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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer by 

incidence in the world [1]. Each year, 500,000 new cases are diagnosed with a five-year survival 

rate between 40-50% [1]. Current standards of care for HNSCC patients include surgery, 

radiation therapy, and chemotherapy. However, surgeries often cause serious morbidities by 

impairing the ability to speak, chew, and swallow. Additionally, radiation therapy and 

chemotherapy introduce toxicities causing nausea, diarrhea, rash, dry mouth or thickened saliva, 

and changes in taste [2]. These negative side effects from HNSCC treatment justify the need for 

improved treatments and the development of biomarkers of early treatment efficacy.  

Current treatments cure only 50-60% of HNSCC patients [3]. Measures of treatment 

response in HNSCC include x-ray computed tomography (CT), magnetic resonance imaging 

(MRI), and positron emission tomography (PET). However, these methods are only effective 

weeks to months after treatment begins and require contrast agents and/or expensive equipment. 

Additionally, tumor heterogeneity can contribute to treatment resistance, so single cell 

measurements would be beneficial to identify resistant cell subpopulations. Alternative treatment 

options for non-responders include re-irradiation, chemotherapy, or surgery [4]. Early predictors 

of drug efficacy would reduce toxicities, costs, and time associated with ineffective therapy. 

Therefore, there is a need for a cost-effective, noninvasive tool to determine treatment response 

at an early timepoint.  
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Therapeutic interventions for HNSCC include traditional chemotherapy and targeted 

inhibitors. Cisplatin is a common chemotherapy used in HNSCC [5]. In the past decade, targeted 

inhibitors have been developed to treat HNSCC. More than 90% of HNSCC cases exhibit 

upregulation of epidermal growth factor receptor (EGFR). The EGFR signaling pathway drives 

cell proliferation, growth, and survival. EGFR is the only proven molecular target for HNSCC 

therapy [4]. Cetuximab is a monoclonal antibody that inhibits EGFR activation, but clinical 

outcomes with cetuximab treatment have been poor and are not correlated with EGFR protein 

expression levels [6]. Improved technologies could guide the selection of drugs for individual 

patients so that alternative treatments can be administered. 

The EGFR signaling pathway regulates cellular metabolism, including glycolysis and 

oxidative phosphorylation. Cancer often exhibits altered metabolism, particularly increased 

aerobic glycolysis (Warburg effect) [7], and metabolic pathways involve the autofluorescent 

cofactors NAD(P)H and FAD. The optical redox ratio and fluorescence lifetimes of NAD(P)H 

and FAD exploit intrinsic contrast to measure cellular metabolism at high resolution.  

The overall goal of this dissertation is to enable improved response to therapy in head and 

neck cancer patients. Specifically, in vitro and in vivo models of head and neck cancer are treated 

with chemotherapy and targeted drugs, and endogenous fluorescence is measured from 

NAD(P)H and FAD, which are cofactors in glycolysis and oxidative phosphorylation. 

Ultimately, this technique could be applied to improve drugs and treatment regimens for head 

and neck cancer patients. 
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1.2 Specific Aims 

A method to predict drug efficacy could enable optimal drug selection for individual 

HNSCC patients, thereby improving patient outcomes. Additionally, a method to monitor 

therapeutic effects at early timepoints after treatment onset would identify ineffective treatments. 

Molecular targets of HNSCC treatment include epidermal growth factor receptor (EGFR). EGFR 

participates in cellular signaling pathways that regulate metabolic cofactors including NAD(P)H 

and FAD, which are autofluorescent molecules involved in glycolysis and oxidative 

phosophorylation. The optical redox ratio is defined as the fluorescence intensity of NAD(P)H 

divided by that of FAD, and provides a global measure of metabolism. The fluorescence lifetime 

is a complementary optical measure that reports on the molecular microenvironment (protein-

binding) of NAD(P)H and FAD. These fluorescence lifetimes and the optical redox ratio are 

parameters for “optical metabolic imaging”.  

Hypothesis: Optical metabolic imaging is sensitive to treatment response in HNSCC. 

Aim 1 - Characterize optical metabolic parameters in head and neck cancer cell lines early after 

treatment with approved and experimental drugs. Feasibility will be established using human 

HNSCC cell lines. Cells will be treated with the clinically approved EGFR-targeting antibody 

cetuximab, the clinically approved chemotherapy cisplatin, or the experimental phosphoinositide 

3-kinase (PI3K)/mammalian target of rapamycin (mTOR)-inhibitor BGT226 for 24 hours. 

NAD(P)H and FAD autofluorescence intensities and lifetimes will be characterized compared 

with control cells. Gold standard analysis will validate molecular targeting of cetuximab and 

BGT226 (western blot) and measure metabolic treatment response (lactate production/glucose 

consumption, proliferation).  
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Aim 2 - Determine optical metabolic response to treatment in vivo in mouse xenografts using 

human head and neck cancer cells. Male nu/nu mice will be injected with head and neck cancer 

cells. Once tumors reach ~100mm
3
 the mice will be treated with cetuximab, cisplatin, or their 

combination. NAD(P)H and FAD autofluorescence intensities and lifetimes will be measured 48 

hours after treatment, and cell subpopulation analysis will characterize tumor heterogeneity. 

Tumor growth over time, cell proliferation, and cell death will be used as gold standard measures 

of response.  

Aim 3 – Translate optical metabolic imaging to head and neck cancer patient tissues. Human 

patient tissues of head and neck cancer will be acquired for ex vivo imaging. Samples will 

include tissue from multiple anatomical sites and cell types. Fluorescence lifetime images of 

NAD(P)H and FAD will probe tissue morphology and metabolism. Second harmonic generation 

(SHG) microscopy will image extracellular matrix composition, particularly collagen density and 

alignment. 

Aim 4 - Quantify optical metabolic parameters in organoid in vitro model of head and neck 

cancer after treatment. Head and neck cancer xenografts will be excised, digested, and grown in 

culture (organoids). Metabolic phenotypes of organoids will be characterized alone and after 

treatment with cetuximab, cisplatin, or their combination. NAD(P)H and FAD autofluorescence 

intensities and lifetimes will be measured 24 hours after treatment. Additionally, cellular 

heterogeneity of organoids based on optical metabolic imaging parameters will be analyzed. 

Gold standard tumor response curves will be measured. 

Impact: Optical metabolic imaging has potential to predict optimal drugs for HNSCC patients, 

enabling improved patient outcomes. Additionally, early measurement of response could identify 

ineffective treatment regimens, reducing unnecessary morbidities, toxicities, and costs. 
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1.3 Dissertation Outline 

Chapter 1 explains the motivation behind this dissertation work. Chapter 2 provides 

relevant background information, particularly for head and neck cancer, methods for measuring 

treatment response, and optical techniques. The autofluorescence properties of NAD(P)H and 

FAD, as well as the roles of NAD(P)H and FAD in cell metabolism, are described. Chapter 3 

characterizes optical metabolic imaging parameters, including the optical redox ratio and 

fluorescence lifetimes of NAD(P)H and FAD, in head and neck cancer cell lines after treatment 

with chemotherapy and targeted drugs. These optical parameters were compared with gold 

standard measures of cellular metabolism and therapeutic response. These studies provide a 

foundation for measurements in more complex systems. Chapter 4 shows feasibility of the 

optical redox ratio and fluorescence lifetime measurements of NAD(P)H and FAD in vivo for 

head and neck cancer xenografts to resolve response early after treatment. Chapter 5 translates 

optical metabolic imaging for ex vivo patient tissues of head and neck cancer. This study 

characterizes metabolic, morphologic, and structural properties on fresh, unprocessed human 

tissue from a variety of anatomical sites and cell types. Chapter 6 develops a protocol for 

generating three-dimensional organoid cultures from head and neck cancer tissue and 

characterizes the optical metabolic imaging properties of the organoids alone and after drug 

treatment. This type of physiologically-relevant in vitro model could provide a platform for 

streamlining drug discovery and predicting optimum treatments before administering drugs to 

individual patients. Chapter 7 presents the conclusions from this work, as well as future 

directions, contributions to the field, and broader impacts. 

Appendices A and B include supplementary information for Chapters 4 and 6, 

respectively. Appendix C characterizes flow cytometry signals of cellular autofluorescence for 
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breast cancer cells with distinct phenotypes and applies flow sorting to separate heterogeneous 

samples into distinct cell subpopulations. 
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CHAPTER 2 

BACKGROUND 

 

Shah AT. 2013. Autofluorescence Imaging Reflects Metabolic Response to  

Treatment in Human Head and Neck Squamous Cell Carcinoma (Master’s Thesis). Vanderbilt 

University 

 

2.1 Anatomy and Physiology of the Head and Neck  

The head and neck region includes the nasal cavity, oral cavity, pharynx, and larynx 

(Figure 2.1) [1]. These organs work together to perform critical functions, including chewing and 

swallowing food, speaking, and breathing.  

 

 

Figure 2.1. Anatomy of the head and neck region. Head and neck squamous cell carcinoma 

originates in squamous cells of the oral cavity, nasal cavity, pharynx, and larynx [8]. 
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The oral cavity includes the lips, teeth, jaw, tongue, roof of the mouth, floor of the mouth, 

and salivary glands. The lips form the opening of the mouth and they are important in speech and 

containing food in the mouth. The tongue helps guide food and contains taste buds. The main 

function of the oral cavity is to chew and break down food mechanically using teeth and 

chemically using saliva produced by salivary glands.  

The pharynx is a five-inch long tube located between the nose and the esophagus, and it 

consists of the nasopharynx, oropharynx, and hypopharynx. This cavity in the throat connects the 

nasal and oral cavities with the rest of the respiratory and digestive system, including the 

stomach, small intestine, and large intestine. Swallowing occurs in the pharynx, moving food 

from the mouth into the esophagus.  

The larynx is situated below the pharynx. It is also called the voice box because it 

contains vocal chords that create sound and control pitch and volume. During swallowing, the 

larynx is elevated and the vocal chords move towards each other to move food through the 

esophagus and prevent it from going into the trachea, which leads to the lungs. The epiglottis, a 

layer of cartilage, moves over the laryngeal opening to prevent food from going into the 

respiratory pathways. The esophagus connects the pharynx to the stomach, where food is stored 

and broken down.  

 

Prevalence and Diagnosis of Head and Neck Squamous Cell Carcinoma 

 Head and neck squamous cell carcinoma (HNSCC) originates in squamous cells of the 

oral cavity, nasal cavity, pharynx, and larynx. The hallmarks of cancer include evading 

apoptosis, self-sufficiency in growth signals, insensitivity to anti-growth signals, tissue invasion 
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and metastasis, and limitless replicative potential [9]. More than 90% of head and neck cancers 

are squamous cell carcinoma [10].  

Incidence and mortality of HNSCC is correlated with long-term use of tobacco and 

alcohol. About 75% of HNSCC incidence occurs in men compared with 25% in women [11]. 

The stereotypical HNSCC patient is above 50 years old, but the younger population of HNSCC 

patients is increasing. In particular, this increase has been attributed to the prevalence of human 

papilloma virus (HPV), which affects about 25% of HNSCC cases [12][13]. Additionally, poor 

diet, particularly lacking vitamin A and iron, and poor oral hygiene can increase risk for 

developing HNSCC [14]. 

Early symptoms of HNSCC are usually vague. Symptoms of cancer in the oral cavity 

include persistent abnormal masses and sores [2]. Symptoms of cancer in the oropharynx, 

hypopharynx, and larynx include difficulty swallowing, sore throat, and hoarseness or other 

changes in voice quality. Symptoms of cancer in the nasal cavity include difficulty breathing 

through the nose and inflammation of the sinuses [15]. Screening is conducted using physical 

examination to inspect ulcers within the mouth and throat, palpation of the neck, and endoscopy. 

Additionally, magnetic resonance imaging (MRI), x-ray, and computed tomography (CT) can be 

used to detect HNSCC [16]. HNSCC is diagnosed by pathologic examination of surgical biopsy. 

Unfortunately, most cases are diagnosed at advanced stages, so effective treatment options are 

crucial to prevent unnecessary mortality and morbidity. 

 

Treatment Methods for Head and Neck Cancer 

 Treatment techniques for HNSCC depend on the stage, location, and resectability of the 

primary tumor. Early stages are usually treated with surgery to remove tumor-containing tissue 
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and radiation, while advanced stages are treated with surgery and radiation in combination with 

chemotherapy, including cisplatin and fluorouracil (FU). Targeted therapies have also been 

investigated. HNSCC exhibits upregulation of epidermal growth factor receptor (EGFR) in more 

than 90% of cases [17]. EGFR activation leads to growth and proliferation of epithelial cells 

(Figure 2.2). Cetuximab is a monoclonal antibody that binds to EGFR, prevents activation, and 

leads to receptor degradation, and it has been used to inhibit EGFR-expressing tumors. 

Cetuximab is approved in combination with radiation therapy in patients with locally advanced 

HNSCC. However, since only a portion of patients respond to EGFR inhibitors, downstream 

targets have the potential to improve patient outcomes. Commonly mutated targets include 

phosphoinsitide 3-kinase (PI3K), signal transducer and activator of transcription 3 (STAT3), 

mammalian target of rapamycin (mTOR), Akt, vascular endothelial growth factor receptor 

(VEGFR), NF-κB, and human epidermal growth factor receptors 2 (HER2) and 3 (HER3) [18] 

[19]. 

 

Figure 2.2. EGFR signaling pathway. EGFR activates pathways promoting cell survival and 

proliferation [20]. 



11 

 

Current treatment options introduce toxicities and complications that impair the patient’s 

quality of life. Surgeries often lead to serious morbidities, including difficulty or inability to 

speak and swallow, swelling, and changes in appearance. Therefore, organ preservation and 

function preservation are important considerations in HNSCC treatment. Additionally, 

radiotherapy and chemotherapy cause side effects, such as nausea, diarrhea, rash, dry mouth or 

thickened saliva, or changes in taste [2]. HNSCC can be aggressive depending on the location 

and proximity to lymph nodes, increasing the capability to metastasize [21]. The 5-year survival 

rate for HNSCC patients is between 40-50% [1]. Despite advancements and improvements in 

surgical techniques, chemotherapy, and radiation delivery, long-term survival has not improved 

[22]. The current standard to measure cancer treatment response includes whole-body imaging 

methods, like CT, x-ray, MRI, and positron emission tomography (PET).  

 

Optical Techniques for Head and Neck Squamous Cell Carcinoma 

HNSSC is an ideal target for optical imaging because of easy access to the site using fiber 

optic probes [23][24]. Additionally, fiber optics can be incorporated into endoscopes that are 

currently in use. 

Optical techniques have been investigated to detect HNSCC. High-resolution 

microendoscopic imaging has been used to distinguish cancerous versus benign sites for 

assessing tumor margins in surgery for HNSCC [23]. Reflectance spectroscopy using polarized 

light has also been shown to non-invasively extract morphologic information to detect neoplasia 

in epithelial tissue phantoms and oral tissue in vivo [25]. Additionally, fluorescence spectroscopy 

has been shown to identify oral neoplasias with sensitivities and specificities greater than 88% 

[26]. Muller, et al. combined intrinsic fluorescence spectroscopy, diffuse reflectance 
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spectroscopy, and light scattering spectroscopy and achieved a sensitivity and specificity of 96% 

and 96% in distinguishing dysplasia from normal tissue in HNSCC patients [27]. Contrast 

agents, particularly acetic acid, and blue-white light have been used to identify premalignancy in 

the oral cavity, but clinical studies will be required to determine the sensitivity and specificity of 

these techniques [28]. Furthermore, the autofluorescence intensity of NAD(P)H and FAD has 

been used to distinguish normal from dysplasia in oral tissue [29], and the NAD(P)H and FAD 

fluorescence lifetimes have been shown to identify precancer compared with normal in the 

DMBA-treated hamster cheek pouch model [30][31][32][33]. Optical coherence tomography has 

also been applied with fluorescence lifetime imaging to discriminate normal from cancer in the 

hamster cheek pouch [34]. Multiphoton microscopy of endogenous fluorescence has been used 

to quantify cellular and tissue morphology in the DMBA-treated hamster cheek pouch model 

[35][36]. 

Attempts have been made to monitor treatment response in HNSCC using fluorescently-

labeled antibodies. In one study, mice with HNSCC xenografts treated with fluorescently-labeled 

cetuximab decreased in tumor volume, but tumor fluorescence did not correlate with response to 

treatment [37]. Gleysteen et al. used a similar approach of growing xenografts and treating the 

mice with fluorescently labeled cetuximab, cisplatin, and radiation. They found no change 

among fluorescence intensity before treatment, after six weeks of treatment, or at ten weeks of 

treatment, although tumor regression was observed based on histological analysis. This indicates 

that fluorescence intensity of labeled cetuximab does not reflect tumor response [38]. However, 

endogenous fluorescence has not been studied to measure treatment response in HNSCC.  
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Two-Photon Fluorescence Microscopy and Fluorescence Lifetime Imaging 

 Light can be described as packets of energy in photons. Fluorescence occurs when a 

molecule absorbs a photon of a particular energy and emits a photon of a different energy [39]. 

This absorption excites the molecule from the ground state, S, to the excited state, S*, and upon 

relaxation the emitted light has an energy less than the absorbed energy (Figure 2.3). Energy and 

wavelength are inversely related according to E = hc/λ, where E represents energy, h represents 

Planck’s constant, λ represents wavelength, and c represents the speed of light. Therefore, a 

lower energy corresponds to a longer wavelength. Endogenous fluorophores, including 

NAD(P)H, FAD, tryptophan, collagen, and elastin, occur naturally in the body, and probing 

these can eliminate the need for dyes or contrast agents [40].  

Two-photon excitation occurs by simultaneous absorption of two photons with half the 

energy required for single-photon excitation (Figure 2.3) [41]. Photons with half the energy 

correspond to twice the wavelength. Most endogenous fluorophores are excited in the ultraviolet 

(UV) to visible range (~300-500nm), so therefore two-photon excitation uses near-infrared (NIR) 

light (~700-900nm) for excitation [40]. UV or visible light is constrained to a penetration depth 

of about 100µm below tissue surface, whereas decreased scattering and absorption for NIR light 

allows for deeper penetration [42]. Additionally, since the absorption of two photons is required 

for excitation, sufficient photon flux is only present at the focal point, whereas single-photon 

excitation can produce fluorescence outside the focal point due to scattering (Figure 2.4). This 

allows for precise depth-sectioning and elimination of out-of-focus signal.  
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Figure 2.3. Absorption and fluorescence emission energy diagram. Single-photon (blue) and two-

photon (red) excitation causes fluorescence emission (green) [43].  

 

 

Figure 2.4. Comparison between single-photon and two-photon excitation. Single-photon 

fluorescence causes excitation at the focal point and outside the focal point (top), whereas two-

photon fluorescence causes excitation only at the focal point (bottom) [44].  

 

Fluorescence lifetime imaging probes the amount of time that a fluorophore is in the 

excited state before relaxing to the ground state [39][45]. The lifetime is sensitive to the 

microenvironment, including protein-binding, pH, and oxygen. In particular, the lifetime 
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discriminates between free and protein-bound conformations of molecules. To calculate the 

lifetime, a histogram of the lifetime events is plotted and fit to an exponential curve. The number 

of components in the exponential curve depends on the number of molecular species or binding 

configurations present. For example, NAD(P)H and FAD exist in free and protein-bound 

conformations, so these lifetime histograms are fit to a two-component exponential function: F(t) 

= α1e
-t/τ1

+ α2e
-t/τ2

, where F represents the fluorescence as a function of time, α represents the 

contribution from each component and τ represents the lifetime of each component (Figure 2.5). 

The lifetime occurs on the order of picoseconds to nanoseconds. Applying two-photon 

fluorescence and fluorescence lifetime imaging of the metabolic cofactors NAD(P)H and FAD 

can provide insight into cellular metabolism and microenvironment in vitro and in vivo [46]. 

 

Figure 2.5. Fluorescence lifetime decay curve. The fluorescence lifetime is calculated by fitting 

the lifetime events (blue) to an exponential function (red). 

 

Cellular Metabolism and Tumor Heterogeneity 

During glycolysis, NAD
+
 is reduced to nicotinamide adenine dinucleotide (NADH) 

(Figure 2.6). During oxidative phosphorylation, NADH is oxidized to NAD
+
 and FADH2 is 

oxidized to flavin adenine dinucleotide (FAD). NADH and FAD exhibit autofluorescence, 

whereas NAD
+
 and FADH2 do not. Additionally, NADH and FAD can be separated spectrally 
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based on their optimal excitation and emission wavelengths. NADPH exhibits similar 

fluorescence excitation and emission properties as NADH, so fluorescence from these molecules 

is termed NAD(P)H. NADPH is expected to contribute a low background signal because the 

concentration of NADH is about 5 times higher than NADPH [47], NADH has a 1.25 to 2.5 

times higher quantum yield than NADPH [48], and metabolic perturbations have been shown to 

primarily affect NADH [49]. 

 

 

Figure 2.6. The role of NADH and FAD in cellular metabolism. Glycolysis occurs in the cell 

cytoplasm, whereas the Kreb’s cycle and the electron transport chain occur in the mitochondria 

[50]. 

