 1, 2, H̃i acts on S properly.

(C2) The orbits H̃1 and H̃2 are quasi-convex in S.

(C3) For every ε > 0, there exists R > 0 such that if g ∈ G̃ and i, j ∈ {1, 2} satisfy

diamX(gH̃i, (H̃j)
+ε) > R,

then i = j and g ∈ H̃i, where (H̃j)
+ε denotes the ε-neighborhood of H̃j .

Note that there is a natural embedding

Emb1 : Γ(H̃1, C̃) ↪→ S

defined as follows. Emb1 maps every vertex of Γ(H̃1, C̃) to the vertex of S with the same label. For every

edge e ⊂ Γ(H̃1, C̃) connecting two vertices v1, v2 ∈ Γ(H̃1, C̃). Think of Lab(e) as a word over X and let

Emb1(e) be the path p of S connecting Emb1(v1) and Emb1(v2) such that Lab(p) ≡ Lab(e).
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Similarly, there is a natural embedding

Emb2 : Γ(H̃2, D̃) ↪→ S.

Lemma 5.4.2. The natural embeddings Emb1 and Emb2 are (2λµ, µ)-quasi-isometric embeddings.

Proof. We only consider Emb1. The proof for Emb2 is similar. Clearly, Emb1 can increase distance by at

most twice. Thus, it suffices to show that the following inequality holds for all h ∈ H̃1.

|h|
C̃
>
|h|X
2λµ

− µ. (5.26)

Fix h ∈ H̃1. Let u be a shortest word over C̃ such that u represents h in H̃1. Note that u can also be

regarded as a word over X , i.e., for i = 1, ..., k, instead of viewing bici as a single letter in C̃, we regard bici

as the concatenation of bi, ci ∈ X . Under this point of view, we see that there are two types of subwords w

of u:

(T1) w is a word over B and there is no subword w′ of u such that (1) w′ is a word over B and (2) w is

properly contained in w′;

(T2) w is a word over C and there is no subword w′ of u such that (1) w′ is a word over C and (2) w is

properly contained in w′.

We note the following.

(NT1) Every subword w of type (T1) is a word over B of length 1 or 2. Thus, w 6= 1 by (AB2).

(NT2) Every subword type (T2) does not represent 1 in G̃, as C is a basis of the free group H1.

We construct a new word v from u by replacing every subword w of type (T1) by a letter x ∈ X2 such

that x =G20 w (such an x is called a subword of v of the first type) and replacing every subword w of type

(T2) by a geodesic word w′ over X1 ∪ C such that w′ =G10 w (such a w′ is called a subword of v of the

second type). Clearly, v =
G̃
u.

(NT1), (NT2), and (FPS) imply that v is a geodesic word over X . Let n be the total number of type

(T1) and (T2) subwords of u. Note that ‖v‖ > n. We can then estimate ‖u‖ by distinguishing the cases

n > ‖u‖/(2λµ) and n 6 ‖u‖/(2λµ):
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If n > ‖u‖/(2λµ), then we already have ‖v‖ > n > ‖u‖/(2λµ).

If n 6 ‖u‖/(2λµ), then the subwords of u of type (T1) divide u into ` 6 n + 1 parts, each of which

is a subword of type (T2). Let w1, ..., w` be these type (T2) subwords. Note that each type (T1) subword

has length at most 2. Thus, the total length of type (T1) subwords is at most 2n. As a consequence,∑`
i=1 ‖wi‖ > ‖u‖ − 2n. For 1 6 i 6 `, let w′i be the second-type subword of v corresponding to wi. Then

‖w′i‖ > ‖wi‖/λ− µ by (HQ). Thus, the total length of second type subword of v satisfies

∑̀
i=1

‖w′i‖ >
∑̀
i=1

‖wi‖/λ− nµ >
‖u‖ − 2n

λ
− nµ.

