
DOMAIN-SPECIFIC MODELS, MODEL ANALYSIS, MODEL TRANSFORMATION

By

Tivadar Szemethy

Dissertation
Submitted to the Faculty of the

Graduate School of Vanderbilt University
in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

August, 2006

Nashville, Tennessee

Approved:

Professor Gabor Karsai

Professor Janos Sztipanovits

Professor Gautam Biswas

Professor John T. Koo

Professor Sherif Abdelwahed

ACKNOWLEDGEMENTS

Undertaking this research with ISIS has been a great learning experience. First and

foremost, I’d like to thank the ISIS community for giving all what it takes to earn a PhD:

motivation, support, the always necessary criticism, and most importantly for never stopping

to ask questions.

Of the ISIS community, I’d like to thank my advisor, Dr. Gabor Karsai. His insight and

dedication are unparalleled, so are his mentoring and guidance. He is able to unify science

and engineering in a way only a select few can.

I am also grateful to my committee members. Thank you, John and Sherif for always

answering my questions, and for always having time for me. Janos Sztipanovits and Gautam

Biswas also gave me all the help and support I could ask for. I could not have wished for a

better PhD committe.

I owe special thanks to Nag Mahadevan for the many inspiring conversations we had,

and for always asking the right question. I would also like to thank all my friends at ISIS I

had the opportunity to work with.

The NSF ITR on ”Foundations on Hybrid and Embedded Software Systems” has sup-

ported, in part, the activities described in this paper.

i

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . i

LIST OF FIGURES . v

LIST OF ABBREVIATIONS . viii

Chapter

I. INTRODUCTION . 1

Platform Modeling . 6
Model Transformations . 6
Outline . 8

II. BACKGROUND: FORMAL VERIFICATION 9

Modeling . 10
Modeling approaches . 11
Kripke structures and first-order logic representations 11
Composing Kripke structures . 13
Fairness . 15
Discrete untimed models . 15
Discrete models with sparse (quantized) time 16
Timed Automata mapped onto clock regions 16
Symbolic state space representation in finite-state systems 18
Tool Example: The UPPAAL Model Checker 20

Specification . 22
Computational Tree Logic CTL* . 22
CTL and LTL . 24

Verification . 26
Theorem Proving . 26
Model Checking for finite-state systems 27

Conclusions . 31
Modeling . 31
Specification . 32
Verification and Model Checking . 32

III. BACKGROUND: MODEL TRANSFORMATIONS 34

Basic concepts . 34
Terminology . 35
Model Transformation Approaches 37
Properties of Transformations . 39

ii

The Unified Modeling Language with OCL 40
UML Class Diagrams . 41
The OCL language . 42
Conclusions . 46

Graph Transformations . 46
The Generic Modeling Environment (GME) 51

The GME Metamodeling Environment 52
The GReAT Graph Rewriting and Transformation System 53

Graph Transformation Language . 55

IV. IMPLICIT PLATFORM MODELING: CASE STUDY 59

The Platform concept . 60
Design-time model analysis . 62
The SMOLES design and synthesis environment in GME 63

The SMOLES Language . 63
The DFK platform . 66
Implementing SMOLES over DFK 68
Modeling and synthesis environment 70

Mapping SMOLES models onto UPPAAL Timed Automata 71
Modeling component-kernel interaction 74
Component TA models . 76
Analysis model for the Kernel . 79

Implementing the transformation with GReAT 81
Metamodeling UPPAAL . 82
Transformation setup and phases . 83
Flattening the assembly hierarchy 85
Creating the TA templates . 88

Verification via model checking Timed Automata 90
Conclusions . 92

V. EXPLICIT PLATFORM MODELING . 95

The DSML→Platform→Analysis transformation chain 95
The DSML → Platform mapping 96
The Platform→Analysis mapping 98

Platform metamodeling for synthesis . 100
Example: The SMOLES → DFK transformation 103

The Platform → Analysis transformation 106
The Platform Modeling Language (PML) 109

Metamodels, Crosslinks and the Kernel skeleton 110
Component Skeletons . 111
Mappings . 113
PML block hierarchy . 115
Mappings semantics . 117
Execution semantics for actions . 118
A detailed example: mapping triggers for IF 118

iii

Comparing the DFK → UPPAAL mapping in PML and GReAT . . 122
Implementing PML over GReAT . 123

