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CHAPTER I

Identi�cation and Wavelet Estimation of the LATE in a Class of Switching Regime Models

Introduction

As described in Heckman (2008), �incorporating choice into the analysis of treat-

ment e¤ects is an essential and distinctive ingredient of the econometric approach to the

evaluation of social programs,�and �under a more comprehensive de�nition of treatment,

agents are assigned incentives like taxes, subsidies, endowments and eligibility that a¤ect

their choices, but the agent chooses the treatment selected.�

This chapter studies a class of switching regime models to explicitly account for

the role of an incentive assignment mechanism in an agent�s selection of a binary treatment.

Let V 2 V � R be a continuous random variable denoting the agent�s observable covariate

based on which incentives are assigned to the agent according to the incentive assignment

mechanism b : V 7! R. Based on the incentive received b (V ) and her characteristic U , the

agent chooses the treatment D = 1 or D = 0 with potential outcomes Y1 (with treatment)

or Y0 (without treatment) respectively. Let

Y1 = g1 (V;W ) , Y0 = g0 (V;W ) , (I.1)

D = Ifb(V )� U � 0g, (I.2)

where U is the individual�s unobservable covariate a¤ecting selection, W is a vector of

individual�s unobservable covariates a¤ecting potential outcomes, and g1, g0 are unknown

real-valued measurable functions.1 The agent�s observable covariate V a¤ects both the
1This set-up allows for the potential outcomes Y1; Y0 to depend on di¤erent components of W . Agent
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potential outcomes and selection (through the incentive assignment mechanism b). The

incentive assignment mechanism b is assumed to be either discontinuous at a known cut-

o¤ v0 or di¤erentiable but a discontinuous derivative at v0. We refer to the latter class of

incentive assignment mechanisms as kink incentive assignment mechanisms. Many incentive

assignment mechanisms fall into one of these two categories. A well known example in the

�rst category is b (V ) = I fV � v0g, which includes the allocation of merit awards, see

Thistlethwaite and Campbell (1960), and many threshold rules often used by educational

institutions to estimate the e¤ect of �nancial aid and class size, respectively, on educational

outcomes, see e.g., Van der Klaauw (2002) and Angrist and Lavy (1999). Lee and Lemieux

(2009) provides many other such examples. Unemployment bene�ts assignment and the

income tax system in most countries belong to the second category, see Card, Lee, and Pei

(2009) for more examples.

The above switching regime model can be rewritten as a nonseparable simultaneous

equations model using the individual�s realized outcome: Y � DY1 + (1�D)Y0. The

econometrician observes (V; Y;D). Let Y = y(D;V;W ), where y(�; �; �) is a real-valued

measurable function. Then g1 (V;W ) = y(1; V;W ) and g0 (V;W ) = y(0; V;W ). In terms of

the realized outcome Y , the potential outcomes model (I.1) and (I.2) can be written as

Y = y(D;V;W ); D = Ifb(V )� U � 0g. (I.3)

(I.3) is a nonseparable structural model with an endogenous dummy variable D and a pos-

sibly endogenous continuous variable V . The endogeneity of D arises from the possible

endogeneity of V and the dependence between the unobservable errors W and U . It is well

known that in a general nonseparable structural model like (I.3) with possibly endogenous

selects treatment based on the threshold-crossing model (I.2). As shown in Vytlacil (2006), there is a larger
class of latent index models that will have a representation of this form.

2



covariates V and D, it is di¢ cult to identify the structural parameters in the model includ-

ing g1; g0, and the conditional distribution of (W;U) given V . Often instruments and other

conditions are required, see e.g., Chesher (2003, 2005) and Matzkin (2007) and references

therein. However, as noted by Marschak (1953), I quote this from Heckman (2008) who

refers to it as Marschak�s Maxim: �For many speci�c questions of policy analysis, it is not

necessary to identify fully speci�ed models that are invariant to classes of policy modi�-

cations. All that may be required for any policy analysis are combinations of subsets of

the structural parameters, corresponding to the parameters required to forecast particular

policy modi�cations, which are often much easier to identify (i.e., require fewer and weaker

assumptions).�Examples of important work following Marschak�s Maxim include Heckman

and Vytlacil (2005), Lee (2008), Florens, et al. (2008), Imbens and Newey (2009), Vytlacil

and Yildiz (2007), Card, Lee, and Pei (2009), Chernozhukov and Hansen (2005), among

others.

All the above-cited work except Lee (2008) and Card, Lee, and Pei (2009) make

use of instruments or control variables to identify policy parameters of interest. The model

in Lee (2008) is a special case of (I.1) and (I.2) in which D = b (V ) = I fV � v0g. Thus,

the treatment selection mechanism is the same as the incentive assignment mechanism in

Lee (2008) excluding the possibility of agent choosing the treatment selected. By allowing

agent�s selection of treatment to depend on her unobservable covariate U in (I.2), our general

model is consistent with the observation that often agents assigned the same incentive

choose di¤erent treatments. Card, Lee, and Pei (2009) considers the case of a known kink

incentive assignment mechanism b and a continuous treatment D = b (V ), so the treatment

assignment mechanism is the same as the known kink incentive assignment mechanism,

again excluding self-selection of the agent.

3



The �rst contribution of this chapter is to show that under mild conditions, a policy

parameter: the local average treatment e¤ect (LATE), is identi�ed in (I.3), where the source

of identi�cation is either the presence of a discontinuity or kink in the incentive assignment

mechanism b. For discontinuous incentive assignment mechanisms, this result generalizes

a similar result in Lee (2008) established for the case: D = b (V ) = I fV � v0g, by allow-

ing for general incentive assignment mechanisms b and more importantly, for heterogenous

choices among agents assigned the same incentive. For kink incentive assignment mecha-

nisms, our result is similar to a result in Card, Lee, and Pei (2009) with several important

di¤erences: First and most important, Card, Lee, and Pei (2009) assumes that D = b (V ),

thus excluding heterogenous choices among agents assigned the same incentive; Second,

they assume the incentive assignment mechanism b is known; Third, they consider a con-

tinuous treatment instead of a binary treatment. Our identi�cation result for discontinuous

incentive assignment mechanisms is related to a similar result for regression discontinuity

design (RDD) in Hahn, Todd, and van der Klaauw (2001) and our identi�cation result for

kink incentive assignment mechanisms is related to a similar result for regression kink de-

sign (RKD) in Dong (2010). Hahn, Todd, and van der Klaauw (2001) imposes smoothness

conditions directly on the regression functions E (Y1jV = v) and E (Y0jV = v) and exploits

certain local independence conditions to identify the LATE, while Dong (2010) adopts a

similar set-up. Instead, we impose smoothness conditions on the structural parameters in

(I.1) and by exploiting the speci�c structure in (I.2), we are able to dispense with the local

independence conditions.

The second contribution of this chapter is to propose several nonparametric es-

timators of the LATE using wavelets. First, we establish auxiliary regressions linking the

policy parameter, the LATE, to jump sizes �0 and �0 in (I.4) and (I.5) for discontinuous
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incentive assignment mechanisms, or kink sizes �1 and �1 in (I.6) and (I.7) for kink incen-

tive assignment mechanisms. In particular, the policy parameter LATE in (I.3) is given

by �0=�0 for discontinuous incentive assignment mechanisms and �1=�1 for kink incentive

assignment mechanisms. Thus, estimating the policy parameter LATE in (I.3) with discon-

tinuous/kink incentive assignment mechanisms is equivalent to estimating the jump/kink

sizes of two auxiliary regressions. For discontinuous incentive assignment mechanisms, work

in the recent econometrics literature on estimating the LATE for RDD are applicable. These

include estimators based on Nadaraya-Watson (NW) kernel regression (local constant kernel

regression) or local polynomial kernel regression estimators of the jump sizes �0 and �0 in

which �0 (�0) is estimated by the di¤erence between two kernel regression estimators using

respectively the observations to the right and to the left of the cut-o¤ v0, see Hahn, Todd,

and van der Klaauw (2001), Porter (2003), Imbens and Kalyanaramang (2009), Ludwig and

Miller (2007), and Sun (2007). Porter (2003) also proposed a partial linear estimator of the

LATE based on Robinson�s (1998) partial linear estimators of �0 and �0 and established

asymptotic properties of these estimators under general conditions allowing for condition-

ally heteroscedastic errors and the presence of jump discontinuities in the derivatives of the

auxiliary regression functions. For kink incentive assignment mechanisms, Dong (2010) pro-

posed to extend existing work on local linear (polynomial) estimators from RDD to RKD

without establishing the corresponding asymptotic theory.

Existing work in the econometrics literature suggest that the local polynomial ker-

nel regression estimator appears to have the smallest asymptotic bias among the alternative

estimators and achieves the optimal rate established in Porter (2003), which provide the-

oretical justi�cations for the popularity of local polynomial, especially local linear kernel

estimators in applied research. In addition, for compactly supported kernels, Imbens and
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Kalyanaraman (2009) derived the optimal bandwidth for local linear kernel estimators of the

LATE. However, it is known in the statistics literature that local polynomial kernel estima-

tors su¤er from a serious drawback that for compactly supported kernels, the unconditional

variance of a local polynomial kernel estimator is in�nite and the MSE and the MSE optimal

bandwidth are not de�ned, see Seifert and Gasser (1996). The afore-mentioned work on

local polynomial kernel estimators of the LATE are based on expansions of the conditional

variance and conditional MSE of the local polynomial kernel estimators. The in�nite uncon-

ditional variance of local polynomial kernel estimators may lead to their poor �nite sample

performance, see Seifert and Gasser (1996). Modi�cations have been proposed to rectify this

problem, including local polynomial ridge regression (see Seifert and Gasser (1996, 2000));

local polynomial estimator using asymmetric kernels (see Chen (2002) and Cheng (2007));

and binning and transforming the random design to the regularly spaced �xed design (see

Hall, Park, and Turlach (1998)). Hall, Park and Turlach (1998) demonstrate that in general

their idea of binnng and transforming the data is superior to other approaches especially

when there are jumps in the regression function.

This chapter proposes several local constant wavelet estimators of jump and kink

sizes or equivalently the LATE in our model by combining the idea of binning and transfor-

mation in Hall, Park and Turlach (1998) and the method of wavelets. It is well known that

wavelet coe¢ cients of a function at a given location characterize its degree of local regularity

(smoothness), so that large wavelet coe¢ cients at large scales correspond to low regularity

of the function at that point, see e.g., Daubechies (1992). Because of this special feature,

wavelet coe¢ cients have been used to detect the location of a jump point, see Wang (1995)

and Antoniadis and Gijbels (1997) and more generally the location of any order of a cusp
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point,2 see Abramovich and Samarov (2000), Li and Xie (2000), Raimondo (1998), and Park

and Kim (2006) for i.i.d. random samples and Wang and Cai (2010) for long memory time

series. In addition to detecting the location of a jump or cusp, Li and Xie (2000), Park and

Kim (2006), and Wang and Cai (2010) present a simple estimator (�
LC�SS
0 in our notation,

see Section 3 (page 20)) of the jump size and establish its asymptotic distribution under

the homoscedastic errors�condition. To the best of the authors�knowledge, the method of

wavelets has not been used to estimate the kink size. Given the close connection between

the estimation of the LATE in (I.3) and of jump/kink sizes in the corresponding auxiliary

regressions, it seems natural to exploit this special feature of wavelet coe¢ cients to estimate

the LATE. The second part of this chapter accomplishes this objective.

For discontinuous incentive assignment mechanisms, the �rst wavelet estimator of

the LATE we propose makes use of wavelet estimators of the jump sizes �0 and �0 similar

to that of Park and Kim (2006). We motivate our estimator using the representation of

the auxiliary regressions in the wavelet domain. In addition, we establish the asymptotic

distribution of our estimator under more general conditions than Park and Kim (2006).

Firstly, we allow for conditionally heteroscedastic errors in the auxiliary regressions, and

second we allow for the presence of jump discontinuities in the derivatives of the auxiliary

2A cusp in a function g with domain [0; 1] is de�ned as follows. Consider a class of functions on [0; 1]
with either a single jump point � = 0 or a single cusp point � > 0:
(a) F0 is a class of functions g on [0; 1] such that,
(i) pointwise Lipschitz irregularity at � : lim infh!0 jg(� + h)� g(� � h)j > 0 for a unique � 2 (0; 1);
(ii) uniformly Lipschitz regularity except at � : sup0<x<y<� jg(x) � g(y)j=jx � yj�0 < 1 and

sup0<�<x<y jg(x)� g(y)j=jx� yj�0 <1 for some �0, 0 < �0 � 1.
(b) F� (0 < � < 1) is a class of functions g on [0; 1] such that,
(i) lim infh!0 jg(� + h)� g(� � h)j =jhj� > 0 for a unique � 2 (0; 1);
(ii) g is di¤erentiable on (0; 1) except at � .
(c) F� (� � 1) is a class of functions g on [0; 1] such that,
(i) g is N times di¤erentiable on (0; 1), where N is the integer part of �;
(ii) g(N) 2 F��N :
In sum, for g 2 F� (� � 0), a single jump point or a single cusp point � satisfy:
lim infh!0

���g(N)(� + h)� g(N)(� � h)
��� =jhj��N > 0.

For � = 0, � is a jump point of g; for 0 < � < 1; � is a cusp of g; for � = 1, � corresponds to our de�nition
of a kink point in g; for a general, interger �, � is a jump point in the �-th derivative of g.
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regression functions at the known cut-o¤ point v0. Like the estimator of Park and Kim

(2006), our �rst estimator makes use of only one wavelet coe¢ cient corresponding to the

location v0 and a given scale. The representation of each auxiliary regression in the wavelet

domain corresponding to di¤erent locations and scales suggests that the wavelet coe¢ cients

at locations close to v0 and relatively large scales may also contain information on the

jump size motivating our subsequent local constant wavelet estimators of the jump sizes

and of the LATE parameter. Speci�cally, we propose three new wavelet estimators of

the jump sizes �0 and �0 using wavelet coe¢ cients at locations close to v0 and/or more

than one scale: b�LC�SM0 ; the single-scale estimator making use of wavelet coe¢ cients at

a single scale and more than one location; b�LC�MS

0 , the single location estimator making

use of wavelet coe¢ cients at one location v0 and more than one scale; and b�LC�MM

0 , the

multiple scale and multiple location estimator. We call our new wavelet estimators: local

constant wavelet estimators. We establish their asymptotic properties and the asymptotic

properties of estimators of the LATE parameter based on them. The asymptotic results

con�rm that indeed our local constant wavelet estimators using more than one wavelet

coe¢ cients have better asymptotic properties than the single coe¢ cient wavelet estimator

currently available in the literature. In particular, our local constant wavelet estimator

using more than one location reduces the order of the asymptotic bias and the estimator

using more than one scale reduces the asymptotic bias proportionally. A simulation study

investigates the �nite sample performance of the proposed wavelet estimators and con�rms

our theoretical �ndings. It reveals the best overall performance by the local constant wavelet

estimator based on more than one scale and more than one location.

All the local constant wavelet estimators of the LATE proposed for discontinuous

incentive assignment mechanisms have analogues for kink incentive assignment mechanisms

8



and share similar properties. For space considerations, we only provide asymptotic prop-

erties of the wavelet estimator based on either one wavelet coe¢ cient b�LC�SS1 ; or wavelet

coe¢ cients from a single scale and more than one location b�LC�SM1 .

The rest of this chapter is organized as follows. In Section 2 (page 10), we estab-

lish conditions under which the LATE is identi�ed in (I.3) and conditions under which the

auxiliary regressions hold for both discontinuous and kink assignment mechanisms. Section

3 (page 17) presents our �rst wavelet estimators of the LATE for both discontinuous and

kink incentive assignment mechanisms. Under regularity conditions, we establish their as-

ymptotic distributions allowing for conditional heteroscedasticity and for the presence of

jump discontinuity in the derivatives of auxiliary regression functions at v0 for discontinuous

assignment incentive mechanisms and in the higher derivatives of auxiliary regression func-

tions for kink incentive assignment mechanisms. Motivated by the wavelet representations

of the auxiliary regressions, we propose three additional local constant wavelet estimators of

the LATE for discontinuous assignment mechanisms and establish their asymptotic distri-

butions in Section 4 (page 27). For kink incentive assignment mechanisms, we propose and

establish the asymptotic distribution for two types of the single-scale local constant wavelet

estimator. Section 5 (page 38) presents results from a Monte Carlo simulation study inves-

tigating the �nite sample performance of our wavelet estimators. The �nal section (page

41) concludes the chapter and outlines some future research. Technical proofs are relegated

to Appendix A.

We close this section by brie�y reviewing some work in the statistics literature

on jump/kink detection and their size estimation. While nonparametric estimation of the

LATE in RDD or RKD is a relatively new topic in econometrics, nonparametric detection

and estimation of the location and size of a jump/kink of a regression function have a long

9



history in statistics. In fact, all three approaches (NW, partial linear and local polyno-

mial kernel estimators) in existing work on estimating the LATE in RDD have been used

to detect/estimate jump/kink locations and sizes in early work in statistics. One impor-

tant di¤erence is that most work in statistics focus on �xed, equally spaced design and

homoscedastic errors (some on normal errors). We mention a few papers here and refer

the interested reader to references therein. First, work using di¤erences between two kernel

estimators include Muller (1992) in which he constructed estimators of both jump and kink

sizes and established their asymptotic distributions for random design samples.3 In fact,

Muller (1992) employed boundary kernels to overcome the well-known boundary problem

associated with standard kernel estimators. Second, for the partial linear estimators, Eu-

bank and Whitney (1989) proposed a partial spline estimator of the kink size and established

the lower bound for its rate of convergence. Similar partial spline idea can be found in Koo

(1997) for detecting change point. Eubank and Speckman (1994) proposed a partial linear

(kernel) estimator4 of the kink size and established its asymptotic distribution, and Cline,

et al. (1995) extended the partial linear (kernel) estimator to a more general framework

including the presence of discontinuity in any order of derivatives of the regression function.

Third, for the use of di¤erence between two local polynomial kernel estimators, we refer the

reader to Loader (1996), Qiu and Yandell (1998), and Bowman, et al. (2006) for detecting

the jump point; Gijbels and Goderniauxa (2005) for detecting the kink point; and Gao, et

al. (1998), Spokoiny (1998), Gijbels, et al. (1999, 2007), and Desmet and Gijbels (2009)

for adaptively estimating the regression curve with a jump point.

Identi�cation and Auxiliary Regressions
3Delgado and Hidalgo (2000) extended estimators of Muller (1992) to time series models.
4Shiaua and Wahba (1988) and Eubank and Speckman (1994) contrasted the partial spline and partial

linear (kernel) methods under various smoothness conditions.

10



There are two parts in this section for discontinuous and kink incentive assignment

mechanisms respectively. In each part, we �rst provide conditions under which the LATE

is identi�ed in (I.3) and then establish auxiliary regressions that will be used to estimate

the identi�ed LATE in Sections 3 (page 17) and 4 (page 27).

Let (
;F ; P ) denote a probability space. To simplify technical arguments, we

assume the random variables V 2 V � R, U 2 U � R, and W 2 W � Rd are continuous

random variables/vectors de�ned on (
;F ; P ) and that the distributions of W , V , U are

absolutely continuous with respect to the Lebesgue measure with pdfs fW (w), w 2 W,

fV (v), v 2 V, fU (u), u 2 U . Throughout the rest of this chapter, we adopt the following

notation:
R
�du =

R
U �du,

R
�dw =

R
W �dw, and

R
�dv =

R
V �dv. In addition, FAjB (ajb) and

fAjB (ajb) denote respectively the conditional distribution function and conditional density

function of A given B = b.

Discontinuous Incentive Assignment Mechanism

Identi�cation

The following conditions will be used to prove identi�cation of the LATE.

Condition D1. Assume (i) fV jW (vjw) is continuous and strictly positive at v = v0

for every w 2 W; (ii) fV (v) is continuous and strictly positive at v = v0; (iii) fV jW;U (vjw; u)

is continuous and strictly positive at v = v0 for every u 2 U and w 2 W.

Condition D2. Assume g1(v; w) and g0(v; w) are continuous at v = v0 for every

w 2 W.

Condition D3. For j = 1; 0, assume (i) E jYj j <1; (ii)
R
W supv2V

��gj (v; w) fW jV (wjv)
�� dw <

1.

11



Condition D4. (i) Assume b(v) is an increasing and continuous function in

a neighborhood of v0 except at v0 and is right continuous at v = v0; (ii) Denote b+ �

limv#v0 b(v) = b(v0) and b� � limv"v0 b(v). We assume [b
�; b+] \ U is not empty.

Condition D5. (i) Assume FU jV (ujv) is continuous in u 2 U and v = v0; (ii)

Assume FU jV;W (ujv; w) is continuous in u 2 U and v = v0 for every w 2 W.

Condition D1 rules out complete manipulation at v0 and imposes smoothness

condition on the corresponding density functions. Tests for Condition D1 are available,

see Otsu and Xu (2010) and the references therein. Condition D2 imposes continuity at v0

of the potential outcome functions. Condition D3 is a regularity condition. Let D (v) =

I fb (v)� U � 0g for v 2 V. Then D = D (V ) and the propensity score is given by

P (v) � Pr (D = 1jV = v) = FU jV (b (v) jv) :

Condition D4 imposes conditions on the incentive assignment mechanism b. Without loss

of generality, we assume in Condition D4 (i) that b(v) is increasing and right continuous

at v = v0. Further we assume in Condition D4 (ii) that [b�; b+] and the support of U are

not mutually exclusive; otherwise, the propensity score P (v) would be continuous at v = v0

taking values 0 or 1. Obviously the incentive assignment mechanism b (v) = I fv � v0g

satis�es Condition D4 as long as [0; 1]\U is not empty. Condition D5 imposes smoothness

conditions on the conditional distribution functions of U . Under Conditions D4 and D5 (i),

the propensity score is discontinuous at v0:

lim
v#v0

P (v) = FU jV (lim
v#v0

b (v) jv0) = FU jV (b
+jv0) = FU jV (b(v0)jv0);

lim
v"v0

P (v) = FU jV (b
�jv0):

Conditions D1, D2, and D3 imply Assumptions (A1) and (A2) in Hahn, Todd, and

12



van der Klaauw (2001) which assumes the continuity of the regression functions E(Y0jV = v)

and E(Y1jV = v) at v0. In addition, compared with the identi�cation results in Hahn, Todd,

and van der Klaauw (2001), Theorem 1 below does not require any local independence

assumption. Let � = Y1 � Y0.

Theorem 1 Under Conditions D1-D5, we have

limv#v0 E(Y jV = v)� limv"v0 E(Y jV = v)

limv#v0 P (v)� limv"v0 P (v)

= lim
e#0

E(�jV = v0; D(v0 + e)�D(v0 � e) = 1)

=
1

fV (v0)
R b+
b� fU jV (ujv0)du

EW;U
�
fV jW;U (v0jW;U)I

�
b� � U � b+

	
(g1(v0;W )� g0(v0;W ))

�
:

Theorem 1 implies that in models (I.1) and (I.2), under conditions D1-D5, we

identify a weighted average treatment e¤ect for the subpopulation of individuals whose

treatment status will change if the value of V is changed from a value slightly smaller than

v0 to a value slightly larger than v0, i.e., the LATE parameter introduced in Imbens and

Angrist (1994). Those individuals who are more likely to obtain a draw of V near v0 receive

more weight than those who are unlikely to obtain such a draw. It is worth emphasizing

that Conditions D1-D5 are not su¢ cient to identify the structural parameters g1, g0, and

fW;U jV , but su¢ cient to identify the policy parameter LATE.

When D = I fV � v0g, Theorem 1 reduces to Proposition 3 in Lee (2008):

lim
v#v0

E(Y jV = v0)� lim
v"v0

E(Y jV = v) = E (�jV = v0)

=
1

fV (v0)
EW

�
fV jW (v0jW ) (g1(v0;W )� g0(v0;W ))

�
:

In this case, we identify a weighted average treatment e¤ect for the entire population and this

weighted average treatment e¤ect is identical to limv#v0 E(Y jV = v)� limv"v0 E(Y jV = v).

13



Auxiliary Regressions

In this subsection, we present conditions on the structural parameters in (I.1) and

(I.2) to justify the auxiliary regressions below:

Y = g(V ) + �0IfV � v0g+ "; (I.4)

D = h(V ) + �0IfV � v0g+ �; (I.5)

where E ("jV ) = 0, E (�jV ) = 0, and

�0 = lim
v#v0

E(Y jV = v)� lim
v"v0

E(Y jV = v); �0 = lim
v#v0

P (v)� lim
v"v0

P (v):

Unlike Porter (2003) and Imbens and Kalyanaramang (2009) who directly assume the con-

tinuity of g and h, we impose su¢ cient conditions on the structural parameters in (I.1) and

(I.2) to ensure that g and h are continuous on the support of V .

Condition D1(A). Assume (i) fV jW (vjw) is continuous and strictly positive on

V for every w 2 W; (ii) fV (v) is continuous and strictly positive on V; (iii) fV jW;U (vjw; u)

is continuous and strictly positive on V for u 2 U and w 2 W.

Condition D2(A). Assume g1(v; w) and g0(v; w) are continuous on V for every

w 2 W.

Condition D4(A). b(v) is continuous in v 2 V except at v0.

Condition D5(A). (i) Assume FU jV (ujv) is continuous in u 2 U and v 2 V; (ii)

Assume FU jV;W (ujv; w) is continuous in u 2 U and v 2 V for every w 2 W.

Proposition 1 Under Conditions D1(A), D2(A), D3, D4, D4(A), and D5(A), the func-
tions g(�) and h(�) are continuous on the support of V .

Remark 2.1. It is clear from the proof of Proposition 1 that under Conditions

D1-D5, the functions g(�) and h(�) are only point-wise continuous at v0. Thus for the LATE

estimator b�LC�SS introduced in Section 3 (page 17), it is still valid that g(�) and h(�) are
14



only point-wise continuous at v0.

Kink Incentive Assignment Mechanism

Identi�cation

Many policy assignment mechanisms including allocation of unemployment ben-

e�ts and income tax systems violate Condition D4. Instead they satisfy Condition K4

below.

Condition K1. Assume (i) fV jW (vjw) is continuously di¤erentiable in a neigh-

borhood of v0 and fV jW (v0jw) > 0 for every w 2 W; (ii) fV (v) is continuously di¤erentiable

in a neighborhood of v0 and fV (v0) > 0; (iii) fV jW;U (vjw; u) is continuously di¤erentiable

in a neighborhood of v0 and fV jW;U (v0jw; u) > 0 for u 2 U and w 2 W.

Condition K2. Assume g1(v; w) and g0(v; w) are continuously di¤erentiable in a

neighborhood of v0 for every w 2 W.

Condition K3. For j = 1; 0, assume (i) E jYj j <1;

(ii) supv j
@fUjV (ujv)

@v j <1 and
R
supv j

@fUjV (ujv)
@v jdu <1;

(iii)
R
supv j

@fW;UjV (w;ujv)
@v jdu <1 and

R R
supv j

@fW;UjV (w;ujv)
@v jdudw <1.

Condition K4. (i) Assume b(v) is increasing and continuously di¤erentiable in

a neighborhood of v0 except at v0, where its derivative is right continuous at v = v0; (ii)

b(v0) 2 U .

Condition K5. (i) Assume FU jV (ujv) is continuously di¤erentiable in u 2 U , and

continuously di¤erentiable in a neighborhood of v0 as well; (ii) Assume FU jV;W (ujv; w) is

continuously di¤erentiable in u 2 U and continuously di¤erentiable in a neighborhood of

v0 for every w 2 W.
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We note that Condition K4 is also used in Card, Lee, and Pei (2009) which assumes

D = b (V ) implying a continuous treatment D under Condition K4. Instead we focus on a

binary treatment D and allow for the unobserved covariate U to a¤ect the agent�s selection

of treatment status. Also notice that when U is degenerated in D = Ifb(V ) � 0g, but under

Condition K4 we end up with the discontinuous incentive assignment mechanism instead of

the kink incentive assignment mechanism.

Denote b0+ � limv#v0 b
0(v) = b0(v0) < 1 and b0� � limv"v0 b

0(v) < 1. Condi-

tion K4 (i) implies: b
0� 6= b0+. Under Conditions K4 and K5 (i), the propensity score is

discontinuous in its �rst derivative at v0. To see this, we note that

P 0 (v) = fU jV (b(v)jv)b0(v) +
@FU jV (b (v) jv)

@v
:

So under conditions K4 and K5, we obtain:

lim
v#v0

P 0(v) = fU jV (b(v0)jv0)b0+ +
Z b(v0)

�1

@fU jV (ujv0)
@v

du;

lim
v"v0

P 0(v) = fU jV (b(v0)jv0)b0� +
Z b(v0)

�1

@fU jV (ujv0)
@v

du;

and

lim
v#v0

P 0(v)� lim
v"v0

P 0(v) = fU jV (b(v0)jv0)
�
b0+ � b0�

�
6= 0:

Theorem 2 Under Conditions K1-K5, we have

limv#v0 dE(Y jV = v)=dv � limv"v0 dE(Y jV = v)=dv

limv#v0 P
0(v)� limv"v0 P

0(v)

= lim
e#0

E(�jV = v0; D(v0 + e)�D(v0 � e) = 1)

= EW

�
[g1(v0;W )� g0(v0;W )]

fW jU;V (W jb(v0); v0)
fW (W )

�
:
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Auxiliary Regressions

For kink incentive assignment mechanisms, we establish the following auxiliary

regressions:

Y = gK(V ) + �K(V � v0)IfV � v0g+ "K ; (I.6)

D = hK(V ) + �K(V � v0)IfV � v0g+ �K : (I.7)

where E("K jV ) = 0, E(�K jV ) = 0, and

�1 = lim
v#v0

dE(Y jV = v)=dv � lim
v"v0

dE(Y jV = v)=dv;

�1 = lim
v#v0

P 0(v)� lim
v"v0

P 0(v):

Condition K1(A). Assume (i) fV jW (vjw) is continuously di¤erentiable on V

for every w 2 W; (ii) fV (v) is continuously di¤erentiable on V; (iii) fV jW;U (vjw; u) is

continuously di¤erentiable on V for u 2 U and w 2 W.

Condition K2(A). Assume g1(v; w) and g0(v; w) are continuously di¤erentiable

on V for every w 2 W.

Condition K4(A). b(v) is continuously di¤erentiable for v 2 V except at v0,

where it is only continuous.

Condition K5(A). (i) Assume FU jV (ujv) is continuously di¤erentiable in both

u 2 U and v 2 V; (ii) Assume FU jV;W (ujv; w) is continuously di¤erentiable in both u 2 U

and v 2 V for every w 2 W.

Proposition 2 Under Conditions K1(A), K2(A), K3, K4, K4(A), and K5(A), the func-
tions gK(�) and hK(�) are continuously di¤erentiable on V.

The First Wavelet Estimator
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Let � denote the identi�ed the LATE parameter. In this and the next sections,

we propose local constant wavelet estimators of the LATE for both discontinuous and kink

incentive assignment mechanisms. Throughout this and the next sections, we assume the

conditions of Propositions 1 and 2 hold respectively for discontinuous and kink incentive

assignment mechanisms and a random sample (Vi; Yi; Di), i = 1; :::; n, is available.

Discontinuous Incentive Assignment Mechanism

Under discontinuous incentive assignment mechanism, the LATE is identi�ed as

� = �0=�0, where �0 and �0 are respectively the parameters in the auxiliary regressions (I.4)

and (I.5). Since the idea underlying the estimation of �0 and �0 is the same, we focus on

the estimation of �0.

Let FV (�) denote the distribution function of Vi and � � FV (v0). Let V1:n � � � � �

Vn:n denote the order statistics of fVigni=1 and
�
Y[i:n]

	n
i=1

the concomitants of fVi:ngni=1 or

induced order statistics. Further let ti = i=n for 1 � i � n.

To motivate our �rst wavelet estimator b�LC�SS0 , we consider the auxiliary regres-

sion in the wavelet domain. Let bFV (�) denote the empirical distribution function5 of fVigni=1.
Then the induced order statistics

�
Y[i:n]

	n
i=1

satisfy:

Y[i:n] = g(Vi:n) + �0IfVi:n � v0g+ "[i:n]

= g( bF�1V (ti)) + �0Ifti � bFV (v0)g+ "[i:n]
� G (ti) + �0Ifti � b�g+ ei;

where G(t) � g(F�1V (t)), b� = bFV (v0), and
ei =

h
g( bF�1V (ti))� g(F�1V (ti))

i
+ "[i:n]:

5Park and Kim (2006) chooses a piecewise linear version of the empirical distribution function. All the
results in this paper carry over to this case.
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Suppose  (t) is a real-valued (mother) wavelet function on the interval [a; b] with

�1 < a < 0 < b <1, i.e., it satis�es:

Z b

a
 (t) dt = 0;

Z b

a
 2 (t) dt = 1;

and an admissibility condition that
R ���b (�)���2 = j�j d� <1, where b (�) is the Fourier trans-

form of  (t). Let b�A
j0
(�) denote the wavelet coe¢ cient of fAigni=1 at cut-o¤ point � and

resolution level j0:

b�A
j0 (�) =

2j0=2

n

nX
i=1

Ai (2
j0(ti � �)):

Then we have:

b�Y
j0 (�) = b�G

j0 (�) + �0
b�cD0
j0
(�) + b�e

j0 (�) (I.8)

� �0 � b�cD0
j0
(�) ; (I.9)

where cD0(ti) = Ifti � b�g.
It is well known that the wavelet coe¢ cient b�A

j0
(�) captures the variation of the

sequence fAigni=1 at cut-o¤ point � and resolution level j0. When the resolution level is

large enough, b�A
j0
(�) is small unless there is a jump or isolated singularity in fAigni=1 at

� . Since G(t) is continuous at � , we expect b�G
j0
(�) to be small at some large j0 motivating

our �rst wavelet estimator b�LC�SS0 :

b�LC�SS0 =
b�Y
j0
(b�)b�cD0

j0
(b�) :

The similar estimator studied in Park and Kim (2006) is:

�
LC�SS
0 =

2j0=2 b�Y
j0
(b�)R b

0  (u)du
:

To establish asymptotic properties of b�LC�SS0 , we adopt the following assumptions.
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We note here that the  function needs to satisfy assumption A4 only. For the ease of expo-

sition, we will refer to any function satisfying A4 as a �wavelet�function, the corresponding

transform coe¢ cients as �wavelet coe¢ cients�, and our estimators as wavelet estimators.