By (NT1), each first-type subword of v has length at least 1 and thus the total length of first type subwords

is at least n. Therefore,

‖v‖ >
∑̀
i=1

‖w′i‖+ n >
‖u‖ − 2n

λ
− nµ+ n >

‖u‖
2λ

,

as λ > 2 and n 6 ‖u‖/(2λµ).

Lemma 5.4.2 clearly implies (C1) and (C2). Indeed, the action H̃1 y Γ(H̃1, C̃) (resp. H̃2 y Γ(H̃2, D̃))

is proper and the embeddedingsEmb1, Emb2 are H̃1, H̃2-equivariant, respectively. Thus, (C1) holds. More-

over, Emb1 (resp. Emb2) sends the set of vertices of Γ(H̃1, C̃) (resp. Γ(H̃2, D̃)) to the orbit H̃1 ⊂ S (resp.

H̃2 ⊂ S). As S is a Gromov hyperbolic space and Emb1, Emb2 are quasi-isometric embeddings, H̃1 and

H̃2 are quasi-convex in S, that is, (C2) holds.

It remains to prove (C3). By Remark 2.5.8, {G10, G20} ↪→h (G̃, ∅). Consider the Cayley graph

Γ = Γ(G̃,G10 tG20).

We apply a result of [13] about isolated components. For the convenience of the reader, we adapt Definition

2.6.1 to our situation.

Definition 5.4.3. Let p be a path in Γ. A G10-subpath q of p is a nontrivial subpath q of p labeled by

a word over the alphabet G10 (if p is a cycle, we allow q to be a subpath of some cyclic shift of p). A

G10-subpath q of p is called a G10-component if q is not properly contained in any other G10-subpath. Two

G10-components q1, q2 of p are called connected if there exists a path c in Γ such that c connects a vertex of
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q1 to a vertex of q2, and that Lab(c) is a letter of G10.

The notions of G20-subpaths, G20-components, and connected G20-components are defined in the same

manner. Moreover, a component of a path p is a G10 or G20-component of p.

Lemma 5.4.4 ([13, Lemma 4.21] (see also Remark 2.5.8)). LetW be the set of words over the alphabet

G10 t G20 such that W contains no subwords of type xy, where x, y ∈ G10 or x, y ∈ G20. Then the

following hold:

For every ε > 0, there exists R = R(ε) > 0 satisfying the following condition. Let p, q be two paths in

Γ such that Lab(p), Lab(q) ∈ W, `G10tG20(p) > R, and p, q are oriented ε-close, i.e.,

max{dG10tG20(p−, q−), dG10tG20(p+, q+)} 6 ε.

Then there exist four consecutive components of p which are respectively connected to four consecutive

components of q.

Remark 5.4.5. Let p be a path in S. We think of p−, p+ as elements of G̃ and thus p−, p+ label vertices of

Γ. In Γ, there is a unique geodesic p traveling from p− to p+. We thus obtain a map p 7→ p from paths in S

to geodesics in Γ.

Lemma 5.4.6. (C3) holds.

Proof. Fix ε > 0. As S is a Gromov hyperbolic space, there exists R1 > 0 such that if p and q are

(2λµ, 2ε + µ)-quasi-geodesics in S with the same endpoints, then dHau(p, q) 6 R1, where dHau denotes

the Hausdorff distance corresponding to the word metric dX . There exists R2 > 0 such that if p and q are

(2λµ, 2R1 + µ)-quasi-geodesics in S with the same endpoints, then dHau(p, q) 6 R2. By Lemma 5.4.4,

there exists R3 > 0 such that if p and q are two ε-close paths in Γ with

Lab(p), Lab(q) ∈ W, `G1tG2(p) > R3,

then there exist four consecutive components of p which are respectively connected to four consecutive

components of q.

