Cohomology of group theoretic Dehn fillings

By

Bin Sun

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in

Mathematics
June 30, 2019

Nashville, Tennessee

Approved:
Denis Osin, Ph.D.
Michael Mihalik, Ph.D.
Alexander Olshanskiy, Ph.D.

Robert Scherrer, Ph.D.



To my dear father and mother,

il



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Prof. Denis Osin, for all the advice and
supporting my travels. You are so kind and patient and always share with me your ideas on various aspects,
ranging from beginner textbooks to latest research papers, from useful courses to interesting conferences,
from methods that initiate a new research project to skills that expose the final results, from job applications
to relaxing entertainments, such as hiking. I will always be grateful for you in my academic life.

Many thanks to all my committee members, Prof. Michael Mihalik, Alexander Olshanskiy, and Robert
Scherrer, for spending your precious time on helping me revise my qualifying paper and Ph.D. dissertation
and evaluating me at different points of my graduate life. Many thanks to the entire faculty of the math de-
partment of Vanderbilt, for the amazing courses that your have been providing, for the valuable discussions,
and for teaching me how to be a good teacher. Many thanks to all the office assistants for helping me dealing
with different kinds of processes, say, expense reports.

I would also like to thank all the fellow graduate students, for making my graduate life enjoyable. Special
thanks to Longxiu Huang, for your extensive help with my job and OPT applications, to Arman Darbinyan,
for your suggestion when I was seeking a supervisor, to Bin Gui, for helping me in my daily life, and for
Sahana Balasubramanya, for the information that you shared with me.

Last but not the least, I would like to express my greatest and deepest gratefulness to my parents, for all
the support that you have been always giving to me. You taught me basic living skills, shared with me your
attitude towards life, provided me with the best education that you could provide, and brought me to travel
to broaden my horizon. You always carefully observe me to decide whether I need help, and always try your
best to help me whenever I am in trouble. I can never imagine how my life would be without you, in which

case any sense of success would be merely impossible.

iii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . e e e e e e il
LISTOFFIGURES . . . . . . e e e vii
Chapter . . . . . . . e e e 1
1 INTRODUCTION AND MAIN RESULTS . . . . . . . 1
1.1 Introduction . . . . . . . . . . e 1
1.1.1. Dehn surgery of 3-manifolds. . . . . . .. .. ... ... ... . 1

1.1.2.  Group theoretic Dehn fillings. . . . . . . .. ... ... ... ... ... ..., 1

1.1.3. Motivation: a question on group cohomology. . . . . . . . .. .. ... ... .... 3

1.2 Mainresults . . . . . . . 3
1.2.1.  Cohen-Lyndon type theorems for (N)). . . . . . ... ... ... ... .. ..... 3

1.2.2. Structure of relative relation modules. . . . . . . . ... ... 5

1.2.3. A spectral sequence for Dehn fillings. . . . .. ... .. ... ... ......... 6

1.2.4. Homological properties of Dehn filling quotients. . . . . . . . ... ... ... ... 7

1.2.5. Quotients of acylindrically hyperbolic groups . . . . . . ... ... ... ...... 9

2 PRELIMINARIES . . . . 11
2.1 Words and Cayley graphs . . . . . . . . . . . . . e 11
2.2 Van Kampen diagrams . . . . . . . . . ..o e 12

2.3 Gromov hyperbolic spaces and Gromov boundary . . . . . . .. ... ... oL 14
2.4 Acylindrically hyperbolic groups . . . . . . . . . ... L 15
2.5 Hyperbolically embedded subgroups and group theoretic Dehn fillings . . . . . . .. .. .. 15
2.6 Isolated components . . . . . . . . . ..o e e 18
2.7 Diagram SUIZEIY . . . . o v v v e e e e e e e e e e e e e e e e e e e 19
2.8 Direct sums and products of abelian group homomorphisms . . . . . ... ... ... ... 22

v



29 Chaincomplexes . . . . . . . . . . 24

2.10 Resolutions and Extfunctor . . . . . . . . . . ... 24
2.11 Groupcohomology . . . . . . . . . . . . e 27
2.12 Coinduced modules . . . . . . . . .. 29
2.13 A generalization of Shapiro’slemma . . . . . . . .. ... .. oL oo 29
2.14 Group triples and Cohen-Lyndon property . . . . . . . . . . . . . . .. ... 31
2.15 Spectral sequences of cohomological type . . . . . . . ... ... oL 32
2.16 Cartan-Eilenberg resolutions . . . . . . . . . . . . . . . 46
COHEN-LYNDON TYPE THEOREMS . . . . . . . . .. .. . . 49
3.1 Construction of the transversals . . . . . . . . . . . ... oL 49
3.2 Proof of Theorem 3.0.1 . . . . . . . . . . . 51
3.3 Relativerelationmodules . . . . . . ... 64
COHEN-LYNDON PROPERTY AND SPECTRAL SEQUENCES . . . . . ... ... ... ... 69
4.1 Ideatowards proving Theorem 1.2.10 . . . . . . .. ... .. .. ... ... 70
4.2 Isomorphism of iterative cohomology groups . . . . . . . . . . . ... ... 71

42.1. Bxtj,, (Z[G/H)), A) 2 cofnd% H*(Nx; A) oo 72

4.2.2. Proof of Proposition 4.2.3 . . . . . . ... 79

4.2.3. Proof of Proposition 4.2.1 . . . . . . . . . ... ... 90
4.3 Morphisms of Lyndon-Hochschild-Serre spectral sequences . . . . . . . ... ... ..... 91

4.3.1. Lyndon-Hochschild-Serre spectral sequences . . . . . . . ... ... ........ 91

4.3.2. Compatibility of ;M SSand NABg . . . . . . . o i i 94

4.3.3. Identifying , M SSY? with NAB%‘Z .......................... 98
4.4 Proof of Theorem 4.0.1 . . . . . . . . . .. e 103
APPLICATIONS . . . . e e e 106
5.1 Computations with spectral sequences . . . . . . . . . . . . . ... 106
5.2 Cohomology of Dehn filling quotients . . . . . . .. . .. ... ... ... ..., 117
5.3 Cohomology and embedding theorems . . . . . . . ... ... ... L oL 126
5.4 Common quotients of acylindrically hyperbolic groups . . . . . ... ... ... ...... 130



BIBLIOGRAPHY

vi



LIST OF FIGURES

Figure Page
2.1 A refinement of a van Kampen diagram over the presentation G = (a,b | aba='b=1 =1) . . 14
2.2 Howtoproduce aCut SYSteIM . . . . . . . . v v v v v et e e e e e e e 21
3.1 Andillustration of Case 1 in the proof of Lemma 3.2.7 . . . . ... ... ... ........ 55
3.2 Cases 1 through 6 in the proof of Lemma 3.2.12 . . . . . . ... ... ... ... ...... 59
3.3 Theconstructionof p . . . . . . . . . e e 62
5.1 Thesecondpagesof Eyand Eo . . . . . . . . . .. o 107
52 Thethirdpagesof Eyand Ea . . . . . . . . . o 108

vii



CHAPTER 1

INTRODUCTION AND MAIN RESULTS

1.1 Introduction

1.1.1. Dehn surgery of 3-manifolds. In 3-dimensional topology, Dehn surgery is an operation of mod-
ifying a 3-manifold by cutting off a solid torus and then gluing it back in a different way. The Lickorish-
Wallace theorem, which states that every closed orientable connected 3-manifold can be obtained from the
3-dimensional sphere by performing finitely many Dehn surgeries, serves as a motivation of the study of
Dehn surgeries.

The second step of the surgery, called Dehn filling, can be formalized as follows. Let M be a 3-manifold
with toral boundary. Topologically distinct ways of gluing a solid torus to M are parametrized by free
homotopy classes of essential simple closed curves of dM, called slopes. For a slope s, the Dehn filling
M (s) is obtained by attaching a solid torus S x D? to M such that 9D? is mapped to a curve of the slope

s. The following is a particular case of Thurston’s hyperbolic Dehn filling theorem.

Theorem 1.1.1 ([33, Theorem [TH1]]). Let M be a compact orientable 3-manifold with toral boundary
such that M\OM admits a complete finite-volume hyperbolic structure. Then M (s) is hyperbolic for all but

finitely many slopes s.

1.1.2. Group theoretic Dehn fillings. In group theoretic settings, Dehn filling can be generalized as fol-
lows. Let G be a group, let I be a subgroup of G, and let N be a normal subgroup of H. The group theoretic
Dehn filling associated with the data (G, H, N) is the process of forming the quotient group G /{(N')), where
((N)) is the normal closure of NV in G.

Under the assumptions of Theorem 1.1.1, let G = 71 (M ). The natural map 1 (0M) — w1 (M) is
injective. We think of 71 (OM) as a subgroup of 71 (M) and let H = 71 (OM ). Let N < H be the subgroup
generated by the slope s. Then G/{(N)) = m1(M (s)) by the Seifert-van Kampen theorem.

Dehn filling is a fundamental tool in group theory. The solution of the virtually Haken conjecture uses

Dehn fillings of hyperbolic groups [2]. For a large number of relatively hyperbolic groups, Dehn fillings are



used to prove the Farrell-Jones conjecture [5] and solve the isomorphism problem [12]. By considering Dehn
fillings of hyperbolically embedded subgroups, [13] constructs purely pseudo-Anosov normal subgroups of
mapping class groups. Other applications of Dehn fillings can be found in [3, 16].

In group theoretic settings, Thurston’s theorem was first generalized by Osin [27], and independently
by Groves-Manning [15] to Dehn fillings of peripheral subgroups of relatively hyperbolic groups. More re-
cently, Dahmani-Guirardel-Osin [13] proved an analog of Thurston’s theorem in the more general settings of
groups with hyperbolically embedded subgroups (see Theorem 1.1.4 below and the discussion afterwards).
We discuss here some examples and refer to Section 2.5 for the definition. We use H <, G to indicate that

H is a hyperbolically embedded subgroup of G.

Example 1.1.2. If H is a peripheral subgroup of a relatively hyperbolic group G, then H <}, G. For

example,
(a) if a group GG decomposes as a free product G = A x B, then we have A —;, G and B <, G
(b) under the assumptions of Theorem 1.1.1, we have w1 (OM) <), 71 (M).

Example 1.1.3. Let G be a group acting acylindrically on a Gromov hyperbolic space and let g be a loxo-
dromic element of G. Then there exists a maximal virtually cyclic subgroup F(g) < G containing g such

that £(g) < G. In particular,
(a) if G is a free group and H is a maximal cyclic subgroup of G, then H —}, G}

(b) if G is a hyperbolic group (resp. the mapping class group of a punctured closed orientable sur-
face, outer automorphism group of a finite rank non-abelian free group) and g is a loxodromic (resp.

pseudo-Anosov, fully irreducible) element, then E(g) <, G.
Other examples of hyperbolically embedded subgroups can be found in [13].

Theorem 1.1.4 ([13, Theorem 2.27]). Let G be a group with a subgroup H —, G. Then there exists a
finite set F C H\{1} such that if N<<H and NNF = (, then the natural homomorphism H/N — G /{N))

maps H/N injectively onto a hyperbolically embedded subgroup of G/{N)).

Under the assumptions of Theorem 1.1.1, the above theorem, together with some basic facts about

relatively hyperbolic groups, implies that 71 (M (s)) is non-virtually-cyclic and word-hyperbolic for all but



finitely many slopes s. Thurston’s geometrization conjecture, proved by Perelman, implies that this algebraic
statement about 71 (M (s)) is equivalent to the hyperbolicity of M (s). Thus, the above theorem indeed

provides a generalization of Theorem 1.1.1.

1.1.3. Motivation: a question on group cohomology. Note that in the settings of Thurston’s theorem,

ie,if G=m(M),H =m(0M), and M (s) admits a hyperbolic structure, we have

HY(G/{(N);-) = H* (mi (M (s)); ),

which can be computed via M (s). Indeed, as M (s) admits a hyperbolic structure, the universal cover of
M (s) is H?, which is contractible, and thus M (s) is a model of K (G /{N)),1).
However, there are no analogous methods for Dehn fillings of hyperbolically embedded subgroups. The

main question motivating our research is the following.

Question 1. For a group G with a subgroup H <, G and a normal subgroup N <1 H, what can be said

about H*(G/{(N));-)?

In this thesis, we answer this question and discuss some applications. The first task is to understand
the structure of ((IV)), which is solved by Chapter 3. In Chapter 4, we combine structural results obtained
in Chapter 3 and the Lyndon-Hochschild-Serre spectral sequence to compute H*(G/{(NN));-). In Chapter
5, we estimate the cohomological dimension of G/{{N)) and discuss some applications to acylindrically

hyperbolic groups.

1.2 Main results

1.2.1. Cohen-Lyndon type theorems for (N). In general, (N)) does not need to have any particular
structure. Nevertheless, it turns out that if NV avoids a finite set of bad elements, then (N)) enjoys a nice

free product structure. In order to state our main results, we introduce the following terminology.

Definition 1.2.1. Let G be a group with a subgroup H —; (G. We say that a property P holds for all
sufficiently deep normal subgroups N <1 H if there exists a finite set 7 C H\{1} such that P holds for all

normal subgroups N <1 H with N N F = ().



Definition 1.2.2. Let G be a group with a subgroup H and let N <t H. We say that the triple (G, H, N') has
the Cohen-Lyndon property if there exists a left transversal 7" of H((/V)) in G such that (N)) decomposes
as a free product (N)) = [];c; N*, where N9 = gNg~! for g € G.

The latter definition is motivated by the following result [11, Theorem 4.1], which was later generalized

by [14, Theorem 1.1] to free products of locally indicable groups.

Theorem 1.2.3 (Cohen-Lyndon). Let F' be a free group and let C' be a maximal cyclic subgroup of F.
Then for all f € C, the triple (F,C, (f)) has the Cohen-Lyndon property.

By Example 1.1.3, we have C' = E(f) <, F and thus the above theorem fits in the general framework
of group theoretic Dehn fillings. For general hyperbolically embedded subgroups, a weak version of the

Cohen-Lyndon property is given in [13, Theorem 2.27].

Theorem 1.2.4 (Dahmani-Guirardel-Osin). Let G be a group with a subgroup H <}, G. Then for all

sufficiently deep N <1 H,
(VNy=TIn

tel

for some subset T C G.

The main difference between Theorems 1.2.4 and 1.2.3 is that in Theorem 1.2.4, T' is just some subset

of G, instead of being a left transversal of H((/V)) in G. Our result improves Theorem 1.2.4.

Theorem 1.2.5. Suppose that G is a group with a subgroup H <, G. Then (G, H,N) has the Cohen-

Lyndon property for all sufficiently deep N <1 H.

In the special case where GG and H are finitely generated and G is hyperbolic relative to H, Theorem
1.2.5 is proved in [16, Theorem 4.8]. The proofs of [13, Theorem 7.15] and [16, Theorem 4.8] use tech-
nicalities such as windmills, very rotating families, and spiderwebs. The proof of Theorem 1.2.5 is easier
and only uses surgeries on van Kampen diagrams and geometric properties of geodesic polygons of Cayley

graphs.

Remark 1.2.6. In fact, we prove Theorem 1.2.5 in much more general settings of a group G with a family
of weakly hyperbolically embedded subgroups (see Definition 2.5.4 for the definition). As an application,
we also obtain Cohen-Lyndon type theorems for graphs of groups, e.g., amalgamated free products and

HNN-extensions (see Corollaries 3.3.8, 3.3.9, and 3.3.10).



Combining Theorem 1.2.5 and Example 1.1.2, we obtain:

Corollary 1.2.7. Let G be a group acting acylindrically on a Gromov hyperbolic space, and let g € G be a

loxodromic element. Then (G, E(g), N') has the Cohen-Lyndon property for all sufficiently deep N <t E(g).

In the case where G = F and H = C, we recover Theorem 1.2.3 for sufficiently deep (but not all)
(f) < C. In the case where G is a free product of locally indicable groups, by considering the action of
G on the corresponding Bass-Serre tree, we also recover [14, Theorem 1.1] for sufficiently deep normal

subgroups.

1.2.2. Structure of relative relation modules. Let Rel(G, (N))) and Rel(H, N) be the relative relation
modules of the exact sequences

1= ({(N)—=G—-G—1

and

1+ N—H—H-—1,

respectively, i.e. Rel(G, (N))) (resp. Rel(H, N)) is the ZG-module (resp. ZH-module) whose base set is
the abelianization of ((N)) (resp. N) and the G-action (resp. H-action) is induced by conjugation. If G is
free, then Rel(G, (N))) is called a relation module. For sufficiently deep N, it follows immediately from
Theorem 1.1.4 that the natural map identifies H with a subgroup of G. We can then further identify ZH
with a subring of ZG. Thus, given any ZH-module A, it makes sense to talk about the induced module of
A from ZH to ZG, which is denoted by Ind% A = ZG ® 7 A.

If G = F and H = C, Theorem 1.2.3 directly implies ZG-module isomorphisms
Rel(F, (£) = ZIF/C(f)] = IndSZ = IndSRel(C, (f)).

In general, we have the following corollary of Theorem 1.2.5.

Corollary 1.2.8. Let G be a group with a subgroup H —, G. Then for all sufficiently deep N <1 H, there

is an isomorphism of ZG-modules

Rel(G, (NY) = IndS Rel(H, N). (1.1)



Remark 1.2.9. Merely knowing that (N)) = [, N* for some subset T' C G is not enough to guarantee
(1.1). For example, let G be any abelian group and let H be a proper subgroup of . Then for any subgroup
Nof H, (N) = N = [[jequy N* But Rel(G, {N)) (resp. Rel(H,N)) is a ZG-module (resp. ZH-
module) with the trivial G-action (resp. H-action) and thus Rel(G, (N))) % I nd%Rel(H ,N).

1.2.3. A spectral sequence for Dehn fillings. Assuming the Cohen-Lyndon property, we obtain a spectral
sequence to compute cohomology of Dehn filling quotients. Let G be a group, let H be a subgroup of G,

and let N be a normal subgroup of H. For simplicity, let G = G/{(N)) and H = H/N.

Theorem 1.2.10. If the triple (G, H, N) has the Cohen-Lyndon property, then for every Z.G-module A,

there exists a spectral sequence of cohomological type.

HP(H;HI(N; A ) 0
ppo_ [P ago i

HP(G; A) , ifqg=0

Usually, a spectral sequence is used to compute its limit. However, the point of Theorem 1.2.10 is that
information about H*(G; A) and H*(H; HI(N; A)) can be used to deduce properties of H*(G; A) and
answer Question 1. To enhance our answer, we also supplement Theorem 1.2.10 by relating the differentials
of (1.2) to the differentials of the standard Lyndon-Hochschild-Serre spectral sequence of the extension
1 -+ N — H — H — 1 (see Remark 4.0.2). In Chapter 5, we use Theorem 1.2.10 to study certain

homological properties of Dehn fillings.

Remark 1.2.11. In fact, we deal with a general version of the Cohen-Lyndon property which is defined for a
family of subgroups and normal subgroups. The corresponding generalized version of Theorem 1.2.10 turns

out to be useful in Chapter 5 when we construct particular quotients of acylindrically hyperbolic groups.

Remark 1.2.12. Historically, spectral sequences were introduced by Leray [21] in his attempt to compute
cohomology of sheafs. In the proof of Theorem 1.2.10, we make use of the Lyndon-Hochschild-Serre
spectral sequence, which was discovered by Lyndon [22] and then put into its current form by Hochschild-

Serre [17].

Remark 1.2.13. Let G be a group with a subgroup H. Relative cohomology H*(G, H; -) was introduced

by [7], which shows that absolute and relative cohomology groups fit into a long exact sequence.



Proposition 1.2.14 ([7, Proposition 1.1]). Let G be a group and let H be a subgroup of G. Then for every

Z.G-module A, there exists a long exact sequence
o= HYG,H; A) — HY(G; A) — HY(H; A) — H"™ (G, H; A) — - - -

whose arrows are natural maps of cohomology.

If H =, G, N < H is sufficiently deep, and some additional assumptions are met, [35, Theorem 1.1]
provides a spectral sequence of homological type which computes H*(G, H; ZG) from certain combination
of homology and cohomology. Clearly, Theorem 1.2.10 (resp. [35, Theorem 1.1]), together with Proposition
1.2.14, can be applied to compute H*(G, H; ZG) (resp. H*(G;ZG)). However, (1.2) and the spectral
sequence of [35] are essentially different, as there is no homology involved in (1.2).

It is worth noting that if A has finite cohomological dimension, then Theorem 1.2.10 and Proposition
1.2.14imply HY(G, H; A) = H*(G; A) for every ZG-module A and sufficiently large ¢ (see Remark 1.2.17

below).

1.2.4. Homological properties of Dehn filling quotients. Recall that the cohomological dimension of a
group G is
cd(G) = sup{l € N | HY(G, A) # {0} for some ZG-module A}

(in this paper, the set N of natural numbers contains 0, while the set of positive natural numbers is denoted
as NT). A group G is of type F Py, if there is a projective resolution

=P =P —=7Z—0
over ZG such that P, is finitely generated for each n € N. A group G is of rype F'P if (a) cd(G) < oo and
(b) G is of type F' Py

Theorem 1.2.15. Let H <, G be groups. If N < H is sufficiently deep, then for all { > cd(H) + 2 and
any Z.G-module A, we have
HYG,A) = H'(G,A) P H'(H, A). (1.3)



In particular,

cd(G) < max{cd(G),cd(H) + 1,cd(H)}.

Remark 1.2.16. In case G is a free group and H < G is a maximal cyclic subgroup, the direct sum
decomposition (1.3) is proved by [23, Theorem 11.1]. In case G = (G * G5 is a free product of locally
indicable groups G1, G2 and H < G is the cyclic subgroup generated by an element g € G such that g is
not a proper power and does not conjugate into either G; or G, (1.3) is proved by [18, Theorem 3]. Note
that in these two cases, H is a hyperbolically embedded subgroup of G by Example 1.1.3. Thus, Theorem
1.2.15 recovers the results of [23, 18] for sufficiently deep (but not all) normal subgroups.

Notice that, (1.3) does not hold for ¢ < e¢d(H) + 1. For instance, let G be a group freely generated
by two elements z and y and let H = (h) < G with h = xyz~'y~!. Then H <) G by Example 1.1.3
and cd(H) + 1 = 2. Let N = (h¥) < H with k large enough so that N is sufficiently deep. By [23,
Theorem 11.1], H?(G;Z) = Z, and it is well-known that H?(G;Z) = {0} and H?(H;Z) = Z/kZ. Thus,
H?*(G;Z) % H*(G;Z) @ H*(H; Z).

Remark 1.2.17. As a by-product of the proof of Theorem 1.2.15, we show that for ¢ > cd(H )+2, the natural
map H'(G; A) — H'(H; A), induced by the inclusion H < G, is surjective, and the kernel of this natural
map can be identified with H*(G; A). This, together with Proposition 1.2.14, implies H*(G, H; A) =
HY(G; A) for £ > cd(H) + 3, and for £ = cd(H) + 2, there is a surjection H*(G, H; A) - H'(G; A).

Theorem 1.2.18. Let H <}, G be groups. Suppose that N <\ H is sufficiently deep and G, H are of type
F P, (resp. FP). If either one of the following conditions holds, then G is also of type F Py, (resp. FP).

(a) N is of type F P.
(b) H isofthe form H = K X F, where K is a finite group and F' is a finite rank free group, and N < F.

Remark 1.2.19. The seemingly unnatural condition (b) of Theorem 1.2.18 will be used in Chapter 5 to deal
with acylindrically hyperbolic groups. For acylindrically hyperbolic groups, [13, Theorem 6.14] constructs
hyperbolically embedded subgroups of the form described in condition (b). In most of the interesting cases,
N < H is a free group of infinite rank and thus is not of type F'P.,, in which case condition (a) does not
hold. It is unclear to us though whether the conclusion of Theorem 1.2.18 still holds if conditions (a) and

(b) are dropped.



Remark 1.2.20. In Theorem 1.2.18, the condition that H is of type F P, is necessary. Indeed, for suffi-
ciently deep Dehn fillings, H embeds onto a hyperbolically embedded subgroup of G. If G is of type F' Ps,

then [13, Theorem 2.11] implies that H is also of type F Ps.

Remark 1.2.21. In fact, we consider the general case of a family of weakly hyperbolically embedded
subgroups. The corresponding general versions of Theorems 1.2.15 and 1.2.18 can be applied to graph of

groups (see Remark 1.2.6).

1.2.5. Quotients of acylindrically hyperbolic groups The notion of acylindrically hyperbolic groups
was introduced by Osin [28] as a generalization of non-elementary hyperbolic and non-elementary relatively
hyperbolic groups. Examples of acylindrically hyperbolic groups can be found in many classes of group that
interest group theorists for years, e.g., mapping class groups of surfaces, outer automorphism groups of free
groups, small cancellation groups, convergence groups, Cremona groups, tame automorphism groups, etc.
We refer to [29] for details and other examples of acylindrically hyperbolic groups.

It is known that acylindrically hyperbolic groups have a lot of quotients. For instance, every acylindri-
cally hyperbolic group G is SQ-universal [13], i.e., every countable group can be embedded into a quotient
of G. Also, if two finitely generated acylindrically hyperbolic groups G and G are given, one can construct
a common acylindrically hyperbolic quotient of G; and G [19]. As an application of our main results, we
study homological properties of those quotients.

For the following theorems, recall that every acylindrically hyperbolic group G has a maximal finite

normal subgroup K (G) [13, Theorem 6.14].

Theorem 1.2.22. Let G be an acylindrically hyperbolic group, and let C' be any countable group. Then C

embeds into a quotient G of G such that
(a) G is acylindrically hyperbolic;
(b) cd(G) < max{cd(G), cd(C)};

(c) if K(G) = {1}, then for all { > 3 and any Z.G-module A, we have
HY(G; A) = HY(G; A) P H' (C; A);

(d) if C is finitely generated, then C —}, G



(e) if G and C are of type F P, then so is G.

Theorem 1.2.23. Let Gy and G4 be finitely generated acylindrically hyperbolic groups. Then there exists a

common quotient G of G1 and G2 such that
(a) G is acylindrically hyperbolic,
(b) cd(G) < max{cd(G1),cd(G2)};

(c) if K(G1) = K(G2) = {1}, then for all ¢ > 3 and any ZG-module A, we have
HY(G; A) = H'(Gy; A) P H' (Go; A);

(d) if G1 and G2 are of type F P, then so is G.

Remark 1.2.24. Except for the homological conditions, Theorems 1.2.22 and 1.2.23 are proved by [13,
Theorem 8.1] and [19, Corollary 7.4], respectively. The benefit of Theorems 1.2.22 and 1.2.23 is that they

allow constructions of various acylindrically hyperbolic groups satisfying certain homological conditions.
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CHAPTER 2

PRELIMINARIES

We introduce conventions and notations and recall preliminaries in this chapter. In Sections 2.1 and 2.2,
we recall the notation of Cayley graphs and van Kampen diagrams. Section 2.3, whose main references are
[8, 34], reviews the notions of Gromov hyperbolic spaces and Gromov boundaries. In Sections 2.5 through
2.7, whose main references are [13, 29], we recall the definition and basic information about acylindrically
hyperbolic groups and (weakly) hyperbolically embedded subgroups. In Sections 2.6 and 2.7, we review the
concepts of isolated components and diagram surgery, which were introduced by Osin [27] and are useful
in the proof of Cohen-Lyndon type theorems in Chapter 3.

In Section 2.8, we introduce notations related to direct sums and products of abelian group homomor-
phisms. Sections 2.9 through 2.13, whose main references are [10, 31], are devoted to a series of concepts
related to group cohomology. Section 2.14 defines the Cohen-Lyndon property and introduces related no-
tations. Sections 2.15 and 2.16, whose main references are [31, 36], are devoted to spectral sequences and
related concepts, which are used in the Chapter 4 when we study certain spectral sequences with the aid of

the Cohen-Lyndon property.

2.1 Words and Cayley graphs

Let X be an alphabet. Given a word w over X, the length of w, denoted as ||w|], is the number of letters
in w. If X is the generating set of a group G, the word length of an element g € G with respect to X,
denoted as |g|x, is the length of a shortest word (geodesic word) w over X such that w represents g in G. If
X is understood from the context, we will simply write |g| instead of |g|x.

There are two types of equalities for words over X. Given two words u and v over X, the notation
u = v indicates the letter-by-letter equality between v and v and the notation © =g v indicates that v and v
represent the same element of G.

If u is a word over X, then ! denotes the inverse of u. If, in addition, ¢ € G and S C H, then
we write v = ¢ to indicate that u represents g in GG, and write v € S to indicate that the element of G

represented by w is in S.

11



The Cayley graph I'(G, X) is the labeled directed graph with vertices labeled by elements of G' and
directed edges labeled by elements of X. In G (resp. I'(G, X)), we use 1 to denote the identity (resp.
identity vertex). The word metric of I'(G, X) with respect to the alphabet X is denoted as dx. Let p be an
edge path in I'(G, X'). Then ¢x (p) denotes the length of p under dx. Lab(p) denotes the label of p, i.e.,
Lab(p) is obtained by concatenate labels of edges of p. p~ (resp. p*) denotes the initial (resp. terminal)
vertex of p. If S C I'(G, X), then diam x (S) denotes the diameter of S under dx. If T' is another subset of

I'(G, X), then df4, (S, T') denotes the Hausdorff distance between S and 7'.

2.2 Van Kampen diagrams

Let GG be a group given by the presentation

G=(A|R), 2.1

where A is a symmetric set of letters and R is a symmetric set of words in A (i.e., for every w € R, every
cyclic shift of w or w™! belongs to R).
A van Kampen diagram A over (2.1) is a finite oriented connected planar 2-complex with labels on its

oriented edges such that

(a) Each oriented edge of A is labeled by a letter in A U {1};

an oriented edge e o as label a € U , then e” * has label a™*, where e~ (resp. a ") 1S
(b) If iented edge e of A has label AU {1}, th ! has label a1, wh L(resp. a1 i

the inverse of e (resp. a).

Here, 1 is identified with the empty word over A and thus 1 = 1~!. By convention, the empty word of
A represents the identity of G.

Letp = e - - - ex be a path in a van Kampen diagram over (2.1). The initial vertex (resp. terminal vertex)
of p is denoted as p~ (resp. p™). The label of p, denoted as Lab(p), is obtained by first concatenating the
labels of the edges e, ..., e and then removing all 1’s, as 1 is identified with the empty word. Therefore,
the label of a path in a van Kampen diagram is a word over A. If w is a word over A, then the notation

Lab(p) = w indicates a letter-by-letter equality between Lab(p) and w.

Remark 2.2.1. Suppose that p is a path in a van Kampen diagram over (2.1) with Lab(p) = w; - - - wg.

Then we can decompose p in the following way: Let p,,, be the maximal subpath of p such that p,, = p~
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and Lab(py,) = wi. Fori = 2,...,k, let p,, be the maximal subpath of p such that p,, = pf;FI and

Lab(py,) = w;.

Edges labeled by letters from A are called essential edges, while edges labeled by the letter 1 are called
non-essential edges. A face of A is a 2-cell of A. Let Il be a face of A, the boundary of II is denoted
as OII. Likewise, the boundary of A is denoted by JA. Note that if we choose a base point for JII (resp.
O0A), then OII (resp. OA) becomes a path in A. For a word w over A, we use the notation Lab(JIl) = w
(resp. Lab(0A) = w) to indicate that one can pick a base point to turn 911 (resp. OA) into a path p so that

Lab(p) = w.

Remark 2.2.2. Suppose that A is a diagram with Lab(0A) = w; - - - wg. Then we can decompose 0A
in the following way: Let p, be vertex of 0A such that when we use p; as the base point of A, we can
turn OA into a path p with Lab(p) = wy - - - wg. And then we use Remark 2.2.1 to decompose p and thus

decompose OA.
Consider the following additional assumption on van Kampen diagrams:

(c) For every face I of a van Kampen diagram A over the presentation (2.1), at least one of the following

conditions (c1) and (c2) holds.
(cl) Lab(01I) is equal (up to a cyclic permutation) to an element of R.

