STRUCTURAL STUDIES OF FLUXIONAL LESIONS

IN DEOXYRIBONCULEIC ACID

By

KYLE LAMAR BROWN

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Chemistry

August, 2008

Nashville, Tennessee

Approved:

Michael P. Stone

Brian O. Bachmann

Terry P. Lybrand

Andrzej M. Krezel

F. Peter Guengerich

To my parents,

Joe and Barbara

ACKNOWLEDGEMENTS

I would like to thank Vanderbilt University for the opportunity to study at this institution. I thank the Vanderbilt Department of Chemistry, Center in Molecular Toxicology, Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center for contributions to this work. I especially thank the National Institutes of Health for funding.

I would like to thank my advisor, Dr. Michael Stone, for providing a stable work environment to learn and grow while pursuing this degree. In addition I thank members of my Ph.D. committee: Dr. Brian Bachmann, Dr. Fred Guengerich, Dr. Andrzej Krezel, and Dr. Terry Lybrand. I have benefited from the opportunity to interact and learn from these individuals through classroom settings, seminars, and conversation. I offer a special thanks to Drs. Tom and Connie Harris. Although retired, Tom and Connie Harris have shown a special interest in my development as a scientist and for that I will always be grateful. What I have learned from all these people will continue to influence and shape my life long into the future.

A multidisciplinary approach to science often requires the involvement of various collaborators; the present work is no different. This research would not have been possible without the contributions of Dr. Ashis Basu and Dr. Carmelo Rizzo. Dr. Basu and members of his lab were instrumental in the preparation of thymine glycol samples. Dr. Rizzo has offered sage advice concerning my studies. I especially thank the members of Dr. Rizzo's lab, particularly Dr. Ivan Kozekov and Mrs. Pam Tamura for their

iii

instruction in various analytical techniques and Dr. Plamen Christov for his preparation of methyl formamidopyrimidine samples.

Technical expertise was essential during many aspects of this research. I thank Dr. Nick Ulyanov for his assistance with molecular dynamic calculations and strategy. Also, I thank Dr. Jarrod Smith for his instruction in computational techniques in regard to structural biology. Likewise, Dr. Jonathan Sheehan and Dr. Eric Dawson were always helpful with molecular modeling techniques. I thank Dr. Prasad Polavarapu, Dr. Andes Hess, and Dr. Joel Tellinghuisen for their assistance with quantum theory and calculations. Thanks to Dr. Carlos de los Santos for help with thermodynamic measurements. I appreciate the assistance of Ellen Rochelle and Roy Hoffman with computer related problems. Dr. Joel Harp was helpful with crystallography. I also thank Dr. Don Stec and Dr. Jaison Jacob for their assistance with NMR spectroscopy. I would be remiss not to thank the enormous contributions of Dr. Markus Voehler. Without Markus' technical expertise and friendship this research would not have been possible.

Members of the Stone lab have been supportive of this research over the years. I especially thank the following individuals: Keith Merrit, Young Jin Cho, Ewa Kowal, Hai Huang, Feng Wang, Wen Xu, Ganesh Shanmugam, Surajit Banerjee, Tandace Scholdberg, Sarah Musser, Travis Nielsen, Hye-Young Kim, Mary Kerske, Amy Williams, and Eric Chapdelaine. In addition to these members, I have had the privilege of working with many helpful graduate and undergraduate rotation students: Dan Brown, Travis Adams, Shane Magee, Jerry Yen, Jamil Stetler, Stephen Dean, Nick Demuro, and Yury Kuzmichev.

iv

In closing, I want to thank friends and family for all the love, encouragement, and support they have provide to me, I love you all. A special thanks goes to parents, Joe and Barbara, a guy could not ask for better parents.

Above all, I want to thank God for "miracling" me through this entire process.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF SCHEMES	xvii
Chapter	
I. INTRODUCTION	1
Methyl Formamidopyrimidine	3
Aflatoxin B ₁ Formamidopyrimidine Thymine Glycol	7 19
II. MATERIALS AND METHODS	25
Biological Hazards	25
Materials	25
A flatovin B. Adduct Synthesis	25
Matrix-assisted laser desorption/ionization time of flight mass spectrometry	20
Capillary Gel Electrophoresis	2) 29
Thermodynamic Measurements	30
Thermodynamic Data Analysis	30
Electronic Circular Dichroism	
Ouantum Mechanical Calculations	
Nuclear Magnetic Resonance Spectroscopy	
Nuclear Overhauser Effect Spectroscopy	
Correlated Spectroscopy	34
Total Correlated Spectroscopy	35
Heteronuclear Single Quantum Correlation Spectroscopy	
Heteronuclear Multiple Bond Correlation Spectroscopy	36
T ₁ Measurement	37
T ₂ Measurement	37
Starting Structures	37
Distance Restraints	
Torsion Angle Restraints	40
Restrained Molecular Dynamics Calculations	41

Simulated Annealing	41
Explicit Solvent	43
Helicoidal Analysis	44
Complete Relaxation Matrix Analysis	44
Crystallography	45
III. METHYL FORMAMIDOPYRIMIDINE LESION EQUILIBRIA	46
Introduction	46
Results	47
High Performance Liquid Chromatography	47
Nuclear Magnetic Resonance Spectroscopy of modified 10mer duplex	48
Nuclear Magnetic Resonance Spectroscopy of modified trimer	49
Discussion	51
NMR analysis of Me-dGuo-FAPY Trimer	51
NMR analysis of Me-dGuo-FAPY 10mer	
HPLC analysis of Me-dGuo-FAPY 10mer	
Biological Significance	
IV. AFLATOXIN FORMAMIDOPYRIMIDINE LESION EQUILIBRIA	58
Introduction	
Results	59
AFB ₁ -FAPY oligonucleotide analysis	59
Characterization of AFB ₁ -FAPY isomers	60
Anomer Equilibrium	62
Discussion	64
Anomeric Assignment	64
Sequence Effects on AFB ₁ -FAPY Equilibria	66
Biochemical Significance	69
V. THYMINE GLYCOL LESION EQUILIBRIA	71
Introduction	71
Results	73
Oligodeoxynucleotide Analysis	73
NMR Spectroscopy of Non-exchangeable DNA Protons	74
NMR Spectroscopy of Exchangeable DNA Protons	75
NMR Spectroscopy of Tg Protons	79
NMR Spectroscopic Assignment of Tg Isomers	81
Anomeric Configuration of the Deoxyribose Sugar	83
Potential Energy Minimization	84
Discussion	
Biological Significance	87
VI. NMR STRUCTURAL STUDIES OF α -AFB ₁ -FAPY LESION IN DNA	90

Introduction	
Results	
HPLC Analysis	
UV Melting	
Electronic circular dichroism Spectroscopy	
UV Spectroscopy	
NMR Spectroscopy of Non-exchangeable DNA protons	
NMR Spectroscopy of Exchangeable DNA protons	
NMR Spectroscopy of Aflatoxin B ₁ protons	
NMR Spectroscopy of NOEs from Aflatoxin B_1 to DNA	A
NMR Spectroscopy of Anomeric configuration	
NMR Spectroscopy of Formyl proton resonance	
NMR Spectroscopy of ³¹ P	
Structural Refinement	
Helicoidal analysis	
Discussion	
Duplex Stability	
Lesion Structure	
Biochemical Implications	
Results	
Thermodynamics	
T_1 Measurements	
T ₂ Measurements	
Electronic Circular Dichroism	
Discussion	
Thermodynamics	105
T ₁ measurements	
T ₂ measurements	
T ₂ measurements Electronic Circular Dichroism	
T_2 measurements	
T ₂ measurements Electronic Circular Dichroism Summary	
T ₂ measurements Electronic Circular Dichroism Summary III. NMR REFINED SOLUTION STRUCTURE OF <i>CIS</i> -5 <i>K</i> IN DNA	23 125 126 127 127 128 2,6S-THYMINE GLYCOL 131
T ₂ measurements Electronic Circular Dichroism Summary III. NMR REFINED SOLUTION STRUCTURE OF <i>CIS-5F</i> IN DNA Introduction	23 125 126 127 127 128 2,6S-THYMINE GLYCOL 131
T ₂ measurements Electronic Circular Dichroism Summary III. NMR REFINED SOLUTION STRUCTURE OF <i>CIS</i> -5 <i>K</i> IN DNA Introduction Results	23 125 126 127 127 128 2,6S-THYMINE GLYCOL 131 131 132
T ₂ measurements Electronic Circular Dichroism Summary III. NMR REFINED SOLUTION STRUCTURE OF <i>CIS-5F</i> IN DNA Introduction Results Chemical Analysis	2,6 <i>S</i> -THYMINE GLYCOL 131 132 132 131 132 132
T ₂ measurements Electronic Circular Dichroism Summary III. NMR REFINED SOLUTION STRUCTURE OF <i>CIS-5F</i> IN DNA Introduction Results Chemical Analysis NMR Spectroscopy	23 125 126 127 127 128 2,6S-THYMINE GLYCOL 131 131 132 132 132 133
T ₂ measurements Electronic Circular Dichroism Summary III. NMR REFINED SOLUTION STRUCTURE OF <i>CIS-5F</i> IN DNA Introduction Results Chemical Analysis NMR Spectroscopy Chemical Shift Perturbation	23 125 126 127 127 128 2,6S-THYMINE GLYCOL 131 131 132 132 133 134

Structural Refinement	136
Trajectory Analysis	140
Helicoidal Analysis	141
Solvent Accessible Surface	142
Discussion	144
Biological Significance	148
IX. SUMMARY	150
Formamidopyrimidines	150
Thymine Glycol	152
FAPY and Thymine Glycol Anomerization	154
APPENDIX	
A. NMR RESONANCE ASSIGNMENTS	161
B. MOLECULAR MECHANICS TOPOLOGY OF NONSTANDARD BASES.	179
C. EXPERIMENTAL DISTANCE RESTRAINTS	207
D. AMBER MOLECULAR DYNAMICS CONTROL FILES	232
E. HELICOIDAL ANALYSIS RESULTS	237
F. PDB COORDINATES	249
G. SCRIPTS	279
REFERENCES	289

LIST OF TABLES

Table		Page
2-1	Oligonucleotides used in structural studies	27
2-2	Input parameters for NAB	38
5-1	NOESY cross peaks from the major Tg H6 resonance to neighboring protons	82
5-2	Sum of electronic and zero-point energies of thymine glycol bases	84
6-1	Observed NOEs between α -AFB ₁ -FAPY lesion and DNA protons	98
6-2	Distribution of restraints applied to structural refinement of α -AFB ₁ -FAPY	103
6-3	Hydrogen bonding occupancy of α -AFB ₁ -FAPY	
6-4	Comparison of sixth root residual indexes for starting models and resulting α -AFB ₁ -FAPY rMD Structures	107
7-1	Thermodynamic parameters of Tg modified DNA duplexes	120
8-1	Vicinal ¹ H coupling constants of Tg modified duplex DNA	135
8-2	Distribution of rMD restraints of Tg duplex	136
8-3	Tg-(<i>5R</i> , <i>6S</i>) resonance assignments and inter/intra residue cross peaks.	136
8-4	Average thymine and Tg glycosyl torsion angle, base torsion, and inter-strand pair distances	base
		141

8-5	Hydrogen bonding occupancy of Tg modified duplex	
		141

igure	
Guanine formamidopyrimidines and proposed carbamoyl-2- hydroxy-2-methyl-3-oxopropanamide intermediate	.2
2 DNA methylating agents	.4
FAPY isomers: regioisomers, geometrical isomers, atropisomers, anomers	.5
Aflatoxins	.8
Previously published NMR solution structures of AFB ₁ modified DNA	16
5 Model structures of <i>cis</i> -5 <i>R</i> ,6 <i>S</i> -Tg flanked by guanines	22
HPLC analysis of Me-dGuo-FAPY modified 5'-CTATXATTCA-3'•3'- GATACTAAGT-5'	17
2 Sequential assignments of NOESY H8/H6 to H1' protons for the unmodified 5'- CTATGATTCA-3'•5'-TGAATCATAG-5' duplex	48
Sequential assignments of NOESY H8/H6 to H1' protons for the Me-dGuo-FAPY modified 5'-CTAT <u>X</u> ATTCA-3'•5'-TGAATCATAG-5' duplex	7 19
¹ H-NMR analysis of the Me-dGuo-FAPY modified trimer 5'-AXC-3' pyranose and furanose	50
5 NMR analysis of the pyranose Me-dGuo-FAPY in 5'-AXC-3'	51
5 NMR analysis of the furanose Me-dGuo-FAPY in 5'-AXC-3'	52

LIST OF FIGURES

	to β -AFB ₁ -FAPY and α -AFB ₁ -FAPY as monitored by HPLC	.59
4-2	Anomeric interconversion of AFB ₁ -FAPY modified 5'-CTAT <u>X</u> ATTCA-3'	.60
4-3	Analysis of ¹ H- ¹ H NOESY intensities of the deoxyribose of α -AFB ₁ -FAPY in the 5'-CTAT <u>X</u> ATTCA-3'•5'-TGAATCATAG-3' duplex	.61
4-4	Concentration effects on equilibrium of β -AFB ₁ -FAPY and α -AFB ₁ -FAPY measured by HPLC	.62
4-5	HPLC elution profiles of AFB ₁ -FAPY modified oligonucleotides indicated a sequence dependant effect on equilibrium	.63
4-6	The α and β anomer equilibrium of AFB ₁ -FAPY modified 5'- CCTCTTCXAACTC-3' was dependent on single strand vs. duplex environments	s .65
4-7	Depurination of AFB ₁ -FAPY modified oligonucleotides was monitored by HPL as a function of time	C .66
5-1	HPLC analysis of enzyme digest products of Tg modified dsDNA	.73
5-2	Sequential assignments of NOESY H8/H6 to H1' protons for the Tg•A and Tg•G duplexes	.74
5-3	Exchangeable amino and imino resonances for the Tg•A duplex	.76
5-4	Exchangeable amino and imino resonances for the Tg•G duplex	.77
5-5	Temperature dependant analysis of imino protons of T•A, Tg•A, and Tg•G duplexes as monitored by ¹ H NMR	.78
5-6	Chemical shift perturbation of amino protons of Tg•A and Tg•G samples relative to T•A	.79

5-7	¹ H- ¹ H NOESY tile plot of Tg•A at mixing times of 250 and 150 ms
5-8	1D ¹ H NMR of thymine and thymine glycol methyl groups
5-9	¹ H- ¹ H NOESY tile plot of Tg•G at mixing times of 250 and 150 ms
5-10	NOE intensities of the β deoxyribose of the Tg
6-1	Anomeric purity of α-AFB ₁ -FAPY modified 5'-CTAT <u>X</u> ATTCA-3'•5'- TGAATCATAG-3' was determined by HPLC
6-2	UV thermal melting analysis of AFB ₁ -FAPY modified oligonucleotides
6-3	Electronic circular dichroism of AFB ₁ -FAPY anomers in oligonucleotides
6-4	UV spectra of AFB ₁ -FAPY modified 5'-CTAT <u>X</u> ATTCA-3'
6-5	Sequential assignments of NOESY H8/H6 to H1' protons for the α -AFB ₁ -FAPY modified 5'-CTAT <u>X</u> ATTCA-3'•5'-TGAATCATAG-3'
6-6	Chemical shift perturbation of α -AFB ₁ -FAPY modified 5'- CTATXATTCA-3'•5'-TGAATCATAG-3' relative to unmodified oligonucleotide
6-7	Select NOE assignments of AFB ₁ inter residue and deoxyribose intra residue cross peaks for the α -AFB ₁ -FAPY modified 5'-CT <u>X</u> A-3'
6-8	Exchangeable amino and imino cross peaks for the α -AFB ₁ -FAPY modified duplex
6-9	Select NOE assignments of the α-AFB ₁ -FAPY modified duplex 100

6-10	NOE intensities of the α deoxyribose of the AFB ₁ -FAPY modified DNA	101
6-11	Variable temperature ¹ H NMR of α -AFB ₁ -FAPY modified tetramer aromatic region.	102
6-12	1D ³¹ P NMR of α -AFB ₁ -FAPY modified oligonucleotides	102
6-13	Stereo view of nine superimposed structures of α -AFB ₁ -FAPY modified 5'-CTAT <u>X</u> ATTCA-3'•5'-TGAATCATAG-3' resulting from rMD calculations in explicit solvent	105
6-14	Stereo view of eight superimposed structures of α -AFB ₁ -FAPY modified 5'-CT <u>X</u> A-3' resulting from rMD calculations in explicit solvent	105
6-15	Global base-axis helicoidal parameters of α-AFB ₁ -FAPY modified DNA	108
6-16	Global inter-base helicoidal parameters of α -AFB ₁ -FAPY modified DNA	109
6-17	Superposition of α -AFB ₁ -FAPY lesion and β -AFB ₁ -FAPY in dsDNA.	110
6-18	Stacking interactions of AFB ₁ -FAPY modified oligonucleotides	111
7-1	Hybridization plots for the T•A, Tg•A, and Tg•G duplexes	120
7-2	Van't Hoff plots for the T•A, Tg•A, and Tg•G duplexes	121
7-3	T^1 relaxation of thymine and thymine glycol CH_3 of Tg •A and T •G relative to unmodified T•A oligonucleotides.	122
7-4	T^2 relaxation of thymine and thymine glycol CH ₃ of Tg•A and T•G relative to unmodified T•A oligonucleotides.	123

7-5	ECD spectra for the T•A, Tg•A, and Tg•G duplexes.	124
7-6	Thymine glycol Watson-Crick base pair geometry compared to that of a wobble base pair.	129
8-1	Phosphorus spectra of unmodified T•A and Tg•A duplexes.	132
8-2	Chemical shift perturbation of non-exchangeable protons of 5 <i>R</i> -Tg modified DNA relative to unmodified DNA	133
8-3	Stereo view of ten superimposed structures resulting from rMD refinement of 5 <i>R</i> -Tg modified dsDNA	138
8-4	Complete relaxation matrix analysis R_x values for 5 <i>R</i> -Tg modified ensemble	138
8-5	Thymine glycol base pair stacking of modified and unmodified duplexes	139
8-6	Global base pair helicoidal parameters of Tg modified duplex	142
8-7	Global base-base helicoidal parameters of Tg modified duplex	143
8-8	Global Inter-base helicoidal parameters of Tg modified duplex	144
8-9	Solvent accessible surface area as a function of probe radius of Tg modified duplex	146
9-1	Newman projections of the α -AFB ₁ -FAPY C1'-N ⁶ and N ⁶ -C6 bonds	157
9-2	Newman projections of the C1'-N1 and N1-C2 bonds of the thymine glycol <i>cis-trans</i> intermediate	158

LIST OF SCHEMES

Scheme		Page
1-1	Acid catalyzed anomerization in oligonucleotides	2
1-2	Formation of FAPY-N7-Me-dGuo	3
1-3	Formamidopyrimidine anomerization and deoxyribose ring expansion	6
1-4	AFB ₁ induced DNA damage <i>in vivo</i>	9
1-5	Formation of <i>cis</i> -5 <i>R</i> ,6 <i>S</i> -thymine glycol and epimer equilibration	20
9-1	Thymine glycol and FAPY lesion anomerization in DNA	156

CHAPTER I

INTRODUCTION

Qualitative changes in the informational macromolecule, deoxyribonucleic acid (DNA), are involved in the aging process, neurological degradation, and carcinogenesis [1-10]. Reactive oxygen species and multiple endogenous and exogenous chemical agents are known to produce structural changes in nucleic acids [11-13]. The biological consequences of modified DNA occur with genomic replication and transcription and interaction with repair enzymes [14, 15]. A DNA lesion may be innocuous or it may be repaired prior to deleterious results, but it could also be mutagenic or toxic [14, 16-18]. The consequences of these interactions are a direct result of altered shape, stability, or chemistry of modified DNA [19]. The analysis of damaged DNA structure and stability provides a valuable tool for the elucidation of a lesion's biological consequences [20, 21].

Anomers are a specific type of epimer found in cyclic saccharides. Specifically, they are diastereomers differing in their configuration at the hemiacetal carbon [22, 23]. Canonical nucleic acids contain β ribose or deoxyribose anomers while other biological molecules (e.g. carbohydrates, polysaccharides) may contain both α and β anomers [24]. However, α anomers maybe incorporated into a DNA chain or rearrange from a preexisting β anomer [25-29]. For anomerization to occur the sugar ring must open. In saccharides this is contingent on conversion of the hemiacetal to a hemiketal [22]. In nucleic acids, the C1' hydroxyl group is replaced by a purine / pyrimidine base, thus a hemiketal is not possible; these cyclic bases protect the glycosidic nitrogen from

Scheme 1-1: Acid catalyzed anomerization in oligonucleotides

reduction. However, if the glycosidic nitrogen is not involved in the aromatic ring system, a transient iminium bond may form with the glycosidic carbon (Scheme 1-1) [25, 29-31]. This provides the possibility of deoxyribose ring opening and subsequent epimerization. Anomerization in nucleic acids and subsequent biological interactions are poorly understood.

The formamidopyrimidines (FAPYs) are examples of DNA lesions that are of increasing chemical and biological interest [26, 27, 29, 32-36]. FAPYs are linked to their sugar moiety via an amino group (Figure 1-1 A). This allows for the possibility of anomerization by way of the previously discussed mechanism. Although not immediately obvious, thymine glycols also share the potential for anomerization by way

Figure 1-1: A) Guanine formamidopyrimidine $[X = CH_3 \text{ or } AFB_1]$ B) Proposed carbamoyl-2-hydroxy-2-methyl-3-oxopropanamide intermediate of *cis*-5*R*,6*S*-thymine glycol to *trans*-5*R*,6*R*-thymine glycol epimerization.

of a carbamoyl-2-hydroxy-2-methyl-3-oxopropanamide intermediate (Figure 1-1 B) [37]. The α anomers have been demonstrated to be a block to replication [28, 38, 39], however, little else is known regarding anomer equilibrium in DNA.

Methyl Formamidopyrimidine

DNA alkylation by methylating agents can generate many products. The major product of guanine methylation is generally N7-methyl-2'-deoxyguanosine (**1.01**)(7-Me-dGuo) [40]. The positively charged 7-Me-dGuo (**1.01**) can be converted to either an apurinic site (**1.03**) or an imidazole ring opened form, 2,6-diamino-4-hydroxy-5-(N-methylformamido)-pyrimidine (Me-dGuo-FAPY) (**1.02**) [41, 42] (Scheme 1-2). The principal source of endogenous methylation is S-adenosyl-L-methionine (SAM) (Figure 1-2). SAM regulates gene expression by methylation of the DNA bases cytosine and adenine DNA [43-45]. Another endogenous methyl source is N-methylnitrosourea; a byproduct of pyrimidine biosynthesis [46, 47]. Methylation of guanine may also occur

Scheme 1-2: Formation of FAPY-N7-MedGuo

by reaction with betaine, choline, and N-nitroso compounds [48]. In addition, the cationic 7-Me-dGuo (**1.01**) is produced by reaction with exogenous methyl sources.

Examples included 4-(methylnitrosamine)-1-(3pyridyl)-1-butanone (NNK), the most potent carcinogen in tobacco [49, 50] and methyldiazohydroxide, a product of metabolic activation of N-nitrosamines [51, 52].

Conversion of the cationic 7-Me-dGuo (1.01) to an AP site (1.03) or Me-dGuo-FAPY (1.02) is influenced by multiple factors. Depurination is favored at neutral to acidic pH and alkali conditions catalyze ring opening of the imidazole of 7-Me-dGuo (1.01) [53]. Depurination occurs faster in single strand DNA than double strand DNA. In ribonucleic acids (RNA) depurination is slow and the rate of imidazole ring opening is three fold higher than in DNA [54, 55]. Slow depurination is attributed to destabilization of a depurination transition state by the electron withdrawing 2'-hydroxyl group of RNA [56]. Under physiological conditions, depurination is favored over formation of Me-dGuo-FAPY in DNA (1.02) [57, 58]. Nevertheless, once formed, Me-dGuo-FAPYs are stable under physiological conditions [59, 60]. In

Figure 1-3: FAPY Isomers A) regioisomers B) geometrical isomers C) atropisomers D) anomers

animal models Me-dGuo-FAPY (**1.02**) was found in the liver and bladder epithelial DNA of rats treated with Nmethylnitrosourea, N,Ndimethylnitrosamine, and 1,2dimethylhydrazine [61, 62].

Formamidopyrimidines exist as a complex mixture of isomers. The regioisomers having the formyl group on N^6 are possible but have never been observed [63] (Figure 1-3 A). Rotation of the formyl moiety about the N⁵-CHO bond results in geometrical isomers (Figure 1-3 B). It is uncertain if geometrical isomers are chromatographically separable. However, rotation on the millisecond time scale gives rise to chemical exchange cross peaks in NMR spectroscopy [31]. Rotation about the C5-N⁵ bond produces the chromatographically separable atropisomers with AFB₁-FAPY

nucleosides (Figure 1-3 C) [31]. This slow rotation is attributed to steric interference with the N^6 amine proton [25, 42, 64]. Deoxyribose ring opening of FAPY lesions may

produce a mixture of α and β anomers [29] (Figure 1-4 D; Scheme 1-3). In FAPY nucleosides furanose ring expansion may occur when the ring closure reaction targets the 5'-hydroxyl group producing α and β pyranose FAPYs (Scheme 1-3) [65]. The pyranose form is more stable [25, 66]; however, in DNA the 5'-hydroxyl group is involved in the phosphodiester bond, prohibiting pyranose formation [67]. Production of the chromatographically separable furanose anomers is possible in oligonucleotides [25, 26,

Scheme 1-3: Formamidopyrimidine anomerization and deoxyribose ring expansion

59].

Repair of Me-dGuo-FAPY (**1.02**) is efficient and sequence dependent [57, 68, 69]. Both Me-dGuo-FAPY (**1.02**) and 8-oxodeoxyguanosine (8-oxoG) are repaired by human 8-oxoG DNA glycosylase (hOGG1) and FAPY DNA glycosylase (Fpg) in human and *E. coli* cells respectively [70]. Unlike 8-oxoG, repair of Me-dGuo-FAPY (**1.02**) was not base-pair dependent. However, repair of

Me-dGuo-FAPY (**1.02**) randomly incorporated into M13 DNA varied with sequence. It has been suggested that Fpg repair of Me-dGuo-FAPY (**1.02**) is most efficient in dG-rich sequences [71]. Asagoshi et al. [70] reported that Me-dGuo-FAPY (**1.02**) flanked by 5'-dG was excised more efficiently than that flanked by 3'-dG. The influences of 5'- and 3'-flanking dG were observed for both Fpg and hOGG1. Additionally, 8-oxoG with a 3'-dA is not repaired efficiently by Fpg; this is not necessarily true for Me-dGuo-FAPY (**1.02**).

Repair studies have been conducted on FAPYs of unknown isomeric composition; differential isomeric repair has not been addressed [57, 68-71].

Me-dGuo-FAPY (1.02) is toxic in mutagenesis and primer extension assays. MedGuo-FAPY (1.02) has been described as a "fairly strong but not absolute" [34] block to replication in *Escherichia coli* with little mutagenic activity [32, 41]. The *in vitro* replication properties ascribed to Me-dGuo-FAPY (1.02) do not address potential differences in isomeric forms. Recently, a series of primer extension assays using a variety of prokaryotic and eukaryotic DNA polymerases were performed to assess MedGuo-FAPY (1.02) insertion and extension properties [56]. Me-dGuo-FAPY was determined to be highly miscoding with little primer extension. Specific mutational properties of formyl and C5-N⁵ rotamers are unknown at this time. However, in other cases α anomers have been demonstrated to produce a lethal block to replication [28, 38, 39]. The possibility of α anomers producing the toxicity associated with Me-dGuo-FAPY (1.02) lesions has been recognized, but subsequently dismissed due to a lack of evidence supporting the presence of the α anomer of Me-dGuo-FAPY in DNA [34].

Aflatoxin B₁ Formamidopyrimidine

Aflatoxins are mycotoxins produced during the growth phase of *Aspergillus flavus* and other related fungi which have the propensity to contaminate improperly stored food [72-76]. Aflatoxins were first characterized in the 1960s after the death of more than 100,000 turkey poults (turkey X disease) following consumption of mold-contaminated peanut meal [77, 78]. Exposure to aflatoxin is particularly high in underdeveloped countries with a humid climate [76, 79, 80]. These mycotoxins are

Figure 1-4: Aflatoxins

responsible for significant crop damage, even in developed countries like the United States [81].

Over a dozen different aflatoxin compounds have been described [82]. However, there are four major aflatoxins designated B_1 , B_2 , G_1 , and G_2 (Figure 1-4) [83]. The aflatoxin naming convention is based on blue/green UV fluorescence (i.e. B/G) and relative chromatographic mobility. Aflatoxin B_1 (AFB₁) is the most toxic and most extensively studied constituting the majority aflatoxin literature to date; AFB₁ is the principal aflatoxin produced by most toxigenic strains [80] and it is the most potent natural carcinogen known to man [72, 841

Aflatoxin B₁ (**1.04**) is mutagenic and cytotoxic in both bacteria and mammals [72, 73]. At one point AFB₁ was thought to be a direct-acting carcinogen [72]. Subsequent investigation has demonstrated that bioactivation is essential in AFB₁-related toxicosis and mutagenesis [85]. AFB₁ is

metabolized in humans to its genotoxic form by the liver enzyme cytochrome P450. This reaction is facilitated principally by cytochrome P450 3A4 [86-88] and to a lesser extent P450 1A2 [88]. The AFB₁ *exo*-8,9-epoxide (**1.05**) is the electrophilic species that covalently modifies DNA with high affinity [88-90]. AFB₁ *exo*-8,9-epoxide reacts exclusively or almost exclusively at the N7 position of guanine (Scheme 1-4); limited evidence has been reported for trace reactions at other sites in guanine, adenine, and

cytosine [91-95]. The kinetics of this reaction have been analyzed in detail [92, 96]. The isomeric AFB₁ *endo*-8,9-epoxide [97] does not damage DNA because the stereochemistry of the epoxide does not permit the requisite S_N2 reaction [92, 98, 99]. Nevertheless, rapid hydrolysis of both epoxides [100] produces a dihydrodiol/dialdehyde mixture [101] that is believed to be responsible for AFB₁ cytotoxicity [102, 103]. The epoxidation of AFB₁ is mimicked *in vitro* by reaction with dimethyldioxirane and m-chloroperbenzoic acid [104, 105].

Scheme 1-4: AFB1 induced DNA damage in vivo

Numerous observations have contributed to our current understanding of how AFB₁ forms lesions in DNA. To begin, the epoxide will not react with guanine in Z- or A-form DNA [106]. Because AFB₁-*endo*-8,9-epoxide does not react with DNA, it is not mutagenic [92]. In reaction studies of isomeric oligodeoxyribonucleotides having CpG and GpC sequences, the epoxide reacted with different stoichiometries, suggesting that reaction only occurs when the AFB₁ is intercalated on the 5' side of guanine [98, 107]. The epoxides of AFG₁ react with guanine in DNA less efficiently than the epoxide of AFB₁; this is attributed to better intercalation of AFB₁ than AFG₁ hence better reaction [108, 109]. Reaction with single stranded DNA is less efficient than with duplex [110]; this is consistent with the behavior of other intercalators [111].

Although unstable, AFB₁ *exo*-8,9-epoxide (**1.05**) reacts with DNA with yields up to 98% [96, 99]. The epoxide has been demonstrated to intercalate precovalently into a DNA duplex on the 5' side of guanine [98, 99]. A proton field peripheral to the DNA is postulated to facilitate hydrolysis and conjugation of AFB₁ *exo*-8,9-epoxide [96, 112, 113]. Covalent modification involves a facile S_N2 reaction to yield *trans*-8,9-dihydro-8-(N7-deoxyguanosyl)-9-hydroxyaflatoxin B₁ (AFB₁-N7-dGuo) (**1.07**) [92, 99, 105, 106, 114]. AFB₁-N7-dGuo increases the T_m of the duplex but the positively charged imidazole ring causes the adduct to be labile resulting in depurination leaving apurinic (AP) sites (**1.03**). Alternatively, the imidazole ring of AFB₁-N7-dGuo (**1.07**) can open to form the more chemically and biologically stable *trans*-8,9-dihydro-8-(2,6-diamino-4oxo-3,4-dihydropyrimid-5-yl formamido)-9-hydroxyaflatoxin B₁ (AFB₁-FAPY) (**1.08**) [72, 115-117]. (Scheme 1-4) The influence of varying DNA sequences on AFB₁ reactivity has been studied extensively [118-128]. Benasutti *et al.* [119] conducted a systematic survey where it was determined that AFB₁ reactivity toward guanine was highly dependent on both the 3' and 5' neighboring bases. In the 5' position reactivity favored G > C > A > T and in the 3' position reactivity favored G > T > C > A. Thus, a central guanine flanked by 3' guanine and 5' guanine was the most reactive; a central guanine flanked by a 3' adenine and a 5' thymine was least reactive. The *sup*F gene of the pS189 shuttle vector as observed in the human xeroderma pigmentosum (XP) cell line possesses seven sequences predicted to have high relative reactivities by Benasutti's rules [120]. Levy *et al* concluded that not all sites incurred damage consistent with their predicted levels of reactivity [120]. Furthermore, some mutational hotspots were predicted to have weak reactivity. These observations are consistent with other AFB₁ induced mutation studies [121, 129-131]. This would suggest that, although AFB₁ mutagenesis is affected by sequence, additional factors influence modification and processing [73].

Chronic consumption of AFB₁ contaminated food has been correlated with increased incidence of hepatocellular carcinoma (HCC) [72, 80]. HCC is the fifth most commonly occurring cancer in the world and the third greatest cause of cancer mortality [132]. Liver tumors believed to result from AFB₁ exposure have a common mutational hotspot, a G \rightarrow T transversion at the 3rd position of codon 249 of the p53 tumor suppressor gene (AGG: targeted G underlined) [133]. This mutation will produce an Arg \rightarrow Ser alteration. Codon 249 represents one of four Arg residues in the highly conserved DNA binding motif of p53 [134]. This mutation has been found in approximately 50% of HCC tumors in global regions having a high potential for AFB₁ exposure. Over 2000 HCC

samples from around the world have been assayed for this hotspot mutation. In Qidong and Tongan (China), India, Southern Africa, The Gambia, Senegal, and Mozambique, regions where AFB_1 exposure is high, approximately 44% of examined tumors were positive for $G \rightarrow T$ transversions at the 3rd position of codon 249 of the p53 gene. In contrast, in the US, Japan, Europe, and Australia, regions where AFB_1 exposure is low, less than 1% of examined tumors had this mutation. These data suggest this particular p53 mutation is unique to AFB_1 induced liver tumors [73].

Carcinogenicity is considerably increased in individuals who test positive for hepatitis B virus (HBV), a common occurrence in regions where aflatoxin exposure is high [135-143]. One study suggested that patients who test positive for AFB₁-N7-Gua antigen are three times more likely to develop HCC, patients testing positive for HBV surface antigen are seven times more likely to develop HCC, and when patients test positive for both, they are sixty times more likely to develop HCC [141]. There are several proposed explanations for this apparent synergism. Some have suggested that the HBx, a gene product of HBV, binds and inactivates p53 [144, 145]. HBx may also inhibit p53 induced apoptosis [146]. Others have not observed direct interaction between HBx and p53, but alteration in localization, phosphorylation, or transcription of wild-type p53 during HBx expression has been observed [147-151]. Regardless, a definitive explanation of this synergism has yet to be established.

Transformation of normal cells to malignant cells may also occur by activation of cellular *ras* genes by single base mutations [152-154]. Activation of c-Ki-*ras* genes in rat liver tumors was evidenced by mutations in codon 12 [155, 156]. The first and second positions of codon 12 incur mutations in rats while trout tumors showed mutations in the

second position of codons 12 and 13 [157]. In humans, mutations at the first and second positions of codon 12 of the Ha-*ras* proto-oncogene have been reported [158]. Of likely significance, codons 12 and 13 of c-Ki-*ras* (GC<u>AGG</u>A) bear a striking resemblance to codon 249 of p53 (<u>AGG</u>C) [73].

The lesions AFB₁-N7-dGuo (**1.07**), AFB₁-FAPY (**1.08**), and AP site (**1.03**) are all candidate precursors to aflatoxin induced mutation. A common $G \rightarrow T$ transversion has been reported in all of the following experimental systems: in human liver tumors [140, 159, 160]; in cultured human hepatocytes [161]; in the human HPRT gene [162]; in the human Ha-*ras* proto-oncogene [163]; in human cells transfected with an AFB₁-modified pS189 shuttle vector [21]; in an intra-sanguinous host-mediated assay [164]; in the *lacI* gene of transgenic C57BL/6 mice and F344 rats exposed to AFB₁ [165]; in transgenic C57BL/6N mice [166]; in the *ras* gene of rainbow trout [167]; in the *lacI* gene of SOS-induced *E. coli* containing the *mucAB* mutagenesis enhancing operon [168]. These data do not differentiate between AFB₁-FAPY, AFB₁-N7-dGuo, and AP site induced mutation. It could be argued that aflatoxin induced AP sites are the prime source of $G \rightarrow T$ transversions.

In the 1980s, techniques were developed to assess the mutational specificity and quantitative mutagenicity of individual lesions resulting from damaged DNA [21]. This process involves the incorporation of a known DNA lesion into the genome of a virus or a plasmid by recombinant DNA techniques. The adduct-containing vector is transfected into bacterial or mammalian cell lines. At this stage, the lesion encounters the replication and repair mechanisms of the host cell. The progeny of the modified vector are then quantitatively and qualitatively analyzed.

This site specific mutagenesis approach was used to study the known DNA lesions resulting from AFB₁ exposure (i.e. AP, AFB₁-FAPY, and AFB₁-N7-dGuo). These experiments were conducted in *E. coli* expressing the SOS induced UmuDC and MucAB error prone polymerases using single stranded bacteriophage M13 genomes [162, 169]. (Note: As of 2005, structural studies of AFB₁ adducts were conducted in double stranded DNA [98, 115, 170-173]) AFB₁-N7-dGuo primarily caused primarily $G \rightarrow T$ transversions at a rate of 2-6%. A significant fraction (13%) of the mutations occurred 5' to the modified base. This mutational asymmetry has been attributed to the 5' location of the AFB₁ moiety [162]; it has been speculated that in this location the adduct may act as a pseudo base leading to miscoding [73]. The bulky benzo[a]pyrene also has the ability to induce asymmetric mutations [174]. The AFB₁-N7-dGuo derived transversions were highly dependent on MucAB and UmuDC unlike transversions derived from AP sites. Vectors containing apurinic lesions gave rise only to mutations targeted to the damaged site; these lesions are not able to induce non-targeted mutations. The pattern of non-targeted mutations and error-prone polymerase dependent transcription matched the mutational pattern observed in cells treated with aflatoxin disproving the idea that AP sites are responsible for AFB_1 induced mutations [162].

AFB₁-FAPY exists as a pair of chromatographically separable isomers originally designated "major" and "minor" based on their equilibrium populations [175, 176]. The major species was a block to replication while the minor species caused $G \rightarrow T$ transversions at a rate of 36%. AFB₁-FAPY is detected at near maximal levels in rat DNA weeks after AFB₁ exposure, underscoring its high persistence *in vivo* [117, 177, 178]. On the basis of that fact it was concluded that AFB₁-FAPY may be responsible for the majority of mutations observed in human HCC as a consequence of its longevity [169, 178-182].

Although AFB₁-FAPY is a substrate for both nucleotide excision repair (NER) and base excision repair (BER), it is preferentially repaired by NER [183]. Many bulky adducts, like AFB₁, are substrates for nucleotide excision repair (NER) [120, 184-188]. AFB₁-FAPY and AFB₁-N7-dGuo are both efficiently repaired in NER-proficient cells [183]. Similarly, in *E. coli*, AFB₁-FAPY and AFB₁-N7-dGuo are excised by uvrABC with equal efficiency [189]. Interestingly, the rate of incision can vary as much as 15fold depending on sequence with 3'-dA being the most resistant [189]. Little else is known about sequence dependent repair of AFB₁ lesions. Considering that AFB₁-FAPY possesses sequence specific structural properties [115], sequence related differences in repair are not surprising. AFB_1 lesions are also substrates for base excision repair (BER) [190]. The Fpg protein (MutM), a BER glycosylase, repairs oxidative damage to DNA [191]. MutM removes AFB₁-FAPY, but not AFB₁-N7-dGuo in vitro, demonstrating a preference between the two lesions [190]. Further investigation revealed that AFB₁-FAPY was a poor substrate for both MutM and also its human functional analog hOGG1; these results were compared to canonical substrates for these proteins, 8-oxoguanine and Me-dGuo-FAPY which are excised more efficiently [70, 183]. Nevertheless, in mammalian cells AFB₁-FAPY persists for days to weeks whereas AFB₁-N7-dGuo is expeditiously removed, suggesting a differential repair mechanism or spontaneous depurination of the cationic adduct [117, 177, 192].

Figure 1-5: Previously published NMR solution structures of AFB₁ modified DNA. A) 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = AFB₁-FAPY) B) 5'-A¹C²A³T⁴C⁵X⁶A⁷T⁸C⁹T¹⁰-3'•5'-A¹¹G¹²A¹³T¹⁴C¹⁵G¹⁶A¹⁷T¹⁸G¹⁹T²⁰-5' (X = AFB₁-N7-dGuo)

The chemistry of the AFB₁-FAPY adduct is poorly understood. Qualitative identification of AFB₁-FAPY isomers has lead to several ideas concerning their identities. NMR spectroscopy of AFB₁-FAPY nucleoside indicates that it exists as four species that can be chromatographically separated into two species before re-equilibration; one HPLC fraction was larger than the other (hence "major" and "minor" respectively), each fraction contained two inseparable species [175, 176]. Initially,

"major" and "minor" were proposed to be N⁵ and N⁶ formyl regioisomers (Figure 1-3 A) [176]. This was subsequently disproven by incorporation of an isotopically labeled ¹⁵N at position N7 of guanine [31, 63]. Upon AFB₁ adduction and base catalyzed rupture of the imidazole ring, ¹H NMR studies revealed that the ¹⁵N was located solely at the N⁵ position. Heteronuclear ¹H-¹⁵N coupling was observed between N⁵ and the CHO proton for both "major" and "minor" isomers. No coupling between CHO and N⁶ was observed. This places the formyl group on N⁵ for both isomers, dispelling the regioisomer isomer theory.

The quest for AFB₁-FAPY isomer clarification led to the use of AFB₁ modified nucleosides. When studying a mixture, nucleosides are simpler systems than oligonucleotides and therefore more tractable to NMR analysis. In AFB₁-FAPY nucleosides, exactly like Me-dGuo-FAPY, possible isomers were determined to be: rotamers of the formyl moiety (*E* and *Z* geometrical isomer), rotamers of the C5-N⁵ bond (R_a and S_a atropisomers), and epimers of the anomeric carbon (α and β anomers) [31] (Figure 1-3). In AFB₁-FAPY nucleosides, the R_a atropisomer was favored over S_a by a factor of 7:1; the *Z* geometrical isomer was favored over *E* 3:1 [31].

Successful analysis of biomolecules by NMR necessitates that the analyte comprise a commanding majority of the mixture. In 1998 a detailed solution structure of the duplex DNA 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = AFB₁-FAPY) was reported [115, 172] (Figure 1-5). The structure is an R_a atropisomer, *E* geometrical isomer, and β anomer. Logically, it was concluded that the solution structure in dsDNA represents the "major" FAPY isomer. The conclusion that the solution structure FAPY species equates to the "major" form analyzed in mutagenesis experiments is flawed. The solution structures of AFB₁-FAPY and AFB₁-N7-dGuo are similar in many ways (Figure 1-5). The AFB₁ is located on the 5' side of the modified base, AFB₁ spans the helix and is fully intercalated. Ignoring the obvious chemical differences between the two adducts, there are subtle difference in the structures. The AFB₁-N7-dGuo helix is slightly bent at the lesion site and the AFB₁ moiety cannot stack parallel to neighboring bases. In the AFB₁-FAPY structure, the helix is unwound 10 degrees more than in the AFB₁-N7-dGuo structure and there is a hydrogen bond between the CHO oxygen and the 3' adenine N⁶ amine. These differences are minor and one might predict a similar biological response to both lesions. However, AFB₁-N7-dGuo produced G \rightarrow T transversions in *E. coli* and AFB₁-FAPY "major" was a block to replication. This radically different mutational spectrum was difficult to reconcile in light of the NMR solution structures.

One of the primary focuses of this dissertation is the elucidation of structures of the various AFB₁-FAPY species in DNA and the impact of these structures on replication bypass. Was the previously proposed assignment of FAPY "major" and "minor" as atropisomers correct [115, 116, 169]? Reactivity of the epoxide of AFB₁ with guanine is influenced by sequence context; could sequence context have also produced a structural effect? Most importantly, the difference in mutation patterns between "major" and "minor" posed an interesting structural question: What kind of isomers could be responsible for such a different mutational effect?

Thymine glycol

Thymine bases are oxidized by ionizing radiation or reactive oxygen species. In the case of ionizing radiation, the hydroxyl radical is the principal reactive species responsible for DNA damage [12, 13, 193]. The hydroxyl radical is also an *in vivo* product of aerobic metabolism [12, 194]. The DNA damage resulting from ionizing radiation and cellular oxidation is qualitatively similar [195]. Thymine bases are the most susceptible to oxidation [196, 197]. Many products may result, i.e., thymine peroxide, thymine hyperperoxide, and others; however, the major stable product in vivo and *in vitro* is thymine glycol (Tg) [197-200]. Oxidative free radical attack on the C5-C6 ethylenic bond produces a pair of *cis* thymine glycol (1.09,1.12) enantiomers, each in equilibrium with its *trans* epimer (1.11,1.14) (Scheme 1-5) [37, 201-205]. This equilibrium favors the *cis* isomers (1.09,1.12) approximately 4:1 [37, 206]. Loss of aromaticity prohibits planer conformation for thymine glycol bases [207]. An axial Tg CH₃ results in a ⁵E conformation for the 5*R* isomer for example, while an equatorial Tg CH₃ produces a ${}^{6}E$ conformation. Therefore, each Tg isomer [5R,6S (1.09); 5R,6R (1.11); 5S.6S (1.12); 5S.6R (1.14)] pucker conformation can be generalized to either ${}^{5}E$ or ⁶E.

Thymine glycol lesions are common in cells of all organisms [208]. Thymine glycol and thymidine glycol have been detected in the urine of humans and laboratory animals fed a normal diet [198, 209]. It has been estimated that the average human cell will repair over 400 of these lesions per day [198, 210]. The presence of thymine glycol in bodily fluids of non-irradiated subjects is attributed to enzymatic removal from cellular DNA where it is produced as a consequence of normal oxidative stress [198, 209].

Scheme 1-5: Formation of cis-5*R*,6*S*-thymine glycol and epimer equilibration

Thymine glycol is relatively stable, however, in alkaline environments, the thymine glycol ring may be hydrolytically fractured during epimerization (**1.10, 1.13**) leaving a urea residue (**1.15**) composed of the N1-C2-N3 pyrimidine atoms bound to the deoxyribose (Scheme 1-5) [211, 212].

Thymine glycol is a strong block to DNA replication. Multiple studies have shown that thymine glycol inhibits DNA synthesis *in vivo* in most sequences [211, 213-215]. However, polymerase read-through has been observed in certain contexts [215]. The presence of a pyrimidine 5' to Tg enhances the probability of translesion synthesis more than a 5' purine [215-217]. The 3' base determines the extent of replication block [218]. Site-specific incorporation of thymine glycol into the M13mp19 bacteriophage and subsequent transfection into *E. coli* produced targeted $T \rightarrow C$ transitions at a frequency of 0.3%. This was attributed to formation of a Tg•G wobble base pair that was predicted by molecular modeling [219]. Unfortunately, mutagenesis experiments were conducted on a mixture of thymine glycol lesions. More recently, it has been demonstrated that the bypass of Tg lesions by Y-family DNA polymerases is stereospecific, with pol η bypassing the 5*R* (1.09) epimers more efficiently [220] and pol κ bypassing the 5*S* epimers (1.12) more efficiently [221].

Repair of thymine glycols is highly dependent on isomeric configuration and on the complementary base. Under normal circumstances the lesion is paired with adenine. Therefore, most Tg lesions are located opposite adenines in DNA. However, Tg opposite guanine may occur when a 5-methyl cytosine is oxidized to 5-methycytosine glycol that undergoes facile hydrolytic deamination to Tg [222, 223]. This is significant considering > 70% of cytosines in a CpG context are believed to be methylated in mammalian cells [222]. Studies by Teebor and co-workers have shown the repair of these lesions by DNA N-glycosylases/AP lyases to be dependent on both absolute configuration of the lesion and the opposing base [224]. Using *E. coli* endonuclease III (Nth), *cis*-5*S*,6*R*-Tg (1.12) opposite adenine was repaired with greater efficiency than its diastereomer (1.09). Studies with human endonuclease III (hNth), an endonuclease that repairs pyrimidine lesions arising from oxidative damage [225, 226], indicated a 13:1 preference for excising the 5*R* epimers (1.09, 1.11) vs. the 5*S* epimers (1.12, 1.14). Additionally, the 5R,6S (1.09) isomer placed opposite adenine was repaired more efficiently than when it is opposite a guanine. This endonuclease was virtually inactive against the $5S_{0}6R$ (1.12) diastereomer regardless of the opposing base [227, 228]. The human endonuclease-like

protein hNEIL1 glycosylase [229] showed a 1.5:1 preference for excising the 5*R* epimers (1.09, 1.11) vs. the 5*S* epimers (1.12, 1.14) [228], but seemed to be more efficient when Tg was opposite a guanine [224, 230]. Similar observations have been made for prokaryotic, yeast, and murine glycosylases [230].

The current structural knowledge of thymine glycol in DNA is limited and contradictory in some instances. Predictions from molecular modeling studies suggested that 5R,6S-Tg (**1.09**) could be extrahelical as a result of loss of planarity of the Tg base [198, 219]. This was postulated to be principally a consequence of steric clash with the Tg CH₃. An equatorial configuration of 5R,6S-Tg (**1.09**) CH₃ was predicted to be more sterically favorable than axial (Figure 1-6) [231]. The degree of extrahelicity is believed to be sequence dependent with 3' pyrimidines producing the most perturbation

Figure 1-6: Model structures of *cis*-5*R*,6*S*-Tg flanked by guanines. A) Tg CH₃ axial. B) Tg CH₃ equatorial. C) Superposition of pucker conformations.

[219]. However, 3' purines are predicted to stabilize Tg by a 3'-N7 \rightarrow Tg-OH⁶ hydrogen

bond [231] (Figure 1-6 A). NMR data have been obtained in 5'-GTgC-3' and 5'-ATgA-3' sequence contexts where Tg = cis-5R, 6S (1.09). The 5'-GTgC-3' structure was disordered at the lesion site and opposing base [232]. The 5'-ATgA-3' structure indicated the Tg residue was approximately half extrahelical [233]. This study did not address intra-strand lesion hydrogen bonding. In addition, these NMR studies did not address the possibility of *cis* and *trans* geometrical isomers or α and β anomers present in the analyte [232, 233]. More recently, a binary primer-template complex, containing a site-specifically Tg-5R (1.09) modified template, was crystallized with the replicative RB69 DNA polymerase [234]. The resulting structure, representing the situation immediately following incorporation of dATP opposite Tg, revealed the presence of the *cis*-5*R*,6*S* Tg epimer (1.09) at the active site. The cis-5R, 6S Tg epimer was intrahelical and formed a Watson-Crick base pair with the dA at the primer 3'-terminus [234]. This confirmed modeling studies that predicted cis-5R,6S Tg (1.09) would successfully pair with dA [231]. Moreover, in the crystal structure with the RB69 polymerase, the Tg methyl group was in the axial conformation, hindering stacking of the adjacent 5'-template guanine [234]. These structural results provided a possible rationale for earlier observations that extension past the 5*R*-Tg lesion by the Klenow fragment of *E. coli* DNA polymerase I or T4 DNA polymerase was prohibited [214].

Many questions remain concerning thymine glycol processing. First, how can an extrahelical lesion's complementary base modulate its repair? Second, is it possible that the toxic properties ascribed to thymine glycol maybe a consequence of inversion of the anomeric carbon resulting in α anomers? Finally, thymine glycol is reported to exist as a mixture of *cis* – *trans* epimers in nucleosides, is this equilibrium present in

oligonucleotides? NMR structural studies have been undertaken with a Tg modified oligonucleotide duplex to see whether more modern NMR techniques would reveal more structural details in the region of the lesion than had been observed in earlier investigations.

CHAPTER II

MATERIALS AND METHODS

Biological Hazards

Aflatoxin B₁ and many of its derivatives are potently carcinogenic. Great care should be exercised to avoid personnel exposure. Crystalline material presents an inhalation hazard because the crystals develop electrostatic charge causing aerosols to form. Manipulations should be carried out in a well-ventilated hood with suitable containment procedures. Aflatoxins can be destroyed by oxidation with NaOCl.

Materials

Unmodified oligodeoxynucleotides were purchased from the Midland Certified Reagent Co. (Midland, TX). Samples were purified by reverse phase HPLC chromatography and analyzed by mass spectrometry by Midland technicians. Oligodeoxynucleotide concentrations were measured by UV absorbance at 260 nm. AFB₁ was purchased from Sigma-Aldrich Chemicals (Milwaukee, WI).

Dimethyldioxirane Synthesis

A closed distillation apparatus was flushed with nitrogen. Once the cold finger was chilled, 15 mL of reagent grade H_2O , 16 g NaHCO₃, and 15 mL of acetone were added to a stirred reaction vessel. A slight vacuum was applied as nitrogen flowed

through the system (ca. 180 Torr, water aspirator). To this, 30 g of OXONE **(**) (monopersulfate compound, CAS 70693-62-8) was added via a solid addition funnel and 10 mL of H₂O and 10 mL of acetone via a liquid addition funnel. OXONE was added in approximately 2 g increments as water/acetone dripped into the reaction vessel from the liquid addition funnel. The distillate was collected for approximately 45 min. The yellowish dimethyldioxirane solution was quickly transferred to polypropylene containers containing anhydrous MgSO₄. The solution was then refrigerated (-20 °C) and allowed to dry for approximately 24 h. This method produced approximately 5 mL of 0.03 to 0.07 M dimethyldioxirane [235]. The product was assayed for concentration and water content by ¹H NMR (solvent = acetone). The concentration was determined by comparing the height of the dimethyldioxirane methyl proton peak (δ 1.65) to that of the ¹³C satellite peak to the right of the acetone signal [236]. Successful drying of the dimethyldioxirane was established by magnitude of residual water peak (δ 2.8).

Aflatoxin B₁ Adduct Synthesis

Dimethyldioxirane was used to epoxidize AFB₁ [105]. One mg of AFB₁ was dissolved in 0.5 mL of anhydrous CH₂Cl₂ (3.2 mM). Two equivalents of dimethyldioxirane were then added to the AFB₁ solution. An amber glass reaction vial was used to block ambient light and avoid potential photo products. The reaction was allowed to proceed for approximately 15 min. The resulting epoxide was dried by gently blowing nitrogen over the solution, care being taken to avoid formation of airborne crystalline AFB₁ epoxide. The completeness of the reaction and possible presence of dihydrodiol, which is formed by reaction of the epoxide with adventitious moisture, was

established by ¹H NMR [105]. Of particular value for this determination are the signals for the H6a protons; unmodified AFB₁ appears at δ 6.9, epoxide δ 6.1, and dihydrodial at δ 6.6 [105].

Typically, oligonucleotides with one guanine were used for the adduction reactions. Efficiency of the reaction was improved by using double stranded DNA. This was achieved in one of three ways depending on sequence; use of a self complementary sequence, use of a complementary strand that did not contain guanine, or blocking intercalation sites by triplex formation [107, 237-239]. Typically, the oligonucleotide was dissolved in 100 μ L of 20 mM sodium phosphate buffer (pH 6.5, 100 mM NaCl) and cooled to ~ 5 °C. The appropriate amount of epoxide was dissolved in 100 μ L of extra dry CH₂Cl₂ (< 0.003% H₂O). The epoxide was then added in two separate additions. A 5:1 epoxide to oligonucleotide ratio was optimal in most cases. The sample was mixed at 5 °C for 15 min. The organic layer was removed and oxidized with NaOCl.

	Sequence	Size	T _m of Unmodified	Reference
	1		Duplex(100mM NaCl) [°C]	5
1	5'-CCT CTT C <u>X</u> A ACT C-3'	13	44.6	[169]
2	5'-CTA T <u>X</u> A TTC A-3'	10	22.2	[115]
3	5'-CTA T <u>X</u> T TTC A-3'	10	23.2	
4	5'-CTT T <u>X</u> A ACC C-3'	10	31.7	
5	5'-CTT C <u>X</u> A ACT C-3'	10	31.4	
6	5'-CT <u>X</u> A-3'	4	<5	[240]
7	5'-GAG GA <u>X</u> GCC CTT-3'	12	66.7	[237, 241]
8	5'-TCA TT <u>X</u> AAT CCT TCC CCC-3'	18	56.6	[242-244]
9	5'-AGA GTC GAC-3'	9	29.3	
10	5'-GTG CGT GTT TGT-3'	12	45.4	[237, 241]

Table 2-1: Oligonucleotides used in structural analyses

Cationic AFB₁-N7-dGuo was purified from unreacted and complementary DNA by HPLC. Upon isolation, AFB₁-N7-dGuo modified DNA was lyophilized. AFB₁-N7-dGuo samples were placed in 500 μ L of sodium carbonate solution (pH 10, 100 mM, 37 °C) to facilitate imidazole ring opening producing AFB₁-FAPY. The conversion from

AFB₁-N7-dGuo to AFB₁-FAPY was monitored by HPLC (λ 260 and 360 nm). AFB₁-FAPY was successfully incorporated into sequences 1-8 of Table 2-1.

AFB₁-FAPY modified oligonucleotides equilibrate to a mixture of α and β anomers. To study individual anomers, HPLC purification was conducted with an ammonium formate mobile phase adjusted to pH 8.0 with NaOH. Lyophilization of ammonium formate caused the pH to drop <6.0. To correct for this event, samples were saturated with an excess of Na₂HPO₄•7H₂O. Lyophilized samples were quickly desalted prior to NMR by use of a C-18 Sep-Pak (Waters Corporation, Milford MA). Sep-Pak activation was achieved by washing with 5 mL of acetonitrile. The Sep-Pak was then rinsed with 10 mL of reagent grade water. The dissolved sample was then passed over the Sep-Pak five times to ensure complete sample binding to C-18 media. The bound sample was washed with 5 mL water to remove salt. Elution was achieved with 3 mL of a 50/50 water/acetonitrile solution. The eluted sample was collected in a polypropylene receptacle containing buffer for NMR studies (20 mM sodium phosphate buffer, pH 8.7-9.0, 100 mM NaCl, 10 mM NaN₃, and 50 µM Na₂EDTA). Where appropriate, the eluted anomer was combined in a 1:1 molar ratio with its appropriate complement for duplex studies. CGE was used to estimate excess ssDNA; samples containing more than10% excess were repurified by HPLC.

Thymine glycol and urea deoxyriboside samples were prepared in the lab of Dr. Ashis Basu (University of Connecticut, Storrs). The *cis-5R*-thymine glycol phosphoramidites were incorporated into the sequences 5'-GTGCGXGTTTGT-3' and 5'-AGAGXCGAC-3' where X represents the site of modification [245] (Table 2-1,

sequences 9-10). Thymine glycol and AFB₁ modified samples were analyzed by MALDI-TOF and CGE to confirm sample constitution and homogeneity.

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF)

Oligodeoxynucleotides were analyzed using a Voyager-DE (PerSeptive Biosystems, Inc., Foster City, CA) MALDI-TOF spectrometer. Samples were suspended in a matrix consisting of 0.5 M 3-hydroxypicolinic acid in 1:1 CH₃CN:H₂O and spotted onto sample plates. Mass spectra were recorded in the reflector mode using laser attenuation of 3030. The accelerating voltage was 20 kV, with a grid voltage of 85.00%, guide wire voltage of 0.050%, and a delay of 100 ns. The spectra were an averaged from 256 scans.

Capillary Gel Electrophoresis (CGE)

CGE data was obtained using a Beckman Coulter P/ACE MDQ Capillary Electrophoresis System. An injection voltage of 10 kV for 2 s was used; in some cases it was advantageous to pressurize the loop (20 psi) to avoid air in the capillary. A 30 cm capillary, packed with ssDNA 100-R gel (Beckman Coulter Cat #477489) was used at a separation voltage of 9.0 kV for 55 min with a Tris-borate-urea buffer (tris 44%, boric acid 56%, 7 M urea). Approximately 0.1 OD of oligonucleotide and 1 μ L of 1% Orange G reference marker (Beckman Coulter Cat #S906682) were placed in the injection capsule (total volume 40 μ L). UV absorbance was recorded at 254 nm or 340 nm.

Thermodynamic Measurements

UV-absorption thermal denaturation experiments were conducted on a CARY 4E UV-Vis spectrophotometer (Varian, Inc. Palo Alto, CA). Data was collected and analyzed using the Cary WinUV Thermal application (v. 2.0). Samples were suspended in 10 mM phosphate buffer, containing 500 mM NaCl, and 10 mM Na₂EDTA (pH 7.0). For thymine glycol sample analysis, four different concentrations of 1 mL of 0.1, 0.5, 0.8, and 1.0 μ M solutions in 1 cm capped cuvettes were placed in the spectrometer's multicell temperature regulation block along with a blank. For analysis of AFB₁-FAPY samples, one concentration of approximately 1.0 μ M was used. During the serial analysis of the samples, temperature was increased at a rate of 0.3 °C /min from 5 to 80 °C and absorbance was measured at 260 nm. Before each 5 - 80 °C sweep, temperature profiles were analyzed by first derivative and hyperchromicity to determine T_m. Hybridization versus temperature plots, α curves, and van't Hoff plots were produced where appropriate [246].

Thermodynamic Data Analysis

Thermodynamic parameters were generated by analysis of absorbance versus temperature profiles within in the Meltwin (v. 3.5 McDowell) and Thermal (v. 2.0 Cary) applications. A Marquardt-Levenburg algorithm was used for individual curve fitting. Thermodynamic values (Δ H^o and Δ S^o) were obtained by two methods [247-249]. The analysis of thermodynamic properties by two different methods is necessary to ascertain the presence of a two state transition of duplex denaturation. Previous studies have

defined a one step transition as agreement within 10% of enthalpy values calculated by two methods [250]. In method 1, parameters were extracted from individual melting curves. In method 2, linear regression analysis of van't Hoff plots (SigmaPlot v. 9.0) produced straight lines where the slope equals $R/\Delta H^{\circ}$ and the intercept equals $\Delta S^{\circ}/\Delta H^{\circ}$ by the following equation (R = 1.9872 cal K⁻¹ mol⁻¹; C = molarity):

$$\frac{1}{T_m} = \frac{R}{\Delta H^{\circ}} \ln\left(\frac{C}{4}\right) + \frac{\Delta S^{\circ}}{\Delta H^{\circ}}$$
(2-1)

Gibbs free energy (ΔG°) was then determined at 25 °C and 37 °C. Error values were represented as standard deviation. Theory and analysis of the thermodynamic properties of DNA have been discussed in detail elsewhere [246, 251].

Electronic Circular Dichroism (ECD)

CD spectra were collected on a Jasco J-720 spectropolarimeter (Japan Spectroscopic Co., LTD, Tokyo, Japan) at 25 °C. Duplex and single stranded samples $(4.0 \times 10^{-6} \text{ M})$ were analyzed in a 1 cm optical cell. Data from 210 to 400 nm were signal averaged over 10 scans with a sensitivity of 50 mdeg and resolution of 1 nm (scan speed = 50 nm/min).

Quantum Mechanical Calculations

Partial charges for the non-standard residues (i.e. thymine glycol and AFB₁-FAPY) were generated using the program GAUSSIAN 03 [252]. Geometry optimization and frequency calculations were performed using the B3LYP density functional (DFT) method with the 6-31G* basis set. Additionally, thymine glycol energies were recorded at the 6-31G**, 6-31+G*, and 6-311++G** levels of theory. Potential points were written out with a density of 6 points per unit area in the electrostatic potential (ESP) fit. Gaussian ESP output was converted to restrained electrostatic potential (RESP) charges using the program ANTECHAMBER [253].

In the case of thymine glycol, four sets of GAUSSIAN calculations were performed with each basis set. Coordinates were chosen for *cis* 6S-Tg (CH₃ axial), *cis* 6S-Tg (CH₃ equatorial), *trans* 6R-Tg (CH₃ axial), and *trans* 6R-Tg (CH₃ equatorial). Quantum calculations were expedited by replacing the sugar moiety with a CH₃ group at the N1 position of the modified base.

The AFB₁-FAPY residue is not directly tractable to quantum calculations due to its comparatively large size (35 heavy atoms). Therefore, RESP charges were calculated for AFB₁ and the modified base + sugar separately. For this reason, unique library input files for AMBER were prepared for the AFB₁ adduct and modified base – deoxyribose.

The resultant optimized structures and charges were used as parameters for rMD calculations. Frequency analysis was used to test for convergence. Diagonalization of the Hessian matrix will produce positive eigenvalues when a structure is at a minimum [254-257].

Nuclear Magnetic Resonance Spectroscopy (NMR)

DNA samples were prepared at concentrations of approximately 1.5 mM and placed in 5 mm NMR tubes for analyses. Samples prepared for the observation of non-

exchangeable protons were dissolved in 500 μ L of 20 mM sodium phosphate buffer, 100 mM NaCl, 10 mM NaN₃, and 50 μ M Na₂EDTA at pH 7.0. Aflatoxin samples were studied at a pH of 8.7 to 9.0. Samples were lyophilized from 99.9% D₂O three times and suspended in 500 μ L of 99.996 % D₂O. For the observation of exchangeable protons, samples were suspended in 500 μ L of 9:1 H₂O:D₂O. ¹H and ³¹P spectra were referenced to internal 3-(trimethylsilyl)propionic-2,2,3,3-d₄ acid, sodium salt (3-TMSP) and external 85% H₃PO₄ (capillary in H₂O) respectively.

Bruker Avance spectrometers operating at ¹H frequencies of 800, 600, and 500 MHz were used for data acquisition. Carrier frequencies were set at 4.7 ppm for ¹H, 80 ppm for ¹³C, and 0 ppm for ³¹P. Spectrometers were equipped with 5 mm, triple resonance, CP-TCI-Z cryoprobes and quadruple resonance QXI-XYZ probes. Thymine glycol modified 5'-GTGCGXGTTTGT-3'•5'-ACAAACACGCAC-3' duplexes were analyzed at 30 ± 0.5 °C. Single stranded and AFB₁-FAPY modified samples were analyzed at 7 ± 0.5 °C. The observation of exchangeable protons of all duplex samples was conducted at 7 ± 0.5 °C. Data was processed with XWINNMR (v 3.5 patch level 6, Bruker Inc., Karlsruhe, Germany), TOPSPIN (v 2.0.b.6, Bruker, Karlsruhe, Germany), and/or NMRPipe [258].

Nuclear Overhauser Effect Spectroscopy (NOESY)

Phase-sensitive ¹H-¹H NOESY [259, 260] experiments used in the assignment of exchangeable protons were conducted at ¹H frequencies of 500, 600, and 800 MHz. Water signal suppression was achieved using the 3919 watergate pulse; the binomial null was set at 11 ppm [261]. A relaxation delay of 1.0 s and sweep width of 20 ppm was used for these experiments. NOESY spectra used for the assignment of nonexchangeable

protons were collected at ¹H frequencies of 600 and 800 MHz with a sweep width of 10 ppm. Water suppression for samples dissolved in D₂O was achieved with a square presaturation pulse. Distance restraints were derived from four successively collected NOESY experiments at mixing times of 250, 200, 150, and 80 ms. The assignment of ssDNA samples required mixing times of 250 or 300 ms. A relaxation delay of 2.0 s was used for nonexchangeable NOESY experiments. States-TPPI quadrature detection was used for all NOESY experiments. Thymine glycol related NOESY experiments were recorded with 2048 real data points in d2 and 1024 real data points in d1. The indirect dimension was zero filled to obtain an overall matrix size of 2048 X 2048 real data points in d2 and 512 real data points in d1. In this case d1 was zero filled and linear predicted to obtain an overall matrix size of 2048 x 2048 real points. A skewed sinebell-squared apodization function with a 90° phase shift was applied in both dimensions.

Correlated Spectroscopy (COSY)

COSY experiments were conducted in double quantum filtered (DQF) [262] and magnitude modes at ¹H frequencies of 500, 600, and 800 MHz. Spectra were recorded with a sweep width of 10 ppm and a relaxation delay of 2.0 s. Water suppression was achieved with a presaturation pulse. States-TPPI quadrature detection was used. Experiments were recorded with 2048 real data points in d2 and 512 real data points in d1. The indirect dimension was zero filled and linear predicted to obtain an overall matrix size of 2048 x 2048 real points. A skewed sinebell-squared apodization function with a 180° phase shift was applied in both dimensions. Coupling constants were fit using constrained multiplet evaluation (ACME) [263] of a phase sensitive COSY

recorded at ¹H of 800 MHz. In this case, spectra were obtained with 2K x 1K (real data points) and a relaxation delay of 12 s; no residual water presaturation was applied. States quadrature detection was used. The indirect dimension was zero filled to obtain an overall matrix size of 2048 x 2048 real points; no linear prediction was used. Remaining acquisition and processing parameters were identical to those previously stated.

Heteronuclear ${}^{1}H{-}^{31}P$ COSY [264] experiments were performed at a ${}^{1}H$ frequency of 600 MHz on Bruker Avance spectrometer with a QXI-XYZ probe. Spectra were recorded with a sweep width of 10 ppm in d2 and 5 ppm in d1. Water suppression was achieved with a Dante pulse sequence [265]. States quadrature detection and a relaxation delay of 2.0 s were used. Experiments were recorded with 1024 real data points in d2 and 256 real data points in d1. Zero filling produced an overall matrix size of 2048 x 512 real points. A skewed sinebell-squared apodization function with a 90° phase shift was applied in both dimensions. Pulses were optimized for ${}^{3}J_{PH}$ coupling constants (12 Hz).

Total Correlated Spectroscopy (TOCSY)

Two dimensional ¹H-¹H TOCSY [266] data was collected at a ¹H frequency of 500 MHz for single stranded DNA samples. Spectra were recorded with a sweep width of 10.5 ppm and a relaxation delay of 1.5 s. Water suppression was achieved with a square wave presaturation pulse. States-TPPI quadrature detection was used with a TOCSY mixing times of 80 and 120 ms. Trim pulse duration was set to 2.5 ms. Experiments were recorded with 2048 real data points in d2 and 512 real data points in d1. The indirect dimension was zero filled to obtain an overall matrix size of 2048 x 1024 real points. A skewed sinebell-squared apodization function with a 90° phase shift was applied in both dimensions.

Heteronuclear Single Quantum Correlation Spectroscopy (HSQC)

Multiplicity edited ¹H-¹³C heteronuclear single quantum correlation spectroscopy (HSQC) [267] experiments were used to ascertain ¹³C resonance assignments. Spectra were recorded at ¹H frequencies of 500 and 600 MHz for single stranded DNA samples and 800 MHz for duplex samples. Spectra were recorded with a ¹H sweep width of 10.5 ppm and a ¹³C sweep width of 180 ppm. A relaxation delay of 21.8 s was used. Echo-Antiecho quadrature detection was used. An 80 μ s pulse was used for garp proton decoupling. Pulses were optimized for ¹J_{CH} coupling constants (140 Hz). Experiments were recorded with 1024 real data points in d2 and 256 real data points in d1. The indirect dimension was zero filled and linear predicted to obtain an overall matrix size of 1024 x 1024 real points. A skewed sinebell-squared apodization function with a 90° phase shift was applied in both dimensions.

Heteronuclear Multiple Bond Correlation Spectroscopy (HMBC)

Heteronuclear ¹H-¹³C multiple bond correlation spectroscopy (HMBC) experiments were used to determine heteronuclear zero and double quantum coherence correlation. Spectra were recorded at ¹H frequency of 500 MHz for single stranded DNA samples. Spectra were recorded with a ¹H sweep width of 10.5 ppm and a ¹³C sweep width of 180 ppm. A relaxation delay of 1.5 s was used. Pulses were optimized for ¹J_{CH} coupling constants (9 Hz). Experiments were recorded with 1024 real data points in d2 and 512 real data points in d1. The indirect dimension was zero filled and linear predicted to obtain an overall matrix size of 1024 x 1024 real points. A skewed sinebellsquared apodization function with a 180° phase shift was applied in both dimensions.

<u>T₁ Measurement (Inversion Recovery)</u>

 T_1 inversion recovery experiments [268] were collected at a ¹H frequency of 800 MHz and processed by Fourier transform [269]. Samples were dissolved in D₂O buffer. Recovery times of 0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10 s were used for the inversion recovery profile for a total of 12 points for T_1 fitting. Spectra were recorded with a ¹H sweep width of 10.5 ppm in d1. Data was collected in a pseudo 2D array of 16K real data points in d2 and 12 real data points in d1. No acquisition mode was selected.

T₂ Measurement (Carr-Purcell-Meiboom-Gill)

 T_2 experiments were collected using the Carr-Purcell-Meiboom-Gill (CPMG) method [268] at a ¹H frequency of 800 MHz. Samples were dissolved in D₂O buffer. The CPMG spin echo time increment profile consisted of values 4, 6, 8, 10, 12, 14, 16, 18, and 20 s for a total of 9 points for T_2 fitting. Spectra were recorded with a ¹H sweep width of 10.5 ppm in d1. Data was collected in a pseudo 2D array of 16K real data points in d2 and 9 real data points in d1. No acquisition mode was selected.

Starting Structures

Starting structures were produced using the MKDNA program written by Jarrod Smith (Department of Biochemistry, Vanderbilt University) using the nucleic acid builder (NAB) suite [270]. Input parameters consisted of a mixture of values for inclination, twist, rise, and x offset. These values were selected to sample both A and B form DNA. 32 starting structures were generated for thymine glycol. Sixteen of the coordinates had the Tg methyl in the axial orientation while the other sixteen had the equatorial orientation. Global parameters for the core sixteen structures are listed in table 2-2. NAB generated structures were then modified in xLEaP and energy minimized for 1000 steps (100 steepest descent) in SANDER while holding base heavy atoms static [253]. This was necessary to alleviate NAB artifacts, e.g. unnatural backbone bond lengths. Five structures were generated for use in AFB₁-FAPY rMD calculations. In this instance, an extra A:T basepair was placed 5' to the modified base and subsequently removed to provide space for the AFB₁ residue. Insertion of the FAPY residue was accomplished using InsightII (Accelyris, San Diego, CA) and later energy minimized in SANDER.

Table 2-2: Input parameters for NAB

Structure number	X offset	inclination	twist	Rise
Tg 1	6.96	22.0	32.7	2.56
Tg 2	2.25	22.0	32.7	2.56
Tg 3	6.96	22.0	36.0	2.56
Tg 4	2.25	22.0	36.0	2.56
Tg 5	6.96	22.0	32.7	3.38
Tg 6	6.96	-5.30	31.7	3.12
Tg 7	6.96	2.90	31.7	3.12
Tg 8	6.96	-5.30	31.7	3.52
Tg 9	6.96	2.90	31.7	3.52
Tg 10	2.25	-5.30	31.7	3.12
Tg 11	2.25	2.90	31.7	3.12
Tg 12	2.25	-5.30	31.7	3.52
Tg 13	2.25	2.90	31.7	3.52
Tg 14	2.25	19.0	33.6	2.30
Tg 15	6.90	19.0	33.6	2.30
Tg 16	2.25	6.00	36.0	3.40
AFB 1	2.25	-1.20	35.9	2.56
AFB 2	2.25	3.02	35.9	2.56
AFB 3	6.96	3.02	35.9	2.56
AFB 4	2.25	3.02	33.6	2.56
AFB 5	2.25	6.00	36.0	3.40

Distance Restraints

NOE intensities were determined from integration of peak volumes by a Gaussian fit function or box summation using the program SPARKY (v. 3.11) [271] for four different mixing times. Intensities measured from interconverting thymine glycol samples were scaled by (100/80) for intensities between variable and constant resonances, and by (100/80) squared for thymine glycol intra-residue signals. Experimentally determined intensities were combined with intensities generated from complete relaxation of a B form starting structure of DNA to produce a hybrid intensity matrix [272, 273]. The program MARDIGRAS [274-276], using the RANDMARDI function, was used to iteratively refine the hybrid intensity matrix and to optimize the agreement between the experimental and calculated intensities. Calculations at mixing times of 250, 200, 150, 80 ms were each run at isotropic correlation times of 2, 3, 4, and 5 ns with a canonical B form starting structure, producing 16 sets of distances. Each set was a product of 50 RANDMARDI iterations. A refined structure resulting from initial rounds of simulated annealing was used as a starting structure for the second round of MARDIGRAS calculations. This produced improved distance sets used to subsequently refine structures that fit more closely to experimental data. Results were indexed to short- and long-range distances common to both A and B form DNA as a means to assess the accuracy of resultant distance sets. Data sets that best matched canonical A-form and B-form distances were averaged and used in subsequent restrained molecular dynamics calculations.

The distance restraint sets were divided into five categories indicative of the confidence level of the experimental data. Class 1, 2, and 3 distances were calculated

from completely resolved, no spin diffusion; slightly resolved, no spin diffusion; and medially resolved; possible spin diffusion, respectively. Class 1, 2, and 3 peaks were at least 0.4 ppm away from diagonal or water resonances. Class 4 and 5 distances were calculated from cross peaks that were highly overlapped and spin diffused.

Additional empirical distance restraints were used to define Watson-Crick hydrogen bonding and counter ion backbone proximity. Generic base pair distances were assigned as follows: For G•C base pairs; G H1 \rightarrow C N3 = 1.84 – 2.04 Å; G H22 \rightarrow C O2 = 1.75 – 1.95 Å; G N1 \rightarrow C N3 = 2.85 – 3.05 Å; G O6 \rightarrow C H42 = 1.80 – 2.00 Å; G O6 \rightarrow C N4 = 2.81 – 3.01 Å; for A•T base pairs; A N1 \rightarrow T H3 = 1.71 – 1.91; A N1 \rightarrow T N3 = 2.72 – 2.92; A H61 \rightarrow T O4 = 1.84 – 2.04 Å. During explicit solvent calculations loose distance restraints (3.0 Å - 8.0 Å lower and upper bounds) were used to constrain sodium counter ions near two phosphate groups of the helix so that their position was localized to the backbone phosphates.

Torsion Angle Restraints

Deoxyribose pseudorotation was determined by fitting ${}^{3}J^{1}$ H coupling constants for deoxyribose protons by either amplitude constrained multiplet evaluation (ACME) of COSY data [263] or by direct measurement of coupling constants form DQF-COSY experiments. Electronegitivity of substituent (EOS) Karplus curves were generated and converted to phase angle space assuming a maximum pucker amplitude (Φ) of 44 [277, 278]. $J_{1'2'}$, $J_{1'2''}$, and $J_{1'3'}$ were fit to the curve to determine phase angle ranges (ρ) for deoxyribose rings. The sugar pseudorotation and amplitude ranges were converted to upper and lower bound restraints for the five dihedral angles v₀ to v₄. Deoxyribose

pucker conformations were confirmed to be N-type or S-type by an approximate measurement of the mole fraction of sugar pucker in the S configuration (X_S) determined from the sum of $J_{1'2'}$ and $J_{1'2''}$ [278]. Residues that had less than 50% X_S or indicated potential for C3' endo configuration from EOS Karplus curves were constrained such that they were allowed to explore both N and S conformations during rMD calculations ($\rho = 0$ -210). Residues that has X_S greater than 50% were restrained such that $\rho = 125 - 210$.

Backbone torsion angles were restrained with experimental data where available. Remaining angles were limited based on known A form / B form ranges. The ε dihedral angles (C4'-C3'-O3'-P) were determined by using coupling constants determined from constant time NOESY or selective $J_{\text{H3'(i)-P(i-1)}}$ COSY experiments [279, 280] and fit by a Karplus relationship [281]. Remaining backbone torsion angles were limited in range based on previously determined backbone relationships [282].

Restrained Molecular Dynamics Calculations

Restrained molecular dynamics were conducted using the AMBER 9 suite [283]. Initial calculations involved a simulated annealing strategy for multiple starting trajectories. Convergent structures were analyzed for the presence of conformational families. Representative structures were then placed in truncated octahedron water box for further equilibrium refinement.

Simulated Annealing

Multiple starting structures were generated using the program NAB (nucleic acid builder) [270]. An RMSD of 4.3 Å was calculated between all 32 starting trajectories

used for Tg rMD calculations. The starting structures used in AFB₁-FAPY rMD calculations had a RMSD of 3.4 Å. Coordinate and topology files were generated with xLEaP [283] using ff99 parameters [284]. The restraint energy function included terms that defined distance and dihedral restraints as square-well potentials [285]. The generalized Born solvent model was used with a salt concentration of 0.2 mM [286, 287]. 20 ps of simulated annealing molecular dynamics were carried out with a non-bonded interaction cutoff at 15 Å. Structure coordinates were recorded every 1 ps. During the calculations, the system was heated to 600 K and returned to 0 K; temperature was maintained using the Berendsen thermostat algorithm [288]. In brief, the simulated annealing protocol utilized a starting temperature of 600 K. From 5 to 18 ps the temperature was decreased to 100 K. The temperature was decreased to 0 K during the final 2 ps of the simulations. A time constant of 0.4 ps was used for heat bath coupling during the first 0.5 ps of the simulation. This was changed to 4 ps from 0.5 to 18 ps. From 18 to 19 ps, the coupling was increased to 1 ps. Coupling was further increased during the final 19 to 20 ps of the simulation with a constant of 0.05 ps. During the first 3 ns of the simulation the relative weights of the NMR restraint energy terms was ramped up from 0.1 to 1; this was maintained for the remaining 17 ns of the simulation. Force constants were set as follows: Watson-Crick hydrogen bonding = 32 kcal mol⁻¹ Å⁻¹; Torsion angles (backbone and sugar) = 5 kcal mol⁻¹ Å⁻¹; Class 1 and 2 distance restraints = 20 kcal mol⁻¹ Å⁻¹; Class 3 distance restraints = 18 kcal mol⁻¹ Å⁻¹; Class 3 distance restraints = 18 kcal mol⁻¹ Å⁻¹; Class 4 distance restraints = 16 kcal mol⁻¹ Å⁻¹; Class 5 distance restraints = $10 \text{ kcal mol}^{-1} \text{ Å}^{-1}$.

Explicit Solvent

A representative structure from simulated annealing calculations was charge neutralized by the addition of sodium counter ions and placed in a truncated octahedral TIP3P water box with periodic boundaries at a distance of 8 Å from the solute. The solvated system was then equilibrated using standard protocols. Briefly, after the initial minimization, the solvated system was minimized for 1000 steps (500 steepest descent / 500 conjugate gradient) at constant volume with the solute held fixed by positional restraints, thus allowing the solvent and counter ions to equilibrate. Next the system was minimized for 2500 steps with no positional restraints at a constant volume allowing the solute to equilibrate to its solvent. The system was subsequently heated to 300 K over 100 ps; NMR restraints and empirical restraints were slowly built up during the heating period. Production calculations for rMD were run for a period of 10 ns. Throughout the equilibration and production periods, the temperature was held constant using the Langevin thermostat [289, 290] with a collision frequency of 1 ps⁻¹ and electrostatic interactions were treated with the particle mesh Ewald (PME) method [291]. A 15 Å cutoff for non-bonded interactions was used and bond lengths involving hydrogen were held fixed using the SHAKE algorithm [292]. Assessment of the accuracy of calculated MD structures was achieved by complete relaxation matrix analysis (CORMA). RMSD values of heavy atoms between each final structure were compared using SUPPOSE. Hydrogen bonding occupancies, ring puckers, average structures, and other dynamic properties were extracted from molecular dynamics trajectories with PTRAJ. Both SUPPOSE and PTRAJ are distributed with AMBER [283].

Helicoidal Analysis

Helicoidal analysis was performed using CURVES [293] on a average of ten structures taken from the final 100 ps of rMD calculations in explicit solvent of duplex samples. Backbone torsion angles for an average single strand tetramer sample were measured manually using Insight II (Accelyris, San Diego, CA) from graphical display.

Complete Relaxation Matrix Analysis (CORMA)

Theoretical NOE intensities were calculated from rMD structures by complete relaxation matrix analysis (CORMA) [272]. Calculations were performed on an ensemble of 10 structures of equal probability (0.1 %). Theoretical NOE intensities were supplemented with NOE intensities taken from cross peak volumes from spectra with a mixing time of 250 ms. An isotropic correlation (τ_c) of 3 ns was used in all analyses. Input intensities were normalized will all proton intensities, not just highly spin diffused geminal and vicinal protons. Random noise was added to individual intensities to simulate spectral baseline error. The noise value was obtained by taking half the intensity of the weakest input peak. The cutoff level for intensity precision was set to 0.001. Methyl free rotation was simulated using a 3-site jump model

A sixth root residual $(R_x^{1/6})$ was calculated for each structural ensemble to measure how accurately structures fit experimental NOESY data. The sixth root residual is calculated using the following relationship [294]:

$$R_x^{1/6} = \sum \left| I_o^{1/6} - I_c^{1/6} \right| / \sum I_o^{1/6}$$
(2-2)

The experimentally observed NOE intensity (I_0) is compared to a theoretically calculated NOE intensity (I_c) generated from refined input structures. The sixth root residual reflects the accuracy between calculated and observed NOE intensities.

Crystallography

Primer sequences and conditions used for crystallographic structure determination are similar to those previously described [242-244]. Two binary complexes were prepared. The first was comprised of Dpo4 and 5'-TCA TTX AAT CCT TCC CCC-3' (X = FAPY-AFB₁) annealed with a 13mer complement 5'-GGG GGA AGG ATTC-3'. The second was comprised of Dpo4 and 5'-TCA TTX AAT CCT TCC CCC-3' (X = FAPY-AFB₁) annealed with a 12mer complement 5'-GGG GGA AGG ATT-3'. Polymerase and DNA complexes were combined in a 1:1.2 molar ratio and incubated in 20mM Tris-HCl buffer, pH 7.5 for 20 minutes at room temperature. Drops contained a final protein concentration of 5 mg/mL. Well solutions contained 9% polyethylene glycol 3350, 20 mM Tris-HCl, pH 7.5, and 100 mM Ca(CH₃CO₂)₂.

CHAPTER III

METHYL FORMAMIDOPYRIMIDINE LESION EQUILIBRIA

Introduction

This chapter addresses the complex equilibria of Me-dGuo-FAPY in DNA. The base-catalyzed imidazole ring opening of Me-dGuo-FAPY produces a complex mixture of Me-dGuo-FAPY isomers. This mixture may include rotamers of the formamide (CHO E and Z geometrical isomers), rotamers of the C5-N⁵ bond (R_a and S_a atropisomers), and/or C1' epimers (α and β anomers) (Figure 1-3) [25, 26, 31, 67, 295-297]. The equilibrium state of this complex mixture is poorly understood. The potential of different conformational and configurational isomers of specific DNA lesions to produce differing biological effects is a concept of increasing importance [31, 224, 227]. The elucidation of rotamer equilibria in oligonucleotides by NMR requires clear, unambiguous resonance assignments. However, HPLC analysis is tractable to the study of chromatographically separable acid-catalyzed anomerization products [25, 31]. This was used to provide insight into the roles of anomers in Me-dGuo-FAPY equilibria. Because α anomers have been demonstrated to produce a block to replication, it seems possible this isomer may contribute significantly to the cytotoxicity of Me-dGuo-FAPY [28, 38, 39]. The idea of anomers contributing to the toxicity of Me-dGuo-FAPY has been recognized, but subsequently dismissed due to a lack of evidence supporting the presence of α -MedGuo-FAPY in oligonucleotides [34].

Results

Synthesis of all Me-dGuo-FAPY-modified samples was conducted by Dr. Plamen Christov (Department of Chemistry, Vanderbilt University). Me-dGuo-FAPY was site specifically placed in 5'-CTATXATTCA-3'•3'-GATACTAAGT-5' and 5'-AXC-3' where X represents the site of modification. Samples were purified by HPLC. Subsequent HPLC and NMR analysis of both the 10mer and trimer indicated multiple isomeric forms of Me-dGuo-FAPY were present.

High Performance Liquid Chromatography (HPLC)

Reverse-phase HPLC analyses of the modified 10mer indicated at least five Me-dGuo-FAPY isomers were present (Figure 3-1). The possibility of additional isomers cannot be excluded due to the broadness of the HPLC peaks. The 10mer duplex was purified by HPLC, under basic conditions (mobile phase = HCO_2NH_4 @ pH 8.0) into six fractions labeled A-F. Peak A is the complementary strand and is not relevant to these discussions; thus B through F are single strand oligonucleotides containing the Me-dGuo-

Figure 3-1: HPLC analysis of Me-dGuo-FAPY modified 5'-CTATXATTCA-3'•3'-GATACTAAGT-5' was indicative of multiple isomeric species in dsDNA and ssDNA. Aliquots B through F were held at pH 8.0 and reanalyzed.

FAPY lesion. Peak B re-equilibrated independent of pH to a mixture of peaks B, C, & D.

Peak C re-equilibrated independent of pH to predominantly B and C. Peak D reequilibrated to a mixture of peaks B, C and D; E was observed, but had not reached equilibrium. Peak E equilibrated with F but not with peaks B, C, D, or E. Peak F re-equilibrated with peak E. Upon lowering the pH to 6.0, samples B-F readily equilibrated within 2 hrs. Presence of the complementary strand did not measurably affect equilibria between isomers.

<u>Nuclear Magnetic Resonance</u> <u>Spectroscopy (NMR) of Modified 10mer</u> <u>Duplex</u>

The spectroscopic partial assignment of non-exchangeable NMR resonances was possible by comparison of the Me-dGuo-FAPY modified 10mer duplex to an unmodified duplex (Figure 3-

Figure 3-2: Sequential assignments of NOESY H8/H6 to H1' protons for the unmodified 5'-C¹T²A³T⁴G⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' duplex. Intra residue aromatic to H1' cross peaks are labeled. Assignments for the primary strand are in panel A while the complementary strand assignments are in panel B

2). It was determined that there was a break in intrastrand NOE connectivity in both the modified and complementary strands of the modified 10mer (Figures 3-3). In the modified strand, the break occurred between cross peaks $T^4 H6 \rightarrow X^5 H1'$ and $A^6 H1' \rightarrow A^6$ H8. In the complementary strand, connectivity was broken between the $T^{15} H1' \rightarrow T^{15} H6$

cross peak and the A^{17} H1' $\rightarrow A^{17}$ H8 cross peak. Multiple resonances were observed for both T^4 H6 \rightarrow X⁵ H1' and A⁶ H1' \rightarrow A⁶ H8 cross peaks of the modified strand. In the complementary strand, multiple resonances were observed between T¹⁵ H6 \rightarrow T¹⁵ H1' and A¹³ H1' \rightarrow A¹³ H8 (Figure 3-3 D). Chemical exchange cross peaks associated with rotameric transitions have been observed in nucleoside AFB₁-FAPY [31]. The existence of chemical exchange cross peaks could not be conclusively identified in the congested 10mer NOESY spectra without assignment of X⁶ CHO and X⁶ CH₃ resonances.

<u>Nuclear Magnetic Resonance</u> <u>Spectroscopy (NMR) of Modified Trimer</u>

During the synthesis of Me-dGuo-FAPY phosphoramidites, there was concern that Me-dGuo-FAPY pyranoside wa combination of ¹H-³¹P COSY, ¹H-¹H TOCS

Figure 3-3: Sequential assignments of NOESY H8/H6 to H1' protons for the Me-dGuo-FAPY modified $5'-C^{1}T^{2}A^{3}T^{4}X^{5}A^{6}T^{7}T^{8}C^{9}A^{10}-3'\cdot5'-T^{11}G^{12}A^{13}A^{14}T^{15}C^{16}A^{17}T^{18}A^{19}G^{20}-5'$ duplex. Intra residue aromatic to H1' cross peaks are labeled. Assignments for the primary strand are in panel C while the complementary strand assignments are in panel D. Connectivity was broken in both strands. Peak splitting was apparent in residues A^{13} through T^{15} (red line, panel D).

concern that Me-dGuo-FAPY pyranoside was a reaction byproduct (Scheme 1-3). A combination of ${}^{1}\text{H}{-}^{31}\text{P}$ COSY, ${}^{1}\text{H}{-}^{1}\text{H}$ TOCSY, and ${}^{1}\text{H}{-}^{13}\text{C}$ multiplicity edited HSQC experiments were used to address this concern. To reduce the complexity of the NMR spectra, the 5'-A ${}^{1}\text{X}{}^{2}\text{C}{}^{3}$ -3' trimer sample was analyzed. The disorder of the trimer

prohibited the evolution of inter-residue NOEs. The Me-dGuo-FAPY CHO and CH₃ resonances were tentatively assigned based on ¹H intensity, chemical shift, and process of elimination (Figure 3-4). In both Me-dGuo-FAPY pyranose and furanose samples a methyl singlet was identified at 1.71 ppm. Both samples had CHO proton resonances at 8.30 and 7.46 ppm.

Sugar proton resonance assignments were based on connectivity and chemical shift obtained from TOCSY spectra. Multiple conformations were observed as evidenced by multiple spin systems of the same residue. For example, 4 sets of peaks associated with X^2 of the furanose trimer were recorded (Appendix A). Deoxyribose ¹³C resonance

assignments were correlated from proton assignments by HSQC. Digital resolution of ¹³C resonances was calculated to be approximately 0.5 ppm.

Inter-residue scalar couplings, ³J_P. _{H3'} and ³J_{P-H5''}, provided inter-residue connectivity for some, but not all spin systems. In the pyranose sample, H3' (i) to H4' (i+1) connectivity was observed; X² C4' was confirmed to be a methine carbon from multiplicity edited HSQC data (Figure 3-5). The pyranose X² C4' chemical shift was comparable to literature values of other carbohydrate pyranose C4'

resonances [298, 299]. A furanose trimer sample exhibited canonical H3' (i) to H5" (i+1) ribose connectivity (Figure 3-6). HSQC data confirmed the furanose X^2 C5' to be a methylene carbon.

Discussion

NMR Analysis of Me-dGuo-FAPY Trimer

The study of Me-dGuo-FAPY in oligonucleotides necessitated the site specific incorporation of a Me-dGuo-FAPY phosphoramidite. The Me-dGuo-FAPY in DNA

existed as a complex mixture of isomers in equilibrium, with the exception of one isomer that could be separated from the mix and remained chromatographically pure [56]. It was proposed that the nonequilibrating species was a Me-dGuo-FAPY pyranoside. During deprotection of the 5'-hydroxy group of Me-dGuo-FAPY phosphoramidite, the deoxyribose can undergo ring expansion to a pyranose under acidic conditions (Scheme 1-3). Shortening the deprotection time reduced the formation of the chromatographically pure isomer. This result supported the

Figure 3-5: NMR analysis of the pyranose MedGuo-FAPY in 5'- $A^1X^2C^3$ -3'. Tile plots of ${}^{31}P$ - ${}^{1}H COSY (A)$, ${}^{1}H$ - ${}^{1}H TOCSY (B)$, and ${}^{1}H$ - ${}^{13}C$ HSQC (C & D) data indicate that connectivity can be traced from H3' of adenosine to H4' of the pyranose of Me-dGuo-FAPY. The multiplicity edited HSQC confirms the pyranose C4' is a methine carbon (negative phase peaks = red, positive peaks = black).

pyranoside hypothesis [56].

The existence of the Me-dGuo-FAPY pyranoside was confirmed by NMR analysis. A combination of ${}^{1}\text{H}{}^{31}\text{P}$ COSY, ${}^{1}\text{H}{}^{1}\text{H}$ TOCSY, and ${}^{1}\text{H}{}^{13}\text{C}$ multiplicityedited HSQC experiments were used to address the question of pyranose-furanose identity. To simplify NMR analysis, the 5'-AXC-3' trimer was synthesized and purified into pyranose and furanose mixtures. Identification of the A¹ H3' resonance allowed for assignment of the X² H5" or X² H4' resonance

(furanose/pyranose respectively) through

Figure 3-6: NMR analysis of the furanose MedGuo-FAPY in 5'- $A^1X^2C^3$ -3'. Tile plots of ³¹P-¹H COSY (A), ¹H-¹H TOCSY (B), and ¹H-¹³C HSQC (C & D) data indicate that connectivity can be traced from H3' of adenosine to H5'' of the furanose of Me-dGuo-FAPY. The multiplicity edited HSQC confirms the furanose C5" is a methylene carbon (negative phase peaks = red, positive peaks = black).

 ${}^{1}\text{H}{}^{31}\text{P}$ scalar coupling. In the pyranose sample, H3' (i) to H4' (i+1) connectivity was observed; X² C4' was confirmed to be a methine carbon from multiplicity edited HSQC data (Figure 3-5). The furanose trimer sample exhibited typical H3'(i) to H5" (i+1) deoxyribose connectivity (Figure 3-6). HSQC data confirmed the furanose X²:C5' to be a methylene carbon.

Chemical shift analysis further supported the pyranose–furanose assignments. Surprisingly, the chemical shifts of the C5' of pyranose and furanose samples were not significantly different (66.1 vs. 65.2 ppm, respectively) (Appendix A; Table A-1 & A-2). However, there was a pronounced difference between the pyranose and furanose C4' chemical shifts (68.2 vs. 82.0 ppm). Shielding of the C4' pyranose resonance is consistent with published carbohydrate chemical shifts [298, 299].

Assignments were made for some of the Me-dGuo-FAPY CHO and CH₃ resonances in the trimer. NMR analysis of AFB₁-FAPY nucleosides indicate that *E* and *Z* formyl rotamer resonances were observed for each C5-N⁷ (R_a / S_a) atropisomer [31]. Therefore, based on the AFB₁-FAPY nucleoside results, it was anticipated that there should be four identifiable Me-dGuo-FAPY CHO resonances; two were assigned (8.30 & 7.46 ppm). In addition, it was anticipated that there should be two Me-dGuo-FAPY CH₃ resonances; one was assigned (1.71 ppm). This result does not exclude the existence of other potential rotamers. It is possible that remaining resonances were overlapped in the spectrum or were below NMR detectable limits.

NMR Analysis of Me-dGuo-FAPY 10mer

In addition to the 5'-AXC-3' trimer, Me-dGuo-FAPY was placed in the 5'-CTATXATTCA-3'•3'-GATACTAAGT-5' duplex for NMR studies. Partial assignment of non-exchangeable NMR resonances was possible by comparison of the modified duplex to an unmodified sample (Figures 3-2 & 3-3). There was a break in intra-strand connectivity in both the modified and complementary strands of the modified duplex (Figures 3-3). In the modified strand, the break occurred between $T^4 H6 \rightarrow X^5 H1'$ and A^6 $H1' \rightarrow A^6 H8$ cross peaks. In the complementary strand, connectivity was broken between the $T^{15} H1' \rightarrow T^{15} H6$ cross peak and $A^{17} H1' \rightarrow A^{17} H8$ cross peak. Loss of connectivity in the modified strand was attributed to conformational flexibility. Although disrupted connectivity in the complementary strand was anticipated, the degree of disruption was surprising. Biological effects of Me-dGuo-FAPY have been compared to those of thymine glycol [34, 300]. Thymine glycol does not induce a break in connectivity in its complementary strand (Chapter V) [233]. Perturbation at C¹⁶, due to increased conformational flexibility, may result from disrupted base pairing. Nevertheless, it is striking that the extent of disturbance in the complementary strand results in a separate NOE connectivity from T¹⁵ H6 \rightarrow T¹⁵ H1' and A¹³ H1' \rightarrow A¹³ H8 (Figure 3-3, panel D). It is not immediately obvious how the Me-dGuo-FAPY lesion can induce dramatic disruption in the complementary strand. It is possible that the disruption is exaggerated by the instability of this sequence. Thermal melting values of Me-dGuo-FAPY modified 5'-CTATXATTCA-3'•5'-TGAATCATAG-5' were below 5 °C [56]; NMR experiments were conducted at 7 °C.

Indications of multiple isomeric species in the sample were observed in the form of multiple resonances near the site of modification. Multiple resonances were observed at both $T^4 H6 \rightarrow X^5 H1'$ and $A^6 H1' \rightarrow A^6 H8$ cross peaks of the modified strand. Chemical exchange cross peaks associated with rotameric transitions have been reported in nucleoside FAPYs [31]. The existence of such interactions could not be confirmed in duplex samples without unambiguous assignment of X^6 CHO and X^6 CH₃ proton resonances.

HPLC Analysis of Me-dGuo-FAPY 10mer

Although NMR analysis of the 10mer duplex was disappointing with respect to isomer elucidation, HPLC provided observations concerning α and β anomer populations. HPLC analysis was indicative of at least five furanose isomers in this

sequence (Figure 3-1). Although several of the collected peaks equilibrated after HPLC separation independent of pH, equilibration of peaks E and D was slow at basic pH. The interconversion of anomers is an acid catalyzed event [25, 29, 31, 296, 301]. Rotamer interconversion is independent of pH. Therefore, it was concluded that peaks E and D are anomers. Peak B was a rotamer of D; peak F was a rotamer of E. Further isomeric characterization was not possible.

There are reported differences in Me-dGuo-FAPY rotamer populations in free base vs. poly(dGC) [42]. Dr. Plamen Christov's (Department of Chemistry, Vanderbilt University) initial Me-dGuo-FAPY studies were in the 5'-CTTXTT-3' hexamer [56]. HPLC chromatograms of Me-dGuo-FAPY in 5'-CTATXATTCA-3' vs. 5'- CTTXTT -3' are significantly different with respect to the relative areas of the major components. In the 5'-CTTXTT-3' context, the relative abundance of the four principal isomers were: peak 1, 20%; peak 2, 45%; peak 3, 5%; and peak 4, 30% [56]. Precise HPLC peak integration of 5'-CTATXATTCA-3' was precluded by peak broadening. A cursory comparison of the two sequence chromatograms is indicative of incomparable elution profiles. Oligonucleotide length could cause the HPLC elution profile to vary between samples. However, relative isomer abundance is expected to remain similar. This was not observed, suggesting a sequence dependent effect on relative isomer population.

In AFB₁-FAPY modified oligonucleotides the R_a atropisomers and Z geometrical isomers are stabilized by a CHO hydrogen bond with the N⁶ amino group of the 3' adenine (Chapter VI) [115]. AFB₁-FAPY and Me-dGuo-FAPY were studied in the same 10mer sequence; therefore, Me-dGuo-FAPY may exhibit a similar hydrogen bonding motif. More studies are necessary to test this hypothesis. Nevertheless, this could
explain sequence-dependent equilibria positions; a hydrogen bond with the 3' amino group cannot form in 5'- CTTXTT -3'.

Biological Significance

The equilibrium position in site-specific mutagenesis studies is unknown; thus, the contributions of specific isomers to the mutational spectrum could not be determined. Me-dGuo-FAPY was concluded to be highly miscoding at the lesion site, but prohibited read-through in primer extension assays with various polymerases [56]. The α anomers are an important component of the Me-dGuo-FAPY mixtures and are blocks to replication [28, 38, 39]. This work demonstrates that both α and β anomers are present in 5'-CTATXATTCA-3'. It seems possible that the reported cytotoxicity of these lesions is not exclusively a product of the FAPY component. It is possible that the α anomer of the FAPY is responsible for cytotoxicity ascribed to FAPY. Ide and coworkers dismissed this possibility [34]. There were two reasons for their conclusion. First, they did not think that anomers were possible with Me-dGuo-FAPY in their studies based on their understanding of anomer formation. The present work contradicts their conclusion; anomeric isomers are possible, at least in 5'-CTATXATTCA-3'. Unfortunately, Ide et al. did not study Me-dGuo-FAPY in the 5'-TXA-3' context. Secondly, Ide et al. reports that α dA blocks replication by Pol I Klenow fragment at the insertion step [38, 39]. Klenow fragment may not necessarily reflect replication properties of other polymerases. MedGuo-FAPY blocked replication in the extension step. Ide argues this difference in bypass does not support the idea of anomers [34]. Although logical, perhaps a direct

56

comparison of α dA and α -Me-dGuo-FAPY mutagenicity is not appropriate given the obvious differences in lesion structure.