Let H3 (resp. H ′1) be the subgroup of H1 generated by ck+1, ck+2 (resp. c1, ..., ck). By Remark 2.5.8,

H3 ↪→h (H1, H
′
1). Together with H1 ↪→h (G10, X1), G10 ↪→h (G̃,G20), and Proposition 2.5.9, this
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observation implies H3 ↪→h (G̃,G20 ∪X1 ∪H ′1). Thus, the relative metric

d̂ : H3 ×H3 → [0,+∞]

with respect to G20 ∪ X1 ∪ H ′1 is proper. There exists R4 > 0 such that if h ∈ H3 and |h|X > R4, then

d̂(1, h) > 2R2 + 2. Also let H4 be the subgroup of H2 generated by dk+1, dk+2.

Let

R = (R3 + 1)(λ((R3 + 1)(λ(2R2 +R4 + µ) + 4) + 2R1 + µ) + 4).

Suppose that there exists g ∈ G̃ and i, j ∈ {1, 2} such that

diamX(gH̃i, (H̃j)
+ε) > R.

Without loss of generality, we may assume i = 1. There are two cases to consider.

Case 1. j = 2.

Then there exist oriented ε-close edge paths p ⊂ gH̃1 and q ⊂ H̃2 such that u = Lab(p) is a geodesic

word over C̃, v = Lab(q) is a geodesic word over D̃, and

dX(p−, p+), dX(q−, q+) > R.

Consider a path r ⊂ S labeled by a word over C̃. There are two possible reasons for dX(r−, r+) to be

large:

(a) Lab(r) contains many subwords of type (T1), in which case `G10tG20(r) is large, where r is the image

of r under the map in Remark 5.4.5.

(b) Lab(r) contains a long subword of type (T2), in which case Lab(r) contains a long subword over the

alphabet {ck+1, ck+2}.

We observe the following estimate of the length of the longest subword of Lab(r) over {ck+1, ck+2}.

Claim. Let r ⊂ S be a path labeled by a word over C̃ and let m be the length of the longest subword of

Lab(r) over {ck+1, ck+2}, then

m >
‖Lab(r)‖

`G10tG20(r) + 1
− 4.
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Proof of the claim. Let n be the number of type (T1) subwords of Lab(r). The (T1) subwords of Lab(r)

divide Lab(r) into at most n + 1 parts, each of which is a (T2) subword. Note that the total length of type

(T1) subwords is at most 2n. Thus, there is at least one (T2) subword with length

‖Lab(r)‖ − 2n

n+ 1
>
‖Lab(r)‖
n+ 1

− 2.

By the structure of C̃, for each type (T2) subword w of Lab(r), w contains a subword over {ck+1, ck+2}

of length at least ‖w‖ − 2. Note also that `G10tG20(r) > n. Thus, Lab(r) contains a subword over

{ck+1, ck+2} of length at least ‖Lab(r)‖/(`G10tG20(r) + 1)− 4.

Consider the images p and q of p and q under the map in Remark 5.4.5. We distinguish two subcases.

Case 1.1. max{`G10tG20(p), `G10tG20(q)} > R3.

Without loss of generality, we may assume `G10tG20(p) > R3. By Lemma 5.4.4, there are four consecu-

tive components of p connected, respectively, to four consecutive components of q. It is easy to see that there

are three consecutive components x, y, z of p such that x, z areG20-components, y is aG10-component, and

x, y, z are connected to three consecutive components x′, y′, z′ of q. Note that x, x′ and z, z′ are connected

by paths labeled by a word over G20, while y, y′ are connected by paths labeled by a word over G10. As

G̃ = G10 ∗ G20, the only possibility is that x, x′ and z, z′ are connected by the trivial path. Thus, y−1y′ is

a loop in Γ. However, Lab(y) ∈ H1 and Lab(y′) is a word over A of length 1 or 2. By the construction of

H1 (see Lemma 5.4.1), Lab(y′) 6∈ H1 and thus (Lab(y))−1Lab(y′) 6= 1, a contradiction. Therefore, Case

1.1 is in fact impossible.

Case 1.2. max{`G10tG20(p), `G10tG20(q)} 6 R3.