(c2) OII either consists entirely of non-essential edges or consists of exact two essential edges with mutu-

ally inverse labels (in addition to non-essential edges).

A face satisfying (co) is called a non-essential face. All other faces are called essential faces. The
process of adding non-essential faces to a van Kampen diagram is called a refinement. Figure 2.1 illustrates
a refinement on a van Kampen diagram, where the unlabeled edges are labeled by 1. The interested readers

are referred to [25] for a formal discussion. By using refinements, we can ensure

(d) Every face is homeomorphic to a disc, i.e., its boundary has no self-intersection.

Assumption 2.2.3. In the sequel, the above assumptions (c) and (d) will be imposed on van Kampen dia-

grams.
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Y vy °
a Ol 3

Figure 2.1: A refinement of a van Kampen diagram over the presentation G' = (a,b | aba='b~! = 1)

The well-known van Kampen lemma states that a word w over A represents 1 in G if and only if there is
a van Kampen diagram A over (2.1) such that A is homeomorphic to a disc (such diagrams are called disk

diagrams), and that Lab(0A) = w.

Remark 2.2.4. If a van Kampen diagram A is homeomorphic to a disc, and O is a vertex of A, then there
exists a unique continuous map x from the 1-skeleton of A to the Cayley graph I'(G, .A) sending O to the

identity vertex, preserving the labels of the essential edges and collapsing non-essential edges to points.

2.3 Gromov hyperbolic spaces and Gromov boundary

Let (.S, d) be a geodesic metric space and let A be a geodesic triangle consists of three geodesic segments
1,72, 7y3. For a number § > 0, A is called 6-slim if the distance between every point of ; and the union

v Uk is less than 0, where 4, j, k € {1,2,3},i # 4,5 # k, k #i.

Notation 2.3.1. We use (5, d) to denote a space S with metric d. If the metric d is unnecessary or well-

understood, we will omit it and write S for a metric space.

S is called a d-hyperbolic space if geodesic triangles in S are all §-slim. S is called a Gromov hyperbolic
space if it is 6-hyperbolic for some ¢ > 0. Gromov hyperbolic spaces generalize notions such as simplicial
trees and complete simply connected Riemannian manifolds with constant negative sectional curvature while

preserving most of the interesing properties.

Remark 2.3.2. In literature, properness is often part of the definition of a Gromov hyperbolic space. How-
ever, in this thesis, we do not assume that a Gromov hyperbolic space S is proper, i.e. some closed balls of

S might not be compact.
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Let S be a Gromov hyperbolic space. The Gromov product is defined by

(- y). = (d(z,2) +d(y, z) — d(z,y))/2.

Pick a point e € S, viewing as the base point of the Gromov product. The Gromov boundary 0S5, of
S with respect to e is defined as follows. A sequence of points {s, },>1 C S is called a Gromov sequence
if (s;-sj)e = oo asiand j — co. We say that two Gromov sequences {xy, },>1, {yn }n>1 are equivalent
and write {zp n>1 ~ {Yn}n>1 if (- Yn)e — 00 as n — 0. 95, is then defined as the set of all Gromov
sequences modulo the equivalence relation ~. Elements of 0.5, are just equivalence classes of Gromov
sequences in S and we say a sequence {x, }n,>1 € S tends to a boundary point x € 05, and write z,, — =
asn — oo if {zp}n>1 € .

If e and f are two points of S, then 95, and 0S5} can be naturally identified [34]. We thus obtain a

well-defined notion of the Gromov boundary 0S of S.

2.4 Acylindrically hyperbolic groups

Let (S, d) be a Gromov hyperbolic space and let G be a group acting on S by isometries. The action of
G is called acylindrical if for every € > 0 there exist R, N > 0 such that for every two points z, y with
d(z,y) > R, there are at most N elements g € G satisfying both d(x, gz) < e and d(y, gy) < €. The limit

set A(G) of G on 05 is the set of limit points in 0S of a G-orbitin S, i.e.

A(G) = {x € 0S| there exists a Gromov sequence in G's tending to z, for some s € S}.

If A(G) contains more than two points, we say the action of G is non-elementary. Acylindrically hyperbolic

groups are defined in [28].

Definition 2.4.1. A group G is acylindrically hyperbolic if G admits a non-elementary acylindrical action

on some Gromov hyperbolic spaces by isometries.

2.5 Hyperbolically embedded subgroups and group theoretic Dehn fillings

Let G be a group, let { H)} ca be a family of subgroups of G, let X be a subset of G such that G is
generated by X together with the union of all Hy, A € A, and let H = | | ., H). Consider the Cayley
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graph I'(G, X U H). Note that I'(G, X U #) is a metric space under the word metric.

Remark 2.5.1. It is possible that X and Hy, A € A, as subsets of (&, have non-empty intersections with
each other. As a consequence, several letters of X LI ‘H might represent the same element of G. If this is the

case, the Cayley graph I'(G, X LI H) will have multiple edges corresponding to those letters.

Note that for each A € A, the Cayley graph I'(H), H)) can be identified as the complete subgraph of

I'(G, X U H) whose vertex set is H), and edges are the ones labeled by letters from H).

Definition 2.5.2. Fix A € A. A (combinatorial) path p in I'(G, X Ll ‘H) between vertices of I'(H), H))
is called Hy-admissible if it does not contain any edge of I'(H,, H)). Note that a Hy-admissible path
p is allowed to pass through vertices of I'( Hy, H,). For every pair of elements h, k € H,, let o/i\,\(h, k) e
[0, +00] be the length of a shortest H y-admissible path connecting A, k. If no such path exists, set d, A(h, k) =
+o00o. The laws of summation on [0, +00) extend naturally to [0, +oc] and it is easy to verify that dy
H) x H) — [0, 400] defines a metric on I'(H), H)) called the relative metric on I'( Hy, Hy) with respect

to X.

Remark 2.5.3. Let p be a path in I'(G, X U H) with Lab(p) = h € H), for some A € A. For simplicity,
we denote J)\(l, h) by Z\(p).

Definition 2.5.4. Let G be a group, let { H)} ca be a family of subgroups of G, let X be a subset of G,
and let H = | |, ., Hx. We say that {H)}\cn is weakly hyperbolically embedded into (G, X') (denoted as
{Hx}aer —wn (G, X)) if G is generated by the set X together with union of all H, A € A, and the Cayley
graph I'(G, X U H) is a Gromov hyperbolic space.

If the collection { H)}xen “—wn (G, X) and for each A € A, the metric space (H), J)\) is proper,
i.e., every ball of finite radius contains only finitely many elements, then { H) } xcx is called hyperbolically
embedded into (G, X) (denoted as { H) }aer —n (G, X)).

Further, the collection {H )} cp is called weakly hyperbolically embedded into (resp. hyperbolically
embedded into) G, denoted as {Hy}xen —wn G (resp. {Hx}rea —n G), if there exists some subset

X C G such that {H)}xep —wn (G, X) (resp. {Hx}rer —n (G, X)).

Remark 2.5.5. Note that if the family { Hy}xep “<wh (G, X) for some subset X C GandY = X U X1,
then we also have { H)}xean “—wn (G, Y). In the sequel, we always assume that the relative generating set

X is symmetric, i.e., X = X1
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Notation 2.5.6. Let G, H be groups and let X C G. If {H} —}, (G, X), then we drop braces and write
H <}, (G,X) and H <}, G. If H is not a subgroup of G but there is a subgroup K <, G such that

H = K, then we will slightly abuse notation and write H —, G.

Examples of hyperbolically embedded subgroups can be found in acylindrically hyperbolic groups. In

particular, we have the following.

Theorem 2.5.7 ([13, Theorem 6.14]). Let G be an acylindrically hyperbolic group. Then G has a maximal
finite normal subgroup K(G). Moreover, for n € N, there exists a free group F of rank n such that

Fx K(G) —p G.

Remark 2.5.8. If a group G can be decomposed as a free product G = G * G, then
{Gl, GQ} —h (G, @)

by [13, Example 4.12]. In this case, the relative metrics

~ ~

dq ZG1XG1—>[O,—|—OO], d2:G2XG2—>[O,+OO]

with respect to () satisfy

~ ~ ~

di(1,1) = da(1,1) =0, di(1,g1) = da(1,g2) = 400

for g1 € G1\{1}, g2 € G2\ {1}.

Note that if G = G * G2, then we also have
G1 —h (G, Gg)
Proposition 2.5.9 ([13, Proposition 4.35]). If G, H, K are groups and X C G,Y C H such that K —

(H,Y)and H <, (G, X), then K —, (G, X UY).

Theorem 2.5.10 ([13, Theorem 4.24]). Let G be a group with a family of subgroups {H)} ca and let

X C G. Then the following are equivalent.
(a) {HA})\eA —h (G, X)
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(b) There exists a strongly bounded relative presentation of G with respect to X and { Hy } e with linear

relative isoperimetric function.

For the definition of a strongly bounded relative presentation (resp. a linear relative isoperimetric func-

tion), the reader is referred to [13, Definition 4.22] (resp. [13, Section 3.3]).

Definition 2.5.11. Suppose that G is a group with a family of subgroups { Hx} xean —wh (G, X)) for some
subset X C G. For A € A, let JA be the relative metric on I'(H), H)) with respect to X. We say that a
property P holds for all sufficiently deep Dehn fillings of { H)} e (or for all sufficiently deep Nx<1Hy, A €
A)) if there exists a number C' > 0 such that if N <1 Hy and c?,\(l, n) > C foralln € N \{1}, A € A, then
P holds.

One remarkable property of weakly hyperbolically embedded subgroups is the following group theoretic

Dehn filling theorem.

Theorem 2.5.12 ([13, Theorem 7.15]). Let G be a group with a family of subgroups { Hx}xen “—wh (G, X)

for some subset X C G. Then for all sufficiently deep Ny <1 Hx, A € A, we have:

(a) For each \ € A, the natural homomorphism iy : Hy /Ny — G/{N) is injective (i.e., Hy N {(N) =
Ny ), where N = |Jycp N

(b) {ix(Hx/N\)}rea —wh (G/UNY, X), where X is the image of X under the quotient map G —
G/(N)-
(c) There exist subsets Tx C G, \ € A, such that (N')) = [[\cn ser, N5 where N§ = tNxt~! for X € A

andt € T).

2.6 Isolated components

Let us assume, until the end of Section 2.7, that G is a group with a family of subgroups { H)}xen “—wh
(G, X) for some symmetric subset X C G. For each A\ € A, let 3,\ be the relative metric on I'(H ), H))

with respect to X, and let H = | |y, H. The following terminology goes back to [26].

Definition 2.6.1. Let p be a path in I'(G, X UH). Fix A € A. An H)-subpath q of p is a nontrivial subpath

of p labeled by a word over the alphabet H) (if p is a cycle, we allow ¢ to be a subpath of some cyclic
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shift of p). An Hy-subpath ¢ of p is called an Hy-component if g is not properly contained in any other
H-subpath. Two H-components q1, g2 of p are called connected if there exists a path ¢ in I'(G, X U H)
such that ¢ connects a vertex of ¢; to a vertex of go, and that Lab(c) is a letter from H). An H)-component

q of p is called isolated if it is not connected to any other H \-component of p.

The key property of isolated components is that, in a geodesic polygon (i.e., a polygon in I'(G, X U
‘H) with geodesic sides) p, the total Z—length of isolated components is uniformly bounded above by a
linear function of the number of sides. The following result is proved in [13, Proposition 4.14], which is a

straightforward generalization of [27, Proposition 3.2].

Lemma 2.6.2 (Dahmani-Guirardel-Osin). There exists a positive number D satisfying the following prop-
erty: Let p be an n-gon in I'(G, X UH) with geodesic sides p1, ..., pn, and let I be a subset of the set of sides

of p such that every side p; € I is an isolated H,-component of p for some \; € A. Then

>0\ (pi) < Dn.

pi€l

Remark 2.6.3. Theorem 2.5.12 asserts the existence of a constant C' such that if @(1, n) > C for every
n € N \{1} and X € A, then H) N {(N)) = N, for all A € A. In fact, one can let C' = 4D, where D is the

constant provided by Lemma 2.6.2 (see [13]).

2.7 Diagram surgery

The diagram surgery surveyed in this section was first introduced by Osin [27], where he proved a
group theoretic Dehn filling theorem for relatively hyperbolic groups. Later, Dahmani et al. generalized this
technique to deal with weakly hyperbolically embedded subgroups [13].

Consider a symmetric set R of words over the alphabet X LI H such that G has the presentation
G=(XUH|R), (2.2)

and that for all A € A, R contains all words over the alphabet H) which represent the identity.
Suppose that N), is a normal subgroup of H) for each A € A. Denote the union of Ny, A € A, by N.

The normal closure of N in G, denoted as ((N)), is the smallest normal subgroup of G containning N
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Killing (N') in G is equivalent to adding, to R, all words over H which represent elements of N}, for all

A € A, to form a new presentation

G=G/{(N)=(XUH,RUS), (2.3)

where S = ()¢, S and S), consists of all words over H representing elements of NV in G.

In the sequel, let D be the set of all van Kampen diagrams A over (2.3) such that:

(D1) Topologically A is a disc with & > 0 holes. The boundary of A can be decomposed as 0A = Ocpt AU
Oint\, where Og.+A is the boundary of the disc, and 0;,:A consists of disjoint cycles (connected

components) cy, ..., cx that bound the holes.
(D2) Fori=1,...,k, ¢; is labeled by a word from S.

(D3) Each diagram A is equipped with a cut system that is a collection T' = {t1, ..., ;. } of disjoint paths
(cuts) tq, ..., ti in A without self-intersections such that, fori = 1, ..., k, the two endpoints of ¢; belong
to A, and that after cutting A along ¢; for all ¢ = 1,..., k, one gets a disc van Kampen diagram A

over (2.2).

See Figure 2.2 for an illustration of a diagram in D.

Lemma 2.7.1. A word w over X LI H represents 1 in G if and only if there is a diagram /A € D such that

Lab(0ertA) = w.

Proof. Let w be a word over X U H. If there is a diagram A € D such that 0.,: A = w, by filling the holes
of A with faces whose boundaries are labeled by words from S, one creates a disc van Kampen diagram
over (2.2), whose boundary is labeled by w. Conversely, if w represents 1 in G, then there exists a disc
van Kampen diagram A over (2.2) with Lab(9A) = w. By removing all faces of A labeled by words
from S, we obtain a diagram A’ satisfying (D1) and (D2). To produce a cut system, choose a vertex O in
OextA’. Connect O with each component of 9;,,; A’ by a path so that these paths do not cross each other
(although they do intersect each other). By passing to a refinement of A’, one can separate these paths so
that they no longer intersect each other and thus creates a diagram A satisfying (D1), (D2), and (D3) with

Lab(DeqtA) = w. O
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A’ A

Figure 2.2: How to produce a cut system

Figure 2.2 illustrates the last step of the above proof. The left half shows the diagram A’ with red and
blue paths connect O with two components of J;,;A’. By thickening these paths with a refinement, we
obtain the right half. The red and blue regions consist of non-essential faces, while the outside red and blue
paths form a cut system.

Let A be a diagram in D and let A be the disc van Kampen diagram resulted from cutting A along its
set of cuts. Define x : A — A to be the map that “sews” the cuts. Fix an arbitrary vertex O in A and let L

be a map sending the 1-skeleton of A to I'(G, X LI H), as described by Remark 2.2.4.

Definition 2.7.2. Let A; and Ay be two diagrams of D and let 'y (resp. I's ) be the subgraph of the 1-
skeleton of Aj (resp. Ag ) consisting of dA; (resp. Az ) and all cuts of A; (resp. Ao ). We say that A;
and Ay are equivalent if there exists a graph isomorphism I'y — I's which preserves labels and orientations

of edges, and maps the cuts and boundary of A; to the cuts and boundary of Ao, respectively.

The following Lemmas 2.7.3 and 2.7.8 are results from [13], which are straightforward generalizations
of results of [27]. Note that the authors of [13] assume that the presentation (2.2) has a linear relative

isoperimetric function, but this assumption is not used in the proofs of those lemmas.

Lemma 2.7.3 ([13, Lemma 7.11] ( see also [27, Lemma 4.2])). Let a, b be two vertices on O and let 'd,g

be two vertices on DA such that k(@) = a, k(b) = b. Then for any path p in T(G, X U H) connecting 11(a)
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to u(b), there is a diagram Ay € D with the following properties:
(a) A and Ay are equivalent.

(b) There is a path q in A1 without self-intersections such that (1) q connects a and b, (2) q has no

common vertices with the cuts of Ay except possibly for a,b, and (3) Lab(q) = Lab(p).

Definition 2.7.4. Fix A € A. An H)-subpath in OA (resp. OA) for some A € Dis a path labeled by
a nontrivial word over Hy. An Hy-subpath p of JA (resp. 6&) is called an Hy-component if p is not
properly contained in any other Hy-subpath. Two Hy-components p, g of OA are connected if there exist
Hj-components a, b in A such that x(a) (resp. (b)) is a subpath of p (resp. ¢), and that p(a), p(b) are
connected in I'(G, X U H) (in the sense of Definition 2.6.1).

Remark 2.7.5. The definitions of H)-subpaths, Hy-components, and connected H-components in A for

a van Kampen diagram A € D or AA do not depend on the pre-chosen vertex O.

Definition 2.7.6. The type of A is defined by the formula

k
T(A) = (k, ) [|Lab(t:))),
=1

where k is the number of holes in A and %1, ...,t; are the cuts. We order the types of diagrams in D

lexicographically: (ki,¢1) < (ko, ¢2) if and only if either k1 < kg or k1 = kg and £; < /5.

Definition 2.7.7. For any word w over X U #, let D(w) be the set of diagrams A € D such that
Lab(0ertA) = w.

Lemma 2.7.8 ([13, Lemma 7.17] (see also [27, Lemma 5.2])). Suppose that for every A € A and n €
Ny\{1}, we have c/l;\(l, n) > 4D, where D is the constant given by Lemma 2.6.2. Let w be a geodesic word
over X LU H representing 1 in G, and let A be a diagram in D(w) of minimal type. Then there exist \ € A

and a connected component ¢ of O;ntA such that c is connected to an H y-component of Oegt .

2.8 Direct sums and products of abelian group homomorphisms

Let f : X\ — Y, A € A, be homomorphisms between abelian groups. The domain sum of fy, A € A,

denoted as
Dom
DhH:Px—Y
AEA AEA
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Dmn

is defined as follows. For every A € A, letiy : X\ — P aen X be the natural inclusion. Then & xea

is the unique abelian group homomorphism such that

Dom

P froin=~H

A€A

for A € A.
If fo : X\ — Yy, A € A, are abelain group homomorphisms, then we define the domain-target sum of

/>, denoted as

DT
Pr:-Pxr— P

AEA AEA AEA
by the following rule. For each A € A, let py : @, Y) — Y\ be the natural projection. Then @fg ASais

the unique abelian group homomorphism such that

DT
pro@P froin=fr

AEA

for A € A.
In contrast, if fy : X — Y ,A € A, are homomorphisms between abelian groups, then the target

product of fy, A € A, denoted as

Tar
II‘fx:)(——% IIAY&
AEA AEA

is defined as follows. For each A € A, let my : [] 5 Yo — Y3 be the coordinate projection. Then [[53 fa

is the unique abelian group homomorphism such that

Tar

mo [[Hh=nh

AEA

for A € A.
If f: X\ — Y, A € A, are abelain group homomorphisms, then we define the domain-target product

of f), denoted as

DT
LA T1x5— I

AEA AEA AEA

by the following rule. Every element of [ [, X is a tuple (2))xea. We demand that H/\DGT A [ sends each
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(@a)ren € [Tnen X to (fa(@r))rea € [Lhea Yo

2.9 Chain complexes

Let R be aring. A graded abelian group (resp. R-module) is an abelian group (resp. R-module) A
equipped with a direct sum decomposition A = &,., Ay. By referring to A as a graded abelian group or
R-module and writing A = -, A¢ for some k € Z, we assume implicitly that A, = {0} for £ < k.
A morphism f : A — B between graded abelian groups (resp. R-modules) of degree s € 7. is a group
(resp. R-module) homomorphism such that f(Ay) C Byys. For ¢ € Z and a morphism f : A — B of
degree s between graded abelian groups or R-modules A = @,., A¢ and B = @, By, we write f; for

the /-component of f,i.e.,

fe: Ay = Boys,  fi(a) = f(a)

forall a € Ay. A chain complex (A, d) of abelian groups (resp. R-modules) is a graded abelian group (resp.
R-module) A equipped with a morphism d : A — A of degree —1 such that d o d = 0. This morphism d is
called the differential of A. We call A an exact chain complex if ker(d) = im(d).

In certain cases, we will write a graded abelian group or R-module as A = @, AL Iff: A— Bisa
morphism between graded abelian groups or R-modules A = @, Aland B = @ ez, B, then we write
f* for the ¢-component of f. A cochain complex (A, d) of abelian groups (resp. R-modules) is a graded
abelian group (resp. R-module) A = P, A* equipped with a morphism d : A — A (the differential of A)
of degree 1, where superscripts are used instead of subscripts to indicate cochain complexes. A chain map
f:(A,da) — (B,dp) between chain or cochain complexes A and B is a graded abelian group morphism

of degree 0 such that f o ds = dp o f.

Remark 2.9.1. We write (A, d) for a chain or cochain complex. However, if the differential d is understood,

we will simply write A instead of (A, d).

2.10 Resolutions and Ext functor

A projective (resp. free) resolution of an R-module S over R is an exact chain complex P = @@_1 Py
of R-modules such that P_; = S and F; is a projective (resp. free) R-module for £ > 0. Such a projective

resolution is denoted as P — S. In the case where R is the group ring ZG for some group G, the standard
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free resolution P — 7, of 7Z over ZG is a free resolution (P, J) such that P, is the abelian group freely

generated by ordered (¢ + 1)-tuples of G and the boundary operator 9 satisfies
¢
af(gov T ';g@) = Z(_l)f(gov o gi—1, 941, 0 ';gﬂ)

1=0

for all gg, - - -, g¢ € G.
Given a projective resolution P — S over a ring R and an R-module M, we can apply the functor

Hompg(-, M) to P — S to form a deleted cochain complex
Homp(P,M):0 — Hompg(Py, M) — Homp(Pi,M) — - -

whose arrows (except for the left most one) are induced by the differential of P. In contrast, the non-deleted

cochain complex is
0 — Hompg(S,M) — Hompg(Py, M) — Homp(Pi,M) — - -

By definition, for £ > 0, the group Emtf%(S , M) is the cohomology group of the deleted cochain complex

Hompg(P, M) at dimension ¢. Note that Ext% (S, M), ¢ > 0, form a graded abelian group

Exty(S, M) = @D Exth(S, M).
>0

Let R’ be a ring and let S’, M’ be R’-modules. Suppose that a ring homomorphism R’ — R is given.
Then S and M can be regarded as R’-modules. The homomorphism R" — R induces a chain map

Homp(P,M) — Hompg/(P,M).

Suppose further that R’-module homomorphisms S’ — S and M — M’ are given. Let P/ — S’ be a
projective resolution over R’. Then S’ — S induces a chain map from P’ — S’ to P — S, which further
induces a chain map

HO’ITLR/(P, M) — HO’ITLR/(P/,M).
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Finally, the module homomorphism M — M’ gives rise to a chain map
Homp (P',M) — Homp/(P', M").
The composition of the above three chain maps gives rise to a chain map
Hompg(P,M) — Hompg/(P', M"),
which induces a 0-degree morphism of graded abelian groups
NTR: Exty(S, M) — Exty (S, M').

It is well-known that the definition of NT'R does not depend on the choices of resolutions (for example,

see [31, Theorem 6.17]). NT'R is called the natural map induced by R — R’, S’ — S, and M — M.

Remark 2.10.1. If R = R/, we will simply say that NT'R is induced by S” — S and M — M’'. Moreover,
we treat the cases S = S’ and M = M’ in the same manner.

Suppose that R = ZG and R’ = ZH for some groups G > H and the ring homomorphism R — R is
induced by the inclusion H — G, we will say that NT' R is induced by H — G instead of ZH — ZG.

Similarly, an injective resolution of the R-module M over R is an exact cochain complex I = € =11 ¢
of R-modules such that 7=! = M and I” is an injective R-module for £ > 0. Such an injective resolution
is denoted as M — I. Given an injective resolution M — I over a ring R, we can apply the functor

Hompg(S,-) to M — I to form a deleted cochain complex
Hompg(S,1):0 — Hompg(S,I°) — Hompg(S,I') — - -

whose arrows (except for the leftmost one) are induced by the differential of I. In contrast, the non-deleted

cochain complex is
0 — Hompg(S, M) — Hompg(S,1°) — Homp(S,I') — - --

One can use injective resolutions to give an alternative definition of Ext},(S,M). For £ > 0,
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Ext%(S, M) is the cohomology group of the cochain complex Hompg(S,I) at dimension ¢. It is well-
known that the Ext groups given by the above two definitions can be naturally identified (for example, see
[31, Theorem 7.8]).

Furthermore, if M’ — I’ is an injective resolution over R’, then M — M’ induces a chain map from

M — Ito M’ — I, which further induces a chain map

HomRr(S', I) — HomR/(S’,II).

The composition of Hompg(S,I) — Hompg/(S,I), Hompg(S,I) — Hompg(S',I), and

Homp/(S',I) — Hompg/(S’,I') is a chain map
Hompg(S,I) — Hompg/(S',T"). (2.4
The natural map NT'R can also be defined as the cohomology map induced by (2.4) (for example, see

[31, Theorem 7.8]).

Remark 2.10.2. Ext},(S, M) is the standard notation for Ext groups. However, in case of computations,
we might need to use the resolution P — S (resp. M — ) and thus write H*(Hompg(P, M)) (resp.

H*(Hompg(S,1))) instead of Ext},(S, M).

Remark 2.10.3. We focus on the case R = ZG for some group G. In this case, we write Homg (resp.
Exty,) instead of Homyg (resp. Exty ). If R = Z, then we will simply use Hom in place of Homy.
Similarly, if A and B are two R-modules, then we use A = B to indicate that A is isomorphic to B as

R-modules. In the case R = ZG for some group G, we will simply write A = B instead of A =54 B

2.11 Group cohomology

Let GG be a group and let A be a ZG-module. We use the dot notation - to denote the action of G on A.

The cohomology group of G with coefficients in A is defined as

H*(G;A) = Ext;(Z, A).

Suppose that A’ is another ZG-module. The set of abelian group homomorphisms Hom(A, A’) natu-
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rally admits a G-action defined by

Ifla)=g-flg~" - a)

forallg € G, f € Hom(A, A'), and a € A. Tt is not hard to see that Homg (A, A’) is a G-invariant subset

of Hom(A, A") and thus naturally admits a G-action.

Remark 2.11.1. For clearness, a superscript is used to indicate an action of G, as g- f(a) shall be interpreted
as g € G applied to f(a) € A’ rather than g first applied to f to obtain a function 9 f, and then 9 f applied to

a.

Let K be a normal subgroup of G with G = G//K, and let P — A be a projective resolution over ZG.
As K < G, every projective module over ZG is automatically a projective module over ZK. Thus, P — A
can also be regarded as a projective resolution over ZK. By applying the functor Homg (-, A’) to P — A

and computing the cohomology of the resulted deleted cochain complex Hom (P, A’), we obtain

Exty (A, A") = H*(Homg (P, A")).

It is easy to check that K acts on Homy (P, A’) trivially (i.e., K fixes every function of Homg (P, A")).
Therefore, Homy (P, A") naturally admits a structure of ZG-module. The G-action on Hom (P, A’) pre-
serves cocycles and coboundaries of Homg (P, A"). Hence, Ext} (A, A") also naturally admits a structure
of a ZG-module. Explicitly, if g € G and an element [f] € Ext% (A, A’) is represented by a cocycle
f € Homyg (P, A") for some £ > 0, let g € G such that g is mapped to g under the quotient map G — G.

Then
I =11

A standard fact in group cohomology is that the module structure on Exty (A, A’) does not depend on
particular choices of projective resolutions (for example, see [10, Chapter II1.8]). Thus, we obtain a well-
defined ZG-module structure on Ext (A, A"). In particular, if A = Z, then we obtain a well-defined ZG-
module structure on H*(K; A’). The iterative cohomology H*(G; H*(K; A")) is computed with respect to

this module structure.

Remark 2.11.2. Let B, B’ be ZG-modules with ZG-module homomorphisms B — A, A’ — B’. Direct
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computation shows that the natural map
NTR: Exty (A, A") — Exty (B, B’),
induced by B’ — A’ and A — B is a ZG-module homomorphism.

2.12  Coinduced modules

Let GG be a group, let H be a subgroup of GG, and let A be a module over ZH . The coinduced module of
A from ZH to ZG is
CoInd% A = Hompy (ZG, A).

There is a standard projection

T CoInd%A — A, w(f) = f(1)

forall f CoIndgA.

Notation 2.12.1. In the sequel, we consider iterative functions and frequently refer to an element f €
Hom(A, Hom(B, C)) for some abelian groups A, B, C. For a € A and b € B, the notation f(a, b) is used
to indicate that we first apply the function f to a € A and obtain a function f(a) € Hom(B, C'), and then
apply f(a) to b € B and obtain f(a,b) € C.

Suppose that G, H are groups and the ZH-module A is a function module, i.e., A is a ZH-submodule
of Hom(A1, Ay) for some ZH-modules A and As. Then for every f € CoIndgA and x € ZG, f(z)isa

function in Hom(A1, Az). Fora € Ay, f(z,a) € As is the element obtained by applying f(x) to a.

Recall that Z(G is also a right ZG-module and hence the coinduced module C'ol nd%A naturally admits
a G-action given by

ge f(z)=f(x-g)

forall f CoIndeA, g € G, and r € ZG, turning Colnd% A into a ZG-module.

2.13 A generalization of Shapiro’s lemma

Suppose that G is a group, { H) }acy is a family of subgroups of G, and A} is a ZH \-module for every

A € A. For u € A, the composition of the standard projection C'ol ndfl A, — A, and the coordinate
I
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projection [, Co]nd%AAA — C’oIndeHAu is a map

Dy - H C’olndgAAA — Ay
A€A

Let A be a ZG-module. Consider the abelian group Homg (A, [[ycp Col nd% Ay). Every element of

this group is a function ffrom Ato ][ cp Col nd%A Ay. Define a map

Shay : Homg(A, H Co]ndgAAA) — Hompy, (A, Ay), Shax(f) =pro f
AEA

for f € Homg(A, [Lea C’o[ndthA). Let

Tar
Sha = H Shay : Homg(A, H CoInd%AAA) — H Hompg, (A, Ay).
AEA AEA AEA

Let us construct an inverse of Sha. For (fa)xean € [[ycp Hommu, (A, Ay) and every A € A, let

fr € Hompy, (A, CoInd%A,\) such that

fla,z) = fr(e-a)

forall @ € A and x € ZG, where we employ notations defined in Notation 2.12.1. Let

Tar
F =TI 7 € Hom(A, T[] CoInd§, Ay).
AEA AEA

Direct computation shows f € Homg (A, [] zen Col nd%) Ay). Let

p: H Hompg, (A, A\) — Homg(A, H C’o]ndgAAA)
AEA AEA

be the map sending each (f))xeca to the corresponding f
It is easy to check that Sha and p are mutual inverses. Thus, Sha is an isomorphism of abelian groups.
The map Sha is called Shapiro’s isomorphism. The following lemma is a generalization of the well-known

Shapiro’s lemma.

Lemma 2.13.1. Let G be a group, let { H) } xcp be a family of subgroups of G, and let Ay be a ZZH \-module
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for every A\ € A. Then the Shapiro’s isomorphism Sha defined above induces an isomorphism

Sha* : H*(G; H Co]nd%AA,\) — H H*(Hjy; Ay).
AEA AEA
Proof. Let P — 7Z be a projective resolution of Z over Z(G. For every A € A, as Hy < G, P — Z can also
be regarded as a projective resolution of Z over ZH .