Structural studies of oligonucleotides containing the Me-dGuo-FAPY lesion should be feasible by NMR using a thermally stable DNA sequence. Although it is unknown if the formamide is stabilized by a hydrogen bond to 3' adenine, it would be reasonable to initially study Me-dGuo-FAPY in this context to maintain as simple a system as possible. In addition, purification of the modified oligonucleotides and subsequent NMR analysis should be conducted at basic pH to slow anomeric conversion. All things considered, this may provide a stable platform for structural studies of MedGuo-FAPY and possibly for unsubstituted FAPY lesions as well. Modifications to the sequence would then reveal context specific properties directing preferred isomer conformations.

CHAPTER IV

AFB₁-FAPY LESION EQUILIBRIA

Introduction

Site-specific mutagenesis studies of AFB₁-FAPY and AFB₁-N7-dGuo were conducted in E. coli using single stranded viral genomes [162, 169]. Structural studies of both adducts have been conducted in double stranded DNA [98, 115, 170-173]. AFB₁-N7-dGuo caused primarily $G \rightarrow T$ transversions at a rate of 2-6% [162]. AFB₁-FAPY was reported to exist as a pair of chromatographically separable isomers designated "major" and "minor" based on their equilibrium populations [169]. The "major" isomer was a block to replication while the "minor" isomer caused $G \rightarrow T$ transversions at a rate of 36%. Qualitative identification of these isomers has lead to varying ideas concerning their identities. It was postulated that structural studies had been conducted on the "major" FAPY isomer [73, 116]. This chapter addresses the characterization of AFB₁-FAPY "major" and "minor" isomers [73] as α and β anomers respectively. Equilibrium of α and β AFB₁-FAPY isomers is dependent on DNA environments, i.e. the α -AFB₁-FAPY isomer is preferred 2:1 in ssDNA while β -AFB₁-FAPY is the only anomer normally seen in dsDNA [31]. The R_a atropisomer is exclusively observed in both ssDNA and dsDNA. Equilibrium of geometrical isomers of the formamide is sequence dependent, the *E* isomer being preferred in a 5'-TXA-3' sequence. The *Z* isomer is preferred in AFB₁-FAPY nucleosides 3:1 over E [31]. It follows that structural studies of

58

duplex DNAs [98, 115, 170-173] were conducted on β -AFB₁-FAPY while mutagenesis experiments were conducted on a mixture of α and β AFB₁-FAPY anomers [162, 169]. The α anomer was a block to replication while the β was highly mutagenic in *E. coli*.

Results

AFB₁-FAPY Oligonucleotide Analysis

AFB₁ epoxide was adducted to unmodified DNA as described in Chapter II. Separation of AFB₁-N7-dGuo modified DNA from unreacted and scaffold oligonucleotides was achieved by HPLC with UV monitoring at 260 and 360 nm; AFB₁-N7-dGuo modified DNA registers at both wavelengths. Confirmation of the identity of the oligonucleotides was obtained by MALDI-TOF mass spectrometry. Absolute mass values depend on the specific AFB₁ modified sequence (Table 2-1). AFB₁-N7dGuo modified DNA has an additional mass of 312 amu; AFB₁-FAPY modified oligonucleotides have additional mass of

Figure 4-1: Base catalyzed conversion of AFB₁-N7-dGuo modified 5'-CTATXATTCA-3' to β -AFB₁-FAPY and α -AFB₁-FAPY was monitored by HPLC (λ 360 nm, 25 °C).

329 atomic mass units.

Base catalysis of imidazole ring opening and isomer equilibration of AFB₁-N7dGuo oligonucleotides were monitored by HPLC (Figure 4-1). Initially, AFB₁-N7-dGuo modified 5'-CTATXATTCA-3' eluted at 22.4 min. Formation of the first AFB₁-FAPY isomer was observed at 21.4 min. As the concentration of AFB₁-N7-dGuo was depleted (4 hours), the conversion of the first AFB₁-FAPY isomer to the second AFB₁-FAPY isomer was evidenced by a peak at 22.6 min. Eventually, the AFB₁-FAPY isomers equilibrated to a 2:1 mixture (96 h). The second AFB₁-FAPY isomer had a shoulder peak at 22.4 min. Isolation of the shoulder peak at 22.4 min or the parent peak at 22.6 min indicated that the species equilibrated independent of pH in less than 20 min.

Characterization of AFB₁-FAPY Isomers

Insight into isomer equilibrium was obtained by HPLC. The fractions eluting at

21.4 and 22.6 min for AFB₁-FAPY modified 5'-CTATXATTCA-3' were brought to 90% purity or better by HPLC. Samples (20 μ M) in sodium phosphate buffer (0.2 M) at pH 6.0, 7.0, and 8.0 were prepared in triplicate and allowed to equilibrate at room temperature. The equilibration was monitored by HPLC; 0.5 nmol injections gave a signal to noise ratio of 20:1 or better. A 4:1 equilibrium ratio

Figure 4-2: Anomeric interconversion of AFB₁-FAPY modified 5'-CTATXATTCA-3'. Purified β -AFB₁-FAPY (broken lines) and α -AFB₁-FAPY (solid lines) were placed in buffers of varying pH (pH 6 = •, pH 7 = \blacktriangle , pH 9 = \blacksquare) and equilibration was monitored as a function of time. (Reprinted with permission from J. Am. Chem. Soc. Vol. 128, pgs 15188-99, 2006, Copyright 2006 American Chemical Society)

was reached in less than 24 h for samples at pH 6.0 and 7.0 (Figure 4-2). Alkaline samples did not reach equilibrium for over 16 days. The observed pH dependent

consistent with an acid catalyzed anomer equilibration mechanism (Scheme 1-1).

equilibration of AFB₁-FAPY isomers is

Evidence that the major FAPY species in single-stranded DNA was the α anomer was obtained by 2D NMR with the key results being obtained by ¹H-NOESY experiments (Figure 4-3). The major AFB₁-FAPY isomer in ssDNA was prepared in 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' and kept at pH 9.0, 7 °C during NMR data collection. Assignment of X⁵ H2' and H2" resonances was determined by measurement of cross peak intensity with X⁵ H3' (2.93 and 2.79 ppm respectively). Relative intensities were determined by integration of 1D projections taken from the 2D matrix at

Figure 4-3: Analysis of ¹H-¹H NOESY intensities indicate the deoxyribose of the AFB₁-FAPY was in the α orientation at C1' for 5'-CTATXATTCA-3'•5'-TGAATCATAG-3'. Results indicate that H1' was spatially closer to H2' than H2". Assignments of H2' and H2" was determined by relative proximity to H3'. the H3' resonance (5.03 ppm). It is of interest to note that in canonical DNA the H2" resonance is typically downfield of H2'. Subsequent X^5 H1' orientation was determined by cross peak analysis with X^5 H2' and H2". X^5 H1' had a more intense cross peak with H2' placing H1' in the α anomeric configuration. In a β anomer, H1' has a more intense cross peak with H2" (For example, see Figure 5-10).

Anomer Equilibrium

For single stranded

oligonucleotides, the α / β equilibrium ratio was both sequence and concentration dependent. This ratio was monitored by serial dilution of the modified oligonucleotides 5'-CTATXATTCA-3' and 5'-CCTCTTCXAACTC-3'. In 5'-CTATXATTCA-3' the β -AFB₁-FAPY was favored at lower concentrations (Figure 4-4). In 5'-CCTCTTCXAACTC-

Figure 4-4: Concentration effects on equilibrium of β -AFB₁-FAPY and α -AFB₁-FAPY were measured by HPLC. The oligonucleotides 5'-CTATXATTCA-3' (**•**) and 5'-CCTCTTCXAACTC-3' (**•**) were compared. The β anomer was favored at higher concentrations in 5'-CCTCTTCXAACTC-3'. The β anomer was favored at lower concentrations in 5'-CTATXATTCA-3'.

3' the α -AFB₁-FAPY configuration was favored at low concentrations. At concentrations greater than 0.5 mM, α was favored 2:1 over β in ssDNA of both sequences. Mixtures of AFB₁-FAPY modified 5'-CTATXATTCA-3' and 5'-CTATXTTCA-3' were analyzed at 6 hrs into FAPY equilibration. The 5'-TXA-3' context produced HPLC traces consistent with previous data (Figures 4-1 and 4-5). The 5'-TXT-3' trace was indicative of more than 3 isomeric species (Figure 4-5). Analysis of UV traces of the 5'-TXT-3' peaks at t_R 19.2 and 19.8 min offered limited insight to the identity of these isomers.

The α / β equilibrium ratio is dependant on single strand and duplex environments. Approximately 0.5 mM AFB₁-FAPY modified 5'-CCTCTTCXAACTC-3' equilibrated to a 4:1 mixture of α and β anomers representing the single strand equilibrium. (Figure 4-6) An excess of complementary strand (t_R 18.5 min) was added to the mixture. This shifted the equilibrium to >95% β -AFB₁-FAPY in less than 2 h.

The chemical stability of AFB₁-FAPY is greater than that of AFB₁-N7dGuo in that it does not depurinate as easily. However, AFB₁-FAPY does depurinate and sequence has an effect on the rate. The stability of AFB₁-FAPY in the sequences 5'-CTATXATTCA-3' and 5'-CTATXTTTCA-3' was monitored by HPLC as a function of time (Figure 4-7). The sum of the integrals of α -AFB₁-FAPY and β -AFB₁-FAPY were compared to that of the depurinated oligonucleotides (18.2 and 18.5 min; $\lambda = 260$ nm). The data were fit by linear

least squares analysis in Excel 2003 (Microsoft). During the 3 hr time course of the experiment, the 5'-TXT-3' sequence depurinated at a rate nearly three fold faster than 5'-T<u>X</u>A-3'.

Figure 4-5: HPLC elution profiles of AFB₁-FAPY modified oligonucleotides (λ 360 nm) indicated a sequence dependent effect on equilibrium. Analysis of 5'-CTATXATTCA-3' (—) was indicative of three chromatographically identifiable isomers. Analysis of 5'-CTATXTTTCA-3' (----) was indicative of seven or more species. (0.8 mM, 25 °C)

Discussion

Assignment of α and β AFB₁-FAPY anomers was achieved by analysis of HPLC and NMR results. Initial work to assign AFB₁-FAPY isomers was conducted at the nucleoside level [31]. It was demonstrated that AFB₁-FAPY exists as a mixture of not just one set of isomers, but three sets, i.e. geometrical, atropisomers, and anomeric (Figure 1-3). This made the identification of the preferred AFB₁-FAPY isomers in DNA more important.

Anomeric Assignment

Evaluation of AFB₁-FAPY equilibria in oligonucleotides by HPLC unraveled the isomer conundrum. An essential aspect of AFB₁-FAPY equilibration is a pH dependent interconversion mechanism (Figure 4-2). Purified samples of the principal HPLC fraction were placed in buffers of varying pH. Samples at neutral and acidic conditions reached equilibrium in < 3 h. Samples at a basic pH did not reach equilibrium for days. This provided direct evidence of an acid-catalyzed isomerization; anomerization is an acid catalyzed process (Scheme 1-1). Rotamer interconversion is not known to be pH dependent.

Supporting evidence for the assignment of AFB_1 -FAPY anomers was obtained by ¹H-NMR. By manipulation of the pH, it was possible to retard conversion long enough to study the individual anomers by NMR. Expeditious sample preparation and data collection was a crucial element for acquisition of useful data. The α -AFB₁-FAPY adduct was studied in 5'-CTAT<u>X</u>ATTCA-3'•5'-TGAATCATAG-3' at pH 9; this provided direct comparison to the β -AFB₁-FAPY structural studies carried out earlier which

64

showed that at pH 7 the FAPY adduct was the β anomer in dsDNA [115]. Assignments of X⁶ H2' and X⁶ H2" were determined by relative NOE cross peak intensities with X^6 H3' (Figure 4-3). The α vs. β orientation of X^6 H1' was then determined by measuring relative intensities to X⁶ H2' and X⁶ H2". It was of interest to note the chemical shift flip of X⁶ H2' and X⁶ H2". Typically, the H2" resonance is downfield of H2'. This chemical shift inversion is consistent with studies of α -deoxyadenosine in duplex DNA [28]. Deoxyribose rings pucker and the distances between deoxyribose protons are expected to change as a consequence of repuckering. This is expected to have a minimal effect on the accuracy of the assignment of anomeric protons; with the exception of the H1' \rightarrow H4' distance, other deoxyribose proton distances vary 0.24 angstrom or less regardless of pucker [277, 278]

Figure 4-6: The α and β anomer equilibrium of AFB₁-FAPY modified 5'-CCTCTTCXAACTC-3' was dependent on single strand vs. duplex environments. HPLC analysis (λ 260 nm) indicated that an equilibrated mixture of single strand AFB₁-FAPY favors the α form (21.2 min) more than β (20.5 min) approximately 4:1 (panel A). Within 30 min of introducing an excess of complementary strand (18.5 min) to the mixture, the equilibrium began to favor the β anomer (20.5 min) (panel B). After 2 h the equilibrium favored the β anomer almost exclusively (panel C). (Reprinted with permission from J. Am. Chem. Soc. Vol. 128, pgs 15188-99, 2006, Copyright 2006 American Chemical Society)

Sequence Effects on AFB₁-FAPY Equilibria

It has been demonstrated that DNA sequence can affect AFB₁ behavior [118-128]. These data support the idea that the AFB₁-FAPY adduct is influenced by sequence and double strand vs. single strand environments. An AFB₁-FAPY modified, single strand oligonucleotide, 5'-CCTCTTC<u>X</u>AACTC-3', was allowed to reach equilibrium (approximately 2:1 α : β). An excess of complementary strand was added to the mix forming a duplex. Over the course of a few hours the equilibrium completely shifted

toward the β anomer (Figure 4-6). This

experiment was first conducted by Zengwu Deng (Department of Chemistry, Vanderbilt University) in 5'-

CTATXATTCA-3'•5'-TGAATCATAG-3'

[110]. By repeating this experiment in 5'-CCTCTTCXAACTC-3', a direct comparison to mutagenesis results was possible [169]. In both sequences, α-

Figure 4-7: Depurination of AFB₁-FAPY modified oligonucleotides was monitored by HPLC as a function of time. The 10mer 5'-CTATXTTTCA-3' (\blacksquare) released AFB₁-FAPY at a rate 3 fold greater than that of 5'-CTATXATTCA-3' (\blacksquare).

AFB₁-FAPY ("major") was preferred in ssDNA and β -AFB₁-FAPY ("minor") was preferred in dsDNA. Mutagenesis experiments were conducted in single stranded vectors while structural studies were in a double stranded environment [115, 169]. It is concluded that the highly mutagenic "minor" species used by Smela et al. [169] in mutagenesis experiments corresponds to the published solution structure in duplex DNA of Mao et al. (β -AFB₁-FAPY) [115]. The blocking "major" species is thus assigned as the α anomer. Mutagenicity of β -AFB₁-FAPY was inferred from a mixture of anomers [169]. Although β -AFB₁-FAPY produced 32% G \rightarrow T transversions in *E. coli* expressing the error prone polymerases MucAB and UmuDC, it should be considered that this rate may be underestimated. In light of the present AFB₁-FAPY equilibrium data, the progeny from the β -AFB₁-FAPY modified vector may be underestimated; it is likely that mutagenesis experiments designed to be conducted on mostly β -AFB₁-FAPY in fact had a high percentage of α -AFB₁-FAPY.

Effects associated with increasing concentration are related to self-association of the modified oligonucleotides (Figure 4-4). In the 5'-CCTCTTCXAACTC-3' sequence the core six bases are self-complementary (-TTCXAA-). Thus, shift of the α / β ratio toward β -AFB₁-FAPY in this sequence at increasing concentrations can be explained by formation of a self-complementary Watson-Crick duplex around the adduct site. The AFB₁ moiety is expected to compete for the same intercalation site, therefore, it is unclear how both AFB₁ adducts are accommodated. The preference for α -AFB₁-FAPY in the 5'-CTATXATTCA-3' sequence at increasing concentration is not easily explained. The driving force behind this concentration dependent equilibration event is not based on Watson-Crick base pair formation. The self-association of 5'-CTATXATTCA-3' may be more complicated than a simple bimolecular process.

Placement of AFB₁-FAPY in a 5'-T<u>X</u>T-3' sequence allowed for the equilibration of rotameric and anomeric isomers (Figure 4-5). In the published structure of β -AFB₁-FAPY, the formyl group was stabilized by an inter-residue hydrogen bond with the 3' adenosine N⁶ amine (X⁵ CHO \rightarrow A⁶ H62) [115]. This effectively stabilized the *E* formyl

67

geometrical isomer in dsDNA; the Z geometrical isomer was favored in nucleoside by a factor of 3:1 [31]. The Z isomer was not reported in the duplex sample; the exclusive observation of E in DNA can be explained by hydrogen bond stabilization. This X^5 CHO \rightarrow A⁶ H62 hydrogen bond is also present in varying degrees in α -AFB₁-FAPY structures (Chapter IV). In the 5'-TXT-3' sequence, a corresponding hydrogen bond with 3'-thymine is not possible. The observation of multiple rotameric forms in 5'-TXT-3' is attributed to loss of the stability provided by this hydrogen bond. The rate of depurination is noticeably increased in a 5'-TXT-3' sequence (Figure 4-7), therefore, a 3'dA must have an effect on chemical stability. The reduced conformational stability of 5'-TXT-3' may result in a loss of resonance allowing for increased depurination. It is unknown if a 3'-cytosine could form a X^n :CHO $\rightarrow C^{n+1}$:H42 hydrogen bond; it seems plausible that a 3'-dG could stabilize the Z formyl geometrical isomer by means of a $X^{n}:CHO \rightarrow G^{n+1}:O6$ hydrogen bond. If this hydrogen bond is responsible for the reduced depurination of 5'-TXA-3', 5'-TXT-3' should be the least stable of possible 3' neighbors whereas a 3' guanine and cytosine are predicted to be more stable than 5'-TXT-3' but less stable than 5'-TXA-3'. Position 2 of codon 249 (p53) is flanked by a 3'-dG while position 3 has a 3'-dC. Position 3 is the hallmark mutational hotspot associated with AFB₁ exposure. It is uncertain if this is a result of site reactivity, poor site-specific repair, or perhaps a tertiary structural effect. Nevertheless, it seems plausible that inter-residue hydrogen bonding is a contributor to sequence related effects of all FAPY lesions.

Biochemical Implications

The identities of the AFB₁-FAPY isomers are of considerable interest to the structural biology community. Many DNA adducts exist as mixtures of isomers. In the case of AFB₁-FAPY, two isomers of the lesion produce uniquely different biological effects. The β -AFB₁-FAPY lesion produces G \rightarrow T transversions like AFB₁-N7-dGuo [73, 162, 169]. However, α -AFB₁-FAPY is a toxic lesion; this is consistent with the biological processing of other α anomers [28, 38, 39, 297].

In AFB₁-FAPY modified nucleosides, both geometrical and atropisomers were present at equilibrium [31]. In this work, it is demonstrated that 5'-CTATXATTCA-3' and 5'-CCTCTTCXAACTC-3' modified oligonucleotides exist as equilibrium mixtures involving α and β anomers. However, when the 3' deoxyadenosine is replaced with a deoxythymidine, more than four isomers are observed. It seems logical that these additional isomers are rotamers. An understanding of AFB₁-FAPY equilibria is necessary to interpret the divergent responses to the principal FAPY isomers in replication experiments. In earlier studies of AFB₁-FAPY and related lesions in oligonucleotides it has been suggested that the principal equilibrating species are atropisomers [116, 169, 302, 303] (Figure 1-3 C). In light of present results, it is concluded that the principal AFB₁-FAPY isomers are anomers (Figure 1-3 D). This is consistent with mutagenesis results where the α -AFB₁-FAPY lesion ("major") blocked replication [169]; α anomers are known to be cytotoxic [28, 38, 39]. It should also be noted that the historical terms "major" and "minor" have been applied to different isomers in different publications [115, 169]. This work allows for the retirement of the antiquated monikers "major" and "minor" in favor of more descriptive α and β terminology.

69

Effects of duplex vs. single-stranded environments on isomer equilibration are an essential element to AFB₁-FAPY equilibrium. Site-specific mutagenesis experiments were performed using single stranded viral genomes [162, 169]. The highly mutagenic "minor" form, now identified as β -AFB₁-FAPY, was initially believed to be less favored than α -AFB₁-FAPY. The β anomer may be considerably more dangerous than initially projected. It seems logical that at the replication fork, conversion of β -AFB₁-FAPY to α -AFB₁-FAPY may be relatively slow compared to polymerase read-through. At pH 7.0 conversion from β to α took hours (Figure 4-2). Therefore, in genomic DNA, β -AFB₁-FAPY would be favored and very little of α -AFB₁-FAPY would be predicted to form during replication. However, it is unknown whether β to α conversion is accelerated as a result of conformational effects when bound by a replication enzyme. Detailed crystallographic analysis of AFB₁-FAPY modified oligonucleotides in complex with replicative and bypass enzymes will be necessary to address this question.

CHAPTER V

THYMINE GLYCOL LESION EQUILIBRIA

Introduction

This chapter addresses the complex equilibria of thymine glycol (Tg) in DNA. Thymine glycol (*cis*-5*R*) exists primarily as a β anomer. However, *cis*-5*R*,6*S*-Tg was in equilibrium with *trans*-5*R*,6*R*-Tg in dsDNA. The *cis*-trans equilibrium was affected by the complementary base.

The most common thymine oxidation product in DNA, 5,6-dihydroxy-dihydro-2'thymidine, known as thymine glycol (Tg), is formed by exposure to ionizing radiation, as well as oxidizing agents (Scheme 1-5) [197, 199, 200]. The C5 and C6 atoms in Tg are chiral and thus Tg exists in DNA as two diastereomeric pairs of epimers, the 5*S cis, trans* pair (5*S*,6*R*; 5*S*,6*S*) and the 5*R cis, trans* pair (5*R*,6*S*; 5*R*,6*R*). The 5*R* pair is more abundant and more stable [37]. In both cases, the *cis* epimers predominate [37, 206].

Surprisingly, previous solution structural studies of the *5R*-Tg adducts did not report that they exist in DNA as equilibrating diastereomeric *6S/6R cis, trans* epimers. The *5R*-Tg adduct was previously examined in the 5'-ATgA-3' sequence, paired opposite dA [232, 233]. These NMR studies concluded that Tg induced a localized structural perturbation, and that Tg was extrahelical [233]. The structure of the *5R*-Tg adduct in the 5'-GTgC-3' sequence was reported to be disordered [232]. These solution structures differed from recent results utilizing a binary primer-template complex of the replicative

RB69 DNA polymerase, in which the template adducted with the 5*R*-Tg lesion was crystallized. The analysis of this binary complex, representing the situation immediately following incorporation of dATP opposite Tg, revealed the presence of the *cis*-5*R*,6*S*-Tg epimer, which was intrahelical and formed a Watson-Crick base pair with the dA at the primer 3'-terminus [234]. This was consistent with modeling studies in which Tg-5*R* was predicted to successfully pair with dA [231]. Moreover, for the *cis*-5*R*,6*S*-Tg epimer, the Tg methyl group was in the axial conformation, hindering stacking of the adjacent 5'-template guanine, providing a rationale for the observation that extension past this lesion is not observed [214].

The present work describes the 5*R*-Tg adduct, incorporated site-specifically into $5'-G^{1}T^{2}G^{3}C^{4}G^{5}Tg^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}-3'$ (codon 273 of p53 underlined) and annealed with $5'-A^{13}C^{14}A^{15}A^{16}A^{17}C^{18}A^{19}C^{20}G^{21}C^{22}A^{23}C^{24}-3'$ and $5'-A^{13}C^{14}A^{15}A^{16}A^{17}C^{18}G^{19}C^{20}G^{21}C^{22}A^{23}C^{24}-3'$ producing Tg⁶•A¹⁹ and Tg⁶•G¹⁹ base pairs. In contrast to previous NMR studies, [11,12] it was demonstrated that in solution in duplex DNA, the *cis-5R*,6*S* and *trans-5R*,6*R* epimers are both present at significant levels opposite adenine, with the *cis-5R*,6*S* epimer predominating. It was shown that for the *5R*-Tg adduct, the predominant deoxyribose C1' epimer in double-stranded DNA is the β anomer. This is significant because proposed *cis- trans* intermediates present the possibility of a transient glycosyl iminium bond formation and subsequent anomerization similar to that found in FAPY DNA lesions (Figure 1-1) [25-27, 31]. This data suggests that the significant levels of the *trans-5R*,6*R* epimer cannot be ignored with respect to the biological processing of these adducts, corroborating studies showing that the repair of

Tg adducts by DNA N-glycosylases/AP lyases is modulated by the *cis-trans* epimerization [224].

Results

Oligodeoxynucleotide Analysis

The dodecamer 5'-GTGCG<u>Tg</u>GTTTGT-3', Tg = 5R-Tg, was synthesized as reported [224]. Mass spectrometric analysis yielded the anticipated molecular ion peak with mass 3732 amu. Capillary gel electrophoretic analysis showed that the modified oligodeoxynucleotide eluted as a single peak. Enzymatic hydrolysis of the oligodeoxynucleotide to deoxynucleosides, followed by C-18 HPLC chromatography, also yielded a

Figure 5-1: HPLC analysis of enzyme digest products of control 12mer duplex (panel A) and Tg modified 12mer duplex (Tg•A) (panel B). Cytidine eluted first at 7.7 mins followed by guanosine (11.9 min), deoxythymidine (13.2 min), and adenosine (15.9 min). The thymine glycol nucleoside eluted at 11.2 min (panel B). The UV trace of Tg nucleoside is show in panel C.

single peak (Figure 5-1). The UV trace of the Tg mononucleoside matched that of previous reports [198]. Additional peaks corresponding to dA, dC, dG, and dT were observed in the anticipated intensity ratios. Thus, the Tg-adducted oligodeoxynucleotide consisted of a single chromatographically separable species. The modified single strand

Figure 5-2: Sequential assignments of NOESY H8/H6 to H1' protons for the $Tg^{6} \cdot A^{19}$ and $Tg^{6} \cdot G^{19}$ duplexes. Connectivity for the Tg modified strand of $Tg^{6} \cdot A^{19}$ (panel A) and the adenine containing complementary strand (panel B) are unbroken. Connectivity for the Tg modified strand of $Tg^{6} \cdot G^{19}$ (panel C) and the adenine containing complementary strand (panel D) are also unbroken. Intra-residue aromatic to H1' cross peaks are labeled.

oligonucleotide was incubated for 12 days at pH 6.0. The sample was monitored by HPLC. Over this period of time, only a single chromatographic peak was observed.

NMR Spectroscopy of Non-exchangeable DNA Protons

Resonances for the 5'-GTGCG<u>Tg</u>GTTTGT-3'•5'-ACAAAC<u>A</u>CGCAC-3' duplex (Tg•A) were assigned using standard strategies [304, 305]. Figure 5-2 shows an expansion of the NOESY spectrum including the NOEs between purine H8 and pyrimidine H6 protons and the corresponding deoxyribose H1' protons. In the modified strand (Figure 5-2, panel A), the sequential NOE connectivity was not interrupted at the lesion site. Also, there was no break in connectivity for the complementary strand (Figure 5-2, panel B). The 5'-GTGCG<u>Tg</u>GTTTGT-3'•5'-ACAAAC<u>G</u>CGCAC-3' duplex (Tg•G) also indicated no break in connectivity at Tg of the modified strand (Figure 5-2, panel C). Expanded NOESY plots of H8/H6 to H1' for Tg•G indicated complete intra-strand connectivity for the complementary strand (Figure 5-2, panel D).

The deoxyribose protons were assigned from a combination of COSY and NOESY data. With the exception of several of the H4' protons, and the stereotopic assignments of the H5' and H5" sugar protons, assignments were made unequivocally. NOE intensities were used to assign the deoxyribose H2' and H2" resonances based on the fact that H2' \rightarrow H3' cross peak was anticipated to have a greater intensity than the H2" \rightarrow H3' cross peak. These distances are expected to vary approximately 0.24 Å or less regardless of pucker [277, 278]. In general, canonical B-DNA distances, chemical shift, and scalar coupling, between the H4', H5', and H5" protons were used to tentatively assign the H5' and H5" deoxyribose protons. The assignments of the non-exchangeable protons are provided in Appendix A.

NMR Spectroscopy of Exchangeable DNA Protons

The assignments of the Watson-Crick imino and amino protons of the modified oligodeoxynucleotides were made using standard methods [306] (Figure 5-3 & 5-4). Regarding the Tg•A duplex, the $G^{5}H1$ imine resonance arising from the 5' neighbor base pair $G^{5} \cdot C^{20}$ was broad at 5 °C and disappeared when the temperature was increased

Figure 5-3: The upper panel is an expanded plot showing the sequential NOE connectivity for the amino protons to amino protons for the Tg•A duplex. The cross peaks are assigned as (a) $G^{7}:H22\rightarrow G^{7}:H1$ (b) $A^{17}:H2\rightarrow G^{7}:H1$ (c) $C^{18}:H42\rightarrow G^{7}:H1$ (d) $G^{11}:H22\rightarrow G^{11}:H1$ (e) $C^{14}:H42\rightarrow G^{11}:H1$ (f) $C^{22}:H5\rightarrow G^{3}:H1$ (g) $G^{3}:H22\rightarrow G^{3}:H1$ (h) $A^{23}:H2\rightarrow G^{3}:H1$ (i) $C^{4}:H42\rightarrow G^{3}:H1$ (j) $C^{22}:H42\rightarrow G^{3}:H1$ (k) $C^{4}:H5\rightarrow G^{21}:H1$ (l) $G^{21}:H22\rightarrow G^{21}:H1$ (m) $C^{4}:H42\rightarrow G^{21}:H1$ (n) $A^{19}:H62\rightarrow T^{2}:H3$ (o) $A^{23}:H2\rightarrow T^{2}:H3$ (p) $A^{23}:H61\rightarrow T^{2}:H3$ (q) $A^{17}:H62\rightarrow T^{8}:H3$ (r) $A^{16}:H62\rightarrow T^{8}:H3$ (s) $A^{16}:H2\rightarrow T^{9}:H3$ (t) $A^{15}:H62\rightarrow T^{10}:H3$ (u) $A^{16}:H2\rightarrow T^{9}:H3$ (z) $A^{16}:H61\rightarrow T^{9}:H3$ (A) $A^{17}:H2\rightarrow T^{9}:H3$ (z) $A^{15}:H62\rightarrow T^{10}:H3$ (y) $A^{16}:H2\rightarrow T^{9}:H3$ (z) $A^{16}:H61\rightarrow T^{9}:H3$ (A) $A^{17}:H2\rightarrow T^{9}:H3$. The lower panel is an expanded plot showing the sequential NOE connectivity for the imino protons. The data was collected at 800 MHz at 250 ms mixing time and a temperature of 7 °C.

Figure 5-4: The upper panel is an expanded plot showing the sequential NOE connectivity for the amino protons to amino protons for the Tg•G duplex. The cross peaks are assigned as (a) $G^{11}:H22 \rightarrow G^{11}:H1$ (b) $C^{14}:H62 \rightarrow G^{11}:H1$ (c) $C^{22}:H5 \rightarrow G^{3}:H1$ (d) $G^{3}:H22 \rightarrow G^{3}:H1$ (e) $A^{23}:H2 \rightarrow G^{3}:H1$ (f) $C^{4}:H42 \rightarrow G^{3}:H1$ (g) $C^{22}:H42 \rightarrow G^{3}:H1$ (h) $C^{18}:H5 \rightarrow G^{7}:H1$ (i) $G^{7}:H22 \rightarrow G^{7}:H1$ (j) $A^{17}:H2 \rightarrow G^{7}:H1$ (k) $C^{18}:H42 \rightarrow G^{7}:H1$ (l) $C^{4}:H5 \rightarrow G^{21}:H1$ (m) $G^{21}:H22 \rightarrow G^{21}:H1$ (n) $C^{4}:H42 \rightarrow G^{21}:H1$ (o) $A^{23}:H2 \rightarrow T^{2}:H3$ (p) $A^{17}:H62 \rightarrow T^{8}:H3$ (q) $A^{16}:H62 \rightarrow T^{8}:H3$ (r) $A^{15}:H62 \rightarrow T^{10}:H3$ (s) $A^{16}:H62 \rightarrow T^{9}:H3$ (t) $A^{15}:H2 \rightarrow T^{9}:H3$ (g) $A^{16}:H2 \rightarrow T^{9}:H3$ (g) $A^{17}:H2 \rightarrow T^{9}:H3$ (g) $A^{17}:H$

Figure 5-5: Temperature dependent analysis of imino protons of T•A (panel A), Tg•A (panel B), and Tg•G (panel C) duplexes as monitored by ¹H NMR. Melting of the $G^{5} \cdot C^{20}$ base pair neighbor of Tg⁶ occurs at a lower temperature compared to the unmodified sample. G^{7} H1 is deshielded in Tg•G (panel C) compared to Tg•A (panel B).

to 15 °C (Figure 5-5). In contrast, for the unmodified sample, the G⁵ H1 imine resonance was sharp and was observed at temperatures as high as 40 °C. In Tg•A, there was no cross peak between the broad G⁵ H1 resonance and G²¹ H1 (Figure 5-3). The Tg⁶ H3 amine resonance, anticipated to resonate in the amino proton region of the ¹H NMR spectrum, was not identified. The A¹⁹ H61 and H62 resonances were not observed. This was attributed to solvent exchange. The imino resonances for base pairs T²•A²³, G³•C²², C⁴•G²¹, G⁷•C¹⁸, T⁸•A¹⁷, T⁹•A¹⁶, T¹⁰•A¹⁵, and G¹¹•C¹⁴ were observed (Figure 5-3). The imino resonances for the terminal base pairs G¹•C²⁴ and T¹²•A¹³ were not observed, this was attributed to exchange broadening with water.

Figure 5-6: Chemical shift perturbation of amino protons of Tg•A and Tg•G samples relative to T•A are indicative of change in chemical environment. In the Tg•A duplex (black bars) the H1 of G^5 was deshielded 0.3 ppm relative to G^5 H1 of T•A; G5 H1 was deshielded in 0.2 ppm in Tg•G (grey bars). The G^7 H1 was affected differently in each duplex. In Tg•A, G^7 H1 was shielded 0.1 ppm whereas in Tg•G it was deshielded 0.3 ppm. Tg⁶ H3 was not detected in either duplex.

The assignments of the Watson-Crick imino and amino protons of the Tg•G duplex are seen in Figure 5-4. The G⁵H1 imine resonance arising from the 5' neighbor base pairs $G^{5} \cdot C^{20}$ were broad at 5 °C (Figure 5-5). Much like the Tg•A duplex, in Tg•G the Tg⁶ H3 amine resonance was not identified. Again, this was attributed to solvent exchange. The imino resonances for base pairs T²•A²³, $G^{3} \cdot C^{22}$, $C^{4} \cdot G^{21}$, T⁸•A¹⁷, T⁹•A¹⁶, T¹⁰•A¹⁵,

and $G^{11} \cdot C^{14}$ were observed (Figure 5-4). The imino resonances for the terminal base pairs $G^{1} \cdot C^{24}$ and $T^{12} \cdot A^{13}$ were not observed.

Chemical shifts of modified duplex imino resonances were compared to the T•A control (Figure 5-6). In Tg•A and Tg•G the Tg⁶ H3 was not observed. However, the G^7 H1 resonance was perturbed significantly in both modified duplexes. In Tg•A, G^7 H1 was shielded 0.1 ppm. In the Tg•G duplex, G^7 H1 was deshielded 0.3 ppm.

NMR Spectroscopy of Tg Protons

Analysis of NOESY data for the Tg•A duplex obtained at multiple mixing times showed the presence of intense cross peaks arising from chemical exchange between two chemical species for both the Tg⁶ CH₃ and Tg⁶ H6 protons (Figure 5-7). The integrated volumes of the two exchange cross peaks were consistent at multiple mixing times. Integration of the two Tg⁶ CH₃ resonances indicated that the two species were present at

Figure 5-7: ¹H-¹H NOESY tile plot of Tg•A at mixing times of 250 and 150 milliseconds. Cross peaks between *cis* CH₃ / H6 and G⁵, the 5' neighbor, decreased as a function of mixing time. Chemical exchange cross peaks between the *cis* and *trans* epimers of Tg did not significantly decrease in intensity as a function of mixing time.

an equilibrium ratio of 7:3 (Figure 5-8). For the major species, the Tg^6 CH₃ protons exhibited a chemical shift of 0.49 ppm, while the Tg^6 H6 proton resonated at 4.58 ppm. These chemical shifts were consistent with previously reported values [233]. A total of 23 NOE cross peaks were assigned between Tg^6 CH₃ and H6 in major species and DNA (7 for Tg^6 H6 and 16 for Tg^6 CH₃) in the $Tg \cdot A$ duplex. The chemical shift values for the Tg^6 CH₃ and H6 resonances arising from the minor species were significantly downfield relative to those from the major species, located at 1.24 ppm and 4.91 ppm, respectively. The Tg^6 CH₃ resonance for the minor species was overlapped with the T^2 CH₃ resonance. For the minor species, there was only one NOE cross peak, observed between Tg^6 H6 and Tg^6 H2'. This cross peak was observed in both *cis* and *trans* samples. Integration of the cross peak was consistent with a 7:3 equilibrium. A single set of chemical shifts were observed for G^5 and G^7 ; the mixture of species at Tg^6 did not extend to the neighboring nucleotides.

Analysis of NOESY data for the Tg•G duplex obtained at multiple mixing times did not exhibit chemical exchange cross peaks for either the Tg⁶ CH₃ and Tg⁶ H6 protons (Figure 5-9). This indicated that one major chemical species was observable on the millisecond timescale in the Tg•G sample. The Tg⁶ CH₃ protons exhibited a chemical shift of 0.91 ppm, while the Tg⁶ H6 proton resonated at 4.70 ppm. A total of 20 NOE cross peaks were assigned between Tg⁶ CH₃ and H6 in major species and DNA (9 for Tg⁶

H6 and 11 for $Tg^6 CH_3$). A single set of chemical shifts were observed for G^5 and G^7 ; the mixture of species at Tg^6 did not extend to the neighboring nucleotides.

<u>NMR Spectroscopic Assignment of Tg⁶</u> <u>Isomers</u>

The two Tg species observed in the $Tg^{6} \cdot A^{19}$ duplex were assigned as arising from slow configurational exchange (NMR time scale) between the *cis-5R,6S* and *trans-5R,6R* epimers. Seven NOESY cross peaks were observed between the Tg^{6} H6 resonance of the major species and surrounding protons (Table 5-1). Their intensities at mixing times of 80 and 250

Figure 5-8: 1D ¹H NMR of thymine and thymine glycol methyl groups. In the Tg•A duplex (panel A) the *trans* Tg⁶ CH₃ and T² CH₃ overlapped. Integration and intensity of *cis* and *trans* Tg methyl peaks were used, in addition to cross peak integration, to determine relative equilibrium of the Tg lesion in Tg•A. A single Tg⁶ CH₃ peak was observed in the Tg•G duplex (panel B).

Figure 5-9: ¹H-¹H NOESY tile plot of Tg•G at mixing times of 250 and 150 milliseconds. No chemical exchange cross peaks were observed at resonances (1.24 and 4.91 ppm). Cross peaks with G^5 decrease in intensity as a function of mixing time.

ms were compared with the corresponding distances predicted for each epimer on the basis of molecular modeling. The spectral overlap of Tg⁶ H3' and Tg⁶ H6 resonances (< 0.01 ppm) in the major species hindered the assessment of the Tg⁶ H3' \rightarrow Tg⁶ H1' and Tg⁶ H6 \rightarrow Tg⁶ H1' cross peaks. For the *cis*-5*R*,6*S* configuration, Tg⁶ H6 and Tg⁶ CH₃ are spatially proximate, yielding a strong

 $Tg^6 H6 \rightarrow Tg^6 CH_3 NOE$ even at the

H6 specie	es to neighb	oring proton	S.			
Major	Trans	Cis	NOESY	NOESY	short mixing time of 150 ms (Figure	
Tg ⁶ H6	Model	Model	Intensity	Intensity		
cross	Distance	Distance	(80 ms)	(250 ms)	5-7) Likewise the G^5 H1' \rightarrow T a^6 H6	
peak	(Å)	(Å)			<i>5-7)</i> . Likewise, the O 111 71g 110	
G ⁵ H2"	5.7	2.2	W	m	-	
Tg ⁶ H5'	4.5	3.3	S	S	and $G^{\circ} H8 \rightarrow Tg^{\circ} H6$ NOE were	
G ⁵ H1'	3.9	2.3	nd	m		
${ m G}^5{ m H8}$	7.1	6.1	nd	W	diagnostic of the <i>cis</i> -5 <i>R</i> ,6 <i>S</i>	
G ⁵ H4'	6.8	5.4	nd	W	configuration. On this basis, the	
					Configuration. On this basis, the	

Table 5-1: NOESY cross peaks from the major TgH6 species to neighboring protons.

major species, present at ~ 70% population, was assigned as the *cis* epimer.

There was a single isomeric species present in the Tg•G duplex as observed by NMR. Its configuration was determined to be *cis* by the same distance filtering methodology previously described. In the Tg•G sample Tg⁶ H3' and Tg⁶ H6 resonances were dispersed (4.53 and 4.70 ppm respectively).

Anomeric Configuration of the Deoxyribose Sugar

The possibility that Tg^6 could undergo configurational exchange between α and β deoxyribose anomers was considered. The NOESY data for the Tg•A deoxyribose ring showed that the intensity of the Tg⁶ H1' \rightarrow Tg⁶ H2" NOE was greater than the Tg⁶

H1' \rightarrow Tg⁶ H2' NOE, which placed H1' in the β configuration (Figure 5-10). Anomeric analysis of Tg•G NOE cross peak volumes was precluded as a result of resonance overlap of Tg⁶ H2' and H2".

It was considered that anomeric equilibration may be dependant on single strand verses double strand environments in Tg samples like AFB₁-FAPY. The modified 5'-GTGCG<u>Tg</u>GTTTGT-3' was purified by HPLC, placed in sodium phosphate buffer (pH 6.0) and monitored for 3 weeks (25 °C). During the course of this experiment, a single

Figure 5-10: NOE intensities indicated the deoxyribose of the Tg^6 is in the β orientation.

chromatographically separable oligonucleotide was observed.

Potential Energy Minimization

As a result of the loss of aromaticity of the thymine base, Tg puckers. Thus, for either the *cis*-5*R*,6*S* or *trans*-5*R*,6*R* configurations, the Tg CH₃ may be in either axial or equatorial conformations. Density functional theory (DFT) and second order Møller-Plesset (MP2) quantum calculations using GAUSSIAN 03 [252] with the 6-31G*, 6-31G**, and 6-311++G** basis sets (Table 5-2) indicated that the *cis*-5*R*,6*S* configuration was predicted to be of slightly lower energy than the *trans*-5*R*,6*R* configuration (~1 kcal/mol), which was consistent with the present experimental observations, as well as previous experimental observations [3-5]. The calculations also predicted that for the *cis*-5*R*,6*S* configuration, the Tg CH₃ group favored the axial conformation by ~ 5 kcal/mol, whereas for the *trans*-5*R*,6*R* configuration, the Tg CH₃ group favored the equatorial conformation.

Table 5-2: Sum of electronic and zero-point energies of mynine grycor bases.								
cis-5R,6S-Tg	B3LYP/6-31G*	B3LYP/6-31G**	B3LYP/6-	MP2/6-31++G**				
			$31 + +G^{**}$					
CH ₃ Axial	-404,683.2973	-404,698.5177	-404,817.4954	-403,849.9161				
CH ₃ Equatorial	-404,679.2802	-404,679.2802	-404,812.9824	-403,844.9469				
trans-5R,6R-Tg								
CH ₃ Axial	-404,678.4983	-404,693.7951	-404,812.3523	-403,845.2241				
CH ₃ Equatorial	-404,682.0525	-404,697.2935	-404,816.5090	-403,847.9367				
CH ₃ Equatorial trans-5R,6R-Tg CH ₃ Axial CH ₃ Equatorial	-404,679.2802 -404,678.4983 -404,682.0525	-404,679.2802 -404,693.7951 -404,697.2935	-404,812.3523 -404,816.5090	-403,844.9469 -403,845.2241 -403,847.9367				

 Table 5-2: Sum of electronic and zero-point energies of thymine glycol bases. ^{†‡}

†Reported energies are in units of kcal/mol.

‡DFT calculation energies are zero-point energy corrected.

Discussion

Despite the fact that it has been recognized that Tg exists in DNA as two

diastereomeric pairs of epimers, 5S,6R, 5S,6S and 5R,6S, 5R,6R [37, 206], previous

solution structure studies of the 5*R*-Tg adduct (no structural studies of the 5*S*-Tg adduct have been conducted) overlooked the fact that the adduct exists in DNA as an equilibrating pair of diastereomeric 5*R cis, trans* epimers [232, 233]. The present NMR data reveal that in the Tg•A duplex oligodeoxynucleotide the 5*R*-Tg adduct actually exists as a 7:3 equilibrium mixture of *cis* and *trans* epimers, which equilibrate in slow exchange on the NMR timescale. This ratio is comparable to the 87% *cis* to 13% *trans* ratio of epimers reported at the nucleoside level [37]. Thus, we conclude that significant levels of the *trans*-5*R*,6*R* epimer maybe present in both duplex DNA and nucleosides, and that in duplex DNA base paired opposite adenine, the 5*R*-Tg adduct should be considered to exist as an equilibrium mixture of the two epimers. The presence of *cis* and *trans*-Tg⁶ seems to have little effect on neighboring bases as is evidenced by the presence of a single set of resonances for G⁵ and G⁶.

However, Tg does have a negative effect on base pairing. This is evidenced by the fact that the base pair $G^5 \cdot C^{18}$ melts approximately 35 °C lower in Tg modified DNA compared to unmodified DNA (Figure 5-5). In addition, NMR analysis of both the exchangeable Tg⁶ N3H and A¹⁹ H61 & H62 amine resonances suggest that these protons are in exchange with solvent. This is indicative of reduced base pairing between Tg⁶ and A¹⁹. Taken together, this reduced stability is expected to significantly contribute to the observed reduction in duplex T_m (Δ 13 °C) (Chapter VII).

Similarly, in the Tg•G duplex oligodeoxynucleotide, neighboring bases produced a single set of NMR resonances for G^5 and G^6 . However, the adjacent base pair does have an effect on the *cis-trans* equilibrium. In Tg•G the *cis*-5R,6S isomer was the only observed Tg epimer. The T_m of Tg•G was also reduce by 13 °C, however, this sample was less thermodynamically favorable than Tg•A (Chapter VII).

An explanation for the significant equilibrium differences observed in the Tg•A and Tg•G duplexes must reside in altered base pairing schemes. The failure to observe hydrogen bonding between the Tg•A and Tg•G base pairs may be a result of increased dynamics at the lesion site. A complete lack of interstrand hydrogen bonding would be expected to produce disordered structures. Ordered structures are observed suggesting some form of stabilization, yet experimental evidence supporting hydrogen bonding was not observed. Restrained molecular dynamics calculation of the Tg•A duplex predicts hydrogen bonding is possible between the base pairs during a 5 ns trajectory.

Deficiencies in hydrogen bonding in Tg•A and Tg•G are a consequence of steric clash between Tg⁶ CH₃ and G⁵. A possible explanation for the observed *cis-trans* equilibrium in the Tg•A sample may be reduced steric clash between G⁵ and a *trans* Tg-*5R*, *6R* lesion where the CH₃ is in an equatorial conformation. Clark et al. have shown that an equatorial CH₃ produces less steric interaction with the 5' neighbor. Therefore, in the Tg•A duplex, a thermodynamic drive to conserve Watson-Crick hydrogen bonding may facilitate epimerization to the *trans* epimer on a limited basis. This conclusion draws support from DFT calculations predicting that *trans 5R*-Tg with CH₃ in an equatorial position is the next most energetically favorable Tg configuration second only to *cis 5R*-Tg with CH₃ in the axial arrangement. In the Tg•G duplex there is no possibility for Watson-Crick hydrogen bonding although orientation similarly to a wobble G•T pair is possible. This would shift Tg⁶ toward the major groove, as compared to its orientation when placed opposite A¹⁹, and would enable the Tg⁶ CH₃ group to be maintained in the energetically more favorable axial conformation, consistent with the observation that in the Tg•G pair the *cis-5R*,6*S* epimer is favored.

Biological Significance

It is estimated that human cells repair hundreds of Tg adducts per day [198]. The Tg adduct is a substrate for base excision repair, both in *E. coli* and in mammalian cells [307]. In *E. coli*, repair of Tg is initiated by endonuclease III (Nth) [308] and endonuclease VIII (Nei) [309]. Yeast [23], mammalian [24,25], and human orthologs [26-28] of Nth have been characterized. Likewise, human orthologs of Nei have been characterized [29, 30]. The base excision repair of Tg lesions is dependant both on their stereochemical configurations (5R,6S vs. 5S,6R), and the identity of the complementary base [224]. Using Nth, the *cis*-5S,6R adduct placed complementary to adenine was repaired with greater efficiency than was the *cis*-5R,6S adduct. With human hNth, the *cis*-5S,6R adduct, regardless of the opposing base. The human endonuclease-like protein (hNeill) did not differentiate between the stereoisomers, but was more efficient when Tg was opposite a guanine [7, 10].

Significantly, the Tg adduct is also a substrate for nucleotide excision repair (NER) proteins. Both randomly-introduced Tg adducts and abasic sites were substrates for the UvrABC NER enzymes of *E. coli* [310]. Subsequently, it was determined that the Tg adduct was excised from DNA *in vitro* by human NER enzymes [311]. However, DNA containing dihydrothymine, a lesion with a similar structure to thymine glycol, was not incised [312]. The structure of Tg adducts in duplex DNA and structure-activity relationships with regard to their repair are of considerable interest.

If not repaired, the 5*R*-Tg adduct is lethal to cells [34-38]. This is attributed to the observation that the lesion is a strong block to DNA replication for both replicative and repair polymerases [15, 39-44]. However, pyrimidines 5' to template Tg allow residual polymerase read-through more often than do purines [216]. In any case, polymerase blockage is characterized by the termination of primer extension following the incorporation of dATP opposite Tg; i.e., it is caused by an inability to extend beyond the Tg•A pair, rather than failure to insert dATP at template Tg. Aller et al [234], utilizing a binary complex of a *cis*-5*R*,6*S* Tg-adducted template:primer with the replicative RB69 DNA polymerase, concluded that the template *cis*-5*R*,6*S* Tg was intrahelical and formed a Watson-Crick base pair with the incorporated dA. However, the axial conformation of the cis-5R,6S Tg CH₃ group hindered stacking of the 5' neighbor template guanine, presumably hindering incorporation of the next incoming nucleotide into the growing primer strand, and providing a rationale as to why primer extension past the lesion was prohibited even though DNA polymerases readily incorporated dATP across from the 5*R*-Tg lesion. These structural studies corroborated the modeling work of Clark et al. [231] who reported that the Tg•A base pair was stable, suggesting that Tg retains the ability to direct the insertion of the correct nucleotide during DNA synthesis, whereas interactions with the 5'-neighboring base pair were destabilized.

Based on previous solution structures of Tg, the lesion was reported to be "extrahelical" in dsDNA. What is unclear is how repair enzymes can differentiate an extrahelical lesion based on the opposing base. An extrahelical lesion is expected to have

88

little if any interaction with its opposite base. Here we show that the opposing base pair has a significant effect on *cis-trans* equilibrium. Therefore, an interstrand interaction between Tg and dA or dG must exist. This interaction may alter other properties of the helix, such as the degree of Tg extrahelicity, base pair stability, base pair geometry, or lesion dynamics. It seems logical that a repair enzyme may recognize these resultant effects.

Despite the fact that Tg was a strong block to replication in *E. coli*, it was weakly mutagenic, causing < 0.5% T \rightarrow C transitions [219]. It was concluded that the *cis*-5*R*,6*S* Tg adduct was displaced laterally toward the major groove as compared to an unmodified thymine, perhaps increasing the likelihood of G•Tg wobble pairing, potentially explaining the observed T \rightarrow C transitions [219]. The degree of extrahelicity was predicted to be sequence-dependent, being modulated by the identity of the 3'-neighbor nucleotide [219]. An interesting possibility is that the *trans*-5*R*,6*R* lesion is responsible for the < 0.5% mutagenicity reported in *E. coli*. Specifically, for the *trans*-5*R*,6*R* epimer, the equatorial conformation of the Tg CH₃ group is predicted to be more energetically favorable (Table 3-2). The equatorial orientation of the Tg CH₃ group in the *trans*-5*R*,6*R* epimer may allow stacking of the 5' neighbor template guanine, presumably facilitating incorporation of the next incoming nucleotide into the growing primer strand.

CHAPTER VI

NMR STRUCTURAL STUDIES OF THE α -AFB₁-FAPY LESION IN DNA

Introduction

This chapter addresses the solution structures of α -AFB₁-FAPY in 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' and 5'-CTXA-3'. Conclusions drawn from these structures are specific to the localized 5'-TXA-3' sequence context. Under basic conditions (pH 8.0) and low temperature (7 °C), conversion of α to β is sufficiently slow to permit expeditious collection of NMR data. The β anomer of AFB₁-FAPY was previously studied in 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' [115]. Use of identical duplex sequences allowed direct comparison of α and β anomer structure alterations. It seemed plausible that placing α -AFB₁-FAPY in an unfavored duplex environment may not accurately reflect the anomer's structure in a single strand context. Therefore, α -AFB₁-FAPY was also analyzed in a single stranded tetramer. Comparison of the α anomer in ssDNA and dsDNA along with the previously published β anomer in dsDNA leads to the conclusion that favorable stacking interactions are an important factor in anomeric equilibrium. In addition, distortion of the phosphodiester backbone of α -AFB₁-FAPY modified DNA may contribute to associated cellular toxicity.

Results

HPLC Analysis

Anomeric purity of AFB₁-FAPY modified samples was determined by HPLC prior to spectroscopic analysis. Alkaline conditions (pH 8.0-8.5) sufficiently retard anomeric interconversion to permit for expeditious analysis of α -AFB₁-FAPY modified oligonucleotides (Figure 6-1). The α anomers remained at 90% purity or better after 3 days at low temperatures (~ 5 °C). The β anomers produced a single HPLC peak at 19.5 min. However, α -AFB₁-FAPY produced a major peak at 20.1 min preceded by a shoulder peak at 20.0 min. Attempts to isolate the principal α -AFB₁-FAPY peak (20.1 min) and its shoulder (20.0 min) were unsuccessful as the two re-equilibrated

in less than 30 minutes independent of pH.

UV Melting

The denaturation of native, α -AFB₁-FAPY, and β -AFB₁-FAPY modified duplexes were monitored by temperature dependent UV hyperchromicity (pH 8.0). The unmodified 5'-CTAT<u>G</u>ATTCA-3'•5'-TGAATCATAG-3' produced a single transition; T_m was determined to be 36

Figure 6-1: Anomeric purity of α -AFB₁-FAPY modified 5'-CTAT<u>X</u>ATTCA-3'•5'-TGAATCATAG-3' was determined by HPLC (λ 360 nm) pre-NMR (panel A) and post-NMR (panel B). NMR experiments began with > 95% α -AFB₁-FAPY (20.1 min) (panel A). Purity was approximately 90% after 3 days (panel B). (β -AFB₁-FAPY (19.5 min)
°C by first derivative calculation (Figure 6-2, panel A). The α -AFB₁-FAPY and β -AFB₁-FAPY modified 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' was purified to > 90 % by HPLC prior to UV analysis. The β -AFB₁-FAPY modified duplex (Figure 6-2, panel B) produced a single transition at 50 °C during the heating stage. During the cooling stage, a biphasic transition was observed at 50 °C and 23 °C. The α-AFB₁-FAPY modified duplex (Figure 6-2, panel C) produced a biphasic transition at 50 °C and 23 °C during both heating and cooling stages.

Electronic Circular Dichroism (ECD) Spectroscopy

As a complement to NMR spectroscopy, ECD spectra were obtained to more fully analyze AFB₁-FAPY induced structural effects. Tertiary structural effects of AFB₁-FAPY anomers were analyzed by ECD in ssDNA and

Figure 6-2: UV thermal melting analysis of AFB₁-FAPY modified oligonucleotides. The T_m of 5'-CTAT<u>G</u>ATTCA-3'•5'-TGAATCATAG-3' was determined to be 36 °C by first derivative analysis (panel A). The β -AFB₁-FAPY modified duplex (panel B) produced a single transition at 50 °C during the heating stage (5 \rightarrow 80 °C = \blacktriangle). A biphasic transition was observed at 50 °C and 23 °C for the cooling stage (80 \rightarrow 5 °C = \checkmark). The α -AFB₁-FAPY modified duplex (panel C) produced a biphasic transition at 50 °C and 23 °C for the stage.

Figure 6-3: Electronic circular dichroism of AFB₁-FAPY anomers in oligonucleotides. The duplex 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' (panel A) was compared to 5'-CTATXATTCA-3' (panel B). Unmodified oligonucleotides (solid black line) were compared to β -AFB₁-FAPY (broken black line) and α -AFB₁-FAPY (solid red line).

dsDNA (Figure 6-3). The 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' duplex containing anomers of AFB₁-FAPY were compared to the native duplex (Figure 6-3, panel A). There were differences in molar ellipticity at λ 215, 255, 275, and 350 nm for both anomers between ssDNA and dsDNA. Bathochromic shifts of approximately 5 nm were observed in ssDNA samples near λ 215 nm (5'-CTATXATTCA-3') relative to the control (Figure 6-3, panel B). Values of molar ellipticity were divergent from native

Figure 6-4: UV spectra of AFB₁-FAPY modified 5'-CTAT<u>X</u>ATTCA-3'. The spectra of the α anomer (—) was compared to that of the β anomer (—) in panel A. The spectra of the α anomer (—) was compared to that of the chromatographically inseparable preceding α anomer shoulder (—) in panel B.

ssDNA samples between λ 210 and 310 nm. However, AFB₁ induced ellipticity (~ λ 310 – 360 nm) was consistently weak and negative in both ssDNA and dsDNA.

UV Spectroscopy

Ultraviolet spectra of AFB₁-FAPY modified 5'-CTATXATTCA-3' were extracted from HPLC diode array data obtained during isomer purification. The β anomer (19.5 min) exhibited hyperchromicity between λ 240 and 280 nm and AFB₁ induced hyperchromicity at 380 nm when compared to the principal α anomer (20.1 min) (Figure 6-4, panel A). The spectrum of the major (20.1 min) isomer of the α anomer was compared to that of the minor isomer (20.0 min) (Figure 6-4, panel B). The UV traces were nearly identical with minor differences in the far UV range (~ λ 225 nm).

<u>NMR Spectroscopy of Non-exchangeable</u> <u>DNA Protons</u>

Duplex DNA resonances were assigned using standard strategies [304, 305, 313]. Figure 6-5 shows an expansion of the NOESX spectrum in the region of the

Figure 6-5: Sequential assignments of NOESY H8/H6 to H1' protons for the α -AFB₁-FAPY modified duplex 5'-CTATXATTCA-3'•5'-TGAATCATAG-3'. Connectivity for the modified strand (panel A) was broken between T⁴ H1' and A⁶ H8. Connectivity for the complementary strand (panel B) appeared to be broken between C¹⁶ H6 and A¹⁷ H1'. Intraresidue aromatic to H1' cross peaks are labeled.

of the NOESY spectrum in the region of the NOEs between purine H8 and pyrimidine

H6 protons and the deoxyribose H1' protons for the 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-3' duplex. Sequential NOE connectivity was observed except for a break in the modified strand between T⁴ H6 and A⁶ H1' and for the complementary strand between C¹⁶ H1' and A¹⁷ H8. Multiple resonances were observed for the aromatic signals of residues T¹⁵ and A¹⁴ and some deoxyribose resonances of C¹⁶ (Appendix A; Table A-5). A total of 197 non-exchangeable resonances were assigned for the duplex. Chemical shifts were compared to those of an unmodified duplex (Figure 6-6). As expected, chemical shift perturbation was observed at the X⁵ lesion site. However, disturbance was also observed at residues T⁴, A⁶, T⁷, A¹⁴, T¹⁵, C¹⁶, A¹⁷, and T¹⁸.

Single strand tetramer resonances were assigned based on chemical shift, pyrimidine vicinal coupling, and process of elimination. Intra-residue dipolar interactions were observed and used for resonance assignment (Figure 6-7). High mobility of the tetramer prohibited the evolution of most inter-residue dipolar interactions traditionally used in dsDNA resonance assignment. The 5'-C¹T²G³A⁴-3' sequence was selected to minimize resonance overlap. Deoxyribose proton spin systems were correlated with pyrimidine bases by unambiguous assignment of cytosine H5 \rightarrow H6 and thymine CH₃ \rightarrow H6 cross peaks. The adenine deoxyribose ring system was assigned based on correlation with the characteristically downfield shifted adenine H8 resonance. Assignment of the G³ and X³ resonances were based on process of elimination and previously published literature values [240]. A total of 33 non-exchangeable resonances were assigned for the tetramer. Chemical shifts of residues 2, 3, and 4 of the tetramer were compared to residues 4, 5 and 6 of the modified duplex (Figure 6-6, panel F).

95

Tetramer resonances were shielded an average of 0.5 ppm relative to those of the modified duplex.

NMR Spectroscopy of Exchangeable DNA Protons

Fast exchange with solvent prohibited the assignment of tetramer imino and amino proton resonances. The assignments of Watson-Crick hydrogen-bonded imino and amino protons of the duplex oligodeoxynucleotides were made using standard methods

Figure 6-6: Chemical shift perturbation of α -AFB₁-FAPY modified 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-3' relative to unmodified oligonucleotide. The aromatic H6/H8 (**■**) and pyrimidine H5/CH₃ (**□**) resonance perturbations for the modified strand and complementary strand are listed in panel A and B respectively. Chemical shift perturbation for the deoxyribose resonances H1' (**■**), H2' (**□**), H2" (**■**), and H3' (**■**) for the modified strand and complementary strand are listed in panel C and D respectively. The exchangeable N1H/N3H (**■**) resonance differences are reported in panel E. Comparison of duplex and single strand tetramer deoxyribose resonances shifts H1' (**■**), H2' (**□**), H2" (**■**), and H3' (**■**) are reported in panel F. The resonances for residue 3 were not compared, the tetramer had a cytosine in place of an adenine in this position.

Figure 6-7: Select NOE assignments of AFB₁ inter residue and deoxyribose intra residue cross peaks for the α -AFB₁-FAPY modified 5'-CTXA-3'. The cross peaks are assigned as (a) A⁴ H4' \rightarrow A⁴ H1' (b) AFB₁ OCH₃ \rightarrow T² H1' (c) AFB₁ H9a \rightarrow AFB₁ H9 (d) AFB₁ H9a \rightarrow AFB₁ H6a (e) A⁴ H2' \rightarrow A⁴ H1' (f) A⁴ H2" \rightarrow A⁴ H1' (g) T² H2" \rightarrow T² H1' (h) T² H2' \rightarrow T² H1' (i) C¹ H2' \rightarrow C¹ H1' (j) C¹ H2" \rightarrow C¹ H1' (k) AFB₁ OCH₃ \rightarrow AFB₁ H5 (l) X³ H5" \rightarrow X³ H1' (m) X³ H2' \rightarrow AFB₁ H5 (n) X³ H2" \rightarrow AFB₁ H5 (o) X³ H2" \rightarrow X³ H1' (p) X³ H2' \rightarrow X³ H1'

(Figure 6-8) [306]. There was a break in sequential connectivity of the imino resonances X^5 H3 and T^4 H3 in the duplex sample. Both X⁵ H3 and T⁴ H3 had a cross peak with AFB₁ -OCH₃. The strong cross peaks $X^5 H3 \rightarrow C^{16} H41$ and X^5 $H3 \rightarrow C^{16} H42$ indicated that Watson-Crick hydrogen bonding between X⁵ and C¹⁶ was intact. Similarly, imino resonances for the base pairs $A^3 \cdot T^{18}$, $T^{4} \cdot A^{17}$, $X^{5} \cdot C^{16}$, $A^{6} \cdot T^{15}$, $T^{7} \cdot A^{14}$, $T^{8} \cdot A^{13}$. and $C^9 \cdot G^{12}$ were observed suggesting Watson-Crick hydrogen bonding was preserved. Imino resonances for the base pairs $C^{1} \cdot G^{20}$, $T^{2} \cdot A^{19}$, and $A^{10} \cdot T^{11}$ were not observed; this is attributed to line broadening due to exchange with water. A

total of 25 exchangeable resonances were assigned for the duplex. Imino chemical shifts were compared to those of unmodified duplex (Figure 6-6, panel E). The X^5 H3 resonance was shielded 0.4 ppm while H3 of T¹⁵, T⁷, and T⁸ was deshielded an average of 0.15 ppm.

NMR Spectroscopy of Aflatoxin B₁ Protons

The AFB₁ H5, H6a, H8, H9, H9a, and -OCH3 resonances were assigned from NOE connectivities, chemical shift, and literature values [115] (Figure 6-9). AFB₁ H6a and H9a were identified from both COSY and NOESY experiments. H8 and H9 were assigned based on NOEs to H6a or H9a, and between themselves. A strong NOE from AFB₁ H5 to AFB₁ -OCH3 revealed that the latter resonance was at δ 3.51 ppm for the duplex and δ 3.76 ppm for the single strand tetramer, while AFB₁ H5 was at δ 5.7 ppm for both ssDNA and dsDNA. The X⁵ CHO resonance was observed at δ 8.3 ppm for both duplex and tetramer samples. The duplex assignment of X⁵ CHO was supported by NOEs to X⁵ H1', and AFB₁ H8a; in the tetramer X⁵ CHO had a cross peak only with AFB₁ H8a. Table 6-1 lists the assignments of the AFB₁ protons of both samples.

lesion and DNA protons.				
AFB ₁ -FAPY	ds DNA	ss DNA		
H2a	C^{16} H1', C^{16} H3',			
	C ¹⁶ H2", C ¹⁶ H4',			
	C ¹⁶ H5, C ¹⁶ H6,			
	A ¹⁷ H2,			
Н2β	A ¹⁷ H2,			
Н3α	A ¹⁷ H3',			
Н3β	A ¹⁷ H2,			
H5	A ¹⁷ H2, T ⁴ H6,	T ⁴ H2', T ⁴ H2"		
	T ⁴ H4',			
H6a	T ⁴ CH ₃ , T ⁴ H6,			
	X ⁵ H8,			
H8a	X ⁵ H8, X ⁵ CHO,	X ³ CHO		
H9a	$T^{4} CH_{3}, T^{4} H6,$			
	T ⁴ H3', X ⁵ H8,			
H9				
-OCH ₃	A ¹⁷ H2, T ⁴ H1',	T ⁴ H1'		
	T ⁴ H2', T ⁴ H2",			
	T ⁴ H5', T ⁴ H3,			
	X ⁵ H3,			

Table 6-1: Observed NOEs between AFB₁-FAPY legion and DNA protons

<u>NMR Spectroscopy of NOEs from</u> <u>Aflatoxin B₁ to DNA</u>

In dsDNA, 30 inter-residue NOEs from AFB₁ to DNA were assigned (Table 6-1) but only 4 AFB₁ inter-residue NOEs were observed for ssDNA. The protons of the two AFB₁ furanose moieties exhibited NOEs to major groove and imino protons in dsDNA; most were to the 5'neighboring base-pair $T^4 \cdot A^{17}$ (Figure 6-9). Thus, both H6a and H9a, which are located on the same face of the AFB₁ residue, produced NOEs to T⁴ H6 and CH₃. Similar NOEs were observed for AFB₁ H8 and H9. In ssDNA, AFB₁ interresidue NOEs comprised exclusively H5 and $-OCH_3$ to T^2 deoxyribose protons H1', H2', and H2". In dsDNA AFB₁ H5 and – OCH₃ resonances produced NOEs to various minor groove and imino protons. These were primarily in the 5' direction to

Figure 6-8: The upper panel is an expanded plot showing the sequential NOE connectivity for the amino protons to amino protons for the α -AFB₁-FAPY modified duplex. The cross peaks were assigned as (a) AFB₁ OCH₃ \rightarrow X⁵ H3 (b) C¹⁶ $\begin{array}{l} \text{H31} \text{H3} (a) \text{ A}^{-} \text{H3} (b) \text{ C}^{-} \text{H3} (b) \text{ C}^{-} \text{H3} (c) \text{ X}^{5} \text{ H31} (c) \text{ X}^{5} \text{ H31} (c) \text{ X}^{5} \text{ H32} \rightarrow \text{X}^{5} \text{ H3} (c) \text{ X}^{6} \text{ H32} \rightarrow \text{X}^{5} \text{ H3} (c) \text{ X}^{6} \text{ H32} \rightarrow \text{X}^{5} \text{ H3} (c) \text{ X}^{6} \text{ H32} \rightarrow \text{X}^{5} \text{ H32} (c) \text{ X}^{6} \text{ H32} \rightarrow \text{X}^{5} \text{ H32} (c) \text{ X}^{6} \text{ H32} \rightarrow \text{X}^{5} \text{ H32} (c) \text{ X}^{6} \text{ H32} \rightarrow \text{X}^{6} \text{ H32} \rightarrow \text{H32} \rightarrow$ $H61 \rightarrow G^{12} H1 (j) C^{9} H41 \rightarrow G^{12} H1 (k) C^{12}$ $H5 \rightarrow G^{12} H1 (1) AFB_1 OCH_3 \rightarrow T^4 H3 (m) A^3$ $\begin{array}{c} H61 \rightarrow T^{18} H3 (n) A^{17} H62 \rightarrow T^{4} H3 (o) A^{17} \\ H61 \rightarrow T^{4} H3 (p) A^{3} H2 \rightarrow T^{18} H3 (q) A^{17} H2 \rightarrow T^{4} \end{array}$ H3 (r) A^{6} H2 \rightarrow T¹⁵ H3 (s) A^{14} H61 \rightarrow T¹⁵ H3 (t) A^{6} H62 \rightarrow T¹⁵ H3 (u) A^{14} H62 \rightarrow T⁷ H3 (v) A^{14} H61 \rightarrow T⁷ H3 (w) A¹⁴ H2 \rightarrow T⁷ H3 (x) A¹³ H2 \rightarrow T⁸ H3 (y) A^{13} H61 \rightarrow T⁸ H3 (z) A^{13} H62 \rightarrow T⁸ H3. The lower panel is an expanded plot showing the sequential NOE connectivity for the imino protons. The data was collected at 500 MHz at 250 ms mixing time and a temperature of 5 °C.

base pair $T^4 \cdot A^{17}$, and the modified nucleotide X^5 . They included NOEs between AFB₁ - OCH₃ and T⁴ H1', H2', H2'', H5', H3, X⁵ H3, and A¹⁷ H2. The cyclopentenone ring H2 α exhibited NOEs to H1', H3', H2'', H4', H5, of C¹⁶, and H2 of A¹⁷ in the complementary

Figure 6-9: Select NOE assignments of the α -AFB₁-FAPY modified duplex. The cross peaks are assigned as (a) AFB₁ H8a $\rightarrow X^5$ CHO (b) AFB₁ H9a $\rightarrow X^5$ CHO (c) AFB₁ H9a \rightarrow AFB₁ H6a (d) AFB₁ H6a \rightarrow AFB₁ H8a (e) T⁴ H6 \rightarrow AFB₁ H6a (f) X⁵ CHO \rightarrow AFB₁ H6a (g) A¹⁷ H2 \rightarrow AFB₁ H5 (h) AFB₁ OCH₃ \rightarrow T⁴ H1' (i) AFB₁ OCH₃ \rightarrow AFB₁ H5

strand. Cross peaks for H2 β , H3 α , and H3 β could not be conclusively identified due to spectral overlap. Inter-residue NOEs between AFB₁ and the 3'-neighbor A⁶•T¹⁵ base pair in dsDNA or A⁴ in ssDNA were not observed.

<u>NMR Spectroscopy of Anomeric</u> <u>Configuration</u>

The anomeric configuration of AFB₁-FAPY modified oligonucleotides was established by NOEs within the deoxyribose of the modified residue. Assignment of H2' and H2" resonances was based on relative peak intensity to H3'. Configuration of H1' was subsequently determined by cross peak intensity to H2' and H2". The intensity of the $X^5 H1' \rightarrow X^5 H2''$ NOE was less than the $X^5 H1' \rightarrow X^5 H2'$ NOE in dsDNA, which placed H1' in the α configuration (Figure 6-10, panel A). The same conclusion was reached for the tetramer (Figure 6-10, panel B).

Figure 6-10: Analysis of NOE intensities indicate the deoxyribose of the AFB₁-FAPY was in the α orientation at C1'. This observation was true for 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' (Panel A) and 5'-CTXA-3' (Panel B).

NMR Spectroscopy of Formyl Proton Resonance (CHO)

A single formyl proton resonance was observed for α -AFB₁-FAPY in the tetramer and duplex samples (δ 8.3 ppm) in spectra acquired at 5 °C. 1D ¹H NMR experiments were conducted on the modified tetramer at variable temperatures (Figure 6-11). Analysis of downfield resonances at 30 °C revealed a sharp proton resonance at δ 7.5 ppm that produces a weak NOE to AFB₁ H8. This δ 7.5 ppm resonance was assigned as

Figure 6-11: Variable temperature ¹H NMR of α -AFB₁-FAPY modified tetramer aromatic

the formyl proton of the *Z* geometrical isomer. No chemical exchange cross peak was observed between formyl resonances in 2D NOE experiments at 30 °C. NMR Spectroscopy of ³¹P

Previous reports indicate a significant deshielding of one of the phosphorus resonances of α

deoxyadenosine in duplex DNA [28]. The phosphorus resonance of the α -AFB₁-FAPY 5' phosphate was not significantly disrupted relative to other phosphorus resonances in dsDNA. Perturbation relative to an unmodified duplex was inconclusive as a result of ambiguous ³¹P resonance assignments in the control sample. However, the ³¹P resonance associated with the phosphate group

located between C^{16} and A^{17} was deshielded relative to other ${}^{31}P$ resonances in the duplex (Figure 6-12). Phosphorus spectra of α -AFB₁-FAPY in ssDNA showed no significant shielding or deshielding and were indicative or rapidly equilibrating conformers.

Structural Refinement

From the NMR studies, 554 experimental restraints were derived that

Figure 6-12: 1D ³¹P NMR of α -AFB₁-FAPY in 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-3' (upper panel) and in 5'-C¹T²X³A⁴-3' (lower panel). The phosphate resonance of C¹⁶ was deshielded to 0.9 ppm (upper panel).

could be used for refinement of the structure of α -AFB₁-FAPY modified dsDNA. In addition to the experimental restraints, 34 empirical distances based on hydrogen bonding geometries and 78 broad backbone torsion restraints were applied (Table 6-2). The proton-proton restraints consisted of 167 intra-residue and 155 inter-residue restraints. Vicinal (intra-residue) sugar ring proton distance restraints were discarded for refinement purposes; their corresponding NOE cross-peaks were included in CORMA calculations. There were 29 inter-residue restraints between α -AFB₁-FAPY and DNA. Table 6-2 summarizes the distribution of rMD restraints. A total of 82 restraints were used for refinement of α -AFB₁-FAPY modified ssDNA. In addition to the experimental restraints, 11 broad backbone torsion restraints encompassing standard A and B form values were applied to standard residues. Likewise, broad deoxyribose torsion angle restraints were applied that encompassed N and S ring pucker conformations for C¹, T², and A⁴. The proton-proton restraints consisted of 52 intra-residue, and 4 inter-residue restraints defining the interaction of α -AFB₁-FAPY with DNA.

	ds DNA	ss DNA
Assigned Resonances	233	39
Watson-Crick	34	0
Backbone Torsion	78	11
Ribose Torsion	120	15
Distance:	322	56
Inter-residue	155	4
Intra-residue	167	52
Total Restraints	554	82
Avg. Restraint per Residue	25	16

Table 6-2: Distribution of restraints applied to structural refinement.

Stereo views of nine rMD refined solution structures for the α -AFB₁-FAPY modified duplex DNA are depicted in Figure 6-13. Individual structures were extracted from the final 100 ps of a 5 ns rMD trajectory. The root mean squared deviation (RMSD)

between the six core base pairs and AFB₁ of the resultant structures is 0.59 Å. The overall structure maintained Watson-Crick base pairing. The AFB₁ adduct was intercalated between $X^5 \cdot C^{16}$ and $T^4 \cdot A^{17}$. The FAPY lesion is in a R_a configuration about the C5-N⁵ bond; the formyl group has an *E* geometrical configuration. Stereo views of eight rMD refined solution structures for the α -AFB₁-FAPY modified single strand tetramer are depicted in Figure 6-14. Individual structures were extracted from the final 300 ps of a 5 ns rMD trajectory. The RMSD for the overall ensemble is 1.71 Å. Per residue RMSD are as follows: cytosine, 2.69 Å; thymine, 0.97 Å; FAPY, 0.24 Å; AFB₁, 0.43 Å; adenine, 0.43 Å. This is indicative of structural agreement at the lesion site while the terminal bases are structurally divergent. Similar to the dsDNA structure, the AFB₁ moiety was located between X³ and T². The FAPY lesion is in a R_a configuration about the C5-N⁵ bond; the formyl group is in an *E* geometrical configuration.

The 5 ns rMD trajectories of both ssDNA and dsDNA were analyzed for predicted hydrogen bonding motifs (Table 6-3). Occupancy was calculated from a cutoff distance of 3.5 Å and angle cut-off of 120 degrees. The amine proton A^6 H61 satisfied hydrogen bonding criteria with X^5 CHO 95% of the 5 ns trajectory in dsDNA. However, A^4 H61 and X^5 CHO were predicted to hydrogen bond 13% of the trajectory in ssDNA. Minimal hydrogen bonding with solvent was predicted for the various carbonyl oxygen atoms of AFB₁ in either ssDNA or dsDNA.

Table 6-3: Hydrogen bonding occupan	cy *
-------------------------------------	------

0 1	
ds DNA (%)	ss DNA (%)
94.5	13.1
99.9	n/a
8.6	2.5
4.5	0.1
6.5	0.3
10.4	2.3
	<i>ds DNA (%)</i> 94.5 99.9 8.6 4.5 6.5 10.4

* Occupancy was calculated from 5 ns trajectories with a distance cutoff of 3.5 Å and angle cutoff of 120 degrees.

Figure 6-13: Stereo view of nine superimposed structures of 5'-CTAT<u>X</u>ATTCA-3'•5'-TGAATCATAG-3' ($X = \alpha$ -AFB₁-FAPY) resulting from rMD calculations in explicit solvent. The AFB₁ moiety and the formyl oxygen are depicted in red. RMSD between the core six base pairs and AFB₁ of the resultant structures was 0.59 Å.

Figure 6-14: Stereo view of eight superimposed structures of 5'-CT \underline{X} A-3' (X= α -AFB₁-FAPY) resulting from rMD calculations in explicit solvent. The AFB₁ moiety and the formyl oxygen are depicted in red. Pairwise RMSD was 1.71 Å. Per residue RMSD were as follows: cytosine, 2.69 Å; thymine, 0.97 Å; FAPY, 0.24 Å; AFB₁, 0.43 Å; adenine, 0.43 Å.

Accuracy of resultant structure ensembles was evaluated by calculation of the sixth root residuals between theoretical NOE intensities and experimental NMR data (Table 6-4). Both ssDNA and dsDNA refined ensembles were significantly improved as compared to their respective starting structures. Major improvement between the starting structures and the final refined structures was observed in both inter- and intra-residue NOEs. The final R_1^x value of the refined tetramer (ss- α -<rMD ensemble>) of 8.1 x 10⁻² and 8.7 x 10^{-2} of the refined duplex structure, ds- α -<rMD ensemble>, suggested that the refined structures were in good agreement with the NOESY data. In addition, the sixth root residuals of the α -AFB₁-FAPY refined structures are in good agreement with the previously refined β -AFB₁-FAPY structure [115].

indexes, $(R_1^{\Lambda} (x \ 10^2))$, for starting models and resulting rMD structures			
iosuting init surveyes	Intra R_{x}^{X}	Inter R_{x}^{X}	Overall R_{x}^{X}
ds-α-FAPY-i1	11.4	12.9	11.8
ds-α-FAPY-i2	11.2	10.9	11.1
ds-a-FAPY-i3	11.1	11.3	11.2
ds-α-FAPY-i4	11.2	10.9	11.1
ds-α- <rmd ensemble=""></rmd>	8.4	9.9	8.7
ss-α-FAPY-i1	8.5	18.8	9.2
ss-α- <rmd ensemble=""></rmd>	8.0	8.8	8.1
ds-β-FAPY-iA [*]	9.5	12.1	11.5
ds-β-FAPY-iB [*]	8.8	9.9	8.9
ds-b-FAPY- <rmdavg>*</rmdavg>	8.5	9.5	8.7

 Table 6-4:
 Comparison of sixth root residual

* Results previously published Mao et al. [115].

Helicoidal Analysis

Helicoidal parameters were measured on an average of the ensemble structures of dsDNA and ssDNA in Figures 6-15 and 6-16 using CURVES [293]. Residues T^2 , X^3 , and A^4 in ssDNA were renumbered to T^4 , X^5 , and A^6 so that direct comparison may be made between ssDNA and dsDNA parameters. The helicoidal parameters of ssDNA C¹

were not compared with dsDNA but are reported in Appendix E. The comparison of base-axis parameters, x-displacement, y-displacement, tip, and inclination are graphically depicted in Figure 6-15 for α -AFB₁-FAPY modified ssDNA and dsDNA and the previously refined β -AFB₁-FAPY dsDNA structure [115]. The x-displacement of the X⁵ was 1 Å relative to T⁴ and A⁶ in dsDNA α -AFB₁-FAPY; the x-displacement was mirrored in ssDNA α -AFB₁-FAPY with the exception that the ssDNA bases were all displaced -2 Å relative to dsDNA. Y-displacement of α -AFB₁-FAPY and β -AFB₁-FAPY were comparable in dsDNA; however, α -AFB₁-FAPY in ssDNA was displaced -4 Å relative to the duplexes. The comparison of inter-base parameters, shift, slide, rise, roll, twist, and tilt are graphically depicted in Figure 6-16. The inter-base rise was 1 Å less in ssDNA when compared to both duplex anomers. The duplexes were comparable in shift,

Figure 6-15: Global Base-axis helicoidal parameters. The rMD refined β -AFB₁-FAPY modified 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' structure (\Box) was compared with α -AFB₁-FAPY modified 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' (\blacktriangle) and α -AFB₁-FAPY modified 5'-CTXA-3' (\bullet).

slide, roll, and twist; however, the α -AFB₁-FAPY modified tetramer was divergent.

Helicoidal comparisons of α and β AFB₁-FAPY anomers in dsDNA reveal distinct alternations in backbone geometry (Appendix E). The α , γ , and ε torsion angles were comparable (± 30°); however, β and ζ differed >100°. Considering lesion deoxyribose torsions were loosely restrained, differences in ring pucker are not surprising and probably within experimental error. Lesion deoxyribose relative geometries were

Figure 6-16: Global Inter-base helicoidal parameters. The rMD refined β -AFB₁-FAPY modified 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' structure (\Box) was compared with α -AFB₁-FAPY modified 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' (\blacktriangle) and α -AFB₁-FAPY modified 5'-CTXA-3' (\bullet).

significantly divergent (Figure 6-17). In the β structure, the sugar is approximately orthogonal to the FAPY base plane not unlike canonical DNA bases. In the dsDNA α structure, the deoxyribose is nearly parallel to the FAPY base and displaced toward the minor groove by ~ 2 Å.

Discussion

Duplex Stability

The thermal melting of AFB₁-FAPY modified duplexes offer key insights into altered stability of the helix. Figure 6-2, panel B indicates that a purified β -AFB₁-FAPY sample produces predominantly a single transition at 50 °C during the heating stage when the hybridization transitions from dsDNA to ssDNA. The ability of β -AFB₁-FAPY to stabilize dsDNA is consistent with previous reports [115, 116]. At 80 °C, a single strand environment shifts the equilibrium to favor α -AFB₁-FAPY. The complex nature of the sample at 80 °C is evidenced by the

biphasic transition during the cooling phase. The transitions are observed at 50 °C and 23 °C representing β -AFB₁-FAPY and α -AFB₁-FAPY respectively. Likewise, the α -AFB₁-FAPY modified duplex produced biphasic transitions at 50

°C and 23 °C during the course of each

Figure 6-17: Superposition of α -AFB₁-FAPY lesion (red) with β -AFB₁-FAPY (grey) in dsDNA.

Figure 6-18: Stacking interactions of AFB₁-FAPY modified oligonucleotides. The neighbor stacking patterns of β -AFB₁-FAPY modified 5'-CTATXATTCA-3'•5'-TGAATCATAG-3' (panel A) haven been reported elsewhere (Mao et al. Biochemistry 37, 4374). Stacking patterns of α -AFB₁-FAPY in the same duplex sequence (panel B) were compared to α -AFB₁-FAPY placed in a tetramer (5'-CTXA-3') comprised of the same local sequence context (panel C).

heating and cooling stage (Figure 6-2, panel C). This is explained by transition of the less favored α -AFB₁-FAPY isomer at 23 °C to the more stable β -AFB₁-FAPY producing a second transition at 50 °C. The cooling stage of α -AFB₁-FAPY is comparable to that of β -AFB₁-FAPY. Comparison of T_m values with native DNA indicates that β -AFB₁- FAPY stabilizes the duplex by 14 °C whereas α-AFB₁-FAPY destabilizes the duplex by 13 °C. Giri et al. have demonstrated the ability of β -AFB₁-FAPY to thermally stabilize, not just the nearest neighbor base-pairs, but also n+1, n+2, n-1, and n-2 base-pairs [116]. The α -AFB₁-FAPY affects the chemical environment of n+1, n+2, n-1, and n-2 basepairs (Figure 6-6), suggesting that it may destabilize to the same extent that β -AFB₁-FAPY stabilizes. Attempts to repeat NMR melting studies with α -AFB₁-FAPY were complicated by rapid conversion to β -AFB₁-FAPY upon heating. Two major factors are involved in the stabilization of DNA: hydrogen bonding and stacking interactions [314-317]. Computational studies predicted that stacking forces are more significant than hydrogen bonding in duplex stabalization [318-322]. This conclusion was recently substantiated experimentally [323, 324]. DNA intercalating agents often stabilize the helical structure by improved stacking interactions, but may destabilize a structure with poor stacking interactions as is the case with benzo[a]pyrene [325]. In the β anomer structure, optimal stacking interactions exist between the cyclopentone moiety of AFB₁ and C^{16} of the complementary strand (Figure 6-18). In the α anomer, minimal stacking of AFB₁ and C¹⁶ was observed. Additionally, stacking between X⁵ and A⁶ was lost in the α anomer relative to the β structure. This is expected to contribute to the improved thermal stability of the β anomer and reduced stability of the α anomer suggesting that AFB₁ acts similar to an inter-strand crosslink.

Lesion Structure

The forces driving anomeric equilibria in oligonucleotides are poorly understood. AFB₁-FAPY lesions prefer the α anomeric configuration by 2:1 in single stranded DNA while the β anomer is almost exclusively observed in double stranded DNA [31, 110, 115]. In AFB₁-FAPY nucleosides, the R_a atropisomer is favored over S_a by a factor of 7:1; the Z geometrical isomer was favored over E 3:1 [31]. In previous studies of β -AFB₁-FAPY [115] and now α -AFB₁-FAPY, only the R_a atropisomer is observed suggesting that S_a is only possible in the less conformationally defined nucleoside context. Equilibrium between R_a and S_a atropisomers in oligonucleotides would require the AFB₁ moiety to unstack from the 5' side of the FAPY base and re-intercalate on the 3' side. Unstacking and restacking of a large aromatic molecule like AFB₁ may represent a prohibitively large conformational energy barrier.

Although the Z geometrical isomer of AFB₁-FAPY is preferred in nucleoside 7:1 over E, E was exclusively observed in the dsDNA structures of the β anomer [115] and now the α anomer of AFB₁-FAPY. Stabilization of a single *E* geometrical isomer in both dsDNA structures is attributed to an intra-strand hydrogen bond between the FAPY formyl oxygen and the H61 proton of the 3'-adenine base [115]. This conclusion is supported by rMD trajectory analysis that predicts 95% hydrogen bond occupancy of X⁵ H8 and A⁶ H61 in dsDNA (Table 6-4). However, rMD trajectories predict a reduced occupancy of 13% for X³ H8 and A⁴ H61 in a single strand tetramer resulting from increased conformational mobility of the terminal A⁴ residue. In AFB₁-FAPY nucleoside, formyl rotation caused doubling of ¹H NMR formyl resonances and 2D NOE chemical exchange cross peaks. A single formyl proton resonance was observed for a-AFB₁-FAPY in the tetramer δ 8.3 ppm at 5 °C (Figure 6-11). NMR experiments conducted at 30 °C reveal a sharp CHO resonance at δ 7.6 ppm that produces a weak NOE to AFB₁ H8. Chemical exchange cross peaks were not observed between formyl resonances in 2D NOE spectra of the tetramer. It is concluded that at low temperatures

the *E* formyl rotamer is favored in ssDNA. At the relatively high temperature of 30 °C, a temperature comparable to HPLC separation and rMD calculations, the *E* is preferred, but *Z* is also observed to a lesser extent. The *Z* isomer is postulated to represent the chromatographically observable species preceding the primary α anomer peak (Figure 6-1).

UV traces of the HPLC peaks agree with this conclusion. The UV absorbance of nucleic acids from 200 to 300 nm arise exclusively from electronic transitions of the planar purine and pyrimidine bases [326]. The electronic structure associated with the AFB₁ moiety (320-380 nm) is identical in the primary α anomer peak and the preceding shoulder (Figure 6-4, panel B); spectral differences are only found in the far UV region. Differences in the AFB₁ π - π * transitions are observed in the α and β anomers (Figure 6-4, panel A). Similarly, significant AFB₁ π - π * transitions have been observed in ECD spectra of R_a and S_a AFB₁ dibutyrates [31] [supplemental]. The transition observed in Figure 6-4, panel B cannot be directly correlated to a formyl flip; however, given the alternatives, this data supports structures that do not significantly perturb the AFB₁ moiety.

The inversion of geometrical isomer preference between nucleoside and oligonucleotides supports formyl hydrogen bonding. It is unknown if a 3'-cytosine would stabilize E or if 3'-guanine would stabilize Z. It is plausible that inter-residue formyl hydrogen bonding is a potential source of sequence related effects associated with FAPY lesions in DNA.

Helicoidal analyses of both anomers in duplex DNA as compared to the α anomer in ssDNA indicate structural differences. In dsDNA the anomers are similar in y-

114

displacement, inter-base shift, slide, rise, and twist (Figures 6-15 & 6-16), yet dsDNA structures differ in x-displacement and twist. The possibility was considered that the structure of α -AFB₁-FAPY in dsDNA may differ from the α -AFB₁-FAPY structure in a single strand environment, at least in some parameters. The α anomers have similar structural patterns yet maintain distinct differences. For example, both dsDNA and ssDNA α anomers produce an x-displacement of 2 Å relative to the 3' and 5' neighboring bases. However, the 3' and 5' neighboring base pairs of the single strand structure are displaced by 2 Å in the x direction relative to the corresponding bases in the duplex structures (Figure 6-15).

The key to the α anomer preference in ssDNA may lie in improved π – π orbital overlap of AFB₁ with neighboring aromatic bases. Stacking interactions of the AFB₁ moiety of the α anomers in ssDNA and dsDNA were compared to those of the β anomer in dsDNA (Figure 6-17). In the β anomer structure, optimal stacking interactions exist between the cyclopentone moiety of AFB₁ and C¹⁶ of the complementary strand and between the AFB₁ tetrahydrofuran and T⁴. The stacking of the α -AFB₁-FAPY lesion is similar in ssDNA and dsDNA in that stacking is optimal between the benzene ring of AFB₁ and the intra-strand FAPY ring. Stacking of α -AFB₁-FAPY lesions differ in that the 5'-thymine is significantly displaced toward the minor groove in the tetramer. This is predicted to relax strain in the thymine-FAPY backbone linkage resulting from AFB₁ intercalation as is evidenced by a 1 Å reduction of base-base rise in the tetramer. The T² residue in ssDNA is allowed to explore this conformation because it is not stabilized by Watson-Crick hydrogen bonding with a complementary base.

Altered stacking of α and β AFB₁-FAPY anomers is supported by UV and ECD. Any electronic transition between 310-400 nm is expected to result form AFB₁ as DNA bases do not produce transitions in this range. A decrease in UV absorbance of the α -AFB₁-FAPY at 380 nm relative to the β anomer may be explained by altered AFB₁ stacking producing anomerically specific $\pi - \pi^*$ electronic transitions (Figure 6-4, panel A). Intercalators induce weak negative ECD transitions when polarized along the long axis of the intercalation site (perpendicular to the pseudo-dyad axis) and positive transitions when polarized along an axis perpendicular to long axis of the intercalation site (parallel to the pseudo-dyad axis) [327-329]. Intermediate values scale as the square of the cosine of the angle between the transition moment and the pseudo-dyad axis [327-329]. ECD spectra indicate a more negative AFB₁ induced molar ellipticity (310-400 nm) for the α anomer relative to the β anomer; this suggests that the AFB₁ moiety of the β anomer is less aligned with the long axis of the intercalation site than the α anomer. Of interest is the fact that relative magnitude of molar ellipticities is similar from 300 to 400 nm regardless of ssDNA or dsDNA. This would suggest that the AFB₁ orientation for α -AFB₁-FAPY is comparable in ssDNA and dsDNA. More pronounced ssDNA versus dsDNA ECD differences are attributed to winding angle (275 nm) and altered purinepyrimidine stacking (210 - 250 nm). Differences in dsDNA ECD spectra are attributed to pre-melting transitions (260 and 230 nm) resulting from the reduced thermal stability of the α anomer in duplex [330].

Biochemical Implications

Structural analysis of α -AFB₁-FAPY in DNA is difficult due to instability of the anomeric configuration. NMR analysis of the α anomer in single strand DNA is problematic because the mobility of the chain causes only a few inter-residue NOEs to be observable. NMR analysis of the α anomer in ssDNA and dsDNA requires expeditious sample preparation and data acquisition. The resultant structure of α -AFB₁-FAPY in dsDNA represents a thermodynamically unfavorable isomeric configuration.

Toxicity of DNA containing α anomeric adenosine has been correlated to changes to the global duplex conformation, resulting from a kink of the helical axis [28]. Helicoidal comparisons of α and β AFB₁-FAPY anomers reveal distinct differences in backbone geometry, particularly in regard to β and ζ (Δ >100°). However, the most striking difference resides in the deoxyribose orientation of the lesion (Figure 6-18). In the β structure, the sugar is approximately orthogonal to the FAPY base plane, comparable to canonical DNA bases. In the α structure, the ribose is almost parallel to the FAPY base and displaced toward the minor groove. Disrupted backbone alignment of the α -AFB₁-FAPY adduct is expected to significantly contribute to the toxicity of this lesion.

The influence of varying DNA sequences on AFB₁ reactivity with DNA has been studied extensively [118-128]. Sequence-dependent repair of AFB₁-FAPY DNA lesions has received attention only recently; Oleykowski et al. have demonstrated the rate of incision with UvrABC endonuclease on AFB₁-FAPY can vary as much as 15-fold depending on sequence with 3'-adenine being the most resistant [189]. Similarly, repair of Me-dGuo-FAPY is sequence dependent [57, 68, 69]. Intra-strand formyl hydrogen

117

bonding is a sequence dependent structural effect that may influence repair of all FAPY lesions in DNA.

Measurement of AFB₁-FAPY anomer interconversion rates suggests that the event occurs on the order of minutes to hours at physiological pH. DNA replication occurs on the order of seconds per extension step. The highly mutagenic β -AFB₁-FAPY anomer is expected to be prevalent in genomic DNA prior to replication suggesting that replication enzymes would mostly encounter the β anomer. It is uncertain to what degree, if any, enzyme binding may catalyze interconversion. If base-base stacking interactions dictate preferred AFB₁-FAPY anomers, polymerase binding pockets may induce unexpected effects. Detailed structural analysis of AFB₁-FAPY anomers complexed with replication enzymes is necessary to address this possibility.

Although α -AFB₁-FAPY is not expected to exist at high levels in genomic DNA, it may be present in RNA. Site-specific mutagenesis experiments have addressed the effect of AFB₁ on replication; the role of AFB₁ anomers in translation should be thoroughly investigated. AFB₁ is known to disrupt protein synthesis [331-335]. Recently it was demonstrated that transcription of a *supF* gene fragment treated with aflatoxin B₁-8,9-epoxide was inhibited [336]. With regard to translation and RNA, both anomers of AFB₁-FAPY must be considered.

CHAPTER VII

PHYSICAL COMPARISON OF *CIS-5R*,6*S*-THYMINE GLYCOL LESIONS IN DUPLEX DNA OPPOSITE ADENOSINE AND GUANOSINE

Introduction

This chapter addresses the physical analysis of thymine glycol (*cis*-5*R*) base paired opposite adenosine and guanosine. Typically, oxidation of thymidine produces Tg base paired with adenine (Tg•A). However, Tg opposite guanine (Tg•G) may occur when a 5-methyl cytosine is oxidized to 5-methycytosine glycol that undergoes facile hydrolytic deamination to Tg [222, 223] as discussed in Chapter I. Physical characterization of the Tg•A and Tg•G interactions were investigated with NMR NOESY experiments as previously discussed in Chapter V. This chapter discusses the comparison of Tg•A and Tg•G measurements made by UV melting analysis, electronic circular dichroism (ECD), transverse relaxation (T₂), and longitudinal relaxation (T₁).

Results

Thermodynamics

The 5'-GTGCG<u>Tg</u>GTTTGT-3'•5'-ACAAAC<u>A</u>CGCAC-3' (Tg•A) and 5'-GTGCG<u>Tg</u>GTTTGT-3'•5'-ACAAAC<u>G</u>CGCAC-3' (Tg•G) duplexes were analyzed by UV melting and compared to the unmodified 5'-GTGCG<u>T</u>GTTTGT-3'•5'-ACAAAC<u>A</u>CGCAC-3' (T•A) duplex. All samples displayed a hyperchromic shift in UV

Figure 7-1: Hybridization plots (alpha curves) for the unmodified T•A sample (●), Tg•A (▲), and Tg•G (□).

absorption as temperature was increased from 5 to 80 °C. Average hybridization plots, α curves, are shown in Figure 7-1 [246]. The T_m values calculated for a concentration of 1.0 x 10⁻⁴ M are reported in Table 7-1. Both the $Tg^{6} \cdot A^{19}$ and $Tg^{6} \cdot G^{19}$ duplexes were destabilized 13 °C relative to the unmodified duplex, $T^{6} \cdot A^{19}$.

 Table 7-1: Thermodynamic parameters of DNA duplexes

Duplex	T_m^*	∆H°	ΔS°	$\Delta G^{\circ}_{25^{\circ}C}$	$\Delta G^{\circ}_{37^{\circ}C}$
	(°C)	(kcal/mol)	(kcal/mol °K)	(kcal/mol)	(kcal/mol)
T•A [†]	71.6	-87.3±2	-0.23±0.01	-18.1±0.2	-15.2±0.2
Tg•A [†]	58.3	-83.8±1	-0.23 ± 0.01	-14.7±0.1	-11.9 ± 0.1
Tg•G [†]	58.3	-87.5±5	-0.24 ± 0.02	-15.0 ± 0.3	-12.1±0.2
T•A [‡]	73.4	-90.7±2	-0.24 ± 0.02	-18.8 ± 0.2	-15.9 ± 0.2
Tg•A [‡]	60.5	-81.1±2	-0.22 ± 0.04	-14.9±0.4	-12.2±0.4
Tg•G [‡]	60.0	-86.4±1	-0.24 ± 0.02	-15.3 ± 0.2	-12.5 ± 0.2

Reported errors are standard deviations

*Calculated for 1.0 x 10⁻⁴ M DNA concentration

[†]Determined from individual melting curves [‡]Determined from (T_m^{-1}) vs. $ln(C_t/4)$ plots

Figure 7-2: Plots of T_m^{-1} vs. $\ln(C_t/4)$ for the unmodified T•A sample (•), Tg•A (\blacktriangle), and Tg•G (\square). (C = concentration)

Thermodynamic values (ΔH° and ΔS°) were obtained by two methods, analysis of individual curves by the Meltwin application (v. 3.5, McDowell) and by linear regression analysis of van't Hoff plots (SigmaPlot v. 9.0). In van't Hoff plots, $(T_M)^{-1}$ vs. ln(C/4) produce a straight line where the slope equals R/ ΔH° and the intercept equals $\Delta S^{\circ}/\Delta H^{\circ}$ by Equation 2-1 (R = gas constant; 1.9872 cal K⁻¹ mol⁻¹) (Figure 8-2). The Gibbs free energy with respect to duplex formation (ΔG°) was determined at 25 °C and 37 °C (Table 7-1). Error values are represented as standard deviations. Tg•A and Tg•G had $\Delta\Delta G$ values of 3 kcal/mol relative to T•A. Free energy values were negative, consistent with spontaneous formation of the duplexes at temperatures below the T_m of the samples. Thermodynamic values derived from van't Hoff and individual curve analysis were statistically indistinguishable (< 10% difference).

Figure 7-3: T^1 relaxation of thymine and thymine glycol CH₃ of Tg•A (\blacksquare) and T•G (\square) relative to unmodified T•A oligonucleotides.

T₁ Measurements

Unambiguous peak integration and intensity analysis of data collected in a pseudo 2D array was possible for sharp methyl signals. T_1 measurements on thymine and Tg CH₃ were measured (e.g. T^2 , T^8 , T^9 , T^{10} , & T^{12}) in Tg•A and Tg•G duplexes. The difference in T₁ values relative to the duplex containing the unmodified T•A base pair were plotted (Figure 7-3). The T₁ relaxation of Tg CH₃ (Tg•A) was 1.9 s shorter than the corresponding T⁶ CH₃ group of T•A. Tg CH₃ (Tg•A) relaxed an average of 1.4 s shorter than T^X CH₃ in Tg•A. T₁ relaxation of Tg CH₃ (Tg•G) was 1.25 s shorter relative to the control and relaxed an average of 1.0 s shorter than other T^X CH₃.

T₂ Measurements

T₂ measurements on thymine and Tg methyl groups (e.g. T^2 , T^8 , T^9 , T^{10} , & T^{12}) in Tg•A and Tg•G duplexes were compared to those of T•A. The difference in T₂ values relative to the unmodified duplex containing the T•A base pair were plotted (Figure 7-4). The T₂ relaxation of Tg CH₃ (Tg•A) was 70 ms shorter than the corresponding T⁶ CH₃ group of T•A. The T₂ of Tg CH₃ (Tg•A) relaxed approximately 60 ms shorter than T^X CH₃ in Tg•A. T₂ relaxation of Tg CH₃ (Tg•G) was 80 ms faster relative to the control and relaxed an average of 60 ms faster than T^X CH₃. Analysis of H1', H3', and H4' protons was not possible due to the inability to unambiguously resolve individual resonances during T₂ buildup periods.

Figure 7-4: T^2 relaxation of thymine and thymine glycol CH₃ of Tg•A (**■**) and T•G (\square) relative to unmodified T•A oligonucleotides.

Figure 7-5: ECD spectra for the unmodified T•A sample (\bullet), Tg•A (Δ), and Tg•G (\Box).

Electronic Circular Dichroism

Structural effects of Tg in duplex DNA were analyzed my ECD. There were small difference in ECD spectra of T•A, Tg•A, and Tg•G (Figure 7-5). Changes in molar elipticity were observed between 210 and 300 nm, there was no signal between 300 and 400 nm. Tg•A exhibited hypochromic shifts at 280 and 220 nm relative to T•A. The Tg•G duplex produced a hypochromic shift at 220 nm and there was an overall red shift between 250 and 280 nm.