By the claim and ‖Lab(p)‖ > dX(p−, p+) > R, there exists a subpath p1 ⊂ p such that Lab(p1) ∈ H3

and

‖Lab(p1)‖ > λ((R3 + 1)(λ(2R2 +R4 + µ) + 4) + 2R1 + µ).

Notice that Lab(p1) labels a geodesic in Γ(H1, C). Thus, (HQ) implies

dX(p−1 , p
+
1 ) >

‖Lab(p1)‖
λ

− µ > (R3 + 1)(λ(2R2 +R4 + µ) + 4) + 2R1.
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As p and q are oriented ε-close, there exist paths t1, t2 ⊂ S such that

t−1 = q−, t−2 = p+, t+1 = p−, t+2 = q+, `X(t1), `X(t2) 6 ε.

By Lemma 5.4.2, q and the conjunction t1pt2 are (2λµ, 2ε+ µ)-quasi-geodesics. By our choice of R1,

we have dHau(t1pt2, q) 6 R1 and in particular, p is in theR1-neighborhood of q. Consequently, there exists

a subpath q1 ⊂ q such that p1 and q1 are oriented R1-close. Note that

‖Lab(q1)‖ > dX(q−1 , q
+
1 ) > dX(p−1 , p

+
1 )− 2R1 > (R3 + 1)(λ(2R2 +R4 + µ) + 4)

by the triangle inequality. As `G10tG20(q1) 6 `G10tG20(q) 6 R3, by the same argument as the one for the

existence of p1, we see that there exists a subpath q2 ⊂ q1 such that Lab(q2) ∈ H4 and

‖Lab(q2)‖ > λ(2R2 +R4 + µ).

Notice that Lab(q2) labels a geodesic in Γ(H2, D). Thus, (HQ) implies

dX(q−2 , q
+
2 ) >

‖Lab(q2)‖
λ

− µ > 2R2 +R4. (5.27)

By the same argument as the one for the existence of q1, we see that there exists a subpath p2 ⊂ p1

such that p2 and q2 are oriented R2-close. In other words, there exist words w1 and w2 over X such that

‖w1‖, ‖w2‖ 6 R2 and

w1Lab(p2)w2(Lab(q2))−1 =
G̃

1 (5.28)

(w1 and w2 label short paths between the endpoints of p2 and q2). Note that

dX(p−2 , p
+
2 ) > dX(q−2 , q

+
2 )− 2R2 > R4 > 0. (5.29)

Let g′ ∈ G̃ with

g′ = Lab(p2)w2(Lab(q2))−1.

By (5.27) and (5.29), we have

dX(p−2 , p
+
2 ) + dX(q−2 , q

+
2 ) > 2R2.
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By (FPS), Lab(p2) ∈ H3 < G10, and Lab(q2) ∈ H4 < G20, we have

|g′|X > dX(p−2 , p
+
2 ) + dX(q−2 , q

+
2 )− ‖w2‖ > R2.

But (5.28) implies w−1
1 = g′ and thus |g′|X 6 ‖w1‖ 6 R2, a contradiction. Thus, Case 1.2 is in fact

impossible.

As a consequence, Case 1 is impossible.

Case 2. j = 1.

Then there exist oriented ε-close edge paths p ⊂ gH̃1 and q ⊂ H̃1 such that u = Lab(p), v = Lab(q)

are geodesic words over C̃, and

dX(p−, p+), dX(q−, q+) > R.

As for Case 1, we distinguish two subcases.

Case 2.1. max{`G10tG20(p), `G10tG20(q)} > R3.

Without loss of generality, we may assume `G10tG20(p) > R3. Arguing as in Case 1.1, we see that there

is a G10-component y of p and a G10-component y′ of q such that y and y′ share the same endpoints. By the

structure of C̃, we have Lab(y), Lab(y′) ∈ H1. As H1 is a free group, we have Lab(y) ≡ Lab(y′).

Think of Lab(p) as a word over X and decompose it as

Lab(p) ≡ w1Lab(y)w2.

Similarly, think of Lab(q) as a word over X and decompose it as

Lab(q) ≡ w3Lab(y
′)w4.