By applying functors Homg(-, [ ca CoIndgAAA) and [[, ., Hompg, (-, Ay) to P — Z, we obtain
cochain complexes Homg (P, []\cp Col ndflA Ay) and [[ cp Homp, (P, Ay). The cohomology groups
of the these cochain complexes are H*(G; [[yca Co[nd%AA) and [],on H*(Hy; Ay). Tt is easy to see
that the Shapiro’s isomorphism Sha is a chain isomorphism and thus induces an isomorphism between

cohomology groups. 0

2.14  Group triples and Cohen-Lyndon property

Let G be a group and let H be a subgroup of G. Denote by LT (H, G) (resp. RT(H, G)) the left (resp.

right) transversal of H in G. The notation

G=]]Gx
AEA

is used to indicate that G is the free product of its subgroups G, A € A.

Definition 2.14.1. Let G be a group with a family { H) } xca of subgroups. For A € A, let N be a normal

subgroup of H). Then the triple (G, { Hx}aea, {Nx}rea) is called a group triple.

Notation 2.14.2. Let (G, {Hx}xea, {Na}rea) be a group triple. Denote | Jy, Ny by A and write G for
G/{NY). For X\ € A, write H ) for Hy/N,. Let A be a ZG-module. For A € A, denote by

NTRpy, : H(G; A) — H*(Hy; A)

the natural map induced by H) — G. Let

Tar
NTRg = || NTRy, : H*(G; A) — [] H*(Hx; A).
AEA AEA
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For A\ € A and g € Z, denote by
NTRY, : HI((N); A) — HI(Ny; A)
the natural map corresponding to the inclusion Ny < (N)), and by
NT%A : HY(G; A) — HY(Hy; A)
the natural map induced by the natural homomorphism H ) — G. Let
NTE =] NTZ + HY(G;A) — [ 29(H: 4).
AEA A€EA
For p,q € Z, let

NTRE - HY(G; HY((N'); A)) — HP(Hx; H'(N); A))

be the natural map corresponding to the natural homomorphism H — G and N TR?VA. Let

Tar
NTRZ? =[] NTRY - HP(G; HI((N); A)) — [1 B2 (Hx; HY(Na; A)).
AeA AEA

Definition 2.14.3. A group triple (G, {Hx}xca, {Nx}xena) has the Cohen-Lyndon property if there exists a
left transversal T € LT (H)({(N)), G) for every A € A such that

(W= 1I &

AEAET

2.15 Spectral sequences of cohomological type

Definition 2.15.1. A bigraded abelian group A = P AP+ ig a direct sum of abelian groups AP p, q €

D,qEL
Z.

Remark 2.15.2. As for graded abelian groups, for k, ¢ € Z, we write A = @p%’ o> AP to indicate that

AP? = {0} if either p < k or ¢ < £.
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Definition 2.15.3. Let A = P AP9and B = P,z B" be bigraded abelian groups. A group

P,qEL

homomorphism f : A — B is called a morphism between bigraded abelian groups of bidegree (k, () for
some k, £ € 7 if f(AP9) C BPTRatt forall p, q € Z.

For p, q € Z, the (p, q)-component of f is the map
fPa . APy ppERatt fP4(a) = f(a)

forall a € APY,

Moreover, for g € Z (resp. p € 7Z), the g-th row (resp. p-th column) of A is denoted as A*4 (resp. AP'*),
ie., AV = @pez AP (resp. AP* = @pez AP9), Note that A*? and AP* are graded abelian groups. We
denote the domain-target sum GBDT P A%T — B%9HE (resp. GBDT fPa . AP* . BPTRX) py fra

pEZL qEZL
(resp. fP*).

Definition 2.15.4. A (first quadrant) spectral sequence (of cohomological type) is a sequence of pairs F =

{(E,,d;)}r>q for some a € NT such that the following properties hold for r > a.
(a) B, =@, 0 EF? is a bigraded abelian group.

(b) d, : E, — E, is morphism between bigraded abelian groups of bidegree (r, 1 —r) such that d, od, =
0.

(0) for p,q € Z, BV, = ker(dP?)/ im(df "1,
The bigraded abelian groups E,.,r > a are called pages of E.

Definition 2.15.5. Let £ = {(E,,d;)},>q and E' = {(E/, d])},>q be spectral sequences. A map M SS :
E — E'is called a morphism between spectral sequences if for every r > a, M SS restricts to a bigraded

abelian group homomorphism M SS, : E, — E! of bidegree (0,0) such that
MSS,.od. =d,.oMSS,

and M S S, is the cohomology map induced by M SS,.
If there exists R > a such that for all p,q € Z, M S Sﬁ’q is an isomorphism, then M S.S is called an

isomorphism between spectral sequences.
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Definition 2.15.6. Let GG be an abelian group. A filtration of G is a sequence (F},G)rcz of abelian groups
such that

{0y Cc - CFpn1GCF,GC- - C F)G=QG.
If £ < 0, then F;.G = G by default.

Definition 2.15.7. We say that a spectral sequence E = {(E,, d;) },>4 converges to a graded abelian group

H =@, HY, denoted as EY'? = HP14, if for every £ > 0, there exist R > 0 and a filtration
0=FH'c-..c FpH* = H*

of H' such that Fy H' /Fj, .1 H' = E=** forr > R.

Remark 2.15.8. In the notation E;? = HPT4, the indexes p and ¢ indicate that for sufficiently large r,
EP appears as the quotient of certain terms in a filtration of H?9. One can use differnet letters for the

indexes, say, writing EMY — %+ instead of EP'? = HPH,

Remark 2.15.9. Note that if p,q > 0,p + ¢ = £ and r > max{a,? + 2}, then the target of d*? is

EPT7 = {0} and the domain of d? "7 is BP9 = {0}. Thus,

EPS, = ker(dP9)/ im(dP—"0" ) 2 B,

Therefore, it suffices to let R = max{a, ¢ + 2} in Definition 2.15.7.

Definition 2.15.10. Let By = {(E1,,d1,,)}r>q and By = {(E2,, d2,) }r>q be two spectral sequences such
that

P,q p+q P,q p+q
El’a = H; ", E27a = H,

for some graded abelian groups H; = @@O Hf and Hy = @@0 Hf, let MSS : E1 — E5 be a morphism
between spectral sequences, and let f : H; — Hs be a morphism between graded abelian groups of degree

0. We say that M S'S and f are compatible if for every £ > 0, there exist R > 0 and filtrations
{0}y = F,1H{ C---C FoH{ = Hf, {0} =F,, H5C---C FyHS = HS

such that f(FyHY{) C F,HS for k = 0,...,¢ + 1, and that for every 7 > Rand k = 0, ..., £, there exist
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isomorphisms

o FyH{/Fo Hf — ELMY, 10 FLHS Fry HY — By P

with MSS!=% ko5 =10 f, where
f: F.H{/Fy Hf — F.HS/Fyy1 HS

is the map induced by f.
Remark 2.15.11. By Remark 2.15.9, it suffices to let R = max{a, £ + 2} in Definition 2.15.10.

Lemma 2.15.12 ([36, Comparison Theorem 5.2.12]). Let Ey = {(Ei,,dis)}r>q and Ey =

{(B2,,d2,r)}r=a be two spectral sequences such that
D,q P+q D,q p+q
ELa = H{ ", EQ’a = H,

for some graded abelian groups H1 = @, H{ and Hy = D=0 HY, let MSS : Ey — FEy be an
isomorphism between spectral sequences, and let f : Hy — Hs be a morphism between graded abelian

groups. Suppose that M SS and f are compactible, then f is an isomorphism.

Definition 2.15.13. Let E) = {(E),,dxr)}r>a; A € A, be spectral sequences. The product of Ex, A € A,

is a sequence E = {(E,, d;)}r>q such that for all p,q € Z and r > a,

DT
P9 — P,q P, — P,q
gpt =YL dpr = T] &5
AEA AEA

Remark 2.15.14. The product of spectral sequences is a spectral sequence as products of exact sequences

are exact.

Lemma 2.15.15. Suppose that Ex = {(E\ ,,dx,)}r>a, A € A, are spectral sequences and Hy, X € A, are
graded abelian groups with Eﬁ:g = Hf\H_q for A€ A. Let E = {(E,,d,)};>q be the product of Ex, \ € A.
Then B = []hep HY

Moreover, let E = {(E;,dy)}y>a be a spectral sequence and let H = @, H bea graded abelian
"’

group with EZ’q = B For\ € A, let MSSy : E — E) be a morphism of spectral sequences and let

fr : H — Hy be a degree-0 morphism of graded abelian groups. If for A\ € A, M S S is compatible with
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fx. Then the maps

Tar o Tar o
HMSS,\:E—>E, Hf/\:H—>HH)\
AEA AEA AEA

are also compatible.
Lemma 2.15.15 can be proved by taking products of filtrations. We leave the details to the reader.

Definition 2.15.16. Suppose that E; = {(E;,,di,)}r>a,% € I, form a directed system of spectral se-
quences. The direct limit of { E; };cy is a spectral sequence E = {(E;, d;)}r>q such that, for p,q € Z and
r>a, E?P9 = liﬂEﬁ’Tq and d¥? = ligldf’f.

Remark 2.15.17. The direct limit of spectral sequences is a spectral sequence as hén is an exact functor on

the category of abelian groups.

Lemma 2.15.18. Suppose that E; = {(E; ,d;i)}r>a (resp. H;), @ € 1, form a directed system of spectral
sequences (resp. graded abelian groups). Let E (resp. H) be the direct limit of { E; };cy (resp. {H;}icr). If
foriel Bl = HP* and fori,j € I withi < j, the morphisms E; — E;, H; — H; are compatible,

then EPY = HPT4,

Lemma 2.15.18 can be proved by taking direct limits of filtrations and then using the fact that lgq is an

exact functor. We leave the details to the reader.

Definition 2.15.19. A double complex (C, d, ,d) (of cohomological type) is a bigraded abelian group C'
with homomorphisms d, ,d : C — C between bigraded abelian groups of bidegree (1,0) and (0, 1),
respectively, such that

hdohd:vdovd:hdoud-l-vdohd:().

The map pd (resp. d) is called the horizontal (resp. vertical) differential of C. C'is called a first quadrant

double complex if CP4 = {0} whenever either p or q is strictly less than 0.

Notation 2.15.20. When we refer a double complex (C, 1 d, ,d), if the differentials are clear from the con-

text, we will simply write C'.

Definition 2.15.21. Let (C4, dy,vd1) and (Ca, pd2, ,d2) be double complexes. A morphism M DC' :
C1 — Cy between double complexes is a morphism between bigraded abelian groups C1, Cy of bidegree
(0,0) such that

MDC o pdy = pdoo MDC, MDC o ,dy = 4doo MDC.
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Definition 2.15.22. Let (C, d, ,d) be a first quadrant double complex. The total complex TC = @ ,, TC*
of C'is a cochain complex with TC* = @D, ¢ CP9. The differential of TC'is d = pd + d.

The row filtration of T'C' is
{0}y C -+ CpF 1 TC C WF,TC C - -, FoTC =TC,
where , F, TC = ®q>k CP4, For { € N, let
WETCY = B, TC NTCY.

Then

WRIC =P nFprct
£20

is a cochain complex under the differential induced by d.

Similarly, the column filtration of T'C is
{0y C -+ CWEp 1 TC C FR,TC C - [y TC =TC,
where ,F,,TC = @pgk CP4, Forf € N, let
WRTC = ,F,TCNTC".

Then

B TC =P FHTC*
£20

is a cochain complex under the differential induced by d.

Definition 2.15.23. A exact couple (D, E, «, B,7) (of cohomological type) of degree r € N is a commuta-

tive triangle
E

(2.5)

such that
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(a) D and I are bigraded abelian groups;

(b) «, 3, and v are morphisms between bigraded abelian groups of bidegree (—1,1), (r — 1,1 — r), and

(1,0), respectively;
(c) exactness holds at each vertex of the triangle diagram (2.5).

Suppose that (D, E, «, 3,7) is an exact couple of degree . Letd = [ o0, let

E, =  EP?

DP,qEZL

be the bigraded abelian group with
EP? = ker(d™9)/ im (dP~ I,

and let

Dy = P Db

PgeZ
be the bigraded abelian group with

Db = im(ap+1’q_1).

Define morphisms

a1:D1—>D1, 51:D1—>E1, ’}/1:E1—>D1

between bigraded abelian groups by the following rule. Let a;; be the restriction of «a to D;. Fix integers

p,q. Forevery y € DY, there exists x € DP*1471 such that
1,4-1
aPtLa1(z) = .

Let 3(y) be the cohomology class of EP"7" represented by fP+14~(z). For [2] € EPY, there exists

z € EP representing [z]. Let v)"9([2]) = v(2).

Lemma 2.15.24 ([31, Theorem 11.9]). The maps a1, 51,1 constructed above are well-defined. Moreover,

(D1, E1, aq, B1,71) is an exact couple of degree r + 1.
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Definition 2.15.25. The exact couple (D1, E1, a1, 81,71) in Lemma 2.15.24 is called the derived couple of

(D?E7a7677)'

Definition 2.15.26. A morphism

MEC : (D,E,a,B,7) — (D', E', o/, 8,7

between exact couples consists of two maps

MECp:D — D', MECp:E— FE

with the following properties.
(@) (D,FE,«a,B,v)and (D', E', o/, 3',~") are exact couples of the same degree.
(b) MECp and M ECFE are maps between bigraded abelian groups of bidegree (0, 0).

(c) The following diagram commutes.

MECp

D D’
,Y/
~
o E MECE E, o
B
B/
P MECD o

Moreover, we call M ECp (resp. M ECE) the D-component (resp. E-component) of M EC.

Suppose that
MEC . (D,E,OCHB,’}/) — (DI7E17QI7BI7’YI)

is a morphism between degree 7 exact couples. Let (D1, Eq, a1, 81,71) (resp. (D}, EY, o, 81,7})) be the

derived couple of (D, E, «, 3,7) (resp. (D', E', o/, 3',7)). By restricting M ECp to D1, we get a map

MECLDl : D1 — Dll
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Recall that E; (resp. EY) is the cohomology of E (resp. E') with respect to 3 o 7y (resp. 5’ o v'). Let

MECLE1 : E1 — Ei

be the map on cohomology induced by M ECE. It is easy to check that M ECy p, and M EC} g, form a
morphism

MECI : (D15E17a17/817’)/1) — (Dqui)O/l)ﬂi”Yi)
between degree-(r + 1) exact couples. To sum up,

Lemma 2.15.27. Suppose that

MEC : (D,E,a,B,7) — (D', E', o/, 8,7

is a morphism between degree-r exact couples. Then M EC' induces a morphism

MEC, : (D1, Er,0q, B1,m) — (D1, E1, o, 81,71)

between the derived couples.

Lemma 2.15.28 ([31, Theorem 11.10]). Suppose that (D1, E1,aq, 51,71) is an exact couple of degree 1.
For everyr > 1, let (Dy41, Eri1, i1, Brs1, Yr+1) be the derived couple of (D, Ey, ay, Br,Vr), and let

d, = By o ~yy. Then the pairs (E,,d,),r > 1, form a spectral sequence.

Definition 2.15.29. For » > 1, the exact couple (D,, E,, a,, B,7,) in Definition 2.15.28 is called the
(r — 1)-th derived couple of (D1, E1, aq, 51,71) (the 0-th derived couple is just (D1, E1, a1, B1,71)).
The spectral sequence {(E,,d,)},>1 in Lemma 2.15.28 is called the induced spectral sequence of the

exact couple (D1, Fq, a1, B1,71)-

Let

MEC, : (D1, Er,0q, B1,m) — (DY, ELL o, B1,71)

be a morphism between degree-1 exact couples. By using Lemma 2.15.27 iteratively, we see that M EC}
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induces morphisms
MECy : (Dy, Er, ap, Br, ) — (D}, By o, B, 77),m 2 1
between the derived couples. The E,.-components M EC, g, ,r > 1, form a morphism

MSS : {(Ey,dy)}rs1 — {(EL,d\)} o1

T

between spectral sequences, where {(E,, d;)},>1 (resp. {(E.,d..)},>1) is the induced spectral sequence of

ry U
(Dl,El,al,ﬁl,’Yl) (resp. (DaﬂEi?O/l’ﬂi’rYi))

Lemma 2.15.30. Let

MEC . (DlaElaal,ﬂla’Yl) — ( /17 iaallaﬁ177i)

be a map between degree-1 exact couples. Then M EC induces a morphism

MSS : {(Ey,dy)}rs1 — {(EL d\)} o1

T T

between the induced spectral sequences.

Let C1 be a first quadrant double complex. Consider the row filtration
{0} C- - CpFp 1 TC) CHETC, C -y F)TCL =TC

of its total complex T'C';. By Definition 2.15.22, ;, F;, T'C is a cochain complex for every k € Z. The short
exact sequence

0— th+1T01 — thTCl — thTCl/thHTCl — 0

of cochain complexes gives rise to a long exact sequence

— H' (1, Fie TCh) =5 HY(,FTCh) P, H(WF,TC1 /1 Fy1 TC1) 25 - -
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of cohomology groups. It follows that (D1 1, E1,1, 04,1, 81,1, 71,1) is an exact couple of degree 1, where
DY = HPM(,F,TC), BV = HPY(,FTC /3 Fyp TC)

forp,q € Z. (D11, E11, 01,1, B1.1,71,1) is called the exact couple induced by the row filtration of TC.
Let £y = {(E1,d1,)}r>1 be the induced spectral sequence of (D 1, E1 1,11, 81,1,71,1). We call

E the spectral sequence induced by the row filtration of T'C;. Similarly, the column filtration of T'C'; also

induces a spectral sequence, which is called the spectral sequence induced by the column filtration of TC1.

We summarize the above discussion by the following.

Lemma 2.15.31 ([31, Corollary 11.12]). If C is a double complex, then the row (resp. column) filtration of

TC induces an exact couple and a spectral sequence.

Lemma 2.15.32. Let C' be a double complex and let E be the spectral sequence induced by the row (resp.
column) filtration of TC. Then EV" = HPI(TC).

More precisely, let (D1, E1, aq, 1,71) be the exact couple induced by the row (resp. column) filtration
of TC and let (Dy, E,, vy, By, V) be the (1 — 1)-th derived couple of (D1, Ev, a1, B1,71) forr > 1. Then

forevery k € N,

 —k—12k+1 —k—1,2k+1 —k—1,2k+1 —k—12k+1 _ gk
0= Dypys C Dyjn C---CD iy C D, = H*(TC) (2.6)

is a filtration for H*(TC) and for r = k + 2, ..., 2k + 2, B, induces an isomorphism

D;k—1,2k+1/D;fl—1,2k+1 E:—k—2,2k—r+2' 2.7)

Proof. This is proved in [31, Theorem 11.13] except that the indexes of the D and E terms in (2.6) and (2.7)
are not computed there. In order to prove the next Lemma, it is convenient to have those indexes. The reader

is encouraged to follow the proof of [31, Theorem 11.13], find the indexes, and check (2.6), (2.7). ]

Suppose that another first quadrant double complex Cs is given. Then the row filtration

{0}y C -+ C pFp1TCy C W F,TCy C - -, FoTCy = TCo
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of its total complex T'Cs also induces a spectral sequence E5. Suppose further that there is a morphism
MDC : Cy; — Cs between double complexes. Then M DC' induces a map between the cohomology long

exact sequences corresponding to the short exact sequences
0— th+1T01 — thTC’l — thTCl/thHTCl — 0,

00— th+1T02 — thTCQ — thTCQ/th+1TCQ —0

for every k € Z. Therefore, M DC' induces a morphism between the induced exact couples and thus induces
a morphism between the induced spectral sequences.

Note that M DC also induces a cohomology map
MDC* : H*(TCy) — H*(TCy).

Fork € Nand r = k + 2,...,2k + 2, by Lemma 2.15.32, E;;kiﬂk*rw (resp. E;;kiz’%*rﬁ) is a

subquotient (quotient of a submodule) of H*(T'C}) (resp. H*(T'Cy)). Thus, M DC* induces a map

—k—2,2k—r+2 r—k—2,2k—r+2
E7 ’ — F. ’
1,r 2,r .

Lemma 2.15.33. Let M DC' : C; — Cs be a morphism between first quadrant double complexes C1, Co, let

Ey ={(Eir,d1y)}r>1 and Ey = {(Es -, da ) }r>1 be the spectral sequences induced by the row filtrations

of TCy and T Cy, respectively, let M DC* : H*(T'Cy) — H*(TCs) be the cohomological map induced by

MDC, and let MSS : Ey — FEs be the morphism between spectral sequences induced by M DC. Then

MDC* and M S'S are compatible. More precisely, for k € Nandr = k + 2, ..., 2k + 2, the map
EI;k_2’2k_T+2 N E;;k—Q,Qk:—r—i&

induced by M DC* can be identified with M SSr—F=32k=r+2

Moreover, the same conclusion holds with column filtration in place of row filtration.

Proof. We only consider row filtrations. The proof for column filtrations is exactly the same.

Let (D11, E11,011,611,7,1) (tesp. (D21, E21,a21,021,72,1)) be the exact couple induced

43



by the row filtration of 7'Cy (resp. T'Cy). For r > 1, let (Di,,Eiy, 00,0, B1,0,71,r) (resp.
(D2, Eo ooy, Bor,y2,r)) be the (r — 1)-th derived couple of (Di1,Ei1,a11,81,1,71,1) (resp.

(D21, Ea 1,001, B2,1,72,1)), let
MEC’I‘ : (Dl,ra El,?“a ajq.r, ﬁl,ru '71,7‘) — (-DQ,’I‘7 E2,7"7 Qg r, 52,7"7 '72,7”)

be the morphism between exact couples induced by M DC, and let M ECp , be the D; ,-component of
MEC,. By definition, the E ,-component of M EC,. is just M SS, forr > 1.

Fix k € Nandletr € {k + 2, ..., 2k + 3}. By definition, the map
MECl_)ﬁ«_l’%H : Dif—l,%ﬂ N Dz_,f_l’%ﬂ

is the restriction of

—k—12k+1 _ —k—1,2k+1 —k—1,2k+1
MEC’D7l 1Dy — Dy

to Dy F12R 4 Thys,
—k—1,2k+1, y—k—1,2k+1 —k—1,2k+1
MECR) (Dy} ) C Dy .

The morphism M EC, gives rise to a commutative digram

—k2k O —k—1.2k+1 Bir r—k—22k—r+2 lr r—k—1,2k—r+2

c—— D7 —— Dy, — by, — Dy, —
lMEC,;f“[L?’““ lMSST
- ag, —k— B2, —k— - V2, —k—12k—
. D2 7lf,Qk r Dgf 1,2k+1 r E;"Tk 2.2k—r+2 r Dg Tk 1,2k—r+2 .
Note that
r—1 times

r—k—12k—r42  ——— 2r—k—2,2k—2r+3
Dl,r =100 al,l(Dl,'r )

r—1 times

——N—
=a110- o (H (), Foi2TCh)) = {0},

r—1 times
r—k—12k—r42  ——— 2r—k—2,2k—2r+3
D2,7‘ =Q210--0 0‘2,1(D2,1 )
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r—1 times

—N——
=010 0 (H (), Fai2TC5)) = {0},

as2r—k—22>24k+4—-k—-2>k+ 1

Therefore, 31 ., B2, induce isomorphisms

3, .D—k—1,2k+1/a1,r(D—k72k) L, proke22kere2

T 1,r 1r 1,r
2. y—k—1,2k+1 —k,2k r—k—2,2k—r+2
52,7‘ : DQ,T /Oé 7T(D2,r ) EQ,T ’
respectively. Note that
—k2ky _ —k—1,2k+1 —k2ky _ y—k—1,2k+1
aLT(Dl,r )= Dy ) ax\,r(Dz,r )= Dy iy .

—k—1,2k+1 y—k—1,2k+1 —k—1,2k+1
MEC, (D1 i1 ) C Dy )

the following diagram commutes

—k—1,2k+1 —k—1,2k+1 BLT r—k—22k—r+2
%
Dlr /Dl,r—l-l El,r

MSSy

—k—1,2k+1 —k—1,2k+1 BQ,T r—k—2,2k—r+42
%
DQ,T /D2,7‘+1 EQ,T

where the vertical map on the left is induced by M ECBkl_l’% 1

Thus, MSS : E; — Ey is compatible with M EC}," 2"+ By definition,

MECH W = MDC™.

Thus, the map M SS : E1 — FE» is compatible with M DC™.
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2.16 Cartan-Eilenberg resolutions

Definition 2.16.1. Let R be a ring and let (C, d) be a cochain complex of R-modules. An injective Cartan-
Eilenberg resolution (CE resolution) of C over R is a double complex (1, 1,0, ,0) with the following proper-

ties.
(a) If C? = {0} for some p, then 1?7 = {0} for all ¢ € Z.
(b) 177 = {0} forall ¢ < 0.

(c) Note that the 0-th row of 1

70 .. y .0 , PTLO

is a cochain complex. We demand that there is an injective chain map f (the augmentation map) from

the cochain complex C to I*:0,

(d) Forp > 0, let
nZP = ker(dP), ,BP =im(d’"'), ,HP =,ZP/,BP

be the cocycles, coboundaries, and cohomology of C, respectively. For p, g > 0, let

pZP9 = ker(,0P9), ,BP? =im(,6P"19), ,HP = ,ZP9/, BPY.
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Then the following sequences

f 0 L 6P 1 LoP1

O Cp Ip7 Ip7 —_— .. °
f 0 L6P0 1 LoP1

0 nZP pzp0 — 2 zpl 0 L
f 0 »6P:0 1 0P L

0 hBP th’ N th’ >

,0 1
O———— pHP ————— HPY —————— HPY —————————

are injective resolutions over R, where the unlabeled arrows are the cohomology maps induced by f
or 6. Forevery p,q € Z, , ZP1 (resp. , BP9, , HP?) is called the horizontal cocycle (resp. horizontal

coboundary, horizontal cohomology) of I at position (p, q).

Moreover, the notation (1, 1,0, ,0) ER (C,d) (or briefly T ER C,I — C, etc.) indicates that I is a CE

resolution of C' and f is the augmentation.

Definition 2.16.2. Let
(11, hO1,v01) EN (Ci,d1), (I2,n02,402) EEN (Ca,d2)

be CE resolutions. A morphism

MCER:I —J

between CE resolutions is a morphism between double complexes I and .J.

Let ' : Cy — C5 be a chain map. We say that M CER and I are compatible if
MCEROfl = fQOF.

Lemma 2.16.3 ([36, Lemma 5.7.2]). Every cochain complex has a CE resolution.
Lemma 2.16.4 ([36, Exercise 5.7.2]). Let R be a ring, let C1 and Cy be cochain complexes of R-modules,
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and let Iy — C1,Is — Cs be CE resolutions over R. Then for every chain map f : C — D, there exists a

morphism MCER : I — Iy between CE resolutions such that MCER and f are compatible.

Let (I, 19, ,0) be a CE resolution of some cochain complex over a ring R. As for ordinary resolutions,
when we say “apply the functor Hompg(Z, -) to I to form a deleted double complex (C, d, ,d)”, we mean
that

C = @ Homg(z,17)

p,g=20

and pd, ,d are induced by 10, ,,d, respectively.
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CHAPTER 3

COHEN-LYNDON TYPE THEOREMS

The main goal of this chapter is to prove the following generalization of Theorem 1.2.5.

Theorem 3.0.1. Let G be a group with a family of subgroups {Hx}xen <>wn G. Then the Cohen-Lyndon

property holds for all sufficiently deep Dehn fillings of { H) }xen.
Assuming Theorem 3.0.1, we prove Theorem 1.2.5.

Proof of Theorem 1.2.5. By assumption, H <, (G, X) for some subset X C G. Let d be the relative
metric on I'(H, H) with respect to X. Theorem 4.0.1 provides a constant C' such that if N < H and

d(n) > C foralln € N\{1}, then (G, H, N) possesses the Cohen-Lyndon property. As H <, (G, X), d

is locally finite. In particular,

~

F={hem{1}|dn <C}

is a finite set. By Theorem 3.0.1, if N << H and NNF = (), then (G, H, N) has the Cohen-Lyndon property,

and the desired result follows. O

After the proof of Theorem 3.0.1, we will discuss the application of the Cohen-Lyndon property on

relative relation modules.

3.1 Construction of the transversals

Let G be a group with a family of subgroups { H)}wn <—wn (G, X) for some subset X C G. For
A€ A, letd, » be the relative metric with respect to X. The proof of Theorem 3.0.1 relies on constructing a
particular left transversal T\ € LT (H)(N)),G) for each A € A. It is convenient to construct a collection
{T\} e of sets of words over X LI H satisfying the following properties (P1) through (P3), and think of 7’
as a transversal in LT(H,{(N)), G) (identifying words over X L H and the elements of G represented by
those words) for A € A. Recall that ||w|| is the length of w for a word w over X U H, and that |g| denotes

the length of a geodesic word over X LI H representing an element g € G.
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(P1) [{Th}xen is transversal] For each A € A, T, € LT (H,\{(N), G).

(P2) [{Th}aen is geodesic] If w € T for some A € A, and gH ) (N)) = wH\{(N) for some g € G, then

|w|| < |g|. This implies that, for all A € A, every w € T}, is a geodesic word over X LI H.

(P3) [{Tx}xen is prefix closed] Let A, u € A. If a word w € T) can be decomposed as w = uhv with
h € H,\{1} (u,v are allowed to be empty words), then v € T}, and c?u(l, h) < c/l\u(l, n') for all
h' € hN,,.

Lemma 3.1.1. There exists a collection {T} e satisfying (P1), (P2), and (P3).

Proof. Let V be the poset of collections { W)y} ea of words satisfying (P2) and (P3), while instead of (P1),
we only demand that the words of W) represent a subset of a transversal in LT (H(N)), G) for every
A € A. We order W by index-wise inclusion, i.e., {Ux} xep is less than {V) }en if and only if Uy C V), for
every A € A. W is non-empty because the collection { Wy} ca with each W), consisting of only the empty
word is a member of WW. Moreover, the union of any chain of V is again a member of VV. Therefore, Zorn’s
lemma implies that V¥ has a maximal member {7} ca. Suppose that {7} ca does not satisfy (P1), i.e.,
there exist \g € A and g € G such that no element of the coset gH \, M is represented by a word in T)),.
, then for each

Without loss of generality, let us assume that if ¢’ is an element of G such that |¢'| < |g

AEA, g,H)\<<N>> NTy # 0.

Let w be a geodesic word over X LI H representing g. Consider the collection {U) } xcp constructed as
follows. For every A € A\{\o}, let Uy = T}, and construct U), by the following manner: If w contains no
letter from #, let Uy, = T), U {w}. If w contains at least one letter from #, then w can be decomposed as

w = whv such that h € H)\{1} for some A\ € A and v contains no letter from  (u, v are allowed to be

empty words). As |lul| < |Jw| = |g|, there exists a word v’ € T) such that v’ € uH,{N)). Let b’ be an
element of H) such that u((N)) = «'h’({(N)) and let h” be an element of H) such that (a) K" Ny = h'hN)
and (b) if k € h” Ny, then dy(1,h") < dx(1, k). Set Uy, = Ty, U {u'h"v}.

It is straight-forward to verify that {Uy}xca is an element of V. There is a word in U}, representing

an element in gH\, (), while T, has no such words. It follows that {Uj}xecp is strictly greater than

{T»}en, contradicting the choice of {T) }ea.- d
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3.2  Proof of Theorem 3.0.1

Suppose that the assumptions of Theorem 3.0.1 are met. Recall that Lemma 2.6.2 provides a number
D > 0 to estimate the total length of isolated components in a geodesic polygon, and that Theorem 2.5.12
and Remark 2.6.3 implies that if dy(1,n) > 4D for every n € Ny\{1} and A € A, then Hy N (N) = Ny

for all A € A. We assume the following condition.
(24D) dy(1,n) > 24D foralln € Ny\{1} and A € A.

We prove that (24D) implies the Cohen-Lyndon property of (G, {Hx}aea, {Nx}rea). Let {Th}aea be
a collection of words over X U H satisfying (P1), (P2), and (P3) (by Lemma 3.1.1, such a collection exists)
and think of each T}, as a left transversal in LT'(H ) (N)), G). For every A € A, we extend T}, to a set T5".
Roughly speaking, T” is the set of words obtained from T’ by replacing letters from H ) with other letters

from the same coset of V), in H).