 

The optical redox ratio, defined as the fluorescence intensity of NAD(P)H divided by the 

fluorescence intensity of FAD is an established method for probing cellular metabolism 

[46][51][52]. For example, the redox ratio has been shown to be higher for cancer cells 
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compared with nonmalignant cells [53], which can be attributed to increased aerobic glycolysis 

in cancer. As a more sensitive measure, the fluorescence lifetime is the time a fluorophore stays 

in the excited state before relaxing to the ground state and reflects fluorophore 

microenvironment, including protein-binding and preferred metabolic pathways [39]. These 

measurements are advantageous because they use intrinsic contrast to probe cellular metabolism 

and can be applied on a single cell level. 

 Tumors can contain multiple subpopulations of cancer cells with different phenotypes 

and sensitivities to treatment [54][55], and this tumor heterogeneity can impact treatment 

response. In particular, subpopulations of cells that are resistant to treatment can continue to 

proliferate after therapy and be responsible for patient relapse. For example, previous work has 

shown that a minority subset of cells can drive tumor growth in HNSCC [56]. However, current 

methods for planning treatment regimens include targeting the majority population of cells [57]. 

Therefore, single cell measurements have potential to resolve cellular subpopulations and 

identify treatment-resistant cells that drive patient relapse.  
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CHAPTER 3 

OPTICAL METABOLIC IMAGING OF TREATMENT RESPONSE IN HUMAN HEAD 

AND NECK SQUAMOUS CELL CARCINOMA 

 

Shah AT, Demory Beckler M, Walsh AJ, Jones WP, Pohlmann PR, Skala MC. “Optical 

Metabolic Imaging of Treatment Response in Human Head and Neck Squamous Cell 

Carcinoma.” PLOS ONE, 2014; 9(3) e90746 

 

3.1 Abstract 

 Optical metabolic imaging measures fluorescence intensity and lifetimes from metabolic 

cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). 

These molecular level measurements provide unique biomarkers for early cellular responses to 

cancer treatments. Head and neck squamous cell carcinoma (HNSCC) is an attractive target for 

optical imaging because of easy access to the site using fiber optic probes. Two HNSCC cell 

lines, SCC25 and SCC61, were treated with Cetuximab (anti-EGFR antibody), BGT226 

(PI3K/mTOR inhibitor), or cisplatin (chemotherapy) for 24 hours. Results show increased redox 

ratio, NADH α1 (contribution from free NADH), and FAD α1 (contribution from protein-bound 

FAD) for malignant cells compared with the nonmalignant cell line OKF6 (p<0.05). In SCC25 

and SCC61 cells, the redox ratio is unaffected by cetuximab treatment and decreases with 

BGT226 and cisplatin treatment (p<0.05), and these results agree with standard measurements of 

proliferation rates after treatment. For SCC25, NADH α1 is reduced with BGT226 and cisplatin 

treatment. For SCC61, NADH α1 is reduced with cetuximab, BGT226, and cisplatin treatment. 

Trends in NADH α1 are statistically similar to changes in standard measurements of glycolytic 
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rates after treatment. FAD α1 is reduced with cisplatin treatment (p<0.05). These shifts in optical 

endpoints reflect early metabolic changes induced by drug treatment. Overall, these results 

indicate that optical metabolic imaging has potential to detect early response to cancer treatment 

in HNSCC, enabling optimal treatment regimens and improved patient outcomes. 

 

3.2 Introduction 

Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer by 

incidence in the world [1]. Each year, 500,000 new cases are diagnosed with a five-year survival 

rate between 40-50% [1]. Current standards of care for HNSCC patients involves 

multidisciplinary care, including surgery, radiation therapy, chemotherapy, and rehabilitation. 

Treatment is intense since it is frequently delivered with curative aims. Resultant toxicities 

comprise nausea, vomiting, diarrhea, neuropathy, skin rash, dry mouth or thickened saliva, 

changes in taste, hypothyroidism, as well as impaired ability to speak, chew, and swallow 

[2][58][59]. These negative side effects from HNSCC treatment justify the need for improved 

treatments and the development of biomarkers of early treatment efficacy.  

Current measures of treatment response in HNSCC include physical examination with 

endoscopy, x-ray computed tomography (CT), magnetic resonance imaging (MRI), and positron 

emission tomography (PET). Deep invasion of tumor and subtle changes to its dimensions during 

different treatment phases may not be measurable by physical exam. Imaging studies are only 

effective weeks to months after treatment begins and require contrast agents and/or expensive 

equipment. Therefore, these methods have low sensitivity to detect beneficial effects of treatment 

before several weeks have elapsed since treatment onset. Alternative treatment options for non-

responders include re-irradiation, chemotherapy, or surgery [4]. Early predictors of drug efficacy 
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would reduce toxicities, costs, and time associated with ineffective therapy. Therefore, there is a 

need for a cost-effective, noninvasive tool to determine treatment response at an early time point.  

Therapeutic interventions for HNSCC include traditional chemotherapy and molecularly 

targeted inhibitors.  Cisplatin is a common chemotherapy used in HNSCC [5]. In the past decade, 

targeted inhibitors have been developed to treat a number of solid tumors, including HNSCC. 

More than 90% of HNSCC cases exhibit upregulation of epidermal growth factor receptor 

(EGFR). The EGFR signaling pathway drives cell proliferation, growth, and survival. EGFR is 

the only proven molecular target for HNSCC therapy [4]. Cetuximab is a monoclonal antibody 

that effectively occludes ligand binding to EGFR, thereby inhibiting receptor activation, but 

clinical outcomes with cetuximab treatment vary and are not correlated with EGFR protein 

expression levels [6]. Therefore, downstream effectors, including phosphatidylinositol 3-kinase 

(PI3K) and mammalian target of rapamycin (mTOR), have been investigated as potential 

therapeutic targets. PI3K, a master regulator of metabolism, is mutated in about 37% of HNSCC 

[60]. BGT226 is a PI3K/mTOR inhibitor currently under clinical investigation for solid tumors 

[61]. However, there is a need for improved technologies to guide the selection of drugs for 

individual patients, so that alternative treatments such as BGT226 can be used at an early time 

point. 

The EGFR and PI3K/mTOR signaling pathways regulate cellular metabolism, including 

glycolysis and oxidative phosphorylation [62]. Cancer often exhibits altered metabolism, 

particularly increased aerobic glycolysis (Warburg effect) [7]. During glycolysis, NAD
+
 is 

reduced to nicotinamide adenine dinucleotide (NADH). During oxidative phosphorylation, 

NADH is oxidized to NAD
+
 and FADH2 is oxidized to flavin adenine dinucleotide (FAD). 

NADH and FAD exhibit autofluorescence, whereas NAD
+
 and FADH2 do not. The optical redox 
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ratio, defined as the fluorescence intensity of NADH divided by the fluorescence intensity of 

FAD, reflects relative amounts of glycolysis compared with oxidative phosphorylation and is an 

established method for probing cellular metabolism [46][51][52]. The fluorescence lifetime is the 

time a fluorophore stays in the excited state before relaxing to the ground state and reflects 

fluorophore microenvironment, including protein-binding and preferred metabolic pathways 

[39]. The optical redox ratio and fluorescence lifetimes of NADH and FAD exploit intrinsic 

contrast to measure optical endpoints of cellular metabolism. Furthermore, metabolic endpoints 

show particular promise because shifts in cellular metabolism often occur sooner than changes in 

tumor volume or glucose uptake. 

Tissue autofluorescence has been previously used to detect HNSCC. The 

autofluorescence intensity of NADH and FAD has been used to distinguish normal from 

dysplasia in oral tissue [29], and the NADH and FAD fluorescence lifetimes have been shown to 

identify precancer compared with normal in the DMBA-treated hamster cheek pouch model 

[31][32][33][30]. Multiphoton microscopy of endogenous fluorescence has been used to quantify 

cellular and tissue morphology in the DMBA-treated hamster cheek pouch model [35][36]. 

However, no previous literature has characterized endogenous fluorescence in response to 

treatment in HNSCC. Fluorescent dyes have been used to monitor anti-EGFR antibody uptake in 

HNSCC, but results did not reflect response in vivo [37][38]. Optical metabolic imaging is 

sensitive to early metabolic shifts after cancer treatment and has potential to noninvasively detect 

treatment response sooner than current methods. 

The serious morbidities and toxicities from HNSCC treatment, as well as treatment 

failures, justify the need for early predictors of treatment efficacy. This study tests the hypothesis 

that autofluorescence from metabolic cofactors NADH and FAD can resolve response to targeted 
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therapies and chemotherapy in HNSCC. Optical metabolic imaging was performed on two 

HNSCC cell lines, SCC25 and SCC61, treated for 24 hours with targeted drugs (cetuximab or 

BGT226) or chemotherapy (cisplatin). HNSCC is an ideal site for optical imaging because of 

easy access to the site with fiber optic probes. These results indicate that optical metabolic 

imaging has potential to expedite drug screenings, develop optimal treatments, and improve 

patient outcomes for HNSCC.  

 

3.3 Materials and Methods 

Cell Culture and Reagents 

The TERT-immortalized human oral keratinocyte line OKF6/TERT-1 (OKF6) [63], the 

squamous cell carcinoma line SCC25 [64][65][66][67], and the squamous cell carcinoma line 

SCC61 [66] were acquired from J. Rheinwald and the Cell Culture Core of the Harvard Skin 

Disease Research Center, Boston, MA. OKF6 cells were cultured in keratinocyte serum-free 

medium (GIBCO K-sfm; Invitrogen) supplemented with 25µg/ml bovine pituitary extract, 1% 

penicillin/streptomycin, 0.2ng/ml epidermal growth factor, and 0.3mM CaCl2. SCC25 and 

SCC61 cells were cultured in DMEM/F12 media (Invitrogen) supplemented with 10% fetal 

bovine serum and 0.4µg/ml hydrocortisone (Sigma).  

For fluorescence imaging, 10
5
 cells were plated on 35 mm glass-bottomed dishes 

(MatTek Corp.). The media was replaced 24 hours after plating with control media or treatment 

media containing 13nM cetuximab (Vanderbilt Pharmacy), 300nM NVP-BGT226 

(Selleckchem), or 176µM cisplatin (Selleckchem). The drug doses were chosen to be 11 times 

the IC50 for each  drug [3] [68] [69]. The cells were imaged 24 hours after treatment.  
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Imaging Instrumentation 

Fluorescence lifetime images were collected using a custom-built multi-photon fluorescence 

microscope (Prairie Technologies). Images were acquired through an inverted microscope (TiE, 

Nikon) with a 40x oil immersion objective (1.3 NA). Fluorescence was excited using a 

titanium:sapphire laser (Chameleon, Coherent Inc.) and collected using a GaAsP photomultiplier 

tube (H7422P-40, Hamamatsu). NADH and FAD images were acquired sequentially for the 

same field of view. NADH fluorescence was isolated using an excitation wavelength of 750nm 

and an emission bandpass filter of 400-480nm. FAD fluorescence was isolated using an 

excitation wavelength of 890nm and an emission bandpass filter of 500-600nm. The average 

power incident on the sample was approximately 10mW. The acquired images consisted of 256 x 

256 pixels (170µm x 170µm) with a 4.8µs pixel dwell time. Time-correlated single photon 

counting (TCSPC) electronics (SPC-150, Becker and Hickl) were used to collect fluorescence 

lifetime images over 60 seconds. The approximate rate of photon counting was 1-2*10
5
 

photons/second. The absence of photobleaching was confirmed by monitoring photon count rates 

throughout image acquisition.  

The instrument response function (IRF) was measured from second harmonic generation 

of urea crystals excited at 900nm, and the full width at half maximum (FWHM) was calculated 

to be 244 ps. A Fluoresbrite YG microsphere (Polysciences Inc.) was imaged as a daily standard. 

The lifetime decay curves were fit to a single exponential decay and the fluorescence lifetime 

was measured to be 2.13 ± 0.28ns (n=7), which is consistent with published values [32][70]. 
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Cyanide Perturbation 

The OKF6 cells were plated at a density of 10
5
 cells per 35 mm glass-bottomed dish (MatTek 

Corp.). After 48 hours, fluorescence lifetime images of NADH and FAD were acquired. Then, 

the media was replaced with cyanide-supplemented media (4mM NaCN, Sigma). After five 

minutes of cyanide treatment, fluorescence lifetime images of NADH and FAD were acquired.  

 

Image Analysis 

Fluorescence lifetime images were analyzed using SPCImage software (Becker and Hickl). 

Binning included the selected pixel and the eight surrounding pixels. The fluorescence lifetimes 

were calculated by de-convolving the measured fluorescence decay curve with the IRF and 

fitting to a two-component exponential curve, F(t) = α1e
-t/τ1 

+ α2e
-t/τ2 

+ c. F(t) represents the 

fluorescence intensity as a function of time after the excitation pulse, τ1 and τ2 represent the short 

and long fluorescence lifetimes, respectively, α1 and α2 represent the contribution from each 

lifetime component (α1+α2=1), and c represents background light. A two-component decay curve 

was chosen to represent free and protein-bound conformations of NADH and FAD [32]. The 

weighted mean lifetime, τm, was calculated, τm = α1τ1+α2τ2. The photon counts per pixel were 

summed over the 60 second collection time to calculate a fluorescence intensity image. A 

threshold was applied to exclude fluorescence from background and cell nuclei. The 

fluorescence intensities and lifetime values were imported into MATLAB (Mathworks) for 

further quantification. Redox ratio images were calculated by dividing the fluorescence intensity 

image of NADH by the fluorescence intensity image of FAD for the same field of view, and the 

average per image was computed. The redox ratio was normalized to control cells for comparing 

treatment groups within cell lines. The redox ratio was normalized to the nonmalignant OKF6 
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cells when comparing between cell lines. Average fluorescence lifetime values were calculated 

per image. For the control groups 30 images were analyzed, and for the treatment groups 18 

images were analyzed. 

 

Western Blotting Analysis 

Cells were plated at 3*10
6
 cells per 10cm dish. After 24 hours, the media was removed, the cells 

were washed three times with phosphate buffered saline (PBS), and serum-free media was 

added. After another 24 hours, the media was replaced with treatment media for one hour. For 

the groups treated with epidermal growth factor (EGF) or transforming growth factor alpha 

(TGF-α), 10ng/mL EGF or TGF-α was added for 5 minutes. The cells were lysed with lysis 

buffer (1% Triton X-100, 10% Glycerol, 50 mM HEPES pH 7.2, and 100 mM NaCl) 

supplemented with sodium orthovanadate and protease inhibitor cocktail. Proteins were 

separated using a 10% SDS-PAGE separation gel at 100V. The gel was transferred at 27V 

overnight to a PVDF membrane. The membrane was blocked using 5% bovine serum albumin 

(BSA) for one hour and then incubated in the following primary antibodies overnight: EGFR 

(Millipore, 1:1000), pY1173 EGFR (Cell Signaling, 1:250), AKT (Cell Signaling, 1:250), pS473 

AKT (Cell Signaling, 1:250), or GAPDH (Sigma, 1:1000). Membranes were washed four times, 

secondary antibodies were added for one hour, and electrogenerated chemiluminescence (ECL) 

was used to measure luminescence. 

 

Proliferation Assay 

Cells were plated in a 96 well plate at 3.3*10
3
 cells per well. Four wells per treatment group 

were plated. After 24 hours, the media was replaced with treatment media supplemented with 
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10µM BrdU. The cells incubated for 24 hours and then were fixed with 4% paraformaldehyde 

for 15 minutes. The cells were washed twice with PBS and permeabilized with 0.3% Triton X in 

PBS for 15 minutes. The DNA was denatured using hydrochloric acid, and the cells were 

blocked using 10% goat serum and 0.3% Triton X for one hour. Primary antibody (rat anti-BrdU, 

Abcam, 1:100) was incubated overnight. The cells were washed three times with PBS and 

incubated in secondary antibody (DyLight594-conjugated goat anti-rat, Jackson 

Immunoresearch, 1:200) for two hours. The cells were washed three times with PBS and 

counterstained with Hoechst 33528 (1:1000) for 10 minutes. Fluorescence images were acquired 

for three fields of view per well (n=12), and the number of cells per image was counted 

(ImageJ). 

 

Glucose and Lactate Assays 

Cells were plated at a density of 10
5
 cells per 35 mm dish, and 24 hours later the media was 

replaced with treatment media. After 24 hours of treatment, glucose and lactate concentrations 

from four samples per group were measured according to the protocols of commercially 

available kits (Invitrogen; Eton Biosceience). 

 

Statistical Analyses 

Bar graphs are represented as mean ± standard error. Statistical significance was determined 

using two-way Wilcoxon rank sum tests in MATLAB (Mathworks). A p-value less than 0.05 

indicated statistical significance. 
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3.4 Results 

Redox ratio validation was performed by perturbing nonmalignant OKF6 cells with 4mM 

cyanide, which prevents oxidation of NADH to NAD
+
 in the electron transport chain [71]. This 

accumulation of NADH causes an increase in the optical redox ratio (Figure 3.1a) and verifies 

isolation of NADH and FAD fluorescence. The contribution from free NADH (α1) increases with 

cyanide treatment (Figure 3.1b), causing a decreased NADH mean lifetime (data not shown). 

The contribution from protein-bound FAD (α1) decreases with cyanide treatment (Figure 3.1c), 

causing an increased FAD mean lifetime (data not shown).  

 

Figure 3.1. Cyanide treatment alters redox ratio, NADH α1, and FAD α1 in nonmalignant oral 

cells (OKF6). (a) Cyanide treatment (4mM) disrupts the electron transport chain, causing an 

increase in the optical redox ratio. (b) Cyanide treatment increases the contribution of free 

NADH (α1) and (c) decreases the contribution of protein-bound FAD (α1). * p<0.05, rank sum 

test; mean ± SEM. 
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The optical metabolic endpoints differentiate the malignant cell lines, SCC25 and 

SCC61, from the nonmalignant cell line, OKF6 (Figure 3.2). The malignant cell lines showed an 

increased redox ratio compared with the OKF6 cells (p<0.05). The malignant cell lines showed 

increased NADH α1 compared with the OKF6 cells (p<0.05) and increased FAD α1 compared 

with the OKF6 cells (p<0.05), suggesting differences in metabolic pathways between the 

malignant and nonmalignant cells.  

 

Figure 3.2. Optical metabolic endpoints distinguish malignant from nonmalignant cells. (a) The 

normalized redox ratio increases for the malignant cell lines (SCC25 and SCC61) compared to 

nonmalignant cells (OKF6), indicating increased glycolysis compared with oxidative 

phosphorylation. (b-c) The contribution of free NADH and protein-bound FAD (α1) increase for 

the malignant cell lines compared with the nonmalignant cell line, reflecting shifts in metabolic 

pathways. * p<0.05, rank sum test; mean ± SEM.  
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Western blotting analysis was used to ensure target inhibition (Figure 3.3). Cetuximab 

targeting of EGFR was assessed by measuring phosphorylated tyrosine (Y) 1173 of EGFR 

(pEGFR), which is absent with cetuximab treatment. BGT226 targeting of PI3K/mTOR was 

assessed by measuring phosphorylated serine (S) 473 of Akt (pAkt) because PI3K and mTOR 

activation drive Akt activation in the PI3K/Akt signaling pathway. pAkt is absent with BGT226 

treatment. These results indicate that cetuximab and BGT226 target EGFR and PI3K/mTOR, 

respectively. Western blotting analysis was also performed to characterize the SCC25 and 

SCC61 cell lines (not shown). SCC61 cells showed increased pAkt, reflecting upregulated PI3K, 

and agreeing with published results [72]. Additionally, SCC61 cells exhibited increased EGFR 

and pEGFR compared with SCC25 cells. 

 

Figure 3.3. Western blotting analysis verifies molecular targeting of cetuximab and BGT226. 

Western blot for (a) SCC25 and (b) SCC61 cells. Epidermal growth factor (EGF) and 

transforming growth factor alpha (TGF α) activate the epidermal growth factor receptor (EGFR) 

and AKT pathways. Treatment with cetuximab decreases phosphorylated EGFR (pEGFR), and 

treatment with BGT226 decreases phosphorylated AKT (pAKT). 
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Representative images of SCC25 and SCC61 cells after 24 hours of treatment provide 

qualitative visualization of the redox ratio, NADH α1, and FAD α1 (Figure 3.4). NADH and FAD 

fluorescence from the cytoplasm was quantified across treatment groups and cell lines. The 

redox ratios of SCC25 and SCC61 cells show no significant changes with cetuximab treatment, 

and decrease with BGT226 and cisplatin treatment (Figure 3.5a). The fluorescence lifetimes of 

NADH and FAD reflect cellular microenvironment and protein-binding. NADH α1 represents the 

contribution from free NADH. For SCC25 cells, NADH α1 decreases with BGT226 and cisplatin 

treatment. For SCC61 cells, NADH α1 decreases with cetuximab, BGT226, and cisplatin 

treatment (Figure 3.5b). FAD α1 represents the contribution from protein-bound FAD. For 

SCC25 and SCC61 cells, FAD α1 decreases with cisplatin treatment (Figure 3.5c). Combined, 

these data show that optical metabolic endpoints are sensitive to treatment with cetuximab, 

BGT226, and cisplatin in SCC25 and SCC61. 
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Figure 3.4. Representative autofluorescence images after treatment. Representative images of the 

redox ratio (1st row), NADH α1 (2nd row), and FAD α1 (third row) for (a) SCC25 cells and (b) 

SCC61 cells treated with control (1st column), cetuximab (2nd column), BGT226 (3rd column), 

or cisplatin (4th column). α1 quantifies the short lifetime component (α1+α2=1). NADH α1 

represents the contribution from free NADH, while FAD α1 conversely represents the 

contribution from protein-bound FAD. Scale bar represents 30um. 
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Proliferation was quantified as a standard measure of treatment response. Cetuximab 

treatment does not induce a statistically significant effect on proliferation, whereas BGT226 and 

cisplatin treatment decrease proliferation (Figure 3.5d).  Additionally, glycolytic rates were 

quantified after treatment. SCC25 shows decreased lactate production/glucose consumption with 

BGT226 and cisplatin treatment, and SCC61 shows decreased lactate production/glucose 

consumption with cetuximab, BGT226, and cisplatin treatment (Figure 3.5e). 