Discussion

Thermodynamics

The DNA melting temperature (T_m) is defined as the temperature at which DNAs that melt by a one step process exist as 50% single strand and 50% duplex. The T_m is an excellent indication of the stability of a DNA duplex with respect to denaturation. Detailed theory and analysis of the thermodynamic properties of DNA have been discuss in detail elsewhere [246, 251]. In brief, thermodynamic values were comparable between van't Hoff and individual curve analysis (< 10%), indicating that both Tg-modified duplexes denature via one step transitions [246, 250]. In addition, there were no concentration dependent melting effects observed within the 0.1-1.0 µM range (Table 8-1). Free energy values (with respect to duplex formation) were calculated at 25 °C and 37 °C; the values at both temperatures were negative, consistent with spontaneous formation of the duplexes at temperatures below the sample T_m . The $\Delta\Delta G$ values of the modified duplexes result from reductions in duplex stability. Melting of Tg•G was enthalpically favored over Tg•A indicating a reduction of internal energy (U) of Tg•G relative to Tg•A. Melting of the Tg•G duplex is expected to be entropically favored over Tg•A, however, this conclusion can not be drawn from this data due to statistical error.

The thermodynamic measurements indicate that Tg•A and Tg•G have similar 13 °C decreases in T_m. The presence of the 5*R*-Tg lesion perturbs the 5'-neighbor base pair $G^{5} \cdot C^{20}$. The axial conformation of the Tg CH₃ group decreases stability of the $G^{5} \cdot C^{20}$ base pair (Chapter V). This is corroborated by the observation that the imino resonance attributed to base pair $G^{5} \cdot C^{20}$ broadens due to solvent exchange and disappears from the ¹H NMR spectrum ~ 35 °C lower in the 5*R*-Tg modified DNA as compared to the

125

corresponding unmodified oligodeoxynucleotide duplex (Figure 5-5). NMR analysis of both the exchangeable G^{19} H1 imino and A^{19} N⁶ amine resonances suggest that these protons undergo increased exchange with solvent. The Tg⁶ H3 was not identified, as a result of either exchange broadening or an upfield shift to a congested spectral region. Exchange broadening of nucleic acid imino and amino resonances is characteristic of reduced base pair hydrogen bonding. Taken together, this is expected to contribute to the observed 13 °C reduction in duplex T_m of Tg•A and Tg•G.

<u>T₁ measurements</u>

T₁ data indicates a significant decrease in longitudinal relaxation for the Tg CH₃ in both Tg•A and Tg•G (~1.5 s) (Figure 7-3). The Tg•A T_1 results are consistent with the structure resulting from rMD calculations (Chapter VIII). The Tg⁶ CH₃ of Tg•A orients toward G^5 with numerous NOEs to G^5 and Tg^6 deoxyribose protons; all are potential sources of longitudinal relaxation. In contrast, a normal thymine has the CH₃ group facing into the major groove with fewer sources of longitudinal relaxation. It is possible that faster T_1 relaxation results from increased exposure to solvent. In the present work, this was minimized by dissolving the solute in D_2O ; however, trace amounts of H_2O may significantly contribute to spin-lattice relaxation. Accelerated Tg⁶ CH₃ (Tg•G) longitudinal relaxation may occur for similar reasons for those identified for the Tg•A duplex. Although the Tg•G structure is not yet refined, Tg CH₃ (Tg•G) has numerous NOEs to G^5 much like Tg•A (Chapter V, Appendix A). The structure of Tg•G is anticipated to be extrahelical producing an increased exposure to solvent relative to unmodified duplex. It is noteworthy that $Tg^6 CH_3 (Tg \cdot A)$ relaxes 0.6 s shorter than Tg^6 CH₃ (Tg•A). This attributed to a relative decrease of Tg•G exposure to solvent or

126

surrounding spin systems. Analysis of the Tg•G refined structure will be necessary to address specific spin-lattice relaxation sources.

T₂ measurements

T₂ data are indicative of a significant increase in transverse relaxation for Tg⁶ CH₃ in Tg•A and Tg•G duplexes (Figure 7-4). Tg⁶ CH₃ (Tg•A) and Tg⁶ CH₃ (Tg•G) relaxed 70 and 80 ms shorter than T^6 CH₃ (T•A) respectively. Tg has a saturated six member ring, as opposed to an aromatic ring like thymidine. Saturated six member rings are anticipated to undergo puckering. The most direct interpretation of the faster T_2 for Tg CH₃ is as a consequence of the rapid puckering on the NMR time scale of the lesion's six member ring. However, there exists the possibility of increased backbone and sugar dynamics occurring in tandem with the re-puckering of the Tg ring. As Tg re-puckers the CH₃ group shifts from axial to equatorial; this change in conformation is likely accompanied by shifts in base stacking. Unfortunately, specific contributions to T_2 relaxation can not be ascertained from these experiments. Attempts to analyze relaxation of the Tg⁶ deoxyribose protons were inconclusive due to the inability to assign relaxation times unambiguously. It is of interest that Tg⁶ CH₃ (Tg•G) relaxes 10 ms shorter than Tg⁶ CH₃ (Tg•A). This difference may result from increased Tg dynamics in Tg•G as a result of less favorable stacking in the mismatch sample.

Electronic Circular Dichroism

Electronic circular dichroism data was collect as a complement to NMR data. ECD spectra indicate small differences in the structure of T•A, Tg•A, and Tg•G duplexes (Figure 7-5). Characteristic of nucleic acids, UV electronic transitions were observed
between 210 and 300 nm [326], there was no absorbance between 300 and 400 nm as observed in AFB₁ modified DNA (Chapter VI). Tg•A exhibited hypochromic shifts at 280 and 220 nm relative to T•A. Differences in ECD spectra between Tg•A and T•A are attributed to the loss of aromaticity of the Tg base and the resultant alteration of stacking patterns of the Tg⁶•A¹⁹ base pair. The hypochromic shift at 275 nm may be a result of a reduced winding angle of Tg•A relative to T•A [330, 337]. The Tg•G duplex produced a hypochromic shift at 220 nm and there was an overall red shift between 250 and 280 nm. ECD spectra represent a composite of multiple effects. Therefore, it is difficult to decipher Tg•G ECD data without the benefit of a refined structure. Differences between Tg•G and T•A not only result form the Tg modified base, but also the replacement of A¹⁷ with G¹⁷. This represents multiple variables that may affect the electronic structure of the duplex. However, in light of thermodynamic data, it may be concluded that differences between Tg•A and Tg•G are not a consequence of reduced duplex T_m because these duplexes destabilized the duplex equally.

<u>Summary</u>

An explanation for the significant *cis-trans* equilibrium differences observed in the Tg•A and Tg•G duplexes must reside in altered contact between Tg and the complementary base. Tg•A has the correct geometry to form Watson-Crick hydrogen bonds, although NMR results indicate it is diminished (Chapter V), most likely as a consequence of steric clash between Tg⁶ CH₃ and G⁵. A possible explanation for the observed *cis-trans* equilibrium in the Tg•A sample may be reduced steric clash between G⁵ and a *trans* Tg-*5R*, *6R* lesion where the CH₃ is in an equatorial conformation. Clark et al. have shown that an equatorial CH₃ produces less steric interaction with the 5'

neighbor. Therefore, in the Tg•A duplex, a thermodynamic drive to conserve Watson-Crick hydrogen bonding may facilitate epimerization to the sterically favorable *trans* epimer. Interestingly, DFT calculations predict that *trans* 5*R*-Tg with CH₃ in an equatorial position is the next most energetically favorable Tg configuration second only to *cis* 5*R*-Tg with CH₃ in the axial arrangement (Chapter V). In the Tg•G duplex there is no possibility for Watson-Crick hydrogen

Figure 7-6: Thymine glycol base pair geometry. Watson-Crick base pair geometry (Panel A) was compared to that of a wobble base pair with Tg (Panel B).

bonding, however a wobble base pair geometry is possible (Figure 7-6). A wobble base pair configuration would displace Tg further into the major groove than a Watson-Crick configuration. This may result in reduced steric clash between Tg CH_3 and G^5 , thus, reducing the incentive to epimerize to *trans*.

Differences in Watson-Crick and wobble base geometry may explain deviations in physical measurements of Tg•A and Tg•G. ECD spectroscopy would be anticipated to be sensitive to altered electronic environments produced by differing base pair interactions. In the Tg•G wobble base pair scenario the Tg CH₃ would be displaced farther into the major groove. This may reduce longitudinal relaxation by limiting energy transfer to nearby spin systems explaining the reduced T₁ relaxation of Tg CH₃ of Tg•G relative to Tg•A. However, reduced stacking of Tg in a wobble base pair may allow for faster repuckering of the Tg base explaining the increased transverse relaxation observed in Tg•G. Tg•A and Tg•G reduce duplex melting by the same amount. This indicates than neither base pair hydrogen bonds effectively as is evidenced by solvent exchange of G^{17} and A^{17} amino resonances. However, $Tg^{6} \cdot A^{17}$ and $Tg^{6} \cdot G^{17}$ base pairs are not disordered in NMR spectra, thus both base pairs are stabilized.

Thymine glycol is influenced by the complementary base. Repair of Tg is modulated by the presence of either a complementary dA or dG [224, 227]. The *cis-trans* equilibrium position of Tg is influenced by the opposing base (Chapter V). Therefore, the Tg lesion must "communicate" with the complementary base. Tg•A and Tg•G are ordered and destabilize dsDNA by the same magnitude, although Tg•G has comparatively less internal energy (U). NMR data indicates exchange broadening of amino protons expected to participate in hydrogen bonding. Taken together it is concluded that Tg•A and Tg•G must have differing steric and van der Waals interactions that explain their different properties.

CHAPTER VIII

NMR REFINED SOLUTION STRUCTURE OF *CIS-5R*,6*S*-THYMINE GLYCOL IN DNA

Introduction

This chapter address refinement and analysis of the solution structure of *cis*-5*R*,6*S*-thymine glycol (Tg) in the duplex 5'-GTGCGXGTTTGT-3'•5'-

ACAAACACGCAC-3' (Tg•A). Thymine bases are easily oxidized by ionizing radiation or reactive oxygen species [196, 197]. Several products may result, the most stable include the Tg lesions [197, 198] (Scheme 1-5). Tg exists as a pair of *cis* enantiomers, each in equilibrium with its *trans* epimer. This equilibrium favors the *cis* isomers approximately 4:1 in nucleosides [37]. However, the *cis-trans* equilibrium is also contingent on the complementary base (Chapter V). In a Tg•A duplex, the 5*R*,6*S* isomer is preferred 7:3 over 5*R*,6*R*. Only one cross peak was observed between *trans*-5*R*,6*R*-Tg (6*R*-Tg) and DNA, therefore an accurate refined structure could not be determined.

Tg lesions are weakly mutagenic (MF< 1% causing T \rightarrow C transitions) in *E. coli*, but represent a strong replication block [211, 213, 219]. However, Tg lesions are efficiently repaired *in vivo* [198, 224, 230, 312, 338]. Predictions from molecular modeling studies suggest that Tg could be extrahelical by nature of the loss of planarity of the base [198, 219]. The degree of extrahelicity is believed to be sequence dependent and the 3' base is believed to play a role in the degree of extrahelicity of Tg [219]. It has been proposed that lesion extrahelicity may be an important factor in DNA repair [339].

An NMR refined structure of Tg in a sequence flanked by two adenines (5'-AXA-3') has shown that the lesion is approximately half extrahelical [233]. Placing 5*R*-Tg in a 5'-GXC-3' context resulted in a disordered structure at the site of modification and the complementary base [232]. Structural studies of 5S-Tg have not been reported.

Results

Chemical Analysis

Mass spectrometric analysis of the Tg-adducted oligodeoxynucleotide 5'-GTGCG<u>Tg</u>GTTTGT-3' using MALDI-TOF yielded a molecular ion peak (m/z 3732) in agreement with Tg modified 5'-GTGCG<u>Tg</u>GTTTGT-3'. CGE analysis was indicative of a single Tg modified oligodeoxynucleotide that eluted 12.4 min after the internal standard; the complementary strand eluted 8.9 min after the internal standard. HPLC analysis also confirmed the homogeneity of the sample. CGE and HPLC analysis were

repeated after NMR experiments to confirm there had been no degradation of sample purity. It was concluded that the Tg lesion did not undergo any detectable chemical change during the NMR studies. A 7:3 mixture of 6*S*-Tg and 6*R*-Tg *cistrans* isomers was observed in solution by NMR (Chapter V). The major species was determined to be 5*R*,6*S* by distance filtering of observed NOE cross peaks.

Figure 8-1: Phosphorus spectra of unmodified T•A (upper) and Tg•A (lower). Labels are indicative off 5' phosphate groups.

Figure 8-2: Chemical shift perturbation of non-exchangeable protons of Tg-5*R* modified 5'-G¹T²G³C⁴G⁵Tg⁶G⁷T⁸T⁹T¹⁰G¹¹T¹²-3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3' relative to unmodified duplex. Aromatic H8/H6 (**■**) and CH₃/H5 (**■**) resonances of the modified strand (panel A) are reported with the complementary strand (panel B). Deoxyribose H1' (**■**), H2' (**□**), H2" (**■**), and H3' (**■**) resonances of the modified strand (panel C) are reported with the complementary strand (panel D).

NMR Spectroscopy

NMR assignments of exchangeable, non-exchangeable, and Tg lesion proton resonances have been discussed in detail for the Tg•A duplex in Chapter V. Dispersion of ^{31}P resonances of the modified duplex (Tg•A) relative to the control (T•A) is indicative of backbone disturbance (Figure 8-1). The Tg⁶ and G⁵ 5' ^{31}P resonances were deshielded 0.6 and 0.2 ppm respectively. Inexplicably, the 3'-A¹³ resonance was deshielded an average of 0.4 ppm in both Tg•A and T•A. Although several phosphorus resonances were assigned in Tg•A, resonance overlap prohibited unambiguous resonance assignment in T•A.

Chemical Shift Perturbation

The ¹H chemical shifts of the modified duplex were compared to those of an unmodified duplex sample. Figure 8-2 indicates that chemical shift perturbation was localized to the lesion site and nearest neighbor base pairs. The Tg CH₃ was deshielded 0.8 ppm compared to T⁶ CH₃ of the unmodified sample. Disturbance of G⁵ and G⁷ deoxyribose protons was on the order of \pm 0.1 ppm. In addition, there were modest perturbations of deoxyribose protons of the complementary strand at residues A¹⁹ and C¹⁸ on the order of 0.2 ppm.

Torsion Angle Analysis

The preferred deoxyribose ring pucker was determined by two methods. First, ring conformations were approximated to be northern (N-type) or southern (S-type) by measurement of the mole fraction in the S configuration (X_S) (Table 8-1) [278]. The N-type mole fraction can be calculated by the standard sum rule for time-averaged physical properties [278]:

$$J_{obs} = X_s J_s + X_N J_N \tag{8-1}$$

Second, ring pucker was determined by fitting ${}^{3}J^{1}$ H coupling constants for deoxyribose protons by amplitude constrained multiplet evaluation (ACME) of COSY spectra [263]. Electronegitivity of substituent (EOS) Karplus curves were generated and converted to phase angle space assuming a maximum pucker amplitude (Φ) of 44 [277, 278]. $J_{1'2'}$, $J_{1'2''}$, and $J_{1'3'}$ were fit to the curve to determine phase angle ranges (ρ) for sugar rings. The coupling constants ${}^{3}J_{H1'-H2'}$ and ${}^{3}J_{H1'-H2''}$ could not be determined for G¹¹ and T¹². Residues that had less than 50% X_S or indicated potential for C3' endo configuration from EOS Karplus curves were constrained accordingly during rMD calculations. The deoxyribose of G¹, G⁷, G¹¹, T¹², A¹³, and C²⁴ indicated a high probability for C3' endo conformation ($\rho 0 - 210$). The Tg⁶ deoxyribose was mostly in a C2' endo conformation (70%) ($\rho 125 - 210$).

Table 8-1: Vicinal ¹H coupling constants were fit using amplitude constrained multiplet evaluation (ACME).

	$J_{H2'H2''}$	$J_{H1'H2'}$	$J_{HI'H2''}$	$J_{H2'H3'}$	X_S^*		$J_{H2'H2''}$	$J_{H1'H2'}$	$J_{HI'H2''}$	$J_{H2'H3'}$	X_S^*
G^1	-14.89	7.26	5.40	4.93	0.52	A^{13}	-17.16	7.71	5.11	4.86	0.54
T^2	-15.97	9.38	5.24	5.61	0.83	C^{14}	-14.82	9.23	4.54	6.48	0.69
G^3	-14.89	9.39	4.57	4.30	0.72	A^{15}	-14.86	9.24	4.53	4.31	0.69
C^4	-14.80	8.21	5.24	6.29	0.64	A^{16}	-17.35	9.54	4.58	4.82	0.75
G^5	-15.14	8.34	5.43	4.54	0.69	A^{17}	-15.88	8.87	5.49	5.23	0.79
Tg ⁶	-16.33	9.08	4.77	4.76	0.71	C^{18}	-15.26	8.55	4.86	5.53	0.64
$G^{\overline{7}}$	-15.17	7.31	5.04	4.79	0.47	A^{19}	-14.79	8.64	5.53	5.55	0.76
T ⁸	-16.71	9.93	4.56	5.41	0.81	C^{20}	-15.53	8.99	5.11	5.66	0.75
T ⁹	-14.09	9.79	4.07	7.10	0.71	G^{21}	-14.68	9.40	4.36	3.90	0.69
T^{10}	-15.86	8.57	5.50	6.73	0.74	C^{22}	-14.91	8.36	5.25	6.45	0.67
G^{11}			9.12	5.05		A^{23}	-13.30	8.25	6.07	5.63	0.78
T ¹²			10.31	6.22		C ²⁴	-14.31	6.99	5.82	7.07	0.54

* Mole fraction of S-type conformation $(X_{\rm S} = ((J_{H1'H2'}+J_{H1'H2'})-9.4)/(15.7-9.4)$ [278]

The phosphodiester dihedral angle ε and glycosyl torsion angle χ were empirically assessed. The ε dihedral angle (C4'-C3'-O3'-P) was approximated by heteronuclear coupling constants (${}^{3}J_{P-H3'}$) determined from constant time NOESY experiments [279, 280]; dihedral angles were determined by fitting *J* values to a Karplus relationship [281]. Karplus analysis yielded values for ε in the range of 193.0° ± 10°. No unusual ${}^{3}J_{P-H3'}$ couplings were observed; however, 1D 31 P chemical shifts were more dispersed than those of the unmodified oligonucleotide suggesting disruption of the backbone at α and ζ [340, 341]. Glycosyl torsion angles [χ] were estimated from NOESY data. The existence of cross peaks between pyrimidine H6 / purine H8 and anomeric H1' protons was consistent with the *anti* conformation of the glycosyl bond for non-terminal residues ($\chi = 160-340^{\circ}$) [282].

Structural Refinement

From the NMR studies, 675 experimental restraints were derived that could be used for structural refinement. In addition to the experimental restraints, 40 empirical distances based on hydrogen bonding geometries and 106 backbone torsion restraints were applied (Table 8-2). Proton-proton distance restraints were determined by MARDIGRAS calculation as discussed in Chapter II. The proton-proton restraints consisted of 213 intra-residue and 196 inter-residue restraints. Vicinal (intra-residue) sugar ring proton distance restraints were discarded for refinement purposes; their corresponding NOE cross-peaks were included in CORMA calculations. Analysis of exchangeable amino and imino protons indicated that Watson-Crick hydrogen bonding was disrupted for $Tg^{6} \cdot A^{19}$ and $G^{5} \cdot C^{20}$. Therefore, empirical distance restraints were applied to the remaining ten base pairs but $Tg^{6} \cdot A^{19}$ and $G^{5} \cdot C^{20}$ were excluded. There were 16 proton-proton restraints between Tg H6 and Tg CH₃ to DNA (Table 8-3).

Table 8-2: Distribution of rivid restraints				
Assigned Resonances	222			
Watson-Crick	40			
Backbone Torsion	106			
Deoxyribose Torsion	120			
Distance:	409			
Inter-residue	196			
Intra-residue	213			
Total Restraints	675			
Avg. Restraint per Residue	28			

Table 8 2. Distribution of rMD restraints

Table 8-3: Tg-(5R,6S) resonance assignments and inter/intra residue cross peaks.

Resonances	δ (РРМ)	Crosspeak with:
H1'	5.74	Tg ⁶ H2', Tg ⁶ H2'', Tg ⁶
		H3', Tg ⁶ H4', G ⁷ H8,
		$G^7 H5', Tg^6 CH_3$
H2'	2.18	Tg ⁶ H1', Tg ⁶ H2'', Tg ⁶
		H3', Tg ⁶ H4', Tg ⁶ H5',
		Tg ⁶ CH ₃ , G ⁷ H8
H2"	2.39	Tg ⁶ H1', Tg ⁶ H2', Tg ⁶
		H3', Tg ⁶ H4', G ⁷ H8

		6 6 6
H3'	4.68	Tg ^o H1 ² , Tg ^o H2 ² , Tg ^o
		H2'' $T\sigma^6$ H3' $T\sigma^6$ H4'
		1g° H5°, 1g° H5°, 1g°
		CH ₃ , Tg ⁶ H6, G ⁷ H8
H4'	4.15	Tg ⁶ H1', Tg ⁶ H2', Tg ⁶
		H2'', Tg ⁶ H3', Tg ⁶ H5',
		$Tg^6 CH_3$
Н5'	3.90	Tg ⁶ H2', Tg ⁶ H3', Tg ⁶
		H4', Tg ⁶ H5'', Tg ⁶ CH ₃
Н5''	4.08	Tg ⁶ H5', Tg ⁶ H3', Tg ⁶
		CH ₃
H6	1.35	Tg ⁶ H3', Tg ⁶ CH ₃
CH_3	0.59	G^{5} H1', G^{5} H2', G^{5}
		H2'', G ⁵ H3', G ⁵ H4',
		G ⁵ H5', G ⁵ H8, Tg ⁶
		H1', Tg ⁶ H2', Tg ⁶ H3',
		Tg ⁶ H4', Tg ⁶ H5', Tg ⁶
		H5'', Tg ⁶ H6

Structure refinement by simulated annealing began with multiple starting trajectories. Thirty-two starting structures sampling typical A-form and B-form DNA parameters were used, sixteen of them had Tg⁶ CH₃ in an axial position and sixteen had $Tg^{6} CH_{3}$ in an equatorial position. Of the resultant structures, 29 converged with Tg^{6} CH₃ in an axial position, 2 had Tg CH₃ in an equatorial conformation. Accuracy of resultant structures was evaluated by calculation of the sixth root residuals between theoretical NOE intensities and experimental NMR data. CORMA calculations indicated that the axial configuration better represented experimental data at the lesion site (R_1^X) 9.82×10^{-2} equatorial vs. 7.37×10^{-2} axial). A representative structure taken from simulated annealing refinement was placed in a truncated octahedron water box for 5 ns of isothermic rMD refinement (300 K). An ensemble of ten structures was extracted from the final 100 ps of the rMD trajectory (Figure 8-3). The pair-wise RMSD between the heavy atoms of the ten structures was 0.59 Å. R_1^X values from CORMA calculations of individual residues indicate good agreement between the final structure and ¹H NOESY data (Figure 8-4). The ensemble had a total R_1^X value of 8.24 x 10^{-2} .

Figure 8-3: Stereo view of ten superimposed structures resulting from molecular dynamics calculations in explicit solvent. The RMSD between eight core base pairs of resultant structures was 0.58 Å.

Figure 8-4: Complete relaxation matrix analysis R_x values for Tg-5*R* modified rMD ensemble of 5'-G¹T²G³C⁴G⁵Tg⁶G⁷T⁸T⁹T¹⁰G¹¹T¹²-3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3'. Per residue intra (**■**) and inter (\Box) R_x values for the modified strand are listed in panel A; values for the complementary strand are in panel B.

Figure 8-5: Nearest neighbor base pair stacking of unmodified duplex (left) compared to thymine glycol dulex (right).

The refined structure exhibited localized distortion at the lesion site. The Tg⁶ lesion was partially extrahelical. The Tg⁶ lesion tilted into the major groove and away from G⁵. Although lacking the benefit of empirical Watson-Crick hydrogen bonding restraints, the Tg⁶•A¹⁹ and G⁵•C²⁰ base pairs were ordered. Analysis of π - π stacking indicated that Tg⁶ was not distorted laterally when compared to an unmodified duplex (Figure 8-5). The A¹⁹ residue remained ordered and stacked into the duplex.

Trajectory Analysis

In an attempt to better understand the origin of the increased Tg⁶ molecular motion as evidenced by faster T^2 values (Figure 7-4), the isothermic rMD trajectory was analyzed. It was postulated that increased T^2 values for the lesion relative to unmodified thymine bases may have three possible sources: lateral base pair movement, glycosyl torsion angle fluctuation, and/or thymine glycol ring pucker. Base pair fluctuation was estimated by measurement of the distance between thymine/thymine glycol H3 and adenine N1 atoms during the 5 ns calculation (Table 8-4). The inter base pair distance between Tg⁶ and A¹⁹ was 0.1 Å greater than unmodified T•A base pairs. However, the fluctuation of the distance was 15% greater than other T•A base pairs. The glycosidic torsion angle $[\chi]$ was tracked during the calculation. The fluctuation and absolute values of χ for the modified base were unremarkable. The average angle values for the C7-C6-C5-H6 torsion angle that define the thymine/thymine glycol bases were tracked. The absolute value for Tg⁶ was 70° lower than standard thymine bases; this was expected considering the chemical modification of Tg^6 . The amplitude of the ring motion was three fold greater in Tg^6 .

The rMD trajectory was analyzed for predicted hydrogen bonds (Table 8-5). In spite of no restraints to preserved the $Tg^{6} \cdot A^{19}$ base pair, the simulation predicted conserved Watson-Crick hydrogen bonding. In addition, there was a high occupancy for the inter-strand hydrogen bond $G^7 N7 \rightarrow Tg^6 HO6$. The $Tg^6 HO5$ proton was predicted to hydrogen bond with solvent 14% of the trajectory.

Residue	Inter-strand Base Pair Distance (H3→N1) (Å)	Glycosyl Torsion Angle (degrees)	Base Torsion Angle (C7- C5-C6-H6)(degrees)
T^2	2.80±0.15	169±9	172±6
Tg^6	2.88±0.17	169±10	101±18
T ⁸	2.81±0.14	153±13	172±6
T ⁹	2.82±0.14	179±8	172±6
T^{10}	2.81±0.14	159±11	172±6
T^{12}	2.80±0.15	165±10	172±6

Table 8-4: Average thymine and Tg glycosyl torsion angle, base torsion, and inter-strand base pair distance.*

* The fluctuation of select torsion angles and atomic distances were measured during the course of 5 ns molecular dynamic simulations at 300 °K. Standard deviations represent amplitude of angle/distance flux.

j	0 1 7
	% Occupancy
$A^{19}:N1 \rightarrow Tg^{6}:H3$	99.9
Tg ⁶ :O4→A ¹⁹ :H61	98.0
G ⁷ :N7→Tg ⁶ :HO6	84.3
G ⁵ :H1→C ²⁰ :NH1	99.8
$G^5:NH1 \rightarrow C^{20}:O2$	23.7
$G^5:O6\rightarrow C^{20}:H61$	1.9
$Tg^6:O2 \rightarrow A^{19}:H2$	13.8
G ⁷ :O6→Tg ⁶ :HO6	0.9
$G^7:O6 \rightarrow Tg^6:HO5$	0.2
G ⁷ :O6→A ¹⁹ :H61	0.1
Tg ⁶ :HO5→H ₂ O	14.0
$G^7:O6 \rightarrow H_2O$	6.9
$A^{19}:H62 \rightarrow H_2O$	7.1
Tg ⁶ :O4→H ₂ O	3.9
Tg ⁶ :O2→H ₂ O	5.2
$G^7:N7 \rightarrow H_2O$	1.9

Table 8-5: Hydrogen bonding occupancy *

* Occupancy was calculated from 5 ns trajectories with a distance cutoff of 3.5 Å and angle cutoff of 120 degrees.

Helicoidal Analysis

An analysis of the helicoidal properties was performed on an average structure obtained from the refined ensemble. Results are listed in detail in Appendix E. There was a slight bend in the DNA helix of 5-10° that originated at the lesion site. There was no significant disturbance in the X-displacement, Y-displacement, or Tip base pair parameters (Figure 8-6). Base-base parameters were normal with the exception of a 0.5

Figure 8-6: Global base pair helicoidal parameters. Parameters for the rMD refined *cis*-5*R*,6*S*-thymine glycol modified 5'-G¹T²G³C⁴G⁵Tg⁶G⁷T⁸T⁹T¹⁰G¹¹T¹²-3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3 duplex are listed.

Å displacement of Tg^6 in regard to stagger and a 30° shift in propeller parameters (Figure 8-7). Global inter-base parameters indicated a 1 Å rise between Tg^6 and G^5 (Figure 8-8). In addition, there was an inter-base difference in tilt of 15° between Tg^6 and G^5 .

Solvent Accessible Surface

Solvent accessible surface (SAS) areas of the duplex were rendered with the program MSMS as a function of probe radius [342] (Figure 8-9). The SAS of the Tg base in the rMD refined structure relative to the SAS of a Tg base in a nucleoside was compared with residues A^{23} , T^9 , and T^{12} . The terminal T^{12} residue was expected to have a high percent SAS whereas the interior T^9 and A^{23} bases where expected to yield a reasonable approximation of canonical base SAS. The percent of surface area accessible to solvent was rendered as a function of probe radii. The average accessible surface area

Figure 8-7: Global base-base helicoidal parameters. Parameters for the rMD refined *cis*-5*R*,6*S*-thymine glycol modified 5'-G¹T²G³C⁴G⁵<u>T</u>g⁶G⁷T⁸T⁹T¹⁰G¹¹T¹²-3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3 duplex are listed.

of the Tg^{6} residue was approximately 20%. The terminal T¹² residue had an elevated area exposed to solvent at an average of 21%. The SAS of Tg^{6} was comparable to that of the terminal T¹² residue. The color coded Connolly surface of the residues of interest is depicted in Figure 8-9.

Figure 8-8: Global Inter-base helicoidal parameters. Parameters for the rMD refined *cis*-5*R*,6*S*-thymine glycol modified 5'-G¹T²G³C⁴G⁵Tg⁶G⁷T⁸T⁹T¹⁰G¹¹T¹²-3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3 duplex are listed.

Discussion

The refined structure confirmed that the Tg was partially extrahelical toward the major groove (Figure 8-3). NOE cross peaks between Tg^6 CH₃ and the 5' neighbor, G^5 , were consistent with a well ordered structure. Molecular modeling studies indicated an equatorial Tg^6 CH₃ could be more easily incorporated into a DNA duplex [219]. An axial

 Tg^{6} CH₃ has greater steric interference with G⁵ than an equatorial Tg^{6} CH₃. CORMA calculations revealed that axial Tg^{6} CH₃ better fit experimental NOESY data than an equatorial Tg^{6} CH₃. This result was in agreement with crystallographic data [207, 234] and *ab initio* quantum calculations (Chapter V). The lack of Tg planarity causes the lesion to behave as a "steric wedge". Steric factors affect the ability of Tg^{6} to efficiently Watson-Crick hydrogen bonding with A¹⁹ as is evidenced by thermodynamic data (Chapter VII).

Duplex stability is reduced in a Tg modified oligonucleotide (Chapter VII). Disruption of efficient Tg⁶•A¹⁹ and G⁵•C²⁰ hydrogen bonding was given as an explanation for the reduced T_m. A first approximation would suggest that stacking of the Tg lesion is not significantly different from an unmodified duplex (Figure 8-5). However, helicoidal analysis indicates that π - π stacking is reduced in the modified structure as is evidenced by inter-base tilt (Figure 8-8) and base-base propeller twist (Figure 8-7). A reduction in π - π orbital overlap may also contribute to reduced duplex stability.

The present refined structure predicts a slight bending of the helical axis around the lesion site, as seen in Figure 8-3 and Appendix E. Helicoidal analysis indicated this bend to be 10° between terminal base pairs and 7° between penultimate base pairs. The loss of stability resulting from a Tg lesion is expected to control the degree of helical axis bending. This may be a consequence of steric interaction with Tg⁶ CH₃ or an error resulting form under-refinement at the lesion site as a consequence of relatively few experimental restraints. Although DNA axis bending is probable, definitive conclusions

concerning bending are not possible without residual dipolar coupling restraints [343, 344].

Previously, the extrahelicity of Tg was determined in the 5'-AXA-3' sequence [233] by measuring the SAS of Tg and comparing this to other bases in the duplex. It was concluded that 5*R*-Tg was approximately half extrahelical (~50%). In modeling studies 5'-GXG-3' was predicted to have a greater extrahelicity than 5'-AXA-3' [219]. Although there is ambiguity in how 5'-AXA-3' SAS measurement was conducted, in 5'-GXG-3', the Tg lesion is 20 % exposed to solvent (Figure 8-9). The SAS of Tg^6 in 5'-GXG-3' was comparable to the highly exposed, terminal T^{12} residue (22 %) and 15% greater than the well stacked T^9 residue. The SAS of Tg in 5'-GXG-3' is less than in 5'-AXA-3' [233]; however, modeling studies predicted that Tg

Figure 8-9: The solvent accessible surface (SAS) of select bases as a function of probe radius. The SAS of Tg^6 (**a**) was compared to T^9 (**b**), T^{12} (**c**), and A^{23} (**c**) (DNA SAS / Base SAS * 100). The color coded Connolly surface of the modified duplex is rendered in the upper panel.

extrahelicity would be greater in 5'-GXG-3' [219]. The discrepancy between predicted

extrahelicity and observed SAS of Tg in the 5'-GXG-3' sequence may be a result of experimental procedure. Modeling studies and structural refinement of Tg modified oligonucleotides were previously conducted in vacuo [219, 232, 233]. The present refinement of Tg in 5'-GXG-3' has been conducted using implicit and explicit solvent models [253, 283, 286, 287]. These models more accurately reflect behavior of biomolecules in solvated systems. However, it should be noted that the rMD refined 5'-GXG-3' structure would suggest conserved Watson-Crick hydrogen bonding in contradiction to thermodynamic and NMR experimental data. An explanation for this discrepancy may result from minimization of the AMBER energy function where hydrogen bonding of the $G^{5} \cdot C^{20}$ and $Tg^{6} \cdot A^{19}$ base pairs result in a lower system energy.

Restrained molecular dynamics trajectories were analyzed for predicted hydrogen bonds. Interestingly, 84 % occupancy was determined for Tg⁶ OH6 \rightarrow G⁷ N7. This hydrogen bond could not be confirmed experimentally. However, a similar bond would be expected in the 5'-AXA-3' context. An inter-residue hydrogen bond could stabilize the Tg lesion in multiple ways. First, epimerization at the chiral Tg C6 would favor the 6*S* configuration; a 6*R* would place the hydroxyl group on the 5' face of Tg where it would have an unfavorable steric clash with 5'-dG. A Tg⁶ OH6 \rightarrow G⁵ N7 hydrogen bond would not be possible because of improper geometry. Secondly, the Tg⁶ OH6 \rightarrow G⁷ N7 hydrogen bond may affect lesion extrahelicity. In 5'-GXC-3', a Tg⁶ OH6 \rightarrow C7 hydrogen bond is not possible. As a likely consequence, structural studies of Tg modified 5'-GXC-3' found that the lesion and complementary base were disordered [232]. Perhaps repeating NMR analysis of a Tg modified oligonucleotide with a 3'-pyrimidine would offer new insights to lesion stability.

Pseudorotational analysis indicated that G^7 and the four terminal residues had an increased C3' endo (N-type) sugar population (Table 8-1). This observation for the terminal bases may be explained by increased dynamics and duplex fraying. It is not immediately obvious why G^7 has a 15 – 20 % increase in N-type conformation, but the fact that G^7 is adjacent to Tg⁶ should be considered. Careful analysis of coupling constants of other Tg modified oligonucleotides is necessary to accurately interpret this observation.

Biological Significance

To understand why Tg lesions are efficiently repaired, it is necessary to understand what structural characteristics are recognized by the enzyme. There are multiple possibilities with Tg modified DNA: extrahelicity, reduced melting temperature, disrupted hydrogen bonding modes, and loss of base planarity. These properties are directly related to one another. For example, the loss of base planarity prohibits Tg⁶ from effectively stacking. This results in the extrahelicity of the lesion and its inability to efficiently Watson-Crick hydrogen bond. The reduced stacking and hydrogen bonding causes the reduction of melting temperature and helix stability. The importance of steric contributions from Tg⁶ CH₃ cannot be overlooked. While this work was in progress a crystal structure of a binary complex of the replicative RB69 DNA polymerase with a *cis*-5*R*,6*S*-Tg modified oligodeoxynucleotide was published [234]. The crystal structure indicates that Tg CH₃ hinders stacking of the 5' base causing replication to stall after insertion of dA opposite Tg. In the present data $Tg^6 CH_3$ interacts with the 5' G⁵ residue and effectively reduced the $G^5 \cdot C^{20}$ base pair stability (Chapter V)

It has been reported that human endonuclease III (hNth) and human endonuclease like protein (hNeill) differentially repair Tg depending on whether the complementary base is guanine or adenine [224, 230]. Likewise, repair of Tg is modulated by lesion stereochemistry [224, 227, 228, 230]. Therefore, a variety of Tg lesions motifs are possible, i.e. *5R*-Tg•A, *5S*-Tg•A, *5R*-Tg•G, *5R*,*6R*-Tg•A, etc. In addition to the currently discussed Tg structure, only one other Tg solution structure exists [233]. To have a more complete understanding of how various Tg structural motifs are biologically interpreted, it would be useful to conduct structural studies of Tg modified duplexes that explore the various Tg lesion configurations and sequence related effects. Results maybe useful in explaining sequence related polymerase stalling [215]

CHAPTER IX

SUMMARY

The impetus for this dissertation was to develop, via NMR methodology, a better understanding of the effects of specific lesions on the three dimensional structure of DNA and, in turn, on biological processing. However, it became obvious in the early stages that structural results could not be accurately interpreted without knowledge of lesion equilibria. Three fluxional DNA lesions were studied: methyl formamidopyrimidine (Me-dGuo-FAPY), aflatoxin B₁ formamidopyrimidine (AFB₁-FAPY), and thymine glycol (Tg). These lesions differ in their chemical properties and demonstrate a range of structural scenarios that influence replication and repair.

Formamidopyrimidines

Comparison of methyl and AFB₁ substituted formamidopyrimidine adducts indicate lesion specific effects on FAPY equilibrium. The anomer equilibrium of AFB₁-FAPY favors the α anomer by 2:1 in ssDNA, whereas the α and β anomers of Me-dGuo-FAPY were present in approximately equal quantities in ssDNA. The difference in FAPY equilibrium of these two lesions is due to the large hydrophobic aromatic ring system of AFB₁. In ssDNA π - π orbital stacking is more effective with the α anomer than the β . In dsDNA, the AFB₁ prefers stacking with the complementary strand. With Me-dGuo-FAPY the CH₃ group does not have π orbitals and can not stack; therefore, Me-dGuo-FAPY is free to equilibrate without stacking bias.

In contrast to the differential effects of stacking, AFB₁ and methyl-substituted FAPYs are postulated to have similar sequence-dependent properties. The central element of this comment is based on an observed inter-residue hydrogen bond between the FAPY formamide and a 3'-adenine N⁶ amino group. This hydrogen bond was originally reported by Mao et al. [115] when studying β -AFB₁-FAPY in dsDNA and further corroborated in the present work (Chapter VI). Evidence supporting this conclusion includes deshielding of the A⁶ NH1 chemical shift relative to unmodified DNA. Proton deshielding is consistent with electron withdrawing as a consequence of hydrogen bonding. In addition, AFB₁-FAPY nucleosides favor the formamide Z geometrical isomer over E by 2:1. In dsDNA, only the E isomer was observed. This is indicative of a driving force unique to DNA and absent in nucleosides where E is the preferred form. Preference of the E form is accounted for by a hydrogen bond between the formyl carbonyl group and the N⁶ amino group of the 3' adenine (Chapter VI). Finally, hydrogen bond formation is supported by rMD calculations that predict 95% hydrogen bond occupancy. Circumstantial evidence for the existence of an inter-residue hydrogen bond was found when replacement of the 3'-dA with a 3'-dT resulted in a mixture of configurational isomers (Chapter IV). A 3'-dT will not hydrogen bond with the carbonyl group; therefore, the equilibrium of geometrical isomers may resemble the nucleoside equilibration more closely. This hydrogen bond was less stable in ssDNA samples containing α -AFB₁-FAPY (Chapter VI). Regardless, an inter-residue hydrogen bond represents a sequence specific property.

Only recently has the sequence-dependent repair of AFB₁-FAPY DNA lesions been addressed. Oleykowski et al. have demonstrated the rate of incision with UvrABC endonuclease on AFB₁-FAPY can vary as much as 15-fold depending on sequence with 3'-adenine being the most resistant [189]. Similarly, repair of Me-dGuo-FAPY is sequence dependent [34, 57, 68-70, 300] although these studies did not address a 3'-A. Intra-strand formyl hydrogen bonding is a structural effect that may influence repair of all FAPY lesions in DNA. Oleykowski's data [189] suggests that stabilization of formyl rotamers is correlated to AFB₁-FAPY repair efficiency. It is more difficult to offer conjecture on Me-dGuo-FAPY sequence specific repair because Me-dGuo-FAPY atropisomers may also be possible (Figure 1-3); thus far only the atropisomers of AFB₁-FAPY have been detected [31]. Although 3'-dA is expected to stabilize a R_a atropisomer and E geometrical isomer, it is unclear if a S_a atropisomer could be stabilized by an interresidue hydrogen bond.

Thymine Glycol

It is estimated that human cells repair hundreds of Tg lesions per day [198]. The Tg lesion is a substrate for base excision repair, both in *E. coli* and in mammalian cells [307]. In *E. coli*, repair of Tg is initiated by endonuclease III (Nth) [308] and endonuclease VIII (Nei) [309]. The base excision repair of Tg lesions is dependant on both their stereochemical configurations (5R,6S vs. 5S,6R), and the identity of the complementary base [224]. Multiple studies have shown that thymine glycol inhibits DNA synthesis *in vivo* in most DNA sequences [211, 213-215]. However, polymerase read-through is possible in select sequences [215]. The presence of a pyrimidine 5' to Tg

enhances the probability of translesion synthesis more than a 5' purine [215-217]. The 3' base determines the extent of replication block [218].

Initially, the principal structural property associated with Tg lesions was their extrahelicity [233]. Based on solution structure and modeling studies [219, 231] the DNA sequence was postulated to alter the degree of extrahelicity and thereby explain observed sequence related biological effects [215-218]. More recently, a crystal structure of a *cis-5R*,6*S*-Tg modified oligonucleotide with the RB69 polymerase revealed that the Tg methyl group was in the axial conformation, hindering stacking of the adjacent 5′-template guanine [234]. Chapter VIII corroborates the fact that *cis-5R*,6*S*-Tg is extrahelical in a sequence other than that studied by Kung et al. [233]. In Chapter V it was demonstrated that the 6*R*-Tg to 6*S*-Tg equilibrium point was dependent on the complementary base.

Taken together it appears that Tg steric interactions may in fact be the principal determinant in sequence specific biological effects. For example, steric clash with the 5' and 3' neighbors may affect extrahelicity, while steric interactions with the complementary base affect 6R-Tg to 6S-Tg (*cis-trans*) epimerization. However, an additional sequence dependent factor may be intra-strand hydrogen bonding. Previous modeling studies [231] and the present work (Chapter VIII) predict a Tg⁶ OH6 \rightarrow G⁷ N7 hydrogen bond. Unfortunately, this hydrogen bond cannot be confirmed experimentally. However, it is interesting to note that initial structural studies of Tg with 3'-dC resulted in a disordered structure. A Tg⁶ OH6 \rightarrow Xⁿ⁺¹ N7 hydrogen bond may also contributed to stabilization of the Tg base so that an ordered structure was observed in 5'-ATgA-3' and 5'-GTgG-3' sequences but not 5'-GTgC-3' [232, 233] (Chapter VIII). The presence of 3'

pyrimidines produced increased replication blockage relative to 3' purines [218]. Sequence dependent toxicity may result, in part, to an inter-residue Tg-purine hydrogen bond where 3' pyrimidines produce unstable structures.

Despite the fact that Tg was a strong block to replication in *E. coli*, it was weakly mutagenic, causing < 0.5% T \rightarrow C transitions [219]. It was concluded that the *cis*-5*R*,6*S* Tg adduct was displaced laterally toward the major groove as compared to an unmodified thymine, perhaps increasing the likelihood of G•Tg wobble pairing, potentially explaining the observed T \rightarrow C transitions [219]. An interesting possibility is that the *trans*-5*R*,6*R* lesion is responsible for the < 0.5% mutagenicity reported in *E. coli*. Specifically, for the *trans*-5*R*,6*R* epimer, the equatorial conformation of the Tg CH₃ group is predicted to be more energetically favorable (Table 5-2). In the RB69-Tg crystal structure, stacking of the adjacent 5'-template guanine was hindered by an axial Tg CH₃ [234]. The equatorial orientation of the Tg CH₃ group in the *trans*-5*R*,6*R* epimer may allow stacking of the 5' neighbor template guanine, presumably facilitating incorporation of the next incoming nucleotide into the growing primer strand.

FAPY and Thymine Glycol Anomerization

It is of interest to compare the chemistry of the *5R*-Tg adduct with that of the FAPY lesion. In oligodeoxynucleotides, two equilibrating AFB₁-FAPY species, separable by HPLC, were identified as anomers [31]. The configurational state of the AFB₁-FAPY adduct differs in ssDNA and dsDNA. This interconversion involves deoxyribose ring opening via formation of a transient iminium bond between C1' and the glycosidic nitrogen (Scheme 9-1) [47-50]. Similarly, the N1 position of the *cis-trans* Tg

intermediate is a tertiary amine, allowing for the possibility of anomerization by the same pathway.

The rate of epimerization of *cis*-5*R*,6*S*-Tg was reported to be $5.84 \times 10^{-3} \text{ min}^{-1}$ at pH 7.4 and ambient temperature [37], which is fast compared to anomerization of FAPY lesions under the same conditions. HPLC and CGE monitoring of Tg modified ssDNA incubated under acidic conditions (pH 6.0) produced a single peak. The fact anomers were not observed suggests that there is a significant energy barrier to anomerization in Tg that is not present in FAPY samples.

Resonance delocalization may be a key aspect to anomerization of Tg and FAPY. In Tg the N1 lone pair is expected to delocalize with the adjacent carbonyl, much like in amides. If the nitrogen lone pair is delocalized, it will not be available to form the iminium bond necessary for deoxyribose ring opening (Scheme 9-1). This may represent a prohibitive barrier to anomerization. However, resonance stabilization also occurs in FAPYs. To estimate the extent of resonance delocalization, the length of the carbon nitrogen bond (C1'-N1 in Tg; C1'-N6 in FAPY) was determined by post DFT calculation of Tg and FAPY bases. The C-N bond of FAPY was calculated to be 1.36 Å as compared to 1.37 Å for the Tg intermediate (Appendix B). The 1% difference between the two measurements is inconclusive by itself, but would suggest the FAPY is more stable. This would indicate that FAPY will anomerize more slowly than the Tg intermediate. The pK_a of FAPY NH6 (21.6, -4.40) and Tg intermediate NH1 (9.26, -4.50) were estimated by partial charge distribution calculation [345-347] of the modified bases. These results

β-FAPY

 α -FAPY

Scheme 9-1: Thymine glycol and FAPY lesion anomerization in DNA. Anomerization may occur in FAPY residues ($X = AFB_1$ or CH_3) by an iminium intermediate (Panel A). A similar iminium intermediate maybe possible during the *cis-trans* epimerization of thymine glycol lesions (Panel B).

Figure 9-1: Newman projections of the α -AFB₁-FAPY C1'-N⁶ and N⁶-C6 bonds. Analysis of the rMD α -AFB₁-FAPY structure indicates that the N⁶ lone pair is orthogonal to the plane of the FAPY base. This prohibits the lone pair from resonance delocalization with the ring, thus, it is free to participate in the transient iminium bond necessary for anomer epimerization.

Figure 9-2: Newman projections of the C1'-N1 and N1-C2 bonds of the thymine glycol *cis-trans* intermediate. Analysis of the rMD *cis-5R*,6*S*-thymine glycol structure indicates that the N1 lone pair of the *cis-trans* Tg intermediate would be subject to resonance delocalization with the C2 carbonyl. Therefore, the N1 lone pair would be less available to participate in the C1'-N1 iminium bond necessary for anomer epimerization.

suggest that dissociation of FAPY NH6 may limit iminium bond formation prior to deoxyribose ring opening. Attempts to quantitate resonance stability relied on calculation of modified bases; it was considered that secondary structures maybe a factor in lesion specific anomerization. These data would suggest that FAPYs are less likely to anomerize than Tg contradictory to experimental results.

Careful analysis of the 3D structures of Tg and AFB₁-FAPY modified oligonucleotides suggests a stereoelectronic element to anomerization. Analysis of both α -AFB₁-FAPY and β -AFB₁-FAPY structures indicate the FAPY NH1 is *trans* to H1' in both anomer structures [115] (Chapter VI). Additionally, the N1 lone pair orbital is parallel to the plane of the FAPY base (Figure 9-1), indicating that N1 is sp3 hybridized. This configuration would prohibit lone pair conjugation with the ring system; however, it would be free to participate in iminium bond formation. Direct comparison with the Tg intermediate is not possible, but overall geometry in DNA is expected to be similar to a Tg lesion. In Tg the N1 is sp2 hybridized and postulated to remain sp2 hybridized in the Tg intermediate (Figure 9-2). Structural analysis suggests that the N1 lone pair orbital in the Tg intermediate is orthogonal to the Tg plane and has the proper geometry to conjugate with the adjacent carbonyl. This would reduce the availability of the lone pair to participate in an iminium bond and reduce the possibility of anomerization.

This stereo-electronic effect would be expected to be reduced in a highly mobile single strand or nucleoside environment. Although it has not been reported, Tg nucleoside may still anomerize. The fact that Tg anomers have not been observed suggests that the reaction is very slow. Considering that Tg lesions are efficiently

repaired and short lived *in vivo*, this introduces the question of whether the α anomer is biologically relevant in the case of slow anomerization.

APPENDIX A

NMR RESONANCE ASSIGNMENTS

Spin	Residue	Atom	Nucleus	Chemical
System				Shift(ppm)
1	A	31P	³¹ P	-0.07
1	A ¹	C1'	¹³ C	86.0
1	A ¹	C2'	¹³ C	37.4
1	A ¹	C3'	¹³ C	77.1
1	A ¹	C4'	¹³ C	86.9
1	A ¹	C5'	¹³ C	61.9
1	A ¹	H1'	¹ H	6.35
1	A ¹	H2'	¹ H	2.68
1	A ¹	H2''	¹ H	3.01
1	A ¹	H3'	¹ H	4.91
1	A ¹	H4'	¹ H	4.32
1	A ¹	H5'		3.78
1	X^2	31P	³¹ P	-0.19
1	X^2	C1'	¹³ C	81.4
1	X^2	C2'	¹³ C	37.5
1	X^2	C3'	¹³ C	75.4
1	X^2	C4'	¹³ C	82.0
1	X^2	H1'	¹ H	5.89
1	X ²	H2'	¹ H	2.11
1	X ²	H2''	¹ H	2.47
1	X ²	H3'	¹ H	4.74
1	X ²	H4'	¹ H	4.25
1	X ²	H5'	¹ H	3.93
1	X ²	H5''	¹ H	4.04
1	C ³	C1'	¹³ C	85.4
1	C ³	C2'	¹³ C	39.4
1	C ³	C3'	¹³ C	70.4
1	C ³	C4'	¹³ C	85.0
1	C ³	C5'	¹³ C	69.5
1	C ³	H1'	¹ H	6.22
1	C ³	H2'	¹ H	2.19
1	C ³	H2''	¹ H	2.33
1	C ³	H3'	¹ H	4.49
1	C ³	H4'	¹ H	4.10

Table A-1: Resonance assignments for Me-dGuo-FAPY in 5'-A¹X²C³-3' (furanose)

1	C ³	H5	¹ H	5.96
1	C ³	H5'	¹ H	3.89
1	C^3	H6	¹ H	7 78
2	۵ ¹	31 D	³¹ D	-0.22
2	Λ Λ ¹	C1'	¹³ C	-0.22 95 /
2	A 1		¹³ C	00.4
2	A A	62	130	37.4
2	A	C3	¹³ C	76.7
2	A'	C5']°C	61.4
2	A'	H1'	'Η	6.40
2	A	H2''	¹ H	2.86
2	A ¹	H3'	¹ H	4.95
2	A ¹	H4'	¹ H	4.34
2	A ¹	H5'	¹ H	3.81
2	C ³	C1'	¹³ C	85.3
2	C^3	H1'	¹ H	6 14
2	C^3	H2'	1 1	2 19
2	C^3	H2"	ா 1ப	2.10
2	C^3	11Z 112'	11 1	2.51
2	v^2	240	۱۱ ³¹ ח	4.40
2	$^{\wedge}$	31P	130	-0.0-
2	\mathbf{X}			82.1
2	X ⁻	C2'	¹³ C	37.5
2	X	C3'		76.1
2	X ²	C4'	¹³ C	83.3
2	X ²	C5'	¹³ C	65.2
2	X^2	H1'	¹ H	5.68
2	X ²	H2''	¹ H	2.18
2	X ²	H3'	¹ H	4.71
2	X ²	H4'	¹ H	4.18
2	X ²	H5'	¹ H	3.94
2	X^2	H5"	1 ¹ H	3 99
2	C^3	H1'	1 1	6.08
3	C^3	⊔2'	1 1	2.14
3	C^3	11∠ ⊔2''	11 1	2.14
3			1	2.33
3		H3		4.48
3		H4 [°]	H	4.02
3	X-	C4'	¹³ C	82.6
3	X	C5']°C	64.9
3	X ²	H1'	'H	5.94
3	X ²	H3'	¹ H	4.72
3	X ²	H4'	¹ H	4.30
3	X ²	H5'	¹ H	3.92
3	X ²	H5''	^{1}H	4.01
n	XY	CH₃	¹ H	1.71
n	XY	CHO	¹ H	8.30
n	xY	CHO	1H	7 47
		0110	••	1.71

Spin	Residue	Atom	Nucleus	Chemical
System				Shift(ppm)
1	A ¹	C1'	¹³ C	84.9
1	A ¹	C2'	¹³ C	38.1
1	A ¹	C3'	¹³ C	76.3
1	A ¹	C4'	¹³ C	86.7
1	A ¹	C5'	¹³ C	61.6
1	A ¹	H1'	¹ H	6.43
1	A ¹	H2'	¹ H	2.74
1	A ¹	H2"	¹ H	2.83
1	A ¹	H3'	1H	4 94
1		H4'	1 ¹ H	4 38
1	Δ^1	H5'	1H	3 78
1	x^2	C1'	¹³ C	85.4
1	x^2	C2'	¹³ C	30.7
1	x^2	C2'	¹³ C	70.8
1	x^2	C4'	¹³ C	68.2
1	\mathbf{x}^2	C5'	¹³ C	66 1
1	$^{\wedge}$ 2		1 1	5.01
1	\sim \sim^2	111 ロッ	11 1	2.91
1	$^{\times}$	ПZ ЦО!!	п ¹ ц	2.04
1	$^{\times}$		□ 1	2.20
1	\mathbf{X}			4.34
1	\mathbf{X}	H4		4.03
1	\mathbf{X}	H5	H 1	3.68
1	X^{-}	H5 ¹¹	13 C	4.08
1			130	84.8
1		C2'	¹³ C	39.3
1	C°	C3'	¹³ C	69.4
1	C°	C5	¹³ C	95.7
1	C	H1'	'H	6.09
1	C	H2'	'H	2.12
1	C	H2''	'H	2.25
1	C	H3'	'H	4.43
1	C	H4'	Ή	4.04
1	C³	H5	¹ H	5.82
1	C ³	H5'	¹ H	4.02
1	C ³	H6	¹ H	7.69
1	C^3	31P	³¹ P	-0.45
2	X^2	C1'	¹³ C	74.6
2	X^2	C2'	¹³ C	34.7
2	X ²	C3'	¹³ C	71.0
2	X ²	C4'	¹³ C	69.7
2	X ²	C5'	¹³ C	69.4
2	X ²	H1'	¹ H	5.54
2	X ²	H2'	¹ H	2.03
2	X ²	H2''	¹ H	2.21
2	X ²	H3'	¹ H	4.68
2	X ²	H4'	¹ H	4.25

Table A-2: Resonance assignments for Me-dGuo-FAPY in 5'- $A^{1}X^{2}C^{3}$ -3' (pyranose)
2	X^2	H5'	¹ H	3.89
2	X ²	Р	³¹ P	-0.35
3	X ²	C1'	¹³ C	77.1
3	X ²	H1'	¹ H	5.30
3	X ²	H2'	¹ H	2.03
3	X ²	H2''	¹ H	2.15
3	X ²	H3'	¹ H	4.39
3	X ²	H5'	¹ H	3.68
4	X ²	C1'	¹³ C	77.3
4	X ²	H1'	¹ H	5.15
4	X ²	H2''	¹ H	2.08
4	X ²	H3'	¹ H	4.38
4	X ²	H4'	¹ H	3.78
4	X ²	H5'	¹ H	3.67
n	X ^Y	CH₃	¹ H	1.71
n	XY	CHO	¹ H	8.30
n	X ^Y	CHO	¹ H	7.46

Table A-3: Resonance assignments for unmodified 5'-C¹T²A³T⁴G⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-3'

	Prima	ary Strand		Complementary Strand			
Residue	Atom	Nucleus	Chemical Shift(ppm)	Residue	Atom	Nucleus	Chemical Shift(ppm)
C ¹	H1'	¹ H	5.83	T ¹¹	H1'	¹ H	5.76
C ¹	H2'	¹ H	2.22	T ¹¹	H2'	¹ H	1.75
C ¹	H2"	¹ H	2.57	T ¹¹	H2''	¹ H	2.20
C ¹	H3'	¹ H	4.66	T ¹¹	H3'	¹ H	4.61
C ¹	H4'	¹ H	4.09	T ¹¹	H4'	¹ H	4.02
C ¹	H5	¹ H	5.91	T ¹¹	H5'	¹ H	3.64
\mathbf{C}^{1}	H5"	^{1}H	3.80	T ¹¹	H5''	¹ H	3.62
C ¹	H6	¹ H	7.87	T ¹¹	H6	¹ H	7.36
C^1	C1'	¹³ C	83.7	T ¹¹	CH₂	¹ H	1.63
T ²	H1'	¹ H	5.77	T ¹¹	C1'	¹³ C	83.6
T ²	H2'	1H	2 30	G ¹²	H1	¹ H	12 68
Τ ²	H2"	1H	2 61	G ¹²	H1'	1H	5 34
Τ ²	H3'	1H	4 92	G ¹²	H2'	1H	2 73
Т ²	H4'	1H	4 23	G ¹²	H2"	1H	2 77
Т ²	H5'	1H	4 23	G ¹²	H3'	1H	4 97
т ²	H5"	1H	4.20	G ¹²	H4'	1H	4.30
T^2	H6	1н 1	7.63	G^{12}	H5'	1H	4.00
т ²	CH.	1H	1 71	G^{12}	H5"	1H	7.00 3 0/
T^2		¹³ C	83.2	G^{12}	НЯ	1 1	7 97
Δ ³	U1 Н1'	с 1 _Ц	6.20	G^{12}	C1'	¹³ C	81.6

A^3	H2	¹ H	7.36	A^{13}	H1'	¹ H	6.00
A ³	H2'	¹ H	2.71	A^{13}	H2	¹ H	7.30
Δ ³	H2"	¹ H	2.96	Δ ¹³	H2'	¹ H	2 79
Δ ³	нз'	1н	5.05	Δ ¹³	но"	 1н	2.02
۸ ³	но ци	11 1	0.00 1.45	Λ ¹³	11Z LI2'	1 1	5.00
۸ ۸ ³	114	11 11	4.40	A 13	113	11 111	5.09
A		н 1	4.22	A 13			4.48
A ³	H5 ^m	H	4.13	A 13	H5	H	4.21
A	H61	'H	7.69	A ¹⁰	H5''	ΎΗ	4.15
A	H62	'H	6.47	A	H62	'Η	6.00
A	H8	'H	8.42	A ¹³	H8	'H	8.23
A^3	C1'	¹³ C	82.2	A^{13}	C1'	¹³ C	81.9
T^4	H1'	¹ H	5.66	A ¹⁴	H1'	¹ H	6.21
T^4	H2'	^{1}H	1.96	A ¹⁴	H2	¹ H	7.66
T^4	H2"	¹ H	2.38	A^{14}	H2'	¹ H	2.58
T^4	H3	¹ H	13.33	A ¹⁴	H2''	¹ H	2.94
T^4	H3'	¹ H	4 85	A ¹⁴	H3'	¹ H	4 84
Т ⁴	H4'	1 _H	4 16	Δ^{14}	H4'	1 _H	4 49
т ⁴	H5'	1 1	4.16	Δ ¹⁴	HS	் 1ப	8.18
т т 4		11 1	7.11	Λ Λ ¹⁴		1 1	1 20
1 1		11 1	1.11	A A ¹⁴		11 1	7.30
1 4		п ¹³ о	1.42	A 14		п ¹³ о	7.31
1 0 ⁵	C1 [°]		82.1	A 	CT [*]		82.0
G [°]	H1	H	12.2	-15	H1 [°]	H	5.86
G ^r	H1 [°]	¹ H	5.62	1 ¹⁰	H2'	1	2.01
G°	H2'	'H 1	2.68	T ¹⁰	H2"	'H	2.57
G	H2"	'H	2.77	T'	H3	'H	13.51
G	H3'	'H	5.01	T'3	H3'	ΎΗ	4.84
G	H4'	'H	4.36	T ¹⁵	H4'	'H	4.31
G	H5'	¹ H	4.12	T^{15}	H5'	¹ H	4.10
G⁵	H5"	¹ H	4.07	T ¹⁵	H6	^{1}H	7.10
G^5	H8	¹ H	7.85	T ¹⁵	CH₃	¹ H	1.30
G^5	C1'	¹³ C	81.1	T ¹⁵	C1'	¹³ C	82.2
A ⁶	H1'	¹ H	6.22	C ¹⁶	H1'	¹ H	5.65
A ⁶	H2	¹ H	7.64	C^{16}	H2'	¹ H	2.11
Δ ⁶	H2'	¹ H	2.66	C^{16}	H2"	1H	2 46
Δ^6	H2"	1 _H	2.00	C^{16}	H3'	 1н	4.86
Δ^6	H2'	1 1	5.01	C^{16}	но Ни'	் 1ப	4.00
Λ ⁶	но Ци'	11 1	1.01	C^{16}		1 1	6 73
Λ ⁶		11 1	4.40	C^{16}		1 1	0.75
۸ ۸ ⁶		۱۱ 1	4.22	C^{16}	1 142	11 1	0.31
۸ ۸ ⁶		۱۱ 1	4.10	C^{16}		11 1	5.56
۸ ۸ ⁶		11 1	7.30	C^{16}		11 1	4.09
A 16		п 1 _Ц	0.93	C^{16}			1.01
A 16		¹³ C	0.19	ل 17		ل 1	03.4
А т ⁷		ں ۔ 1	02.4 5.06	A A ¹⁷		п 1 ₁	0.10
і т 7		⊓ 1⊔	5.90	A A ¹⁷		п 1	7.40
т т ⁷	⊓∠ ⊔2"	п 1	2.00	A A ¹⁷	⊓∠ ⊔2''	п 1	2.00
г т ⁷	ב⊓ נ⊔	п 1	2.00	Λ Λ ¹⁷	רו יכ⊔	п 1	2.91
г т ⁷	נ⊓ ימ⊔	п 1	13.70	Λ Λ ¹⁷	טרו יגם	п 1	0.01 1 14
1 7	⊓ 3 ⊔⊿י	⊓ 1⊔	4.04	∧ ¹⁷	174 Liei	п 1	4.41
і т ⁷	∏4 ⊔ <i>⊑</i> ′	п 1	4.18	A A ¹⁷	СП Ц <i>е</i> ''	п 1	4.17
I	сп		4.13	А	сп		4.09

T^7	H5''	¹ H	4.09	A ¹⁷	H62	¹ H	6.29
T^7	H6	¹ H	7.20	A ¹⁷	H8	^{1}H	8.32
T^7	CH₃	¹ H	1.29	A ¹⁷	C1'	¹³ C	82.3
T^7	C1'	¹³ C	82.4	T ¹⁸	H1'	^{1}H	5.52
T ⁸	H1'	¹ H	6.08	T ¹⁸	H2'	^{1}H	1.97
T ⁸	H2'	^{1}H	2.04	T ¹⁸	H2''	¹ H	2.30
T ⁸	H2"	¹ H	2.45	T ¹⁸	H3	^{1}H	13.44
T ⁸	H3	¹ H	13.88	T ¹⁸	H3'	¹ H	4.84
T ⁸	H3'	¹ H	4.87	T ¹⁸	H4'	¹ H	4.40
T ⁸	H4'	¹ H	4.21	T ¹⁸	H5'	¹ H	4.24
T ⁸	H5'	¹ H	4.14	T ¹⁸	H5''	¹ H	4.07
T ⁸	H5"	¹ H	4.08	T ¹⁸	H6	¹ H	7.19
T ⁸	H6	¹ H	7.39	T ¹⁸	CH ₃	¹ H	1.46
T ⁸	CH_3	¹ H	1.59	T ¹⁸	C1'	¹³ C	82.0
T ⁸	C1'	¹³ C	82.5	A ¹⁹	H1'	¹ H	6.05
C ⁹	H1'	¹ H	5.70	A ¹⁹	H2'	¹ H	2.67
C ⁹	H2'	¹ H	2.02	A ¹⁹	H2''	¹ H	2.87
C ⁹	H2"	¹ H	2.31	A ¹⁹	H3'	¹ H	5.01
C ⁹	H3'	¹ H	4.83	A ¹⁹	H4'	¹ H	4.39
C ⁹	H4'	¹ H	4.08	A ¹⁹	H5'	¹ H	4.13
C ⁹	H41	¹ H	7.13	A ¹⁹	H5''	¹ H	4.08
C ^a	H42	¹ H	8.51	A ¹⁹	H8	¹ H	8.17
Ca	H5	Ή	5.72	A ¹⁹	C1'	¹³ C	82.2
Ca	H5'	Ή	4.03	G_{0}^{20}	H1'	¹ H	5.99
C	H6	'H	7.51	G_{20}^{20}	H2'	'H	2.42
A ¹⁰	H1'	'H	6.34	G_{20}^{20}	H2''	'H	2.25
A ¹⁰	H2'	'H	2.73	G_{20}^{20}	H3'	'H	4.62
A ¹⁰	H2"	'H	2.46	G_{20}^{20}	H4'	'H	4.18
A ¹⁰	H3'	'H	4.72	G_{20}^{20}	H5'	'H	4.16
A ¹⁰	H4'	'H	4.21	G_{20}^{20}	H5''	'H	4.09
A ¹⁰	H5'	'H	4.11	G ²⁰	H8	'H	7.69
A	H5"	'H ₁	4.08	G²⁰	C1'	¹³ C	81.7
A	H8	¹ H	8.28				
A	C1'	'°C	82.7				

Table A-4: Resonance assignments for Me-dGuo-FAPY (furanose) modified 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-3'

	Primary St	rand	Com	plementa	ry Strand
Residue	Atom	Chemical	Residue	Atom	Chemical
		Shift(ppm)			Shift(ppm)
C ¹	H1'	5.87	T ¹¹	H1'	5.77
C ¹	H2'1	2.21	T ¹¹	H2'1	1.76
C ¹	H2'2	2.57	T ¹¹	H2'2	2.21

1		4.07	- 11		1.00
C	H3	4.67		H3	4.62
C	H5	5.94	T''	H5'1	3.64
C^1	H5'1	3.79	T ¹¹	H6	7.38
C^1	H5'2	3 84	T ¹¹	CH	1 66
C^1		7 00	C^{12}		5.25
-2		7.00	G 0 ¹²		5.55
 2	H1	5.74	G 12	H21	2.74
Τ	H2'1	2.30	G'2	H2'2	2.78
T^2	H2'2	2.59	G ¹²	H3'	4.98
T^2	H3'	4.91	G ¹²	H8	7.98
T ²	H6	7.61	A ¹³	H1'	6.01
т ²	CH	1 72	Δ ¹³	H2'1	2 78
۰ ۸ ³		6.26	∧ ¹³	L0'0	2.70
A 43		0.30	A 13		2.94
A	HZ1	2.85	A	H3	5.08
Ağ	H2'2	2.59	A	H8	8.23
A°	H3'	5.06	A'4	H1'	6.20
A^3	H8	8.45	A ¹⁴	H2'1	2.57
T^4	H1'	6.03	A ¹⁴	H2'2	2.93
T^4	H2'1	1.83	A ¹⁴	H3'	5.01
T^4	H2'2	2.68	Δ ¹⁴	H8	8 17
т4	L12 Z	4 95	T^{15}		5.07
1 		4.00	1 		5.97
1 4		1.17	1 		2.00
1	CH ₃	1.30	15	H2'2	2.48
X	CHO	8.29	T'3	H3'	4.84
X°	H1'	5.96	T ¹⁵	H6	7.10
X ⁵	H2'1	2.51	T ¹⁵	CH_3	1.19
X^5	H3'	4.78	C ¹⁶	H1'	5.39
X^5	CH_3	3.53	C ¹⁶	H2'1	1.93
A ⁶	H1'	6.36	C ¹⁶	H2'2	2.31
A ⁶	H2'1	2.75	C ¹⁶	H3'	4.84
Δ ⁶	H2'2	2 99	C^{16}	H5	5.60
Λ ⁶	H2'	5.03	C^{16}	He	7.50
∧ ∧6	110	0.00	▲ ¹⁷		7.50
A 7 7		0.33	A • 17		0.30
·	H1	5.91	A	H2'1	2.96
T'	H2'1	2.00	A''	H2'2	2.83
T'	H2'2	2.59	A ¹⁷	H3'	5.07
T^7	H3'	4.84	A ¹⁷	H8	8.27
T^7	H6	7.22	T ¹⁸	H1'	5.53
T^7	CH ₃	1.44	T ¹⁸	H2'1	2.00
Т8	H1'	6.10	T ¹⁸	H2'2	2.28
т ⁸	H2'1	2.05	τ ¹⁸	H3'	4 86
т ⁸	L12 1	2.00	τ ¹⁸	H6	7.24
т 78		2.47	т т ¹⁸		1.24
1 8		4.00	۱ م 19		1.54
1 	Ню	7.39	A 19	HT	6.07
T	CH_3	1.61	A ¹⁰	H2'1	2.71
C	H1'	5.72	A	H2'2	2.89
C ⁹	H2'1	2.01	A ¹⁹	H3'	5.03
C_{a}	H2'2	2.31	A ¹⁹	H8	8.20
C ⁹	H3'	4.83	G ²⁰	H1'	6.00
C ⁹	H5	5.73	G ²⁰	H2'1	2.43
\tilde{C}^9	H6	7 51	G^{20}	H2'2	2 25
<u> </u>	110	1.51	U U	1166	2.20

A ¹⁰	H1'	6.35	G^{20}	H3'	4.63
A ¹⁰	H2'1	2.74	G ²⁰	H8	7.71
A ¹⁰	H2'2	2.46	-		
A ¹⁰	H3'	4.73			
A ¹⁰	H8	8.29			
		<u>I</u>			

Table A-5: Resonance assignments for α -AFB₁-FAPY modified 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-3'

	Prin	nary Strand		Complementary Strand			
Residue	Atom	Nucleus	Chemical	Residue	Atom	Nucleus	Chemical
			Shift(ppm)				Shift(ppm)
C	H1'	'H	5.81	T''	H1'	'H	5.73
C	H2'	¹ H	2.19	T ¹¹	H2'	¹ H	1.70
	H2"	¹ H	2.52	T ¹¹	H2''	¹ H	2.14
C ¹	H3'	¹ H	4.62	T^{11}	H3'	¹ H	4.55
C ¹	H4'	¹ H	4.05	T^{11}	H4'	^{1}H	3.96
C ¹	H42	¹ H	7.78	T ¹¹	H5'	¹ H	3.57
C ¹	H5	¹ H	5.86	T ¹¹	H5''	¹ H	3.58
C ¹	H5'	¹ H	3.74	T ¹¹	H6	¹ H	7.30
C ¹	H5"	¹ H	3.77	T ¹¹	CH₃	¹ H	1.57
C ¹	H6	¹ H	7.82	T ¹¹	C1'	¹³ C	83.6
C ¹	C1'	¹³ C	83.2	G ¹²	H1	¹ H	12.67
T^2	H1'	¹ H	5.79	G ¹²	H1'	¹ H	5.33
T ²	H2'	¹ H	2.24	G ¹²	H2'	¹ H	2.67
T ²	H2"	¹ H	2.54	G ¹²	H2''	¹ H	2.72
T ²	H3	¹ H	13.51	G ¹²	H3'	¹ H	4.91
T ²	H3'	¹ H	4.87	G ¹²	H4'	¹ H	4.24
T^2	H4'	¹ H	4.18	G ¹²	H5'	¹ H	3.97
T^2	H5'	¹ H	4.04	G ¹²	H5''	¹ H	3.88
T^2	H5"	¹ H	4.01	G ¹²	H8	¹ H	7.91
T^2	H6	¹ H	7.56	G ¹²	C1'	¹³ C	81.6
T^2	CH₃	¹ H	1.65	A ¹³	H1'	¹ H	5.93
T^2	C1'	¹³ C	83.2	A ¹³	H2	¹ H	7.70
A ³	H1'	¹ H	6.24	A ¹³	H2'	¹ H	2.72
A ³	H2	¹ H	7.44	A ¹³	H2''	¹ H	2.82
A ³	H2'	¹ H	2.57	A ¹³	H3'	¹ H	5.01
A ³	H2"	¹ H	2.89	A ¹³	H4'	¹ H	4.41
A ³	H3'	¹ H	4.98	A ¹³	H5'	¹ H	4.21
A ³	H4'	¹ H	4.39	A ¹³	H5''	¹ H	4.09
A ³	H5'	¹ H	4.23	A ¹³	H61	¹ H	7.32
A ³	H5"	¹ H	4.12	A ¹³	H62	¹ H	6.04
A ³	H61	¹ H	6.45	A ¹³	H8	¹ H	8.14
A ³	H8	¹ H	8.32	A ¹³	C1'	¹³ C	81.9

A^3	C1'	¹³ C	82.2	A ¹⁴	H1'	¹ H	6.11
T^4	H1'	^{1}H	5.98	A ¹⁴	H2	¹ H	7.69
т ⁴	H2'	1H	2 23	Δ ¹⁴	H2'	1H	2 50
т ⁴	H2"	1H	2.20	Δ^{14}	H2"	1 _H	2.00
т т ⁴		1ц	13 37	Λ ¹⁴	112 H2'	1ц	4.86
1 1 4	115 LI21	11 1	13.37	A A ¹⁴		11 1	4.00
1 4			4.91	A • 14			4.40
I 4	H4	H 1	4.23	A	H5	1	4.21
1	H5	Ή 1	3.93	A 14	H5"	Ή 1	4.19
	H5"	'H 1	4.10	A	H61	'H	7.34
T⁺	H6	'H	7.41	A'*	H62	'H	6.03
T⁺	CH₃	'H	1.50	A'4	H8	'H	8.03
T ⁴	C1'	¹³ C	82.1	A ¹⁴ B	H8	'H	8.05
X ⁵	H1'	¹ H	6.33	A ¹⁴	C1'		82.1
X ⁵	H2'	^{1}H	2.93	T ¹⁵	H1'	^{1}H	5.73
X^5	H2"	^{1}H	2.79	T ¹⁵	H2'	¹ H	2.07
X ⁵	H3	^{1}H	11.82	T ¹⁵	H2''	^{1}H	2.38
X ⁵	H3'	^{1}H	5.03	T ¹⁵	H3	^{1}H	13.69
X ⁵	H4'	^{1}H	4.62	T ¹⁵	H3'	¹ H	4.69
X ⁵	H5'	^{1}H	4.20	T ¹⁵	H4'	¹ H	4,19
X^5	H5"	¹ H	4 45	T ¹⁵	H5'	1H	4 08
χ^5	H8	1H	8 33	т ¹⁵	H5"	1H	4 16
x ⁵	HN21	1H	6 32	τ ¹⁵	H6	1 _H	6.95
x ⁵	HN22	1H	6.78	τ ¹⁵	CH.	1 _H	1 16
x ⁵	C1'	¹³ C	82.7	т ¹⁵ в	He	1н	6.96
Δ ⁶	U1 Н1'	¹ ц	6.28	т ¹⁵ в	CH-	1н	1 13
Λ Λ ⁶		и 1	7.73	т D т ¹⁵			82.2
Λ Λ ⁶		11 1	2.73	C^{16}		с 1	5.21
Α Λ ⁶	1 IZ U2''	11 1	2.74	C^{16}	ー しつ'	۱۱ 1	1.01
A ^6	П2 Ц2'	п 1ц	2.00	C^{16}	⊓∠ ⊔2″	п 1	1.00
A ^6		1	5.01	C ¹⁶			2.42
A ^6			4.44	C C ¹⁶	П 3		4.71
A • 6			4.00	0 ¹⁶	H4	1	4.20
A	H5	H 1	4.12	C 0 ¹⁶	H41	1	5.58
A [°]	H61	Ή 1	7.33	C ¹⁶	H42	Ή 1	8.38
A°	H62	'H 1	6.11	C ¹⁰	H5	'H	5.25
A	H8	'H	8.30		H5'	'H	4.04
A	C1'	¹ °C	82.6		H6	'H	7.28
T'	H1'	'H	5.99		H1'	'H	5.83
Τ_	H2'	Ή	2.03		H2'	'H	1.88
T′	H2''	¹ H	2.52		H2''	¹ H	2.43
Τ	H3	¹ H	13.88	C ¹⁶	C1'		83.1
T^7	H3'	¹ H	4.82	A ¹⁷	H1'	¹ H	5.91
T^7	H4'	^{1}H	4.25	A ¹⁷	H2	¹ H	7.72
T^7	H5'	¹ H	4.18	A ¹⁷	H2'	¹ H	2.69
T^7	H6	^{1}H	7.23	A ¹⁷	H2''	¹ H	2.79
T^7	CH₃	^{1}H	1.26	A ¹⁷	H3'	¹ H	4.84
T^7	C1'	¹³ C	82.5	A ¹⁷	H4'	¹ H	4.19
T ⁸	H1'	¹ H	6.03	A ¹⁷	H5'	¹ H	3.86
T ⁸	H2'	^{1}H	2.01	A ¹⁷	H5''	¹ H	4.11
T ⁸	H2"	^{1}H	2.39	A ¹⁷	H61	¹ H	7.12
T ⁸	H3	¹ H	13.92	A ¹⁷	H62	¹ H	6.89
				I			

T ⁸	H3'	¹ H	4.82	A ¹⁷	H8	¹ H	8.33
T ⁸	H4'	¹ H	4.17	A ¹⁷	C1'	¹³ C	82.1
T ⁸	H5'	¹ H	4.04	T ¹⁸	H1'	¹ H	5.58
T ⁸	H5"	¹ H	4.08	T ¹⁸	H2'	¹ H	1.94
T ⁸	H6	¹ H	7.36	T ¹⁸	H2''	¹ H	2.34
T ⁸	CH_3	¹ H	1.56	T ¹⁸	H3	¹ H	13.35
T ⁸	C1'	¹³ C	82.5	T ¹⁸	H3'	¹ H	4.71
C ₉	H1'	¹ H	5.69	T ¹⁸	H4'	¹ H	4.21
C ₉	H2'	¹ H	1.99	T ¹⁸	H5'	¹ H	4.02
C ⁹	H2"	¹ H	2.26	T ¹⁸	H5''	¹ H	4.11
C ⁹	H3'	¹ H	4.77	T ¹⁸	H6	¹ H	7.26
C ⁹	H4'	¹ H	4.03	T ¹⁸	CH ₃	¹ H	1.35
C ⁹	H41	¹ H	7.15	T ¹⁸	C1'	¹³ C	83.3
C ⁹	H42	^{1}H	8.51	A ¹⁹	H1'	¹ H	6.04
C ⁹	H5	^{1}H	5.70	A ¹⁹	H2'	¹ H	2.63
C ⁹	H5'	¹ H	4.00	A ¹⁹	H2''	¹ H	2.83
C ⁹	H6	¹ H	7.46	A ¹⁹	H3'	¹ H	4.98
A ¹⁰	H1'	¹ H	6.28	A ¹⁹	H4'	¹ H	4.37
A ¹⁰	H2'	¹ H	2.66	A ¹⁹	H5'	¹ H	4.02
A ¹⁰	H2"	¹ H	2.41	A ¹⁹	H5''	¹ H	4.21
A ¹⁰	H3'	¹ H	4.66	A ¹⁹	H8	¹ H	8.14
A ¹⁰	H4'	'H	4.15	A ¹⁹	C1'	¹³ C	82.2
A ¹⁰	H5'	'H	4.05	G ²⁰	H1	'H	12.66
A ¹⁰	H5"	'H	4.04	G_{20}^{20}	H1'	'H	5.95
A ¹⁰	H8	'H	8.22	G ²⁰	H2'	'H	2.38
A	C1'	'°C	82.8	G ²⁰	H2''	'H	2.20
				G ²⁰	H3'	'H	4.58
24		1		G ²⁰	H4'	'H	4.13
	H2A1	'H	0.98	G ²⁰	H5'	'H	4.08
	H2A2	'H	1.65	G ²⁰	H5''	'H	4.21
	H31	'H	1.85	G ²⁰	H8	'H	7.66
	H32	'H 1	2.28	G ²⁰	C1'	¹³ C	81.5
	H5B	'H 1	5.73				
	H6a	'H 1	6.14				
	H8A	'H 1	5.78				
	H9	΄Η 1	6.10				
	нуа	Ή 1	3.47				
	HIM	Ή 1	3.51				
AFR_ R	нуа	H	3.42				

Table A-6: Resonance assignments for α -AFB₁-FAPY modified 5'-C¹T²X³A⁴-5'

Residue	Atom	Chemical Shift (ppm)	Residue	Atom	Chemical Shift (ppm)
C ¹	H1'	5.81	A ⁴	H1'	6.27

C ¹	H2'	2.02	A ⁴	H2'	2.69
C ¹	H2''	2.40	A ⁴	H2''	2.51
C ¹	H3'	4.53	A ⁴	H3'	4.62
C ¹	H4'	3.92	A ⁴	H4'	4.17
C ¹	H5	5.54	A ⁴	H5'	4.00
C	H5'	3.58	A ⁴	H5"	3.96
C	H6	7.48	A ⁴	H8	8.29
T^2	H1'	6.19	AFB ⁵	H5	5.72
T^2	H2'	2.21	AFB ⁵	H5B	5.71
T^2	H2"	2.37	AFB ⁵	H6a	6.13
T^2	H3'	4.71	AFB ⁵	H8A	5.66
T^2	H4'	4.28	AFB ⁵	H9	6.16
T^2	H5'	3.92	AFB ⁵	H9a	3.66
T^2	H5"	3.89	AFB ⁵	CH ³	3.76
T^2	H6	7.54			
T^2	M7	1.70			
X^3	H1'	5.62			
X^3	H2'	2.30			
X^3	H2''	1.88			
X^3	H3'	4.54			
X^3	H4'	4.11			
X^3	H5'	3.82			
X ³	H5''	3.74			
X ³	H8	8.27			

Table A-7: Resonance assignments for unmodified 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}T^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'- $A^{13}C^{14}A^{15}A^{16}A^{17}C^{18}A^{19}C^{20}G^{21}C^{22}A^{23}C^{24}$ -3'

	Primary St	rand	Complementary Strand				
Residue	Atom	Chemical Shift(ppm)	Residue	Atom	Chemical Shift(ppm)		
G^1	H1'	5.88	A ¹³	H1'	6.03		
G^1	H2'	2.50	A ¹³	H2'	2.43		
G^1	H2''	2.66	A ¹³	H2''	2.61		
G^1	H3'	4.68	A ¹³	H3'	4.68		
G ¹	H5'	4.09	A ¹³	H4'	4.09		
G^1	H8	7.82	A ¹³	H5'	3.94		
T ²	CH₃	1.24	A ¹³	H8	8.04		
T^2	H1'	5.78	C ¹⁴	H1'	6.03		
T^2	H2'	2.08	C ¹⁴	H2'	1.86		
T^2	H2''	2.42	C ¹⁴	H2''	2.08		
T^2	H3	13.67	C ¹⁴	H3'	4.99		
T^2	H3'	4.77	C ¹⁴	H42	8.20		
T^2	H4'	4.12	C ¹⁴	H5	5.34		
T^2	H5'	4.00	C ¹⁴	H6	7.26		
T^2	H5''	3.95	A ¹⁵	H1'	5.62		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				15		
	T	H6	7.23	A ¹⁵	H2	7.10
	G	H1	12.59	A ¹⁵	H2'	2.59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H1'	5.77	A ¹⁵	H2"	2.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H2'	2.47	A ¹⁵	H3'	4.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H2"	2.59	A ¹⁵	H4'	4.22
	G	H22	6.38	A ¹⁵	H5'	4.06
	G	H3'	4.85	A ¹⁵	H62	6.04
	G	H4'	4.23	A ¹⁵	H8	8.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H5'	4.07	A ¹⁰	H1'	5.73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H8	7.73	A ¹⁶	H2	6.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H1'	5.55	A ¹⁰	H2'	2.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H2'	1.89	A ¹⁰	H2''	2.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H2"	2.25	A ¹⁰	H3'	4.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H3'	4.69	A ¹⁰	H4'	4.29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H4'	4.05	A ¹⁶	H5'	4.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H42	8.13	A ¹⁶	H5''	4.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H5	5.15	A ¹⁶	H61	7.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H5'	4.01	A^{16}	H62	6.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H6	7.15	A^{16}	H8	7.96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H1'	5.55	A^{17}	H1'	5.89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H1	12.63	A^{17}	H2	7.39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H1'	5.81	A ¹⁷	H2'	2.38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H2'	2.45	A ¹⁷	H2''	2.68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H2''	2.63	A ¹⁷	H3'	4.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H22	6.39	A ¹⁷	H4'	4.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H3'	4.81	A ¹⁷	H5'	4.28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H4'	4.21	A^{17}	H61	7.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H5'	3.91	A^{17}	H8	7.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H5''	4.06	C_{18}^{18}	H1'	5.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G	H8	7.72	C ¹⁸	H2'	1.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	CH₃	1.31	C_{10}^{18}	H2''	2.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	H1'	5.66	C_{10}^{18}	H3'	4.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	H2'	1.97	C_{10}^{18}	H4'	3.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	H2''	2.36	C_{18}^{18}	H42	7.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	H3	13.46	C_{18}^{18}	H5	5.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	H3'	4.72	C ¹⁸	H5'	3.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	H4'	4.05	C_{18}^{18}	H6	6.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	H5'	3.99	A^{19}	H1'	5.98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Τ°	H6	7.00	A ¹⁹	H2	7.42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gʻ	H1	12.36	A^{19}	H2'	2.47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gʻ	H1'	5.83	A^{19}	H2''	2.68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gʻ	H2'	2.65	A ¹⁹	H3'	4.83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gʻ	H2''	2.45	A ¹⁹	H4'	3.97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G′	H22	6.37	A ¹⁹	H5'	4.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G^{7}	H3'	4.79	A ¹⁹	H61	5.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G_{-}^{7}	H4'	4.12	A ¹⁹	H8	7.99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G_{-}^{7}	H5'	4.23	C ²⁰	H1'	5.39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G_{-}^7	H5''	4.01	C ²⁰	H2'	1.78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	G ⁷	H8	7.68	C ²⁰	H2''	2.15
		CH₃	1.17	C ²⁰	H3'	4.83

T ⁸ H2' 2.00 C ²⁰ H42	7.99
T ⁸ H2" 1.46 C ²⁰ H5	5.02
T ⁸ H3 13.86 C ²⁰ H6	7.04
T ⁸ H3' 4.71 G ²¹ H1	12.71
T ⁸ H4' 4.02 G ²¹ H1'	5.69
T ⁸ H5' 4.12 G ²¹ H2'	2.45
T ⁸ H6 7.10 G ²¹ H2"	2.55
T ⁹ H1' 5.98 G ²¹ H22	6.30
T ⁹ H2' 2.45 G ²¹ H3'	4.81
T ⁹ H2" 1.57 G ²¹ H4'	4.19
T ⁹ H3 13.85 G ²¹ H5'	3.98
T ⁹ H3' 4.74 G ²¹ H8	7.67
T ⁹ H4' 4.07 C ²² H1'	5.47
T ⁹ H5' 4.02 C ²² H2'	1.86
T ⁹ H6 7.31 C ²² H2"	2.22
T ¹⁰ H1' 5.69 C ²² H3'	4.67
T ¹⁰ H2' 1.84 C ²² H4'	4.00
T ¹⁰ H2" 2.23 C ²² H42	8.25
T ¹⁰ H3 13.77 C ²² H5	5.25
T_{40}^{10} H3' 4.75 C_{20}^{22} H6	7.19
T ¹⁰ H4' 4.05 A ²³ H1'	6.10
T ¹⁰ H5' 3.97 A ²³ H2	7.68
T_{10}^{10} H6 7.16 A_{23}^{23} H2'	2.53
G ¹¹ H1 12.54 A ²³ H2"	2.72
G ¹¹ H1' 5.93 A ²³ H3'	4.85
G ¹¹ H2' 2.57 A ²³ H4'	4.24
G ¹¹ H2" 1.50 A ²³ H5'	4.11
G ¹¹ H22 6.53 A ²³ H5"	3.92
G ¹¹ H3' 4.86 A ²³ H8	8.11
G_{44}^{11} H4' 4.26 C_{44}^{24} H1'	5.95
G ¹¹ H5' 3.95 C ²⁴ H2'	1.95
G ¹¹ H5" 4.10 C ²⁴ H2"	1.98
G ¹¹ H8 7.83 C ²⁴ H3'	4.33
T_{42}^{12} H1' 6.11 C_{24}^{24} H4'	3.87
$T_{12}^{\prime 2}$ H2' 2.11 $C_{24}^{\prime 2}$ H5	5.29
T_{12}^{12} H3' 4.40 C^{24} H6	7.25
T ^{'2} H4' 3.95	
T' ² H6 7.30	

Table A-8: Resonance assignments for *cis*-5*R*,6*S*-thymine glycol modified 5'-G¹T²G³C⁴G⁵<u>Tg</u>⁶G⁷T⁸T⁹T¹⁰G¹¹T¹²-3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸<u>A</u>¹⁹C²⁰G²¹C²²A²³C²⁴-3'

Primary Strand	Complementary Strand

Residue	e Atom Chemical		Residue	Atom	Chemical Shift(ppm)
G ¹	H1'	<u>5.87</u>	A ¹³	H1'	<u>6.02</u>
G^1	H2'	2.47	A ¹³	H2'	2.42
G^1	H2''	2.64	A ¹³	H2''	2.58
G^1	H3'	4.67	A ¹³	H3'	4.66
G^1	H4'	4.07	A ¹³	H4'	4.07
G^1	H5'	3.62	A ¹³	H5'	3.55
G^1	H5''	3.60	A ¹³	H5''	3.59
G^1	H8	7.79	A ¹³	H8	8.01
T^2	H1'	5.76	C ¹⁴	H1'	5.04
T^2	H2'	2.04	C ¹⁴	H2'	1.84
T^2	H2"	2.38	C^{14}	H2"	2.09
T^2	H3	13.67	C ¹⁴	H3'	4.62
T^2	H3'	4 75	C^{14}	H4'	3.93
T^2	H4'	4 09	C^{14}	H42	8 19
T^2	H5'	3 98	C^{14}	H5	5.37
T^2	H6	7 20	C^{14}	H5'	3 92
T^2	CH.	1 24	C^{14}	H6	7 25
G^3	H1	12 62	Δ ¹⁵	H1'	5.61
G ³	H1'	5 75	Δ ¹⁵	H2	7 14
G ³	H2'	2.46	Δ ¹⁵	H2'	2.57
	H2"	2.40	Δ ¹⁵	H2"	2.57
G ³	H22	2.37 6.36	Δ ¹⁵	H3'	2.07
G ³	H3'	0.50 / 83	Δ ¹⁵	нл'	4.00
G ³	нл Нл'	4.00	Δ ¹⁵	H5'	4.20
G^3	н ч Н5'	3.03	Λ Λ ¹⁵	H5"	3.04
G^3	н.5 Н.5''	4.00	Λ Λ ¹⁵	H62	5.95 6.05
G^3	Ц8	4.00	Λ Λ ¹⁵		0.05 8.05
C^4	H1'	5.61	Δ ¹⁶	H1'	5 71
C^4	нт Ц2'	1.85	Λ Λ ¹⁶		7.06
C^4	112 112''	2.25	Λ Λ ¹⁶	112 112	2.46
C^4	11Z 112'	2.23	Λ Λ ¹⁶	112 112''	2.40
C^4	нл Нл'	4.04	Δ ¹⁶	H3'	2.05 / 80
C^4	114 H/2	4.04	Λ Λ ¹⁶	нз Цл'	4.09
C^4	H5	5.12	Λ Λ ¹⁶	H5'	4.20
C^4	н5 Н5'	4.00	Λ Λ ¹⁶	H5"	4.05
C^4	н5 Н5''	4.00	Λ Λ ¹⁶	ны Не1	7.31
C^4		4.00	Λ Λ ¹⁶		5.97
C^4		5.56	Α Λ ¹⁶		J.07 7.04
C ⁵		0.00 10.01	A A ¹⁷	ПО Ц1'	7.94
G C ⁵		12.91	A A ¹⁷	П I Ц 2	5.00
G C ⁵	П I Ц 21	0.00 0.01	A A ¹⁷	ПZ ЦЭ'	7.44
G C ⁵	⊓∠ ⊔oיי	2.31	A A ¹⁷	⊓∠ ⊔o"	2.30
G C ⁵		2.48	A A ¹⁷		2.03
G 0 ⁵		4.73	A A ¹⁷		4.81
G 0 ⁵		4.15	A A ¹⁷		4.25
G 0 ⁵	H5	3.95	A A ¹⁷	H5	4.07
G T . 6	H8	7.64	A 17	H62	5.70
10° T ⁶	H1	5.63	A O ¹⁸	H8	7.86
lg	H2'	2.07		H1'	5.53

- 6	1.10		a 18		
١g°	H2''	2.28	C ¹⁰	H2'	1.71
Tg ⁶	H3'	4.57	C ¹⁸	H2''	2.19
Ta ⁶	H4'	4 04	C ¹⁸	H3'	4 57
Ta^6	H5'	3 70	C ¹⁸		1.07
ту т~ ⁶	115	2.79	C ¹⁸		7.00
1g - 6		3.97	C 0 ¹⁸	H41	7.03
Ig	H6 cis	4.58	C	H42	7.83
Тg°	H6 trans	4.91	C ¹⁸	H5	5.02
Тg ⁶	CH₃ <i>cis</i>	0.49	C ¹⁸	H5'	3.95
Ta ⁶	CH ₃ trans	1.24	C ¹⁸	H5''	4.07
G ⁷	H1	12 28	C^{18}	H6	6 99
C^7		5.01	∧ ¹⁹		5.97
G^7		0.51	∧ ∧ 19		7.40
G 9 ⁷	HZ	2.50	A	HZ	7.40
G	H2''	2.72	A	H2'	2.26
G′	H22	6.52	A	H2''	2.51
G^7	H3'	4.78	A ¹⁹	H3'	4.74
G ⁷	H4'	4.27	A ¹⁹	H4'	4.11
G^7	H5'	3 94	A ¹⁹	H5'	3 89
G^7	H5"	1 02	Δ ¹⁹	H5"	3 0/
C^7		7.02	∧ 19		6 1 4
G T 8		7.75	A 19		0.14
	H1'	5.91	A ¹⁰	H8	7.83
T°	H2'	1.99	C ²⁰	H1'	5.38
T ⁸	H2''	2.45	C^{20}	H2'	1.86
T ⁸	H3	13.79	C ²⁰	H2''	2.16
T ⁸	H3'	4.73	C ²⁰	H3'	4.64
т ⁸	H4'	4 09	C^{20}	H4'	3 97
т ⁸		4 02	C^{20}		5 10
1 - 8		4.02	C^{20}		0.10
	Ho	7.12		H5	3.92
I°,	CH_3	1.17	C	H6	7.12
T	H1'	5.95	G ²¹	H1	12.67
T^9	H2'	1.99	G ²¹	H1'	5.72
T ⁹	H2''	2.43	G ²¹	H2'	2.43
Т9	H3	13.85	G ²¹	H2''	2.54
Т ⁹	H3'	4 73	G ²¹	H22	6 30
т ⁹		4.00	G^{21}		1 20
т т 9	114	7.02	C^{21}		4.00
1 9		1.29	G 0 ²¹	H4	4.18
	CH₃	1.47	G	H5'	3.86
T'0	H1'	5.67	G ²¹	H5''	3.95
T^{10}	H2'	1.82	G ²¹	H8	7.65
T ¹⁰	H2''	2.20	C ²²	H1'	5.50
T ¹⁰	H3	13.80	C ²²	H2'	1.85
T ¹⁰	H3'	4 73	C^{22}	H2"	2 22
τ ¹⁰	но Ни'	3.06	C^{22}	H3'	1 67
T T10	114	4.05	C^{22}		4.07
I 		4.05		H4	4.00
1	Hb	7.15	C	H42	8.25
Τ''	CH₃	1.57	C ²²	H5	5.24
G^{11}	H1	12.53	C ²²	H5'	4.03
G ¹¹	H1'	5.93	C ²²	H6	7.19
G ¹¹	H2''	2.55	A ²³	H1'	6.11
G ¹¹	H22	6 53	A ²³	H2	7 72
C ¹¹	н <u>е</u> ЦЗ'	1 01	∧ ²³	н <u>г</u> Ц2'	7.12 7.52
9	ПЭ	4.04	А	ΠZ	2.33

G ¹¹	H4'	4.24	A ²³	H2''	2.71
G ¹¹	H5'	3.97	A ²³	H3'	4.85
G ¹¹	H8	7.81	A ²³	H4'	4.23
T ¹²	H1'	6.09	A ²³	H5'	3.95
T ¹²	H2''	2.10	A ²³	H5''	3.99
T ¹²	H3'	4.39	A ²³	H61	8.03
T ¹²	H4'	3.93	A ²³	H8	8.10
T ¹²	H5'	3.96	C ²⁴	H1'	5.95
T ¹²	H6	7.29	C ²⁴	H2'	1.94
T ¹²	CH₃	1.50	C ²⁴	H2''	1.99
			C ²⁴	H3'	4.32
			C ²⁴	H4'	3.87
			C ²⁴	H5	5.31
			C ²⁴	H5'	4.10
			C ²⁴	H5''	3.91
			C ²⁴	H6	7.25

Table A-9: Resonance assignments for *cis*-5*R*,6*S*-thymine glycol modified 5'-G¹T²G³C⁴G⁵<u>Tg</u>⁶G⁷T⁸T⁹T¹⁰G¹¹T¹²-3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸<u>G</u>¹⁹C²⁰G²¹C²²A²³C²⁴-3'

P	rimary S	trand	Com	plementa	ry Strand
Residue	Atom	Chemical	Residue	Atom	Chemical
		Shift(ppm)			Shift(ppm)
G ¹	H1'	5.85	A ¹³	H1'	6.01
G ¹	H2'	2.48	A ¹³	H2	7.82
G ¹	H2''	2.63	A ¹³	H2'	2.43
G ¹	H3'	4.66	A ¹³	H2''	2.58
G ¹	H4'	4.07	A ¹³	H3'	4.66
G ¹	H5'	3.59	A ¹³	H4'	4.07
G ¹	H5''	3.62	A ¹³	H5'	3.55
G ¹	H8	7.79	A ¹³	H8	8.02
T ²	H1'	5.74	C ¹⁴	H1'	5.02
T ²	H2'	2.02	C ¹⁴	H2'	1.83
T^2	H2''	2.36	C ¹⁴	H2''	2.07
T^2	H3	13.62	C ¹⁴	H3'	4.62
T^2	H3'	4.74	C ¹⁴	H4'	3.93
T^2	H4'	4.08	C ¹⁴	H5	5.35
T^2	H5'	3.97	C ¹⁴	H5'	3.90
T^2	H6	7.20	C ¹⁴	H5''	3.88
T ²	CH_3	1.23	C ¹⁴	H6	7.25
G^3	H1	12.61	C ¹⁴	H62	8.16
G^3	H1'	5.73	A ¹⁵	H1'	5.59
G^3	H2'	2.45	A ¹⁵	H2	7.10
G ³	H2"	2.54	A ¹⁵	H2'	2.57

				AF		
	G	H22	6.37	A ¹⁵	H2''	2.66
	G	H3'	4.82	A ¹⁵	H3'	4.88
	G	H4'	4.21	A ¹⁵	H4'	4.20
	G	H5'	3.84	A ¹⁵	H5'	3.84
	G	H8	7.71	A ¹⁵	H5''	3.94
	C ⁴	H1'	5.62	A ¹⁵	H62	6.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ⁴	H2'	1.71	A ¹⁵	H8	8.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^4	H2''	2.19	A ¹⁶	H1'	5.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^4	H3'	4.66	A ¹⁶	H2	7.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^4	H4'	4.02	A ¹⁶	H2'	2.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^4	H42	8.10	A ¹⁶	H2''	2.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^4	H5	5.15	A ¹⁶	H3'	4.89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^4	H5'	3.97	A ¹⁶	H4'	4.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^4	H5''	4.05	A ¹⁶	H5'	4.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C^4	H6	7.08	A ¹⁶	H5''	4.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H1	12.82	A ¹⁶	H61	7.29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H1'	5.89	A ¹⁶	H62	5.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H2'	2.40	A ¹⁶	H8	7.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H2''	2.56	A ¹⁷	H1'	5.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H3'	4.79	A ¹⁷	H2	7.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H4'	4.18	A ¹⁷	H2'	2.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H5'	3.91	A ¹⁷	H2''	2.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H5''	3.87	A ¹⁷	H3'	4.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H8	7.72	A ¹⁷	H4'	4.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G⁵	H5'	4.10	A ¹⁷	H5'	4.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Тд ⁶	H1'	5.46	A ¹⁷	H62	5.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Тд ⁶	H2'	2.06	A ¹⁷	H8	7.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τg ⁶	H2''	2.06	C ¹⁸	H1'	5.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τg ⁶	H3'	4.53	C ¹⁸	H2'	1.72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Τg ⁶	H4'	4.01	C ¹⁸	H2''	2.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Тд ⁶	H6	4.70	C ¹⁸	H3'	4.53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Тд ⁶	CH ₃	0.91	C ¹⁸	H4'	4.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G^7	H1	12.67	C ¹⁸	H42	7.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G^7	H1'	5.88	C ¹⁸	H5	4.99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G ⁷	H2'	2.49	C ¹⁸	H5'	3.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G ⁷	H2"	2.70	C ¹⁸	H5''	4.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G^7	H22	6.33	C ¹⁸	H6	6.95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G ⁷	H3'	4.77	G ¹⁹	H1'	5.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G ⁷	H4'	4.22	G ¹⁹	H2'	2.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G^7	H5'	3.84	G ¹⁹	H2''	2.36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G ⁷	H5''	3.84	G ¹⁹	H3'	4.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G ⁷	H8	7.81	G ¹⁹	H4'	4.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T ⁸	H1'	5.93	G ¹⁹	H5'	3.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T ⁸	H2'	2.00	G ¹⁹	H5''	3.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T ⁸	H2"	2.45	G ¹⁹	H8	7.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T ⁸	H3	13.76	C ²⁰	H1'	5.44
T^8 H4'4.09 C^{20} H2''2.18 T^8 H5'4.05 C^{20} H3'4.66 T^8 H5''4.00 C^{20} H4'3.98	T ⁸	H3'	4.73	C ²⁰	H2'	1.89
T^8 H5'4.05 C^{20} H3'4.66 T^8 H5''4.00 C^{20} H4'3.98	T ⁸	H4'	4.09	C ²⁰	H2''	2.18
T ⁸ H5" 4.00 C ²⁰ H4' 3.98	T ⁸	H5'	4.05	C ²⁰	H3'	4.66
	T ⁸	H5"	4.00	C ²⁰	H4'	3.98

T ⁸	H6	7.13	C ²⁰	H5	5.17
T ⁸	CH ₃	1.16	C ²⁰	H5'	3.88
T ⁹	H1'	5.96	C ²⁰	H6	7.19
T^9	H2'	2.00	G ²¹	H1	12.78
T^9	H2''	2.44	G ²¹	H1'	5.73
T^9	H3	13.84	G ²¹	H2'	2.47
T^9	H3'	4.73	G ²¹	H2''	2.56
T ⁹	H4'	4.02	G ²¹	H22	6.30
T^9	H5'	3.97	G ²¹	H3'	4.81
T^9	H5''	4.02	G ²¹	H4'	4.20
T ⁹	H6	7.30	G ²¹	H5'	3.98
T ⁹	CH₃	1.47	G ²¹	H5''	3.84
T ¹⁰	H1'	5.67	G ²¹	H8	7.72
T ¹⁰	H2'	1.83	C ²²	H1'	5.48
T ¹⁰	H2''	2.21	C ²²	H2'	1.84
T ¹⁰	H3	13.76	C ²²	H2''	2.21
T ¹⁰	H3'	4.73	C ²²	H3'	4.66
T ¹⁰	H4'	4.05	C ²²	H4'	4.02
T ¹⁰	H5'	3.96	C ²²	H42	8.22
T ¹⁰	H5"	3.93	C ²²	H5	5.28
T ¹⁰	H6	7.16	C ²²	H6	7.19
T ¹⁰	CH_3	1.57	A^{23}	H1'	6.10
G ¹¹	H1	12.50	A^{23}	H2	7.69
G ¹¹	H1'	5.91	A^{23}	H2'	2.53
G ¹¹	H2'	2.54	A^{23}	H2''	2.71
G ¹¹	H22	6.49	A^{23}	H3'	4.85
G ¹¹	H3'	4.84	A^{23}	H4'	4.24
G ¹¹	H4'	4.24	A^{23}	H5'	3.99
G ¹¹	H5'	3.97	A^{23}	H5''	3.94
G ¹¹	H8	7.80	A^{23}	H8	8.10
T_{12}^{12}	H1'	6.08	C ²⁴	H1'	5.92
T ¹²	H2'	2.10	C ²⁴	H2'	1.94
T ¹²	H3'	4.38	C ²⁴	H2''	1.99
T ¹²	H4'	3.93	C ²⁴	H3'	4.31
T_{12}^{12}	H5'	4.08	C^{24}_{24}	H4'	3.86
T_{12}^{12}	H6	7.26	C^{24}_{24}	H5	5.24
T^{12}	CH ₃	1.47	C ²⁴	H5'	3.90
			C ²⁴	H5''	3.87
			C ²⁴	H6	7.21

APPENDIX B

MOLECULAR DYNAMICS TOPOLOGY OF NON-STANDARD BASES

cis-5R,6S-thymine glycol

Figure B-1: Atomic charges on the cis-5R,6S-thymine glycol lesion calculated by Gaussian 03 and used in rMD simulations.