Definition 3.2.1. For every A € A, let 75" be the set of words with the following property: Every word
w € TY* admits a decomposition w = wihy - - - wphpwiy1 (w1, ..., wiy1 are allowed to be empty words)

such that for every ¢ € {1, ..., k}, there exists \; € A with the following properties.
(a) Fori =1,...,k, h; is an element of H ), (h; is allowed to equal 1).

(b) There exists an element h, € Hy,\{1} such that h;N,, = h;N,, for i = 1,...,k, and that the

concatenation wi k) - - - wihj wy1 is a word in T)y.

Remark 3.2.2. If £ = 0 in the above definition, conditions (a) and (b) will be satisfied trivially. Thus, 7T is

a subset of TY” for every A € A.

Definition 3.2.3. Let w be a word over X LI H and let A € A. If w € T¥", let ranky(w) be the minimal
number £ obtained from the decompositions w = wyhy - --wihpwgy1 satisfying Definition 3.2.1. If w & T,
let ranky(w) = oo.

For every word w over X U %, the rank of w, denoted as rank(w), is the number minyea{ranky(w)}.

Lemma 3.2.4. Let w be a word in TY" for some \ € A. Suppose that w can be decomposed as w = uhv

with h € H,\{1} for some i € A. Let b be an element of H,, such that h"N,, = hN,,. Then uh/"v € T
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Proof. Letw = wihy - - - wphgwy41 be a decomposition satisfying Definition 3.2.1 and let b, ..., hz, be as
in (b) of Definition 3.2.1.
Without loss of generality, we may assume that 4 = h; for some number i € {1, ..., k}. Then uh”v can

be decomposed as
[/ "
uh™v = wihy - - - wi—1hiywih w1 hiprwigahiye - - wihgwgg .

By replacing h; with A for j # i and 1" with h}, we obtain a word in T and thus uh""v € T5*. O

Lemma 3.2.5. Let w be a word in T\" for some A € A with a decomposition w = wihy - - - wphpwi41

satisfying Definition 3.2.1. Then w1 € T),.

Proof. Let hi,...,h}, be as in (b) of Definition 3.2.1. Note that the word wqh) - - - wihjwyy1 can be
decomposed as

wih)..wphjwgr1 = wi b (wahl - - - wphfwgy ).
By (P3), wy € Th,. 0

It will be shown that (A)) = [[}ca ez, NX- For the moment, let
K= (NLteT\,AeA)<G.

Lemma 3.2.6. Let w be a word in | )y, TY", and let n be an element of Ny, for some \g € A. Then

wnw™! € K.

Proof. Let p be an element of A with rank(w) = rank,(w). Thus, w admits a decomposition w =
wihy - - - wphpwgy satisfying Definition 3.2.1 with k& = rank(w). We perform induction on rank(w). If
rank(w) = 0, then w € T, and thus wnw~' € K.

Suppose that, for all w’ € [J,, T5® with rank(w') < rank(w) and alln’ € |y, Na, w'"'n/v’ € K.
Let A}, ..., b}, be as in (b) of Definition 3.2.1. Thus, there exists n; € Ny, such that nih} = hy (note that

N, is anormal subgroup of H ), ). Notice that

w =¢ (winqwy ) (wihiwahs -+ - wihkwes1)
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and thus

wnw™ ! = (wmlwfl)(w’nw'_l)(wlnlwfl)_l, (3.1

where w' = wihjwahsg - - - wphkwgi1.
By replacing h; with ) for j = 2,...,k, we can turn w' into a word in 7),. Thus, w" € T3 and
rank(w') < k — 1 < rank(w). It follows from the induction hypothesis that w'n(w’)~! € K. By Lemma

3.2.5, w1 € T}, and thus wlnlwfl € K. By (3.1), wnw ™! represents a product of elements of K. O

For the next two lemmas, recall that ||w|| denotes the length of a word w over X LI, and that |g| denotes

the length of a geodesic word over X LI H representing an element g € G.

Lemma 3.2.7. Let \ be an element of A, let u be a word in T\", let h be a letter of H\\{1}, and let v be a
word over X U H with ||v|| = ||ul|. Suppose that every element m' € (N) with |m’| < 2|lu|| + 1 belongs

to K. If the concatenation uhv € (N)), then uhv € K.

Proof. If uhv is not a geodesic word, the desired result will follow from the assumptions trivially. So let us
assume that uhv is geodesic. Consider a diagram A € D(w) of minimal type (see Definition 2.7.6).

We prove Lemma 3.2.7 by an induction on the number of holes in A. If A has no holes, then it will be
a disk van Kampen diagram over (2.2) with boundary labeled by uhv and thus uhv represents 1 € K.

Suppose that A has k£ > 1 holes. By Lemma 2.7.8, there exists © € A and a connected component ¢ of
OintA such that c is connected to an H ,-component of J.,;A. Let w be the label of c¢. Then w is a word over
H,, representing an element n € N,,. As Lab(0eztA) = uhv, we can use Remark 2.2.2 to decompose 9.t A
as the concatenation p,ppp, of three paths p,, pn, and p, with Lab(p,) = u, Lab(py,) = h, Lab(p,) = v.
Depending on where c is connected to, there are three possible cases.

Case 1: cis connected to an H-component of p,.

In other words, v can be decomposed as u = ujhiup with hy € H,\{1}, and p, can be decom-
posed as a concatenation p,,, pp, pu, of three paths p,,, pp,, and p,, such that Lab(p,,) = u1, Lab(py,) =
h1, Lab(py,) = uz and c is connected to pp,, (see Remark 2.2.1). By Lemma 2.7.3, passing to an equivalent
diagram if necessary, we may assume that there exists a path pj, in A with Lab(pp,) = ho € H,,, connect-
ing the common vertex of p, and p,, to a vertex of c. Note that the conjugate n1 = honhy, lenN - Let hs

be the letter from H,, such that h3 =g nyh;. Then

whv = urhiushv =g (ulnflufl)(ulhgughv). (3.2)

53



As hy # 1, we have ||u1 < |Ju]| — 1 and thus [Juin; tut]| < 2[wa|l — 1 < 2||ul| + 1. Note that
uiny uyt € (N). By the induction hypothesis, uin; 'u; ! € K.

Let uy = ujhsug. Note that |lugl| < |lull. As whv,uinyu;t € (N, it follows from (3.2) that
ughv € (N). If |lug|] < ||ul|, then [Jughv| < 2||u|| + 1 and thus ushv € K, by assumption. So let us
assume that ||u4|| = ||ul|. By Lemma 3.2.4, u4 € T5". Let ¥ be a disc van Kampen diagram over (2.2) such
that

Lab(9%) = howhy "hihy 't

Cut A along the path py,, to produce a diagram A; € D with
Lab(@extAl) = ulhgwhglhluﬂw.

Glue ¥ to A by identifying the paths with label howh, Lh1 (perform refinements if the non-essential edges

of the two paths do not match) to construct a diagram Ay € D with
Lab(DeztA2) = ughv

(see Figure 3.1). Note that the number of holes in Ay is strictly less than that of A. By the induction
hypothesis, ushv € K. By (3.2), uhv is a product of elements of K.

Case 2: cis connected to an H -component of p,.

This case is symmetric to Case 1 and the proof is left to the reader.

Case 3: cis connected to pp,.

In other words, ¢ = X and h € H)\{1}. By Lemma 2.7.3 and passing to an equivalent diagram
if necessary, we may assume that there exists a path in A, labeled by a letter h; € H), connecting the
common vertex of p;, and p,, to a vertex of c. Note that the conjugate n; = hlnh,l_1 € N,. Let hy be aletter

from H), such that ho =g n1h. Consider the equality
uhv =g (unyu™)(uhgv). (3.3)

As u € TS®, Lemma 3.2.6 implies that un; 'u~! € K. An analysis similar to the one in Case 1 (with

whav in place of ughv) shows that uhov € K. By (3.3), uhv is a product of elements of K. ]
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h A I AQ

Figure 3.1: An illustration of Case 1 in the proof of Lemma 3.2.7

Definition 3.2.8. Let w be a word representing an element of ((A/)). Define the number k(w) to be the
minimal number of holes of a diagram A € D(w). The type of w is the pair 7(w) = (||w]|, k(w)). We order

the set of types lexicographically (see Definition 2.7.6).

Remark 3.2.9. If w is a word representing an element of (') and A is a diagram in D(w) of minimal

type, then A necessarily has k(w) holes.
Proposition 3.2.10. (N)) = K.

Proof. Clearly, each of the groups N, ¢ € T), A € A, is contained in {(N)) and thus K < (N). Let w be
a word over X LI H such that w € ((N)). Let us show that w € K by performing induction on the type of
w. Note that the base case ||w| = k(w) = 0 is trivial.

Suppose that, for every word w’ over X U H with w’ € {(N), 7(w’) < 7(w) implies that v’ € K.
If w is not a geodesic word, the induction hypothesis will imply w € K. Thus, we may assume that w is
geodesic. Consider a diagram A € D(w) of minimal type.

By Lemma 2.7.8, there exist A € A and a connected component ¢ of 0;,+/AA connected to an H -
component of .+ A. In other words, w can be decomposed as uhv with h € H)\{1} (u,v are allowed
to be empty words), and J.,+A can be decomposed as a concatenation p,ppp, of three paths p,,, pr, and
py such that Lab(p,) = u, Lab(pp) = h, Lab(p,) = v and ¢ is connected to p, (see Remark 2.2.2). By
Lemma 2.7.3 and passing to an equivalent diagram if necessary, we may assume that there exists a path py,

in A with Lab(pp,,) = h1 € H), connecting the common vertex of p;, and p,, to a vertex of c.
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Note that, as h # 1, at least one of ||u|| and ||v|| is at most (||w|| — 1)/2. Without loss of generality, we
may assume that ||v]| < (JJw|| — 1)/2. The case ||u|| < (Jlw|] — 1)/2 can be analyzed in almost the same
way (or just by considering w ™! and reversing every edge of A if one wishes).

Let w; = Lab(c). Thus, w; € Ny. Let hy be a letter from H) such that hy =¢ hhlnhl_l. There exists
t € T such that ¢ and v—! are in the same left H) ((\'))-coset. In other words, there exists h3 € H) such
that thsv € {(N'). Let nq be a letter in Ny such that ny =g hzhin " hi hs .

Consider the equality
w = uhv =g (uhgv) (v hy 't (tngt ™) (thaw). (3.4)

Note that uhov € (), as all other brackets in (3.4) represents elements of (). As in the proof of

Lemma 3.2.7, let 3 be a disc van Kampen diagram over (2.2) with
Lab(0%) = hhywihy thyt,

Cut A along pp, to produce a diagram A; € D with Lab(OegtA1) = uhhlwlhflv. Glue A; to X,
identifying the paths labeled by hhjw; h1_1 (perform refinements if the non-essential edges of the two paths
do not match). Denote the resulting diagram by As. Clearly, Ay € D and Lab(0ertA2) = uhgv. Note that
the number of holes in Ay is strictly less than that of A, and that ||uhov|| < |Jul| + ||v]| + 1 = [Juhv]|, as
uhv is a geodesic word. Thus, 7(uhov) < 7(w) and the induction hypothesis implies uhov € K.

Clearly, tn1t~! € K. Note also that thsv € K. Indeed, if either ||t|| < ||v|| or hg = 1, then |thgv|| <
2|lv|]| + 1 = |jw|| and the induction hypothesis implies that thsv € K. If ||t|| = ||v]| and hs # 1, then
Lemma 3.2.7 implies thyv € K.

As v_lhglt_l = (thsv)~!, we also have v_lhglt_l € K. By (3.4), w is a product of elements of

K. O

The cutting process in the proof of Lemma 3.2.10 is exactly the same as the one for Lemma 3.2.7. See
Figure 3.1 for an illustration.

The goal of the rest of this section is to prove the following.

Proposition 3.2.11. (N) = [[\c ser, Ni-
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Proof. Assume, for the contrary, that there exists a word

k
z = Htmit;l 3.5)
i=1

representing 1 € G such that

Z) k=2

(Z2) fori =1, ..., k, there exists A\; € A such that n; € N),\{1} and ¢; € T);

(Z3) t; # tiy1 fori =1,..., k (subscripts are modulo k, i.e., ngr1 = ny, tg = tg, etc.).

Without loss of generality, we may also assume

(Z4) z is minimal, i.e., has the minimal & among all other words of the form (3.5) representing 1 in G and

satisfying (Z1), (Z2), and (Z3).

The main idea of the proof of Lemma 3.2.11 is to show that the existence of such a word z contradicts

Lemma 2.6.2. For this purpose, it is convenient to first cyclically permute z and consider the word
k-1
w = tlzl (H tinitfl)tknk.
i=1

In what follows, subscripts are modulo k. Let p,, be the path in I'(G, X U H) with Lab(p) = w
and p~ = 1. We use py,, Py to denote subpaths of p,, labeled by n;, t;tl, respectively. More precisely,
Dn,; (r€sp. i, pti_l) will denote the path in the Cayley graph I'(G, X U H) with Lab(p,,) = n; (resp.
Lab(py,) = ti, Lab(p,1) = t; ) and p;, = ty N2 tymgt; Dt (resp. py, =t (TT52 tjnjtj—l),pt—;l —
t! (1‘[;’;11 tingt; ' )ting).

Recall that the collection {7} } xcp satisfies (P1), (P2), and (P3). Note that, for every A € A and every
word ¢t € T}, the word ¢ does not end with a letter from H, by (P2). It follows that p,,, is an H,-component
of p,, for i = 1, ..., k. Being a cyclic permutation of z, the word w represents 1 in GG and thus the terminal
vertex of p,, is 1. Hence, p,, is a geodesic 3k-gon. As Z)\i (pn;) = c/i\)\i(l, n;) fori = 1,..., k, by Lemma
2.6.2 and (24D), there exists some ¢ € {1, ..., k} such that p,, is not an isolated H,-component of p,,.

The rest of the proof is divided into several lemmas. All of them are stated under the assumptions (and

using the notations) of Proposition 3.2.11.
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Lemma 3.2.12. If p,, is not an isolated Hy,-component of py, for some i € {1, ..., k}, then there are only

three possibilities:
(a) pn, is connected to an Hy,-component of py, . |, but not connected to any H,-component of p,-1 .
i—1
(b) pn, is connected to an H ) -component of p,—1 , but not connected to any H,-component of py, ;.
i—1

(¢) pn, is connected to both an H),-component of p,, , and an H ) -component of p,—1 .
i—1

i+1

Proof. Without loss of generality, let us assume that p,,, is not isolated in p,,. There are six cases to consider
(see Figure 3.2 for an illustration).

Case 1: py, is connected to an H, -component of either p;, or Pyt In this case, some terminal segment
of ¢1 represents an element of I,, which contradicts (P2).

Case 2: py, is connected to either py,, or p,, . If p,, is connected to p,,, then A\; = A2, which in turn
implies t1,t2 € T),. The assumption that p,, is connected to p,, also implies tl_ltg € H,,. By (P]),
t1 = to, contradicting (Z3). The analysis for the subcase where p,,, is connected to p,,, is similar.

Case 3: py, is connected to p,, for some i € {3,...,k — 1}. In other words, there exists h € H), such

that the word

i—1
u = t;l(H tj’rljt;l)tih
j=2

represents 1 in G. As [[2Ltinit;t € (N) < G, we have ¢7't; € Hy, (N). The assumption that p,,, is
Jj=2"3""3%j 1 1 1

connected to py,; also implies ny,n; € Ny, and thus 1,t; € Ty,. By (P1), t; = ¢;. Thus, the word

i—1
o' = tiht ([ ] gty )

j=2
is a cyclic permutation of u and represents 1 in G. It follows that t;ht;* € (N). By Theorem 2.5.12,
Remark 2.6.3, and Condition (24D), we have h € Ny,. Then the word ¢, ht]* (H;;é tjnjtj_l) represents 1
in G, contradicting (Z4).
Case 4: py, is connected to an H,-component of p;, for some i € {3, ..., k}. Thus, ¢; can be decom-

posed as t; = t.h't! with b’ € Hy, \{1} and there exists h € H}, such that the word
i—1
w=t7 ([ tynst; Htih
j=2
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Case 1

Case 2

Case 3

Case 6

Figure 3.2: Cases 1 through 6 in the proof of Lemma 3.2.12

represents 1 in G. By (P3), ¢/ belongs to T),. Arguing as in Case 3, we conclude that the word
t htfl(H;;lQ tjnjtj*l) represents 1 in GG, contradicting (Z4).
Case 5: py, is connected to an H,-component of p,—1 for some i € {2,...,k — 1}. This case can be
1

reduced to Case 4 by considering w™".

Thus, the only possibilities left are (a), (b), and (c). O]

Lemma 3.2.13. If py,, is connected to an Hy,-component of py, . ,, then t;11 can be decomposed as t; 1 =

uhv with h € Hy,\{1} (u, v are allowed to be empty words), t; = u, and c/l\,\i(l, nih) > 12D.

Proof. By Definition 2.6.1, ¢;41 can be decomposed as t;+; = uhv with h € H,,\{1} such that p,, is
connected to the path py in I'(G, X U H) with Lab(py) = h and p, = t,;l(Hé-:l tjnjtj*l)u. By (P3),
u € T),. The assumption that p,, is connected to pj, also implies ¢; we H »; and thus t; = u, by (P1).

Another consequence of (P3) is

dy, (1,h) < dy, (1, h(h ™ n;h)) = dy, (1, nsh).

Therefore, the triangle inequality implies

dy, (1,1;) < dy, (1,n:h) + dy, (1, 1) = dy, (1, n:h) + dy, (1, k) < 2dy, (1, n;R)



and thus

dy, (1,n:h) > dy,(1,n;)/2 > 12D,

by (24D). 0

The next lemma follows from Lemma 3.2.13 by considering w~".

Lemma 3.2.14. If p,, is connected to an H),-component of Pyt then t;_1 can be decomposed as t;_1 =

uhv with h € Hy,\{1} (u, v are allowed to be empty words), t; = u, and c/l\,\i(l, h~1n;) > 12D.

Lemma 3.2.15. If py, is connected to an H ), -component of py, ,, then py, , is not connected to any H), , , -

41’
component of Pyt If pp, is connected to an H ), -component of Pyt then py,_, is not connected to any

H), ,-component of py,.

Proof. 1f py, is connected to an H,-component of py, ,, then ¢; equals some prefix of ¢;,1, by Lemma

3.2.13. If, in addition, p,, is connected to an H), , -component of p,—1, then ¢; 11 equals some prefix of

i+1

t;, by Lemma 3.2.14. Thus, t; = ¢;4.1, contradicting (Z3).

The second assertion of the Lemma can be proved by considering w™!. 0

Recall that we assume the existence of a word z satisfying (Z1) through (Z4) and construct w, p,, from
z. The previous several lemmas reveal some properties of p,, and we are now ready to construct a geodesic
polygon p from p,, so that p violates Lemma 2.6.2, and then we can conclude that z does not exist and prove
Proposition 3.2.11. The idea is to merge all H),-components connected to p,, to form an isolated H),-
component for 7 = 1,..., k — 1. Of course, one can also merge p,,, with the H), -components connected to
it. We do not perform this merging only because it makes the construction more complicated. Pick elements

hi,....hx—1 € Hand g1,1,912, 92,1, 92,2, ---, Jk—1,1, gk—1,2 € G by the following procedure.
Procedure 3.2.16. For: =1, ...,k — 1, perform the following.

(a) If pn, is an isolated Hy,-component in py, let g;1 € G (resp. g;2 € G) be represented by the word
t,;l(l‘[;ﬂ;ll tingt; )t (resp. t;l(Hj;ll tinit; ting), and let h; = n;.

(b) If, in py, pn, is connected to an H),-component of py, . ,, but not connected to any H,-component of
Pt then by Lemma 3.2.13, t; 11 can be decomposed as t;+1 = w;hlv; with b, € H\\{1}, t; = w;,

and c/l\)\i(l, n;hi) > 12D. Let h; be a letter from H), such that h; =g n;h}, and let g; 1 € G (resp.

gi.2 € G) be represented by the word t,;l(]_[é;ll tjnjtjfl)ti (resp. t;l(Hé;ll tjnjtjfl)tihi).
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(¢c) If in py, pn, is connected to an H ) -component of p,—1 , but not connected to any H-component
1—1

of tiv1, then by Lemma 3.2.14, t;_y can be decomposed as t;—y = u;hlv; with h, € Hy,\{1},

ti = u;, and c/l;\i(l, h’i_lni) > 12D. Let h; be a letter from Hy, such that h; =g h;_lni, and

let g;1 € G (resp. gio € G) be represented by the word t,;l(H;-;zl tjn;t 1)ti_1ni_1vi_1 (resp.

J
t (T1E2S tmgts Dticamioavy  h).

(d) If in py, pn, is connected to both an H ), -component of py,,, and an Hy,-component of Pyt then
by Lemmas 3.2.13 and 3.2.14, t; 1 (resp. ti_1) can be decomposed as t;y1 = uih;vi (resp. t;—1 =
w,hlv}) with b, € Hy,\{1} (resp. h € H\,\{1}), ti = w; (resp. t; = u}). Let h; be a letter
from H), such that h; =g h;'_lnih;, and let g;1 € G (resp. g;2 € G) be represented by the word
t (T12S gt tioamaa (V)™ (resp. £ (1523 tymgt; tioanioa (0]) " ha).

Lemma 3.2.17. g; 1 and g; 2 are vertices on py, for i = 1, ...,k — 1. Moreover, the order in which p,, visits

these vertices is §1,1, 91,2, 92,1, 92,25 -+ Jk—1,1, Jk—1,2-

Proof. The first assertion follows directly from the choices of those vertices. Clearly, the path p,, visits g; 1
before visiting g; o for i = 1, ..., k — 1. Thus, the second assertion will be proved once we show that, for all
i,j € {1,....,k — 1} with i < j, the path p,, visits g; » before visiting g; 1.

Suppose, for the contrary, that for some ¢, j € {1,...,k — 1} with i < j, the path p,, visits g; before
visiting g; o. By Lemma 3.2.12, there is only one possibility for this case: j = ¢ + 1, pj, is connected to an

H),-component of py,, ,, and py,, ., 18 connected to an H), ,-component of p,—1. By Lemma 3.2.15, if p,,

i+1

is connected to an H y,-component of p;

11> then pp, ., is not connected to any H),, ,-component of Py-15 2

contradiction. O

Lemma 3.2.18. Fori = 1,...,k — 2, the subpath of p,, from g; 2 to g; 41,1 consists of at most two geodesic

segments.

Lemma 3.2.18 follows immediately from the choices of the vertices g; 1 and g; 2, 1 < ¢ < k—1. We are

now ready to construct a geodesic polygon p from p,,.

Construction 3.2.19. For i = 1,...,k — 1, let p,, the edge of I'(G, X U H) with Lab(pp,) = h; and
P, = gi,1- Let p be the path in I'(G, X U H) satisfying: p~ is the identity vertex. p first follows the path
of py, (in the direction of p,,) until p visits g1 1, and then p travels along pj, and arrives at g1 . And then p

follows the path p,, (in the direction of p,,) until p arrives at g 1 (Lemma 3.2.17 guarantees that p will arrive
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Figure 3.3: The construction of p

at go 1), where p travels along pj, and then arrives at g2 2. The path p continues traveling in this manner
until arriving at g1 . Finally, p follows the path p,, (in the direction of p,,) and comes back to the identity

vertex.

Figure 3.3 illustrates how to construct the geodesic polygon p. In Figure 3.3, the outside boundary with
label t;ltlnltfltgngtg 1t3n3t3_1t4n4 is the geodesic polygon p,,. In the outside boundary, py,, is an isolated
H),-component, p,, (resp. pp,) is connected to an H,-component (resp. H),-component) of p;, (resp.
D¢, ), and py,, is connected to both an H,-component of Pyt and an H),-component of p;,. By Lemma
3.2.13, tl_l cancels with a prefix of ¢5. After this cancellation, p,, merges with an H,-component of p;,
to form py,,. Similarly, p,, merges with both an H,-component of Pyt and an H,-component of p;, to
form py,,. The merging process does nothing to 74, although n4 is not an isolated H,-component. Finally,

DPw becomes p, the boundary of the shaded region.
Remark 3.2.20. It follows easily from the above construction that pj,, is an isolated H ,-component of p

fore =1,....,k — 1.

Note that the subpath of p,, from 1 to g; 1 consists of at most 2 geodesic segments, and the subpath of p,,
from gy_1 2 to 1 consists of at most 3 geodesic segments. Together with Lemma 3.2.18, these observations
imply that p is a polygon in I'(G, X LI ) with at most 3k geodesic sides.

Consider the following partition of {1,....k — 1} = I U I5. A number 1 < i < k — 1 belongs to I;
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if in py, pp, is connected to both an H);-component of p,—1 and an H),-component of p; Otherwise, ¢
1—1

41"

belongs to I5.

Lemma 3.2.21. card(l;) < (k—1)/2.

Proof. First suppose card(l;) > k/2. Then there exists a number 4 such that both i and ¢ + 1 belong to I,
contradicting Lemma 3.2.15. Thus, card(l;) < k/2.

Suppose card(Iy) = k/2. Then k is even and I; = {1,3,...,k — 3,k — 1}. For every even number
i € {2,4,...,k — 2,k}, Lemma 3.2.15 implies that p,, is an isolated H),-component of p,,. Note that
ZAZ- (pn,) = (/i\,\i(l, n;) > 24D fori = 1, ..., k, by (24D). Therefore, Lemma 2.6.2, applied to the geodesic

3k-gon p,,, yields

24Dk ~

T < £>\2 (pnz) + Z)\4 (pm;) +oet Z/\k—2 (p"k—z) + Z)\k (pnk) < 3kD7

a contradiction. O

Thus, card(lz) = k—1—card(l;) > (k—1)/2. For each i € Iy, p, is an isolated H,-component of
p with Z)\i (pn;) = EAi(l, h;) > 12D, by Procedure 3.2.16 and Construction 3.2.19. Lemma 2.6.2, applied

to the geodesic polygon p, yields

6D(k —1) = 12D(k — 1)/2 < > I, (pn,) < 3kD. (3.6)
i€l
In other words, k < 2, contradicting (Z1). Proposition 3.2.11 is proved. 0

Finally, Theorem 4.0.1 follows from Proposition 3.2.10 and Proposition 3.2.11.

Remark 3.2.22. The proof of Theorem 4.0.1 implies that if {H)}xep —wn G, Ny < H)y for A € A, and
(24D) holds, then for every collection {7 } xcp satisfying (P1), (P2), and (P3), we have

wy=TI W

)\EA,tET/\

Remark 3.2.23. In fact, one can show that if {H)}xepn —wn G, Ny < Hy for A € A, and following

condition
(4D) dy(1,n) > 4D foralln € Ny\{1} and X € A
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holds, then the triple (G, {Hx}xea, {Nx}ren) possesses the Cohen-Lyndon property. For the proof, one
needs to merge p,,, with the H), -components connected to it in the construction of p, and sharpen the coarse

estimate (3.6).

3.3 Relative relation modules

Let H be a group with a normal subgroup N and let H = H/N. The relative relation module Rel(H, N)

of the exact sequence

1-N—>H-—>H-—>1

is the abelianization N = N /[N, N] equipped with the H-action by conjugation. More precisely, denote by

7 the image of an element n € N under the quotient map N — N. Then there is an action of H on N given
—_~— ~ T ~~——— ~A

by 0w = hnh~! forall h € H,7 € N. Notice that if h belongs to N, then h[17i = hnh™! = hnh™' =7

forallm € ’ZV as % commutes with 77. Hence, the action of H gives rises to an action of H, turning 'N into

a ZH-module. If H is a free group, then Rel(H, N) is called a relation module.

The main goal of this section is to prove Proposition 3.3.1, which, together with Theorem 1.2.5, implies

Corollary 1.2.8.

Proposition 3.3.1. Let (G,{H\}xena, {Nx}xea) be a group triple satisfying the Cohen-Lyndon property.
Employ the notation defined in Notation 2.14.2. If Ny # {1} for every A € A, then

(a) for every \ € A, the natural map Hy — G is injective (i.e., Hy N (N) = Ny), identifying H y with

a subgroup of G;
(b) Rel(G, (N)) =g @rer IndG, Rel(Hy, Ny).

Remark 3.3.2. If N), = {1} for some Ay € A, then we can consider the subset A’ such that N, # {1}
for every A € A’. Tt is easy to see that (G, { Hx} e/, {VNa}rens) has the Cohen-Lyndon property and thus
Proposition 3.3.1 can be applied to (G, { Hx}xears {Nataen)-

Suppose that the assumptions of Proposition 3.3.1 are satisfied. Let T, A € A, be the transversals

provided by Definition 2.14.3. Fix some A € A for the moment. Suppose h € H) N (N)). Then h €
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Ny (Ny), the normalizer of Ny in (N)). Note that

*

(Why= JI Ni=Ns«C I M+ I &)

HEALET), teT\{1} HEM{A}LET),
and N, # {1}. Note also the following general fact.
Lemma 3.3.3. Let A, B # {1} be groups. Then N z,p(A) = A.

Proof. Suppose that there exists a € A\{1} and g € A * B\ A such that a9 € A. Consider the Bass-Serre
tree T'r corresponding to A x B. Denote the A * B action on T'r by <». The vertex group A fixes a vertex v
of T'r and thus a9 fixes v. Clearly, the vertex g{uv is also fixed by a¥. As g € A x B\ A4, gdv # v and thus
a9 fixes a nontrivial path between v and g{>v. In particular, o fixes an edge of T'r and thus conjugates into

the unique edge subgroup {1} of A x B. It follows that a9 = 1, which is in contradiction with a # 1. O
Therefore, Nyxry(Nx) = Ny and h € Ny. We conclude:
Lemma 3.3.4. Forevery A € A, Hy N (N)) = Ny.

Let us consider the relative relation modules Rel(G, (N))) and Rel(Hy, Ny), A € A. Forevery A € A,
let M, be the subgroup of G generated by N, ¢+ € Ty. Note that My = H:eTA N}\ for every A € A, as
(N) = IT\en ter, Ni- Note also that (N) = [\ M.

For every A € A, the composition of natural maps M) < (N) — m maps M) into the abelian
group m and thus factors through

—_—~—

iy s My — (N,

The homomorphisms iy, A € A, extend to an abelian group homomorphism
—~— T N—
i: @ My — (N).
AEA

It is well-known that ¢ is an abelian group isomorphism (for example, see [30, Problem 4 of Exercise 6.2]).

Thus, we identify r]\Z; with its image ¢ A(r]\Z;) for every A € A and write

Rel(G, (N) = (N} = D M.
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Fix A € A for the moment. By the same argument as the one above, we write

N
g
t
My =P M.
teTy

Lemma 3.3.5. ,]\Z; is a ZG-submodule of Rel(G, (N)) = @, ea f]\Z; The G-action on ’]\Z; transitively
~ —~ _
permutes the summands N, t € T\, and its isotropy group of Ny is H, i.e., an element g € G satisfies

GO0 € Ny for all 7t € Ny if and only if € Hy.

Proof. Fixtg € Ty and g € G. There exists t; € T\, h € Hy, and m € ((N') such that
g

gto = tihm. 3.7)

N
Consider the summand N)t\o. Foralln € N,

thontal = gtontglg_l = tlhmnm_lh_ltfl = tlhnh_ltfl € N;\l,

where the fact that the action of ((A')) acts trivially on Rel(G, (N))) is used in the second equality. Hence,

gDNf\O C Nﬁl. As My = @teTA Nf\, it follows that M is G-invariant and thus M) is also G-invariant.

N N N N
The above paragraph shows that g maps Nf\0 into Nil. Actually, gDN/t\O = Nil. Indeed, given n € N,
N

we find an element = of N;° such that gO0% = n1. Letx = ntoh™' Note that n* " € Ny, as Ny is normal

in Hy. Thus, z € N;O. Direct computation shows

—~—

g0% = grg™' = gto(h 'nh)ty g™t = tihm(h 'nh)m ™ h ]t = t1h(h nh)h T =l

where the fact that the action of (N)) on Rel(G, (N))) is trivial is used in the second equality. Hence,
N
gz = nht,
N N —~_ —~~
As a consequence, gDN/t\O = Nil, i.e., the action of G on M) permutes the summands N tteTy. In
fact, this permutation is transitive: Let ¢ be any element of 7. We wish to find an element of G which maps

N ~_
N} to N{. This can be done by tt;':

N N
tty 'ON = Ni.