Extending the transformation configuration 125
Generating rules for component skeleton instantiation 126
Implementing PML Mappings in GReAT 127
The compiler transformation . 130

Conclusions . 136

VI. RESULTS AND FUTURE WORK . 138

Platform Modeling . 138
Explicit platform models . 139
Graph Transformation . 140

Future Work . 141
Platform Modeling . 141
Graph Transformation . 142

Appendix

A. THE GME MODELING FRAMEWORK FOR PML 144

The modeling language (metamodel) . 144
UML fundamentals . 144
PML concepts . 145
Pattern hierarchy . 146
Pattern basics . 146

Auxiliary software in the PML framework 147
The ImportMeta tool . 147
Decorator . 147

B. DETAILED PML EXAMPLES FROM THE DFK → UPPAAL MAPPING 148

Kernel Skeleton . 148
Component skeletons . 149
Filter and action patterns . 151

C. DETAILED EXAMPLES FOR THE PML → GREAT TRANSFORMATION 153

Component Skeleton instantiation examples 153
Examples for the SelectAction rule-block 157

REFERENCES . 160

iv

LIST OF FIGURES

Figure Page

1. Example of a Kripke structure . 12

2. Truth table, full and reduced decision tree for a boolean function 18

3. OBDDs for function f = (x1∧y1)∨ (x2∧y2)∨ (x3∧y3) with different ordering 20

4. UPPAAL model for the mutex example 21

5. Basic CTL Operators . 25

6. UML Class representation and relations 43

7. Graph Concepts: L is a subgraph of G and has an occurrence in H 47

8. Illustration of a graph transform step G⇒ H 49

9. Four-layer modeling architecture with GME 53

10. Example GReAT rule . 56

11. Component-based system implemented over a platform 60

12. Sample SMOLES systems in GME . 65

13. Parts of the SMOLES metamodel in GME 71

14. TA Templates for platform modeling . 76

15. SMOLES model and Timed Automata for component Processing 78

16. Kernel TA model for the system in Fig 12(a) 81

17. The UPPAAL metamodel in GME . 83

18. Top-level blocks of the SMOLES → UPPAAL transformation 85

19. Rule blocks flattening the SMOLES hierarchy 87

20. Rule blocks creating UPPAAL TA . 88

21. Creating the Kernel TA . 90

v

22. Advantages of having an explicit platform abstraction in MIC 98

23. The DFK metamodel in the case study . 102

24. Illustrations for the SMOLES → DFK transformation: Queue and Timer . 103

25. SMOLES → DFK trigger mapping . 105

26. Creating an analysis model fragment in GReAT 107

27. Visualization of the ComponentModel concept 112

28. PML Block hierarchy to map Nodes and Methods 116

29. The simplified IF metamodel . 118

30. Trigger condition (a ∨ b ∨ c) ∧ d in DFK 119

31. Trigger expression ((a ∨ b) ∨ c) ∧ d in IF 120

32. Progress of the trigger mapping process 121

33. Block mapping a Port trigger source (steps 2-3)) 121

34. Block mapping an upstream trigger onto an Expr (steps 5-6) 122

35. Mapping a subsequent trigger argument onto an ExprR (steps 7-8) 122

36. High-level overview of the PML → GReAT transformation 123

37. Configuration of a generated GReAT transformation 125

38. Schematics of the rules implementing component skeleton instantiation . . 126

39. Schematics of PML Mappings implementation 128

40. Mapping a zero-cardinality pattern . 129

41. Major phases of the compiler transformation 131

42. AssociateClasses rule-block from the compiler 132

43. MapCrosslinks rule-block in the compiler 133

44. Rule-block Components with sub-block InputSkeleton 134

45. Rule-block BuildRules . 135

46. Rule-block CopyPattern within MapMappings 136

vi

47. PML concepts in the metamodel . 145

48. Hierachy of patterns in the PML metamodel 145

49. Patterns metamodel for PML . 146

50. The DFK Kernel Skeleton for UPPAAL in GME 148

51. Component Skeleton for a Node in PML 149

52. Component Skeleton part for a PID constant in PML 151

53. Dataflow→variable PML mapping block 151

54. Component skeleton instantiation overview 154

55. Generated rule-blocks for the PID skeleton 156

56. Example for GReAT rules generated for PML mapping patterns 157

57. Details of GReAT Test cases and rules . 158

vii

LIST OF ABBREVIATIONS

(G/M)T (Graph/Model) Transformation

(L/R)HS (Left/Right) Hand Side (of an expression/rule)