File B-1: Parameter and topology file of *cis*-5R,6S-thymine glycol lesion used in AMBER calculations

```
%VERSION VERSION STAMP = V0001.000 DATE = 01/30/08 16:25:27
%FLAG TITLE : cis-5R,6S-thymine glycol (CH3 axial)
%FORMAT(20a4)
TG
%FLAG POINTERS
%FORMAT(10I8)
   36
      10 14 23 32 35 57 48
                                   0
                                        0
  199
        1 23 35 48 14
                           30
                                9 13
                                        0
        0
    0
          0
              0 0 0 0
                                0
                                  36
                                        0
    0
%FLAG ATOM NAME
%FORMAT(20a4)
P O2P O1P O5' C5' H5'1 H5'2 C4' H4' O4' C1' H1' C2' H2'1 H2'2 N1 C2 O2 N3 H3
C4 O4 C5 O5 HO5 CM HM1 HM2 HM3 C6 H6 O6 HO6 C3' H3' O3'
%FLAG CHARGE
%FORMAT(5E16.8)
2.12453796E+01 -1.41423270E+01 -1.41423270E+01 -9.02732742E+00
     -1.25733870E-01
 1.37396142E+00 1.37396142E+00 2.96841267E+00 2.14294248E+00
     -6.72585093E+00
 1.23911640E+00 3.28730292E+00 -1.55618442E+00 1.30836114E+00
       1.30836114E+00
-6.21744876E+00 1.55800665E+01 -1.11156030E+01 -1.54215325E+01
      7.78766435E+00
1.52976209E+01 -1.07620904E+01 1.03867110E-01 -1.26316984E+01
      8.97994944E+00
-6.40513845E+00 2.09738673E+00 2.09738673E+00 2.09738673E+00
      8.63554797E+00
 1.15893828E+00 -1.21305851E+01 8.68474818E+00 1.29924999E+00
      1.79489655E+00
-9.53390736E+00
%FLAG MASS
%FORMAT(5E16.8)
3.09700000E+01 1.60000000E+01 1.60000000E+01 1.60000000E+01
1.2010000E+01
1.00800000E+00 1.00800000E+00 1.20100000E+01 1.00800000E+00
1.6000000E+01
1.20100000E+01 1.00800000E+00 1.20100000E+01 1.00800000E+00
1.00800000E+00
1.40100000E+01 1.20100000E+01 1.60000000E+01 1.40100000E+01
1.00800000E+00
```

```
1.50300000E+00 1.63600000E+00 1.43900000E+00 1.09200000E+00
1.5350000E+00
1.09200000E+00 1.46000000E+00 1.09200000E+00 1.34500000E+00
1.2140000E+00
1.0090000E+00 1.5080000E+00 1.42600000E+00 9.74000000E-01
%FLAG ANGLE FORCE CONSTANT
%FORMAT(5E16.8)
7.76000000E+01 4.51000000E+01 4.31000000E+01 5.09000000E+01
6.7800000E+01
4.64000000E+01 6.32000000E+01 3.94000000E+01 6.21000000E+01
5.0900000E+01
7.01650000E+01 4.64000000E+01 6.39000000E+01 6.40000000E+01
4.6400000E+01
4.9800000E+01 6.5900000E+01 3.9400000E+01 7.5800000E+01
7.5400000E+01
7.02490000E+01 4.92000000E+01 6.74000000E+01 6.79000000E+01
6.8400000E+01
6.38000000E+01 6.80000000E+01 4.71000000E+01 6.77000000E+01
5.1100000E+01
%FLAG ANGLE EQUIL VALUE
%FORMAT(5E16.8)
2.05041368E+00 2.04587583E+00 2.03627651E+00 1.89717371E+00
1.89228679E+00
1.92073567E+00 1.93085858E+00 1.89106506E+00 1.97937875E+00
1.89717371E+00
1.95520593E+00 1.92073567E+00 2.11795796E+00 1.96559065E+00
1.92073567E+00
1.91113635E+00 1.95703853E+00 1.89106506E+00 2.12982620E+00
1.94953361E+00
1.96253632E+00 2.06751792E+00 2.08793828E+00 2.00974750E+00
1.91043822E+00
1.92911325E+00 2.14867576E+00 1.88774893E+00 1.90991462E+00
1.91113635E+00
%FLAG DIHEDRAL FORCE CONSTANT
%FORMAT(5E16.8)
3.8300000E-01 1.0500000E+00 1.56000000E-01 0.0000000E+00
2.5000000E+00
1.67000000E-01 0.0000000E+00 1.0000000E+00 1.05000000E+01
%FLAG DIHEDRAL PERIODICITY
%FORMAT(5E16.8)
3.0000000E+00 2.0000000E+00 3.0000000E+00 2.0000000E+00
2.0000000E+00
 3.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00
%FLAG DIHEDRAL PHASE
%FORMAT(5E16.8)
```

0.0000000E+00 3.14159400E+00 0.0000000E+00 0.0000000E+00 3.14159400E+00 0.0000000E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00 %FLAG SOLTY %FORMAT(5E16.8) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0 0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 %FLAG LENNARD JONES ACOEF %FORMAT(5E16.8) 6.02589390E+06 1.64263766E+06 3.79876399E+05 1.58759528E+06 3.70622491E+05 3.61397723E+05 2.54188684E+06 6.47841731E+05 6.28541240E+05 1.04308023E+06 2.54238516E+05 5.44261042E+04 5.33379252E+04 9.71708117E+04 7.51607703E+03 2.45746558E+06 6.06829342E+05 5.89818288E+05 9.95480466E+05 8.96776989E+04 9.44293233E+05 2.25370349E+06 5.74393458E+05 5.57281136E+05 9.24822270E+05 8.61541883E+04 8.82619071E+05 8.19971662E+05 8.41065839E+03 1.02595236E+03 1.03954408E+03 2.56678134E+03 1.07193646E+02 2.12601181E+03 2.27577561E+03 1.39982777E-01 1.98683736E+06 4.71003287E+05 4.58874091E+05 7.91544157E+05 6.82786631E+04 7.44975864E+05 7.01803794E+05 1.40467023E+03 5.81803229E+05 0.0000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 %FLAG LENNARD JONES BCOEF %FORMAT(5E16.8) 2.19561270E+03 1.16041466E+03 5.64885984E+02 1.08210555E+03 5.29252520E+02 4.95732238E+02 1.22636552E+03 6.26720080E+02 5.85549272E+02 6.75612247E+02 2.38716853E+02 1.11805549E+02 1.04986921E+02 1.26919150E+02 2.17257828E+01 1.34630496E+03 6.77220874E+02 6.33305958E+02 7.36907417E+02 1.36131731E+02 8.01323529E+02 1.08732781E+03 5.55666448E+02 5.19163331E+02 5.99015525E+02

1.1	25298	845E+	-02 6.	5336	1429E	E+02	5.3110	02864	E+02	4.34187588E+01
1.53	50528	84E+0)1							
1.4	65678	808E+	-01 2.	.06278	8363E	2+01	2.594	56373	E+00	2.09604198E+01
1.82	89180	03E+0)1							
9.3	75989	976E-0	02 1.2	27682	121E	+03 (6.2930	07101	E+02	5.89183300E+02
6.93	07994	47E+0	2							
1.2	52878	318E+	-02 7.	.50714	4425E	2+02	6.1450	02845	E+02	1.79702257E+01
6.99	74681	10E+0	2							
0.0	00000)00E+	-00 0.	.00000	0000E	2+00	0.000	00000	E+00	0.00000000E+00
0.00	00000	00E+0	0							
0.0	00000)00E+	-00 0.	.00000	0000E	E+00	0.000	00000	E+00	0.00000000E+00
0.00	00000	00E+0	0							
%FI	LAGI	BONE	S_IN	C_HY	YDRC) GEN	I			
%FC	DRMA	AT(10	I8)							
12	15	4	12	18	4	21	24	4	30	
33	6	36	39	8	36	42	8	54	57	
11	69	72	14	75	78	8	75	81	8	
75	84	8	87	90	6	93	96	14	99	
102	4									
%FI	LAGI	BONE	DS_W	ITHO	UT_H	HYDF	ROGE	N		
%FC	DRMA	AT(10	I8)							
0	3	1	0	6	1	0	9	2	9	
12	3	12	21	5	21	27	3	21	99	
5	27	30	3	30	36	5	30	45	7	
36	99	5	45	48	9	45	87	7	48	
51	10	48	54	9	54	60	9	60	63	
10	60	66	12	66	69	13	66	75	5	
66	87	5	87	93	13	99	105	3		
%FI	LAG	ANGL	LES_I	NC_H	IYDR	.OGE	N			
%F()RM/	AT(10	18)							
9	12	15	4	9	12	18	4	12	21	
24	6	15	12	18	8	15	12	21	6	
18	12	21	6	21	99	102	6	24	21	
27	4	24	21	99	6	27	30	33	10	
30	36	39	12	30	36	42	12	33	30	
36	15	33	30	45	16	36	99	102	6	
39	36	42	18	39	36	99	12	42	36	
99	12	45	87	90	16	48	54	57	22	
57	54	60	22	66	69	72	28	66	75	
78	12	66	15	81	12	66	/5	84	12	
66	87	90	15	78	15	81	18	78	75	
84	18	81	/5	84	18	8/	93	96	28	
90 07 TT	8/	93	30 EC E	102 MTTI	99 01.17	105	4			
%Fl	LAG A	ANGL	10) 10)	VIIH		HYL	KUG	EIN		
%F(JKIMI/	41(10 12	18)	2	0	1	2	2	0	
0	9	12	1	3	0	6	2	3	0	

9	3	6	0	9	3	9	12	21	5	
12	21	27	5	12	21	99	7	21	27	
30	9	21	99	36	7	21	99	105	5	
27	21	99	5	27	30	36	5	27	30	
45	11	30	36	99	7	30	45	48	13	
30	45	87	14	36	30	45	17	36	99	
105	5	45	48	51	19	45	48	54	20	
45	87	66	17	45	87	93	21	48	45	
87	13	48	54	60	23	51	48	54	19	
54	60	63	19	54	60	66	24	60	66	
69	25	60	66	75	26	60	66	87	26	
63	60	66	27	66	87	93	29	69	66	
75	29	69	66	87	29	75	66	87	7	
%FLA	AG D	IHED	RAL	S_IN	C_H	YDR	DGEN	-		
%FOI	RMA	T(10I8	3)	_	_					
0	9	12	1	5	1	0	9	12	18	1
9	12	21	2	4	3	12	21	99	102	3
15	12	21	2	4	3	15	12	21	27	3
15	12	21	9	9	3	18	12	21	24	3
18	12	21	2	7	3	18	12	21	99	3
21	27	30	3	3	1	21	99	36	39	3
21	99	36	4	2	3	24	21	27	30	1
24	21	99	3	6	3	24	21	99	102	3
24	21	99	10	5	3	27	21	99	102	3
27	30	36	3	9	3	27	30	36	42	3
30	36	99	10	2	3	30	45	87	90	4
33	30	36	3	9	3	33	30	36	42	3
33	30	36	9	9	3	33	30	45	48	4
33	30	45	8	7	4	39	36	30	45	3
39	36	99	10	2	3	39	36	99	105	3
42	36	30	4	5	3	42	36	99	102	3
42	36	99	10	5	3	45	48	54	57	5
45	87	93	9	6	6	48	45	87	90	4
51	48	54	5	7	5	57	54	60	63	5
57	54	60	6	6	5	60	66	69	72	6
60	66	75	7	8	3	60	66	75	81	3
60	66	75	8	4	3	60	66	87	90	3
66	87	93	9	6	6	69	66	75	78	3
69	66	75	8	1	3	69	66	75	84	3
69	66	87	9	0	3	72	69	66	75	6
72	69	66	8	7	6	75	66	87	90	3
78	75	66	8	7	3	81	75	66	87	3
84	75	66	8	7	3	90	87	93	96	6
48	60	-54	-5	7	8				-	
%FLA	AG D	IHED	RAL	S W	ITHC	DUT I	HYDF	ROGEI	N	
%FOI	%FORMAT(1018)									

0	9	12	21	1	3	0	9	12	2	
6	0	9	12	2	9	12	21	27	3	
9	12	21	99	3	12	21	27	30	1	
12	21	99	36	3	12	21	99	105	3	
21	27	-30	36	1	21	27	30	45	1	
21	99	-36	30	3	27	21	-99	36	3	
27	21	99	105	3	27	30	-36	99	3	
27	30	45	48	4	27	30	45	87	4	
30	27	-21	99	1	30	36	99	105	3	
30	45	48	51	5	30	45	48	54	5	
30	45	87	66	4	30	45	87	93	4	
36	30	45	48	4	36	30	45	87	4	
45	30	36	99	3	45	48	54	60	5	
45	87	-66	60	3	45	87	66	69	3	
45	87	66	75	3	48	45	87	66	4	
48	45	87	93	4	48	54	60	63	5	
48	54	-60	66	5	51	48	45	87	5	
51	48	54	60	5	54	48	45	87	5	
54	60	66	69	7	54	60	66	75	7	
54	60	-66	87	7	60	66	87	93	3	
63	60	66	69	7	63	60	66	75	7	
63	60	66	87	7	69	66	87	93	3	
75	66	87	93	3	48	30	-45	-87	8	
45	54	-48	-51	9	54	66	-60	-63	9	
%FLAG EXCLUDED_ATOMS_LIST										
%FORMAT(10I8)										
2	3	4	5	6	7	8	3	4	5	
4	5	5	6	7	8	9	10	34	6	
7	8	9	10	11	13	34	35	36	7	
8	9	10	34	8	9	10	34	9	10	
11	12	13	14	15	16	34	35	36	10	
11	13	34	35	36	11	12	13	14	15	
16	17	30	34	35	36	12	13	14	15	
16	17	18	19	23	30	31	32	34	35	
36	13	14	15	16	17	30	34	14	15	
16	17	30	34	35	36	15	16	34	35	
36	16	34	35	36	17	18	19	20	21	
23	24	26	30	31	32	33	34	18	19	
20	21	22	23	30	31	32	19	20	21	
30	20	21	22	23	24	26	30	21	22	
23	22	23	24	25	26	27	28	29	30	
31	32	23	24	26	30	24	25	26	27	
28	29	30	31	32	33	25	26	27	28	
29	30	31	32	26	30	27	28	29	30	
31	32	28	29	30	29	30	30	31	32	
33	32	33	33	0	35	36	36	0		

```
%FLAG HBOND ACOEF
%FORMAT(5E16.8)
%FLAG HBOND BCOEF
%FORMAT(5E16.8)
%FLAG HBCUT
%FORMAT(5E16.8)
%FLAG AMBER ATOM TYPE
%FORMAT(20a4)
P O2 O2 OS CT H1 H1 CT H1 OS CT H2 CT HC HC N C O N H
C O CT OH HO CT HC HC HC CT H2 OH HO CT H1 OS
%FLAG TREE CHAIN CLASSIFICATION
%FORMAT(20a4)
M E E M M E E M E S 3 E B E E B B E B E
B E B S E 3 E E E B E S E M E M
%FLAG JOIN ARRAY
%FORMAT(10I8)
   0
       0
           0
               0
                    0
                        0
                            0
                                0
                                    0
                                         0
   0
           0
                    0
                        0
                            0
                                0
                                     0
                                         0
       0
               0
               0
                        0
                            0
                                0
                                     0
                                         0
   0
       0
           0
                    0
   0
       0
           0
               0
                    0
                        0
%FLAG IROTAT
%FORMAT(10I8)
   0
       0
           0
               0
                    0
                        0
                            0
                                0
                                    0
                                         0
                                         0
   0
       0
           0
               0
                    0
                        0
                            0
                                0
                                     0
                                0
   0
           0
               0
                    0
                        0
                            0
                                     0
                                         0
       0
                        0
   0
       0
           0
               0
                    0
%FLAG RADIUS SET
%FORMAT(1a80)
modified Bondi radii (mbondi)
%FLAG RADII
%FORMAT(5E16.8)
1.85000000E+00 1.50000000E+00 1.50000000E+00 1.50000000E+00
1.7000000E+00
1.3000000E+00 1.3000000E+00 1.7000000E+00 1.3000000E+00
1.5000000E+00
1.7000000E+00 1.3000000E+00 1.7000000E+00 1.3000000E+00
1.3000000E+00
1.55000000E+00 1.70000000E+00 1.50000000E+00 1.55000000E+00
1.3000000E+00
1.7000000E+00 1.5000000E+00 1.7000000E+00 1.5000000E+00
8.0000000E-01
1.7000000E+00 1.3000000E+00 1.3000000E+00 1.3000000E+00
1.7000000E+00
```

	1.3000000E+00	1.5000000E+00) 8.0000000E-01	l 1.7000000E+0	0
1	.3000000E+00				
	1.5000000E+00				
9	%FLAG SCREEN	[
9	%FORMAT(5E16	.8)			
	8.6000000E-01	8.5000000E-01	8.5000000E-01	8.5000000E-01	7.2000000E-01
	8.5000000E-01	8.5000000E-01	7.2000000E-01	8.5000000E-01	8.5000000E-01
	7.2000000E-01	8.5000000E-01	7.2000000E-01	8.5000000E-01	8.5000000E-01
	7.9000000E-01	7.2000000E-01	8.5000000E-01	7.9000000E-01	8.5000000E-01
	7.2000000E-01	8.5000000E-01	7.2000000E-01	8.5000000E-01	8.5000000E-01
	7.2000000E-01	8.5000000E-01	8.5000000E-01	8.5000000E-01	7.2000000E-01
	8.5000000E-01	8.5000000E-01	8.5000000E-01	7.2000000E-01	8.5000000E-01
	8.5000000E-01				

Figure B-2: Atomic charges for the formamidopyrimidine base calculated by Gaussian 03 and used in rMD simulations.

Figure B-3: Atomic charges for the aflatoxin B_1 adduct calculated by Gaussian 03 and used in rMD simulations.

File B-2: Parameter and topology file of formamidopyrimidine base of the AFB₁-FAPY lesion used in AMBER calculations

```
%VERSION VERSION STAMP = V0001.000 DATE = 01/31/08 15:09:23
%FLAG TITLE
               FAPY Base (no AFB)
%FORMAT(20a4)
FB
%FLAG POINTERS
%FORMAT(10I8)
 35
                                              0
      8
          12
                24
                     28
                          33
                               51
                                    44
                                          0
177
          24
                          21
                               40
                                              0
      1
                33
                     44
                                    18
                                         16
  0
      0
            0
                0
                     0
                           0
                                0
                                     0
                                         35
                                              0
  0
%FLAG ATOM NAME
%FORMAT(20a4)
P O1P O2P O5' C5' H5'1H5'2C4' H4' O4' C1' N6 N7 C5 C4 O4A N3 H3 C2 N2
HN21HN22N1 C6 C3' H3' C2' H2'1H2'2O3' H1' C8 O8 H8 H6
%FLAG CHARGE
%FORMAT(5E16.8)
 2.12453796E+01 -1.41423270E+01 -1.41423270E+01 -9.02732742E+00
      -1.25733870E-01
 1.37396142E+00 1.37396142E+00 2.96841267E+00 2.14294248E+00
      -6.72585093E+00
 6.52358340E-01 -6.24842667E+00 -4.23668475E+00 3.62805993E+00
      8.96172714E+00
-1.03848888E+01 -9.20772819E+00 6.41424960E+00 1.35428134E+01
     -1.68191829E+01
 7.71714405E+00 7.71714405E+00 -9.20772819E+00 3.30552522E+00
      1.29924999E+00
 1.79489655E+00 -1.55618442E+00 1.30836114E+00 1.30836114E+00
      -9.53390736E+00
 2.71512270E-01 1.04596002E+01 -1.09024021E+01 2.67867810E-01
      7.73718858E+00
%FLAG MASS
%FORMAT(5E16.8)
 3.09700000E+01 1.60000000E+01 1.60000000E+01 1.60000000E+01
1.2010000E+01
 1.00800000E+00 1.00800000E+00 1.20100000E+01 1.00800000E+00
1.6000000E+01
 1.20100000E+01 1.40100000E+01 1.40100000E+01 1.20100000E+01
1.2010000E+01
 1.6000000E+01 1.4010000E+01 1.0080000E+00 1.2010000E+01
1.4010000E+01
```

```
1.50300000E+00 1.63600000E+00 1.43900000E+00 1.09200000E+00
1.5350000E+00
1.4700000E+00 1.0920000E+00 1.36400000E+00 1.01800000E+00
1.3600000E+00
1.4060000E+00 1.4290000E+00 1.21400000E+00 1.4000000E+00
1.01100000E+00
1.39100000E+00 1.36400000E+00 1.33600000E+00 1.37600000E+00
1.0920000E+00
1.0900000E+00
%FLAG ANGLE FORCE CONSTANT
%FORMAT(5E16.8)
7.76000000E+01 4.51000000E+01 4.31000000E+01 5.09000000E+01
6.7800000E+01
4.64000000E+01 6.32000000E+01 3.94000000E+01 6.21000000E+01
7.03760000E+01
5.0900000E+01 6.28200000E+01 4.71000000E+01 4.64000000E+01
4.9400000E+01
6.6200000E+01 6.8600000E+01 7.39000000E+01 6.92990000E+01
7.4100000E+01
7.41000000E+01 7.41000000E+01 7.28000000E+01 7.00000000E+01
7.0000000E+01
6.7900000E+01 4.8800000E+01 6.4300000E+01 7.5000000E+01
7.31250000E+01
7.17000000E+01 4.76000000E+01 4.91000000E+01 6.94260000E+01
7.2800000E+01
4.13000000E+01 4.91000000E+01 4.64000000E+01 3.94000000E+01
5.5400000E+01
%FLAG ANGLE EQUIL VALUE
%FORMAT(5E16.8)
2.05041368E+00 2.04587583E+00 2.03627651E+00 1.89717371E+00
1.89228679E+00
1.92073567E+00 1.93085858E+00 1.89106506E+00 1.97937875E+00
1.92614619E+00
1.89717371E+00 2.05582421E+00 1.91846674E+00 1.92073567E+00
1.91637234E+00
1.92649525E+00 2.07659363E+00 1.95372240E+00 2.07127038E+00
2.13384046E+00
1.97100117E+00 2.14518510E+00 2.07903710E+00 1.98810540E+00
1.97955329E+00
2.10661331E+00 2.05948940E+00 2.18323330E+00 2.14413791E+00
1.98793087E+00
2.15757695E+00 2.08182962E+00 2.08357495E+00 1.92108473E+00
2.07449924E+00
1.86977203E+00 2.08357495E+00 1.92073567E+00 1.89106506E+00
2.09439600E+00
%FLAG DIHEDRAL FORCE CONSTANT
```

```
%FORMAT(5E16.8)
3.83000000E-01 1.05000000E+00 1.56000000E-01 3.00000000E-01 3.00000000E-
01
4.0000000E+00 6.6500000E+00 4.7500000E+00 2.17500000E+00 3.0000000E-
01
1.45000000E+00 3.5000000E-01 6.25000000E-01 4.15000000E+00
4 8000000E+00
1.0000000E+00 1.0500000E+01 1.1000000E+00
%FLAG DIHEDRAL PERIODICITY
%FORMAT(5E16.8)
3.0000000E+00 2.0000000E+00 3.0000000E+00 3.0000000E+00
2.0000000E+00
2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00
2.0000000E+00
2.0000000E+00 4.0000000E+00 2.0000000E+00 2.0000000E+00
2.0000000E+00
2.0000000E+00 2.0000000E+00 2.0000000E+00
%FLAG DIHEDRAL PHASE
%FORMAT(5E16.8)
0.0000000E+00 3.14159400E+00 0.0000000E+00 0.0000000E+00
3.14159400E+00
3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00
0.0000000E+00
3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00
3.14159400E+00
3.14159400E+00 3.14159400E+00 3.14159400E+00
%FLAG SOLTY
%FORMAT(5E16.8)
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00
0.0000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00
0.0000000E+00
0.0000000E+00
%FLAG LENNARD JONES ACOEF
%FORMAT(5E16.8)
6.02589390E+06 1.64263766E+06 3.79876399E+05 1.58759528E+06
3.70622491E+05
3.61397723E+05 2.54188684E+06 6.47841731E+05 6.28541240E+05
1.04308023E+06
2.54238516E+05 5.44261042E+04 5.33379252E+04 9.71708117E+04
7.51607703E+03
2.45746558E+06 6.06829342E+05 5.89818288E+05 9.95480466E+05
8.96776989E+04
```

30	33	102	13	30	78	81	14	30	78
84	14	33	30	90	15	36	93	99	21
42	48	51	27	51	48	54	32	54	57
60	33	54	57	63	33	60	57	63	36
69	33	102	37	72	78	81	14	72	78
84	14	75	72	78	6	75	72	87	4
78	30	90	38	81	78	84	39	96	93
99	40								
%FLAC	G ANG	GLES_	WITH	OUT_	HYDF	ROGE	N		
%FORM	MAT(10I8)							
0	9	12	1	3	0	6	2	3	0
9	3	6	0	9	3	9	12	21	5
12	21	27	5	12	21	72	7	21	27
30	9	21	72	78	7	21	72	87	5
27	21	72	5	27	30	33	10	27	30
78	5	30	33	69	12	30	78	72	7
33	30	78	16	33	69	39	17	33	69
66	18	36	39	42	19	36	39	69	17
36	93	96	20	39	36	93	22	39	42
45	23	39	42	48	24	39	69	66	25
42	39	69	26	42	48	54	28	45	42
48	29	48	54	57	30	48	54	66	31
54	66	69	34	57	54	66	35	78	72
87	5								
%FLAC	G DIH	EDRA	LS IN	С НУ	'DRO	GEN			
%FORM	MAT(10I8)	—	_					
0	9	12	15	1	0	9	12	18	1
9	12	21	24	3	12	21	72	75	3
15	12	21	24	3	15	12	21	27	3
15	12	21	72	3	18	12	21	24	3
18	12	21	27	3	18	12	21	72	3
21	27	30	90	1	21	72	78	81	3
21	72	78	84	3	24	21	27	30	1
24	21	72	75	3	24	21	72	78	3
24	21	72	87	3	27	21	72	75	3
27	30	33	102	4	27	30	78	81	3
27	30	78	84	3	30	78	72	75	3
33	30	78	81	3	33	30	78	84	3
39	36	93	99	10	39	42	48	51	11
39	42	-48	51	12	39	69	33	102	5
45	42	48	51	11	45	42	-48	51	12
48	54	57	60	5	48	54	57	63	5
51	48	54	57	13	51	48	54	66	13
60	57	54	66	5	63	57	54	66	5
66	69	33	102	5	69	33	30	90	4
72	78	30	90	3	75	72	78	81	3

	75	72	78	84	3	78	30	33	102	4	
	81	78	30	90	3	81	78	72	87	3	
	84	78	30	90	3	84	78	72	87	3	
	90	30	33	102	4	30	69	-33	-102	16	
	42	54	-48	-51	16	54	60	-57	-63	16	
	36	99	-93	-96	17			- /		- •	
	%FLAG	HIG	EDRA	LS W	ITHO	UT H	YDR	OGEN			
	%FORM	IAT(1018)								
	0	9`	12	21	1	3	0	9	12	2	
	6	0	9	12	2	9	12	21	27	3	
	9	12	21	72	3	12	21	27	30	1	
	12	21	72	78	3	12	21	72	87	3	
	21	27	30	33	1	21	27	-30	78	1	
	21	72	-78	30	3	27	21	-72	78	3	
	27	21	72	87	3	27	30	33	69	4	
	27	30	-78	72	3	30	27	-21	72	1	
	$\frac{2}{30}$	33	69	39	5	30	33	69	66	5	
	30	78	72	87	3	33	30	78	72	3	
	33	69	39	36	6	33	69	39	42	7	
	33	69	66	54	8	36	39	42	45	9	
	36	39	42	48	9	36	39	69	66	6	
	39	36	93	96	5	39	42	48	54	11	
	39	42	-48	54	12	39	69	-66	54	8	
	42	39	36	93	5	42	39	69	66	7	
	42	48	54	57	13	42	48	-54	66	13	
	45	42	39	69	9	45	42	48	54	11	
	45	42	-48	54	12	48	42	39	69	9	
	48	54	-66	69	14	57	54	66	69	15	
	69	33	30	78	4	69	39	36	93	5	
	39	48	-42	-45	17	57	48	-54	-66	18	
%FLAG EXCLUDED ATOMS LIST											
%FORMAT(1018)											
	2	3	4	5	6	7	8	3	4	5	
	4	5	5	6	7	8	9	10	25	6	
	7	8	9	10	11	25	26	27	30	7	
	8	9	10	25	8	9	10	25	9	10	
	11	12	25	26	27	28	29	30	31	10	
	11	25	26	27	30	11	12	24	25	26	
	27	28	29	30	31	35	12	14	23	24	
	25	26	27	28	29	30	31	35	13	14	
	15	19	23	24	25	27	28	29	31	35	
	14	15	16	17	23	24	32	33	34	15	
	16	17	18	19	23	24	32	33	34	35	
	16	17	18	19	20	23	24	32	17	18	
	19	24	18	19	20	21	22	23	24	19	
	20	23	20	21	22	23	24	21	22	23	

%FLAG HBOND ACOEF %FORMAT(5E16.8) %FLAG HBOND BCOEF %FORMAT(5E16.8) %FLAG HBCUT %FORMAT(5E16.8) %FLAG AMBER ATOM TYPE %FORMAT(20a4) P O2 O2 OS CT H1 H1 CT H1 OS CT N2 N2 CM C O NA H CA N2 H H NC CM CT H1 CT HC HC OS H2 C O HA H %FLAG TREE CHAIN CLASSIFICATION %FORMAT(20a4) M E E M M E E M E S 3 B S B B E B E S B EEEBMEBEEMEBEEE %FLAG JOIN ARRAY %FORMAT(10I8) %FLAG IROTAT %FORMAT(10I8) %FLAG RADIUS SET %FORMAT(1a80) modified Bondi radii (mbondi) %FLAG RADII %FORMAT(5E16.8) 1.85000000E+00 1.50000000E+00 1.50000000E+00 1.50000000E+00 1.7000000E+00 1.3000000E+00 1.3000000E+00 1.7000000E+00 1.3000000E+00 1.5000000E+00 1.7000000E+00 1.5500000E+00 1.5500000E+00 1.7000000E+00 1.7000000E+00 1.5000000E+00 1.5500000E+00 1.3000000E+00 1.70000000E+00 1.5500000E+00

```
1.3000000E+00 1.3000000E+00 1.5500000E+00 1.7000000E+00

1.7000000E+00 1.7000000E+00 1.3000000E+00 1.3000000E+00

1.5000000E+00 1.7000000E+00 1.5000000E+00 1.3000000E+00

1.3000000E+00 1.7000000E+00 1.5000000E+00 1.3000000E+00

%FLAG SCREEN

%FORMAT(5E16.8)

8.6000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01

8.5000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 7.2000000E-01

7.2000000E-01 7.9000000E-01 7.9000000E-01 7.2000000E-01 7.2000000E-01

8.5000000E-01 7.9000000E-01 8.5000000E-01 7.2000000E-01 7.2000000E-01

8.5000000E-01 7.9000000E-01 8.5000000E-01 7.2000000E-01 7.2000000E-01

8.5000000E-01 7.2000000E-01 8.5000000E-01 7.2000000E-01 7.2000000E-01

8.5000000E-01 7.2000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01

8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01

8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01

8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01

8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01 7.2000000E-01

8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-0
```

File B-3: Parameter and topology file of aflatoxin B₁ adduct of the FAPY-AFB₁ lesion used in AMBER calculations

```
%VERSION VERSION STAMP = V0001.000 DATE = 01/31/08 15:09:09
%FLAG TITLE
               AFB adduct only
%FORMAT(20a4)
FA
%FLAG POINTERS
%FORMAT(10I8)
   37
        7
            13
                 28
                      30
                          44
                               46
                                    70
                                          0
                                              0
  209
        1
            28
                      70
                           18
                               39
                                    13
                                         12
                                              0
                 44
   0
        0
             0
                  0
                       0
                           0
                                0
                                     0
                                         37
                                              0
   0
%FLAG ATOM NAME
%FORMAT(20a4)
O11 C11 O10 CA10C9B C9A C9 O9 HO9 C8A O7 H8A H9 H9a C6A H6a O6A
C5M C5B H5B
C4B O4 CM HM1 HM2 HM3 C4A C3A CA11C1 O1 C2A H2A1H2A2C3 H31 H32
%FLAG CHARGE
%FORMAT(5E16.8)
-1.00596207E+01 1.56350978E+01 -7.82520229E+00 1.25365780E+01
     -1.16103384E+01
```

```
1.94103940E+00 3.94458128E+00 -1.29566020E+01 8.36148458E+00
      3.23081379E-01
-7.27743995E+00 1.45322843E+00 7.51123206E-01 1.83079448E+00
      7.58904128E+00
 1.08313351E+00 -7.92578939E+00 1.17511968E+01 -1.17176678E+01
      4.28515607E+00
 1.01213943E+01 -4.77005147E+00 -2.71220713E+00 2.03761759E+00
      2.03761759E+00
 2.03761759E+00 -1.17464590E+01 6.21763098E+00 -9.38484895E+00
      1.28040813E+01
-1.00056827E+01 -7.70748623E+00 2.40224581E+00 2.40224581E+00
      9.56670750E-01
 8.71937055E-01 8.71937055E-01
%FLAG MASS
%FORMAT(5E16.8)
1.6000000E+01 1.2010000E+01 1.6000000E+01 1.2010000E+01
1.2010000E+01
 1.20100000E+01 1.20100000E+01 1.60000000E+01 1.00800000E+00
1.2010000E+01
 1.6000000E+01 1.00800000E+00 1.00800000E+00 1.00800000E+00
1.2010000E+01
 1.00800000E+00 1.6000000E+01 1.20100000E+01 1.20100000E+01
1.0080000E+00
 1.20100000E+01 1.60000000E+01 1.20100000E+01 1.00800000E+00
1.0080000E+00
1.00800000E+00 1.20100000E+01 1.20100000E+01 1.20100000E+01
1.2010000E+01
 1.6000000E+01 1.2010000E+01 1.00800000E+00 1.00800000E+00
1.2010000E+01
 1.00800000E+00 1.00800000E+00
%FLAG ATOM TYPE INDEX
%FORMAT(10I8)
   1
        2
            3
                 2
                      2
                          4
                               4
                                    5
                                        6
                                             4
   3
        7
            7
                 7
                      4
                          7
                               3
                                    2
                                        2
                                             7
   2
        3
            4
                 7
                      7
                          7
                               2
                                    2
                                        2
                                             2
            7
                 7
                      4
   1
        4
                          7
                               7
%FLAG NUMBER EXCLUDED ATOMS
%FORMAT(10I8)
   6
       10
             9
                 14
                      16
                           14
                                 11
                                      7
                                           2
                                               7
   7
        2
             2
                  4
                            2
                                      5
                                                3
                       4
                                 4
                                           6
   9
                                  7
                                      9
                                           8
                                                7
        6
             4
                  2
                       1
                             1
   4
        5
             4
                  3
                       2
                             1
                                  1
%FLAG NONBONDED PARM INDEX
%FORMAT(10I8)
   1
        2
             4
                  7
                       11
                            16
                                 22
                                       2
                                            3
                                                  5
   8
       12
                  23
                                       9
                                           13
                                                 18
             17
                        4
                             5
                                  6
```
24 7 8 9 10 14 19 25 11 12 13 14 15 20 26 16 17 18 19 20 25 28 21 27 22 23 24 26 27 %FLAG RESIDUE LABEL %FORMAT(20a4) FA %FLAG RESIDUE POINTER %FORMAT(10I8) 1 %FLAG BOND FORCE CONSTANT %FORMAT(5E16.8) 6.48000000E+02 4.11300000E+02 4.49900000E+02 3.92600000E+02 4.1170000E+02 4.78400000E+02 3.28300000E+02 4.18300000E+02 3.03100000E+02 3.3730000E+02 3.14100000E+02 3.37300000E+02 3.69600000E+02 3.01500000E+02 3.37300000E+02 3.92600000E+02 3.44300000E+02 3.28300000E+02 %FLAG BOND EQUIL VALUE %FORMAT(5E16.8) 1.21400000E+00 1.34300000E+00 1.40600000E+00 1.35700000E+00 1.4340000E+00 1.38700000E+00 1.50800000E+00 1.42900000E+00 1.53500000E+00 1.0920000E+00 1.42600000E+00 1.09200000E+00 9.74000000E-01 1.43900000E+00 1.0920000E+00 1.35700000E+00 1.08700000E+00 1.50800000E+00 %FLAG ANGLE FORCE CONSTANT %FORMAT(5E16.8) 7.62000000E+01 7.28000000E+01 6.82000000E+01 6.79000000E+01 6.6600000E+01 7.16800000E+01 7.12000000E+01 7.12000000E+01 6.43000000E+01 6.7700000E+01 6.7200000E+01 6.6000000E+01 6.37000000E+01 4.7000000E+01 7.1200000E+01 6.43000000E+01 6.77000000E+01 6.32000000E+01 4.64000000E+01 6.7800000E+01 4.64000000E+01 4.64000000E+01 4.71000000E+01 5.11000000E+01 6.2100000E+01 5.0900000E+01 5.0900000E+01 7.17000000E+01 6.42000000E+01 7.1200000E+01 5.0300000E+01 5.0300000E+01 6.4200000E+01 3.9400000E+01 6.35830000E+01 4.72000000E+01 6.38000000E+01 6.80000000E+01 3.94000000E+01 %FLAG ANGLE EQUIL VALUE %FORMAT(5E16.8)

```
2.13680752E+00 2.07903710E+00 1.86575777E+00 2.10661331E+00
2.07484830E+00
1.95712580E+00 2.11935422E+00 2.11935422E+00 2.15408629E+00
1.93801443E+00
2.09387240E+00 2.09614133E+00 1.93661817E+00 1.92841512E+00
2.11935422E+00
2.15408629E+00 1.90991462E+00 1.93085858E+00 1.92073567E+00
1.89228679E+00
1.92073567E+00 1.92073567E+00 1.88774893E+00 1.91113635E+00
1.97937875E+00
1.89717371E+00 1.89717371E+00 1.92405179E+00 1.95634040E+00
2.11935422E+00
2.08916001E+00 2.08916001E+00 1.95634040E+00 1.89106506E+00
2.03182592E+00
1.91427794E+00 1.92911325E+00 2.14867576E+00 1.89106506E+00
%FLAG DIHEDRAL FORCE CONSTANT
%FORMAT(5E16.8)
2.7000000E+00 2.17500000E+00 1.0500000E+00 6.65000000E+00
     0.0000000E+00
4.0000000E+00 3.62500000E+00 1.56000000E-01 1.67000000E-01
     3.8300000E-01
0.0000000E+00 1.0500000E+01 1.1000000E+00
%FLAG DIHEDRAL PERIODICITY
%FORMAT(5E16.8)
2.0000000E+00 2.0000000E+00 2.0000000E+00 2.0000000E+00
2.0000000E+00
2.0000000E+00 2.0000000E+00 3.0000000E+00 3.0000000E+00
3.0000000E+00
2.0000000E+00 2.0000000E+00 2.0000000E+00
%FLAG DIHEDRAL PHASE
%FORMAT(5E16.8)
3.14159400E+00 3.14159400E+00 3.14159400E+00 3.14159400E+00
0.0000000E+00
3.14159400E+00 3.14159400E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00
3.14159400E+00 3.14159400E+00 3.14159400E+00
%FLAG SOLTY
%FORMAT(5E16.8)
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00
0.0000000E+00 0.0000000E+00
%FLAG LENNARD JONES ACOEF
%FORMAT(5E16.8)
```

36	19	30	27	33	26	30	42	45	27
39	15	42	22	45	42	48	27	51	54
57	31	57	54	60	32	63	66	69	26
63	66	72	26	63	66	75	26	69	66
72	34	69	66	75	34	72	66	75	34
81	102	105	14	81	102	108	14	87	93
96	36	87	93	99	36	93	102	105	22
93	102	108	22	96	93	99	39	96	93
102	22	99	93	102	22	105	102	108	39
%FLA	G ANC	GLES_	WITH	OUT	HYD	ROGE	EN		
%FORM	MAT(10I8)							
0	3	6	1	0	3	84	2	3	6
9	3	3	84	81	4	3	84	87	5
6	3	84	6	6	9	12	7	6	9
78	8	9	12	15	9	9	12	51	10
9	78	60	11	9	78	81	12	12	9
78	12	12	15	18	13	12	15	42	13
12	51	48	15	12	51	54	10	15	12
51	16	15	18	21	17	15	18	27	18
15	42	30	20	15	42	48	20	18	15
42	18	18	27	30	20	21	18	27	17
27	30	42	25	30	42	48	28	42	48
51	29	48	51	54	30	51	54	60	12
54	60	63	8	54	60	78	11	60	63
66	33	60	78	81	12	63	60	78	8
78	81	84	10	78	81	102	9	81	84
87	4	81	102	93	13	84	81	102	16
84	87	90	2	84	87	93	35	87	93
102	37	90	87	93	38				
%FLA	G DIH	EDRA	LS_IN	IC_HY	YDRO	GEN			
%FORM	MAT(10I8)	_	_					
9	12	15	39	5	12	15	18	36	8
12	15	42	45	8	12	51	54	57	4
15	18	21	24	9	15	18	27	33	8
18	15	42	45	8	21	18	15	39	8
21	18	27	33	8	24	21	18	27	9
24	21	18	36	9	27	18	15	39	8
27	30	42	45	10	30	27	18	36	8
30	42	15	39	8	33	27	18	36	8
33	27	30	42	10	36	18	15	39	8
36	18	15	42	8	39	15	12	51	5
39	15	42	45	8	39	15	42	48	8
45	42	48	51	10	48	51	54	57	4
57	54	60	63	4	57	54	60	78	4
60	63	66	69	10	60	63	66	72	10
60	63	66	75	10	78	81	102	105	5

78	81	102	108	5	81	102	93	96	8
81	102	93	99	8	84	81	102	105	5
84	81	102	108	5	84	87	93	96	11
84	87	93	99	11	87	93	102	105	8
87	93	102	108	8	90	87	93	96	11
90	87	93	99	11	96	93	102	105	8
96	93	102	108	8	99	93	102	105	8
99	93	102	108	8	51	60	-54	-57	13
%FLAC	G DIH	EDRA	LS_W	ITHO	UT_F	IYDR	OGEN	[
%FORM	MAT(10I8)							
0	3	6	9	1	0	3	84	81	2
0	3	84	87	2	3	6	9	12	3
3	6	9	78	3	3	84	-81	78	4
3	84	81	102	4	3	84	87	90	2
3	84	87	93	2	6	3	84	81	2
6	3	84	87	2	6	9	12	15	4
6	9	12	51	4	6	9	78	60	4
6	9	-78	81	4	9	6	3	84	1
9	12	15	18	5	9	12	15	42	5
9	12	51	48	4	9	12	51	54	6
9	78	-60	54	7	9	78	60	63	4
9	78	-81	84	6	9	78	81	102	4
12	9	78	60	7	12	9	78	81	7
12	15	18	21	8	12	15	18	27	8
12	15	42	30	8	12	15	-42	48	8
12	51	-48	42	3	12	51	-54	60	6
15	12	9	78	4	15	12	-51	48	4
15	12	51	54	4	15	18	-27	30	8
15	42	-30	27	10	15	42	-48	51	10
18	15	12	51	5	18	15	-42	30	8
18	15	42	48	8	18	27	-30	42	10
21	18	15	42	8	21	18	27	30	8
27	18	-15	42	8	27	30	42	48	10
30	42	48	51	10	42	15	-12	51	5
42	48	51	54 79	5	48	51	54	60	4
51	12	9	/8 70	6 7	51 54	54	60	63	4
51	54	-60 70	/8	7	54	60 70	03	00	5
54	00 70	/8	81	/	60	/8	81 70	84 91	0
00 66	/8	81 60	102	4	03 70	00	/ð 01	81 97	4
00 70	03	102	/ 0	5	/0 01	01 01	04 07	87 00	4
/ð 01	01 01	102 07	73 02	с С	01 01	04 102	0/ 02	90 07	2 0
ð 1 0 1	04 01	-0/ 102	73 02	2 5	01 01	102	-73 02	0/ 100	ð 11
84 07	01 01	-102 01	93 102	Э Л	04 00	0/ 07	-93 02	102	11
٥ <i>١</i> ٥	04 2	-01 Q1	102 6	4 12	90 Q /	0 / 02	73 97	102	11
ں %EI <i>۱</i> (S Sevi	-04 ותו די	ט- דא תב	12 OMS	04 1 197	73	-0/	-90	14
	78 81 84 84 87 90 96 99 %FLAC %FORM 0 0 0 3 3 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9	78 81 81 102 84 81 84 87 87 93 90 87 96 93 99 93 %FLAG DIH%FORMAT(0 3 0 3 0 3 0 3 6 9 6 9 6 9 6 9 9 12 9 78 9 78 9 78 9 78 9 78 12 9 9 78 9 78 9 78 9 78 12 9 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 13 16 66 63 78 81 81 81 81 84 81 84 81 84 81 84 81 84 81 84 81 84 81 84 81 84 81 <td>78$81$$102$$81$$102$$93$$84$$81$$102$$84$$87$$93$$87$$93$$102$$90$$87$$93$$96$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$99$$93$$102$$9$$12$$15$$9$$12$$15$$9$$12$$15$$9$$12$$51$$9$$78$$-81$$12$$9$$78$$12$$15$$12$$15$$12$$9$$15$$12$$9$$15$$12$$9$$51$$54$$-60$$54$$60$$78$$60$$78$$81$$66$$63$$60$$78$$81$$102$$81$$84$$-87$$84$$81$$-102$$87$$84$$-81$<</td> <td>78$81$$102$$108$$81$$102$$108$$84$$81$$102$$108$$84$$87$$93$$99$$87$$93$$102$$108$$90$$87$$93$$99$$96$$93$$102$$108$$99$$93$$102$$108$$99$$93$$102$$108$$99$$93$$102$$108$$99$$93$$102$$108$$99$$93$$102$$108$$99$$93$$102$$108$$99$$93$$102$$108$$99$$93$$102$$108$$99$$93$$102$$108$$90$$3$$6$$9$$3$$84$$87$$3$$6$$9$$3$$84$$81$$92$$51$$48$$9$$12$$51$$89$$12$$51$$81$$912$$51$$84$$21$$18$$978$$-60$$54$$978$$60$$12$$51$$12$$51$$54$$15$$12$$978$$15$$12$$978$$15$$12$$978$$51$$54$$-60$$78$$81$$102$$66$$360$$78$$51$$54$$-60$$78$$81$$102$$93$$81$$84$</td> <td>78 81 102 108 5 81 102 93 99 8 84 87 93 99 11 87 93 102 108 8 90 87 93 99 11 96 93 102 108 8 90 87 93 99 11 96 93 102 108 8 99 93 102 108 8 99 93 102 108 8 99 93 102 108 8 99 93 102 108 8 90 3 6 9 1 0 3 6 9 1 0 3 84 87 2 6 9 12 51 4 9 12 51 48 4 9 78 -60 54 7 9 78 81 84</td> <td>78 81 102 108 5 81 81 102 93 99 8 84 84 81 102 108 5 84 84 87 93 99 11 87 87 93 102 108 8 90 90 87 93 99 11 96 96 93 102 108 8 99 99 93 102 108 8 99 99 93 102 108 8 91 0 3 6 9 1 0 0 3 84 87 2 3 3 6 9 78 3 3 3 84 87 93 2 6 6 9 12 51 4 6 6 9 12 51 4 9 9 12 51 48 4 9 9<td>$78$$81$$102$$108$$5$$81$$102$$81$$102$$93$$99$$8$$84$$81$$84$$81$$102$$108$$5$$84$$87$$84$$87$$93$$99$$11$$87$$93$$90$$87$$93$$99$$11$$96$$93$$90$$87$$93$$99$$11$$96$$93$$96$$93$$102$$108$$8$$99$$93$$96$$93$$102$$108$$8$$99$$93$$99$$93$$102$$108$$8$$51$$60$$\%FLAG$<math>DIHEDRALS_WITHOUT_HYDR$\%FORMAT(1018)$$0$$3$$6$$9$$1$$0$$3$$0$$3$$64$$97$$3$$3$$84$$3$$84$$87$$93$$2$$6$$3$$6$$9$$78$$3$$3$$84$$3$$84$$87$$92$$6$$9$$6$$9$$12$$51$$4$$6$$9$$12$$51$$48$$4$$9$$12$$9$$78$$60$$7$$12$$9$$9$$78$$81$$4$$9$$12$$9$$78$$60$$7$$12$$9$$12$$9$$78$$60$$7$$12$$9$$78$$60$$7$$12$</math></td><td>78 81 102 108 5 81 102 93 81 102 93 99 8 84 81 102 84 87 93 99 11 87 93 102 87 93 102 108 8 90 87 93 90 87 93 99 11 96 93 102 96 93 102 108 8 51 60 -54 %FLAG DIHEDRALS_WITHOUT_HYDROGEN %FORMAT(1018) 0 3 84 87 2 3 6 9 3 6 9 78 3 3 84 87 2 3 6 9 3 84 87 93 2 6 3 84 87 3 84 87 93 2 6 3 84 87 3 84 87 93 2 6 3 84 87 3 84 87</td><td>7881102108581102939681102939988481102105848110210858487939684879399118793102105879310210889087939690879399119693102105969310210889120105999310210885160-54-57%FLAGDIHEDRALS_WITHOUT_HYDROGEN"""""$0$36910384810384872369123697833848173848110243848173848793263846384872691215691251449125154978-605479786063978-81846978811021297860712978811215</td></td>	78 81 102 81 102 93 84 81 102 84 87 93 87 93 102 90 87 93 96 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 99 93 102 9 12 15 9 12 15 9 12 15 9 12 51 9 78 -81 12 9 78 12 15 12 15 12 9 15 12 9 15 12 9 51 54 -60 54 60 78 60 78 81 66 63 60 78 81 102 81 84 -87 84 81 -102 87 84 -81 <	78 81 102 108 81 102 108 84 81 102 108 84 87 93 99 87 93 102 108 90 87 93 99 96 93 102 108 99 93 102 108 99 93 102 108 99 93 102 108 99 93 102 108 99 93 102 108 99 93 102 108 99 93 102 108 99 93 102 108 99 93 102 108 90 3 6 9 3 84 87 3 6 9 3 84 81 92 51 48 9 12 51 89 12 51 81 912 51 84 21 18 978 -60 54 978 60 12 51 12 51 54 15 12 978 15 12 978 15 12 978 51 54 -60 78 81 102 66 360 78 51 54 -60 78 81 102 93 81 84	78 81 102 108 5 81 102 93 99 8 84 87 93 99 11 87 93 102 108 8 90 87 93 99 11 96 93 102 108 8 90 87 93 99 11 96 93 102 108 8 99 93 102 108 8 99 93 102 108 8 99 93 102 108 8 99 93 102 108 8 90 3 6 9 1 0 3 6 9 1 0 3 84 87 2 6 9 12 51 4 9 12 51 48 4 9 78 -60 54 7 9 78 81 84	78 81 102 108 5 81 81 102 93 99 8 84 84 81 102 108 5 84 84 87 93 99 11 87 87 93 102 108 8 90 90 87 93 99 11 96 96 93 102 108 8 99 99 93 102 108 8 99 99 93 102 108 8 91 0 3 6 9 1 0 0 3 84 87 2 3 3 6 9 78 3 3 3 84 87 93 2 6 6 9 12 51 4 6 6 9 12 51 4 9 9 12 51 48 4 9 9 <td>$78$$81$$102$$108$$5$$81$$102$$81$$102$$93$$99$$8$$84$$81$$84$$81$$102$$108$$5$$84$$87$$84$$87$$93$$99$$11$$87$$93$$90$$87$$93$$99$$11$$96$$93$$90$$87$$93$$99$$11$$96$$93$$96$$93$$102$$108$$8$$99$$93$$96$$93$$102$$108$$8$$99$$93$$99$$93$$102$$108$$8$$51$$60$$\%FLAG$<math>DIHEDRALS_WITHOUT_HYDR$\%FORMAT(1018)$$0$$3$$6$$9$$1$$0$$3$$0$$3$$64$$97$$3$$3$$84$$3$$84$$87$$93$$2$$6$$3$$6$$9$$78$$3$$3$$84$$3$$84$$87$$92$$6$$9$$6$$9$$12$$51$$4$$6$$9$$12$$51$$48$$4$$9$$12$$9$$78$$60$$7$$12$$9$$9$$78$$81$$4$$9$$12$$9$$78$$60$$7$$12$$9$$12$$9$$78$$60$$7$$12$$9$$78$$60$$7$$12$</math></td> <td>78 81 102 108 5 81 102 93 81 102 93 99 8 84 81 102 84 87 93 99 11 87 93 102 87 93 102 108 8 90 87 93 90 87 93 99 11 96 93 102 96 93 102 108 8 51 60 -54 %FLAG DIHEDRALS_WITHOUT_HYDROGEN %FORMAT(1018) 0 3 84 87 2 3 6 9 3 6 9 78 3 3 84 87 2 3 6 9 3 84 87 93 2 6 3 84 87 3 84 87 93 2 6 3 84 87 3 84 87 93 2 6 3 84 87 3 84 87</td> <td>7881102108581102939681102939988481102105848110210858487939684879399118793102105879310210889087939690879399119693102105969310210889120105999310210885160-54-57%FLAGDIHEDRALS_WITHOUT_HYDROGEN"""""$0$36910384810384872369123697833848173848110243848173848793263846384872691215691251449125154978-605479786063978-81846978811021297860712978811215</td>	78 81 102 108 5 81 102 81 102 93 99 8 84 81 84 81 102 108 5 84 87 84 87 93 99 11 87 93 90 87 93 99 11 96 93 90 87 93 99 11 96 93 96 93 102 108 8 99 93 96 93 102 108 8 99 93 99 93 102 108 8 51 60 $\%FLAG$ $DIHEDRALS_WITHOUT_HYDR\%FORMAT(1018)036910303649733843848793263697833843848792696912514691251484912978607129978814912978607129129786071297860712$	78 81 102 108 5 81 102 93 81 102 93 99 8 84 81 102 84 87 93 99 11 87 93 102 87 93 102 108 8 90 87 93 90 87 93 99 11 96 93 102 96 93 102 108 8 51 60 -54 %FLAG DIHEDRALS_WITHOUT_HYDROGEN %FORMAT(1018) 0 3 84 87 2 3 6 9 3 6 9 78 3 3 84 87 2 3 6 9 3 84 87 93 2 6 3 84 87 3 84 87 93 2 6 3 84 87 3 84 87 93 2 6 3 84 87 3 84 87	7881102108581102939681102939988481102105848110210858487939684879399118793102105879310210889087939690879399119693102105969310210889120105999310210885160-54-57%FLAGDIHEDRALS_WITHOUT_HYDROGEN""""" 0 36910384810384872369123697833848173848110243848173848793263846384872691215691251449125154978-605479786063978-81846978811021297860712978811215

%FLAG EXCLUDED_ATOMS_LIST

%FORM	AAT(1	0I8)							
2	3	4	28	29	30	3	4	5	27
28	29	30	31	32	35	4	5	6	18
21	27	28	29	30	5	6	7	14	15
17	18	19	21	22	27	28	29	35	6
7	8	10	11	13	14	15	16	17	18
19	20	21	27	28	7	8	9	10	11
12	13	14	15	16	17	18	19	27	8
9	10	11	12	13	14	15	16	17	18
9	10	11	12	13	14	15	10	13	11
12	13	14	15	16	17	12	13	14	15
16	17	18	13	15	14	15	15	16	17
18	16	17	18	19	17	18	18	19	20
21	19	20	21	22	27	20	21	22	23
27	28	21	22	27	22	23	24	25	26
27	28	29	35	23	24	25	26	27	28
24	25	26	27	25	26	26	0	28	29
30	32	35	36	37	29	30	31	32	33
34	35	36	37	30	31	32	33	34	35
36	37	31	32	33	34	35	36	37	32
33	34	35	33	34	35	36	37	34	35
36	37	35	36	37	36	37	37	0	

%FLAG HBOND_ACOEF %FORMAT(5E16.8)

%FLAG HBOND_BCOEF %FORMAT(5E16.8)

%FLAG HBCUT %FORMAT(5E16.8)

```
%FLAG AMBER ATOM TYPE
%FORMAT(20a4)
O C OS CA CB CT CT OH HO CT OS H1 H1 HC CT H2 OS CB CA HA
CA OS CT H1 H1 H1 CA CB CB C O CT HC HC CT HC HC
%FLAG TREE CHAIN CLASSIFICATION
%FORMAT(20a4)
EBSMMMMSEMSEEEBESSBE
S S 3 E E E M M S B E B E E M E E
%FLAG JOIN ARRAY
%FORMAT(10I8)
                    0
                       0
                              0
  0
      0
         0
             0
                0
                           0
                                  0
  0
      0
         0
             0
                0
                    0
                       0
                           0
                              0
                                  0
  0
      0
         0
             0
                0
                    0
                       0
                           0
                              0
                                  0
                0
                    0
                       0
  0
      0
         0
             0
%FLAG IROTAT
```

%FORMAT(10I8) 0 %FLAG RADIUS SET %FORMAT(1a80) modified Bondi radii (mbondi) %FLAG RADII %FORMAT(5E16.8) 1.5000000E+00 1.7000000E+00 1.5000000E+00 1.7000000E+00 1.7000000E+00 1.7000000E+00 1.7000000E+00 1.5000000E+00 8.0000000E-01 1.7000000E+00 1.5000000E+00 1.3000000E+00 1.3000000E+00 1.3000000E+00 1.7000000E+00 1.3000000E+00 1.5000000E+00 1.7000000E+00 1.7000000E+00 1.3000000E+00 1.7000000E+00 1.5000000E+00 1.7000000E+00 1.3000000E+00 1.3000000E+00 1.3000000E+00 1.7000000E+00 1.7000000E+00 1.7000000E+00 1.7000000E+00 1.5000000E+00 1.7000000E+00 1.3000000E+00 1.3000000E+00 1.7000000E+00 1.3000000E+00 1.3000000E+00 %FLAG SCREEN %FORMAT(5E16.8) 8.5000000E-01 7.2000000E-01 8.5000000E-01 7.2000000E-01 7.2000000E-01 7.2000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01 7.2000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01 7.2000000E-01 7.2000000E-01 7.2000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01 7.2000000E-01 8.5000000E-01 8.5000000E-01

APPENDIX C

EXPERIMENTAL DISTANCE RESTRAINTS

Table C-1: α -AFB₁-FAPY modified 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-3'

	Residue	Residue	Atom	Residue	Residue	Atom	Lower	Upper
	Number	Name	Name	Number	Name	Name	Bound	Bound
Class 1	12	GUA	H1	9	CYT	H42	3.05	3.91
	12	GUA	H1	9	CYT	H5	4.14	6.12
	1	CYT	H1'	1	CYT	H3'	3.43	4.72
	1	CYT	H1'	1	CYT	H4'	2.63	3.63
	1	CYT	H1'	1	CYT	H5'1	2.82	5.61
	1	CYT	H1'	2	THY	H6	1.80	3.80
	10	ADE	H1'	10	ADE	H8	2.87	4.12
	11	THY	H1'	11	THY	H3'	3.25	4.82
	11	THY	H1'	12	GUA	H8	3.74	5.21
	12	GUA	H1'	12	GUA	H4'	2.83	3.54
	12	GUA	H1'	12	GUA	H5'1	2.81	5.52
	12	GUA	H1'	12	GUA	H5'2	2.52	5.40
	12	GUA	H1'	12	GUA	H8	3.29	6.85
	12	GUA	H1'	13	ADE	H8	3.15	5.60
	13	ADE	H1'	13	ADE	H4'	2.93	3.45
	13	ADE	H1'	13	ADE	H8	3.20	6.75
	13	ADE	H1'	14	ADE	H8	3.14	4.55
	14	ADE	H1'	14	ADE	H4'	2.94	3.47
	14	ADE	H1'	15	THY	H6	3.19	3.78
	14	ADE	H1'	14	ADE	H8	3.38	4.03
	15	THY	H1'	15	THY	H6	3.58	6.48
	16	CYT	H1'	17	ADE	H2	2.95	3.48
	16	CYT	H1'	16	CYT	H2'1	2.85	5.35
	16	CYT	H1'	17	ADE	H5'1	3.13	4.61
	17	ADE	H1'	18	THY	H6	3.03	3.40
	18	THY	H1'	18	THY	H6	3.48	5.23
	18	THY	H1'	19	ADE	H8	1.80	4.06
	19	ADE	H1'	19	ADE	H3'	2.77	5.65
	19	ADE	H1'	19	ADE	H4'	2.75	4.12
	19	ADE	H1'	19	ADE	H8	3.17	6.09
	19	ADE	H1'	20	GUA	H8	1.80	4.00
	2	THY	H1'	2	THY	H2'1	2.53	5.25
	2	THY	H1'	2	THY	H3'	3.06	3.59
	2	THY	H1'	2	THY	H6	2.85	5.72

20	GUA	H1'	20	GUA	H3'	3.29	5.43
20	GUA	H1'	20	GUA	H8	3.22	5.38
3	ADE	H1'	3	ADE	H3'	3.33	5.04
3	ADE	H1'	3	ADE	H4'	2.88	3.27
3	ADE	H1'	3	ADE	H5'2	1.80	5.84
3	ADE	H1'	3	ADE	H8	3.24	4.22
3	ADE	H1'	4	THY	M7	4.15	5.29
4	THY	H1'	17	ADE	H2	3.49	4.74
4	THY	H1'	4	THY	H6	3.39	5.73
4	THY	H1'	21	FA	M	3.58	4.15
5	FB	H1'	5	FB	H2'1	3.05	4.34
5	FB	H1'	5	FB	H3'	3.78	4.76
5	FB	H1'	5	FB	H8	3.96	5.31
6	ADE	H1'	6	ADE	H3'	3.29	4.21
6	ADE	H1'	6	ADE	H4'	2.97	3 46
6	ADE	H1'	7	THY	H4'	2.96	3.82
6	ADE	H1'	7	THY	H6	3 14	4 09
6	ADE	H1'	7	THY	M7	3.95	4 56
7	THY	H1'	7	THY	H3'	3 27	5.52
7	ТНУ	H1'	7	тну	H6	3 30	4 49
7	ТНҮ	H1'	8	THY	H6	3.02	3.88
, 8	ТНҮ	H1'	8	THY	H3'	3 41	5.81
8	ТНҮ	H1'	8	THY	H6	2.58	3 70
8	ТНҮ	H1'	9	CYT	H6	3.38	6.05
9	CYT	H1'	10	ADE	H8	3 56	4 51
17	ADE	H2	4	THY	H5'1	3 46	5 24
6	ADE	H2	5	FB	H3	4 57	6.68
1	CYT	H2'1	1	CYT	H6	2 63	3.63
11	THY	H2'1	12	GUA	H8	1.80	3.99
18	THY	H2'1	19	ADE	H8	3.14	4.19
19	ADE	H2'1	20	GUA	H8	2 70	5 53
2	THY	H2'1	3	ADE	H8	2.93	5.93
3	ADE	H2'1	3	ADE	H4'	3.10	5.42
3	ADE	H2'1	4	THY	H6	1.80	5 11
3	ADE	H2'1	4	THY	M7	3.46	3.99
5	FB	H2'1	5	FB	H5'2	4.21	5.55
6	ADE	H2'1	6	ADE	H4'	3.57	5.91
6	ADE	H2'1	7	THY	H6	2.66	5.94
6	ADE	H2'1	7	THY	M7	3 25	4 41
8	THY	H2'1	8	THY	H5'2	2.68	5 78
9	CYT	H2'1	10	ADE	H8	3 31	5.02
1	CYT	H2'2	1	CYT	H3'	2 75	4 86
1	CYT	H2'2	1	CYT	H4'	2.70	3 46
1	CYT	H2'2	2	THY	H5'2	2 31	5.26
1	CYT	H2'2	- 1	CYT	H6	2 70	5.68
11	THY	H2'2	12	GUA	H4'	2.30	5.85
11	ТНУ	H2'2	11	THY	H5'1	2.00	5.80
19		H2'2	19		H4'	2.10	5.73
19		H2'2	20	GUA	H8	2.30	3.66
20	GUA	H2'2	20	GUA	H4'	3.00	5.00
 20	004		20	50A	117	0.00	0.00

20	GUA	H2'2	20	GUA	H8	2.61	6.32
3	ADE	H2'2	3	ADE	H4'	3.20	4.20
6	ADE	H2'2	7	THY	H4'	2.51	2.97
6	ADE	H2'2	7	THY	M7	3.44	4.27
7	THY	H2'2	8	THY	H5'1	2.91	3.17
7	THY	H2'2	7	THY	H6	2.78	5.71
7	THY	H2'2	8	THY	M7	3.24	6.51
8	THY	H2'2	8	THY	H3'	2 15	5 12
8	ТНҮ	H2'2	8	THY	M7	3.37	6.73
4	ТНҮ	H3	17	ADE	H61	1.80	3 92
4	тну	НЗ	17	ADE	H62	3 44	6 10
4	тну	НЗ	21	FΔ	M	5 78	9 4 4
5	FR	<u>Н3</u>	6		H61	<i>J</i> 18	5 13
5	FB	нз Ц3	21		M	5.25	7 44
0		но Цо	21			J.2J 4 24	1.44
0	CVT	113 1191	9	CVT	1142	4.34	4.79
1		⊓3 ⊔2'	1		HC HC	3.79	0.01
10		⊓3 ⊔2'	2 10			3.22	4.93
10		П3 1121	10			2.95	5.77
11			11			3.09	5.02
11			12	GUA		3.27	3.80
12	GUA	H3	13	ADE	HØ	2.29	5.97
14	ADE	H3	14	ADE	H4 [°]	2.80	3.90
14	ADE	H3	15	IHY	H6	3.48	4.80
14	ADE	H3'	14	ADE	H8	3.74	6.34
15	THY	H3'	15	IHY	H6	3.06	4.38
18	THY	H3'	19	ADE	H8	3.62	4.90
2	THY	H3'	3	ADE	H8	3.34	6.73
20	GUA	H3'	20	GUA	H8	2.95	4.73
3	ADE	H3'	4	THY	H6	3.84	6.13
3	ADE	H3'	4	THY	M7	4.14	4.82
4	THY	H3'	4	THY	H6	4.16	6.47
6	ADE	H3'	7	THY	H6	3.71	5.92
7	THY	H3'	7	THY	H6	3.26	6.23
8	THY	H3'	9	CYT	H5	3.43	6.77
8	THY	H3'	8	THY	H6	2.91	6.40
8	THY	H3'	9	CYT	H6	2.25	6.63
9	CYT	H3'	10	ADE	H8	3.98	5.66
1	CYT	H4'	1	CYT	H6	3.42	6.42
1	CYT	H4'	2	THY	M7	3.53	6.86
10	ADE	H4'	10	ADE	H8	3.54	5.49
12	GUA	H4'	12	GUA	H8	2.83	5.25
18	THY	H4'	18	THY	H6	3.51	4.60
2	THY	H4'	2	THY	H6	3.01	6.66
3	ADE	H4'	3	ADE	H8	3.91	6.15
4	THY	H4'	4	THY	H6	3.52	4.60
6	ADE	H4'	6	ADE	H8	2.81	5.99
7	THY	H4'	7	THY	H6	3.61	6.77
1	CYT	H5	2	THY	M7	3.85	4.62
16	CYT	H5	15	THY	H6	3.37	4.53
16	CYT	H5	15	THY	M7	4.43	5.92

	9	CYT	H5	8	THY	M7	3.71	4.42
	1	CYT	H5'1	1	CYT	H6	2.91	4.80
	15	THY	H5'1	15	THY	H6	3.43	6.14
	2	THY	H5'1	2	THY	H6	2.66	5.10
	4	THY	H5'1	4	THY	H6	2.89	6.76
	9	CYT	H5'1	9	CYT	H6	2.79	5.33
	1	CYT	H5'2	1	CYT	H6	2.46	3.50
	4	THY	H5'2	4	THY	H6	3.02	6.37
	1	CYT	H6	2	THY	M7	3.44	4.18
	7	THY	H6	7	THY	M7	2.95	4.38
	7	THY	H6	8	THY	M7	3.33	4.80
	14	ADE	H8	15	THY	M7	3.80	4.29
	6	ADE	H8	7	THY	M7	3.71	4.30
	21	FA	H9a	4	THY	M7	1.80	3.91
Class 2	12	GUA	H1	8	THY	H3	3.91	5.30
	12	GUA	H1	9	СҮТ	H41	3.23	5.14
	10	ADE	H1'	10	ADE	H3'	2.65	5.71
	11	THY	H1'	11	THY	H4'	2.51	3.02
	11	THY	H1'	11	THY	H5'1	3.30	4.99
	11	THY	H1'	11	THY	M7	4.00	7.09
	12	GUA	H1'	12	GUA	H3'	3.69	5.68
	13	ADE	H1'	13	ADE	H3'	3.06	5.70
	14	ADE	H1'	14	ADE	H2	4.04	5.50
	14	ADE	H1'	14	ADE	H2'1	2.75	5.25
	14	ADE	H1'	14	ADE	H3'	3.75	5.93
	14	ADE	H1'	15	THY	M7	4.43	7.18
	15	THY	H1'	15	THY	H3'	3.48	5.06
	16	CYT	H1'	21	FA	H2A1	3.37	6.29
	16	CYT	H1'	16	CYT	H3'	3.45	5.45
	17	ADE	H1'	17	ADE	H3'	3.31	5.79
	17	ADE	H1'	17	ADE	H5'1	2.97	5.02
	17	ADE	H1'	17	ADE	H8	3.12	6.27
	18	THY	H1'	18	THY	H2'1	2.70	5.48
	18	THY	H1'	18	THY	H3'	3.35	4.45
	18	THY	H1'	18	THY	H4'	2.96	3.47
	2	THY	H1'	2	THY	H2'2	1.70	2.50
	20	GUA	H1'	20	GUA	H4'	2.45	3.02
	3	ADE	H1'	4	THY	H6	3.34	4.07
	4	THY	H1'	4	THY	H2'1	2.82	4.58
	4	THY	H1'	4	THY	H3'	3.62	5.74
	5	FB	H1'	5	FB	H2'2	3.33	4.23
	6	ADE	H1'	6	ADE	H2'1	2.70	5.15
	6	ADE	H1'	6	ADE	H2'2	2.33	3.23
	7	THY	H1'	7	THY	H2'1	2.38	5.21
	7	THY	H1'	8	THY	M7	3.82	5.06
	8	THY	H1'	8	THY	H2'1	2.35	5.56
	9	CYT	H1'	9	CYT	H3'	3.11	5.83
	13	ADE	H2	14	ADE	H62	3.24	5.01
	17	ADE	H2	4	THY	H3	1.80	3.09
	10	ADE	H2'1	10	ADE	H4'	2.75	5.87

11 THY H2'1 11 THY H4' 3.39 5.54 11 THY H2'1 11 THY H5'1 2.47 4.58 12 GUA H2'1 12 GUA H5'1 2.44 4.68 12 GUA H2'1 12 GUA H5'2 2.80 5.37 13 ADE H2'1 14 ADE H8 2.85 4.61 14 ADE H2'1 14 ADE H4' 3.01 5.38 14 ADE H2'1 16 CYT H5'1 2.90 3.99 15 THY H2'1 18 THY H6'1 3.52 6.30 16 CYT H2'1 18 THY H6'1 4.63 5.55 5 FB H2'1 17 THY H3'1 7.03 5.55 5 FB H2'1 7 THY H3'1 7.17								
11 THY H2'1 11 THY H5'1 2.47 4.58 12 GUA H2'1 12 GUA H5'1 2.14 4.68 13 ADE H2'1 14 ADE H8 2.58 4.61 14 ADE H2'1 14 ADE H4' 3.01 5.37 16 CYT H2'1 14 ADE H4' 3.01 5.37 16 CYT H2'1 15 THY H6 2.78 4.90 15 THY H2'1 18 THY H6 3.52 6.30 16 CYT H2'1 18 THY H6'1 2.90 3.93 17 ADE H2'1 18 THY H4'3 3.44 4.90 2 THY H2'1 2 THY H3'1 2.88 4.70 3 THY H2'1 7 THY M7 2.38 <td< td=""><td>11</td><td>THY</td><td>H2'1</td><td>11</td><td>THY</td><td>H4'</td><td>3.39</td><td>5.54</td></td<>	11	THY	H2'1	11	THY	H4'	3.39	5.54
12 GUA H2'1 12 GUA H5'1 2.14 4.68 12 GUA H2'1 12 GUA H5'2 2.80 5.37 13 ADE H2'1 14 ADE H8 2.58 4.61 14 ADE H2'1 15 THY H6 2.78 4.90 15 THY H2'1 16 CYT H5'1 2.90 3.99 16 CYT H2'1 18 THY H6 3.52 6.30 18 THY H2'1 18 THY H6 3.52 6.30 2 THY H2'1 18 THY H6 3.55 5 5 FB H2'1 14 THY H6 3.55 5 5 FB H2'1 7 THY H4'1 2.98 4.30 9 CYT H2'1 7 THY H6 2.28 5.36	11	THY	H2'1	11	THY	H5'1	2.47	4.58
12 GUA H21 12 GUA H52 2.80 5.37 13 ADE H21 14 ADE H8 2.58 4.61 14 ADE H21 14 ADE H4' 3.01 5.38 14 ADE H21 15 THY H6 2.78 4.90 15 THY H21 16 CVT H5 3.28 4.73 16 CYT H21 18 THY H6 3.52 6.30 18 THY H21 2 THY H4'1 3.44 4.99 2 THY H21 2 FM M4 16 4.63 4 THY H21 7 THY H6'1 2.90 3.30 2 THY H2'1 7 THY H3'1 2.88 4.70 7 THY H2'1 7 THY H5'1 2.08 5.58 <td>12</td> <td>GUA</td> <td>H2'1</td> <td>12</td> <td>GUA</td> <td>H5'1</td> <td>2.14</td> <td>4.68</td>	12	GUA	H2'1	12	GUA	H5'1	2.14	4.68
13 ADE H21 14 ADE H8 2.58 4.61 14 ADE H21 14 ADE H4' 3.01 5.38 14 ADE H21 15 THY H6 2.78 4.90 15 THY H21 16 CYT H21 17 ADE H5'1 2.90 3.99 17 ADE H21 18 THY H6 3.52 6.30 18 THY H2'1 18 THY H4' 3.34 4.76 2 THY H2'1 2 THY H4' 3.34 4.76 2 THY H2'1 2 THY H4'1 1.63 5.55 5 FB H2'1 7 THY M3'2 2.98 4.38 9 CYT H2'1 7 THY M7 2.38 4.38 10 ADE H2'2 10 ADE	12	GUA	H2'1	12	GUA	H5'2	2 80	5 37
13 ADE H21 14 ADE H21 14 ADE H21 15 THY H6 2.78 4.90 15 THY H21 16 CYT H5 3.28 4.73 16 CYT H21 17 ADE H51 2.90 3.99 17 ADE H21 18 THY H6 3.52 6.30 18 THY H21 2 THY M7 3.43 4.76 2 THY H21 2 THY H4' 163 5.55 5 FB H21 5 FB H3 2.98 4.70 7 THY H21 7 THY M7 2.38 4.38 9 CYT H21 7 THY M7 2.38 4.70 7 THY H21 7 THY M7 2.38 4.70 7 THY H21 7 THY M7 2.38 4.70 10 ADE H22	13		H2'1	14		H8	2.58	4 61
14 ADE H21 14 ADE H21 15 THY H6 2.78 4.90 15 THY H21 16 CYT H5 3.28 4.73 16 CYT H21 17 ADE H51 2.90 3.99 17 ADE H21 18 THY H6 3.52 6.30 18 THY H21 2 THY H4' 3.34 4.79 2 THY H2'1 18 THY H6 3.55 5 5 FB H2'1 5 FB H3' 2.98 4.70 7 THY H2'1 7 THY M7 3.38 4.38 9 CYT H2'1 9 CYT H4'2 2.99 5.36 10 ADE H2'2 10 ADE H8 2.64 4.83 11 THY H2'2 12 GUA	14		H2'1	1/		ни'	3.01	5 38
14 ADE 1121 13 111 10 27.6 4.30 16 CYT H21 16 CYT H21 17 ADE H5'1 2.90 3.99 17 ADE H21 18 THY H6 3.52 6.30 18 THY H2'1 18 THY M7 3.43 4.76 2 THY H2'1 2 THY H4' 3.34 4.99 2 THY H2'1 2 THY H4' 1.63 5.55 5 FB H2'1 5 FB H3' 2.98 4.70 7 THY H2'1 7 THY M7 2.38 4.83 9 CYT H2'1 9 CYT H4' 2.29 5.36 11 THY H2'2 10 ADE H8 2.86 3.45 12 GUA H2'2 12 GUA	14		L12 1	15			2.79	4.00
15 16 CYT H21 16 CYT H21 17 ADE H51 2.90 3.99 17 ADE H21 18 THY H6 3.52 6.30 18 THY H21 18 THY H4 3.34 4.76 2 THY H21 2 THY H4' 3.34 4.99 2 THY H2'1 2 THY H4' 3.34 4.99 2 THY H2'1 4 THY H5'1 1.6.3 5.55 5 FB H2'1 5 FB H3' 2.98 4.70 7 THY H2'1 9 CYT H4' 2.28 5.36 10 ADE H2'2 10 ADE H8 2.86 3.45 12 GUA H2'2 15 THY M4' 2.28 5.73 14 ADE H2'2 15	14			10	OVT		2.70	4.90
16 CY1 H21 17 ADE H31 2.90 3.99 17 ADE H21 18 THY H6 3.52 6.30 18 THY H21 18 THY M7 3.43 4.76 2 THY H21 2 THY H44 3.34 4.76 2 THY H21 2 THY H44 3.34 4.99 2 THY H21 4 THY H51 1.63 5.55 5 FB H21 7 THY H44 2.98 4.70 7 THY H21 7 THY M7 2.38 4.38 9 CYT H21 9 CYT H41 2.29 5.36 10 ADE H22 10 ADE H8 2.70 5.58 11 THY H22 12 GUA H44 2.28 5.73	15			10			3.20	4.73
17 ADE H21 18 THY H6 3.22 6.30 18 THY H21 18 THY M7 3.43 4.76 2 THY H21 2 THY H4' 3.34 4.99 2 THY H2'1 2 THY H4' 3.34 4.99 2 THY H2'1 4 THY H5'1 1.63 5.55 5 FB H2'1 7 THY M7 2.38 4.38 9 CYT H2'1 9 CYT H4' 2.29 5.36 10 ADE H2'2 10 ADE H8 2.86 3.45 12 GUA H2'2 12 GUA H8 2.86 3.45 12 GUA H2'2 15 THY M7 3.37 5.04 15 THY H2'2 15 THY M6 2.74 4.89 16 CYT H2'2 18 THY H6 2.08 5.35	10			17			2.90	3.99
18 IHY H2'1 18 IHY M4' 3.43 4.76 2 THY H2'1 2 THY H4' 3.34 4.99 2 THY H2'1 2 THY H4' 3.34 4.99 2 THY H2'1 2 THY H4' 3.34 4.63 4 THY H2'1 4 THY H5'1 1.63 5.55 5 FB H2'1 7 THY M7 2.38 4.38 9 CYT H2'1 9 CYT H4' 2.29 5.36 10 ADE H2'2 10 ADE H8 2.64 4.83 11 THY H2'2 12 GUA H8 2.86 3.45 12 GUA H2'2 15 THY M7 3.37 5.04 15 THY H2'2 15 THY M6 3.30 3.30 16 CYT H2'2 18 THY H6 1.80 3.50 <td>1/</td> <td>ADE</td> <td>H2'1</td> <td>18</td> <td></td> <td>H6</td> <td>3.52</td> <td>6.30</td>	1/	ADE	H2'1	18		H6	3.52	6.30
2 IHY H2'1 2 IHY H4' 3.34 4.99 2 THY H2'1 21 FA M 4.16 4.63 4 THY H2'1 4 THY H5'1 1.63 5.55 5 FB H2'1 5 FB H3' 2.98 4.70 7 THY H2'1 7 THY M7 2.29 5.36 10 ADE H2'2 10 ADE H8 2.70 5.58 11 THY H2'2 12 GUA H4' 2.28 5.73 14 ADE H2'2 12 GUA H4' 2.28 5.73 14 ADE H2'2 15 THY M7 3.37 5.04 15 THY H2'2 18 THY H6 1.80 3.30 16 CVT H2'2 18 THY H6 1.80 3.50 20 GUA H3' 1.97 5.51 3 ADE H2'2	18	THY	H2'1	18		M7	3.43	4.76
2 THY H2'1 21 FA M 4.16 4.63 4 THY H2'1 4 THY H5'1 1.63 5.55 5 FB H2'1 5 FB H3' 2.98 4.70 7 THY H2'1 7 THY M7 2.38 4.38 9 CYT H2'1 9 CYT H4' 2.29 5.36 10 ADE H2'2 10 ADE H8 2.70 5.58 11 THY H2'2 12 GUA H8 2.86 3.45 12 GUA H2'2 12 GUA H8 2.86 3.45 12 GUA H2'2 15 THY H6 2.77 5.04 15 THY H2'2 15 THY H6 2.08 5.35 16 CYT H2'2 18 THY H6 2.08 5.35 17 ADE H2'2 19 ADE H8 1.80 3.50	2	THY	H2'1	2	THY	H4'	3.34	4.99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	THY	H2'1	21	FA	M	4.16	4.63
5 FB H2'1 5 FB H3' 2.98 4.70 7 THY H2'1 7 THY M7 2.38 4.38 9 CYT H2'1 9 CYT H4' 2.29 5.36 10 ADE H2'2 10 ADE H8 2.70 5.58 11 THY H2'2 11 THY H4' 2.64 4.83 11 THY H2'2 12 GUA H8 2.86 3.45 12 GUA H2'2 15 THY M7 3.37 5.04 15 THY H2'2 15 THY H6 1.80 3.32 16 CYT H2'2 18 THY H6 1.80 3.30 18 THY H2'2 19 ADE H8 1.80 3.50 20 GUA H2'2 20 GUA H3' 1.97 5.51	4	THY	H2'1	4	THY	H5'1	1.63	5.55
7 THY H2'1 7 THY M7 2.38 4.38 9 CYT H2'1 9 CYT H4' 2.29 5.36 10 ADE H2'2 10 ADE H8 2.70 5.58 11 THY H2'2 11 THY H4' 2.64 4.83 11 THY H2'2 12 GUA H8 2.86 3.45 12 GUA H2'2 12 GUA H4' 2.28 5.73 14 ADE H2'2 15 THY M7 3.37 5.04 15 THY H2'2 15 THY M6 2.74 4.89 16 CYT H2'2 18 THY H6 1.80 3.30 18 THY H2'2 18 THY H6 1.80 3.50 20 GUA H2'2 18 THY M7 1.80 4.11 4 THY H2'2 10 GUA H3' 1.97 5.5	5	FB	H2'1	5	FB	H3'	2.98	4.70
9 CYT H2'1 9 CYT H4' 2.29 5.36 10 ADE H2'2 10 ADE H8 2.70 5.58 11 THY H2'2 11 THY H4' 2.64 4.83 11 THY H2'2 12 GUA H4' 2.28 5.73 14 ADE H2'2 15 THY M7 3.37 5.04 15 THY H2'2 15 THY H6 2.74 4.89 16 CYT H2'2 18 THY H6 1.80 3.30 18 THY H2'2 18 THY H6 2.08 5.35 18 THY H2'2 19 ADE H8 1.80 3.50 20 GUA H2'2 14 THY M7 1.80 4.11 4 THY H2'2 21 FA M 3.69 7.28	7	THY	H2'1	7	THY	M7	2.38	4.38
10ADEH2210ADEH82.705.5811THYH2'211THYH4'2.644.8311THYH2'212GUAH82.863.4512GUAH2'212GUAH4'2.285.7314ADEH2'215THYM73.375.0415THYH2'215THYH62.744.8916CYTH2'218THYH61.803.3018THYH2'218THYH62.085.3518THYH2'219ADEH81.803.5020GUAH2'220GUAH3'1.975.513ADEH2'24THYM71.804.114THYH2'221FAM3.697.285FBH2'23ADEH4'2.733.436ADEH2'26ADEH4'3.304.856ADEH2'27THYH62.433.536ADEH2'29CYTH52.575.288THYH2'29CYTH62.453.259CYTH2'29CYTH62.453.259CYTH2'29CYTH62.453.259CYTH2'29CYT </td <td>9</td> <td>CYT</td> <td>H2'1</td> <td>9</td> <td>CYT</td> <td>H4'</td> <td>2.29</td> <td>5.36</td>	9	CYT	H2'1	9	CYT	H4'	2.29	5.36
11THYH2211THYH4' 2.64 4.83 11THYH2'212GUAH8 2.86 3.45 12GUAH2'212GUAH4' 2.28 5.73 14ADEH2'215THYM7 3.37 5.04 15THYH2'215THYM6 2.74 4.89 16CYTH2'217ADEH5'1 2.06 3.32 17ADEH2'218THYH6 1.80 3.30 18THYH2'219ADEH8 1.80 3.50 20GUAH2'220GUAH3' 1.97 5.51 3ADEH2'220GUAH3' 1.97 5.51 3ADEH2'221FAM 3.69 7.28 5FBH2'23ADEH4' 2.73 3.43 6ADEH2'26ADEH4' 3.30 4.85 6ADEH2'27THYH6 2.43 3.53 6ADEH2'29CYTH5 2.57 5.28 8THYH2'29CYTH6 2.45 3.25 9CYTH2'29CYTH6 2.45 3.25 9CYTH2'29CYTH6 2.45 3.25 9CYTH2'29CYTH6 2.45	10	ADE	H2'2	10	ADE	H8	2.70	5.58
11 THY H2'2 12 GUA H8 2.86 3.45 12 GUA H2'2 12 GUA H4' 2.28 5.73 14 ADE H2'2 15 THY M7 3.37 5.04 15 THY H2'2 15 THY M6 2.74 4.89 16 CYT H2'2 18 THY H6 1.80 3.30 18 THY H2'2 18 THY H6 2.08 5.35 18 THY H2'2 19 ADE H8 1.80 3.50 20 GUA H2'2 20 GUA H3' 1.97 5.51 3 ADE H2'2 20 GUA H3' 1.97 5.51 3 ADE H2'2 3 ADE H4' 2.73 3.43 6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 6 ADE H4' 3.53 6 </td <td>11</td> <td>THY</td> <td>H2'2</td> <td>11</td> <td>THY</td> <td>H4'</td> <td>2.64</td> <td>4.83</td>	11	THY	H2'2	11	THY	H4'	2.64	4.83
12 GUA H2'2 12 GUA H4' 2.28 5.73 14 ADE H2'2 15 THY M7 3.37 5.04 15 THY H2'2 15 THY H6 2.74 4.89 16 CYT H2'2 17 ADE H5'1 2.06 3.32 17 ADE H2'2 18 THY H6 1.80 3.30 18 THY H2'2 19 ADE H8 1.80 3.50 20 GUA H2'2 20 GUA H3' 1.97 5.51 3 ADE H2'2 4 THY M7 1.80 4.11 4 THY H2'2 21 FA M 3.69 7.28 5 FB H2'2 6 ADE H4' 2.73 3.43 6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 9 CYT H5 2.57 5.28 <td>11</td> <td>THY</td> <td>H2'2</td> <td>12</td> <td>GUA</td> <td>H8</td> <td>2.86</td> <td>3.45</td>	11	THY	H2'2	12	GUA	H8	2.86	3.45
14 ADE H2'2 15 THY M7 3.37 5.04 15 THY H2'2 15 THY H6 2.74 4.89 16 CYT H2'2 17 ADE H5'1 2.06 3.32 17 ADE H2'2 18 THY H6 1.80 3.30 18 THY H2'2 18 THY H6 2.08 5.35 18 THY H2'2 19 ADE H8 1.80 3.50 20 GUA H2'2 20 GUA H3' 1.97 5.51 3 ADE H2'2 4 THY M7 1.80 4.11 4 THY H2'2 21 FA M 3.69 7.28 5 FB H2'2 3 ADE H4' 2.73 3.43 6 ADE H2'2 6 ADE H4' 2.73 3.43 6 ADE H2'2 9 CYT H5 2.57 5.28	12	GUA	H2'2	12	GUA	H4'	2.28	5.73
15THYH2'215THYH62.744.8916CYTH2'217ADEH5'12.063.3217ADEH2'218THYH61.803.3018THYH2'218THYH62.085.3518THYH2'219ADEH81.803.5020GUAH2'220GUAH3'1.975.513ADEH2'224THYM71.804.114THYH2'221FAM3.697.285FBH2'23ADEH4'2.733.436ADEH2'26ADEH4'3.304.856ADEH2'27THYH62.433.536ADEH2'29CYTH52.575.288THYH2'29CYTH62.453.259CYTH2'29CYTH62.204.889CYTH2'29CYTH62.204.889CYTH2'210ADEH81.803.7821FAH2A116CYTH3'3.085.5021FAH2A116CYTH53.115.5021FAH2A117ADEH83.154.1221FAH2A117ADE </td <td>14</td> <td>ADE</td> <td>H2'2</td> <td>15</td> <td>THY</td> <td>M7</td> <td>3.37</td> <td>5.04</td>	14	ADE	H2'2	15	THY	M7	3.37	5.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	THY	H2'2	15	THY	H6	2.74	4.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	CYT	H2'2	17	ADE	H5'1	2.06	3.32
18THYH2218THYH62.085.3518THYH2219ADEH81.803.5020GUAH2220GUAH3'1.975.513ADEH224THYM71.804.114THYH2'221FAM3.697.285FBH2'23ADEH4'2.733.436ADEH2'26ADEH4'3.304.856ADEH2'27THYH62.433.536ADEH2'27THYH62.453.259CYTH2'29CYTH52.575.288THYH2'29CYTH62.453.259CYTH2'29CYTH62.453.259CYTH2'29CYTH62.204.889CYTH2'29CYTH62.204.889CYTH2'210ADEH81.803.7821FAH2A116CYTH3'3.085.5021FAH2A116CYTH53.115.5021FAH2A116CYTH31.804.4315THYH316CYTH421.805.3315THYH316CYTH42 <td>17</td> <td>ADE</td> <td>H2'2</td> <td>18</td> <td>THY</td> <td>H6</td> <td>1.80</td> <td>3.30</td>	17	ADE	H2'2	18	THY	H6	1.80	3.30
18THYH2'219ADEH81.803.5020GUAH2'220GUAH3'1.975.513ADEH2'24THYM71.804.114THYH2'221FAM3.697.285FBH2'23ADEH4'2.733.436ADEH2'26ADEH4'3.304.856ADEH2'27THYH62.433.536ADEH2'29CYTH52.575.288THYH2'29CYTH62.453.259CYTH2'29CYTH62.204.889CYTH2'29CYTH62.204.889CYTH2'29CYTH62.204.889CYTH2'29CYTH62.204.889CYTH2'29CYTH62.204.889CYTH2'210ADEH81.803.7821FAH2A116CYTH3'3.085.5021FAH2A116CYTH53.115.5021FAH2A116CYTH53.134.4315THYH316CYTH421.804.4315THYH316CYTH41<	18	THY	H2'2	18	THY	H6	2.08	5.35
20 GUA H22 20 GUA H3' 1.97 5.51 3 ADE H2'2 4 THY M7 1.80 4.11 4 THY H2'2 21 FA M 3.69 7.28 5 FB H2'2 3 ADE H4' 2.73 3.43 6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 7 THY H6 2.43 3.53 6 ADE H2'2 6 ADE H8 2.69 4.54 8 THY H2'2 9 CYT H5 2.57 5.28 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78	18	THY	H2'2	19	ADE	H8	1.80	3.50
3 ADE H22 4 THY M7 1.80 4.11 4 THY H22 21 FA M 3.69 7.28 5 FB H22 3 ADE H4' 2.73 3.43 6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 7 THY H6 2.43 3.53 6 ADE H2'2 9 CYT H5 2.57 5.28 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 <	20	GUA	H2'2	20	GUA	H3'	1 97	5 51
4 THY H22 21 FA M 3.69 7.28 5 FB H22 3 ADE H4' 2.73 3.43 6 ADE H2'2 6 ADE H4' 2.73 3.43 6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 7 THY H6 2.43 3.53 6 ADE H2'2 6 ADE H8 2.69 4.54 8 THY H2'2 9 CYT H5 2.57 5.28 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 10 ADE H8 1.80 3.78 <t< td=""><td>3</td><td>ADE</td><td>H2'2</td><td>4</td><td>THY</td><td>M7</td><td>1.80</td><td>4 1 1</td></t<>	3	ADE	H2'2	4	THY	M7	1.80	4 1 1
5 FB H2'2 3 ADE H4' 2.73 3.43 6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 7 THY H6 2.43 3.53 6 ADE H2'2 6 ADE H8 2.69 4.54 8 THY H2'2 9 CYT H5 2.57 5.28 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 16 CYT H5 3.11 5.50	4		H2'2	21	FΔ	M	3 69	7.28
6 ADE H2'2 6 ADE H4' 3.30 4.85 6 ADE H2'2 7 THY H6 2.43 3.53 6 ADE H2'2 7 THY H6 2.43 3.53 6 ADE H2'2 6 ADE H8 2.69 4.54 8 THY H2'2 9 CYT H5 2.57 5.28 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 16 CYT H5 3.11 5.50	5	FB	H2'2	2		ни'	273	3 / 3
6 ADE H22 7 THY H6 2.43 3.53 6 ADE H2'2 7 THY H6 2.43 3.53 6 ADE H2'2 6 ADE H8 2.69 4.54 8 THY H2'2 9 CYT H5 2.57 5.28 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A2 21 FA M 3.73 4.40	6		H2'2	6		н4 Ци'	2.70	0.40 1 85
6 ADE H122 7 H111 H16 2.43 3.33 6 ADE H22 6 ADE H8 2.69 4.54 8 THY H2'2 9 CYT H5 2.57 5.28 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12	6		1122 1122	7			2.30	4.00
6 ADE H22 6 ADE H6 2.69 4.34 8 THY H2'2 9 CYT H5 2.57 5.28 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H4' 2.25 4.00 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 5.33 <	6		112 Z	6			2.45	5.55
6 IHY H22 9 CTI H5 2.57 5.26 8 THY H2'2 9 CYT H6 2.45 3.25 9 CYT H2'2 9 CYT H4' 2.25 4.00 9 CYT H2'2 9 CYT H4' 2.25 4.00 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 16 CYT H42 1.80 5.33	0			0			2.09	4.04
8 IHY H22 9 CYI H6 2.45 3.25 9 CYT H2'2 9 CYT H4' 2.25 4.00 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 4.43 15 THY H3 16 CYT H42 1.80 5.33	0			9			2.57	0.20
9 CY1 H22 9 CY1 H4 2.25 4.00 9 CYT H2'2 9 CYT H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 5.33 15 THY H3 16 CYT H41 1.80 3.61	8			9		Но	2.45	3.25
9 CY1 H2'2 9 CY1 H6 2.20 4.88 9 CYT H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 5.33 15 THY H3 16 CYT H41 1.80 3.61	9		H2 ⁻ 2	9		H4 [°]	2.25	4.00
9 CY1 H2'2 10 ADE H8 1.80 3.78 21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 4.43 15 THY H3 16 CYT H42 1.80 5.33 15 THY H3 14 ADE H61 1.80 3.61 5 FB H3 16 CYT H41 1.80 6.71	9	CYI	H2'2	9	CYI	H6	2.20	4.88
21 FA H2A1 16 CYT H3' 3.08 5.50 21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 4.43 15 THY H3 16 CYT H42 1.80 5.33 15 THY H3 14 ADE H61 1.80 3.61 5 FB H3 16 CYT H41 1.80 4.19 5 FB H3 16 CYT H5 1.80 6.71 5 FB H3 5 FB HN22 1.80 6.34 <td>9</td> <td>CYT</td> <td>H2'2</td> <td>10</td> <td>ADE</td> <td>H8</td> <td>1.80</td> <td>3.78</td>	9	CYT	H2'2	10	ADE	H8	1.80	3.78
21 FA H2A1 21 FA H31 2.08 4.16 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 4.43 15 THY H3 16 CYT H42 1.80 5.33 15 THY H3 14 ADE H61 1.80 3.61 5 FB H3 16 CYT H41 1.80 4.19 5 FB H3 16 CYT H5 1.80 6.71 5 FB H3 5 FB HN22 1.80 6.34	21	FA	H2A1	16	CYT	H3'	3.08	5.50
21 FA H2A1 16 CYT H5 3.11 5.50 21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 4.43 15 THY H3 16 CYT H42 1.80 5.33 15 THY H3 16 CYT H42 1.80 3.61 5 FB H3 16 CYT H41 1.80 4.19 5 FB H3 16 CYT H41 1.80 6.71 5 FB H3 16 CYT H5 1.80 6.71 5 FB H3 5 FB HN22 1.80 6.34	21	FA	H2A1	21	FA	H31	2.08	4.16
21 FA H2A1 17 ADE H8 3.15 4.12 21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 4.43 15 THY H3 16 CYT H42 1.80 5.33 15 THY H3 14 ADE H61 1.80 3.61 5 FB H3 16 CYT H41 1.80 4.19 5 FB H3 16 CYT H41 1.80 6.71 5 FB H3 16 CYT H5 1.80 6.71 5 FB H3 5 FB HN22 1.80 6.34	21	FA	H2A1	16	CYT	H5	3.11	5.50
21 FA H2A2 21 FA M 3.73 4.40 15 THY H3 5 FB H3 1.80 4.43 15 THY H3 16 CYT H42 1.80 5.33 15 THY H3 14 ADE H61 1.80 3.61 5 FB H3 16 CYT H41 1.80 4.19 5 FB H3 16 CYT H5 1.80 6.71 5 FB H3 5 FB H3 6.34	21	FA	H2A1	17	ADE	H8	3.15	4.12
15THYH35FBH31.804.4315THYH316CYTH421.805.3315THYH314ADEH611.803.615FBH316CYTH411.804.195FBH316CYTH51.806.715FBH35FBHN221.806.34	21	FA	H2A2	21	FA	Μ	3.73	4.40
15THYH316CYTH421.805.3315THYH314ADEH611.803.615FBH316CYTH411.804.195FBH316CYTH51.806.715FBH35FBHN221.806.34	15	THY	H3	5	FB	H3	1.80	4.43
15THYH314ADEH611.803.615FBH316CYTH411.804.195FBH316CYTH51.806.715FBH35FBHN221.806.34	15	THY	H3	16	CYT	H42	1.80	5.33
5FBH316CYTH411.804.195FBH316CYTH51.806.715FBH35FBHN221.806.34	15	THY	H3	14	ADE	H61	1.80	3.61
5 FB H3 16 CYT H5 1.80 6.71 5 FB H3 5 FB HN22 1.80 6.34	5	FB	H3	16	CYT	H41	1.80	4.19
5 FB H3 5 FB HN22 1.80 6.34	5	FB	H3	16	CYT	H5	1.80	6.71
	5	FB	H3	5	FB	HN22	1.80	6.34

	8	THY	H3	13	ADE	H62	1.80	4.98
	1	CYT	H3'	1	CYT	H5'1	2.60	4.76
	1	CYT	H3'	1	CYT	H5'2	2.41	3.81
	1	CYT	H3'	1	CYT	H6	3.06	4.00
	12	GUA	H3'	12	GUA	H5'2	2.20	5.74
	12	GUA	H3'	12	GUA	H8	3.50	6.51
	13	ADE	H3'	14	ADE	H8	3.62	6.65
	14	ADE	H3'	15	THY	M7	3.80	4.80
	17	ADE	H3'	17	ADE	H5'1	2.22	4.83
	17	ADE	H3'	18	THY	H6	3.08	6.31
	19	ADE	H3'	20	GUA	H8	3.64	6.67
	2	THY	H3'	2	THY	H6	3.24	6.84
	6	ADE	H3'	7	THY	M7	4.22	5.76
	8	THY	H3'	8	THY	M7	3.54	6.60
	9	CYT	H3'	9	CYT	H6	2.80	5.89
	11	THY	H4'	11	THY	H6	3.52	6.09
	13	ADE	H4'	13	ADE	H8	2.51	6.44
	14	ADE	H4'	14	ADE	H8	3.49	5.05
	15	THY	H4'	15	THY	H6	3.39	4.68
	17	ADE	H4'	17	ADE	H8	2.75	5.00
	19	ADE	H4'	19	ADE	H8	3.16	6.67
	8	THY	H4'	8	THY	H6	3.47	6.67
	8	THY	H4'	8	THY	M7	3.71	7.64
	10	ADE	H5'1	10	ADE	H8	3.24	4.47
	12	GUA	H5'1	12	GUA	H8	3.28	6.14
	13	ADE	H5'1	13	ADE	H8	1.98	6.39
	14	ADE	H5'1	14	ADE	H8	2.73	5.32
	19	ADE	H5'1	19	ADE	H8	3.27	6.36
	20	GUA	H5'1	20	GUA	H8	3.10	6.49
	12	GUA	H5'2	12	GUA	H8	2.88	6.62
	13	ADE	H5'2	13	ADE	H8	2.23	4.60
	21	FA	H5B	4	THY	H6	3.53	4.36
	4	THY	H6	21	FA	H6a	1.80	3.97
	4	THY	H6	21	FA	H9a	3.48	5.00
	8	THY	H6	8	THY	M7	2.83	3.33
	21	FA	H6a	5	FB	H8	3.44	5.50
Class 3	12	GUA	H1	13	ADE	H61	3.00	4.45
	1	CYT	H1'	1	CYT	H2'2	2.04	2.86
	1	CYT	H1'	1	CYT	H6	2.81	3.70
	10	ADE	H1'	10	ADE	H2'1	2.42	4.94
	10	ADE	H1'	10	ADE	H4'	2.61	3.39
	12	GUA	H1'	12	GUA	H2'1	2.48	4.96
	15	THY	H1'	16	CYT	H5	1.80	6.51
	16	CYT	H1'	16	CYT	H6	3.47	6.60
	17	ADE	H1'	18	THY	M7	1.80	5.24
	18	THY	H1'	18	THY	H2'2	2.23	3.15
	19	ADE	H1'	19	ADE	H5'1	2.06	4.86
	2	THY	H1'	2	THY	H4'	2.50	3.99
	20	GUA	H1'	20	GUA	H2'2	1.89	3.34
	3	ADE	H1'	3	ADE	H2'1	2.73	4.59