—~— N
Thus, the action of GG on M), transitively permutes the summands Nf\, t € T). The same is thus true for
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the action of G on /J\};\
Clearly, for the action of G on ﬁ;, the isotropy group of /]\7; contains H (/). Observe that in equation

(3.7),ifto = 1and g & Hy\{(N), thent; # 1ast;'g € Hy\(N). It follows that
~ e ~
gONx = N{! # N,

i.e., g does not fix ’J\\T; setwise. Therefore, for the action of G on /]\Z(, the isotropy group of /]\7; is Hy(N)).

As a consequence, for the action of G on f]\Zf;, the isotropy group of ,]\\]; is H . U

Recall that if O is a ring, D is a subring of O, and A is a D-module, the induced module of A from
D to O, denoted as ndgA, is the tensor product O @ A. If O, D are integral group rings, we simplify
notations by dropping Z, e.g., we write I nd% instead of [ nd%%. For A € A, Lemma 3.3.5, together with
the following Proposition 3.3.6, which is a well-known characterization of induced modules (for example,

see [10, Proposition 5.3 of Chapter III]), implies fJ\Z; ==1 nd%A Rel(Hy, Ny).

Proposition 3.3.6. Let G be a group and let A be a Z.G-module. Suppose that the underlying abelian group

of A'is a direct sum @, ; A; and that the G-action transitively permutes the summands. If H < G is the

el

isotropy group of A; for some j € I. Then Aj is a ZH-module and A = 1 nd%Aj as Z.G-modules.

Proof of Proposition 3.3.1. For every \ € A, ,]\Z; == Ind%A Rel(H)y, N)). Thus,

Rel(G, (N) = @ My =g @ IndS_Rel(Hy, Ny),
AEA AEA

as desired. O

Example 3.3.7. Let G be a graph of groups, let 71 (G) be the fundamental group of G, let {G,, },evg be the
collection of vertex subgroups, and let {G.}.cpg be the collection of edge subgroups. By [13, Example
4.12], {Gy}vevg “—wh m1(G) with respect to any subset X consisting of stable letters (i.e., generators
corresponding to edges of G\T'G, where T'G is a spanning tree of G), and the corresponding relative metric
on a vertex group G, corresponding to a vertex v € V G is bi-Lipschitz equivalent to the word metric with
respect to the union of the edge subgroups of GG, corresponding to edges incident to v. Thus, we have the

following corollary of Theorems 2.5.12, 4.0.1 and Proposition 3.3.1.
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Corollary 3.3.8. Let G be a graph of groups, let 71(G) be the fundamental group of G, let {Gy}yevg be
the collection of vertex subgroups, and let {G¢}.cpg be the collection of edge subgroups. Suppose that, for

every v € VG, Ny is normal subgroup of G, with
Ny N {(Ge,v € e) =0.
Then the group triple (G,{Gy}vevg, { Vv }vevg) has the Cohen-Lyndon property, and
Rel(G, (N) 2 €D IndS, Rel(Gy, Ny),

where N' =, cyg No, G = G/{(N), and G, = G, /N, forv € VG.
In particular,

Corollary 3.3.9. Let G = A x¢ B be an amalgamated free product. If N < A and N N C = {1}, then

(G, A, N) has the Cohen-Lyndon property, and
Rel(G, (N) 2 IndSRel(A, N),

where G = G/{N)) and A = A/N.

Corollary 3.3.10. Let G = Hx; be an HNN-extension with associated subgroups A, B < H. If N < H and
NN (AUB) = {1}, then (G, H, N) has the Cohen-Lyndon property, and

Rel(G, (N)) 25 Ind%Rel(H, N),

where G = G/{(N)) and H = H/N.

Alternatively, Corollary 3.3.9 can be deduced from [20] and both of Corollaries 3.3.9, 3.3.10 can be

deduced from the Bass-Serre theory.
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CHAPTER 4

COHEN-LYNDON PROPERTY AND SPECTRAL SEQUENCES

The goal of this chapter is the following more general and precise version of Theorem 1.2.10.

Theorem 4.0.1. Let (G, {H\}aen, {Nx}ren) be a group triple satisfying the Cohen-Lyndon property. Em-

ploy the notations defined in Notation 2.14.2, and let A be a Z.G-module. Then there are spectral sequences

B¢ = HP (G HY((N); A)) = HPT(G; A),

)

By = [[ HP (i HU(Ny; A)) = [ HP(Hy; A),
AEA AEA

of cohomological type and there is a morphism
MSS : Eq — Ey

between spectral sequences such that
(a) MSS and NT Rg are compatible;
(b) MSSE° can be identified with NTZ;
(c) forp € Z and q € Z\{0}, M SSY" is an isomorphism.
Assuming Theorem 4.0.1, we prove Theorem 1.2.10.

Proof of Theorem 1.2.10. Apply Theorem 4.0.1 for the case |A| = 1 and let
EgY = HP (G HY((N); A)) = HPT(G; A), By, = HP(H; H(N; A)) = HPT(H; A)

be the spectral sequences in that theorem. Then there is a morphism M SS : Eg — Ej such that

MSSP?: HP(G; HY((N); A)) — HP(H; H'(N; A))
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is an isomorphism for p € Z and ¢ € Z\{0}. Replace E};%, = HP(G;HI({N);A)) with
H?(H; HY(N; A)) for p € Z and q € Z\{0}. Forp € Z and ¢ = 0, as M SS%" can be identified with
N Tg, we have Eg’g & HP(G; A) and thus we can replace Eg’g with HP(G; A). After these replacements,

we obtain the spectral sequence (1.2). 0

Remark 4.0.2. We can describe the differentials of (1.2) as follows. Let d,., r > 2, be the differential of the
spectral sequence (1.2). Then d, is induced by d . More precisely, we think of M SS : Eq — Ey asa

morphism from the spectral sequence (1.2) to Ey and we have a commutative diagram for r > 2:

MSS,
E’I‘ EH,T‘
d'r‘ dH,r
MSS,
ET EHT‘

4.1 Idea towards proving Theorem 1.2.10

In this section, we sketch, without assuming Theorem 4.0.1, the proof of Theorem 1.2.10. The proof of

Theorem 4.0.1 is a generalization of the following argument.

Sketched proof of Theorem 1.2.10. The Lyndon-Hochschild-Serre spectral sequence for a ZG-module A
and the group extension

1= {(N)—>G—-G—1

takes the form

YT = HP(G; HU(N): A) = HPH(G A). @D

The Cohen-Lyndon property of (G, H, N) gives rise to the following.

Proposition 4.1.1. If (G, H, N) has the Cohen-Lyndon property, then for q € Z\{0},
HY((N); A) 25 CoIndSHI(N; A). 4.2)

Thus, Shapiro’s lemma implies
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Proposition 4.1.2. If (G, H, N) has the Cohen-Lyndon property, then for p € Z and q € Z\{0},
HP(GyHY((N); A)) = HP(H; H'(N; A)). (4.3)
Notice that for ¢ = 0,
Y = HP(G; HY((N); A)) = HY(G; AW = 1P (G 4), (44)

where A(N) is the (\)-fixed-points of A. As A is a ZG-module, the ((N'))-action on A fixes every point
and thus A(N) = 4.

(1.2) is obtained by substituting terms of (4.1) with the terms on the right-hand side of (4.3) and (4.4).

O

A natural way to prove Propostion 4.1.1 is to decompose H?({(N)); A) into a direct product
[Lier HI(N t. A), which can be achieved by starting with a model X of the classifying space of N and
taking wedge sum of copies of X to obtain a model of the classifying space of ((/V)). The problem with this
approach is that one loses information about the action G ~ H?({(N)); A) and thus cannot derive Propo-
sition 4.1.1. Therefore, we take another approach and consider Ext‘<1< ) (Z|G/H], A). By manipulating
different projective resolutions, we prove the following ZG-module isomorphisms

HI((N); A) =g Bat{y, (Z|G/H], A) =g CoInd%H(N; A)

for ¢ # 0.

4.2 Isomorphism of iterative cohomology groups

The goal of this section is the following generalization of Proposition 4.1.2.

Proposition 4.2.1. Suppose that (G, {H)}xen, {Na}reca) is a group triple satisfying the Cohen-Lyndon
property. Employ the notations defined in Notation 2.14.2. Then for p € 7 and q € Z\{0}, N TR%q is an

isomorphism.

Remark 4.2.2. Let (G, {Hx}xen, {Nx}rea) be a group triple and let A’ = {A € A | Ny # {1}}. It

is easy to see that (G, { Hx}aca’, {Na}aear) also has the Cohen-Lyndon property and if the conclusion of
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Proposition 4.2.1 holds for (G, { Hx}xea’, { Na}aens), then it also holds for (G, { Hx}xen, {Na}aea). Thus

we will only prove Proposition 4.2.1 for the case where Ny # {1} forall A\ € A.

Assuming Proposition 4.2.1, we prove Proposition 4.1.2.
Proof of Proposition 4.1.2. The isomorphism (4.3) is the special case |A| = 1 of Proposition 4.2.1. 0

The proof of Proposition 4.2.1 is a combination of Lemma 2.13.1 and the following generalization of

Proposition 4.1.1.

Proposition 4.2.3. Suppose that (G, {Hx}xca, {Nx}xen) is a group triple satisfying the Cohen-Lyndon
property and Ny # {1} for \ € A. Employ the notations defined in Notation 2.14.2 and think of H \, \ € A,

as subgroups of G. Then there is a Z.G-module homomorphism

n: H*((N); A) — H Co]nd%AH*(NA;A)
AEA

such that, for € > 1, ) maps H*((N')); A) isomorphically onto ]y, C’oInd%X HY(Ny; A).

Moreover, for every i € A, let

Proy, : [ CoIndG, H*(Ny; A) — Colnd$y H*(N,; A)
AEA

be the coordinate projection, and let
. G+ ) * )
Ty C’olndﬁkH (Ny; A) — H*(Ny; A)

be the standard projection. Then NT Ry, = 7, 0 Proy, on.

Assuming Proposition 4.2.3, we prove Proposition 4.1.1.

Proof of Proposition 4.1.1. Without loss of generality, we may assume that N # {1}. In this case, the

isomorphism (4.2) is the special case |A| = 1 of Proposition 4.2.3. O
42.1. Eat)yn (Z[G/H)], A) =5 CoInd%AH*(NA; A)

In Section 4.2.1and the following Section 4.2.2.1et (G, {Hx}xen, {Nx}rea) be a group triple. We

employ the notations definied in Notation 2.14.2. Suppose
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(N1) forall A € A, Hy N (N)) = N, and thus the natural homomorphism
Hy=H\/N\ — G =G/{N)

is injective, identifying H y with a subgroup of G.

For A € A, we will slightly abuse notations and use H  to denote the subgroup of G identified with H .

Let A be a ZG-module, and let P — Z be the standard free resolution over ZG with boundary operator
0. Fix A € A for the moment. Note that P — Z can also be thought of as a free resolution of Z over ZH,
and thus H*(Ny; A) can be identified with H*(Homy;, (P, A)). We use the notation H*(Homy, (P, A))
to perform calculations (see Remark 2.10.2).

Consider the cochain complex C'ol nal%A Homy, (P, A) whose differential is given by

~ ~

df(x,p) = f(z,0dp)

for all f € Col nal%A Hompy, (P,A),z € ZG, and p € P. Denote the cohomology groups associated with

C’o[nd%A Hompy, (P, A) by H* (C’o]ndgA Homp, (P, A)). Clearly,

for all x € ZG and ]? € Col nd%A Homy, (P, A) and thus the cocycles and coboundaries of
Col nd%A Homy, (P, A) have natural structures of ZG-modules.
It turns out that the order of the operations C'ol ndgA and H* can be switched. More precisely, let us

consider the map
SCH,, : H*(C’o]nd%AHomNA (P,A)) — C’oInd%AH*(HomNA (P,A))

constructed as follows. Let

[f] € He(C'oInd%A Hompy, (P, A))

for some ¢ > 0. Then there exists f\ € Col nd%A Homy, (P, A) representing [f] It follows that df =0,

~

ie., f(x) is a cocycle in Homy, (P, A) for every z € ZG. Denote by Z (resp. B) the set of cocycles
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(coboundaries) of Homp, (P, A) and let Quo be the quotient map sending Z to H*(Hom, (P, A)). Then
Quoo f € Colnd%AH*(HomNA (P, A)).

Let SC H), be the function sending every [ﬂ € H*(Col nd%A Homy;, (P, A)) to the corresponding Quoo 7.

It is easy to check that SC H) is well-defined, i.e., independent of the choice of the representative ]?of the

-~

cohomology class [f].
Lemma 4.2.4. SCH), is a ZG-module isomorphism.

Proof. Clearly, SCH, is a ZG-module homomorphism. Let us show that SC'H), is injective. Suppose
[f] € HY(ColInd$; Homn, (P, A))

for some ¢ > 0 such that SCH ,\[f] = 0. Let f € Col nd%A Homy, (P, A) be a representative of [ﬂ It
follows that Quo o f =0, ie., f(x) € Bforevery z € ZG. Let S € RT(H,,G). For every s € S, let
ﬁs € Homp;, (Py—1, A) such that F\S 00 = f(s)

Let F be a function sending every s € S to F, 5. As a ZH y\-module, ZG is freely generated by s € S

and thus we can ZH y-linearly extend F to a function (still denoted by)
F:7ZG — Homy, (Pi_1, A).

Clearly, F € Co[nd%A Hompy, (Py—1, A). Moreover, Fod = fandthus [f] = 0.

Let us show that SC' H, is also surjective. Given
f € Colndg H*(Homy, (P, A)),

for every s € S, choose a function f; € Z representing f (s) € H*(Homp, (P, A)). Let £ be a function
sending every s to f; As a ZH y-module, ZG is freely generated by s € S and thus we can ZH y-linearly

extend fto a function (still denoted by)

f:7G — Homp, (P, A).
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Clearly, f € Col nd%A Homp, (P, A). As ﬁ € Z, we have fo 0 = 0 and thus frepresents an element
[f] € H*(C’olnd%AHomNA (P, A)). Moreover, Quo o f = f. Thus, SCH,[f] = . O

Remark 4.2.5. Let
T CoInd%AHomNA (P,A) — Homp, (P, A)

be the standard projection. Then 7y induces a map
75« H*(CoInd Homn, (P, A)) — H*(Homn, (P, A)).
Consider the diagram

H*(comd% Homy, (P, A)) ——2—— H*(Homy, (P, A))
SCH, ’“ (4.5)

Co[nd% H*(Homy, (P, A))

where

m : CoIndS. H*(Homy, (P, A)) — H*(Homny, (P, A))

is the standard projection. We claim that (4.5) commutes. Indeed, given
f € Colndg; H*(Homy, (P, A)),

use the second part of the proof of Lemma 4.2.4 to construct an f € Col nd%A Homy, (P, A) such that
SCH,[f] = f. Itis easy to check that 7y (f) = f(1). As 7x(f) represents 75 o SCH, ' (f), we have

750 SCH, ' = my.

Tensoring P — Z with Z[G/ H)| produces a chain complex

(PQZIG/Hl ) : - - - = PL Q) ZIG/H)) = P, Q) ZIG/Hy| = ZIG/H)] — 0,
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where €) = 0 ® idg|q,m,]- G acts on Py Q) Z[G/ H)] by a diagonal action:
9-(p@g'H\) =g -p®gg Hy

forall g,¢' € Gandp € P. Thus, P Q Z[G/H,] is a ZG-module.

Lemma 4.2.6. Suppose that E is a basis for the ZG-module P and S € LT (H), G). Then the Z.G-module

P Q Z[G/H)| is freely generated by the set E = {e®sH)|ec E,se€ S}

Proof. For e € I, let (e) p be the ZG-submodule of P generated by e. As P = @, (e) p, we have

PR ZIG/H)] =5 D ((e)p Q) ZIG/Ha]).

eck

The desired conclusion follows from the fact that, for each e € E, (e)p Q) Z[G/H,] is freely generated

by elements of the form e ® sH), s € S. O

Thus, PQ Z|G/H)\] — Z[G/H,] is a free resolution of Z[G/H,] over ZG. By definition,
the cohomology group associated with the deleted cochain complex Homzy (P @ Z[G/H)], A) is
E:mf<< %
2.10.2).

>>(Z[G/H>\],A). We use Homzy (P QZ[G/H,|, A) to perform computations (see Remark

Lemma 4.2.7. H*(Homny (P Q Z[G/H)], A)) =5 H*(C’oInd%AHmn]\]A (P, A)).

Proof. Construct a chain map
Isoy : Hompry (P ® Z|G/H,],A) — C’o]nal%AHomNA (P, A).
By the following procudure. Let
f € Homyuy (P R ZIG/H,, A)

for some £ > 0. Recall that Hom nry (P @ Z[G/ H)], A) is Z.G-module and a superscript is used to denote

the G-action (see Remark 2.11.1). As an abelian group, ZG is freely generated by elements of G and thus
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there exists a unique abelian group homomorphism
f € Hom(ZG, Homy, (P, A))
such that

f@p)=fpeHy) =g flg" -pog 'Hy)

foreveryg € G,p € Py, and g € G such that g is mapped to G under the quotient map G' — G (see Notation

2.12.1). Let Isoy be the map sending each f € Homnry (P @ Z[G/H,], A) to the corresponding f.

Claim 1. If f € Homnry(Pr @ Z[G [ Hyl, A) for some £ = 0, then
Isoyf € COInd%AﬂomNA(P, A).

Proof of Claim 1. 1t suffices to prove

Isoxf(hg,p) = h-Isoxf(g,h™" - p)
forevery h € Hy,g € G, p € Py, and h € Hy, such that h is mapped to & under the quotient map G — G.
Let g € G such that g is mapped to g by the quotient map G — G. Direct computation shows

(Isoxf)(hg,p) ="9 f(p ® H))
=hg- flg7' k" pe g H)) as h € H)
=h - Iso\f(g,h™" - p),
as desired. [
Claim 2. Is0) is a ZG-module homomorphism.
Proof of Claim 2. Claim 2 follows from the following equality

Isox(7 ) (G2, p) = 291 f(p @ H)) = Is0xf (G291, p) = (g1 ® Is0x[)(Ga,p)
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for? > 0,91,92 € G,p € P, and fE H0m<<N>>(Pg®Z[G/H)\],A). ]
Claim 3. Iso) is a chain map.

Proof of Claim 3. Claim 3 follows from the following equality

Isox(foen)(@p) =g f((g7" - dp) ® sTLH)) = Is0xf (g, dp)

fort >0,g€G,fe Homary (P @ Z[G/Hy], A), p € Pry1,and g € G such that g is mapped to g by

the quotient map G' — G. O

It follows that Isoy induces a ZG-module homomorphism
Iso} : H*(Homny (P Q) Z[G/H,], A)) — H* (CoIndg Homy, (P, A)).

To show that Isoj is in fact an isomorphism, it suffices to construct an inverse of Isoy. Fix S €
RT(H),G). Let f € Co[ncl%AHomNA (Py, A) for some ¢ > 0. As an abelian group, Z[G/H)| is freely
generated by {s 1 H), | s € S} and thus P Q) Z[G/H,], as an abelian group, is freely generated by elements
of the form p ® s~ H, where p ranges over all (¢ 4 1)-tuples of GG and s € S. It follows that there exists a

unique abelian group homomorphism
f € Hom(P (R Z[G/H,], A)

such that

flp@s ' Hy) =s"f(5,5-p)

forallp € Pyand s € S. Let
71 : Colnd, Homp, (P, A) — Hom (P (R ZIG/H,), A)

be the map sending each f € Col ndgA Homy, (P, A) to the corresponding f Clearly, 7, and Iso) are

mutual inverses and we are done. OJ
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4.2.2. Proof of Proposition 4.2.3

Further suppose

(N2) for every A € A, there exists a left transversal T € LT (H,{N)), G) such that

(wy=1I w&

AEALET

Definition 4.2.8. Let m € (N)). If m # 1, then m can be uniquely factorized as

m = H nfl (4.6)

i=1

witht; € T),,n; € Nx,\{1}, and \; € A for 1 < i < k. (4.6) is called the factorization of m. The number

of factors of m, denoted as w(m), is the number k in (4.6). If m = 1, we let w(m) = 0.

Apply Hom sy (-, A) to the resolution P — Z to produce a deleted cochain complex Hom sy (P, A),
whose cohomology group is H*(Homry (P, A)) = H*({(N); A). We use H*(Homry (P, A)) for com-
putation (see Remark 2.10.2).

Fix A € A for the moment. Consider a ZG-module homomorphism
Fgx: Z[G/H)\] — Z, Fgx(gH\) =1

for every left coset gH ) (Fgy “forgets” the coset information). Fgy induces a natural ZG-module homo-

morphism (see Remark 2.11.2)
Extend F'g) to a chain map (still denoted by)

Fgy: PQZIG/H\ — P, Fg\(p© gHy) = p
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for all p € P and left coset gH . Then Fgj is the cohomology map induced by the chain map F'g. Let

Dom
Fg= P For: PP Q) ZIG/H)]) — P.
AEA AEA

Lemma 4.2.9. The composition
w0 Isoy o Fgy : H*(Homny (P, A)) — H*(Homy, (P, A))
is the cohomology map induced by the natural embedding
Hompry (P, A) < Hompy, (P, A)

and thus is the natural map induced by Ny — {(N')).

Proof. In the level of cochains, 7} o Is0} o Fgy is induced by
) © ISOA o Fg>\ : HO’I’)’L«N»(P, A) — HO?TLN)\(P, A)

Direct computation shows that my o Isoy o Fgx(f) = f forall f € Homnry (P, A). O

Let A vary in A. We construct two auxiliary resolutions
R— @zIG/H)], R— Z.
A€A

Forevery A € A, let Q) = EB@_I Q¢ be the graded ZNy-module such that for each £ > —1, Q) ¢ is
the ZN-submodule of Py Q) Z|G/H,] generated by elements of the form p ® H), where p ranges over all

(¢ + 1)-tuples of elements of N). Clearly, the boundary operator
ex: PR ZIG/H) — P Q) ZIG/H)]

restricts to a boundary operator (still denoted by) €y : @) — @), which turns () into a chain complex. For
A € A, the map Fg), sends the chain complex () isomorphically onto the standard free resolution of Z over

ZN ). In particular, the chain complex Q) is exact.
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For every A € A and every ¢ € T}, let X ; be the set consisting of elements of (N)) whose factoriza-

tions do not end with a factor from Nf\. Note that
Xo¢ € LT(N5, (M)

Let Ry = @5271 R ¢ be the graded abelian group such that for each ¢ > —1, R, 4 is the subgroup of the

abelian group Py @Q Z[G/H )| generated by elements of the form
xt-p® xtH),

where t € T,z € X4, and p ranges over (¢ + 1)-tuples of the elements of V. Note that R splits as a

direct sum

Ry= P (at-Qy)

teTy,x€Xx 4

of graded abelian groups. For each summand xt - @), the boundary operator €) on P Q) Z[G/H,] restricts
to a boundary operator on xt - (), turning xt - () into a chain complex. As a consequence, ¢, induces a
boundary operator €\ on Ry. Moreover, the left multiplication of (xt)~! maps the chain complex xt - Q)
isomorphically onto @) and thus zt - Q) is exact. Thus, R}, as a direct sum of exact chain complexes, is an
exact chain complex. As ((N)) is a normal subgroup of G, it is not hard to show that, for every A € A and
t € Ty, the {(N)-action on P, x, , (#t - Q) permutes the summands zt - @ and thus @xexm (zt-Qy)
is a Z{(N'))-module.

In fact, P Xos (xt- Q) is a free Z{{N'))-module. Indeed, let E be the set consist of tuples of G of the
form (1, g1, ..., g¢), ¢ > 0. Then FE is a basis for the ZG-module P. Let S € LT (H), G). Then the set

E={e®sHy,ecE,scS}

freely generates P @ Z[G/H,] as a ZG-module, by Lemma 4.2.6. Let U € LT({N)),G). Then
PQ®Z[G/H)], as a Z{N))-module, is freely generated by the set

U'E:{u-e®usH>\]ueU,eEE,seS}.
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Note that B, x, ,(zt - Q) is generated by a subset of U - E and thus is a free Z{{\"))-module. It follows

that for every A € A, Ry is a free Z{N))-module as it is a direct sum of free Z{N ))-modules.
Lemma 4.2.10. Forevery A € A, {zt |t € T,z € Xy} € LT (Hy, G).

Proof. We first prove that {zt | t € T,z € X} contains a left transversal of Hy. Given any g € G and
X € A, there exists t € T\,m € M, and h € H) such that g = tmh. Let m’ = m!. Then g = m/th. As
(N) is normal in G, m' belongs to (N). As X, € LT (N}, (N))), there exists z € X, and n € N,

such that m’ = zn!. Let b’ = nh € Hy. Then
g = m'th = xtnt~'th = xtnh = zth'.

Next, we verify that any two elements of {«t | t € T),x € X} comes from different left cosets of
H). Suppose that for some A\ € A, there exist t1,t2 € Ty, 21 € X4, , 22 € Xy, With tl_lxl_lxgtg € H,.

Note that z} 'z5 is an element of ('), and thus m = t; ‘2 ' 2ot is an element of (). It follows that
t7 't = (7 'y wate)m ™ € Hy(N)

and thus ¢; = t9. Hence,

t e gty = t7 e oty € (W),

The assumption tl_lajl_lxgtg € H) then implies
t7 e oty € (V) N Hy = Ny,

where the last equality follows from the assumption at the beginning of Section 4.2.1. In other words,
.1‘1_1.7}2 € N;l. As neither of the factorizations of z; and x9 ends with a factor from Nf\l, the only possibility

for xl_lxg € Nf\l is 1 = x9. As a consequence, x1t; = xoto. O

For A € A, note that Ry _ is generated by {tH) |t € T\,x € X} and thus Ry _; = Z[G/H,]. It
follows that Ry, is a free resolution of Z|G/H )] over Z{N)). Let

ix: Ry — P (R ZIG/H,)]
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be the embedding of R into P Q) Z|G/H)|. As PQ Z|G/H)\] — Z|G/H)] and Ry — Z[G/H,] are

both free resolutions over Z{N)), we have

Lemma 4.2.11. For A € A, iy induces a group isomorphism
i+ H*(Homuy (P Q) Z[G/H,|, A)) — H*(Homr (R, A)).

Let

DT
R:@R)\, e’:@eg\:R—>R,
AEA AEA

DT
AEA AEA AEA
Clearly, R — @, Z[G/H,] is a free resolution under the boundary operator ¢’. By Lemma 4.2.11, i* is
an isomorphism.
Applying Homary (-, A) to R and let Homary (R, A) be the resulted cochain complex. The obvious

isomorphism [ [ oy Homary(Rx, A) — Homnry (R, A) gives rise to an isomorphism

i [ H*(Homny(Ra, A)) — H*(Homnry(R, A)).
AEA

We construct the second auxiliary resolution. Let R = @52_1 Ry be the graded Z{(N))-module such
that for every £ > 1, Ry = Ry, and that Ry = Z((\')), R_; = Z. Consider the boundary operator ¢ : R — R

constructed as follows. For all £ > 2, let € = €. For £ = 1, note that

Ri=R; = @ EB (xt-Qx1)

AEA tET/\,:CEX)\’t

Ifrcat-Qyforsome N € At €Ty, andx € X4, let
&(r) = (Fgyoe(r))- ¢ 1

Here, Fgy o ¢;(r) is an element of Py = ZG and thus we can multiply it by ! on the right. Finally, let &

be the augmentation of Z({(\") sending Ry = Z{(\")) onto Z.
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Lemma 4.2.12. € is a Z{N'))-module homomorphism.

Proof. Tt suffices to prove that ¢, is a Z{(\"))-module homomorphism. Note that R; can be decomposed as

a direct sum

Ry = @ @ (zt - Qx1)

AEA tETy ,wEXy
of Z{(N))-modules. Each direct summand @, X, (@t - Q1) is a Z{N))-module, on which € is the
composition of Fgy, €}, and the right multiplication of ¢~!. The maps Fg, and €, are Z({{\/)-module
homomorphisms, and right multiplications are automatically homomorphisms of left modules. Thus, €] is a

Z{N'))-module homomorphism on each summand €D, 7, ,cx, ,(zt - Qx1) of Ri. O

Direct computation shows that, under the boundary operator €, R becomes a chain complex. Clearly, R
is exact at Ry for every £ > 2. Note that ¢(R;) is a Z{(\))-submodule of Z{{(N") generated by elements
of the form zn' — z with t € T,z € Xy¢,n € Ny, A € A, and thus E(El) is the augmentation ideal of

Z(N')). Therefore, R is also exact at Ry.
Lemma 4.2.13. ker(¢1) = ker(e)).
Proof. Forevery A € A, t € Ty, and z € X 4, denote by 6/1 A+ the restriction of €} to xt - Q. Note that

ker(e}) = @ ker(e’LM,x).

)\EA,tGT)\,Z’GXNt

The restriction of €1 on xt - Q) is Fgy o 6,17 At composed with the right multiplication of t~1. Thus, for
every A € A, t € Ty, and x € X4, ker(€] , , ) is contained in ker(€; ). It follows that ker(€}) C ker(€y).
In order to prove the converse containment, we introduce the following concepts. For A € A, let E be

a set of pairs of elements of NV, such that
(a) every pair of the form (n,n),n € N) belongs to E};
(b) if ny,ny are distinct elements of IV, then F contains exactly one of (n1,n2) and (ng, ny).
Let
S ={(ztn,xtny) @ xtHy | A € At € Ty, x € Xy, (n1,n2) € Ex} C Ry.
For

s = (xtny, xtng) @ xtH)y € S,
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let

Q(s) = max{w(zn}), w(znd)},

where w is the number of factors of elements of (\)) (see Definition 4.2.8).
For every A € A, note that Ey is a basis for the abelian group @y 1. As a consequence, S is a basis for

the abelian group R; and thus every element » € R; can be uniquely written in the form

r= Z Crss

seSs

where C). s € Z and the above sum makes sense as there are only finitely many non-zero terms.
We call the number C. ; in the above equation the coefficient of r with respect to s. Let rank : Ry — N

by the function summing the absoute values of the coefficients:

rank(r) = Z |Crsl, 7€ R
s€S

Let r € ker(€;). We prove r € ker(e}) by an induction on rank(r). The base case rank(r) = 0
implies r = 0 and thus r € ker(€}). So let us suppose that rank(r) > 0 and that, for all ' € ker(¢;) with
rank(r') < rank(r), we have r’ € ker(¢}).

Let

So = (xotonl, xotong) & xotoH)\O es

such that C;. 5, # 0 and that

(max Q) if s € S satisfying C,. 5 # 0, then Q(sg) > Q(s).

If n1 = no, consider the element ' € Ry such that C, ; = C;. s for s € S\{so} and C} 5, = 0. Direct
computation shows

rank(r') < rank(r), €(r—r")=¢€(r—1")=0.

Thus, € (r") = 0 and the induction hypothesis implies €] (') = 0. It follows that

er(r)y =€ (r—r")+ (") =0.

Therefore, r € ker(€]).
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Thus, without loss of generality, let us assume n; # ng. It follows that at least one of n1 and ng is not
the identity of GG. Without loss of generality, we may further assume n; # 1 (the case ng # 1 is similar), in
which case

Q(s0) = w(zotonityt).

Let us also assume C,. ; > 0 (otherwise, consider —7). Note that

alr)=>_Cral(s). (4.7)

seS

On the right-hand side of (4.7),
CT,Sogl(SO) = Cr.s ($0t0n2tal — SUotonltal).