(O)BDD (Ordered) Binary Decision Diagram [17]

API Application Program Interface

CBS Computer-Based System

CSP Communicating Sequential Processes

DFK DataFlow Kernel [51]

FSM Finite State Machine

GME Generic Modeling Environment [37]

GReAT Graph Rewriting And Transformations [30]

KS Kripke structure(s) [23]

MBD Model-Based Design

MD(A/D) Model Driven (Architecture/Design) [1]

MIC Model Integrated Computing [54]

OCL Object Constraint Language [57]

OS Operating System

QVT Query / View / Transformation [43]

SMOLES Small MOdeling Language for Embedded Systems [53]

TA Timed Automata [11]

UDM Universal Data Model [14]

UML Unified Modeling Language [2]

viii

CHAPTER I

INTRODUCTION

Modeling is a traditional engineering practice for mitigating complexity. Models are

mathematically precise abstractions of the system, focusing on relevant aspects. According

to the basic assumption, creating and analyzing abstractions is easier than building and

studying the systems themselves. Design models describe the abstraction of the system’s

structure, whereas analysis models capture the abstraction of its behavior. (The fact that

those are both abstractions is very important.)

In order to better understand the role of modeling, let us examine the process of creating

engineering artifacts in general. The first step is specification, consisting of two parts:

Requirements specification: what is expected of the system.

Design specification: how the system is going to be constructed or operate.

During the first steps, these specifications are abstract and not necessarily precise, as

they leave many details unspecified. They capture high-level aspects, and give a sort of

“executive summary” about what and how the system is supposed to do. At this level,

descriptions are usually given in human language.

Design models are subsequent refinements of the design specification: they assign precise

semantics to their building blocks, and enrich the level of detail. Analysis models form the

counterparts of design models. At each level of abstraction, they capture the behavior of the

structures described by the design model.

Using a blunt example, it is possible to construct a hammer by its design model (physical

dimensions and material specifications). On the other hand, for determining the impact the

hammer can make (to verify against requirements specifications), we either have to build

and test it by experiments, or use an analysis model based on Newtonian physics. Although

1

the “build and test” method might be feasible for hammers, it is less and less applicable for

complex engineering systems. Thus, analysis models become more and more important.

The analysis model is derived from a precise design model. As we can see by the example

of the hammer, deriving the analysis model takes a very different knowledge (physics) from

what is required for implementing (building) the design (craftmanship). In most cases, gener-

alized analysis models can still be provided, automatically customizable for a specific design

(i.e. by substituting in values from the design model). Algorithms for checking these cus-

tomized analysis models can also be automated. Thus, the design can be validated (against

precisely captured requirements) with a minimal knowledge about the analysis model (e.g.

before commencing to construct the hammer, the craftsman can validate the design by com-

puting a basic formula on values from the design model).

For computer-based systems (CBS) the end product is software (source code and other ar-

tifacts, such as configuration or documentation), or a hardware-software combination. Source

code is very hard to analyze, and testing the end system is limited by complexity. Thus,

methodologies providing design-time analysis, such as model-based design bring significant

improvements over traditional “build and test” methodologies.

A leading approach of model-based design is Model-Driven Architecture (MDA [1]), pro-

moted by the Object Modeling Group (OMG). MDA provides a broad set of guidelines and

technologies for specification, design and implementation.

In MDA, system functionality is defined though a platform-independent model (PIM),

given in an appropriate specification language. Platforms in MDA are specific technolo-

gies implementing abstract concepts used by the design. For example, Oracle is a specific

database technology implementing the concept of relational database.