3	ADE	H1'	3	ADE	H2'2	2.12	2.96
4	THY	H1'	21	FA	H5B	2.87	3.64
5	FB	H1'	21	FA	H9a	3.75	5.60
6	ADE	H1'	6	ADE	H8	3.35	4.08
7	THY	H1'	7	THY	H4'	2.71	3.13
8	THY	H1'	8	THY	H4'	1.97	3.30
3	ADE	H2	18	THY	H3	1.80	3.49
6	ADE	H2	15	THY	H3	2.85	3.31
1	CYT	H2'1	1	CYT	H3'	2.17	2.89
1	CYT	H2'1	1	CYT	H4'	2.24	3.45
1	CYT	H2'1	2	THY	H6	2.00	2.70
10	ADE	H2'1	10	ADE	H3'	2.15	3.34
12	GUA	H2'1	12	GUA	H4'	2.22	4.08
13	ADE	H2'1	13	ADE	H4'	2.93	5.02
13	ADE	H2'1	13	ADE	H5'1	1.93	4.97
14	ADE	H2'1	14	ADE	H8	2.46	3.06
14	ADE	H2'1	15	THY	M7	3.29	4.52
15	THY	H2'1	15	THY	M7	3.54	5.54
16	CYT	H2'1	16	CYT	H3'	2.24	3.06
16	CYT	H2'1	16	CYT	H5	3.16	6.04
16	CYT	H2'1	16	CYT	H6	1.80	4.46
19	ADE	H2'1	19	ADE	H4'	2.29	5.80
20	GUA	H2'1	20	GUA	H8	2.02	2.84
4	THY	H2'1	4	THY	H3'	2.25	3.69
11	THY	H2'2	11	THY	H3'	2.45	3.89
11	THY	H2'2	11	THY	H6	2.65	4.85
12	GUA	H2'2	12	GUA	H8	2.09	3.80
16	CYT	H2'2	21	FA	H2A1	3.40	5.74
19	ADE	H2'2	19	ADE	H3'	2.00	5.03
2	THY	H2'2	2	THY	H3'	2.04	2.90
3	ADE	H2'2	3	ADE	H3'	2.07	4.21
3	ADE	H2'2	4	THY	H6	1.80	3.24
4	THY	H2'2	4	THY	H3'	2.36	4.28
4	THY	H2'2	4	THY	H6	2.33	5.25
7	THY	H2'2	8	THY	H6	1.80	2.93
8	THY	H2'2	8	THY	H6	2.34	5.62
5	FB	H3	16	CYT	H42	1.80	5.60
5	FB	H3	5	FB	HN21	2.51	3.35
1	CYT	H3'	2	THY	M7	2.95	5.00
15	THY	H3'	16	CYT	H5	1.80	5.40
16	CYT	H3'	16	CYT	H6	2.17	3.12
5	FB	H3'	6	ADE	H4'	2.50	2.96
1	CYT	H4'	1	CYT	H5'1	1.95	4.09
20	GUA	H4'	20	GUA	H8	3.32	4.90
9	CYT	H4'	9	CYT	H6	2.46	5.90
6	ADE	H5'1	6	ADE	H8	3.82	6.66
15	THY	H5'2	15	THY	H6	3.15	6.49
20	GUA	H5'2	20	GUA	H8	2.20	6.34
18	THY	H6	18	THY	M7	2.89	3.47
4	THY	H6	4	THY	M7	3.16	3.74

	21	FA	H6a	21	FA	H8A	2.94	3.34
	21	FA	H6a	21	FA	H9a	2.66	3.16
	21	FA	H6a	4	THY	M7	1.80	3.81
	17	ADE	H8	18	THY	M7	1.80	4.33
	3	ADE	H8	4	THY	M7	3.33	3.97
Class 4	10	ADE	H1'	10	ADE	H2'2	1.91	2.75
	11	THY	H1'	11	THY	H2'1	2.64	5.10
	13	ADE	H1'	13	ADE	H2'2	2.08	2.85
	14	ADE	H1'	15	THY	H5'1	1 80	5 55
	14	ADE	H1'	15	ТНҮ	H5'2	2 74	4 77
	15	THY	H1'	15	ТНҮ	H4'	3.27	3 99
	19	ADE	H1'	19	ADE	H5'2	2 73	5.00
	4	THY	H1'	4	THY	H2'2	2.16	2.88
	8	тну	H1'	8	ТНУ	H2'2	2.10	2.83
	9	CYT	H1'	q	CYT	H2'1	2.00	2.00 4 71
	g	CYT	H1'	q	CYT	H2'2	2.40	2.88
	g	CYT	H1'	q	CYT	H4'	2.00	3.24
	13		H2	8		H3	1.80	3 30
	14		H2	7		НЗ	1.00	3 91
	10		H2'1	10		H8	2 10	2 78
	10	THY	H2'1	11	THY	H3'	2.10	2.00
	12	GUA	H2'1	12	GUA	H3'	2.10	3.92
	12	GUA	H2'1	12	GUA	H8	1.80	2.96
	13		H2'1	13		H8	1.60	2.00
	15	THY	H2'1	16	CYT	H6	2 34	3 20
	17	ADE	H2'1	18	ТНҮ	M7	1.80	7 19
	2	THY	H2'1	2	ТНҮ	H3'	2.28	3 77
	3	ADE	H2'1	3	ADE	H3'	2.20	3.09
	4	THY	H2'1	4	THY	H6	2.17	3 10
	7	THY	H2'1	7	ТНҮ	H6	2.08	2.86
	8	THY	H2'1	8	ТНҮ	H6	1 84	2.51
	9	СҮТ	H2'1	9	CYT	H6	1 71	2 54
	1	CYT	H2'2	2	THY	M7	3.22	7.21
	10	ADE	H2'2	10	ADE	H4'	2.29	3.41
	12	GUA	H2'2	12	GUA	H3'	1.82	2 80
	13	ADE	H2'2	13	ADE	H4'	3.07	5.56
	14	ADE	H2'2	15	THY	H6	2.33	3.33
	17	ADE	H2'2	18	THY	M7	1.80	4.13
	18	THY	H2'2	18	THY	H3'	2.31	3.77
	2	THY	H2'2	2	THY	H4'	2.05	2.88
	9	CYT	H2'2	9	CYT	H3'	2.42	4.29
	21	FA	H2A1	21	FA	H2A2	2.54	3.03
	7	THY	H3	14	ADE	H61	1 80	4 86
	7	THY	H3	14	ADE	H62	1.80	5.53
	8	THY	H3	13	ADE	H61	1.80	2 75
	11	THY	H3'	11	THY	H5'1	2.14	3.04
	12	GUA	H3'	12	GUA	H5'1	2 10	4.09
	13	ADF	H3'	13	ADF	H8	2.69	6.58
	17	ADE	H3'	18	THY	M7	3.97	6 1 9
	19	ADE	H3'	19	ADE	H4'	1.72	2.73

	19	ADE	H3'	19	ADE	H8	2.59	5.39
	3	ADE	H3'	2	THY	H4'	2.36	2.87
	3	ADE	H3'	3	ADE	H8	2.90	4.60
	6	ADE	H3'	6	ADE	H5'1	2.54	5.42
	6	ADE	H3'	6	ADE	H8	3.04	4.62
	9	CYT	H5	8	THY	H6	3.18	4.46
	8	THY	H5'1	8	THY	H6	3.23	5.69
	10	ADE	H5'2	10	ADE	H8	3.83	6.67
	8	THY	H5'2	8	THY	H6	3.26	5.10
	11	THY	H6	11	THY	M7	2.75	3.35
	17	ADE	H61	4	THY	M7	1.80	4.46
Class 5	1	CYT	H1'	1	CYT	H2'1	2.35	4.24
	11	THY	H1'	11	THY	H2'2	2.07	2.77
	11	THY	H1'	11	THY	H6	2.78	3.83
	12	GUA	H1'	12	GUA	H2'2	2.13	2.82
	13	ADE	H1'	13	ADE	H2'1	2.27	5.10
	14	ADE	H1'	14	ADE	H2'2	2.11	3.09
	15	THY	H1'	15	THY	H2'1	2.89	4.48
	15	THY	H1'	15	THY	H2'2	2.25	2.99
	16	CYT	H1'	16	CYT	H2'2	2.11	2.90
	17	ADE	H1'	17	ADE	H2'1	2.28	5.02
	17	ADE	H1'	17	ADE	H2'2	2.01	3.44
	17	ADE	H1'	17	ADE	H4'	2.42	3.01
	17	ADE	H1'	18	THY	H5'1	2.72	4.19
	19	ADE	H1'	19	ADE	H2'1	2.10	4.33
	19	ADE	H1'	19	ADE	H2'2	1.97	3.02
	2	THY	H1'	3	ADE	H8	2.33	6.22
	20	GUA	H1'	20	GUA	H2'1	2.22	4.92
	4	THY	H1'	4	THY	H4'	2.20	2.92
	5	FB	H1'	5	FB	H4'	3.50	4.12
	5	FB	H1'	5	FB	H5'1	2.81	4.77
	7	THY	H1'	7	THY	H2'2	2.23	3.06
	8	THY	H1'	9	CYT	H1'	3.14	5.39
	8	THY	H1'	9	CYT	H5'1	2.51	3.32
	9	CYT	H1'	10	ADE	H4'	3.19	4.15
	9	CYT	H1'	9	CYT	H5'1	2.60	5.10
	9	CYT	H1'	9	CYT	H6	2.45	5.95
	13	ADE	H2	14	ADE	H5'2	3.19	4.38
	1	CYT	H2'1	1	CYT	H2'2	1.52	2.22
	1	CYT	H2'1	2	THY	M7	2.39	4.07
	10	ADE	H2'1	10	ADE	H2'2	1.46	2.25
	11	THY	H2'1	11	THY	H2'2	1.60	2.43
	11	THY	H2'1	11	THY	H6	1.91	2.71
	13	ADE	H2'1	13	ADE	H3'	1.83	3.16
	14	ADE	H2'1	14	ADE	H2'2	1.48	2.51
	14	ADE	H2'1	14	ADE	H3'	2.04	3.05
	15	THY	H2'1	15	THY	H2'2	1.62	2.69
	15	THY	H2'1	15	THY	H3'	2.37	3.06
	15	THY	H2'1	14	ADE	H5'2	2.19	3.06
	15	THY	H2'1	15	THY	H6	2.12	3.01

16 CYT H2'1 16 CYT H2'2 1.73 2.58 17 ADE H2'1 17 ADE H3' 1.92 3.18 17 ADE H2'1 17 ADE H3' 1.92 3.18 18 THY H2'1 18 THY H2'2 1.58 2.46 18 THY H2'1 18 THY H6 2.18 3.32 19 ADE H2'1 19 ADE H2'2 1.30 2.49 19 ADE H2'1 19 ADE H3'3 1.75 2.68 2 THY H2'1 2 THY H2'2 1.36 2.51 2 THY H2'1 2 THY H2'2 1.30 2.04 20 GUA H2'1 3 ADE H2'2 1.46 2.67 5 FB H2'1 3 ADE H2'2 1.66 <								
17 ADE H2'1 17 ADE H3' 1.92 3.18 17 ADE H2'1 17 ADE H8 2.05 3.72 18 THY H2'1 18 THY H2'2 1.58 2.46 18 THY H2'1 18 THY H3' 2.20 3.62 18 THY H2'1 18 THY H3' 2.20 3.62 19 ADE H2'1 19 ADE H2'2 1.30 2.49 19 ADE H2'1 19 ADE H3' 1.75 2.68 19 ADE H2'1 2 THY H2'2 1.36 2.51 2 THY H2'1 2 THY H3' 1.88 4.28 3 ADE H2'1 20 GUA H3' 1.88 4.28 3 ADE H2'1 3 ADE H8 1.98 2.67 5 FB H2'1 7 THY H2'2 1.44 <	16	CYT	H2'1	16	CYT	H2'2	1.73	2.58
17 ADE H2'1 17 ADE H8 2.05 3.72 18 THY H2'1 18 THY H2'2 1.58 2.46 18 THY H2'1 18 THY H2'2 1.30 2.46 19 ADE H2'1 19 ADE H2'2 1.30 2.49 19 ADE H2'1 19 ADE H3'3 1.75 2.68 19 ADE H2'1 19 ADE H8 1.92 2.64 2 THY H2'1 2 THY H2'2 1.36 2.61 2 THY H2'1 2 THY H2'2 1.36 2.64 2 THY H2'1 2 THY H2'2 1.36 2.61 3 ADE H2'1 3 ADE H2'2 1.46 2.63 3 ADE H2'1 5 FB H2'2 1.68	17	ADE	H2'1	17	ADE	H3'	1.92	3.18
18 THY H21 18 THY H22 1.58 2.46 18 THY H21 18 THY H3 2.20 3.62 18 THY H21 18 THY H3 2.20 3.62 19 ADE H21 19 ADE H22 1.30 2.49 19 ADE H21 19 ADE H3 1.75 2.68 2 THY H21 2 THY H22 1.36 2.51 2 THY H21 2 THY H22 1.36 2.04 20 GUA H21 20 GUA H3 1.88 4.28 3 ADE H21 3 ADE H8 1.98 2.67 5 FB H21 6 ADE H22 1.46 2.42 6 ADE H21 7 THY H22 1.68 2.47	17	ADE	H2'1	17	ADE	H8	2.05	3.72
18THYH2118THYH32.203.6218THYH2118THYH62.183.3219ADEH2119ADEH221.302.4919ADEH2119ADEH221.302.642THYH212THYH221.362.512THYH212THYH221.362.512THYH2120GUAH221.302.0420GUAH2120GUAH221.362.633ADEH213ADEH81.982.675FBH215FBH221.462.633ADEH216ADEH81.982.676ADEH216ADEH81.982.676ADEH216ADEH82.152.997THYH217THYH221.682.426ADEH217THYH221.682.437THYH218THYH221.682.437THYH218THYH31.762.538THYH218THYH31.762.539CYTH219CYTH221.492.289CYTH2110ADEH3'1.	18	THY	H2'1	18	THY	H2'2	1.58	2.46
18 THY H21 18 THY H6 2.18 3.32 19 ADE H21 19 ADE H22 1.30 2.49 19 ADE H21 19 ADE H3' 1.75 2.68 19 ADE H21 19 ADE H3' 1.75 2.68 2 THY H21 2 THY H22 1.30 2.04 20 GUA H21 20 GUA H3' 1.88 4.28 3 ADE H21 3 ADE H22 1.46 2.63 3 ADE H21 3 ADE H22 1.42 2.99 6 ADE H21 6 ADE H22 1.42 2.99 7 THY H21 8 THY H22 1.68 2.42 6 ADE H21 6 ADE H8 2.15 2.99 7 THY H21 8 THY H22 1.44 2.19 <td>18</td> <td>THY</td> <td>H2'1</td> <td>18</td> <td>THY</td> <td>H3'</td> <td>2 20</td> <td>3.62</td>	18	THY	H2'1	18	THY	H3'	2 20	3.62
13 ADE H21 13 ADE H21 130 2.13 2.249 19 ADE H21 19 ADE H3 1.75 2.68 19 ADE H21 19 ADE H8 1.92 2.64 2 THY H21 2 THY H22 1.36 2.51 2 THY H21 2 THY H6 1.93 3.03 20 GUA H21 20 GUA H22 1.36 2.04 20 GUA H21 3 ADE H3 1.88 4.28 3 ADE H21 3 ADE H8 1.98 2.67 5 FB H21 5 FB H22 1.42 2.99 6 ADE H21 7 THY H21 8 THY H21 1.68 2.15 2.99 7 THY H21 8 <td>18</td> <td>тну</td> <td>H2'1</td> <td>18</td> <td>тнү</td> <td>H6</td> <td>2.18</td> <td>3 32</td>	18	тну	H2'1	18	тнү	H6	2.18	3 32
13 ADE H21 13 ADE H31 1.75 2.68 19 ADE H21 19 ADE H3 1.75 2.68 2 THY H21 2 THY H22 1.36 2.51 2 THY H21 2 THY H22 1.30 2.04 20 GUA H21 20 GUA H31 1.88 4.28 3 ADE H21 3 ADE H22 1.46 2.63 3 ADE H21 5 FB H22 1.46 2.63 3 ADE H21 6 ADE H22 1.42 2.99 6 ADE H21 6 ADE H3 1.75 2.68 2.42 6 ADE H21 6 ADE H8 2.15 2.99 7 THY H21 8 THY H22 1.68 2.42 6 ADE H21 8 THY 1.21 9 2.47 </td <td>10</td> <td></td> <td>H2'1</td> <td>10</td> <td></td> <td>H2'2</td> <td>1 30</td> <td>2 49</td>	10		H2'1	10		H2'2	1 30	2 49
13 ADE H12 13 ADE H3 1.03 2.64 2 THY H2'1 2 THY H2'2 1.36 2.51 2 THY H2'1 2 THY H6 1.93 3.03 20 GUA H2'1 20 GUA H2'2 1.36 2.04 20 GUA H2'1 3 ADE H2'2 1.48 4.28 3 ADE H2'1 3 ADE H8 1.98 2.67 5 FB H2'1 6 ADE H2'2 1.42 2.99 6 ADE H2'1 6 ADE H4'2 2.98 2.43 7 THY H2'1 8 THY H2'1 8 THY 2.47 3.38 8 THY H2'1 8 THY H2'1 8 THY 4.29 9 9 CYT H2'1 8 <t< td=""><td>10</td><td></td><td>H2'1</td><td>10</td><td></td><td>H2'</td><td>1.00</td><td>2.45</td></t<>	10		H2'1	10		H2'	1.00	2.45
19 ADE 1121 19 ADE 1102 1.36 2.51 2 THY H2'1 2 THY H6 1.93 3.03 20 GUA H2'1 20 GUA H3' 1.88 4.28 3 ADE H2'1 3 ADE H2'2 1.36 2.63 3 ADE H2'1 3 ADE H8 1.98 2.67 5 FB H2'1 6 ADE H2'2 1.36 2.42 6 ADE H2'1 6 ADE H2'2 1.36 2.42 6 ADE H2'1 6 ADE H8 2.15 2.99 7 THY H2'1 8 THY M7 2.47 3.38 8 THY H2'1 8 THY H1'2 1.46 2.16 9 CYT H2'1 8 THY H3' 1.66 2.97 9 CYT H2'1 9 CYT H3' 1.68 2.91	10		L12 1	10			1.75	2.00
2 THY H21 2 THY H6 1.93 3.03 20 GUA H2'1 20 GUA H3' 1.88 4.28 3 ADE H2'1 20 GUA H3' 1.88 4.28 3 ADE H2'1 3 ADE H2'2 1.46 2.63 3 ADE H2'1 5 FB H2'2 1.42 2.99 6 ADE H2'1 6 ADE H8 2.15 2.99 7 THY H2'1 6 ADE H8 2.15 2.99 7 THY H2'1 7 THY H2'2 1.68 2.43 7 THY H2'1 8 THY H2'2 1.68 2.43 8 THY H2'1 8 THY H2'2 1.68 2.43 8 THY H2'1 8 THY H3' 1.76 2.53 8 THY H2'1 8 THY H4'2 2.96 2.97	19			19		001 100	1.92	2.04
2 IHT H21 2 IHT H2 1.30 2.04 20 GUA H21 20 GUA H3' 1.88 4.28 3 ADE H2'1 3 ADE H3' 1.88 4.28 3 ADE H2'1 3 ADE H1'2 1.46 2.63 5 FB H2'1 5 FB H2'2 1.42 2.99 6 ADE H2'1 6 ADE H2'2 1.36 2.42 6 ADE H2'1 6 ADE H2'2 1.44 2.19 7 THY H2'1 8 THY H2'2 1.44 2.19 8 THY H2'1 8 THY H3' 1.76 2.53 8 THY H2'1 8 THY H3' 1.68 2.97 9 CYT H2'1 9 CYT H2'2 1.44 2.19 9 CYT H2'1 10 ADE H3' 2.30 3.55	2			2			1.30	2.51
20 GUA H21 20 GUA H21 20 GUA H3 1.88 4.28 3 ADE H21 3 ADE H22 1.46 2.63 3 ADE H21 5 FB H22 1.42 2.99 6 ADE H21 6 ADE H22 1.36 2.42 6 ADE H21 6 ADE H22 1.36 2.442 6 ADE H21 7 THY H22 1.48 2.43 7 THY H21 8 THY H22 1.44 2.19 8 THY H21 8 THY H22 1.44 2.19 8 THY H21 8 THY H22 1.44 2.19 9 CYT H21 8 THY H3'' 1.76 2.53 8 THY H21 9 CYT H3'' 1.68 2.97 9 CYT H21 9 CYT H3'' </td <td>2</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>1.93</td> <td>3.03</td>	2			2			1.93	3.03
20 GUA H21 20 GUA H3 1.38 4.28 3 ADE H21 3 ADE H22 1.46 2.63 3 ADE H21 5 FB H22 1.42 2.99 6 ADE H21 6 ADE H8 2.15 2.99 6 ADE H21 6 ADE H8 2.15 2.99 7 THY H21 7 THY H22 1.68 2.43 7 THY H21 8 THY H3' 1.76 2.19 8 THY H21 8 THY H3' 1.76 2.53 8 THY H21 8 THY H3' 1.76 2.92 9 CYT H21 9 CYT H2' 1.48 2.02 4.92 9 CYT H2'1 9 CYT H2'2 1.49 2.02 4.25 10 ADE H2'2 10 ADE H3' 2.0	20	GUA	HZ	20	GUA	HZ'Z	1.30	2.04
3 ADE H2'1 3 ADE H2'2 1.46 2.63 3 ADE H2'1 3 ADE H8 1.98 2.67 5 FB H2'1 5 FB H2'2 1.42 2.99 6 ADE H2'1 6 ADE H2'2 1.36 2.42 6 ADE H2'1 6 ADE H2'2 1.68 2.43 7 THY H2'1 8 THY H2'2 1.44 2.19 8 THY H2'1 8 THY H2'2 1.44 2.19 8 THY H2'1 8 THY H3'' 1.76 2.53 8 THY H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 9 CYT H2'2 1.0 ADE H5'1 2.00 3.55 13 ADE H2'2 10 ADE	20	GUA	H2'1	20	GUA	H3 [°]	1.88	4.28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	ADE	H2'1	3	ADE	H2'2	1.46	2.63
5 FB H2'1 5 FB H2'2 1.42 2.99 6 ADE H2'1 6 ADE H2'2 1.36 2.42 6 ADE H2'1 6 ADE H8 2.15 2.99 7 THY H2'1 8 THY M7 2.47 3.38 8 THY H2'1 8 THY H2'2 1.44 2.19 8 THY H2'1 8 THY H3' 1.76 2.53 8 THY H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 9 CYT H3' 1.68 2.97 9 CYT H2'1 10 ADE H3' 2.03 3.55 10 ADE H2'2 13 ADE H3' 2.42 4.77 13 ADE H2'2 13 ADE H3' 2.42 4.77	3	ADE	H2'1	3	ADE	H8	1.98	2.67
6 ADE H2'1 6 ADE H2'2 1.36 2.42 6 ADE H2'1 6 ADE H8 2.15 2.99 7 THY H2'1 7 THY M7 2.47 3.38 8 THY H2'1 8 THY H2'2 1.44 2.19 8 THY H2'1 8 THY H2'2 1.44 2.19 8 THY H2'1 8 THY H3' 1.68 2.97 9 CYT H2'1 9 CYT H3' 1.68 2.97 9 CYT H2'1 10 ADE H3' 2.00 3.55 13 ADE H2'2 13 ADE H3' 2.03 3.55 13 ADE H2'2 14 ADE H8 1.76 4.89 13 ADE H2'2 14 ADE H3' 2.42 4.77	5	FB	H2'1	5	FB	H2'2	1.42	2.99
6ADEH2'16ADEH82.152.997THYH2'17THYH2'21.682.437THYH2'18THYM72.473.388THYH2'18THYM72.473.388THYH2'18THYH3'1.762.538THYH2'18THYH4'2.954.929CYTH2'19CYTH2'21.442.199CYTH2'19CYTH2'21.492.289CYTH2'19CYTH3'1.682.979CYTH2'110ADEH5'12.024.2510ADEH2'213ADEH3'2.303.5513ADEH2'213ADEH81.744.3113ADEH2'214ADEH82.233.0314ADEH2'214ADEH3'2.424.7715THYH2'216CYTH4'2.192.7616CYTH2'216CYTH3'2.663.1816CYTH2'216CYTH3'2.074.1817ADEH2'217ADEH3'2.074.1817ADEH2'216CYTH4'2.022.8817ADEH2'2 <td< td=""><td>6</td><td>ADE</td><td>H2'1</td><td>6</td><td>ADE</td><td>H2'2</td><td>1.36</td><td>2.42</td></td<>	6	ADE	H2'1	6	ADE	H2'2	1.36	2.42
7THYH2'17THYH2'21.682.437THYH2'18THYM72.473.388THYH2'18THYH2'21.442.198THYH2'18THYH3'1.762.538THYH2'18THYH4'2.954.929CYTH2'19CYTH2'21.492.289CYTH2'19CYTH3'1.682.979CYTH2'110ADEH5'12.024.2510ADEH2'210ADEH3'2.303.5513ADEH2'213ADEH81.764.8913ADEH2'214ADEH82.633.3014ADEH2'216CYTH3'2.533.3015THYH2'216CYTH4'2.192.7616CYTH2'216CYTH3'2.074.1817ADEH2'217ADEH3'2.074.1817ADEH2'217ADEH3'2.163.5417ADEH2'217ADEH3'1.603.5417ADEH2'217ADEH3'1.603.5417ADEH2'217ADEH3'1.635.0017ADEH2'2 </td <td>6</td> <td>ADE</td> <td>H2'1</td> <td>6</td> <td>ADE</td> <td>H8</td> <td>2.15</td> <td>2.99</td>	6	ADE	H2'1	6	ADE	H8	2.15	2.99
7 THY H2'1 8 THY M7 2.47 3.38 8 THY H2'1 8 THY H2'2 1.44 2.19 8 THY H2'1 8 THY H3' 1.76 2.53 8 THY H2'1 8 THY H3' 1.68 2.97 9 CYT H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 10 ADE H5'1 2.02 4.25 10 ADE H2'2 10 ADE H3' 2.30 3.55 13 ADE H2'2 13 ADE H8 1.76 4.89 13 ADE H2'2 14 ADE H8 2.23 3.03 14 ADE H2'2 16 CYT H3' 2.42 4.77 15 THY H2'2 16 CYT H4' 2.19 2.	7	THY	H2'1	7	THY	H2'2	1.68	2.43
8 THY H2'1 8 THY H2'2 1.44 2.19 8 THY H2'1 8 THY H3' 1.76 2.53 8 THY H2'1 8 THY H4' 2.95 4.92 9 CYT H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 10 ADE H5'1 2.02 4.25 10 ADE H2'2 13 ADE H3' 1.74 4.31 13 ADE H2'2 13 ADE H8' 1.76 4.89 13 ADE H2'2 14 ADE H8' 2.33 3.03 14 ADE H2'2 16 CYT H3' 2.63 3.10 15 THY H2'2 16 CYT H3' 2.07 4.1	7	THY	H2'1	8	THY	M7	2.47	3.38
8 THY H2'1 8 THY H3' 1.76 2.53 8 THY H2'1 8 THY H4' 2.95 4.92 9 CYT H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 9 CYT H3' 1.68 2.97 9 CYT H2'1 10 ADE H5'1 2.02 4.25 10 ADE H2'2 13 ADE H3' 1.74 4.31 13 ADE H2'2 13 ADE H8' 2.76 3.03 14 ADE H2'2 14 ADE H8' 2.42 4.77 15 THY H2'2 16 CYT H3' 2.63 3.30 15 THY H2'2 16 CYT H3' 2.07 4.18	8	THY	H2'1	8	THY	H2'2	1.44	2.19
8 THY H2'1 8 THY H4' 2.95 4.92 9 CYT H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 9 CYT H3' 1.68 2.97 9 CYT H2'1 10 ADE H5'1 2.02 4.25 10 ADE H2'2 13 ADE H3' 2.30 3.55 13 ADE H2'2 13 ADE H3' 2.42 4.31 13 ADE H2'2 14 ADE H8 2.63 3.03 14 ADE H2'2 16 CYT H3' 2.63 3.30 15 THY H2'2 16 CYT H3' 2.63 3.18 16 CYT H2'2 16 CYT H3' 2.07 4.18 17 ADE H2'2 17 ADE H3' 2.07 4.	8	THY	H2'1	8	THY	H3'	1.76	2.53
9 CYT H2'1 9 CYT H2'2 1.49 2.28 9 CYT H2'1 9 CYT H3' 1.68 2.97 9 CYT H2'1 10 ADE H5'1 2.02 4.25 10 ADE H2'2 10 ADE H3' 2.30 3.55 13 ADE H2'2 13 ADE H3' 1.74 4.31 13 ADE H2'2 13 ADE H8 1.76 4.89 13 ADE H2'2 14 ADE H8 2.42 4.77 15 THY H2'2 15 THY H3' 2.42 4.77 15 THY H2'2 16 CYT H4' 2.19 2.76 16 CYT H2'2 16 CYT H3' 2.07 4.18 17 ADE H2'2 17 ADE H3' 2.07 4.18 17 ADE H2'2 17 ADE H3' 2.07	8	THY	H2'1	8	THY	H4'	2.95	4.92
9 CYT H2'1 9 CYT H3' 1.68 2.97 9 CYT H2'1 10 ADE H5'1 2.02 4.25 10 ADE H2'2 10 ADE H3' 2.30 3.55 13 ADE H2'2 13 ADE H3' 1.74 4.31 13 ADE H2'2 13 ADE H3' 1.74 4.31 13 ADE H2'2 13 ADE H8 1.76 4.89 13 ADE H2'2 14 ADE H8' 2.73 3.03 14 ADE H2'2 14 ADE H3' 2.42 4.77 15 THY H2'2 16 CYT H3' 2.53 3.30 15 THY H2'2 16 CYT H3' 2.07 4.18 16 CYT H2'2 17 ADE H3' 2.07 <td< td=""><td>9</td><td>CYT</td><td>H2'1</td><td>9</td><td>CYT</td><td>H2'2</td><td>1.49</td><td>2.28</td></td<>	9	CYT	H2'1	9	CYT	H2'2	1.49	2.28
9 CYT H2'1 10 ADE H5'1 2.02 4.25 10 ADE H2'2 10 ADE H3' 2.30 3.55 13 ADE H2'2 13 ADE H3' 1.74 4.31 13 ADE H2'2 13 ADE H8 1.76 4.89 13 ADE H2'2 14 ADE H8 2.23 3.03 14 ADE H2'2 14 ADE H8 2.42 4.77 15 THY H2'2 15 THY H3' 2.42 4.77 16 CYT H2'2 16 CYT H3' 2.63 3.30 15 THY H2'2 16 CYT H3' 2.07 4.18 16 CYT H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19	9	CYT	H2'1	9	CYT	H3'	1.68	2.97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	CYT	H2'1	10	ADE	H5'1	2.02	4.25
13 ADE H22 13 ADE H3' 1.74 4.31 13 ADE H2'2 13 ADE H8 1.76 4.89 13 ADE H2'2 14 ADE H8 2.23 3.03 14 ADE H2'2 14 ADE H3' 2.42 4.77 15 THY H2'2 15 THY H3' 2.53 3.30 15 THY H2'2 16 CYT H4' 2.19 2.76 16 CYT H2'2 16 CYT H3' 2.26 3.18 16 CYT H2'2 16 CYT H3' 2.07 4.18 17 ADE H2'2 17 ADE H3' 2.07 4.18 17 ADE H2'2 17 ADE H3' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 <	10	ADE	H2'2	10	ADE	H3'	2.30	3.55
13 ADE H22 13 ADE H8 1.76 4.89 13 ADE H22 13 ADE H8 1.76 4.89 13 ADE H22 14 ADE H8 2.23 3.03 14 ADE H22 14 ADE H3' 2.42 4.77 15 THY H22 15 THY H3' 2.53 3.30 15 THY H2'2 16 CYT H4' 2.19 2.76 16 CYT H2'2 16 CYT H3' 2.26 3.18 16 CYT H2'2 16 CYT H3' 2.07 4.18 17 ADE H2'2 17 ADE H3' 2.07 4.18 17 ADE H2'2 17 ADE H3' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.	13	ADE	H2'2	13	ADE	H3'	1 74	4 31
13 ADE H22 14 ADE H8 2.23 3.03 14 ADE H22 14 ADE H3 2.42 4.77 15 THY H22 15 THY H3 2.53 3.30 15 THY H22 16 CYT H4' 2.19 2.76 16 CYT H2'2 16 CYT H3' 2.26 3.18 16 CYT H2'2 16 CYT H3' 2.07 4.18 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.71<	13	ADE	H2'2	13	ADE	H8	1 76	4 89
10 NDL 112 14 ADE 113 2.12 0.330 14 ADE H2'2 14 ADE H3' 2.42 4.77 15 THY H2'2 15 THY H3' 2.53 3.30 15 THY H2'2 16 CYT H4' 2.19 2.76 16 CYT H2'2 16 CYT H3' 2.26 3.18 16 CYT H2'2 16 CYT H3' 2.07 4.18 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 4 THY H5'2 1.68 4	13		H2'2	14		H8	2.23	3.03
14161221416162.424.1715THYH2'215THYH3'2.533.3015THYH2'216CYTH4'2.192.7616CYTH2'216CYTH3'2.263.1816CYTH2'216CYTH61.935.0017ADEH2'217ADEH3'2.074.1817ADEH2'216CYTH4'2.022.8817ADEH2'217ADEH82.193.772THYH2'22THYH62.034.714THYH2'22THYH63.547THYH2'25FBH3'1.603.547THYH2'28THYH5'22.435.4821FAH2A121FAH321.854.8121FAH2A116CYTH63.506.2921FAH2A221FAH312.133.3421FAH2A221FAH321.682.8415THYH37THYH33.173.9510ADEH3'10ADEH4'2.413.4610ADEH3'10ADEH4'2.142.7911THYH3'11THY	14	ADE	H2'2	14		H3'	2.20	4 77
15 THY H2'2 16 CYT H4' 2.19 2.76 16 CYT H2'2 16 CYT H3' 2.26 3.18 16 CYT H2'2 16 CYT H3' 2.07 4.18 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 3.54 4.90 5 FB H2'2 4 THY H5'2 1.68 4.90 5 FB H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.8	15	THY	H2'2	15	THY	H3'	2.42	3 30
16 CYT H22 16 CYT H3' 2.16 3.18 16 CYT H2'2 16 CYT H6 1.93 5.00 17 ADE H2'2 16 CYT H6 1.93 5.00 17 ADE H2'2 17 ADE H3' 2.07 4.18 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 4 THY H5'2 1.68 4.90 5 FB H2'2 5 FB H3' 1.60 3.54 7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.81 <td>15</td> <td>тну</td> <td>H2'2</td> <td>16</td> <td>CVT</td> <td>нл'</td> <td>2.00</td> <td>2.76</td>	15	тну	H2'2	16	CVT	нл'	2.00	2.76
10 0 0 112 10 0 0 113 2.20 3.16 16 CYT H2'2 16 CYT H6 1.93 5.00 17 ADE H2'2 17 ADE H3' 2.07 4.18 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 4 THY H5'2 1.68 4.90 5 FB H2'2 5 FB H3' 1.60 3.54 7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 <	16	CVT	112 2 H2'2	16	CVT	ца, Па,	2.13	2.70
10 CTT H2 2 10 CTT H6 1.93 5.00 17 ADE H2'2 17 ADE H3' 2.07 4.18 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 4 THY H5'2 1.68 4.90 5 FB H2'2 5 FB H3' 1.60 3.54 7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.81 21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84	10	CVT	1122 Ll 212	10	CVT		2.20	5.10
17 ADE H2 2 17 ADE H3 2.07 4.16 17 ADE H2'2 16 CYT H4' 2.02 2.88 17 ADE H2'2 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 4 THY H5'2 1.68 4.90 5 FB H2'2 5 FB H3' 1.60 3.54 7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.81 21 FA H2A1 16 CYT H6 3.50 6.29 21 FA H2A2 21 FA H31 2.13 3.34	10			10		⊓0 ⊔2'	1.95	5.00
17ADEH2216CY1H42.022.8817ADEH2'217ADEH82.193.772THYH2'22THYH62.034.714THYH2'22THYH62.034.714THYH2'24THYH5'21.684.905FBH2'25FBH3'1.603.547THYH2'28THYH5'22.435.4821FAH2A121FAH321.854.8121FAH2A116CYTH63.506.2921FAH2A221FAH312.133.3421FAH2A221FAH321.682.8415THYH37THYH33.173.9510ADEH3'10ADEH4'2.413.4610ADEH3'10ADEH5'22.142.7911THYH3'11THYH4'2.282.97	17			17		ПЭ 1141	2.07	4.10
17 ADE H22 17 ADE H8 2.19 3.77 2 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 2 THY H6 2.03 4.71 4 THY H2'2 4 THY H5'2 1.68 4.90 5 FB H2'2 5 FB H3' 1.60 3.54 7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.81 21 FA H2A1 16 CYT H6 3.50 6.29 21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84 15 THY H3 7 THY H3 3.17 3.95 10 ADE H3' 10 ADE H4' 2.41 3.46 <td>17</td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td>2.02</td> <td>2.88</td>	17			10			2.02	2.88
2 1HY H2'2 2 1HY H6 2.03 4.71 4 THY H2'2 4 THY H5'2 1.68 4.90 5 FB H2'2 5 FB H3' 1.60 3.54 7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.81 21 FA H2A1 16 CYT H6 3.50 6.29 21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84 21 FA H2A2 21 FA H32 1.68 2.84 21 FA H2A2 21 FA H32 1.68 2.84 15 THY H3 7 THY H3 3.17 3.95 10 ADE H3' 10 ADE H4' 2.14 2.79 </td <td>17</td> <td>ADE</td> <td>HZ'Z</td> <td>17</td> <td>ADE</td> <td>H8</td> <td>2.19</td> <td>3.77</td>	17	ADE	HZ'Z	17	ADE	H8	2.19	3.77
4 1HY H2'2 4 1HY H5'2 1.68 4.90 5 FB H2'2 5 FB H3' 1.60 3.54 7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.81 21 FA H2A1 16 CYT H6 3.50 6.29 21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84 15 THY H3 7 THY H3 3.17 3.95 10 ADE H3' 10 ADE H4' 2.41 3.46	2	THY	H2 [·] 2	2		Hb	2.03	4.71
5 FB H2'2 5 FB H3' 1.60 3.54 7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.81 21 FA H2A1 16 CYT H6 3.50 6.29 21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84 21 FA H2A2 21 FA H32 1.68 2.84 15 THY H3 7 THY H3 3.17 3.95 10 ADE H3' 10 ADE H4' 2.41 3.46 10 ADE H3' 10 ADE H5'2 2.14 2.79 11 THY H3' 11 THY H4' 2.28 2.97	4	IHY	H2'2	4	IHY	H5'2	1.68	4.90
7 THY H2'2 8 THY H5'2 2.43 5.48 21 FA H2A1 21 FA H32 1.85 4.81 21 FA H2A1 16 CYT H6 3.50 6.29 21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84 21 FA H2A2 21 FA H32 1.68 2.84 15 THY H3 7 THY H3 3.17 3.95 10 ADE H3' 10 ADE H4' 2.41 3.46 10 ADE H3' 10 ADE H5'2 2.14 2.79 11 THY H3' 11 THY H4' 2.28 2.97	5	FB	H2'2	5	FB	H3'	1.60	3.54
21 FA H2A1 21 FA H32 1.85 4.81 21 FA H2A1 16 CYT H6 3.50 6.29 21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84 21 FA H2A2 21 FA H32 1.68 2.84 15 THY H3 7 THY H3 3.17 3.95 10 ADE H3' 10 ADE H4' 2.41 3.46 10 ADE H3' 10 ADE H5'2 2.14 2.79 11 THY H3' 11 THY H4' 2.28 2.97	7	THY	H2'2	8	THY	H5'2	2.43	5.48
21 FA H2A1 16 CYT H6 3.50 6.29 21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84 15 THY H3 7 THY H3 3.17 3.95 10 ADE H3' 10 ADE H4' 2.41 3.46 10 ADE H3' 10 ADE H5'2 2.14 2.79 11 THY H3' 11 THY H4' 2.28 2.97	21	FA	H2A1	21	FA	H32	1.85	4.81
21 FA H2A2 21 FA H31 2.13 3.34 21 FA H2A2 21 FA H32 1.68 2.84 15 THY H3 7 THY H3 3.17 3.95 10 ADE H3' 10 ADE H4' 2.41 3.46 10 ADE H3' 10 ADE H5'2 2.14 2.79 11 THY H3' 11 THY H4' 2.28 2.97	21	FA	H2A1	16	CYT	H6	3.50	6.29
21FAH2A221FAH321.682.8415THYH37THYH33.173.9510ADEH3'10ADEH4'2.413.4610ADEH3'10ADEH5'22.142.7911THYH3'11THYH4'2.282.97	21	FA	H2A2	21	FA	H31	2.13	3.34
15THYH37THYH33.173.9510ADEH3'10ADEH4'2.413.4610ADEH3'10ADEH5'22.142.7911THYH3'11THYH4'2.282.97	21	FA	H2A2	21	FA	H32	1.68	2.84
10ADEH3'10ADEH4'2.413.4610ADEH3'10ADEH5'22.142.7911THYH3'11THYH4'2.282.97	15	THY	H3	7	THY	H3	3.17	3.95
10 ADE H3' 10 ADE H5'2 2.14 2.79 11 THY H3' 11 THY H4' 2.28 2.97	10	ADE	H3'	10	ADE	H4'	2.41	3.46
11 THY H3' 11 THY H4' 2.28 2.97	10	ADE	H3'	10	ADE	H5'2	2.14	2.79
	 11	THY	H3'	11	THY	H4'	2.28	2.97

12 GUA H3' 12 GUA H4' 1.83 2.80 13 ADE H3' 13 ADE H4' 2.15 2.93 14 ADE H3' 14 ADE H5' 1.44 ADE H5' 1.80 3.08 16 CYT H3' 16 CYT H4' 1.72 2.59 17 ADE H3' 17 ADE H8' 1.7 ADE 6.87 18 THY H3' 18 THY H6 2.46 5.00 19 ADE H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H5'2 2.46 4.99 4 THY H3' 4 THY H5'2 2.34 3.28 5 FB H3' 6 ADE H4' 1.83 3.53 12 GUA H4' 12	_								
13 ADE H3' 13 ADE H4' 2.15 2.33 14 ADE H3' 14 ADE H5'2 1.90 3.08 16 CYT H4' 1.72 2.59 1.7 ADE H3' 18 THY H5'1 1.44 2.41 17 ADE H3' 18 THY H5'1 1.44 2.41 17 ADE H3' 19 ADE H5'1 2.07 4.51 20 GUA H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H5'2 2.46 4.99 4 THY H3' 4 THY H5'2 2.46 4.99 4 THY H3' 6 ADE H4' 3.07 4.18 6 ADE H3' 6 ADE H5'2 1.43 3.28 11 THY H3'<	-	12	GUA	H3'	12	GUA	H4'	1.83	2.80
14 ADE H3' 14 ADE H52 1.90 3.08 16 CYT H3' 16 CYT H4' 1.72 2.59 17 ADE H3' 18 THY H51 1.44 2.41 17 ADE H3' 19 ADE H8' 2.73 6.87 18 THY H3' 19 ADE H51' 2.07 4.51 20 GUA H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H52 2.46 4.99 4 THY H3' 4 THY H52 3.42 3.68 6 ADE H3' 6 ADE H4' 1.83 2.95 11 THY H3' 9 CYT H4' 1.63 3.53 12 GUA H4' 12 GUA H52' 1.80 4.62		13	ADE	H3'	13	ADE	H4'	2.15	2.93
16 CYT $H3'$ 16 CYT $H4'$ 1.72 2.59 17 ADE $H3'$ 18 THY $H5'1$ 1.44 2.41 17 ADE $H3'$ 17 ADE $H8$ 2.73 6.87 18 THY $H3'$ 18 THY $H6$ 2.46 5.00 19 ADE $H3'$ 20 GUA $H4'$ 2.17 3.27 20 GUA $H3'$ 20 GUA $H5'2$ 2.46 4.99 4 THY $H3'$ 4 THY $H5'2$ 2.34 3.28 5 FB $H3'$ 6 ADE $H4'$ 2.35 4.24 6 ADE $H3'$ 6 ADE $H4'$ 2.35 4.24 6 ADE $H3'$ 6 ADE $H5'2$ 1.75 3.42 7 THY $H3'$ 8 THY $H4'$ 1.93 2.95 11 THY $H4'$ 11 THY $H5'1$ 1.67 3.53 12 GUA $H4'$ 12 GUA $H5'2$ 1.80 4.62 16 CYT $H4'$ 19 ADE $H5'1$ 1.68 2.71 16 ADE $H4'$ 19 ADE $H5'2$ 1.42 3.43 1 CYT $H5'1$ 1 CYT $H6$ 2.44 2.79 16 CYT $H5'1$ 1 CYT $H6'2$ 1.42 3.33 1 CYT $H5'1$ 1<		14	ADE	H3'	14	ADE	H5'2	1.90	3.08
17 ADE H3' 18 THY H5'1 1.44 2.41 17 ADE H3' 17 ADE H8 2.73 6.87 18 THY H3' 19 ADE H5'1 2.07 4.51 20 GUA H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H5'2 2.46 4.99 4 THY H5'2 2.34 3.28 5 FB H3' 6 ADE H4' 3.07 4.18 6 ADE H3' 6 ADE H4'2 1.75 3.42 7 THY H3' 8 THY H4' 1.61 2.44 9 CYT H3' 9 CYT H4' 1.61 2.44 9 CYT H3' 11 THY H5'1 1.67 3.53 12 GUA H4' 12 GUA H5'1 1.60 2.71 11 THY H4' <th></th> <td>16</td> <td>CYT</td> <td>H3'</td> <td>16</td> <td>CYT</td> <td>H4'</td> <td>1.72</td> <td>2.59</td>		16	CYT	H3'	16	CYT	H4'	1.72	2.59
17 ADE H3' 17 ADE H8 2.73 6.87 18 THY H3' 18 THY H6 2.46 5.00 19 ADE H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H5'2 2.46 4.99 4 THY H3' 4 THY H5'2 2.34 3.28 5 FB H3' 6 ADE H4' 2.35 4.24 6 ADE H3' 6 ADE H5'2 1.61 2.44 9 CYT H3' 8 THY H4' 1.61 2.44 9 CYT H4' 11 THY H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'1 1.63 3.51 12 GUA H4' 16 CYT H6 2.50 5.00		17	ADE	H3'	18	THY	H5'1	1.44	2.41
18 THY H3' 18 THY H6 2.46 5.00 19 ADE H3' 19 ADE H5'1 2.07 4.51 20 GUA H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H4' 2.134 3.28 5 FB H3' 5 FB H4' 2.35 4.24 6 ADE H3' 6 ADE H4' 2.35 4.24 9 CYT H3' 9 CYT H4' 1.83 2.95 11 THY H4' 12 GUA H5'1 1.61 2.44 9 CYT H3' 9 CYT H4' 1.93 2.95 11 THY H4' 12 GUA H5'1 1.61 2.44 9 CYT H4' 12 GUA H5'1 1.63 3.53		17	ADE	H3'	17	ADE	H8	2.73	6.87
19 ADE H3' 19 ADE H5'1 2.07 4.51 20 GUA H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H5'2 2.46 4.99 4 THY H3' 4 THY H5'2 2.34 3.28 5 FB H3' 6 ADE H4' 3.07 4.18 6 ADE H3' 6 ADE H4' 3.07 4.24 6 ADE H3' 6 ADE H5'2 1.75 3.42 7 THY H3' 8 THY H4' 1.61 2.44 9 CYT H3' 9 CYT H4' 1.93 2.95 11 THY H4' 11 THY H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'1 1.66 4.62		18	THY	H3'	18	THY	H6	2.46	5.00
20 GUA H3' 20 GUA H4' 2.17 3.27 20 GUA H3' 20 GUA H5'2 2.34 3.28 5 FB H3' 6 ADE H4' 2.07 4.18 6 ADE H3' 6 ADE H4' 2.35 4.24 6 ADE H3' 6 ADE H5'2 1.75 3.42 7 THY H3' 8 THY H4' 1.61 2.44 9 CYT H3' 9 CYT H4' 1.63 3.53 12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'2 1.80 4.62 16 CYT H4' 16 CYT H6 2.50 5.00 19 ADE H4' 10 ADE H5'1 2.06 4.96		19	ADE	H3'	19	ADE	H5'1	2.07	4.51
20 GUA H3' 20 GUA H5'2 2.46 4.99 4 THY H3' 4 THY H5'2 2.34 3.28 5 FB H3' 5 FB H4' 3.07 4.18 6 ADE H3' 6 ADE H5'2 1.75 3.42 7 THY H3' 8 THY H4' 1.61 2.44 9 CYT H3' 9 CYT H4' 1.93 2.95 11 THY H4' 11 THY H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 19 ADE H5'1 1.68 2.71 16 ADE H4' 19 ADE H5'1 1.68 2.71 16 ADE H4' 6 ADE H5'2 1.42 3.43 </td <th></th> <td>20</td> <td>GUA</td> <td>H3'</td> <td>20</td> <td>GUA</td> <td>H4'</td> <td>2.17</td> <td>3.27</td>		20	GUA	H3'	20	GUA	H4'	2.17	3.27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20	GUA	H3'	20	GUA	H5'2	2.46	4.99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	THY	H3'	4	THY	H5'2	2.34	3.28
6 ADE H3' 6 ADE H4' 2.35 4.24 6 ADE H3' 6 ADE H52 1.75 3.42 7 THY H3' 8 THY H4' 1.61 2.44 9 CYT H3' 8 THY H4' 1.93 2.95 11 THY H4' 11 THY H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'2 1.80 4.62 16 CYT H4' 16 CYT H6 2.50 5.00 19 ADE H4' 19 ADE H5'1 1.68 2.71 6 ADE H4' 6 ADE H5'2 1.42 3.43 1 CYT H5 1 CYT H6 2.49 3.14 9 CYT H5 9 CYT H6 2.49 3.14		5	FB	H3'	5	FB	H4'	3.07	4.18
6 ADE H3' 6 ADE H5'2 1.75 3.42 7 THY H3' 8 THY H4' 1.61 2.44 9 CYT H3' 9 CYT H4' 1.93 2.95 11 THY H4' 11 THY H5'1 1.77 3.25 12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'2 1.80 4.62 16 CYT H4' 16 CYT H6 2.50 5.00 19 ADE H4' 19 ADE H5'1 1.68 2.71 6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'1 2.06 4.96 1 CYT H5 1 CYT H6 2.14 2.49		6	ADE	H3'	6	ADE	H4'	2.35	4.24
7 THY H3' 8 THY H4' 1.61 2.44 9 CYT H3' 9 CYT H4' 1.93 2.95 11 THY H4' 11 THY H4' 1.93 2.95 12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'1 1.68 3.53 12 GUA H4' 19 ADE H5'1 1.68 2.71 16 CYT H4' 19 ADE H5'1 1.68 2.71 6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'1 2.06 4.24 9 CYT H5 16 CYT H6 2.15 2.73		6	ADE	H3'	6	ADE	H5'2	1.75	3.42
9 CYT H3' 9 CYT H4' 1.93 2.95 11 THY H4' 11 THY H5'1 1.77 3.25 12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'1 1.68 2.71 16 CYT H4' 19 ADE H5'1 1.68 2.71 6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'2 1.42 3.43 1 CYT H5 16 CYT H6 2.49 3.14 9 CYT H5 9 CYT H6 2.15 2.73 11 THY H5'1 11 THY H6 3.61 6.61		7	THY	H3'	8	THY	H4'	1.61	2.44
11 THY H4' 11 THY H5'1 1.77 3.25 12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'2 1.80 4.62 16 CYT H4' 16 CYT H6 2.50 5.00 19 ADE H4' 19 ADE H5'1 1.68 2.71 6 ADE H4' 6 ADE H5'2 1.42 3.43 1 CYT H5 1 CYT H6 2.24 2.79 16 CYT H5 16 CYT H6 2.15 2.73 11 THY H5'1 11 THY H6 1.66 6.03 11 THY H5'2 11 THY H6 1.66 4.02 14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25		9	CYT	H3'	9	CYT	H4'	1.93	2.95
12 GUA H4' 12 GUA H5'1 1.63 3.53 12 GUA H4' 12 GUA H5'2 1.80 4.62 16 CYT H4' 16 CYT H6 2.50 5.00 19 ADE H4' 19 ADE H5'1 1.68 2.71 6 ADE H4' 6 ADE H5'2 1.42 3.43 1 CYT H5 1 CYT H6 2.24 2.79 16 CYT H5 1 CYT H6 2.42 2.79 16 CYT H5 16 CYT H6 2.42 2.79 16 CYT H5 9 CYT H6 2.42 2.79 16 CYT H5 9 CYT H6 2.49 3.14 9 CYT H5'1 11 THY H6 1.66 6.03 11 THY H5'2 14 ADE H8 3.61 6.61 <th></th> <td>11</td> <td>THY</td> <td>H4'</td> <td>11</td> <td>THY</td> <td>H5'1</td> <td>1.77</td> <td>3.25</td>		11	THY	H4'	11	THY	H5'1	1.77	3.25
12 GUA H4' 12 GUA H5'2 1.80 4.62 16 CYT H4' 16 CYT H6 2.50 5.00 19 ADE H4' 19 ADE H5'1 1.68 2.71 6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'2 1.42 3.43 1 CYT H5 1 CYT H6 2.15 2.73 16 CYT H5 9 CYT H6 2.15 2.73 11 THY H5'1 11 THY H6 1.66 6.03 11 THY H5'2 11 THY H6 1.66 6.03 11 THY H5'2 14 ADE H8 3.11 5.74		12	GUA	H4'	12	GUA	H5'1	1.63	3.53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	GUA	H4'	12	GUA	H5'2	1.80	4.62
19 ADE H4' 19 ADE H5'1 1.68 2.71 6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'2 1.42 3.43 1 CYT H5 1 CYT H6 2.24 2.79 16 CYT H5 16 CYT H6 2.49 3.14 9 CYT H5 9 CYT H6 2.49 3.14 9 CYT H5'1 11 THY H6 2.66 6.03 11 THY H5'2 11 THY H6 2.66 4.02 14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 12 GUA H8 3.617 6.61 15 THY H6 14 ADE H8 3.61 6.61		16	CYT	H4'	16	CYT	H6	2.50	5.00
6 ADE H4' 6 ADE H5'1 2.06 4.96 6 ADE H4' 6 ADE H5'2 1.42 3.43 1 CYT H5 1 CYT H6 2.24 2.79 16 CYT H5 16 CYT H6 2.49 3.14 9 CYT H5 9 CYT H6 2.49 3.14 9 CYT H5'1 11 THY H6 1.66 6.03 11 THY H5'1 11 THY H6 2.66 4.02 14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02		19	ADE	H4'	19	ADE	H5'1	1.68	2.71
6 ADE H4' 6 ADE H5'2 1.42 3.43 1 CYT H5 1 CYT H6 2.24 2.79 16 CYT H5 16 CYT H6 2.49 3.14 9 CYT H5 9 CYT H6 2.15 2.73 11 THY H5'1 11 THY H6 1.66 6.03 11 THY H5'2 11 THY H6 2.86 4.02 14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 15 THY M7 3.04 4.10		6	ADE	H4'	6	ADE	H5'1	2.06	4.96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	ADE	H4'	6	ADE	H5'2	1.42	3.43
16 CYT H5 16 CYT H6 2.49 3.14 9 CYT H5 9 CYT H6 2.15 2.73 11 THY H5'1 11 THY H6 1.66 6.03 11 THY H5'2 11 THY H6 2.86 4.02 14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 2 THY H6 3.33 6.17 11 THY H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.03 6.18 <t< td=""><th></th><td>1</td><td>CYT</td><td>H5</td><td>1</td><td>CYT</td><td>H6</td><td>2.24</td><td>2.79</td></t<>		1	CYT	H5	1	CYT	H6	2.24	2.79
9 CYT H5 9 CYT H6 2.15 2.73 11 THY H5'1 11 THY H6 1.66 6.03 11 THY H5'2 11 THY H6 2.86 4.02 14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 2 THY H6 3.33 6.17 11 THY H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.03 6.18 1		16	CYT	H5	16	CYT	H6	2.49	3.14
11 THY H5'1 11 THY H6 1.66 6.03 11 THY H5'2 11 THY H6 2.86 4.02 14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 2 THY H6 3.33 6.17 11 THY H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.49 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.14 6.35		9	CYT	H5	9	CYT	H6	2.15	2.73
11 THY H5'2 11 THY H6 2.86 4.02 14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 2 THY H6 3.33 6.17 11 THY H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.14 6.35 7 THY H6 ADE ADE H8 3.27 6.21		11	THY	H5'1	11	THY	H6	1.66	6.03
14 ADE H5'2 14 ADE H8 3.11 5.74 21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 2 THY H6 3.33 6.17 11 THY H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.04 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.27 6.21 <		11	THY	H5'2	11	THY	H6	2.86	4.02
21 FA H5B 21 FA M 2.49 3.25 1 CYT H6 2 THY H6 3.33 6.17 11 THY H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.49 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.04 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.27 6.21 1		14	ADE	H5'2	14	ADE	H8	3.11	5.74
1 CYT H6 2 THY H6 3.33 6.17 11 THY H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.49 4.83 2 THY H6 19 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 2 THY M7 2.84 3.65 4 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.27 6.21 9 CYT H6 10 ADE H8 3.48 6.39 <td< td=""><th></th><td>21</td><td>FA</td><td>H5B</td><td>21</td><td>FA</td><td>Μ</td><td>2.49</td><td>3.25</td></td<>		21	FA	H5B	21	FA	Μ	2.49	3.25
11 THY H6 12 GUA H8 3.61 6.61 15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.49 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 3 ADE H8 3.05 5.93 4 THY H6 6 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.48 6.39 19 ADE H8 20 GUA H8 3.27 5.35 <		1	CYT	H6	2	THY	H6	3.33	6.17
15 THY H6 16 CYT H6 3.03 5.02 15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.49 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 2 THY M7 2.84 3.65 4 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.65 5.93 9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12 <th></th> <td>11</td> <td>THY</td> <td>H6</td> <td>12</td> <td>GUA</td> <td>H8</td> <td>3.61</td> <td>6.61</td>		11	THY	H6	12	GUA	H8	3.61	6.61
15 THY H6 14 ADE H8 3.72 5.57 15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.49 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 2 THY M7 2.84 3.65 4 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.65 5.93 9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.48 6.39 19 ADE H8 20 GUA H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12 <th></th> <td>15</td> <td>THY</td> <td>H6</td> <td>16</td> <td>CYT</td> <td>H6</td> <td>3.03</td> <td>5.02</td>		15	THY	H6	16	CYT	H6	3.03	5.02
15 THY H6 15 THY M7 3.04 4.10 18 THY H6 19 ADE H8 3.49 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 2 THY M7 2.84 3.65 4 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.65 5.93 9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12		15	THY	H6	14	ADE	H8	3.72	5.57
18 THY H6 19 ADE H8 3.49 4.83 2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 2 THY M7 2.84 3.65 4 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.65 5.93 9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.48 6.39 19 ADE H8 20 GUA H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12		15	THY	H6	15	THY	M7	3.04	4.10
2 THY H6 3 ADE H8 3.03 6.18 2 THY H6 2 THY M7 2.84 3.65 4 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.65 5.93 9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12		18	THY	H6	19	ADE	H8	3.49	4.83
2 THY H6 2 THY M7 2.84 3.65 4 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.65 5.93 9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.48 6.39 19 ADE H8 20 GUA H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12		2	THY	H6	3	ADE	H8	3.03	6.18
4 THY H6 3 ADE H8 3.14 6.35 7 THY H6 6 ADE H8 3.65 5.93 9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.48 6.39 19 ADE H8 20 GUA H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12		2	THY	H6	2	THY	M7	2.84	3.65
7 THY H6 6 ADE H8 3.65 5.93 9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.48 6.39 19 ADE H8 20 GUA H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12		4	THY	H6	3	ADE	H8	3.14	6.35
9 CYT H6 10 ADE H8 3.27 6.21 12 GUA H8 13 ADE H8 3.48 6.39 19 ADE H8 20 GUA H8 3.27 5.35 5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12		7	THY	H6	6	ADE	H8	3.65	5.93
12GUAH813ADEH83.486.3919ADEH820GUAH83.275.355FBH821FAH8A2.213.3221FAH921FAH9a3.165.12		9	CYT	H6	10	ADE	H8	3.27	6.21
19ADEH820GUAH83.275.355FBH821FAH8A2.213.3221FAH921FAH9a3.165.12		12	GUA	H8	13	ADE	H8	3.48	6.39
5 FB H8 21 FA H8A 2.21 3.32 21 FA H9 21 FA H9a 3.16 5.12		19	ADE	H8	20	GUA	H8	3.27	5.35
21 FA H9 21 FA H9a 3.16 5.12		5	FB	H8	21	FA	H8A	2.21	3.32
		21	FA	H9	21	FA	H9a	3.16	5.12

	Residue	Residue	Atom	Residue	Residue	Atom	Lower	Upper
	Number	Name	Name	Number	Name	Name	Bound	Bound
Class 1	2	THY	H1'	5	FA	М	4.12	6.16
	1	CYT	H2''	1	CYT	H6	3.60	6.66
	3	FB	H2''	3	FB	H4'	2.49	4.49
	1	CYT	H3'	1	CYT	H6	2.89	4.00
	1	CYT	H5	1	CYT	H6	2.63	2.92
	1	CYT	H1'	1	CYT	H2'	2.73	4.07
	1	CYT	H1'	1	CYT	H2''	1.80	2.91
	1	CYT	H1'	1	CYT	H6	3.28	4.09
	2	THY	H1'	2	THY	H2'	2.84	3.50
	2	THY	H1'	2	THY	H2''	2.35	3.04
	2	THY	H1'	2	THY	H6	3.38	5.19
	3	FB	H1'	3	FB	H2''	2.42	3.64
	3	FB	H1'	3	FB	H3'	3.79	5.38
	4	ADE	H1'	4	ADE	H4'	2.66	3.20
	1	CYT	H2'	1	CYT	H3'	1.80	4.25
	1	CYT	H2'	1	CYT	H6	2.89	3.87
	3	FB	H2'	5	FA	H5B	2.80	3.80
	4	ADE	H2'	4	ADE	H4'	2.52	5.10
	1	CYT	H2''	1	CYT	H3'	1.93	2.65
	1	CYT	H2''	1	CYT	H4'	2.57	4.10
	3	FB	H2''	3	FB	H3'	2.28	2.86
	3	FB	H2''	5	FA	H5B	2.93	4.84
	4	ADE	H2''	4	ADE	H4'	2.55	5.31
	1	CYT	H3'	1	CYT	H5'	2.37	3.16
	1	CYT	H5'	1	CYT	H6	2.95	3.48
	5	FA	H9	5	FA	H9a	3.03	4.72
	2	THY	H1'	2	THY	H4'	3.25	4.13
	3	FB	H1'	3	FB	H2'	2.03	2.68
	3	FB	H1'	3	FB	H5'	1.84	2.53
	4	ADE	H1'	4	ADE	H2'	2.66	4.74
	2	THY	H2'	2	THY	H3'	2.18	2.86
	3	FB	H2'	3	FB	H3'	2.26	2.98
	4	ADE	H2'	4	ADE	H3'	2.27	3.06
	2	THY	H2''	2	THY	H3'	2.26	2.91
	4	ADE	H2''	4	ADE	H3'	2.70	4.27
	2	THY	H3'	2	THY	H4'	2.73	4.96
	2	THY	H3'	2	THY	H6	2.86	4.52
	4	ADE	H3'	4	ADE	H4'	2.54	4.00
	2	THY	H6	2	THY	M7	2.90	3.36
	5	FA	H6a	5	FA	H9a	2.59	2.96
	4	ADE	H1'	4	ADE	H2''	2.04	2.72
	2	THY	H2'	2	THY	H6	2.15	2.88
	2	THY	H2''	2	THY	H6	2.45	3.22
	4	ADE	H2''	4	ADE	H8	2.46	4.96

Table C-2: α -AFB₁-FAPY modified 5'-C¹T²X³A⁴-3'

1	CYT	H3'	1	CYT	H4'	2.19	2.76
2	THY	H3'	2	THY	H5'	1.81	3.80
2	THY	H3'	2	THY	H5"	2.26	4.35
3	FB	H3'	3	FB	H5'	1.90	2.93
4	ADE	H3'	4	ADE	H5'	2.20	2.98
5	FA	H5B	5	FA	Μ	2.84	3.41
5	FA	H6a	5	FA	H8A	3.34	4.55
1	CYT	H2'	1	CYT	H2''	1.45	2.16
2	THY	H2'	2	THY	H2"	1.55	2.21
3	FB	H2'	3	FB	H2''	1.55	2.39
4	ADE	H2'	4	ADE	H2"	1.50	2.14
4	ADE	H2'	4	ADE	H8	1.88	3.10
3	FB	H3'	3	FB	H4'	2.28	3.76
1	CYT	H4'	1	CYT	H5'	2.02	3.25
2	THY	H4'	2	THY	H5'	1.76	2.86
2	THY	H4'	2	THY	H5"	2.10	4.50
3	FB	H4'	3	FB	H5''	1.75	3.28
3	FB	H4'	3	FB	H5'	1.60	3.48
4	ADE	H4'	4	ADE	H5'	1.74	3.64
4	ADE	H4'	4	ADE	H5"	1.59	3.12
2	THY	H5'	2	THY	H6	2.50	4.02
3	FB	H8	5	FA	H8A	2.14	2.76

Table C-3: *cis*-5*R*,6*S*-thymine glycol modified 5'-G¹T²G³C⁴G⁵<u>Tg</u>⁶G⁷T⁸T⁹T¹⁰G¹¹T¹²-3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸<u>A</u>¹⁹C²⁰G²¹C²²A²³C²⁴-3'

	Residue	Residue	Atom	Residue	Residue	Atom	Lower	Upper
	Number	Name	Name	Number	Name	Name	Bound	Bound
Class 1	11	GUA	H1	11	GUA	H22	1.80	4.14
	11	GUA	H1	10	THY	H3	1.80	6.98
	11	GUA	H1	14	CYT	H42	1.80	5.20
	21	GUA	H1	4	CYT	H42	1.80	5.04
	3	GUA	H1	22	CYT	H42	1.80	5.07
	3	GUA	H1	4	CYT	H42	1.80	6.84
	7	GUA	H1	17	ADE	H2	1.80	6.81
	7	GUA	H1	7	GUA	H22	1.80	4.00
	7	GUA	H1	8	THY	H3	1.80	6.86
	7	GUA	H1	18	CYT	H42	1.80	4.56
	1	GUA	H1'	2	THY	H6	2.86	5.82
	1	GUA	H1'	1	GUA	H8	2.15	6.09
	1	GUA	H1'	2	THY	M7	4.44	6.49
	10	THY	H1'	10	THY	H3'	2.08	5.48
	10	THY	H1'	10	THY	H6	2.51	6.00
	10	THY	H1'	11	GUA	H8	3.47	5.40

11	GUA	H1'	11	GUA	H3'	2.06	4.26
11	GUA	H1'	11	GUA	H8	1.87	6.02
12	THY	H1'	12	THY	H3'	2.42	5.67
13	ADE	H1'	13	ADE	H3'	2.29	4.94
14	CYT	H1'	14	CYT	H3'	2.16	3.74
14	CYT	H1'	14	CYT	H6	2.89	5.64
14	CYT	H1'	15	ADE	H8	2.17	5.77
15	ADE	H1'	15	ADE	H3'	3 50	4 23
15	ADE	H1'	15	ADE	H8	2 43	6.07
15		H1'	16		H8	2.95	5.46
16		H1'	16		H3'	2.00	5.40 5.47
16		H1'	16		H8	1 99	6.12
16		H1'	17		Н8	2.13	6.16
17		ни Н1'	17		П0 Ц3'	2.15	5.73
17			10			2.17	6.79
17			10			0.0Z	0.20 1 00
10			10		⊓0 ⊔2'	2.30	4.00 5 5 9
10			10	CYT	по По	2.01	0.00 4 00
18			18			2.04	4.38
19			20			2.81	0.03
19		HI	19	ADE	HØ	2.50	5.61
2		H1 [°]	2		H3	2.01	4.07
2		H1 [°]	2		Hb	2.46	6.54
20	CYI	H1	20	CYI	H6	2.59	5.06
20	CYI	H1'	21	GUA	H8	2.47	5.26
21	GUA	H1'	21	GUA	H3'	1.88	5.30
21	GUA	H1'	22	CYT	H6	2.08	4.20
21	GUA	H1'	21	GUA	H8	1.95	5.72
22	CYT	H1'	22	CYT	H3'	2.17	5.32
22	CYT	H1'	22	CYT	H6	2.79	6.59
23	ADE	H1'	23	ADE	H3'	2.36	5.62
23	ADE	H1'	24	CYT	H5'1	1.95	5.38
23	ADE	H1'	24	CYT	H6	2.65	5.55
23	ADE	H1'	23	ADE	H8	2.33	5.94
24	CYT	H1'	24	CYT	H3'	2.13	5.48
24	CYT	H1'	24	CYT	H6	2.52	4.78
3	GUA	H1'	3	GUA	H3'	2.26	5.35
3	GUA	H1'	4	CYT	H6	2.61	6.79
4	CYT	H1'	4	CYT	H3'	2.10	3.66
4	CYT	H1'	4	CYT	H6	2.70	4.39
4	CYT	H1'	5	GUA	H8	2.43	4.69
5	GUA	H1'	6	TG	H6	2.61	5.50
5	GUA	H1'	5	GUA	H8	2.43	5.75
5	GUA	H1'	6	TG	Μ	2.79	6.64
7	GUA	H1'	8	THY	M7	2.84	6.29
8	THY	H1'	9	THY	M7	4.03	6.22
9	THY	H1'	9	THY	H3'	2.05	5.58
9	THY	H1'	10	THY	M7	4.66	6.73
15	ADE	H2	10	THY	H3	3.24	4.76
16	ADE	H2	9	THY	H3	3.29	4.94
17	ADE	H2	8	THY	H3	3.18	4.61
						-	

	23	ADE	H2	2	THY	H3	3.12	5.54
	17	ADE	H2'1	18	CYT	H5	3.24	4.85
	21	GUA	H2'1	22	CYT	H5	2.64	6.32
Ę	5	GUA	H2'1	5	GUA	H4'	3.13	4.75
	13	ADE	H2'2	14	CYT	H5	1.83	4.78
	23	ADE	H2'2	24	CYT	H5	2.61	6.18
3	3	GUA	H2'2	4	CYT	H5	2.19	4.00
	1	GUA	H3'	1	GUA	H8	2.15	6.44
,	1	GUA	H3'	2	THY	M7	2.78	5.47
	10	THY	H3'	_ 11	GUA	H8	2 61	6.34
	10	тнү	H3'	10	THY	M7	2.59	7 53
	11	GUA	H3'	10	GUA	H8	1.83	5.00
,	11	GUA	H3'	12		M7	3.87	7.51
,	12		H3'	12	тну	He	2 10	1 60
	12		113 H2'	12		Ц8	2.10	6.48
	17		113 H2'	17	CVT	Не	1 00	6 10
	14		113 Ll 2'	14			2.62	6.62
	10		⊓ง ⊔ว!	10			2.03	0.02
	10		ПЭ 1101	17			2.70	0.30
	17			18			2.10	5.89
	17	ADE	HJ	17	ADE	Hð	1.97	0.04
	18	CYI	H3 [°]	18		Ho	2.58	6.29
-	18	CYI	H3	19	ADE	H8	2.44	5.43
	19	ADE	H3'	19	ADE	H8	2.08	6.06
4	2	THY	H3'	2	THY	H6	2.14	5.83
2	2	THY	H3'	2	THY	M7	5.01	6.50
2	21	GUA	H3'	22	CYT	H5	3.53	6.15
2	21	GUA	H3'	22	CYT	H6	2.46	5.59
4	21	GUA	H3'	21	GUA	H8	1.95	5.82
4	22	CYT	H3'	23	ADE	H8	2.81	6.57
	23	ADE	H3'	23	ADE	H8	2.69	5.66
	24	CYT	H3'	24	CYT	H6	1.89	3.77
	3	GUA	H3'	4	CYT	H5	2.96	6.15
3	3	GUA	H3'	3	GUA	H8	1.93	5.81
Ę	5	GUA	H3'	5	GUA	H8	2.19	6.16
Ę	5	GUA	H3'	6	TG	М	2.68	7.54
7	7	GUA	H3'	7	GUA	H8	1.82	6.50
7	7	GUA	H3'	8	THY	M7	3.02	7.17
	2	THY	H4'	2	THY	H6	2.17	6.35
Ę	5	GUA	H4'	6	TG	М	3.28	6.37
7	7	GUA	H4'	8	THY	M7	2.81	6.13
,	18	CYT	H5	17	ADE	H8	2.37	5.86
	20	CYT	H5	19	ADE	H8	2.72	4.50
	22	CYT	H5	21	GUA	H8	2.89	5.45
	13	ADE	H5'1	13	ADE	H8	1.96	6.20
	2	THY	H5'1	2	THY	M7	3.56	7.65
	3	THY	H5'1	8	THY	M7	4.90	7.21
	2	THY	H6	3	GUA	H8	2.80	5.90
	20	СҮТ	H6	19	ADE	H8	2.76	5.00
-	1	GUA	H8	2	THY	M7	2.90	7.51
Class 2	3	GUA	H1	23	ADE	H2	1.80	6.92
0.000 2 0	-							

1	GUA	H1'	1	GUA	H4'	1.98	3.94
11	GUA	H1'	11	GUA	H4'	1.88	4.36
11	GUA	H1'	12	THY	M7	2.98	7.70
13	ADE	H1'	13	ADE	H4'	2.01	4.02
13	ADE	H1'	13	ADE	H5'1	2.47	4.28
13	ADE	H1'	14	CYT	H6	2.28	5.02
14	CYT	H1'	15	ADE	H5'1	2.98	5.27
15	ADE	H1'	15	ADE	H4'	2.92	4.72
16	ADE	H1'	16	ADE	H4'	1.92	4 14
17		H1'	17	ADE	H4'	2 00	4 30
18	CYT	H1'	19		H2	3 52	6.00
18	CYT	H1'	19		H8	2.09	5.00
10		н1'	20	CVT	H1'	2.00	4.04
19		ц1'	20	CVT	Не	2.00	4.04 6.07
19			20		110 LID14	1 96	0.07
2			2			2.50	5.77
2			3 21	GUA		2.00	5.15
20			21	GUA		2.57	4.01
21	GUA		21	GUA	H4	2.58	4.80
21	GUA	HT	22		HS	2.45	5.63
22	CYI	H1 [°]	23	ADE	Hð	2.01	5.18
23	ADE	H1'	23	ADE	H4'	2.29	5.78
3	GUA	H1'	3	GUA	H4'	2.85	5.59
5	GUA	H1'	5	GUA	H4'	2.87	4.57
6	TG	H1'	6	TG	М	3.38	7.60
7	GUA	H1'	7	GUA	H3'	1.87	5.74
7	GUA	H1'	7	GUA	H4'	2.91	5.56
8	THY	H1'	8	THY	H3'	1.89	5.31
17	ADE	H2	9	THY	H3	1.80	5.84
14	CYT	H2'1	15	ADE	H8	2.73	4.95
18	CYT	H2'1	18	CYT	H4'	2.50	5.48
19	ADE	H2'1	20	CYT	H5	2.82	4.96
2	THY	H2'1	3	GUA	H8	2.89	5.54
2	THY	H2'1	2	THY	M7	2.53	6.54
20	CYT	H2'1	20	CYT	H5	1.94	5.50
22	CYT	H2'1	22	CYT	H5	2.29	4.86
23	ADE	H2'1	24	CYT	H5	3.21	4.33
24	CYT	H2'1	24	CYT	H4'	2.42	5.92
3	GUA	H2'1	4	CYT	H5	2.97	6.45
4	CYT	H2'1	4	CYT	H5	2.18	4.60
6	TG	H2'1	6	TG	H4'	2.50	5.48
6	TG	H2'1	6	TG	H5'2	2.49	5.87
15	ADE	H2'2	15	ADE	H4'	3.04	5.59
2	THY	H2'2	2	THY	H4'	2.01	4.14
20	CYT	H2'2	21	GUA	H5'1	2.35	5.25
22	CYT	H2'2	22	CYT	H5	2.20	6.56
23		H2'2	23		H4'	3 10	5.68
5	GUA	H2'2	5	GUA	ΗΔ'	2 71	5.33
5	GUA	H2'2	6	TG	H5'2	3 68	5 56
5	CUA	H2'2	6		HA	3.00	6.53
e J		112 Z 山つつ	6		110 115'2	2.00	1 22
0	10	172 2	U	10	2 נרו	3.22	4.20

 10	THY	H3	15	ADE	H61	1.80	6.49
10	THY	H3	15	ADE	H62	1.80	6.58
2	THY	H3	23	ADE	H61	1.80	6.23
2	ТНҮ	H3	23	ADE	H62	1.80	6.86
8	THY	H3	16	ADE	H61	1 80	4 29
g	тнү	H3	16	ADE	H61	1.80	5.97
q	тну	H3	16	ADE	H62	1.80	6.43
11	GUA	H3'	12		H6	2 40	5.40 5.60
10		H3'	20	CYT	H5	2.40	5.73
2		H3'	20	GUA	НЯ	2.00	6.13
∠ 23		нз'	24	CVT	не	2.99	6.09
20		113 LI2'	24 1	CVT		2.23	6.46
3	GUA	ט ו נו ו	4			2.01	6.40
/ 0	GUA	⊓3 ⊔2'	0			1.90	0.17
8			9			2.86	7.23
16	ADE	H4	16	ADE	Hð	4.93	6.84
17	ADE	H4	17	ADE	Hð	2.20	5.97
18	CYI	H4 [°]	18	CYT	H6	2.70	4.85
19	ADE	H4	19	ADE	H8	1.96	6.83
21	GUA	H4'	21	GUA	H8	2.96	6.48
23	ADE	H4'	23	ADE	H8	3.87	6.84
5	GUA	H4'	5	GUA	H8	2.29	6.55
6	TG	H4'	6	TG	М	5.36	7.22
7	GUA	H4'	7	GUA	H8	2.73	6.83
14	CYT	H5	13	ADE	H8	2.48	6.57
24	CYT	H5	23	ADE	H8	2.39	6.41
4	CYT	H5	3	GUA	H8	3.33	6.59
1	GUA	H5'1	1	GUA	H8	1.98	5.62
12	THY	H5'1	12	THY	H6	2.08	5.49
15	ADE	H5'1	15	ADE	H8	2.07	6.80
19	ADE	H5'1	19	ADE	H8	2.15	6.29
20	CYT	H5'1	20	CYT	H6	2.28	5.52
21	GUA	H5'1	21	GUA	H8	1.87	5.83
23	ADE	H5'1	23	ADE	H8	3.34	6.42
24	CYT	H5'1	24	CYT	H6	2.34	5.55
5	GUA	H5'1	6	TG	М	3.44	6.89
7	GUA	H5'1	7	GUA	H8	3.02	5.99
1	GUA	H5'2	1	GUA	H8	2.10	6.04
15	ADE	H5'2	15	ADE	H8	2.15	6.52
18	CYT	H5'2	18	CYT	H6	2.39	6.08
23	ADE	H5'2	23	ADE	H8	2.95	4.98
6	TG	H5'1	6	TG	М	3.84	7.78
10	THY	H6	11	GUA	H8	3.91	6.18
12	THY	H6	11	GUA	H8	3.56	6.36
18	CYT	H6	17	ADE	H8	3.75	5.33
18	CYT	H6	19	ADE	H8	3.00	5.15
20	CYT	H6	21	GUA	H8	3.47	6.33
22	CYT	H6	21	GUA	H8	2.86	5.81
22	CYT	H6	23	ADF	HR	2.00	6.80
24	CYT	H6	23	ADE	HR	3 01	5 75
<u> </u>	CVT	He	3	GUA	H8	2 73	5 74
 т	011	110	0	004	110	2.10	U.1 T

1	4	CYT	H6	5	GUA	H8	2.86	5.93
	8	THY	H6	7	GUA	H8	2.10	6.62
Class 3	10	THY	H1'	10	THY	H4'	1.67	3.80
	12	THY	H1'	12	THY	H4'	2.14	3.51
	12	THY	H1'	12	THY	H6	2.21	6.46
	13	ADE	H1'	14	CYT	H5'1	1.81	4.69
	18	CYT	H1'	18	CYT	H4'	1.84	4.96
	18	CYT	H1'	18	CYT	H5'1	2.94	5.70
	18	CYT	H1'	19	ADE	H5'1	2.13	4.14
	2	THY	H1'	2	THY	H2'2	1.79	2.65
	20	CYT	H1'	20	CYT	H3'	2.03	5.18
	20	CYT	H1'	20	CYT	H4'	1.70	4.02
	22	CYT	H1'	22	CYT	H4'	2 05	3 56
	22	CYT	H1'	23	ADE	H5'1	3 14	4.32
	23	ADE	H1'	24	CYT	H5	2 81	5.87
	24	CYT	H1'	24	CYT	H4'	1.88	4 52
	3	GUA	H1'	4	CYT	H5	3.26	4 68
	3	GUA	H1'	4	CYT	H5'1	2 32	3 23
	4	CYT	H1'	5	GUA	H5'1	2.62	3 53
	5	GUA	H1'	5	GUA	H3'	2.00	5.64
	6	TG	H1'	6	TG	H4'	2.05	3 27
	6	TG	H1'	6	TG	H6	1 78	5.00
	6	TG	H1'	7	GUA	H8	2.09	3.65
	7	GUA	H1'	7	GUA	H8	1.88	5.00
	a a	тну	H1'	9	тну	H4'	2.08	4 38
	q	ТНҮ	H1'	10	ТНҮ	H6	2.00	4.00
	q	ТНҮ	H1'	9	THY	H6	1 77	4 31
	16	ADE	H2	10	THY	H3	4 67	6.41
	1	GUA	H2'1	10	GUA	H3'	2 25	4 46
	1	GUA	H2'1	2	THY	H6	2.38	4 26
	1	GUA	H2'1	2	тнү	M7	3 53	7 92
	13	ADE	H2'1	_ 14	CYT	H5	2.06	4 53
	13	ADE	H2'1	14	CYT	H6	2.60	5 16
	15		H2'1	15	ADE	H4'	2 90	4 97
	15		H2'1	16	ADE	H8	2.00	5.84
	16		H2'1	16	ADE	H4'	2.05	5 50
	17		H2'1	17	ADE	H5'1	2.26	4 23
	18	CYT	H2'1	18	CYT	H5	1 99	4 76
	19	ADE	H2'1	19	ADE	H4'	1.00	5 58
	2	THY	H2'1	2	THY	H4'	2 17	4 27
	21	GUA	H2'1	21	GUA	H4'	2.54	5.63
	22	CYT	H2'1	22	CYT	H4'	3.20	4 62
	23	ADE	H2'1	23	ADE	H4'	2 55	5.66
	24	CYT	H2'1	20	CYT	H5	1.95	4 71
	3	GUA	H2'1	3	GUA	H4'	2 50	4 56
	3	GUA	H2'1	4	CYT	H6	2.50	4.32
	4	CYT	H2'1	4	CYT	H4'	3.23	4 57
	6	TG	H2'1	- 6	TG	M	2 13	7 21
	7	GUA	H2'1	7	GUA	H4'	2.15	5 17
	8	THY	H2'1	8	THY	H4'	2.29	5.54

	8	THY	H2'1	8	THY	M7	2 59	5.88
	1	GUA	H2'2	2	ТНУ	H5'1	2.00	5.00
	1	GUA	H2'2	2	тну	H6	2.00	5 17
	1	GUA	112 2 112'2	2 1	GUA	Цβ	1.08	1.21
	12	GUA	112 Z	12	GUA		1.90	4.21
	10	ADE	ΠΖ Ζ μοιο	15		ПЭ I Цо	2.07	4.90
	14			10	ADE		2.74	5.90
	16	ADE	HZ'Z	16	ADE	H4	1.97	3.01
	17	ADE	H2 ⁻²	18	CYT	H5	2.41	4.22
	18	CYI	H2'2	19	ADE	H5'1	2.30	4.42
	19	ADE	H2'2	20	CYT	H5	2.41	5.24
	21	GUA	H2'2	21	GUA	H4'	2.31	4.20
	24	CYT	H2'2	24	CYT	H4'	1.95	4.41
	3	GUA	H2'2	3	GUA	H4'	2.58	3.55
	3	GUA	H2'2	4	CYT	H6	2.15	3.17
	7	GUA	H2'2	7	GUA	H4'	2.39	4.71
	8	THY	H2'2	8	THY	H4'	1.94	4.80
	1	GUA	H3'	1	GUA	H5'1	2.00	4.14
	13	ADE	H3'	14	CYT	H6	2.31	5.58
	14	CYT	H3'	15	ADE	H8	3.14	6.49
	15	ADE	H3'	15	ADE	H4'	1.95	3.52
	20	CYT	H3'	20	CYT	H6	2.05	5.17
	20	CYT	H3'	21	GUA	H8	3.19	5.62
	22	CYT	H3'	22	CYT	H6	2.50	5.48
	24	CYT	H3'	24	CYT	H4'	2.06	4.29
	4	CYT	H3'	4	CYT	H6	2.25	6.20
	4	CYT	H3'	5	GUA	H8	2.42	6.32
	6	TG	H3'	6	TG	H4'	2 11	5 45
	1	GUA	H4'	1	GUA	H8	2.26	6 4 9
	10	THY	H4'	10	THY	H6	2 94	6.11
	11	GUA	H4'	11	GUA	H8	2.01	6.86
	15		H4'	15		H8	2 33	6.81
	3	GUA	нл:	3	GUA	НЯ	2.33	6 79
	1	CVT	нл:	1	CVT	Н6	1.67	5.00
	- 0			- 0			2.27	3.00
	10		114 115'1	10			2.27	4.49 5.05
	10	GUA		10	GUA		1.91	5.05
	17	GUA		17	GUA	ПО	2.39	0.37
	17	ADE		17	ADE		2.04	0.59
	10			10			2.11	4.02
	3	GUA	H51	3	GUA	Hð	2.05	5.42
	6	IG	H51	6	IG	M	2.66	7.83
	3	GUA	H5'2	3	GUA	H8	2.41	6.60
	7	GUA	H5'2	7	GUA	H8	2.12	5.00
	14	CYT	H6	13	ADE	H8	2.99	5.68
	14	CYT	H6	15	ADE	H8	2.81	6.38
	11	GUA	H8	12	THY	M7	3.37	6.98
Class 4	11	GUA	H1'	12	THY	H6	2.42	5.56
	14	CYT	H1'	14	CYT	H2'1	1.92	4.32
	14	CYT	H1'	14	CYT	H4'	1.77	5.01
	16	ADE	H1'	17	ADE	H5'1	2.61	4.03
	19	ADE	H1'	19	ADE	H2	3.57	6.09

2	THY	H1'	2	THY	H4'	1.85	3.45
2	THY	H1'	2	THY	H5'1	2.25	3.75
2	THY	H1'	3	GUA	H8	2.11	4.20
20	CYT	H1'	20	CYT	H5'1	3.30	3.61
22	CYT	H1'	22	CYT	H2'1	2.03	5.51
3	GUA	H1'	3	GUA	H2'1	2.03	3.98
3	GUA	H1'	3	GUA	H8	2.07	4.22
6	TG	H1'	7	GUA	H5'1	2.22	3.60
7	GUA	H1'	8	THY	H6	1.80	6.59
8	THY	H1'	8	THY	H6	2.88	6.91
8	THY	H1'	9	THY	H6	2.46	5.08
9	THY	H1'	10	THY	H5'1	2.17	4.97
10	THY	H2'1	10	THY	H4'	1 71	2.98
10	THY	H2'1	11	GUA	H8	2.56	4 75
13	ADE	H2'1	13	ADE	H5'1	2.00	3 48
16		H2'1	17	ADE	H8	2.10	6 56
17		H2'1	17		H4'	2.40	4 69
17		H2'1	18	CYT	H6	2.00	4.00
18		H2'1	10		НЯ	2.17	3 75
10		112 1 H2'1	20		Не	2.23	0.70 1 13
2		112 1 H2'1	20	тим	110 H3	1.86	4.43
20	CVT	1121 LI21	20	CVT	но Ци	1.00	3.39
20		1 IZ 1 LID'1	20	CVT	114 LIG	1.90	5.65
21	CVT	⊓∠ I ⊔2'4	22			2.20	5.65
22			23			2.49	4.14
23			24 5			2.40	5.11
4 5			5	GUA		2.42	3.00
5	GUA		0			2.94	0.35
0 7			/	GUA		2.28	4.82
1	GUA		8			1.01	3.05
/	GUA		8			2.89	6.44
8			8			2.19	5.34
1	GUA	HZZ	1	GUA	H3	1.94	2.97
1	GUA	HZ'Z	2		IVI7	3.01	4.69
13	ADE	H2 ⁻²	14		H6	2.27	4.20
13	ADE	H2'2	13	ADE	H8	2.27	6.46
15	ADE	H2'2	15	ADE	H8	2.05	6.60
17	ADE	H2'2	1/	ADE	H4'	2.29	5.26
1/	ADE	H2'2	18	CYI	H6	2.12	6.14
18	CYI	H2'2	18	CYI	HG	1.82	4.29
18	CYI	H2'2	19	ADE	H8	2.04	4.04
19	ADE	H2'2	19	ADE	H4'	2.00	5.89
2	IHY	H2'2	2	IHY	H3'	1.72	3.17
2	IHY TUX	H2'2	2	IHY	H6	1./5	3.59
2	THY	H2'2	3	GUA	H8	2.12	5.93
20	CYT	H2'2	20	CYT	H4'	2.16	3.68
21	GUA	H2'2	22	CYT	H5	2.01	4.83
21	GUA	H2'2	22	CYT	H6	2.14	4.15
22	CYT	H2'2	22	CYT	H6	1.89	5.84
22	CYT	H2'2	23	ADE	H8	1.80	3.91
23	ADE	H2'2	24	CYT	H6	2.01	4.70

	23		H2'2	23		НЯ	1 01	6.07
	20		1122 LI212	20		טרו עמו	2.00	5.24
	Z4 4	CIT		Z4			2.09	5.24
	4		HZ ²	4		H4	2.17	4.20
	4	CYI	H2'2	4	CYI	H6	1.84	5.32
	5	GUA	H2'2	5	GUA	H8	2.00	4.59
	5	GUA	H2'2	6	TG	М	3.27	6.22
	6	TG	H2'2	6	TG	H4'	2.35	4.68
	6	TG	H2'2	7	GUA	H8	2.24	5.12
	7	GUA	H2'2	7	GUA	H8	2.79	6.12
	8	THY	H2'2	8	THY	H6	1.92	4.12
	8	THY	H2'2	9	THY	H6	1.71	3.63
	1	GUA	H3'	2	THY	H6	2.51	5.50
	12	THY	H3'	12	THY	H4'	2.05	4.91
	12	THY	H3'	13	ADE	H4'	3.27	4.55
	15	ADE	H3'	15	ADE	H5'1	2.24	4.61
	15	ADE	H3'	16	ADE	H8	2.51	5.58
	16	ADE	H3'	16	ADE	H4'	1.91	3.65
	16	ADE	H3'	16	ADE	H5'1	2.21	5.05
	16	ADE	H3'	16	ADE	H8	1.91	5 22
	18	CYT	H3'	18	CYT	H5'2	1.92	3 49
	2	тнү	H3'	2	ТНҮ	H4'	1.65	3.61
	24	CYT	H3'	24	CYT	H5'1	2 43	4 82
	24	CVT	H3'	24	CVT	H5'2	2.40	4.85
	24 1	CVT	нз'	24 1	CVT	H5'2	2.04	4.06
	- 5	GUA	нз'	5	GUA	нл'	2.35	4.00
	7	GUA	115 LIDI	7	GUA	114 ЦИ'	2.00	4.00
	10		ПЭ Ц <i>и</i> !	10	GUA	П4 ЦС	1.90	5.55
	12		□4 114/	12			2.19	5.34
	9			9			2.08	4.34
	14		H51	14		H6	2.12	5.27
	2	IHY	H51	2	IHY	Hb	2.19	5.78
	4	CYI	H5'1	4	CYI	H6	2.74	4.37
	5	GUA	H5'1	5	GUA	H8	2.28	5.53
	4	CYI	H5'2	4	CYI	H6	2.14	6.01
	9	THY	H6	10	THY	M7	2.28	5.24
	5	GUA	H8	6	TG	М	2.31	5.09
	7	GUA	H8	8	THY	M7	2.76	4.99
Class 5	1	GUA	H1'	2	THY	H5'1	1.87	3.46
	10	THY	H1'	10	THY	H2'1	1.79	3.53
	10	THY	H1'	10	THY	H2'2	1.87	2.64
	11	GUA	H1'	11	GUA	H2'2	1.87	3.44
	12	THY	H1'	12	THY	H2'2	1.77	3.21
	13	ADE	H1'	13	ADE	H2'1	1.90	4.21
	13	ADE	H1'	13	ADE	H2'2	1.70	2.56
	13	ADE	H1'	13	ADE	H8	1.98	5.25
	14	CYT	H1'	14	CYT	H2'2	1.93	2.63
	15	ADE	H1'	15	ADE	H2'1	2.60	5.58
	15	ADE	H1'	15	ADE	H2'2	2.27	2.64
	16	ADE	H1'	16	ADE	H2'1	1.82	5.63
	16	ADE	H1'	16	ADE	H2'2	1.71	2.55
	17	ADE	H1'	17	ADE	H2'1	2.46	4.92

17 ADE H1' 17 ADE H2'2 1.85 2.54 18 CYT H1' 18 CYT H2'1 1.83 5.49 18 CYT H1' 18 CYT H2'2 1.97 2.74 19 ADE H1' 19 ADE H2'1 1.64 4.61 19 ADE H1' 19 ADE H2'2 1.94 2.58 19 ADE H1' 19 ADE H4'1 1.79 4.02 20 CYT H1' 20 CYT H2'2 1.93 2.54 21 GUA H1' 21 GUA H2'1 1.85 3.49 22 CYT H1' 21 GUA H2'2 1.69 2.57 21 GUA H1' 22 CYT H2'2 1.69 2.57 23 ADE H1' 23 ADE H2'1 1.85 3.49 22 CYT H1' 23 ADE H2'2 2.17
18 CYT H1' 18 CYT H2'1 1.83 5.49 18 CYT H1' 18 CYT H2'1 1.64 4.61 19 ADE H1' 19 ADE H2'1 1.64 4.61 19 ADE H1' 19 ADE H2'1 1.85 5.59 19 ADE H1' 19 ADE H3' 1.85 5.59 19 ADE H1' 19 ADE H4' 1.77 6.73 20 CYT H1' 20 CYT H2'1 1.85 3.49 21 GUA H1' 21 GUA H2'2 1.97 2.51 23 ADE H1' 23 ADE H2'1 1.85 5.74 24 CYT H1' 24 CYT H2'2 1.97 2.51 23 ADE H1' 23 ADE H2'2 1.60 <t< td=""></t<>
18 CYT H1'18 CYT H221.972.7419ADEH1'19ADEH211.644.6119ADEH1'19ADEH221.942.5819ADEH1'19ADEH3'1.855.5919ADEH1'19ADEH4'1.794.0220CYTH1'20CYTH2'11.824.5020CYTH1'20CYTH2'21.932.5421GUAH1'21GUAH2'21.692.5721GUAH1'22CYTH5'11.853.4922CYTH1'23ADEH2'21.972.5123ADEH1'23ADEH2'22.172.7824CYTH1'24CYTH2'21.802.693GUAH1'3GUAH2'21.662.524CYTH1'4CYTH2'12.104.904CYTH1'4CYTH2'21.662.524CYTH1'4CYTH2'11.805.365GUAH1'5GUAH2'11.805.365GUAH1'5GUAH2'21.662.524CYTH1'4CYTH2'11.805.365GUAH1'
19 ADE H1' 19 ADE H2'1 1.64 4.61 19 ADE H1' 19 ADE H2'2 1.94 2.58 19 ADE H1' 19 ADE H3' 1.85 5.59 19 ADE H1' 19 ADE H4' 1.79 4.02 20 CYT H1' 20 CYT H2'1 1.82 4.50 20 CYT H1' 20 CYT H2'2 1.93 2.54 21 GUA H1' 21 GUA H2'2 1.69 2.57 21 GUA H1' 22 CYT H2'2 1.97 2.51 23 ADE H1' 23 ADE H2'2 1.97 2.51 23 ADE H1' 23 ADE H2'2 1.97 2.51 24 CYT H1' 24 CYT H2'1 1.28 5.74 24 CYT H1' 4 CYT H2'2 1.60
19 ADE H1' 19 ADE H2'2 1.94 2.58 19 ADE H1' 19 ADE H3' 1.85 5.59 19 ADE H1' 19 ADE H4' 1.79 4.02 20 CYT H1' 20 CYT H2'1 1.82 4.50 20 CYT H1' 20 CYT H2'2 1.93 2.54 21 GUA H1' 21 GUA H2'2 1.69 2.57 21 GUA H1' 22 CYT H5'1 1.85 3.49 22 CYT H1' 23 ADE H2'2 1.97 2.51 23 ADE H1' 23 ADE H2'2 1.80 2.69 3 GUA H1' 24 CYT H2'2 1.80 2.69 3 GUA H1' 3 GUA H2'2 1.66 2.52 4 CYT H1' 4 CYT H2'2 1.66 <
19 ADE H1' 19 ADE H3' 1.85 5.59 19 ADE H1' 19 ADE H4' 1.79 4.02 20 CYT H1' 20 CYT H2'1 1.82 4.50 20 CYT H1' 20 CYT H2'2 1.93 2.54 21 GUA H1' 21 GUA H2'1 1.77 5.73 21 GUA H1' 22 CYT H5'1 1.85 3.49 22 CYT H1' 22 CYT H2'2 1.97 2.51 23 ADE H1' 23 ADE H2'1 1.98 5.16 23 ADE H1' 23 ADE H2'2 2.17 2.78 24 CYT H1' 24 CYT H2'2 1.80 2.69 3 GUA H1' 3 GUA H2'2 1.66 2.52 4 CYT H1' 4 CYT H2'2 1.02
19 ADE H1' 19 ADE H4' 1.79 4.02 20 CYT H1' 20 CYT H2'1 1.82 4.50 20 CYT H1' 20 CYT H2'1 1.82 4.50 21 GUA H1' 21 GUA H2'2 1.93 2.54 21 GUA H1' 21 GUA H2'2 1.69 2.57 21 GUA H1' 22 CYT H5'1 1.85 3.49 22 CYT H1' 23 ADE H2'2 1.97 2.51 23 ADE H1' 23 ADE H2'2 2.17 2.78 24 CYT H1' 24 CYT H2'2 1.80 2.69 3 GUA H1' 3 GUA H2'2 1.80 2.69 3 GUA H1' 4 CYT H2'1 1.80 5.36 4 CYT H1' 4 CYT H2'1 1.80 <
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
21 GUA H1' 22 CYT H5'1 1.85 3.49 22 CYT H1' 22 CYT H2'2 1.97 2.51 23 ADE H1' 23 ADE H2'1 1.98 5.16 23 ADE H1' 23 ADE H2'2 2.17 2.78 24 CYT H1' 24 CYT H2'1 2.28 5.74 24 CYT H1' 24 CYT H2'2 1.80 2.69 3 GUA H1' 3 GUA H2'2 1.66 2.52 4 CYT H1' 4 CYT H2'2 2.02 2.58 4 CYT H1' 4 CYT H2'1 1.80 5.36 5 GUA H1' 5 GUA H2'2 1.69 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 7 GUA H1' 7 GUA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
23ADEH1'23ADEH2'11.8721623ADEH1'23ADEH2'22.172.7824CYTH1'24CYTH2'12.285.7424CYTH1'24CYTH2'21.802.693GUAH1'3GUAH2'21.662.524CYTH1'4CYTH2'12.104.904CYTH1'4CYTH2'22.022.584CYTH1'4CYTH2'11.805.365GUAH1'5GUAH2'11.805.365GUAH1'5GUAH2'11.935.556TGH1'6TGH2'11.935.556TGH1'6TGH2'22.113.147GUAH1'7GUAH2'11.752.817GUAH1'7GUAH2'21.883.138THYH1'8THYH2'21.673.078THYH1'8THYH2'21.673.079THYH1'9THYH2'21.542.881GUAH2'11GUAH2'21.542.881GUAH2'11GUAH2'21.523.0310THYH2'110T
23ADEH1'23ADEH2'11.672.172.7824CYTH1'24CYTH2'12.285.7424CYTH1'24CYTH2'21.802.693GUAH1'3GUAH2'21.662.524CYTH1'4CYTH2'12.104.904CYTH1'4CYTH2'22.022.584CYTH1'4CYTH2'21.692.295GUAH1'5GUAH2'11.805.365GUAH1'5GUAH2'21.692.296TGH1'6TGH2'11.935.556TGH1'6TGH2'11.752.817GUAH1'7GUAH2'21.683.138THYH1'8THYH2'11.983.588THYH1'8THYH2'21.673.071GUAH2'11GUAH2'21.542.881GUAH2'11GUAH2'21.523.0310THYH2'110THYH2'21.523.0310THYH2'113ADEH3'1.712.8813ADEH2'113ADEH3'1.712.8813ADEH2'1 </td
24 CYT H1' 24 CYT H2'1 2.28 5.74 24 CYT H1' 24 CYT H2'2 1.66 2.69 3 GUA H1' 3 GUA H2'2 1.66 2.52 4 CYT H1' 4 CYT H2'1 2.10 4.90 5 GUA H1' 5 GUA H2'1 1.80 5.36 5 GUA H1' 5 GUA H2'2 1.69 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 7 GUA H2'1 1.75 2.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 GUA H1' 3 GUA H2'2 1.66 2.52 4 CYT H1' 4 CYT H2'1 2.10 4.90 4 CYT H1' 4 CYT H2'1 2.10 4.90 4 CYT H1' 4 CYT H2'1 2.10 4.90 4 CYT H1' 4 CYT H2'1 2.10 2.58 4 CYT H1' 4 CYT H2'2 2.02 2.58 5 GUA H1' 5 GUA H2'1 1.80 5.36 5 GUA H1' 5 GUA H2'2 1.69 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 1.67 3.07
4 CYT H1' 4 CYT H2'1 2.102 2.58 4 CYT H1' 4 CYT H2'2 2.02 2.58 4 CYT H1' 4 CYT H2'2 2.02 2.58 4 CYT H1' 4 CYT H4'2 1.80 5.36 5 GUA H1' 5 GUA H2'1 1.80 5.36 5 GUA H1' 5 GUA H2'1 1.69 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 6 TG H2'2 1.81 3.14 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 1.67 3.07
4 CYT H1' 4 CYT H2'1 2.10 4.30 4 CYT H1' 4 CYT H2'2 2.02 2.58 4 CYT H1' 4 CYT H4' 1.97 3.20 5 GUA H1' 5 GUA H2'1 1.80 5.36 5 GUA H1' 5 GUA H2'2 1.69 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 6 TG H2'2 2.11 3.14 7 GUA H1' 7 GUA H2'1 1.75 2.81 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 1.05 2.70
4 CYT H1' 4 CYT H4' 1.97 3.20 5 GUA H1' 5 GUA H2'1 1.80 5.36 5 GUA H1' 5 GUA H2'1 1.80 5.36 5 GUA H1' 5 GUA H2'2 1.69 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 6 TG H2'2 2.11 3.14 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'2 1.88 3.13 8 THY H1' 8 THY H2'2 1.88 3.58 8 THY H1' 8 THY H2'2 1.67 3.07 8 THY H1' 8 THY H2'2 1.67 3.07 9 THY H1' 9 THY H2'2 1.67 3.07
5 GUA H1' 5 GUA H2'1 1.80 5.36 5 GUA H1' 5 GUA H2'1 1.69 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 6 TG H2'2 2.11 3.14 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 1.067 3.07 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88
5 GUA H1 5 GUA H2 1.60 3.30 5 GUA H1' 5 GUA H2'2 1.69 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 6 TG H2'2 2.11 3.14 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 1.67 3.07 8 THY H1' 8 THY H2'2 1.67 3.07 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H8 2.14 4.50
3 GOA H1 3 GOA H122 1.09 2.29 6 TG H1' 6 TG H2'1 1.93 5.55 6 TG H1' 6 TG H2'2 2.11 3.14 7 GUA H1' 7 GUA H2'1 1.75 2.81 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H2'2 1.67 3.07 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'1 1.65 2.70 9 THY H1' 9 THY H2'2 1.54 2.88
6 TG H1 6 TG H21 1.93 5.55 6 TG H1' 6 TG H2'2 2.11 3.14 7 GUA H1' 7 GUA H2'1 1.75 2.81 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.95 2.81 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H2'2 1.67 3.07 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 <
6 1G H1 6 1G H22 2.11 3.14 7 GUA H1' 7 GUA H2'1 1.75 2.81 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H2'2 1.65 2.70 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12
7 GUA H1 7 GUA H2 1 1.73 2.61 7 GUA H1' 7 GUA H2'2 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H2'2 1.67 3.07 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88
7 GUA H1 7 GUA H22 1.88 3.13 8 THY H1' 8 THY H2'1 1.98 3.58 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H4' 1.65 2.70 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H8 2.14 4.50 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41
8 IHY HI 8 IHY H2 I 1.98 3.58 8 THY H1' 8 THY H2'2 2.00 5.77 8 THY H1' 8 THY H4' 1.65 2.70 9 THY H1' 9 THY H4' 1.65 2.70 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H8 2.14 4.50 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08
8 THY H1 8 THY H22 2.00 5.77 8 THY H1' 8 THY H4' 1.65 2.70 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H8 2.14 4.50 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
8 1HY H1 8 1HY H4 1.65 2.70 9 THY H1' 9 THY H2'2 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H8 2.14 4.50 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
9 1HY H1 9 1HY H22 1.67 3.07 1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H8 2.14 4.50 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
1 GUA H2'1 1 GUA H2'2 1.54 2.88 1 GUA H2'1 1 GUA H8 2.14 4.50 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
1 GOA H2'1 1 GOA H8 2.14 4.50 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
10 1HY H2'1 10 1HY H2'2 1.52 3.03 10 THY H2'1 10 THY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
10 1HY H2'1 10 1HY H6 1.80 5.12 13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
13 ADE H2'1 13 ADE H3' 1.71 2.88 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
13 ADE H2'1 13 ADE H4' 2.08 3.41 13 ADE H2'1 13 ADE H8 1.84 3.62
13 ADE H2'1 13 ADE H8 1.84 3.62
14 CYI H2'1 14 CYI H2'2 1.63 3.04
14 CYI H2'1 14 CYI H3' 1.96 3.12
14 CYT H2'1 14 CYT H4' 2.04 3.14
14 CYT H2'1 14 CYT H6 1.75 3.77
15 ADE H2'1 15 ADE H2'2 1.44 3.04
15 ADE H2'1 15 ADE H3' 2.15 3.48
15 ADE H2'1 15 ADE H8 2.17 5.60
16 ADE H2'1 16 ADE H3' 1.88 3.55
16 ADE H2'1 16 ADE H8 1.82 2.91
17 ADE H2'1 17 ADE H2'2 1.59 3.01
17 ADE H2'1 17 ADE H3' 1.89 3.04
17 ADE H2'1 17 ADE H8 1.87 4.96