Thus, sy contributes a negative number of xotonit, Lo e (r). As € (r) = 0, there exists some s; € S
which contributes a positive number of xotonit, Lto €1(r). In other words, at least one of the following

cases happens
(a) 51 = (xltlng, x1t1n4) & xltlH)\l with CT,Sl < O, ns 75 Ty, and :L‘ltlngtl_l == :L‘()tonltal.
(b) S1 = (wltlng, x1t1n4) &® xltlH)\l with CT731 > 0, n3 7é ng, and x1t1n4t1_1 = xotonltal.

Let us suppose that Case (a) happens (Case (b) can be treated in the same manner). Note that ng # 1 in

this case. Indeed, if ng = 1, then n4 # 1 since ny # ns. It follows that

Q(Sl) > w(wltlngtl_l) asng = 1,n4 75 1,x1 c XAl,h
:w(xotonltal) as xltmgtl_l = xotonltal
:Q(So),

which contradicts the choice of so. Thus, n3 # 1, which, together with the assumption x; € X, ;,, implies
that the factorization of xltlngtfl ends with tlngtfl.

As zg € X, 4., the factorization of xotonltal ends with tonltgl. Since xltlngtfl = xotonltal, we
have

tonityt = tingt] ' € toNaty 't Nt1 Ny, "
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Asni # 1, we have

toNxoto ! Mt Nyt # {1} (4.8)

(N2) and (4.8) imply A\; = Xo,t1 = to, which, together with z1t1n3t; 1 = zotonit, ', implies ny =
ng, r1 = xg and thus

s1 = (xotgnl, x0t0n4) X thOH)\o-

Exactly one of (n2,n4) and (n4,n2) is in E),. Without loss of generality, we assume that (ng,n4) €

E), (the other case is similar). Let
sy = (xotone, xotona) ® zotoH),,
let ' € Ry such that Cyv = C,. 5 for s € S\{so, s1, s2}, and let
Cory = Crsg =1, Cprgy = Crigy + 1, Crogy = Crgy — 1.

AsCr 4 > 0,Cp 5 < 0,and € (r) = 0, direct computation shows

rank(r') < rank(r), €(r—r")=¢e(r—1")=0.
Thus, € (r") = 0 and the induction hypothesis implies €} (') = 0. It follows that

el(r) =€ (r—r)+€ () =0,

that is, r € ker(¢}). O

By Lemma 4.2.13, the chain complex R is also exact at Ry and thus is a free resolution of Z over Z{N)).
Note that P — Z is also a free resolution over Z{{N)). Let
DT

U:Fgo@i)\:R—>P.
AEA
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Then o gives rise to a chain map

‘ Ry E R, E ZUNY) E Z 0
o o l idy,
P, 9 P, 9 7G 9 7 0

Lemma 4.2.14. ¢ induces a group isomorphism
o H* (Hompy(P, A)) — H*(Homgyy (R, A)).

Consider the cochain complexes Hom (R, A) and Hom xry (R, A). The map idg induces a map

id}, between these cochain complexes, except at dimension O:

G Hompry(Ra, A) Ao Hompry (R1, A) A Hompry(Ro, A) +—— 0
lidg lid%

: & HOTI’L«N»(EQ,A) L H0m<<N>>(E1,A) & Hom«/\/»(éo,A) +— 0

Here, the maps (¢')* and €* are the duals of ¢’ and €, respectively. id}, induces a group homomorphism (still

denoted by)

idy, : @ H (Homyny (R, A)) — €D H (Homy (R, A)).

=1 =1
Clearly, for £ > 2, id}, maps He(Hom«N» (R, A)) isomorphically onto HZ(Hom«N» (R, A)).
Consider the coboundaries of R and R at dimension 1. Let J € Homyypy (Ro, A),let A € A, lett € Ty,

letx € Xy, and let ny,ny € Ny. Denote (ngnfl)xt by m. Then

()Y f)(wtny, wtng) @ xtHy)

=f(xtny @ xtHy) — f(xtny @ xtH))

=f(m- (ztny @ xtH)y)) — f(xtng @ xtH)) asni,ng € Ny << Hy

=m - f(ztny @ ztH)) — f(ztn; @ xtH)) asm € (N), f € Homnry(Ro, A)
=f(ztny @ xtH)) — f(xtng @ xtH)) as the ((\)) — action on A is trivial
=0.
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Thus, €* f is the O-function on R;.

Let f € Hom (Ro, A). Then

€ f((ztny, xtng) @ xtHy)
=f(xtnot ™) — f(ztnit™t)

=f(m - (ztnit™1)) — f(xtnyt™1)

=m f(:ctnﬁfl) - f(:ctnﬂfl) asm € (N, f~€ H0m<<N>>(]§0, A)
=f(xtnyt™) — f(ztnit™1) as the ((\/)) — action on A is trivial
=0.

Thus, E*fis also the O-function on ﬁl. Therefore,

Hl(Hom«N»(R, A)) =ker(e])/im(ej) = ker(e]) = ker(€7)

=ker(¢})/im(&) = H' (Homxy (R, A)).
Lemma 4.2.15. For { > 1,id}, maps Hé(Hom«N» (R, A)) isomorphically (in the sense of abelian groups)
onto Hg(Hom«N» (R, A)).
Proof of Proposition 4.2.3. Fix £ > 1. It is easy to check that the following diagram commutes.
F *
Hg(Hom«N» (P, A)) —g> H)\GA HZ(HOTI’L«N» (P ® Z[G/HAL A))

o joi* (4.9)

y J*
idp

HZ(Hom«N»(ﬁ, A)) HZ(Hom«N» (R, A))

In (4.9), Fg* is a ZG-module homomorphism. By Lemmas 4.2.11,4.2.14, and 4.2.15, o*, joi*, and idp
are group isomorphisms. Thus, Fg* is also a group isomorphism and thus is a ZG-module isomorphism.

Recall that Lemma 4.2.7 constructs a ZG-module isomorphism so}. Let

DT
Iso" = [[ 1s0x : [ #* (Homuy (P Q) ZIG/Hl, A)) — [ H*(Colnd; Homu, (P, A)).
AEA AEA AEA
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Denote SCH o Iso* o Fg* by n. Lemmas 4.2.4 and 4.2.7 imply that the map

n: H*(Homynry (P, A)) — H C’oInd%AH*(HomNA(P, A))
AEA

is a ZG-module homomorphism and maps HY(Hom (ny (P, A))  isomorphically  onto
[Lica COITLd%)\HE(HOmNA (P, A)).

Fix € A. Let
. : Colndgy H*(Homy, (P, A)) — H*(Homn, (P, A))
be the standard projection. Then

7y 0 Proy on =m, o0 Pro, o SCH o Iso* o Fg*
=m, 0 SCH,, 0 Iso, 0 Fgj,
:%;OSCH,Il o SCHy, 0 Iso;, 0 Fg, by Remark 4.2.5

_ = * *
=m, o Iso;, o Fg,

=NTR, by Lemma 4.2.9,
as desired. O

4.2.3. Proof of Proposition 4.2.1

Suppose that the assumptions of Proposition 4.2.1 hold. By Remark 4.2.2, we may assume that N #

{1} for A € A. Let

Sha*: H*(G; || Colnd$; H*(Nx; A)) — [ B (#x; H*(N»; A))
AEA AEA

be the isomorphism given by Lemma 2.13.1, and let NT' R be the natural map defined in Notation 2.14.2.

Fix p € Z and ¢ € Z\{0}. By Proposition 4.2.3 and the definition of Sha*, there is a commutative
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diagram

_ NTREA _
HP (G HI((N); A)) . [Dea HP(Hx; H1(Ny; A))
* Sha*

HP(G;Lhea Cofnd% HY(Ny; A))

where 7* is the natural map induced by the map 1 : H*((N)); A) — C’oj'nd%A H*(Ny; A).
n maps HI({N);A) isomorphically onto Col nd%A H%(Ny;A) and thus n* maps
HP(G; H1({(N); A)) isomorphically onto HP(G,[],ca Colnd%AHq(N,\; A)).  As Sha* is an iso-

morphism, we deduce that N TR%q is an isomorphism.

4.3  Morphisms of Lyndon-Hochschild-Serre spectral sequences
4.3.1. Lyndon-Hochschild-Serre spectral sequences

Until the end of Section 4.3.3.let (G, H, N) be a group triple such that the natural map
H=H/N — G=G/{N)

is injective. We think of H as a subgroup of G. Let A (resp. B) be a ZG-module (resp. ZH-module), and
let £ : A — B be a ZH-linear map.

The Lyndon-Hochschild-Serre (LHS) spectral sequence for the triple (G, (N )), A) is a spectral sequence
nEgh = HP (G5 HA((N); A)) = H"™(G; A)

constructed as follows. Choose an injective resolution A — I over ZG. Apply the functor Homyy(Z, )

to A — I to obtain a deleted cochain complex (Homny(Z, 14),€c). Let
(Jas nbc, vi) (Homny(Z,14),€c)

be a CE resolution over ZG. Apply the functor H om(Z,-) to Jg to form a deleted double complex
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(Caynda, vda). Let (TCq, dg) be the total complex of C;. By Lemma 2.15.31, the row filtration of T'C

induces a spectral sequence

nEa = {(hEG’,m th,r)}r>1-

The LHS spectral sequence for (G, (N)), A) is the spectral sequence {(sEq r, nda,r)}r>2 resulted from

deleting the E page of , Eg.

Remark 4.3.1. There is no essential reason for deleting the F; page in the construction of LHS spectral
sequences. We take this approach only because it simplifies the construction of spectral sequence morphism

in the proof of Theorem 4.0.1.

Similarly, there is an LHS spectral sequence
nEl, = HP(H; HU(N: B)) = HP(H; B)

for the tuple (H, N, B) constructed as follows. Pick an injective resolution B — Ip over ZH. Apply the

functor Homy(Z, -) to B — I to obtain a deleted cochain complex (Homy(Z, Ip),€m). Let
(T, 1811 u617) 25 (Hom (Z, Ip), ex1)

be a CE resolution over ZH. Apply the functor H omz(Z,-) to Jg to form a deleted double complex
(CH,ndi,vdr). Let (TCy,dg) be the total complex of C'y. By Lemma 2.15.31, the row filtration of
T'Cpy induces a spectral sequence

nEn = {(hEH,r7 hdH,T)}r>1-

The LHS spectral sequence for (H, N, B) is the spectral sequence {(,Ex r, ndm r) }r>2 resulted from delet-
ing the F page of ,, .

As H < G, every injective ZG-module is automatically an injective ZH-module. Thus, A — I4 can
also be regarded as an injective resolution over ZH. L gives rise to a chain map /4 — Ip, which induces a
chain map

L*: H0m<<N>>(Z,IA) — HomN(Z,IB).

As H < G, every injective ZG-module is automatically an injective ZH-module. Thus, Jg can be
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regarded as a CE resolution over ZH. By Lemma 2.16.4, £* induces a morphism
MCER: Jg — Jy
between CE resolutions. M C'E'R induces a morphism
MDC :Cqg — Cy
between double complexes, which further induces a morphism
WMSS :nEqg — L Eg

between spectral sequences. For future reference, we note the following lemma.

Lemma 4.3.2. Under the above assumptions, L* and the inclusion H — G induces a morphism , M SS :

nEa — nErg between spectral sequences.

Note that M D(C' also induces a cohomology map
MDC*: H*(TCg) — H*(TCp).

Notation 4.3.3. Let

NABg : H*(G; A) — H*(H, B)

be the natural map induced by the inclusion H — G.
For g € Z, let
NABY, : HI(N); A) — HI(N; B)

be the natural map induced by £ and the inclusion N < (N)).

For p,q € Z, let
NABRS : HP(G; H((NY); A)) — HP(H; HY(N; B))

be the natural map induced by N AB%; and the inclusion H — G.
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The goal of the upcoming Sections 4.3.2and 4.3.3is the following.
Proposition 4.3.4. Under the above assumptions,
(a) 1, MSS is compatible with N AB¢;
(b) forp,q € Z, ,MSSE? can be identified with NAB%q.

Proposition 4.3.4 should be well-known, but we are unable to find a reference for it, so we provide the

proof for the convenience of the reader.

4.3.2. Compatibility of , M SS and NABg

The goal of Section 4.3.2is to prove part (a) of Proposition 4.3.4. By Lemma 2.15.33, , M S'S and
M DC* are compatible. Thus, it suffices to identify M DC* with N ABg.
Recall that A — 14 is an injective resolution over ZG. Applying Homg(Z, -) to this resolution gives

rise to a deleted cochain complex

Homg(Z,14) :0 — Homg(Z,13) — Homg(Z,1}) — - - - (4.10)
Consider the column filtration of T'Cy

{0} C - CFp1TCq C yF)TCq C -+ C FoTCq =TCg. 4.11)
By Lemma 2.15.31, (4.11) gives rise to a spectral sequence

vEc ={(wEqr,vdGr)}r>1-
Note that the 0-th row of , Eg ;- is a cochain complex
VEGY 10— (E00 250, pro G, (4.12)

We construct a chain map

vCha : Homa(Z,14) — oEG,
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by the following procedure. Let
HAS HOmg(Z, Ii) C H0m<<N>> (Z, IZ)

for some p > 0. Recall that

(Jas nba, vi) (Homny(Z,14),€c)

is a CE resolution. Let y € Hom(Z, Jg:o) such that y(k) = kfg(z) for all k € Z. As fg is a ZG-module
homomorphism, y is in fact an element of C%° = Homg(Z, J5°).
Lemma 4.3.5. dg(y) € vFp+1TCg, i.e., ydg(y) = 0.

Proof. By Definition 2.16.1,

0 — Homyyy(Z, %) L5 Jp0 2icy gpt 2fe,

is an injective resolution of Homyy(Z, I';) over ZG. Thus, after applying the functor Homg(Z,-), the

resulted non-deleted cochain complex

0 — Homg(Z, Homwy (Z, 1)) 26 cp0 2ie, ol vie, (.13)

is still exact at C’glo, where f/, is the map induced by f¢.
Let

y' € Homg(Z, Homny (Z, IY))

such that ' (k) = ka for all k € Z. Direct computation shows y = f&(y/). As (4.13) is exact at C7, 0 we

have ,da(y) = vdg o f&(y') = 0. -

Recall that UEg’?l = HP(,F,TCq/vFp+1TCq) and the cohomology is computed with respect to the
differential induced by d¢ = pdg + dg (see Lemma 2.15.31). Thus, every element of vEg’g is represented
by an element z € , [, TC?, such that d(z) € UFPHTC’ZH. Note that iy € Cg’o C ,F,TC%. By Lemma
4.3.5, y represents an element [y| € UEg’f)l. Let ,Chg be the map such that, for every p > 0 and every

x € Homg(Z,I?), ,Cheg maps z to the corresponding [y] € UEZ’?I.
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We note the following.
Lemma 4.3.6 ([31, Theorem 11.38]). ,Chg : Homg(Z,I4) — vEg’Ol is a chain isomorphism.

Remark 4.3.7. In [31], the cochain complexes Homg(Z,14) and UEgol are identified with the chain map
being implicit. For the purpose of this paper, we need an explicit description of the chain map. The reader

is encouraged to read the proof in [31] and check that the identification is given by ,Chg.

Similarly, the column filtration
{O} (@I -va_HTCH C vaTCH (@I ~UF0TCH = TCH

gives rises to a spectral sequence
B = {(UEH,TavdH,r)}r>1

by Lemma 2.15.31. The 0-th row of , Eg 1

vd i vdH,1

#,0 0,0 1 1,0
B0 — By —— By

is a cochain complex.

As above, we construct a chain map
wChy : Homp (Z, 1) — oEj
by the following procedure. Let
z € Hompy(Z,1%) C Homy(Z,1%)

for some p > 0. Recall that

JH f—H> HOmN(Z,IB)

is a CE resolution. Let y € Hom(Z, Jﬁ,’o) such that y(k) = kfy(x) forall k € Z. As fy is a ZH y-module
homomorphism, y is in fact an element of Cfl’o = Homy(Z, JIZ}’O). Moreover, by the same argument as

the one above, we see that y represents an element [y] € UEZ’OI. Let ,Chy be the map such that, for
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every p > 0 and every z € Homp(Z, I%), ,Chy maps z to the corresponding [y] € UE%OI. We note the

following lemma (see also Remark 4.3.7).
Lemma 4.3.8 ([31, Theorem 11.38]). ,Chy : Hompy(Z,Ip) — UEEOI is a chain isomorphism.

Recall that £* induces morphisms M C'ER and M DC. M DC further induces a morphism
oMSS : yEq — wEn

between spectral sequences.

Lemma 4.3.9. Forp > 0, the diagram

Homa(Z, 1%) —~—— Hompy(Z,1%)
vChG vChH
p,0 v MSS, p:o
B vEH,1

)

commutes.

Proof. Given x € Homg(Z, 1) for some p > 0, lety € C’g’o such that y(k) = kfg(z) and let [y] €
vEg’?l be the cohomology class represented by y. By definition, ,Chg(xz) = [y]. Let z € C%O such that
z = MDC(y). Then

dp(z) = dy o MDC(y) = MDC o dg(y) € vFp1 TCh

and thus z represents an element of UEZ?I. Let [2] € UE%?I be the cohomology class represented by z. As

+M SS is induced by M CER, we have
oM SS1 0 ,Chg(x) = MSS1([y]) = [MCER o y] = [2].

Note that £*(z) € Homy(Z, I%). Let 2/ € C%° such that 2/(k) = kfy o £*(x). Then 2 represents an
element of UE%’OI. Let [2/] € UEZ’OI be the cohomology class represented by z’. Then [2'] = ,Chy o L*(x),

by definition.
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Since M DC is induced by M C'ER, we have

z(k)
—MCER o y(k)
—kMCER o fg(z)
=kfy oL (x) as MCFER is induced by L*

=2'(k).

Therefore, z = 2. O

As a matter of fact, UEZ’?Q = UE%?Q = {0} for all ¢ # 0 (for example, see [31, Theorem 11.38]).
Thus, Lemma 2.15.32 implies that HP(T'C¢) (resp. HP(T'Cp)) can be identified with UEQOQ (resp. 7JE%’?Q).

Lemma 2.15.33 implies that the cohomology map M DC* can be identified with

DT

*0 p,0 . *,0 *,0

oMSS3? = @ MSSYY, 1 W ESS — WEL.
PEZ

By Lemmas 4.3.6, 4.3.8, and 4.3.9, the cochain complex UEg’Ol (resp. UE;’?) can be identified with
Homg(Z, 1Y) (resp. Hompy (Z,I%)) via the chain map ,Chg (resp. ,Chy), while the chain map ,M SS;
can be identified with £*. By Definition 2.15.27, ,M SS, 0 is the cohomology map induced by ,M SS].

Note that the cohomology map induced by £* is N AB¢. We conclude this subsection by the following.

Lemma 4.3.10. M DC* can be identified with N ABg.

4.33. Identifying , M SS5? with N ABLY

The goal of Section 4.3.3is to finish the proof of Proposition 4.3.4. Recall that the row filtration
{0} C -+ W FpiTCq C pF,T7Cq C - - -y FoTCq = TCq.
induces the spectral sequence j, Eg. Note that the 0-th row of , g 1
nden 1.0 ndea

%0 0,0
hEG,l -0 ’ hEG,l ? hEG,l ’
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is a cochain complex.
Recall that

(Jas 16, vi) (Homny(Z,14),€c)

is a CE resolution. For p, q € Z, let
. -1
hZ’é’q = ker(hépg’q), th’q = 1m(h5’é ,q)’ hHg’q = thg,Q/thg,q

be the horizontal cocycle, coboudnary, and cohomology of .J at position (p, q), respectively. Fix ¢ > 0 for

the moment. By Definition 2.16.1, the vertical differential ,d5 induces an injective resolution
0 — HI((N); A) — nHE® — HE — -
Applying Homg(Z, -) to this resolution gives rise to a deleted cochain complex
Homg(Z, L HEY) : 0 — Homg(Z, y HS") — Homg(Z, ,HE') — - -.
We construct a chain map
nChe : Homg(Z,  HE') — 1B

by the following procedure. Let x € Homg(Z, . H, g’p ) for some p > 0. Note that every term in the short
exact sequence

0 — WBE — 125 — L HL — 0

is an injective module (see Definition 2.16.1). Thus, after applying Homg(Z, -), the resulted sequence
0 — Homg(Z, ,BE’) — Homg(Z,, ZE") — Homg(Z, , HEY) — 0

is still exact. In particular, there exists y € Homg(Z, ,Z8") such that y(k) € ,ZE" represents z(k) €
nHEP for every k € Z. As

thp C Cg;,p C thTCG,
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we may think of y as an element of ;, F,T' Cg+q. By the same argument as the one in Lemma 4.3.5, dg(y) €

nFp+1TCq and thus y represents an element
ly] € hEGE = HP (4, F,TCG /1w Fp1TCq)-

Let ,Chg be the map such that, for every p > 0, ,Chg maps every x € H omé(Z, nH, g;’p ) to the corre-
sponding [y] € ,EZ%. Itis easy to check that ,Chg is well-defined, i.e., ,Ch¢(x) does not depend on the

choice of y € Homg(Z, , Z&P) such that y(k) € , ZE" represents x(k) € , HL" for k € Z.
Lemma 4.3.11 ([31, Theorem 11.38]). ;,Chg is a chain isomorphism.

Remark 4.3.12. In [31], the cochain complexes H omé(Z, nH g*) and hEé’Ol are identified with the chain
map being implicit. The reader is encouraged to read the proof in [31] and check that the identification is

given by ,Chg.
Recall that the row filtration
{0} C - W EpiTCx C pF,T7CH C - - -, FoTCx = TClh.
induces the spectral sequence , E'y7. The O-th row of , g 1
£,0 0,0 ndma L0 ndma

hEH,l 0 — hEﬁ,l — hEH’1

is a cochain complex.
Recall that

(Ji, h0m ;s v0m) S, (Homny(Z,Ip),€m)

is a CE resolution. For p,q € Z, let
) ) ) 3 717 k) ) )
D200 = ker(,009),  WBYY = im(y0% ), HPY = 250/, BEY

be the horizontal cocycle, coboudnary, and cohomology of Jy at position (p, q), respectively. Fix ¢ > 0 for
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the moment. By Definition 2.16.1, the vertical differential ,df induces an injective resolution
0 — HI(N; A) — HE — HE — ..
Applying Hom(Z, -) to this resolution gives rise to a deleted cochain complex
Homz(Z, , HSY) : 0 — Hompp(Z, ,HE) — Homp(Z, , HE') — - - -

We construct a map

WChy Homﬁ(Z, hH?j*) — hEB?1

by the following procedure. Let 2 € Homy(Z, , H;") for some p > 0. By the same argument as the one
above, there exists y € Homg(Z, , Z3;") such that y(k) € , Z}" represents (k) € , Hi" for every k € Z.
As

WZ§ C Cip C W F,TCY ™,

we may think of y as an element of ;, F},T’ Cf;rq. By the same argument as the one in Lemma 4.3.5, d (y) €

nFp+1TCr and thus y represents an element
ly] € hEGY = HP (W F,TC 1w Fypia TCH).

Let ,Chp be the map such that, for every p > 0, ,C'hy maps every x € Homﬁ(Z, hH]‘{jp) to the corre-
sponding [y] € , B . It is easy to check that ,Chyy is well-defined, i.e., ,Chy () does not depend on the

choice of y € Homy(Z, 1, Z3;") such that y(k) € , Z;” represents x(k) € , H}' for k € Z.
Lemma 4.3.13 ([31, Theorem 11.38] (see also Remark 4.3.7)). ,Chy is a chain isomorphism.

Recall that the chain map £* induces morphisms MCER, M DC, and , M SS. MCER induces a map
MCER: hHg:* — hHIqj*,
which further induces a chain map

MCER" : Homg(Z, ,HE") — Homz(Z, y Hi).
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Lemma 4.3.14. For p > 0, the diagram

Homg(Z, HEP) —MCEE . Hom(7, HEP)

nChg nChp

nMSS1

D,q
hEG,l
commutes.

Proof. Given x € Homg(Z, HL?) for some p > 0, let y € Homg(Z, ,Z&EP) such that y(k) € ,Z5"
represents z(k) € , HSP forall k € Z, and let [y] € hEg’?l be the cohomology class represented by y. By
definition, ,Chg(x) = [y].

Let

z=MCERoy € Homyg(Z,J}).

As MCER is a morphism of double complexes, z in fact belongs to Homg(Z, ,Z};") and thus represents
an element [z] € , 7. By definition, ,M SS; 0 ,Cha(z) = [2].

Note that MCER' (z) = MCERox. As MCER is a morphism between double complexes, for every
k€ 7, 2(k) € ,Z% represents MCER o (k) € ,HEP. By definition, ,Chy o MCER (z) = [2].
Therefore, ,MSSy o ,Che = ,Chy o MCER'. O

As MCER is induced by L*, the following diagram commutes.

0 Hompuy(2,1}) — o gt e e,
L MCER MCER
(4.14)
0 ————— Homy(Z,1f) — " Jft — s Jp? 2
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As fag, fu, and L£* are chain maps, (4.14) induces a commutative diagram

0 — % HI((NWA) —T  ,met — s> ..
L* MCER MCER
- (4.15)
0 — 5 HIN;B) — 1 g% g9

where fq, fr, £* are the maps induced by fg, fi7, L*, respectively.

Applying the functors Homg(Z, -) and Homz(Z, -) to (4.15) gives rise to

0 — Homg(Z, HI((NY; A)) —%— Homg(Z, , HE) —— -+

| J

0 —— Homg(Z, H(N; B)) —"— Homg(Z, L HE) —— -+

In (4.16), the leftmost vertical map is N ABY; and all other vertical maps are M CER’. 1t follows that

. —_——% *,q DT D,q

the cohomology map induced by MCER is N ABé = @pez N ABa .
By Lemmas 4.3.11, 4.3.13, and 4.3.14, the cochain complex , EL™ (resp. , E¥;") can be identified with
Homg(Z, hHg*) (resp. Homg(Z, , HE")) via the chain map ,Che (resp. ,Chy), while the chain map
nMSS; can be identified with MCER . By Definition 2.15.27, , M S.S5 is the cohomology map induced

by ,M SS1. Thus,
Lemma 4.3.15. Forp,q € Z, , M SS5? can be identified with NAB%(I.
Proof of Proposition 4.3.4. Proposition 4.3.4 is a combination of Lemmas 2.15.33, 4.3.10, and 4.3.15. [
4.4  Proof of Theorem 4.0.1
Under the assumptions of Theorem 4.0.1, let Eq = {(Eg,;,dc,r)}r>2 be the LHS spectral sequence

for the triple (G, (N)), A). For A € A, let Ey, = {(Em,r,dn, r)}r>2 be the LHS spectral sequence for
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the triple (H, Ny, A). Recall that E (resp. Ef,) results from deleting the £ page of {(Eq,,,dg ) }r>1
(resp. {(Em, vy dm, r) }r=1)-

Employ notations defined in Notation 2.14.2. Let us first construct, for every A € A, a morphism
MSS)y : Eg — Ep, of spectral sequences.

Let A’ = {\ € A | N, # {1}}. Note that the group triple (G, {H)}xca’, {Nx}rca’) has the Cohen-
Lyndon property. By Proposition 3.3.1, for A\ € A/, we may think of H  as a subgroup of G. By Lemma

4.3.2, the inclusion H ) < G induces a morphism

{(EG,ra dG,r)}r>1 — {(EH)\,Ta dH)\,T)}r>l

between spectral sequences. By restricting the domain of this morphism to F and the target of this mor-

phism to F,, we obtain a morphism
MSS)y : BEg — EHA

between LHS spectral sequences.

Let A € A\A’. Then for r > 2,

EPY HP(Hy; HO({1}; A)) ifg=0
H)\,T -
0 if ¢ # 0.

Note that EZSW can be naturally identified with HP(H); A).
For r > 2, define a bigraded abelian group homomorphism M SS) ;. : Eg, — Epu, , by the following.
(1) MSSYTis the identically zero map for all p € Z and ¢ € Z\{0}.

(2) For ¢ = 0, let R > r be sufficiently large such that EZOR naturally embeds into H?(G; A) (such an
R exists as Eg;%, = HPT9(G; A)). By the definition of spectral sequences, there is a natural quotient

map Eg’f]r — E’é’f}z- Let MS Sﬁ:g be the composisition

U ) > 1 =
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(the definition of M S Sf\”g does not depend on the choice of R).

It is easy to check that M SS) ., > 2, constructed above form a morphism M SS) : Eg — Ep, between
spectral sequences.

Claim. For \ € A,
(a) MSS)y is compatible with NT Ry, ;
(b) forp,q € Z, MSSY3 can be identified with NTR%?.

Proof of the claim. If A\ € A’, then (a) and (b) follow from Proposition 4.3.4. If A € A\ A’, then (a) and (b)
follow directly from the definition of M SS). O

Let F7; be the product of Eg, , A € A, and let

MSS = thSS)\ : B¢ — Ey.
A€A
By Lemma 2.15.15 and the claim above, M SS is compatible with NT' R¢. For p,q € Z, M SS%? can be
identified with NT'RZ. By Proposition 4.2.1, for p € Z and ¢ € Z\{0}, NTRZ? is an isomorphism and
thus M SS5? is also an isomorphism.
For ¢ = 0 and p € Z, it is well-known that H°({{\V')); A) can be natrually identified with the {(N\/))-
fixed-points of A, and for A € A, H°(N,; A) can be naturally identified with the Ny-fixed-points of A. As

Ais a ZG-module, the {(A'))-action on A fixes every point. Thus, we have natural isomorphisms
HP(Gy HO((N); A) = HP(G; A),

[T H#P(Fx; HO(Ny; A)) = [ HP(H); A),
A€A AEA

and N TR%O can be natrually identified with N'T: %. Thus, M SS%° can be identified with N Tg.
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CHAPTER 5

APPLICATIONS

Theorem 4.0.1 provides a morphism between spectral sequences with special properties. In this chapter,
we first perform computations with spectral sequences to extract certain information from such a morphism.

And then we use the extracted information to prove Theorems 1.2.15, 1.2.18, 1.2.22, and 1.2.23.

5.1 Computations with spectral sequences

Let By = {(E1, diy) }r>2, B2 = {(E2,, d2,) }r>2 be two spectral sequences and let
MSS : E1 — E2

be a morphism between spectral sequences. Recall that, for » > 2, the differentials dy ,, d2,- and the map
M SS, are morphisms between bigraded abelian groups, and we use superscripts to denote the components.

The following lemma is an immediate consequence of our assumptions.

Lemma 5.1.1. Forp,q € Z andr > 2,
MSSPA(ker(dyl)) C ker(dy), MSSf’q(im(dﬁ’;“q”*I)) c im(dg;"r’qﬂil)'

As M SS,1 is the cohomology map induced by M S'S,., it follows that

(a) MSSffl is surjective if and only if
MSSP4(ker(d'f)) + im(d5 """ ) = ker(db);

(b) MSSPE, is injective if and only if the preimage ofim(dg;r’q+r_1) under M SSP? is im(dlf;r’ﬁ_r_l).

Suppose that M/.SS5? is an isomorphism for p € Z and g € Z\{0}. Ideas of this section are illustrated

by the example below.

Example 5.1.2. Suppose
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(a) By = HY *4 and E53 = Hy? for some graded abelian groups H1 = P, Hi and Hy =
@p}O Hg’
(b) There is a morphism f : H; — H> compatible with M SS.
For simplicity, let us further assume

(c) BEy3 = Eyg = {0} whenever ¢ # 0, 1.

Under these additional assumptions, we derive properties of £y, Fs, and M .SS. Recall that for p € Z,
fP denotes the p-component of f.