Assumption A1. A random sample (Vi; Yi; Di), i = 1; :::; n, is available.

Assumption A2.

(G). Let G(t) � g(F�1V (t)). (a) G(t) is lG times continuously di¤erentiable for

t 2 (0; 1)nf�g, and G(�) is continuous at � with �nite right and left-hand derivatives to

order lG � m + 1; (b) Right and left hand derivatives of G(t) up to order lG � m + 1 are

equal at � , where m is de�ned in Assumption A4.

(H). Let H(t) � h(F�1V (t)). (a) H (t) is lH times continuously di¤erentiable for

t 2 (0; 1)nf�g, and H (�) is continuous at � with �nite right and left-hand derivatives to

order lH � m+1; (b) Right and left hand derivatives of H (t) to order lH � m+1 are equal

at � , where m is de�ned in Assumption A4.

Assumption A3. (G). (a) �2"(v) � E("2jV = v) is continuous at v 6= v0 and its

right and left-hand limits at v0 exist; (b) For some � > 0, E[j"j2+� jv] is uniformly bounded

on the support of V .

(H). (a) �2� (v) � E(�2jV = v) is continuous at v 6= v0 and its right and left-hand

limits at v0 exist; (b) For some � > 0, E[j�j2+� jv] is uniformly bounded on the support of

V .

(GH). �"� (v) � E("i�ijVi = v) is continuous at v 6= v0 and its right and left-hand

limits at v0 exist.

Assumption A4. (a) The function  (�) is continuous with compact support [a; b],

where a < 0 < b and m vanishing moments, i.e.,
R b
a u

j (u) du = 0 for j = 0; 1; :::;m � 1;

(b)
R b
0  (u)du 6= 0,

R b
a u

m (u) du 6= 0, and
R b
a ju

m (u)j du < 1; (c)  has a bounded
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derivative.

Assumption A5. (a) As n ! 1, j0 ! 1, 2j0n ! 0, and 1
2j0

q
n
2j0

! Ca < 1;

(b) As n!1, j0 !1, 2j0n ! 0, and ( 1
2j0
)m
q

n
2j0
! Cb <1.

Assumption A1 may be relaxed to allow for non i.i.d. data by using the extension

of Theorem 1 in Yang (1981) presented in Chu and Jacho-Chavez (2010). Assumption

A2(G) (a) allows for jumps in the derivatives of G at � up to order lG. Work in the

statistics literature on detection of jumps such as Wang (1995) and Park and Kim (2006)

assume away the presence of jumps in the derivatives of G at � so that Assumption A2(G)

(b) holds. Assumption A3(G) imposes conditions on the conditional variance function

and E[j"j2+� jv]. Park and Kim (2006) assume a constant conditional variance function.

Assumption A4 speci�es the class of functions  . In contrast to a kernel function which

integrates to one, the function  integrates to zero and shares the properties of anm-th order

kernel otherwise. Examples of  include wavelet functions such as the class of Daubechies�

compactly supported wavelet functions D(L) and the class of least asymmetric wavelet

functions LA(L), wherem = L and [a; b] = [� (L� 1) ; L]. In addition, the second derivative

functions of kernel constructed in Cheng and Raimondo (2008) for which [a; b] = [�1; 1] and

m = s� 1 and the di¤erences between the two kernel functions used in Wu and Chu (1993)

also satisfy Assumption A46. Assumption A5 imposes conditions on the scale level j0.

Theorem 3 Suppose A1, A3(G), and A4 hold.

(i) When A2(G) (a) and A5 (a) hold, we obtain:
q

n
2j0
(b�LC�SS0 ��0) and

q
n
2j0
(�
LC�SS
0 �

�0) have the same asymptotic distribution andr
n

2j0
(b�LC�SS0 � �0)

d! N (CaBa; V ) ;

6See Assumption C1;s in Cheng and Raimondo (2008). And both of them could be treated as �equivalent
wavelets�, as opposed to �equivalent kernels�.
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where

Ba =

h
G
(1)
+ (�)�G

(1)
� (�)

i R b
0  (u)uduR b

0  (u)du
;

V =
�2"+(v0)

R b
0  

2(u)du+ �2"�(v0)
R 0
a  

2(u)du�R b
0  (u)du

�2 :

(ii) When A2(G) (b) and A5 (b) hold, we obtain:
q

n
2j0
(b�LC�SS0 ��0) and

q
n
2j0
(�
LC�SS
0 ��0)

have the same asymptotic distribution andr
n

2j0
(b�LC�SS0 � �0)

d! N (CbBb; V ) ;

where

Bb =
G(m)(�)

R b
a u

m (u)duR b
0  (u)du

:

When �2" (v) is a constant, the asymptotic distribution of �
LC�SS
0 given in Theorem

3 (ii) reduces to that in Park and Kim (2006). Theorem 3 (i) reveals a similar asymptotic

behavior of b�LC�SS0 to the Nadaraya-Watson kernel estimator in Porter (2003) under A2(G)

(a). However, as revealed in Theorem 3 (ii), although A2(G) (b) does not a¤ect the asymp-

totic distribution of the Nadaraya-Watson kernel estimator in Porter (2003), it does a¤ect

the asymptotic distribution of our wavelet estimator b�LC�SS0 . In particular, it reduces the

order of the asymptotic bias of b�LC�SS0 from 2�j0 to 2�mj0 . Thus in terms of asymptotic

bias, b�LC�SS0 behaves more like the partial linear estimator in Porter (2003). This is not

surprising, given their partial linear estimator of the jump size is asymptotically equivalent

to �
LC�SS
0 with a speci�c  function (more details in Chapter 2). Since transforming a

random design to an equally spaced design before applying nonparametric method leads to

better �nite sample performance (Hall, et al., 1998), b�LC�SS0 inherits such nice property.

In addition this also leads to the estimator b�LC�SS0 to be design-adaptive: the asymptotic

bias and variance of our estimators do not depend on the density fV (v).
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Remark 3.1. It is interesting to observe that � is the location of the jump in the

regression model with regularly spaced design points, so we can estimate � by Raimondo

(1998). Under standard regularity conditions, the estimators in Raimondo (1998) coverage

at rates faster than n�1=2 so the conclusions in Theorem 3 and in all other theorems in this

chapter for the discontinuous assignment mechanism remain valid.

We are now ready to estimate the LATE parameter �. Let
�
D[i:n]

	n
i=1

denote

the concomitants of fVi:ngni=1 corresponding to fDigni=1. Our �rst wavelet estimator of

� � �0=�0 is de�ned as b�LC�SS = b�LC�SS0 =b�LC�SS0 , where

b�LC�SS0 =
b�D
j0
(b�)b�cD0

j0
(b�) :

For simplicity, we have used the same mother wavelet  (�) and scale level j0 to

estimate �0 and �0. This can be relaxed at the expense of more tedious derivations.

Theorem 4 Suppose A1, A3, and A4 hold.
(i) When A2 (a) and A5 (a) hold, we obtain:

(n=2j0)1=2

 b�LC�SS0b�LC�SS0

� �0
�0

!
d! N

�
1

�
Ca

�
Ba �

�

�
BD
a

�
;
1

�2

�
V � 2�

�
V Y D +

�2

�2
V D

��
;

where

BD
a =

h
H
(1)
+ (�)�H(1)

� (�)
i R b

0  (u)uduR b
0  (u)du

;

V D =
�2�+(v0)

R b
0  

2(u)du+ �2��(v0)
R 0
a  

2(u)du�R b
0  (u)du

�2 ;

V Y D =
�2"�+(v0)

R b
0  

2(u)du+ �2"��(v0)
R 0
a  

2(u)du�R b
0  (u)du

�2 :

(ii) When A2 (b) and A5 (b) hold, we obtain:

(n=2j0)1=2

 b�LC�SS0b�LC�SS0

� �0
�0

!
d! N

�
1

�
Cb

�
Bb �

�

�
BD
b

�
;
1

�2

�
V � 2�

�
V Y D +

�2

�2
V D

��
;

23



where

BD
b =

H(m)(�)
R b
a u

m (u)duR b
0  (u)du

:

Kink Incentive Assignment Mechanism

For a kink incentive assignment mechanism, the auxiliary regressions are given in

(I.6) and (I.7). Again we focus on the estimation of �1. First we note that the induced

order statistics
�
Y[i:n]

	n
i=1

satisfy:

Y[i:n] = gK (Vi:n) + �1(Vi:n � v0)IfVi:n � v0g+ "K;[i:n]

= gK

� bF�1V (ti)
�
+ �1( bF�1V (ti)� v0)Ifti � b�g+ "K;[i:n]:

Similar to the discontinuous incentive assignment mechanism case, we propose the following

estimator of �1:

b�LC�SS1 =
b�Y
j0
(b�)b�cD1

j0
(b�) ;

where cD1(ti) = h bF�1V (ti)� v0
i
Ifti � b�g. We will show that under conditions stated below,

b�LC�SS1 has the same asymptotic distribution as

�
LC�SS
1 =

1

n

nX
i=1

2j0 
�
2j0( in � �)

�R b
0

�
F�1V ( u

2j0
+ �)� v0

�
 (u)du

Y[i:n]:

Like the discontinuous incentive assignment mechanism case, b� , the estimate of
the kink location, could follow Raimondo (1998).

Assumption A2K.

(G). Let GK(t) � gK(F
�1
V (t)). (a) GK(t) is lG+1 times continuously di¤erentiable

for t 2 (0; 1)nf�g, and GK(�) is continuously di¤erentiable at � with �nite right and left-

hand derivatives to order lG + 1 � m + 2; (b) Right and left hand derivatives of GK(t) to
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order lG + 1 � m+ 2 are equal at � , where m is de�ned in Assumption A4K.

(H). Let HK(t) � hK(F
�1
V (t)). (a) HK (t) is lH + 1 times continuously di¤eren-

tiable for t 2 (0; 1)nf�g, and HK (�) is continuously di¤erentiable at � with �nite right and

left-hand derivatives to order lH +1 � m+2; (b) Right and left hand derivatives of HK (t)

to order lH + 1 � m+ 2 are equal at � , where m is de�ned in Assumption A4K.

Assumption A4K. (a) The function  (�) is continuous with compact support

[a; b], where a < 0 < b andm+1 vanishing moments, i.e.,
R b
a u

j (u) du = 0 for j = 0; 1; :::;m;

(b)
R b
0 u (u)du 6= 0,

R b
a u

m+1 (u) du 6= 0, and
R b
a

��um+1 (u)�� du <1; (c)  has a bounded
derivative.

Assumption A5K. (a) As n ! 1, j0 ! 1, 23j0n ! 0, and 1
2j0

q
n
23j0

! CKa <

1; (b) As n!1, j0 !1, 23j0n ! 0, and ( 1
2j0
)m
q

n
23j0

! CKb <1.

Assumption A6K. (a) F�1V (v) is continuously di¤erentiable on the support of

V ; (b) F�1V (v) is m times continuously di¤erentiable on the support of V .

Theorem 5 Suppose A1, A3(G) for "K , and A4K hold.

(i) When A2K(G) (a), A5K (a) and A6K (a) hold, we obtain:
q

n
23j0

(b�LC�SS1 ��1)

and
q

n
23j0

(�
LC�SS
1 � �1) have the same asymptotic distribution andr

n

23j0
(b�LC�SS1 � �1)

d! N (CKaBKa; VK) ;

where

BKa =

h
G
(2)
K+(�)�G

(2)
K�(�)

i R b
0 u

2 (u)du

2
R b
0 u (u)du

fV (v0);

VK =
f2V (v0)

h
�2"+(v0)

R b
0  

2(u)du+ �2"�(v0)
R 0
a  

2(u)du
i

�R b
0 u (u)du

�2 :

(ii) When A2K(G) (b), A5K (b) and A6K (b) hold, we obtain:
q

n
23j0

(b�LC�SS1 � �1) andq
n
23j0

(�
LC�SS
1 � �1) have the same asymptotic distribution andr
n

23j0
(b�LC�SS1 � �1)

d! N (CKbBKb; VK) ;
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where

BKb =
G
(m+1)
K (�)

R b
a u

m+1 (u)du

(m+ 1)!
R b
0 u (u)du

fV (v0):

Comparing Theorems 3 and 5, we observe the same qualitative behavior of b�LC�SS0

and b�LC�SS1 in terms of the order of their asymptotic bias: the order of the asymptotic bias

of b�LC�SS1 depends on whether there are jump discontinuities in the second and higher order

derivatives of GK .

Finally our �rst LATE estimator for kink incentive assignment mechanisms is

de�ned as b�LC�SS1 =b�LC�SS1 , where b�LC�SS1 = b�D
j0
(b�) =b�cD1

j0
(b�).

Theorem 6 Suppose A1, A3 for "K and �K , and A4K hold.
(i) When A2K (a), A5K (a) and A6K(a) hold, we obtain:r
n

23j0

 b�LC�SS1b�LC�SS1

� �1
�1

!
d! N

�
1

�
CKa

�
BKa �

�

�
BD
Ka

�
;
1

�2

�
VK �

2�

�
V Y D
K +

�2

�2
V D
K

��
;

where

BD
Ka =

h
H
(2)
K+(�)�H

(2)
K�(�)

i R b
0 u

2 (u)du

2
R b
0 u (u)du

fV (v0);

V D
K =

f2V (v0)
h
�2�+(v0)

R b
0  

2(u)du+ �2��(v0)
R 0
a  

2(u)du
i

�R b
0 u (u)du

�2 ;

V Y D
K =

f2V (v0)
h
�2"�+(v0)

R b
0  

2(u)du+ �2"��(v0)
R 0
a  

2(u)du
i

�R b
0 u (u)du

�2 :

(ii) When A2K (b), A5K (b) and A6K(b) hold, we obtain:r
n

23j0

 b�LC�SS1b�LC�SS1

� �1
�1

!
d! N

�
1

�
CKb

�
BKb �

�

�
BD
Kb

�
;
1

�2

�
VK �

2�

�
V Y D
K +

�2

�2
V D
K

��
;

where

BD
Kb =

H
(m+1)
K (�)

R b
a u

m+1 (u)du

(m+ 1)!
R b
0 u (u)du

fV (v0):

26



Local Constant Wavelet Estimators

Discontinuous Incentive Assignment Mechanism

Note that the wavelet estimators b�LC�SS0 and �
LC�SS
0 make use of one wavelet

coe¢ cient of
�
Y[i:n]

	n
i=1

only, the one at location � and resolution level 2�j0 . Heuristically

wavelet coe¢ cients of
�
Y[i:n]

	n
i=1

at locations near � and other �ne resolution levels contain

information about � as well. Formally, it follows from

Y[i:n] = G (ti) + �0Ifti � bFV (v0)g+ nhg( bF�1V (ti))�G (ti)
i
+ "[i:n]

o
;

that

b�Y
j (t) = b�G

j (t) + �0 b�cD0
j (t) + b�e

j (t) (I.10)

� �0 � b�cD0
j (t) + b�e

j (t) ; for all j and t 2 [0; 1] ; (I.11)

where b�A
j (t) denotes the wavelet coe¢ cient of fAig

n
i=1 at location t and scale level j, i.e.,

b�A
j (t) =

2j=2

n

nX
i=1

Ai (2
j(ti � t)):

The approximately linear regression (I.10) in the wavelet domain suggests that

provided G (t) is continuous, all the wavelet coe¢ cients b�Y
j (t) at large enough resolution

levels j and locations t near � should contain information on �0. This motivates us to

propose the following general class of local constant wavelet estimators of �0:

b�LC�MM

0 =

PjU
j=jL

R 1
0
b�Y
j (t)

b�cD0
j (t) bIj(t)dtPjU

j=jL

R 1
0

hb�cD0
j (t)

i2 bIj(t)dt ; (I.12)

where bIj(t) � Ifa � 2j(b� � t) � bg is the �cone of in�uence�, see p. 215 in Mallet (2009),

jL � jU , and jL � jLn !1 as n!1.
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The class of estimators in (I.12) include estimators using wavelet coe¢ cients at a

single scale and multiple locations, at multiscale and a single location, and at multiscale

and multiple locations. We�ll establish the asymptotic properties of these estimators in the

rest of this section and then extend them to the corresponding results for estimators of the

LATE.

Single-scale with many locations

In this part, we consider the asymptotic properties of a subclass of local constant

wavelet estimators for which only one resolution level is used. The �xed level j0 local

constant wavelet estimator of �0 is de�ned as:

b�LC�SM0 =

R 1
0
b�Y
j0
(t)b�cD0

j0
(t)bIj0(t)dtR 1

0

hb�cD0
j0
(t)
i2 bIj0(t)dt :

Assumption A5. (b)�As n ! 1, j0 ! 1, 2j0n ! 0, and
�
1
2j0

�2m�1q n
2j0

!

CbW1 <1.

Theorem 7 Suppose A1, A3(G), and A4 hold. In addition,
R 0
a�bM(v)dv 6= 0, where M (�)

is de�ned below.
(i) When A2(G) (a) and A5 (a) hold, we obtain:r
n

2j0
(b�LC�SM0 � �0)

d! N (CaB
a
W1; VW1) ;

where

Ba
W1 =

h
G
(1)
+ (�)�G

(1)
� (�)

i R b
a

R b
a L(t) (s)(s� t)Ifs� t � 0gdsdtR 0
a�bM(v)dv

;

VW1 =
�2+(v0)

R b�a
0 M2(v)dv + �2�(v0)

R 0
a�bM

2(v)dvhR 0
a�bM(v)dv

i2 ;

in which

L(t) =

Z b

a
Ifw � tg (w)dw and M(v) =

Z b

a

Z b

a
Ifw � t+ vg (w) (t)dtdw:
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(ii) When A2(G) (b) with lG � 2m and A5 (b)�hold, we obtainr
n

2j0
(b�LC�SM0 � �0)

d! N
�
CbW1B

b
W1; VW1

�
;

where

Bb
W1 =

G(2m�1)(�)
R b
a  (s)s

mds �
R b
a L(t)(�t)

m�1dt

m!(m� 1)!
R 0
a�bM(v)dv

:

Theorems 3 and 7 reveal the role of the additional information in wavelet coe¢ -

cients at locations other than � . When A2(G)( b) holds with lG � 2m, the use of additional

wavelet coe¢ cients (b�LC�SM0 ) reduces the order of the asymptotic bias of the wavelet es-

timator further to O
��
2�j0

�2m�1� from O
��
2�j0

�m� for b�LC�SS0 . However, when only

A2(G)(a) holds, the order of the asymptotic bias of b�LC�SM0 remains the same as that of

b�LC�SS0 .

To estimate the LATE, we estimate �0 by:

b�LC�SM0 =

R 1
0
b�D
j0
(t)b�cD0

j0
(t)bIj0(t)dtR 1

0

hb�cD0
j0
(t)
i2 bIj0(t)dt :

The LATE is estimated by b�LC�SM = b�LC�SM0 =b�LC�SM0 .

Theorem 8 Suppose A1, A3, and A4 hold. In addition,
R 0
a�bM(v)dv 6= 0.

(i) When A2 (a) and A5 (a) hold, we obtain:

(n=2j0)1=2

 b�LC�SM0b�LC�SM0

� �0
�0

!
d! N

�
1

�
Ca

�
Ba
W1 �

�

�
BD
aW1

�
;
1

�2

�
VW1 � 2

�

�
V Y D
W1 +

�2

�2
V D
W1

��
;

where

BD
aW1 =

h
H
(1)
+ (�)�H(1)

� (�)
i R b

a

R b
a L(t) (s)(s� t)Ifs� t � 0gdsdtR 0
a�bM(v)dv

;

V D
W1 =

�2�+(v0)
R b�a
0 M2(v)dv + �2��(v0)

R 0
a�bM

2(v)dvhR 0
a�bM(v)dv

i2 ;

V Y D
W1 =

�2"�+(v0)
R b�a
0 M2(v)dv + �2"��(v0)

R 0
a�bM

2(v)dvhR 0
a�bM(v)dv

i2 :
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(ii) When A2 (b) with min flG; lHg � 2m and A5 (b)�hold, we obtain:

(n=2j0)1=2

 b�LC�SM0b�LC�SM0

� �0
�0

!
d! N

�
1

�

�
CbW1B

b
W1 �

�

�
CbW1B

D
bW1

�
;
1

�2

�
VW1 �

2�

�
V Y D
W1 +

�2

�2
V D
W1

��
;

where

BD
bW1 =

H(2m�1)(�)
R b
a  (s)s

mds �
R b
a L(t)(�t)

m�1dt

m!(m� 1)!
R 0
a�bM(v)dv

:

Multiscale with a single location

We now investigate the role of using more than one scale in estimating the LATE

parameter.7 First we consider the estimator of �0:

b�LC�MS

0 =

PjU
j=jL

b�Y
j (b�)b�cD0

j (b�)PjU
j=jL

hb�cD0
j (b�)i2 ;

where jL < jU . Let (jU � jL) = Kn.

Theorem 9 Suppose A1, A3(G), and A4 hold. In addition, suppose �2"+(v0) = �2"�(v0).
8

(i) When A2(G) (a) and A5 (a) hold for jL and jU , we obtain:
if limn!1Kn <1, thenr
n

2jL
(b�LC�MS

0 � �0)
d! N

 
CaB

a
W2;

V

2
�
1� (12)limKn+1

�! ;
where

Ba
W2 =

�
1 + (

1

2
)limKn+1

�
2Ba
3
;

if limn!1Kn =1, thenr
n

2jL
(b�LC�MS

0 � �0)
d! N

�
2

3
CaBa;

V

2

�
;

(ii) When A2(G) (b) and A5 (b) hold for jL and jU , we obtain:

7This has the �avor of Kotlyarova and Zinde-Walsh (2006, 2008) which average kernel density estimators
using di¤erent bandwidths.

8For notational compactness, we only report results when �2"+(v0) = �2"�(v0) in the main text. General
results without this assumption can be found in the proof of this theorem in Appendix A.
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if limn!1Kn <1, thenr
n

2jL
(b�LC�MS

0 � �0)
d! N

 
CbB

b
W2;

V

2
�
1� (12)limKn+1

�! ;
where

Bb
W2 =

�
1� (12)

(m+1)(limKn+1)
�

2
�
1� (12)limKn+1

� �
1� (12)m+1

�Bb;
if limn!1Kn =1, thenr

n

2jL
(b�LC�MS

0 � �0)
d! N

 
Cb

1

2
�
1� (12)m+1

�Bb; V
2

!
:

Theorems 3, 7, and 9 reveal the interesting e¤ects of using additional information

in wavelet coe¢ cients at multiple scales and multiple locations. First, the multiple locations

estimator b�LC�SM0 reduces the order of the asymptotic bias of b�LC�SS0 under A2(G)( b) with

lG � 2m; Second, the multiple scales estimator b�LC�MS

0 reduces the asymptotic bias and

variance of the wavelet estimator b�LC�SS0 only proportionally, but under both A2(G)(a)

and A2(G)(b).

To estimate the LATE parameter, we let

b�LC�MS

0 =

PjU
j=jL

b�D
j (�)

b�cD0
j (�)PjU

j=jL

hb�cD0
j (�)

i2 :

Theorem 10 Suppose A1, A3, and A4 hold. In addition, suppose �2"+(v0) = �2"�(v0),
�2�+(v0) = �2��(v0), and �

2
"�+(v0) = �2"��(v0).

(a) When A2 (a) and A5 (a) hold for jL and jU , we obtain:
if limn!1Kn <1, then

(n=2jL)1=2

 b�LC�MS

0b�LC�MS

0

� �0
�0

!

d! N

0@1
�
Ca

�
Ba
W2 �

�

�
BDa
W2

�
;
V � 2�

� V
Y D + �2

�2
V D

2
�
1� (12)limKn+1

�
�2

1A ;

where

BDa
W2 =

�
1 + (

1

2
)limKn+1

�
2BD

a

3
;
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if limn!1Kn =1, then

(n=2jL)1=2

 b�LC�MS

0b�LC�MS

0

� �0
�0

!
d! N

0@ 2

3�
Ca

�
Ba �

�

�
BD
a

�
;
V � 2�

� V
Y D + �2

�2
V D

2�2

1A :

(b) When A2 (b) and A5 (b) hold for jL and jU , we obtain:
if limn!1Kn <1, then

(n=2jL)1=2

 b�LC�MS

0b�LC�MS

0

� �0
�0

!

d! N

0@1
�
Cb

�
Bb
W2 �

�

�
BDb
W2

�
;
V � 2�

� V
Y D + �2

�2
V D

2
�
1� (12)limKn+1

�
�2

1A ;

where

BDb
W2 =

�
1� (12)

(m+1)(limKn+1)
�

2
�
1� (12)limKn+1

� �
1� (12)m+1

�BD
b ;

if limn!1Kn =1, then

(n=2jL)1=2

 b�LC�MS

0b�LC�MS

0

� �0
�0

!

d! N

0@Cb 1

2�
�
1� (12)m+1

� �Bb � �

�
BD
b

�
;
V � 2�

� V
Y D + �2

�2
V D

2�2

1A :

Multiscale with many locations

We now establish the asymptotic distribution of the general estimator b�LC�MM

0 :

b�LC�MM

0 =

PjU
j=jL

R 1
0
b�Y
j (t)

b�cD0
j (t) bIj0(t)dtPjU

j=jL

R 1
0

hb�cD0
j (t)

i2 bIj0(t)dt :

Again for notational compactness, we only establish the asymptotic distribution of b�LC�MM

0

under the condition that �2"+(v0) = �2"�(v0).

Theorem 11 Suppose A1, A3, and A4 hold. In addition, suppose �2"+(v0) = �2"�(v0).
(i) When A2(G) (a) and A5(a) hold for jL and jU , we obtain:
if limn!1Kn <1, thenr
n

2jL
(b�LC�MM

0 � �0)
d! N (CaB

a
W ; VW ) ;

32



where

Ba
W =

6

7

�
1� (18)

limKn+1
��

1� (14)limKn+1
�Ba

W1;

VW =
9

14

1� (18)
limKn+1�

1� (14)limKn+1
�2 VW1;

if limn!1Kn =1, thenr
n

2jL
(b�LC�MM

0 � �0)
d! N (CaB

a�
W ; V

�
W ) ;

where

Ba�
W =

6

7
Ba
W1; V

�
W =

9

14
VW1:

(ii) When A2(G) (b) with lG � 2m and (A5) (b)�hold for jL and jU , we obtain:
if limn!1Kn <1, thenr
n

2jL
(b�LC�MM

0 � �0)
d! N

�
CbW1B

b
W ; VW

�
;

where

Bb
W =

3

4
�
1� (12)2m+1

� 1� (12)(2m+1)(limKn+1)

1� (14)limKn+1

G(2m�1)(�)
R b
a  (s)s

mds
R b
a L(t)(�t)

m�1dt

m!(m� 1)!
R 0
a�bM(v)dv

;

if limn!1Kn =1, thenr
n

2jL
(b�LC�MM

0 � �0)
d! N

�
CbW1B

b�
W ; V

�
W

�
;

where

Bb�
W =

3

4
�
1� (12)2m+1

�G(2m�1)(�) R ba  (s)smds R ba L(t)(�t)m�1dt
m!(m� 1)!

R 0
a�bM(v)dv

:

As expected, b�LC�MM

0 inherit the properties of both b�LC�SM0 and b�LC�MS

0 : when

A2(G)(b) holds with lG � 2m, it reduces the order of the asymptotic bias of b�LC�SS0 or

b�LC�MS

0 re�ecting the additional information in the multiple locations used in b�LC�MM

0 ;

and under both A2(G)(a) and A2(G)(b), the asymptotic bias and variance of b�LC�MM

0 are

proportionally smaller than those of b�LC�SM0 re�ecting the additional information in the

multiple scales used in b�LC�MM

0 .
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De�ne

b�LC�MM

0 =

PjU
j=jL

R 1
0
b�D
j (t)

b�cD0
j (t) bIj0(t)dtPjU

j=jL

R 1
0

hb�cD0
j (t)

i2 bIj0(t)dt :

Our estimator of the LATE is given by b�LC�MM

0 = b�LC�MM

0 .

Theorem 12 Suppose A1, A3, and A4 hold. In addition, suppose �2"+(v0) = �2"�(v0),
�2�+(v0) = �2��(v0), and �

2
"�+(v0) = �2"��(v0).

(i) When A2 (a) and A5 (a) hold for jL and jU , we obtain:
if limn!1Kn <1, then

(n=2jL)1=2

 b�LC�MM

0b�LC�MM

0

� �0
�0

!
d! N

�
1

�
Ca

�
Ba
W � �

�
BDa
W

�
;
1

�2

�
VW � 2�

�
V Y D
W +

�2

�2
V D
W

��
;

where

BDa
W =

6

7

�
1� (18)

limKn+1
��

1� (14)limKn+1
�BD

aW1;

V D
W =

9

14

1� (18)
limKn+1�

1� (14)limKn+1
�2V D

W1;

if limn!1Kn =1, then

(n=2jL)1=2

 b�LC�MM

0b�LC�MM

0

� �0
�0

!
d! N

�
1

�
Ca

�
Ba�
W � �

�
BD�
aW

�
;
1

�2

�
V �W � 2�

�
V Y D�
W +

�2

�2
V D�
W

��
;

where

BD�
aW =

6

7
BD
aW1;

V Y D
W =

9

14

1� (18)
Kn+1�

1� (14)Kn+1
�2V Y D

W1 ;

V D�
W =

9

14
V D
W1; V

Y D�
W3 =

9

14
V Y D
W1 :

(ii) When A2 (b) with minflG; lHg � 2m and (A5)(b)�hold for jL and jU , we obtain:
if limn!1Kn <1, then

(n=2jL)1=2

 b�LC�MM

0b�LC�MM

0

� �0
�0

!
d! N

�
1

�
Ca

�
Bb
W � �

�
BDb
W

�
;
1

�2

�
VW � 2�

�
V Y D
W +

�2

�2
V D
W

��
;

where

BDb
W =

3

4
�
1� (12)2m+1

� 1� (12)(2m+1)(limKn+1)

1� (14)limKn+1

H(2m�1)(�)
R b
a  (s)s

mds
R b
a L(t)(�t)

m�1dt

m!(m� 1)!
R 0
a�bM(v)dv

;
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if limn!1Kn =1, then

(n=2jL)1=2

 b�LC�MM

0b�LC�MM

0

� �0
�0

!
d! N

�
1

�
CbW1

�
Bb�
W � �

�
BD�
bW

�
;
1

�2

�
V �W � 2�

�
V Y D�
W +

�2

�2
V D�
W

��
;

where

BD�
bW =

3

4
�
1� (12)2m+1

�H(2m�1)(�)
R b
a  (s)s

mds
R b
a L(t)(�t)

m�1dt

m!(m� 1)!
R 0
a�bM(v)dv

:

Kink Incentive Assignment Mechanism

All three local constant wavelet estimators for discontinuous incentive assignment

mechanisms proposed in Section 4 (page 27) can be extended to kink incentive assignment

mechanisms and they share the same qualitative properties. To illustrate, we present a

detailed analysis of the local constant wavelet estimator based on wavelet coe¢ cients at a

single scale and many locations and report results on the other estimators in a separate

paper.

Let

b�LC�SM1 =

R 1
0
b�Y
j0
(t)b�cD1

j0
(t)bIj0(t)dtR 1

0

hb�cD1
j0
(t)
i2 bIj0(t)dt

and

�
LC�SM
1 =

1

n

nX
i=1

JKW1(
i

n
)Yi:n

where

JKW1(
i

n
)

=

R 1
0

R 1
0
bIj0(t) �F�1V (w)� v0

�
Ifw � �g2j0 

�
2j0(w � t)

�
 
�
2j0( in � t)

�
dtdw

R 1
0

R 1
0

R 1
0

8>><>>:
bIj0(t) �F�1V (w)� v0

�
Ifw � �g

�
F�1V (v)� v0

�
Ifv � �g2j0 

�
2j0(w � t)

�
 
�
2j0(v � t)

�
9>>=>>; dwdvdt

:
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We �rst show that b�LC�SM1 has the same asymptotic distribution as �
LC�SM
1 and then

establish the asymptotic distribution of �
LC�SM
1 .

Assumption A5K. (b)�As n ! 1, j0 ! 1, 23j0n ! 0, and
�
1
2j0

�2m�1q n
23j0

!

CbK0W1 <1.

Assumption A6K. (c) F�1V (v) is 2m times continuously di¤erentiable on the

support of V .

Theorem 13 Suppose A1, A3(G), and A4K hold. Let M12 (s) =M1(s) +M2(s)� sM(s),
where

M(s) =

Z b

a

Z b

a
Ifw � t+ sg (w) (t)dtdw;

M1(s) =

Z b

a

Z b

a
(�t)Ifw � t+ sg (w) (t)dtdw;

M2(s) =

Z b

a

Z b

a
wIfw � t+ sg (w) (t)dtdw:

Assume
R 0
a�bM12 (t) dt 6= 0.
(i) When A2K(G) (a), A5K (a) and A6K(a) hold, we obtain:r
n

23j0
(b�LC�SM1 � �1)

d! N (CKaB
a
KW1; VKW1) ;

where

Ba
KW1

= �

h
G
(2)
K+(�)�G

(2)
K�(�)

i
fV (v0)

R b
a

R b
a (s� w)

2 (s)Ifs� w � 0g [L1(w)� wL0(w)] dsdw

2
R 0
a�bM12 (t) dt

;

VKW1 =
f2V (v0)

h
�2"+(v0)

R 0
a�bM

2
12 (t) dt+ �

2
"�(v0)

R b�a
0 M2

12 (t) dt
i

hR 0
a�bM12 (t) dt

i2 ;

in which, for i = 0; 1; � � � ;m� 1, Li de�ned below has (m� i) vanishing moments:

Li(2
j0(� � t)) =

Z b

a
wiIfw � 2j0(� � t)g (w)dw.