	18	CYT	H2'1	18	CYT	H2'2	1.68	2.85
	18	CYT	H2'1	18	CYT	H3'	1.94	3.81
	18	CYT	H2'1	18	CYT	H6	2.00	4.70
	19	ADE	H2'1	19	ADE	H2'2	1.54	2.83
	19	ADE	H2'1	19	ADE	H3'	1.90	3.73
	19	ADE	H2'1	19	ADE	H8	2 15	5 12
	2	THY	H2'1	2	THY	H2'2	1 71	3.11
	2	тну	H2'1	2	тну	H6	1.86	5.40
	20	CYT	H2'1	20	CYT	H2'2	1.00	3.04
	20	CVT	H2'1	20	CVT	н <u>г</u> Цз'	1.66	3.04
	20	CVT	L21	20	CVT		1.00	1 10
	20	CVT		20			1.77	4.43
	20			21	GUA	П0 Ц2!	2.31	4.20
	21	GUA		21	GUA	П3 110	1.74	3.30
	21	GUA		21	GUA		1.74	2.97
	22		HZ ¹	22		HZ'Z	1.68	2.88
-	22	CYI	H21	22	CYI	H3 [°]	2.19	3.84
2	22	CYI	H2'1	22	CYI	HG	1.92	4.95
1	23	ADE	H2'1	23	ADE	H2'2	1.43	3.01
:	23	ADE	H2'1	23	ADE	H3'	1.87	3.57
	23	ADE	H2'1	23	ADE	H8	2.09	6.44
	24	CYT	H2'1	24	CYT	H3'	1.92	3.31
:	24	CYT	H2'1	24	CYT	H6	2.09	3.13
;	3	GUA	H2'1	3	GUA	H3'	1.79	3.71
:	3	GUA	H2'1	3	GUA	H8	1.68	3.23
	4	CYT	H2'1	4	CYT	H2'2	1.61	2.85
	4	CYT	H2'1	4	CYT	H6	2.03	5.56
:	5	GUA	H2'1	5	GUA	H2'2	1.50	3.09
:	5	GUA	H2'1	5	GUA	H3'	1.74	3.51
:	5	GUA	H2'1	5	GUA	H8	1.98	6.10
	6	TG	H2'1	6	TG	H2'2	1.56	2.92
	6	TG	H2'1	6	TG	H3'	1.87	3.46
	7	GUA	H2'1	7	GUA	H3'	1.83	3.99
	7	GUA	H2'1	7	GUA	H8	1.97	3.02
	8	THY	H2'1	8	THY	H2'2	1.49	3.35
	8	THY	H2'1	8	THY	H3'	1.77	3.01
	8	THY	H2'1	8	THY	H6	2.01	6.55
	8	THY	H2'1	9	THY	H6	2.03	3.46
	8	THY	H2'1	9	THY	M7	2.93	5.06
	9	THY	H2'1	10	THY	H6	2.05	4 28
	q	тнү	H2'1	10	тну	M7	1.63	4 32
	10	тну	H2'2	10	тну	H3'	1.63	3.47
	10	тну	H2'2	10	тну	нл'	1.00	5.9/
	10	тиу	1122 1122	10	тиу	Не	1.80	5.67
	10		1122 山つつ	10			2.20	2.07
	10		1122 Lloio	11	CUA	110 ロッ	2.30	2.04
	11	GUA	רו ביכ⊔	11	CUA	נרו יגם	1.07	3.30 4 70
	11	GUA		11		П4 ЦС	2.10	4./ð
	11	GUA		12			∠.5ŏ	4.42
	11	GUA		11	GUA	Πŏ	1.8/	4.39
	11	GUA	H2'2	12		M/	3.47	5.//
	12	IHY	H2'2	12	IHY	H3'	1.88	3.42

12	THY	H2'2	12	THY	H4'	2.25	3.93
13	ADE	H2'2	13	ADE	H3'	2.05	4.36
14	CYT	H2'2	14	CYT	H3'	1.71	3.15
14	CYT	H2'2	14	CYT	H6	1.68	4.78
15	ADE	H2'2	15	ADE	H3'	2.10	3.42
15	ADE	H2'2	16	ADE	H8	2.42	5.25
16	ADE	H2'2	16	ADE	H3'	1.84	3.96
16	ADE	H2'2	16	ADE	H8	2.02	5.04
16	ADE	H2'2	17	ADE	H8	1.54	3.23
17	ADE	H2'2	17	ADE	H3'	1 64	2.87
17	ADE	H2'2	17	ADE	H5'1	1 74	4 27
17	ADE	H2'2	17	ADE	H8	1 70	4 72
18	CYT	H2'2	18	CYT	H3'	1.00	3 38
18	CYT	H2'2	18	CYT	H4'	1.00	5.88
10		H2'2	10		H3'	1.00	2 73
10		112 Z 112'2	10		Ц	1.02	2.75
20		112 Z 112'2	20		110 LL2'	1.03	4.51
20	CVT	112 Z	20	CVT		1.71	3.00
20	CVT	112 Z	20			1.09	4.42
20			21	GUA	⊓0 ⊔2'	2.17 1.70	4.31
21	GUA		21	GUA	പം	1.72	3.UZ
21	GUA		21	GUA		2.32	5.44 2.42
22			22			2.19	3.43
22		HZ'Z	22		H4	2.60	5.71
23	ADE	H2 ²	23	ADE	H3	2.06	3.92
24	CYI	H2 [·] 2	24	CYI	H6	2.28	5.46
3	GUA	H2'2	3	GUA	H8	2.09	6.38
4	CYT	H2'2	4	CYT	H3'	2.54	4.31
4	CYT	H2'2	5	GUA	H8	2.41	3.53
5	GUA	H2'2	5	GUA	H3'	1.88	3.02
6	TG	H2'2	6	TG	H3'	1.62	3.86
7	GUA	H2'2	7	GUA	H3'	2.20	5.22
7	GUA	H2'2	8	THY	H6	1.90	4.22
7	GUA	H2'2	8	THY	M7	2.32	4.49
8	THY	H2'2	8	THY	H3'	1.69	2.79
8	THY	H2'2	9	THY	M7	2.87	7.19
9	THY	H2'2	10	THY	H6	1.91	5.48
9	THY	H2'2	9	THY	H6	1.83	5.93
9	THY	H2'2	10	THY	M7	3.41	5.76
1	GUA	H3'	1	GUA	H5'2	1.66	4.01
10	THY	H3'	10	THY	H4'	1.48	2.88
10	THY	H3'	10	THY	H5'1	1.66	4.09
10	THY	H3'	10	THY	H6	2.23	6.65
13	ADE	H3'	13	ADE	H4'	1.92	3.57
13	ADE	H3'	13	ADE	H5'1	1.81	2.94
14	CYT	H3'	14	CYT	H4'	1.70	3.35
15	ADE	H3'	15	ADE	H5'2	1.85	3.67
16	ADE	H3'	16	ADE	H5'2	1.76	3.47
17	ADE	H3'	17	ADE	H4'	1.81	4.24
17	ADE	H3'	17	ADE	H5'1	1.92	3.42
18	CYT	H3'	18	CYT	H4'	1.78	3.32
-		-	-	-			

18	CYT	H3'	18	CYT	H5'1	1.72	3.28
19	ADE	H3'	19	ADE	H4'	1.70	2.85
19	ADE	H3'	19	ADE	H5'1	1.77	3.47
19	ADE	H3'	20	CYT	H6	2.25	5.35
20	CYT	H3'	20	CYT	H4'	1.55	2.87
20	CYT	H3'	20	CYT	H5'1	1.88	3.28
21	GUA	H3'	21	GUA	H4'	2.03	3.60
21	GUA	H3'	21	GUA	H5'1	2.52	5.20
21	GUA	H3'	21	GUA	H5'2	1.74	3.32
22	CYT	H3'	22	CYT	H4'	2.07	3.39
22	CYT	H3'	22	CYT	H5'1	1.54	2.03
23	ADE	H3'	23	ADE	H4'	2.10	2.93
23	ADE	H3'	23	ADE	H5'2	1.37	3.58
3	GUA	H3'	3	GUA	H4'	2.15	3.38
3	GUA	H3'	3	GUA	H5'1	2.24	3.76
3	GUA	H3'	3	GUA	H5'2	1.76	3.39
4	CYT	H3'	4	CYT	H4'	1.94	4.59
7	GUA	H3'	7	GUA	H5'1	1.82	2.92
7	GUA	H3'	7	GUA	H5'2	2.09	4.23
8	THY	H3'	9	THY	H6	1.71	6.59
9	THY	H3'	9	THY	H4'	1.57	2.73
9	THY	H3'	10	THY	H6	1.90	4.58
9	THY	H3'	9	THY	H6	2.08	5.44
1	GUA	H4'	1	GUA	H5'1	1.63	2.56
13	ADE	H4'	13	ADE	H5'1	1.75	2.66
15	ADE	H4'	15	ADE	H5'1	1.98	4.44
15	ADE	H4'	15	ADE	H5'2	1.81	2.93
17	ADE	H4'	17	ADE	H5'1	1.58	2.64
21	GUA	H4'	21	GUA	H5'1	1.66	4.16
21	GUA	H4'	21	GUA	H5'2	1.59	3.27
3	GUA	H4'	3	GUA	H5'1	1.48	3.42
3	GUA	H4'	3	GUA	H5'2	1.92	4.50
5	GUA	H4'	5	GUA	H5'1	1.70	2.71
7	GUA	H4'	7	GUA	H5'1	2.09	5.72
7	GUA	H4'	7	GUA	H5'2	1.61	3.02
14	CYT	H5	14	CYT	H6	1.79	2.82
18	CYT	H5	18	CYT	H6	1.86	2.71
20	CYT	H5	20	CYT	H6	1.87	2.69
22	CYT	H5	22	CYT	H6	1.82	2.73
24	CYT	H5	24	CYT	H6	1.94	2.82
4	CYT	H5	4	CYT	H6	1.80	3.03
6	TG	H5'1	6	TG	H5'2	1.57	2.05
10	THY	H6	10	THY	M7	2.28	3.82
12	THY	H6	12	THY	M7	2.22	3.95
2	THY	H6	2	THY	M7	2.28	3.74
8	THY	H6	8	THY	M7	2.23	3.68
8	THY	H6	9	THY	M7	2.86	6.81
9	THY	H6	9	THY	M7	2.17	3.52
7	GUA	H8	6	TG	М	5.29	7.38

APPENDIX D

AMBER MOLECULAR DYNAMICS CONTROL FILES

File D-1: Generic simulated annealing PBS script for use with the ACCRE cluster (Advanced Computing Center for Research and Education, Vanderbilt University). This file is used with a "foreach" loop script for submission of

```
#!/bin/csh
#
#PBS -M kyle.l.brown@vanderbilt.edu
#PBS -l nodes=1:ppn=1:x86
#PBS -1 walltime=00:50:00
#PBS -1 cput=0:50:00
#PBS -1 mem=500mb
#PBS -o accre.output
#PBS -j oe
#
cd ~/ "project name"
date >> nodes.list
echo "$STRUCT ran on the following node:" >> nodes.list
cat $PBS NODEFILE >> nodes.list
cat << eof > $STRUCT.in
 simulated annealing protocol, 22 ps
 &cntrl
    nstlim=22000, pencut=-0.001, nmropt=1,
   ntpr=200, ntt=1, ntwx=200,
    cut=12.0, ntb=0, vlimit=10, rgbmax=12.0,
   ntb=0, ntc=2, ntf=2,
    igb=1, saltcon=0.2, offset=0.13,
 /
 &ewald
 /
#
# simulated annealing algorithm:
# H bonds held w/ SHAKE
# generalized born solvent model
#from steps 0 to 5000: heat the system to 600K
#from steps 5001-18000: re-cool to low temperatures with long tautp
#from steps 18001-22000: final cooling with short tautp
#
 &wt type='TEMP0', istep1=0,istep2=5000,value1=600.,
```

```
value2=600.,
                         /
 &wt type='TEMP0', istep1=5001, istep2=18000, value1=600.0,
           value2=100.0,
 &wt type='TEMP0', istep1=18001, istep2=22000, value1=0.0,
           value2=0.0,
                          /
&wt type='TAUTP', istep1=0,istep2=5000,value1=0.4,
           value2=0.4,

&wt type='TAUTP', istep1=5001,istep2=18000,value1=1.0,
           value2=0.4,
                           /
 &wt type='TAUTP', istep1=18001,istep2=19000,value1=1.0,
           value2=0.8,
 &wt type='TAUTP', istep1=19001,istep2=22000,value1=0.1,
           value2=0.01,
&wt type='REST', istep1=0,istep2=3000,value1=0.1,
           value2=1.0, /
&wt type='REST', istep1=3001,istep2=22000,value1=1.0,
           value2=1.0, /
&wt type='END' /
LISTOUT=POUT
DISANG=RST
eof
/usr/local/structbio/amber9/exe/sander.nopar -0 -i $STRUCT.in -p
file.prmtop -c $STRUCT.x -o $STRUCT.out -r $STRUCT.rst -x $STRUCT.trj
rm -f $STRUCT.in
/usr/local/structbio/amber9/exe/ambpdb -p file.prmtop <$STRUCT.rst>
$STRUCT.pdb
```

File D-2: Control script for equilibration of structures in explicit solvent. A detailed explanation of explicit solvent equilibration prior to production calculations maybe found in Chapter II.

```
#!/bin/csh
#This is used to equilibrate a system for refinement in explicit
solvent
set pmemd=/sb/apps/amber9/x86_64/exe/pmemd
#Hold solute fixed and allow water to equilibrate around molecule
cat<<eof>eq1.in
initial minimisation solvent + ions, dna fixed
 &cntrl
  imin = 1,
  maxcyc = 1000,
        = 500,
 ncyc
         = 1,
 ntb
         = 1,
 ntr
 cut
         = 10
 /
Hold the DNA fixed
500.0
RES 1 24
END
END
eof
$pmemd -0 -i eql.in -o eql.out -p faml.prmtop -c faml.inpcrd -r
eqlout.rst -ref fam1.inpcrd
\rm eql.in
#allow solute to adjust to water
cat<<eof>eq2.in
tgwater: initial minimisation whole system water and dna
 &cntrl
  imin
         = 1,
 maxcyc = 2500,
 ncyc = 1000,
        = 1,
 ntb
        = 0,
 ntr
         = 10
 cut
 /
eof
$pmemd -0 -i eq2.in -o eq2.out -p fam1.prmtop -c eqlout.rst -r
eq2out.rst
\rm eq2.in
cat<<eof>eq3.in
#tgwater heat to 300K: 20ps MD NO res on DNA
 &cntrl
  imin
       = 0,
```

```
irest = 0,
  ntx
         = 1,
  ntb
         = 1,
         = 10,
  cut
         = 1,
  ntr
  ntc
         = 2,
  ntf
         = 2,
  tempi = 0.0,
  temp0 = 300.0,
  ntt
         = 3,
  gamma_ln = 1.0,
  nstlim = 10000, dt = 0.002,
 ntpr = 100, ntwx = 100, ntwr = 1000
 /
keep DNA fixed with weak restraints
10.0
RES 1 24
END
END
eof
$pmemd -0 -i eq3.in -o eq3.out -p fam1.prmtop -c eq2out.rst -r
eq3out.rst -x eq3.traj -ref eq2out.rst
/rm eq3.in
cat<<eof>eq4.in
#300K, 100ps MD, NMR RST turned on slowly
 &cntrl
  imin = 0, irest = 1, ntx = 7,
  ntb = 2, pres0 = 1.0, ntp = 1,
  taup = 2.0,
  cut = 15,
  nmropt = 1,
  pencut =-0.001,
  ntpr = 200,
  ntc = 2, ntf = 2,
  tempi = 300.0, temp0 = 300.0,
 ntt = 3, gamma_ln = 1.0,
 nstlim = 50000, dt = 0.002,
 ntpr = 100, ntwx = 100, ntwr = 1000
 /
 &wt type='REST', istep1=0,istep2=30000,value1=0.1,
            value2=1.0, /
 &wt type='REST', istep1=30001,istep2=50000,value1=1.0,
            value2=1.0, /
 &wt type='END' /
DISANG=RST
LISTOUT=POUT
END
END
eof
$pmemd -0 -i eq4.in -o eq4.out -p fam1.prmtop -c eq3out.rst -r
eq4out.rst -x eq4.traj
/rm eq4.in
```
```
#!/bin/csh
cat << eof > prd.in
#4mer production run at 300K: 100ps MD, NMR RST turned on
&cntrl
 imin = 0, irest = 1, ntx = 7,
 ntb = 2, pres0 = 1.0, ntp = 1,
 taup = 2.0,
 cut = 7,
 nmropt = 1,
 pencut =-0.001,
 ntpr = 200,
 ntc = 2, ntf = 2,
 tempi = 300.0, temp0 = 300.0,
 ntt = 3, gamma_ln = 1.0,
 nstlim = 50000, dt = 0.002,
 ntpr = 100, ntwx = 100, ntwr = 1000
 /
&wt type='END' /
DISANG=RST
LISTOUT=POUT
END
END
eof
set MDSTARTJOB=1
set MDENDJOB=10
set MDCURRENTJOB=$MDSTARTJOB
set MDINPUT=1
while ( $MDCURRENTJOB <= $MDENDJOB )</pre>
  echo -n "Job $MDCURRENTJOB started at: "
  date
  @ MDINPUT = $MDCURRENTJOB - 1
   /sb/apps/amber9/x86_64/exe/pmemd -O -i prd.in \
                            -o fam1_$MDCURRENTJOB.out \
                            -p fam1.prmtop \
                            -c fam1_$MDINPUT.rst \
                            -r fam1_$MDCURRENTJOB.rst \
                            -x fam1_$MDCURRENTJOB.traj
  gzip -9 -v fam1_$MDCURRENTJOB.traj
  echo -n "Job $MDCURRENTJOB finished at: "
  date
   @ MDCURRENTJOB = $MDCURRENTJOB + 1
end
rm prd.in
```

APPENDIX E

HELICOIDAL ANALYSIS RESULTS

Figure E-1: Helicoidal parameter definitions.

	11 1 11	0 5 (11		1111)		
1 st Strand	X-disp	Y-disp	Inclination	Tip	Bc	Тс
	(dx)	(dy)	(eta)	(theta)		
C^1	-0.93	0.19	-4.07	-3.11	3	0
T^2	-1.06	-0.34	-3.27	-7.44	4	-27
A^3	-0.93	-0.16	-1.48	-5.12	2	32
T^4	-1.13	-0.47	8.86	-7.04	4	-30
X^5	1.03	0.13	0.58	-99.6	1	12
A^6	-0.83	-0.08	-6.57	-4.54	2	22
T^7	-1.01	-0.26	-4.73	-18.25	4	-24
T ⁸	-1.09	-0.26	-6.13	-11.76	4	-18
C ⁹	-0.36	-0.26	-5.1	-10.92	3	-12
A^{10}	-0.92	-0.16	-5.27	-6.37	2	0
2^{nd}	X-disp	Y-disp	Inclination	Tip	Bc	Тс
Strand	(dx)	(dy)	(eta)	(theta)		
G^{20}	-0.93	-0.23	-4.18	6.54	1	0
A ¹⁹	-0.96	0.33	-3.85	0.02	2	27
T^{18}	-1.05	0.19	-4.27	4.24	4	-32
A^{17}	-0.99	0.64	-7.5	-2.05	2	30
C^{16}	-0.74	0.01	-7.62	-12.74	3	-12
-m15						
T	-0.9	0.14	-2.97	-8.93	4	-22
A^{14}	-0.9 -0.97	0.14 0.27	-2.97 -3.11	-8.93 0.49	4 2	-22 24
$ \begin{array}{c} \mathbf{A}^{13} \\ \mathbf{A}^{13} \end{array} $	-0.9 -0.97 -0.68	0.14 0.27 0.27	-2.97 -3.11 1.54	-8.93 0.49 -4.14	4 2 2	-22 24 18
A^{14} A^{13} G^{13}	-0.9 -0.97 -0.68 -0.94	0.14 0.27 0.27 0.15	-2.97 -3.11 1.54 5.81	-8.93 0.49 -4.14 0.77	4 2 2 1	-22 24 18 12
	$\begin{array}{c} C^{1} \\ C^{1} \\ T^{2} \\ A^{3} \\ T^{4} \\ X^{5} \\ A^{6} \\ T^{7} \\ T^{8} \\ C^{9} \\ A^{10} \\ \hline 2^{nd} \\ Strand \\ G^{20} \\ A^{19} \\ T^{18} \\ A^{17} \\ C^{16} \\ C^{16} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I^{st} StrandX-disp (dx)Y-disp (dy)InclinationTip (theta) C^1 -0.930.19-4.07-3.11 T^2 -1.06-0.34-3.27-7.44 A^3 -0.93-0.16-1.48-5.12 T^4 -1.13-0.478.86-7.04 X^5 1.030.130.58-99.6 A^6 -0.83-0.08-6.57-4.54 T^7 -1.01-0.26-4.73-18.25 T^8 -1.09-0.26-6.13-11.76 C^9 -0.36-0.26-5.1-10.92 A^{10} -0.92-0.16-5.27-6.37 2^{nd} X-dispY-dispInclinationTipStrand(dx)(dy)(eta)(theta) G^{20} -0.93-0.23-4.186.54 A^{19} -0.960.33-3.850.02 T^{18} -1.050.19-4.274.24 A^{17} -0.990.64-7.5-2.05 C^{16} -0.740.01-7.62-12.74	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table E-1: Global base-axis parameters for 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = α -AFB₁-FAPY)

Table E-2: Global base pair-axis parameters for 5'- $C^{1}T^{2}A^{3}T^{4}\underline{X}^{5}A^{6}T^{7}T^{8}C^{9}A^{10}$ -3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = α -AFB₁-FAPY)

А		ΛΙΛ	U -2 (A	- u - A P D - P	лт		
	Base	X-disp	Y-disp	Inclination	Tip	Bc	Тс
	Pair	(dx)	(dy)	(eta)	(theta)		
	$C^{1}-G^{20}$	-0.93	0.21	-4.12	-4.83	3	0
	$T^{2}-A^{19}$	-1.01	-0.33	-3.56	-3.73	4	-27
	$A^{3}-T^{18}$	-0.99	-0.18	-2.88	-4.68	2	32
	$T^{4}-A^{17}$	-1.06	-0.56	0.68	-2.5	4	-30
	$X^{5}-C^{16}$	0.14	0.06	-3.52	-43.43	1	12
	$A^{6}-T^{15}$	-0.87	-0.11	-4.77	2.2	2	22
	$T^{7}-A^{14}$	-0.99	-0.27	-3.92	-9.37	4	-24
	$T^{8}-A^{13}$	-0.89	-0.26	-2.29	-3.81	4	-18
	$C^{9}-G^{12}$	-0.65	-0.2	0.35	-5.85	3	-12
	$A^{10}-T^{11}$	-1.02	-0.14	-0.55	2.34	2	0
	Average:	-0.83	-0.18	-2.46	-7.37		

Table E-3: Global base-base parameters for 5'- $C^{1}T^{2}A^{3}T^{4}\underline{X}^{5}A^{6}T^{7}T^{8}C^{9}A^{10}$ -3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = \alpha-AFB₁-FAPY)

	107			0 5 (11	0. m D	11111)				
-	Base	Shear	Stretch	Stagger	Buckle	Propel	Opening	Bc	Тс	
	Pair	(Sx)	(Sy)	(Sz)	(kappa)	(omega)	(sigma)			

$C^{1}-G^{20}$	0	-0.05	0.07	0.11	3.43	-3.12	3	0
$T^{2}-A^{19}$	-0.1	-0.01	-0.07	0.58	-7.42	0.72	4	-27
$A^{3}-T^{18}$	0.12	0.03	-0.03	2.78	-0.88	1.55	2	32
$T^{4}-A^{17}$	-0.13	0.17	-0.29	16.36	-9.09	7.61	4	-30
$X^{5}-C^{16}$	1.77	0.14	-0.12	8.2	-112.34	32.45	1	12
$A^{6}-T^{15}$	0.06	0.06	0.14	-3.6	-13.48	2.03	2	22
$T^{7}-A^{14}$	-0.04	0.01	-0.08	-1.62	-17.76	-0.99	4	-24
$T^{8}-A^{13}$	-0.41	0.01	-0.08	-7.67	-15.9	0.65	4	-18
$C^{9}-G^{12}$	0.58	-0.11	0.09	-10.92	-10.15	-1.61	3	-12
$A^{10}-T^{11}$	0.19	-0.03	-0.13	-9.43	-17.42	0.69	2	0
Average:	0.2	0.02	-0.05	-0.52	-20.1	4		

Table E-4: Global inter-base parameters for 5'- $C^{1}T^{2}A^{3}T^{4}\underline{X}^{5}A^{6}T^{7}T^{8}C^{9}A^{10}$ -3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = α -AFB₁-FAPY)

0 11 11			- (1	,		
1 st Strand	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
C^1 - T^2	-0.29	-0.88	3.3	-1.46	-2.94	31.67	-3
T^2-A^3	-0.32	-0.25	3.19	-0.9	12.19	37.03	10
A^3-T^4	-0.05	0	2.92	8.08	-3.48	33.68	7
T^4-X^5	2.89	1.37	7.85	-1.04	-105.24	45.13	-9
X^5-A^6	-2.15	-0.35	3.45	-10.79	101.87	8.94	2
A^6-T^7	-0.85	-0.7	3.15	1.62	-9.74	29.56	7
T^7-T^8	0.12	-0.05	3.45	-3.81	1.36	38.85	-4
T^8-C^9	0.85	0.12	3.54	-1.09	8.7	39.47	-2
$C^{9}-A^{10}$	-0.73	0.18	3 23	-13	9 72	37 47	9
0.11	0.75	0.10	5.25	1.5	2.12	57.17	
$\frac{c^{nd}}{2^{nd}}$	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
2 nd Strand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
$\frac{2^{nd}}{Strand}$ $\frac{G^{20}-A^{19}}{G^{20}-A^{19}}$	<i>Shift</i> (<i>Dx</i>) -0.19	<i>Slide</i> (<i>Dy</i>) 0.92	<i>Rise</i> (<i>Dz</i>) 3.44	<i>Tilt</i> (<i>tau</i>) -1.94	Roll (rho) -7.9	<i>Twist</i> (<i>Omega</i>) 27.83	<i>Dc</i> 3
$ \frac{2^{nd}}{Strand} \\ \frac{5}{G^{20}-A^{19}} \\ A^{19}-T^{18} $	<i>Shift</i> (<i>Dx</i>) -0.19 -0.54	Slide (Dy) 0.92 0.29	Rise (Dz) 3.44 3.14	<i>Tilt</i> (<i>tau</i>) -1.94 -3.1	<i>Roll</i> (<i>rho</i>) -7.9 -5.66	<i>Twist</i> (<i>Omega</i>) 27.83 36.2	Dc 3 10
$\frac{2^{nd}}{Strand}$ $\frac{Strand}{G^{20}-A^{19}}$ $A^{19}-T^{18}$ $T^{18}-A^{17}$	<i>Shift</i> (<i>Dx</i>) -0.19 -0.54 0.21	Slide (Dy) 0.92 0.29 0.14	<i>Rise</i> (<i>Dz</i>) 3.44 3.14 3.18	<i>Tilt</i> (<i>tau</i>) -1.94 -3.1 -5.5	<i>Roll</i> (<i>rho</i>) -7.9 -5.66 -4.73	<i>Twist</i> (<i>Omega</i>) 27.83 36.2 27.62	Dc 3 10 7
$\frac{2^{nd}}{Strand}$ $\frac{Strand}{G^{20}-A^{19}}$ $A^{19}-T^{18}$ $T^{18}-A^{17}$ $A^{17}-C^{16}$	<i>Shift</i> (<i>Dx</i>) -0.19 -0.54 0.21 0.98	<i>Slide</i> (<i>Dy</i>) 0.92 0.14 -1.4	Rise (Dz) 3.44 3.14 3.18 7.67	<i>Tilt</i> (<i>tau</i>) -1.94 -3.1 -5.5 7.12	<i>Roll</i> (<i>rho</i>) -7.9 -5.66 -4.73 1.98	Twist (Omega) 27.83 36.2 27.62 20.28	Dc 3 10 7 9
$\begin{array}{r} \hline 2^{nd} \\ \hline 2^{nd} \\ \hline Strand \\ \hline G^{20} - A^{19} \\ A^{19} - T^{18} \\ T^{18} - A^{17} \\ A^{17} - C^{16} \\ C^{16} - T^{15} \\ \end{array}$	Shift (Dx) -0.19 -0.54 0.21 0.98 -0.44	Slide (Dy) 0.92 0.29 0.14 -1.4 0.26	Rise (Dz) 3.44 3.14 3.18 7.67 3.19	<i>Tilt</i> (<i>tau</i>) -1.94 -3.1 -5.5 7.12 1	Roll (rho) -7.9 -5.66 -4.73 1.98 -3	Twist (Omega) 27.83 36.2 27.62 20.28 39.37	Dc 3 10 7 9 -2
$\begin{array}{r} 2^{nd} \\ \hline 2^{nd} \\ \hline Strand \\ \hline G^{20} - A^{19} \\ A^{19} - T^{18} \\ T^{18} - A^{17} \\ A^{17} - C^{16} \\ C^{16} - T^{15} \\ T^{15} - A^{14} \end{array}$	Shift (Dx) -0.19 -0.54 0.21 0.98 -0.44 -0.75	Slide (Dy) 0.92 0.29 0.14 -1.4 0.26 0.65	Rise (Dz) 3.44 3.14 3.18 7.67 3.19 3.37	<i>Tilt</i> (<i>tau</i>) -1.94 -3.1 -5.5 7.12 1 -0.36	<i>Roll</i> (<i>rho</i>) -7.9 -5.66 -4.73 1.98 -3 5.46	Twist (Omega) 27.83 36.2 27.62 20.28 39.37 32.57	Dc 3 10 7 9 -2 7
$\begin{array}{r} \hline 2^{nd} \\ \hline 2^{nd} \\ \hline Strand \\ \hline G^{20}\text{-}A^{19} \\ A^{19}\text{-}T^{18} \\ T^{18}\text{-}A^{17} \\ A^{17}\text{-}C^{16} \\ C^{16}\text{-}T^{15} \\ T^{15}\text{-}A^{14} \\ A^{14}\text{-}A^{13} \end{array}$	Shift (Dx) -0.19 -0.54 0.21 0.98 -0.44 -0.75 0.49	Slide (Dy) 0.29 0.14 -1.4 0.26 0.65 0.05	Rise (Dz) 3.44 3.14 3.18 7.67 3.19 3.37 3.45	<i>Tilt</i> (<i>tau</i>) -1.94 -3.1 -5.5 7.12 1 -0.36 2.24	Roll (rho) -7.9 -5.66 -4.73 1.98 -3 5.46 0.5	Twist (Omega) 27.83 36.2 27.62 20.28 39.37 32.57 37.21	Dc 3 10 7 9 -2 7 4
$\begin{array}{r} \hline 2^{nd} \\ \hline 2^{nd} \\ \hline Strand \\ \hline G^{20} \hbox{-} A^{19} \\ A^{19} \hbox{-} T^{18} \\ T^{18} \hbox{-} A^{17} \\ A^{17} \hbox{-} C^{16} \\ C^{16} \hbox{-} T^{15} \\ T^{15} \hbox{-} A^{14} \\ A^{14} \hbox{-} A^{13} \\ A^{13} \hbox{-} G^{12} \end{array}$	Shift (Dx) -0.19 -0.54 0.21 0.98 -0.44 -0.75 0.49 -0.14	Slide (Dy) 0.92 0.29 0.14 -1.4 0.26 0.65 0.05 -0.24	Rise (Dz) 3.44 3.14 3.18 7.67 3.19 3.37 3.45 3.37	<i>Tilt</i> (<i>tau</i>) -1.94 -3.1 -5.5 7.12 1 -0.36 2.24 2.16	Roll (rho) -7.9 -5.66 -4.73 1.98 -3 5.46 0.5 -2.95	Twist (Omega) 27.83 36.2 27.62 20.28 39.37 32.57 37.21 41.73	Dc 3 10 7 9 -2 7 4 2

Table E-5: Global inter-base pair parameters for 5'- $C^{1}T^{2}A^{3}T^{4}\underline{X}^{5}A^{6}T^{7}T^{8}C^{9}A^{10}$ -3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = α -AFB₁-FAPY)

<u>``</u>	J 11 11	1 C H	1 11 0	5 (A 0.		1)			
	Residue	Shift	Slide	Rise	Tilt	Roll	Twist	Dc	
_		(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)		
_	C^1 - T^2	-0.24	-0.9	3.37	-1.7	2.48	29.75	-3	;
	T^2-A^3	-0.43	-0.27	3.16	-2	8.92	36.61	10)
	A^3-T^4	0.08	-0.07	3.05	1.29	0.63	30.65	7	7
	T^4 - X^5	1.93	1.39	7.76	3.04	-53.61	32.71	-9)
	X^5-A^6	-1.3	-0.31	3.32	-4.89	52.43	24.15	2	2
_	A^6-T^7	-0.8	-0.68	3.26	0.63	-7.6	31.07	7	7

T^7-T^8	0.31	-0.05	3.45	-0.79	0.43	38.03	-4
$T^{8}-C^{9}$	0.36	0.18	3.45	0.53	5.82	40.6	-2
$C^{9}-A^{10}$	-0.54	0.13	3.34	-2.04	13.35	36.32	9
Average:	-0.07	-0.06	3.8	-0.66	2.54	33.32	

Table E-6: Local inter-base parameters for 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = α -AFB₁-FAPY)

1 st Strand	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
C^1 - T^2	0.04	-1.58	3.26	1.38	-4.81	31.72	-3
T^2-A^3	0.15	-1.04	3.32	3.16	10.57	37.32	10
A^3-T^4	0.38	-0.39	2.93	11.06	-1.15	32.82	7
T^4 - X^5	6.79	4.61	2.85	69.38	-81.48	47.67	-9
X^5-A^6	1.35	-0.99	5.82	3.39	100.92	21.07	2
A^6-T^7	-0.16	-1.37	3.24	7.45	-12.15	29.11	7
T^7-T^8	1.11	-1.11	3.1	6.1	-2.58	37.84	-4
$T^{8}-C^{9}$	1.62	-0.71	3.35	6.57	4.81	39.52	-2
$C^{9}-A^{10}$	-0.1	-0.56	3.3	4.3	6.12	37.61	9
2^{nd}	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
Strand	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
$G^{20}-A^{19}$	0.02	-1.63	3.35	-0.35	5.8	27.96	3
$A^{19}-T^{18}$	-0.25	-1.11	3.27	-1.81	3.3	36.81	10
$T^{18}-A^{17}$	0.47						
	0.47	-0.95	3.07	-4.82	1.66	27.42	7
$A^{17}-C^{16}$	-0.03	-0.95 0.09	3.07 7.55	-4.82 6.7	1.66 -3.28	27.42 19.52	7 9
A^{17} - C^{16} C^{16} - T^{15}	-0.03 -0.96	-0.95 0.09 -1.09	3.07 7.55 3.08	-4.82 6.7 -7.56	1.66 -3.28 -0.97	27.42 19.52 39.01	7 9 -2
A^{17} - C^{16} C^{16} - T^{15} T^{15} - A^{14}	-0.03 -0.96 -0.87	-0.95 0.09 -1.09 -1.27	3.07 7.55 3.08 3.35	-4.82 6.7 -7.56 -2.76	1.66 -3.28 -0.97 -6.78	27.42 19.52 39.01 32.67	7 9 -2 7
$\begin{array}{c} A^{17}\text{-}C^{16} \\ C^{16}\text{-}T^{15} \\ T^{15}\text{-}A^{14} \\ A^{14}\text{-}A^{13} \end{array}$	-0.03 -0.96 -0.87 0.5	-0.95 0.09 -1.09 -1.27 -0.67	3.07 7.55 3.08 3.35 3.4	-4.82 6.7 -7.56 -2.76 0.83	1.66 -3.28 -0.97 -6.78 -1.23	27.42 19.52 39.01 32.67 37.14	7 9 -2 7 4
$\begin{array}{c} A^{17}\text{-}C^{16}\\ C^{16}\text{-}T^{15}\\ T^{15}\text{-}A^{14}\\ A^{14}\text{-}A^{13}\\ A^{13}\text{-}G^{12} \end{array}$	0.47 -0.03 -0.96 -0.87 0.5 -0.12	-0.95 0.09 -1.09 -1.27 -0.67 -0.09	3.07 7.55 3.08 3.35 3.4 3.49	-4.82 6.7 -7.56 -2.76 0.83 0.73	1.66 -3.28 -0.97 -6.78 -1.23 5.87	27.42 19.52 39.01 32.67 37.14 41.09	7 9 -2 7 4 2

Table E-7: Local inter-base pair parameters for 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = α -AFB₁-FAPY)

Dogiduo	Shift	Cl: do	Digo	T:14	 D11	Truiat	Da
Restaue	Sniji	Silde	Rise	1111	KOII	1 WISI	Dc
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
C^1 - T^2	0.03	-1.6	3.3	0.45	0.49	29.8	-3
T^2-A^3	-0.05	-1.07	3.3	0.63	6.96	37.12	10
A^3-T^4	0.42	-0.67	3.01	3.17	0.55	29.85	7
T^4-X^5	3.59	3.52	6.91	40.02	-38.46	21.63	-9
X^5-A^6	0.1	-0.77	3.97	-20.63	47.48	42.15	2
A^6-T^7	-0.51	-1.32	3.31	2.36	-9.46	31.21	7
T^7-T^8	0.81	-0.9	3.26	3.5	-1.93	37.89	-4
T^8-C^9	0.75	-0.4	3.51	3.68	5.34	40.47	-2
$C^{9}-A^{10}$	-0.31	-0.46	3.44	-0.74	12.82	36.81	9
Average:	0.54	-0.41	3.78	3.61	2.64	34.1	

IUA	$1 \ \mathbf{U} \ \mathbf{A} \ \mathbf{A} \ \mathbf{I} \ \mathbf{C} \ \mathbf{A} \ \mathbf{I} \ \mathbf{A} \ \mathbf{U} \ \mathbf{O} \ O$									
Residue	Ax .	Ay	Ainc	Atip	Adis	Angle	Path	Dc		
C^1 - T^2	-0.16	-0.36	-2.26	1.38	0.39	2.65	3.39	-3		
T^2-A^3	-0.45	-0.43	-2.69	9.87	0.62	10.23	3.21	10		
A^3-T^4	0.15	0.31	-2.27	-1.56	0.35	2.75	3.07	7		
T^4-X^5	0.73	0.77	7.24	-12.67	1.06	14.59	7.77	-9		
X^5-A^6	-0.29	-0.14	-3.64	6.81	0.32	7.72	3.33	2		
A^6-T^7	-0.68	-0.52	-0.22	3.97	0.85	3.98	3.37	7		
$T^{7}-T^{8}$	0.2	-0.06	-2.42	-5.12	0.21	5.66	3.46	-4		
T^8-C^9	0.12	0.12	-2.11	7.86	0.17	8.14	3.45	-2		
$C^{9}-A^{10}$	-0.17	0.07	-1.14	5.16	0.18	5.29	3.34	9		
Overall ax	kis bend =>	UU=12.98 PI	P=9.27							

Table E-8: Global axis curvature parameters for 5'- $C^{1}T^{2}A^{3}T^{4}X^{5}A^{6}T^{7}T^{8}C^{9}A^{10}$ -3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = α -AFB₁-FAPY)

Table E-9: Backbone parameters for 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-5' (X = α -AFB₁-FAPY)

Residue	<i>C1'-C2'</i>	C2'-C3'	Phase	Amplitude	Pucker	Cl'	C2'	<i>C3'</i>
C^1	22.99	-22.59	159.8	24.15	C2'-endo	104.4	105.5	105
T^2	36.36	-25.28	132.67	37.63	C1'-exo	102.3	104.4	103.7
A^3	30.29	-26.58	151.69	30.62	C2'-endo	104	105	103.1
T^4	34.89	-27.77	143.12	35.3	C1'-exo	104.3	102.5	104.9
X^5	34.12	-24.64	134.94	35.12	C1'-exo	102.3	104.8	104.1
A^6	26.11	-28.75	171.45	29.33	C2'-endo	104.9	104.8	103.7
T^7	31.76	-19.45	124.85	34.3	C1'-exo	103	105.1	104.1
T^8	30.97	-18.27	122.82	33.93	C1'-exo	102.8	105.5	104.2
C ⁹	34.5	-22.36	128.37	36.36	C1'-exo	102.4	105	103.7
A^{10}	14.17	-6.5	112.35	17.2	C1'-exo	105.2	107.1	105.4
	Chi	Gamma	Delta	Epsilon	Zeta	Alpha	Beta	
	C1'-N	C5'-C4'	<i>C4'-C3'</i>	<i>C3'-O3'</i>	03'-P	P-05'	<i>O5'-C5'</i>	
C^1	-139.6	173.28	134.5	-169.01	-84.77	-69.47	174.5	
T^2	-125.78	48.48	126.55	-170.6	-100.83	-71.42	-173.63	
A^3	-109.29	44.66	134.16	-174.7	-104.97	-66.37	168.88	
T^4	-106.68	57.98	136.47	-148.71	-69.69	-81	-178.73	
X^5	80.7	48.82	131.6	-107.79	122.51	-86.3	168.4	
A^6	-117.63	56.42	142.36	-180	-95.72	-64.82	178.24	
T^7	-120.67	54.99	118.97	177.3	-90.77	-58.69	173.74	
T^8	-125.23	51.62	119.09	-174.34	-85.61	-62.59	170.79	
C^9	-116.82	52.29	122.5	-172.11	-111.23	-70.83	-178.56	
A^{10}	-119.35	52.12	116.52					
	<i>C1'-C2'</i>	<i>C2'-C3'</i>	Phase	Amplitude	Pucker	Cl'	C2'	<i>C3'</i>
G^{20}	27.05	-8.51	103.55	36.97	O1'-endo	104.1	103.4	106.1
A^{19}	32.12	-27.84	149.81	32.55	C2'-endo	103.8	104.3	103.8
T^{18}	34.56	-25.3	136.74	35.18	C1'-exo	103.1	104.3	103.5
A^{17}	32.99	-28.11	148.92	33.22	C2'-endo	103.6	104.6	103
C ¹⁶	-3.24	21.25	49.96	33.39	C4'-exo	104.9	106.1	103.5
T^{15}	24.58	-5.36	98.47	36.38	O1'-endo	103.1	106.5	104.1
A^{14}	25.88	-26.56	165.39	27.78	C2'-endo	105.1	104.8	104.1
A^{13}	31.01	-33.84	171.29	34.7	C2'-endo	104.8	103.4	102.8

G^{13}	38.77	-33.48	150.52	39.09	C2'-endo	103.2	102.7	102.5
T^{11}	23.91	-9.29	107.57	31.05	O1'-endo	103.8	105.3	106.7
	Chi	Gamma	Delta	Epsilon	Zeta	Alpha	Beta	
	C1'-N	C5'-C4'	<i>C4'-C3'</i>	<i>C3'-O3'</i>	03'-P	P-05'	<i>O5'-C5'</i>	
G^{20}	-130.92	49.75	105.53					
A^{19}	-115.74	48.77	134.04	-173.24	-93.71	-71.96	173.2	
T^{18}	-120.34	58.87	126.55	179.45	-98.95	-65.94	-175.64	
A^{17}	-95.09	65.11	133.57	178.42	-114.35	-63.43	169.69	
C ¹⁶	-138.35	50.1	87.13	-159.48	-87.49	-54.69	-168.02	
T ¹⁵	-134.65	54.92	102.57	-175.61	-85.95	-66.73	169.57	
A^{14}	-116.97	52.8	137.4	-176.81	-88.07	-64.22	167.07	
A ¹³	-113.09	58.48	148.1	-172.91	-116.03	-69.05	-179.21	
G^{13}	-99.67	49.11	139.63	-168.3	-131.44	-68.2	169.25	
T^{11}	-143.54	176.66	116.76	-150.74	-78.91	-81.97	-179.89	

Table E-10: Global base-axis parameters for 5'-C¹T² \underline{X}^{3} A⁴-3 (X = α -AFB₁-FAPY)

Residue	X-disp	Y-disp	Inclination	Tip (thata)	Bc	T	с
C^1	-0.61	-3.92	16.7	-15.96		3	0
T^2	-3.06	-4.24	8.94	1.9		4	-25
X ³	-0.97	-3.84	14.38	-35.31		1	12
A^4	-3.13	-4.08	7.16	-5.26		2	0

Table E-11: Global inter-base parameters for 5'- $C^{1}T^{2}\underline{X}^{3}A^{4}$ -3 (X = α -AFB₁-FAPY)

		1				1		/
Residue	Shift	Slide	Rise	Tilt	Roll	Twist	Dc	
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)		
C^1 - T^2	-2.44	-0.32	5.2	-13.03	-0.65	36.45		-3
T^2-X^3	2.13	0.49	8.06	-3.45	-65.22	17.86		-9
X^3-A^4	-2.13	-0.13	5.8	-10.43	18.32	-52.07		2

Table E-12: Local inter-base parameters for 5'- $C^{1}T^{2}\underline{X}^{3}A^{4}$ -3 (X = α -AFB₁-FAPY)

Residue	Shift	Slide	Rise	Tilt	Roll	Twist	Dc	
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)		
C^1 - T^2	0.94	-0.63	5.07	-7.6	6.53	40.78		-3
T^2-X^3	5.1	1.88	6.88	4.6	-60.25	26.18		-9
X^3-A^4	-3.7	3.05	6.44	-25.59	6.14	-42.79		2

Table E-13: Global axis curvature parameters for 5'-C¹T²X³A⁴-3 (X = α -AFB₁-FAPY)

Residue	Ax	Ay	Ainc	Atip	Adis	Angle	Path	Dc	
C^1 - T^2	0.01	0	-5.27	-18.5	0.01	19.23	5.13		-3
T^2-X^3	0.04	0.09	-8.89	-28.02	0.1	29.37	7.79		-9
X^3-A^4	0.03	0.1	-3.22	-11.72	0.11	12.15	5.77		2
Overall ax	is bend \Rightarrow U	JU=59.46 P	P=101.41						

Residue	X-disp	Y-disp	Inclination	Tip	Bc	Тс
	(dx)	(dy)	(eta)	(theta)		
\mathbf{G}^1	-1.86	0.33	4.43	1.73	1	0
T^2	-1.80	0	10.48	-6.86	4	-29
G^3	-1.89	0.27	8.81	-3.13	1	15
C^4	-1.92	-0.16	3.81	-10.53	3	-13
G^5	-1.79	0.22	3.85	-4.1	1	14
X^6	-1.73	-0.09	13.32	-27.08	4	-29
G^7	-1.94	0.06	-5.88	-12	1	16
T^8	-1.79	-0.14	-5.02	-10.37	4	-23
T^9	-2.16	-0.04	2.89	-5.8	4	-20
T^{10}	-1.57	-0.22	-0.56	-7.92	4	-26
G^{11}	-1.79	0.13	6.27	-2.05	1	16
T^{12}	-1.92	-0.23	15.9	-3.86	4	0
	X-disp	Y-disp	Inclination	Tip	Bc	Тс
- 24	(dx)	(dv)	(eta)	(theta)		
C^{24}						
U ₂₂	-1.77	-0.3	15.55	0.35	3	0
A^{23}	-1.77 -1.65	-0.3 0.05	15.55 3.31	0.35 -5.35	3 2	0 29
$\begin{array}{c} A^{23} \\ C^{22} \\ \end{array}$	-1.77 -1.65 -1.89	-0.3 0.05 -0.27	15.55 3.31 8.49	0.35 -5.35 -7.19	3 2 3	0 29 -15
$\begin{array}{c} {\rm A}^{23} \\ {\rm C}^{22} \\ {\rm G}^{21} \\ \end{array}$	-1.77 -1.65 -1.89 -1.86	-0.3 0.05 -0.27 0.15	15.55 3.31 8.49 13.26	0.35 -5.35 -7.19 -0.16	3 2 3 1	0 29 -15 13
$ \begin{array}{c} C \\ A^{23} \\ C^{22} \\ G^{21} \\ C^{20} \\ 10 \end{array} $	-1.77 -1.65 -1.89 -1.86 -1.81	-0.3 0.05 -0.27 0.15 -0.09	15.55 3.31 8.49 13.26 5.17	0.35 -5.35 -7.19 -0.16 -9.19	3 2 3 1 3	0 29 -15 13 -14
$ \begin{array}{c} C \\ A^{23} \\ C^{22} \\ G^{21} \\ C^{20} \\ A^{19} \\ 10 \end{array} $	-1.77 -1.65 -1.89 -1.86 -1.81 -1.71	-0.3 0.05 -0.27 0.15 -0.09 0.17	15.55 3.31 8.49 13.26 5.17 5.28	0.35 -5.35 -7.19 -0.16 -9.19 -12.87	3 2 3 1 3 2	0 29 -15 13 -14 29
$ \begin{array}{c} A^{23} \\ C^{22} \\ G^{21} \\ C^{20} \\ A^{19} \\ C^{18} \\ \end{array} $	-1.77 -1.65 -1.89 -1.86 -1.81 -1.71 -1.75	-0.3 0.05 -0.27 0.15 -0.09 0.17 -0.04	15.55 3.31 8.49 13.26 5.17 5.28 14.74	0.35 -5.35 -7.19 -0.16 -9.19 -12.87 -14.04	3 2 3 1 3 2 3	0 29 -15 13 -14 29 -16
$\begin{array}{c} A^{23} \\ C^{22} \\ G^{21} \\ C^{20} \\ A^{19} \\ C^{18} \\ A^{17} \\ \end{array}$	-1.77 -1.65 -1.89 -1.86 -1.81 -1.71 -1.75 -1.56	-0.3 0.05 -0.27 0.15 -0.09 0.17 -0.04 0.32	15.55 3.31 8.49 13.26 5.17 5.28 14.74 16.39	0.35 -5.35 -7.19 -0.16 -9.19 -12.87 -14.04 -3.62	3 2 3 1 3 2 3 2 3 2	0 29 -15 13 -14 29 -16 23
$\begin{array}{c} A^{23} \\ C^{22} \\ G^{21} \\ C^{20} \\ A^{19} \\ C^{18} \\ A^{17} \\ A^{16} \\ \end{array}$	-1.77 -1.65 -1.89 -1.86 -1.81 -1.71 -1.75 -1.56 -1.9	-0.3 0.05 -0.27 0.15 -0.09 0.17 -0.04 0.32 0.05	15.55 3.31 8.49 13.26 5.17 5.28 14.74 16.39 11.93	0.35 -5.35 -7.19 -0.16 -9.19 -12.87 -14.04 -3.62 -7.78	3 2 3 1 3 2 3 2 2	0 29 -15 13 -14 29 -16 23 20
$\begin{array}{c} A^{23} \\ C^{22} \\ G^{21} \\ C^{20} \\ A^{19} \\ C^{18} \\ A^{17} \\ A^{16} \\ A^{15} \\ \vdots \end{array}$	-1.77 -1.65 -1.89 -1.86 -1.81 -1.71 -1.75 -1.56 -1.9 -1.49	-0.3 0.05 -0.27 0.15 -0.09 0.17 -0.04 0.32 0.05 0.31	15.55 3.31 8.49 13.26 5.17 5.28 14.74 16.39 11.93 15	0.35 -5.35 -7.19 -0.16 -9.19 -12.87 -14.04 -3.62 -7.78 -6.04	3 2 3 1 3 2 3 2 2 2 2	0 29 -15 13 -14 29 -16 23 20 26
$\begin{array}{c} A^{23} \\ C^{22} \\ G^{21} \\ C^{20} \\ A^{19} \\ C^{18} \\ A^{17} \\ A^{16} \\ A^{15} \\ C^{14} \\ C^{14} \\ \end{array}$	-1.77 -1.65 -1.89 -1.86 -1.81 -1.71 -1.75 -1.56 -1.9 -1.49 -1.8	-0.3 0.05 -0.27 0.15 -0.09 0.17 -0.04 0.32 0.05 0.31 -0.1	15.55 3.31 8.49 13.26 5.17 5.28 14.74 16.39 11.93 15 4.69	0.35 -5.35 -7.19 -0.16 -9.19 -12.87 -14.04 -3.62 -7.78 -6.04 -4.14	3 2 3 1 3 2 3 2 2 2 2 3	0 29 -15 13 -14 29 -16 23 20 26 -16

Table E-14: Global base-axis parameters for 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}X^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'-A¹³C¹⁴<u>A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3' (X = 5*R*-thymine glycol)</u>

Table E-15: Global base pair-axis parameters for 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}\underline{X}^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'- $\underline{A}^{13}C^{14}A^{15}A^{16}A^{17}C^{18}A^{19}C^{20}G^{21}C^{22}A^{23}C^{24}$ -3' (X = 5*R*-thymine glvcol)

Base pair	X-disp	Y-disp	Inclination	Tip	Bc	Тс
	(dx)	(dy)	(eta)	(theta)		
$G^{1}-C^{24}$	-1.82	0.32	9.99	0.69	1	0
$T^2 - A^{23}$	-1.72	-0.02	6.9	-0.75	4	-29
$G^{3}-C^{22}$	-1.89	0.27	8.65	2.03	1	15
$C^{4}-G^{21}$	-1.89	-0.16	8.54	-5.18	3	-13
$G^{5}-C^{20}$	-1.8	0.15	4.51	2.54	1	14
$X^{6}-A^{19}$	-1.72	-0.13	9.3	-7.11	4	-29
$G^{7}-C^{18}$	-1.85	0.05	4.43	1.02	1	16
$T^{8}-A^{17}$	-1.67	-0.23	5.68	-3.38	4	-23
$T^{9}-A^{16}$	-2.03	-0.05	7.41	0.99	4	-20
T^{10} - A^{15}	-1.53	-0.27	7.22	-0.94	4	-26

$G^{11}-C^{14}$	-1.79	0.11	5.48	1.05	1	16
$T^{12}-A^{13}$	-1.82	-0.26	9.42	1.38	4	0
Average:	-1.79	-0.02	7.29	-0.64		

Table E-16: Global base-base parameters for 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}X^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3' (X = 5*R*-thymine glycol)

Base pair	Shear	Stretch	Stagger	Buckle	Propel	Opening	Bc	Тс
	(Sx)	(<i>Sy</i>)	(Sz)	(карра)	(omega)	(sigma)		
$G^{1}-C^{24}$	-0.09	0.03	-0.11	-11.12	2.08	-0.19	1	0
T^2 - A^{23}	-0.15	0.04	0.25	7.17	-12.2	3.32	4	-29
$G^{3}-C^{22}$	0	0	-0.07	0.31	-10.31	-1.69	1	15
$C^{4}-G^{21}$	-0.06	-0.01	0.17	-9.45	-10.69	-1.97	3	-13
$G^{5}-C^{20}$	0.02	0.13	-0.09	-1.32	-13.29	1.57	1	14
$X^{6}-A^{19}$	-0.02	0.09	-0.55	8.04	-39.95	0.62	4	-29
$G^{7}-C^{18}$	-0.19	0.02	-0.16	-20.63	-26.05	-2.26	1	16
$T^{8}-A^{17}$	-0.23	0.18	0.33	-21.41	-13.99	2.48	4	-23
$T^{9}-A^{16}$	-0.26	0.02	-0.01	-9.04	-13.58	0.11	4	-20
T^{10} - A^{15}	-0.08	0.09	0.15	-15.56	-13.96	4.37	4	-26
$G^{11}-C^{14}$	0.01	0.03	0.14	1.58	-6.19	0.22	1	16
$T^{12}-A^{13}$	-0.22	0.06	-0.34	12.97	-10.47	-1.89	4	0
Average:	-0.11	0.06	-0.03	-4.87	-14.05	0.39		

Table E-17: Global inter-base parameters for 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}X^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3' (X = 5*R*-thymine glycol)

1 0 11 11		000	11 0 5 (ii en aig	mine gijec	,1)	
1 st Strand	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
G^1/T^2	0	-0.35	2.96	5.2	-6.14	30.48	6
T^{2}/G^{3}	-0.36	0.2	3.19	-1.96	3.04	37.75	-9
G^3/C^4	-0.14	-0.43	3.45	-7.38	-4.26	36.05	5
C^{4}/G^{5}	0.42	0.52	2.92	1.88	11.91	36.8	8
G^{5}/X^{6}	0.27	-0.3	3.24	17.04	-27.97	28.46	6
X^{6}/G^{7}	-0.13	-0.01	4.44	-19.93	12.38	40.48	-9
${\rm G}^{7}/{\rm T}^{8}$	0.01	-0.43	3.53	-1.88	2.67	30.43	6
T^{8}/T^{9}	-0.5	0.02	2.83	9	7.58	31.25	-4
T^{9}/T^{10}	0.91	-0.05	3.66	-4.08	-0.94	37.93	-4
T^{10}/G^{11}	-0.28	0.39	3.17	7.19	4.32	32.62	-9
G^{11}/T^{12}	-0.42	-0.39	2.8	11.26	-1.23	26.55	6
2 nd Strand	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
C^{24}/A^{23}	0.06	0.36	2.59	-13.1	-8.14	26.97	-6
A^{23}/C^{22}	-0.51	-0.25	3.52	4.9	-1.15	42.75	9
C^{22}/G^{21}	-0.09	0.42	3.2	2.39	3.89	36.33	5
G^{21}/C^{20}	0.34	-0.38	3.18	-6.25	-14.52	33.27	8
C^{20}/A^{19}	0.32	0.25	3.7	7.68	1.32	29.41	-6
A^{19}/C^{18}	0.04	-0.05	4.04	8.73	1.53	43.35	9

C^{18}/A^{17}	0.05	0.58	3.04	-1.1	9.39	25.69	-6
A^{17}/A^{16}	-0.47	-0.18	3.17	-3.37	-7.16	33.62	4
A^{16}/A^{15}	0.73	0.12	3.5	2.45	0.56	33.67	4
A^{15}/C^{14}	-0.36	-0.45	3.18	-9.96	3.45	36.78	9
C^{14}/A^{13}	-0.2	0.42	3.28	-0.12	-3.06	28.66	-6

Table E-18: Global inter-base pair parameters for 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}X^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'- $A^{13}C^{14}A^{15}A^{16}A^{17}C^{18}A^{19}C^{20}G^{21}C^{22}A^{23}C^{24}$ -3' (X = 5*R*-thymine glycol)

Residue	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
G^1/T^2	0.03	-0.35	2.77	-3.95	1	28.72	6
T^{2}/G^{3}	-0.43	0.23	3.35	1.47	2.1	40.25	-9
G^3/C^4	-0.12	-0.42	3.33	-2.5	-4.07	36.19	5
C^{4}/G^{5}	0.38	0.45	3.05	-2.18	13.22	35.04	8
${ m G}^{5}/{ m X}^{6}$	0.3	-0.27	3.47	12.36	-14.65	28.93	6
X^{6}/G^{7}	-0.04	0.02	4.24	-5.6	5.42	41.91	-9
G^{7}/T^{8}	0.03	-0.51	3.29	-1.49	-3.36	28.06	6
T^{8}/T^{9}	-0.49	0.1	3	2.82	7.37	32.44	-4
T^{9}/T^{10}	0.82	-0.09	3.58	-0.82	-0.75	35.8	-4
T^{10}/G^{11}	-0.32	0.42	3.18	-1.39	0.44	34.7	-9
G ¹¹ /T ¹²	-0.31	-0.4	3.04	5.57	0.92	27.6	6
Average:	-0.01	-0.08	3.3	0.39	0.69	33.61	

Table E-19: Local inter-base parameters for $5'-G^{1}T^{2}G^{3}C^{4}G^{5}X^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}-3'\bullet 5'-A^{13}C^{14}A^{15}A^{16}A^{17}C^{18}A^{19}C^{20}G^{21}C^{22}A^{23}C^{24}-3' (X = 5R-thymine glycol)$

1 st Strand	Shift	Slide	Rise	Tilt	Roll	Twist	Dc	
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)		
G^1/T^2	0.01	-0.84	3.19	6.33	-1.94	29.66		6
T^2/G^3	-0.16	-0.52	3.32	1.33	9.07	37.47		-9
G^3/C^4	0.29	-1.13	3.7	-2.98	-0.05	36.1		5
C^4/G^5	0.77	-0.53	3.07	6.49	13.98	36.06		8
G^{5}/X^{6}	1.06	-0.5	3.22	24.81	-22.3	24.19		6
X^{6}/G^{7}	1.55	-1.23	4.12	-4.33	13.78	45.17		-9
${\rm G}^{7}/{\rm T}^{8}$	0.66	-1.73	3.35	3.96	-0.25	30.19		6
T^8/T^9	-0.1	-1.13	2.95	13.07	6.77	29.95		-4
T^{9}/T^{10}	1.42	-1.17	3.58	0.6	-0.05	38.1		-4
T^{10}/G^{11}	-0.04	-0.46	3.17	9.68	5.65	32.07		-9
G^{11}/T^{12}	-0.3	-0.68	3.03	12.33	3.87	25.48		6
2 nd Strand	Shift	Slide	Rise	Tilt	Roll	Twist	Dc	
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)		
C^{24}/A^{23}	-0.05	-0.74	2.84	-14.08	12.2	25.93		-6
A^{23}/C^{22}	-0.99	-0.75	3.49	-0.02	5.33	42.91		9
C^{22}/G^{21}	-0.38	-0.88	3.52	-0.01	3.17	35.09		5
G^{21}/C^{20}	0.16	-0.23	3.48	-8.69	19.29	31.81		8
C^{20}/A^{19}	-0.35	-0.86	3.62	1.95	1.28	30.62		-6

A^{19}/C^{18}	-0.93	-0.6	4.01	-1.99	5.79	43.98	9
C^{18}/A^{17}	-0.4	-0.39	3.3	-4.86	-2.35	24	-6
A^{17}/A^{16}	-0.64	-0.08	3.35	-6.42	15.02	31.63	4
A^{16}/A^{15}	0.36	-0.25	3.77	-1.58	7.2	32.54	4
A^{15}/C^{14}	-0.46	-0.07	3.19	-12.57	2.85	35.7	9
C^{14}/A^{13}	-0.45	-1.08	3.34	-2.72	4.85	28.45	-6

Table E-20: Local inter-base pair parameters for 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}X^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'- $A^{13}C^{14}A^{15}A^{16}A^{17}C^{18}A^{19}C^{20}G^{21}C^{22}A^{23}C^{24}$ -3' (X = 5*R*-thymine glycol)

Residue	Shift	Slide	Rise	Tilt	Roll	Twist	Dc	
	(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)		
G^1/T^2	-0.03	-0.79	3	-3.73	5.3	27.78		6
T^2/G^3	-0.56	-0.63	3.43	0.64	7.21	40.42		-9
G^{3}/C^{4}	-0.06	-1.01	3.63	-1.52	1.58	35.79		5
C^{4}/G^{5}	0.48	-0.39	3.29	-1.05	16.7	34.15		8
G^{5}/X^{6}	0.4	-0.67	3.47	13.43	-10.57	27.51		6
X^{6}/G^{7}	0.26	-0.92	4.26	-3.34	9.88	46.21		-9
G^{7}/T^{8}	0.09	-1.04	3.43	-0.46	-1.29	26.81		6
T^{8}/T^{9}	-0.34	-0.62	3.2	3.47	11.12	31.17		-4
T^{9}/T^{10}	0.89	-0.71	3.74	-0.42	3.62	35.76		-4
T^{10}/G^{11}	-0.24	-0.26	3.18	-1.48	4.53	33.7		-9
G^{11}/T^{12}	-0.36	-0.86	3.18	4.81	4.36	26.89		6
Average:	0.05	-0.72	3.44	0.94	4.77	33.29		

Table E-21: Global axis curvature parameters for 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}X^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'- $A^{13}C^{14}A^{15}A^{16}A^{17}C^{18}A^{19}C^{20}G^{21}C^{22}A^{23}C^{24}$ -3' (X = 5*R*-thymine glycol)

Residue	Ax	Ay	Ainc	Atip	Adis	Angle	Path	Dc
G^1/T^2	-0.07	-0.01	-0.85	2.45	0.07	2.59	2.77	6
T^2/G^3	-0.27	-0.07	-0.28	-0.68	0.28	0.74	3.36	-9
G^3/C^4	-0.11	0	-2.38	3.14	0.11	3.94	3.33	5
C^{4}/G^{5}	0.29	0.14	1.84	5.49	0.32	5.79	3.06	8
G^{5}/X^{6}	0.21	0.01	7.57	-4.99	0.21	9.07	3.47	6
X^{6}/G^{7}	0.09	-0.16	-0.73	-2.71	0.18	2.8	4.24	-9
${\rm G}^{7}/{\rm T}^{8}$	-0.14	-0.23	-2.74	1.04	0.27	2.93	3.3	6
T^{8}/T^{9}	-0.13	-0.08	1.09	3.01	0.16	3.2	3.01	-4
T^{9}/T^{10}	0.32	0.13	-0.63	1.18	0.35	1.34	3.6	-4
T^{10}/G^{11}	-0.06	0.04	0.35	-1.55	0.07	1.59	3.18	-9
G^{11}/T^{12}	-0.29	-0.03	1.63	0.59	0.29	1.74	3.05	6
Overall axis	s bend \Rightarrow U	U=10.46 PP	=7.76					

Table E-22: Backbone parameters for 5'- $G^{1}T^{2}G^{3}C^{4}G^{5}X^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}$ -3'•5'-A¹³C¹⁴A¹⁵A¹⁶A¹⁷C¹⁸A¹⁹C²⁰G²¹C²²A²³C²⁴-3' (X = 5*R*-thymine glycol)

Residue	<i>C1'-C2'</i>	<i>C2'-C3'</i>	Phase	Amplitude	Pucker	<i>C1′</i>	<i>C2'</i>	<i>C3'</i>
G^1	28.29	-31.88	172.32	32.2	C2'-endo	104.1	104.3	104
T^2	35.9	-27.55	139.94	36.36	C1'-exo	102.6	104.3	103.3
G^3	31.54	-33.64	168.32	34.66	C2'-endo	104.1	103.4	103
C^4	32.14	-26.22	144.47	32.49	C2'-endo	103.4	104.7	104
G^5	36.45	-30.36	146.55	36.77	C2'-endo	102.6	104	102.9
X^6	35.73	-18.33	116.98	41.12	C1'-exo	102.8	102.8	105.4
G^7	30.1	-17.79	122.49	33.25	C1'-exo	102.6	105.8	104.2
T ⁸	-6.5	20.95	42.22	28.31	C4'-exo	104.2	108.3	103.8
T ⁹	31.61	-28.25	152.04	32.22	C2'-endo	103.6	104.4	104
T ¹⁰	12.85	9.12	75.76	37.35	O1'-endo	104.1	106.5	104.1
G ¹¹	-3.34	14.98	47.16	22.08	C4'-exo	103.6	110.9	103.3
T ¹²	-8.73	22.71	37.63	28.74	C4'-exo	104.4	107.5	104.3
	Chi	Gamma	Delta	Epsilon	Zeta	Alpha	Beta	
	C1'-N	C5'-C4'	<i>C4'-C3'</i>	C3'-O3'	<i>O3'-P</i>	P-05'	<i>O5'-C5'</i>	
G ¹	-106.41	-174.89	147.49	-174.53	-102.02	-74.47	179.88	
T^2	-110.89	60.89	130.48	-174.32	-113.19	-76.97	-175.1	
G^3	-110.18	59.93	145.37	-177.95	-101.74	-74.08	-174.81	
C^4	-120.81	58.41	132.82	-165.59	-92.05	-80.21	179.42	
G^5	-104.24	53.03	135.69	-158.47	-91.9	-107.14	115.74	
X^6	-136.04	153.7	120.14	-161.15	-89.06	-81.25	177.02	
G^7	-129.97	61.77	118.73	-169.61	-102.58	127.03	-166.1	
T ⁸	-156.12	-169.58	93.86	-162.89	-78.19	-71.24	177.96	
T ⁹	-122.41	67.64	136.07	-163.9	-88.82	-78	168.49	
T^{10}	-138.54	58.67	91.47	-166.71	-89.95	-80.82	171.84	
G^{11}	-134.32	64.95	100.63	-168.87	-82.63	-79.1	173.99	
T^{12}	-135.01	63.23	92.04				•••••	
24	<i>C1'-C2'</i>	<i>C2'-C3'</i>	Phase	Amplitude	Pucker	<i>C1′</i>	C2'	<i>C3'</i>
C^{24}_{22}	-5.25	20.36	45.61	29.62	C4'-exo	105	107.6	101.9
A^{23}	-5.79	21.09	44.38	29.55	C4'-exo	104	109.8	102.5
C^{22}_{21}	31.68	-25.05	141.68	32.06	C1'-exo	102.8	105.9	103.6
G^{21}_{20}	29.56	-33.37	173.55	33.89	C2'-endo	104.6	103.7	103.2
C_{10}^{20}	3.65	16.54	61.42	35.08	C4'-exo	104.3	107.1	103.7
A ¹⁹	29.82	-24.1	143.38	30.21	C1'-exo	103.4	105.4	104
C_{18}^{18}	30.98	-31.23	162.85	32.89	C2'-endo	103.8	104.1	103.7
A_{1}^{1}	36.08	-29.65	145.58	36.4	C2'-endo	103.1	103.5	103.5
A ¹⁶	29.52	-30.45	165.66	31.79	C2'-endo	104.6	103.9	103.6
A ¹⁵	26.28	-24.15	154.74	26.76	C2'-endo	103.5	107.2	104
C ¹⁴	18.47	1.87	86.96	35.56	O1'-endo	102.9	108.3	103.6
A^{13}	30.53	-27.26	152.03	31.09	C2'-endo	103.3	105.1	103.1
	Chi	Gamma	Delta	Epsilon	Zeta	Alpha D 07	Beta	
C^{24}	CT'-N	(2.24)	04-03	03'-03'	O3'-P	P-05'	05'-05'	
A ²³	-132.33	62.34	93.6					
A C^{22}	-138	59.53	93.46	-165.25	-77.42	-78.22	174.81	
C^{21}	-116.28	58.77	131.29	-168.84	-97.35	-89.2	174.55	
G^{20}	-107.42	63.21	147.66	-175.27	-101.31	-76.7	-177.86	
A 19	-143.47	64.98	89.04	-166.44	-86.25	-72.4	-174.03	
A	-103.53	46.19	129.11	-171.7	-100.86	-76.71	162.9	
A 17	-148.32	170.07	144.72	-150	-78.03	-87.21	-173.11	
A	-94.25	51.77	135.93	-151.26	-81.36	-101.69	63	

A^{16}	-104.16	57.69	142.62	-168.03	-94.43	-79.95	-177.3
A^{15}	-109.97	65.71	134.45	-173.37	-106.07	-73.6	-172.05
C^{14}	-132.26	63.79	96.97	-173.96	-92.6	-68.94	176.66
A^{13}	-104.02	66.56	132.65	-171.96	-96.33	-77.5	168.74

APPENDIX F

PDB COORDINATE FILES

File F-1: Average structure of rMD refined α -AFB₁-FAPY modified duplex 5'-C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰-3'•5'-T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰-3'

ATOM	1	н5т	DC5	1	42.058	34.351	35.928	1.00	0.00
ATOM	2	05*	DC5	1	41.860	34.034	36.827	1.00	0.00
ATOM	3	C5*	DC5	1	40.486	33.649	36.869	1.00	0.00
ATOM	4	1H5*	DC5	1	40.220	33.297	37.836	1.00	0.00
ATOM	5	2H5*	DC5	1	40.266	32.850	36.219	1.00	0.00
ATOM	6	C4*	DC5	1	39.592	34.800	36.503	1.00	0.00
ATOM	7	H4*	DC5	1	39.712	35.542	37.228	1.00	0.00
ATOM	8	04*	DC5	1	39.996	35.316	35.239	1.00	0.00
ATOM	9	C1*	DC5	1	38.934	35.352	34.282	1.00	0.00
ATOM	10	H1*	DC5	1	38.544	36.352	34.237	1.00	0.00
ATOM	11	Nl	DC5	1	39.403	34.903	32.951	1.00	0.00
ATOM	12	CG	DC5	1	40.260	33.861	32.848	1.00	0.00
ATOM	13	нб	DC5	1	40.617	33.387	33.730	1.00	0.00
ATOM	14	C5	DC5	1	40.685	33.431	31.563	1.00	0.00
ATOM	15	Н5	DC5	1	41.365	32.621	31.464	1.00	0.00
ATOM	16	C4	DC5	1	40.181	34.134	30.468	1.00	0.00
ATOM	17	N4	DC5	1	40.557	33.757	29.212	1.00	0.00
ATOM	18	1H4	DC5	1	41.129	32.938	29.018	1.00	0.00
ATOM	19	2H4	DC5	1	40.171	34.165	28.362	1.00	0.00
ATOM	20	N3	DC5	1	39.375	35.140	30.579	1.00	0.00
ATOM	21	C2	DC5	1	38.981	35.547	31.795	1.00	0.00
ATOM	22	02	DC5	1	38.244	36.490	31.829	1.00	0.00
ATOM	23	C3*	DC5	1	38.135	34.440	36.367	1.00	0.00
ATOM	24	Н3*	DC5	1	37.926	33.483	36.771	1.00	0.00
ATOM	25	C2*	DC5	1	37.862	34.465	34.875	1.00	0.00
ATOM	26	1H2*	DC5	1	37.908	33.468	34.472	1.00	0.00
ATOM	27	2H2*	DC5	1	36.891	34.864	34.657	1.00	0.00
ATOM	28	03*	DC5	1	37.376	35.427	37.047	1.00	0.00
ATOM	29	P	DT	2	35.846	35.279	37.348	1.00	0.00
ATOM	30	01P	DT	2	35.548	36.180	38.424	1.00	0.00
ATOM	31	02P	DT	2	35.547	33.887	37.513	1.00	0.00
ATOM	32	05*	DT	2	35.097	35.773	36.054	1.00	0.00
ATOM	33	C5*	DT	2	35.096	37.144	35.671	1.00	0.00
ATOM	34	1H5*	DT	2	36.100	37.503	35.632	1.00	0.00
ATOM	35	2H5*	DT	2	34.581	37.704	36.411	1.00	0.00
ATOM	36	C4*	DT	2	34.422	37.358	34.318	1.00	0.00
ATOM	37	H4*	DT	2	34.323	38.411	34.148	1.00	0.00
ATOM	38	04*	DT	2	35.244	36.820	33.275	1.00	0.00
ATOM	39	C1*	DT	2	34.434	36.231	32.263	1.00	0.00
ATOM	40	H1*	DT	2	34.059	37.021	31.648	1.00	0.00
ATOM	41	N1	DT	2	35.170	35.227	31.462	1.00	0.00

ATOM	42	CG	DТ	2	35 757	34 159	32 067	1 00	0 00
	43	ЦС ЦС	DT	2	35 730	34 072	33 129	1 00	0 00
ATOM	10	CE CE		2	26 111	22 156	21 200	1 00	0.00
ATOM	11	07		2	27 066	33.130	31.290	1 00	0.00
ATOM	45	1117		2	37.000	31.981	31.900	1.00	0.00
ATOM	40		DI	2	30.010	31.049	31.03/	1.00	0.00
ATOM	4 /	ZH /	D.I.	2	38.132	31.959	31.749	1.00	0.00
ATOM	48	3H/	D.I.	2	36.939	32.059	33.069	1.00	0.00
ATOM	49	C4	D.I.	2	36.491	33.286	29.899	1.00	0.00
ATOM	50	04	DT	2	37.056	32.487	29.207	1.00	0.00
ATOM	51	N3	DT	2	35.881	34.392	29.375	1.00	0.00
ATOM	52	H3	DT	2	35.904	34.491	28.383	1.00	0.00
ATOM	53	C2	DT	2	35.198	35.355	30.079	1.00	0.00
ATOM	54	02	DT	2	34.671	36.253	29.490	1.00	0.00
ATOM	55	C3*	DT	2	33.057	36.674	34.165	1.00	0.00
MOTA	56	Н3*	DT	2	32.745	36.209	35.078	1.00	0.00
ATOM	57	C2*	DT	2	33.283	35.663	33.062	1.00	0.00
ATOM	58	1H2*	DT	2	33.555	34.735	33.501	1.00	0.00
ATOM	59	2H2*	DT	2	32.422	35.510	32.458	1.00	0.00
ATOM	60	03*	DT	2	32.086	37.641	33.754	1.00	0.00
ATOM	61	Р	DA	3	30.535	37.352	33.703	1.00	0.00
ATOM	62	01P	DA	3	29.872	38.544	34.087	1.00	0.00
ATOM	63	02P	DA	3	30.263	36.166	34.429	1.00	0.00
ATOM	64	05*	DA	3	30.193	37.077	32.219	1.00	0.00
ATOM	65	C5*	DA	3	30.196	38.107	31.261	1.00	0.00
ATOM	66	1H5*	DA	3	31.182	38.502	31.158	1.00	0.00
ATOM	67	2H5*	DA	3	29.564	38.872	31.599	1.00	0.00
ATOM	68	C4*	DA	3	29.689	37.639	29.932	1.00	0.00
АТОМ	69	н4*	DA	3	29.515	38.482	29.326	1.00	0.00
АТОМ	70	04*	DA	3	30 690	36 859	29 299	1 00	0 00
АТОМ	71	C1*	DA	3	30 173	35 617	28 838	1 00	0 00
ATOM	72	ст н1*		3	29 871	35 727	27 814	1 00	0 00
ATOM	73	N9		3	31 203	34 568	28 970	1 00	0.00
	74	C 8		3	31 678	33 994	30 119	1 00	0.00
ATOM	75	υQ		2	21 226	34 301	21 021	1 00	0.00
ATOM	75	по N7		3	22 577	33.066	20 060	1 00	0.00
ATOM	70			2	22.377	22 021	29.900	1 00	0.00
ATOM	70	C5 C6		3	22.725	33.021	20.070	1 00	0.00
ATOM	70			3	33.491 24 272	32.200	27.013	1.00	0.00
ATOM	/9	1110	DA	3	34.3/3	31.315	28.001	1.00	0.00
ATOM	80	THO	DA	3	34.935	30.764	27.353	1.00	0.00
ATOM	81	ZH6	DA	3	34.546	31.064	28.9/2	1.00	0.00
ATOM	82	NI	DA	3	33.363	32.485	26.317	1.00	0.00
ATOM	83	C2	DA	3	32.524	33.408	25.901	1.00	0.00
ATOM	84	H2	DA	3	32.461	33.539	24.844	1.00	0.00
ATOM	85	N3	DA	3	31.743	34.191	26.619	1.00	0.00
ATOM	86	C4	DA	3	31.879	33.960	27.945	1.00	0.00
ATOM	87	C3*	DA	3	28.425	36.779	30.009	1.00	0.00
ATOM	88	Н3*	DA	3	27.962	36.824	30.976	1.00	0.00
ATOM	89	C2*	DA	3	28.934	35.394	29.692	1.00	0.00
ATOM	90	1H2*	DA	3	29.183	34.909	30.601	1.00	0.00
ATOM	91	2H2*	DA	3	28.214	34.800	29.190	1.00	0.00
ATOM	92	03*	DA	3	27.500	37.228	29.028	1.00	0.00
ATOM	93	Ρ	DT	4	26.031	36.708	28.833	1.00	0.00
ATOM	94	OlP	DT	4	25.209	37.850	28.517	1.00	0.00
ATOM	95	02P	DT	4	25.653	35.872	29.964	1.00	0.00
ATOM	96	05*	DT	4	26.128	35.803	27.551	1.00	0.00
ATOM	97	C5*	DT	4	26.425	36.362	26.262	1.00	0.00
ATOM	98	1H5*	DT	4	27.268	37.023	26.347	1.00	0.00

ATOM	99	2H5*	DT	4	25.584	36.939	25.932	1.00	0.00
ATOM	100	C4*	DT	4	26.737	35.290	25.219	1.00	0.00
ATOM	101	H4*	DT	4	26.972	35.777	24.285	1.00	0.00
ATOM	102	04*	DT	4	27.889	34.542	25.652	1.00	0.00
ATOM	103	C1*	DT	4	27.662	33.137	25.469	1.00	0.00
ATOM	104	H1*	DT	4	27.897	32.925	24.436	1.00	0.00
ATOM	105	Nl	DT	4	28.495	32.322	26.388	1.00	0.00
ATOM	106	C6	DT	4	28.235	32.269	27.732	1.00	0.00
ATOM	107	Нб	DT	4	27.408	32.837	28.132	1.00	0.00
ATOM	108	C5	DT	4	29.055	31.487	28.609	1.00	0.00
ATOM	109	C7	DT	4	28.757	31.442	30.088	1.00	0.00
ATOM	110	1H7	DT	4	27.874	32.045	30.314	1.00	0.00
ATOM	111	2H7	DT	4	28.579	30.411	30.397	1.00	0.00
ATOM	112	3H7	DT	4	29.612	31.825	30.649	1.00	0.00
ATOM	113	C4	DT	4	30.117	30.727	28.073	1.00	0.00
ATOM	114	04	DT	4	30.812	30.005	28.740	1.00	0.00
ATOM	115	N3	DT	4	30.316	30.862	26.722	1.00	0.00
ATOM	116	H3	DT	4	31.059	30.331	26.317	1.00	0.00
ATOM	117	C2	DT	4	29.579	31.635	25.854	1.00	0.00
ATOM	118	02	DT	4	29.874	31.660	24.689	1.00	0.00
ATOM	119	C3*	DT	4	25.618	34.265	25.008	1.00	0.00
ATOM	120	H3*	DT	4	24.679	34.587	25.446	1.00	0.00
ATOM	121	C2*	D.I.	4	26.148	32.976	25.620	1.00	0.00
ATOM	122	IH2*	D.I.	4	25.858	32.951	26.660	1.00	0.00
ATOM	123	ZHZ*	D.I.	4	25.768	32.086	25.113	1.00	0.00
ATOM	124	03^	D.I.	4	25.488	34.064	23.592	1.00	0.00
ATOM	125	P	FB	5	24.073	33.704	22.917	1.00	0.00
ATOM	120	OIP	FB	5	24.264	33./33	21.466	1.00	0.00
	120	OZP	FВ	5	23.USI	34.587	23.409	1.00	0.00
	120	05*	г D ГD	5	23.700	32.200	23.370	1 00	0.00
	130	25 115×	г D Г D	5	24.202	31.070	22.713	1 00	0.00
	131	エロリ クロち*	г D Г D	5	23.333	31 103	22.007	1 00	0.00
	132	C1*	FB FB	5	24.049	29 790	23 324	1 00	0.00
	133	сı н4*	FB	5	24 088	29.790	22 754	1 00	0.00
ATOM	134	04*	FB	5	24 271	29 636	24 645	1 00	0 00
ATOM	135	C1*	FB	5	23 290	29 133	25 532	1 00	0 00
ATOM	136	N6	FB	5	23 256	27 673	25 511	1 00	0 00
ATOM	137	N7	FB	5	23.691	26.563	28.260	1.00	0.00
ATOM	138	C5	FB	5	24.559	26.351	27.206	1.00	0.00
ATOM	139	C4	FB	5	25.565	25.354	27.324	1.00	0.00
ATOM	140	04A	FB	5	25.758	24.708	28.325	1.00	0.00
ATOM	141	N3	FB	5	26.321	25.096	26.212	1.00	0.00
ATOM	142	Н3	FB	5	27.039	24.386	26.268	1.00	0.00
ATOM	143	C2	FB	5	26.053	25.694	25.027	1.00	0.00
ATOM	144	N2	FB	5	26.841	25.278	23.994	1.00	0.00
ATOM	145	1HN2	FB	5	26.571	25.479	23.033	1.00	0.00
ATOM	146	2HN2	FB	5	27.263	24.352	24.014	1.00	0.00
ATOM	147	Nl	FB	5	25.072	26.540	24.787	1.00	0.00
ATOM	148	C6	FB	5	24.322	26.920	25.890	1.00	0.00
ATOM	149	C3*	FB	5	22.230	29.744	23.475	1.00	0.00
ATOM	150	Н3*	FB	5	21.744	30.597	23.030	1.00	0.00
ATOM	151	C2*	FΒ	5	22.011	29.716	24.963	1.00	0.00
ATOM	152	1H2*	FΒ	5	21.887	30.718	25.315	1.00	0.00
ATOM	153	2H2*	FB	5	21.151	29.153	25.242	1.00	0.00
ATOM	154	03*	FB	5	21.722	28.513	22.959	1.00	0.00
ATOM	155	H1*	FΒ	5	23.466	29.505	26.520	1.00	0.00

ATOM	156	C8	FΒ	5	22.567	25.833	28.324	1.00	0.00
ATOM	157	08	FΒ	5	22.304	24.875	27.766	1.00	0.00
ATOM	158	Н8	FΒ	5	21.902	26.171	28.904	1.00	0.00
ATOM	159	Нб	FB	5	22.827	27.420	24.665	1.00	0.00
ATOM	160	Ρ	DA	б	20.930	28.359	21.656	1.00	0.00
ATOM	161	01P	DA	б	20.866	29.633	20.981	1.00	0.00
ATOM	162	O2P	DA	б	19.725	27.692	21.985	1.00	0.00
ATOM	163	05*	DA	б	21.762	27.339	20.817	1.00	0.00
ATOM	164	C5*	DA	б	22.854	27.716	19.966	1.00	0.00
ATOM	165	1H5*	DA	б	23.510	28.394	20.476	1.00	0.00
ATOM	166	2H5*	DA	б	22.461	28.235	19.117	1.00	0.00
ATOM	167	C4*	DA	б	23.649	26.489	19.503	1.00	0.00
ATOM	168	H4*	DA	б	24.454	26.820	18.865	1.00	0.00
ATOM	169	04*	DA	б	24.211	25.823	20.655	1.00	0.00
ATOM	170	C1*	DA	б	23.717	24.485	20.807	1.00	0.00
ATOM	171	H1*	DA	б	24.472	23.792	20.471	1.00	0.00
ATOM	172	N9	DA	б	23.373	24.226	22.224	1.00	0.00
ATOM	173	C8	DA	б	22.427	24.846	22.999	1.00	0.00
ATOM	174	Н8	DA	б	21.805	25.629	22.617	1.00	0.00
ATOM	175	N7	DA	б	22.330	24.425	24.231	1.00	0.00
ATOM	176	C5	DA	б	23.307	23.432	24.283	1.00	0.00
ATOM	177	CG	DA	6	23.828	22.501	25.251	1.00	0.00
ATOM	178	NG	DA	б	23.334	22.452	26.522	1.00	0.00
ATOM	179	1H6	DA	б	23.581	21.723	27.188	1.00	0.00
ATOM	180	2H6	DA	б	22.514	22.976	26.821	1.00	0.00
ATOM	181	Nl	DA	6	24.779	21.635	24.941	1.00	0.00
ATOM	182	C2	DA	6	25.273	21.637	23.719	1.00	0.00
ATOM	183	Н2	DA	б	26.018	20.900	23.499	1.00	0.00
ATOM	184	N3	DA	б	24.938	22.414	22.705	1.00	0.00
ATOM	185	C4	DA	6	23.957	23.288	23.033	1.00	0.00
ATOM	186	C3*	DA	6	22.801	25.436	18.785	1.00	0.00
ATOM	187	Н3*	DA	б	21.893	25.858	18.388	1.00	0.00
ATOM	188	C2*	DA	б	22.521	24.400	19.865	1.00	0.00
ATOM	189	1H2*	DA	6	21.610	24.670	20.375	1.00	0.00
ATOM	190	2H2*	DA	б	22.403	23.404	19.468	1.00	0.00
ATOM	191	03*	DA	б	23.587	24.886	17.712	1.00	0.00
ATOM	192	Ρ	DT	7	23.077	23.761	16.720	1.00	0.00
ATOM	193	OlP	DT	7	23.745	23.966	15.441	1.00	0.00
ATOM	194	02P	DT	7	21.622	23.716	16.752	1.00	0.00
ATOM	195	05*	DT	7	23.626	22.424	17.355	1.00	0.00
ATOM	196	C5*	DT	7	25.031	22.171	17.447	1.00	0.00
ATOM	197	1H5*	DT	7	25.497	22.962	17.993	1.00	0.00
ATOM	198	2H5*	DT	7	25.447	22.164	16.463	1.00	0.00
ATOM	199	C4*	DT	7	25.337	20.843	18.131	1.00	0.00
ATOM	200	H4*	DT	7	26.400	20.695	18.131	1.00	0.00
ATOM	201	04*	DT	7	24.912	20.878	19.500	1.00	0.00
ATOM	202	C1*	DT	7	24.457	19.588	19.913	1.00	0.00
ATOM	203	H1*	DT	7	25.313	18.978	20.159	1.00	0.00
ATOM	204	Nl	DT	7	23.524	19.710	21.057	1.00	0.00
ATOM	205	C6	DT	7	22.391	20.479	20.957	1.00	0.00
ATOM	206	Нб	DT	7	22.167	20.962	20.031	1.00	0.00
ATOM	207	C5	DT	7	21.533	20.657	22.084	1.00	0.00
ATOM	208	C7	DT	7	20.285	21.499	21.967	1.00	0.00
ATOM	209	1H7	DT	7	20.212	21.933	20.967	1.00	0.00
ATOM	210	2H7	DT	7	19.404	20.879	22.153	1.00	0.00
ATOM	211	3Н7	DT	7	20.305	22.301	22.708	1.00	0.00
ATOM	212	C4	DT	7	21.865	20.059	23.317	1.00	0.00

ATOM	213	04	DT	7	21.223	20.244	24.317	1.00	0.00
ATOM	214	N3	DT	7	22.994	19.270	23.316	1.00	0.00
ATOM	215	HЗ	DT	7	23.255	18.836	24.179	1.00	0.00
ATOM	216	C2	DT	7	23.846	19.073	22.256	1.00	0.00
ATOM	217	02	DT	7	24.821	18.388	22.406	1.00	0.00
ATOM	218	C3*	DT	7	24.657	19.623	17.503	1.00	0.00
ATOM	219	Н3*	DT	7	24.029	19.900	16.674	1.00	0.00
ATOM	220	C2*	DT	7	23.840	19.022	18.645	1.00	0.00
ATOM	221	1H2*	DT	7	22.804	19.357	18.570	1.00	0.00
ATOM	222	2H2*	DT	7	23.866	17.946	18.665	1.00	0.00
ATOM	223	03*	DT	7	25.687	18.723	17.053	1.00	0.00
ATOM	224	Ρ	DT	8	25.422	17.306	16.397	1.00	0.00
ATOM	225	01P	DT	8	26.567	16.986	15.563	1.00	0.00
ATOM	226	O2P	DT	8	24.065	17.319	15.806	1.00	0.00
ATOM	227	05*	DT	8	25.417	16.313	17.623	1.00	0.00
ATOM	228	C5*	DT	8	26.557	16.195	18.481	1.00	0.00
ATOM	229	1H5*	DT	8	26.830	17.173	18.827	1.00	0.00
ATOM	230	2H5*	DT	8	27.379	15.795	17.926	1.00	0.00
ATOM	231	C4*	DT	8	26.294	15.300	19.687	1.00	0.00
ATOM	232	H4*	DT	8	27.209	15.181	20.234	1.00	0.00
ATOM	233	04*	DT	8	25.348	15.925	20.555	1.00	0.00
ATOM	234	C1*	DT	8	24.532	14.951	21.189	1.00	0.00
ATOM	235	H1*	DT	8	25.062	14.553	22.034	1.00	0.00
ATOM	236	Nl	DT	8	23.236	15.544	21.581	1.00	0.00
ATOM	237	C6	DT	8	22.482	16.184	20.637	1.00	0.00
ATOM	238	Нб	DT	8	22.831	16.204	19.628	1.00	0.00
ATOM	239	C5	DT	8	21.258	16.821	20.997	1.00	0.00
ATOM	240	C7	DT	8	20.428	17.512	19.944	1.00	0.00
ATOM	241	1H7	DT	8	20.218	18.539	20.249	1.00	0.00
ATOM	242	2H7	DT	8	20.960	17.524	18.990	1.00	0.00
ATOM	243	3Н7	DT	8	19.479	16.987	19.820	1.00	0.00
ATOM	244	C4	DT	8	20.841	16.825	22.338	1.00	0.00
ATOM	245	04	DT	8	19.817	17.393	22.660	1.00	0.00
ATOM	246	N3	DT	8	21.657	16.144	23.219	1.00	0.00
ATOM	247	HЗ	DT	8	21.382	16.137	24.179	1.00	0.00
ATOM	248	C2	DT	8	22.807	15.461	22.902	1.00	0.00
ATOM	249	02	DT	8	23.387	14.833	23.749	1.00	0.00
ATOM	250	C3*	DT	8	25.716	13.925	19.356	1.00	0.00
ATOM	251	Н3*	DT	8	25.533	13.825	18.303	1.00	0.00
ATOM	252	C2*	DT	8	24.417	13.871	20.134	1.00	0.00
ATOM	253	1H2*	DT	8	23.607	14.075	19.468	1.00	0.00
ATOM	254	2H2*	DT	8	24.244	12.920	20.591	1.00	0.00
ATOM	255	03*	DT	8	26.636	12.914	19.814	1.00	0.00
ATOM	256	Ρ	DC	9	26.453	11.367	19.539	1.00	0.00
ATOM	257	01P	DC	9	27.750	10.745	19.707	1.00	0.00
ATOM	258	02P	DC	9	25.762	11.205	18.273	1.00	0.00
ATOM	259	05*	DC	9	25.519	10.830	20.687	1.00	0.00
ATOM	260	C5*	DC	9	25.918	10.880	22.063	1.00	0.00
ATOM	261	1H5*	DC	9	26.266	11.867	22.299	1.00	0.00
ATOM	262	2H5*	DC	9	26.728	10.202	22.214	1.00	0.00
ATOM	263	C4*	DC	9	24.778	10.518	23.002	1.00	0.00
ATOM	264	H4*	DC	9	25.153	10.493	24.007	1.00	0.00
ATOM	265	04*	DC	9	23.764	11.531	22.946	1.00	0.00
ATOM	266	C1*	DC	9	22.481	10.947	23.103	1.00	0.00
ATOM	267	H1*	DC	9	22.337	10.763	24.151	1.00	0.00
ATOM	268	Nl	DC	9	21.423	11.828	22.547	1.00	0.00
ATOM	269	CG	DC	9	21.387	12.135	21.222	1.00	0.00

ATOM	270	Нб	DC	9	22.116	11.723	20.568	1.00	0.00
ATOM	271	C5	DC	9	20.386	13.007	20.723	1.00	0.00
ATOM	272	Н5	DC	9	20.345	13.257	19.688	1.00	0.00
ATOM	273	C4	DC	9	19.463	13.492	21.655	1.00	0.00
ATOM	274	N4	DC	9	18.472	14.326	21.227	1.00	0.00
ATOM	275	1H4	DC	9	18.310	14.547	20.247	1.00	0.00
ATOM	276	2H4	DC	9	17.711	14.645	21.823	1.00	0.00
ATOM	277	N3	DC	9	19.491	13.172	22.916	1.00	0.00
ATOM	278	C2	DC	9	20.450	12.356	23.386	1.00	0.00
АТОМ	279	02	DC	9	20.415	12.103	24.562	1.00	0.00
АТОМ	280	C3*	DC	9	24.077	9.196	22.688	1.00	0.00
АТОМ	281	H3*	DC	9	24.511	8.702	21.846	1.00	0.00
АТОМ	282	C2*	DC	9	22.647	9.607	22.409	1.00	0.00
АТОМ	283	1H2*	DC	9	22.526	9,706	21.355	1.00	0.00
АТОМ	284	2H2*		9	21 941	8 891	22 757	1 00	0 00
ATOM	285	03*		9	24.911	8 346	22.737	1 00	0.00
ATOM	286	P	D23	10	23 686	6 813	23.813	1 00	0.00
ATOM	287	01P		10	24 710	5 996	24 501	1 00	0.00
	207	020	2 40	10	23 261	6 470	21.301	1 00	0.00
	200	025	2 40	10	22.201	6 883	22.437 24.747	1 00	0.00
	200	05*	2 40	10	22.300	7 096	24.747	1 00	0.00
	291	145*	2 2 2	10	22.101	8 054	26 349	1 00	0.00
ATOM	201	エロリ クロに*	2 40	10	22.073	6 302	20.342	1 00	0.00
ATOM	292			10	23.090	7 078	20.392	1 00	0.00
ATOM	293	Сч ц/*		10	21.002	7.078	20.702	1 00	0.00
ATOM	294	0.1*		10	21.109	8 200	27.031	1 00	0.00
ATOM	295	01 *		10	19 005	7 997	20.333	1 00	0.00
ATOM	290	UL "		10	19.005	0 167	20.027	1 00	0.00
ATOM	291	MO NO		10	10.370	0.107	20.039	1 00	0.00
ATOM	290	00		10	10.040	0.025	24.010	1 00	0.00
ATOM	299	С0 110		10	20 021	0.524	23.300	1 00	0.00
ATOM	201	по N7		10	10.021	7.043	23.422	1 00	0.00
ATOM	202			10	10.720	9.304	22.077	1 00	0.00
ATOM	202	C5 C6		10	16 722	10 964	23.302	1 00	0.00
ATOM	202	NG		10	16 620	10.904	23.090	1 00	0.00
ATOM	205	1116		10	16 041	12.247	21.001	1 00	0.00
ATOM	305	2110 2116		10	17 220	11 110	21.009	1 00	0.00
ATOM	207	2HU M1		10	15 074	11 266	21.140	1 00	0.00
ATOM	200	C 2		10	15.074	10 952	24.000	1 00	0.00
ATOM	300	СZ U Э		10	15 250	11 216	25.200	1 00	0.00
ATOM	210	пZ N2		10	16 798	0 051	25.090	1 00	0.00
ATOM	211	C/		10	17 656	9.951	23.031	1 00	0.00
ATOM	212	C3*		10	20 265	5 955	24.099	1 00	0.00
ATOM	212	сэ ц2*		10	20.205	5 279	20.420	1 00	0.00
ATOM	211	п3 С0*		10	10.775	5.279	25.091	1 00	0.00
	315	して 1口2*		10	18 937	6 127	23.044	1 00	0.00
	216	エロス クロク*	2 40	10	10.007	5 961	24.024	1 00	0.00
ATOM	217	∠n∠ ∩2*		10	10.140	5 096	20.323	1 00	0.00
ATOM	210	03 11217		10	20 824	1 796	27.392	1 00	0.00
TER	210	1131	DAJ	IO	20.024	4.790	21.911	1.00	0.00
ATOM	319	H5T	DT5	11	7.126	16.818	24.719	1.00	0.00
ATOM	320	05*	DT5	11	7.872	17.211	24.233	1.00	0.00
ATOM	321	C5*	DT5	11	8.819	17.691	25.185	1.00	0.00
ATOM	322	1H5*	DT5	11	8.335	18.385	25.875	1.00	0.00
ATOM	323	2H5*	DT5	11	9.638	18.198	24.682	1.00	0.00
ATOM	324	C4*	DT5	11	9.428	16.518	25.941	1.00	0.00
ATOM	325	H4*	DT5	11	8.672	15.917	26.449	1.00	0.00