The only possibly nontrivial differentials at the second page of F; or Es are the ones going from the
first row to the 0-th row. Two such maps are shown in Figure 5.1, where the unlabeled arrows are d ;2’1 and
dg;Q’l, respectively. After finishing the computations at the second page, we obtain the third page, which

is shown by Figure 5.2. In Figure 5.2, the line segment connecting coker(d’l’j”o), ker(dﬁ’j’l), and HY -1

indicates the exact sequence
1 — coker(d} ,>") — HY ™' — ker(df ') — 1,

which is a consequence of EPd = HP*?. Similarly, other line segments in Figure 5.2 indicate different

consequences of the limits of £y and Es.

p7271 p7171 p71 p7271 pilvl p71
E1,2 E1,2 E1,2 E2,2 E2,2 E2,2
MS S,

(4

p_270 p_LO puo P—2,0 P—LO ILO
E1,2 E1,2 E1,2 E2,2 E2,2 E2,2

Figure 5.1: The second pages of E; and Es

For p € Z, the map M SS% ~21 results from M SSY~*' by restricting the domain to ker(dﬁf’l) and

restricting the target to ker(dg_;’l). Thus,
. p—2,1 . . . . p—2,1 .
Observation 1. M SS5 is injective as M S'S; is.

In general, M S S} ~2! need not be surjective, although M SS% 2l surjective. For instance, if

ker(MSS5) Nim(df > # {0}
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ker(d}l)QQ?l)\ ker(dﬁ%\ker(dﬁj:é)
coker(dll’54’1) coker(d}. 23’1) coker(dﬁ’gz’l)
MSSs
HY! Hg l
ker deQl\ ker dpll\k01ddg72
coker( dp 4 1 coker( dp 3 1 coker( dp 2, 1

Figure 5.2: The third pages of E; and F»

Then there exists = € Eff’l such that
&> (@) € ker(MSSEO)\{0}.
Lety = MSS2™*!(x). Then
a5 () = db P o MSSE ™ (@) = MSSEY o di 5 () = 0.

Thus, y € ker(d§;2’1). We claim that y has no preimage under MSSY >'. Indeed, MSSE >' is a
restriction of M SSY “2! and M SSE “21 s injective. Therefore, the only candidate for the preimage of y

under M SSE~> is z. But z ¢ ker(dﬁ’j’l) and thus z is not in the domain of M S.52~>!,

Observation 2. By the above argument, if M SS% “21is surjective (for example, if fP~! is surjective), then

ker(MSSP%) N im(d’l’;?’l) — {0}, that is, M SSZ° maps im(d’fj’l) injectively into Eg:g
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Let us make some other observations. Note that M SS% 0 maps im(d’ff’l) onto

im(MSSY° o di ;) = im(db >t o MSSH>).

By assumption, M SSY~ " is an isomorphism. In particular, M SSY~ %" is surjective. If dg;z’l is also

surjective (for example, if HY = {0} and thus Coker(dQEQ’l) = {0}), then d’2’7_22’1 o MSSE™>! will be

surjective, which will imply the surjectivity of M SSY o dy 32’1. Therefore,
Observation 3. If HY = {0}, then M 552 maps im(dzfj’l) surjectively onto Eg:g :

Now suppose that for some p, fP~! is surjective and HY = {0}. By Observations 2 and 3, M SS} 0

maps im(d:’f;?’l) isomorphically onto Eg:g . It follows that
(1) 1 — ker(MSSY?) — Ef:g — Eg:g — 1 is a split exact sequence;
(2) Ef’g = ker(MSSE°) @ im(d’l’j’l) and thus coker(dﬁ’j’l) = ker(MSSEY).

As Egg = HY™, another implication of HY = {0} is ker(dgél’l) = {0}. By Observation 1,
MSS? ! s injecitve. Thus, a consequence of ker(dg;’l) = {0} is ker(dllj,al’l) = {0}, which, together

with BN = HF implies H? = coker(d?5>"). Thus,

Observation 4. If for some p, fP~1 is surjective and HY = {0}, then
BV = ker(MSSE) @ im(df > = HY P ELS.
Now drop the assumption H) = {0} and instead assume that fP~1 and fP are isomorphisms. As
By = HYY', By = HET,

we have

ker(d’fj’l) = ker(d@j’l), coker(d’fj’l) = coker(d@j’l).
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Thus, the five lemma and the commutative diagram

1 —— ker(d) ;") —— EP) —— coker(df,>') —— 1
lMSSQ \LMSSQ lMSSQ
1 —— ker(dé’;z’l) — Eg:g — coker(dgj’l) — 1
imply
Observation 5. If for some p, f7~! and f? are isomorphisms, then Ef:g = E;’g .

The rest of this section aims to prove Observations 4 and 5 in full generality. The following Lemma

5.1.3 is a generalization of Observation 1.

Lemma 5.1.3. Forr > 2,
(a) MSSP? is injective for all p € Z and q € 7Z\{0};
(b) MSSP? is an isomorphism ifp € Z and q > r — 1.

Proof. We prove these statements by induction on 7. The base case r = 2 follows from the assumptions.
Suppose that (a) and (b) hold for » = R > 2. Consider the case r = R + 1. The following Claims 1 and

2 follow directly from the induction hypothesis and Lemma 5.1.1.

Claim 1. Forallp € Z and q > 1, MSSy" maps ker(d{'}) injectively into ker(dy). If ¢ = R, then

MSSE maps ker(d%%) isomorphically onto ker(dgzqR).

Claim 2. Forall ¢ > R, M,S'S%H{’q_ﬁJrl maps im(d’l’:%) isomorphically onto im(dgﬁ_-{).

(a) and (b) are immediate consequences of Claims 1,2 and Lemma 5.1.1. ]

Fix p > 2. Note that for all r > 2, dﬁ’:g is a map from Ef’g to Eff’l_r = {0}. It follows that
ker(d??) = EP? and thus E?° .1 is a quotient of £ Y Similarly, B2 1 is a quotient of £ Y for all 7 > 2.

Forr=2,....,p+ 1, let
. p,0 p;0 . 0 »,0
Qur: BV, = By, Qop i By — By

be the corresponding quotient maps.
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To simplify notations, we also let Q11 : EP) — EPY Qo : ERY — EPY be the identity maps. For

r=1,...,p+1,1et CQ1, (resp. CQ2,) be the composition of Q1 ; (resp. Q2;) for 1 <7 < r,i.e.,
CQiyr=Q1r0-Qu1: E{’,’S — E{’,’Bﬂ, CQa2yr = Q2yp0-- Q21 : ES;S — E;’Sﬂ-

Remark 5.1.4. Forr = 2,...,p+1, Q1 (resp. QJ2,) is the cohomology map sending every = € Ef:g (resp.

y € Eg:g ) to the cohomology class in Ef:g 41 (resp. Eg:g 1) represented by x (resp. y). Thus,

ker(Qu,r) = im(df "1, ker(Qa,) = im(d5,"" ),
MSSP) 0 Qur = Q20 MSSPY, MSSPL 0 CQu, = CQa, 0 MSSEY,
Lemma 5.1.5.

(a) IfMSSf;;fl’r : Ef;igl’r — Eg;igl’r is surjective for r = 1,...,p — 1, then CQ1 41 maps

ker(MSSS’O) injectively into ker(MSS’;:fz).

(b) Ing:ngz = {0}, then MSSg’O maps ker(CQ1 p41) surjectively onto Eg:g.
Proof.

(a) By Remark 5.1.4, CQ1 ;41 maps ker(M SS2°) into ker(MSngQ). It remains to prove that CQ1 41
maps ker(M S S ’0) injectively into Ef:g o+ Suppose that this is not true. As CQ1 41 is the composi-
tion of @1, there exists 1 < 7 < p such that Q1,41 does not map CQ1 - (ker(MSSYH ’O)) injectively
into Ef:g 9. We prove that M SS?" ) ~L7 is not surjective, which contradicts our assumption. By
Lemma 5.1.3, MSSf;fT_Q’QT is an isomorphism. It follows that

—r—1,r . —2r—22
MSSY r(lm(d}f,rfl ")

_ im<MSSp—r—1,7" ° dp—2r—2,2r)

r+1 1,r+1
—im(d8 2P o MSSP T as M SS is a morphism of spectral sequences
= 2,7+1 r+1 p Sp sequ
. p—2r—2,2r p—2r—2,2r . . .
=im(dy, ;) as MSSP | is an isomorphism.
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In view of Lemma 5.1.1, it suffices to show
- 717 - 717 - 717
MSS;y T (ker(dy ")) # ker(d ).

By the Remark 5.1.4, we have ker(Q1 ,41) = im(dﬁ?;f:l”). This, together with the assumption that

Q1.7+1 does not map CQ1., (ker(MSS2?)) injectively into Ef”g 9> implies

CQyr(ker(MSSEY)) Nim(dy ") # {0} (5.1)

Let W be the preimage of CQ1 . (ker(M SSEY)) under dzl’;i_ll’r. Note that

dy "3 o MSSETH (W)
=MSSPY, o dl;fr_ll’T(W) as M SS is a morphism of spectral sequences
CMSSPY 0 CQy ,(ker(MSSHY))

=CQa, 0 MSSE° (ker(MSSE)) by Remark 5.1.4

—{0}.

Thus,

MSSETTH (W) C ker(dy, 7 0").

(5.1) implies
ker(d "7 M") C W

By Lemma 5.1.3, MSSf;I_l’T is injective. Thus,

MSSY T (ker(df ) © MSS) T (W) C ker(dy, ).
(b) Suppose, for the contrary, that

M S5O (ker(CQ p11)) # BB
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Compare the following two sequences:
0 1 ,0 1
{MSSY) 0 CQur(ker(CQupe2) Y121, {ER )L

Note that

MSSE? 0 CQua(ker(CQupt1)) = MSSE (ker(CQupi1)) # ES,

but

MSSVL, 0 CQypar (ker(CQupi1)) = ESY o = {0}.
Thus, there exists 1 < 7 < p such that
MSSPY) 0 CQuy(ker(CQipr1)) # EYY. . (5.2)
MSSPYy 0 CQ1 i1 (ker(CQupi1)) = Ebys. (5.3)
Letz € Eg;gﬂ. Then Q2,41(z) € E;’BH. By (5.3), there exists y € ker(CQ1 p+2) such that
MSSfo 0 CQ1r+1(y) = Q2r41(2).

Note that

0=MSSEY 0 CQ1r11(y) — Qars1(2)
=MSSEYy 0 Q1410 CQ1r(y) — Qoria () by the definition of CQ1 41
=Qa41 0 MSSPY, 0 CQ1 1 (y) — Qo i1 () by Remark 5.1.4

=Q2,r+1(M55ff1 0 CQ1r(y) — ).

In other words,

MSSPL 0 CQp(y) — = € ker(Qa,s1)-
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By Remark 5.1.4, there exists z € Eg;i]l’r such that
b () = MSSEY 0 CQuyr(y) — =

By Lemma 5.1.3, MSSf;{fl’r is an isomorphism. Thus, there exists ¢t € Ef;i;“ such that

MSSfH_LT(t) = z. By Remark 5.1.4 again,

T (t) € ker(Quri1) C CQuy(ker(CQupin)).

Thus,

& =MSSL, 0 CQuy(y) +db, M (=)
=MSSPL) 0 CQur(y) +db, 7" o MSSE T (1)
=MSSPL 0 CQualy) + MSSEY o dy "5 (1)
=MSSEY (CQur(y) + 5T (1)

eMSSPL) 0 CQu(ker(CQ1pt1)).

As z is arbitrary, we have
MSSPY) 0 CQup(ker(CQipi1)) = B3,

contradicting (5.2).
O

Lemma 5.1.6. Letr € {0,...,p— 1} andlet R > r + 2. IfMSS%rl—l,r is surjective, then MSSE ™1 s

also surjective.

Proof. Suppose that M S S%_T_l’r is not surjective. Note that the target of d’f}"_l’r is EfER_T_l”"_RH =

{0}. Thus,

p—r—1,r\ _ pp—r—1r
ker(dy p ) =FEjp .
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Similarly,

ker(dh 7 ~1") = EL M

As MS S%#*M is not surjective, we have
MSSE 1 (ker(df 7 ™H")) # ker(db 7). (5.4)
By Lemma 5.1.3, MSS%_T_R_LHR_1 is an isomorphism. It follows that

MSS%—T—LT(im(d;i);%“—R—l,r+R—l))
=im(MSSy " o dy bR (5.5)

= im(

dg_R”_R_l”’J“R_l o MSS%_T_R_LHR_I) as M SS is a morphism of spectral sequences

. —r—R—1,r+R—1 —r—R—17+R-1._ _ . :
—im(dh TR as M SSY " H1 R s an isomorphism.

(5.4), (5.5), and Lemma 5.1.1 imply that M SS%;TLT is not surjective, contradicting our assumption.

O]

Let us further suppose that

P,q p+q P,q p+q
EL2 = H; ", E272 = H;

for some graded abelian groups H; = @@0 Hf, Hy = @420 Hg and there is a degree-0 morphism
f : Hi — Hy compactible with M SS. The following Lemmas 5.1.7 and 5.1.8 are generalizations of

Observations 4 and 5, respectively.

Lemma 5.1.7. If f?~ is surjective and HY = {0}, then M SSE" is surjective with ker(M SS2%) = HP.

Moreover,
70 ~ 70
Ef,z = E§,2 @ H{)'
Proof. If p < —1, then BV’ = E§9 = {0}. If p = 0, then E{') = HY as B’y = H{, and BS) = HY =
{0} as E% — H5T. Thus, the lemma holds in these two cases.

Suppose p = 1. By assumption, H3 = {0}. It follows from Remark 2.15.9 and Egg = Hé““ that
0,1 1,0
E2,3 = E2,3 = {0}.
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The same argument as the one in Remark 2.15.9 shows
1,0
By = E23 ={0}.

By Lemma 5.1.3, M SS; " maps E?% injectively into E% and thus E?% = {0}. Therefore,

1,0

Eiy
:Ei ”g by the same argument as the one in Remark 2.15.9
~H} by EY3 = {0}, By’ = HY**, and Remark 2.15.9
~ ;1,0 1,0
=Ey) @ Hy as Ey’y = {0}.

Let us assume p > 2. As fP~1 is surjective and M SS is compatible with f, Remark 2.15.11 implies
that forr = 1,...,p — 1, M SSIZ,7 +I b surjective. By succesively applying Lemma 5.1.6, we see that
MSSfJ:;_l’T is also surjective. It follows from Lemma 5.1.5 that CQ; ,11 maps ker(M SS52°) injectively
into Ef”g 5. Thus,

ker(CQ1pr1) Nker(MSSY) = {0}. (5.6)

By Remark 2.15.9, E% Hy, and HY = {0}, we have E§p+2 = {0}. It follows from Lemma 5.1.5

that M SSY 0 maps ker(C'Q1 p+1) surjectively onto E§7’2. Together with (5.6), this implies
EP) = ker(CQ1p41) P ker(MSS57) (5.7)

and

ker(CQ1p41) = E55.

We have already shown that C'Q)q 41 maps ker(M S Sp ") injectively into EY” 1p +2 Thus, (5.7) implies
that CQ1 p+1 maps ker(MSSp’ ) isomorphically onto E1 D2

Forr =1,...,p,as E2 5 = Hy ™ and HY = {0}, we have E} ') = {0} by Remark 2.15.9. By Lemma
5.1.3, MSSP 5" maps EY ) injectively into B3 5. Thus, EY V5 = {0}. As E1 o = Hj k+l Remark

2.15.9 implies

HY = EPD = ker(MSSEY).

116



Therefore,

0 ~ 0\ ~ 70,0 0 ~ 0
Ef,2 = ker(CQ1pt2) @ ker(MSSg ) = E§,2 @ Ef,p+2 = E§,2 @ Hf-

Lemma 5.1.8. If fP~! is surjective and f? is an isomorphism, then M S Sy is an isomorphism.

Proof. If p < 0, then Remark 2.15.9, Efg = Hf“, and Egé = Hg” imply
70 ~ 70 ~
Ezlg,Q = va ES,Q = Hg'

As fP is an isomorphism and M SS is compatible with fP, Remark 2.15.11 implies that M SSg’O is an
isomorphism.

Let us suppose p > 1. As M SS is compatible with f and fP~! is surjective, M S Sg;’ln_” is surjective
forr = 0,...,p — 1, by Remark 2.15.11. It follows from Lemma 5.1.6 that MSSf;gfl’r is surjective for
r=0,..,p— 1. By Lemma 5.1.5, CQ1 p4+1 maps ker(M SS?°) injectively into ker(MSSﬁ&).

By Remark 2.15.11 and the assumption that f? is an isomorphism, M Sngz is injective. Thus,
ker(MSngz) = {0}. As CQips1 maps ker(MSSE) injectively into ker(MSSﬁfz), we have
ker(MSSP) = {0}, i.e., MSSEY is injective.

By Remark 2.15.11 and the assumption that f? is an isomorphism, M .S Sﬁj& is surjective. By succes-
sively applying Lemma 5.1.6 (with p in place of p— 1 in part (a)), we see that M SS? Vs surjective and thus

is an isomorphism. 0

5.2 Cohomology of Dehn filling quotients

Theorem 5.2.1. Let (G, {Hx}xca, {Nx}xen) be a group triple satisfying the Cohen-Lyndon property. Em-
ploy the notations defined in Notation 2.14.2 and let A be a ZG-module. Suppose that for some p € N,
[Then HP(Hx; A) = {0} and NT R maps HP~(G; A) surjectively onto []ycp HP "' (Hy; A). Then

NT% is surjective with ker(NTg) = HP(G; A). Moreover,

HP(G; A) = (H Hp(H,\;A)> P B (G; A). (5.8)

AEA
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Proof. Let M SS be as in Theorem 4.0.1. Note that M SS and NT R satisfy the assumptions of Lemma
5.1.7, which yields (5.8) and shows that MSSS’O is surjective. By Theorem 4.0.1, MSSS’O can be identified

with N Tg and thus NV Tg is surjective. O

Recall that for a group G, the cohomological dimension of G is
cd(G) =sup{l € N | H(G, A) # {0} for some ZG-module A}.
If (G,{Hx} e, {Nx}xren) is a group triple, let

cd(H) = sup{cd(H,)}, cd(H) = ilé]i{Cd(ﬁA)}-

Also recall the following result of [7] concerning relative cohomology groups.
Proposition 5.2.2 ([7, Proposition 1.1]). Let G be a group with a family of subgroups { Hy} xen. Then for

every Z.G-module A, there is a long exact sequence

o HYG, {Hahreas A) — HYG; A) 278 T HY(Hys A) — H™NG, {Habrens A) — - -
AEA

where N'T'Rq is the natural map defined in Notation 2.14.2.

Corollary 5.2.3. Let (G,{Hx}xea, {Nx}rca) be a group triple satisfying the Cohen-Lyndon property.

Then for all { > cd(H) + 3 and every Z.G-module A, there is an isomorphism
HY(G, {Ha}reas A) = H'(G; A),

For £ = cd(H) + 2, there is a surjection H* (G, {H\}rer; A) — H(G; A).

Proof. By Proposition 5.2.2, there is a long exact sequence

_ _ NTL _ o
= HY(G {Hphen; A) = HY(G A) —5 [[ HY(Hx; A) — HYY(G {H  baen; A) = -+
AeA

By Theorem 5.2.4, if ¢ > c¢d(H) + 2, then NT% is surjective and ker(NTé) >~ H'(G; A), which implies

the desired result. O

118



Corollary 5.2.4. Let (G,{Hx}xcn, {Nx}xen) be a group triple satisfying the Cohen-Lyndon property.
Then

cd(G) < max{cd(Q),cd(H) + 1,cd(H)}.

Proof. If cd(G) < cd(H) + 1, then the desired conclusion already holds. Thus, let us assume that cd(G) >
cd(H) + 2. Let £ > cd(H) + 2, and let NT Rq be the natural map defined by Notation 2.14.2, then
[Then HY(Hy; A) = {0} and NTR¢; maps H'~'(G; A) surjectively onto [[,., H*"1(Hy; A) = {0}. It

follows from Theorem 5.2.1 that

HY(G; A) = <H He(HMA)) P a'(G; 4),

AEA
which implies cd(G) < max{cd(G), cd(H)}. O

Proof of Theorem 1.2.15. By Theorem 3.0.1, for sufficiently deep N <1 H, the group triple (G, H, N) has
the Cohen-Lyndon property. Thus, Theorem 1.2.15 follows from the case |A| = 1 of Theorem 5.2.1 and
Corollary 5.2.4. O

Our next result concerns another finiteness property. Recall that a group G is of type F' P if there is a
projective resolution P — Z over ZG such that P, is finitely generated for ¢ € N. Also recall the following

characterization of F' P...

Theorem 5.2.5 ([10, Chapter VIII Theorem 4.8] (see [9, Theorem 3] for a proof)). A group G is of type

F Py, if and only if H* (G} -) preserves direct limits.

Lemma 5.2.6. Let F be a free group of finite rank, let N be a normal subgroup of F, let F = F/N, let
{A;}icr be a directed system of Z.F-modules, and let A = hﬂ A;. If F is of type F P, then for p,q € Z,

the natural maps A; — A, 1 € I, induce an isomorphism
limy H7(F; H(N; A,)) = H?(F; H(N: A)). (5.9)

Proof. Let

ENY = HP(F; HY(N; A)) = HPT(F; A)
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be the LHS spectral sequence for the triple (F, N, A). Fori € I, let

EPl = HP(F; HI(N; 4;)) = HPTU(F; A;)

)

be the LHS spectral sequence for the triple (F, N, 4;).
Being a subgroup of the free group F', N is also free. By the Stallings-Swan theorem [32, Corollary to

Theorem 1], cd(N) < 1. It follows that
(CD1) EVy = E5? = {0} whenever ¢ ¢ {0,1}.

Thus, if ¢ ¢ {0, 1}, then both sides of (5.9) are {0}. Therefore, it suffices to prove (5.9) for ¢ € {0,1}.
Note that if p < —1, then both sides of (5.9) are {0}, and if ¢ = 0, then (5.9) follows from Theorem

5.2.5 as there are natural isomorphisms
HO(N;A)= A, HON:;A;) = A;, foriel.

Thus, it suffices to prove (5.9) for p > 0 and ¢ = 1.

By Proposition 4.3.4, the maps A; — A, i € I, induce morphisms
MSS;: E; — FE
between spectral sequences. For ¢ € I and p € Z, Proposition 4.3.4 implies that the map
MSSPy « EPy — Eb*
can be identified with the natural map
HP(F; H'(N; A;)) = HP(F; H'(N; A))
induced by A; — A. Tt suffices to show that for p > 0,

lim MSSPy : lim H?(F; H'(N; A;)) — HP(F; H'(N; A)). (5.10)
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is an isomorphism.

Fix p > 0. We have the following commutative diagram.

MSSP?

p,1 p,1
E, Ey
)1 ,1
v dp (5.11)
P20 MSSPO P20
0,2 2

Note that HPT2(F; A) = {0}. As EX* = H*(F; A), we have EFT*° = {0} for sufficiently large
r. By (CD1) and the definition of spectral sequences, EPT20 = E§+2’O for all » > 3. Thus, E§+2’0 = {0}
and, as a consequence, dg’l is surjective. Similarly, dﬁ 21 is surjective.

If p > 1, then as HPTL(F; A) = {0} and ES* = H*(F; A), we have EF' = {0} for sufficiently
large 7. By (CD1), EPL = Eg’l for all » > 3. Thus, Eg’l = {0}. Using (CD1) once again, we see that dg’l
is injective and thus is an isomorphism. Similarly, dﬁ 21 is an isomorphism.

Taking direct limit of (5.11), we obtain
lim By ——— B}
(5.12)
hﬂ Eg-;zo E§+2’0

By Theorem 5.2.5, the lower horizontal map of (5.12) is an isomorphism. Being direct limits of isomor-
phisms, the vertical maps of (5.12) are isomorphisms. Thus, the upper horizontal map of (5.12) is also an
isomorphism, which proves that hﬂ MS Sfi ’21 is an isomorphism for p > 1.

Suppose p = 0. Then dg 21 = d?7’21 and dg’l = dg’l are not necessarily injective. Let ker; (resp. ker) be

the kernel of d?”zl (resp. dg’l). By Remark 2.15.9 and Eé“ s H k+E(F; A), there is an exact sequence
1— By — HY(F; A) — ker — 1. (5.13)

By the same argument, we see that there is an exact sequence similar to (5.13) holds for every ¢ € I. As
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~1,1 ~1,1

E, ;7 = E, " ={0}, we have

1,0 _ 1,0 1,0 _ 11,0
Ely =EY, Ey'=E"

)

Combining these observations, we obtain a commutative diagram

1l ——— B ———— HY(F; A) ker; 1
MSSH? M%) G.14)
1 — W BM L HYF;A) ker 1

By taking direct limit of (5.14) and using the fact that hﬂ is an exact functor, we obtain the following

commutative diagram with exact rows.

| ——— lim By ——— lim H'(F; A;) —— limker; —— 1

T

1—— 5 B HY(F;A) ker 1

As F' has finite rank, F' is of type F'Ps. By Theorem 5.2.5, the first and the second vertical maps
of (5.15) are isomorphisms. Thus, the five lemma implies that the last vertical map of (5.15) is also an
isomorphism.

Consider the commutative diagram

0,1 2,0
1 ker; Ei’2 EL? 1
MSSYy MSSYy MSSE) (3.16)
0,1 dy! 2,0
1 ker Ey : Ey 1

By taking direct limit of (5.16) and using the fact that hgl is an exact functor, we obtain the following
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commutative diagram with exact rows.

1 — ligkeri _ @E?’Ql . @Ez?éo — 1

T

1 ker By Ey° 1

We have already proved that the first vertical map of (5.17) is an isomorphism. By Theorem 5.2.5 and the
assumption that F is of type F P, the last vertical map of (5.17) is an isomorphism. Thus, the five lemma
implies that the second vertical map of (5.17) is also an isomorphism, which proves that hg MS Sﬁ ’21 is an

isomorphism. O

Lemma 5.2.7. Let K be a finite group, let F be free group of finite rank, let H = K X F, let N be a normal
subgroup of F, let H = H/N, let { A;}ic1 be a directed system of Z.H-modules, and let A = hﬂ A, IfH

is of type F Py, then for p, q € Z, the natural maps A; — A induce an isomorphism
lim H?(H; HY(N; A;)) = HP(H; HY(N; A)).

Proof. Note that F' = F'/N has finite index in H and thus F is of type F'Py,. Fix p,q € Z. Lemma 5.2.6

asserts that the natural maps A; — A induce an isomorphism
ling(f;Hq(N;Ai)) =~ HP(F; HY(N; A)). (5.18)

Notice that F' <t H and H/F = K is a finite group. In particular, H/F is of type F Py,. Fori € I,
let E; the LHS spectral sequence for the triple (H, F', H1(N, A;)). Let E be the LHS spectral sequence for
the triple (H, F', H1(N, A)), let lim E; be the direct limit of {E;}ic, and let MSS : lim E; — E be the

morphism induced by A; — A,i € I. Then

Ek,@
2
~H*(H/F; H'(F; HI(N; A)))
~H*(H/F:lim H'(F; HY(N; A;))) by (5.18) (5.19)

%@Hk(ﬁ/F;HE(F;Hq(N;Ai))) as H/F is of type F Py,
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~liny Fy .

The isomorphisms involved above are natural maps. Thus, M SS5 : hglEgl — FE5 is an isomorphism
of bigraded abelian groups. It follows that M S'S is an isomorphism between spectral sequences. As Ef ’24 =
H*(H; HY(N; A;)) and E¥ = HF(H; HI(N; A)), (5.19) and Lemmas 2.15.12, 2.15.18 imply the

desired result. O

Theorem 5.2.8. Let A be a finite index set and let (G, {Hx}acn, {Na}rca) be a group triple satisfying the
Cohen-Lyndon property. Employ the notations defined in Notation 2.14.2. Suppose that G, Hy,\ € A, are
of type F Py.. If. for each \ € A, either one of the following conditions holds, then G is of type F Pa.

(F1) Ny is of type F' Py
(F3) H)y is of the form Ky x F)\, where K is finite and F)\ is a finite rank free group, and Ny < F).

Proof. By Theorem 5.2.5, it suffices to prove that the functor H*(G; -) preserves direct limits. Let {A4;};cs
be a directed system of ZG-modules and let A = hgq A;. Fori € I, let E; = {(E;,,d;,)}r>2 be the LHS
spectral sequence for the triple (G, (N), A;). Let E = {(E,, d,) }»>2 be the direct limit of { E; };c;. Also
let E4 = {(Ear,dar)}r>2 be the LHS spectral sequence for the triple (G, (N), A).

By Lemma 2.15.18, EY? = thpJ“q(G; A;). The maps A; — A,i € I, induce

(a) a morphism

MSS:E— Ey

between spectral sequences, by Proposition 4.3.4,

(b) anatural map

NAg : @H*(G;Ai) — H*(G; A)

(c) anatural map

NAZS i HP(G; HA((N); Ai)) — HP (G HA((N); A))

for p,q € Z.
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As there are natural isomorphisms
HO((N); A) = A, HO((N); Ai) = Ay, fori € 1,

forp € Z, N A%O can be identified with the natural map lim H P(G; A;) — HP(G; A) induced by the maps
A; — A,i € I. Thus, it suffices to show that N A%O is an isomorphism, which is done by using Lemma
5.1.8.

Forp € Zand ¢ < —1, NAZ? is clearly an isomorphism as it is just a map from {0} to {0}.

Fixp e Zand g > 1. Leti,j € I with ¢ < j. Consider the following commutative diagram

HP(G; HI((N); Ai)) HP(G; HI({(N); Aj))

(5.20)

1%
1%

[Ihea HP(Hx; HY(Ny; Ai)) ———— [lhea HP(Hx; HY(Ny; Aj))
where the horizontal maps are induced by A; — A;, and the vertical isomorphisms are given by Proposition

4.2.1. Let 4, j vary in I. (5.20) induces a commutative diagram corresponding to direct limits

P,q
NAé

HP(G; HY((N); A))

lim HP (G HO((N'): A7)

N N (5.21)
lim [Then HP(Hy; HI(Ny; Ai)) ———— [laea HP(Hx; HY(Ny; A))
whose vertical maps, being direct limits of isomorphisms, are themselves isomorphisms.
Fix A € A. Consider the natural map
ling(ﬁ,\;Hq(N,\;Ai)) — HP(H; HY(Ny; A)) (5.22)

induced by the maps A; — A,i € I.
If (F1) holds for A, then Theorem 5.2.5 implies that (5.22) is an isomorphism.

If (F2) holds for A, then Lemma 5.2.7 implies that (5.22) is an isomorphism.
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Let A vary in A. By taking direct product of (5.22), we obtain an isomorphism

[ lim HP(Hx, HY(Nx, Ai)) = ] HP(Ha, HY(Ny, A)). (5.23)
AEA AEA

As |A| < oo, the operations [],., and lim commute with each other and thus isomorphism (5.23)
implies that the lower horizontal map of (5.21) is an isomorphism. By Proposition 4.3.4, M SS and N Ag
are compatible and for p,q € Z, M SSH? can be identified with N A%q. As G is of type F' Py, Theorem
5.2.5 implies that N Aq is an isomorphism. Thus, Lemma 5.1.8 implies that N A%O is an isomorphism for

allp € Z. O

Recall that a group G is of type F'P if (a) cd(G) < oo and (b) G is of type F P,. The following

corollary follows from Corollary 5.2.4 and Theorem 5.2.8.

Corollary 5.2.9. Let A be a finite index set and let (G, {Hx}xen, {Nx}rca) be a group triple satisfying the
Cohen-Lyndon property. Suppose that G, Hy, A\ € A, are of type FP. If, for each X € A, either one of the

following conditions holds, then G also is of type FP.
(F1) Ny is of type F'Px..
(F2) H)y is of the form K x F)\, where K is finite and F) is a finite rank free group, and Ny < F).