 

 

 

 

 

 



33 

 

 

Figure 3.5. Metabolic endpoints measure response in SCC25 and SCC61 after treatment. (a) 

SCC25 and SCC61 cells were treated with cetuximab, BGT226, or cisplatin for 24 hours. The 

optical redox ratio is defined as the fluorescence intensity of NADH divided by that of FAD and 

is normalized by the redox ratio from control cells per day. Treatment with cetuximab does not 

affect the normalized redox ratio. Treatment with BGT226 or cisplatin decrease the normalized 

redox ratio. α1 represents the contribution of the short fluorescence lifetime (free conformation 

for NADH and protein-bound conformation for FAD) (α1+α2=1). (b) NADH α1 decreases after 

treatment with BGT226 and cisplatin in SCC25 cells and after treatment with cetuximab, 
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BGT226, and cisplatin in SCC61 cells. (c) FAD α1 decreases after treatment with cisplatin in 

SCC25 and SCC61 cells. (d) Cells were treated for 24 hours and proliferating cells were labeled 

with BrdU. The ratio of proliferating cells was calculated by dividing the number of BrdU-

labeled cells by the total number of cells per image. Treatment with cetuximab does not affect 

proliferation. Treatment with BGT226 or cisplatin treatment decrease proliferation. (e) The ratio 

of lactate production/glucose consumption reflects rates of glycolysis, which decreases after 

treatment with BGT226 and cisplatin in SCC25 cells and after treatment with cetuximab, 

BGT226, and cisplatin in SCC61 cells. * p<0.05 rank sum test, compared with control; mean ± 

SEM. 

 

For SCC25, the free and protein-bound lifetimes of NADH and FAD (τ1 and τ2, 

respectively) show no significant change with any treatment (Table 3.1a). The NADH mean 

lifetime (τm) shows no change for any treatment, and the FAD mean lifetime increases with 

cisplatin treatment (p<0.05). For SCC61, free and protein-bound NADH lifetimes show no 

significant change with cetuximab and BGT226 treatment and increase with cisplatin treatment 

(p<0.05, Table 3.1b). For SCC61, the protein-bound FAD lifetime (τ1) shows no change with any 

treatment, and the free FAD lifetime (τ2) increases with cisplatin treatment (p<0.05). The NADH 

mean lifetime (τm) increases with BGT226 and cisplatin treatment (p<0.05), and the FAD mean 

lifetime increases with cisplatin treatment (p<0.05). NADH and FAD α1 are also listed in Table 

3.1. These data suggest that NADH α1 is more sensitive to shifts due to treatment than τ1, τ2, or 

τm, and FAD α1 is more sensitive to shifts due to treatment than τ1 or τ2. The NADH and FAD 

lifetime values for the OKF6 cells are included in Table 3.1c. 
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Table 3.1. The short and long fluorescence lifetime components (τ1 and τ2, respectively), mean 

lifetime (τm), and contribution of the short lifetime component (α1) of NADH and FAD in SCC25 

(a) and SCC61 (b) after treatment with cetuximab, BGT226, or cisplatin, as well as in OKF6 (c) 

 

(a) SCC25 

  
Control Cetuximab BGT226 Cisplatin 

NADH τ1 (ps) 528 ± 29 526 ± 34 468 ± 27 569 ± 37  

 

τ2 (ps) 2899 ± 53 2889 ± 56 2726 ± 43 2955 ± 62  

 

τm (ps) 1019 ± 37 1068 ± 39 1083 ± 36 1130 ± 46 

 

α1 0.792 ± 0.006 0.769 ± 0.007 0.728 ± 0.006 * 0.757 ± 0.003 * 

FAD τ1 (ps) 426 ± 24 396 ± 20 372 ± 19 378 ± 18 

 

τ2 (ps) 2667 ± 33 2624 ± 29 2633 ± 24 2630 ± 20 

 

τm (ps) 983 ± 30 913 ± 28 959 ± 33 1059 ± 29 * 

 

α1 0.749 ± 0.003 0.746 ± 0.003 0.74 ± 0.008 0.696 ± 0.005 * 

(b) SCC61 

  
Control Cetuximab BGT226 Cisplatin 

NADH τ1 (ps) 480 ± 26 486 ± 40 460 ± 19 796 ± 54 * 

 

τ2 (ps) 2760 ± 43 2763 ± 62 2673 ± 34 3335 ± 60 * 

 

τm (ps) 968 ± 28 1064 ± 50 1083 ± 36 * 1398 ± 50 * 

 

α1 0.785 ± 0.007 0.745 ± 0.012 * 0.728 ± 0.006 * 0.752 ± 0.007 * 

FAD τ1 (ps) 432 ± 25 363 ± 12 381 ± 20 450 ± 23 

 

τ2 (ps) 2654 ± 35 2546 ± 15 2667 ± 28 2713 ± 25 * 

 

τm (ps) 978 ± 31 913 ± 17 959 ± 33 1142 ± 30 * 

 

α1 0.751 ± 0.003 0.746 ± 0.003 0.74 ± 0.008 0.691 ± 0.005 * 

(c) OKF6 

    

  
Control 

   NADH τ1 (ps) 551 ± 38 

   

 

τ2 (ps) 3035 ± 61 

   

 

τm (ps) 1209 ± 42 

   

 

α1 0.731 ± 0.0039 

   FAD τ1 (ps) 455 ± 25 

   

 

τ2 (ps) 2706 ± 35 

   

 

τm (ps) 1037 ± 33 

   

 

α1 0.737 ± 0.0043 

   * p<0.05 rank sum test, compared with control; mean ± SEM. 
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3.5 Discussion 

 Optimized treatment regimens have potential to improve quality of life for HNSCC 

patients. The goal of this study is to characterize optical metabolic imaging for early assessment 

of treatment efficacy. The HNSCC cell lines SCC25 and SCC61 were treated with targeted 

therapies (cetuximab and BGT226) and chemotherapy (cisplatin) for 24 hours, and the optical 

redox ratio and fluorescence lifetimes of NADH and FAD were quantified. These molecular-

level measurements that reflect cellular metabolism could resolve anti-cancer treatment effects 

sooner than current imaging modalities, including CT, MRI, and PET. Early measurement of 

treatment efficacy could accelerate drug screening and identify optimal treatment regimens for 

individual patients, thereby improving patient outcomes.  

Isolation of NADH and FAD fluorescence emission was verified using cyanide 

perturbation (Figure 3.1). These shifts in the redox ratio and NADH and FAD lifetimes match 

published results for the MCF10A nonmalignant cell line from the breast [52][70][73][53]. 

However, these results have been previously unreported in cells from the oral cavity. Optical 

metabolic imaging distinguishes the malignant SCC25 and SCC61 cell lines from the 

nonmalignant OKF6 cell line (Figure 3.2). The increased redox ratio in HNSCC cells reflects 

increased reliance on glycolysis compared with oxidative phosphorylation, as expected in cancer 

cells (Warburg effect) [7]. This result agrees with previous findings that the redox ratio reports 

changes with malignancy [74]. The altered NADH and FAD fluorescence lifetimes reflect 

distinct signaling pathways in the HNSCC cells compared with nonmalignant cells. HNSCC 

cells exhibit modified intrinsic metabolic signaling that changes NADH binding sites [75], and 

the fluorescence lifetimes have been shown to change when NADH or FAD are bound to 
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different enzymes [45]. Previous studies have also shown that fluorescence lifetime imaging 

distinguishes normal from precancer in the DMBA-treated hamster cheek pouch model [32][33].  

 Changes in the redox ratio across treatment groups are consistent with proliferation rates 

after treatment. The redox ratio is a global measure of cellular metabolism, which drives 

proliferation. The redox ratio and proliferation ratio are unaffected by cetuximab treatment and 

show statistical differences with BGT226 and cisplatin treatment (Figure 3.5). The lack of effect 

from cetuximab treatment could be attributed to in vitro application as a single agent. In addition 

to inhibiting EGFR as a means of exerting effects, in vivo it has been shown that cetuximab 

initiates antibody-dependent cell-mediated cytotoxicity (ADCC) by binding to EGFR and 

recruiting natural killer cells and macrophages to digest the targeted cell [76]. However, immune 

cells are not present in these cell culture studies. In vivo, cetuximab treatment would be expected 

to have a greater impact on the optical redox ratio due to increased cell death through ADCC. 

This expectation is supported by our previous study, which showed more dramatic changes in 

redox ratio in vivo versus in vitro after treatment with the antibody trastuzumab [52]. 

Additionally, cetuximab is maximally effective in combination with radiotherapy and 

chemotherapy because it inhibits DNA repair mechanisms [18]. Conversely, BGT226 and 

cisplatin actively cause autophagy and cell death, respectively, in cell culture [61][77]. No 

previous literature has reported the effects of cetuximab or BGT226 on the optical redox ratio. 

Cisplatin has shown changes in the optical redox ratio in primary human foreskin keratinocytes 

[78].   

 The contribution from free NADH (NADH α1) shows shifts in protein-binding of NADH 

with BGT226 and cisplatin treatment in SCC25 and SCC61 cells as well as with cetuximab 

treatment in SCC61 cells (Figure 3.5b). The ratio of lactate production divided by glucose 
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consumption reflects amounts of terminal glycolysis compared with total glucose metabolism. In 

glycolysis, glucose is consumed and pyruvate is produced. Pyruvate is either fermented into 

lactate as a terminal stage of glycolysis or converted to acetyl-coA as fuel for the citric acid 

cycle. Cetuximab treatment does not affect glycolysis rates in SCC25, but decreases glycolysis in 

SCC61. The decrease in glycolysis and NADH α1 in SCC61 cells indicates shifts in metabolic 

pathways in response to treatment. However, proliferation is not affected by cetuximab in 

SCC61, indicating compensation by effectors downstream of EGFR. Cetuximab has been shown 

to not affect short-term cell growth in SCC25, which could explain the lack of statistical 

significance in the NADH α1 and glycolytic index [79]. BGT226 and cisplatin treatments 

decrease glycolysis in SCC25 and SCC61. The effect of cetuximab or BGT226 on SCC61 cells 

has not been cited in previous literature, and the effect of BGT226 on glycolysis has not been 

reported in any model. The measurement of glycolysis rates calculated by lactate 

production/glucose consumption is correlated with NADH α1 (0.81 Pearson’s correlation 

coefficient, p<0.05). No other measurements produced a statistically significant correlation 

coefficient with lactate production/glucose consumption or proliferation. Cisplatin treatment 

produces outliers that impacted the correlations, particularly between lactate production/glucose 

consumption and the redox ratio. Previous studies have shown a correlation between glucose 

uptake/lactate production and the optical redox ratio in breast cancer cells [52]. However, this 

correlation was determined for basal metabolic rates in cells without treatment, and cells from a 

different organ site could rely on different metabolic mechanisms. Additionally, the control 

SCC61 cells show a higher proliferation ratio than SCC25 (p<0.05) (Figure 3.5d), but no 

statistical difference in redox ratio (Figure 3.2a). This is in contrast to the similar lactate 

production/glucose consumption between the control SCC25 and SCC61. Although the trends in 
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NADH α1 and redox ratio agree with the gold standards, they are not surrogate measurements of 

proliferation or the amount of glycolysis compared with total glucose metabolism. For example, 

alternative metabolic pathways such as beta oxidation of fatty acids, the pentose phosphate 

pathway, and glutaminolysis are all captured differently by these gold standard measurements 

and our optical measurements [50][80]. The contribution from protein-bound FAD (FAD α1) is 

unaffected by cetuximab and BGT226 treatments and decreases with cisplatin treatment (Figure 

3.5c).  

 Early measures of treatment response could enable effective intervention while reducing 

the acute toxicities and serious morbidities from ineffective therapies. Molecular-level 

measurements that reflect cellular metabolism are well-suited to measure effects from cancer 

treatments that target metabolic pathways. The optical redox ratio and fluorescence lifetimes of 

NADH and FAD resolve a response after 24 hours of treatment with targeted therapies and 

chemotherapies in HNSCC cells. These results indicate that optical metabolic imaging shows 

promise to identify effective drug candidates during drug development. Additionally, applying 

optical metabolic imaging to measure treatment response early has potential to impact quality of 

life for HNSCC patients. 
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CHAPTER 4 

IN VIVO AUTOFLUORESCENCE IMAGING OF TUMOR HETEROGENEITY IN 

RESPONSE TO TREATMENT 

 

Shah AT, Diggins KE, Walsh AJ, Irish JM, Skala MC, “In Vivo Autofluorescence Imaging of 

Tumor Heterogeneity in Response to Treatment.” Neoplasia, 2015; 17(12):862-870 

 

4.1 Abstract 

Subpopulations of cells that escape anti-cancer treatment can cause relapse in cancer 

patients. Therefore, measurements of cellular-level tumor heterogeneity could enable improved 

anti-cancer treatment regimens. Cancer exhibits altered cellular metabolism, which affects the 

autofluorescence of metabolic cofactors NAD(P)H and FAD. The optical redox ratio 

(fluorescence intensity of NAD(P)H divided by FAD) reflects global cellular metabolism. The 

fluorescence lifetime (amount of time a fluorophore is in the excited state) is sensitive to 

microenvironment, particularly protein-binding. High-resolution imaging of the optical redox 

ratio and fluorescence lifetimes of NAD(P)H and FAD (optical metabolic imaging) enables 

single-cell analyses. In this study, mice with FaDu tumors were treated with the antibody therapy 

cetuximab or the chemotherapy cisplatin and imaged in vivo two days after treatment. Results 

indicate that fluorescence lifetimes of NAD(P)H and FAD are sensitive to early response (two 

days post-treatment, p<0.05), compared with decreases in tumor volume (nine days post-

treatment, p<0.05). Frequency histogram analysis of individual optical metabolic imaging 

parameters identifies subpopulations of cells, and a new heterogeneity index enables quantitative 

comparisons of cellular heterogeneity across treatment groups for individual variables. 
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Additionally, a dimensionality reduction technique (viSNE) enables holistic visualization of 

multivariate optical measures of cellular heterogeneity. These analyses indicate increased 

heterogeneity in the cetuximab and cisplatin treatment groups compared with the control group. 

Overall, the combination of optical metabolic imaging and cellular-level analyses provide novel, 

quantitative insights into tumor heterogeneity. 

 

4.2 Introduction 

Cancer treatments often include chemotherapy, targeted therapy, and/or radiation therapy. 

Most cancer patients respond to treatment initially, exhibiting decreased tumor volume, and later 

relapse, exhibiting increased tumor volume. Chemotherapy and targeted treatments can eliminate 

the majority of cells in a tumor while subpopulations of cells can escape treatment [54][55]. 

These subpopulations of cells may be responsible for innate or acquired resistance, which can 

enable treatment failure, disease progression, and diminished patient outcomes.  

 Standard chemotherapies and radiation treatments are administered based on average 

response rates for a particular type and stage of cancer. Current methods for determining targeted 

treatment strategies rely on identifying the dominant subpopulation of cells, usually based on 

surface marker expression, and administering drugs that inhibit the overexpressed targets to 

decrease proliferation or increase death of the cells expressing those targets [57]. Resistant 

subpopulations existing within a tumor could escape the treatment, allowing relapse after 

therapy. Therefore, tumor heterogeneity poses a difficult challenge for optimizing treatment 

outcomes in cancer patients.  

Tumor heterogeneity can be characterized as genetic, phenotypic, or functional [81][82]. 

Genetic measures focus on analysis of genes known to promote tumor progression. Phenotypic 
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characterization is usually established from histology to visualize cell morphology and from 

immunohistochemistry to measure expression of cell surface receptors, growth factors, and 

hormone receptors. However, these measures may not directly relate to cellular function [81]. 

Whereas genetic and phenotypic biomarkers provide static measurements, functional measures 

characterize dynamic tumor behavior or response to stimuli and therefore may be more 

attractive. Functional measures include cellular metabolism, oxygen consumption, and blood 

perfusion. In particular, cellular metabolism, which is altered in cancer [7], has been shown to be 

a good indicator of drug response and therefore may be a promising marker for tumor 

heterogeneity [62]. 

 Numerous metabolic pathways involve the autofluorescent co-enzymes NAD(P)H (an 

electron donor) and FAD (an electron acceptor). The optical redox ratio is defined as the 

fluorescence intensity of NAD(P)H divided by that of FAD, and is an established method for 

monitoring relative amounts of electron donor and acceptor in a cell [46][51][52]. As a 

complementary measure, the fluorescence lifetime reports the amount of time a fluorophore is in 

the excited state before relaxing to the ground the state. Fluorescence lifetime is sensitive to 

conformational changes in enzyme structure that are caused by the microenvironment, 

particularly protein-binding [39]. The fluorescence lifetime of NAD(P)H has two distinct 

components, due to vastly different lifetimes when NAD(P)H is in the free and protein-bound 

states [45]. Similarly, FAD has two lifetimes due to its free and protein-bound states [83]. The 

short lifetimes of NAD(P)H (free state) and FAD (protein-bound state) are due to quenching by 

the adenine moiety of the molecule [39]. The redox ratio and fluorescence lifetime provide 

independent measurements of cellular metabolism [52], and can be performed using two-photon 

fluorescence microscopy, which enables cellular-level imaging and deeper penetration in tissue 
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than single-photon (e.g. confocal) microscopy [84]. This approach exploits the endogenous 

contrast of NAD(P)H and FAD autofluorescence to acquire quantitative measurements of 

cellular metabolism that can be used to characterize cellular heterogeneity.  

There are few analysis approaches that are appropriate for quantifying cellular 

heterogeneity. The Shannon diversity index is a metric used in ecology literature that 

incorporates the number and relative proportions of species in a community [85], and it has also 

been applied to tumor heterogeneity [86][87][88]. However, the degree of separation between 

subpopulations is also an important consideration in tumor heterogeneity [89], which is not 

incorporated into the Shannon diversity index. A metric incorporating the number of cellular 

subpopulations, relative contributions of each subpopulation, and relative differences in 

subpopulations to quantify tumor heterogeneity could provide insight into optimal treatment 

strategies for cancer patients. This type of metric could be applied to each optical metabolic 

imaging parameter, including the redox ratio and fluorescence lifetime components of NAD(P)H 

and FAD.  

Since optical metabolic imaging acquires multi-dimensional data sets of parameters, 

which can be difficult to interpret holistically, dimensionality reduction techniques can be 

applied as a complementary method to facilitate interpretation of these types of data sets. 

Traditional methods apply a linear transformation of the data, like principal component analysis 

(PCA) [90]. However, an alternative method that preserves nonlinear relationships at a single-

cell level may be advantageous, like the viSNE technique [91]. ViSNE is a dimensionality 

reduction tool that uses t-distributed stochastic neighbor embedding (t-SNE) to plot high-

dimensional single-cell data on a two-dimensional axis for visualization of cellular 

heterogeneity, and is well-suited for single-cell data acquired in optical metabolic imaging. 
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ViSNE is also attractive for identifying cell sub-populations because it preserves the relative 

distances between cells that are present in multi-dimensional space when projecting them into 

two-dimensional space, thereby maintaining relationships between individual cells in the reduced 

data set and identifying relationships that would not be apparent by manual analysis alone. 