(ii) When A2K(G) (b) with lG � 2m, A5K (b)�and A6K(c) hold, we obtain:r
n

23j0
(b�LC�SM1 � �1)

d! N
�
CbK0W1B

b
KW1; VKW1

�
;

36



where

Bb
KW1 = �f2V (v0)

R b
a  (s)s

m+1ds [�0 +
Pm

i=1 �i]R 0
a�bM12 (t) dt

;

in which

�0 =

Z b

a
L0(t)(�t)mdt

"
mX
i=1

[F�1V (�)](i)
G
(2m+1�i)
K (�)

i!(m+ 1)!(m� i)!

#
;

�i =
1

i!

Z b

a
Li(t)(�t)m�idt

"
mX
l=i

[F�1V (�)](l)
G
(2m�l+1)
K (�)

(m� i)!(m+ 1)!(m� l)!

#
for i � 1:

Now we provide the LATE estimator: b�LC�SM1 =b�LC�SM1 , where

b�LC�SM1 =

R 1
0
b�D
j0
(t)b�cD1

j0
(t)bIj0(t)dtR 1

0

hb�cD1
j0
(t)
i2 bIj0(t)dt :

Theorem 14 Suppose A1, A3, and A4K hold.
(a) When A2K (a), A5K (a) and A6K(a) hold, we obtain:r

n

23j0

 b�LC�SM1b�LC�SM1

� �1
�1

!
d! N

�
1

�
CKa

�
Ba
KW1 �

�

�
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KW1

�
;
1

�2

�
VKW1 �
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�
V Y D
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�2

�2
V D
KW1

��
;
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BDa
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(2)
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fV (v0)

R b
a

R b
a (s� w)
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2
R 0
a�bM12 (t) dt

;

V D
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h
�2�+(v0)

R 0
a�bM

2
12 (t) dt+ �

2
��(v0)

R b�a
0 M2

12 (t) dt
i

hR 0
a�bM12 (t) dt

i2 ;

V Y D
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f2V (v0)
h
�2�"+(v0)

R 0
a�bM

2
12 (t) dt+ �

2
�"�(v0)

R b�a
0 M2

12 (t) dt
i

hR 0
a�bM12 (t) dt

i2 :

(b) When A2K (b) with min flG; lHg � 2m, A5K(b)�and A6K(c) hold, we obtain:r
n

23j0

 b�LC�SM1b�LC�SM1
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!
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�
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where

BDb
KW1 = �f2V (v0)

R b
a  (s)s

m+1ds [�0 +
Pm

i=1 �i]R 0
a�bM12 (t) dt

,

in which

�0 =

Z b

a
L0(t)(�t)mdt

"
mX
i=1

[F�1V (�)](i)
H
(2m+1�i)
K (�)

i!(m+ 1)!(m� i)!

#
;

�i =
1

i!

Z b

a
Li(t)(�t)m�idt

"
mX
l=i

[F�1V (�)](l)
H
(2m�l+1)
K (�)

(m� i)!(m+ 1)!(m� l)!

#
for i � 1.

Monte-Carlo Simulation

This section presents results from a small simulation study. We focus on the �nite

sample performances of our wavelet estimators of the jump size in two classes of models.

The �rst class includes switching regime models and the second class is based on auxiliary

regression models.

The two switching regime models are:

Model 1.

Y1 = 1:25 + V + V 2 +W1; Y0 = V + 2V 2 +W2;

D = IfV � 0:5g:

Model 2.

Y1 = 1 + V 7 +W1; Y0 = V 7 +W2;

D = IfV � 0:5g:

In both models, V � U [0; 1], (W1;W2) � N

2664(0; 0);
0BB@ 0:01 0

0 0:01

1CCA
3775, and V is indepen-

dent of (W1;W2). Tedious algebras show that the corresponding auxiliary regression models
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are:

Model 1 : Y =
�

V + 2V 2 +W , 0 � V < 0:5

1:25 + V + V 2 +W , 0:5 � V � 1 ;

and

Model 2 : Y =
�

V 7 +W , 0 � V < 0:5

1 + V 7 +W , 0:5 � V � 1 ;

where W � N(0; 0:01). The auxiliary regression functions indicate that Model 1 satis�es

A2(G)(a) and Model 2 satis�es A2(G)(b).

We also generated data directly from the two auxiliary regression models below:

Model 3.

Y =

�
V +W , 0 � V < 0:5

0:5 + 2V +W , 0:5 � V � 1 :

Model 4.

Y =

�
V +W , 0 � V < 0:5

1 + V +W , 0:5 � V � 1 :

In both models, V � U [0; 1], W � N(0; 0:01), and V is independent of W . Obviously

Model 3 satis�es A2(G)(a) and Model 4 satis�es A2(G)(b).

From each model, we generated random samples of sizes 500, 2; 500, 5; 000 respec-

tively and computed our wavelet estimates using Daub4. Daub4 has 4 vanishing moments

supported on [�3; 4]. All four estimators depend on the choice of a scale. For single scale

estimators, we chose six scale levels, 1; 2; 3; 4; 5; 6, while for many scales estimators, we chose

jL = 1; 2; 3; 4; 5; 6 and Kn = 2. We repeated this for 5; 000 times and computed the bias,
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standard deviation, and MSE of each estimator. To save space, results for samples of sizes

500 and 2; 500 are reported in Tables 1-4.

Tables 1-4 reveal the same qualitative behavior of each estimator for all models.

First, as the sample size increases, the MSEs of all estimators decrease; Second, overall

many locations estimator b�LC�SM0 performs much better than the single location estimator

b�LC�SS0 in terms of bias, standard error, and MSE; Third, many scales estimator b�LC�MS

0

performs better than the single scale estimator b�LC�SS0 , but the reduction in MSE is not

as much as that of the many locations estimator b�LC�SM0 in comparison with the single

scale and single location estimator b�LC�SS0 ; Fourth, for all estimators and all models, as the

scale level increases, the MSE decreases initially and then begins to increase. It seems that

for most cases considered, the optimal scale level is either 3 or 4.9 Overall, the numerical

results con�rm our theoretical �ndings that it is advantageous to use more locations and

more scales in estimating the jump size compared with single scale and single location

estimator currently available in the literature and that our many scales and many locations

estimator b�LC�MM

0 performs the best whether A2(G)(a) or A2(G)(b) holds.

Conclusion

In this chapter, we have studied the identi�cation of the LATE in two classes of

switching regime models. Both allow for individuals to make decisions based on not only

incentives assigned to them but also their unobserved characteristics. The �rst class of

switching regime models accounts for discontinuous incentive assignment mechanisms and

the second accounts for kink incentive assignment mechanisms. For each class of switching

regime models, we established auxiliary regressions for estimating the LATE based on which

9We have limited results on the selection of the optimal scale. For space considerations, we will report
details on this in a separate paper.
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we have presented a systematic treatment of wavelet estimation of the LATE. In addition

to making use of the existing wavelet estimator of the jump size or kink size, we have

developed local constant wavelet estimators improving upon the existing wavelet estimator

by employing more wavelet coe¢ cients. The asymptotic properties of all the estimators are

established and their �nite sample properties are investigated via a simulation study.

This chapter has focused on incentive assignment mechanisms depending on one

forcing variable and having a single known cut-o¤. In some empirical applications, the

cut-o¤ point may be unknown to the econometrician and there may be more than one

forcing variables. For example, Hoekstra (2009) applied RDD to studying the e¤ect of

attending the �agship state university on earnings. For the university and data set he used,

the admission�s cut-o¤ depends on both SAT score and high school GPA. Hoekstra (2009)

constructed an adjusted SAT score for a given GPA and estimated a parametric model with

the adjusted SAT score as the forcing variable. Since the university didn�t keep records of

the exact admission rules used, the cut-o¤ point is unknown and estimated. It would be

interesting to extend the local constant wavelet estimators proposed in this chapter to allow

for unknown cut-o¤ and/or more than one forcing variables.

This chapter also suppressed other covariates X (say) in the potential outcomes

equations and the selection equation. An extension of the model (I.1) and (I.2) accounting

for the presence of other covariates is:

Y1 = g1 (X;V;W ) , Y0 = g0 (X;V;W ) , (I.13)

D = Ifb(V ) + g3 (X)� U � 0g. (I.14)

Under appropriate conditions, the auxiliary regressions established earlier for estimating

the LATE in both discontinuous and kink incentive assignment mechanisms still hold and
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our wavelet estimators still apply. Alternatively, one may take into account the observable

covariates X in estimating the LATE. This may be done by making use of the alternative

auxiliary regressions:

Y = g(X;V ) + �0 (X) IfV � v0g+ ";

D = h (X;V ) + �0 (X) IfV � v0g+ �;

where E["jX;V ] = 0 and E[�jX;V ] = 0. Frölich (2007) proposed a local linear kernel esti-

mator taking into account the covariates X and compared it with the local linear estimator

without using X. The asymptotic analysis in Frölich (2007) seems to suggest that using the

covariates X may not always improve the performance of the LATE estimator. It would be

interesting to extend our wavelet estimators to take into account the covariates X. We�ll

leave this to future research.
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CHAPTER II

Local Polynomial Wavelet Estimation of the LATE

Introduction

Estimating treatment e¤ect parameters has become routine in empirical work in

economics. One such parameter that has recently gained considerable attention is the local

average treatment e¤ect (LATE). Numerous semiparametric and nonparametric estimators

for the LATE have been proposed in econometrics literature. The main purpose of this

chapter is to propose a new and intuitive approach� local polynomial wavelet approach� for

estimating the LATE under discontinuous incentive assignment mechanisms. We show that,

under a broad set of conditions, the local polynomial wavelet approach is optimal, and could

be easily adapted to estimating the LATE under kink incentive assignment mechanisms.

The motivation of our wavelet approach is the characterization of the point-wise

smoothness of a deterministic function by its wavelet coe¢ cient; a small (large) wavelet coef-

�cient corresponds to a high (low) smoothness of the function (see Appendix B for a detailed

statement). As a result of this point-wise smoothness characterization, wavelet coe¢ cients

have been widely used to detect discontinuous locations� see Wang (1995) and Raimondo

(1998), and estimate jump size (the di¤erence between right- and left-hand limits)� see Park

and Kim (2006) in statistics literature and local constant wavelet estimators in Chapter 1.

While Park and Kim (2006) presented a simple estimator using only one pair of the wavelet

coe¢ cient at the discontinuous location, local constant wavelet estimators integrated all

pairs of wavelet coe¢ cients around the discontinuous location and the resulting estimators
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had better asymptotic properties. Furthermore, local constant wavelet estimators are ap-

plied to the LATE estimations in a class of switching regime models. However, these wavelet

estimators failed to take any potential higher-order derivative discontinuities into consid-

eration, and this omission resulted in a sub-optimal convergence rate under the presence

of slope or higher-order derivative discontinuities. The local polynomial wavelet approach

in this chapter explicitly accounts for potential higher-order derivative discontinuities and

fully explores wavelet coe¢ cients generated from both time and frequency domains. In an

application for discontinuous (kink) incentive assignment mechanisms, we �nd that local

polynomial wavelet estimators attain the optimal convergence rate of the LATE.

Compared to local polynomial kernel estimators for jump size, local polynomial

wavelet estimators have �nite unconditional variances in �nite samples. It is well-known

in the statistics literature that local polynomial kernel estimators su¤er from a serious

drawback: for compactly supported kernels, the unconditional variance of local polynomial

kernel estimators is in�nite, so the mean squared error (MSE) and MSE optimal bandwidth

are not de�ned; see Seifert and Gasser (1996). In order to overcome this defect, our esti-

mators equispaced (Hall, et al., 1998) the original data in the �rst step. Not only could

such a transformation guarantee �nite unconditional variances for local polynomial wavelet

estimators while maintaining the �rst order property, it also would not degrade features of

the function through prior smoothing, especially when there are jumps. Moreover, local

polynomial wavelet estimators of jump size adapt to both random and �xed designs, and

to both highly clustered and nearly uniform designs in the large sample.

An interesting by-product of the local polynomial wavelet approach is that it could

jointly and optimally estimate jump sizes in any order derivatives, such as jump size, kink

size (the di¤erence between right- and left-hand �rst derivative limits), and up to jump
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sizes in higher-order derivatives. Such joint estimates of jump and kink sizes are infor-

mative about the LATE regimes we identi�ed� either discontinuous incentive assignment

mechanisms or kink incentive assignment mechanisms.

Next we show that all existing jump size estimators (based on the equispaced

data) share a common structure, being members of a class of local polynomial wavelet

estimators. Local polynomial kernel estimators are in the framework of local polynomial

wavelet estimators, which incorporate potential higher-order derivative discontinuities into

the criterion function. On the other hand, the class of local constant wavelet estimators

consists of time-frequency domain wavelet estimators by Park and Kim (2006). Also, in

the context of the time domain approach, Nadaraya-Watson estimator, partial smoothing

kernel estimator by Eubank and Speckman (1994), and pro�led partial linear estimator by

Porter (2003) could also be asymptotically expressed as local constant wavelet estimators.

In general, jump size estimates from local constant wavelet estimators have asymptotic bias

orders being inferior to the ones from local polynomial wavelet estimators, unless the slope

or higher-order derivatives are continuous.

The outline of the chapter follows. In Section 2 (page 47), local polynomial wavelet

estimators under discontinuous incentive assignment mechanisms are described. Section 3

(page 58) summarizes existing jump size estimators as being members of local polynomial

wavelet estimators. Section 4 (page 61) provides asymptotic results under kink incentive

assignment mechanisms. The proposed methods are examined in Section 5 (page 64), using

Monte Carlo simulations. Section 6 (page 67) suggests possible directions for the future

research. Proofs of the results are given in Appendix B.

Wavelet Estimators under Discontinuous Incentive Assignment
Mechanism
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In this section, we �rst review the LATE identi�cations by Chapter 1, and then

translate the LATE estimate as the ratio of two jump sizes from two auxiliary regressions.

Next, we introduce two types of local polynomial wavelet estimators: single-scale versus

multiscale, each of which are motivated from the time�frequency representation of wavelet

transformations. The asymptotic property of the LATE under single-scale local polynomial

wavelet estimator is provided, and we discuss the better asymptotic MSE through multiscale

local polynomial wavelet estimators.

Throughout the rest of this chapter, we adopt the following notation: x� means

that x is to the power �, while x(�) is the �-th derivative of x.

The LATE Identi�cation and Auxiliary Regressions

In their seminal 2001 paper, Hahn, et al. identi�ed the LATE under the regression

discontinuity design (RDD) with the local independence conditions. On the other hand,

Chapter 1 showed that without imposing the local independence conditions, the LATE

under the switching regime model could be identi�ed under the presence of a discontinuity

in the incentive assignment. Thee results in Chapter 1 generalized Lee (2008) by allowing for

general incentive assignment mechanisms, and more importantly, for heterogenous choices

among agents being assigned the same incentive.

Let V 2 V � R be a continuous random variable denoting the agent�s observable

covariate based on which the incentive assignment b : V 7! R is assigned. Based on the

incentive received b(V ) and one�s characteristic U , the agent chooses the treatment D = 1 or

D = 0; with potential outcomes Y1 (with treatment) or Y0 (without treatment), respectively.

46



We have

Y1 = g1 (V;W ) and Y0 = g0 (V;W ) , (II.1)

D = Ifb(V )� U � 0g, (II.2)

where U is the individual�s unobservable covariate a¤ecting selection, W is a vector of

the individual�s unobservable covariates a¤ecting potential outcomes, and g1 and g0 are

unknown real-valued measurable functions. The agent�s observable covariate V a¤ects

both potential outcomes and selection through the incentive assignment b (�). The func-

tion b (�) (could be unknown) is assumed to be either discontinuous at a known cut-

o¤ point1 v0 (discontinuous incentive assignment mechanisms) or continuous but non-

di¤erentiable at v0 (kink incentive assignment mechanisms). Assume the econometrician

observes (V; Y;D) ; where the individual�s realized outcome Y = DY1 + (1�D)Y0. Let

P (v) = Pr (D = 1jV = v) = E(DjV = v). Under discontinuous incentive assignment mech-

anisms, the LATE, lime#0E(Y1 � Y0jV = v0; D(v0 + e)�D(v0 � e) = 1); is identi�ed as

limv#v0 E(Y jV = v)� limv"v0 E(Y jV = v)

limv#v0 P (v)� limv"v0 P (v)
; (II.3)

which is the ratio of the jump size in E(Y jV ) to the jump size in P (V ) at V = v0. Chapter

1 established auxiliary regressions linking the LATE2 under discontinuous incentive assign-

ment mechanisms to jump sizes �0 and �0 in Equation (II.4) and (II.5), which are

Y = g(V ) + �0IfV � v0g+ "; (II.4)

D = h(V ) + �0IfV � v0g+ �; (II.5)

1For the unknown cuto¤ point, we could apply Wang (1995) and Raimondo�s (1998) wavelet methods to
detect discontinuous locations. Under standard regularity conditions, the estimated cuto¤ points converge
at rates faster than n�1=2; so that the asymptotic results of local polynomial wavelet estimators in this paper
remain valid even under the estimated cuto¤ point.

2See Proposition 1 in Chapter 1.
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where E ("jV ) = 0, E (�jV ) = 0, �0 = limv#v0 E(Y jV = v) � limv"v0 E(Y jV = v), �0 =

limv#v0 P (v)� limv"v0 P (v), and both h and g are continuous on the support of V:

Single-scale Local Polynomial Wavelet Estimator

Under discontinuous incentive assignment mechanisms, we could estimate the

LATE by using the estimation of �0=�0. Since the idea for estimating �0 and �0 is the

same, we focus on the estimation of �0.

Let FV (�) and bFV (�) denote the true and empirical distribution functions of V
and � = FV (v0). Denote V1:n � � � � � Vn:n as the order statistics of fVigni=1. Further, let

ti = i=n for 1 � i � n. Then, with the induced order statistics fYi:ngni=1 satisfy

Yi:n = g(Vi:n) + �0IfVi:n � v0g+ "i:n (II.6)

= g( bF�1V (ti)) + �0Ifti � bFV (v0)g+ "i:n
= G (ti) + �0Ifti � �g+ ei;

where G(t) = g(F�1V (t)), b� � bFV (v0) and
ei = �0 [Ifti � b�g � Ifti � �g]�

h
g(F�1V (ti))� g( bF�1V (ti))

i
+ "i:n:

Assumption Set B.

Assumption B1. A random sample, (Vi; Yi; Di), i = 1; :::; n, is available.

Assumption B2.

(G). LetG(t) = g(F�1V (t)_). G(t) is p-th continuously di¤erentiable at t 2 (0; 1)nf�g,

and is continuous at t = � with �nite right- and left-hand derivatives up to the order p.

(H). Let H(t) = h(F�1V (t)). H(t) is q-th continuously di¤erentiable at t 2

(0; 1)nf�g, and is continuous at t = � with �nite right- and left-hand derivatives up to
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the order q.

Assumption B3.

(H) �2"(v) = E("2jV = v) is continuous at v 6= v0 and its right- and left-hand limits

at V = v0 exist; (b) for some &" > 0, E[j"j2+&" jv] is uniformly bounded on the support of

V .

(G) �2� (v) = E(�2jV = v) is continuous at v 6= v0 and its right- and left-hand

limits at V = v0 exist; (b) for some &� > 0, E[j�j2+&� jv] is uniformly bounded on the support

of V .

(HG) �"� (v) = E("�jV = v) is continuous at v 6= v0 and its right- and left-hand

limits at v0 exist.

Assumption B4. (a) The real-valued wavelet function  (�) is continuous with

compact support [a; b], where a < 0 < b and m vanishing moments, i.e.,
R b
a u

j (u) du = 0

for j = 0; 1; :::;m� 1; (b)
R b
a u

m (u) du 6= 0 and
R b
a ju

m (u)j du <1; (c)  has a bounded

derivative and satis�es the admissibility condition that
R ���b (�)���2 = j�j d� < 1, where b (�)

is the Fourier transform of  (t).

Assumption B5. As n ! 1, j0 ! 1, 2j0=n ! 0 and
�
1=2j0

�2m�1p
n=2j0 !

C <1.

Assumption B6. The function F�1V (v) is continuously di¤erentiable on the sup-

port of V .

Assumption B2 allows functions G andH could have the potential slope changes or

derivative discontinuities at t = � up to p-th and q-th orders, respectively. Assumption B3

allows for the possible heteroskedasticity. Assumptions B4 (a), (b), and (c) specify the class

of wavelet functions  . Compared to the kernel function, the wavelet function  integrates

to zero. Examples of wavelet functions  include classes of Daubechies wavelet functions
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and least asymmetric wavelet functions. Assumption B5 provides conditions on the scale

parameter j0, whose role is analogous to the reciprocal of the bandwidth parameter in the

kernel estimation.

Based on Assumption B2 (G), we model potential derivative discontinuities up to

p-th order for the function G at t = �

G(ti) = G�(ti) +

pX
k=1

�k �
�
F�1V (ti)� v0

�k
Ifti � �g; (II.7)

where f�kgpk=1 includes the kink size �1, the jump size in the second derivative (�2=2!) till

the jump size in the p-th derivative (�p=p!). Notice that G�(�) is p-th di¤erentiable on the

whole support. Substitute Equation (II.7) into Equation (II.6) and we have

Yi:n = G�(ti) +

pX
k=0

�k �
�
F�1V (ti)� v0

�k
Ifti � �g+ ei: (II.8)

Let b�A
j0
(t) denote the wavelet coe¢ cient of fAigni=1 at the location t 2 [0; 1] and

a �xed scale3 j0, where t and j0 represent the time and frequency parameters, respectively:

b�A
j0 (t) =

2j0=2

n

nX
i=1

Ai 
�
2j0(ti � t)

�
:

Applying the wavelet transformation to both sides of Equation (II.8), we have

b�Y
j0 (ti) =

b�G�
j0 (ti) +

pX
k=0

�k � b�Dk
j0
(ti) + b�e

j0 (ti) ; (II.9)

3In the next subsection, we would vary the scale parameter to construct multiscale local polynomial
wavelet estimators.
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where Dk(t) =
�
F�1V (t)� v0

�k
Ift � �g for k = 0; 1; � � � ; p and

b�Y
j0 (t) =

2j0=2

n

nX
i=1

Yi:n 
�
2j0(ti � t)

�
;

b�Dk
j0
(t) =

2j0=2

n

nX
i=1

Dk(ti) 
�
2j0(ti � t)

�
;

b�e
j0 (t) =

2j0=2

n

nX
i=1

ei 
�
2j0(ti � t)

�
:

It is well-known that the wavelet coe¢ cient b�A
j0
(t) captures the variation of the

sequence fAigni=1 at the location parameter t. Heuristically, when the scale j0 is large, b�A
j0
(t)

is small unless there is a discontinuity in fAigni=1 at i = t. Since G� is p-th di¤erentiable

on the whole support, its wavelet coe¢ cient is expected to be small. On the other hand,

Dk has the k-th derivative discontinuity at t = � , so wavelet coe¢ cients b�Dk
j0
(t) would be

large in the neighborhood of � . Combining these arguments4, Equation (II.9) reduces to

b�Y
j0 (ti) �

pX
k=0

�k � b�Dk
j0
(ti) + b�e

j0 (ti) :

This motivates single-scale local polynomial wavelet estimator:

b�LP�SM = arg min
f�kgpk=0

nX
l=1

"b�Y
j0 (tl)�

pX
k=0

�k � b� bDk
j0
(tl)

#2 bIj0(tl); (II.10)

where

b�LP�SM =
hb�LP�SM0 ;b�LP�SM1 ; � � � ;b�LP�SMp

i
;

bDk(t) =
h bF�1V (t)� v0

ik
Ift � b�g for k = 0; 1; � � � ; p

and bIj0(t) = Ifa � 2j0(b� � t) � bg; which is the cone of in�uence de�ned in Mallat (2009).

The quali�er single-scale comes from the fact that we are only using wavelet coe¢ cients

4A formal explanation would be: within the interval ft : a � 2j0(� � t) � bg; b�G�
j0 (t) and b�D

j0 (t) are of

orders 2(�p�1=2)j0 and
n
2(�s�1=2)j0

op�1
s=0

as j0 tends to in�nity. If we pick up a scale j0 such that the orders

of b�G�
j0 (t) and b�e

j0 (t) are balanced, the b�Y
j0 (t) would be dominated by b�D

j0 (t) :
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nb�Y
j0
(t) ; b�D

j0
(t) : t 2 [0; 1]

o
for a given scale j0, instead of

nb�Y
j (t) ;

b�D
j (t) : j 2 Z+; t 2 [0; 1]

o
in multiscale local polynomial wavelet estimators. The quali�er polynomial is to indicate the

wavelet transformation of
�
F�1V (t)� v0

�k
Ift � �g for k = 0; 1; � � � ; p; and notice that there

is no intercept term in Equation (II.10). Single-scale local polynomial wavelet estimator

b�LP�SM has a closed-form expression

b�LP�SM =

��b�dDP
j0

�T
� bIj0 � b�dDP

j0

��1 ��b�dDP
j0

�T
� bIj0 � b�Y

j0

�
;

where

�b�dDP
j0

�T
=

h�b�dDP
j0 (t1)

�
;
�b�dDP

j0 (t2)
�
; � � � ;

�b�dDP
j0 (tn)

�
)
i
;

b�dDP
j0 (t) =

�b� bD0
j0
(t) ; b� bD1

j0
(t) ; � � � ; b� bDp

j0
(t)

�T
;

bIj0 = diag
hbIj0(t1); bIj0(t2); � � � ; bIj0(tn)i ;�b�Y

j0

�T
=

hb�Y
j0(t1);

b�Y
j0(t2); � � � ; b�Y

j0(tn)
i
:

Theorem 15 Under Assumption Set B and p � 2m:
(1) the asymptotic bias of single-scale local polynomial wavelet estimator b�LP�SM

is

lim
n!1

diag
h
2(2m�1)j0 ; 2(2m�2)j0 ; :::; 2(2m�p�1)j0

i h
E(b�LP�SM )� �i

=

26664
G�(2m�1)(�) � (M�)�1(0;0)N

�
(0)

G�(2m�1)(�) � (M�)�1(1;0)N
�
(0)

:::

G�(2m�1)(�) � (M�)�1(p;0)N
�
(0)

37775 ;
where

M�
(i;j)

=
1

f i+jV (v0)

ZZ bZ
a

(w � t)i(v � t)jIfw � t � 0gIfv � t � 0g (w) (v)dwdvdt for 0 � i; j � p

and

N�
(0) =

1

m!(m� 1)!

Z b

a
 (u)umdu �

Z bZ
a

Ifw � t � 0g(�t)m�1 (w)dtdw;
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(2) the asymptotic variance of single-scale local polynomial wavelet estimator b�LP�SM
is

lim
n!1

n � � � V ar(b�LP�SM ) = (M�)�1V �(M�)�1;

where

��1(i;j) =

�
2(1+2i)j0 ;when 0 � i = j � p

0; otherwise

and for 0 � i; j � p;

V �(i;j)

=
�2"�(v0)

f i+jV (v0)

Z 0

a�b

24Z bZ
a

Ifw � t � 0g(w � t)i (w) (u+ t)dwdt

35
24Z bZ

a

Ifw � t � 0g(w � t)j (w) (u+ t)dwdt

35 du
+

�2"+(v0)

f i+jV (v0)

Z b�a

0

24Z bZ
a

Ifw � t � 0g(w � t)i (w) (u+ t)dwdt

35
24Z bZ

a

Ifw � t � 0g(w � t)j (w) (u+ t)dwdt

35 du;
(3)r
n

2j0

�b�LP�SM0 � �0
�

d! N(CB0; V0);

where

B0 = G�(2m�1)(�) � (M�)�1(0;0)N
�
(0);

V0 =
�
(M�)�1V �(M�)

��1
(0;0)

:

Remarks

(1) In the �nite sample, single-scale local polynomial wavelet estimator has the

�nite unconditional variance via equispacing5 as in Hall, et al. (1998). However, for local

5Other ways of achieving the �nite unconditional variance are also available, such as, local polynomial
ridge regression by Seifert and Gasser (1996, 2000) and shrinkage local linear regression by Hall and Marron
(1997). However those methods require nontrivial restrictions on additional tuning parameters to maintain
the �rst order asymptotic properties.
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polynomial kernel approach, a �nite-sample analysis by Seifert and Gasser (1996) showed

that local polynomial kernel estimators with a compactly supported kernel6 would have the

in�nite unconditional variance. Therefore, local polynomial kernel estimators are sensitive

to the choices of bandwidths and kernels.

The asymptotic bias term of b�LP�SM0 is independent of the underlying density fV .

This feature is usually called design-adaptive (Fan, 1992) to both random and �xed designs,

and to both highly clustered and nearly uniform designs. In contrast, local polynomial kernel

estimators with symmetric kernels are only design-adaptive when the polynomial order is

even.

(2) For the known smoothness p, the single-scale local polynomial wavelet estima-

tor b�LP�SM in Equation (II.10) achieves the optimal convergence rate7 under Assumption

B2 (H), where only the existence of right- and left-hand derivatives are assumed: for the

jump size estimate b�LP�SM0 , it could have the optimal convergence rate n�p=(2p+1); for

jump sizes in higher-order derivatives, single-scale local polynomial wavelet estimator also

achieves their optimal convergence rates, for example, the optimal rate of convergence for

kink size estimate is n�p=(2p+3).8

(3) In order to select the �rst order optimal9 scale j0, we suggest a local cross-

validation approach, since �0 is locally de�ned at t = � and cross-validation is consistent

6The optimal kernel for jump size from the local polynomial kernel estimation is the compactly supported
Bartlett kernel. See Remark 4 in Sun (2005).

7When the order of local polynomial wavelet estimators is chosen to be smaller than p, resulting estimators
do not have the optimal convergence rate under Assumption B2 (H); on the other hand, using a larger
polynomial order than p will only in�ate the asymptotic variance without the bene�t of bias reduction.

8The proof is essentially following Section 2.5 in Tsybakov (2009) and is available upon request.
9The �rst order optimal selected scale bjopt0 is de�ned to satisfy

MSE
hb�LP�SM0 (bjopt0 )

i
� infjMSE

hb�LP�SM0 (j)
i

a:s:! 1, although it might not be higher-order optimal

where the relative error of the selected scale has the optimal convergence rate.
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under weak conditions (Stone, 1984). The selection criterion function is

argmin
j0

1

n

nX
l=1

�b�Y
j� (tl)�

�b�J0;�l(j0)�T � b� bD0
j� (tl)

�2 bIj�(tl);
where

b�LP�SM0;�l (j0) is the �rst entry of b�LP�SM�l (j0)

and

b�LP�SM�l (j0) = arg min
f�kgpk=0

nX
i=1;l 6=i

"b�Y
j0 (ti)�

pX
k=0

�k � b� bDk
j0
(ti)

#2 bIj0(ti):
Here the preliminary scale j� is chosen to satisfy j� ! 1 and 2j

�
=n ! 0 as n ! 1,

which is less sensitive, according to Mielniczuk, et al. (1989) and Vieu (1991), in the

nonparametric curve estimation. Notice that the selected scale j0 only appears in the leave-

one-out estimators b�LP�SM�l (j0).

We are now ready to estimate the LATE. Let fDi:ngni=1 denote the induced order

statistics from fVi:ngni=1; and also we have single-scale local polynomial wavelet estimator;

b�LP�SM = argmin
f�kg

q
k=0

nX
l=1

"b�D
j0 (tl)�

qX
k=0

�k � b� bDk
j0
(tl)

#2 bIj0(tl)
where

b�LP�SM =
hb�LP�SM0 ;b�LP�SM1 ; :::;b�LP�SMq

i
;

b�D
j0 (t) =

2j0=2

n

nX
i=1

Di:n 
�
2j0(ti � t)

�
:

For simplicity, we use the same wavelet function  and scale j0 to estimate �0.
10

10Since �0 is constrained to [�1; 1], the constrained single-scale local polynomial wavelet estimator is

min
f�kg

q
k=0

nX
l=1

"b�D
j0 (tl)�

qX
k=0

�k � b� bDk
j0
(tl)

#2 bIj0(tl) subject to �0 2 [�1; 1]:
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This can be relaxed at the expense of more tedious derivations.

Theorem 16 Under Assumption Set B and p � 2m, q � 2m,

(n=2j0)1=2

 b�LP�SM0b�LP�SM0

� �0
�0

!
d! N

�
1

�0
C

�
B0 �

�0
�0
BD
0

�
;
1

�20

�
V0 �

2�0
�0
V Y D
0 +

�20
�20
V D
0

��
;

where

BD
0 = H�(2m�1)(�) � (M�)�1(0;0)N

�
(0);

V D
0 =

�
(M�)�1V D�(M�)

��1
(0;0)

;

V Y D
0 =

�
(M�)�1V Y D�(M�)

��1
(0;0)

;

and V D� and V Y D� are de�ned similar to V �, except for replacing the entity (�2"�; �
2
"+)

with (�2��; �
2
�+) and (�

2
"��; �

2
"�+).

Remarks Single-scale local polynomial wavelet approach could test the va-

lidity of the LATE identi�cation under discontinuous incentive assignment mechanisms

(Proposition 2 in Lee, 2008). If we suppose that there is a pre-determined variable X 2

X � R (one whose value has already been determined prior to treatment assignment), then

the argument that Pr [X � xjV = v0] is continuous for every x 2 X would be necessary for

the LATE identi�cation. Using single-scale local polynomial wavelet approach, we are able

to examine whether E(XjV ) changes discontinuously around V = v0, and then we could

justify su¢ cient conditions for the identi�cation of the LATE.

Multiscale Local Polynomial Wavelet Estimator

In this section, we brie�y discuss multiscale local polynomial wavelet estimators.