A given PIM is translated into platform–specific model(s) (PSMs) for the actual imple-

mentation. MDA defines an architecture (modeling standards, guidelines, tools) for structur-

ing specifications expressed as models. (Here, “architecture” does not refer to the architec-

ture of the actual design, but rather to the architecture of enabling stardards, representations

2

and technologies that form the basis of MDA). The PIM→PSM transformation is usually

automated by tools such as code generators. The MDA architecture defines and relates mul-

tiple standards, such as the Unified Modeling Language (UML [2]), the Meta-Object Facility

(MOF [3]), the XML Metadata interchange (XMI [4]).

MDA provides the architecture for using precise models during design and implementa-

tion. Thus, analysis models can be derived, and design-time analysis performed.

Model Integrated Computing (MIC [54]) is also a model-based design approach for CBS

(and for embedded systems in particular). In MIC, similar to MDA, a model is more than

a mere “blueprint” of the system: MIC elevates the scope and usage of models to form the

integrating “backbone” of the development process. Visual, multi-aspect models capture

the information relevant to the system being developed. Models explicitly represent the

designer’s understanding of the system at multiple levels (functional, system architecture

and system environment).

Traditionally in CBS design, designers use abstractions of the computer’s resources, such

as memory address→variable or machine instructions→ assembly language→C language.

The solution to a given problem is specified in terms of these abstractions. These are ab-

stractions of the solution space, and it takes a computer expert (programmer) to understand

each individual problem and code a solution for them. MDA facilitates a high level of au-

tomation for this coding task, but the solution is still specified in a (high-level) abstraction

of the solution space. A MDA “user” is a programmer aided by high-level, sophisticated

tools.

MIC promotes the use of domain-specific modeling languages (DSMLs), which provide

abstractions of the problem space [48]. In MIC, the problem space is captured by meta-

modeling : a visual modeling language specific to the problem’s domain is defined using

meta-level tools. The metamodeler creates the DSML, and also provides model interpreters

which map a model given in the particular DSML onto structures in the solution space (e.g.

code generators mapping interaction diagrams onto function calls).

3

Also, MIC facilitates the automatic synthesis of visual, user-friendly model editors based

on the presentation rules defined in metamodels. Domain experts, such as control systems

engineers can comfortably work in the environment built around DSMLs, and compose design

models using domain-specific elements like sensors, actuators, PID controllers etc.

In its implementation, MIC leverages on MDA and uses core MDA approaches and tech-

nologies. Instead of PIMs, MIC incorporate designer’s knowledge into domain-specific (de-

sign) models (DSMs), and uses automated synthesis tools on those to analyze them and

generate the implementation for the system. Proving the correctness of the generator tools

ensures the correctness of a family applications generated — assuming that the abstraction

captured in the DSML is correct in the first place.

MIC promises better designs by allowing the designer (domain expert) to focus on rele-

vant issues by providing domain-specific modeling (design) environments tailored carefully

for the particular area. Advanced modeling tools, such as metamodel-configurable visual

editors, constraint checkers etc. can significantly improve the (syntactical) correctness of the

resulting designs. As each individual system has its own specific set of requirements, these

requirements cannot be included with metamodel “correctness” rules and thus have to be

verified for each implementation.

Validating a system against its requirements is a challenging task. For complex CBS (and

especially for embedded systems interacting with the physical environment), the traditional

validation method of testing is generally prohibitively costly (if possible at all) due to the

astronomical number of test cases to be verified. On the other hand, many of these systems

operates in a high-risk environment, and failure has dire (often unacceptable) consequences.

Thus, design-time verification becomes important. Design-time verification methods,

both formal verification and simulation rely on mathematically precise analysis models,

with well-defined semantics. High-level design models usually adhere to a formal Model of

Computation (MoC [38]). MoC precisely defines components and their interactions within

a model. Since these languages are formal, it is usually possible to perform some level of

4

formal verification (mathematical analysis) on the design. Such examples include, analyz-

ing application-level event chains in event-triggered systems or checking token emission /

consumption balance at the actor level in a dataflow language.

These high-level languages, though formal, still abstract away many “implementation de-

tails”. Typically, they assume concurrent components / threads executing “truly” in parallel.