 This study quantifies the optical redox ratio and fluorescence lifetimes of NAD(P)H and 

FAD in a xenograft model of head and neck cancer two days after treatment with the antibody 

therapy cetuximab or the chemotherapy cisplatin. Additionally, these in vivo high-resolution 

images enabled analysis of cellular metabolic heterogeneity in response to treatment at an early 

time point using endogenous contrast. An index to quantify heterogeneity was developed, 

validated on samples containing cultures of one cell line or co-cultures containing two cell lines, 

and applied in vivo to each individual optical metabolic imaging variable. Additionally, a 

dimensionality reduction technique (viSNE) was applied to enable holistic visualization of 

heterogeneity across all optical metabolic imaging variables combined. Immunohistochemistry 

stains for cell proliferation and cell death validated treatment efficacy, and tumor growth curves 

measured gold standard treatment response. Results indicate that in vivo optical metabolic 

imaging, combined with a quantitative metric of heterogeneity or a dimensionality reduction 

visualization of heterogeneity, has potential to resolve treatment-induced cellular-level 

heterogeneities in tumors. Ultimately, characterization of cellular heterogeneity could enable 

optimized treatment regimens and improved patient outcomes.  
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4.3 Materials and Methods 

In Vivo Imaging and Tumor Growth Curves 

FaDu cells were grown in DMEM media supplemented with 10% fetal bovine serum (FBS) and 

0.4µg/mL hydrocortisone. Approximately 10
7
 FaDu cells were injected into the flanks of 7 week 

old male nude mice and tumors were grown to approximately 100mm
3
. Mice in treated groups 

received treatment of cetuximab (33mg/kg) [92][93] or cisplatin (6mg/kg) [94] via 

intraperitoneal injection. To measure tumor growth curves, mice were treated three times a week 

for two weeks (6 tumors per group). Tumor volumes were measured daily and calculated by 

(l*w
2
)/2, where l represents the tumor length in mm and w represents the tumor width in mm. 

Tumor volumes were normalized to the size on day 1. On day 13, tumors were excised and fixed 

for immunohistochemistry, and mice were euthanized. A separate cohort of mice were used for 

in vivo imaging studies, with only one dose per treatment group on day zero (6 tumors for control 

group, 5 tumors for cetuximab and cisplatin groups). Two days after treatment, each mouse was 

anesthetized and the skin covering the tumor was removed. A coverslip was placed over the 

exposed tumor, and the mouse was placed on the microscope to acquire in vivo images (3-7 

images per tumor).  

 

Imaging Instrumentation 

Mice were imaged on a custom-built (Bruker) inverted two-photon fluorescence microscope (Ti-

E Nikon) using a 40x oil immersion objective (1.3 NA). A titanium:sapphire laser (Chameleon, 

Coherent Inc.) was used for excitation, and a GaAsP photomultiplier tube (H7422P-40, 

Hamamatsu) was used for fluorescence collection. To measure NAD(P)H autofluorescence, an 

excitation wavelength of 750nm and an emission filter of 400-480nm was used. To measure 
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FAD autofluorescence, an excitation wavelength of 890nm and an emission filter of 500-600nm 

was used. Time correlated single photon counting electronics (SPC-150, Becker and Hickl) were 

used to acquire fluorescence lifetime images over 60 seconds, and photon count rates (~2-3 x 

10
5
) were monitored during this time to ensure the absence of photobleaching. A pixel dwell 

time of 4.8 μs was used to acquire 256x256 pixel images. First, an NAD(P)H lifetime image was 

acquired, and then an FAD lifetime image was acquired from the same field of view. Sequential 

fields of view were separated by at least one field of view. A Fluoresbrite YG microsphere 

(Polysciences Inc.) was imaged as a daily standard with a fluorescence lifetime of 2.11±0.05 ns 

(n=7), consistent with previous studies [32][95]. Instantaneous scattering from second harmonic 

generation of urea crystals excited at 900nm was measured to calculate the full width at half 

maximum of the instrument response function (244ps).  

 

Image Analysis 

Fluorescence lifetime images were analyzed as described previously [96]. Briefly, the 

fluorescence lifetime decay curves were fit to a two-component exponential function, F(t) = α1e
-

t/τ1
+ α2e

-t/ τ2
+c, where F(t) represents the fluorescence intensity over time, α1 and α2 represent the 

contribution from the short and long lifetime components respectively (α1+α2=1), and τ1 and τ2 

represents the fluorescence lifetime of the short and long lifetime components respectively 

(SPCImage, Becker and Hickl). A two-component fit has been shown to be appropriate for 

describing freely diffusing versus protein-bound conformations of NAD(P)H and FAD [32]. For 

NAD(P)H, the short lifetime represents free NAD(P)H, and for FAD the short lifetime represents 

protein-bound FAD [39]. The weighted mean lifetime, τm, was calculated by τm=α1τ1+α2τ2. A 

fluorescence intensity image was generated by integrating the fluorescence lifetime decay over 
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time for each pixel in the lifetime image. The optical redox ratio was calculated by dividing the 

NAD(P)H fluorescence intensity by the FAD fluorescence intensity for each pixel to create a 

redox ratio image for each field of view. NAD(P)H and FAD fluorescence specific to cellular 

metabolism is localized in the cytoplasm and mitochondria. Therefore, the redox ratio and 

fluorescence lifetime images were thresholded to remove nuclear fluorescence, and the average 

redox ratio and fluorescence lifetime decay parameters for each remaining cell cytoplasm was 

computed. The optical redox ratio and NAD(P)H and FAD fluorescence lifetime images were 

quantified for each cytoplasm in each cell using a customized CellProfiler routine as described 

previously [97].  

 

Heterogeneity Index and Validation 

For subpopulation analysis, frequency histograms were plotted for the optical redox ratio, 

NAD(P)H τm, and FAD τm, as described and validated in [98]. The histograms were fit to one-, 

two-, or three-component Gaussian curves, and the lowest Akaike Information Criterion 

indicated optimal fitting [8]. Each Gaussian curve represents a subpopulation of cells, and the 

sum of the Gaussian curves was plotted for visualization. To quantify heterogeneity, a 

heterogeneity index was defined as H = − ∑ 𝑑𝑖𝑝𝑖 ln 𝑝𝑖, where i represents each subpopulation, d 

represents the distance between the median of the subpopulation and the median of all data 

within a group, and p represents the proportion of the subpopulation. Validation of the 

heterogeneity index was performed on co-cultures of MDA-MB-231 and SKBr3 breast cancer 

cell lines plated at ratios of 0:100, 50:50, and 100:0. 
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ViSNE 

The viSNE dimensionality reduction tool was used to visualize cellular heterogeneity by 

incorporating all seven optical metabolic imaging parameters: the optical redox ratio, NAD(P)H 

α1, NAD(P)H τ1, NAD(P)H τ2, FAD α2, FAD τ1, and FAD τ2. The data from each parameter was 

transformed to a common scale of 0 to 100%, where 100% represented the highest value for that 

parameter across all treatment groups. Data were analyzed in Cytobank (www.cytobank.org) to 

create a viSNE map [91][99][100]. ViSNE performs t-distributed stochastic neighbor embedding 

(t-SNE) to minimize the differences between high-dimensional space and low-dimensional 

space, and produces a two-dimensional plot in arbitrary units. Briefly, a pairwise distance matrix 

is calculated in high dimensional space, which is transformed to a similarity matrix using a 

varying Gaussian kernel. The points are randomly mapped in low-dimensional space and 

iteratively rearranged to minimize the divergence between high-dimensional and low-

dimensional similarity matrices. 

 

Statistical Analyses 

Bar graphs are shown as mean ± standard error. Kruskal-Wallis and two-way rank sum tests 

determined statistical significance with an α of 0.05. 

 

4.4 Results 

Tumor growth curves measure tumor volume changes in FaDu xenografts after treatment 

(Figure 4.1a). Compared with control, cetuximab and cisplatin treatments cause tumor volume 

decreases starting six and nine days, respectively after treatment onset (p<0.05). 

Immunohistochemistry was performed on excised tumor tissue at the end of the study to quantify 
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markers of treatment efficacy (Figure 4.1). Ki-67 staining shows decreased proliferation with 

each treatment group (p<0.05; Figure 4.1b). Cleaved caspase 3 shows increased cell death with 

cisplatin treatment (p<0.05; Figure 4.1c). These gold standard measurements verify drug efficacy 

in the xenografts.  

 

Figure 4.1. In vivo validation of treatment effects. (A) Tumor growth curves show a decrease 

(*p<0.05, compared with control) in tumor volume in cetuximab treated xenografts after 6 days 

of treatment and in cisplatin treated xenografts after 9 days of treatment. Xenografts were 

excised and stained for ki-67 (proliferation) and cleaved caspase 3 (cell death) on day 13. (B) 

Xenografts from cetuximab and cisplatin treated mice exhibited decreased proliferation. (C) 

Xenografts from cisplatin treated mice exhibited increased cell death. *p<0.05 compared with 

control, rank sum test 
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Representative in vivo images demonstrate cellular-level resolution of NAD(P)H and 

FAD autofluorescence imaging and enables visualization of qualitative differences in the optical 

metabolic imaging parameters two days after treatment (Figure 4.2). Images were quantified to 

calculate the average optical redox ratio, NAD(P)H fluorescence lifetime, and FAD fluorescence 

lifetime per-cell (Figure 4.3). The redox ratio shows no change with cetuximab treatment and 

decreases with cisplatin treatment (p<0.05). The NAD(P)H fluorescence lifetime decreases with 

cetuximab  and cisplatin treatments (p<0.05). The FAD fluorescence lifetime decreases with 

cetuximab and cisplatin treatments (p<0.05). The shifts in fluorescence lifetime reflect shifts in 

microenvironment, particularly NAD(P)H and FAD protein-binding. NAD(P)H τ1, NAD(P)H τ2, 

FAD τ1, and FAD τ2 decrease with cetuximab and cisplatin treatments (Figure A.1, p<0.05). The 

relative amounts of free NAD(P)H and FAD increase and decrease, respectively, with cetuximab 

and cisplatin treatments (Figure A.1, p<0.05). 
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Figure 4.2. In vivo images of FaDu xenografts 2 days after treatment with cetuximab or cisplatin. 

NAD(P)H and FAD autofluorescence images were acquired from the same fields of view, and 

the redox ratio (top row), NAD(P)H fluorescence lifetime (middle row), and FAD fluorescence 

lifetime (bottom row) were calculated. Scale bar = 50um. 
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Figure 4.3. The optical redox ratio, NAD(P)H fluorescence lifetime, and FAD fluorescence 

lifetime quantified from in vivo NAD(P)H and FAD autofluorescence images 2 days after 

treatment. (A) The redox ratio decreases with cisplatin treatment. (B, C) The NAD(P)H and FAD 

fluorescence lifetimes decrease after cetuximab and cisplatin treatment. The shifts in NAD(P)H 

and FAD fluorescence lifetime measured 2 days after treatment are consistent with response 

measure by tumor growth curves and immunohistochemistry after 13 days of treatment. *p<0.05, 

compared with control 

 

Single-cell images were represented as histograms of number of cells versus optical 

metabolic imaging parameters, and Gaussian fits were used to identify distinct cell sub-

populations for each treatment group. Histograms plotting the sum of Gaussian fits for the redox 

ratio, NAD(P)H fluorescence lifetime, and FAD fluorescence lifetime highlight cellular 
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heterogeneity across treatment groups for each optical parameter (Figure 4.4a-c and Figure A.2). 

For the redox ratio, histograms of the treatment groups have some overlap with control. This 

trend is consistent with the NAD(P)H and FAD fluorescence lifetimes. The degree of overlap for 

the subpopulations of cells from each treatment group compared with control could reflect the 

degree of resistant cells compared with responsive cells.  
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Figure 4.4. In vivo heterogeneity analysis after treatment. To quantify the level of cellular 

metabolic heterogeneity within a treatment group, each group is fit to one, two, or three Gaussian 

curves based on the Akaike Information Criterion. Each Gaussian curve represents one 

subpopulation, and the sum of the Gaussian curves is plotted for visualization. The heterogeneity 

index, H, is a weighted sum over each subpopulation within a treatment group that incorporates 
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d, the distance between the median of the subpopulation and the median of all data in the 

treatment group, and p, the weight of the subpopulation. This parameter is the Shannon diversity 

index modified to incorporate the relative location of each subpopulation. Increased 

heterogeneity index indicates increased number of subpopulations, increased equality in the 

weights of each subpopulation within a treatment group, and increased separation in the locations 

of the subpopulations. (A) The heterogeneity index for the redox ratio is lowest for the control 

group followed by the cisplatin and cetuximab treatment groups. (B) The heterogeneity index for 

the NAD(P)H fluorescence lifetime is lowest for the control group followed by the cetuximab 

and cisplatin treatment groups. (C) The heterogeneity index for the FAD fluorescence lifetime is 

lowest for the control group followed by the cisplatin and cetuximab treatment groups. 

 

In order to compare cellular-level heterogeneity across treatment groups, a quantitative 

metric called the “heterogeneity index” was developed, validated in vitro, and then applied to in 

vivo histograms. The heterogeneity index is the Shannon diversity index weighted by a distance 

factor, where a larger value indicates more subpopulations, similar numbers of cells within each 

subpopulation, and/or more distance between subpopulations. The heterogeneity index was 

validated on co-cultures of MDA-MB-231 and SKBr3 breast cancer cell lines because they 

exhibit distinct optical redox ratios [52]. The heterogeneity index was calculated for the optical 

redox ratio of dishes including 100% MDA-MB-231 cells, 100% SKBr3 cells, and 50% MDA-

MB-231 + 50% SKBr3 cells. The condition with two cell lines causes an increased heterogeneity 

index (0.285) compared with the MDA-MB-231 cell line (0.006) or the SKBr3 cell line (0.152) 

cultured alone (Table 4.1), indicating that the heterogeneity index behaves as expected. SKBr3 

cells have been shown to exhibit intrinsic heterogeneity within the cell line based on HER2 
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expression, which could account for the relatively high heterogeneity index within that cell line 

[101]. For the in vivo studies, the heterogeneity index is increased for the treated groups 

compared with the control for the redox ratio (Figure 4.4a), NAD(P)H fluorescence lifetime 

(Figure 4.4b), and FAD fluorescence lifetime (Figure 4.4c). This trend in heterogeneity index is 

consistent for the redox ratio of FaDu cell monolayers treated with cetuximab and cisplatin in 

vitro (Figure A.4). Note that the heterogeneity index is not normalized, and therefore not 

comparable between variables.  

 

Table 4.1: Validation of the heterogeneity index. The heterogeneity index is defined as H = -

∑[dipiln(pi)], where i represents each subpopulation, d represents the distance between the 

median of the subpopulation and the median of all data within a group, and p represents the 

proportion of the subpopulation. The heterogeneity index was validated using redox ratio 

measurements of MDA-MB-231 and SKBr3 cell monolayer cultures plated at ratios of 0:100, 

50:50, and 100:0, and exhibits an increased value for the 50:50 condition. 

 

 

 

The heterogeneity index is helpful to analyze individual variables, but a dimensionality 

reduction technique is necessary to visualize tumor heterogeneity with respect to all optical 

variables combined. ViSNE reduces seven optical metabolic imaging parameters by preserving 

the similarities across cells and projecting these onto a two-dimensional axis (Figure 4.5). 

ViSNE analysis shows a distinct population of the control group, while the cetuximab and 

cisplatin treatment groups overlap with control and also exhibit a separate subpopulation of cells 

 

    

MDA-MB-231: SKBr3 Ratio 0:100 50:50 100:0 

Heterogeneity Index 0.152 0.285 0.006 
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(Figure 4.5a). This trend is consistent in FaDu cell monolayers in vitro (Figure A.4). ViSNE 

preserves similarities across cells in a nonlinear way by producing a visual two-dimensional 

scatter plot, but does not provide a quantitative relationship between the input parameters and the 

viSNE plot. Therefore, heat maps plotting the values for individual parameters over the two-

dimensional viSNE axes can be helpful for understanding the contribution of each parameter to 

the viSNE plot (Figure 4.5b-c and Figure A.3). Gradients within a parameter that correspond 

with the grouping in the viSNE plot indicate that these parameters contribute significantly to the 

viSNE plot. In particular, gradients in NAD(P)H τ1 and FAD τ1  agree with grouping in the 

viSNE plot because points in the top group of the viSNE plot exhibit low values compared with 

points in the bottom group (Figure 4.5b-c).  
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Figure 4.5. Single-cell analysis using the dimensionality-reduction technique viSNE reduces 

seven optical metabolic imaging parameters to two dimensions for visualization of heterogeneity 

across individual cells. To account for different scales between parameters, common linear 

transformation was applied within each parameter across all treatment groups so the transformed 

values range from 0 to 100. (A) ViSNE analysis shows a distinct population of cells for the 

control group. The cetuximab and cisplatin treatment groups overlap with the control group and 

also exhibit a separate subpopulation of cells. (B, C) Heat maps of the short fluorescence lifetime 

components for (B) NAD(P)H and (C) FAD show gradients over the 2-dimensional viSNE axes.  
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4.5 Discussion 

 Tumor heterogeneity poses a difficult challenge for improving treatment outcomes in 

cancer patients. The goal of this study is to apply autofluorescence imaging of the metabolic 

cofactors NAD(P)H and FAD to resolve anti-cancer treatment response on a cellular level, and 

characterize cellular heterogeneity. Mice with FaDu xenografts were treated with cetuximab or 

cisplatin, and 48 hours later the xenografts were imaged in vivo using two-photon microscopy 

and fluorescence lifetime imaging. Cellular-level imaging enabled per-cell analysis of the optical 

redox ratio and fluorescence lifetimes of NAD(P)H and FAD in response to treatment, and a 

heterogeneity index was devised to quantify cellular heterogeneity for each optical metabolic 

imaging variable. Furthermore, a dimensionality reduction technique was applied on a per-cell 

level to visualize heterogeneity on a two-dimensional axis based on combined information from 

all optical variables. Overall, the degree of heterogeneity is increased for the xenografts of mice 

treated with cetuximab or cisplatin compared with control. These nondestructive, quantitative 

methods to measure in vivo cellular heterogeneity could be used to develop improved treatments 

that account for tumor heterogeneity and target all tumor cell sub-populations for improved 

efficacy in cancer patients. 

Tumor growth curves show that over two weeks of treatment the administration of 

cetuximab or cisplatin causes stable disease, exhibiting decreased tumor volume compared with 

control tumors that exhibit continued increase in tumor volume (Figure 4.1A). These results 

agree with clinical studies of patients administered cetuximab or cisplatin [102][103]. 

Additionally, cetuximab and cisplatin treatment cause decreased cell proliferation (Figure 4.1B), 

which agrees with previous in vitro studies [104][105]. Cisplatin treatment causes increased cell 

death (Figure 4.1C). Cisplatin has been shown to cause apoptosis [106], and cetuximab sensitizes 
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cells to chemotherapy by inhibiting DNA repair mechanisms [18]. Cetuximab has been shown to 

cause autophagy instead of apoptosis [104]. These immunohistochemistry measures verify in 

vivo drug efficacy. 

 The redox ratio of FaDu xenografts measured in vivo decreases 48 hours after cisplatin 

treatment, whereas cetuximab treatment causes no change in the redox ratio (Figure 4.3A). These 

results agree with in vitro optical redox ratio measurements in SCC25 and SCC61 head and neck 

cancer cell lines treated with cetuximab or cisplatin [96]. The lack of effect from cetuximab 

treatment could reflect its administration as a single agent, since cetuximab is maximally 

effective in combination with chemotherapy and radiation therapy. Additionally, cetuximab 

initiates antibody-dependent cell cytotoxicity (ADCC), but this process might be altered in the 

immunocompromised nude mice used in this study [76]. The NAD(P)H and FAD mean lifetimes 

decrease with cetuximab and cisplatin treatment (Figure 4.3B, C), which could reflect treatment-

induced changes in preferred metabolic pathways involving NAD(P)H and FAD. These results 

also highlight the fact that the redox ratio and fluorescence lifetimes of NAD(P)H and FAD 

probe different features of cellular metabolism [52]. The redox ratio reflects relative amounts of 

electron donor (NAD(P)H) and acceptor (FAD), whereas the fluorescence lifetimes of NAD(P)H 

and FAD reflect enzyme activity, preferred protein-binding, and other microenvironmental 

factors (e.g. pH) of these co-factors [39]. Decreased NAD(P)H and FAD mean fluorescence 

lifetimes have also been measured in BT474 breast cancer xenografts treated with antibody 

therapy trastuzumab two days after treatment [52]. No previous literature has reported the effects 

of chemotherapy in vivo on the optical redox ratio and fluorescence lifetimes of NAD(P)H and 

FAD. These fluorescence lifetime changes two days after treatment agree with tumor volume 
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decreases in treated mice nine days after treatment onset, indicating that NAD(P)H and FAD 

fluorescence lifetime measurements could reflect early treatment-induced metabolic effects.  

 To visualize treatment-induced shifts in cellular heterogeneity, frequency histograms 

were plotted for the optical redox ratio and mean fluorescence lifetimes of NAD(P)H and FAD. 

Shifts in the histograms can be qualitatively visualized across control and treatment groups 

(Figure 4.4), and a metric to describe cellular heterogeneity is necessary for quantitative 

comparisons. However, there is no standard metric for quantifying tumor heterogeneity. We have 

modified the Shannon diversity index to incorporate the relative separation between 

subpopulations by including a coefficient of the distance between the median of each 

subpopulation to the median of the group. Since the scale and range of this coefficient depends 

on the parameter, the heterogeneity index is a relative value for each parameter. A heterogeneity 

index of 0 indicates one population of cells, and the index increases with increased number of 

subpopulations, evenness between subpopulations, and distance between subpopulations. The 

heterogeneity index increases for co-cultures of SKBr3 and MDA-MB-231 cells compared with 

either cell line alone (Table 4.1), indicating that an increased heterogeneity index reflects 

increased sample heterogeneity. The heterogeneity index was calculated for the redox ratio, 

NAD(P)H fluorescence lifetime, and FAD fluorescence lifetime (Figure 4.4), and is consistently 

lower for the control group compared with the cetuximab or cisplatin treatments. The higher 

heterogeneity index for the treatments indicates increased variability in cellular response to each 

treatment, and could indicate a balance between cellular response and resistance that leads to 

stable disease as seen in tumor growth curves (Figure 4.1A). Additionally, in vitro heterogeneity 

analysis of FaDu cell monolayers show similar response as in vivo results, indicating intrinsic 

heterogeneity in the FaDu cell response to cetuximab and cisplatin (Figure A.4). Other factors 



62 

 

could also contribute to in vivo drug response, including hypoxia, drug delivery, and glucose 

gradients. These factors could induce greater heterogeneity in the in vivo optical metabolic 

imaging measurements compared to in vitro measurements. 