The insight is gained from the fact that, given the cuto¤ location V = v0, wavelet coe¢ cients

are large in many scales other than only j0. Thus, for multiscale local polynomial wavelet

estimators, we would use wavelet coe¢ cients
nb�Y

j (t) ;
b�D
j (t) : j 2 Z+; t 2 [0; 1]

o
from both

time and frequency domains. In the context of nonparametric kernel density estimations,

this has similarities to that of Kotlyarova and Zinde-Walsh (2006, 2008), whose estimator
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averaged di¤erent bandwidths and kernels. Analogously, our multiscale local polynomial

wavelet estimators are averaging estimators from di¤erent scales. A pooled multiscale local

polynomial wavelet estimator11 is

b�LP�MM

= arg min
f�kgpk=0

jUX
j=jL

nX
l=1

"b�Y
j (tl)�

pX
k=0

�k � b� bDk
j (tl)

#2 bIj(tl);
where

b�LP�MM
=
hb�LP�MM

0 ;b�LP�MM

1 ; � � � ;b�LP�MM

p

i
:

Another possible approach, which we call a component multiscale local polyno-

mial wavelet estimator, involves estimating di¤erent single-scale local polynomial wavelet

estimators separately, and then combining individual estimators with optimal weights. The

asymptotic mean squared errors (AMSE) of the combined estimator will not be larger than

the smallest AMSE of the individual estimator that is included in the combination.

A Synthesis of Existing Jump Size Estimators

In this section, we group existing jump size estimators into either local constant

wavelet estimators or local polynomial wavelet estimators. This includes the wavelet ap-

proach from both time and frequency domains, such as in Park and Kim (2006); or esti-

mators from only the time domain, such as in Eubank and Speckman (1994) and Porter

11There is an e¢ ciency gain from using more information in multiscale wavelet estimators con�rmed
by Theorem 7 and 11 in Chapter 1. Heuristically this is because when �2"+(v0) = �2"�(v0) and�
 
�
2jt� w

�
: j 2 Z+; w 2 N

	
constitute an orthonormal basis for square integrable functions, each of

single-scale wavelet estimators is asymptotically independent so that their combination would reduce the
variance.

57



(2003).

Wavelet Approach

The wavelet estimator b�LC�SS0 in Chapter 1 used only one pair of the wavelet

coe¢ cient at the discontinuous location, and had the expression b�Y
j0
(b�)�b� bD0

j0
(b�); on the

other hand, b�LC�MM

0 in Chapter 1 integrated all pairs of wavelet coe¢ cients around the

discontinuous location, and had the expression as

b�LC�MM

0 =

PjU
j=jL

Pn
l=1
b�Y
j (tl)

b� bD0
j (tl) bIj(tl)PjU

j=jL

Pn
l=1

hb� bD0
j (tl)

i2 bIj(tl) :

The di¤erence between b�LC�SS0 and b�LC�MM

0 is that the latter uses more sample

information by including more wavelet coe¢ cients at di¤erent locations and di¤erent scales,

so that it improved the AMSE. This idea is similar to the nonparametric curve estimations

where He and Huang (2009) established an integral estimator with respect to locations, while

Choi and Hall (1998) and Cheng, et al. (2007) formed a linear combination of estimators

based on di¤erent locations.

We de�ne the local constant wavelet estimator as

b�LC�MM

0 = argmin
�0

jUX
j=jL

nX
l=1

hb�Y
j (tl)� �0 � b� bD0

j (tl)
i2 bIj(tl)

which only considers jump size �0; compared to f�kgpk=0 in local polynomial wavelet esti-

mators.

Corollary 1 (1) b�LC�SS0 is a special case of local constant wavelet estimators b�LC�MM

0 ,
where jL = jU = j0 and ftlgnl=1 = fb�g;

(3) both b�LC�SS0 and b�LC�MM

0 only have the optimal convergence rate under the
assumption of the function G being p-th di¤erentiable at t = � .
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Time-Domain Approach

This section shows that all time-domain jump size estimators could be asymp-

totically expressed as either local constant wavelet estimators or local polynomial wavelet

estimators. In the literature, there are two types of time-domain estimators: the �rst one is

to estimate jump size by di¤erencing two nonparametric estimators, and the other one is to

estimate jump size in the context of a partial linear model. For the purpose of comparison,

all these estimators are equispaced. Given a symmetric kernel function K with m vanishing

moment, Nadaraya-Watson estimator is

b�NW0 =

Pn
i=1K(

ti�b�
h )Ifti � b�gYi:nPn

i=1K(
ti�b�
h )Ifti � b�g �

Pn
i=1K(

ti�b�
h ) [1� Ifti � b�g]Yi:nPn

i=1K(
ti�b�
h ) [1� Ifti � b�g] ;

partial smoothing kernel estimator (Eubank and Speckman, 1994) is

b�ES0 =
�
IT ft � b�g(I � S)2Ift � b�g��1 �IT ft � b�g(I � S)2Y�:n� ;

pro�led partial linear estimator (Porter, 2003) is

b�PO0 = argmin
�0

nX
i=1

24Yi:n � �0Ifti � b�g � nX
j=1

K(
ti�tj
h )Pn

l=1K(
ti�tl
h )

[Yj:n � �0Iftj � b�g]
352 ;

local polynomial kernel estimator is

b�LP0 = arg min
f�rg

p
r=0;f�kg

p
k=0

1

n

nX
i=1

"
Yi:n �

pX
r=0

�j(ti � b�)r � pX
k=0

�k( bF�1V (ti)� v0)kIfti � b�g#2K( ti � b�
h

);

where

IT ft � b�g = [Ift1 � b�g; � � � ; Iftn � b�g] ;
S(i;j) =

1

nh

�
K(

ti � tj
h

)

�
for 1 � i; j � n;

Y�:n = [Y1:n; � � � ; Yn:n]T :

Theorem 17 (1) b�NW0 , b�ES0 and b�PO0 could be asymptotically expressed as local constant

wavelet estimators b�LC�MM

0 , and only have the optimal convergence rate under the assump-
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tion of the function G being p-th di¤erentiable at t = � ;

(2) b�LP0 could be asymptotically expressed as local polynomial wavelet estimatorb�LP�MM

0 , and has the optimal convergence rate under Assumption B2 (G).

Wavelet Estimators under Kink Incentive Assignment Mechanism

The LATE Identi�cation and Auxiliary Regressions

Under kink incentive assignment mechanisms, Chapter 1 identi�ed the LATE when

there is a kink in the incentive assignment b. Their result is similar to Card, et al. (2009)

with several important di¤erences: �rst and most important, Card, et al. (2009) assumed

that D = b (V ), thus excluding heterogenous choices among agents being assigned the same

incentive; second, they assumed the incentive assignment mechanism b is known; third,

they considered a continuous treatment instead of a binary treatment. In addition, the

identi�cation of the LATE under kink incentive assignment mechanisms in Chapter 1 is

related to a similar result for regression kink design (RKD) in Dong (2010), except her

result is not derived under a switching regime model.12 Under kink incentive assignment

mechanisms, the LATE is identi�ed as

limv#v0 dE(Y jV = v)=dv � limv"v0 dE(Y jV = v)=dv

limv#v0 P
0(v)� limv"v0 P

0(v)
; (II.11)

which is the ratio of the kink size in E(Y jV ) to the kink size in P (v) at V = v0: Chapter

1 established auxiliary regressions linking the LATE13 under kink incentive assignment

12In general, a switching regime model is easy to rationalize the observed and counterfactual data (Vytlacil,
2002).
13See Proposition 2 in Chapter 1.
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mechanisms to kink sizes �1 and �1 in (II.12) and (II.13)

Y = gK(V ) + �1(V � v0)IfV � v0g+ "K ; (II.12)

D = hK(V ) + �1(V � v0)IfV � v0g+ �K ; (II.13)

where E("K jV ) = 0, E(�K jV ) = 0, �1 = limv#v0 dE(Y jV = v)=dv�limv"v0 dE(Y jV = v)=dv,

�1 = limv#v0 P
0(v) � limv"v0 P

0(v), and both gK and hK are continuously di¤erentiable on

the support of V:

Single-scale Local Polynomial Wavelet Estimator

Since the idea of estimating �1 and �1 is the same, we focus on the estimation of

�1. The induced order statistics fYi:ngni=1 satisfy

Yi:n = gK(Vi:n) + �1(Vi:n � v0)IfVi:n � v0g+ "ki:n

= gK( bF�1V (ti)) + �1

� bF�1V (ti)� v0
�
Ifti � bFV (v0)g+ "ki:n (II.14)

= GK (ti) + �1
�
F�1V (ti)� v0

�
Ifti � �g+ eki ;

where GK(t) = gK(F
�1
V (t)) and

eki = �1

h
Ifti � b�g� bF�1V (ti)� v0

�
� Ifti � �g

�
F�1V (ti)� v0

�i
�
h
gK(F

�1
V (ti))� gK( bF�1V (ti))

i
+"ki:n:

Assumption Set BK.

Assumption B1K. A random sample (Vi; Yi; Di), i = 1; :::; n, is available.

Assumption B2K.

(H). Let GK(t) = gK(F
�1
V (t)_). HK(t) is (p + 1)-th continuously di¤erentiable at

t 2 (0; 1)nf�g, and is continuously di¤erentiable at t = � with �nite right- and left-hand

derivatives up to the order p+ 1.
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(G). Let HK(t) = hK(F
�1
V (t)). GK(t) is (q + 1)-th continuously di¤erentiable at

t 2 (0; 1)nf�g, and is continuously di¤erentiable at t = � with �nite right- and left-hand

derivatives up to the order q + 1.

Assumption B3K.

(H) �2"K(v) � E("2K jV = v) is continuous at v 6= v0 and its right- and left-hand

limits at V = v0 exist; (b) for some �"K > 0, E[j"K j2+�"K jv] is uniformly bounded on the

support of V .

(G) �2�K(v) � E(�2K jV = v) is continuous at v 6= v0 and its right- and left-hand

limits at V = v0 exist; (b) for some ��K > 0, E[j�K j2+��K jv] is uniformly bounded on the

support of V .

(HG) �"� (v) � E("K�K jV = v) is continuous at v 6= v0 and its right and left-hand

limits at v0 exist.

Assumption B4K. (a) The wavelet function  is continuous with compact sup-

port [a; b], where a < 0 < b and (m+ 1) vanishing moments, i.e.,
R b
a u

j (u) du = 0 for

j = 0; 1; :::;m; (b)
R b
a u

m (u) du 6= 0 and
R b
a ju

m (u)j du <1; (c)  has a bounded deriv-

ative and an admissibility condition that
R ���b (�)���2 = j�j d� <1, where b (�) is the Fourier

transform of  (t).

Assumption B5K. As n!1, jk !1 and 23jk=n! 0.

Assumption B6K. The function F�1V (v) is continuously di¤erentiable on the

support of V .

Assumption B2K assumes continuously di¤erentiable ofGK andHK at t = � under

kink incentive assignment mechanisms. The scale jk in Assumption B5K is accommodat-

ing the convergence rate of the kink size estimate. Single-scale local polynomial wavelet
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estimator b�LP�SMK is

b�LP�SMK = arg min
f�kgp+1k=1

nX
l=1

"b�Y
jk
(tl)�

p+1X
k=1

�k � b� bDk
jk
(tl)

#2 bIjk(tl); (II.15)

where

b�LP�SMK =
hb�LP�SMK;1 ;b�LP�SMK;2 ; � � � ;b�LP�SMK;p+1

i
:

Under kink incentive assignment mechanisms, single-scale local polynomial wavelet

estimator b�LP�SMK consists of
nb� bDk

jk
(t)
op+1
k=1
, instead of

nb� bDk
j0
(t)
op
k=0

under discontinuous

incentive assignment mechanisms.

Theorem 18 Under Assumption Set BK and p � 2m,

lim
n!1

2(2m�1)jk
h
E(b�LP�SMK;1 )� �1

i
= c <1;

lim
n!!1

n

23jk
V ar(b�LP�SMK;1 ) = d <1;

where c and d are some generic constants.

Since the proof is very similar to Theorem 15, it is omitted. In order to estimate

�1, the unconstrained single-scale local polynomial wavelet estimator b�KJ is
b�LP�SMK = arg min

f�kg
p+1
k=1

nX
l=1

"b�D
jk
(tl)�

p+1X
k=1

�k � b� bDk
jk
(tl)

#2 bIjk(tl);
where

b�LP�SMK =
hb�LP�SMK;1 ;b�LP�SMK;2 ; � � � ;b�LP�SMK;p+1

i
:

In the end, the LATE under kink incentive assignment mechanisms is calculated

as b�LP�SMK;1 =b�LP�SMK;1 ; which asymptotically converges to a normal distribution at the rate�
n=23jk

�1=2.

Numerical Analysis
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This section presents results from Monte Carlo simulation studies. We focus on

�nite sample performances of local polynomial wavelet estimators. Notice that the uncon-

ditional MSE under the �nite sample is calculated from E
�b� � ��2 = E

h
V ar

�b� j V�i +
E
h
E
�b� j V�� �i2 for V � fVigni=1.

Local Polynomial Wavelet Estimator of the Jump Size

The jump size model is

Y =

�
V + V 2 +W , 0 � V < 0:5

1 + 2V + 3V 2 +W , 0:5 � V � 1 ; (II.16)

where V � U [0; 1] and W � N(0; 0:01) are independent. The model (II.16) satis�es

Assumption Set A, with jump size �0 being 2, kink size �1 being 3; and the second derivative

jump size �2 being 4 at the discontinuous location V = 0:5. We examine the �nite sample

performance of b�LP�SM0 under di¤erent sample sizes f500; 2500; 5000g with a Daubechies-4

wavelet and 250 simulations within 100 realizations of the design V . We carry out four

estimators with di¤erent polynomial orders in Equation (II.10). These four estimators are:

Zeta2, the single-scale local quadratic wavelet estimator; Zeta1, the single-scale local linear

wavelet estimator; Zeta0, the single-scale local constant wavelet estimator; and Zeta3, the

single-scale local cubic wavelet estimator.

Several observations are in order from Figure 1 to 3. First, for the sample size

f500; 2500; 5000g, Zeta0 performs the worst because it does not consider any slope change

or higher-order derivative discontinuities. Notice that when the scale j0 is small, the MSE

from Zeta0 is the largest due to its worst bias order reduction; however, for larger scales,

all four estimators perform similarly due to dominant variances. Second, we �nd that

Zeta1 has the best �nite sample MSE even without considering the second order derivative
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discontinuity. Although according to Theorem 15, Zeta2 should be optimal in the large

sample, the asymptotic improvement from Zeta2 is not generally noticeable in �nite samples

compared with Zeta1. See Marron and Wand (1992) for a similar argument about higher-

order kernels. The MSE improvement from Zeta0 to Zeta1 is quite signi�cant due to the

bias order reduction, while the improvement from Zeta1 to Zeta2 is trivial and even negative

because of the increased variance. Nevertheless, Zeta1 is not that robust to small variations

around the optimal scale, so that we still recommend Zeta2 in practice when lacking the

reliable scale selection criterion.

To check the robustness of local polynomial wavelet estimators, we implemented

the following scenarios and the results in Figure 4 and 5 are encouraging: (1) W jV fol-

lowing a multivariate studentized t distribution (Heckman, Tobias and Vytlacil, 2003); (2)

V ar(W jV ) being heteroskedastic; (3) the marginal distribution of V being di¤erent; (4) dif-

ferent signal to noise level; (5) di¤erent vanishing moment wavelet functions; (6) di¤erent

kernel functions to replace bIj0(t) in Equation (II.10); and (7) perturbing Equation (II.16)
with an added sine function.

Local Polynomial Wavelet Estimator of the Kink Size

The kink size model is

Y =

�
V � 0:5 +W , 0 � V < 0:5

10(V � 0:5) +W , 0:5 � V � 1 ; (II.17)

where V � U [0; 1] and W � N(0; 0:022) are independent. The model (II.17) satis�es As-

sumption Set B, with kink size �1 being 9 at the discontinuous location V = 0:5. We examine

the �nite sample performance of b�LP�SMK;1 under the sample size 500; with a Daubechies-4

wavelet and 250 simulations within 100 realizations of the design V . Four estimators are
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carried out based on di¤erent polynomial orders: Kink_012 is from the single-scale local

quadratic wavelet estimator, Kink_01 is from the single-scale local linear wavelet estimator,

Kink_12 is from the single-scale local quadratic wavelet estimator without considering the

jump size, and �nally Kink_1 is from the single-scale local linear wavelet estimator without

considering the jump size. All four estimators perform well by Figure 6, although there are

some variations at small scales.

Future Research

Local polynomial wavelet estimators could achieve the LATE�s optimal conver-

gence rate when the smoothness parameters p and q in Assumption A2 or Assumption B2

are known. However, in practice, this is impossible. We would need to make our estimators

adaptive, where the modi�ed versions could have the optimal convergence rate14 (or up to

a logarithmic factor) without knowing the smoothness. In the context of local polynomial

kernel estimators of the LATE, Sun (2005) proposed an adaptive estimator based on the

estimated smoothness.15 In order to construct our adaptive local polynomial wavelet esti-

mators, we suggest using the least absolute shrinkage and selection operator (LASSO) to

achieve the goal of simultaneous estimation of f�kgpk=0 and polynomial order selection for

p. By introducing a penalty on the absolute values of f�kgp
�

k=0, LASSO local polynomial

wavelet estimator is

b�LASSO = arg min
f�kgp

�
k=0

nX
l=1

24b�Y
j0 (tl)�

p�X
k=0

�k � b� bDk
j0
(tl)

352 bIj0(tl) + p�X
k=0

�k j�kj ;

where f�kgp
�

k=0 are penalty parameters satisfying �k �! 0 as n!1.
14Wavelet curve estimators have this adaptation property (Section 11.3 in Härdle, et al., 2000) even when

the underlying function has discontinuities (Park and Kim, 2006), so a natural adaptive estimator for jump
sizes could be constructed from di¤erencing two wavelet curve estimates.
15Alternatively, we could use maxima propagation of wavelet coe¢ cients by Mallat (2009) to estimate the

degree of the smoothness.
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The identi�cation and estimation of the LATE in this chapter have focused on

incentive assignment mechanisms b(V ) depending on only one forcing variable V 2 V � R.

In some empirical applications, the V may be more than one dimension. For example,

Hoekstra (2009) applied RDD to study the e¤ect of attending the �agship state university

on earnings. For the data used in the paper, the admissions rule depended on both the

student�s SAT score and high school GPA. Hoekstra (2009) constructed an adjusted SAT

score for a given GPA and estimated a parametric model with the adjusted SAT score as the

single forcing variable. It would be interesting to extend local polynomial wavelet estimators

to allow for more than one forcing variable. Since multidimensional wavelet functions are

powerful tools for edge detection in image processing, wavelet estimators for jump size along

the discontinuous curve would be more direction-oriented (Wang, 1998) and more sparsely

represented (Mallat, 2009).

In the end, local polynomial wavelet estimators under weak dependent data are

left for the future, where special interest is in derivation of the asymptotic normality from

linear functions of concomitants of order statistics, with an application to nonparametric

jump size estimations.
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CHAPTER III

Wavelet Estimators for the Discontinuous Quantile Model

Introduction

This chapter provides a new and intuitive two-step procedure for estimating sizes

of the discontinuities in the nonparametric quantile model. For example, we are interested

in estimating the jump size �0 in the discontinuous median model

Y = g(x) + �0I (x � x0) + �; where median(�) = 0: (III.1)

Such discontinuous sizes from nonparametric quantile models are essential to con-

struct credible policy parameters under the framework of the quantile regression disconti-

nuity design (Frandsen, Frolich and Melly, 2011), which is very di¤erent from the classical

regression discontinuity design (Hahn, Klaauw and Todd, 2001) of only requiring the dis-

continuous sizes from nonparametric mean models. Toward addressing distributional treat-

ment e¤ects, general nonparametric quantile models with potential discontinuities would

have more broad applications than nonparametric mean models, such as in Oka(2011).

Our �rst step is to approximate the above discontinuous nonparametric median

model1 with the discontinuous nonparametric mean model by local medians transformation

(Zhou, 2006). Such local medians transformation is turning the problem of nonparametric

regression with zero median errors into the one with zero mean errors, where the approx-

imation errors are negligible for our later wavelet estimators. Then the second step is

1Without loss of generality, we are focusing on the discontinuous nonparametric median model. For any
other discontinuous k-th quantile model (0 < k < 1), the local k-th quantile transformation is applied in the
�rst step and the following wavelet estimator is built upon the transformed data.
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to carry out local polynomial wavelet estimators (Chapter 2) for the resulting discontin-

uous nonparametric mean model. Our wavelet estimators here are obtained via wavelet

transformation, which approximates the discontinuous nonparametric mean model with the

discontinuous parametric mean model.

Our proposed two-step method enjoys several desirable properties: �rst it is com-

putationally e¢ cient, because the estimated jump size is directly solved from the least

squares loss function so that many standard econometrics/statistics software are applica-

ble. Thus our two-step method is in contrast to the standard approach (Oka, 2011), that is

taking the di¤erence between the right- and left-hand limits from their check loss functions2

instead.

Second the consistency and asymptotic normality of our two-step estimator are

easily established without involving Bahadur-type techniques. After the local medians

transformation in the �rst step and the wavelet transformation in the second step, our

estimated jump size is exactly written as sums of i.i.d. transformed data so that the stan-

dard techniques of asymptotic theory are capable. On the other hand when one uses the

standard approach from the check loss functions, its jump size estimates could no longer be

explicit forms of sums of independent random variables then we have to use the Bahadur-

type techniques (cf Section 2.5 in Ser�ing (1980)).

Third our two-step estimator has the optimal rate of convergence to a wide class

of underlying regression functions, which is a powerful consequence from asymptotic equiv-

alence3 between discontinuous median and mean models. Heuristically speaking the main

2Yu and Jones(1998) provided a full-�edged asymptotic properties for the estimated quantile function at
the limit (boundary) point based on the check loss function.

3The asymptotic equivalence here is reserved for two di¤erent statistical models/experiments, instead of
two di¤erent statistics under single statistical model/experiment.
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goal of the asymptotic equivalence theory4 is to approximate a general statistical model

with the simpler one: if a complex model is asymptotically equivalent to a simple model,

then all asymptotically optimal procedures can be carried over from the simple model to the

complex one and the study of the complex model is then essentially simpli�ed. Since local

polynomial wavelet estimators are optimal for discontinuous mean models (Chapter 2), our

two-step estimator yields an analogous optimal result for discontinuous median models by

the asymptotic equivalence.

This chapter is organized as follows. In Section 2 (page 71), we �rst discuss how

to apply local medians transformation in order to approximate the discontinuous nonpara-

metric median model with the discontinuous nonparametric mean model. Later wavelet

estimators are used for estimating the jump size �0. Section 3 (page 78) would show the

asymptotic normality of our two-step approach jointly with the asymptotic equivalence be-

tween discontinuous nonparametric median and mean models. Section 4 (page 82) would

point out directions for the future work and other potential applications.

The Two-step Estimator of the Jump Size

Our two-step method is built upon two important transformations: the local me-

dians transformation in the �rst step and the wavelet transformation in the second step,

where the local medians transformation is approximating the discontinuous nonparametric

median models with discontinuous nonparametric mean models, while the wavelet transfor-

mation is approximating the discontinuous nonparametric mean models with discontinuous

parametric mean models. Hence our proposed estimator is making use of the transformed

4Nussbaum (1996) established the asymptotic equivalence of density estimation and Gaussian white noise
under Holder smoothness condition. Brown, Carter, Low and Zhang (2004) extended the result of Nussbaum
(1996) under a sharp Besov smoothness constraint condition.
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data; and by appropriately controlling for the approximation errors, our two-step estimator

could be treated as if we were working on the discontinuous parametric mean model, which

is easy to handle and fast to compute.

Local medians transformation is described as binning the original sample into

many subintervals then picking local medians within each subinterval. Zhou (2006) pro-

vided a tight bound between such local medians and normal random variables, in which we

could treat local medians as if they were normal random variables. With the number of

bins being chosen in a suitable range, the approximation error between the discontinuous

nonparametric median and mean models is small, so that the discontinuous nonparametric

mean model based on the local medians transformation data is our new data situation for

estimating the jump size �0.

Wavelet transformation is generating the wavelet coe¢ cients (the wavelet trans-

formed data) which could characterize the point-wise smoothness of the function: a small

(large) wavelet coe¢ cient corresponds to a high (low) smoothness of the function. For our

discontinuous nonparametric mean model, it is consisting of both an unknown nonpara-

metric continuous function and a parametric discontinuous indicator function. Hence after

the wavelet transformation, we could expect the wavelet coe¢ cients from the unknown

nonparametric continuous function are small compared to the ones from the parametric

indicator function, that is, the new discontinuous parametric mean model based on the

wavelet transformed data is reducing the dimensionality of the discontinuous nonparamet-

ric mean model from in�nite to �nite. Therefore for the discontinuous nonparametric mean

model through the local medians transformation, we apply wavelet transformation in order

to further approximate with the discontinuous parametric mean model. Notice that in the

sequential discontinuous parametric mean model, our ultimate transformed data are the
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wavelet coe¢ cients of the local medians. Moreover either local constant wavelet estimators

(Chapter 1) or local polynomial wavelet estimators (Chapter 2) could be used under these

ultimate transformed data.

To illustrate the key ideas and main procedures, we divide this section into two

parts and they are:

Part 1: Use local medians transformation to approximate the discontinuous non-

parametric median model with the discontinuous nonparametric mean model.

Part 2: Use wavelet transformation to approximate the discontinuous nonpara-

metric mean model with the discontinuous parametric mean model.

Local Medians Transformation

Let work on equation (III.1) where the design points fxigni=1 are equally spaced

on the interval [0; 1]. Let the sample fYigni=1 be given as

Yi = g(xi) + �0I(xi � x0) + �i; where median(�i) = 0

where xi = i
n and �i are i.i.d. with an unknown density f�. Set the number of subintervals

T and the number of observations within each subinterval m = n=T . We divide the interval

[0; 1] into T equal-length subintervals. For 1 � j � T; let Ij =
n
Yi : xi 2 ( j�1T ; jT ]

o
be the

j-th subinterval. Thus for our local medians transformation, the local median Y med
j is the

median of the observations in Ij and let x[j] be the induced order statistics from Y med
j .

According to Theorem 19, we could treat the local median Y med
j as if it were almost a

normal random variable with mean g(x[j]) + �0I
�
x[j] � x0

�
and variance 1=

h
4mf2� (0)

i
:

Assumption 1. Let �1; � � � ; �n be i.i.d. random variables with density function

f�, where
R 0
�1 f�(u)du =

1
2 , f�(0) > 0 and f�(u) is Lipschitz

5 at u = 0:

5Assumption 1 is the standard assumption as in the literature to guarantee the uniqueness of the median,
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Assumption 2. The number of subintervals T = O(n3=4).

Theorem 19 Assumptions 1,2 hold. Then Y med
j can be written as

p
mY med

j =
p
m
�
g(x[j]) + �0I(x[j] � x0)

�
+
Zj
2
+ �j (III.2)

where
(i) Zj is i.i.d. N(0; 1

f2� (0)
);

(ii) �j are independent and "stochastically small" random variables satisfying, for
any l > 0

E
���j��l � Clm

�l=2

and for any a > 0

P (
���j�� > a) � Cl(a

2m)�l=2

where Cl > 0 is a constant depending on l only.

Remarks:

(a) In the following sections, we shall assume without loss of generality that 1
f2� (0)

is known, since it can be estimated accurately in the sense that the asymptotic properties

of our two-step estimator does not change when replacing 1
f2� (0)

with an accurate estimate

1bf2� (0) . A candidate suggested in Brown, Cai and Zhou (2008) is
1bf2� (0) =

8m

T

X�
Y med
2j�1 � Y med

2j

�2
:

(b) When the design points fxigni=1 are not equally spaced, one can bin the sample

so that each bin contains the same number of observations and then make the median of

each subinterval. This method produces unequally spaced medians that are homoscedastic

since the number of observations in the intervals are the same. An alternative method is

to group the sample data using equal-length subintervals and then make the median of

each subinterval. This method produces the local median with the heteroskedastic variance

depending on the number of observations in the subintervals.

see Chaudhuri (1991).
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(c) The stochastic errors �j has the negligible contribution to the asymptotic mean

squared errors(MSE) for our two-step estimator, due to its tail bound P
����j�� > a

�
decaying

faster than any polynomial6 of n. In addition although we might lose the sample size from

n to T from binning, the volatility of the new error terms Zj and �j are also reduced by m

(= n
T ), thus the convergence rate of our two-step estimator is still the same as the standard

approach based on the original data size n.

(d) When setting
p
m [g(�) + �0I(�)] to be zero, we have

p
mY med

j =
Zj
2 + �j where

E
�
�2j
�
= O(m�1). This expression is very alike to the Bahadur representation for local

medians in Bhattacharya and Gangopadhyay (1990), where for F 0�(0) = f�(0) > 0 with

probability 1,

p
mY med

j =

p
m [0:5� F�n(0)]

f�(0)
+Rm;

where E
�
R2m
�
= O(m�1=2) (Duttweiler, 1973). Apparently in terms of approximating local

medians with normal random variables, our theorem 19 provides a sharper bound than the

Bahadur representation.

Wavelet Transformation

After we reformulate the jump size �0 in eq (III.2) by an approximately discontinu-

ous mean model, both local constant and local polynomial wavelet estimators are applicable.

They are from minimizing the sum of squared wavelet residuals in the approximately dis-

continuous parametric mean model7. In particular, local polynomial wavelet estimator in

Chapter 2 explicitly accounted for potential higher-order derivative discontinuities and fully

6Cai and Zhou (2010) showed the tail bound P
����j�� > a

�
has indeed the exponential decay rate for

natural exponential families, so that one direct implication of this strengthed result is that we might choose
the bin size m at smaller order. I expect this also holds for more general cases and am leaving it for future
research.

7Such model is obtained after the wavelet transformation and hence the new dependent and independent
variables of the model are wavelet coe¢ cients.
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explored wavelet coe¢ cients generated from both time and frequency domains. In an appli-

cation for discontinuous (kink) incentive assignment mechanisms, local polynomial wavelet

estimators also attained the optimal convergence rate. Another desirable property of local

polynomial wavelet estimators is that it could jointly and optimally estimate jump sizes

in any order derivatives, such as jump size, kink size (the di¤erence between right- and

left-hand �rst derivative limits), and up to jump sizes in higher-order derivatives. In the

end, Chapter 2 showed that all existing jump size estimators (based on the equispaced data)

share a common structure: being members of a class of local polynomial wavelet estimators.

Following eq (III.2), let take the wavelet transformation on both sides in order to

reduce the dimensionality from in�nite to �nite.

Recall for 1 � j � T;

Y med
j = g(x[j]) + �0I(x[j] � x0) +

Zj
2
p
m
+

�jp
m

(III.3)

� g(x[j]) + �0I(x[j] � x0) +
Zj
2
p
m

(III.4)

where the approximately equality comes from the smaller �j than Zj , because from the

previous section we have V ar(Zj) = 1
4f2� (0)

, while V ar(�j) = O( 1m).

Equispace the design point x[j] into t =
j
T for 1 � j � T: Let b�A

j0
(t) denote

the wavelet coe¢ cient of fAigni=1 at the location t 2 [0; 1] and a scale j0, where t and j0

represent the time and frequency parameters, respectively:

b�A
j0 (t) =

2j0=2

T

TX
i=1

Ai 
�
2j0(ti � t)

�
:
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After the wavelet transformation on both sides of eq (III.3), we obtain

b�Ymed

j0 (t) � b�g
j0
(t) + �0 � b�D0

j0
(t) +

b�Z
j0
(t)

2
p
m

� �0 � b�D0
j0
(t) +

b�Z
j0
(t)

2
p
m

where the approximately equality comes from the wavelet coe¢ cients b�g
j0
(t) has the smaller

magnitude than b�D0
j0
(t), since the continuous function g(�) is smoother than the indicator

function I (� � x0). And the corresponding wavelet coe¢ cients are

b�Ymed

j0 (t) =
2j0=2

T

TX
i=1

Y med
i  

�
2j0(ti � t)

�
b�D0
j0
(t) =

2j0=2

T

TX
i=1

I(ti � x0) 
�
2j0(ti � t)

�
b�Z
j0 (t) =

2j0=2

T

TX
i=1

Zi 
�
2j0(ti � t)

�
:

Thus if the function g is p-th continuously di¤erentiable at x0, the local constant

wavelet estimator for �0 (Chapter 1) is

b�LC�med0 = argmin
�0

TX
l=1

hb�Ymed

j0 (tl)� �0 � b�D0
j0
(tl)
i2 bIj0(tl): (III.5)

Otherwise if the function g is continuous but with �nite right- and left-hand deriv-

atives up to the order p at x0, the local polynomial wavelet estimator for �0 (Chapter 2) is

motivated by adding the terms
Pp

k=1 �k � b�Dk
j0
(t) in order to capture the potential discon-

tinuities in higher-order derivatives in b�g
j0
(t). Thus the re�ned discontinuous parametric

mean model is becoming

b�Ymed

j0 (t) � �0 � b�D0
j0
(t) +

pX
k=1

�k � b�Dk
j0
(t) +

b�Z
j0
(t)

2
p
m

�
pX

k=0

�k � b�Dk
j0
(t) +

b�Z
j0
(t)

2
p
m

:
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Therefore our the local polynomial wavelet estimator b�LP�med0 is computed from

b�med0 = e1 � b�LP�med
where the selection vector e1 � (1; 0; � � � ; 0| {z }

p

) and

b�LP�med = arg min
f�kgpk=0

TX
l=1

"b�Ymed

j0 (tl)�
pX

k=0

�k � b�Dk
j0
(tl)

#2 bIj0(tl); (III.6)

and

b�Dk
j0
(t) =

2j0=2

T

TX
i=1

I(ti � x0)
k [ti � x0]k  

�
2j0(ti � t)

�
:

Remarks: Notice that the di¤erence between the current two-step wavelet esti-

mators and wavelet estimators proposed in Chapter 1 and Chapter 2: here our two-step

estimators are based on the local medians instead of the original data.

Asymptotic Properties of the Two-step Estimator

Since the local polynomial wavelet estimator b�LP�med0 in eq (III.6) is optimal and

preferred to the local constant wavelet estimator b�LC�med0 in eq (III.5), we are focusing on

the asymptotic properties of b�LP�med0 in terms of the asymptotic normality and asymptotic

optimality, respectively.