As y and y′ share the same endpoints, the word w3w
−1
1 labels a path in S from q− ∈ H̃1 to p− ∈ gH̃1.

Thus, there exists h1, h2 ∈ H̃1 with g = h1w3w
−1
1 h2. If w1, w3 ∈ H̃1, then g ∈ H̃1 and we are done.

Suppose w1 6∈ H̃1 (the case w3 6∈ H̃1 is similar). By the structure of C̃, there exists 1 6 i 6 k such

that the first letter of Lab(y) is ci and the concatenation w1ci ∈ H̃1. As Lab(y′) ≡ Lab(y), the first letter of

Lab(y′) is also ci. As Lab(q) is a word over C̃, we have w3ci ∈ H̃1 and thus g = h1(w3ci)(c
−1
i w−1

1 )h2 ∈

H̃1.
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Case 2.2. max{`G10tG20(p), `G10tG20(q)} 6 R3.

Arguing as in Case 1.2, we see that there are subpaths p1 ⊂ p and q1 ⊂ q such that

(1) Lab(p1), Lab(q1) ∈ H3;

(2) dX(q−1 , q
+
1 ) > 2R2 +R4;

(3) p1 and q1 are oriented R2-close.

By (3), there exist words w1 and w2 over X such that

w1Lab(p1)w2(Lab(q1))−1 =
G̃

1, ‖w1‖, ‖w2‖ 6 R2

(w1 and w2 label short paths between the endpoints of p1 and q1). Decompose Lab(p) and Lab(q) as

Lab(p) ≡ u1Lab(p1)u2, Lab(q) = u3Lab(q1)u4.

By the structure of C̃, we have u1, u3 ∈ H̃1.

Note that the word u3w1u
−1
1 labels a path in S from q− ∈ H̃1 to p− ∈ gH̃1. Thus, there exist h1, h2 ∈

H̃1 with g = h1u3w1u
−1
1 h2. If w1 ∈ H3 < H̃1, then as h1, h2, u1, u3 ∈ H̃1, we get that g ∈ H̃1, which

concludes the proof.

Suppose w1 6∈ H3. Let v1 (resp. v2) be the maximal initial (resp. terminal) subword of w1 (resp. w2)

such that v1 ∈ H3 (resp. v2 ∈ H3), let v′1 (resp. v′2) be the word resulted from deleting v1 (resp. v2) from

w1 (resp. w2), and let h, h′ ∈ H3 with

h = v−1
1 Lab(q1)v−1

2 , h′ = Lab(p1).

Note that the word v′1h
′v′2 labels an H3-admissible path in Γ(G̃,G20 ∪X1 ∪H ′1 tH3) connecting the

vertices labeled by 1 and h, and

‖v′1h′v′2‖ 6 ‖v′1‖+ ‖v′2‖+ 1 6 ‖w1‖+ ‖w2‖+ 1 6 2R2 + 1.

Thus,

d̂(1, h) 6 2R2 + 1.
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On the other hand,

|h|X > dX(q−1 , q
+
1 )− ‖v1‖ − ‖v2‖ > dX(q−1 , q

+
1 )− ‖w1‖ − ‖w2‖ > R4,

which contradicts our choice of R4. Thus, Case 2.2 is in fact impossible.

We conclude with

Proposition 5.4.7. H̃1, H̃2 satisfy (C1), (C2), and (C3) and thus {H̃1, H̃2} ↪→h G̃.

Proof of Theorem 1.2.23. As |G10| = |G20| = ∞, we have cd(G10), cd(G20) > 1. Suppose cd(G10) =

cd(G20) = 1. Then G10 and G20 are free by the Stallings-Swan theorem [32, Corollary to Theorem 1].

Without loss of generality, we may assume that the rank of G10 is greater than or equal to the rank of G20. It

follows that G20 is a quotient of G10. Let G = G20. Statements (a), (b), and (c) follow trivially. Statement

(d) also holds because if G2 is of type FP∞, then G20 is also of type FP∞ by [4, Corollary 9].