The heterogeneity index can be applied to individual optical metabolic imaging 

parameters. However, since the seven optical metabolic imaging parameters are complementary 

measures [52], incorporating all parameters into one heterogeneity analysis could provide 

additional insight for characterizing tumor heterogeneity. Dimensionality reduction techniques 

can preserve the similarity between cells across multiple variables, and project relative distances 

between cells onto a two-dimensional scatter plot. Common dimensionality reduction techniques 

include principal component analysis (PCA), but this method requires a linear transformation of 

the data [107]. The viSNE technique optimizes the separation between cells based on high-

dimensional data sets without relying on a linear transformation of the data, so it can preserve 

non-linear relationships at single-cell resolution, identify rare subpopulations of cells, and 

provide a two-dimensional plot for visualization of cellular heterogeneity [91]. These advantages 

make viSNE an attractive tool for the analysis of optical metabolic imaging parameters. ViSNE 

analysis shows a distinct population of cells in the control group. In contrast, the cetuximab and 

cisplatin treatment groups overlap with control and also display a separate subpopulation of cells 

(Figure 4.5). This indicates increased heterogeneity in the treatments compared with the control, 

which agrees with the analysis of the heterogeneity index applied to individual optical metabolic 

imaging parameters (redox ratio, NAD(P)H and FAD fluorescence lifetimes). A gradient in the 

short lifetime components of NAD(P)H and FAD can be seen across the viSNE map (Figure 

4.5B, C), which indicates that these optical parameters contribute more variability to the data set. 
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These results indicate that the combination of optical metabolic imaging and single-cell analyses 

(heterogeneity index, viSNE) are attractive for characterizing tumor heterogeneity. 

 Tumor heterogeneity poses a challenge for optimizing anti-cancer treatment strategies in 

cancer patients, and new tools are necessary to adequately quantify and interpret tumor 

heterogeneity in vivo in animal models at a cellular level. This study shows that optical metabolic 

imaging can resolve metabolic shifts induced by chemotherapy and targeted therapy in vivo at an 

early time point. Autofluorescence imaging on a cellular level is well-suited for analysis of 

heterogeneity across single cells. In particular, a heterogeneity index can quantify drug-induced 

shifts in heterogeneity across treatment groups for individual variables, and dimensionality 

reduction techniques can be advantageous for holistic interpretation of multivariate measures of 

cellular heterogeneity. These methods for assessing tumor heterogeneity could enable improved 

treatment regimens that account for tumor heterogeneity, leading to improved outcomes for 

cancer patients. 
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CHAPTER 5 

EX VIVO LABEL-FREE MICROSCOPY OF HEAD AND NECK CANCER PATIENT 

TISSUES  

 

Shah AT, Skala MC, “Ex Vivo Label-Free Microscopy of Head and Neck Cancer Patient 

Tissues.” SPIE Proceedings, 2015; 9329 

 

5.1 Abstract 

Standard methods to characterize patient tissue rely on histology. This technique provides 

only anatomical information, so complementary imaging methods could provide beneficial 

phenotypic information. Cancer cells exhibit altered metabolism, and metabolic imaging could 

be applied to better understand cancer tissue. This study applies redox ratio, fluorescence 

lifetime, and second harmonic generation (SHG) imaging to ex vivo tissue from head and neck 

cancer patients. This high-resolution imaging technique has unique advantages of utilizing 

intrinsic tissue contrast, which eliminates the need for sample processing or staining, and 

multiphoton microscopy, which provides depth sectioning in intact tissue. This study 

demonstrates feasibility of these measurements in patient tissue from multiple anatomical sites 

and carcinoma types of head and neck cancer. 

 

5.2 Introduction 

Head and neck cancer is a complex disease encompassing several anatomical sites 

including the oral cavity, pharynx, larynx, salivary glands, and thyroid[108]. Current methods to 

characterize malignant and benign patient tissue rely on histology, which requires tissue to be 
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fixed, sectioned, and stained for visualizing the anatomy of cells. Histology can be difficult to 

interpret because it lacks functional information to explain the causes of tissue morphology. 

Therefore, additional imaging methods could provide complementary phenotypic information for 

characterizing tissue samples. In particular, cancer cells exhibit altered metabolism, which can 

drive changes in cell morphology, cell proliferation, and cell death[7][109]. 

Cellular metabolism can be investigated using autofluorescence of nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide (FAD), which are involved in glycolysis 

and oxidative phosphorylation. The optical redox ratio is calculated by dividing the fluorescence 

intensity of NADH by that of FAD and provides a measure of global metabolism[46]
,
[52]

,
[51]. 

The fluorescence lifetime is the time a fluorophore is in the excited state before relaxing to the 

ground state and is influenced by fluorophore microenvironment, particularly protein-

binding[39]. These techniques combined with multiphoton fluorescence microscopy provide 

micron-level resolution imaging. Additionally, this setup enables imaging of second harmonic 

generation (SHG), a nonlinear optical process produced by highly ordered proteins like collagen, 

which are important in tumor microenvironments[110]. These imaging methods utilize intrinsic 

tissue contrast, which eliminates cost and time for tissue processing that is required in histology.  

Furthermore, multiphoton microscopy enables depth sectioning in intact tissue and could allow 

three-dimensional reconstruction[42]. This microscopy technique combines redox ratio imaging, 

fluorescence lifetime imaging of NADH and FAD, and collagen SHG imaging to provide 

metabolic and structural information valuable for understanding samples of human tissue. 

Previous studies have applied autofluorescence imaging to human head and neck cancer 

cells and tissue. In cultures of oral cavity cells in vitro, autofluorescence intensity and lifetime 

imaging of NADH and FAD have been shown to distinguish malignant from nonmalignant 
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human cell lines[96]. Studies in human tissue focus on fluorescence intensity imaging. In 

particular, patient samples from normal, malignant, and inflammatory tissue of the oral cavity 

have been characterized using confocal microscopy[111]. Additionally, in vivo autofluorescence 

imaging and spectroscopy for head and neck cancer have used fiber optic probes to diagnose 

malignant tissue[112]
,
[113]. Complementing fluorescence intensity with fluorescence lifetime 

and SHG imaging could provide valuable contrast without requiring additional processing of the 

tissue sample.  

The goal of this study is to apply redox ratio, fluorescence lifetime, and SHG imaging to 

acquire functional and structural images of ex vivo human tissue from head and neck cancer 

patients. Tissue samples were collected from multiple types of head and neck cancer, and images 

were acquired. These results establish feasibility of these measurements in human head and neck 

cancer tissue. Overall, this metabolic imaging technique could serve as a valuable method to 

acquire phenotypic information from intact tissue as a complementary method to histology. 

 

5.3 Methods 

Tissue Sample Collection 

An institutional review board (IRB) exemption letter was obtained and de-identified human 

tissue samples were collected using the Cooperative Human Tissue Network (CHTN) at 

Vanderbilt University. After excision, tissue was placed in Dulbecco’s Modified Eagle Medium 

(DMEM) cell culture media supplemented with 10% fetal bovine serum (FBS) and 0.4µg/mL 

hydrocortisone and kept on ice. Tissue was moved to a glass-bottomed petri dish (MatTek) for 

image acquisition. 
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Image Acquisition 

An inverted multiphoton microscope and time correlated single photon counting (TCSPC) 

electronics were used to collect fluorescence intensity and lifetime images, as described 

previously[96]. Briefly, a titanium:sapphire laser was used for excitation and a photomultiplier 

tube was used for collection. NADH signal was isolated using an excitation wavelength of 

750nm and a bandpass emission filter of 440/80nm. FAD signal was isolated using an excitation 

wavelength of 890nm and a bandpass emission filter of 550/100nm. SHG signal was isolated 

using an excitation wavelength of 890nm and a bandpass emission filter of 450/35nm. NADH 

autofluorescence, FAD autofluorescence, and SHG images were acquired from the same fields of 

view. Intensity images were averaged over 4 frames to improve signal to noise. Fluorescence 

lifetime images were acquired over 60 seconds.  

 

Image Analysis 

An NADH intensity image was divided by a FAD intensity image from the same field of view to 

calculate a redox ratio image (ImageJ). The fluorescence lifetime was calculated by 

deconvolving the instrument response function with the fluorescence lifetime decay and fitting to 

a two-component curve, as described previously[96]. The average fluorescence lifetime, τm, was 

calculated by τm=α1τ1 + α2τ2, where α is the contribution from each component and τ is the 

lifetime of each component. 

 

5.4 Results 

Patient tissue of malignant tongue was collected and imaged (Figure 5.1). Hematoxylin 

and eosin (H&E) stain shows tightly packed cells and verifies malignant status of the tissue. 
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Representative redox ratio, NADH lifetime, and FAD lifetime images highlight morphology of 

tumor cells, particularly the cell cytoplasm that emanates NADH and FAD autofluorescence.  

Squamous cell carcinoma (SCC) tissue of the tongue and matched normal tissue of the 

tongue were collected from the same patient and imaged (Figure 5.2). The SCC tissue shows 

cells with nuclei compared with the normal tissue that shows vesicles resembling adipocytes 

with higher redox ratios. Additionally, the SCC tissue exhibits lower NADH and FAD 

fluorescence lifetimes than the normal tissue. SHG from collagen is arranged in the extracellular 

matrix surrounding cells. 

 

Figure 5.1. Representative hematoxylin and eosin (H&E) histology stain (60x60µm image size), 

redox ratio, NADH lifetime, and FAD lifetime images (170x170µm image size) from malignant 

tongue. 
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Samples were acquired from patients with adenocarcinoma of the parotid salivary gland 

and SCC of the parotid salivary gland (Figure 5.3). The adenocarcinoma tissue shows higher 

redox ratios and lower NADH and FAD fluorescence lifetimes than the SCC tissue. The 

adenocarcinoma sample shows more collagen than the SCC sample. One sample was acquired 

from a patient with laryngeal cancer (Figure 5.4), and microscopy images show larger cells 

compared with the other carcinoma samples.  

 

Figure 5.2. Representative images from squamous cell carcinoma of the tongue (top row) and 

normal tissue (bottom row) from the same patient. Images are 170x170µm. 
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Figure 5.3. Representative images from adenocarcinoma (top row) and squamous cell carcinoma 

(bottom row) from the parotid salivary gland. Images are 170x170µm. 

 

Figure 5.4. Representative images from patient tissue of laryngeal cancer. Images are 

170x170µm. 
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5.5 Discussion 

The goal of this study is to establish feasibility of applying redox ratio, fluorescence 

lifetime, and SHG imaging to human tissue samples of head and neck cancer. Patient tissues 

from multiple anatomical sites were imaged, including the tongue, parotid salivary gland, and 

larynx. Additionally, a matched normal sample from a patient with SCC of the tongue was 

obtained. Autofluorescence images from normal tissue and SCC tissue show cell morphology 

and different cell types, particularly fat vesicles in the normal tissue versus tumor cells in the 

SCC tissue. The normal and SCC tissue exhibit distinct fluorescence lifetimes of NADH and 

FAD, which reflects differences in protein-binding involving NADH and FAD for each sample 

(Figure 5.2). Head and neck cancer can also include multiple cell types of origin. For example, 

adenocarcinoma originates from glandular cells whereas SCC originates from squamous cells. 

Adenocarcinoma tissue of the parotid salivary gland shows higher optical redox ratios than SCC, 

reflecting higher rates of glycolysis compared with oxidative phosphorylation (Figure 5.3). 

Differences in NADH and FAD fluorescence lifetime between the adenocarcinoma and SCC 

reflect different metabolic pathways utilized for each tissue type. These functional measurements 

could help influence treatment strategies because anti-cancer treatment often impacts cellular 

metabolism. Since tumor cells exhibit increased NADH autofluorescence in the cytoplasm 

compared with the nuclei, NADH autofluorescence images can provide visualization of cellular 

and nuclear size. Autofluorescence imaging of laryngeal cancer shows increased cellular and 

nuclear size compared with SCC of the tongue, SCC of the parotid salivary gland, and 

adenocarcinoma of the parotid salivary gland. Overall, high-resolution functional imaging of 

human tissue could serve as a method to characterize tissue phenotype and provide a 
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complementary imaging method to histology that does not require processing and destruction of 

the tissue samples. 
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CHAPTER 6 

METABOLIC IMAGING OF HEAD AND NECK CANCER ORGANOIDS  

 

6.1 Abstract 

Head and neck cancer patients suffer from toxicities, morbidities, and mortalities, and 

these ailments could be minimized through improved therapies. Drug discovery is a long, 

expensive, and complex process, so optimized assays can improve the success rate of drug 

candidates. This study applies optical imaging of cell metabolism to three-dimensional in vitro 

cultures of head and neck cancer grown from primary tumor tissue (organoids). This technique is 

advantageous because it measures cell metabolism using intrinsic fluorescence from NAD(P)H 

and FAD on a single cell level for a physiologically-relevant in vitro model. Head and neck 

cancer organoids are characterized alone and after treatment with standard therapies, including 

an antibody therapy, a chemotherapy, and combination therapy. Additionally, organoid cellular 

heterogeneity is analyzed quantitatively and qualitatively. Gold standard measures of treatment 

response, including cell proliferation, cell death, and tumor volume, validate therapeutic efficacy 

in each treatment group. Results indicate that optical metabolic imaging is sensitive to 

therapeutic response in organoids after 1 day of treatment (p<0.05) and resolves cell 

subpopulations with distinct metabolic phenotypes. Ultimately, this platform could provide a 

sensitive and physiologically-relevant high-throughput assay to streamline the drug discovery 

process for head and neck cancer.  
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6.2 Introduction 

Head and neck cancer describes malignant tumors in the mouth, nose, and throat. Current 

treatments include chemotherapy, surgery, radiation therapy, and targeted therapy. Despite 

advancements in therapies, the 5-year survival rate for head and neck cancer is between 40-50% 

[1]. Additionally, chemotherapy, surgery, and radiation therapy introduce major toxicities, 

including damage to tissue and organs in anatomical sites that are critical for breathing, eating, 

and talking [114]. Therefore, organ preservation is an important consideration to maintain 

normal function. Targeted treatments for head and neck cancer focus on inhibition of the 

epidermal growth factor receptor (EGFR), particularly with the anti-EGFR antibody cetuximab 

[4]. However, there is a lack of targeted therapies beyond EGFR inhibitors. Additionally, tumor 

heterogeneity can allow a minority population of cells to drive treatment resistance and tumor 

recurrence [54]. Optimized therapies could provide better treatment efficacy and reduced 

toxicities, leading to improved quality of life and longer survival, but drug development takes at 

least 10 years and more than $1 billion [115][116]. Therefore, more accurate rapid drug screens 

to identify the most promising drug candidates and combination treatments would increase the 

success rate during drug development and facilitate the commercialization of optimized drugs 

and combinations. 

In vitro three-dimensional cultures grown from primary tumor tissue (organoids) are 

attractive for a high-throughput drug screen that enables testing of multiple drugs and drug 

combinations. Cellular level measurements can identify cell subpopulations that exhibit different 

sensitivities to treatments, and organoids combined with high-resolution imaging of cell 

metabolism provides a promising platform. Organoids are physiologically relevant because they 

grow in a three-dimensional organization, are generated from tumor tissue, and can therefore 
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capture distinct behaviors of individual tumors [117]. Additionally, multiphoton microscopy of 

cell metabolism has been shown to resolve therapeutic response in cancer [52][96], and the 

spatial scales of this imaging technique allow the full volume of the organoid to be imaged on a 

single-cell level. Autofluorescence measurements of the metabolic cofactors NAD(P)H and FAD 

characterize cell metabolism using their fluorescence intensities and lifetimes [46][39]. The 

fluorescence intensity measures relative amounts of each cofactor and the optical redox ratio, 

defined as the fluorescence intensity of NAD(P)H divided by that of FAD, reflects global cell 

metabolism. The fluorescence lifetime measures the amount of time a molecule is in the excited 

state, reflects protein-binding, and is sensitive to cellular signaling pathways that use NAD(P)H 

and FAD. Metabolic imaging based on cellular autofluorescence provides early, sensitive 

measurements of anti-cancer treatment response [52]. 

Organoids have been established and characterized for some types of cancers, including 

breast cancer and pancreatic cancer [118][119]. Different anatomical sites exhibit different cell 

types, cell structures, media and growth factor requirements, matrix stiffness requirements, and 

tissue digestion protocols, so characterization of each tumor type is necessary. Previous studies 

have focused on culturing spheroids from head and neck cancer cell lines [120], organoids from 

human salivary glands [121], and tumor pieces from head and neck cancer patients [122]. 

Therefore, characterization and analysis of head and neck cancer organoids grown from primary 

tumor tissue would be a new and beneficial contribution.  

The lack of targeted treatments for head and neck cancer justify the need for a high-

throughput drug screen. This study describes properties of tumor tissue that can be used for 

growing head and neck cancer organoids, establishes a protocol for generating the organoids, and 

applies metabolic microscopy for non-invasively characterizing organoids alone and in response 
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to drug treatments. Overall, this technique could be applied to streamline drug discovery and 

enable the development of optimized therapies with high efficacy and low toxicity. 

 

6.3 Materials and Methods 

Tissue Culture and Tumor Inoculation 

FaDu cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) plus 10% fetal bovine 

serum (FBS) and 0.4 µg/mL hydrocortisone. Subcutaneous flank tumors were inoculated in nude 

mice with 10
7
 FaDu cells. Tumors were grown for 1-2 weeks until reaching a volume of 

~100mm
3
. For in vivo imaging the mouse was anesthetized, the tumor was exposed, and the 

mouse was placed on the microscope. Organoid media consisted of DMEM plus 10% FBS, 0.4 

µg/mL hydrocortisone, 1% penicillin: streptomycin, insulin-transferrin-selenium at a 1X 

concentration, 10ng/mL epidermal growth factor, and B27 at a 1X concentration. Treatment 

media for organoids included cetuximab (20nM) [104], cisplatin (33µM) [78], or their 

combination.  

 

Organoid Generation 

Mice were anesthetized and tumors were excised and immediately placed in chilled culture 

media. Tumors were washed 3 times with sterile phosphate buffered saline (PBS), transferred to 

35mm petri dishes with 0.5mL culture media, and mechanically digested with scissors. Digestion 

into a cellular suspension was confirmed with brightfield microscopy. The cell suspension was 

mixed with matrigel at a volume ratio of 1 part cell suspension to 2 parts matrigel, and 100µL 

was plated on each 35mm glass-bottomed imaging dish (MatTek). The gels solidified at room 
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temperature for 30 minutes and then at 37C for 1 hour. Then 2mL organoid media was added to 

each dish and organoids were grown at 37C.  

 

Tumor Growth Curves and Immunohistochemistry 

Mice with FaDu tumors were treated 3 times a week for 2 weeks with cetuximab (33mg/kg) 

[92][93], cisplatin (6mg/kg) [94], or their combination via intraperitoneal injection (6 tumors per 

group). Tumor volumes were measured once a day using calipers, and tumor volumes were 

calculated by (l*w
2
)/2, where l is the tumor length and w is the tumor width. Tumor volumes 

were normalized to the size on day 1. On day 11 for the combination treated mice or day 13 for 

the single agent treated mice, tumors were excised and fixed for immunohistochemistry, and the 

mice were euthanized. Weight loss in the combination treatment group required an end of the 

treatment course on day 11. 

 

Fluorescence Microscopy 

Instrumentation for fluorescence microscopy included an inverted multiphoton microscope 

(Bruker), a tunable titanium:sapphire laser (Coherent) for fluorescence excitation, and a Ga:AsP 

photomultiplier tube for collection. Time correlated single photon counting (TCSPC) electronics 

(SPC-150, Becker and Hickl) were used for fluorescence lifetime acquisition. NAD(P)H was 

imaged using an excitation wavelength of 750nm and a collection filter of 400-480nm. FAD was 

imaged using an excitation wavelength of 900nm and a collection filter of 500-600nm. 

NAD(P)H and FAD were imaged from the same fields of view. Microscopy was performed to 

collect images of 256x256 pixels using a 40X objective (1.3NA), 4.8 µsecond pixel dwell time, 

60 second collection time, and ~10mW excitation power. Photon count rates were monitored to 
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ensure the absence of photobleaching. A Fluoresbrite YG microsphere (Polysciences Inc.) was 

measured at each imaging session, and provided a lifetime of 2.10 ± 0.02 ns (n=5), which agrees 

with previous reported values [32][95]. The instrument response function (IRF) was measured 

using second harmonic generation of urea crystals resulting in a full width at half max of 244ps. 