Asymptotic Normality

Assumption 3. g(�) is p-th continuously di¤erentiable at (0; 1)nfx0g, and is

continuous at x0 with �nite right- and left-hand derivatives up to the order p. When

allowing for the potential higher-order derivative discontinuities, we could decompose g(�) �

G(�) +
Pp

k=1 �k � I(� � x0)
k [� � x0] where G(�) is p-th continuously di¤erentiable at (0; 1).
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Assumption 4. (a) The real-valued wavelet function  (�) is continuous with

compact support [a; b], where a < 0 < b and m vanishing moments, i.e.,
R b
a u

j (u) du = 0

for j = 0; 1; :::;m� 1; (b)
R b
a u

m (u) du 6= 0 and
R b
a ju

m (u)j du <1; (c)  has a bounded

derivative and satis�es the admissibility condition that
R ���b (�)���2 = j�j d� < 1, where b (�)

is the Fourier transform of  (t).

Assumption 5. As n!1, j0 !1, 2j0=n! 0 and
�
1=2j0

�2m�1p
n=2j0 ! C <

1.

Theorem 20 Under Assumptions 1-5 and p � 2m:
(1) the asymptotic bias of b�LP�med is

lim
n!1

diag
h
2(2m�1)j0 ; 2(2m�2)j0 ; :::; 2(2m�p�1)j0

i h
E(b�LP�med)� �i

=

26664
G(2m�1)(x0) � (M)�1(0;0)N�

(0)

G(2m�1)(x0) � (M)�1(1;0)N�
(0)

:::

G(2m�1)(x0) � (M)�1(p;0)N�
(0)

37775 ;
where

M(i;j)

=

ZZ bZ
a

(w � t)i(v � t)jIfw � t � 0gIfv � t � 0g (w) (v)dwdvdt for 0 � i; j � p

and

N�
(0) =

1

m!(m� 1)!

Z b

a
 (u)umdu �

Z bZ
a

Ifw � t � 0g(�t)m�1 (w)dtdw;

(2) the asymptotic variance of b�LP�med is
lim
n!1

n � � � V ar(b�LP�med) = (M)�1V (M)�1;
where

��1(i;j) =

�
2(1+2i)j0 ;when 0 � i = j � p

0; otherwise
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and for 0 � i; j � p;

V(i;j)

=
1

f2� (0)

Z b�a

a�b

24Z bZ
a

Ifw � t � 0g(w � t)i (w) (u+ t)dwdt

35
24Z bZ

a

Ifw � t � 0g(w � t)j (w) (u+ t)dwdt

35 du;
(3)r
n

2j0

�b�LP�med0 � �0
�

d! N(CBmed; Vmed);

where

Bmed = G(2m�1)(x0) � (M)�1(0;0)N
�
(0);

Vmed =
�
(M)�1V (M)

��1
(0;0)

:

Remark:

(a) In order to calculate the asymptotic variance of b�LP�med0 easily, we could

directly use the robust variance results8 from the standard OLS packages based on the

wavelet coe¢ cients of the local medians. For example when p = 0 in eq (III.6),

b�LP�med0 =

PT
l=1

�b�Ymed
j0

(tl)bIj0(tl)��b�D0
j0
(tl)bIj0(tl)�PT

l=1

hb�D0
j0
(tl)bIj0(tl)i2

which is resembling an OLS estimator with the dependent variable
�b�Ymed

j0
(tl)bIj0(tl)�T

l=1

and the independent variable
�b�D0

j0
(tl)bIj0(tl)�T

l=1
:

(b) In order to select the scale (smoothing parameter) j0 in our two-step estima-

tor, we are suggesting the mean cross-validation based on the approximately discontinuous

mean model. This is another theoretical advantage of our two-step estimator through local

medians transformation, since the smoothing parameters selection under the nonparametric

mean model is far more well-studied than the one under the nonparametric median model.

8The proof for the consistency of the estimated variance is upon request.
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Otherwise if we use the standard approach from the check loss functions, we have to use the

complicated median cross-validations (Zheng and Yang, 1998) for the original discontinuous

median model.

Asymptotic Optimality

In this subsection we would establish the asymptotic equivalence between the

discontinuous median and mean models, so that our two-step estimator has the optimal

rate of convergence to a wide class of underlying regression functions. Henceforth we follow

Cai and Zhou (2009)�s notations to de�ne the asymptotic equivalence for unbounded loss

functions9.

De�nition 1 (Cai and Zhou, 2009) Two sequences of experiments En and Fn are called
asymptotically equivalent with respect to the sets of procedures �En and �Fn and set of loss
functions �n if

�(En; Fn; �n;�En ;�Fn) �! 0 as n!1

where

�(En; Fn; �n;�En ;�Fn) = maxf�(En; Fn; �n;�En ;�Fn); �(Fn; En; �n;�Fn ;�En)g

and �(En; Fn; �n;�En ;�Fn) � inff� � 0; for every procedure �n 2 �Fn there exists a pro-
cedure �n 2 �En such that R (�; �n) � R (�; �n) + 2" for every � 2 � for any loss function
L 2 �n and its associated risk function Rg.

Let the discontinuous median model En and the discontinuous mean model Fn to

be

En : Yi = g(xi) + �0I(xi � x0) + �i; where median(�i) = 0 and i = 1; :::; n;

Fn : Y med
j = g(xj) + �0I(xj � x0) +

Zj
2
p
m
; where Zj is i.i.d. N(0;

1

f2� (0)
) and j = 1; :::; T:

9Although the de�nition of the asymptotic equivalence is abstract and lengthy, we could actually reduce
the general comparison between two procedures from two di¤erent experiments to simply a comparison of
Le Cam de�ciency between two experiments, which is independent of procedures.
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Assumption 6. Assume that

�(a) � Ca2;

E exp [t (ra(�)� �(a))] � exp(Ct2a2);

for 0 � jaj < " and 0 � jtaj < " for some " > 0, where ra(�) = log
h(��a)
h(�) and �(a) = Er(�).

Theorem 21 Under Assumptions 1-6, the two experiments Fn and En are asymptotically
equivalent with respect to the set of procedures �n and set of loss functions �n, where �n
are meant to be the estimates of the jump size �0.

Thus our two-step estimator b�LP�med0 has the optimal rate of convergence under
the discontinuous nonparametric median model En.

Remarks: Notice that in Cai and Zhou (2009) they established the similar asymp-

totic equivalence between the nonparametric median and mean models under the certain

smoothness conditions with the focus of estimating of the underlying function. However

our primary interest here is the estimation of jump size �0 instead of the function itself,

thus we will not need stringent smoothness conditions as in their paper.

Future research

Besides introducing the new approach for discontinuous quantile models, our chap-

ter is largely expository to spotlight some important "local transformation" inequality which

might have many empirical implications in econometrics. For example, we could use the

local means transformation10 (bin the original sample into many subintervals, then compute

the mean within each subinterval) under the switching regime model so that Heckman Two-

Step procedure would be robust to misspeci�cation of outcome error distributions, such as,

10Zhou (2006) also provided a tight bound between such local means and normal random variables, in
which we could treat local means as if they were normal random variables.
Hall, et al. (1998) considered a similar transformation to address the irregular design of Xi under the

conditional mean model, however they did not derive the bound of the approximation error.
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non-normal/normal, asymmetric/symmetric outcome errors (Chen, Fan and Wu, 2012). It

is hoped that this chapter helps to make the local transformation tool known to a wider

econometrics audience.

Another interesting topic would research on the local transformation for the non

i.i.d. random observations. Lemma 4 in Brown, Cai and Zhou (2010) provided a speci�c

local medians transformation result for the natural exponential distributions�family with

independent but not identically distributed observations. However for the general dependent

and non-identically distributed observations, there are no results available in the literature.

In the end, we would like to extend the current discontinuous median model under

the univariate �xed design to the general one under the multivariate random design.
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Proofs of Chapter 1

Proof of Theorem 1. Take v+ 2 V and v� 2 V such that v+ > v0 > v�. We will
look at E(Y jV = v+) and E(Y jV = v�) separately. Under condition D4 (i), b(v+) � b(v�).

First, we have

E(Y jV = v+)

= E(Y jV = v+; D(v+) = 1; D(v�) = 0)Pr(D(v+) = 1; D(v�) = 0jV = v+)

+E(Y jV = v+; D(v+) = 1; D(v�) = 1)Pr(D(v+) = 1; D(v�) = 1jV = v+)

+E(Y jV = v+; D(v+) = 0; D(v�) = 0)Pr(D(v+) = 0; D(v�) = 0jV = v+)

+E(Y jV = v+; D(v+) = 0; D(v�) = 1)Pr(D(v+) = 0; D(v�) = 1jV = v+)

= E(Y1jV = v+; D(v+) = 1; D(v�) = 0)Pr(D(v+) = 1; D(v�) = 0jV = v+)

+E(Y1jV = v+; D(v+) = 1; D(v�) = 1)Pr(D(v+) = 1; D(v�) = 1jV = v+)

+E(Y0jV = v+; D(v+) = 0; D(v�) = 0)Pr(D(v+) = 0; D(v�) = 0jV = v+)

+E(Y0jV = v+; D(v+) = 0; D(v�) = 1)Pr(D(v+) = 0; D(v�) = 1jV = v+):

Now from Condition D5 (i), we obtain:

lim
v+;v�!v0

Pr(Di(v+) = 1; Di(v�) = 0jVi = v+)

= lim
v+;v�!v0

Pr (b (v�) < Ui � b (v+) jVi = v+)

= Pr
�
b� < Ui � b+jVi = v0

�
:

Similarly, we obtain:

lim
v+;v�!v0

Pr(D(v+) = 1; D(v�) = 1jV = v+) = Pr
�
U � b�jV = v0

�
;

lim
v+;v�!v0

Pr(D(v+) = 0; D(v�) = 0jV = v+) = Pr
�
U > b+jV = v0

�
;

lim
v+;v�!v0

Pr(D(v+) = 0; D(v�) = 1jV = v+) = Pr
�
b+ < U � b�jV = v0

�
= 0:

As a result,

lim
v+!v0

E(Y jV = v+)

=

�
lim

v+;v�!v0
E(Y1jV = v+; b (v�) < U � b (v+))

�
Pr
�
b� < U � b+jV = v0

�
+

�
lim

v+;v�!v0
E(Y1jV = v+; U � b (v�))

�
Pr
�
U � b�jV = v0

�
+

�
lim

v+;v�!v0
E(Y0jV = v+; U > b

�
v+
�
)

�
Pr
�
U > b+jV = v0

�
:
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Similarly, we can show:

lim
v�!v0

E(Y jV = v�)

=

�
lim

v+;v�!v0
E(Y0jV = v�; b (v�) < U � b (v+))

�
Pr
�
b� < U � b+jV = v0

�
+

�
lim

v+;v�!v0
E(Y1jV = v�; U � b (v�))

�
Pr
�
U � b�jV = v0

�
+

�
lim

v+;v�!v0
E(Y0jV = v�; U > b

�
v+
�
)

�
Pr
�
U > b+jV = v0

�
:

Lemma A.2 implies that for j = 1; 0:

lim
v+;v�!v0

E(Yj jV = v+; b (v�) < U � b (v+))

= lim
v+;v�!v0

E(Yj jV = v�; b (v�) < U � b (v+))

= E(Yj jV = v0; b
� < U � b+);

lim
v+;v�!v0

E(Yj jV = v+; U � b (v�))

= lim
v+;v�!v0

E(Yj jV = v�; U � b (v�))

= E(Yj jV = v0; U � b�);

and

lim
v+;v�!v0

E(Yj jV = v+; U > b (v+))

= lim
v+;v�!v0

E(Yj jV = v�; U > b (v+))

= E(Yj jV = v0; U > b+):

The same results hold for limv+;v�!v0 E(Yj jV = v�; �). Thus,

limv+!v0 E(Y jV = v+)� limv�!v0 E(Y jV = v�)

limv#v0 P (v)� limv"v0 P (v)

= E(Y1jV = v0; b
� < U � b+)� E(Y0jV = v0; b

� < U � b+)

= lim
v+;v�!v0

E(�jV = v0; D(v+)�D(v�) = 1):
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Finally let A = fb� < Ui � b+g. It follows from Lemma A.1 that for j = 1; 0,

E(Yj jV = v0; b
� < U � b+)

=

Z
gj(v0; w)fW jV;U (wjv0; A)dw

=

Z
gj(v0; w)

R b+
b� fV jW;U (v0jw; u)fW;U (w; u)du
fV (v0)

R b+
b� fU jV (ujv0) du

dw

= EW;U

"
fV jW;U (vjW;U)

fV (v0)
R b+
b� fU jV (ujv0) du

I
�
b� � U � b+

	
gj(v0;W )

#
:

Q.E.D.
Lemma A.1 For any a; b satisfying: �1 � a < b � 1 and [a; b] � U , we have:

fW jV;A(wjv;A) =
R b
a fV jW;U (vjw; u)fW;U (w; u)du

fV (v)
R b
a fU jV (ujv) du

,

where A = f a < U � bg.

Proof. By de�nition, we have

fW jV;A(wjv;A)

=
1

Pr(a < U � bjV = v)

@fPr(W � wjV = v; a < U � b) Pr(a < U � bjV = v)g
@w

=
1

Pr(a < U � bjV = v)

@fPr(W � w; a < U � bjV = v)g
@w

=
1

Pr(a < U � bjV = v)

@

@w

�Z w

�1

Z b

a
fW;U jV (w

0; ujv)dw0du
�

=
1

Pr(a < U � bjV = v)

Z b

a
fW;U jV (w; ujv)du:

Q.E.D.

Lemma A.2 Under the conditions of Theorem 1, we get: for j = 0; 1,

lim
v+;v�!v0

E(Yj jV = v+; A (v+; v�)) = E(Yj jV = v0; A),

where fA (v+; v�) ; Ag = ffb (v�) < U � b (v+)g ; fb� < U � b+gg ; or ffU � b (v�)g ; fU � b�gg ;
or ffU > b (v+)g ; fU > b+gg :

Proof. Without loss of generality, we provide the proof for j = 0 and

fA (v+; v�) ; Ag =
�
fb (v�) < U � b (v+)g ;

�
b� < U � b+

		
:

By de�nition,

E(Y0jV = v+; A (v+; v�)) =

Z
g0(v+; w)fW jV;A(v+;v�)(wjv+; A (v+; v�))dw:
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Lemma A.1 implies:

fW jV;A(v+;v�)(wjv+; A (v+; v�)) =
R b(v+)
b(v�)

fV jW;U (v+jw; u)fW;U (w; u)du

fV (v+)
R b(v+)
b(v�)

fU jV (ujv+) du
:

Then

fW jV;A(v+;v�)(wjv+; A (v+; v�))

=

R b(v+)
b(v�)

fU jV;W (ujv+; w)dufV;W (v+; w)
fV (v+)

�
FU jV (b (v+) jv+)� FU jV (b (v�) jv�)

�
=

�
FU jV;W (b (v+) jv+; w)� FU jV;W (b (v�) jv+; w)

�
fV jW (v+jw) fW (w)

fV (v+)
�
FU jV (b (v+) jv+)� FU jV (b (v�) jv�)

� :

It follows from Conditions D1, D4 and D5 that

lim
v+;v�!v0

fW jV;A(v+;v�)(wjv+; A (v+; v�))

=
limv+;v�!v0

��
FU jV;W (b (v+) jv+; w)� FU jV;W (b (v�) jv+; w)

�
fV jW (v+jw) fW (w)

	
limv+;v�!v0

�
fV (v+)

�
FU jV (b (v+) jv+)� FU jV (b (v�) jv�)

�	
=

[FU jV;W (b
+jv0; w)� FU jV;W (b�jv0; w)] � fV jW (v0jw) � fW (w)�

FU jV (b+)� FU jV (b�)
�
� fV (v0)

=

R b+
b� fV jW;U (v0jw; u)fW;U (w; u)du
fV (v0)

R b+
b� fU jV (ujv0) du

:

Thus by Condition D2, Condition D3, and the dominated convergence theorem, we get

lim
v+;v�!v0

E(Y0jV = v+; A (v+; v�))

= lim
v+;v�!v0

Z
g0(v+; w)fW jV;A(v+;v�)(wjv+; A (v+; v�))dw

=

Z
lim

v+;v�!v0
g0(v+; w) lim

v+;v�!v0
fW jV;A(v+;v�)(wjv+; A (v+; v�))dw

=

Z
g0(v0; w)

R b+
b� fV jW;U (v0jw; u)fW;U (w; u)du
fV (v0)

R b+
b� fU jV (ujv0) du

dw

= E(Y0jV = v0; A):

Q.E.D.
Proof of Proposition 1. The proofs for g and h are similar so we provide a proof for

g only and complete it in three steps:
Step 1. We prove continuity of g(�) at v0;
Step 2. We prove continuity of g(v) at any v� < v0;
Step 3. We prove continuity of g(v) at any v� > v0.
Proof of Step 1. Note that

lim
v#v0

g(v) = lim
v#v0

E(Y jV = v)� �0 = lim
v"v0

E(Y jV = v) = lim
v"v0

g(v):
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By de�nition, we have

g(v0)

= E(Y jV = v0)�
�
lim
v#v0

E(Y jV = v)� lim
v"v0

E(Y jV = v)

�
= E(Y jV = v0; b

� < U � b+) Pr(b� < U � b+jV = v0)

+E(Y jV = v0; U � b�) Pr(U � b�jV = v0)

+E(Y jV = v0; U > b+) Pr(U > b+jV = v0)

+E(Y jV = v0; b
+ < U � b�) Pr(b+ < U � b�jV = v0)� (Y + � Y �)

= lim
v+!v0

E(Y jV = v+)�
�
lim
v#v0

E(Y jV = v)� lim
v"v0

E(Y jV = v)

�
= lim

v"v0
E(Y jV = v):

Then g(v0) = limv#v0 g(v) = limv"v0 g(v):
Proof of Step 2. For v� < v0, we know: g(v�) = E(Y jV = v�). Then,

lim
v!v�

E(Y jV = v)

= lim
v!v�

[E(Y jV = v;D(v) = 1)Pr(D(v) = 1jV = v)]

+ lim
v!v�

[E(Y jV = v;D(v) = 0)Pr(D(v) = 0jV = v)]

= lim
v!v�

[E(Y1jV = v;D(v) = 1)Pr(D(v) = 1jV = v)]

+ lim
v!v�

[E(Y jV = v;D(v) = 0)Pr(D(v) = 0jV = v)]

= lim
v!v�

[E(Y1jV = v; U � b(v)) Pr(U � b(v)jV = v)]

+ lim
v!v�

[E(Y0jV = v; U > b(v)) Pr(U > b(v)jV = v)]

= lim
v!v�

[E(Y1jV = v; U � b(v))] Pr(U � lim
v!v�

b(v)jV = v�)

+ lim
v!v�

[E(Y0jV = v; U > b(v))] Pr(U > lim
v!v�

b(v)jV = v�)

= E(Y1jV = v�; U � lim
v!v�

b(v))] Pr(U � lim
v!v�

b(v)jV = v�)

+E(Y0jV = v�; U > lim
v!v�

b(v)) Pr(U > lim
v!v�

b(v)jV = v�)

= E(Y jV = v�);

where we have used:

lim
v!v�

[E(Y1jV = v; U � b(v))] = lim
v!v�

Z
g1(v; w)fW jV;U�b(v)(wjv; U � b(v))dw

=

Z
g1(v

�; w)

R limv!v� b(v)
�1 fV jW;U (v

�jw; u)fW;U (w; u)du

fV (v�)
R b(v�)
�1 fU jV (ujv)du

dw;

= E(Y1jV = v�; U � lim
v!v�

b(v)]:

A similar argument leads to: limv!v� [E(Y0jV = v; U > b(v))] = E(Y0jV = v�; U > limv!v� b(v)).
Proof of Step 3. It is similar to that of Step 2 and thus omitted.
Q.E.D.
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Proof of Theorem 2. We complete the proof in two steps:
Step 1. We show:

lim
e#0

E(�jV = v0; D(v0 + e)�D(v0 � e) = 1)

= EW

�
[g1(v0;W )� g0(v0;W )]

fW jU;V (W jb(v0); v0)
fW (W )

�
:

Step 2. We show:

limv#v0 dE(Y jV = v)=dv � limv"v0 dE(Y jV = v)=dv

limv#v0 P
0(v)� limv"v0 P

0(v)

= EW

�
[g1(v0;W )� g0(v0;W )]

fW jU;V (W jb(v0); v0)
fW (W )

�
:

Proof of Step 1. It follows from Condition K4(i):

lim
e#0

E(�jV = v0; D(v0 + e)�D(v0 � e) = 1)

= lim
e#0

E(�jV = v0; D(v0 + e) = 1; D(v0 � e) = 0):

The right hand side expression is:

= lim
e#0

E(g1(v0;W )� g0(v0;W )jV = v0; b(v0 + e) � U > b(v0 � e))

= lim
e#0

Z
[g1(v0; w)� g0(v0; w)] fW jV;U (wjv0; b(v0 + e) � U > b(v0 � e))dw

= lim
e#0

Z
[g1(v0; w)� g0(v0; w)]

24R b(v0+e)b(v0�e) fW;U jV (w; ujv0)duR b(v0+e)
b(v0�e) fU jV (ujv0)du

35 dw
=

Z
[g1(v0; w)� g0(v0; w)] lim

e#0

24R b(v0+e)b(v0�e) fW;U jV (w; ujv0)duR b(v0+e)
b(v0�e) fU jV (ujv0)du

35 dw
=

Z
[g1(v0; w)� g0(v0; w)]

fW;U jV (w; b(v0)jv0)
fU jV (b(v0)jv0)

dw

=

Z
[g1(v0; w)� g0(v0; w)] fW jU;V (wjb(v0); v0)dw

= EW

�
[g1(v0;W )� g0(v0;W )]

fW jU;V (W jb(v0); v0)
fW (W )

�
;
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where we have used the following result:

lim
e#0

24R b(v0+e)b(v0�e) fW;U jV (w; ujv0)duR b(v0+e)
b(v0�e) fU jV (ujv0)du

35
= lim

e#0

�
e�1 fP (b(v0 + e))� P (b(v0))� (P (b(v0 � e))� P (b(v0)))g
e�1 fQ(b(v0 + e))�Q(b(v0))� (Q(b(v0 � e))�Q(b(v0)))g

�
=

fW;U jV (w; b(v0)jv0) [b0+(v)� b0�(v)]
fU jV (b(v0)jv0) [b0+(v)� b0�(v)]

=
fW;U jV (w; b(v0)jv0)
fU jV (b(v0)jv0)

;

in which P (x)� P (a) =
R x
a fW;U jV (w; ujv0)du and Q(x)�Q(b) =

R x
b fU jV (ujv0)du.

Proof of Step 2. Consider E(Y jV = v):

E(Y jV = v)

= E(Y1jV = v;D(v) = 1)Pr(D(v) = 1jV = v) + E(Y0jV = v;D(v) = 0)Pr(D(v) = 0jV = v)

=

2664
R
g1(v; w)fW jV;U (wjv; b(v) � u)dw

R b(v)
�1 fU jV (ujv)du

+
R
g0(v; w)fW jV;U (wjv; b(v) < u)dw

R1
b(v) fU jV (ujv)du

3775
=

Z
g1(v; w)

R b(v)
�1 fW;U jV (w; ujv)duR b(v)
�1 fU jV (ujv)du

dw

Z b(v)

�1
fU jV (ujv)du

+

Z
g0(v; w)

R1
b(v) fW;U jV (w; ujv)duR1

b(v) fU jV (ujv)du
dw

Z 1

b(v)
fU jV (ujv)du

=

Z
g1(v; w)

Z b(v)

�1
fW;U jV (w; ujv)dudw +

Z
g0(v; w)

Z 1

b(v)
fW;U jV (w; ujv)dudw:

Taking derivatives on both sides of the last equality above, we get:

dE(Y jV = v)

dv

=

Z
@

@v

 
g1(v; w)

Z b(v)

�1
fW;U jV (w; ujv)du

!
dw +

Z
@

@v

 
g0(v; w)

Z 1

b(v)
fW;U jV (w; ujv)du

!
dw

=

Z
g01(v; w)

Z b(v)

�1
fW;U jV (w; ujv)dudw +

Z
g1(v; w)[b

0(v)fW;U jV (w; b(v)jv)

+

Z
g00(v; w)

Z 1

b(v)
fW;U jV (w; ujv)dudw +

Z
g0(v; w)[�b0(v)fW;U jV (w; b(v)jv)

+

Z b(v)

�1

@

@v
(fW;U jV (w; ujv))du]dw +

Z 1

b(v)

@

@v
(fW;U jV (w; ujv))du]dw:
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Now taking limits leads to

lim
v#v0

dE(Y jV = v)

dv

=

Z
g01(v0; w)

Z b(v0)

�1
fW;U jV (w; ujv0)dudw

+

Z
g1(v0; w)[b

0+fW;U jV (w; b(v0)jv0) +
Z b(v0)

�1

@

@v
(fW;U jV (w; ujv0))du]dw

+

Z
g00(v0; w)

Z 1

b(v0)
fW;U jV (w; ujv0)dudw

+

Z
g0(v0; w)[�b0+fW;U jV (w; b(v0)jv0) +

Z 1

b(v0)

@

@v
(fW;U jV (w; ujv0))du]dw

and

lim
v"v0

dE(Y jV = v)

dv

=

Z
g01(v0; w)

Z b(v0)

�1
fW;U jV (w; ujv0)dudw

+

Z
g1(v0; w)[b

0�fW;U jV (w; b(v0)jv0) +
Z b(v0)

�1

@

@v
(fW;U jV (w; ujv0))du]dw

+

Z
g00(v0; w)

Z 1

b(v0)
fW;U jV (w; ujv0)dudw

+

Z
g0(v0; w)[�b0�fW;U jV (w; b(v0)jv0) +

Z 1

b(v0)

@

@v
(fW;U jV (w; ujv0))du]dw:

As a result, we have:

lim
v#v0

dE(Y jV = v)

dv
� lim
v"v0

dE(Y jV = v)

dv

=

Z
[g1(v0; w)� g0(v0; w)] fW;U jV (w; b(v0)jv0)dw

�
b0+ � b0�

�
and

limv#v0 dE(Y jV = v)=dv � limv"v0 dE(Y jV = v)=dv

limv#v0 P
0(v)� limv"v0 P

0(v)

=

R
[g1(v0; w)� g0(v0; w)] fW;U jV (w; b(v0)jv0)dw [b0+(v)� b0�(v)]

fU jV (b(v0)jv0) [b0+(v)� b0�(v)]

=

Z
[g1(v0; w)� g0(v0; w)]

fW;U jV (w; b(v0)jv0)
fU jV (b(v0)jv0)

dw:

Q.E.D.
Proof of Proposition 2. We provide a proof for gK only. This will be done in two

steps:
Step 1. We show gK is continuous;
Step 2. We show gK is continuously di¤erentiable.
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Proof of Step 1. By de�nition, gK(V ) = E(Y jV ) � �1(V � v0)IfV � v0g. We only
need to show that it is continuous at v0. Under Condition K4(A), we know: limv#v0 E(Y jV =

v) � limv#v0 E(Y jV = v) = 0 = �0; thus E(Y jV ) = g(v) from Proposition 2.2, which is
continuous on the support of V . Since �1(V � v0)IfV � v0g is continuous on the support of V ,
gK(V ) is continuous.

Proof of Step 2. When v = v0,

lim
v#v0

dgK(v)

dv
= lim

v#v0

dE(Y jV = v)

dv
� �1 = lim

v"v0

dE(Y jV = v)

dv

and limv"v0
dgK(v)
dv = limv"v0

dE(Y jV=v)
dv : Thus

lim
v#v0

dgK(v)

dv
= lim

v"v0

dgK(v)

dv
= lim

v"v0

dE(Y jV = v)

dv
= lim

v!v0

dg(v)

dv
:

Now let us consider v� < v0. Then following the proof of Theorem 2 except that we are looking at
v� instead of v0, we obtain: limv#v� dE(Y jV = v)=dv� limv"v� dE(Y jV = v)=dv = 0: A similar
proof applies to v� > v0.

Q.E.D.
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Next we will make extensive use of the following Taylor expansions. Under A2(G)(a), we
have:

G(� � h) = G(�) +

lG�1X
k=1

G
(k)
� (�)

k!
(�h)k +R�G;

where G
(k)
� (�) denote the right and left k-th order derivatives of G(t) at � ,

jR�Gj � KjhjlG sup
t2(0;1)

jG(lG)� (t)j <1

with K a large positive number. Under A2(G)(b), we have:

G(� + h) = G(�) +

lG�1X
k=1

G(k)(�)

k!
(h)k +RG; (B.1)

where for a large positive number K, jRGj � KjhjlG supt2(0;1) jG(lG)(t)j <1:
The proofs also rely heavily on Theorem 1 in Yang (1981). For completeness, we restate it

in Lemma B.1 below. Note that we need to extend Theorem 1 in Yang (1981) to allow the function
J below to depend on n as in Remark 2 in Yang (1981). Let (Xi; Yi) (i = 1; 2; :::; n) be independent
and identically distributed as (X;Y ). The rth ordered X variate is denoted by Xr:n and the Y
variate paired with it is denoted by Y[r:n]. Let

Sn = n�1
nX
i=1

J (i=n)Y[i:n];

where J is some bounded smooth function and may depend on n. Further, let

m(x) = E(Y jX = x); �2(x) = V ar(Y jX = x);

F�1(u) = inffxjF (x) � ug; m � F�1(u) = m(F�1(u)):

Lemma B.1 Suppose the following conditions are satis�ed: E(Y 2) <1; m(x) is a right contin-
uous function of bounded variation in any �nite interval; J is bounded and continuous ae m �F�1;
and the cdf of X, F (x), is a continuous function. Let

�2 =

Z +1

�1
J2(F (x))�2(x)dF (x)

+

Z +1

�1

Z +1

�1
[F (x ^ y)� F (x)F (y)]J(F (x))J(F (y))dm(x)dm(y):

Then limn!1 nV ar(Sn) = �2 and limn!1E(Sn) =
R +1
�1 m(x)J(F (x))dF (x). Furthermore,

if �2 > 0, then

Sn � E(Sn)p
V ar(Sn)

d! N(0; 1):

We note that all the proposed wavelet estimators including the local constant wavelet
estimators converge at rates slower than n�1=2. Since b� converges at rate n�1=2, under regularity
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conditions, the asymptotic distributions of all our estimators are not a¤ected by estimating � byb� . This is universal to all nonparametric estimators constructed after a �rst step estimation of the
location of a jump or kink, see e.g., the work in statistics cited in Section 1 of Wang and Cai (2010).
Because of this, we will work with the infeasible versions of our estimators with b� replaced by � .
With slight abuse of notation, we will use the same notations to denote the corresponding infeasible
estimators. For notational compactness, we let  j [�] = 2j 

�
2j �
�
.

Proof of Theorem 3. We will complete the proof in two steps:
Step 1. We show that �

LC�SS
0 has the asymptotic distributions stated in the theorem;

Step 2. We show:
q

n
2j0
(b�LC�SS0 � �LC�SS0 ) = op (1).

Proof of Step 1: Note that we can write �
LC�SS
0 as: �

LC�SS
0 = 1

n

Pn
i=1 J(

i
n)Y[i:n]; where

J(
i

n
) =

 j0
�
i
n � �

�R b
0  (u)du

:

We will use Lemma B.1 to show that
q

n
2j0
(�
LC�SS
0 � �0) has the limiting distribution stated in

Theorem 3. The conditions in Lemma B.1 are satis�ed: E(Y jV = v) = g(v) + �0Ifv � v0g is
right continuous by Proposition 1 and of bounded variation in any �nite interval; J( in) is bounded
and continuous by Assumption A4.