Proof of Theorem 1.2.18. By Theorem 3.0.1, for sufficiently deep N <1 H, the group triple (G, H, N) has
the Cohen-Lyndon property. Thus, Theorem 1.2.18 follows from the case |A| = 1 of Theorem 5.2.8 and
Corollary 5.2.9. O

5.3 Cohomology and embedding theorems

We prove Theorem 1.2.22 in this section. Given any acylindrically hyperbolic group G, G has a maximal
finite normal subgroup K (G) by Theorem 2.5.7. Gy = G/K(G) is again acylindrically hyperbolic [19,
Lemma 5.10] and K (Go) = {1}. By Theorem 2.5.7, there is a non-abelian free group ' <, Gy. It is well-
known that F' is SQ-universal and thus given any countable group C, there is a normal subgroup N < F
such that C' — F'/N. The main idea of the proof of Theorem 1.2.22 is to choose a particular N so that all

statements of Theorem 1.2.22 hold for G = G/{(N)), where {N)) is the normal closure of N in G.
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Lemma 5.3.1. Let F3 be a free group of rank 3, let F C F3 be a finite set, and let C be a countable group

with cd(C) = 2. Then C embeds into a quotient R of F3 such that
(1) card(R) = oo;
(2) the natural homomorphism Fs — R is injective on F;
(3) cd(R) < cd(C);
(4) forall £ > 3 and any Z.R-module A, we have H'(R; A) = H*(C; A);

(5) if C is finitely generated, then R is hyperbolic relative to C' (for the definition of relative hyperbolicity,
see [13, Definition 3.6]);

(6) if Cis of type F Pwo, then so is R.

Remark 5.3.2. Except for assertions (3), (4), and (6), Lemma 5.3.1 is proved in [13, Lemma 8.4]. We refine

the method of [13] so that we can impose homological conditions.

Proof. Let {z,y,t} be a free basis of Fj, let {¢; };cs be a generating set of C, and let w;, v;, i € I, be freely

reduced words over the alphabet {z, y} such that

(a) the words c;w;,i € I, satisfy the C’(1/2) small cancellation condition over the free product (x)

{y) = C;
(b) the words v;, i € I, satisfy the C’(1/2) small cancellation condition over the alphabet {z, y};

(c) the words tc;wit—'v;, 4 € I, satisfy the C’ (1/6) small cancellation condition over the free product
(x) = (y) = (t) x C.

Let N be the normal subgroup of F3 % C' generated by tc;w;t~'v;,i € I, and let

For i € I, lett (resp. ¢;, w;, v;) be the image of ¢ (resp. ¢;, w;, v;) under the quotient map F3 x C' — R.
Note that EEiﬁiE_lm = 1 and we can rewrite this equation as ¢; = 5_1@-_1%@;1. Thus, R is generated by
t,w;, v;,1 € I, and hence is a quotient of F3. Let

Q:F3s— R
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be the corresponding quotient map. We can also think of () as the restriction of the quotient map F3+C' — R
to F3. It follows from the Greendlinger’s lemma for free products [24, Chapter V Theorem 9.3] that if
||will, ||vill, @ € I, are sufficiently large, then @ is injective on F and thus (2) is guaranteed.

Let L = (x) * (y) xC, let W < L be the subgroup generated by the elements c;w;, i € I,andlet V < L
be the subgroup generated by the elements v;, ¢ € I.

Claim. W is freely generated by c;w;,t € 1.

Proof of the claim. Let
n
u= H(cikwik)ei
k=1

be a nontrivial freely reduced word over the alphabet {c;w; };icr, where iy, € [ and e, = +1fork = 1,...,n.
Think of u as a word over the alphabet (x) U (y) U C' and then reduce wu to its normal form @ corresponding
to the free product (z) * (y) * C' (see [24, Chapter IV] for the definition of normal forms). By (a), for each
factor (¢;, w;, ) of u, a non-empty subword of (¢;, w;, ) survives in w. In particular, @ is a non-empty word

and thus u represents a nontrivial element of L. O

Similarly, V' is freely generated by v;,% € I. In particular, W and V are free groups of the same rank
card(I).

Note that the relations féimf_lm = 1,7 € I, can be rewritten as fézﬁﬁ_l =T, 1 i € I. Thus,
R is the HNN-extension of L with associated subgroups W and V. In particular, L embeds into R. As
card(L) = oo, we have card(R) = oo, that is, (1) holds.

Since C embeds into L, C embeds into R. By [6, Theorem 3.1], there is a long exact sequence
<o HPY W, A) — HP(R; A) — HP(L; A) — HP(W; A) — - - - (5.24)

for any ZR-module A.
As W is free, for p > 3, (5.24) implies

HP(R; A) = HP(L; A) = HP(C; A),

which implies (4). Combining (4) with cd(C) > 2, we see that cd(R) < cd(C'). Hence, (3) holds.

If C is finitely generated, then we can construct R using a finite generating set of C. Then R is the quo-
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tient of F3 * C by adding finitely many relations tc;w;t~'v;, € I and thus has a finite relative presentation
over C. The Greendlinger’s lemma for free products implies that the relative isoperimetric function of R
with respect to C'is linear. Thus, R is hyperbolic relative to C, which is (5).

If Cis of type F' P, then C'is finitely generated and we can construct R using a finite generating set of
C, that is, card(I) < oo. Note that the rank of the free group W is card(I). Thus, W is of type F P.,. Note
also that L is the free product of a finite rank free group F3 with C' and thus is of type F'P,. By Theorem
5.2.5, H*(W;-) and H*(L;-) preserve direct limits. By the five lemma and (5.24), H*(R; -) also preserves
direct limit. It follows from Theorem 5.2.5 that R is of type F'P,,. Thus, (6) also holds. O

Proof of Theorem 1.2.22. Recall that by Theorem 2.5.7, G has a maximal finite normal subgroup K (G).
Let Gy = G/K(G). By [19, Lemma 5.10], G| is acylindrically hyperbolic.

If cd(C) = 0, then C = {1}. Let G = Gy. By Theorem 2.5.7, C' <, G. Conclusions (a), (b), (c), and
(d) hold trivially. As G and G are quasi-isometric, [4, Corollary 9] implies (e).

If ¢d(C) = 1, then by the Stallings-Swan theorem [32, Corollary to Theorem 1], C'is free. By Theorem
2.5.7, there exists a finitely generated non-cyclic free group F' such that F' <, Go. Let G = Gy. It is
well-known that the free group C' embeds into F. Thus, C also embeds into G. Once again, conclusions
(a), (b), (¢), and (e) hold trivially. If, in addition, C' is finitely generated, then C' is a finite rank free group
and we can let I = C'. Thus, (d) also holds.

Let us assume cd(C') > 2. By Theorem 2.5.7, there exists a rank-3 free subgroup F3 < Gy. By
Theorems 2.5.12 and 3.0.1, there exists a finite set 7 C F5\{1} such that if N < Fj satisfies N N F = 0),

then
(HE) F3/N <}, Go/{(NN)), where () is the normal closure of NV in Go;
(CL) the group triple (Gg, F3, N) has the Cohen-Lyndon property.

By Lemma 5.3.1, C' embeds into an infinite quotient R of F3 such that cd(R) < ¢d(C) and the quotient
map F3 — R is injective on F. Let N be the kernel of the quotient map F5 — R. Then N N F = () and
thus (HE) and (CL) hold. Let G = G/{(N)).

As R = F3/N is infinite, (HE) implies that G is acylindrically hyperbolic, that is, statement (a) holds.
As C embeds into R, C also embeds into G.
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Consider statement (b). Corollary 5.2.4 implies
cd(G) < max{cd(Gy),cd(F3) + 1,cd(R)}.

If K(G) # {1}, then G has torsion and thus c¢d(G) = oo by [10, Chapter VIII Corollary 2.5], in which
case (b) is a void statement. Thus, let us assume K (G) = {1} and thus Gy = G. As cd(R) < ¢d(C) and

cd(C) > 2, we have
cd(G) < max{cd(G), cd(F3) + 1,cd(R)} < max{cd(G),2,cd(C)} = max{cd(Q), cd(C)}.

Thus, (b) holds. Moreover, (c) follows from Theorem 5.2.1 and statement (4) of Lemma 5.3.1.

If C is finitely generated, then Lemma 5.3.1 implies that R is hyperbolic relative to C'. By [13, Proposi-
tion 4.28], C' <} R. As R <}, G, we have C' <}, G by Proposition 2.5.9. Thus, statement (d) holds.

If C is of type F Py, then Lemma 5.3.1 implies that R is of type F' P,. We have already seen that G
is of type F'Ps.. As Fj has finite rank, Theorem 5.2.8 implies that G is also of type F'Ps,. Thus, statement
(e) also holds. O]

5.4 Common quotients of acylindrically hyperbolic groups

Let G1 and G4 be finitely generated acylindrically hyperbolic groups. In this section, we aim to construct
a common quotient G of G1 and G satisfying the conclusions of Theorem 1.2.23.

By Theorem 2.5.7, G (resp. GG2) has a maximal finite normal subgroup K (G1) (resp. K(G>)). Let
Gio = G1/K(G1),G2 = G2/ K(G2), and G = G1o * Gog. As G1 and G4 are infinite, G'1g and Gog are

also infinite and thus there exists & € N such that
(ABy) there exists a finite generating set A = {ay, ..., ar} (resp. B = {b1, ..., b }) of G1¢ (resp. Gap);
(AB») if w is a word over A (resp. B) of length 1 or 2, then w # 1.

Below, we fix a number & and sets A, B such that they satisfy (AB1) and (AB2) above.

Lemma 5.4.1. There exists a rank-(k + 2) free subgroup Hy —}, Gio (resp. Ha <}, Gag) such that if

g € Gy (resp. g € Go) satisfying 1 < |g|la < 2 (resp. 1 < |g|p < 2), then g & H; (resp. g ¢ H3).
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Proof. By [19, Lemma 5.10], G is acylindrically hyperbolic and K (G1p) = {1}. Thus, by Theorem 2.5.7,

there is a rank-(k + 2)((2k + 1) + 1) free subgroup F' <, G19. We can decompose F into a free product

*

F= I =&
1<i<(2k+1)2+1
where each F; is a free group of rank k + 2. Note that F; N Fj = {1} for 1 <i < j < (2k+ 1)? + 1.
There are less than (2k + 1)? elemenets g € G such that 1 < |g|4 < 2. Therefore, at least one of the
Fi’ s, say F7i, does not contain any of such elements. Let H; = Fj. As H; is a free factor of F', we have
H; <} F by Remark 2.5.8. As F' <}, G19, Proposition 2.5.9 implies H; <} G1o.

The proof for Gy is identical and is left to the reader. O

Let H; < G1g and Hy < G be the subgroups provided by Lemma 5.4.1. There exists X; C G1¢ and
X9 C G such that

Hy =y, (Gho, X1), Ha = (Gao, X2).

By [13, Corollary 4.27], we may assume that X; (resp. X2) contains all words over A (resp. B) of length
at most 2. By Theorem 2.5.10, there exists a strongly bounded relative presentation of G (resp. Gag)
with respect to X; and H; (resp. X9 and Hs) with linear relative isoperimetric function. By combining
the above strongly bounded relative presentations, we obtain a strongly bounded relative presentation of
G = G10 * Goo with respect to X7 U Xo and {H;, Ha} with linear relative isoperimetric function. By
Theorem 2.5.10,

{Hy, Ho} <=, (G, X1 U X>) (5.25)

Let C = {c1,...,cpaa} (resp. D = {dy,...,dx12}) be a basis for the free group H; (resp. Hs). The

Cayley graphs I'(Hy, C') and I'(Ha, D) are Gromov hyperbolic spaces. Let
X=X1UXouCuUD.

By (5.25) and [1, Theorem 5.15], we have

(HQ) the Cayley graph
S =T(G,X)
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under the word metric dx is a Gromov hyperbolic space and the natural embeddedings
F(Hl,C) ‘—)S, F(HQ,D)C—)S

are (\, p)-quasi-isometric embeddedings for some A, p > 2.
We note the following structure of G and X, which helps us estimate length of paths in S.
(FPS) é =Gro*xGe, X7UC CGrg, XoUD C Go.

Let ]—71, ﬁg be the subgroups of G generated, respectively, by

C = {bict, . by Crp1s iy, D = {ardy, .., apdy, diy1, diyo}.
We are going to prove
{-ﬁ-L -/Er;} “—h é

By [13, Theorem 4.42] (see also [13, Remark 4.41]), it suffices to show the following conditions hold for

the action of G on S.
(Cy) Fori=1,2, E acts on S properly.
(Cs) The orbits E and ﬁg are quasi-convex in S.

(C3) For every € > 0, there exists R > 0 such thatif g € G and i,7 € {1,2} satisfy
diamx (gH;, (H;)**) > R,

then i = j and g € H;, where (EATZ-)JFE denotes the e-neighborhood of f{;

Note that there is a natural embedding
Emb; : F(E,é) — S

defined as follows. E'mb; maps every vertex of I‘(I?l, 5) to the vertex of S with the same label. For every
edge e C F(Eﬂ, C) connecting two vertices vy, vy € F(E, C). Think of Lab(e) as a word over X and let

Emb (e) be the path p of S connecting Embi (v1) and Emb; (v2) such that Lab(p) = Lab(e).
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Similarly, there is a natural embedding
Emb, : F(]/'{vg, D)< S.

Lemma 5.4.2. The natural embeddings Emby and Embg are (2, p)-quasi-isometric embeddings.

Proof. We only consider Emb;. The proof for E'mbs is similar. Clearly, Emb; can increase distance by at
most twice. Thus, it suffices to show that the following inequality holds for all h € ]?I/l

lhlx

hlz >

(5.26)

Fix h € H;i. Let u be a shortest word over C such that u represents h in H;. Note that u can also be
regarded as a word over X, i.e., for¢ = 1, ..., k, instead of viewing b;c; as a single letter in 5’ we regard b;c;
as the concatenation of b;, ¢; € X. Under this point of view, we see that there are two types of subwords w

of u:

(T1) w is a word over B and there is no subword w’ of « such that (1) w’ is a word over B and (2) w is

properly contained in w';

(T2) wis a word over C and there is no subword w’ of u such that (1) w’ is a word over C' and (2) w is

properly contained in w’.
We note the following.
(NTy) Every subword w of type (T) is a word over B of length 1 or 2. Thus, w # 1 by (AB>).
(NT2) Every subword type (T2) does not represent 1 in G, as C' is a basis of the free group Hj.

We construct a new word v from u by replacing every subword w of type (T1) by a letter z € X5 such
that x =@,, w (such an z is called a subword of v of the first type) and replacing every subword w of type
(T2) by a geodesic word w’ over X U C such that w’ =¢,, w (such a w' is called a subword of v of the
second type). Clearly, v = u.

(NTy1), (NT2), and (FPS) imply that v is a geodesic word over X. Let n be the total number of type
(T1) and (T2) subwords of u. Note that ||v|]| > n. We can then estimate ||u|| by distinguishing the cases

n > [lull/(2Ap) and n < flull/(22u):
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If n > ||ul|/(2Ap), then we already have ||v|| > n > ||ul|/(2Aw).

If n < |Jul|/(2Aw), then the subwords of u of type (T;) divide u into ¢ < n + 1 parts, each of which
is a subword of type (T2). Let wy, ..., wy be these type (T2) subwords. Note that each type (T;) subword
has length at most 2. Thus, the total length of type (T;) subwords is at most 2n. As a consequence,
Zle |lwi]| = ||ull — 2n. For 1 < i < £, let w) be the second-type subword of v corresponding to w;. Then

|wi]| = ||will /A — p by (HQ). Thus, the total length of second type subword of v satisfies

14

l
-2
S lwill = S fwill/A > '“HA” -
=1 i=1

By (NT}), each first-type subword of v has length at least 1 and thus the total length of first type subwords

is at least n. Therefore,

L
I Ju]
ol > Dl 40> BT <t > G

as A > 2andn < ||u||/(2A\w). O

Lemma 5.4.2 clearly implies (C1) and (Cs). Indeed, the action 171 ~ F(E, 6) (resp. I?g ~ F(E, 15))
is proper and the embeddedings Emb;, Emb; are f?l, ﬁ/g—equivariant, respectively. Thus, (C1) holds. More-
over, Emby (resp. Embo) sends the set of vertices ofF(I?l, 5) (resp. F(ﬁ;, l~))) to the orbit ]-Afl C S (resp.
E C S). As S is a Gromov hyperbolic space and Emb;, Emby are quasi-isometric embeddings, E and
I% are quasi-convex in S, that is, (Cz) holds.

It remains to prove (Cs). By Remark 2.5.8, {G19, G20} —n (é ,0). Consider the Cayley graph
I'= F(é, G U GQO).
We apply a result of [13] about isolated components. For the convenience of the reader, we adapt Definition

2.6.1 to our situation.

Definition 5.4.3. Let p be a path in I'. A Gyg-subpath g of p is a nontrivial subpath ¢ of p labeled by
a word over the alphabet G1g (if p is a cycle, we allow ¢ to be a subpath of some cyclic shift of p). A
G'10-subpath g of p is called a G1g-component if g is not properly contained in any other G1g-subpath. Two

G1o-components ¢1, go of p are called connected if there exists a path ¢ in I' such that ¢ connects a vertex of
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q1 to a vertex of g9, and that Lab(c) is a letter of Gpp.
The notions of GGy-subpaths, G'ag-components, and connected GGop-components are defined in the same

manner. Moreover, a component of a path p is a G1g or Gog-component of p.

Lemma 5.4.4 ([13, Lemma 4.21] (see also Remark 2.5.8)). Let W be the set of words over the alphabet
G1o U Gog such that W contains no subwords of type xy, where x,y € Gig or x,y € Gog. Then the
following hold:

For every € > 0, there exists R = R(e) > 0 satisfying the following condition. Let p, q be two paths in

I such that Lab(p), Lab(q) € W, Lc,ouG0 () = R, and p, q are oriented e-close, i.e.,

maX{dGm‘—leo (pia qi)’ dGlol—’Gzo (erv q+)} <e

Then there exist four consecutive components of p which are respectively connected to four consecutive

components of q.

Remark 5.4.5. Let p be a path in S. We think of p~, p™ as elements of G and thus p~,pT label vertices of
I'. In T, there is a unique geodesic p traveling from p~ to p™. We thus obtain a map p — p from paths in S

to geodesics in I
Lemma 5.4.6. (Cs3) holds.

Proof. Fix ¢ > 0. As S is a Gromov hyperbolic space, there exists R; > 0 such that if p and ¢ are
(2, 2€ + p)-quasi-geodesics in S with the same endpoints, then drq., (p, ¢) < Ri, where dp4, denotes
the Hausdorff distance corresponding to the word metric dx. There exists B2 > 0 such that if p and g are
(2Aw, 2Ry + p)-quasi-geodesics in S with the same endpoints, then dq,(p,q) < R2. By Lemma 5.4.4,

there exists R3 > 0 such that if p and ¢ are two e-close paths in I" with
Lab(p)7 Lab(q) € W7 gGﬂJGQ (p) 2 R37

then there exist four consecutive components of p which are respectively connected to four consecutive
components of q.

Let Hy (resp. H}) be the subgroup of H; generated by ¢y 1, cxro (resp. ci, ..., cx). By Remark 2.5.8,
Hs <y, (Hy,Hy). Together with Hy <, (Gio, X1),G10 <—p (é, G20), and Proposition 2.5.9, this

135



observation implies Hs <, (é ,Gioo U X1 U H{). Thus, the relative metric

~

d:HgXHg%[O,%»OO]

with respect to Gog U X7 U Hj is proper. There exists Ry > 0 such that if h € Hs and |h|x > Ry, then

d(1,h) = 2Ry + 2. Also let Hy be the subgroup of Hs generated by dj.y1, dj42.
Let

R=(R3+ 1)(AM((R3 + 1)(AM(2R2 + Ry + p) +4) + 2Ry + 1) + 4).

Suppose that there exists g € G and i,7 € {1,2} such that
diamx (gH;, (H;)™) > R,

Without loss of generality, we may assume ¢ = 1. There are two cases to consider.
Case 1. j = 2.
Then there exist oriented e-close edge paths p C gE and g C va such that u = Lab(p) is a geodesic

word over C, v = Lab(q) is a geodesic word over D, and

dx(p~,p"),dx(¢",q") = R.

Consider a path r C S labeled by a word over C'. There are two possible reasons for dx (r~,r") to be

large:

(a) Lab(r) contains many subwords of type (T1), in which case ¢¢, LG, (F) is large, where T is the image

of r under the map in Remark 5.4.5.

(b) Lab(r) contains a long subword of type (T3), in which case Lab(r) contains a long subword over the

alphabet {cky1, Cpt2}-

We observe the following estimate of the length of the longest subword of Lab(r) over {cg41, Ck+2}-
Claim. Let r C S be a path labeled by a word over C and let m be the length of the longest subword of

Lab(r) over {cg11,Cri2}, then
[[Lab(r)|
aouGa (T) +1

—4.
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Proof of the claim. Let n be the number of type (T1) subwords of Lab(r). The (T;) subwords of Lab(r)
divide Lab(r) into at most n + 1 parts, each of which is a (T2) subword. Note that the total length of type
(T1) subwords is at most 2n. Thus, there is at least one (T2) subword with length

|Lab(r)l| —2n _ || Lab(r)]

— 2.
n+1 n+1

By the structure of C, for each type (T5) subword w of Lab(r), w contains a subword over {cj1, cg42}
of length at least |w|| — 2. Note also that ¢, LG, (F) = n. Thus, Lab(r) contains a subword over

{¢k+1, ck2} of length at least || Lab(r) ||/ (Cayouica (F) + 1) — 4. O

Consider the images p and q of p and ¢ under the map in Remark 5.4.5. We distinguish two subcases.
Case 1.1. max{lc, LG (D), LarouGa (@)} = Rs.

Without loss of generality, we may assume /¢, ,11G,, (P) > R3. By Lemma 5.4.4, there are four consecu-
tive components of p connected, respectively, to four consecutive components of g. It is easy to see that there
are three consecutive components z, y, z of p such that x, z are Gap-components, ¥ is a G1p-component, and
x, 1, z are connected to three consecutive components ', 3/, 2’ of g. Note that x, 2" and z, 2’ are connected
by paths labeled by a word over G5, while 3,1’ are connected by paths labeled by a word over G'g. As
G = G1o * Gap, the only possibility is that z, 2’ and z, 2/ are connected by the trivial path. Thus, y~'y/ is
a loop in I". However, Lab(y) € H; and Lab(y') is a word over A of length 1 or 2. By the construction of
H; (see Lemma 5.4.1), Lab(y') € Hy and thus (Lab(y))~'Lab(y’) # 1, a contradiction. Therefore, Case
1.1 is in fact impossible.

Case 1.2. max{lc, G0 (D), LG1oUG (@)} < Rs.

By the claim and ||Lab(p)|| = dx(p~,p") > R, there exists a subpath p; C p such that Lab(p1) € Hs

and

[ Lab(p1)|| = A((Rs + 1)(AM(2R2 + Ra + p) +4) + 2Ry + p).

Notice that Lab(p;) labels a geodesic in I'(H;, C). Thus, (HQ) implies

o ILab(py)]

ax(pr, ) = O > (Ry + 1)AN2R2 + Ra+ p) +4) + 2Ry,
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As p and q are oriented e-close, there exist paths ¢1,t2 C .S such that
ty=q, tb=p", tf=p, t3=q¢", Ux(t)x(tz) <ec

By Lemma 5.4.2, g and the conjunction t1pte are (2, 2¢ + p)-quasi-geodesics. By our choice of Ry,
we have dq, (t1pte, ¢) < Ry and in particular, p is in the R;-neighborhood of ¢q. Consequently, there exists

a subpath ¢; C ¢ such that p; and g; are oriented R;-close. Note that
ILab(a)|| > dx(ar,4) = dx(py,py) = 2Ry > (B3 + 1)(M2R2 + Ry + 1) + 4)

by the triangle inequality. As £c,,06G50(T1) < LayouGao (@) < Rs, by the same argument as the one for the

existence of pj, we see that there exists a subpath go C ¢; such that Lab(qz) € Hy and
[Lab(gz)[| = A(2R2 + Ra + p).

Notice that Lab(gz) labels a geodesic in I'(Hs, D). Thus, (HQ) implies

[Lab(gs) |

dx(aza3) > "

— 1> 2Rs + Ry (5.27)

By the same argument as the one for the existence of ¢;, we see that there exists a subpath ps C p;
such that ps and g9 are oriented R»-close. In other words, there exist words w; and ws over X such that
[Jw |, lws]l < Rz and

wy Lab(pa)wa(Lab(ga)) ™" =a1 (5.28)
(w1 and wo label short paths between the endpoints of ps and ¢2). Note that
dx(py,py) > dx(qy ,¢5) —2Ra > Ry > 0. (5.29)
Let ¢’ € G with
g’ = Lab(p2)wa(Lab(g2)) "

By (5.27) and (5.29), we have

dx(py,p3) +dx (g5 ,q5) > 2Ro.
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By (FPS), Lab(p2) € Hs < G0, and Lab(qz) € Hy < G, we have

ld'|x = dx(py,p3) +dx (a5 ,q5) — |wa]| > Ro.

But (5.28) implies w; ' = ¢’ and thus |¢'|x < ||wi| < Rz, a contradiction. Thus, Case 1.2 is in fact
impossible.

As a consequence, Case 1 is impossible.
Case 2. j = 1.

Then there exist oriented e-close edge paths p C gE and q C f?l such that u = Lab(p),v = Lab(q)

are geodesic words over C, and

dX(p_ap+)7 dX(q_7 q+) = R.

As for Case 1, we distinguish two subcases.
Case 2.1. max{lc, G0 (D), LarouGa (@)} = Rs.

Without loss of generality, we may assume /¢, LG, (P) = R3. Arguing as in Case 1.1, we see that there
is a G'yp-component y of p and a G1g-component 4’ of ¢ such that y and ¢ share the same endpoints. By the
structure of C, we have Lab(y), Lab(y') € Hy. As Hj is a free group, we have Lab(y) = Lab(y').

Think of Lab(p) as a word over X and decompose it as
Lab(p) = wy Lab(y)ws.
Similarly, think of Lab(q) as a word over X and decompose it as
Lab(q) = w3z Lab(y' )wy.

As y and 3/ share the same endpoints, the word wzw; ! Jabels a path in S from ¢~ € Efl top~ € gE.
Thus, there exists hy, hy € I?l with g = hlwgwflhg. If wi,ws € I?l, then g € I?l and we are done.

Suppose wy & E (the case w3 ¢ ]"{vl is similar). By the structure of C~', there exists 1 < ¢ < k such
that the first letter of Lab(y) is ¢; and the concatenation wi¢; € Hy. As Lab(y") = Lab(y), the first letter of
Lab(y') is also ¢;. As Lab(q) is a word over C, we have wsc; € Hy and thus g = ha(wsc;)(c; oy by €

H;.
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Case 2.2. max{lG, oG (D), LG10uGa ()} < Rs3.

Arguing as in Case 1.2, we see that there are subpaths p; C p and q; C ¢ such that
(1) Lab(p1), Lab(q1) € Hs;
() dx(ar,41") > 2R + Ras
(3) p1 and ¢; are oriented Ro-close.

By (3), there exist words w; and w9 over X such that
wiLab(pr)wz(Lab(@)) ™! =g 1, [lwil], [[wal < Re
(wy and wo label short paths between the endpoints of p; and g1). Decompose Lab(p) and Lab(q) as
Lab(p) = uiLab(p1)ue, Lab(q) = usLab(q1)ug.

By the structure of 5, we have u,us € I?l

Note that the word u;;wlul_l labels a path in S from ¢~ € ]/'1\7/1 top” € gfz. Thus, there exist hq, hy €
I?l with g = hlu;),wluflhg. Ifwy € Hy < fAfl, then as hq, ho,uq,us € fAfl, we get that g € 171, which
concludes the proof.

Suppose w1 € Hs. Let vy (resp. v2) be the maximal initial (resp. terminal) subword of wy (resp. ws)
such that v; € Hs (resp. vy € Hj), let v} (resp. v}) be the word resulted from deleting v; (resp. v2) from

wy (resp. wo), and let h, h' € H3z with
h=wv; 'Lab(qi)vy ', h' = Lab(py).

Note that the word v} h'v}, labels an Hs-admissible path in F(é ,Goo U X1 U H{ U H3) connecting the

vertices labeled by 1 and A, and
[vih vl < flonll + llvall + 1 < flwa ]l + lwa | + 1 < 2Rz + 1.

Thus,

o~

d(l, h) < 2Ry + 1.
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On the other hand,

hlx > dx(ar,a") — lvill = lloall = dx(ay, a7) = llwi]l = llwall > Ra,

which contradicts our choice of R,4. Thus, Case 2.2 is in fact impossible. O
We conclude with
Proposition 5.4.7. Hy, Hy satisfy (C1), (Cs), and (Cs) and thus {Hy, Ho} <, G.

Proof of Theorem 1.2.23. As |G1o| = |Ga20| = o0, we have cd(G1p), cd(Gao) > 1. Suppose cd(Gro) =
cd(Goo) = 1. Then Gy and G are free by the Stallings-Swan theorem [32, Corollary to Theorem 1].
Without loss of generality, we may assume that the rank of G is greater than or equal to the rank of Ggg. It
follows that G is a quotient of G1g. Let G = Gog. Statements (a), (b), and (c) follow trivially. Statement
(d) also holds because if G is of type F' Py, then Gy is also of type F' P, by [4, Corollary 9].

Thus, let us assume max{cd(G1p),cd(G20)} > 2. By Theorems 2.5.12, 3.0.1, and Proposition 5.4.7,
there exists finite sets 7y C H\{1}, Fo C Hy\{1} such that if

N1<]:7/1, N2<]]:7/2, Nlﬂ]:l:Ngm.FQZ(Z),
then
{H1 /N1, Ha/No} <5, G/ (N1 U No)) (5.30)

and (G, {PAIE, }72}, {N1, N3}) has the Cohen-Lyndon property.

Letu;, 1 <i <k, (resp. v;, 1 < i < k,) be freely reduced words over {cg 41, cx12} (resp. {dk+1, dg12})
satisfying the C’(1/6) small cancellation condition, and let N7 (resp. N3) be the normal subgroup of fﬂ
(resp. 172) generated by {b1ciu1, ..., bcruy } (resp. {a1divi, ..., agdgvr }). By (AB2), I?l and E are freely

generated by C and ﬁ, respectively. Thus, I?l /N7 and If{vg /N3 can be presented as

Hy /Ny = (b1t oo, bpChy Chg1s Chga | D111, oo Dpcptig) = (Chat, Chaa), (5.31)

Hy /Ny = (aydy, ..., apdy, di i1, diso | ardyvn, .., apdpog) = (diy1, dieya), (5.32)
where the last equality of (5.31) (resp. (5.32)) follows from eliminating bycy, ..., bycy (resp. aidy, ..., agdy)
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by Tietze transformations [24, Chapter II].

Thus, 1-71 and E are free groups of rank 2. In particular,
card(Hy/Ny) = card(Ha/Ns) = oo (5.33)

By the Greendlinger’s lemma for free groups [24, Chapter V Theorem 4.5], if ||u;||, |vi]|, 1 < @ < k, are
sufficiently large, then

NiNF, =NonFy =0

Let
G = G/(N, UNyY).

By (5.30) and (5.33), G is acylindrically hyperbolic, that is, (a) holds.

Let us consider statements (b) and (c). If either K (G1) or K(G2) is not {1}, then (b) holds trivially and
(c) is a void statement. Thus, we may assume K (G1) = K(G32) = {1} and thus G19 = G1, G2 = Ga. As
(G, {Hy, Hy},{ N1, N5}) has the Cohen-Lyndon property, Theorem 5.2.4 implies

cd(G) < max{cd(G),2} = max{cd(G1o), cd(Ga), 2}
= max{cd(Glo), Cd(Ggo)} as Cd(Gl()), Cd(Gzo) 2 2

=max{cd(G1),cd(G2)} as G0 = G1, Goo = Ga.

Therefore, (b) holds. Another cosequence of Theorem 5.2.4 is that, for all £ > 3 and any ZG-module A, we

have
HY(G; A)
~H'(G; A) @HZ(E/NUA) @HE(E/N%A)
%’Hg(é; A) as E/Nl and ET;/NQ are free groups
H(Gyp; A @HZ Go; A as G = G * Gap
~HY(Gy; A @HE Ga; A as G0 = G1, Goo = G,
which is (c).
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Consider statement (d). Suppose (G1 and G are of type F'P,. By [4, Corollary 9], G1g and G are also
of type F'Ps. As (G, {I?l, I;T;}, {N1, N2}) has the Cohen-Lyndon property and Hy, H, are free groups of
finite rank, Theorem 5.2.8 implies that G is also of type F'P,. Thus, (d) holds. ]
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