For organoid and tumor imaging, 4-6 fields of view were acquired per group. 

 

Image Analysis 

Images were analyzed using SPCImage (Becker and Hickl), as described previously [123]. 

Spatial binning included each pixel and the surrounding 8 pixels. The fluorescence decay curves 

were de-convolved with the IRF and fit to a 2-component exponential function, F(t) = α1e
-t/τ1

 + α 

2e
-t/τ2

. Here,  α represents the contribution from each component, τ represents the fluorescence 

lifetime of each component, and the 2 components reflect free and protein-bound forms of 

NAD(P)H and FAD [32]. For NAD(P)H the short lifetime reflects the freely diffusing 

conformation while the long lifetime reflects the bound conformation. Conversely, for FAD the 

short lifetime reflects the bound conformation while the long lifetime reflects the freely diffusing 

conformation [39]. The mean lifetime was calculated by τm = α1τ1+ α 2τ2. The optical redox ratio 

was calculated as the fluorescence intensity of NAD(P)H divided by the fluorescence intensity of 

FAD for each pixel. CellProfiler was applied to analyze images on a per-cell basis, as described 

previously [97]. Bar plots are consistent across 3 replicates. 

 

Heterogeneity Analysis 

Heterogeneity analysis was performed as described previously [123]. Briefly, per-cell data was 

plotted as frequency distributions and fit to 1, 2, or 3 Gaussian curves based on the Akaike 
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Information Criterion, where each Gaussian curve represented a cell subpopulation. Validation 

of this approach has shown accuracy within 10% in vitro [98]. The sum of the Gaussian curves 

was plotted. A heterogeneity index, based on a weighted Shannon diversity index, was applied to 

quantify cellular heterogeneity using the equation 𝑯 =  −∑𝒅𝒊𝒑𝒊𝒍𝒏𝒑𝒊 [123]. Here, i represents 

each subpopulation, d represents the distance between the median of the subpopulation and the 

median of all data within a group, and p represents the proportion of the subpopulation. For 

spatial mapping of cell subpopulations, thresholds between each subpopulation were calculated 

as values equidistant from the Gaussian curve means. The nucleus of each cell was color-coded 

according to these threshold values. Spatial heterogeneity analysis is shown for 1 replicate. 

 

Statistical Analysis 

Bar graphs are shown as mean ± standard error. For microscopy images statistical significance 

was determined using a Student’s t-test. For tumor growth curves and immunohistochemistry 

statistical significance was determined using a Wilcoxon rank sum test and Bonferroni 

correction. An α of 0.05 defined statistical significance. 

 

6.4 Results 

 Tumor tissue used to generate organoids was characterized with immunohistochemistry, 

histology, and autofluorescence imaging (Figure 6.1). Cleaved caspase-3 staining shows minimal 

cell death and ki-67 staining shows high cell proliferation (Figure 6.1A, B). H&E staining 

indicates tissue composition of dense tumor cells (Figure 6.1C). Cytokeratin AE1/AE3 staining 

demonstrates the epithelial status of the majority of cells (Figure 6.1D). Autofluorescence images 

show packed tumor cells with high NAD(P)H intensity localized in the cell cytoplasm and FAD 
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intensity localized in mitochondria (Figure 6.1E, F). These observations were confirmed in 

consultation with a trained pathologist. Tumor tissue was mechanically digested to break up the 

structural component and generate a suspension of single cells or small groups of cells (Figure 

6.1G), which enables organoids to grow as multi-cellular aggregates (Figure 6.1H). 
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Figure 6.1. Representative immunohistochemistry, histology, and autofluorescence images of 

tumor tissue and brightfield microscopy for organoid generation. (A) Cleaved caspase-3 staining 

shows minimal apoptosis. (B) Ki-67 staining demonstrates high cell proliferation. (C) H&E 

staining indicates tissue composition of dense tumor cells. (D) Cytokeratin AE1/AE3 indicates 

positive staining of epithelial cells, which constitute the majority of the tumor. (E) NAD(P)H 
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autofluorescence shows NAD(P)H located in the cell cytoplasm. (F) FAD autofluorescence 

shows punctate fluorescence signal from mitochondrial FAD. (G) Tissue was mechanically 

digested to create a suspension of cells. (H) Cells grow as organoids after plating the cell 

suspension. Scale bar = 50um. 

 

 Fluorescence lifetime values are robust and self-referenced, enabling comparisons across 

data sets and between tumor tissue and organoids (Figure 6.2). Organoids exhibit higher mean 

lifetimes of NAD(P)H and FAD than in vivo tumors (p<0.05), which results from lower 

contributions of the short lifetime (α1) and higher values of the short and long fluorescence 

lifetimes (τ1 and τ2) (Figure B.1). Frequency distribution modeling of the fluorescence lifetimes 

qualitatively illustrates shifts toward higher lifetimes for organoids compared with tumor tissue. 

Additionally, the heterogeneity index (H) quantifies cellular heterogeneity, where an increased 

heterogeneity index reflects increased number of cell subpopulations, increased equality in the 

weights of the subpopulations, or increased separation between the subpopulations [123]. 

Organoids exhibit similar cellular heterogeneity compared with the in vivo tumor based on the 

NAD(P)H fluorescence lifetime and increased cellular heterogeneity compared with the in vivo 

tumor based on the FAD fluorescence lifetime. 
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Figure 6.2. Untreated organoids and in vivo tumor tissue display distinct optical metabolic 

imaging properties. The weighted mean is calculated by τm= α1τ1 + α2τ2, where τ represents the 

lifetime value and α represents the contribution from each component. (A, C) Organoids exhibit 

higher NAD(P)H and FAD fluorescence lifetimes (τm) compared with in vivo tumor tissue, 

which is explained by lower contributions of the short lifetime component (α1), higher values of 

the short fluorescence lifetime (τ1), and higher values of the long fluorescence lifetime (τ2) (See 

Figure B.1). (B, D) Population distribution analysis plots cellular heterogeneity for in vivo tumor 

tissue compared with organoids. The heterogeneity index (H) is similar between organoids and in 

vivo tumor based on the NAD(P)H fluorescence lifetime and increases for organoids compared 

to in vivo tumor based on the FAD fluorescence lifetime. *p<0.05, t-test, n~100-300 cells per 

group 
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A representative autofluorescence image demonstrates the NAD(P)H fluorescence 

intensity in the organoids (Figure 6.3). In particular, organoids exhibit populations of cells with 

high NAD(P)H intensity as well as cells with low NAD(P)H intensity, and these populations 

exhibit distinct metabolic properties. Cells with low NAD(P)H exhibit a lower redox ratio and 

higher FAD fluorescence lifetime, explained by a lower contribution of the short lifetime (α1) 

(Figure B.2), compared with cells with high NAD(P)H (p<0.05).  

 

 

Figure 6.3. Untreated organoids contain cells with high levels of NAD(P)H intensity and cells 

with low levels of NAD(P)H intensity. (A) A representative image shows organoids with two 

levels of NAD(P)H intensity. (B) Low NAD(P)H cells exhibit a lower optical redox ratio than 

high NAD(P)H cells. (C) Low and High NAD(P)H cells exhibit similar NAD(P)H lifetimes. (D) 

Low NAD(P)H cells exhibit a higher FAD lifetime than high NAD(P)H cells. Scale bar = 50um. 

*p<0.05, t-test, n~50-100 cells per group 

 

 Gold standard techniques validate therapeutic efficacy and measure in vivo response to 

treatment. Immunohistochemistry characterizes short-term and long-term effects of treatment on 

cell proliferation measured by ki-67 and cell death measured by cleaved caspase 3 (Figure 6.4). 

Two days after in vivo treatment, cell proliferation is consistent across all treatment groups and 
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cell death increases with cisplatin treatment (Figure 6.4A, B). Two weeks after treatment cell 

proliferation decreases with cetuximab, cisplatin, and combination treatment and cell death 

increases with cisplatin and combination treatment  (Figure 6.4C, D) (p<0.05). Tumor growth 

curves illustrate long-term in vivo response to treatment (Figure 6.4E). Control mice exhibit 

continual tumor growth, whereas mice treated with single agents of cetuximab or cisplatin 

exhibit stable tumor volume, and mice treated with the combination of cetuximab and cisplatin 

exhibit decreased tumor volume. 
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Figure 6.4. Cell proliferation and cell death were quantified using Ki-67 and Cleaved Caspase 3, 

respectively, in FaDu xenografts after mice were treated for 2 days or 2 weeks, and tumor growth 

curves show treatment effects over 2 weeks in mice with FaDu xenografts. (A) Cell proliferation 

is consistent across treatment groups in FaDu xenografts 2 days after treatment. (B) Cell death 

increases after 2 days of treatment with cisplatin. (C) Cell proliferation decreases after 2 weeks 

of treatment with cetuximab, cisplatin, and their combination. (D) Cell death increases after 2 
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weeks of treatment with cisplatin and the combination of cetuximab and cisplatin. (E) Treatment 

with cetuximab or cisplatin causes stable disease, whereas combination treatment causes 

response.*p<0.05 compared with control, rank sum test; †p<0.05, compared with combination 

treatment, n=6 tumors 

 

 Representative images show organoid and cell morphology as well as relative trends in 

the redox ratio, NAD(P)H lifetime, and FAD lifetime for each treatment group (Figure 6.5). 

Optical metabolic imaging quantifies drug effects 1 day after treatment in organoids (Figure 6.6). 

The redox ratio increases with cetuximab and decreases with cisplatin and combination treatment 

(p<0.05). The NAD(P)H fluorescence lifetime (τm) decreases with cetuximab, cisplatin, and 

combination treatment (p<0.05). The contribution from the short lifetime (α1) increases with 

cetuximab treatment and decreases with cisplatin and combination treatment. The values of the 

short and long fluorescence lifetimes (τ1 and τ2) decrease with cetuximab, cisplatin, and 

combination treatment (Figure B.3). The FAD fluorescence lifetime (τm) increases with 

cetuximab, cisplatin, and combination treatment (p<0.05). The contribution from the short 

lifetime (α1) decreases with cetuximab, cisplatin, and combination treatment. The values of the 

short and long fluorescence lifetimes (τ1 and τ2) increase with cetuximab, cisplatin, and 

combination treatment (Figure B.3).  
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Figure 6.5. Autofluorescence images show the redox ratio and fluorescence lifetimes of 

NAD(P)H and FAD in head and neck cancer organoids treated for 1 day with cetuximab, 

cisplatin, or their combination. NAD(P)H and FAD autofluorescence images were acquired from 

the same fields of view, and the redox ratio (top row), NAD(P)H fluorescence lifetime (middle 

row), and FAD fluorescence lifetime (bottom row) were calculated. Scale bar = 50um. 
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Figure 6.6. The redox ratio and fluorescence lifetimes of NAD(P)H and FAD were quantified in 

organoids treated for 1 day with cetuximab, cisplatin, or their combination. (A) The redox ratio 

increases with cetuximab treatment and decreases with cisplatin and the combination treatment. 

(B) The NAD(P)H lifetime decreases with cetuximab, cisplatin, and combination treatment. (C) 

The FAD lifetime increases with cetuximab, cisplatin, and combination treatment. *p<0.05, t-

test; n~50-200 cells per group 

 

Cell subpopulations describe heterogeneity within treatment groups. Heterogeneity 

analysis applies Gaussian fitting of per-cell data and plots the sum of the Gaussian curves, 

illustrating shifts toward lower NAD(P)H lifetimes after cetuximab, cisplatin, and combination 

treatment (Figure 6.7). The control and combination treatment groups exhibit one subpopulation, 

whereas the cetuximab and cisplatin groups exhibit two subpopulations. For each treatment 



90 

 

group the summed area under the Gaussian curves equals one. Control and combination treated 

organoids display a low heterogeneity index, whereas single agent treated organoids display a 

higher heterogeneity index. Additionally, spatial mapping shows localization of the cell 

subpopulations. Each organoid contains one or both of the subpopulations, and qualitative 

analysis indicates that cell subpopulations are scattered throughout the organoids. 
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Figure 6.7. Cellular heterogeneity was analyzed based on NAD(P)H fluorescence lifetime in 

head and neck cancer organoids after 1 day of treatment with cetuximab, cisplatin, and their 

combination. (A) The sum of Gaussian curve fits provides qualitative visualization of cellular 

heterogeneity. A heterogeneity index (H) indicates low cellular heterogeneity for the control and 

combination treatment groups compared with higher heterogeneity for the single agent treatment 



92 

 

groups. (B) Individual Gaussian curves were plotted and thresholds between the means of the 

Gaussian curves were color coded to inform spatial mapping. The total area under the curves is 

equal across treatment groups. Spatial mapping provides relative locations of cell 

subpopulations.  

 

6.5 Discussion 

This study characterizes head and neck cancer organoids metabolically and in response to 

drugs. This approach is advantageous because it utilizes a physiologically-relevant model 

combined with sensitive metabolic measurements of treatment response. Organoids are 

generated from tumor tissue and grow in a three-dimensional matrix, which provides a more 

appropriate model than cell lines grown as monolayers on plastic [124]. Optical metabolic 

imaging measures early therapeutic effects and characterizes cellular heterogeneity, which is 

crucial for identifying resistant cells that cause patient failure. Overall, this technique can address 

a need for high-throughput screens of treatment efficacy for anti-cancer drugs to facilitate drug 

discovery.  

High quality primary tissue facilitates organoid growth. In particular, generating 

organoids immediately after tissue excision preserves tissue viability. Successful organoids grow 

from tissue that consists of dense tumor cells with a high proliferation rate and low apoptosis rate 

(Figure 6.1). Histological analysis indicates that the primary tissue comprises ~97% tumor 

characterized by proliferative, epithelial cells and ~3% stroma characterized by fibroblasts, 

capillaries, immune cells, and collagen. Fibroblasts exhibit distinct elongated morphology that 

would be apparent in culture [125]. Endothelial cells and immune cells would be expected to 

have short life spans and expire under organoid conditions [126]. In particular, the growth of 
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endothelial cells is promoted by shear stress [127], which is largely absent in these cultures. This 

analysis suggests that the organoids comprise epithelial cells.  

Protein-binding causes a conformational change in the molecular structure of NAD(P)H 

and FAD, which affects fluorescence quenching and the fluorescence lifetime [39]. The distinct 

fluorescence lifetime properties between in vivo tumor tissue and organoids reflect distinct 

protein-binding activity, including different rates that these molecules are being used in cell 

signaling pathways and binding to different proteins (Figure 6.2). These differences could result 

from discrete microenvironment conditions, including nutrient availability and oxygenation 

between in vivo tumors and in vitro cultures. This characterization highlights the utility of 

organoids as a complementary tool to in vivo imaging by enabling rapid comparisons of 

metabolic states between treated and control organoids generated from the same tissue.  

Cell subpopulations with distinct metabolic phenotypes are present in the control 

organoids (Figure 6.3). Organoids contain cells with high levels of NAD(P)H intensity and cells 

with low levels of NAD(P)H intensity (p<0.05). Low-NAD(P)H cells exhibit a lower redox ratio 

than high-NAD(P)H cells (p<0.05), reflecting distinct metabolic characteristics. Previous studies 

have shown that a decrease in redox ratio corresponds to a decrease in cell proliferation [96], 

thus these two subpopulations of cells may have varied drug response. Additionally, these 

subpopulations exhibit different FAD fluorescence lifetimes and contributions from free FAD 

(Figure B.2, p<0.05), indicating different levels of protein-binding between these cell 

subpopulations. The lack of a tumor stroma in the organoids could enable these separate 

subpopulations of cells  to grow [128].  

Traditional measures of therapeutic response characterize each treatment group. 

Immunohistochemistry shows minimal treatment effects 2 days after treatment and measures 
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treatment response after 2 weeks of treatment (Figure 6.4). Cetuximab has been shown to induce 

autophagy instead of apoptosis [104]. Overall, these results indicate that the endpoints of cell 

proliferation and cell death require multiple courses of treatment to resolve treatment effects. 

Tumor growth curves show that control tumors exhibit disease progression, the single agent 

treatments both exhibit stable disease, and the combination treatment exhibits treatment response 

(Figure 6.4E). These results reflect the synergistic effect of cetuximab and cisplatin, because 

cetuximab enhances chemotherapy-induced cell death by inhibiting DNA repair mechanisms 

[18]. These results agree with clinical studies of patients administered cetuximab, cisplatin, or 

their combination [102][103][105]. 

Representative images show the morphology and arrangement of tumor cells in organoids 

after 1 day of treatment as well as qualitative differences in the redox ratio, NAD(P)H 

fluorescence lifetime, and FAD fluorescence lifetime across treatment groups (Figure 6.5). 

Additionally, optical metabolic imaging quantitatively demonstrates sensitivity to drug effects 

after 1 day of treatment (Figure 6.6), which is an earlier time point compared with cell death, cell 

proliferation, and tumor volume (Figure 6.4). Cetuximab treatment causes an increase in the 

redox ratio, which is consistent with decreased efficacy of cetuximab as a monotherapy 

[118][96]. Cisplatin treatment causes a decrease in the redox ratio, which is consistent with drug 

responsiveness in previous in vitro and in vivo studies [96][123]. Combination treatment causes a 

decrease in the redox ratio, which is previously unreported. Taken together these results suggest 

that a decrease in the redox ratio indicates treatment response compared with an increase or no 

change in redox ratio for less effective treatments.  

The organoids NAD(P)H fluorescence lifetime (τm) decreases with cetuximab, cisplatin, 

and combination treatments (Figure 6.6B, p<0.05), which is consistent with previous in vivo 
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results [123]. The organoids FAD fluorescence lifetime (τm) increases with cetuximab, cisplatin, 

and combination treatments (Figure 6.6C, p<0.05). This shows the opposite trend from previous 

in vivo results and reflects the difference in microenvironments between in vivo and in vitro 

conditions, including access to oxygen and nutrients, vascularization, stromal structure, and drug 

delivery. Overall, these results indicate that organoids combined with optical metabolic imaging 

provides a unique in vitro, three-dimensional model that harnesses intrinsic contrast for 

measuring early, sensitive drug effects on a single-cell level. 

Tumor heterogeneity describes multiple cell subpopulations that can respond to therapies 

with different sensitivities, and cells that are resistant to treatment can enable patient relapse. In 

particular, Gaussian fitting of cellular data can characterize cellular heterogeneity, and a 

heterogeneity index, H, can incorporate the number of subpopulations, evenness of 

subpopulations, and relative distance between subpopulations to quantify cellular heterogeneity 

[98][123]. Based on the heterogeneity index, organoids treated with the single agents 

demonstrate a higher degree of heterogeneity compared with organoids in the control and 

combination treatment groups (Figure 6.7A). As seen in the tumor growth curves (Figure 6.4E), 

combination treatment has an additive effect compared with single agent treatments and creates a 

uniform response in organoids based on the heterogeneity index (Figure 6.7A). Furthermore, 

spatial mapping provides insight into the relative locations of cell subpopulations, particularly 

for visualization of grouped versus scattered subpopulations. Representative images indicate that 

cell subpopulations are scattered across and within organoids. Ultimately, characterization of 

cellular heterogeneity provides a powerful tool for testing drugs and drug combinations.  

Head and neck cancer patients suffer from severe toxicities, serious morbidities, and 

mortalities, and these challenges can be addressed through improved therapies. In particular, 
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streamlining the complex process of drug development could make a beneficial impact by 

efficiently identifying the most effective and least toxic drugs for development. This would 

reduce the time and resources spent on drugs that ultimately fail in patients and increase the 

success rate of clinical trials. A high-throughput drug screen based on cell metabolism and single 

cell analysis can address this need. Organoids combine the in vitro nature of cell monolayers 

with a more physiologically-relevant model, while optical metabolic imaging provides a platform 

for single-cell measurements of heterogeneous therapeutic response. This study establishes a 

protocol for growing head and neck cancer organoids, characterizes the organoids metabolically, 

and measures early response to antibody therapy, chemotherapy, and combination therapy. These 

results indicate that head and neck cancer organoids combined with optical metabolic imaging 

could provide a beneficial tool during drug discovery for head and neck cancer. 

 

6.6 Acknowledgements 

The Vanderbilt University Translational Pathology Shared Resource was used for 

immunohistochemistry staining. We acknowledge pathologist Dr. Kelli Boyd for help with 

interpreting these stains, and Joe Sharick for helpful discussions. Funding sources include the 

NSF Graduate Research Fellowship (DGE-0909667) and NIH/NCI (R01 CA185747). 

 

  



97 

 

CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 Summary and Conclusions 

 The goal of this work is to develop optical metabolic imaging for measuring treatment 

response in head and neck cancer, which is a prominent cause of morbidities and mortalities. 

Current treatments cure only 50-60% of head and neck cancer patients [1]. Cancer drugs and 

drug combinations are continually being developed and approved, but there is a need for 

methods to match patients with the most beneficial drugs. Additionally, patients often experience 

initial response to treatment followed by relapse. Tumor heterogeneity can impact this treatment 

resistance [54][55], but current methods to measure treatment response focus on whole-body 

imaging. Single-cell measurements of treatment response would be beneficial to identify cell 

subpopulations that are responsible for patient relapse. Furthermore, cancer exhibits altered 

cellular metabolism [7], and metabolic measurements can resolve early treatment response. 