First, let us calculate limn!1E(�
LC�SS
0 ):Z +1

�1
[g(v) + �0Ifv � v0g]

 j0(FV (v)� �)R b
0  (u)du

dFV (v)

=

R +1
�1 g(v) j0(FV (v)� �)dFV (v)R b

0  (u)du
+

R +1
�1 �0Ifv � v0g j0(FV (v)� �)dFV (v)R b

0  (u)du

=

R b
a g
�
F�1V ( u

2j0
+ �)

�
 (u)duR b

0  (u)du
+ �0

=

� 1

2j0

h
G
(1)
+ (�)�G(1)� (�)

i R b
0  (u)uduR b

0  (u)du
+ �0 + s:o:, under A2(G)(a)

( 1

2j0
)mG(m)(�)

R b
a u

m (u)duR b
0  (u)du

+ �0 + s:o, under A2(G)(b)
:

Then,

lim
n!1

2j0
h
E(�

LC�SS
0 )� �0

i
=

h
G
(1)
+ (�)�G

(1)
� (�)

i R b
0  (u)uduR b

0  (u)du
, under A2(G)(a),

lim
n!1

2mj0
h
E(�

LC�SS
0 )� �0

i
=

G(m)(�)
R b
a u

m (u)duR b
0  (u)du

, under A2(G)(b).
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Second, let us calculate limn!1 nV ar(�
LC�SS
0 ):

Z +1

�1

"
 j0(FV (v)� �)R b

0  (u)du

#2
�2(v)dFV (v)

+

Z +1

�1

Z +1

�1
[FV (v1 ^ v2)� FV (v1)FV (v2)]

 j0(FV (v1)� �) j0(FV (v2)� �)�R b
0  (u)du

�2 dm(v1)dm(v2)

= A1 +A2;

where

m (v) = g(v) + �0Ifv � v0g;

A1 =

Z +1

�1

"
 j0(FV (v)� �)R b

0  (u)du

#2
�2(v)dFV (v);

A2 =

Z +1

�1

Z +1

�1
[FV (v1 ^ v2)� FV (v1)FV (v2)]

 j0(FV (v1)� �) j0(FV (v2)� �)�R b
0  (u)du

�2 dm(v1)dm(v2):

Then

A1 =

Z +1

�1

"
2j0 (u)R b
0  (u)du

#2
�2(F�1V (

u

2j0
+ �))

1

2j0
du

=
2j0
R +1
�1  2(u)�2(F�1V ( u

2j0
+ �))du�R b

0  (u)du
�2

=
2j0
hR b
0  

2(u)�2(F�1V ( u
2j0
+ �))du+

R 0
a  

2(u)�2(F�1V ( u
2j0
+ �))du

i
�R b
0  (u)du

�2 :

So A1 = O(2j0) and A2 = O(1). Thus we get:

lim
n!1

n

2j0
V ar(�

LC�SS
0 ) =

h
�2+(v0)

R b
0  

2(u)du+ �2�(v0)
R 0
a  

2(u)du
i

�R b
0  (u)du

�2 :

By Lemma B.1, we obtain:r
n

2j0
(�
LC�SS
0 � �0)

d!
�
N(CaBa; V ), under A2(G)(a)
N(CbBb; V ), under A2(G)(b)

:

Proof of Step 2: Note thatr
n

2j0
(b�LC�SS0 � �LC�SS0 )

=

r
n

2j0
�
LC�SS
0

 R b
0  (u)du�

1
n

Pn
j=1 I ftj � �g j0 [tj � � ]

1
n

Pn
j=1 I ftj � �g j0 [tj � � ]

!
;

94



where the �rst term satis�es:
q

n
2j0
�
LC�SS
0 = Op(

q
n
2j0
): For large enough j0, the numerator of

the second term satis�es:

j 1
n

nX
j=1

I ftj � �g j0 [tj � � ]�
Z b

0
 (u)duj

= j 1
n

nX
j=1

I ftj � �g j0 [tj � � ]�
Z 1

0
I ft � �g j0 [tj � � ] dtj

� 1

n+ 1
V 10 (f),

where the last inequality above is obtained from the Koksma�Hlawka inequality in which

f(t) = I ft � �g j0 [tj � � ]

and V 10 (f) is the bounded variation of f on [0; 1].
Note that for large enough j0,

V 10 (f) = V 1� ( j0 [� � � ]) = 2
j0

Z 1

�
j2j0 (1)

�
2j0(t� �)

�
jdt

= 2j0
Z b

0
j (1) [t] jdt = O

�
2j0
�

since
R b
0 j 

(1) [t] jdt <1. Hence,r
n

2j0
(b�LC�SS0 � �LC�SS0 ) =

r
n

2j0
�
LC�SS
0

 R b
0  (u)du

1
n

Pn
j=1 I ftj � �g j0 [tj � � ]

� 1
!

= Op(

r
n

2j0
)Op(

2j0

n
) = op(1).

Q.E.D.
Proof of Theorem 4. First, we derive the asymptotic covariance between b�LC�SS0

and b�LC�SS0 :

lim
n!1

Cov
h
(n=2j0)1=2(b�LC�SS0 � �0); (n=2j0)1=2(b�LC�SS0 � �0)

i
= lim

n!1
n

2j0
Cov

hb�LC�SS0 ;b�LC�SS0

i
= lim

n!1
n

2j0
Cov

"
1

n

nX
i=1

J(
i

n
)Y[i:n];

1

n

nX
i=1

J(
i

n
)D[i:n]

#

=
1

2j0

Z +1

�1
J2(FV (x))�

2
"�(x)dFV (x)

+
1

2j0

Z +1

�1

Z +1

�1
[FV (x ^ y)� FV (x)FV (y)]J(FV (x))J(FV (y))dm(x)dmD(y)

=

h
�2"�+(v0)

R b
0  

2(u)du+ �2"��(v0)
R 0
a  

2(u)du
i

�R b
0  (u)du

�2 ;
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where mD(x) = E(DjV = x) and the second last equality follows from the proof of equation (8)
in Yang (1981).

Next, we apply the Cramer-Wold Device to establish the joint limiting distribution of

(n=2j0)1=2(b�LC�SS0 ��0) and (n=2j0)1=2(b�LC�SS0 ��0). In the end, we use Delta method
to establish the asymptotic distribution for b�LC�SS0 =b�LC�SS0 .

Q.E.D.
Proof of Theorem 5. First we work with the bias term for b�LC�SS1 :Z +1

�1
[gK(v) + �1(V � v0)Ifv � v0g]

 j0(FV (v)� �)R b
0

�
F�1V ( u

2j0
+ �)� v0

�
 (u)du

dFV (v)

=

R +1
�1 gK(v) j0(FV (v)� �)dFV (v)R b
0

�
F�1V ( u

2j0
+ �)� v0

�
 (u)du

+

R +1
�1 �1vIfv � v0g j0(FV (v)� �)dFV (v)R b

0

�
F�1V ( u

2j0
+ �)� v0

�
 (u)du

=

R b
a gK

�
F�1V ( u

2j0
+ �)

�
 (u)duR b

0

�
F�1V ( u

2j0
+ �)� v0

�
 (u)du

+ �1:

Under A2K(G)(a), we have

Z b

a
gK

h
F�1V (

u

2j0
+ �)

i
 (u)du =

h
G
(2)
K+(�)�G

(2)
K�(�)

i R b
0 u

2 (u)du

22j0+1
+ s:o:

Under A2K(G)(b):Z b

a
gK

h
F�1V (

u

2j0
+ �)

i
 (u)du =

G
(m+1)
K (�)

R b
a u

m+1 (u)du

(m+ 1)!2(m+1)j0
+ s:o:

and Z b

0

h
F�1V (

u

2j0
+ �)� v0

i
 (u)du =

R b
0 u (u)du

2j0fV (v0)
+ s:o:

Then,

lim
n!1

2j0
h
E(b�LC�SS1 )� �1

i
=

h
G
(2)
K+(�)�G

(2)
K�(�)

i
fV (v0)

R b
0 u

2 (u)du

2
R b
0 u (u)du

, under A2K(G)(a),

lim
n!1

2mj0
h
E(b�LC�SS1 )� �1

i
=

G
(m+1)
K (�)

(m+ 1)!

fV (v0)
R b
a u

m+1 (u)duR b
0 u (u)du

, under A2K(G)(b).
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Now we work on the variance term:Z +1

�1

"
2j0 (u)R b

0

�
F�1V ( u

2j0
+ �)� v0

�
 (u)du

#2
�2(F�1V (

u

2j0
+ �))

1

2j0
du

=
2j0
R +1
�1  2(u)�2(F�1V ( u

2j0
+ �))du�

1
2j0

1
fV (v0)

R b
0 u (u)udu

�2
=

2j0�
1
2j0

1
fV (v0)

R b
0 u (u)udu

�2 �Z b

0
 2(u)�2(F�1V (

u

2j0
+ �))du+

Z 0

a
 2(u)�2(F�1V (

u

2j0
+ �))du

�
:

Thus we get

lim
n!1

n

23j0
V ar(b�LC�SS1 ) =

f2V (v0)
h
�2"+(v0)

R b
0  

2(u)du+ �2"�(v0)
R 0
a  

2(u)du
i

�R b
0 u (u)du

�2 :

Finally the asymptotic normality of b�LC�SS1 is established by following a similar proof to
that of Theorem 3.

Q.E.D.
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We recall  j [�] = 2j 
�
2j �
�
and the following expressions for functions L (t) and M (v):

L(t) =

Z b

a
Ifw � tg (w)dw and M(v) =

Z b

a

Z b

a
Ifw � t+ vg (w) (t)dtdw:

Lemma C.1 Under Assumption (A4), (i) L(t) has (m�1) vanishing moments and compact
support [a; b]; (ii) M(t) has compact support [a� b; b� a].

Proof of Theorem 7. Let

�
LC�SM
0 = n�1

nX
i=1

JW1

�
i

n

�
Y[i:n];

where

JW1(
i

n
) =

R 1
0

R 1
0 Ij0(t)Ifw � �g j0 [w � t] j0

�
i
n � t

�
dtdwR 1

0

R 1
0

R 1
0 Ij0(t)Ifw � �gIfv � �g j0 [w � t] j0 [v � t] dwdvdt

:

We will complete the proof in two steps:

Step 1. We show �
LC�SM
0 has the asymptotic distributions stated in the theorem;

Step 2. We show:
q

n
2j0
(b�LC�SM0 � �LC�SM0 ) = op (1).

Proof of Step 1: First, let us calculate limn!1E(�
LC�SM
0 ):Z 1

�1
[g(v) + �0Ifv � v0g]JW1(FV (v))dFV (v) =

Z 1

�1
g(v)JW1(FV (v))dFV (v) + �0:

For the �rst term on the right hand side of the above equation,Z 1

�1
g(v)JW1(FV (v))dFV (v)

=
2�j0

R1
�1 g(v)

hR 1
0

R 1
0 Ij0(t)Ifw � �g j0 [w � t] j0 [FV (v)� t] dtdw

i
dFV (v)

2�j0
R 1
0

R 1
0

R 1
0 Ij0(t)Ifw � �gIfv � �g j0 [w � t] j0 [v � t] dwdvdt

=
TW1

TW1D
;

where

TW1 = 2�j0
Z 1

�1
g(v)

�Z 1

0

Z 1

0
Ij0(t)Ifw � �g j0 [w � t] j0 [FV (v)� t] dtdw

�
dFV (v);

TW1D = 2�j0
Z 1

0

Z 1

0

Z 1

0
Ij0(t)Ifw � �gIfv � �g j0 [w � t] j0 [v � t] dwdvdt:
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For large enough j0, we obtain:

TW1 =

Z 1

0

Z 1

0

�Z b

a
g(F�1V (

s

2j0
+ t)) (s)ds

�
Ij0(t)Ifw � �g 

�
2j0(w � t)

�
dtdw

=

Z 1

0

Z 1

0
W (t)Ij0(t)Ifw � �g 

�
2j0(w � t)

�
dtdw

=
1

2j0

Z 1

0

�Z b

a
Ifw � 2j0(� � t)g [w] dw

�
Ij0(t)W (t)dt

=
1

2j0

Z 1

0
L(2j0(� � t))Ij0(t)W (t)dt

= (
1

2j0
)2
Z b

a
L(t)W (� � t

2j0
)dt;

where

W (t) �
Z b

a
G
� s

2j0
+ t
�
 (s)ds:

Ignoring higher order terms, we obtain: under A2(G)(a):

W (� � t

2j0
) =

Z b

a
G

�
� +

s� t
2j0

�
 (s)ds

=

Z b

a
G

�
� +

s� t
2j0

�
 (s)Ifs� t

2j0
� 0gds+

Z b

a
G

�
� +

s� t
2j0

�
 (s)Ifs� t

2j0
< 0gds

=

lG�1X
k=1

G
(k)
+ (�)

k!

Z b

a
(
s� t
2j0

)k (s)Ifs� t
2j0

� 0gds+
lG�1X
k=1

G
(k)
� (�)

k!

Z b

a
(
s� t
2j0

)k (s)Ifs� t
2j0

< 0gds:

Then,

TW1 = (
1

2j0
)3
h
G
(1)
+ (�)�G

(1)
� (�)

i Z b

a

Z b

a
L(t) (s)(s� t)Ifs� t � 0gdsdt:

Under A2(G)(b):

W (� � t

2j0
) =

lG�1X
k=1

G(k)(�)

k!

Z b

a
(
s� t
2j0

)k (s)ds+ s:o:

Then,

TW1 = (
1

2j0
)2
lG�1X
k=1

G(k)(�)

k!

Z b

a

Z b

a
L(t) (s)(

s� t
2j0

)kdsdt+ s:o:

= f
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( 1
2j0
)2m+1G

(2m�1)(�)
m!(m�1)!

R b
a  (s)s

mds
R b
a L(t)(�t)

m�1dt+ s:o: if lg � 2m;

O(( 1
2j0
)lG+2) if lg < 2m:

For large

enough j0,

TW1D =

Z 1

0

Z 1

0

�Z b

a
Ifw � 2j0(� � t)g [w] dw

�
Ij0(t)Ifv � �g 

�
2j0(v � t)

�
dtdv

=

Z 1

0

Z 1

0
L(2j0(� � t))Ifa � 2j0(� � t) � bgIfv � �g 

�
2j0(v � t)

�
dtdv

=
1

2j0

Z 1

0

�Z b

a
L(2j0(� � v) + t) (t)dt

�
Ifv � �gdv

=
1

2j0

Z 1

0
M(2j0(� � v))Ifv � �gdv

=
1

22j0

Z 0

a�b
M(v)dv:

Therefore, under A2(G)(a):

TW1

TW1D
=
( 1
2j0
)
h
G
(1)
+ (�)�G

(1)
� (�)

i R b
a

R b
a L(t) (s)(s� t)Ifs� t � 0gdsdtR 0

a�bM(v)dv
+ s:o:;

under A2(G)(b):

TW1

TW1D
=

8>><>>:
( 1

2j0
)2m�1�G(2m�1)(�)

R b
a  (s)s

mds�
R b
a L(t)(�t)

m�1dt

m!(m�1)!
R 0
a�bM(v)dv

+ s:o: if lG � 2m

O(( 1
2j0
)lG) if lG < 2m

:

Thus, under A2(G)(a), we obtain:

lim
n!1

2j0
h
E(�

LC�SM
0 )� �0

i
=

h
G
(1)
+ (�)�G

(1)
� (�)

i R b
a

R b
a L(t) (s)(s� t)Ifs� t � 0gdsdtR 0
a�bM(v)dv

;

under A2(G)(b), we obtain:
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Second, let us calculate the asymptotic variance of �
LC�SM
0 :

R1
�1

hR 1
0

R 1
0 Ij0(t)Ifw � �g j0 [w � t] 

�
2j0(FV (v)� t)

�
dtdw

i2
�2(v)dFV (v)

T 2D

+

R R
8>>>>>><>>>>>>:

[FV (v1 ^ v2)� FV (v1)FV (v2)]�

�
hR 1
0

R 1
0 Ij0(t)Ifw � �g j0 [w � t] 

�
2j0(FV (v1)� t)

�
dtdw

i
�
hR 1
0

R 1
0 Ij0(t)Ifw � �g j0 [w � t] 

�
2j0(FV (v2)� t)

�
dtdw

i

9>>>>>>=>>>>>>;
dm(v1)dm(v2)

T 2D

=
TW12

T 2W1D

+
TW13

T 2W1D

;

where

TW12 =

Z 1

�1

�Z 1

0

Z 1

0
Ij0(t)Ifw � �g j0 [w � t] 

�
2j0(FV (v)� t)

�
dtdw

�2
�2(v)dFV (v);

TW13 =

Z +1

�1

Z +1

�1

8>>>>>><>>>>>>:

[FV (v1 ^ v2)� FV (v1)FV (v2)]hR 1
0

R 1
0 Ij0(t)Ifw � �g j0 [w � t] 

�
2j0(FV (v1)� t)

�
dtdw

i
hR 1
0

R 1
0 Ij0(t)Ifw � �g j0 [w � t] 

�
2j0(FV (v2)� t)

�
dtdw

i

9>>>>>>=>>>>>>;
dm(v1)dm(v2):

For the TW12 term

TW12 =

Z 1

0
P 2W1 (u)�

2(F�1V (u))du;

where

PW1 (u) =

Z 1

0

Z 1

0
Ij0(t)Ifw � �g j0 [w � t] 

�
2j0(u� t)

�
dtdw:

Notice that for large enough j0;

PW1 (u) =

Z 1

0

�Z b

a
Ifw � 2j0(� � t)g (w)dw

�
Ij0(t) 

�
2j0(u� t)

�
dt

=

Z 1

0
L(2j0(� � t))Ij0(t) 

�
2j0(u� t)

�
dt

=
1

2j0
M(2j0(� � u)):

Therefore,

TW12 =
1

23j0

Z b�a

a�b
M2(u)�2(F�1(� � u

2j0
))du:
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Notice that when n!1, TW12

T 2W1D
= O(2j0), while TW13

T 2W1D
= O(1).

In the end,

lim
n!1

n

2j0
V ar(�

LC�SM
0 ) =

R b�a
a�b M

2(u)�2(F�1(� � u
2j0
))duhR b�a

a�b M(v)Ifv � 0gdv
i2

=
�2+(v0)

R b�a
0 M2(v)dv + �2�(v0)

R 0
a�bM

2(v)dvhR 0
a�bM(v)dv

i2 :

Proof of Step 2: Note thatr
n

2j0
(b�LC�SM0 � �LC�SM0 ) =

r
n

2j0

�
1

n

Pn
i=1 (Ai � Ci)Yi:n

B

�
+

r
n

2j0
�
LC�SM
0

�
D

B
� 1
�
;

where

Ai =

Z 1

0

1

n

nX
j=1

Iftj � �g j0 [tj � t] 
�
2j0(ti � t)

�
Ij0(t)dt;

B =

Z 1

0

24 1
n

nX
j=1

2j0=2Iftj � �g 
�
2j0(tj � t)

�352 Ij0(t)dt;
Ci =

Z 1

0

Z 1

0
Ij0(t)Ifw � �g j0 [w � t] 

�
2j0(ti � t)

�
dtdw;

D =

Z 1

0

Z 1

0

Z 1

0
Ij0(t)Ifw � �gIfv � �g j0 [w � t] 

�
2j0(v � t)

�
dwdvdt:

For the term
q

n
2j0
�
LC�SM
0

�
D
B � 1

�
, note that

lim
n!1

jB �Dj

� lim
n!1

Z 1

0

������ 1n
nX
j=1

2j0=2Iftj � �g 
�
2j0(tj � t)

�
�
Z 1

0
2j0=2Ifw � �g 

�
2j0(w � t)

�
dw

������
�

������ 1n
nX
j=1

2j0=2Iftj � �g 
�
2j0(tj � t)

�
+

Z 1

0
2j0=2Ifv � �g 

�
2j0(v � t)

�
dv

������ Ij0(t)dt
� lim

n!1
sup
t2D(t)

2j0=2

������ 1n
nX
j=1

Iftj � �g 
�
2j0(tj � t)

�
�
Z 1

0
Ifw � �g 

�
2j0(w � t)

�
dw

������
� sup
t2D(t)

2j0=2

������ 1n
nX
j=1

Iftj � �g 
�
2j0(tj � t)

�
+

Z 1

0
Ifv � �g 

�
2j0(v � t)

�
dv

������
Z 1

0
Ij0(t)dt

= O(
2j0=2

n
) �O( 1

2j0=2
) �O( 1

2j0
)

= O(
1

n2j0
):
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Thus,r
n

2j0
�
LC�SM
0

�
D

B
� 1
�
= op(1):

Since D = O( 1
22j0

) from TW1D term, thus B = O( 1
22j0

). And note thatr
n

2j0

�
1

n

Pn
i=1 (Ai � Ci)Y[i:n]

B

�

�
r

n

2j0
1

B
sup
t2D(t)

��������
1
n

Pn
j=1 Iftj � �g j0 [tj � t]

�
R 1
0 Ifw � �g j0 [w � t] dw

��������
1

n

nX
i=1

Z 1

0
Ij0(t)dt sup

t2D(t)

�� �2j0(ti � t)���Y[i:n]

=

r
n

2j0
1

B
sup
t2D(t)

��������
1
n

Pn
j=1 Iftj � �g j0 [tj � t]

�
R 1
0 Ifw � �g j0 [w � t] dw

��������
1

n

nX
i=1

sup
t2D(t)

�� j0 [ti � t]��Y[i:n]
R 1
0 Ij0(t)dt

2j0

= O(

r
n

2j0
) �O(22j0) �O(2

j0

n
) �Op(1) �O(

1

22j0
)

= Op(

r
2j0

n
) = op(1):

In the end, we have:
q

n
2j0
(b�LC�SM0 � �LC�SM0 ) = op (1) :

Q.E.D.
Proof of Theorem 9: We begin with the simplest case where jL = j0 and jU = j0+1.

Then by induction we prove the general case.
When jL = j0, and jU = j0 + 1, we have:

b�LC�MS

0 =
b�Y
j0
(�)b�cD0

j0
(�) + b�Y

j0+1
(�)b�cD0

j0+1
(�)hb�cD0

j0
(�)
i2
+
hb�cD0

j0+1
(�)
i2

=

1
n

Pn
i=1

8>><>>:
1
n

Pn
l=1 Iftl � �g j0 [tl � � ] [2j0(ti � �)]

+ 2
n

Pn
l=1 Iftl � �g j0 [2(tl � �)] [2j0+1(ti � �)]

9>>=>>;Y[i:n]

h
2j0=2

n

Pn
l=1 Iftl � �g [2j0(ti � �)]

i2
+
h
2(j0+1)=2

n

Pn
l=1 Iftl � �g [2j0+1(ti � �)]

i2 :
Let

�
LC�MS
0 =

1

n

nX
i=1

JW2(
i

n
)Y[i:n];

where

JW2(
i

n
) =

2j0
�
 [2j0( in � �)] +  [2

j0+1( in � �)]
	

(1 + 1
2)
R b
0  (t)dt

:
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We will complete the proof in two steps:

Step 1. We show �
LC�MS
0 has the asymptotic distributions stated in the theorem;

Step 2. We show
q

n
2j0
(b�LC�MS

0 � �LC�MS
0 ) = op (1).

Proof of Step 1: FirstZ 1

�1
[g(v) + �0Ifv � v0g]JW2(FV (v))dFV (v) =

Z 1

�1
g(v)JW2(FV (v))dFV (v) + �0

=
2

3

Z 1

�1
g(v)

 j0 [FV (v)� � ]R b
0  (t)dt

dFV (v) +
1

3

Z 1

�1
g(v)

2 j0 [2(FV (v)� �)]R b
0  (t)dt

dFV (v) + �0

=
2

3
P1 +

1

3
P2 + �0;

where

P1 =

Z 1

�1
g(v)

 j0 [FV (v)� � ]R b
0  (t)dt

dFV (v);

P2 =

Z 1

�1
g(v)

2 j0 [2(FV (v)� �)]R b
0  (t)dt

dFV (v):

From the proof of Theorem 3, we know: under A2(G)(a):

P1 =

1
2j0

h
G
(1)
+ (�)�G

(1)
� (�)

i R b
0  (u)uduR b

0  (u)du
+ s:o:;

P2 =

1
2j0+1

h
G
(1)
+ (�)�G

(1)
� (�)

i R b
0  (u)uduR b

0  (u)du
+ s:o:

Then,

2

3
P1 +

1

3
P2 =

5
2j0

h
G
(1)
+ (�)�G

(1)
� (�)

i R b
0  (u)udu

6
R b
0  (u)du

+ s:o:

Again from the proof of Theorem 3, we know: under A2(G)(b):

P1 =
( 1
2j0
)mG(m)(�)

R b
a u

m (u)duR b
0  (u)du

+ s:o:;

P2 =
( 1
2j0+1

)mG(m)(�)
R b
a u

m (u)duR b
0  (u)du

+ s:o:

Then,

2

3
P1 +

1

3
P2 =

( 1
2j0
)m(2 + 1

2m )G
(m)(�)

R b
a u

m (u)du

3
R b
0  (u)du

+ s:o:

104



Thus when Kn = 1,

lim
n!1

2j0
h
E(�

LC�MS
0 )� �0

i
=

5
h
G
(1)
+ (�)�G

(1)
� (�)

i R b
0  (u)udu

6
R b
0  (u)du

, under A2(G)(a);

lim
n!1

2mj0
h
E(�

LC�MS
0 )� �0

i
=

(2 + 1
2m )G

(m)(�)
R b
a u

m (u)du

3
R b
0  (u)du

, under A2(G)(b).

Second, let us calculate limn!1 nV ar(�
LC�MS
0 ) with Kn = 1:Z 1

�1

"
2j0
�
 [2j0(FV (v)� �)] +  [2j0+1(FV (v)� �)]

	
(1 + 1

2)
R b
0  (t)dt

#2
�2(v)dFV (v)

+

Z +1

�1

Z +1

�1

8>>>>>>>>><>>>>>>>>>:

[FV (v1 ^ v2)� FV (v1)FV (v2)]8>>>>><>>>>>:
 j0 [FV (v1)� � ]

+ j0 [2(FV (v1)� �)]

9>>>>>=>>>>>;

8>>>>><>>>>>:
 j0 [FV (v2)� � ]

+ j0 [2(FV (v2)� �)]

9>>>>>=>>>>>;h
3
2

R b
0  (t)dt

i2

9>>>>>>>>>=>>>>>>>>>;
dm(v1)dm(v2)

= AW21 +AW22;

where

AW21 =

Z 1

�1

"
2j0
�
 [2j0(FV (v)� �)] +  [2j0+1(FV (v)� �)]

	
(1 + 1

2)
R b
0  (t)dt

#2
�2(v)dFV (v);

AW22 =

Z +1

�1

Z +1

�1

8>>>>>>>>><>>>>>>>>>:

[FV (v1 ^ v2)� FV (v1)FV (v2)]8>>>>><>>>>>:
 j0 [FV (v1)� � ]

+ j0 [2(FV (v1)� �)]

9>>>>>=>>>>>;

8>>>>><>>>>>:
 j0 [FV (v2)� � ]

+ j0 [2(FV (v2)� �)]

9>>>>>=>>>>>;h
(1+ 1

2
)
R b
0  (t)dt

i2

9>>>>>>>>>=>>>>>>>>>;
dm(v1)dm(v2):
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Since,

AW21 =

Z 1

�1

"
2j0
�
 [2j0(FV (v)� �)] +  [2j0+1(FV (v)� �)]

	
(1 + 1

2)
R b
0  (t)dt

#2
�2(v)dFV (v)

=
4

9

Z 1

�1

"
 j0 [FV (v)� � ]R b

0  (t)dt

#2
�2(v)dFV (v) +

1

9

Z 1

�1

"
2 j0 [2(FV (v)� �)]R b

0  (t)dt

#2
�2(v)dFV (v)

+
4

9

Z 1

�1

 j0 [FV (v)� � ]2j0+1 [2j0+1(FV (v)� �)]hR b
0  (t)dt

i2 �2(v)dFV (v)

=
2j0+1

3
A1 +

4

9

Z 1

�1

2j0 [2j0(FV (v)� �)]2j0+1 [2j0+1(FV (v)� �)]hR b
0  (t)dt

i2 �2(v)dFV (v) + s:o:

=
2j0+1

3
A1 +

8

9

2j0hR b
0  (t)dt

i2 ��2+(v0)� �2�(v0)� Z b

0
 (u) (2u)du+ s:o:;

when n!1, AW21 = O(2j0), while AW22 = O(1). Therefore when Kn = 1,

lim
n!1

n

2j0
V ar(�

LC�MS
0 ) =

2

3
V +

2j0+3[�
2
+(v0)��2�(v0)]

R b
0  (u) (2u)du

9
hR b
0  (t)dt

i2 :

Proof of Step 2. It is similar to that of Theorem 3.
Q.E.D.
Proof of Theorem 11: We begin with the simplest case with jL = j0 and jU = j0+1.

Then by induction, we prove the general case.
When jL = j0, and jU = j0 + 1, we have:

b�LC�MM

0 =

PjU
j=jL

R 1
0
b�Y
j (t)

b�cD0
j (t)cIj0(t)dtPjU

j=jL

R 1
0

hb�cD0
j (t)

i2 cIj0(t)dt
=

R 1
0
b�Y
j0
(t) b�cD0

j0
(t)cIj0(t)dt+ R 10 b�Y

j0+1
(t) b�cD0

j0+1
(t)[Ij0+1(t)dtR 1

0

hb�cD0
j0
(t)
i2 cIj0(t)dt+ R 10 hb�cD0

j0+1
(t)
i2
[Ij0+1(t)dt

:

Let

�
LC�MM
0 =

1

n

nX
i=1

JW3(
i

n
)Y[i:n];
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where

JW3(
i

n
) =

Z1W3(
i
n) + Z

2
W3(

i
n)

Q1 +Q2
;

Z1W3(
i

n
) =

Z 1

0

Z 1

0
Ifw � �g j0 [w � t] 

�
2j0(

i

n
� t)

�
Ij0(t)dtdw;

Z2W3(
i

n
) =

Z 1

0

Z 1

0
Ifw � �g2 j0 [2(w � t)] 

�
2j0+1(

i

n
� t)

�
Ij0+1(t)dtdw;

Q1 =

Z 1

0

Z 1

0

Z 1

0
Ifu � �gIfv � �g j0 [u� t] 

�
2j0(v � t)

�
Ij0(t)dudvdt;

Q2 =

Z 1

0

Z 1

0

Z 1

0
Ifu � �gIfv � �g2 j0 [2(u� t)] 

�
2j0+1(v � t)

�
Ij0+1(t)dudvdt:

We will complete the proof in two steps:

Step 1. We show �
LC�MM
0 has the asymptotic distributions stated in the theorem;

Step 2. We show:
q

n
2j0
(b�LC�MM

0 � �LC�MM
0 ) = op (1).

Proof of Step 1: First, let us calculate the limn!1E(�W3):Z 1

�1
[g(v) + �0Ifv � v0g]JW3(FV (v))dFV (v) =

Z 1

�1
g(v)JW3(FV (v))dFV (v) + �0:

From the proof of Theorem 7, we know

Q1 +Q2 =
5
R 0
�1M(v)dv

22j0+2
:

Under A2(G)(a):Z 1

�1
g(v)

�
Z1W3(FV (v)) + Z

2
W3(FV (v))

�
dFV (v)

= 9(
1

2j0+1
)3
h
G
(1)
+ (�)�G

(1)
� (�)

i Z b

a

Z b

a
L(t) (s)(s� t)Ifs� t � 0gdsdt+ s:o::

Then when Kn = 1; ignoring higher order terms, we haveZ 1

�1
g(v)JW3(FV (v))dFV (v)

=
9( 1
2j0
)
h
G
(1)
+ (�)�G

(1)
� (�)

i R b
a

R b
a L(t) (s)(s� t)Ifs� t � 0gdsdt

10
R 0
a�bM(v)dv

:

Under A2(G)(b) and lg � 2m:Z 1

�1
g(v)

�
Z1W3(FV (v)) + Z

2
W3(FV (v))

�
dFV (v)

= [1 + (
1

2
)2m+1]

( 1
2j0
)2m+1G(2m�1)(�)

R b
a  (s)s

mds
R b
a L(t)(�t)

m�1dt

m!(m� 1)! + s:o::
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Then when Kn = 1;Z 1

�1
g(v)JW3(FV (v))dFV (v)

=

�
4 + (12)

2m�1� ( 1
2j0
)2m�1G(2m�1)(�)

R b
a  (s)s

mds
R b
a L(t)(�t)

m�1dt

5m!(m� 1)!
R 0
a�bM(v)dv

+ s:o::

Therefore, under A2(G)(a),

lim
n!1

2j0
h
E(�

LC�MM
0 )� �0

i
=

9
h
G
(1)
+ (�)�G

(1)
� (�)

i R b
a

R b
a L(t) (s)(s� t)Ifs� t � 0gdsdt

10
R 0
a�bM(v)dv

;

under A2(G)(b),

lim
n!1

2(2m�1)j0
h
E(�

LC�MM
0 )� �0

i
=

�
4 + (12)

2m�1�G(2m�1)(�) R ba  (s)smds R ba L(t)(�t)m�1dt
5m!(m� 1)!

R 0
a�bM(v)dv

.

Second, let us calculate limn!1 nV ar(�
LC�MM
0 ) with Kn = 1;

lim
n!1

n

2j0
V ar(�

LC�MM
0 )

=

R b�a
a�b M

2(u)�2(F�1V (� � u
2j0
))du

24j0(Q1 +Q2)2
+

R b�a
a�b M

2(u)�2(F�1V (� � u
2j0
))du

23j0+3(Q1 +Q2)2

+
2

(Q1 +Q2)2

Z +1

�1
Z1W3(FV (v))Z

2
W3(FV (v))�

2(v)dFV (v)

=
18

25
VW1 +

Cross1
(Q1 +Q2)2

;

where

Cross1 = 2

Z +1

�1
Z1W3(FV (v))Z

2
W3(FV (v))�

2(v)dFV (v)

=
1

23j0

Z +1

�1
M(u)M(2u)�2(F�1V (� � u

2j0
))du.

Therefore when Kn = 1;

lim
n!1

n

2j0
V ar(�

LC�MM
0 ) =

18

25
VW1 +

2j0+3
�
�2+(v0)� �2�(v0)

� R b
0 M(u)M(2u)du

9
hR b
0  (t)dt

i2 :

The proof of second step could be obtained analogous to Theorem 7.
Q.E.D.
Proof of Theorem 13: We will complete the proof in two steps:
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Step 1. We show �
LC�SM
1 has the asymptotic distributions stated in the theorem;

Step 2. We show:
q

n
23j0

(b�LC�SM1 � �LC�SM1 ) = op (1).

Proof of Step 1. Note thatZ 1

�1
[gK(v) + �1(V � v0)Ifv � v0g]JKW1(F V (v))dF V (v)

=

Z 1

�1
gK(v)JKW1(F V (v))dF V (v)+�1::

For the �rst term,Z 1

�1
gK(v)JKW1(F V (v))dF V (v) =

TKW1

TKW1D
;

where

TKW1 =

Z 1

�1
gK(v)

2664
R 1
0

R 1
0 Ij0(t)

�
F�1V (w)� v0

�
Ifw � �g

� j0 [w � t] 
�
2j0(FV (v)� t)

�
dtdw

3775 dF V (v);

TKW1D =

Z 1

0

Z 1

0

Z 1

0

2664 Ij0(t)
�
F�1V (w)� v0

�
Ifw � �g

�
F�1V (v)� v0

�
�Ifv � �g j0 [w � t] 

�
2j0(v � t)

�
3775 dwdvdt:

Then for large enough j0,

TKW1

=

Z 1

0

Z 1

0

�Z 1

0
gK(F

�1
V (u)) j0 [u� t] du

�
Ij0(t)

�
F�1V (w)� v0

�
Ifw � �g 

�
2j0(w � t)

�
dtdw

=

Z 1

0

Z 1

0

�Z b

a
gK(F

�1
V (

s

2j0
+ t)) (s)ds

�
Ij0(t)

�
F�1V (w)� v0

�
Ifw � �g 

�
2j0(w � t)

�
dtdw

=

Z 1

0

Z 1

0
WK(t)Ij0(t)

�
F�1V (w)� v0

�
Ifw � �g 

�
2j0(w � t)

�
dtdw

=

Z 1

0

�Z 1

0

�
F�1V (w)� v0

�
Ifw � �g 

�
2j0(w � t)

�
dw

�
Ij0(t)WK(t)dt

=
1

2j0

Z 1

0

�Z b

a

h
F�1V (

w

2j0
+ t)� v0

i
Ifw � 2j0(� � t)g [w] dw

�
Ij0(t)WK(t)dt;

where

WK(t) =

Z b

a
gK(F

�1
V (

s

2j0
+t)) (s)ds:
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Under the conditions of part (i) and ignoring higher order terms, we have:

TKW1

=
1

22j0

Z b

a
L0(W )

�
F�1V (�)

�(1)
(� w

2j0
)WK(� �

w

2j0
)dw

+
1

22j0

Z b

a
L1(w)

�
F�1V (� � w

2j0
)

�(1)
WK(� �

w
2j0
)dw

=
1

25j0fV (v0)

1

2

h
G
(2)
K+(�)�G

(2)
K�(�)

i Z b

a

Z b

a
(s� w)2 (s)Ifs� w � 0g [L1(w)� wL0(w)] dsdw:

Under the conditions of part (ii) and ignoring higher order terms, we obtain:

TKW1

=
1

2j0

Z 1

0

"Z b

a

"
2m�1X
i=0

�
F�1V (t)

�(i) � w
2j0

�i 1
i!
� v0)

#
Ifw � 2j0(� � t)g [w] dw

#
Ij0(t)WK(t)dt

=
1

2j0

8>><>>:
P2m�1

i=0
1

2(i+1)j0
1
i!