ATOM	326	04*	DT5	11	10.138	15.707	25.010	1.00	0.00
ATOM	327	C1*	DT5	11	11.310	15.147	25.588	1.00	0.00
ATOM	328	H1*	DT5	11	11.023	14.260	26.109	1.00	0.00
ATOM	329	N1	DT5	11	12.349	14.880	24.571	1.00	0.00
АТОМ	330	CG	DT5	11	12 519	15 735	23 529	1 00	0 00
ATOM	331	<u>н</u> б		11	11 947	16 627	23 491	1 00	0 00
	332	C5		11	13 450	15 444	22 488	1 00	0.00
	333	C7		11	13 630	16 400	22.100	1 00	0.00
ATOM	221	כי 1טס		11	14 666	16 744	21.351	1 00	0.00
ATOM	225			11	12 406	16 005	21.299	1 00	0.00
ATOM	222	2H /		11	10 071	17 262	20.392	1.00	0.00
ATOM	220	эп/ С4		11	14 200	14 263	21.450	1.00	0.00
ATOM	337	04			14.200	14.260	22.547	1.00	0.00
ATOM	338	04 N2			14.943	13.923	21.669	1.00	0.00
ATOM	339	N 3	D.1.2		14.029	13.507	23.675	1.00	0.00
A'I'OM	340	H3	D.I.2		14.604	12.702	23.762	1.00	0.00
ATOM	341	C2	DT5	11	13.150	13.759	24.694	1.00	0.00
ATOM	342	02	DT5	11	13.103	13.027	25.635	1.00	0.00
ATOM	343	C3*	DT5	11	10.508	16.970	26.916	1.00	0.00
ATOM	344	H3*	DT5	11	10.714	17.974	26.837	1.00	0.00
ATOM	345	C2*	DT5	11	11.752	16.186	26.578	1.00	0.00
ATOM	346	1H2*	DT5	11	12.453	16.851	26.117	1.00	0.00
ATOM	347	2H2*	DT5	11	12.198	15.726	27.434	1.00	0.00
ATOM	348	03*	DT5	11	10.017	16.619	28.226	1.00	0.00
ATOM	349	P	DG	12	10.425	17.459	29.533	1.00	0.00
ATOM	350	01P	DG	12	9.532	17.060	30.645	1.00	0.00
ATOM	351	O2P	DG	12	10.540	18.885	29.152	1.00	0.00
ATOM	352	05*	DG	12	11.891	16.900	29.843	1.00	0.00
ATOM	353	C5*	DG	12	12.093	15.693	30.544	1.00	0.00
ATOM	354	1H5*	DG	12	11.592	14.883	30.008	1.00	0.00
ATOM	355	2H5*	DG	12	11.621	15.791	31.525	1.00	0.00
ATOM	356	C4*	DG	12	13.558	15.366	30.722	1.00	0.00
ATOM	357	H4*	DG	12	13.648	14.524	31.372	1.00	0.00
ATOM	358	04*	DG	12	14.109	15.008	29.448	1.00	0.00
ATOM	359	C1*	DG	12	15.331	15.702	29.232	1.00	0.00
ATOM	360	H1*	DG	12	16.127	15.128	29.675	1.00	0.00
АТОМ	361	N9	DG	12	15.584	15.876	27.794	1.00	0.00
АТОМ	362	C8	DG	12	15.077	16.810	26.939	1.00	0.00
	363	н8	DG	12	14 394	17 556	27 274	1 00	0 00
	364	N7	DC	12	15 457	16 703	25 703	1 00	0.00
	365	C5	DG	12	16 323	15 620	25.705	1 00	0.00
	366	CG	DC	12	17 094	14 991	23.721	1 00	0.00
	367	06	DC	12	17 079	15 384	23 574	1 00	0.00
ATOM	369	N1	DG	12	17 965	12 9/5	25.574	1 00	0.00
ATOM	260	1N 1 11 1	DG	12	10 / 5/	12 161	23.109	1 00	0.00
ATOM ATOM	202	п1 С2	DG	12	10.404	12 5/04	24.522	1 00	0.00
ATOM	370		DG	10	10 710	10 501	20.470	1 00	0.00
ATOM	272		DG	12	10./10	12.501	20.729	1.00	0.00
ATOM	3/2	THZ	DG		19.095	12.367	27.665	1.00	0.00
ATOM	3/3	ZHZ	DG	12	19.444	12.255	26.060	1.00	0.00
ATOM	3/4	N3	DG	12	17.183	14.06/	27.459	1.00	0.00
ATOM	3/5	C4	DG	12	10.415	15.106	2/.044	1.00	0.00
A'T'OM	376	C3*	DG	12	14.416	16.510	31.259	1.00	0.00
ATOM	377	Н3*	DG	12	13.834	17.282	31.718	1.00	0.00
ATOM	378	C2*	DG	12	15.145	16.983	30.017	1.00	0.00
ATOM	379	1H2*	DG	12	14.519	17.672	29.481	1.00	0.00
ATOM	380	2H2*	DG	12	16.075	17.466	30.235	1.00	0.00
ATOM	381	03*	DG	12	15.344	15.961	32.206	1.00	0.00
ATOM	382	Ρ	DA	13	16.234	16.775	33.187	1.00	0.00

ATOM	383	01P	DA	13	15.792	16.463	34.520	1.00	0.00
ATOM	384	O2P	DA	13	16.285	18.168	32.771	1.00	0.00
ATOM	385	05*	DA	13	17.652	16.139	32.980	1.00	0.00
ATOM	386	C5*	DA	13	17.940	14.797	33.395	1.00	0.00
ATOM	387	1H5*	DA	13	17.169	14.151	33.044	1.00	0.00
ATOM	388	2H5*	DA	13	17.928	14.766	34.462	1.00	0.00
ATOM	389	C4*	DA	13	19.282	14.273	32.878	1.00	0.00
ATOM	390	H4*	DA	13	19.397	13.254	33.214	1.00	0.00
ATOM	391	04*	DA	13	19.267	14.294	31.436	1.00	0.00
АТОМ	392	C1*	DA	13	20.282	15.164	30.918	1.00	0.00
ATOM	393	H1*	DA	13	21.115	14.557	30.602	1.00	0.00
АТОМ	394	N9	DA	13	19.763	15.955	29.793	1.00	0.00
ATOM	395	C8	DA	13	18.841	16,960	29.827	1.00	0.00
ATOM	396	Н8	DA	13	18.378	17.248	30.742	1.00	0.00
ATOM	397	N7	DA	13	18 572	17 525	28 683	1 00	0 00
ATOM	398	C5	DA	13	19 399	16 837	27 810	1 00	0 00
ATOM	399	CG	DA	13	19 713	16 855	26 409	1 00	0 00
ATOM	400	N6	DA	13	19 098	17 724	25 556	1 00	0 00
ATOM	401	1H6		13	19 356	17 828	24 577	1 00	0 00
ATOM	402	2H6	DA	13	18 456	18 452	25 863	1 00	0 00
ATOM	403	N1	DA	13	20 634	16 056	25 888	1 00	0 00
ATOM	404	C2	DA	13	21 242	15 217	26 684	1 00	0 00
ATOM	405	ед н2		13	21 990	14 624	26 218	1 00	0 00
ATOM	406	N3		13	21 080	15 021	27 976	1 00	0.00
ATOM	407	C4		13	20 154	15 857	28 492	1 00	0.00
ATOM	408	C3*		13	20.501	15 099	33 294	1 00	0.00
ATOM	409	ц3*		13	20.301	15 633	34 211	1 00	0.00
ATOM	410	C2*		13	20.705	16 020	32 105	1 00	0 00
ATOM	411	1H2*		13	20.073	16 882	32 220	1 00	0.00
ATOM	412	2H2*	DA	13	21 718	16 369	32.015	1 00	0 00
ATOM	413	03*	DA	13	21.624	14.209	33.432	1.00	0.00
ATOM	414	P	DA	14	23.038	14.635	34.003	1.00	0.00
ATOM	415	01P	DA	14	23.382	13.681	35.035	1.00	0.00
ATOM	416	02P	DA	14	23.032	16.044	34.338	1.00	0.00
ATOM	417	05*	DA	14	24.030	14.444	32.799	1.00	0.00
ATOM	418	C5*	DA	14	24.360	13.145	32.307	1.00	0.00
ATOM	419	1H5*	DA	14	23.460	12.658	31.996	1.00	0.00
ATOM	420	2H5*	DA	14	24.778	12.574	33.102	1.00	0.00
ATOM	421	C4*	DA	14	25.353	13.172	31.148	1.00	0.00
ATOM	422	H4*	DA	14	25.596	12.158	30.899	1.00	0.00
ATOM	423	04*	DA	14	24.737	13.772	29.996	1.00	0.00
ATOM	424	C1*	DA	14	25.481	14.898	29.508	1.00	0.00
ATOM	425	H1*	DA	14	26.052	14.603	28.639	1.00	0.00
ATOM	426	N9	DA	14	24.544	15.987	29.169	1.00	0.00
ATOM	427	C8	DA	14	23.718	16.678	30.016	1.00	0.00
ATOM	428	Н8	DA	14	23.657	16.437	31.057	1.00	0.00
ATOM	429	N7	DA	14	23.020	17.634	29.474	1.00	0.00
ATOM	430	C5	DA	14	23.400	17.559	28.139	1.00	0.00
ATOM	431	C6	DA	14	23.108	18.251	26.916	1.00	0.00
ATOM	432	Nб	DA	14	22.259	19.264	26.811	1.00	0.00
ATOM	433	1H6	DA	14	22.060	19.674	25.926	1.00	0.00
ATOM	434	2Нб	DA	14	21.571	19.423	27.458	1.00	0.00
ATOM	435	Nl	DA	14	23.670	17.921	25.770	1.00	0.00
ATOM	436	C2	DA	14	24.523	16.921	25.754	1.00	0.00
ATOM	437	Н2	DA	14	24.957	16.700	24.805	1.00	0.00
ATOM	438	N3	DA	14	24.923	16.166	26.761	1.00	0.00
ATOM	439	C4	DA	14	24.340	16.524	27.929	1.00	0.00

ATOM	440	C3*	DA	14	26.643	13.963	31.408	1.00	0.00
ATOM	441	Н3*	DA	14	26.804	14.174	32.453	1.00	0.00
ATOM	442	C2*	DA	14	26.445	15.259	30.639	1.00	0.00
ATOM	443	1H2*	DA	14	26.016	15.984	31.315	1.00	0.00
ATOM	444	2H2*	DA	14	27.369	15.671	30.262	1.00	0.00
ATOM	445	03*	DA	14	27.742	13.192	30.881	1.00	0.00
ATOM	446	Ρ	DT	15	29.261	13.616	31.007	1.00	0.00
ATOM	447	01P	DT	15	30.065	12.408	30.873	1.00	0.00
ATOM	448	02P	DT	15	29.402	14.459	32.215	1.00	0.00
ATOM	449	05*	DT	15	29.525	14.524	29.740	1.00	0.00
ATOM	450	C5*	DT	15	29.439	13.984	28.412	1.00	0.00
ATOM	451	1H5*	DT	15	28.541	13.401	28.319	1.00	0.00
ATOM	452	2H5*	DT	15	30.277	13.337	28.242	1.00	0.00
ATOM	453	C4*	DT	15	29.416	15.086	27.352	1.00	0.00
ATOM	454	H4*	DT	15	29.390	14.629	26.378	1.00	0.00
ATOM	455	04*	DT	15	28.235	15.894	27.482	1.00	0.00
ATOM	456	C1*	DT	15	28.465	17.155	26.853	1.00	0.00
ATOM	457	H1*	DT	15	28.354	17.011	25.795	1.00	0.00
ATOM	458	Nl	DT	15	27.551	18.216	27.351	1.00	0.00
ATOM	459	CG	DT	15	27.351	18.378	28.701	1.00	0.00
ATOM	460	Нб	DT	15	27.873	17.735	29.382	1.00	0.00
ATOM	461	C5	DT	15	26.461	19.394	29.184	1.00	0.00
ATOM	462	C7	DT	15	26.267	19.589	30.669	1.00	0.00
ATOM	463	1H7	DT	15	26.429	20.638	30.927	1.00	0.00
ATOM	464	2H7	DT	15	25.248	19.318	30.952	1.00	0.00
ATOM	465	3H7	DT	15	26.974	18.971	31.226	1.00	0.00
ATOM	466	C4	DT	15	25.752	20.201	28.265	1.00	0.00
ATOM	467	04	DT	15	24.941	21.029	28.605	1.00	0.00
ATOM	468	N3	DT	15	26.028	19.979	26.935	1.00	0.00
ATOM	469	Н3	DT	15	25.547	20.562	26.265	1.00	0.00
ATOM	470	C2	DT	15	26.928	19.063	26.433	1.00	0.00
ATOM	471	02	DT	15	27.137	19.017	25.247	1.00	0.00
ATOM	472	C3*	DT	15	30.581	16.080	27.404	1.00	0.00
ATOM	473	Н3*	DT	15	31.056	16.058	28.367	1.00	0.00
ATOM	474	C2*	DT	15	29.924	17.433	27.163	1.00	0.00
ATOM	475	1H2*	DT	15	30.012	18.017	28.046	1.00	0.00
ATOM	476	2H2*	DT	15	30.368	17.971	26.366	1.00	0.00
ATOM	477	03*	DT	15	31.532	15.768	26.373	1.00	0.00
ATOM	478	P	DC	16	32.912	16.531	26.199	1.00	0.00
ATOM	479	OIP	DC	16	33.794	15.659	25.433	1.00	0.00
ATOM	480	02P	DC	16	33.354	17.000	27.505	1.00	0.00
ATOM	481	05*	DC	16	32.588	17.805	25.312	1.00	0.00
ATOM	482	C5*	DC	16	32.181	1/.683	23.940	1.00	0.00
ATOM	483	TH2 *	DC	16	31.398	10.955	23.869	1.00	0.00
ATOM	484	2H5*	DC	16	33.009	1/.333	23.358	1.00	0.00
ATOM	485	C4 ^	DC	10	31.679	19.014	23.304	1.00	0.00
ATOM	480	H4 ^	DC	10	31.494	10,410	22.310	1.00	0.00
ATOM	487	04^	DC	16	30.440	19.410	23.982	1.00	0.00
ATOM	400	U1 *	DC	16	30.254	20.032	23.002	1 00	0.00
	109 101	л⊥" м1	DC	16	29.592 20 670	⊿⊥.∪⊥/ 21 2⊑0	23.030 25 1/0	1 00	0.00
	עכיד ע01		DC	16	29.019	21.333 20 055	22.140 26 250	1 00	0.00
		С0 ЦК		16	30.170	20.900	20.302	1 00	0.00
				16	20.212	20.244 21 <i>1</i> 00	20.300 27 550	1 00	0.00
	494	сэ н5		16	30 014	21,790 21,212	28 507	1 00	0.00
ATOM	495	C4		16	28 561	21.213	20.307	1 00	0 00
ATOM	496	N4	DC	16	27.985	22.935	28.518	1.00	0.00

ATOM	497	1H4	DC	16	28.220	22.645	29.465	1.00	0.00
ATOM	498	2H4	DC	16	27.167	23.541	28.495	1.00	0.00
ATOM	499	N3	DC	16	28.118	22.803	26.234	1.00	0.00
ATOM	500	C2	DC	16	28.665	22.322	25.111	1.00	0.00
ATOM	501	02	DC	16	28.258	22.786	24.075	1.00	0.00
ATOM	502	C3*	DC	16	32.599	20.212	23.582	1.00	0.00
ATOM	503	Н3*	DC	16	33.075	20.146	24.543	1.00	0.00
ATOM	504	C2*	DC	16	31.647	21.398	23.564	1.00	0.00
ATOM	505	1H2*	DC	16	31.957	22.147	24.259	1.00	0.00
ATOM	506	2H2*	DC	16	31.630	21.843	22.595	1.00	0.00
ATOM	507	03*	DC	16	33.557	20.280	22.518	1.00	0.00
ATOM	508	Ρ	DA	17	34.922	21.053	22.608	1.00	0.00
ATOM	509	01P	DA	17	35.792	20.490	21.624	1.00	0.00
ATOM	510	02P	DA	17	35.347	21.048	23.966	1.00	0.00
ATOM	511	05*	DA	17	34.670	22.527	22.183	1.00	0.00
ATOM	512	C5*	DA	17	34.075	22.857	20.949	1.00	0.00
ATOM	513	1H5*	DA	17	33.048	22.571	20.993	1.00	0.00
ATOM	514	2H5*	DA	17	34.536	22.313	20.169	1.00	0.00
ATOM	515	C4*	DA	17	34.192	24.326	20.627	1.00	0.00
ATOM	516	H4*	DA	17	33.622	24.519	19.754	1.00	0.00
ATOM	517	04*	DA	17	33.645	25.101	21.699	1.00	0.00
ATOM	518	C1*	DA	17	34.530	26.159	22.071	1.00	0.00
ATOM	519	H1*	DA	17	34.285	27.029	21.485	1.00	0.00
ATOM	520	N9	DA	17	34.404	26.465	23.509	1.00	0.00
ATOM	521	C8	DA	17	35.027	25.876	24.581	1.00	0.00
ATOM	522	Н8	DA	17	35.738	25.087	24.466	1.00	0.00
ATOM	523	N7	DA	17	34.702	26.343	25.752	1.00	0.00
ATOM	524	C5	DA	17	33.798	27.348	25.433	1.00	0.00
ATOM	525	C6	DA	17	32.975	28.291	26.138	1.00	0.00
ATOM	526	NG	DA	17	32.975	28.358	27.501	1.00	0.00
ATOM	527	1H6	DA	17	32.360	28.967	28.038	1.00	0.00
ATOM	528	2Нб	DA	17	33.497	27.718	28.095	1.00	0.00
ATOM	529	N1	DA	17	32.197	29.138	25.495	1.00	0.00
ATOM	530	C2	DA	17	32.159	29.110	24.182	1.00	0.00
ATOM	531	H2	DA	17	31.514	29.823	23.718	1.00	0.00
ATOM	532	N3	DA	17	32.817	28.315	23.365	1.00	0.00
ATOM	533	C4	DA	17	33.609	27.446	24.036	1.00	0.00
ATOM	534	C3*	DA	17	35.626	24.817	20.408	1.00	0.00
ATOM	535	Н3*	DA	17	36.328	24.014	20.299	1.00	0.00
ATOM	536	C2*	DA	17	35.896	25.649	21.647	1.00	0.00
ATOM	537	1H2*	DA	17	36.313	25.005	22.390	1.00	0.00
ATOM	538	2H2*	DA	17	36.580	26.453	21.480	1.00	0.00
ATOM	539	03*	DA	17	35.624	25.615	19.227	1.00	0.00
ATOM	540	Ρ	DT	18	36.836	26.377	18.591	1.00	0.00
ATOM	541	01P	DT	18	36.851	26.062	17.185	1.00	0.00
ATOM	542	02P	DT	18	38.038	26.152	19.371	1.00	0.00
ATOM	543	05*	DT	18	36.397	27.872	18.762	1.00	0.00
ATOM	544	C5*	DT	18	35.229	28.366	18.097	1.00	0.00
ATOM	545	1H5*	DT	18	34.411	27.696	18.270	1.00	0.00
ATOM	546	2H5*	DT	18	35.416	28.384	17.048	1.00	0.00
ATOM	547	C4*	DT	18	34.817	29.754	18.570	1.00	0.00
ATOM	548	H4*	DT	18	33.924	30.036	18.046	1.00	0.00
ATOM	549	04*	DT	18	34.490	29.719	19.966	1.00	0.00
ATOM	550	C1*	DT	18	34.965	30.898	20.616	1.00	0.00
ATOM	551	H1*	DT	18	34.235	31.681	20.490	1.00	0.00
ATOM	552	Nl	DT	18	35.232	30.615	22.045	1.00	0.00
ATOM	553	CG	DT	18	36.155	29.662	22.383	1.00	0.00

ATOM	554	Нб	DT	18	36.632	29.107	21.601	1.00	0.00
ATOM	555	C5	DT	18	36.468	29.403	23.752	1.00	0.00
ATOM	556	C7	DT	18	37.505	28.366	24.111	1.00	0.00
ATOM	557	1H7	DT	18	38.219	28.788	24.821	1.00	0.00
ATOM	558	2H7	DT	18	37.024	27.503	24.578	1.00	0.00
ATOM	559	3H7	DT	18	38.040	28.043	23.215	1.00	0.00
ATOM	560	C4	DT	18	35.808	30.129	24.768	1.00	0.00
ATOM	561	04	DT	18	36.024	29.949	25.939	1.00	0.00
ATOM	562	N3	DT	18	34.881	31.054	24.339	1.00	0.00
ATOM	563	Н3	DT	18	34.377	31.558	25.040	1.00	0.00
ATOM	564	C2	DT	18	34.550	31.329	23.029	1.00	0.00
ATOM	565	02	DT	18	33.699	32.144	22.788	1.00	0.00
ATOM	566	C3*	DT	18	35.878	30.849	18.391	1.00	0.00
ATOM	567	Н3*	DT	18	36.747	30.491	17.871	1.00	0.00
ATOM	568	C2*	DT	18	36.215	31.254	19.816	1.00	0.00
ATOM	569	1H2*	DT	18	37.066	30.675	20.130	1.00	0.00
ATOM	570	2H2*	DT	18	36.465	32.297	19.914	1.00	0.00
ATOM	571	03*	DT	18	35.282	31.934	17.666	1.00	0.00
ATOM	572	P	DA	19	36.032	33.268	17.282	1.00	0.00
ATOM	573	01P	DA	19	35.502	33.707	16.000	1.00	0.00
ATOM	574	02P	DA	19	37.468	33.082	17.420	1.00	0.00
ATOM	575	05*	DA	19	35.567	34.293	18.388	1.00	0.00
ATOM	576	C5*	DA	19	34.202	34.724	18.480	1.00	0.00
ATOM	577	TH2*	DA	19	33.576	33.884	18.689	1.00	0.00
ATOM	5/8	2H5*	DA	19	33.901	35.126	10 541	1.00	0.00
ATOM	5/9	C4^	DA	19	34.013	35./92	19.553	1.00	0.00
	580	H4 ^	DA	19	33.UI4	30.1/5	19.482	1.00	0.00
	201	04^		19	34.1/3	35.218	20.852	1.00	0.00
	582 E02	C1 ^		19	35.061 24 EOE	35.9/4	21.002	1.00	0.00
	503	MQ		19	34.505	30./00	22.219	1 00	0.00
	585	C8		19	36 669	34 086	22.503	1 00	0.00
	586	С0 Н8		19	36 904	33.000	22.224	1 00	0.00
ATOM	587	N7		19	37 186	33.071	21.200 23 215	1 00	0.00
ATOM	588	C5	DA	19	36 594	34 035	24 317	1 00	0 00
ATOM	589	CG	DA	19	36.626	33,903	25.742	1.00	0.00
ATOM	590	NG	DA	19	37.413	32,968	26.348	1.00	0.00
ATOM	591	1H6	DA	19	37.399	32.786	27.350	1.00	0.00
ATOM	592	2H6	DA	19	37.942	32.264	25.838	1.00	0.00
ATOM	593	N1	DA	19	35.923	34.686	26.532	1.00	0.00
ATOM	594	C2	DA	19	35.147	35.592	25.992	1.00	0.00
ATOM	595	H2	DA	19	34.597	36.190	26.679	1.00	0.00
ATOM	596	N3	DA	19	34.963	35.855	24.718	1.00	0.00
ATOM	597	C4	DA	19	35.709	35.056	23.925	1.00	0.00
ATOM	598	C3*	DA	19	35.024	36.940	19.476	1.00	0.00
ATOM	599	Н3*	DA	19	35.561	36.927	18.549	1.00	0.00
ATOM	600	C2*	DA	19	35.935	36.699	20.662	1.00	0.00
ATOM	601	1H2*	DA	19	36.741	36.071	20.350	1.00	0.00
ATOM	602	2H2*	DA	19	36.348	37.599	21.067	1.00	0.00
ATOM	603	03*	DA	19	34.320	38.182	19.608	1.00	0.00
ATOM	604	P	DG3	20	34.999	39.595	19.425	1.00	0.00
ATOM	605	OlP	DG3	20	33.974	40.507	18.957	1.00	0.00
ATOM	606	02P	DG3	20	36.204	39.443	18.638	1.00	0.00
ATOM	607	05*	DG3	20	35.418	40.029	20.875	1.00	0.00
ATOM	608	C5*	DG3	20	34.456	40.423	21.837	1.00	0.00
ATOM	609	1H5*	DG3	20	33.705	39.676	21.898	1.00	0.00
ATOM	610	2H5*	DG3	20	33.998	41.322	21.512	1.00	0.00

ATOM	611	C4*	DG3	20	35.066	40.642	23.216	1.00	0.00
ATOM	612	H4*	DG3	20	34.329	41.044	23.863	1.00	0.00
ATOM	613	04*	DG3	20	35.489	39.412	23.780	1.00	0.00
ATOM	614	C1*	DG3	20	36.486	39.672	24.757	1.00	0.00
ATOM	615	H1*	DG3	20	36.015	39.977	25.664	1.00	0.00
ATOM	616	N9	DG3	20	37.311	38.496	25.002	1.00	0.00
ATOM	617	C8	DG3	20	37.979	37.739	24.091	1.00	0.00
ATOM	618	Н8	DG3	20	37.895	37,932	23.047	1.00	0.00
ATOM	619	N7	DG3	20	38.704	36.788	24.584	1.00	0.00
АТОМ	620	C5	DG3	20	38 504	36 902	25 955	1 00	0 00
АТОМ	621	CG	DG3	20	38 999	36 191	27 065	1 00	0 00
АТОМ	622	06	DG3	20	39 769	35 274	26 972	1 00	0 00
АТОМ	623	N1	DG3	20	38.538	36.635	28.284	1.00	0.00
АТОМ	624	н1	DG3	20	38.855	36.169	29.102	1.00	0.00
АТОМ	625	C2	DG3	20	37 692	37 701	28 451	1 00	0 00
ATOM	626	N2	DG3	20	37 384	38 024	29 740	1 00	0 00
ATOM	627	1H2	DG3	20	36 541	38 555	29 944	1 00	0 00
ATOM	628	2H2	DG3	20	37 518	37 342	30 484	1 00	0 00
ATOM	629	M3	DG3	20	37 213	38 404	27 440	1 00	0 00
	630	C4	DG3	20	37 624	37 978	26 221	1 00	0.00
	631	C3*	DG3	20	36 298	41 524	20.221	1 00	0.00
	632	ц3*	DG3	20	36 711	41 609	22 306	1 00	0.00
	633	C2*		20	37 299	40 814	22.300	1 00	0.00
	634	1u2*	DG3	20	38 120	40.014	23.563	1 00	0.00
	635	1112 2112*	DG3	20	37 699	40.412	23.303	1 00	0.00
	636	03*	DG3	20	36 032	42 770	24.555	1 00	0.00
ATOM	637	U 11 11	DG3	20	36 166	43 205	23.701	1 00	0.00
TTTR	007	1101	005	20	30.100	13.205	25.551	1.00	0.00
	638	011	ሞእ	21	29 919	25 331	29 922	1 00	0 00
	630	C11	ΓA	21	29.919	25.551	29.922	1 00	0.00
	640	010	FΔ	21	29.170	26 741	20.273	1 00	0.00
	641	CA1	FΔ	21	28 074	20.711	29.195	1 00	0.00
	642	COR	۳۵	21	27 008	28 383	28.362	1 00	0.00
	643	CQD	FΔ	21	26 197	28.620	20.502	1 00	0.00
	644	CQ	ΓA	21	25 358	20.020	30 017	1 00	0.00
	645	09	ΓA	21	25.550	27.400	31 427	1 00	0.00
	646	н09	FΔ	21	25 364	26 623	31 821	1 00	0.00
	647	C87	ΓA	21	23.901	20.025	29 321	1 00	0.00
	648	07	ΓA	21	23.951	27.372	29.521	1 00	0.00
	649	U97 Ц87	ΓA	21	23.198	20.002	30 054	1 00	0.00
	650	цð	FΔ	21	25 844	26 462	29 762	1 00	0.00
	651	н9а	۳۵	21	26 796	20.102	30 395	1 00	0.00
	652	CGA	FΔ	21	25 176	29.037	29 053	1 00	0.00
	653	UGA UGa	ΓA	21	23.170	30 447	29.055	1 00	0.00
	654	067	ΓA	21	24.575	30.140	27 789	1 00	0.00
	655	C 5M	FΔ	21	26 611	29 273	27.705	1 00	0.00
	656	CSB	ΓA	21	20.011	29.273	26 129	1 00	0.00
	657	ЧБВ	ΓA	21	26 859	29.205	20.127	1 00	0.00
	658	C4B	ΓA	21	20.000	29.907	25.574	1 00	0.00
	659	04	FΔ	21	28 705	28 182	23.022	1 00	0.00
ATOM	660	CM	FΔ	21	20.705	28 890	23 583	1 00	0 00
	661	См 1 µм	μγ	2⊥ 01	27.JHJ 27 ADA	20.090 29 275	22.203	1 00	0.00
	662	211M	ц. Ч.	2⊥ 21	27.024	29.213	27.029 23 196	1 00	
	662	211M	гA ГЛ	∠⊥ 21	20.004	29.111 28 206	23.100 22 760	1 00	0.00
	6003		ΓA	⊿⊥ 01	27.090	20.200 27 <i>1</i> 10	22.109 26 Q75	1 00	0.00
	665	C-14	μγ	2⊥ 01	20.J90 20 EQ2	26 412	20.023	1 00	0.00
	6000	C 3A	гA ГЛ	∠⊥ 21	29.003	20.413 25 700	20.270	1 00	0.00
AIUM	000	CAI	гА	ムエ	ムシ・フラひ	43.144	41.101	T .00	0.00

ATOM	667	C1	FA	21	30.989	24.822	27.365	1.00	0.00
ATOM	668	01	FA	21	31.588	24.121	28.132	1.00	0.00
ATOM	669	C2A	FA	21	31.229	24.853	25.892	1.00	0.00
ATOM	670	1H2A	FA	21	32.269	25.044	25.697	1.00	0.00
ATOM	671	2H2A	FA	21	30.980	23.893	25.479	1.00	0.00
ATOM	672	C3	FA	21	30.306	25.957	25.343	1.00	0.00
ATOM	673	1H3	FA	21	30.874	26.752	24.886	1.00	0.00
ATOM TER END	674	2H3	FA	21	29.620	25.560	24.616	1.00	0.00

File F-2: Average structure of rMD refined α -AFB₁-FAPY modified tetramer 5'-C¹T²<u>X</u>³A⁴-3'

ATOM	1	H5T	DC5	1	24.449	20.542	4.634	1.00	0.00
ATOM	2	05*	DC5	1	23.579	20.238	4.319	1.00	0.00
ATOM	3	C5*	DC5	1	22.931	21.336	3.679	1.00	0.00
ATOM	4	1H5*	DC5	1	21.986	21.001	3.249	1.00	0.00
ATOM	5	2H5*	DC5	1	23.564	21.712	2.873	1.00	0.00
ATOM	6	C4*	DC5	1	22.679	22.445	4.710	1.00	0.00
ATOM	7	H4*	DC5	1	23.621	22.783	5.147	1.00	0.00
ATOM	8	04*	DC5	1	22.022	23.541	4.053	1.00	0.00
ATOM	9	C1*	DC5	1	20.653	23.611	4.531	1.00	0.00
ATOM	10	H1*	DC5	1	20.525	24.526	5.112	1.00	0.00
ATOM	11	N1	DC5	1	19.677	23.543	3.448	1.00	0.00
ATOM	12	C6	DC5	1	19.644	22.510	2.559	1.00	0.00
ATOM	13	нб	DC5	1	20.414	21.752	2.592	1.00	0.00
ATOM	14	C5	DC5	1	18.602	22.430	1.589	1.00	0.00
ATOM	15	Н5	DC5	1	18.579	21.615	0.881	1.00	0.00
ATOM	16	C4	DC5	1	17.622	23.471	1.636	1.00	0.00
ATOM	17	N4	DC5	1	16.581	23.467	0.753	1.00	0.00
ATOM	18	1H4	DC5	1	16.392	22.697	0.116	1.00	0.00
ATOM	19	2H4	DC5	1	15.793	24.108	0.817	1.00	0.00
ATOM	20	N3	DC5	1	17.688	24.451	2.543	1.00	0.00
ATOM	21	C2	DC5	1	18.692	24.518	3.460	1.00	0.00
ATOM	22	02	DC5	1	18.725	25.397	4.296	1.00	0.00
ATOM	23	C3*	DC5	1	21.753	21.920	5.808	1.00	0.00
ATOM	24	Н3*	DC5	1	21.819	20.835	5.907	1.00	0.00
ATOM	25	C2*	DC5	1	20.376	22.380	5.392	1.00	0.00
ATOM	26	1H2*	DC5	1	19.900	21.611	4.782	1.00	0.00
ATOM	27	2H2*	DC5	1	19.738	22.609	6.249	1.00	0.00
ATOM	28	03*	DC5	1	22.078	22.527	7.065	1.00	0.00
ATOM	29	P	DT	2	21.833	21.679	8.412	1.00	0.00
ATOM	30	01P	DT	2	22.741	22.196	9.460	1.00	0.00
ATOM	31	02P	DT	2	21.847	20.240	8.068	1.00	0.00
ATOM	32	05*	DT	2	20.336	22.094	8.799	1.00	0.00
ATOM	33	C5*	DT	2	20.084	23.427	9.258	1.00	0.00
ATOM	34	1H5*	DT	2	20.336	24.141	8.471	1.00	0.00
ATOM	35	2H5*	DT	2	20.724	23.620	10.122	1.00	0.00
ATOM	36	C4*	DT	2	18.616	23.564	9.666	1.00	0.00
ATOM	37	H4*	DT	2	18.467	24.545	10.122	1.00	0.00
ATOM	38	04*	DT	2	17.761	23.450	8.511	1.00	0.00
ATOM	39	C1*	DT	2	16.845	22.353	8.681	1.00	0.00
ATOM	40	H1*	DT	2	15.911	22.749	9.085	1.00	0.00
ATOM	41	N1	DT	2	16.595	21.690	7.396	1.00	0.00
ATOM	42	C6	DT	2	17.441	20.750	6.883	1.00	0.00
ATOM	43	Нб	DT	2	18.367	20.537	7.396	1.00	0.00
ATOM	44	C5	DT	2	17.129	20.066	5.669	1.00	0.00
АТОМ	45	C7	 ГТ	2	18.096	19.055	5.102	1.00	0.00
АТОМ	46	1H7	 ДТ	2	18,400	19.355	4.097	1.00	0.00
ATOM	47	2H7	DT	2	18.982	18,980	5.737	1.00	0.00
ATOM	48	3H7	DT	2	17.616	18.076	5.037	1.00	0.00
ATOM	49	C4	DT	2	15.927	20.340	4.993	1.00	0.00
ATOM	50	04	DT	2	15.653	19.761	3.962	1.00	0.00
ATOM	51	N3	DT	2	15.108	21.299	5.600	1.00	0.00
ATOM	52	H3	DT	2	14.233	21.513	5.142	1.00	0.00
ATOM	53	C2	DT	2	15.393	21.996	6.782	1.00	0.00
ATOM	54	02	DT	2	14.641	22.821	7.259	1.00	0.00

ATOM	55	C3*	DT	2	18.169	22.461	10.629	1.00	0.00
ATOM	56	Н3*	DT	2	18.990	22.043	11.215	1.00	0.00
ATOM	57	C2*	DT	2	17.501	21.440	9.717	1.00	0.00
ATOM	58	1H2*	DT	2	18.252	20.805	9.241	1.00	0.00
ATOM	59	2H2*	DT	2	16.774	20.820	10.247	1.00	0.00
ATOM	60	03*	DT	2	17.163	23.017	11.503	1.00	0.00
ATOM	61	P	FB	3	17 324	22 863	13 101	1 00	0 00
ATOM	62	 1p	FB	3	16 135	23 465	13 745	1 00	0 00
	63	020	FB	3	18 676	23.105	13 471	1 00	0.00
	64	05*	TD TD	3	17 270	23.350 21.268	12 2/5	1 00	0.00
	65	05	г D ГD	3	16 028	21.200	12 275	1 00	0.00
	65	1115*	г D г D	2	15 507	20.540	10 202	1 00	0.00
	67	JULE *	гр	2	15.397	20.090	14 026	1 00	0.00
	67	2HD"	г В г р	3 2	16 220	20.917	12 500	1.00	0.00
ATOM	68	C4 ^	FB TD	3	16.330	19.050	14 5500	1.00	0.00
ATOM	69	H4^	FB	3	16.469	18.823	14.559	1.00	0.00
ATOM	70	04^	FB	3	15.249	18.279	12.925	1.00	0.00
ATOM	/1	CI*	F.B	3	15.443	18.165	11.496	1.00	0.00
ATOM	72	N6	Ρ'Β	3	15.038	16.846	10.995	1.00	0.00
ATOM	73	N7	FB	3	14.414	14.472	9.685	1.00	0.00
ATOM	74	C5	FB	3	13.443	15.414	9.847	1.00	0.00
ATOM	75	C4	FB	3	12.150	15.153	9.373	1.00	0.00
ATOM	76	04A	FB	3	11.884	14.121	8.792	1.00	0.00
ATOM	77	N3	FB	3	11.247	16.177	9.638	1.00	0.00
ATOM	78	HЗ	FB	3	10.291	16.063	9.327	1.00	0.00
ATOM	79	C2	FB	3	11.609	17.330	10.321	1.00	0.00
ATOM	80	N2	FB	3	10.586	18.209	10.526	1.00	0.00
ATOM	81	1HN2	FB	3	9.644	17.963	10.229	1.00	0.00
ATOM	82	2HN2	FB	3	10.513	18.699	11.416	1.00	0.00
ATOM	83	Nl	FB	3	12.834	17.606	10.788	1.00	0.00
ATOM	84	CG	FB	3	13.773	16.619	10.543	1.00	0.00
ATOM	85	C3*	FB	3	17.544	18.661	12.655	1.00	0.00
ATOM	86	Н3*	FB	3	18.271	19.474	12.584	1.00	0.00
ATOM	87	C2*	FB	3	16.954	18.334	11.300	1.00	0.00
ATOM	88	1H2*	FB	3	17.148	19.193	10.689	1.00	0.00
ATOM	89	2H2*	FB	3	17.418	17.451	10.856	1.00	0.00
ATOM	90	03*	FB	3	18,208	17.485	13.135	1.00	0.00
ATOM	91	н1*	FB	3	14.904	18.958	10.962	1.00	0.00
ATOM	92	C8	FB	3	14.337	13.267	10.313	1.00	0.00
ATOM	93	08	FB	3	13 836	13 155	11 413	1 00	0 00
ATOM	94	н8	FB	3	14 257	12 439	9 610	1 00	0 00
ATOM	95	н6	FB	3	15 555	16 105	11 464	1 00	0 00
ΔTΩM	96	D	2 2 4	4	19 548	17 647	13 999	1 00	0 00
	90		DA 3	4	20 272	18 849	13 529	1 00	0.00
	98			4	20.272	16 337	14 063	1 00	0.00
	20	025		4	10.234	17 952	15 /29	1 00	0.00
	100	05		4	10.911	16 950	16 226	1 00	0.00
ATOM	101	1115*	DAJ	4	10.1/4	16 222	16 612	1 00	0.00
	101	THD.	DAS	4	17.000	16 155	10.012	1.00	0.00
ATOM	102	2H5^	DA3	4	17.900	17 261	17 275	1.00	0.00
ATOM	103	C4 ^	DA3	4	17.012	10 222	17.3/5	1.00	0.00
ATOM	104	H4^	DA3	4	17.925	17 420	1/./62	1.00	0.00
ATOM	105	04*	DA3	4	16.229	16 050	10.953	1.00	0.00
A'L'OM	106	CT*	DA3	4	15.3/3	16.863	17.962	1.00	0.00
ATOM	107	Hl*	DA3	4	15.144	17.627	18.708	1.00	0.00
ATOM	108	N9	DA3	4	14.136	16.300	17.388	1.00	0.00
ATOM	109	C8	DA3	4	13.663	15.011	17.489	1.00	0.00
ATOM	110	Н8	DA3	4	14.209	14.233	18.001	1.00	0.00
ATOM	111	N7	DA3	4	12.513	14.794	16.907	1.00	0.00

ATOM	112	C5	DA3	4	12.170	16.037	16.394	1.00	0.00
ATOM	113	CG	DA3	4	11.059	16.563	15.656	1.00	0.00
ATOM	114	Nб	DA3	4	9.999	15.801	15.260	1.00	0.00
ATOM	115	1H6	DA3	4	9.269	16.141	14.637	1.00	0.00
ATOM	116	2Нб	DA3	4	9.976	14.787	15.354	1.00	0.00
ATOM	117	N1	DA3	4	11.066	17.864	15.344	1.00	0.00
ATOM	118	C2	DA3	4	12.084	18.630	15.712	1.00	0.00
ATOM	119	Н2	DA3	4	12.006	19.667	15.422	1.00	0.00
ATOM	120	N3	DA3	4	13.181	18.311	16.381	1.00	0.00
ATOM	121	C4	DA3	4	13.173	16.997	16.697	1.00	0.00
ATOM	122	C3*	DA3	4	17.650	16.323	18.509	1.00	0.00
ATOM	123	Н3*	DA3	4	18.385	15.538	18.319	1.00	0.00
ATOM	124	C2*	DA3	4	16.232	15.759	18.578	1.00	0.00
ATOM	125	1H2*	DA3	4	16.162	14.858	17.966	1.00	0.00
ATOM	126	2H2*	DA3	4	15.930	15.524	19.601	1.00	0.00
ATOM	127	03*	DA3	4	17.945	16.987	19.736	1.00	0.00
ATOM	128	НЗТ	DA3	4	17.291	17.697	19.864	1.00	0.00
TER				_					
АТОМ	129	011	FA	5	10.886	15,413	4.777	1.00	0.00
АТОМ	130	C11	FA	5	11.288	16.301	5.501	1.00	0.00
АТОМ	131	010	FA	5	12.565	16.348	5.954	1.00	0.00
ATOM	132	CA1	FA	5	12.922	17.389	6.774	1.00	0.00
АТОМ	133	C9B	FA	5	14.274	17.401	7.253	1.00	0.00
АТОМ	134	C9A	FA	5	15.393	16.452	7.002	1.00	0.00
АТОМ	135	C9	FA	5	15.046	15.006	7.349	1.00	0.00
АТОМ	136	09	FA	5	15.775	14.139	6.483	1.00	0.00
АТОМ	137	H09	FA	5	15.472	13.227	6.641	1.00	0.00
АТОМ	138	C8A	FA	5	15.533	14.802	8.790	1.00	0.00
АТОМ	139	07	FA	5	16,166	16.037	9,197	1.00	0.00
ATOM	140	H8A	FA	5	16.274	14.001	8.818	1.00	0.00
ATOM	141	Н9	FA	5	13.975	14.820	7.252	1.00	0.00
ATOM	142	H9a	FA	5	15.792	16.559	5.991	1.00	0.00
ATOM	143	C6A	FA	5	16.387	16.931	8.086	1.00	0.00
ATOM	144	Нба	FA	5	17.427	16.874	7.758	1.00	0.00
ATOM	145	ОбА	FA	5	16.010	18.294	8.476	1.00	0.00
ATOM	146	C5M	FA	5	14.712	18.433	8.106	1.00	0.00
ATOM	147	C5B	FA	5	13.790	19.466	8.470	1.00	0.00
ATOM	148	H5B	FA	5	14.114	20.271	9.126	1.00	0.00
ATOM	149	C4B	FA	5	12.487	19.442	7.999	1.00	0.00
ATOM	150	04	FA	5	11.614	20.419	8.354	1.00	0.00
ATOM	151	CM	FA	5	12.200	21.381	9.249	1.00	0.00
ATOM	152	1HM	FA	5	13.061	21.851	8.770	1.00	0.00
ATOM	153	2HM	FA	5	11.460	22.146	9.495	1.00	0.00
ATOM	154	3HM	FA	5	12.521	20.881	10.164	1.00	0.00
ATOM	155	C4A	FA	5	12.068	18.415	7.167	1.00	0.00
ATOM	156	C3A	FA	5	10.724	18.409	6.706	1.00	0.00
ATOM	157	CA1	FA	5	10.407	17.325	5.882	1.00	0.00
ATOM	158	C1	FA	5	9.064	17.424	5.499	1.00	0.00
ATOM	159	01	FA	5	8.514	16.600	4.797	1.00	0.00
ATOM	160	C2A	FA	5	8.443	18.667	6.123	1.00	0.00
ATOM	161	1H2A	FA	5	8.083	19.342	5.344	1.00	0.00
ATOM	162	2H2A	FA	5	7.614	18.390	6.777	1.00	0.00
ATOM	163	C3	FA	5	9.576	19.344	6.944	1.00	0.00
ATOM	164	1H3	FA	5	9.791	20.346	6.566	1.00	0.00
ATOM	165	2H3	FA	5	9.316	19.398	8.003	1.00	0.00
TER									
END									

File F-3: Average structure of rMD refined *cis*-5*R*,6*S*-thymine glycol modified duplex $5'-G^{1}T^{2}G^{3}C^{4}G^{5}\underline{Tg}^{6}G^{7}T^{8}T^{9}T^{10}G^{11}T^{12}-3'\bullet5'-A^{13}C^{14}A^{15}A^{16}A^{17}C^{18}\underline{G}^{19}C^{20}G^{21}C^{22}A^{23}C^{24}-3'$

ATOM	1	н5т	DG5	1	47.096	36.175	24.762	1.00	0.00
ATOM	2	05*	DG5	1	46.864	36.120	25.706	1.00	0.00
ATOM	3	C5*	DG5	1	45.952	35.038	25.881	1.00	0.00
ATOM	4	1H5*	DG5	1	46.401	34.126	25.481	1.00	0.00
ATOM	5	2H5*	DG5	1	45.028	35.235	25.333	1.00	0.00
ATOM	6	C4*	DG5	1	45.660	34.858	27.377	1.00	0.00
ATOM	7	H4*	DG5	1	46.587	34.807	27.951	1.00	0.00
ATOM	8	04*	DG5	1	44.839	35.947	27.829	1.00	0.00
ATOM	9	C1*	DG5	1	43.547	35.573	28.198	1.00	0.00
ATOM	10	H1*	DG5	1	43.512	35.520	29.253	1.00	0.00
ATOM	11	N9	DG5	1	42.572	36.546	27.703	1.00	0.00
ATOM	12	C8	DG5	1	42.152	36.756	26.432	1.00	0.00
ATOM	13	Н8	DG5	1	42.510	36.190	25.616	1.00	0.00
ATOM	14	N7	DG5	1	41.302	37.711	26.291	1.00	0.00
ATOM	15	C5	DG5	1	41.135	38.175	27.577	1.00	0.00
ATOM	16	CG	DG5	1	40.342	39.230	28.095	1.00	0.00
ATOM	17	06	DG5	1	39.621	39.992	27.515	1.00	0.00
ATOM	18	Nl	DG5	1	40.447	39.373	29.441	1.00	0.00
ATOM	19	Hl	DG5	1	39.910	40.083	29.864	1.00	0.00
ATOM	20	C2	DG5	1	41.232	38.621	30.213	1.00	0.00
ATOM	21	N2	DG5	1	41.219	38.911	31.521	1.00	0.00
ATOM	22	1H2	DG5	1	41.792	38.380	32.162	1.00	0.00
ATOM	23	2H2	DG5	1	40.638	39.661	31.867	1.00	0.00
ATOM	24	N3	DG5	1	41.995	37.649	29.784	1.00	0.00
ATOM	25	C4	DG5	1	41.904	37.463	28.449	1.00	0.00
ATOM	26	C3*	DG5	1	44.792	33.640	27.627	1.00	0.00
ATOM	27	Н3*	DG5	1	44.931	32.907	26.873	1.00	0.00
ATOM	28	C2*	DG5	1	43.396	34.186	27.643	1.00	0.00
ATOM	29	1H2*	DG5	1	43.028	34.219	26.648	1.00	0.00
ATOM	30	2H2*	DG5	1	42.737	33.601	28.218	1.00	0.00
ATOM	31	03*	DG5	1	45.163	33.096	28.886	1.00	0.00
ATOM	32	P	DT	2	44.550	31.740	29.414	1.00	0.00
ATOM	33	01P	DT	2	45.574	30.944	30.073	1.00	0.00
ATOM	34	02P	DT	2	43.934	30.941	28.363	1.00	0.00
ATOM	35	05*	DT	2	43.494	32.329	30.439	1.00	0.00
ATOM	36	C5*	DT	2	43.960	32.858	31.672	1.00	0.00
ATOM	37	1H5*	DT	2	44.625	33.650	31.475	1.00	0.00
ATOM	38	2H5*	DT	2	44.491	32.110	32.203	1.00	0.00
ATOM	39	C4*	DT	2	42.839	33.377	32.526	1.00	0.00
ATOM	40	H4*	DT	2	43.253	33.816	33.407	1.00	0.00
ATOM	41	04*	DT	2	42.115	34.375	31.806	1.00	0.00
ATOM	42	C1*	DT	2	40.729	34.207	31.972	1.00	0.00
ATOM	43	H1*	DT	2	40.462	34.648	32.902	1.00	0.00
ATOM	44	Nl	DT	2	39.970	34.812	30.855	1.00	0.00
ATOM	45	C6	DT	2	39.997	34.274	29.598	1.00	0.00
ATOM	46	нб	DT	2	40.558	33.392	29.432	1.00	0.00
ATOM	47	C5	DT	2	39.332	34.846	28.574	1.00	0.00
ATOM	48	C7	DT	2	39.397	34.224	27.199	1.00	0.00
ATOM	49	1H7	DT	2	38.389	33.986	26.852	1.00	0.00
ATOM	50	2H7	DT	2	39.847	34.926	26.494	1.00	0.00
ATOM	51	3Н7	DT	2	39.993	33.310	27.227	1.00	0.00
ATOM	52	C4	DT	2	38.577	36.048	28.774	1.00	0.00

ATOM	53	04	DT	2	37,987	36,672	27.936	1.00	0.00
ATOM	54	N3	 ТТ	2	38 563	36 496	30 053	1 00	0 00
∆TOM	55	н3	ידת	2	38 017	37 296	30 244	1 00	0 00
	55	C.2		2	20.017	25 020	21 111	1 00	0.00
	50			2	39.210	20.930	31.111	1 00	0.00
ATOM	57	02		2	39.086	30.434	32.198	1.00	0.00
ATOM	58	C3*	D.T.	2	41.826	32.31/	32.907	1.00	0.00
ATOM	59	НЗ*	DT	2	42.155	31.342	32.644	1.00	0.00
ATOM	60	C2*	DT	2	40.596	32.719	32.134	1.00	0.00
ATOM	61	1H2*	DT	2	40.611	32.231	31.195	1.00	0.00
ATOM	62	2H2*	DT	2	39.706	32.454	32.624	1.00	0.00
ATOM	63	03*	DT	2	41.616	32.392	34.316	1.00	0.00
ATOM	64	P	DG	3	40.715	31.341	35.082	1.00	0.00
ATOM	65	01P	DG	3	41.455	30.810	36.220	1.00	0.00
ATOM	66	O2P	DG	3	40.250	30.219	34.254	1.00	0.00
ATOM	67	05*	DG	3	39.519	32.283	35.528	1.00	0.00
ATOM	68	C5*	DG	3	39.713	33.163	36.633	1.00	0.00
ATOM	69	1H5*	DG	3	40.471	33.861	36.386	1.00	0.00
ATOM	70	2H5*	DG	3	40.054	32.611	37.469	1.00	0.00
ATOM	71	C4*	DG	3	38.448	33.913	37.016	1.00	0.00
ATOM	72	H4*	DG	3	38.685	34.590	37.817	1.00	0.00
ATOM	73	04*	DG	3	37.967	34.662	35.895	1.00	0.00
ATOM	74	C1*	DG	3	36.659	34.261	35.494	1.00	0.00
ATOM	75	H1*	DG	3	35.948	34.945	35,913	1.00	0.00
ATOM	76	N9	DG	3	36.555	34.246	34.022	1.00	0.00
ATOM	77	C8	DG	3	37 128	33 382	33 144	1 00	0 00
ATOM	78	н8	DG	3	37 753	32 587	33 474	1 00	0 00
ATOM	79	N7	DG	3	36 871	33 620	31 895	1 00	0 00
	80	C5	DG	3	36 035	34 723	31 947	1 00	0.00
	81	CG		3	35 382	35 466	30 913	1 00	0.00
	01 01	06	DG	2	35 /32	35 325	20.713	1 00	0.00
	83	N1	DG	3	34 589	36 468	31 385	1 00	0.00
	Q /	111 11	DG	2	34.088	37 010	30 716	1 00	0.00
ATOM	01	ар ар	DG	2	24.000	37.010	30.710	1 00	0.00
	00		DG	2	34.443	30.750	32.007	1 00	0.00
ATOM	80		DG	3	33.02/	37.779	32.971	1.00	0.00
ATOM	87	THZ	DG	3	33.4/9	38.050	33.930	1.00	0.00
ATOM	88	ZHZ	DG	3	33.158	38.2/3	32.225	1.00	0.00
ATOM	89	N3	DG	3	35.056	36.132	33.6/8	1.00	0.00
ATOM	90	C4	DG	3	35.832	35.109	33.246	1.00	0.00
ATOM	91	C3*	DG	3	37.288	33.010	37.419	1.00	0.00
ATOM	92	H3*	DG	3	37.620	32.053	37.770	1.00	0.00
ATOM	93	C2*	DG	3	36.474	32.905	36.139	1.00	0.00
ATOM	94	1H2*	DG	3	36.884	32.125	35.524	1.00	0.00
ATOM	95	2H2*	DG	3	35.445	32.674	36.312	1.00	0.00
ATOM	96	03*	DG	3	36.551	33.686	38.454	1.00	0.00
ATOM	97	Ρ	DC	4	35.282	33.007	39.158	1.00	0.00
ATOM	98	01P	DC	4	35.313	33.295	40.604	1.00	0.00
ATOM	99	O2P	DC	4	35.197	31.550	38.967	1.00	0.00
ATOM	100	05*	DC	4	34.098	33.775	38.396	1.00	0.00
ATOM	101	C5*	DC	4	33.836	35.139	38.737	1.00	0.00
ATOM	102	1H5*	DC	4	34.687	35.728	38.472	1.00	0.00
ATOM	103	2H5*	DC	4	33.695	35.225	39.793	1.00	0.00
ATOM	104	C4*	DC	4	32.605	35.685	38.019	1.00	0.00
ATOM	105	H4*	DC	4	32.476	36.715	38.300	1.00	0.00
ATOM	106	04*	DC	4	32.800	35.614	36.599	1.00	0.00
ATOM	107	C1*	DC	4	31.668	35.068	35.935	1.00	0.00
ATOM	108	H1*	DC	4	30.994	35.870	35.716	1.00	0.00
ATOM	109	Nl	DC	4	32.095	34.346	34.710	1.00	0.00

ATOM	110	CG	DC	4	32.987	33.323	34.788	1.00	0.00
ATOM	111	Нб	DC	4	33.344	33.028	35.750	1.00	0.00
ATOM	112	C5	DC	4	33.418	32.709	33.668	1.00	0.00
ATOM	113	Н5	DC	4	34.126	31.915	33.729	1.00	0.00
ATOM	114	C4	DC	4	32.915	33.173	32.437	1.00	0.00
ATOM	115	N4	DC	4	33.336	32.593	31.305	1.00	0.00
ATOM	116	1H4	DC	4	34.007	31.839	31.342	1.00	0.00
ATOM	117	2H4	DC	4	32.983	32.911	30.413	1.00	0.00
ATOM	118	N3	DC	4	32.039	34.142	32.341	1.00	0.00
ATOM	119	C2	DC	4	31.613	34.730	33.461	1.00	0.00
ATOM	120	02	DC	4	30.788	35.596	33.338	1.00	0.00
ATOM	121	C3*	DC	4	31.322	34.899	38.305	1.00	0.00
ATOM	122	Н3*	DC	4	31.458	34.206	39.109	1.00	0.00
ATOM	123	C2*	DC	4	31.025	34.195	36.997	1.00	0.00
ATOM	124	1H2*	DC	4	31.470	33.225	37.017	1.00	0.00
ATOM	125	2H2*	DC	4	29.978	34.079	36.828	1.00	0.00
ATOM	126	03*	DC	4	30.270	35.823	38.618	1.00	0.00
ATOM	127	Ρ	DG	5	28.904	35.314	39.294	1.00	0.00
ATOM	128	OlP	DG	5	28.355	36.366	40.152	1.00	0.00
ATOM	129	02P	DG	5	29.068	34.096	40.090	1.00	0.00
ATOM	130	05*	DG	5	27.997	35.043	37.999	1.00	0.00
ATOM	131	C5*	DG	5	27.350	36.134	37.349	1.00	0.00
ATOM	132	1H5*	DG	5	28.089	36.842	37.034	1.00	0.00
ATOM	133	2H5*	DG	5	26.698	36.618	38.040	1.00	0.00
ATOM	134	C4*	DG	5	26.551	35.676	36.137	1.00	0.00
ATOM	135	H4*	DG	5	26.035	36.521	35.729	1.00	0.00
ATOM	136	04*	DG	5	27.444	35.154	35.139	1.00	0.00
ATOM	137	C1*	DG	5	26.986	33.919	34.626	1.00	0.00
ATOM	138	H1*	DG	5	26.294	34.111	33.839	1.00	0.00
ATOM	139	N9	DG	5	28.096	33.096	34.108	1.00	0.00
ATOM	140	C8	DG	5	28.960	32.291	34.789	1.00	0.00
ATOM	141	Н8	DG	5	28.964	32.217	35.857	1.00	0.00
ATOM	142	N7	DG	5	29.759	31.602	34.034	1.00	0.00
ATOM	143	C5	DG	5	29.398	31.980	32.743	1.00	0.00
ATOM	144	CG	DG	5	29.860	31.549	31.458	1.00	0.00
ATOM	145	06	DG	5	30.704	30.738	31.183	1.00	0.00
ATOM	146	N1	DG	5	29.223	32.174	30.402	1.00	0.00
ATOM	147	Hl	DG	5	29.514	31.913	29.471	1.00	0.00
ATOM	148	C2	DG	5	28.226	33.098	30.533	1.00	0.00
ATOM	149	N2	DG	5	27.701	33.600	29.406	1.00	0.00
ATOM	150	1H2	DG	5	28.048	33.294	28.508	1.00	0.00
ATOM	151	2H2	DG	5	26.958	34.282	29.456	1.00	0.00
ATOM	152	N3	DG	5	27.774	33.486	31.721	1.00	0.00
ATOM	153	C4	DG	5	28.393	32.907	32.784	1.00	0.00
ATOM	154	C3*	DG	5	25.561	34.547	36.438	1.00	0.00
ATOM	155	Н3*	DG	5	25.409	34.414	37.493	1.00	0.00
ATOM	156	C2*	DG	5	26.218	33.339	35.795	1.00	0.00
ATOM	157	1H2*	DG	5	26.883	32.894	36.496	1.00	0.00
ATOM	158	2H2*	DG	5	25.514	32.604	35.486	1.00	0.00
ATOM	159	03*	DG	5	24.314	34.844	35.799	1.00	0.00
ATOM	160	Ρ	ΤG	6	22.984	34.103	36.398	1.00	0.00
ATOM	161	02P	ΤG	6	23.203	33.729	37.837	1.00	0.00
ATOM	162	01P	ΤG	6	21.744	34.928	36.196	1.00	0.00
ATOM	163	05*	ΤG	6	22.963	32.775	35.443	1.00	0.00
ATOM	164	C5*	ΤG	6	21.955	32.693	34.417	1.00	0.00
ATOM	165	1H5*	ΤG	б	21.263	33.534	34.512	1.00	0.00
ATOM	166	2H5*	ΤG	б	21.394	31.767	34.559	1.00	0.00

ATOM	167	C4*	ΤG	б	22.618	32.694	33.033	1.00	0.00
ATOM	168	H4*	ΤG	6	22.865	33.706	32.706	1.00	0.00
ATOM	169	04*	ΤG	6	23.827	31.913	33.080	1.00	0.00
ATOM	170	C1*	ΤG	6	24.022	31.317	31.790	1.00	0.00
ATOM	171	H1*	ΤG	6	24.353	32.101	31.106	1.00	0.00
ATOM	172	C2*	ΤG	6	22.612	30.872	31.405	1.00	0.00
ATOM	173	1H2*	ΤG	6	22.380	29,920	31.887	1.00	0.00
ATOM	174	2H2*	ΤG	6	22.490	30.772	30.324	1.00	0.00
ATOM	175	N1	ΤG	6	24.995	30.236	31.797	1.00	0.00
АТОМ	176	C2	тG	6	25 930	30 128	30 836	1 00	0 00
АТОМ	177	02	тG	6	25 984	30 908	29 907	1 00	0 00
АТОМ	178	N3	тG	6	26 737	29 048	30 907	1 00	0 00
ATOM	179	н3	тG	6	27 335	28 881	30 117	1 00	0 00
ATOM	180	C4	тG	6	26 822	28 207	31 960	1 00	0 00
ATOM	181	04	тC	6	27 571	27 252	31 941	1 00	0.00
	182	C5	TC	6	26 120	28 645	33 216	1 00	0.00
ATOM	183	05	тC	6	25 925	20.015	34 089	1 00	0.00
ATOM	184	U ЦОБ	TC	6	25.725 25.431	26 850	33 605	1 00	0.00
ATOM	105	CM	TC	6	25.451	20.000	22.000	1 00	0.00
ATOM	106		TG TC	6	20.903	29.703	22.220	1 00	0.00
ATOM	107		TC	6	27.121	30.309	33.209 24 04E	1 00	0.00
ATOM	107	211M 211M		6	20.433	20.039	24 212	1 00	0.00
ATOM	100	CG		6	27.937	29.293	27.212	1 00	0.00
ATOM	100		IG TC	6	24.773	29.230	32.029	1.00	0.00
ATOM	101	HO OG	IG TC	6	24.305	29.701 29.196	22.090	1.00	0.00
ATOM	100	00	IG TC	6	23.930	20.100	34.340 21 EE2	1.00	0.00
ATOM	102	HU0	IG TC	6	24.351	27.000	31.352	1.00	0.00
ATOM	104	U2"	тG	6	21.730	31.901	31.909	1.00	0.00
ATOM	194	H3^	TG	6	20.823	31.583	32.438	1.00	0.00
ATOM	195	03^	TG	6	21.395	32.887	30.927	1.00	0.00
ATOM	196	P	DG	/	20.109	32.470	30.004	1.00	0.00
ATOM	100	OIP	DG	7	19.423	33.038	29.501	1.00	0.00
ATOM	198	OZP	DG	/	19.149	31.729	30.773	1.00	0.00
ATOM	199	05^	DG	/	20.781	31.577	28.84/	1.00	0.00
ATOM	200	1.115 *	DG	/	21.404	32.229	27.744	1.00	0.00
ATOM	201	TH2 v	DG	/	22.146	32.896	28.112	1.00	0.00
ATOM	202	2H5^	DG	7	20.678	32.801	27.229	1.00	0.00
ATOM	203	C4 ^	DG	/	22.056	31.203	26.770	1.00	0.00
ATOM	204	H4*	DG	/	22.5/2	31.834	26.024	1.00	0.00
ATOM	205	04*	DG	/	23.014	30.455	27.441	1.00	0.00
ATOM	206	CT ~	DG	/	23.077	29.151	26.890	1.00	0.00
ATOM	207	HI ^	DG	/	23.731	29.154	26.052	1.00	0.00
ATOM	208	N9	DG	/	23.553	28.207	27.909	1.00	0.00
ATOM	209	C.8	DG	7	23.134	28.121	29.198	1.00	0.00
ATOM	210 011	H8	DG	/	22.332	28./24	29.566	1.00	0.00
ATOM		N/	DG	/	23.81/	27.293	29.931	1.00	0.00
ATOM		C5	DG	/	24.736	26.753	29.034	1.00	0.00
ATOM	213	C6	DG	7	25.777	25.789	29.213	1.00	0.00
ATOM	214	06	DG	.7	26.123	25.225	30.219	1.00	0.00
ATOM	215	NL	DG	.7	26.458	25.530	28.033	1.00	0.00
A'I'OM	216	HI	DG	7	27.209	24.856	28.080	1.00	0.00
A'I'OM	217	C2	DG	./	26.201	26.123	26.818	1.00	0.00
ATOM	218	N2	DG	7	26.970	25.747	25.787	1.00	0.00
ATOM	219	1H2	DG	7	26.823	26.153	24.874	1.00	0.00
ATOM	220	2H2	DG	7	27.694	25.057	25.924	1.00	0.00
ATOM	221	N3	DG	7	25.244	27.037	26.642	1.00	0.00
ATOM	222	C4	DG	7	24.561	27.290	27.784	1.00	0.00
ATOM	223	C3*	DG	7	21.096	30.276	26.096	1.00	0.00

ATOM	224	Н3*	DG	7	20.097	30.392	26.455	1.00	0.00
ATOM	225	C2*	DG	7	21.656	28.910	26.452	1.00	0.00
ATOM	226	1H2*	DG	7	21.101	28.506	27.250	1.00	0.00
ATOM	227	2H2*	DG	7	21.615	28.235	25.652	1.00	0.00
ATOM	228	03*	DG	7	21.145	30.506	24.688	1.00	0.00
ATOM	229	Ρ	DT	8	20.101	29.835	23.674	1.00	0.00
ATOM	230	OlP	DT	8	19.783	30.786	22.611	1.00	0.00
ATOM	231	O2P	DT	8	18.849	29.374	24.292	1.00	0.00
ATOM	232	05*	DT	8	21.039	28.674	23.088	1.00	0.00
ATOM	233	C5*	DT	8	20.610	27.313	23.100	1.00	0.00
ATOM	234	1H5*	DT	8	19.859	27.184	22.351	1.00	0.00
ATOM	235	2H5*	DT	8	20.177	27.075	24.046	1.00	0.00
ATOM	236	C4*	DT	8	21.788	26.390	22.817	1.00	0.00
ATOM	237	H4*	DT	8	22.351	26.752	21.980	1.00	0.00
ATOM	238	04*	DT	8	22.652	26.310	23.961	1.00	0.00
ATOM	239	C1*	DT	8	23.259	25.011	24.082	1.00	0.00
ATOM	240	H1*	DT	8	24.280	25.082	23.782	1.00	0.00
ATOM	241	N1	DT	8	23.187	24.472	25.458	1.00	0.00
ATOM	242	CG	DT	8	22.230	24.913	26.334	1.00	0.00
ATOM	243	Нб	DT	8	21.492	25.605	25.987	1.00	0.00
ATOM	244	C5	DT	8	22.216	24.500	27.619	1.00	0.00
ATOM	245	C7	DT	8	21.163	25.027	28.565	1.00	0.00
ATOM	246	1H7	DT	8	20.556	24.201	28.941	1.00	0.00
ATOM	247	2H7	DT	8	21.640	25.519	29.414	1.00	0.00
ATOM	248	3H7	DT	8	20.518	25.742	28.051	1.00	0.00
ATOM	249	C4	DT	8	23.217	23.562	28.102	1.00	0.00
ATOM	250	04	DT	8	23.336	23.156	29.226	1.00	0.00
ATOM	251	N3	DT	8	24.099	23.128	27.156	1.00	0.00
ATOM	252	Н3	DT	8	24.805	22.487	27.448	1.00	0.00
ATOM	253	C2	DT	8	24.125	23.517	25.849	1.00	0.00
ATOM	254	02	DT	8	24.934	23.024	25.111	1.00	0.00
ATOM	255	C3*	DT	8	21.367	24.952	22.565	1.00	0.00
ATOM	256	Н3*	DT	8	20.488	24.738	23.090	1.00	0.00
ATOM	257	C2*	DT	8	22.497	24.153	23.105	1.00	0.00
ATOM	258	1H2*	DT	8	22.159	23.301	23.545	1.00	0.00
ATOM	259	2H2*	DT	8	23.114	23.887	22.340	1.00	0.00
ATOM	260	03*	DT	8	21.206	24.714	21.183	1.00	0.00
ATOM	261	Ρ	DT	9	20.393	23.442	20.650	1.00	0.00
ATOM	262	01P	DT	9	20.003	23.675	19.257	1.00	0.00
ATOM	263	O2P	DT	9	19.153	23.220	21.384	1.00	0.00
ATOM	264	05*	DT	9	21.448	22.244	20.824	1.00	0.00
ATOM	265	C5*	DT	9	22.581	22.178	19.957	1.00	0.00
ATOM	266	1H5*	DT	9	23.135	23.091	20.039	1.00	0.00
ATOM	267	2H5*	DT	9	22.259	22.087	18.946	1.00	0.00
ATOM	268	C4*	DT	9	23.488	21.000	20.313	1.00	0.00
ATOM	269	H4*	DT	9	24.398	21.092	19.756	1.00	0.00
ATOM	270	04*	DT	9	23.791	21.024	21.718	1.00	0.00
ATOM	271	C1*	DT	9	23.540	19.760	22.342	1.00	0.00
ATOM	272	H1*	DT	9	24.444	19.179	22.310	1.00	0.00
ATOM	273	N1	DT	9	23.057	19.944	23.734	1.00	0.00
ATOM	274	C6	DT	9	21.922	20.673	23.970	1.00	0.00
ATOM	275	H6	DT	9	21.416	21.120	23.143	1.00	0.00
ATOM	276	C5	DT	9	21.454	20.856	25.220	1.00	0.00
ATOM	277	C7	DT	9	20.220	21.698	25.443	1.00	0.00
ATOM	278	1H7	DT	9	19.932	22.197	24.515	1.00	0.00
ATOM	279	2H7	DT	9	19.397	21.069	25.785	1.00	0.00
ATOM	280	3H7	DT	9	20.419	22.451	26.207	1.00	0.00

ATOM	281	C4	DT	9	22.147	20.284	26.353	1.00	0.00
ATOM	282	04	DT	9	21.839	20.392	27.505	1.00	0.00
ATOM	283	N3	DT	9	23.280	19.554	26.025	1.00	0.00
ATOM	284	HЗ	DT	9	23.794	19.137	26.789	1.00	0.00
ATOM	285	C2	DT	9	23.775	19.352	24.751	1.00	0.00
ATOM	286	02	DT	9	24.780	18.702	24.544	1.00	0.00
ATOM	287	C3*	DT	9	22.862	19.633	20.042	1.00	0.00
ATOM	288	Н3*	DT	9	21.988	19.717	19.425	1.00	0.00
ATOM	289	C2*	DT	9	22.520	19.104	21.424	1.00	0.00
АТОМ	290	1H2*	DT	9	21.521	19.411	21.665	1.00	0.00
АТОМ	291	2H2*	DT	9	22 564	18 032	21 487	1 00	0 00
АТОМ	292	03*	DT	9	23 846	18 797	19 413	1 00	0 00
АТОМ	293	P	DT	10	23.428	17.447	18.654	1.00	0.00
АТОМ	294	- 01P	DT	10	24.391	17.128	17.594	1.00	0.00
АТОМ	295	02P	DT	10	22 083	17 500	18 075	1 00	0 00
ATOM	296	05*	DT	10	23 494	16 403	19 869	1 00	0 00
ATOM	297	05*	DT	10	24 759	15 917	20 308	1 00	0 00
ATOM	298	1H5*	DT	10	25 422	16 740	20.200	1 00	0 00
	299	2115 2115 *		10	25.122	15, 270	19 566	1 00	0.00
ATOM	300	C4*	DT	10	24 640	15 170	21 631	1 00	0.00
ATOM	301	сı н4*	DT	10	25 613	14 853	21 949	1 00	0.00
ATOM	302	 ∩4*	DT	10	24 080	16 011	22 646	1 00	0.00
	303	C1*		10	23 596	15 188	22.010	1 00	0.00
ATOM	303	ст u1*		10	23.370	14 959	23.704	1 00	0.00
ATOM	305	N1		10	24.432	15 840	24.330	1 00	0.00
ATOM	305	CE		10	22.521 21 512	16 522	23.860	1 00	0.00
	307	со н6		10	21.512 21 505	16 560	22.795	1 00	0.00
	308	C5		10	20 535	17 126	24 565	1 00	0.00
	300	C7		10	19 456	17 898	23 843	1 00	0.00
ATOM	310	1H7	DT	10	19 720	18 020	22 791	1 00	0.00
ATOM	311	2H7	DT	10	18 505	17 367	23 918	1 00	0.00
ATOM	312	3H7	DT	10	19 338	18 883	24 299	1 00	0.00
	313	C4		10	20 536	17 074	26 011	1 00	0.00
ATOM	314	04	DT	10	19 760	17.614	26.751	1 00	0.00
ATOM	315	N3	DT	10	21 549	16 344	26 556	1 00	0.00
ATOM	316	н3	DT	10	21.515	16 255	27 545	1 00	0.00
ATOM	317	C2	DT	10	22.501 22 532	15 707	25 870	1 00	0.00
ATOM	318	02	DT	10	22.332	15 052	26 476	1 00	0 00
ATOM	319	C3*	DT	10	23.701	13 977	21 607	1 00	0.00
ATOM	320	ц3*	DT	10	22 922	14 159	20 911	1 00	0.00
ATOM	321	C2*	DT	10	23 146	13 918	23 007	1 00	0 00
АТОМ	322	1H2*	DT	10	22 099	13 851	22 968	1 00	0 00
ATOM	323	2H2*	DT	10	23 513	13 073	23 520	1 00	0 00
АТОМ	324	03*	DT	10	24,404	12.779	21.277	1.00	0.00
ATOM	325	P	DG	11	23.605	11.448	20.877	1.00	0.00
ATOM	326	01P	DG	11	24.388	10.638	19.958	1.00	0.00
АТОМ	327	02P	DG	11	22 323	11 711	20 254	1 00	0 00
ATOM	328	05*	DG	11	23 411	10 750	22 290	1 00	0 00
АТОМ	329	C5*	DG	11	24.467	10.007	22.850	1.00	0.00
ATOM	330	1H5*	DG	11	25.333	10.605	22.837	1.00	0.00
ATOM	331	2H5*	DG	11	24.649	9.151	22.272	1.00	0.00
ATOM	332	C4*	DG	11	24.171	9.590	24.266	1.00	0.00
ATOM	333	H4*	DG	11	25.033	9,153	24.702	1.00	0.00
ATOM	334	04*	DG	11	23.811	10.731	25,019	1.00	0.00
ATOM	335	C1 *	DG	11	22.819	10.444	25.974	1.00	0.00
ATOM	336	H1*	DG	11	23.264	10.420	26.918	1.00	0.00
ATOM	337	N9	DG	11	21.741	11.432	25.977	1.00	0.00

ATOM	338	C8	DG	11	21.044	11.924	24.925	1.00	0.00
ATOM	339	Н8	DG	11	21.245	11.612	23.928	1.00	0.00
ATOM	340	N7	DG	11	20.147	12.803	25.234	1.00	0.00
ATOM	341	C5	DG	11	20.230	12.871	26.613	1.00	0.00
ATOM	342	C6	DG	11	19.498	13.633	27.569	1.00	0.00
ATOM	343	06	DG	11	18.629	14.449	27.400	1.00	0.00
ATOM	344	Nl	DG	11	19.854	13.369	28.857	1.00	0.00
ATOM	345	H1	DG	11	19.379	13.871	29.570	1.00	0.00
ATOM	346	C2	DG	11	20.806	12.494	29.206	1.00	0.00
ATOM	347	N2	DG	11	21.027	12.364	30.521	1.00	0.00
ATOM	348	1H2	DG	11	21.733	11.723	30.854	1.00	0.00
ATOM	349	2H2	DG	11	20.487	12.907	31.181	1.00	0.00
ATOM	350	N3	DG	11	21.521	11.783	28.368	1.00	0.00
ATOM	351	C4	DG	11	21.188	12.015	27.077	1.00	0.00
ATOM	352	C3*	DG	11	23.014	8.631	24.414	1.00	0.00
ATOM	353	Н3*	DG	11	22.405	8.719	23.612	1.00	0.00
ATOM	354	C2*	DG	11	22.359	9.085	25.602	1.00	0.00
ATOM	355	1H2*	DG	11	21.416	9.098	25.482	1.00	0.00
АТОМ	356	2H2*	DG	11	22.567	8.447	26.291	1.00	0.00
АТОМ	357	03*	DG	11	23.413	7.298	24.582	1.00	0.00
АТОМ	358	P	DT3	12	22.379	6.085	24.498	1.00	0.00
АТОМ	359	01P	DT3	12	23.082	4.846	24.183	1.00	0.00
АТОМ	360	02P	 DT 3	12	21.347	6.291	23.496	1.00	0.00
ATOM	361	05*	DT3	12	21.756	6.075	25.967	1.00	0.00
ATOM	362	C5*	DT3	12	22.473	5,492	27.038	1.00	0.00
ATOM	363	1H5*	DT 3	12	23 432	5 927	27 071	1 00	0 00
ATOM	364	2H5*	DT 3	12	22 593	4 456	26 866	1 00	0 00
ATOM	365	C4*		12	21 775	5 717	28 364	1 00	0 00
ATOM	366	ылан Н4*	DT 3	12	22 386	5 366	29 155	1 00	0 00
ATOM	367	04*	DT 3	12	21 528	7 100	28 568	1 00	0 00
ATOM	368	C1*	DT3	12	20.335	7.319	29.309	1.00	0.00
АТОМ	369	от H1*	DT3	12	20,606	7.624	30.287	1.00	0.00
АТОМ	370	N1	DT 3	12	19.490	8.338	28.657	1.00	0.00
ATOM	371	C6	DT3	12	19.238	8.273	27.321	1.00	0.00
АТОМ	372	Н6	DT3	12	19,670	7.487	26.756	1.00	0.00
АТОМ	373	C5	DT3	12	18.465	9,186	26.709	1.00	0.00
ATOM	374	C7	DT3	12	18.234	9.094	25.220	1.00	0.00
АТОМ	375	1H7	DT 3	12	17.492	8.323	25.003	1.00	0.00
АТОМ	376	2H7	DT3	12	17.859	10.047	24.845	1.00	0.00
ATOM	377	3H7	DT3	12	19.168	8.856	24.707	1.00	0.00
АТОМ	378	C4	DT3	12	17.872	10.257	27.456	1.00	0.00
АТОМ	379	04	DT3	12	17.176	11.127	27.021	1.00	0.00
АТОМ	380	N3	DT3	12	18.141	10.243	28.783	1.00	0.00
АТОМ	381	H3	DT3	12	17.699	10.931	29.338	1.00	0.00
АТОМ	382	C2	DT3	12	18,914	9.331	29.426	1.00	0.00
АТОМ	383	02	DT3	12	19.042	9.416	30.606	1.00	0.00
АТОМ	384	C3*	DT3	12	20.419	5.080	28.474	1.00	0.00
АТОМ	385	H3*	DT3	12	19.975	5.072	27.555	1.00	0.00
АТОМ	386	C2*	DT3	12	19.676	5.967	29.365	1.00	0.00
ATOM	387	1H2*	DT3	12	18.626	6.028	29.071	1.00	0.00
ATOM	388	2H2*	DT3	12	19.723	5.581	30.302	1.00	0.00
ATOM	389	03*	DT3	12	20.503	3.772	29.037	1.00	0.00
ATOM	390	НЗТ	DT3	12	20.216	3.130	28.364	1.00	0.00
TER			-						
ATOM	391	н5т	DA5	13	10.685	14.890	33.017	1.00	0.00
ATOM	392	05*	DA5	13	10.435	15.477	33.754	1.00	0.00
ATOM	393	C5*	DA5	13	10.429	14.715	34.938	1.00	0.00
ATOM	394	1H5*	DA5	13	9.872	13.790	34.774	1.00	0.00
------	-----	----------	-----	----	--------	--------	---------	------	------
ATOM	395	2H5*	DA5	13	9.940	15.276	35.737	1.00	0.00
ATOM	396	C4*	DA5	13	11.872	14.402	35.327	1.00	0.00
ATOM	397	H4*	DA5	13	11.820	13.724	36.126	1.00	0.00
ATOM	398	04*	DA5	13	12.562	13.800	34.257	1.00	0.00
ATOM	399	C1*	DA5	13	13.797	14.397	33.998	1.00	0.00
ATOM	400	H1*	DA5	13	14.536	13.882	34.545	1.00	0.00
ATOM	401	N9	DA5	13	14.090	14.352	32.557	1.00	0.00
ATOM	402	C8	DA5	13	13.553	15.093	31.566	1.00	0.00
АТОМ	403	Н8	DA5	13	12.831	15.835	31.753	1.00	0.00
АТОМ	404	N7	DA5	13	13.975	14.802	30.378	1.00	0.00
АТОМ	405	C5	DA5	13	14.876	13.793	30.613	1.00	0.00
АТОМ	406	C6	DA5	13	15.698	13,006	29.807	1.00	0.00
ATOM	407	NG	DA5	13	15.773	13.086	28.511	1.00	0.00
АТОМ	408	1H6	DA5	13	16.405	12,499	28.040	1.00	0.00
ATOM	409	2H6	DA5	13	15 261	13 770	28 043	1 00	0 00
ATOM	410	N1	DA5	13	16 464	12 086	30 321	1 00	0 00
ATOM	411	C2	DA5	13	16 447	11 940	31 620	1 00	0 00
ATOM	412	ед н2		13	17 081	11 197	32 004	1 00	0 00
ATOM	413	N3		13	15 736	12 596	32.5001	1 00	0.00
ATOM	414	C4		13	14 958	13 517	31 934	1 00	0.00
ATOM	415	C3*	DA5	13	12 693	15 599	35 731	1 00	0.00
ATOM	416	н3*		13	12 090	16 455	35 875	1 00	0 00
ATOM	417	C2*		13	13 646	15 764	34 577	1 00	0.00
ATOM	418	1H2*	DA5	13	13 220	16 413	33 867	1 00	0.00
АТОМ	419	2H2*	DA5	13	14.567	16,166	34.872	1.00	0.00
ATOM	420	03*	DA5	13	13.381	15.289	36.942	1.00	0.00
ATOM	421	P	DC	14	14.192	16.404	37.746	1.00	0.00
ATOM	422	- 01P	DC	14	14.085	16.161	39.186	1.00	0.00
ATOM	423	02P	DC	14	13.751	17.764	37.467	1.00	0.00
ATOM	424	05*	DC	14	15.655	16.125	37.179	1.00	0.00
ATOM	425	C5*	DC	14	16.383	15.015	37.681	1.00	0.00
ATOM	426	1H5*	DC	14	15.762	14.160	37.660	1.00	0.00
ATOM	427	2H5*	DC	14	16.663	15.193	38.688	1.00	0.00
ATOM	428	C4*	DC	14	17.618	14.735	36.856	1.00	0.00
ATOM	429	H4*	DC	14	18.068	13.833	37.204	1.00	0.00
ATOM	430	04*	DC	14	17.293	14.578	35.473	1.00	0.00
ATOM	431	C1*	DC	14	18.449	14.789	34.701	1.00	0.00
ATOM	432	H1*	DC	14	19.007	13.900	34.728	1.00	0.00
ATOM	433	Nl	DC	14	18.146	15.178	33.304	1.00	0.00
ATOM	434	C6	DC	14	17.257	16.159	33.032	1.00	0.00
ATOM	435	нб	DC	14	16.771	16.642	33.840	1.00	0.00
ATOM	436	C5	DC	14	16.993	16.500	31.757	1.00	0.00
ATOM	437	Н5	DC	14	16.289	17.259	31.542	1.00	0.00
ATOM	438	C4	DC	14	17.672	15.814	30.744	1.00	0.00
ATOM	439	N4	DC	14	17.432	16.101	29.477	1.00	0.00
ATOM	440	1H4	DC	14	16.769	16.811	29.203	1.00	0.00
ATOM	441	2H4	DC	14	17.936	15.545	28.824	1.00	0.00
ATOM	442	N3	DC	14	18.528	14.874	30.980	1.00	0.00
ATOM	443	C2	DC	14	18.788	14.550	32.254	1.00	0.00
ATOM	444	02	DC	14	19.592	13.687	32.440	1.00	0.00
ATOM	445	C3*	DC	14	18.652	15.835	36.867	1.00	0.00
ATOM	446	Н3*	DC	14	18.203	16.748	37.075	1.00	0.00
ATOM	447	C2*	DC	14	19.187	15.826	35.483	1.00	0.00
ATOM	448	1H2*	DC	14	19.059	16.731	35.059	1.00	0.00
ATOM	449	2H2*	DC	14	20.174	15.617	35.495	1.00	0.00
ATOM	450	03*	DC	14	19.653	15.553	37.819	1.00	0.00

ATOM	451	Ρ	DA	15	20.806	16.606	38.158	1.00	0.00
ATOM	452	01P	DA	15	21.206	16.453	39.555	1.00	0.00
ATOM	453	02P	DA	15	20.410	17.991	37.934	1.00	0.00
ATOM	454	05*	DA	15	21.951	16.144	37.145	1.00	0.00
ATOM	455	C5*	DA	15	22.603	14.898	37.359	1.00	0.00
ATOM	456	1H5*	DA	15	21.871	14.128	37.388	1.00	0.00
ATOM	457	2H5*	DA	15	23.090	14.912	38.298	1.00	0.00
ATOM	458	C4*	DA	15	23.602	14.576	36.266	1.00	0.00
ATOM	459	H4*	DA	15	23.938	13.569	36.399	1.00	0.00
ATOM	460	04*	DA	15	22.977	14.683	34.986	1.00	0.00
ATOM	461	C1*	DA	15	23.674	15.531	34.107	1.00	0.00
ATOM	462	H1*	DA	15	24.285	14.938	33.492	1.00	0.00
ATOM	463	N9	DA	15	22.744	16.313	33.278	1.00	0.00
ATOM	464	C8	DA	15	21.910	17.321	33.648	1.00	0.00
ATOM	465	Н8	DA	15	21.861	17.676	34.649	1.00	0.00
ATOM	466	N7	DA	15	21.175	17.798	32.690	1.00	0.00
ATOM	467	C5	DA	15	21.576	17.045	31.593	1.00	0.00
MOTA	468	CG	DA	15	21.230	17.012	30.234	1.00	0.00
ATOM	469	NG	DA	15	20.299	17.828	29.723	1.00	0.00
ATOM	470	1H6	DA	15	20.073	17.782	28.739	1.00	0.00
ATOM	471	2H6	DA	15	19.822	18.490	30.319	1.00	0.00
MOTA	472	Nl	DA	15	21.823	16.167	29.396	1.00	0.00
ATOM	473	C2	DA	15	22.737	15.373	29.891	1.00	0.00
ATOM	474	Н2	DA	15	23.199	14.699	29.185	1.00	0.00
ATOM	475	N3	DA	15	23.169	15.279	31.131	1.00	0.00
ATOM	476	C4	DA	15	22.540	16.154	31.942	1.00	0.00
ATOM	477	C3*	DA	15	24.788	15.528	36.220	1.00	0.00
ATOM	478	Н3*	DA	15	24.832	16.111	37.071	1.00	0.00
MOTA	479	C2*	DA	15	24.549	16.337	35.017	1.00	0.00
ATOM	480	1H2*	DA	15	24.077	17.183	35.279	1.00	0.00
ATOM	481	2H2*	DA	15	25.425	16.587	34.585	1.00	0.00
ATOM	482	03*	DA	15	25.971	14.795	36.085	1.00	0.00
ATOM	483	Ρ	DA	16	27.406	15.480	36.161	1.00	0.00
ATOM	484	01P	DA	16	28.271	14.675	37.002	1.00	0.00
ATOM	485	02P	DA	16	27.396	16.842	36.684	1.00	0.00
ATOM	486	05*	DA	16	27.834	15.450	34.628	1.00	0.00
ATOM	487	C5*	DA	16	28.216	14.214	34.047	1.00	0.00
ATOM	488	1H5*	DA	16	27.367	13.579	34.024	1.00	0.00
ATOM	489	2H5*	DA	16	28.948	13.749	34.648	1.00	0.00
ATOM	490	C4*	DA	16	28.779	14.377	32.641	1.00	0.00
ATOM	491	H4*	DA	16	29.036	13.405	32.268	1.00	0.00
ATOM	492	04*	DA	16	27.790	14.964	31.788	1.00	0.00
ATOM	493	C1*	DA	16	28.227	16.198	31.222	1.00	0.00
ATOM	494	H1*	DA	16	28.585	16.011	30.230	1.00	0.00
ATOM	495	N9	DA	16	27.099	17.143	31.194	1.00	0.00
ATOM	496	C8	DA	16	26.512	17.799	32.232	1.00	0.00
ATOM	497	Н8	DA	16	26.885	17.723	33.227	1.00	0.00
ATOM	498	N7	DA	16	25.454	18.487	31.918	1.00	0.00
ATOM	499	C5	DA	16	25.366	18.291	30.542	1.00	0.00
ATOM	500	C6	DA	16	24.499	18.733	29.528	1.00	0.00
ATOM	501	NG	DA	16	23.451	19.524	29.794	1.00	0.00
ATOM	502	1H6	DA	16	22.846	19.829	29.045	1.00	0.00
ATOM	503	2H6	DA	16	23.264	19.815	30.743	1.00	0.00
ATOM	504	Nl	DA	16	24.691	18.394	28.267	1.00	0.00
ATOM	505	C2	DA	16	25.717	17.626	27.985	1.00	0.00
ATOM	506	Н2	DA	16	25.856	17.387	26.958	1.00	0.00
ATOM	507	N3	DA	16	26.609	17.122	28.818	1.00	0.00

ATOM	508	C4	DA	16	26.373	17.495	30.095	1.00	0.00
ATOM	509	C3*	DA	16	29.990	15.308	32.574	1.00	0.00
ATOM	510	Н3*	DA	16	30.466	15.401	33.530	1.00	0.00
ATOM	511	C2*	DA	16	29.403	16.622	32.088	1.00	0.00
ATOM	512	1H2*	DA	16	29.071	17.190	32.934	1.00	0.00
ATOM	513	2H2*	DA	16	30.109	17.219	31.546	1.00	0.00
ATOM	514	03*	DA	16	30.908	14.772	31.611	1.00	0.00
ATOM	515	P	DA	17	32.404	15.345	31.502	1.00	0.00
ATOM	516	01P	DA	17	33.329	14.263	31.137	1.00	0.00
ATOM	517	02P	DA	17	32.886	15.979	32.737	1.00	0.00
ATOM	518	05*	DA	17	32.213	16.431	30.341	1.00	0.00
ATOM	519	C5*	DA	17	32.183	16.010	28.976	1.00	0.00
ATOM	520	1H5*	DA	17	31.354	15.349	28.827	1.00	0.00
ATOM	521	2H5*	DA	17	33.079	15.478	28.748	1.00	0.00
ATOM	522	C4*	DA	17	32.060	17.204	28.040	1.00	0.00
ATOM	523	H4*	DA	17	32.130	16.863	27.025	1.00	0.00
ATOM	524	04*	DA	17	30.781	17.836	28.231	1.00	0.00
ATOM	525	C1*	DA	17	30.923	19.247	28.360	1.00	0.00
ATOM	526	H1*	DA	17	30.928	19.680	27.377	1.00	0.00
ATOM	527	N9	DA	17	29.811	19.820	29.145	1.00	0.00
ATOM	528	C8	DA	17	29.707	19.991	30.494	1.00	0.00
ATOM	529	Н8	DA	17	30.464	19.669	31.173	1.00	0.00
ATOM	530	N7	DA	17	28.610	20.562	30.890	1.00	0.00
ATOM	531	C5	DA	17	27.941	20.809	29.693	1.00	0.00
ATOM	532	C6	DA	17	26.722	21.415	29.334	1.00	0.00
ATOM	533	NG	DA	17	25.858	21.927	30.167	1.00	0.00
ATOM	534	1H6	DA	17	25.026	22.328	29.802	1.00	0.00
ATOM	535	2H6	DA	17	26.057	21.917	31.134	1.00	0.00
ATOM	536	Nl	DA	17	26.341	21.500	28.071	1.00	0.00
ATOM	537	C2	DA	17	27.144	21.001	27.155	1.00	0.00
ATOM	538	Н2	DA	17	26.804	21.083	26.150	1.00	0.00
ATOM	539	N3	DA	17	28.314	20.415	27.324	1.00	0.00
ATOM	540	C4	DA	17	28.659	20.349	28.632	1.00	0.00
ATOM	541	C3*	DA	17	33.112	18.286	28.316	1.00	0.00
ATOM	542	Н3*	DA	17	33.891	17.918	28.965	1.00	0.00
ATOM	543	C2*	DA	17	32.311	19.400	28.971	1.00	0.00
ATOM	544	1H2*	DA	17	32.286	19.227	30.028	1.00	0.00
ATOM	545	2H2*	DA	17	32.728	20.369	28.796	1.00	0.00
ATOM	546	03*	DA	17	33.663	18.748	27.067	1.00	0.00
ATOM	547	P	DC	18	35.161	19.306	27.018	1.00	0.00
ATOM	548	OIP	DC	18	35.712	19.224	25.660	1.00	0.00
ATOM	549	02P	DC	18	36.061	18.567	27.903	1.00	0.00
ATOM	550	05*	DC	18	34.951	20.801	27.537	1.00	0.00
ATOM	551	C5*	DC	18	34.922	21.912	26.629	1.00	0.00
ATOM	552	TH2*	DC	18	35.851	21.959	26.100	1.00	0.00
ATOM	553	2H5^	DC	18	34.846	22.803	27.210	1.00	0.00
ATOM	554	C4^	DC	10	33.765	21.849	25.639	1.00	0.00
ATOM	555	H4^	DC	10	33.895	21.026	24.96/	1.00	0.00
	550	04^	DC	10	34.534	21.099	20.350	1.00	0.00
	557	U1 *	DC	10	31.022	22.700	20.110	1 00	0.00
	220	п⊥" м1	DC	10 10	20 002	22.403 22 100	20.049 07 016	1 00	0.00
	559		DC	⊥0 1 Q	30.903 31 E1E	∠3.⊥9∠ 23 107	21.340 28 E61	1 00	0.00
	500	С0 ЦК	DC	10 10	33 235 27.273	23.12/ 22 702	20.501 28 616	1 00	
	562	но СБ	DC	18	30 80K	22.193 22 172	20.010 29 700	1 00	
	562	с. urs		18	31 424	23.7/3	30 649	1 00	0.00
ATOM	564	C4	DC	18	29.549	23.931	29.601	1.00	0.00
	201	~ -							

ATOM	565	N4	DC	18	28.866	24.280	30.699	1.00	0.00
ATOM	566	1H4	DC	18	29.303	24.211	31.608	1.00	0.00
ATOM	567	2H4	DC	18	27.915	24.609	30.619	1.00	0.00
ATOM	568	N3	DC	18	28.960	24.033	28.407	1.00	0.00
ATOM	569	C2	DC	18	29.606	23.689	27.262	1.00	0.00
ATOM	570	02	DC	18	29.041	23.826	26.206	1.00	0.00
ATOM	571	C3*	DC	18	33.618	23.155	24.853	1.00	0.00
ATOM	572	Н3*	DC	18	34.532	23.715	24.853	1.00	0.00
ATOM	573	C2*	DC	18	32.508	23.888	25.581	1.00	0.00
ATOM	574	1H2*	DC	18	32.922	24.453	26.394	1.00	0.00
ATOM	575	2H2*	DC	18	31.960	24.553	24.941	1.00	0.00
ATOM	576	03*	DC	18	33.197	22.874	23.515	1.00	0.00
ATOM	577	Р	DA	19	33.634	23.851	22.327	1.00	0.00
ATOM	578	01P	DA	19	33.496	23.178	21.040	1.00	0.00
ATOM	579	02P	DA	19	35.015	24.287	22.463	1.00	0.00
ATOM	580	05*	DA	19	32.628	25.075	22.508	1.00	0.00
ATOM	581	C5*	DA	19	31.351	25.040	21.886	1.00	0.00
ATOM	582	1H5*	DA	19	30.780	24.241	22.303	1.00	0.00
ATOM	583	2H5*	DA	19	31.483	24.842	20.853	1.00	0.00
ATOM	584	C4*	DA	19	30.602	26.355	22.030	1.00	0.00
ATOM	585	H4*	DA	19	29.747	26.333	21.391	1.00	0.00
ATOM	586	04*	DA	19	30.141	26.518	23.378	1.00	0.00
ATOM	587	C1*	DA	19	30.416	27.819	23.892	1.00	0.00
ATOM	588	HI*	DA	19	29.582	28.467	23.701	1.00	0.00
ATOM	589	N9 GO	DA	19	30.660	27.710	25.345	1.00	0.00
ATOM	590	C.8	DA	19	31./36	27.170	25.985	1.00	0.00
ATOM	591	H8	DA	19	32.596	26.821	25.458	1.00	0.00
ATOM	592			19	31.012	27.064	27.271	1.00	0.00
ATOM	593	05		19	30.359	27.024	27.502	1.00	0.00
ATOM	594			19	29.592	27.034	20.070	1 00	0.00
	595	116		19	20.002	27.400	29.090	1 00	0.00
	590	2110 2116		19	20 806	27.033	30.095	1 00	0.00
	598	ZHU N1		19	20.090	27.005	28 554	1 00	0.00
	599	C2		19	20.303	28 830	20.354 27 364	1 00	0.00
	600	С2 H2		19	27.550	20.030	27.304	1 00	0.00
ATOM	601	N3		19	28 597	29.511	26 203	1 00	0.00
ATOM	602	C4		19	20.327	28.051	26 342	1 00	0.00
ATOM	603	C3*		19	31 456	27 589	20.312	1 00	0.00
ATOM	604	н3*	DA	19	32 410	27 319	21 313	1 00	0 00
ATOM	605	C2*	DA	19	31.607	28.278	23.068	1.00	0.00
ATOM	606	1H2*	DA	19	32,516	27.949	23.511	1.00	0.00
ATOM	607	2H2*	DA	19	31.644	29.336	22.982	1.00	0.00
ATOM	608	03*	DA	19	30.753	28.412	20.782	1.00	0.00
ATOM	609	P	DC	20	31.457	29.684	20.100	1.00	0.00
ATOM	610	01P	DC	20	31.067	29.787	18.689	1.00	0.00
ATOM	611	02P	DC	20	32.921	29.669	20.188	1.00	0.00
ATOM	612	05*	DC	20	30.816	30.841	21.005	1.00	0.00
ATOM	613	C5*	DC	20	29.471	31.234	20.763	1.00	0.00
ATOM	614	1H5*	DC	20	28.880	30.366	20.612	1.00	0.00
ATOM	615	2H5*	DC	20	29.426	31.822	19.883	1.00	0.00
ATOM	616	C4*	DC	20	28.891	32.010	21.931	1.00	0.00
ATOM	617	H4*	DC	20	27.846	32.172	21.782	1.00	0.00
ATOM	618	04*	DC	20	29.072	31.290	23.149	1.00	0.00
ATOM	619	C1*	DC	20	28.992	32.203	24.253	1.00	0.00
ATOM	620	H1*	DC	20	27.968	32.219	24.578	1.00	0.00
ATOM	621	N1	DC	20	29.887	31.821	25.371	1.00	0.00

ATOM	622	CG	DC	20	31.118	31.292	25.141	1.00	0.00
ATOM	623	нб	DC	20	31.457	31.195	24.135	1.00	0.00
ATOM	624	C5	DC	20	31.880	30.877	26.172	1.00	0.00
ATOM	625	Н5	DC	20	32.833	30.436	25.991	1.00	0.00
ATOM	626	C4	DC	20	31.363	31.042	27.471	1.00	0.00
ATOM	627	N4	DC	20	32.091	30.626	28.517	1.00	0.00
ATOM	628	1H4	DC	20	32,991	30.194	28.367	1.00	0.00
ATOM	629	2H4	DC	20	31.739	30.746	29.456	1.00	0.00
ATOM	630	N3	DC	20	30.208	31.610	27.714	1.00	0.00
ATOM	631	C2	DC	20	29.472	32.022	26.681	1.00	0.00
ATOM	632	02	DC	20	28.440	32.576	26.939	1.00	0.00
ATOM	633	C3*		20	29 557	33 345	22 195	1 00	0 00
ATOM	634	H3*	DC	20	30.577	33.268	21.971	1.00	0.00
ATOM	635	C2*	DC	20	29.366	33.552	23.654	1.00	0.00
ATOM	636	1H2*	DC	20	30 233	33 914	24 071	1 00	0 00
ATOM	637	2H2*		20	28 616	34 246	23 820	1 00	0 00
ATOM	638	03*		20	28 950	34 389	21 458	1 00	0 00
ATOM	639	P	DG	21	29 667	35 811	21 319	1 00	0 00
	640	 1_D	DG	21	29.007	36 479	20 092	1 00	0.00
	641	02P	DG	21	31 127	35 731	20.092	1 00	0.00
	642	05*	DG	21	29 171	36 574	22 645	1 00	0.00
	643	05*	DG	21	27 816	37 027	22.019	1 00	0.00
	644	145*	DG	21	27.010 27 171	36 174	22.760	1 00	0.00
	645	2115 2115 *	DG	21	27.567	37 614	21 892	1 00	0.00
	646	C4*	DG	21	27.507	37 854	24 019	1 00	0.00
	647	сı u4*	DG	21	26 535	38 074	24 103	1 00	0.00
	648	∩4*	DG	21	28 004	37 105	25 175	1 00	0.00
	649	C1*	DG	21	29 104	37 725	25 848	1 00	0.00
	650	ст ц1*	DG	21	29.101 28 724	38 242	26 714	1 00	0.00
	651	N9	DG	21	30 094	36 712	26 253	1 00	0.00
	652	C8	DG	21	30.972	36 025	25 475	1 00	0.00
	653	н8	DG	21	31 015	36 160	24 415	1 00	0.00
ΔTΩM	654	N7	DG	21	31 715	35 180	26 117	1 00	0 00
	655	C5	DG	21	31 318	35 339	20.11	1 00	0.00
	656	CG	DG	21	31 770	34 725	28 655	1 00	0.00
	657	06	DG	21	32 610	33 883	28 820	1 00	0.00
	658	N1	DG	21	31 144	35 193	29 774	1 00	0.00
ATOM	659	н1	DG	21	31 426	34 807	30 664	1 00	0 00
	660	C2	DG	21	30 186	36 125	29 751	1 00	0.00
	661	N2	DG	21	29 676	36 467	30 942	1 00	0.00
	662	1H2	DG	21	28 946	37 162	30.998	1 00	0.00
ATOM	663	2H2	DG	21	30 024	36 031	31 785	1 00	0.00
ATOM	664	N3	DG	21	29 715	36 706	28 663	1 00	0 00
ATOM	665	C4	DG	21	30 328	36 276	27 530	1 00	0 00
	666	C3*	DG	21	28 395	39 147	24 067	1 00	0.00
	667	ц3*	DG	21	28 637	39 504	23 082	1 00	0.00
ATOM	668	C2*	DG	21	29 626	38 755	24 860	1 00	0.00
	669	1H2*	DG	21	30 352	38 324	24 193	1 00	0.00
	670	2H2*	DG	21	30 090	39 587	25 357	1 00	0.00
ATOM	671	03*	DG	21	27.627	40.134	24.779	1.00	0.00
ATOM	672	P		22	28.142	41,651	24,916	1.00	0.00
ATOM	673	- 01Þ		22	27 010	42 574	24 761	1 00	0 00
	674	02P		2.2	29 179	42 027	23 947	1 00	0 00
ATOM	675	05*		22	28 718	41 620	26 411	1 00	0 00
ATOM	676	C5*		22	27.809	41,661	27.512	1.00	0.00
ATOM	677	1H5*		22	27,172	40.807	27.476	1.00	0.00
ATOM	678	2H5*	DC	22	27.200	42.524	27.429	1.00	0.00