Overall, optical metabolic imaging could provide a tool that achieves single-cell metabolic 

measurements of anti-cancer treatment response using endogenous contrast. This technique 

could be applied to monitor early drug response, optimize personalized treatment regimens, and 

facilitate drug discovery for head and neck cancer. 

 Chapter 1 of this dissertation provides the motivation for this work. Chapter 2 provides 

background material for these studies. This chapter describes relevant information about the 

anatomy and physiology of the head and neck region, as well as the prevalence, diagnosis, and 

treatment methods for head and neck cancer. Additionally, optical techniques for head and neck 

cancer are described, and two-photon microscopy and fluorescence lifetime imaging are 
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introduced. Background information about cellular metabolism and tumor heterogeneity is also 

included. 

Chapter 3 characterizes optical metabolic imaging in human cell lines for early 

assessment of treatment efficacy. The head and neck cancer cell lines SCC25 and SCC61 were 

treated with targeted therapies (cetuximab and BGT226) and chemotherapy (cisplatin) for 24 

hours, and the optical redox ratio and fluorescence lifetimes of NAD(P)H and FAD were 

quantified. These molecular-level measurements that reflect cellular metabolism have potential 

to resolve anti-cancer treatment effects sooner than current imaging modalities, including CT, 

MRI, and PET. This early measurement of treatment efficacy could accelerate drug screening 

and identify optimal treatment regimens for individual patients, thereby improving patient 

outcomes.  

Chapter 4 characterizes optical metabolic imaging for measuring response to head and 

neck cancer treatment in vivo. Feasibility of these measurements was demonstrated in a mouse 

model with head and neck cancer xenografts, and tumor heterogeneity was characterized. The 

mice were treated with chemotherapy, a targeted drug, or their combination and the fluorescence 

intensities and lifetimes of NAD(P)H and FAD were measured in vivo 48 hours after treatment. 

These studies provide support for clinical translation of optical metabolic imaging measurements 

in patients. In particular, a portion of head and neck cancer patients initially respond to treatment 

and then relapse over time. In vivo monitoring at early time-points could reduce unnecessary 

toxicities from ineffective treatments and improve the quality of life for head and neck cancer 

patients. 

Chapter 5 translates optical metabolic imaging to human head and neck cancer tissue. 

Metabolic and structural measurements were acquired using the fluorescence lifetimes of 
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NAD(P)H and FAD as well as second harmonic generation (SHG) imaging. These methods 

probe the cancer cells and extracellular matrix, which are both components involved in treatment 

response. These measurements were characterized in patient tissue across multiple anatomical 

sites and cell types. This study indicates that optical metabolic imaging could provide a 

complementary microscopy method to conventional histology and influence treatment strategies 

for head and neck cancer patients. 

Chapter 6 applies optical metabolic imaging to an organoid model of head and neck 

cancer. The optical redox ratio and fluorescence lifetimes of NAD(P)H and FAD were applied to 

characterize head and neck cancer organoids alone and after treatment with a chemotherapy, an 

antibody therapy, or their combination. Additionally, cellular heterogeneity of the organoids was 

analyzed. The organoid model serves as a more physiologically relevant in vitro platform 

compared with cell monolayers. Organoids more closely mimic in vivo conditions because they 

grow within a three-dimensional microenvironment that includes tumor-like gradients of oxygen, 

glucose, and pH [129]. Since a portion of HNSCC patients do not respond to treatments, 

prediction of effective treatments on an individual level could enable improved treatment 

outcomes. Patient tissue could be grown in organoids, incubated with several drugs and drug 

combinations, and measured with optical metabolic imaging to predict optimal treatment 

regimens. Additionally, optical metabolic imaging applied to organoids could be developed into 

a high-throughput screen to streamline drug discovery for head and neck cancer. 

Improved measurement of treatment response in head and neck cancer has potential to 

optimize treatment regimens, reduce unnecessary morbidities and toxicities, and improve patient 

outcomes. Optical metabolic imaging harnesses intrinsic contrast to resolve early, single-cell 

response to anti-cancer treatment. In this dissertation, optical metabolic imaging has been applied 
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to head and neck cancer for in vitro cell lines, in vivo preclinical measurements, ex vivo human 

tissue, and three-dimensional organoids. Ultimately, this technique could optimize treatment 

planning and drug discovery for head and neck cancer. 

 

6.2 Future Directions 

Design a clinical system for head and neck cancer patients  

Optical metabolic imaging is well-suited to head and neck cancer because of easy access to the 

site with endoscopes and fiber-optic probes. Chapter 4 demonstrates in vivo preclinical 

measurements in head and neck cancer xenografts for resolving early, cellular-level treatment 

response to therapy. Since treatment-induced changes in cellular metabolism are affected sooner 

than tumor volume, optical metabolic imaging can provide an earlier readout of response 

compared with current methods, like CT, MRI, and PET. Measuring the autofluorescence 

intensities and lifetimes of NAD(P)H and FAD in patients could resolve response at early time-

points after treatment onset, enabling the reduction of unnecessary toxicities and costs from 

ineffective treatments.  

 

Measure treatment-induced metabolic changes in head and neck cancer over a timecourse  

Optical metabolic imaging is well-suited for measurements over time because it is non-

destructive and can be applied for intact live samples. Chapter 4 applies optical metabolic 

imaging to head and neck cancer in vivo 48 hours after treatment with a chemotherapy, an 

antibody therapy, and their combination. Chapter 6 applies optical metabolic imaging in head 

and neck cancer organoids 24 hours after treatment with a chemotherapy, an antibody therapy, 
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and their combination. Timecourse measurements could provide insight about dynamic drug 

response, treatment-inducted shifts in cellular heterogeneity, and resistance to therapy.  

 

Characterize head and neck cancer patient tissue ex vivo  

Chapter 5 provides a preliminary study applying optical metabolic imaging and second harmonic 

generation (SHG) imaging to ex vivo human patient tissues. These tissues represent a variety of 

anatomical sites and cell types across several patients. Expanding this study by increasing the 

sample size for each anatomical site could provide additional insight into the variability that 

would be expected during clinical application of this technique. Additionally, this type of study 

would enable the characterization of NAD(P)H and FAD autofluorescence lifetime and SHG 

signals in primary human head and neck cancer tissue. 

 

Characterize cellular subpopulations based on optical metabolic imaging  

Cellular heterogeneity impacts treatment response in cancer patients because resistant cells can 

drive relapse. Optical metabolic imaging can be applied to identify cell subpopulations present 

intrinsically and after drug treatment. Chapter 4 characterizes cellular heterogeneity in head and 

neck cancer in vivo, and Chapter 6 characterizes cellular heterogeneity in head and neck cancer 

organoids. A better biological understanding of these subpopulations could be valuable for 

targeting treatment-resistant cells. Studies could be applied to correlate optical metabolic 

imaging parameters for cell subpopulations with complementary metabolic or protein expression 

measurements. Additionally, Appendix C introduces flow cytometry based on cell 

autofluorescence for sorting a heterogeneous solution of cells. This approach could be applied 

for cells from primary tumors. The sorted subpopulations of cells could be used during the 
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testing of potential drugs or for planning effective treatment regimens for individual cancer 

patients. 

 

Optimize an organoid drug screen for patient-derived head and neck cancer tissue 

Optical metabolic imaging in organoids can provide a predictive screen of potential drugs for 

informed, individualized treatment planning. Chapter 6 demonstrates optical metabolic imaging 

for head and neck cancer organoids grown from xenografts. Optimizing organoid generation 

methods and culture conditions could enable organoid growth from primary human tissue. This 

type of platform could enable patient-derived organoids to be tested with several drugs and drug 

combinations to predict treatment response before therapy is administered to the patient, which 

could improve patient outcomes. 

 

Develop automated image acquisition for high-throughput studies 

Drug development takes at least 10 years and more than $1 billion [115][116]. An organoid drug 

screen combined with optical metabolic imaging could provide a platform for rapid testing 

during drug discovery and identifying promising drug candidates. Chapter 6 applies optical 

metabolic imaging for head and neck cancer organoids after 24 hours of treatment with a 

chemotherapy, antibody therapy, and their combination. However, methods for acquiring and 

analyzing optical metabolic imaging data could be improved. In particular, automated image 

acquisition and data analysis could enable high-throughput screens to test an array of 

experimental drugs and their combinations. Additionally, three-dimensional image stacks could 

sample the entire organoid volume. Overall, this method could streamline drug discovery for 

head and neck cancer. 
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Develop the biological understanding of NAD(P)H and FAD fluorescence lifetime 

The fluorescence lifetimes of NAD(P)H and FAD are still considered investigational 

measurements. A change in lifetime is usually interpreted as a change in microenvironment, 

particularly protein-binding. Chapter 3 correlates the fluorescence lifetimes of NAD(P)H and 

FAD with rates of cell proliferation and lactate production normalized by glucose consumption 

in head and neck cancer cell lines after treatment. Additional studies can explore the biological 

understanding of these fluorescence lifetime measurements, including how they change based on 

metabolic pathway preferences. 

 

6.3 Contribution to the Field and Broader Impact 

Contribution to Biophotonics 

This work demonstrates novel characterizations of NAD(P)H and FAD autofluorescence 

intensities and lifetimes in head and neck cancer. Cyanide perturbation in the nonmalignant oral 

cavity cell line OKF6 verifies NAD(P)H and FAD autofluorescence by the optical redox ratio 

and NAD(P)H and FAD fluorescence lifetimes. These shifts match published results in the 

nonmalignant MCF10A cell line from the breast [52], but these results are previously unreported 

in cells from the oral cavity. Additionally, these studies represent the first reports of the effect of 

cetuximab on the optical redox ratio. No other literature has reported the effects of chemotherapy 

in vivo on the optical redox ratio and fluorescence lifetimes of NAD(P)H and FAD. Applying the 

viSNE dimensionality reduction technique to optical metabolic imaging is a novel approach to 

visualize cellular heterogeneity based on these parameters. These studies work toward 

interpreting the fluorescence lifetimes of NAD(P)H and FAD by comparing these measurements 

with gold standard measures of treatment response, including cell death and cell proliferation, 
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and glucose metabolism. This work also compares optical metabolic imaging parameters across 

head and neck cancer models, particularly between in vivo xenografts and organoids. Overall, 

this work strengthens the foundation of applying optical metabolic imaging to resolve treatment 

response in head and neck cancer. 

 

Contribution to Head and Neck Cancer  

This work presents the first reports of measurements of endogenous fluorescence in response 

to treatment in head and neck cancer. Single-cell measurements of cell metabolism are applied to 

resolve response to drug treatment, and these studies apply novel methods for characterizing 

tumor heterogeneity. A quantitative heterogeneity index is developed and applied to head and 

neck cancer tumors and organoids. This index is advantageous because there is no standard 

metric for quantifying tumor heterogeneity. Organoids combined with optical metabolic imaging, 

as presented in this work, could provide a novel assay for high-throughput metabolic 

measurements during drug discovery for head and neck cancer therapies. 

 

Potential Impact 

About half a million new cases of head and neck cancer are diagnosed each year. Only 

50-60% of those patients will be cured by therapy [3], while the rest will show inherent 

resistance to therapy or develop resistance to therapy. Optical metabolic imaging harnesses 

intrinsic contrast of autofluorecence from cofactors that are sensitive to metabolic changes due to 

treatment. These studies characterize the optical metabolic imaging parameters in response to 

head and neck cancer treatment in human cell lines compared with gold standard measures of 

cellular metabolism and therapeutic response. Additionally in vivo studies demonstrate feasibility 
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for resolving response earlier than current methods based on tumor volume, and this approach 

can provide a basis for clinical translation of this technique for early monitoring of drug response 

in vivo. The sub-cellular resolution achieved by this technique could enable the identification of 

cellular sub-populations in response to treatment. Furthermore, translation of optical metabolic 

imaging to human patient tissues characterizes heterogeneity across tissue and cell types. In 

parallel, in vitro organoid studies develop a platform for testing drugs and drug combinations, an 

approach that could enable prediction of optimal therapy for individual patients before treatment 

is administered. Overall, optical metabolic imaging of head and neck cancer shows potential to 

impact personalized medicine and drug discovery for head and neck cancer. In particular, a 

sensitive measure of early treatment response could allow intervention during ineffective 

treatments. Clinical translation of an optical system to measure endogenous fluorescence is 

feasible because head and neck cancer sites are accessible with fiber optic probes. Additionally, 

high-throughput, physiologically-relevant platforms combined with optical metabolic imaging 

could facilitate drug discovery and predict optimal therapies to improve patient outcomes, 

minimize unnecessary toxicities, and reduce costs from ineffective therapies for head and neck 

cancer patients.  
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APPENDIX A 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

 

 

Figure A.1. The short fluorescence lifetime (τ1), long fluorescence lifetime (τ2), and contribution 

of free conformations of NAD(P)H and FAD 2 days after treatment. (A, B, D, E) The short and 

long lifetime components of NAD(P)H and FAD decrease with cetuximab and cisplatin 

treatment. (C, F) The contribution of free NAD(P)H increases and the contribution of free FAD 

decreases with cetuximab and cisplatin treatment. *p<0.05, compared with control 
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Figure A.2. The heterogeneity index was calculated for the short fluorescence lifetime (τ1), long 

fluorescence lifetime (τ2), and contribution of free conformations of NAD(P)H and FAD. For 

NAD(P)H τ1, NAD(P)H τ2, % free NAD(P)H, FAD τ1, FAD τ2, and % free FAD the control 

group exhibits decreased heterogeneity indices compared with the cetuximab and cisplatin 

treatment groups.  
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Figure A.3. ViSNE heat maps. Heat maps of (A) the redox ratio, (B) the long fluorescence 

lifetime component of NAD(P)H, (C) the contribution of free conformation of NAD(P)H , (D) 

the long fluorescence lifetime component of NAD(P)H, and (E) the contribution of free 

conformation of FAD over the 2-dimensional viSNE axes. 
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Figure A.4. Heterogeneity analysis for FaDu cell monolayers in vitro for cetuximab and cisplatin 

treatments compared with control. (A) The heterogeneity index based on the redox ratio is 

increased for cetuximab and cisplatin treatments compared with control. (B) ViSNE analysis 

shows overlap for control, cetuximab, and cisplatin groups as well as non-overlapping 

subpopulations for the cetuximab and cisplatin groups. 
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APPENDIX B 

SUPPLEMENTARY MATERIAL FOR CHAPTER 6 

 

 

 

Figure B.1. Untreated organoids and in vivo tumor tissue exhibit distinct NAD(P)H and FAD 

fluorescence lifetime components. Organoids have lower contributions of the short lifetime 

component (α1), higher values of the short fluorescence lifetime (τ1), and higher values of the 

long fluorescence lifetime (τ2). *p<0.05, t-test, n~100-300 cells per group 
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Figure B.2. NAD(P)H and FAD fluorescence lifetime components characterize cells in untreated 

organoids with low levels of NAD(P)H fluorescence compared with cells with high levels of 

NAD(P)H intensity. NAD(P)H fluorescence lifetime components are similar, whereas low 

NAD(P)H cells have lower contribution of FAD short lifetime component (α1). 
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Figure B.3. NAD(P)H and FAD fluorescence lifetime components were quantified in organoids 

after 1 day of treatment. For NAD(P)H, cetuximab treatment causes an increase in the short 

lifetime component (α1), whereas cisplatin and combination treatment cause a decrease in the 

short lifetime component. Cetuximab, cisplatin, and combination treatments cause a decrease in 

the short (τ1) and long (τ2) fluorescence lifetimes. For FAD, cetuximab, cisplatin, and 

combination treatments cause a decrease in the contribution of the short lifetime (α1) and an 

increase in the short (τ1) and long (τ2) fluorescence lifetimes. 
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APPENDIX C 

AUTOFLUORESCENCE FLOW SORTING OF BREAST CANCER CELL 

METABOLISM 

 

C.1 Abstract 

Clinical cancer treatment aims to target all cell subpopulations within a tumor. 

Autofluorescence microscopy of the metabolic cofactors NAD(P)H and FAD has shown 

sensitivity to anti-cancer treatment response. Alternatively, flow cytometry is attractive for high 

throughput analysis and flow sorting. This study characterizes cellular autofluorescence in three 

flow cytometry channels and applies cellular autofluorescence to sort a heterogeneous mixture of 

breast cancer cells into subpopulations enriched for each phenotype. Sorted cells were grown in 

culture and sorting was validated by morphology, autofluorescence microscopy, and receptor 

expression. Ultimately, this method could be applied to improve drug development and 

personalized treatment planning.  

 

C.2 Introduction 

Tumor heterogeneity can impact treatment response for cancer patients. Tumors can 

contain multiple subpopulations of cells with distinct phenotypes and sensitivities to drugs, and 

cells that are resistant to treatment can cause patient relapse [54]. The goal in clinical cancer 

treatment is to administer drugs that target all cell subpopulations within a tumor, leading to 

progression-free survival. Therefore, single-cell analysis techniques have become powerful tools 

for characterizing tumor heterogeneity and developing strategies to eliminate all treatment-

resistant cells in a tumor.  



114 

 

Subpopulations of tumor cells can be defined by responsiveness or resistance to anti-

cancer treatment. Responsive cells undergo cell death or senescence after treatment, whereas 

resistant cells continue to proliferate after treatment. Since cancer cells often exhibit altered 

cellular metabolism, particularly increased aerobic glycolysis (Warburg effect), and many drugs 

target metabolic pathways, cellular metabolism can be a marker for drug sensitivity [130]. 

Metabolic signaling pathways involve the cofactors NAD(P)H and FAD, and these molecules 

naturally exhibit autofluorescence. Previous studies have shown that breast cancer cells that are 

responsive to treatment exhibit a decreased ratio of NAD(P)H fluorescence to FAD fluorescence, 

termed the optical redox ratio, compared with cells that are resistant to treatment [52]. The redox 

ratio has also been used to distinguish subtypes of breast cancer cells with different receptor 

statuses, including human epidermal growth factor receptor 2 (HER2)-positive, estrogen receptor 

(ER)-positive, and triple negative cells. Specifically, the triple negative breast cancer cell line 

MDA-MB-231 has been shown to exhibit a lower optical redox ratio than the HER2-positive 

breast cancer cell line SKBr3 [52]. To mimic cellular heterogeneity, SKBr3 cells and MDA-MB-

231 cells have been mixed in culture, and distinct subpopulations of each cell line have been 

identified using autofluorescence microscopy of NAD(P)H and FAD [98]. Therefore, single cell 

measurement techniques of cellular autofluorescence are beneficial to characterize heterogeneity 

across breast cancer subtypes. 

Single cell techniques to measure fluorescence include microscopy and flow cytometry, 

and each of these has unique advantages. Microscopy provides higher resolution (sub-cellular) 

and requires a longer dwell time (ms), whereas flow cytometry provides lower resolution 

(cellular) and requires a shorter dwell time (µs). Microscopy measures smaller sample sizes 

(hundreds of cells) compared with flow cytometry (thousands of cells). Additionally, microscopy 
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measures adherent cells and can provide information about spatial relationships between cells, 

whereas flow cytometry measures cells in suspension and can sort cells to enrich cell 

subpopulations based on a target fluorophore. Overall, microscopy provides high signal to noise 

whereas flow cytometry provides high throughput and cell sorting. Flow cytometry is well-suited 

for characterizing cellular heterogeneity because sorting cancer cells by metabolic fluorophores 

could isolate subpopulations that could then be grown in vitro and used for further analysis. In 

particular, cell subpopulations could be tested for sensitivity to anti-cancer therapies to determine 

personalized treatment strategies as well as to develop new therapies for isolated resistant 

subpopulations.  

Current methods for flow sorting tumor cell subpopulations are based on fluorescent 

staining for specific molecular markers, and some studies have identified markers for treatment 

resistance. In particular, CD44+ cells have been shown to be tumorigenic and resistant to 

chemotherapy in breast cancer, head and neck cancer, and pancreatic cancer 

[131][132][133][134]. CD24 has also been shown to be a marker for tumorigenic potential in 

breast cancer and pancreatic cancer. Additionally, CD133+ cells have been shown to be 

tumorigenic and resistant to chemotherapy in pancreatic cancer [135]. However, there are 

drawbacks to fluorophore staining for flow cytometry. In particular, labeling efficiency can 

affect the signal intensity from fluorophore staining, thus confounding the interpretation of 

“positive” and “negative” stained cells. Therefore, autofluorescence measurements can be 

beneficial by eliminating the need for dyes or stains. Additionally, staining for specific markers 

could miss cells that maintain treatment resistance yet circumvent the labeled pathway. 