R b
a Li(w)

h
F�1V (� � w

2j0
)
i(i)

WK(� � w
2j0
)dw

� v0
2j0

R b
a L0(w)WK(� � w

2j0
)dw

9>>=>>;
=

1

2j0

8<:
2m�1X
p=1

A�1p +
2m�1X
k=2

Ak

9=; ;

where

A�1p =
1

2j0
1

p!

Z b

a
L0(W )

�
F�1V (�)

�(p)
(� w

2j0
)pWK(��

w

2j0
)dw for 2m� 1 � p � 1;

Ak =
1

2kj0
1

(k � 1)!

Z b

a
Lk�1(w)

�
F�1V (� � w

2j0
)

�(k�1)
WK(��

w
2j0
)dw for 2m� 1 � k � 2:

Notice that

A�11 =
1

2(2+2m)j0
[F�1V (�)]

(1) G
(2m)
K (�)

(m+ 1)!(m� 1)!

Z b

a
L0(t)(�t)mdt

Z b

a
 (s)sm+1ds+ s:o:;

A�12 =
1

2!

1

2(2+2m)j0
[F�1V (�)]

(2) G
(2m�1)
K (�)

(m+ 1)!(m� 2)!

Z b

a
L0(t)(�t)mdt

Z b

a
 (s)sm+1ds+ s:o:;

:::

A�1m =
1

m!

1

2(2+2m)j0
[F�1V (�)]

(m)G
(m+1)
K (�)

(m+ 1)!

Z b

a
L0(t)(�t)mdt

Z b

a
 (s)sm+1ds+ s:o:;

A�1p = o(
1

2(2+2m)j0
) for p > m:

Thus,

2m�1X
p=1

A�1p=
1

2(2+2m)j0

Z b

a
L0(t)(�t)mdt

Z b

a
 (s)sm+1ds

mX
i=1

[F�1V (�)]
(i) G

(2m+1�i)
K (�)

i!(m+ 1)!(m� i)!+s:o::
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Ignoring higher order terms, we get: for A2 term,

A2=
1

2(2+2m)j0

Z b

a
L1(t)(�t)m�1dt

Z b

a
 (s)sm+1ds

mX
i=1

[F�1V (�)]
(i) G

(2m+1�i)
K (�)

(i� 1)!(m+ 1)!(m� i)! ;

for A3 term,

A3

=
1

2!

1

2(2+2m)j0

Z b

a
L2(t)(�t)m�2dt

Z b

a
 (s)sm+1ds

m�1X
i=1

[F�1V (�)]
(i+1) G

(2m�i)
K (�)

(i� 1)!(m+ 1)!(m� i� 1)! :

Apply the similar procedure till Am+1 term,

Am+1 =
1

m!

1

2(2+2m)j0

Z b

a
Lm(t)dt

Z b

a
 (s)sm+1ds � [F�1V (�)](m)

G
(m+1)
K (�)

(m+ 1)!
+ s:o::

And

Aq = o(
1

2(2+2m)j0
) when q > m+ 1:

Therefore,

TKW1 =
1

2(3+2m)j0

Z b

a
 (s)sm+1ds

"
�0 +

mX
i=1

�i

#
:

For TKW1D term,

Z 1

0

Z 1

0

Z 1

0

8>><>>:
Ij0(t)

�
F�1V (w)� v0

�
Ifw � �g

�
F�1V (v)� v0

�
�Ifv � �g j0 [w � t] 

�
2j0(v � t)

�
9>>=>>; dwdvdt

=

Z 1

0

Z 1

0

8>><>>:
nR b

a

�
F�1v (t)� v0 +

P1
i=1

1
i! [F

�1
v (t)](i)( w

2j0
)i
�
Ifw � 2j0(� � t)g (w)dw

o
�Ij0(t)

�
F�1V (v)� v0

�
Ifv � �g 

�
2j0(v � t)

�
9>>=>>; dtdv

= C1+C2+RE;

where

C1 =

Z 1

0

Z 1

0

�
F�1v (t)� v0

�
L0(2

j0(� � t))Ij0(t)
�
F�1V (v)� v0

�
Ifv � �g 

�
2j0(v � t)

�
dtdv;

C2 =

Z 1

0

Z 1

0

�
F�1v (t)

�(1)
2j0

L1(2
j0(� � t))Ij0(t)

�
F�1V (v)� v0

�
Ifv � �g 

�
2j0(v � t)

�
dtdv;

RE =
1X
i=2

Z 1

0

Z 1

0

�
F�1v (t)

�(i)
i!2ij0

Li(2
j0(� � t))Ij0(t)

�
F�1V (v)� v0

�
Ifv � �g 

�
2j0(v � t)

�
dtdv:
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For C1 term,

C1=
1

24j0f2V (v0)

Z 0

a�b

�
t2M(t)� tM1(t)

�
dt+ s:o:;

For C2 term,

C2 =
1

24j0f2V (v0)

Z 0

a�b
[�tM2(t)] dt+ s:o:;

For RE term, RE = o( 1
24j0

). Hence,

TKW1D=
1

24j0f2V (v0)

Z 0

a�b

�
t2M(t)� tM1(t)� tM2(t)

�
dt+ s:o::

Then under the conditions of part (i):

lim
n!1

2j0
h
E(�

LC�SM
1 )� �1

i
=

h
G
(2)
K+(�)�G

(2)
K�(�)

i
fV (v0)

R b
a

R b
a (s� w)

2 (s)Ifs� w � 0g [L1(w)� wL0(w)] dsdw

2
R 0
a�b [t

2M(t)� tM1(t)� tM2(t)] dt
:

under the conditions of part (ii):

lim
n!1

2mj0
h
E(�

LC�SM
1 )� �1

i
=
f2V (v0)

R b
a  (s)s

m+1ds [�0 +
Pm

i=1 �i]R 0
a�b [t

2M(t)� tM1(t)� tM2(t)] dt
:

For the asymptotic variance,R1
�1

hR 1
0

R 1
0 Ij0(t)(F

�1
V (w)� v0)Ifw � �g j0 [w � t] 

�
2j0(FV (v)� t)

�
dtdw

i2
�2(v)dFV (v)

T 2KW1D

=
TKW12

T 2KW1D

;

where

TKW12

=

Z 1

�1

�Z 1

0

Z 1

0
Ij0(t)(F

�1
V (w)� v0)Ifw � �g j0 [w � t] 

�
2j0(FV (v)� t)

�
dtdw

�2
�2(v)dF V (v)

=

Z 1

0
P 2KW1�

2(F�1V (u))du;
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in which

PKW1 =

Z 1

0

Z 1

0
Ij0(t)(F

�1
V (w)� v0)Ifw � �g j0 [w � t] 

�
2j0(u� t)

�
dtdw

=

Z 1

0

�Z b

a

h
F�1V (t)� v0 + [F�1V (t)](1)(

w

2j0
) + s:o:

i
Ifw � 2j0(� � t)g (w)dw

�
Ij0(t) 

�
2j0(u� t)

�
dt

=

Z 1

0

�
F�1V (t)� v0

�
L0
�
2j0(� � t)

�
Ij0(t) 

�
2j0(u� t)

�
dt

+
1

2j0

Z 1

0

�
F�1V (t)

�(1)
L1
�
2j0(� � t)

�
Ij0(t) 

�
2j0(u� t)

�
dt+ s:o:

=
1

2j0fV (v0)
(u� �)M

�
2j0(� � u)

�
+

1

22j0fV (v0)
M1

�
2j0(� � u)

�
+

1

22j0fV (v0)
M2

�
2j0(� � u)

�
+s:o::

Thus

TKW12=
1

25j0f2V (v0)

2664 �2"+(v0)
R 0
a�b [M1(t) +M2(t)� tM(t)]2 dt

+�2"�(v0)
R b�a
0 [M1(t) +M2(t)� tM(t)]2 dt

3775+s:o:
and

lim
n!1

n

23j0
V ar(�

LC�SM
1 )

=
f2V (v0)

h
�2"+(v0)

R 0
a�b [M1(t) +M2(t)� tM(t)]2 dt+ �2"�(v0)

R b�a
0 [M1(t) +M2(t)� tM(t)]2 dt

i
hR 0
a�b [t

2M(t)� tM1(t)� tM2(t)] dt
i2 :

The proof of the second step could be obtained analogous to Theorem 7.
Q.E.D.
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Proofs of Chapter 2

Important Facts about the Wavelet

For a comprehensive wavelet study, readers should refer to Daubechies (1992) and Mallat
(2009).

Theorem 22 (Mallat, Theorem 6.4) If f 2 L2(R) is Lipschitz � at v, then there exists A such
that

8(u; s) 2 R�R+, jWf(u; s)j � As�+1=2
�
1 +

����u� vs
������ :

Conversely, if � is not an integer and there exists A and �0 < � such that

8(u; s) 2 R�R+, jWf(u; s)j � As�+1=2

 
1 +

����u� vs
�����0
!
;

then f is Lipschitz � at v.

For notational compactness, we might use  j [�] � 2j 
�
2j �
�
throughout this appendix.

The proofs rely heavily on Theorem 1 in Yang (1981). For completeness, we restate it in
Lemma C.1 below. Note that we need to extend Theorem 1 of Yang (1981) to allow the function J
to depend on n as in Remark 2 in Yang (1981), and also to extend the vector-valued scenario. Let
(Xi; Yi) (i = 1; 2; :::; n) be independent and identically distributed as (X;Y ). The r-th ordered X
variate is denoted by Xr:n and the Y variate paired with it is denoted by Yr:n. Let

Sn = n�1
nX
i=1

J [i= (n+ 1)]Yi:n;

where J is some bounded smooth function and may depend on n. Further, let

m(x) = E(Y jX = x); �2(x) = V ar(Y jX = x);

F�1(u) = inffxjF (x) � ug; m � F�1(u) � m(F�1(u)):

Lemma C.1 Suppose the following conditions are satis�ed: E(Y 2) <1; m(x) is a right contin-
uous function of bounded variation in any �nite interval; J is bounded and continuous ae m �F�1;
and the cdf of X, (F (x)) is a continuous function. Let

�2 �
Z +1

�1
J2(F (x))�2(x)dF (x)

+

Z +1

�1

Z +1

�1
[F (x ^ y)� F (x)F (y)]� J(F (x))J(F (y))dm(x)dm(y):

Then

lim
n!1

nV ar(Sn) = �2;
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and

lim
n!1

E(Sn) =

Z +1

�1
m(x)J(F (x))dF (x):

Furthermore, if �2 > 0, then

Sn � E(Sn)p
V ar(Sn)

d! N(0; 1):

Lemma C.2 (Extension to the Q vector-valued estimators Sn) Suppose the above conditions are
satis�ed and let

Sn =
h
S[1]n ; S

[2]
n ; � � � ; S[Q]n

iT
;

where for each 1 � q � Q and J [q] (�) may depend on n :

S[q]n = n�1
nX
i=1

J [q] [i= (n+ 1)]Yi:n:

De�ne for any 1 � q1; q2 � Q,

�2(q1;q2) =

Z +1

�1
J [q1](F (x)) � J [q2](F (x)) � �2(x)dF (x)

+

Z +1

�1

Z +1

�1
[F (x ^ y)� F (x)F (y)]� J [q1](F (x))J [q2](F (x))dm(x)dm(y);

then

lim
n!1

E(Sn)

=

�Z +1

�1
m(x)J [1](F (x))dF (x);

Z +1

�1
m(x)J [2](F (x))dF (x); � � � ;

Z +1

�1
m(x)J [Q](F (x))dF (x)

�T
;

and

lim
n!1

nV ar(Sn) =
h
�2(q1;q2)

i
Q�Q

:

Furthermore, if
h
�2(q1;q2)

i
Q�Q

is positive de�nite, then

[V ar(Sn)]
�1=2 [Sn � E(Sn)]

d! N(0; I):

Proof: For the asymptotic bias part, it is straightforward from Equation (12) and (13) of
Theorem 2 in Yang (1981) because of the closed-form expression, and we would apply the Cramer-
Wold device for deriving its asymptotic variance similar to Theorem 1 in Yang (1981). The asymp-
totic normality follows Theorem 6 in Yang (1977).

Q.E.D.
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Lemma C.3 Let

M

=

266666664

R 1
0

hb�D0
j0
(t)
i2
Ij0(t)dt

R 1
0
b�D0
j0
(t)b�D1

j0
(t)Ij0(t)dt :::

R 1
0
b�D0
j0
(t)b�Dp

j0
(t)Ij0(t)dtR 1

0
b�D0
j0
(t)b�D1

j0
(t)Ij0(t)dt

R 1
0

hb�D1
j0
(t)
i2
Ij0(t)dt :::

R 1
0
b�D1
j0
(t)b�Dp

j0
(t)Ij0(t)dt

...
...

. . .
...R 1

0
b�D0
j0
(t)b�Dp

j0
(t)Ij0(t)dt

R 1
0
b�Dp
j0
(t)b�D1

j0
(t)Ij0(t)dt :::

R 1
0

hb�Dp
j0
(t)
i2
Ij0(t)dt

377777775
:

Then

M = diag

�
1

2j0
;
1

22j0
; :::;

1

2(p+1)j0

�
�M� � diag

�
1

2j0
;
1

22j0
; :::;

1

2(p+1)j0

�
+ s:o:;

where for 0 � i; j � p,

M�
(i;j) =

1

f i+jV (v0)

ZZ bZ
a

(w � t)i(v � t)jIfw � t � 0gIfv � t � 0g (w) (v)dwdvdt:

Proof: First, from the term TW1D in Theorem 7 of Chapter 1:Z 1

0

hb�D0
j0
(t)
i2
Ij0(t)dt =

1

22j0

Z 0

a�b
M(v)dv + s:o:;

where M(v) �
R b
a

R b
a Ifw � t+ vg (w) (t)dtdw.

Second, from the term TKW1D in Theorem 9 of Chapter 1:Z 1

0

hb�D1
j0
(t)
i2
Ij0(t)dt =

1

24j0f2V (v0)

Z 0

a�b

�
t2M(t)� tM1(t)� tM2(t)

�
dt+ s:o:;

where

M1(s) =

Z bZ
a

(�t)Ifw � t+ sg (w) (t)dtdw;

M2(s) =

Z bZ
a

wIfw � t+ sg (w) (t)dtdw:
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For the general term
R 1
0
b�Di
j0
(t)b�Dj

j0
(t)Ij0(t)dt where 0 � i; j � p:Z 1

0

b�Di
j0
(t)b�Dj

j0
(t)Ij0(t)dt

=

ZZ 1Z
0

2664 Ij0(t)�
F�1V (w)� v0

�i
3775
2664 Ifw � �g�

F�1V (v)� v0
�j
3775 Ifv � �g

8>><>>:
2j0 

�
2j0(w � t)

�
 
�
2j0(v � t)

�
9>>=>>; dwdvdt+ s:o:

=
1

22j0

ZZ bZ
a

2664 F�1V (w�t
2j0

+ �)

�v0

3775
i

Ifw � t � 0g

2664 F�1V (v�t
2j0

+ �)

�v0

3775
j

Ifv � t � 0g (w) (v)dwdvdt+ s:o:

=
1

22j0

ZZ bZ
a

2664 (w�t
2j0
)�

F�1V (�)
�(1)

3775
i

Ifw � t � 0g

2664 (v�t
2j0
)�

F�1V (�)
�(1)

3775
j

Ifv � t � 0g (w) (v)dwdvdt+ s:o:

=
1

2(i+j+2)j0 [fv(v0)]
i+j

ZZ bZ
a

(w � t)i(v � t)jIfw � t � 0gIfv � t � 0g (w) (v)dwdvdt+ s:o:

where the s:o: term in �rst equality comes from replacing the �nite double summations with inte-
gration, whose precision could be controlled by the Koksma�Hlawka inequality.

Q.E.D.

Lemma C.4 De�ne

b�G�
j0 (t) =

1

n

nX
m=1

G�(tm)2
j0=2 

�
2j0(tm � t)

�
;

and let

N =

266664
R 1
0
b�D0
j0
(t)Ij0(t)

b�G�
j0
(t)dtR 1

0
b�D1
j0
(t)Ij0(t)

b�G�
j0
(t)dt

...R 1
0
b�Dp
j0
(t)Ij0(t)

b�G�
j0
(t)dt

377775 :
Then

N =
1

2(2m+1))j0
N� + s:o:;

where

N�
(0) =

1

m!(m� 1)!G
�(2m�1)(�)

Z b

a
 (u)umdu �

Z bZ
a

Ifw � t � 0g(�t)m�1 (w)dtdw;
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and for 1 � i � p and Ki(
u
2j0
; w
2j0
; �t
2j0
) � G�(u�t

2j0
+ �) �

�
F�1V (w�t

2j0
+ �)� v0

�i
;

N�
(i) =

ZZ bZ
a

X
�2+�3=m�1

1

m!�2!�3!

@2m�1Ki(k1; k2; k3)

@mk1@�2k2@�3k3 jk1=k2=k3=0
umw�2(�t)�3dwdudt:

Proof: First let us look at the
R 1
0
b�D0
j0
(t)Ij0(t)

b�G�
j0
(t)dt term:Z 1

0

b�D0
j0
(t)Ij0(t)

b�G�
j0 (t)dt

=
RR 1R
0

G�(u)Ifw � �gIj0(t)2j0 
�
2j0(w � t)

�
 
�
2j0(u� t)

�
dwdudt+ s:o:

=
1

22j0

ZZ bZ
a

G�(
u� t
2j0

+ �)Ifw � t � 0g (w) (u)dwdudt+ s:o:

=
1

22j0

ZZ bZ
a

"
G�(�) +

2m�1X
k=1

G�(k)(�)

k!

�
u� t
2j0

�k
+ s:o:

#
Ifw � t � 0g (w) (u)dwdudt+ s:o:

=
1

22j0

ZZ bZ
a

1

(2m� 1)!G
�(2m�1)(�)

�
u� t
2j0

�2m�1
Ifw � t � 0g (w) (u)dwdudt+ s:o:

=
1

2(2m+1)j0
1

m!(m� 1)!G
�(2m�1)(�)

Z b

a
 (s)smds �

Z bZ
a

Ifw � t � 0g (w)(�t)m�1dwdt+ s:o:;

where the s:o: term in �rst equality comes from replacing the �nite double summations with integra-
tion, whose precision could be controlled by the Koksma�Hlawka inequality; and.the second-to-last
equality is from employing the vanishing moment

R b
a u

j (u) du = 0 for j = 0; 1; :::;m � 1 andR b
a t

j
R b
a Ifw � tg (w)dwdt= 0 for j = 0; 1; : : : ;m� 2 (see Lemma C.1 in Chapter 1).

For the general term
R 1
0
b�Di
j0
(t)Ij0(t)

b�G�
j0
(t)dt where 1 � i � p :Z 1

0

b�Di
j0
(t)Ij0(t)

b�G�
j0 (t)dt

=
RR 1R
0

G�(u)Ifw � �g
�
F�1V (w)� v0

�i
Ij0(t)2

j0 
�
2j0(w � t)

�
 
�
2j0(u� t)

�
dwdudt+ s:o:

=
1

22j0

ZZ bZ
a

G�(
u� t
2j0

+ �)

�
F�1V (

w � t
2j0

+ �)� v0
�i
Ifw � t � 0g (w) (u)dwdudt+ s:o:

=
1

2(2m+1)j0

ZZ bZ
a

X
�2+�3=m�1

1

m!�2!�3!

@2m�1Ki(k1; k2; k3)

@mk1@�2k2@�3k3 jk1=k2=k3=0
umw�2(�t)�3dwdudt+ s:o:;

where the last equality comes from the trivariate Taylor expansion ofG�(u�t
2j0
+�)

�
F�1V (w�t

2j0
+ �)� v0

�i �
Ki(

u
2j0
; w
2j0
; �t
2j0
); and then apply the vanishing moment from  (w) andL(t) �

R b
a Ifw � tg (w)dw.
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Q.E.D.

Lemma C.5 De�ne for 0 � i; j � p

V(i;j) =

Z 1

0
Zi(u)Zj(u)�

2
�
F�1V (u)

�
du;

where

Zi(u) = 2
j0

Z 1Z
0

Ij0(t)
�
F�1V (w)� v0

�i
Ifw � �g 

�
2j0(w � t)

�
 
�
2j0(u� t)

�
dwdt:

Then

V(i;j) =
1

2(3+i+j)j0
V �(i;j) + s:o:;

where for 0 � i; j � p

V �(i;j)

= �2�(v0)

Z 0

a�b

24Z bZ
a

Ifw � t � 0g(w � t)i (w) (u+ t)
f iV (v0)

dwdt

35
24Z bZ

a

Ifw � t � 0g(w � t)j (w) (u+ t)
f jV (v0)

dwdt

35 du
+

�2+(v0)

Z b�a

0

24Z bZ
a

Ifw � t � 0g(w � t)i (w) (u+ t)
f iV (v0)

dwdt

35
24Z bZ

a

Ifw � t � 0g(w � t)j (w) (u+ t)
f jV (v0)

dwdt

35 du:
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Proof: First let us look at the term V(0;0), where S(u) =
Z bZ
a

2664 Ifw � t � 0g

 (w) 
�
2j0u� 2j0� + t

�
3775 dwdt :

V(0;0)

=

Z 1

0

24Z bZ
a

Ifw � t � 0g (w) 
�
2j0u� 2j0� + t

� 1
2j0

dwdt

352 �2 �F�1V (u)
�
du

=
1

22j0

Z 1

0

�
S(2j0u� 2j0�)

�2
�2
�
F�1V (u)

�
du

=
1

23j0

Z b

a
S2(u)�2

h
F�1V (

u

2j0
+ �)

i
du

=
1

23j0

�
�2+(v0)

Z b

0
S2(u)du+ �2�(v0)

Z 0

a
S2(u)du+ s:o:

�

=
1

23j0

266666664
�2+(v0)

R b�a
0

0@Z bZ
a

Ifw � t � 0g (w) (u+ t)dwdt

1A2 du
�2�(v0)

R 0
a�b

0@Z bZ
a

Ifw � t � 0g (w) (u+ t)dwdt

1A2 du

377777775
+ s:o:;

where the last equality comes from the fact that

Z bZ
a

Ifw � t + vg (w) (t)dtdw has compact

support [a� b; b� a]. By the same procedure, we could prove for other V(i;j) for 0 � i; j � p.
Q.E.D.

Lemma C.6 (Asymptotic equivalence between the feasible estimator and its counterpart) Observe

the feasible local polynomial wavelets estimator b�LP�SM :

b�LP�SM
= arg min

f�kgpk=0

nX
l=1

"b�Y
j0 (tl)�

pX
k=0

�k � b� bDk
j0
(tl)

#2 bIj0(tl)
=

��b�dDP
j0

�T
� bIj0 � b�dDP

j0

��1 ��b�dDP
j0

�T
� bIj0 � b�Y

j0

�
;

where

bIj0(tl) = Ifa � 2j(b� � tl) � bg;bIj0 = diag
hbIj0(t1); bIj0(t2); :::; bIj0(tn)i ;

b�dDP
j0 (t) =

�b� bD0
j0
(t) ; b� bD1

j0
(t) ; :::; b� bDp

j0
(t)

�T
�b�dDP

j0

�T
=

��b�dDP
j0 (t1)

�T
;
�b�dDP

j0 (t2)
�T

; :::;
�b�dDP

j0 (tn)
�T
)

�
:
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and its infeasible counterpart �
LP�SM

:

�
LP�SM

= arg min
f�kgpk=0

nX
l=1

"b�Y
j0 (tl)�

pX
k=0

�k � b�Dk
j0
(tl)

#2
Ij0(tl)

=

��b�DP
j0

�T
� Ij0 � b�DP

j0

��1 ��b�DP
j0

�T
� Ij0 � b�Y

j0

�
;

where

Ij0(tl) = Ifa � 2j(� � tl) � bg;
Ij0 = diag [Ij0(t1); Ij0(t2); :::; Ij0(tn)] ;b�DP

j0 (t) =
hb�D0

j0
(t) ; b�D1

j0
(t) ; :::; b�Dp

j0
(t)
iT

�b�DP
j0

�T
=

��b�DP
j0 (t1)

�T
;
�b�DP

j0 (t2)
�T

; :::;
�b�DP

j0 (tn)
�T
)

�
:

When
�
n�1=2 (log log n)1=2

�
=(2�j0)! 0, then

diag

�r
n

2j0
;

r
n

23j0
; � � � ;

r
n

2(2p+1)j0

��
�
LP�SM � b�LP�SM� = op(1).

Proof : First, let us look at the numerator terms
�b�dDP

j0

�T
� bIj0 � b�Y

j0
and

�b�DP
j0

�T
�

Ij0 � b�Y
j0
in these two estimators. Then the corresponding element-wise di¤erence between these two

numerators is de�ned as diffk for 0 � k � (p+ 1);

diffk =

nX
l=1

 
1

n

nX
i=1

(F�1V (ti)� v0)kIfti � �g2j0=2 
�
2j0(ti � tl)

�!
Ij0(tl)

b�Y
j0 (tl)

�
nX
l=1

 
1

n

nX
i=1

( bF�1V (ti)� v0)kIfti � b�g2j0=2 �2j0(ti � tl)�
! bIj0(tl)b�Y

j0 (tl) :
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Notice that

diff0 =
nX
l=1

 
1

n

nX
i=1

Ifti � �g2j0=2 
�
2j0(ti � tl)

�!
Ij0(tl)

b�Y
j0 (tl)

�
nX
l=1

 
1

n

nX
i=1

Ifti � b�g2j0=2 �2j0(ti � tl)�
! bIj0(tl)b�Y

j0 (tl)

=

8>>><>>>:
Pn

l=1

�
1
n

Pn
i=1 Ifti � �g2j0=2 

�
2j0(ti � tl)

��
Ij0(tl)

b�Y
j0
(tl)

�
Pn

i=1

R 1R
0

Ij0(t)Ifw � �g j0 [w � t] 
�
2j0(ti � t)

�
dtdw � Yi:n

9>>>=>>>;
�

8>>><>>>:
Pn

l=1

�
1
n

Pn
i=1 Ifti � b�g2j0=2 �2j0(ti � tl)�� bIj0(tl)b�Y

j0
(tl)

�
Pn

i=1

R 1R
0

bIj0(t)Ifw � b�g j0 [w � t] �2j0(ti � t)� dtdw � Yi:n
9>>>=>>>;

+

8>>><>>>:
Pn

i=1

R 1R
0

Ij0(t)Ifw � �g j0 [w � t] 
�
2j0(ti � t)

�
dtdw � Yi:n

�
Pn

i=1

R 1R
0

bIj0(t)Ifw � b�g j0 [w � t] �2j0(ti � t)� dtdw � Yi:n
9>>>=>>>;

= Op(
1

n2j0
) +Op(

1

n2j0
);

where the �rst two terms in the last equality are Op(
1

n2j0
) , which is derived from the proof of

Theorem 7 in Chapter 1, and the third term Op(
1

n2j0
) is from the change of variables.

Let � =
�
t : a � 2j0(� � t) � b

	
and since

sup
ti2�

��F�1V (ti)� v0
�� = O(

1

2j0
);

and

sup
ti2�

���dF�1V (ti)� v0
��� � sup

ti2�

��F�1V (ti)� v0
��+ sup

ti2�

���dF�1V (ti)� F�1V (ti)
��� = Op(

1

2j0
);

where the last equality comes from Equation (30), which is
���dF�1V (ti)� F�1V (ti)

��� = Op

�
n�1=2 (log log n)1=2

�
in Wang and Cai (2010). Then diffk+1 = Op

�
1
2j0
diffk

�
for each 0 � k � p.
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Now we have��b�DP
j0

�T
� Ij0 � b�DP

j0

��1 ��b�DP
j0

�T
� Ij0 � b�Y

j0 �
�b�dDP

j0

�T
� bIj0 � b�Y

j0

�

= Op

266666666664

22j0diff0 + 2
3j0diff1 + � � �+ 2(p+2)j0diffp

23j0diff0 + 2
4j0diff1 + � � �+ 2(p+3)j0diffp

...

2(p+2)j0diff0 + 2
(p+3)j0diff1 + � � �+ 22(p+1)j0diffp

377777777775

= Op

266666666664

22j0diff0

23j0diff0

...

2(p+2)j0diff0

377777777775
:

Therefore,

diag

�r
n

2j0
;

r
n

23j0
; � � � ;

r
n

2(2p+1)j0

�
���b�DP

j0

�T
� Ij0 � b�DP

j0

��1 ��b�DP
j0

�T
� Ij0 � b�Y

j0 �
�b�dDP

j0

�T
� bIj0 � b�Y

j0

�
= Op

 r
2j0

n

!
= op (1) :

In the end, using Sluskty theorem and

��b�DP
j0

�T
� Ij0 � b�DP

j0
�
�b�dDP

j0

�T
� bIj0 � b�dDP

j0

�
=

op (1), we obtain the asymptotic equivalence between the infeasible and feasible estimators.
Q.E.D.
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Proof of Theorem 15: First let us look at the
�b�DP

j0

�T
� Ij0 � b�DP

j0
term:

�b�DP
j0

�T
� Ij0 � b�DP

j0

=

266666666664

Pn
i=1

hb�D0
j0
(ti)
i2
Ij0(ti)

Pn
i=1

b�D0
j0
(ti)b�D1

j0
(ti)Ij0(ti) :::

Pn
i=1

b�D0
j0
(ti)b�Dp

j0
(ti)Ij0(ti)Pn

i=1
b�D0
j0
(ti)b�D1

j0
(ti)Ij0(ti)

Pn
i=1

hb�D1
j0
(ti)
i2
Ij0(ti) :::

Pn
i=1

b�D1
j0
(ti)b�Dp

j0
(ti)Ij0(ti)

...
...

. . .
...Pn

i=1
b�D0
j0
(ti)b�Dp

j0
(ti)Ij0(ti)

Pn
i=1

b�Dp
j0
(ti)b�D1

j0
(ti)Ij0(ti) :::

Pn
i=1

hb�Dp
j0
(ti)
i2
Ij0(ti)

377777777775

=

266666666664

R 1
0

hb�D0
j0
(t)
i2
Ij0(t)dt

R 1
0
b�D0
j0
(t)b�D1

j0
(t)Ij0(t)dt :::

R 1
0
b�D0
j0
(t)b�Dp

j0
(t)Ij0(t)dtR 1

0
b�D0
j0
(t)b�D1

j0
(t)Ij0(t)dt

R 1
0

hb�D1
j0
(t)
i2
Ij0(t)dt :::

R 1
0
b�D1
j0
(t)b�Dp

j0
(t)Ij0(t)dt

...
...

. . .
...R 1

0
b�D0
j0
(t)b�Dp

j0
(t)Ij0(t)dt

R 1
0
b�Dp
j0
(t)b�D1

j0
(t)Ij0(t)dt :::

R 1
0

hb�Dp
j0
(t)
i2
Ij0(t)dt

377777777775
+ s:o:

= M + s:o:
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Second, let us look at the
�b�DP

j0

�T
� Ij0 � b�G(�)+�0If���g

j0
term:

�b�DP
j0

�T
� Ij0 � b�G(�)+�0If���g

j0

=

266666666664

Pn
i=1

b�D0
j0
(ti)Ij0(ti)

b�G(�)+�0If���g
j0

(ti)Pn
i=1

b�D1
j0
(ti)Ij0(ti)

b�G(�)+�0If���g
j0

(ti)

...Pn
i=1

b�Dp
j0
(ti)Ij0(ti)

b�G(�)+�0If���g
j0

(ti)

377777777775
=

266666666664

R 1
0
b�D0
j0
(t)Ij0(t)

b�G(�)+�0If���g
j0

(t)dtR 1
0
b�D1
j0
(t)Ij0(t)

b�G(�)+�0If���g
j0

(t)dt

...R 1
0
b�Dp
j0
(t)Ij0(t)

b�G(�)+�0If���g
j0

(t)dt

377777777775
+ s:o:

=

266666666664

R 1
0
b�D0
j0
(t)Ij0(t)

b�G�
j0
(t)dt+ �0

R 1
0

hb�D0
j0
(t)
i2
Ij0(t)dt+ :::+ �p

R 1
0
b�D0
j0
(t)b�Dp

j0
(t)Ij0(t)dtR 1

0
b�D1
j0
(t)Ij0(t)

b�G�
j0
(t)dt+ �0

R 1
0
b�D0
j0
(t)b�D1

j0
(t)Ij0(t)dt+ :::+ �p

R 1
0
b�D1
j0
(t)b�Dp

j0
(t)Ij0(t)dt

:::R 1
0
b�Dp
j0
(t)Ij0(t)

b�G�
j0
(t)dt+ �0

R 1
0
b�D0
j0
(t)b�Dp

j0
(t)Ij0(t)dt+ :::+ �p

R 1
0

hb�Dp
j0
(t)
i2
Ij0(t)dt

377777777775
+ s:o:

=

266666666664

R 1
0
b�D0
j0
(t)Ij0(t)

b�G�
j0
(t)dtR 1

0
b�D1
j0
(t)Ij0(t)

b�G�
j0
(t)dt

:::R 1
0
b�Dp
j0
(t)Ij0(t)

b�G�
j0
(t)dt

377777777775
+M � � + s:o:

Now let us derive the asymptotic bias term using Lemma C.3 and Lemma C.4 and the
asymptotic equivalence between the feasible and infeasible estimators from Lemma C.6:

lim
n!1

diag
h
2(2m�1)j0 ; 2(2m�2)j0 ; :::; 2(2m�p�1)j0

i h
E(b�LP�SM )� �i

=

266666666664

G�(2m�1)(�) � (M�)�1(0;0)N
�
(0)

G�(2m�1)(�) � (M�)�1(1;0)N
�
(0)

:::

G�(2m�1)(�) � (M�)�1(p;0)N
�
(0)

377777777775
:

For the asymptotic variance term, we employ Lemma C.5, and the asymptotic equivalence
between the feasible and infeasible estimators from Lemma C.6 11 :
11Notice that, for the asymptotic variance term in Lemma C.5, the second term is smaller order

than the �rst one. The proof is shown in Theorem 3 in Chapter 1.
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lim
n!!1

n � � � V ar(b�LP�SM ) = (M�)�1V �(M�)�1:

In the end, the asymptotic normality of b�LP�SM0 is established by following from Lemma
C.2.