ATOM	679	C4*	DC	22	28.529	41.676	28.843	1.00	0.00
ATOM	680	H4*	DC	22	27.804	41.669	29.629	1.00	0.00
ATOM	681	04*	DC	22	29.343	40.514	28.968	1.00	0.00
ATOM	682	C1*	DC	22	30.630	40.810	29.444	1.00	0.00
ATOM	683	H1*	DC	22	30.593	40.815	30.498	1.00	0.00
ATOM	684	Nl	DC	22	31.625	39.832	28.958	1.00	0.00
ATOM	685	C6	DC	22	31.892	39.709	27.630	1.00	0.00
ATOM	686	Нб	DC	22	31.388	40.337	26.937	1.00	0.00
ATOM	687	C5	DC	22	32.772	38.799	27.196	1.00	0.00
ATOM	688	H5	DC	22	32.975	38,701	26.155	1.00	0.00
ATOM	689	C4	DC	22	33.391	37.995	28.165	1.00	0.00
ATOM	690	N4	DC	22	34.270	37.067	27.762	1.00	0.00
ATOM	691	1H4	DC	22	34.474	36.957	26.779	1.00	0.00
ATOM	692	2H4	DC	22	34.729	36.478	28.442	1.00	0.00
ATOM	693	N3	DC	2.2	33.166	38.098	29.444	1.00	0.00
ATOM	694	C2	DC	2.2	32.292	39.022	29.863	1.00	0.00
ATOM	695	02	DC	2.2	32.126	39,115	31.051	1.00	0.00
ATOM	696	C3*	DC	2.2	29.478	42.855	29.010	1.00	0.00
ATOM	697	ц3*	DC	22	29 360	43 555	28 223	1 00	0 00
ATOM	698	C2*		22	30 832	42 222	28 994	1 00	0 00
ATOM	699	1H2*		22	31 204	42 253	28 026	1 00	0 00
ATOM	700	2H2*		22	31 490	42 720	29 608	1 00	0 00
ATOM	701	03*	DC	22	29 247	43 482	30 269	1 00	0 00
ATOM	702	P		23	29 906	44 895	30 604	1 00	0.00
ATOM	703	01P		23	28 986	45 712	31 394	1 00	0.00
ATOM	704	02P		23	30 285	45 649	29 415	1 00	0.00
ATOM	705	05*		23	31 188	44 443	31 434	1 00	0.00
ATOM	706	05*		23	31 098	44 284	32 843	1 00	0 00
ATOM	707	1H5*		23	30 306	43 633	33 057	1 00	0.00
ATOM	708	2H5*	DA	23	30 886	45 214	33 281	1 00	0 00
ATOM	709	C4*	DA	23	32.356	43.729	33.459	1.00	0.00
ATOM	710	H4*	DA	23	32.220	43.582	34.508	1.00	0.00
ATOM	711	04*	DA	23	32.674	42.485	32.873	1.00	0.00
ATOM	712	C1*	DA	23	34.053	42.269	32.876	1.00	0.00
ATOM	713	H1*	DA	23	34.291	41.590	33.625	1.00	0.00
ATOM	714	N9	DA	23	34.508	41.765	31.586	1.00	0.00
ATOM	715	C8	DA	23	34.151	42.182	30.343	1.00	0.00
ATOM	716	Н8	DA	23	33.474	42.987	30.192	1.00	0.00
ATOM	717	N7	DA	23	34.680	41.504	29.380	1.00	0.00
ATOM	718	C5	DA	23	35.488	40.594	30.054	1.00	0.00
ATOM	719	C6	DA	23	36.353	39.557	29.675	1.00	0.00
ATOM	720	NG	DA	23	36.542	39.234	28.388	1.00	0.00
ATOM	721	1H6	DA	23	37.172	38.484	28.144	1.00	0.00
ATOM	722	2нб	DA	23	36.055	39.741	27.662	1.00	0.00
ATOM	723	N1	DA	23	37.023	38.861	30.572	1.00	0.00
ATOM	724	C2	DA	23	36.868	39.168	31.834	1.00	0.00
ATOM	725	Н2	DA	23	37.428	38.592	32.530	1.00	0.00
ATOM	726	N3	DA	23	36.096	40.097	32.352	1.00	0.00
ATOM	727	C4	DA	23	35.417	40.771	31.397	1.00	0.00
ATOM	728	C3*	DA	23	33.574	44.566	33.237	1.00	0.00
ATOM	729	Н3*	DA	23	33.492	45.044	32.343	1.00	0.00
ATOM	730	C2*	DA	23	34.619	43.588	33.195	1.00	0.00
ATOM	731	1H2*	DA	23	35.283	43.808	32.537	1.00	0.00
ATOM	732	2H2*	DA	23	35.035	43.594	34.078	1.00	0.00
ATOM	733	03*	DA	23	33.832	45.476	34.275	1.00	0.00
ATOM	734	P	DC3	24	34.849	46.673	34.087	1.00	0.00
ATOM	735	01P	DC3	24	34.648	47.670	35.123	1.00	0.00

$\pi - \pi $	726	020	DC2	24	21 600	17 211	22 700	1 00	0 00
ATOM	730	OZP	DCS	24	34.690	47.311	34.700	1.00	0.00
A'I'OM	/3/	05*	DC3	24	36.258	45.94/	34.222	1.00	0.00
ATOM	738	C5*	DC3	24	36.759	45.600	35.503	1.00	0.00
ATOM	739	1H5*	DC3	24	36.036	45.017	36.003	1.00	0.00
ATOM	740	2H5*	DC3	24	36.928	46.477	36.072	1.00	0.00
ATOM	741	C4*	DC3	24	38.049	44.808	35.405	1.00	0.00
ATOM	742	H4*	DC3	24	38.351	44.483	36.367	1.00	0.00
ATOM	743	04*	DC3	24	37.871	43.673	34.578	1.00	0.00
ATOM	744	C1*	DC3	24	39.059	43.356	33.874	1.00	0.00
ATOM	745	H1*	DC3	24	39.523	42.529	34.358	1.00	0.00
ATOM	746	Nl	DC3	24	38.753	43.056	32.462	1.00	0.00
ATOM	747	CG	DC3	24	38.015	43.910	31.716	1.00	0.00
ATOM	748	нб	DC3	24	37.612	44.774	32.173	1.00	0.00
ATOM	749	C5	DC3	24	37.799	43.663	30.416	1.00	0.00
ATOM	750	Н5	DC3	24	37.221	44.331	29.834	1.00	0.00
ATOM	751	C4	DC3	24	38.375	42.518	29.873	1.00	0.00
ATOM	752	N4	DC3	24	38.187	42.253	28.573	1.00	0.00
ATOM	753	1H4	DC3	24	37.636	42.879	28.003	1.00	0.00
ATOM	754	2H4	DC3	24	38.598	41.427	28.162	1.00	0.00
ATOM	755	N3	DC3	24	39.087	41.690	30.562	1.00	0.00
ATOM	756	C2	DC3	24	39.282	41.935	31.864	1.00	0.00
ATOM	757	02	DC3	24	39.938	41.149	32.473	1.00	0.00
ATOM	758	C3*	DC3	24	39.134	45.632	34.747	1.00	0.00
ATOM	759	Н3*	DC3	24	38.699	46.333	34.032	1.00	0.00
ATOM	760	C2*	DC3	24	39.941	44.569	34.030	1.00	0.00
ATOM	761	1H2*	DC3	24	40.220	44.934	33.139	1.00	0.00
ATOM	762	2H2*	DC3	24	40.786	44.347	34.551	1.00	0.00
ATOM	763	03*	DC3	24	39.932	46.310	35.715	1.00	0.00
ATOM	764	н3т	DC3	24	40.577	46.866	35.242	1.00	0.00
TER									

END

APPENDIX G

SCRIPTS

File G-1: This script takes a MARDIGRAS intensity file and assigns error values from NOESY spectra files and generates AMBER restraints segregated by error.

```
#!/usr/bin/perl -w
#errtrans
         A program to combine two intensity files and one restraint file in the format
#
                    % errtrans first.INT.1 second.INT.1 restraint.rst
#
#
#Subroutines
# &pullerr
          Takes an intensity file and creates a hash containing only errors using atom names and numbers as pointers
#
# &filesep
          Removes first element from final combined files
#
# &newfile
          Stores an array with given file name
#
#
#Variables
#@ARGV
          Array containg arguments passed to the function in sequential order [Intensity file, Intensity file, Restraint file]
#
# $#ARGV
          Scalar containing the number of arguments passed to the program
#
# INT
          Filehandle for an intensity files
#
# $FirstRes
          Scalar containg first residue name and number
#
# $SecondRes
#
          Scalar containing second residue name and number
# $combo1
          Scalar containg one option for hash indexing for information
#
# $combo2
#
          Scalar containing second option for hash indexing for information
# $hashindex
#
          Scalar containing final decision for indexing hash in intensity
# %INT1
         Hash containing all the errors from first intensity file indexed via residue name and number and sorted
#
alphanumerically
# %INT2
#
          Hash containing all the errors from the second intensity file indexed via residue name and number and sorted
alphanumerically
# @LArray
          Array containing data from intensity files, [First Residue Name, First Residue Number, Second Residue Name,
#
Second Residue Number, Intensity, Error]
#%@$OUTPUT
          Hash, Array, or Scalar containing subroutine calculation
#
# $RSTfile
          Name of restraint file
#
# $jcount,$icount,$tencount,$twentycount,$thirtycount,$fortycount,$fiftycount,$nocount,$jj
          Counter variables intitialized at zero
#
# @lineArray
```

```
Array containing data from restraint file in format [First Residue Name, First Residue Number, Second Residue
Name, Second Residue Number, Lower Bound, Upper Bound, Center, Width, steps, steps, steps, steps]
# RST
          Filehandle for restraint file
#
# @newarray
          Array containing combined restraint data and intensity errors with errors at both begining and end of array
#
element
# @sortednew
          A version of @newarray sorted via errors
#
         @twentys,@thirtys,@fortys,@fiftys,@nos
# @tens.
#
          Arrays containing only elements of indicated errors
# @aten, @atwenty, @athirty, @aforty, @afifty, @anos
          Arrays with data finally formatted correctly
#
# @final
#
          Array containing formatted data in subroutine
# $line
#
          Scalar for each line to be formatted in subroutine
# $pieces
#
          Scalar containing one piece of information that needs to be reorganized in an array
                               CODE
#
# Test to insure correct number of inputs
if($#ARGV != 3) {
   print " You Suck, do it right!\n just kidden to use this correctly try\n
       %\MAR2AMBER primary.INT secondary.INT totat_rst_list pdbfile \n\n\n";
   exit;
}
%INT1 = &pullerr($ARGV[0]);
%INT2 = &pullerr($ARGV[1]);
                    The following code reads the data from the restraint file and stores it into a hash, RST
$RSTfile = $ARGV[2];
print "\tReading $RSTfile...\n";
open(RST, $RSTfile)||die("Cannot open file!");
jcount = 0;
while(<RST>){
   if(/H/ && substr($_, 0, 6) ne "HEADER") #only reads lines that start w/ H and are > 1 character deep
   {
      @lineArray = split;
                               # Separates information on each line
                               # Create possible indexing paramters
           $FirstRes = "$lineArray[0] \t $lineArray[1]";
           $SecondRes = "$lineArray[2] \t $lineArray[3]";
      $combo1 = "$FirstRes \t $SecondRes";
      $combo2 = "$SecondRes \t $FirstRes";
     # Assign indexing paramters based upon a sorting algorithm
     if($combo1 lt $combo2) {
          $hashindex[$jcount] = "$combo1";
                    }else{
                               $hashindex[$jcount] = "$combo2";
          $RST{$hashindex[$jcount]} = "$lineArray[4] \t $lineArray[5]"; # Store information for the restraint file in a hash,
%RST
          $icount++;
}}
#The following code creates a hash containing the combined data from the intensity and restraint files with the errors
being at both beginning and end for sorting purposes
sicount = 0:
while ($icount < $jcount){
          if (exists $INT1{$hashindex[$icount]}) {
                    $newarray[$icount] = "$INT1{$hashindex[$icount]} \t $hashindex[$icount] \t
$RST{$hashindex[$icount]} \t $INT1{$hashindex[$icount]}\n";
                    } elsif (exists $INT2{$hashindex[$icount]}){
                               $newarray[$icount] = "$INT2{$hashindex[$icount]} \t $hashindex[$icount] \t
$RST{$hashindex[$icount]} \t $INT2{$hashindex[$icount]}\n";
                    }
```

```
else{
                                     $newarray[$icount] = "no_error \t $hashindex[$icount] \t $RST{$hashindex[$icount]} \t no_error\n";
                  $icount++;
@sortednew = sort @newarray;
# Initialize counter variables
s_{z}=0; s_{z}=0;
# Following code sorts new restraint file by error and places each in a new variable
while ($zcount < $jcount) {
                  $a = substr($sortednew[$zcount],0,2);
                  if ($a eq "10") {
                                     $tens[$tencount] = $sortednew[$zcount];
                                     $tencount++;
                  }elsif ($a eq "20") {
                                     $twentys[$twentycount] = $sortednew[$zcount];
                                     $twentvcount++:
                  }elsif ($a eq "30") {
                                     $thirtys[$thirtycount] = $sortednew[$zcount];
                                     $thirtycount++;
                  }elsif ($a eq "40") {
                                     $fortys[$fortycount] = $sortednew[$zcount];
                                     $fortycount++;
                  }elsif ($a eq "50") {
                                     $fiftys[$fiftycount] = $sortednew[$zcount];
                                     $fiftycount++;
                  }else {
                                     $nos[$nocount] = $sortednew[$zcount];
                                     $nocount++;
                  }
$zcount++;
# Following code removes the first element (error) from the arrays
j = 0;
foreach $line (@sortednew) {
                   @pieces = split(' ',$line);
                  $atotal[$jj] = "$pieces[1] \t $pieces[2] \t $pieces[3] \t $pieces[4] \t $pieces[5] \t $pieces[6] \t $pieces[7]\n";
                  $jj++;
}
@aten = &filesep(@tens);
@atwenty = &filesep(@twentys);
@athirty = &filesep(@thirtys);
@aforty = &filesep(@fortys);
@afifty = &filesep(@fiftys);
@anos = &filesep(@nos);
#
                                                        SUBROUTINES
# The following subroutine creates a hash containing all the errors from the intensity files stored by the sorted residue
names and numbers with name of intensity file passed to subroutine
sub pullerr
{
                  local(@LArray,$FirstRes, $SecondRes, $combo1, $combo2, $hashindex, %INT, %OUTPUT, $_);
                  print "\tReading $_[0]...\n";
                  open(INT,$_[0]);
                  while(<INT>) {
                                     if(/H/ && substr($_, 0, 6) ne "HEADER") #only reads lines that start w/ H and are > 1 character deep
                                     {
                                                        @LArray = split(' ',$_);
                                                                                                                # Separates information on each line
                                                        # Create possible indexing paramters
```

```
$FirstRes = "$LArray[0] \t $LArray[1]"
```

```
$SecondRes = "$LArray[2] \t $LArray[3]";
```

```
$combo1 = "$FirstRes \t $SecondRes";
$combo2 = "$SecondRes \t $FirstRes";
```

```
# Assign indexing paramters based upon a sorting algorithm
                              if($combo1 lt $combo2) {
                                                  $hashindex = "$combo1";
                                                  }else{
                                                             $hashindex = "$combo2";
                                                  }
                                                             $INT{$hashindex} = "$LArray[5]";
                                                                                                     # Store information
for the intensity file in a hash, INTT
          close(INT);
          %OUTPUT = %INT;
}
# The following subroutine removes the first space-delimited block of information in an array with array passed to
subroutine
sub filesep
{
          local(@final,@pieces,@OUTPUT);
          $jj = 0;
          foreach $line (@_) {
                    @pieces = split(' ',$line);
                    $final[$jj] = "$pieces[1] \t $pieces[2] \t $pieces[3] \t $pieces[4] \t $pieces[5] \t $pieces[6]\n";
                    $ii++;
          }
          @OUTPUT = @final;
}
#
                              MORE CODE
$pdbfile = $ARGV[3];
open(PDB, $pdbfile)||die("Cannot open file!");
print "\tReading $pdbfile...\n";
count = 1;
while(<PDB>){ #Makes a Hash with Res Variable and increments though sequence starting at 1
   if(/ O3\* /){
```

```
chomp($_);
      if(/DC5/ || /C5/ || /DC3/ || /C3/ || / C/ || /DC/)
     {
        $res = "CYT";
      if(/DG5/ || /G5/ || /DG3/ || /G3/ || / G/ || /DG/)
      {
        $res = "GUA";
      if(/DA5/ || /A5/ || /DA3/ || /A3/ || / A/ || /DA/)
     {
        $res = "ADE";
      if(/DT5/ || /T5/ || /DT3/ || /T3/ || / T/ || /DT/)
      {
        $res = "THY";
     }
      #adducts
     if(/tg/ || /TG/)
     {
         $res = "TG";
if(/fa/ || /FA/)
     {
         $res = "FA";
if(/fb/ || /FB/)
```

```
{
    $res = "FB";
    }
    $seq[$count] = $res;
    print "\t$count\t$seq[$count]\n";
    $count++;
    }
}
close(PDB);
print "\n\tSequence stored.\n";
@master = &restyp(\@atotal,\@seq);
@ten = &restyp(\@atwenty,\@seq);
@twenty = &restyp(\@atwenty,\@seq);
@thirty = &restyp(\@atwirty,\@seg);
```

@forty = &restyp(\@aforty,\@seq); @fifty = &restyp(\@afifty,\@seq); @noerror = &restyp(\@anos,\@seq);

"MASTER" file containing all errors , everything.rst &newfile(@master,"master.list"); # File containing errors of 10, ten.rst &newfile(@ten,"ten.temp"); # File containing errors of 20. twenty.rst &newfile(@twenty,"twenty.temp"); # File containing errors of 30, thirty.rst &newfile(@thirty,"thirty.temp"); # File containing errors of 40, forty.rst &newfile(@forty,"forty.temp"); # File containing errors of 50, fifty.rst &newfile(@fifty,"fifty.temp"); # File containing the peaks with no errors, noerror.rst &newfile(@noerror,"noerror.temp");

print "\n\tConverting files into AMBER format.\n\n\n"; system "/sb/apps/amber9/x86_64/exe/makeDIST_RST -ual ten.temp -pdb \$pdbfile -map /home/brownkl/MyScripts/map.AMBER -rst 10.RST"; system "rm ten.temp";

print "\n\tConverting files into AMBER format.\n\n\n"; system "/sb/apps/amber9/x86_64/exe/makeDIST_RST -ual twenty.temp -pdb \$pdbfile -map /home/brownkl/MyScripts/map.AMBER -rst 20.RST"; system "rm twenty.temp";

print "\n\tConverting files into AMBER format.\n\n\n"; system "/sb/apps/amber9/x86_64/exe/makeDIST_RST -ual thirty.temp -pdb \$pdbfile -map /home/brownkl/MyScripts/map.AMBER -rst 30.RST"; system "rm thirty.temp";

print "\n\tConverting files into AMBER format.\n\n\n"; system "/sb/apps/amber9/x86_64/exe/makeDIST_RST -ual forty.temp -pdb \$pdbfile -map /home/brownkl/MyScripts/map.AMBER -rst 40.RST"; system "rm forty.temp";

print "\n\tConverting files into AMBER format.\n\n\n"; system "/sb/apps/amber9/x86_64/exe/makeDIST_RST -ual fifty.temp -pdb \$pdbfile -map /home/brownkl/MyScripts/map.AMBER -rst 50.RST"; system "rm fifty.temp";

print "\n\tConverting files into AMBER format.\n\n\n"; system "/sb/apps/amber9/x86_64/exe/makeDIST_RST -ual noerror.temp -pdb \$pdbfile -map /home/brownkl/MyScripts/map.AMBER -rst noerror.RST"; system "rm noerror.temp";

print "\n\tEnjoy your new restraints... Be-Yotch!!!.\n\n";

MORE SUBROUTINES

```
sub restyp
{
local($ii, @pieces, @resdat);
$ii = 0;
foreach $dat (@{$_[0]}){
    @pieces = split(" ",$dat);
    if (defined($pieces[6])){
        $resdat[$ii] = "$pieces[1] \t $_[1]->[$pieces[1]] \t $pieces[0] \t $pieces[3] \t $_[1]->[$pieces[3]] \t $pieces[2] \t
$pieces[4] \t $pieces[5] \t $pieces[6]\n";
        $ii++;
        }else{
        $resdat[$ii] = "$pieces[1]\t$_[1]->[$pieces[1]]\t$pieces[0]\t$pieces[3]\t$_[1]->[$pieces[3]\t$_[1]->[$pieces[3]\t$_[1]->[$pieces[3]\t$_[1]->[$pieces[3]\t$_[1]->[$pieces[3]\t$_[1]->[$pieces[3]\t$_[1]->[$pieces[3]\t$_[1]->[$pieces[3]\t$pieces[3]\t$_[1]->[$pieces[3]\t$pieces[3]\t$_[1]->[$pieces[3]\t$pieces[3]\t$_[1]->[$pieces[3]\t$pieces[3]\t$_[1]->[$pieces[3]\t$pieces[3]\t$pieces[3]\t$pieces[3]\t$pieces[3]\t$pieces[4]\t$pieces[5]\n";
        $ii++;
        }
        @OUTPUT = @resdat;
}
# The following subscuting starses the page of matrix is a set file with given file page with information page of the subscuting starses the page of matrix is a set file with given file page with information page of the subscuting starses the page of matrix is a set file with given file page with information page of the subscuting starses the page of matrix is a set file with given file page of the subscuting starses the page of matrix is a set file with given file page of the subscuting starses the page of the subscuting starses the page of matrix is a set file with given file page of the subscuting starses the page of matrix is a set file with given file page of the subscuting starses the page of matrix is a set file with given file page of the subscuting starses the page of matrix is a set file with given file page of the subscuting starses the page of matrix is a set file with given file page of the subscuting starses the page of the subscuting starses the starses the page of the subscuting starses the star
```

The following subroutine stores the passed matrix in a .rst file with given file name with information passed to subroutine in format: filename(@arraydata, "filename") sub newfile

```
local($name);
$name = pop @_;
open (FHANDLE, "> $name");
print FHANDLE @_;
close (FHANDLE);
```

}

{

#

File G-2: This script is used for running multiple MARDIGRAS jobs from a single input file and index runs at multiple correlation times to standard distances for A form and B form DNA with *syn* or *anti* base configuration.

#!/bin/csh

#file usage mardirun <project name> <correlation time> <mixing time> <noise>
#input files must have very specific formats for this to work (see below)
#

set mardigras=/sb/apps/Linux/bin/mardigras set sugdist = /home/brownkl/MyScripts/sugdist.range set sugdist1 = /home/brownkl/MyScripts/sugdist1.range set long = /home/brownkl/MyScripts/long.range set short = /home/brownkl/MyScripts/short.range

cat<<eof>constrain.dat eof

cat<<eof>1.PARM PDB FILE \$1_\$2ns.pdb INT FILE \$1_\$3.INT.1 OUT FILE \$1_\$3ms_\$2ns FREQUENCY 800.0 RANDMARDI 50 MINITN 2 MAXITN 10 NOISE ABSOLUTE UNNORMALIZED \$4 NORMALIZE ALL METHYL JUMP 3 PRINT DISTANCES eof

\$mardigras 1.PARM

\rm 1.PARM

rand-restr<<rand-restr_end>rand-restr.junk 1 50 \$1_\$3ms_\$2ns 10 \$1_\$3ms_\$2ns.rrst rand-restr_end \rm rand-restr.junk

rrange<<rrange_end>rrange.junk \$sugdist \$1_\$3ms_\$2ns.rrst \$1_\$3ms_\$2ns.ianti rrange_end \rm rrange.junk

rrange<<rrange_end1>rrange.junk

\$sugdist1
\$1_\$3ms_\$2ns.rrst
\$1_\$3ms_\$2ns.isyn
rrange_end1
\rm rrange.junk

rrange<<rrange_end1>rrange.junk \$long \$1_\$3ms_\$2ns.rrst \$1_\$3ms_\$2ns.ilong rrange_end1 \rm rrange.junk

rrange<<rrange_end1>rrange.junk \$short \$1_\$3ms_\$2ns.rrst \$1_\$3ms_\$2ns.ishort rrange_end1 \rm rrange.junk

echo \$1_\$3ms_\$2ns.ianti >> INDEX grep r-center \$1_\$3ms_\$2ns.ianti >> INDEX grep average \$1_\$3ms_\$2ns.ianti >> INDEX

echo \$1_\$3ms_\$2ns.isyn >> INDEX grep r-center \$1_\$3ms_\$2ns.isyn >> INDEX grep average \$1_\$3ms_\$2ns.isyn >> INDEX

echo \$1_\$3ms_\$2ns.ilong >> INDEX grep r-center \$1_\$3ms_\$2ns.ilong >> INDEX grep average \$1_\$3ms_\$2ns.ilong >> INDEX

echo \$1_\$3ms_\$2ns.ishort >> INDEX grep r-center \$1_\$3ms_\$2ns.ishort >> INDEX grep average \$1_\$3ms_\$2ns.ishort >> INDEX

\rm constrain.dat

\rm \$1_\$3ms_\$2ns.ianti \rm \$1_\$3ms_\$2ns.isyn \rm \$1_\$3ms_\$2ns.ilong \rm \$1_\$3ms_\$2ns.ishort **File G-3:** This script is used for preparing pdb files with a common star and prime nomenclature.

#!/usr/bin/perl

#star2prime

#This will replace the "*" in insight PDBs with """ and """ #where appropriate

\$infile = \$ARGV[0]; \$outfile = \$ARGV[1];

open(INPUT, \$infile)||die("Cannot Open File");

print "\n\tChanging atom names...";

while(<INPUT>){ #move line by line thru the file

#if there is a filename in the header, change it s/\$infile/\$outfile/g;

#change the atom names
s/ DT / T /g;
s/ DT3/ T /g;
s/ 1HM / HM1 /g;
s/ 2HM / HM2 /g;
s/ 3HM / HM3 /g;
s/H1*/H1'/g;
s/H3*/H3'/g;
s/H4*/H4'/g;

#H2', H2'', H5', H5'' are also changed #a bug in Insight switchs H5" and H5', this fixes it s/1H2*/H2'1/g; s/2H2*/H2'2/g; s/2H5*/H5'2/g; s/1H5*/H5'1/g;

```
$replace .= $_;
```

}
close(INPUT);

open(OUTPUT, ">\$outfile");
print OUTPUT \$replace;
close(OUTPUT);

print "\tDONE!\n";

File G-3: This script is used for quickly analyzing pdb files with CORMA

```
#!/bin/csh
#
#usage %corma.com pdbfilenum INTfile outfile
set corma=/u/6.2/mardigras5.2_6.2/corma
set cormain=/u/6.2/mardigras5.2 6.2/corma.in
set prep=/home/kyleb/MyScripts/tgpdb.prep
cat<<eof>constrain.dat
eof
$cormain<<eof>corma.junk2
$1.pdb
file.pdb
У
i
3
3
eof
\rm corma.junk2
$prep file.pdb $1.PDB
$corma<<eof>corma.junk
800:
      #Spectrometer Frequence
      #ENTER EXPERIMENT TYPE: [N(OESY)/R(OESY),
n;
       #Enter RELAXATION DELAY (in sec), OR RETURN FOR FULL RELAXED
\r
SIMULATION:
      #INCLUDE KINETIC EXCHANGE? [def=n]:
n;
      #ENSEMBLE (MULTIPLE FAST EXCHANGE)? [def=n]
n;
$1.PDB:
              #ENTER PDB FILE-NAME :
       #COMPARE WITH EXPERIMENTAL INTENSITIES?
V:
$2;
       #ENTER NAME OF EXPERIMENTAL INTENSITY FILE:
      #NORMALIZE USING ONLY FIXED-DISTANCE INTENSITIES [def=f],
a;
$3:
       #NAME FOR INTENSITY FILE TO BE CREATED:
3;
      #CUTOFF LEVEL FOR INTENSITIES?
      #DISPLAY INTENSITIES IN EXTENDED PRECISION? [def=y]:
у;
      #ADD RANDOM NOISE? [def=n]
n;
      # SELECT METHYL JUMP MODEL:
3;
      #GENERATE POSTSCRIPT FILES FOR PLOTTING? [def=n]
n;
      #WRITE SUBMATRICES FILE IN EXTENDED FORMAT? [def=n]:
у;
25;
      # NUMBER OF RESIDUES PRINTED IN A ROW? [def=25]
eof
\rm corma.junk
\rm file.pdb
\rm constrain.dat
```

REFERENCES

- 1. DePinho, R. A. (2000) The age of cancer. *Nature 408*, 248-254.
- 2. Hoeijmakers, J. H. (2001) Genome maintenance mechanisms for preventing cancer. *Nature 411*, 366-374.
- 3. Kawanishi, S., Hiraku, Y. and Oikawa, S. (2001) Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. *Mutat. Res.* 488, 65-76.
- 4. Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. *Nature 408*, 239-247.
- 5. Lindahl, T. (1993) Instability and decay of the primary structure of DNA. *Nature 362*, 709-715.
- 6. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. *Proc. Natl. Acad. Sci. USA 90*, 7915-7922.
- 7. Halliwell, B. and Gutteridge, J. M. (1989) *Free Radicals in Biology and Medicine*, Claredon Press, Oxford.
- 8. Weinberg, R. A. (1989) Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. *Cancer Res.* 49, 3713-3721.
- 9. Miller, E. C. (1978) Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential Address. *Cancer Res.* 38, 1479-1496.
- 10. Singer, B. and Grungerger, D. (1983) *Molecular Biology of Mutagens and Carcinogens*, Plenum Press, New York.
- 11. Miller, J. A. (1970) Carcinogenesis by Chemicals: An Overview—G. H. A. Clowes Memorial Lecture *Cancer Res.* 30, 559-576.
- 12. (1976) Free Radicals in Biology, Vol. 1-5, Academic, New York.
- 13. Huttermann, J., Kohnlein, W., Teoule, R. and Bertinchamps, A. J. (1978) *Effects* of *Ionizing Radiation of DNA*, Springer, New York.
- 14. Wang, D., Kreutzer, D. A. and Essigmann, J. M. (1998) Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. *Mutat. Res.* 400, 99-115.

- 15. Friedberg, E. C. (1985) DNA Repair, W.H. Freeman and Co., New York.
- 16. Laval, J., Jurado, J., Saparbaev, M. and Sidorkina, O. (1998) Antimutagenic role of base-excision repair enzymes upon free radical-induced DNA damage. *Mutat. Res.* 402, 93-102.
- 17. Delaney, J. C. and Essigmann, J. M. (1999) Context-dependent mutagenesis by DNA lesions. *Chem. Biol.* 6, 743-753.
- 18. Lindahl, T. and Wood, R. D. (1999) Quality control by DNA repair. *Science* 286, 1897-1905.
- 19. Essigmann, J. M. and Wood, M. L. (1993) The relationship between the chemical structures and mutagenic specificities of the DNA lesions formed by chemical and physical mutagens. *Toxicol. Lett.* 67, 29-39.
- 20. Singer, B. and Essigmann, J. M. (1991) Site-specific mutagenesis: retrospective and prospective. *Carcinogenesis 12*, 949-955.
- 21. Basu, A. K. and Essigmann, J. M. (1988) Site-specifically modified oligodeoxynucleotides as probes for the structural and biological effects of DNA-damaging agents. *Chem. Res. Toxicol.* 1, 1-18.
- 22. Morrison, R. T. and Boyd, R. N. (1992) *Organic Chemistry*, 6th ed., Prentice Hall, Englewood Cliffs, New Jersey.
- 23. Carey, F. A. (2008) Organic Chemistry, 7th ed., McGraw-Hill, Boston.
- 24. Voet, D., Voet, J. G. and Pratt, C. W. (2002) *Fundamentals of Biochemistry*, Upgrade ed., John Wiley & Sons, Inc., New York.
- 25. Tomasz, M., Lipman, R., Lee, M. S., Verdine, G. L. and Nakanishi, K. (1987) Reaction of acid-activated mitomycin C with calf thymus DNA and model guanines: elucidation of the base-catalyzed degradation of N7-alkylguanine nucleosides. *Biochemistry* 26, 2010-2027.
- 26. Burgdorf, L. T. and Carell, T. (2002) Synthesis, stability, and conformation of the formamidopyrimidine G DNA lesion. *Chem. Eur. J.* 8, 293-301.
- Haraguchi, K., Delaney, M. O., Wiederholt, C. J., Sambandam, A., Hantosi, Z. and Greenberg, M. M. (2002) Synthesis and characterization of oligodeoxynucleotides containing formamidopyrimidine lesions and nonhydrolyzable analogues. J. Am. Chem. Soc. 124, 3263-3269.

- Aramini, J. M., Cleaver, S. H., Pon, R. T., Cunningham, R. P. and Germann, M. W. (2004) Solution structure of a DNA duplex containing an α-anomeric adenosine: insights into substrate recognition by endonuclease IV. *J. Mol. Biol.* 338, 77-91.
- 29. Greenberg, M. M., Hantosi, Z., Wiederholt, C. J. and Rithner, C. D. (2001) Studies on N4-(2-deoxy-D-pentofuranosyl)-4,6-diamino-5-formamidopyrimidine (Fapy.dA) and N6-(2-deoxy-D-pentofuranosyl)-6-diamino-5-formamido-4hydroxypyrimidine (Fapy.dG). *Biochemistry* 40, 15856-15861.
- 30. Patro, J. N., Wiederholt, C. J., Jiang, Y. L., Delaney, J. C., Essigmann, J. M. and Greenberg, M. M. (2007) Studies on the replication of the ring opened formamidopyrimidine, Fapy.dG in *Escherichia coli*. *Biochemistry* 46, 10202-10212.
- 31. Brown, K. L., Deng, J. Z., Iyer, R. S., Iyer, L. G., Voehler, M. W., Stone, M. P., Harris, C. M. and Harris, T. M. (2006) Unraveling the aflatoxin-FAPY conundrum: Structural basis for differential replicative processing of isomeric forms of the formamidopyrimidine-type DNA adduct of aflatoxin B₁. J. Am. Chem. Soc. 128, 15188-15199.
- 32. Tudek, B., Boiteux, S. and Laval, J. (1992) Biological properties of imidazole ring-opened N⁷-methylguanine in M13mp18 phage DNA. *Nucleic Acids Res. 20*, 3079-3084.
- 33. Boiteux, S. and Laval, J. (1983) Imidazole open ring 7-methylguanine: an inhibitor of DNA synthesis. *Biochem. Biophys. Res. Commun. 110*, 552-558.
- 34. Asagoshi, K., Terato, H., Ohyama, Y. and Ide, H. (2002) Effects of a guaninederived formamidopyrimidine lesion on DNA replication: translesion DNA synthesis, nucleotide insertion, and extension kinetics. *J. Biol. Chem.* 277, 14589-14597.
- Saladino, R., Crestini, C., Mincione, E., Costanzo, G., Di Mauro, E. and Negri, R. (1997) Mechanism of degradation of 2'-deoxycytidine by formamide: implications for chemical DNA sequencing procedures. *Bioorg. Med. Chem.* 5, 2041-2048.
- Busch, F., Pieck, J. C., Ober, M., Gierlich, J., Hsu, G. W., Beese, L. S. and Carell, T. (2008) Dissecting the differences between the α and β anomers of the oxidative DNA lesion FaPydG. *Chem. Eur. J.* 14, 2125-2132.
- 37. Lustig, M. J., Cadet, J., Boorstein, R. J. and Teebor, G. W. (1992) Synthesis of the diastereomers of thymidine glycol, determination of concentrations and rates of interconversion of their *cis-trans* epimers at equilibrium and demonstration of differential alkali lability within DNA. *Nucleic Acids Res.* 20, 4839-4845.

- Ide, H., Yamaoka, T. and Kimura, Y. (1994) Replication of DNA templates containing the α-anomer of deoxyadenosine, a major adenine lesion produced by hydroxyl radicals. *Biochemistry* 33, 7127-7133.
- Shimizu, H., Yagi, R., Kimura, Y., Makino, K., Terato, H., Ohyama, Y. and Ide, H. (1997) Replication bypass and mutagenic effect of α-deoxyadenosine sitespecifically incorporated into single-stranded vectors. *Nucleic Acids Res.* 25, 597-603.
- 40. Haines, J. A., Reese, C. B. and Todd, L. (1962) The methylation of guanosine and related compounds with diazomethane. *J. Chem. Soc.*, 5281-5288.
- 41. O'Connor, T. R., Boiteux, S. and Laval, J. (1988) Ring-opened 7-methylguanine residues in DNA are a block to *in vitro* DNA synthesis. *Nucleic Acids Res.* 16, 5879-5894.
- 42. Boiteux, S., Belleney, J., Roques, B. P. and Laval, J. (1984) Two rotameric forms of open ring 7-methylguanine are present in alkylated polynucleotides. *Nucleic Acids Res.* 12, 5429-5439.
- 43. Barrows, L. R. and Magee, P. N. (1982) Nonenzymatic methylation of DNA by S-adenosylmethionine *in vitro*. *Carcinogenesis 3*, 349-351.
- 44. Rydberg, B. and Lindahl, T. (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. *Embo. J.* 1, 211-216.
- 45. Holliday, R. and Ho, T. (1998) Gene silencing and endogenous DNA methylation in mammalian cells. *Mutat. Res.* 400, 361-368.
- 46. Kodama, M. and Saito, H. (1980) Formation of methylurea from methylamine and carbamyl phosphate: a possible environmental hazard. *Cancer Lett.* 10, 319-324.
- 47. Vaughan, P. and Sedqwick, B. (1991) A weak adaptive response to alkylation damage of nitrosation. *Environ. Mol. Mutagen.* 15, 69-70.
- 48. Bartsch, H., Ohsima, H., Shuker, D. E. G., Pignatelli, B. and Calmes, S. (1990) Exposure of humans to endogenous N-nitroso compounds; implications in cancer etiology. *Mutat. Res.* 238, 255-267.
- 49. Hecht, S. S. (1999) Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst. 91, 1194-1210.

- 50. Wogan, G. N., Hecht, S. S., Felton, J. S., Conney, A. H. and Loeb, L. A. (2004) Environmental and chemical carcinogenesis. *Semin. Cancer Biol.* 14, 473-486.
- 51. Hecht, S. S. (1998) Biochemistry, biology, and carcinogenicity of tobaccospecific N-nitrosamines. *Chem. Res. Toxicol.* 11, 559-603.
- 52. Smith, G. B., Castonguay, A., Donnelly, P. J., Reid, K. R., Petsikas, D. and Massey, T. E. (1999) Biotransformation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in freshly isolated human lung cells. *Carcinogenesis 20*, 1809-1818.
- 53. Vodicka, P. and Hemminki, K. (1988) Depurination and imidazole ring-opening in nucleosides and DNA alkylated by styrene oxide. *Chem. Biol. Interact.* 68, 117-126.
- 54. Hendler, S., Furer, E. and Srinivasan, P. R. (1970) Synthesis and chemical properties of monomers and polymers containing 7-methylguanine and an investigation of their substrate or template properties for bacterial deoxyribonucleic acid or ribonucleic acid polymerases. *Biochemistry 9*, 4141-4153.
- 55. Barbarella, G., Tugnoli, V. and Zambianchi, M. (1991) Imidazole ring-opening of 7-methylguanosine at physiological pH. *Nucleosides Nucleotides 10*, 1759-1769.
- Christov, P. (2007) Synthesis and *In Vitro* Replication Studies of N⁵-Alkylated Formamidopyrimidine Adducts in DNA, Ph.D In *Chemistry*, Vanderbilt University, Nashville, TN.
- 57. Chetsanga, C. J. and Lindahl, T. (1979) Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from *Escherichia coli*. *Nucleic Acids Res.* 6, 3673-3684.
- 58. Laval, J., Pierre, J. and Laval, F. (1981) Release of 7-methylguanine residues from alkylated DNA by extracts of *Micrococcus luteus* and *Escherichia coli*. *Proc. Natl. Acad. Sci. USA* 78, 852-855.
- 59. Chetsanga, C. J., Bearie, B. and Makaroff, C. (1982) Alkaline opening of imidazole ring of 7-methylguanosine. Analysis of the resulting pyrimidine derivatives. *Chem. Biol. Interact.* 41, 217-233.
- 60. Hemminki, K., Peltonen, K. and Vodicka, P. (1989) Depurination from DNA of 7-methylguanine, 7-(2-amonoethyl)-guanine and ring-opened 7-methylguanines. *Chem. Biol. Interact.* 70, 289-303.
- 61. Beranek, D. T., Weiss, C. C., Evans, F. E., Chetsanga, C. J. and Kadlubar, F. F. (1983) Identification of N5-methyl-N5-formyl-2,5,6-triamino-4-

hydroxypyrimidine as a major adduct in rat liver DNA after treatment with the carcinogens, N,N-dimethylnitrosamine or 1,2-dimethylhydrazine. *Biochem. Biophys. Res. Commun. 110*, 625-631.

- 62. Kadlubar, F. F., Beranek, D. T., Weis, C. C., Evans, F. E., Cox, R. and Irving, C. C. (1984) Characterization of the purine ring-opened 7-methylguanine and its persistence in rat bladder epithelial DNA after treatment with the carcinogen N-methylnitrosourea. *Carcinogenesis* 5, 587-592.
- 63. Humphreys, W. G. and Guengerich, F. P. (1991) Structure of formamidopyrimidine adducts as determined by NMR using specifically ¹⁵N-labeled guanosine. *Chem. Res. Toxicol. 4*, 632-636.
- 64. Box, H. C., Ligam, K. T., French, J. B., Potienko, G. and Alderfer, J. L. (1981) ¹³C NMR characterization of alkyalted derivatives of guanosine, adenosine, and cytidine. *Carbohydr., Nucleosides, Nucleotides* 8, 189-195.
- 65. Raoul, S., Bardet, M. and Cadet, J. (1995) γ Irradiation of 2'-deoxyadenosine in oxygen-free aqueous solutions: Identification and conformational features of formamidopyrimidine nucleoside derivatives. *Chem. Res. Toxicol. 8*, 924-933.
- 66. Berger, M. and Cadet, J. (1985) Isolation and characterization of the radiationinduced degradation products of 2'-deoxyguanisine in oxygen-free aqeouos solutions. *Z. Naturforsch.* 40B, 1519-1531.
- Haraguchi, K. and Greenberg, M. M. (2001) Synthesis of oligonucleotides containing Fapy.dG (N6-(2-deoxy-α,β-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5- formamidopyrimidine). *J. Am. Chem. Soc. 123*, 8636-8637.
- 68. Chetsanga, C. J., Lozon, M., Makaroff, C. and Savage, L. (1981) Purification and characterization of *Escherichia coli* formamidopyrimidine-DNA glycosylase that excises damaged 7-methylguanine from deoxyribonucleic acid. *Biochemistry 20*, 5201-5207.
- 69. van der Kemp, P. A., Thomas, D., Barbey, R., De Oliveira, R. and Boiteux, S. (1996) Cloning and expression in *Escherichia coli* of the OGG1 gene of *Saccharomyces cerevisiae*, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. *Proc. Natl. Acad. Sci. USA 93*, 5197-5202.
- 70. Asagoshi, K., Yamada, T., Terato, H., Ohyama, Y., Monden, Y., Arai, T., Nishimura, S., Aburatani, H., Lindahl, T. and Ide, H. (2000) Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8dihydro-8-oxoguanine. J. Biol. Chem. 275, 4956-4964.

- 71. Graves, R., Laval, J. and Pegg, A. E. (1992) Sequence specificity of DNA repair by *Escherichia coli* Fpg protein. *Carcinogenesis* 13, 1455-1459.
- 72. Busby, W. F. and Wogan, G. N. (1984) Aflatoxins, In *Chemical Carcinogens* (Searle, C., Ed.) pp 945-1136, American Chemical Society, Washington, DC.
- 73. Smela, M. E., Currier, S. S., Bailey, E. A. and Essigmann, J. M. (2001) The chemistry and biology of aflatoxin B₁: from mutational spectrometry to carcinogenesis. *Carcinogenesis 22*, 535-545.
- 74. Bennett, J. W. and Klich, M. (2003) Mycotoxins. *Clin. Microbiol. Rev.* 16, 497-516.
- 75. Diener, U. L., Cole, R. L., Sanders, G. A., Payne, G. A., Lee, L. S. and Klich, M. A. (1987) Epidemiology of aflatoxin formation by *Aspergillus flavus*. *Annu. Rev. Phytopathol.* 25, 249-270.
- Detroy, R. W., Lillehoj, E. B. and Ciegler, A. (1971) Aflatoxin and related compounds, In *Microbial Toxins* (Ciegler, A., Kadis, S. and Ajl, S. J., Eds.) pp 3-178, Academic Press, New York.
- 77. Blout, W. P. (1961) Turkey "X" disease. J. Br. Turkey Fed. 9, 52-58.
- 78. (1969) *Aflatoxin, Scientific Background, Control, and Implications*, Academic Press, New York.
- 79. Henry, S. H., Bosch, F. X., Troxell, T. C. and Bolger, P. M. (1999) Policy forum: public health. Reducing liver cancer--global control of aflatoxin. *Science 286*, 2453-2454.
- 80. Wilson, D. M. and Payne, G. A. (1994) Factors Affecting *Aspergillus flavus* Group Infection and Aflatoxin Contamination of Crops, In *The toxicology of aflatoxins. Human heatlh, veterinary and agricultural significance* (Eaton, D. L. and Groopman, J. D., Eds.) pp 309-325, Academic Press, San Diego, CA.
- 81. Abbas, H. K., Williams, W. P., Windham, G. L., Pringle, H. C., 3rd, Xie, W. and Shier, W. T. (2002) Aflatoxin and fumonisin contamination of commercial corn (Zea mays) hybrids in Mississippi. *J. Agric. Food Chem.* 50, 5246-5254.
- 82. Heathcote, J. G. and Hibbert, J. R. (1978) *Aflatoxins: Chemical and Biological Aspects.*, Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
- 83. Hartley, R. D., Nesbitt, B. F. and O'Kelly, J. (1963) Toxic metabolites of *Aspergillus flavus*. *Nature 198*, 1056-1058.

- 84. Squire, R. A. (1981) Ranking animal carcinogens: a proposed regulatory approach. *Science 214*, 877-880.
- 85. Garner, R. C., Miller, E. C. and Miller, J. A. (1972) Liver microsomal metabolism of aflatoxin B₁ to a reactive derivative toxic to *Salmonella typhimurium* TA 1530. *Cancer Res.* 32, 2058-2066.
- 86. Shimada, T. and Guengerich, F. P. (1989) Evidence for cytochrome P-450_{NF}, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. *Proc. Natl. Acad. Sci. USA 86*, 462-465.
- 87. Raney, K. D., Shimada, T., Kim, D. H., Groopman, J. D., Harris, T. M. and Guengerich, F. P. (1992) Oxidation of aflatoxins and sterigmatocystin by human liver microsomes: significance of aflatoxin Q₁ as a detoxication product of aflatoxin B₁. *Chem. Res. Toxicol. 5*, 202-210.
- 88. Ueng, Y. F., Shimada, T., Yamazaki, H. and Guengerich, F. P. (1995) Oxidation of aflatoxin B₁ by bacterial recombinant human cytochrome P450 enzymes. *Chem. Res. Toxicol. 8*, 218-225.
- Swenson, D. H., Lin, J. K., Miller, E. C. and Miller, J. A. (1977) Aflatoxin B₁-2,3-oxide as a probable intermediate in the covalent binding of aflatoxins B₁ and B₂ to rat liver DNA and ribosomal RNA *in vivo*. *Cancer Res.* 37, 172-181.
- 90. Shimada, T., Iwasaki, M., Martin, M. V. and Guengerich, F. P. (1989) Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by *umu* gene response in *Salmonella typhimurium* TA 1535/pSK1002. *Cancer Res.* 49, 3218-3228.
- Yu, F. L., Huang, J. X., Bender, W., Wu, Z. R. and Chang, J. C. (1991) Evidence for the covalent binding of aflatoxin B₁-dichloride to cytosine in DNA. *Carcinogenesis 12*, 997-1002.
- 92. Iyer, R. S., Coles, B., Raney, K., Thier, R., Guengerich, F. P. and Harris, T. M. (1994) DNA adduction by the potent carcinogen aflatoxin B₁: mechanistic studies. *J. Am. Chem. Soc.* 116, 1603-1609.
- 93. Essigmann, J. M., Croy, R. G., Nadzan, A. M., Busby, W. F., Jr., Reinhold, V. N., Buchi, G. and Wogan, G. N. (1977) Structural identification of the major DNA adduct formed by aflatoxin B₁ in vitro. Proc. Natl. Acad. Sci. USA 74, 1870-1874.
- Croy, R. G., Essigmann, J. M., Reinhold, V. N. and Wogan, G. N. (1978) Identification of the principal aflatoxin B₁-DNA adduct formed *in vivo* in rat liver. *Proc. Natl. Acad. Sci. USA* 75, 1745-1749.

- 95. Autrup, H., Essigmann, J. M., Croy, R. G., Trump, B. F., Wogan, G. N. and Harris, C. C. (1979) Metabolism of aflatoxin B₁ and identification of the major aflatoxin B₁-DNA adducts formed in cultured human bronchus and colon. *Cancer Res.* 39, 694-698.
- 96. Johnson, W. W. and Guengerich, F. P. (1997) Reaction of aflatoxin B₁ *exo*-8,9epoxide with DNA: kinetic analysis of covalent binding and DNA-induced hydrolysis. *Proc. Natl. Acad. Sci. USA* 94, 6121-6125.
- 97. Raney, K. D., Coles, B., Guengerich, F. P. and Harris, T. M. (1992) The *endo*-8,9-epoxide of aflatoxin B₁: a new metabolite. *Chem. Res. Toxicol.* 5, 333-335.
- 98. Gopalakrishnan, S., Harris, T. M. and Stone, M. P. (1990) Intercalation of aflatoxin B₁ in two oligodeoxynucleotide adducts: comparative ¹H NMR analysis of d(ATCAFBGAT).d(ATCGAT) and d(ATAFBGCAT)2. *Biochemistry 29*, 10438-10448.
- 99. Raney, K. D., Gopalakrishnan, S., Byrd, S., Stone, M. P. and Harris, T. M. (1990) Alteration of the aflatoxin cyclopentenone ring to a δ-lactone reduces intercalation with DNA and decreases formation of guanine N7 adducts by aflatoxin epoxides. *Chem. Res. Toxicol.* 3, 254-261.
- Johnson, W. W., Harris, T. M. and Guengerich, F. P. (1996) Kinetics and mechanism of hydrolysis of aflatoxin B₁ exo-8,9-oxide and rearrangement of the dihydrodiol. J. Am. Chem. Soc. 118, 8213-82220.
- Guengerich, F. P., Voehler, M., Williams, K. M., Deng, Z. and Harris, T. M. (2002) Structure of the aflatoxin B₁ dialdehyde adduct formed from reaction with methylamine. *Chem. Res. Toxicol.* 15, 793-798.
- Guengerich, F. P., Arneson, K. O., Williams, K. M., Deng, Z. and Harris, T. M. (2002) Reaction of aflatoxin B₁ oxidation products with lysine. *Chem. Res. Toxicol.* 15, 780-792.
- 103. Sabbioni, G., Skipper, P. L., Buchi, G. and Tannenbaum, S. R. (1987) Isolation and characterization of the major serum albumin adduct formed by aflatoxin B_1 *in vivo* in rats. *Carcinogenesis* 8.
- 104. Iyer, R. S. and Harris, T. M. (1993) Preparation of aflatoxin B₁ 8,9-epoxide using m-chloroperbenzoic acid. *Chem. Res. Toxicol.* 6, 313-316.
- Baertschi, S. W., Kevin D. Raney, Michael P. Stone, and Thomas M. Harris. (1988) Preparation of the 8,9-epoxide of the mycotoxin aflatoxin B₁: The ultimate carcinogenic species. J. Am. Chem. Soc. 110, 7929-7931.

- Raney, V. M., Harris, T. M. and Stone, M. P. (1993) DNA conformation mediates aflatoxin B₁-DNA binding and the formation of guanine N7 adducts by aflatoxin B₁ 8,9-*exo*-epoxide. *Chem. Res. Toxicol.* 6, 64-68.
- 107. Kobertz, W. R., Wang, D., Wogan, G. N. and Essigmann, J. M. (1997) An intercalation inhibitor altering the target selectivity of DNA damaging agents: synthesis of site-specific aflatoxin B₁ adducts in a p53 mutational hotspot. *Proc. Natl. Acad. Sci. USA 94*, 9579-9584.
- 108. Baertschi, S. W., Raney, K. D., Shimada, T., Harris, T. M. and Guengerich, F. P. (1989) Comparison of rates of enzymatic oxidation of aflatoxin B₁, aflatoxin G₁, and sterigmatocystin and activities of the epoxides in forming guanyl-N7 adducts and inducing different genetic responses. *Chem. Res. Toxicol.* 2, 114-112.
- Asao, T., Buechi, G., Abdel-Kader, M. M., Chang, S. B., Wick, E. L. and Wogan, G. N. (1965) The structures of aflatoxins B and G. J. Am. Chem. Soc. 87, 882-886.
- 110. Deng, Z. (1998) DNA adducts of aflatoxin B₁, Masters In *Chemistry*, Vanderbilt University, Nashville, TN.
- 111. Ojha, R. P., Roychoudhury, M. and Sanyal, N. K. (1990) Mode of action of intercalators: a theoretical study. *Indian J. Biochem. Biophys.* 27, 228-239.
- 112. Lamm, G. and Pack, G. R. (1990) Acidic domains around nucleic acids. *Proc. Natl. Acad. Sci. USA* 87, 9030-9033.
- 113. Lamm, G., Wong, G. R. and Pack, G. R. (1996) DNA-mediated acid catalysis: calculations of the rates of DNA-catalyzed hydrolysis of diol epoxides. *J. Am. Chem. Soc.* 118, 3325-3331.
- 114. Gopalakrishnan, S., Byrd, S., Stone, M. P. and Harris, T. M. (1989) Carcinogennucleic acid interactions: equilibrium binding studies of aflatoxin B₁ with the oligodeoxynucleotide d(ATGCAT)2 and with plasmid pBR322 support intercalative association with the B-DNA helix. *Biochemistry 28*, 726-734.
- 115. Mao, H., Deng, Z., Wang, F., Harris, T. M. and Stone, M. P. (1998) An intercalated and thermally stable FAPY adduct of aflatoxin B₁ in a DNA duplex: structural refinement from ¹H NMR. *Biochemistry 37*, 4374-4387.
- 116. Giri, I. and Stone, M. P. (2002) Thermal stabilization of the DNA duplex by adducts of aflatoxin B₁. *Biopolymers* 65, 190-201.
- Croy, R. G. and Wogan, G. N. (1981) Temporal patterns of covalent DNA adducts in rat liver after single and multiple doses of aflatoxin B₁. *Cancer Res. 41*, 197-203.

- 118. Muench, K. F., Misra, R. P. and Humayun, M. Z. (1983) Sequence specificity in aflatoxin B₁--DNA interactions. *Proc. Natl. Acad. Sci. USA 80*, 6-10.
- 119. Benasutti, M., Ejadi, S., Whitlow, M. D. and Loechler, E. L. (1988) Mapping the binding site of aflatoxin B₁ in DNA: systematic analysis of the reactivity of aflatoxin B₁ with guanines in different DNA sequences. *Biochemistry* 27, 472-481.
- 120. Levy, D. D., Groopman, J. D., Lim, S. E., Seidman, M. M. and Kraemer, K. H. (1992) Sequence specificity of aflatoxin B₁-induced mutations in a plasmid replicated in xeroderma pigmentosum and DNA repair proficient human cells. *Cancer Res.* 52, 5668-5673.
- 121. Denissenko, M. F., Cahill, J., Koudriakova, T. B., Gerber, N. and Pfeifer, G. P. (1999) Quantitation and mapping of aflatoxin B₁-induced DNA damage in genomic DNA using aflatoxin B₁-8,9-epoxide and microsomal activation systems. *Mutat. Res.* 425, 205-211.
- 122. Misra, R. P., Muench, K. F. and Humayun, M. Z. (1983) Covalent and noncovalent interactions of aflatoxin with defined deoxyribonucleic acid sequences. *Biochemistry* 22, 3351-3359.
- Refolo, L. M., Conley, M. P., Sambamurti, K., Jacobsen, J. S. and Humayun, M. Z. (1985) Sequence context effects in DNA replication blocks induced by aflatoxin B₁. *Proc. Natl. Acad. Sci. USA* 82, 3096-3100.
- 124. Puisieux, A., Lim, S., Groopman, J. and Ozturk, M. (1991) Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. *Cancer Res.* 51, 6185-6189.
- 125. Yu, F. L. (1983) Preferential binding of aflatoxin B₁ to the transcriptionally active regions of rat liver nucleolar chromatin *in vivo* and *in vitro*. *Carcinogenesis 4*, 889-893.
- 126. Marien, K., Moyer, R., Loveland, P., Van Holde, K. and Bailey, G. (1987) Comparative binding and sequence interaction specificities of aflatoxin B₁, aflatoxicol, aflatoxin M₁, and aflatoxicol M₁ with purified DNA. *J. Biol. Chem.* 262, 7455-7462.
- Yu, F. L., Bender, W. and Geronimo, I. H. (1990) Base and sequence specificities of aflatoxin B₁ binding to single- and double-stranded DNAs. *Carcinogenesis 11*, 475-478.
- 128. Denissenko, M. F., Koudriakova, T. B., Smith, L., O'Connor, T. R., Riggs, A. D. and Pfeifer, G. P. (1998) The p53 codon 249 mutational hotspot in hepatocellular

carcinoma is not related to selective formation or persistence of aflatoxin B_1 adducts. *Oncogene 17*, 3007-3014.

- 129. Trottier, Y., Waithe, W. I. and Anderson, A. (1992) Kinds of mutations induced by aflatoxin B₁ in a shuttle vector replicating in human cells transiently expressing cytochrome P4501A2 cDNA. *Mol. Carcinog. 6*, 140-147.
- Preito-Alamo, M. J., Jurado, J., Abril, N., Diaz-Pohl, C., Bolcsfoldi, G. and Pueyo, C. (1996) Mutational specificity of aflatoxin B₁. Comparison of *in vivo* host-mediated assay with *in vitro* S9 metabolic activation. *Carcinogenesis* 17, 1997-2002.
- Sambamurti, K., Callahan, J., Luo, X., Perkins, C. P., Jacobsen, J. S. and Humayun, M. Z. (1988) Mechanisms of mutagenesis by a bulky DNA lesion at the guanine N7 position. *Genetics* 120, 863-873.
- 132. Parken, D. M., Bray, F., Ferlay, P. and Pisani, P. (2001) Estimating the world cancer burden: globocan 2000. *J. Cancer* 94, 153-156.
- 133. Ming, L., Thorgeirsson, S. S., Gail, M. H., Lu, P., Harris, C. C., Wang, N., Shao, Y., Wu, Z., Liu, G., Wang, X. and Sun, Z. (2002) Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. *Hepatology 36*, 1214-1220.
- 134. Gorina, S. and Pavletich, N. P. (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. *Science 274*, 1001-1005.
- 135. Montalto, G., Cervello, M., Giannitrapani, L., Dantona, F., Terranova, A. and Castagnetta, L. A. (2002) Epidemiology, risk factors, and natural history of hepatocellular carcinoma. *Ann. N. Y. Acad. Sci.* 963, 13-20.
- 136. Henry, S. H., Bosch, F. X. and Bowers, J. C. (2002) Aflatoxin, hepatitis and worldwide liver cancer risks. *Adv. Exp. Med. Biol.* 504, 229-233.
- 137. Dominguez-Malagon, H. and Gaytan-Graham, S. (2001) Hepatocellular carcinoma: an update. *Ultrastruct. Pathol.* 25, 497-516.
- 138. Wogan, G. N. (2000) Impacts of chemicals on liver cancer risk. *Semin. Cancer Biol.* 10, 201-210.
- 139. Wogan, G. N. (1992) Aflatoxins as risk factors for hepatocellular carcinoma in humans. *Cancer Res.* 52, 2114s-2118s.
- 140. Shen, H. M. and Ong, C. N. (1996) Mutations of the p53 tumor suppressor gene and *ras* oncogenes in aflatoxin hepatocarcinogenesis. *Mutat. Res.* 366, 23-44.

- 141. Ross, R. K., Yuan, J. M., Yu, M. C., Wogan, G. N., Qian, G. S., Tu, J. T., Groopman, J. D., Gao, Y. T. and Henderson, B. E. (1992) Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. *Lancet.* 339, 943-946.
- 142. Bannasch, P., Khoshkhou, N. I., Hacker, H. J., Radaeva, S., Mrozek, M., Zillmann, U., Kopp-Schneider, A., Haberkorn, U., Elgas, M., Tolle, T. and et al. (1995) Synergistic hepatocarcinogenic effect of hepadnaviral infection and dietary aflatoxin B₁ in woodchucks. *Cancer Res.* 55, 3318-3330.
- 143. Chen, C. J., Wang, L. Y., Lu, S. N., Wu, M. H., You, S. L., Zhang, Y. J., Wang, L. W. and Santella, R. M. (1996) Elevated aflatoxin exposure and increased risk of hepatocellular carcinoma. *Hepatology* 24, 38-42.
- 144. Wang, X. W., Forrester, K., Yeh, H., Feitelson, M. A., Gu, J. R. and Harris, C. C. (1994) Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. *Proc. Natl. Acad. Sci. USA 91*, 2230-2234.
- 145. Truant, R., Antunovic, J., Greenblatt, J., Prives, C. and Cromlish, J. A. (1995) Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. *J. Virol.* 69, 1851-1859.
- 146. Buchhop, S., Gibson, M. K., Wang, X. W., Wagner, P., Sturzbecher, H. W. and Harris, C. C. (1997) Interaction of p53 with the human Rad51 protein. *Nucleic Acids Res.* 25, 3868-3874.
- Schaefer, S., Seifer, M., Grimmsmann, T., Fink, L., Wenderhold, S., Hohne, M. W. and Gerlich, W. H. (1998) Properties of tumour suppressor p53 in murine hepatocyte lines transformed by hepatitis B virus X protein. *J. Gen. Virol.* 79 (*Pt* 4), 767-777.
- 148. Terradillos, O., Pollicino, T., Lecoeur, H., Tripodi, M., Gougeon, M. L., Tiollais, P. and Buendia, M. A. (1998) p53-independent apoptotic effects of the hepatitis B virus HBx protein *in vivo* and *in vitro*. *Oncogene 17*, 2115-2123.
- 149. Lee, S. G. and Rho, H. M. (2000) Transcriptional repression of the human p53 gene by hepatitis B viral X protein. *Oncogene 19*, 468-471.
- 150. Su, Q., Schroder, C. H., Otto, G. and Bannasch, P. (2000) Overexpression of p53 protein is not directly related to hepatitis B x protein expression and is associated with neoplastic progression in hepatocellular carcinomas rather than hepatic preneoplasia. *Mutat. Res.* 462, 365-380.
- 151. Wild, C. P., Yin, F., Turner, P. C., Chemin, I., Chapot, B., Mendy, M., Whittle, H., Kirk, G. D. and Hall, A. J. (2000) Environmental and genetic determinants of aflatoxin-albumin adducts in the Gambia. *Int. J. Cancer 86*, 1-7.

- 152. Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-de Vries, M., van Boom, J. H., van der Eb, A. J. and Vogelstein, B. (1987) Prevalence of *ras* gene mutations in human colorectal cancers. *Nature 327*, 293-297.
- 153. Vogelstein, B., Fearon, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A. C., Leppert, M., Nakamura, Y., White, R., Smits, A. M. and Bos, J. L. (1988) Genetic alterations during colorectal-tumor development. *N. Engl. J. Med.* 319, 525-532.
- 154. McMahon, G., Hanson, L., Lee, J. J. and Wogan, G. N. (1986) Identification of an activated *c-Ki-ras* oncogene in rat liver tumores induced by aflatoxin B₁. *Proc. Natl. Acad. Sci. USA* 83, 9418-9422.
- 155. McMahon, G., Davis, E. F., Huber, L. J., Kim, Y. and Wogan, G. N. (1990) Characterization of *c-Ki-ras* and *N-ras* oncogenes in aflatoxin B₁-induced rat liver tumors. *Proc. Natl. Acad. Sci. USA* 87, 1104-1108.
- 156. Soman, N. R. and Wogan, G. N. (1993) Activation of the *c-Ki-ras* oncogene in aflatoxin B₁-induced hepatocellular carcinoma and adenoma in the rat: detection by denaturing gradient gel electrophoresis. *Proc. Natl. Acad. Sci. USA 90*, 2045-2049.
- 157. Chang, Y. J., Mathews, C., Mangold, K., Marien, K., Hendricks, J. and Bailey, G. (1991) Analysis of *ras* gene mutations in rainbow trout liver tumors initiated by aflatoxin B₁. *Mol. Carcinog.* 4, 112-119.
- 158. Riley, J., Mandel, H. G., Sinha, S., Judah, D. J. and Neal, G. E. (1997) *In vitro* activation of the human Harvey-*ras* proto-oncogene by aflatoxin B₁. *Carcinogenesis 18*, 905-910.
- 159. Bressac, B., Kew, M., Wands, J. and Ozturk, M. (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. *Nature 350*, 429-431.
- Hsu, I. C., Metcalf, R. A., Sun, T., Welsh, J. A., Wang, N. J. and Harris, C. C. (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. *Nature 350*, 427-428.
- 161. Gentil, A., Margot, A. and Sarasin, A. (1984) Apurinic sites cause mutations in simian virus 40. *Mutat. Res. 129*, 141-147.
- Bailey, E. A., Iyer, R. S., Stone, M. P., Harris, T. M. and Essigmann, J. M. (1996) Mutational properties of the primary aflatoxin B₁-DNA adduct. *Proc. Natl. Acad. Sci. USA 93*, 1535-1539.

- 163. Loeb, L. A. and Preston, B. D. (1986) Mutagenesis by apurinic/apyrimidinic sites. *Annu. Rev. Genet.* 20, 201-230.
- 164. Gentil, A., Renault, G., Madzak, C., Margot, A., Cabral-Neto, J. B., Vasseur, J. J., Rayner, B., Imbach, J. L. and Sarasin, A. (1990) Mutagenic properties of a unique abasic site in mammalian cells. *Biochem. Biophys. Res. Commun.* 173, 704-710.
- 165. Gentil, A., Cabral-Neto, J. B., Mariage-Samson, R., Margot, A., Imbach, J. L., Rayner, B. and Sarasin, A. (1992) Mutagenicity of a unique apurinic/apyrimidinic site in mammalian cells. *J. Mol. Biol. 227*, 981-984.
- 166. Kamiya, H., Suzuki, M., Komatsu, Y., Miura, H., Kikuchi, K., Sakaguchi, T., Murata, N., Masutani, C., Hanaoka, F. and Ohtsuka, E. (1992) An abasic site analogue activates a *c-Ha-ras* gene by a point mutation at modified and adjacent positions. *Nucleic Acids Res.* 20, 4409-4415.
- 167. Lawrence, C. W., Borden, A., Banerjee, S. K. and LeClerc, J. E. (1990) Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. *Nucleic Acids Res.* 18, 2153-2157.
- Foster, P. L., Eisenstadt, E. and Miller, J. H. (1983) Base substitution mutations induced by metabolically activated aflatoxin B₁. *Proc. Natl. Acad. Sci. USA 80*, 2695-2698.
- 169. Smela, M. E., Hamm, M. L., Henderson, P. T., Harris, C. M., Harris, T. M. and Essigmann, J. M. (2002) The aflatoxin B₁ formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma. *Proc. Natl. Acad. Sci. USA 99*, 6655-6660.
- 170. Johnston, D. S. and Stone, M. P. (1995) Refined solution structure of 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B₁ opposite CpA in the complementary strand of an oligodeoxynucleotide duplex as determined by ¹H NMR. *Biochemistry 34*, 14037-14050.
- 171. Jones, W. R., Johnston, D. S. and Stone, M. P. (1998) Refined structure of the doubly intercalated d(TATAFBGCATA)2 aflatoxin B₁ adduct. *Chem. Res. Toxicol.* 11, 873-881.
- 172. Giri, I., Jenkins, M. D., Schnetz-Boutaud, N. C. and Stone, M. P. (2002) Structural refinement of the 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B₁ adduct in a 5'-Cp(AFB)G-3' sequence. *Chem. Res. Toxicol.* 15, 638-647.
- 173. Giri, I., Johnston, D. S. and Stone, M. P. (2002) Mispairing of the 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B₁ adduct with deoxyadenosine results in extrusion of the mismatched dA toward the major groove. *Biochemistry* 41, 5462-5472.

- 174. Courtemanche, C. and Anderson, A. (1999) Multiple mutations in a shuttle vector modified by ultraviolet irradiation, (+/-)-7 β, 8 α-dihydroxy-9 α, 10 α-epoxy 7,8,9,10-tetrahydrobenzo[a]pyrine, and aflatoxin B₁ have different properties than single mutations and may be generated during translesion synthesis. *Mutat. Res.* 430, 23-36.
- 175. Lin, J. K., Miller, J. A. and Miller, E. C. (1977) 2,3-Dihydro-2-(guan-7-yl)-3hydroxy-aflatoxin B₁, a major acid hydrolysis product of aflatoxin B₁-DNA or ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver *in vivo*. *Cancer Res.* 37, 4430-4438.
- 176. Hertzog, P. J., Smith, J. R. and Garner, R. C. (1982) Characterisation of the imidazole ring-opened forms of *trans*-8,9-dihydro-8,9-dihydro-8-(7-guanyl)9-hydroxy aflatoxin B₁. *Carcinogenesis 3*, 723-725.
- 177. Hertzog, P. J., Lindsay Smith, J. R. and Garner, R. C. (1980) A high pressure liquid chromatography study on the removal of DNA-bound aflatoxin B₁ in rat liver and *in vitro*. *Carcinogenesis 1*, 787-793.
- 178. Groopman, J. D., Croy, R. G. and Wogan, G. N. (1981) *In vitro* reactions of aflatoxin B₁-adducted DNA. *Proc. Natl. Acad. Sci. USA* 78, 5445-5449.
- 179. Essigmann, J. M., Croy, R. G., Bennett, R. A. and Wogan, G. N. (1982) Metabolic activation of aflatoxin B₁: patterns of DNA adduct formation, removal, and excretion in relation to carcinogenesis. *Drug Metab. Rev. 13*, 581-602.
- 180. Kaden, D. A., Call, K. M., Leong, P. M., Komives, E. A. and Thilly, W. G. (1987) Killing and mutation of human lymphoblast cells by aflatoxin B₁: evidence for an inducible repair response. *Cancer Res.* 47, 1993-2001.
- 181. Leadon, S. A. and Snowden, M. M. (1988) Differential repair of DNA damage in the human metallothionein gene family. *Mol. Cell Biol. 8*, 5331-5338.
- 182. Ball, R. W., Wilson, D. M. and Coulombe, R. A., Jr. (1990) Comparative formation and removal of aflatoxin B₁-DNA adducts in cultured mammalian tracheal epithelium. *Cancer Res.* 50, 4918-4922.
- 183. Alekseyev, Y. O., Hamm, M. L. and Essigmann, J. M. (2004) Aflatoxin B₁ formamidopyrimidine adducts are preferentially repaired by the nucleotide excision repair pathway *in vivo*. *Carcinogenesis* 25, 1045-1051.
- Garner, R. C. and Wright, C. M. (1973) Induction of mutations in DNA-repair deficient bacteria by a liver microsomal metabolite of aflatoxin B₁. *Br. J. Cancer* 28, 544-551.

- 185. Sarasin, A. R., Smith, C. A. and Hanawalt, P. C. (1977) Repair of DNA in human cells after treatment with activated aflatoxin B₁. *Cancer Res. 37*, 1786-1793.
- 186. Leadon, S. A., Tyrrell, R. M. and Cerutti, P. A. (1981) Excision repair of aflatoxin B₁-DNA adducts in human fibroblasts. *Cancer Res.* 41, 5125-5129.
- 187. Takahashi, Y., Nakatsuru, Y., Zhang, S., Shimizu, Y., Kume, H., Tanaka, K., Ide, F. and Ishikawa, T. (2002) Enhanced spontaneous and aflatoxin-induced liver tumorigenesis in xeroderma pigmentosum group A gene-deficient mice. *Carcinogenesis 23*, 627-633.
- 188. Friedberg, E. C., Walker, G. C. and Siede, W. (1995) *DNA Repair and Mutagenesis*, American Chemical Society for Microbiology, Washington, DC.
- 189. Oleykowski, C. A., Mayernik, J. A., Lim, S. E., Groopman, J. D., Grossman, L., Wogan, G. N. and Yeung, A. T. (1993) Repair of aflatoxin B₁ DNA adducts by the UvrABC endonuclease of *Escherichia coli*. J. Biol. Chem. 268, 7990-8002.
- 190. Chetsanga, C. J. and Frenette, G. P. (1983) Excision of aflatoxin B₁-imidazole ring opened guanine adducts from DNA by formamidopyrimidine-DNA glycosylase. *Carcinogenesis 4*, 997-1000.
- 191. Tchou, J., Bodepudi, V., Shibutani, S., Antoshechkin, I., Miller, J., Grollman, A. P. and Johnson, F. (1994) Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA. *J. Biol. Chem.* 269, 15318-15324.
- 192. Croy, R. G. and Wogan, G. N. (1981) Quantitative comparison of covalent aflatoxin-DNA adducts formed in rat and mouse livers and kidneys. *J. Natl. Cancer. Inst.* 66, 761-768.
- 193. Hutchinson, F. (1985) Chemical changes induced in DNA by ionizing radiation. *Prog. Nucleic Acid Res. Mol. Biol.* 32, 115-154.
- 194. Ames, B. N. (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. *Science 221*, 1256-1264.
- 195. Frenkel, K., Chrzan, K., Troll, W., Teebor, G. W. and Steinberg, J. J. (1986) Radiation-like modification of bases in DNA exposed to tumor promoteractivated polymorphonuclear leukocytes. *Cancer Res.* 46, 5533-5540.
- 196. Beer, M., Stern, S., Carmalt, D. and Mohlhenrich, K. H. (1966) Determination of base sequence in nucleic acids with the electron microscope. V. The thymine-specific reactions of osmium tetroxide with deoxyribonucleic acid and its components. *Biochemistry 5*, 2283-2288.

- 197. Teoule, R., Bonicel, A., Bert, C., Cadet, J. and Polverelli, M. (1974) Identification of radioproducts resulting from the breakage of thymine moiety by γ irradiation of *E. coli* DNA in an aerated aqueous solution. *Radiat. Res.* 57, 46-58.
- 198. Cathcart, R., Schwiers, E., Saul, R. L. and Ames, B. N. (1984) Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. *Proc. Natl. Acad. Sci. USA 81*, 5633-5637.
- Frenkel, K., Goldstein, M. S., Duker, N. J. and Teebor, G. W. (1981) Identification of the *cis*-thymine glycol moiety in oxidized deoxyribonucleic acid. *Biochemistry* 20, 750-754.
- 200. Frenkel, K., Goldstein, M. S. and Teebor, G. W. (1981) Identification of the *cis*thymine glycol moiety in chemically oxidized and γ-irradiated deoxyribonucleic acid by high-pressure liquid chromatography analysis. *Biochemistry* 20, 7566-7571.
- 201. Vaishnav, Y., Holwitt, E., Swenberg, C., Lee, H. C. and Kan, L. S. (1991) Synthesis and characterization of stereoisomers of 5,6-dihydro-5,6-dihydroxythymidine. *J. Biomol. Struct. Dyn.* 8, 935-951.
- 202. Wang, Y. (2002) HPLC isolation and mass spectrometric characterization of two isomers of thymine glycols in oligodeoxynucleotides. *Chem. Res. Toxicol.* 15, 671-676.
- 203. Fujita, S. and Steenken, S. (1981) Pattern of hydroxyl radical addition to uracil and methyl- and carboxyl-substituted uracils. Electron transfer of hydroxyl adducts with N,N,N',N'-tetramethyl-p-phenylenediamine and tetranitromethane. *J. Am. Chem. Soc.* 103, 2540-2545.
- 204. Schulte-Frohlinde, D. and von Sonntag, C. (1985) Oxidative Stress, (Sies, H., Ed.) pp 11-40, Academic Press, London.
- 205. Leadon, S. A. (1987) Production of thymine glycols in DNA by radiation and chemical carcinogens as detected by a monoclonal antibody. *Br. J. Cancer Suppl. 8*, 113-117.
- 206. Teebor, G., Cummings, A., Frenkel, K., Shaw, A., Voituriez, L. and Cadet, J. (1987) Quantitative measurement of the diastereoisomers of *cis* thymidine glycol in γ-irradiated DNA. *Free Radic. Res. Commun.* 2, 303-309.
- 207. Flippen, J. L. (1973) The crystal and molecular structures of reaction products from -irradiation of thymine and cytosine: *cis*-thymine glycol, C₅H₈N₂O₄, and *trans*-1-carbamoylimidazolidone-4,5-diol, C₄H₇N₃O₄. *Acta Crystallogr. Sect. B* 29, 1756-1762.

- 208. Adelman, R., Saul, R. L. and Ames, B. N. (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. *Proc. Natl. Acad. Sci. USA 85*, 2706-2708.
- 209. Saul, R. L. and Ames, B. N. (1986) *Mechanisms of DNA Damage and Repair*, Plenum Press, New York.
- 210. Ames, B. N. (1984) The detection of environmental mutagens and potential carcinogens. *Cancer 53*, 2034-2040.
- Ide, H., Kow, Y. W. and Wallace, S. S. (1985) Thymine glycols and urea residues in M13 DNA constitute replicative blocks *in vitro*. *Nucleic Acids Res.* 13, 8035-8052.
- 212. Jensen, W. E., Jones, A. S. and Ross, G. W. (1965) The synthesis and properties of 2-deoxy-D-ribosylureas. *J. Chem. Soc. Part II*, 2463-2465.
- 213. Rouet, P. and Essigmann, J. M. (1985) Possible role for thymine glycol in the selective inhibition of DNA synthesis on oxidized DNA templates. *Cancer Res.* 45, 6113-6118.
- 214. Clark, J. M. and Beardsley, G. P. (1986) Thymine glycol lesions terminate chain elongation by DNA polymerase I *in vitro*. *Nucleic Acids Res.* 14, 737-749.
- 215. Hayes, R. C. and LeClerc, J. E. (1986) Sequence dependence for bypass of thymine glycols in DNA by DNA polymerase I. *Nucleic Acids Res.* 14, 1045-1061.
- Hayes, R. C., Petrullo, L. A., Huang, H. M., Wallace, S. S. and LeClerc, J. E. (1988) Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions. *J. Mol. Biol.* 201, 239-246.
- 217. Clark, J. M. and Beardsley, G. P. (1989) Template length, sequence context, and 3'-5' exonuclease activity modulate replicative bypass of thymine glycol lesions *in vitro*. *Biochemistry* 28, 775-779.
- 218. Lida, S. and Hayatsu, H. (1970) The permanganate oxidation of thymine. *Biochim. Biophys. Acta.* 213, 1-13.
- 219. Basu, A. K., Loechler, E. L., Leadon, S. A. and Essigmann, J. M. (1989) Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. *Proc. Natl. Acad. Sci. USA 86*, 7677-7681.
- 220. Kusumoto, R., Masutani, C., Iwai, S. and Hanaoka, F. (2002) Translesion synthesis by human DNA polymerase η across thymine glycol lesions. *Biochemistry 41*, 6090-6099.
- 221. Fischhaber, P. L., Gerlach, V. L., Feaver, W. J., Hatahet, Z., Wallace, S. S. and Friedberg, E. C. (2002) Human DNA polymerase κ bypasses and extends beyond thymine glycols during translesion synthesis *in vitro*, preferentially incorporating correct nucleotides. *J. Biol. Chem.* 277, 37604-37611.
- 222. Zuo, S., Boorstein, R. J. and Teebor, G. W. (1995) Oxidative damage to 5methylcytosine in DNA. *Nucleic Acids Res.* 23, 3239-3243.
- 223. Pfeifer, G. P. (2000) p53 mutational spectra and the role of methylated CpG sequences. *Mutat. Res.* 450, 155-166.
- 224. Ocampo-Hafalla, M. T., Altamirano, A., Basu, A. K., Chan, M. K., Ocampo, J. E., Cummings, A., Jr., Boorstein, R. J., Cunningham, R. P. and Teebor, G. W. (2006) Repair of thymine glycol by hNth1 and hNeil1 is modulated by base pairing and *cis-trans* epimerization. *DNA Repair (Amst)* 5, 444-454.
- 225. Ikeda, S., Biswas, T., Roy, R., Izumi, T., Boldogh, I., Kurosky, A., Sarker, A. H., Seki, S. and Mitra, S. (1998) Purification and characterization of human NTH1, a homolog of *Escherichia coli* endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. *J. Biol. Chem.* 273, 21585-21593.
- 226. Aspinwall, R., Rothwell, D. G., Roldan-Arjona, T., Anselmino, C., Ward, C. J., Cheadle, J. P., Sampson, J. R., Lindahl, T., Harris, P. C. and Hickson, I. D. (1997) Cloning and characterization of a functional human homolog of *Escherichia coli* endonuclease III. *Proc. Natl. Acad. Sci. USA 94*, 109-114.
- 227. Marenstein, D. R., Chan, M. K., Altamirano, A., Basu, A. K., Boorstein, R. J., Cunningham, R. P. and Teebor, G. W. (2003) Substrate specificity of human endonuclease III (hNTH1). Effect of human APE1 on hNTH1 activity. *J. Biol. Chem.* 278, 9005-9012.
- 228. Katafuchi, A., Nakano, T., Masaoka, A., Terato, H., Iwai, S., Hanaoka, F. and Ide, H. (2004) Differential specificity of human and *Escherichia coli* endonuclease III and VIII homologues for oxidative base lesions. *J. Biol. Chem.* 279, 14464-14471.
- 229. Hazra, T. K., Izumi, T., Boldogh, I., Imhoff, B., Kow, Y. W., Jaruga, P., Dizdaroglu, M. and Mitra, S. (2002) Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. *Proc. Natl. Acad. Sci. USA 99*, 3523-3528.
- Miller, H., Fernandes, A. S., Zaika, E., McTigue, M. M., Torres, M. C., Wente, M., Iden, C. R. and Grollman, A. P. (2004) Stereoselective excision of thymine glycol from oxidatively damaged DNA. *Nucleic Acids Res.* 32, 338-345.

- 231. Clark, J. M., Pattabiraman, N., Jarvis, W. and Beardsley, G. P. (1987) Modeling and molecular mechanical studies of the *cis*-thymine glycol radiation damage lesion in DNA. *Biochemistry* 26, 5404-5409.
- 232. Kao, J. Y., Goljer, I., Phan, T. A. and Bolton, P. H. (1993) Characterization of the effects of a thymine glycol residue on the structure, dynamics, and stability of duplex DNA by NMR. *J. Biol. Chem.* 268, 17787-17793.
- 233. Kung, H. C. and Bolton, P. H. (1997) Structure of a duplex DNA containing a thymine glycol residue in solution. *J. Biol. Chem.* 272, 9227-9236.
- 234. Aller, P., Rould, M. A., Hogg, M., Wallace, S. S. and Doublie, S. (2007) A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. *Proc. Natl. Acad. Sci. USA 104*, 814-818.
- 235. Robert W. Murray, M. S. (2002) Synthesis of epoxides using dimethyl dioxirane, www.orgsyn.org.
- 236. Adam, W., Chan, Y. Y., Cremer, D., Gauss, J., Scheutzow, D. and Schindler, M. (1987) Spectral and chemical properties of dimethyldioxirane as determined by experiment and *ab initio* calculations. *J. Org. Chem.* 52, 2800-2803.
- 237. Jones, W. R. and Stone, M. P. (1998) Site-specific targeting of aflatoxin adduction directed by triple helix formation in the major groove of oligodeoxyribonucleotides. *Nucleic Acids Res. 26*, 1070-1075.
- 238. Koshlap, K. M., Gillespie, P., Dervan, P. B. and Feigon, J. (1993) Nonnatural deoxyribonucleoside D3 incorporated in an intramolecular DNA triplex binds sequence-specifically by intercalation. *J. Am. Chem. Soc. 115*, 7908-7909.
- 239. Radhakrishnan, I., Patel, D. J., Priestly, E. S., Nash, H. M. and Dervan, P. B. (1993) NMR structural studies on a nonnatural deoxyribonucleoside which mediates recognition of GC base pairs in pyrimidine-purine-pyrimidine DNA triplexes. *Biochemistry 32*, 11228-11234.
- 240. Veselkov, A. N., Baranovskii, S. F., Dymant, L. N., Petrenko, N. V., Osetrov, S. G., Veselkov, D. A., Parkes, X. and Davies, D. (1998) ¹H-NMR study of complex formation between the aromatic dye ethidium bromide and the single-stranded noncomplementary deoxytetranucleotide 5'-d(CpTpGpA) in aqueous solution. *Biofizika 43*, 205-214.
- 241. Jones, W. R., Johnston, D. S. and Stone, M. P. (1999) Site-specific synthesis of aflatoxin B₁ adducts within an oligodeoxyribonucleotide containing the human p53 codon 249 sequence. *Chem. Res. Toxicol.* 12, 707-714.

- 242. Zang, H., Goodenough, A. K., Choi, J. Y., Irimia, A., Loukachevitch, L. V., Kozekov, I. D., Angel, K. C., Rizzo, C. J., Egli, M. and Guengerich, F. P. (2005) DNA adduct bypass polymerization by *Sulfolobus solfataricus* DNA polymerase Dpo4: analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N²-ethenoguanine. *J. Biol. Chem. 280*, 29750-29764.
- 243. Ling, H., Boudsocq, F., Woodgate, R. and Yang, W. (2004) Snapshots of replication through an abasic lesion: structural basis for base substitution and frameshift. *Mol. Cell* 13, 751-762.
- 244. Ling, H., Boudsocq, F., Polsky, B. S., Woodgate, R. and Yang, W. (2003) Replication of a *cis–syn* thymine dimer at atomic resolution. *Nature 424*, 1083-1087.
- 245. Iwai, S. (2000) Synthesis of a thymine glycol building block and its incorporation into oligonucleotides. *Nucleic Acids Symp. Ser.*, 121-122.
- 246. Marky, L. A. and Breslauer, K. J. (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. *Biopolymers 26*, 1601-1620.
- 247. Longfellow, C. E., Kierzek, R. and Turner, D. H. (1990) Thermodynamic and spectroscopic study of bulge loops in oligoribonucleotides. *Biochemistry* 29, 278-285.
- 248. Petersheim, M. and Turner, D. H. (1983) Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. *Biochemistry* 22, 256-263.
- 249. Gralla, J. and Crothers, D. M. (1973) Free energy of imperfect nucleic acid helices. Small internal loops resulting from mismatches. *J. Mol. Biol.* 78, 301-319.
- 250. Allawi, H. T. and SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. *Biochemistry 36*, 10581-10594.
- 251. Bohon, J. and de los Santos, C. R. (2005) Effect of 6-thioguanine on the stability of duplex DNA. *Nucleic Acids Res.* 33, 2880-2886.
- 252. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, J., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,

M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, A. D. Daniels, O. Farkas, A. D. Rabuck, K. Raghavachari and Ortiz., J. V. (2004) Gaussian 03, Gaussian, Inc, Wallingford CT.

- 253. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., 3rd, DeBolt, S., Ferguson, D., Seibel, G. and Knollman, P. (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. *Comp. Phys. Commun.* 91, 1-41.
- 254. Schlegel, H. B. (1984) Estimating the Hessian for gradient-type geometry optimizations. *Theor. Chim. Acta.* 66, 333-340.
- 255. Schlegel, H. B. (1982) Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3, 214.
- 256. Schlegel, H. B. (1989) *New Theoretical Concepts for Understanding Organic Reactions*, Vol. 33, Kluwer Academic, The Netherlands.
- Schlegel, H. B. (1995) Geometry optimization on potential energy surfaces, In Modern Electronic Structure Theory (Yarkony, D. R., Ed.), World Scientific Publishing, Singapore.
- 258. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. *J. Biomol. NMR* 6, 277-293.
- 259. Jeener, J., Meier, B. H., Bachmann, P. and Ernst, R. R. (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. *J. Chem. Phys.* 71, 4546-4553.
- 260. Wagner, R. and Berger, S. (1996) Gradient-Selected NOESY—A Fourfold Reduction of the Measurement Time for the NOESY Experiment. J. Magn. Reson. 123, 119-121.
- 261. Piotto, M., Saudek, V. and Sklenar, V. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. *J. Biomol. NMR* 2, 661-665.
- 262. Derome, A. E. and Williamson, M. P. (1990) Rapid-pulsing artifacts in doublequantum-filtered COSY. J. Magn. Reson. 88, 177-185.

- 263. Delaglio, F., Wu, Z. and Bax, A. (2001) Measurement of homonuclear proton couplings from regular 2D COSY spectra. *J. Magn. Reson.* 149, 276-281.
- 264. Wang, H., Zuiderweg, E. R. P. and Glick, G. D. (1995) Solution structure of a disulfide cross-linked DNA hairpin. J. Am. Chem. Soc. 117, 2981-2991.
- 265. Blondet, P., Albrand, J. P., Von Kienlin, M., Decorps, M. and Lavanchy, N. (1987) Use of rotating-phase DANTE pulses for *in vivo* proton NMR spectral editing with a single irradiation facility. *J. Mag. Res.* 71, 342-346.
- 266. Bax, A. and Davis, D. G. (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. *J. Mag. Res.*, 355-360.
- 267. Willker, W., Leibfritz, D., Kerssebaum, R. and Bermel, W. (1993) Gradient selection in inverse heteronuclear correlation spectroscopy. *Magn. Resn. Chem.* 31, 287-292.
- 268. Carr, H. Y. and Purcell, E. M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. *Phys. Rev.* 94, 630.
- 269. Vold, R. L., Waugh, J. S., Klein, M. P. and Phelps, D. E. (1968) Measurement of spin relaxation in complex systems. *J. Chem. Phys.* 48, 3831-3832.
- 270. Macke, T. and Case, D. A. (1998) Modeling unusual nucleic acid structures., In *Molecular Modeling of Nucleic Acids*. (Leontes, N. B. and SantaLucia, J., Eds.) pp 379-393, American Chemical Society, Washington, DC.
- 271. Goddard, T. D. and Kneller, D. G. SPARKY 3.11, University of California, San Francisco.
- Keepers, J. W. and James, T. L. (1984) A theoretical study of distance determination from NMR. Two-dimensional nuclear Overhauser effect spectra. J. Magn. Reson. 57, 404-426.
- 273. James, T. L. (1991) Relaxation matrix analysis of two-dimensional nuclear Overhauser effect spectra. *Curr. Opin. Struct. Biol.* 1, 1042-1053.
- 274. Liu, H., Spielmann, H. P., Ulyanov, N. B., Wemmer, D. E. and James, T. L. (1995) Interproton distance bounds from 2D NOE intensities: effect of experimental noise and peak integration errors. J. Biomol. NMR 6, 390-402.
- 275. Borgias, B. A. and James, T. L. (1990) MARDIGRAS a procedure for matrix analysis of relaxation for discerning geometry of an aqueous structure. *J. Magn. Reson.* 87, 475-487.

- 276. Borgias, B. A. and James, T. L. (1989) Two-dimensional nuclear Overhauser effect: complete relaxation matrix analysis. *Methods Enzymol.* 176, 169-183.
- 277. Van de Ven, F. J. and Hilbers, C. W. (1988) Nucleic acids and nuclear magnetic resonance. *Eur. J. Biochem.* 178, 1-38.
- van Wijk, J., Huckriede, B. D., Ippel, J. H. and Altona, C. (1992) Furanose sugar conformations in DNA from NMR coupling constants. *Methods Enzymol.* 211, 286-306.
- 279. Clore, G. M., Murphy, E. C., Gronenborn, A. M. and Bax, A. (1998) Determination of three-bond ¹H3'-³¹P couplings in nucleic acids and proteinnucleic acid complexes by quantitative *J* correlation spectroscopy. *J. Magn. Reson.* 134, 164-167.
- 280. Wu, Z., Tjandra, N. and Bax, A. (2001) Measurement of ¹H3'-³¹P dipolar couplings in a DNA oligonucleotide by constant-time NOESY difference spectroscopy. *J. Biomol. NMR 19*, 367-370.
- 281. Lankhorst, P. P., Haasnoot, A. G., Erkelens, C. and Altona, C. (1984) Carbon-13 NMR in conformational analysis of nucleic acid fragments. The magnitude of torsional angle in d(TpA) from CCOP and HCOP NMR coupling constants. *Nucleic Acids Res. 12*, 5419-5428.
- 282. Kim, S. G., Lin, L. J. and Reid, B. R. (1992) Determination of nucleic acid backbone conformation by ¹H NMR. *Biochemistry 31*, 3564-3574.
- 283. Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B. and Woods, R. J. (2005) The AMBER biomolecular simulation programs. *J. Comput. Chem.* 26, 1668-1688.
- 284. Wang, J., Cieplak, P. and Kollman, P. A. (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? *J. Comput. Chem. 21*, 1049-1074.
- Clore, G. M., Brunger, A. T., Karplus, M. and Gronenborn, A. M. (1986) Application of molecular dynamics with interproton distance restraints to threedimensional protein structure determination. J. Mol. Biol. 191, 523-551.
- 286. Tsui, V. and Case, D. A. (2000) Theory and applications of the generalized Born solvation model in macromolecular simulations. *Biopolymers 56*, 275-291.
- 287. Bashford, D. and Case, D. A. (2000) Generalized Born models of macromolecular solvation effects. *Annu. Rev. Phys. Chem.* 51, 129-152.

- 288. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath. *J. Chem. Phys.* 81, 3684-3690.
- 289. Izaguirre, J. A., Catarello, D. P., Wozniak, J. M. and Skeel, R. D. (2001) Langevin stabilization of molecular dynamics. *J. Chem. Phys* 114, 2090-2098.
- 290. Loncharich, R. J., Brooks, B. R. and Pastor, R. W. (1992) Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-actylananyl-N'-methylamide. *Biopolymers* 32, 523-535.
- 291. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H. and Pedersen, L. G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577-8593.
- 292. Rychaert, J. P., Ciccotti, G. and Berendsen, H. J. C. (1977) Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. *J. Comput. Phys.* 23, 327-341.
- 293. Lavery, R. and Sklenar, H. (1996) CURVES 5.1 Helical Analysis of Irregular Nucleic Acids, Laboratoire de Biochimie Theorique CNRS, Paris, France.
- 294. Thomas, P. D., Basus, V. J. and James, T. L. (1991) Protein solution structure determination using distances from two-dimensional nuclear Overhauser effect experiments: Effect of approximations on the accuracy of derived structures. *Proc. Natl. Acad. Sci. USA 88*, 1237-1241.
- 295. Jiang, Y. L., Wiederholt, C. J., Patro, J. N., Haraguchi, K. and Greenberg, M. M. (2005) Synthesis of oligonucleotides containing Fapy.dG (N⁶-(2-deoxy-α,β-Derythropentofuranosyl)-2,6-diamino-4-hydroxy-5 -formamidopyrimidine) using a 5'-dimethoxytrityl dinucleotide phosphoramidite. J. Org. Chem. 70, 141-149.
- 296. Haraguchi, K., Delaney, M. O., Wiederholt, C. J., Sambandam, A., Hantosi, Z. and Greenberg, M. M. (2001) Synthesis and characterization of oligonucleotides containing formamidopyrimidine lesions (Fapy.dA, Fapy.dG) at defined sites. *Nucleic Acids Res. Suppl.*, 129-130.
- 297. Patro, J. N., Haraguchi, K., Delaney, M. O. and Greenberg, M. M. (2004) Probing the configurations of formamidopyrimidine lesions Fapy.dA and Fapy.dG in DNA using endonuclease IV. *Biochemistry* 43, 13397-13403.
- 298. Birk, C., Vosa, J. and Wirsching, J. (1997) Preparation, structural elucidation and reactions of benzyl and synthesis of the corresponding 2'-deoxy-4'- thionucleosides. *Carbohydr. Res.* 304, 239-247.

- 299. Mastihubova, M. and Biely, P. (2004) Deoxy and deoxyfluoro analogues of acetylated methyl β-xylopyranoside--substrates for acetylxylan esterases. *Carbohydr Res. 339*, 2101-2110.
- 300. Asagoshi, K., Yamada, T., Okada, Y., Terato, H., Ohyama, Y., Seki, S. and Ide, H. (2000) Recognition of formamidopyrimidine by *Escherichia coli* and mammalian thymine glycol glycosylases. Distinctive paired base effects and biological and mechanistic implications. *J. Biol. Chem.* 275, 24781-24786.
- 301. Ward, D. I., Jeffs, S. M., Coe, P. L. and Walker, R. T. (1993) A mild procedure for the anomerization of 2'-deoxynucleosides. *Tetrahedron Letters* 34, 6779-6782.
- 302. Gopalakrishnan, S., Liu, X. and Patel, D. J. (1992) Solution structure of the covalent sterigmatocystin-DNA adduct. *Biochemistry* 31, 10790-10801.
- 303. Gopalakrishnan, S. and Patel, D. J. (1993) Formation and structural features of a sterigmatocystin-formamidopyrimidine adduct at the DNA duplex level. *J. Am. Chem. Soc.* 115, 9321-9322.
- 304. Reid, B. R. (1987) Sequence-specific assignments and their use in NMR studies of DNA structure. *Q. Rev. Biophys.* 20, 1-34.
- 305. Patel, D. J., Shapiro, L. and Hare, D. (1987) DNA and RNA: NMR studies of conformations and dynamics in solution. *Q. Rev. Biophys.* 20, 35-112.
- 306. Boelens, R., Scheek, R. M., Dijkstra, K. and Kaptein, R. (1985) Sequential assignment of imino- and amino-proton resonances in ¹H NMR spectra of oligonucleotides by two-dimensional NMR spectroscopy. Application to a *lac* operator fragment. *J. Mag. Res.* 62, 378-386.
- 307. Hazra, T. K., Das, A., Das, S., Choudhury, S., Kow, Y. W. and Roy, R. (2007) Oxidative DNA damage repair in mammalian cells: a new perspective. *DNA Repair (Amst) 6*, 470-480.
- 308. Weiss, B. and Cunningham, R. P. (1985) Genetic mapping of nth, a gene affecting endonuclease III (thymine glycol-DNA glycosylase) in *Escherichia coli* K-12. *J. Bacteriol.* 162, 607-610.
- 309. Jiang, D., Hatahet, Z., Melamede, R. J., Kow, Y. W. and Wallace, S. S. (1997) Characterization of *Escherichia coli* endonuclease VIII. *J. Biol. Chem.* 272, 32230-32239.
- 310. Lin, J. J. and Sancar, A. (1989) A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. *Biochemistry 28*, 7979-7984.

- 311. Reardon, J. T., Bessho, T., Kung, H. C., Bolton, P. H. and Sancar, A. (1997) *In vitro* repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. *Proc. Natl. Acad. Sci. USA 94*, 9463-9468.
- 312. Kow, Y. W., Wallace, S. S. and Van Houten, B. (1990) UvrABC nuclease complex repairs thymine glycol, an oxidative DNA base damage. *Mutat. Res. 235*, 147-156.
- 313. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.
- 314. SantaLucia, J., Jr. and Hicks, D. (2004) The thermodynamics of DNA structural motifs. *Annu. Rev. Biophys. Biomol. Struct.* 33, 415-440.
- 315. Williams, M. C. and Rouzina, I. (2002) Force spectroscopy of single DNA and RNA molecules. *Curr. Opin. Struct. Biol.* 12, 330-336.
- Marmur, J. and Doty, P. (1962) Determination of the base composition of dioxyribonucleic acid from its thermal melting temperature. J. Mol. Biol. 5, 109-118.
- 317. Wartell, R. M. and Benight, A. S. (1985) Thermal denaturation of DNA molecules. *Phys. Rep. 126*, 67-107.
- 318. Luo, R., Gilson, H. S., Potter, M. J. and Gilson, M. K. (2001) The physical basis of nucleic acid base stacking in water. *Biophys. J.* 80, 140-148.
- 319. Sponer, J., Jurecka, P. and Hobza, P. (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. *J. Am. Chem. Soc. 126*, 10142-10151.
- 320. Hunter, C. A. (1993) Sequence-dependent DNA structure. The role of base stacking interactions. *J. Mol. Biol. 230*, 1025-1054.
- 321. Danilov, V. I. and Tolokh, I. S. (1984) Nature of the stacking of nucleic acid bases in water: a Monte Carlo simulation. *J. Biomol. Struct. Dyn.* 2, 119-130.
- 322. Cieplak, P. and Kollman, P. A. (1988) Calculation of the free energy of association of nucleic acid bases *in vacuo* and water solutions. *J. Am. Chem. Soc. 110*, 3734-3739.
- 323. Yakovchuk, P., Protozanova, E. and Frank-Kamenetskii, M. D. (2006) Basestacking and base-pairing contributions into thermal stability of the DNA double helix. *Nucleic Acids Res.* 34, 564-574.
- 324. Protozanova, E., Yakovchuk, P. and Frank-Kamenetskii, M. D. (2004) Stackedunstacked equilibrium at the nick site of DNA. *J. Mol. Biol.* 342, 775-785.

- 325. Yan, S., Shapiro, R., Geacintov, N. E. and Broyde, S. (2001) Stereochemical, structural, and thermodynamic origins of stability differences between stereoisomeric benzo[a]pyrene diol epoxide deoxyadenosine adducts in a DNA mutational hot spot sequence. *J. Am. Chem. Soc.* 123, 7054-7066.
- 326. Rodger, A. and Nordén, B. (1997) *Circular Dichroism and Linear Dichroism*, Oxford University Press, Oxford; New York.
- 327. Norden, B. and Tjerneld, F. (1982) Structure of methylene blue-DNA complexes studied by linear and circular dichroism spectroscopy. *Biopolymers 21*, 1713-1734.
- 328. Lyng, R., Hard, T. and Norden, B. (1987) Induced CD of DNA intercalators: electric dipole allowed transitions. *Biopolymers* 26, 1327-1345.
- 329. Schipper, P. E., Norden, B. and Tjerneld, F. (1980) Determination of binding geometry of DNA-adduct systems through induced circular dichroism. *Chem. Phys. Lett.* 70, 17-21.
- 330. Gray, D. M., Ratliff, R. L. and Vaughan, M. R. (1992) Circular Dichroism Spectroscopy of DNA, In *Methods in Enzymology, Vol 211* (Lilley, D. M. J. and Dahlberg, J. E., Eds.) pp 389-406, Academic Press, San Diego.
- 331. Newberne, P. M. and Butler, W. H. (1969) Acute and chronic effects of aflatoxin on the liver of domestic and laboratory animals: a review. *Cancer Res. 29*, 236-250.
- 332. Miller, E. C. and Miller, J. A. (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. *Cancer* 47, 2327-2345.
- 333. Clifford, J. I. and Rees, K. R. (1967) The action of aflatoxin B₁ on the rat liver. *Biochem. J. 102*, 65-75.
- 334. Sarasin, A. and Moule, Y. (1975) Translational step inhibited *in vivo* by aflatoxin B₁ in rat-liver polysomes. *Eur. J. Biochem.* 54, 329-340.
- 335. Sarasin, A. and Moule, Y. (1976) Helical polysomes induced by aflatoxin B_1 *in vivo*. A new hypothesis for helix formation by chemicals and carcinogens. *Exp. Cell Res.* 97, 346-358.
- Yu, F. L., Cahill, J. M., Lipinski, L. J. and Dipple, A. (1996) Effect of aflatoxin B₁-8,9-epoxide-DNA adducts on transcription of a supF gene fragment. *Cancer Lett.* 109, 77-83.

- Woody, R. W. (1995) Circular Dichroism, In *Methods in Enzymology, Vol 246* (Kenneth, S., Ed.) pp 34-71, Academic Press, San Diego.
- 338. Laspia, M. F. and Wallace, S. S. (1988) Excision repair of thymine glycols, urea residues, and apurinic sites in *Escherichia coli*. J. Bacteriol. 170, 3359-3366.
- 339. Krosky, D. J., Schwarz, F. P. and Stivers, J. T. (2004) Linear free energy correlations for enzymatic base flipping: how do damaged base pairs facilitate specific recognition? *Biochemistry* 43, 4188-4195.
- Gorenstein, D. G. (1994) Conformation and dynamcis of DNA and protein-DNA complexes by ³¹P NMR. *Chem. Rev. 94*, 1315-1336.
- 341. Wu, Z., Tjandra, N. and Bax, A. (2001)³¹P chemical shift anisotropy as an aid in determining nucleic acid structure in liquid crystals. *J. Am. Chem. Soc.* 123, 3617-3618.
- 342. Sanner, M. F. (1996) MSMS, The Scripps Research Institute, La Jolla, CA.
- 343. Bax, A. (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. *Protein Sci.* 12, 1-16.
- 344. Wu, Z., Delaglio, F., Tjandra, N., Zhurkin, V. B. and Bax, A. (2003) Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and ³¹P chemical shift anisotropy. *J. Biomol. NMR 26*, 297-315.
- 345. Clark, F. H. and Cahoon, N. M. (1987) Ionization constants by curve fitting: determination of partition and distribution coefficients of acids and bases and their ions. *J. Pharm. Sci.* 76, 611-620.
- 346. Dixon, S. L. and Jurs, P. C. (1993) Estimation of pK_a for organic oxyacids using calculated atomic charges. *J. Comp. Chem.* 14, 1460-1467.
- 347. Csizmadia, F., Tsantili-Kakoulidou, A., Panderi, I. and Darvas, F. (1997) Prediction of distribution coefficient from structure. 1. Estimation method. *J. Pharm. Sci.* 86, 865-871.