Therefore, autofluorescence of NAD(P)H might be an advantageous marker to sort cells based 

on overall cell metabolism.  
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Previous studies have also applied flow cytometry based on intrinsic contrast. In addition 

to measuring cell fluorescence, flow cytometry measures scattering properties of the cells, 

including forward scattering measurements (FSC), which reflect cell size. These scattering 

properties have been used to distinguish cells of different sizes and types, including isolating 

neutrophils from leukocytes [136]. Additionally, NAD(P)H and FAD autofluorescence flow 

cytometry has been shown to measure response to increasing concentrations of glucose in rat b-

cells, INS-1 cells, and rat islet cells [137][138]. Since flow cytometry measures fluorescence 

intensities per cell, cell size could affect autofluorescence measurements. For example, cells 

from the bottom ten percent of the autofluorescence intensity distribution have been shown to 

have decreased size compared with cells from the top ten percent [139]. Therefore, it is 

important to compare autofluorescence intensities from cells with similar sizes and FSC values. 

This study applies flow cytometry for autofluorescence measurements of cell metabolism 

in breast cancer. Three flow cytometry channels were characterized for cellular autofluorescence 

in a nonmalignant breast cancer cell line after electron transport chain inhibition as well as 

between two breast cancer cell lines that exhibit either overexpression of HER2 or triple negative 

status.  Additionally, a heterogeneous sample of these two cell lines was sorted based on cell 

autofluorescence, and the sorted subpopulations, which were enriched for each cell line, were 

grown in culture. Flow sorting was validated by cell morphology, autofluorescence microscopy, 

and staining for HER2 receptor expression. These results indicate that flow sorting by cell 

autofluorescence can separate phenotypic subpopulations of cells. Ultimately, this achievement 

could be applied to cells from patient tissue to enable more specific testing of tumor 

heterogeneity in cell subpopulations sorted by treatment response, ultimately driving improved 

treatment regimens for cancer patients.  
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C.3 Methods 

Cell Culture 

MCF10A cells were grown in Mammary Epithelial Cell Growth Medium (MEBM) 

supplemented with 1µg/ml insulin, 10ng/ml epidermal growth factor (EGF), and 1µg/ml 

hydrocortisone. MDA-MB-231 and SKBr3 cells were grown in Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin:streptomycin. For flow cytometry experiments, cells were trypsinized and prepared as 

10
6
 cells in 1ml phosphate buffered saline (PBS) with 5% FBS. For the cyanide experiment, 

cyanide (4mM NaCN, Sigma) was added to the cell solution for 5 minutes. For flow sorting 

experiments, cells were prepared as 7*10
6
 cells in 1ml PBS with 5% FBS. Cells recovered from 

flow sorting were plated and grown on 35-mm glass-bottomed dishes (MatTek Corp.) for 1 

week. 

 

Flow Cytometry and Flow Sorting 

The BD LSRII instrument was used for flow cytometry analysis experiments, and 3 fluorescence 

channels were analyzed. The DAPI channel used an excitation wavelength of 350nm and an 

emission filter of 450/50nm. The Alexa Fluor 405 channel used an excitation wavelength of 

405nm and an emission filter of 450/50nm. The Alexa Fluor 488 channel used an excitation 

wavelength of 488nm and an emission filter of 505nm longpass. 10,000 cells were analyzed for 

each group. The BD FACSAria III instrument was used for flow sorting experiments, and 1 

fluorescence channel was analyzed. The Alexa Fluor 405 channel used an excitation wavelength 

of 405nm and an emission filter of 450/50nm. Initial analysis was done on separate samples of 

MDA-MB-231 and SKBr3. Then the two cell lines were mixed at a ratio of 50% each, and the 
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heterogeneous solution was analyzed and sorted. For each cell line 3-5*10
5
 cells were recovered 

after sorting. Cells were also analyzed post-sort. Graphs were made in Cytobank 

(www.cytobank.org). Experiments were repeated in triplicate on separate days, and results were 

consistent across experiments.  

 

Microscopy Validation  

Sorted cells were grown in culture for 1 week and imaged with brightfield and fluorescence 

microscopy. For brightfield microscopy, images were acquired using an inverted microscope 

(EVOS, Fisher Scientific) and 4X objective. For fluorescence microscopy, images were acquired 

using an inverted two-photon microscope (Bruker, and TiE, Nikon) and 40X oil-immersion 

objective (1.3 NA). Incident light was provided with a titanium:sapphire laser (Coherent, Inc.). A 

GaAsP photomultiplier tube (H7422P-40, Hamamatsu) was used to collect fluorescent photons. 

NAD(P)H was measured using an excitation wavelength of 750nm and an emission filter of 

440/80nm. FAD was measured using an excitation wavelength of 890nm and an emission filter 

of 550/100nm. NAD(P)H and FAD were measured from the same fields of view. Each image 

averaged 4 frames, and 9 fields of view were imaged per group. Microscopy images were 

analyzed on a per-cell basis using a CellProfiler routine described previously [97]. Briefly, the 

optical redox ratio was calculated by dividing the image of NAD(P)H by the image of FAD for 

the same field of view. NAD(P)H images were thresholded to identify cell cytoplasms. 

NAD(P)H, FAD, and redox ratio images were quantified per cell.  
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HER2 Expression Validation 

A fluorescently labeled anti-HER2 antibody, HER2Sense (5µM, PerkinElmer), was used to 

validate flow sorting. HER2Sense exhibits optimal excitation at 643nm and emission at 661nm. 

This fluorescence was measured with the Alexa 647 channel, which has an excitation wavelength 

at 633nm and a collection filter of 660/20nm. Cells were stained with HER2Sense for 30 minutes 

and washed with PBS. MDA-MB-231 and SKBr3 cells were characterized separately, mixed to 

form a heterogeneous solution, and sorted based on autofluorescence in the Alexa Fluor 405 

channel. Next, sorted cells were characterized for autofluorescence in the Alexa Fluor 405 

channel and for HER2 expression in the Alexa 647 channel. Sorted cells were grown for 1 week 

in culture, stained with HER2Sense for 30 minutes, washed with PBS, and imaged with an 

inverted confocal microscope (Meta, Zeiss) and 40X oil-immersion objective using the cy5 

channel (maximal excitation and emission wavelengths of 647nm and 665nm). Pure, unstained 

MDA-MB-231 and SKBr3 cells served as negative controls for flow cytometry and confocal 

microscopy experiments. 

 

Statistical Analysis 

Bar graphs are shown as mean ± standard error. Statistical testing was performed using two-

tailed t-tests with an α of 0.05 indicating statistical significance.  

 

C.4 Results 

Autofluorescence signals were measured in nonmalignant MCF10A cells after treatment 

with cyanide, which is an established metabolic perturbation (Figure C.1A). Cyanide inhibits the 

electron transport chain and prevents the conversion of NADH to NAD+, thereby causing an 
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accumulation of NADH [71]. NAD(P)H has an excitation maximum at 351nm and an emission 

maximum at 440nm [40]. These spectral properties align with the DAPI flow cytometry channel, 

which excites at 350nm and collects emission between 450/50nm. The Alexa Fluor 405 flow 

cytometry channel, which excites at 405nm and collects emission between 450/50nm, has also 

been used to measure NAD(P)H [140]. FAD has an excitation maximum at 450nm and an 

emission maximum at 535nm [40]. These spectral properties align with the Alexa Fluor 488 flow 

cytometry channel, which excites at 488nm and collects emission longer than 505nm. Flow 

cytometry data shows a slight increase in the DAPI channel. This is a small change and is 

consistent across three separate replicate experiments on different days. The Alexa Fluor 405 

channel shows no change, indicating that this channel is less optimized for NAD(P)H 

measurements. The Alexa Fluor 488 channel shows a slight decrease. Additionally, the FSC 

measurements indicate that cell size is not affected by the cyanide treatment (Figure C.1B). 
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Figure C.1. Cyanide characterization. (A) Treatment with cyanide causes an increase in the 

DAPI channel, no change in the Alexa Fluor 405 channel, and a decrease in the Alexa Fluor 488 

channel. (B) Treatment with cyanide has no effect on FSC measurements, which reflect cell size. 

 

The triple negative breast cancer cell line MDA-MB-231 and the HER2-positive breast 

cancer cell line SKBr3 were characterized in the DAPI, Alexa Fluor 405, and Alexa Fluor 488 

channels (Figure C.2A). The SKBr3 cells exhibit an increased fluorescence signal in the DAPI 

and Alexa Fluor 405 channels, which correspond to NAD(P)H, compared with MDA-MB-231 
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cells. SKBr3 cells show a slight increase in the Alexa Fluor 488 channel compared with MDA-

MB-231 cells. The FSC measurements show similar cell sizes between the cell lines (Figure 

C.2B). 

 

 

Figure C.2. Cell line characterization. (A) MDA-MB-231 cells exhibit lower fluorescence 

intensity in the DAPI, Alexa Fluor 405, and Alexa Fluor 488 channels compared with SKBr3 

cells. (B) MDA-MB-231 and SKBr3 cells exhibit similar FSC measurements, which reflect cell 

size. 
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The distinct fluorescence intensities of MDA-MB-231 and SKBr3 cells in the Alexa 

Fluor 405 channel justifies applying this channel for sorting a heterogeneous sample of these two 

cell lines. Pure samples of MDA-MB-231 and SKBr3 cells show separate peaks for each cell line 

(Figure C.3A, blue, orange). The cell lines were mixed to create a heterogeneous sample, and 

this sample exhibits two distinct peaks that align with the peaks of each pure cell line (Figure 

C.3A, green). The sample was sorted based on fluorescence intensity in the Alexa Fluor 405 

channel. Similarly, the sorted cell subpopulations exhibit peaks that align with the peaks of each 

pure cell line (Figure C.3A, red, purple). Error in the sorting was less than five percent based on 

post-sort analysis. FSC measurements indicate similar cell sizes between the MDA-MB-231 

cells, SKBr3 cells, mixture of the two cell lines, and sorted SKBr3 cells (Figure C.3B). The 

sorted MDA-MB-231 cells exhibit slightly lower FSC values. 
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Figure C.3. Flow sorting. (A) MDA-MB-231 cells and SKBr3 cells measured separately exhibit 

distinct fluorescence intensities in the Alexa Fluor 405 channel. A mixture of MDA-MB-231 and 

SKBr3 cells exhibit two peaks, representing each cell type. Flow sorting the mixture separates 

the two populations of cell types. (B) FSC measurements show that MDA-MB-231, SKBr3, the 

mixture, and the sorted SKBr3 cells exhibit similar cell sizes. Sorted MDA-MB-231 cells exhibit 

a slightly decreased FSC measurement. 

 

The sorted cell subpopulations were grown in culture for one week and validated with 

brightfield microscopy to visualize cell morphology (Figure C.4). Images show pure MDA-MB-

231 cells exhibit an elongated morphology, whereas pure SKBr3 cells show a round and grouped 

morphology. Furthermore, the sorted cells from each subpopulation exhibit morphologies that 

align with the pure cell subpopulations. 
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Figure C.4. Brightfield microscopy validates cell sorting. Images illustrate an agreement in 

morphology between pure and sorted MDA-MB-231 and SKBr3 cell lines. 

 

Additionally, fluorescence microscopy was applied to validate cell sorting (Figure C.5). 

Sorted cells were grown in culture for a week and autofluorescence images of NAD(P)H and 

FAD were acquired. Representative images show the expected cell morphology for each cell line 

(Figure C.5A). The microscopy images were quantified on a cellular level to compare 

fluorescence intensities between the sorted cell subpopulations. The sorted SKBr3 cells exhibit 

higher NAD(P)H intensity (Figure C.5B), FAD intensity (Figure C.5C), and redox ratio (Figure 

C.5D) compared with MDA-MB-231 cells (p<0.05).  
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Figure C.5. Fluorescence microscopy validation of flow sorting a mixture of MDA-MB-231 and 

SKBr3 cells. (A) Representative images of NAD(P)H and FAD autofluorescence show the 

expected morphology from MDA-MB-231 and SKBr3 cells grown in culture for 1 week after 

flow sorting. (B, C) SKBr3 cells exhibit increased NAD(P)H and FAD intensities compared with 

MDA-MB-231 cells. (D) SKBr3 cells exhibit increased optical redox ratio (NAD(P)H/FAD) 

compared with MDA-MB-231 cells. n~170-200 cells. *p<0.05, t-test. mean+/- SEM 
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Fluorescence staining of HER2 expression was applied for a final validation of flow 

sorting (Figure C.6). HER2Sense labels HER2-positive cells, and excites and emits at 

wavelengths longer than NAD(P)H and FAD so it can be spectrally separated in the Alexa 647 

channel. Flow sorting based on autofluorescence in the Alexa Fluor 405 channel was repeated 

with cells stained for HER2Sense (Figure C.6A). Unstained controls exhibit minimal 

fluorescence in the Alexa 647 channel (Figure C.6B, brown, pink). Stained SKBr3 cells exhibit 

increased fluorescence signal in the Alexa 647 channel compared with stained MDA-MB-231 

cells (Figure C.6B, blue, orange). The cell lines were mixed, and the fluorescence profile of the 

mixture (Figure C.6B, green) matches the sum of the initial populations. The mixture was sorted 

based on autofluorescence in the Alexa Fluor 405 channel (Figure C.6A). After sorting, the 

Alexa 647 fluorescence for each subpopulation (Figure C.6B red, purple) matches the peaks for 

each pure cell line. FSC measurements (Figure C.6C) are similar across the samples, indicating 

similar cell sizes across the groups. Additionally, sorted cells were grown in culture for a week 

and fluorescence microscopy of HER2Sense was performed (Figure C.6D). Unstained controls 

show low background signal. As a positive control, stained SKBr3 cells show the localization of 

HER2 in the cell membrane, whereas stained MDA-MB-231 cells exhibit low signal. Similarly, 

sorted subpopulations of SKBr3 cells show the localization of HER2 in the cell membrane, 

whereas MDA-MB-231 cells exhibit low signal.  

 



128 

 

 

Figure C.6. HER2 staining validates flow sorting. (A) Autofluorescence in the Alexa Fluor 405 

channel sorts a mixture of MDA-MB-231 and SKBr3 cells. (B) Staining with a fluorescent anti-

HER2 antibody (HER2Sense) validates flow sorting. (C) FSC measurements indicate similar cell 

sizes across control and sorted groups. (D) Microscopy of sorted cells grown for 1 week shows 

the presence of HER2 in SKBr3 cell membranes compared with low, non-specific signal in 

MDA-MB-231 cells. “Stained” indicates cells were labeled with HER2Sense, whereas 

“unstained” indicates that cells were not labeled with HER2Sense. 
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C.5 Discussion 

Tumor heterogeneity describes multiple subpopulations of cells within a tumor. 

Subpopulations of cells that are resistant to treatment can cause patient relapse. Therefore, 

sorting these subpopulations could enable improved treatment regimens that target all cell 

phenotypes. The goal of this study is to apply flow cytometry and flow sorting to breast cancer 

cell metabolism based on autofluorescence. This study characterizes the effect of the metabolic 

inhibitor cyanide on three autofluorescence channels. Additionally, the autofluorescence profiles 

of MDA-MB-231 triple negative breast cancer cells and SKBr3 HER2-positive breast cancer 

cells were measured using these flow cytometry channels. A heterogeneous mixture of these two 

cell lines was sorted into subpopulations enriched for each cell line based on autofluorescence 

flow cytometry. Sorting was validated with flow cytometry, brightfield microscopy, 

autofluorescence microscopy, and HER2 staining. Overall, this technique could be applied to 

tumor cells from patient tissue by separating subpopulations of cells, testing sensitivities to anti-

cancer treatments, and planning optimal treatment schemes for individual patients.  

Autofluorescence measurements using flow cytometry channels were characterized using 

a cyanide perturbation in MCF10A cells (Figure C.1). Previous studies using confocal 

microscopy have shown that electron transport chain inhibition with cyanide causes an increase 

in NAD(P)H intensity and a decrease in FAD intensity [53], and flow cytometry results show 

similar trends. Flow cytometry resolves a slight, consistent increase in the DAPI channel, which 

aligns with NAD(P)H fluorescence, and decrease in the Alexa Fluor 488 channel, which aligns 

with FAD fluorescence. However, flow cytometry exhibits a smaller magnitude of change 

compared with confocal microscopy results. These trends in the autofluorescence flow cytometry 

channels were also consistent after treatment with 5x and 10x higher doses of cyanide (data not 
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shown). This reflects a decrease in signal to noise for flow cytometry compared with high-

resolution microscopy, due to shorter dwell times and lower spatial resolutions. As an additional 

consideration, flow cytometers are designed for use with bright fluorescent dyes and exhibit 

decreased sensitivity for the low fluorescence intensity of cellular autofluorescence. 

Furthermore, MCF10A cells are naturally adherent and could react differently to cyanide in 

suspension compared with in monolayer. Previous studies have applied the Alexa Fluor 405 

channel to measure cell autofluorescence [139]. However, cyanide treatment causes no change in 

the Alexa Fluor 405 channel. These results indicate that the DAPI channel is more optimized for 

NAD(P)H measurements compared with the Alexa Fluor 405 channel. FSC measurements show 

no change after cyanide treatment, reflecting similar cell sizes and indicating that the changes in 

fluorescence intensities are not confounded with changes in cell size. These results characterize 

the three flow cytometry channels for cell autofluorescence measurements.  

Flow cytometry measures distinct autofluorescence intensities between the triple negative 

MDA-MB-231 cell line and the HER2-positive SKBr3 cell line (Figure C.2). The DAPI and 

Alexa Fluor 405 channels exhibit increased fluorescence intensity in SKBr3 cells compared to 

MDA-MB-231 cells. This reflects increased NAD(P)H intensity and matches published redox 

ratio results  from these cell lines using confocal microscopy [52]. Although the DAPI channel 

best aligns with the spectra properties of NAD(P)H, the 350nm laser is rare in flow cytometers 

and flow sorters, whereas the 405nm laser used in the Alexa Fluor 405 channel is common. The 

FSC measurements show no difference in cell size between the cell lines, which confirms that 

changes in NAD(P)H fluorescence intensity are not an artifact of cell size. Overall, the 

separation between MDA-MB-231 and SKBr3 cells in the Alexa Fluor 405 channel indicate that 

this channel could be used to sort these cell lines. 
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Flow sorting based on the Alexa Fluor 405 channel separates a heterogeneous mixture of 

breast cancer cells into subpopulations of HER2-positive SKBr3 cells and triple negative MDA-

MB-231 cells (Figure C.3). The FSC measurements indicate a slightly smaller cell size for the 

sorted MDA-MB-231 cells. This could reflect the effect of cell size on autofluorescence intensity 

and highlights the importance of comparing autofluorescence intensity across cells with similar 

sizes. These results lay the foundation for future applications to dissociate cells from tumor 

tissue and sort subpopulations with different metabolic phenotypes, receptor statuses, and 

treatment sensitivities. Furthermore, the isolation of treatment-resistant cells could enable 

additional characterization of these cell subpopulations to identify targets for drug development 

as well as tests for sensitivity to drugs and drug combinations that aim to eliminate these resistant 

cells.  

Brightfield microscopy, fluorescence microscopy, and HER2 staining provide additional 

validations for cell sorting. Cell morphologies of sorted cells grown for one week in culture align 

with morphologies of each pure cell line (Figure C.4) and are consistent with previous 

morphological studies of these cell lines grown on glass [141]. Autofluorescence 

characterization, particularly NAD(P)H fluorescence intensity, FAD fluorescence intensity, and 

redox ratio, of sorted subpopulations enriched for each cell type agrees with published confocal 

microscopy results from SKBr3 and MDA-MB-231 cell lines (Figure C.5) [52]. HER2 staining 

further validates the sorting of a heterogeneous mixture into subpopulations of each cell line 

(Figure C.6). Previous studies have shown that SKBr3 cells stained for HER2 expression exhibit 

positive membrane signal, whereas MDA-MB-231 cells exhibit minimal signal [142]. Flow 

cytometry and confocal microscopy of HER2Sense confirm increased HER2 expression in pure 

and sorted SKBr3 cells compared with pure and sorted MDA-MB-231 cells. Overall, these 
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microscopy and staining techniques confirm the separation of a heterogeneous mixture of breast 

cancer cell lines with distinct phenotypes into subpopulations enriched for each cell type based 

on autofluorescence flow sorting. 

Tumors can contain cells with different receptor statuses, metabolic profiles, and 

responses to treatments. Cancer patients often exhibit relapse after treatment, which could be 

attributed to subpopulations of cells that are resistant to treatment. Single-cell measurements that 

reflect treatment response would allow improved treatment regimens for cancer patients. This 

study applies flow cytometry and flow sorting to nonmalignant breast cells, triple negative breast 

cancer cells, and HER2-positive breast cancer cells. These results characterize three flow 

cytometry channels for cell autofluorescence and indicate that flow cytometry based on cellular 

autofluorescence distinguishes two breast cancer cell lines with different receptor expressions. 

Furthermore, flow sorting based on cell autofluorescence separates a heterogeneous mixture into 

subpopulations enriched for each cell line. Ultimately, this technique could analyze cell 

heterogeneity from tumor tissue by sorting cell subpopulations based on metabolic profile. This 

method could be applied to preclinical studies for drug discovery, testing experimental drugs, 

and optimizing drug combinations. Furthermore, this method could be applied clinically to tissue 

from cancer patients to develop individualized treatment strategies and improve patient 

outcomes.  
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