Q.E.D.
Proof of Theorem 16:
The proof follows the Cramer-Wold device to establish the joint limiting distribution

of (n=2j0)1=2(b�LP�SM0 � �0) and (n=2j0)1=2(b�LP�SM0 � �0), then applies the Delta method to

establish the asymptotic distribution for b�LP�SM0 =b�LP�SM0 .
Q.E.D.
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Proof of Corollary 1:
(1) and (2) are easy to obtain by substitution.

(3) The asymptotic properties of b�LC�SS0 and b�LC�MM

0 are derived in Chapter 1. Here
we list their results: if G is continuous but non-di¤erentiable at � , then

lim
n!1

E
�b�LC�SS0

�
= �0 +

�
1

2j0

� hG(1)+ (�)�G(1)� (�)i R b0  (u)uduR b
0  (u)du

+ o(
1

2j0
);

and

lim
n!1

E
�b�LC�MM

0

�
= �0 +

�
1

2j0

��
6

7

� hG(1)+ (�)�G(1)� (�)i R ba R ba L(t) (s)(s� t)Ifs� t � 0gdsdtR 0
a�bM(v)dv

+ o(
1

2j0
);

in which

L(t) =

Z b

a
Ifw � tg (w)dw and M(v) =

Z b

a

Z b

a
Ifw � t+ vg (w) (t)dtdw:

It is seen that the b�LC�SS0 and b�LC�MM

0 do not attain the optimal convergence rate when
G is non-di¤erentiable at � . The reason for the non-optimality is because the non-di¤erentiable of
G at � keeps us from using a two-sided Taylor expansion, so that around the cuto¤ point � , only the
one-sided Taylor expansions are available and introduce G

(1)
+ (�) � G

(1)
� (�) in the bias term. This

fact leads us to model the potential higher-order derivative discontinuities of G at � and results in
local polynomial wavelet estimators.

However, if G is p-th di¤erentiable at � , then

lim
n!1

E
�b�LC�SS0

�
= �0 + (

1

2j0
)m
G(m)(�)

R b
a u

m (u)duR b
0  (u)du

+ o

�
(
1

2j0
)m
�
;

and

lim
n!1

E
�b�LC�MM

0

�
= �0 + (

1

2j0
)2m�1

3

4
�
1� (12)2m+1

�G(2m�1)(�) R ba  (s)smds R ba L(t)(�t)m�1dt
m!(m� 1)!

R 0
a�bM(v)dv

+ o((
1

2j0
)2m�1):

The asymptotic variance of b�LC�SS0 is:�
2j0

n

�
�2"+(v0)

R b
0  

2(u)du+ �2"�(v0)
R 0
a  

2(u)du�R b
0  (u)du

�2 ;
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and the asymptotic variance of b�LC�MM

0 is:�
2j0

n

��
9

14

�
�2"+(v0)

R b�a
0 M2(v)dv + �2"�(v0)

R 0
a�bM

2(v)dvhR 0
a�bM(v)dv

i2 :

Q.E.D
Proof of Theorem 17:
(1) The equispaced Nadaraya-Watson estimator b�NW0 could be written as

b�NW0 =
1

nh

nX
i=1

e NW ( ti � �
h

)Yi:n + s:o:

for ti = i=n where 1 � i � n. To see this, consider

b�NW0 �
Pn

i=1K(
ti�b�
h )Ifti � b�gYi:nPn

j=1K(
tj�b�
h )Iftj � b�g �

Pn
i=1K(� � ti) [1� Ifti � b�g]Yi:nPn

j=1K(
tj�b�
h ) [1� Iftj � b�g]

=
1

nh

nX
i=1

e NW ( ti � �
h

)Yi:n + s:o:;

where

e NW (t) � K(t)Ift � 0gR a
0 K(t)dt

� K(t) [1� Ift � 0g]R 0
�aK(t)dt

:

The equivalent wavelet function e NW satis�es
R a
�a
e NW (u)du = 0 and R a�a ue NW (u)du 6=

0, which only has one vanishing moment.

The equispaced partial smoothing kernel estimator12 b�ES0 could be written as b�ES0 =
1
nh

Pn
i=1
e ES( ti�b�h )Yi:n + s:o:;for ti = i=n where 1 � i � n and

e ES(t) �
�
Ift � b�g � Z 4a

�4a
eK(t� v)Ifv � b�gdv� =BES ;

eK(t) � 2K(t)�
Z
K(t� v)K(v)dv;

BES �
Z 2a

�2a

he ES(t)i2 dt:
e ES has the (2m� 1) vanishing moment13 . Hence the better asymptotic bias perfor-

mance of b�ES0 is expected when H is smoother.

12The similar results apply to Eubank and Whitney (1989), where the equivalent wavelet function has m
vanishing moment.
13These arguments could be found in Lemma 2, 3, and 6 in Speckman (1994), though he did not consider

the implications of e ES integrating to zero or the relationship to wavelet estimators.
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For the equispaced pro�led partial linear estimator b�PO0 , we see:

b�PO0 � argmin
�0

nX
i=1

24Yi:n � �0Ifti � b�g � nX
j=1

K(
ti�tj
h )Pn

l=1K(
ti�tl
h )

[Yj:n � �0Iftj � b�g]
352

= argmin
�0

nX
i=1

hb�Y
j0 (ti)� �0 b�D0

j0
(ti)� b� bG

j0 (ti)
i2

= argmin
�0

nX
i=1;

ti2ft:a�2j0 (b��t)�bg
hb�Y

j0 (ti)� �0 b�D0
j0
(ti)� b� bG

j0 (ti)
i2

+

nX
i=1;

ti =2ft:a�2j0 (b��t)�bg
hb�Y

j0 (ti)� �0 b�D0
j0
(ti)� b� bG

j0 (ti)
i2

= argmin
�0

nX
i=1

hb�Y
j (ti)� �0 b�D0

j0
(ti)� s:o:

i2 bIj0(ti) + s:o:;
where

bG(t) � nX
j=1

K(
t�tj
h )Pn

l=1K(
t�tl
h )

[Yj � �0Iftj � b�g] :
The second equality comes from the property W TW = I=n+ s:o:; where

W � 2j0=2

n

�
 (2j0ti � 2j0tj)

�
i;j=1;n

and
�
 
�
2j0t� w

�
;w 2 Z

	
constitute an orthonormal basis (Chapter 5 in Daubechies,1992). The

�rst term in the last equality is because G is close to bG when the bandwidth h goes to zero, so
that b� bG

j0
(ti) is small because G is continuous. For the second term in the last equality when

ti =2
�
t : a � 2j0(b� � t) � b

	
, the wavelet coe¢ cient b�D0

j0
(ti) is also small due to D0 being a

constant, so that the second term no longer has the argument �0: Therefore, the pro�led partial

linear estimator b�PO0 (approximately) shares the same objective function as local constant wavelet
estimators.14

14Yu (2010) proposed a partial polynomial kernel estimator that could be asymptotically expressed as
local polynomial wavelet estimator.
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(2) The equispaced local polynomial kernel estimator15 b�LP0 is estimated as

b�LP0 = arg min
f�jgpj=0;f�kg

p
k=0

1

n

nX
i=1

24Yi:n � pX
j=0

�j(ti � b�)j � pX
k=0

�k( bF�1V (ti)� v0)kIfti � b�g
352K( ti � b�

h
)

= arg min
f�jgpj=0;f�kg

p
k=0

1

n

nX
i=1

"b�Y
j0 (ti)� b�GP

j0 (ti)�
pX

k=0

�k � b� bDk
j0
(ti)

#2
K(

ti � b�
h

)

= arg min
f�jgpj=0;f�kg

p
k=0

nX
i=1;

ti2ft:a�2j0 (b��t)�bg

"b�Y
j0 (ti)� b�GP

j0 (ti)�
pX

k=0

�k � b� bDk
j0
(ti)

#2
K(

ti � b�
h

)

+
nX
i=1;

ti =2ft:a�2j0 (b��t)�bg

"b�Y
j0 (ti)� b�GP

j0 (ti)�
pX

k=0

�k � b� bDk
j0
(ti)

#2
K(

ti � b�
h

)

= arg min
f�kgpk=0

nX
i=1

"b�Y
j0 (ti)�

pX
k=0

�k � b� bDk
j0
(ti)� s:o:

#2 bIj0;h(ti) + s:o:;
where

Gp(t) �
pX
j=0

�j(t� b�)j ;
bIj0;h(t) � Ifa � 2j0(b� � t) � bgK( t� b�

h
):

The second equality comes from the propertyW TW = I=n+s:o:; whereW � 2j0=2

n

�
 (2j0ti � 2j0tj)

�
i;j=1;n

and
�
 
�
2j0t� w

�
;w 2 Z

	
constitute an orthonormal basis (Chapter 5 in Daubechies,1992). The

�rst term in the last equality is because Gp is the p-th polynomial, so that b�Gp
j0
(ti) is close to

0. For the second term in the last equality, when ti =2
�
t : a � 2j0(b� � t) � b

	
, the wavelet coef-

�cients
nb� bDk

j0
(ti)
op
k=0

go to zero because fDkgpk=0 is continuous. Therefore the second term is

independent of the arguments f�kgpk=0 : Notice that bIj0;h(t) is a more general weighting function
than bIj0(t).

Q.E.D.

15The local polynomial kernel curve estimator, based on the equispaced data still, has the automatic
boundary corrections discussed on page 473 of Hall, et al. (1998).
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Proofs of Chapter 3

Proof of Theorem 19: Let �j = median (f�i : (j � 1)m+ 1 � i � jmg) : We
de�ne Zj =

1
f�(0)

��1
�
G(�j)

�
where G is the distribution of �j . It follows from the local median

coupling theorem that
p
4m�j is well approximated by Zj whose distribution is N(0;

1
f2� (0)

):

Set

�j =
p
m�j �

Zj
2
:

Then �j is the error of approximating the median by the Gaussian variable. According to
Lemma C.1 and C.2, a bound for the approximation error �j is given by���j�� � C

m1=2

�
1 + jZj j2

�
when jZj j � "

p
m

for some " > 0, and the probability of jZj j > "
p
m is exponentially small. Hence for any �nite

integer l � 1 (here l is �xed and m = n !1),

E
���j��l = E

���j��l �jZj j � "
p
m
	
+ E

���j��l �jZj j > "
p
m
	

� Clm
�l=2 +

�
E
���j��2l�1=2 �P �jZj j > "

p
m
	�1=2

for some constant Cl > 0, where

P
�
jZj j > "

p
m
	
� 1

2
exp(�"

2

2
m):

By Mill�s ratio inequality

'(x)

1� �(x) > max
�
x;

2p
2�

�
� 1

2

�
x+

2p
2�

�
for x > 0

and

E
��pm�j��2l � mlE

���j��2l � Dlm
l

for some constant Dl > 0, so we have

E
���j��l � Clm

�l=2:

Assumption 1 implies

P (j�ij � jxj) �
C

jxj�3 :
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For m = 2v + 1 i.i.d. �i; the density of the sample median is

g(x) =

p
8vp
2�
[4F�(x)(1� F�(x))]v f�(x) exp

�
O

�
1

v

��
�

p
8vp
2�

�
4C

jxj�3
�v
f�(x) exp

�
O

�
1

v

��
=

p
8vp
2�

"
4C

jxj�3=2

#v
1

jxjv�3=2
f�(x) exp

�
O

�
1

v

��
:

When jxj�3=2 � 8C, we have
p
8vp
2�

"
4C

jxj�3=2

#v
�

p
8vp
2�2v

which is bounded for all v. This implies as v !1 (m � n in our procedure) the median has any
�nite moments.

Thus we have

E
���j��l � 2l�1 �E ���2j��l� � Clm

�l=2:

The inequality P (
���j�� > a) � Cl(a

2m)�l=2 then follows from Chebyshev�s inequality.
Q.E.D.

Lemma C.1 (Zhou, 2006) Let Z be a standard normal random variable. Let Sn be a
random variable with a distributed function G(x) = P (Sn � x). Assume that there is a
positive " such that for all n,

P (Sn < �x) = �(�x) exp
�
O(n�1x4 + n�1)

�
;

1� P (Sn < x) = �(x) exp
�
O(n�1x4 + n�1)

�
;

where G(x) = 1 � G(x), and �(x) = 1 � �(x), and O(n�1x4 + n�1) is uniform on the
interval x 2 [0; "

p
n]: And the expression above holds when " < " is replaced by " � ": Then

for every n, there is a random variable fSn with L(fSn) = L(Sn) such that���fSn � Z��� � C1
n
+
C1
n

���fSn���3
for

���fSn��� � "1
p
n, where C1; "1 > 0 do not depend on n. Or equivalently���fSn � Z��� � C

n
(1 + jZj)3

for jZj � "
p
n, where C; " > 0 do not depend on n.

Theorem 23 Lemma C.2 (Brown, Cai and Zhou, 2008) Let Z be a standard normal
variable and let Y1; :::; Yn be i.i.d. with density function h where n = 2k+1 for some integer
k � 1: Let Assumptions 1 and 2 hold. Then for every n there is a mapping eYmed : R ! R
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such that L(eYmed(Z)) = L(Ymed) and���p4nh(0)eYmed � Z��� � Cp
n
+

Cp
n

����q4nf�(0)eYmed����2
when

���eYmed��� � "

where C; " > 0 depend on f� but not on n:
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Proof of Theorem 17: First given �0, we de�ne two experiments

E�n : Yi � �0I(xi � x0) = f(xi) + �i; where median(�i) = 0 and i = 1; :::; n;

F �n : Xj � �0I(xj � x0) = f(xj) +
1

2h(0)
p
m
Zj ; where Zj

i:i:d:� (0; 1) and j = 1; :::; T:

Then from Theorem 1 and 2 in Cai and Zhou(2009), we know two experiments F �n and
E�n are asymptotically equivalent with respect to the set of procedures �

�
n and set of loss functions

�n, where ��n are meant to be the estimates of the function f .
Next since we could consistently estimate the jump size �0 from Fn from local polynomial

wavelet estimators, we de�ne the experiment

F ��n : Xj = f(xj) + b�0I(xj � x0) +
1

2h(0)
p
m
Zj ; where Zj

i:i:d:� (0; 1) and j = 1; :::; T:

Therefore we have two experiments F ��n and F �n are asymptotically equivalent, so that
two experiments E�n and F

��
n are asymptotically equivalent and two experiments E�n and Fn are

asymptotically equivalent.
In the end the two experiments En and E�n are actually de�ned for the same probability

same for �1, so that they are trivially asymptotically equivalent.

According to Lemma C.1 and the asymptotic equivalence, our two-step estimator b�LP�med0

has the optimal rate of convergence under the discontinuous nonparametric median model En.
Q.E.D.

Lemma C.1 (Porter, 2003) Under Assumptions 1-6. Then for some positive constant D
and a small � > 0 :

lim inf
n!1

infe�0 sup�2�
P�

h
n

p
2p+1

��� e�0 � �0(�)��� � �
i
� D:

In other words, the optimal convergence rate for the jump size estimation under discontin-
uous mean model is n�

p
2p+1 .
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Table 1. Switching Regime Model 1 under Assumption A2 (G) (a)

n = 500
Scale 1 2 3 4 5 6

Single scale with single location b�
Bias 1.8899 0.51305 0.32227 0.23813 0.27612 0.21523
Std 0.02045 0.17181 0.24607 0.24607 0.35501 0.52015
MSE 3.5723 0.27465 0.13338 0.11725 0.20228 0.31688

Single scale with many locations b�W1

Bias 1.1810 1.14143 0.60293 0.23328 0.25288 0.25542
Std 0.01060 0.02246 0.03693 0.05894 0.14328 0.14719
MSE 1.3950 1.30336 0.36489 0.05789 0.08448 0.08690

Many scales with single location b�W2 (Kn = 2)
Bias 1.8091 0.43207 0.29186 0.24589 0.25263 0.21355
Std 0.01999 0.08601 0.12924 0.18799 0.27649 0.42293
MSE 3.2735 0.19408 0.10189 0.09581 0.14027 0.22447

Many scales with many locations b�W3 (Kn = 2)
Bias 1.1609 1.02915 0.52829 0.23803 0.25363 0.25503
Std 0.00970 0.02070 0.03448 0.05750 0.10538 0.11776
MSE 1.3479 1.05958 0.28028 0.05996 0.07543 0.07891

n = 2500
Scale 1 2 3 4 5 6

Single scale with single location b�
Bias 1.8256 0.52631 0.28373 0.24094 0.22803 0.25524
Std 0.00947 0.04580 0.07432 0.10881 0.15872 0.21760
MSE 3.3330 0.27910 0.08603 0.06989 0.07719 0.11250

Single scale with many locations b�W1

Bias 1.1813 1.16796 0.48132 0.24961 0.25284 0.25431
Std 0.00495 0.00974 0.01878 0.02619 0.03831 0.05950
MSE 1.3957 1.36423 0.23203 0.06299 0.06539 0.06821

Many scales with single location b�W2 (Kn = 2)
Bias 1.7437 0.43296 0.26356 0.23928 0.23944 0.25369
Std 0.00947 0.03819 0.05702 0.08025 0.11818 0.16321
MSE 3.0406 0.18892 0.07271 0.06369 0.07129 0.09099

Many scales with many locations b�W3 (Kn = 2)
Bias 1.1621 1.04032 0.43238 0.25035 0.25310 0.25411
Std 0.00443 0.00923 0.01716 0.02357 0.03574 0.05456
MSE 1.3505 1.08235 0.18725 0.06323 0.06533 0.06755
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Table 2. Switching Regime Model 2 under Assumption A2 (G) (b)

n = 500
Scale 1 2 3 4 5 6

Single scale with single location b�
Bias 0.56924 0.03767 -0.00589 -0.00827 0.00133 -0.00110
Std 0.02066 0.10921 0.17378 0.24238 0.35301 0.51970
MSE 0.32446 0.01334 0.03023 0.05881 0.12462 0.27009

Single scale with many locations b�W1

Bias 0.16051 0.39249 0.19918 -0.00040 -0.00648 0.00037
Std 0.01073 0.02222 0.04216 0.05938 0.12250 0.14753
MSE 0.02588 0.15454 0.04145 0.00352 0.01504 0.02176

Many scales with single location b�W2 (Kn = 2)
Bias 0.53853 0.02124 -0.00556 -0.00458 0.00166 0.00026
Std 0.02010 0.08693 0.13176 0.18840 0.27419 0.42692
MSE 0.29042 0.00800 0.01739 0.03551 0.07518 0.18226

Many scales with many locations b�W3 (Kn = 2)
Bias 0.19271 0.35004 0.15825 -0.00143 -0.00400 0.00066
Std 0.00972 0.02115 0.03774 0.05535 0.09410 0.11833
MSE 0.03723 0.12297 0.02646 0.00306 0.00887 0.01400

n = 2500
Scale 1 2 3 4 5 6

Single scale with single location b�
Bias 0.50762 0.09212 0.00137 -0.01301 -0.01088 -0.00316
Std 0.00954 0.04811 0.07736 0.10636 0.15041 0.22983
MSE 0.25777 0.01080 0.00598 0.01148 0.02274 0.05283

Single scale with many locations b�W1

Bias 0.15464 0.42798 0.11587 -0.00024 -0.00138 -0.00730
Std 0.00518 0.01062 0.01712 0.02644 0.04047 0.05966
MSE 0.02394 0.18328 0.01372 0.00069 0.00164 0.00361

Many scales with single location b�W2 (Kn = 2)
Bias 0.48121 0.05740 -0.00448 -0.0110 -0.00707 -0.00238
Std 0.00952 0.03820 0.05744 0.07872 0.11614 0.17130
MSE 0.23165 0.00475 0.00332 0.00631 0.01354 0.02935

Many scales with many locations b�W3 (Kn = 2)
Bias 0.19268 0.36962 0.09124 -0.00075 -0.00285 -0.00795
Std 0.00472 0.00981 0.01567 0.02481 0.03719 0.05572
MSE 0.03715 0.13671 0.00857 0.00061 0.00139 0.00316
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Table 3. Auxiliary Regression Model 3 under Assumption A2 (G) (a)

n = 500
Scale 1 2 3 4 5 6

Single scale with single location b�
Bias 1.3147 0.40031 0.17508 0.03774 0.03576 -0.00841
Std 0.02072 0.10775 0.17249 0.24849 0.34953 0.52059
MSE 1.7290 0.17186 0.06040 0.06317 0.12345 0.27108

Single scale with many locations b�W1

Bias 0.72221 0.67465 0.26152 -0.01437 0.00140 0.00901
Std 0.01081 0.02238 0.03728 0.06064 0.12690 0.14753
MSE 0.52170 0.45565 0.06978 0.00388 0.01610 0.02184

Many scales with single location b�W2 (Kn = 2)
Bias 1.2595 0.30005 0.11654 0.03105 0.01737 -0.01309
Std 0.02025 0.08542 0.13085 0.18742 0.27159 0.42165
MSE 1.5869 0.09732 0.03070 0.03609 0.07406 0.17796

Many scales with many locations b�W3 (Kn = 2)
Bias 0.70405 0.58876 0.20586 -0.01022 0.00351 0.00749
Std 0.00980 0.02070 0.03460 0.05743 0.09661 0.11894
MSE 0.49579 0.34707 0.04357 0.00340 0.00934 0.01420

n = 2500
Scale 1 2 3 4 5 6

Single scale with single location b�
Bias 1.2660 0.40237 0.13346 0.05457 0.01173 0.01949
Std 0.00919 0.04578 0.07474 0.10968 0.16162 0.21138
MSE 1.6028 0.16400 0.02339 0.01500 0.02625 0.04506

Single scale with many locations b�W1

Bias 0.72128 0.69221 0.17167 -0.00142 0.00070 0.00087
Std 0.00478 0.00975 0.01713 0.02711 0.03861 0.05751
MSE 0.52027 0.47926 0.02976 0.00073 0.00149 0.00330

Many scales with single location b�W2 (Kn = 2)
Bias 1.2097 0.29508 0.09356 0.03735 0.01369 0.01499
Std 0.00893 0.03746 0.05788 0.08500 0.12059 0.16217
MSE 1.4636 0.08847 0.01210 0.00862 0.01473 0.02652

Many scales with many locations b�W3 (Kn = 2)
Bias 0.70351 0.59553 0.13510 -0.00097 0.00065 0.00077
Std 0.00438 0.00910 0.01586 0.02480 0.03550 0.05481
MSE 0.49494 0.35474 0.01850 0.0006 0.00126 0.00300
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Table 4. Auxiliary Regression Model 4 under Assumption A2 (G) (b)

n = 500
Scale 1 2 3 4 5 6

Single scale with single location b�
Bias 0.76726 0.13214 0.04122 -0.00451 0.01112 -0.01362
Std 0.02089 0.10759 0.17274 0.24254 0.35835 0.52279
MSE 0.58913 0.02904 0.03154 0.05884 0.12853 0.27350

Single scale with many locations b�W1

Bias 0.46991 0.44709 0.17340 -0.00769 -0.00031 0.00466
Std 0.01096 0.02238 0.03677 0.05917 0.11750 0.14873
MSE 0.22094 0.20039 0.03142 0.00356 0.01380 0.02214

Many scales with single location b�W2 (Kn = 2)
Bias 0.72995 0.09286 0.02400 -0.00127 0.00174 -0.01317
Std 0.02038 0.08484 0.13091 0.18938 0.28215 0.43292
MSE 0.53325 0.01582 0.01771 0.03586 0.07961 0.18759

Many scales with many locations b�W3 (Kn = 2)
Bias 0.45927 0.39024 0.13675 -0.00567 0.00116 0.00395
Std 0.010004 0.02078 0.03406 0.05531 0.09130 0.12020
MSE 0.21103 0.15272 0.01986 0.00309 0.0083 0.01446

n = 2500
Scale 1 2 3 4 5 6

Single scale with single location b�
Bias 0.74038 0.13072 0.01623 0.00481 -0.00829 -0.00970
Std 0.00872 0.04857 0.07493 0.09976 0.14984 0.21606
MSE 0.54824 0.01944 0.00587 0.00997 0.02252 0.04677

Single scale with many locations b�W1

Bias 0.47196 0.45551 0.10940 0.00092 0.00017 -0.00286
Std 0.00472 0.01058 0.01650 0.02731 0.03946 0.05732
MSE 0.22277 0.20760 0.01224 0.00074 0.00155 0.00329

Many scales with single location b�W2 (Kn = 2)
Bias 0.70192 0.08772 0.00947 -0.00099 -0.00900 -0.01215
Std 0.00868 0.03806 0.05706 0.07918 0.11714 0.16592
MSE 0.49277 0.00914 0.00334 0.00627 0.01380 0.02767

Many scales with many locations b�W3 (Kn = 2)
Bias 0.46062 0.39143 0.08640 0.00062 -0.00052 -0.00235
Std 0.00432 0.00970 0.01519 0.02541 0.03620 0.05276
MSE 0.21219 0.15331 0.00769 0.00064 0.00131 0.00278
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Table 5. Jump Size Model under the Sample Size 500

n = 500
Scale 1 2 3 4 5 6

Zeta0
Bias 1.8269 1.7808 0.7111 -0.0356 0.0093 0.0084
Std 0.0106 0.0223 0.0359 0.0617 0.0859 0.1221
MSE 3.3376 3.1718 0.5069 0.0050 0.0074 0.0149

Zeta1
Bias 0.1201 0.0103 0.0270 -0.0172 0.0077 0.0105
Std 0.0166 0.0296 0.0408 0.0622 0.0855 0.1218
MSE 0.0147 0.0009 0.002 0.0041 0.0073 0.0149

Zeta2
Bias 0.5757 0.0577 0.0280 -0.0129 0.0091 0.0117
Std 0.0273 0.0308 0.0408 0.0708 0.0848 0.1233
MSE 0.3322 0.0042 0.0024 0.0051 0.0072 0.0153

Zeta3
Bias 2.2004 0.1498 0.0391 -0.0161 0.0095 0.0120
Std 0.0557 0.0381 0.0471 0.0846 0.0892 0.1231
MSE 4.8449 0.0239 0.0037 0.0074 0.0080 0.0153

Table 6. Jump Size Model under the Sample Size 2500

n = 2500
Scale 1 2 3 4 5 6

Zeta0
Bias 1.8132 1.8547 0.4343 -0.0038 0.0023 -0.0116
Std 0.0041 0.0112 0.0173 0.0236 0.0337 0.0513
MSE 3.2878 3.4401 0.1889 0.0005 0.0011 0.0027

Zeta1
Bias 0.1181 -0.0028 0.0267 0.0021 0.0007 -0.0187
Std 0.0079 0.0134 0.0184 0.0238 0.0336 0.0567
MSE 0.0140 0.0001 0.0010 0.0005 0.0011 0.0035

Zeta2
Bias 0.5819 0.0387 0.0262 0.0065 0.0032 -0.0167
Std 0.0123 0.0139 0.0184 0.0254 0.0337 0.0577
MSE 0.3388 0.0016 0.0010 0.0006 0.0011 0.0036

Zeta3
Bias 2.0359 0.1315 0.0239 0.0095 0.0047 -0.0162
Std 0.0241 0.0177 0.0207 0.0300 0.0380 0.0574
MSE 4.1456 0.0176 0.0010 0.0009 0.0014 0.0035
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Table 7. Jump Size Model under the Sample Size 5000

n = 5000
Scale 1 2 3 4 5

Zeta0
Bias 1.8611 1.7946 0.7579 -0.0111 0.0041
Std 0.0031 0.0071 0.0122 0.0196 0.0250
MSE 3.4639 3.2207 0.5746 0.0005 0.0006

Zeta1
Bias 0.1203 -0.0203 0.0110 0.0050 0.0001
Std 0.0050 0.0096 0.0141 0.0195 0.0249
MSE 0.0145 0.0005 0.0003 0.0003 0.0006

Zeta2
Bias 0.5936 0.0683 0.0193 -0.0023 0.0027
Std 0.0095 0.0100 0.0142 0.0243 0.0259
MSE 0.3525 0.0047 0.0005 0.0005 0.0006

Zeta3
Bias 2.1118 0.1671 0.0274 -0.0032 0.0028
Std 0.0175 0.0134 0.0170 0.0260 0.0282
MSE 4.4601 0.0281 0.0010 0.0006 0.0008

Table 8. Kink Size Model under the Sample Size 500

n = 500
Scale 1 2 3 4 5 6

Kink_012
Bias -2.0714 0.6654 0.2618 0.2930 0.2010 0.5706
Std 0.0458 0.0423 0.1797 0.5078 1.7162 2.4197
MSE 4.2931 0.4446 0.1008 0.3437 2.9858 6.1807

Kink_01
Bias 1.5550 0.6157 0.2781 0.3420 0.2727 0.7417
Std 0.0213 0.0355 0.1771 0.5171 1.7496 2.1388
MSE 2.4185 0.3804 0.1087 0.3843 3.1357 5.1246

Kink_12
Bias 0.5013 1.0613 1.0118 0.3031 0.7470 1.0703
Std 0.0094 0.0119 0.0297 0.4998 1.2915 2.0182
MSE 0.2514 1.1266 1.0248 0.3417 2.2261 5.2190

Kink_1
Bias 0.8913 1.0223 1.0268 0.3959 0.7647 1.0462
Std 0.0060 0.0086 0.0255 0.5048 1.3004 2.0244
MSE 0.7945 1.0453 1.0550 0.4116 2.2760 5.1933
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Figure 1. Local polynomial wavelet estimators under the sample size 500 for the jump
size across di¤erent scales j0. (Top) MSE comparisons among di¤erent polynomial orders;
(Middle Left) Zeta0, the single-scale local constant wavelet estimator; (Middle Right) Zeta1,
the single-scale local linear wavelet estimator; (Bottom Left) Zeta2, the single-scale local
quadratic wavelet estimator; (Bottom Right) Zeta3, the single-scale local cubic wavelet
estimator.
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Figure 2. Local polynomial wavelet estimators under the sample size 2500 for the jump
size across di¤erent scales j0. (Top) MSE comparisons among di¤erent polynomial orders;
(Middle Left) Zeta0, the single-scale local constant wavelet estimator; (Middle Right) Zeta1,
the single-scale local linear wavelet estimator; (Bottom Left) Zeta2, the single-scale local
quadratic wavelet estimator; (Bottom Right) Zeta3, the single-scale local cubic wavelet
estimator.
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Figure 3. Local polynomial wavelet estimators under the sample size 5000 for the jump
size across di¤erent scales j0. (Top) MSE comparisons among di¤erent polynomial orders;
(Middle Left) Zeta0, the single-scale local constant wavelet estimator; (Middle Right) Zeta1,
the single-scale local linear wavelet estimator; (Bottom Left) Zeta2, the single-scale local
quadratic wavelet estimator; (Bottom Right) Zeta3, the single-scale local cubic wavelet
estimator.
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Figure 4. Robust check for the single-scale local quadratic wavelet estimator, Zeta2,
when the sample size is 500: (Top Left) W jV follows a multivariate studentized t dis-
tribution with parameters (0; 0; I2�2); (Top Right) V ar(W jV ) is heteroskedastic with
W jV � N(0; 0:01�V 2 _); (Middle Left) V follows the norm distribution N(0:5; 0:12); (Middle
Right) V follows the exponential distribution with the parameter 2; (Bottom Left) V follows
the beta distribution with parameters (1; 1; 0); (Bottom Right) Model-(II.16) is perturbed
by adding an additive sine function sin [10(v � 0:5)].
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Figure 5. Robust check for the single-scale local quadratic wavelet estimator, Zeta2,
when the sample size is 500: (Top) di¤erent signal to noise levels, such as, W jV �
N(0; 0:12);W jV � N(0; 0:22);W jV � N(0; 0:42) and W jV � N(0; 0:62); (Middle) di¤erent
vanishing moment wavelets  : Daubechies f4; 6; 8g wavelet functions; (Bottom) di¤erent
kernel functions to replace bIj0(�) in Equation (II.10): Epanechnikov kernel with h = 2�j0

and Gaussian kernel h = 2�j0 .
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Figure 6. Local polynomial wavelet estimators under the sample size 500 for di¤erent
polynomial orders. There are four di¤erent kink size wavelet estimatots: Kink_012 is
the single-scale local quadratic wavelet estimator, Kink_01 is the single-scale local linear
wavelet estimator, Kink_12 is the single-scale local quadratic wavelet estimator without
considering the jump size, and �nally Kink_1 is the single-scale local linear wavelet esti-
mator without considering the jump size.
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