Thus, let us assume max{cd(G10), cd(G20)} > 2. By Theorems 2.5.12, 3.0.1, and Proposition 5.4.7,

there exists finite sets F1 ⊂ H̃1\{1},F2 ⊂ H̃2\{1} such that if

N1 � H̃1, N2 � H̃2, N1 ∩ F1 = N2 ∩ F2 = ∅,

then

{H̃1/N1, H̃2/N2} ↪→h G̃/〈〈N1 ∪N2〉〉 (5.30)

and (G̃, {H̃1, H̃2}, {N1, N2}) has the Cohen-Lyndon property.

Let ui, 1 6 i 6 k, (resp. vi, 1 6 i 6 k,) be freely reduced words over {ck+1, ck+2} (resp. {dk+1, dk+2})

satisfying the C ′(1/6) small cancellation condition, and let N1 (resp. N2) be the normal subgroup of H̃1

(resp. H̃2) generated by {b1c1u1, ..., bkckuk} (resp. {a1d1v1, ..., akdkvk}). By (AB2), H̃1 and H̃2 are freely

generated by C̃ and D̃, respectively. Thus, H̃1/N1 and H̃2/N2 can be presented as

H̃1/N1 = 〈b1c1, ..., bkck, ck+1, ck+2 | b1c1u1, ..., bkckuk〉 = 〈ck+1, ck+2〉, (5.31)

H̃2/N2 = 〈a1d1, ..., akdk, dk+1, dk+2 | a1d1v1, ..., akdkvk〉 = 〈dk+1, dk+2〉, (5.32)

where the last equality of (5.31) (resp. (5.32)) follows from eliminating b1c1, ..., bkck (resp. a1d1, ..., akdk)
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by Tietze transformations [24, Chapter II].

Thus, H̃1 and H̃2 are free groups of rank 2. In particular,

card(H̃1/N1) = card(H̃2/N2) =∞ (5.33)

By the Greendlinger’s lemma for free groups [24, Chapter V Theorem 4.5], if ‖ui‖, ‖vi‖, 1 6 i 6 k, are

sufficiently large, then

N1 ∩ F1 = N2 ∩ F2 = ∅.

Let

G = G̃/〈〈N1 ∪N2〉〉.

By (5.30) and (5.33), G is acylindrically hyperbolic, that is, (a) holds.

Let us consider statements (b) and (c). If either K(G1) or K(G2) is not {1}, then (b) holds trivially and

(c) is a void statement. Thus, we may assume K(G1) = K(G2) = {1} and thus G10 = G1, G20 = G2. As

(G̃, {H̃1, H̃2}, {N1, N2}) has the Cohen-Lyndon property, Theorem 5.2.4 implies

cd(G) 6 max{cd(G̃), 2} = max{cd(G10), cd(G20), 2}

= max{cd(G10), cd(G20)} as cd(G10), cd(G20) > 2

= max{cd(G1), cd(G2)} as G10 = G1, G20 = G2.

Therefore, (b) holds. Another cosequence of Theorem 5.2.4 is that, for all ` > 3 and any ZG-module A, we

have

H`(G;A)

∼=H`(G̃;A)
⊕

H`(H̃1/N1;A)
⊕

H`(H̃2/N2;A)

∼=H`(G̃;A) as H̃1/N1 and H̃2/N2 are free groups

∼=H`(G10;A)
⊕

H`(G20;A) as G̃ = G10 ∗G20

∼=H`(G1;A)
⊕

H`(G2;A) as G10 = G1, G20 = G2,

which is (c).
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Consider statement (d). SupposeG1 andG2 are of type FP∞. By [4, Corollary 9],G10 andG20 are also

of type FP∞. As (G̃, {H̃1, H̃2}, {N1, N2}) has the Cohen-Lyndon property and H̃1, H̃2 are free groups of

finite rank, Theorem 5.2.8 implies that G is also of type FP∞. Thus, (d) holds.
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