They might assume zero-delay communication or instantaneous events at certain parts of the

system. They also might neglect certain inherent resource requirements, such as OS over-

head or scheduling policy. These assumptions are made in order to reduce design complexity,

and to let the designer focus on the “relevant” aspects. This is perfectly understandable as

domain experts should not be burdened with implementation-level details unless those have

system-wide consequences.

For verification, these details must not be ignored. Quite often, these properties get

overlooked during the design and lead to hard-to-identify problems such as priority inversion

or internal OS resource starvation. Thus, these properties have to be accurately captured in

the analysis model.

A “true” analysis model should model all details of the system. Hence, the behavior

predicted by the analysis model is equivalent to the system’s “true” (physical) behavior.

Unfortunately verifying or simulating this analysis model becomes equivalent to testing the

implementation (end system), which is not feasible. For example, embedded systems consist

of software, hardware and often mechanical parts (mechatronics). Analyzing the behavior of

a system of this kind requires the analysis of a hybrid system (a mathematical abstraction

exhibiting both continuous and discrete behavior). In general, hybrid systems analysis is an

NP-complete problem, and the solution is known only for certain subsets of hybrid systems.

Thus, providing design-time analysis models, at the right level of abstraction is a crucial

problem.

5

Platform Modeling

The solution proposed in this work is platform modeling : modeling the implementation

platform, and the design implemented by this platform, at an appropriate level of abstrac-

tion. This level should be high enough to make formal verification or simulation feasible,

and it should be low enough to capture key properties of the platform. In this work, the

word “platform” is used in this sense: it is defined as the collection of hardware, software or

middleware services / resources the system is implemented over and by. The platform is al-

ways the appropriate layer below the DSML used for the design, and its position in the layer

hierarchy is relative to the DSML. For an applications programmer, it can be the collection

of OS services and the libc; for an Internet service designer it can be the TCP/IP protocol;

for a signal processing engineer it can be the dataflow architecture used to implement the

design. Platform-based design [47] uses the platform concept in a very similar role.

The platform-level analysis model captures

1. how the MoC is implemented by platform-level structures

2. the particular configuration / composition of these platform-level structures forming

the implementation of the particular design in question

An explicit platform model is a concise representation of mapping platform-level struc-

tures onto analysis models, and the composition / configuration of these structures to model

particular designs.

It needs to be emphasized that the platform-level model is still an abstraction. The

validation results obtained by its analysis are only as relevant to the implementation as the

platform model is relevant to the platform implementation.

Model Transformations

By its very nature, MDA/MIC relies on model transformations, such as model-to-code

transformations to generate source code or model-to-model transformations forming steps

6

in the process of system synthesis. Model transformations is a very active research area, as

developers are seeking higher-level methods to cope with the overwhelming complexity of

today’s CBS.

Deriving analysis models from design models and platform descriptions is also a model

transformation step. Hence, the correctness of the transformation is of particular concern.

The validity of the analysis results obviously depends on the correctness of the way the

analysis model is obtained.

Graph transformation (GT [12]) is promising model transformation approach, since an-

notated graphs provide a natural abstraction format for many modeling languages. It is also

a relatively mature, well-researched and understood area of discrete mathematics, as active

research in this area is performed since the ’70s. Theoretical results on proving key prop-

erties (e.g. termination and confluence) of graph transformation systems promise a higher

level of confidence in the correctness of transformation specifications.

The goal of this research is to develop a model transformation framework to

automatically derive analysis models using explicit platform models. Explicit

platform models enable the design-time verification of implementations over

different platforms.

Platform-level analysis models provide important details about the implementation of

the design, and enable their verification. The designer is free to choose the appropriate

level of abstraction when providing the platform models. This way, fine control is obtained

over the level of details represented in the analysis model. Due to the state of the art in

formal verification (scalability issues, e.g. state space explosion), this level of control over

the complexity of the analysis model is very much necessary, as it makes the difference in

the feasibility of a verification. As a consequence, properties which were subject to designer

intuition or “robust design” become formally verifiable.

7

Outline

The second chapter reviews the state of the art in formal verification. Dominant model-

ing approaches suitable for verification are enumerated along with their mathematical back-

ground. The problem of state space explosion is explained and the most popular method

for representing large state spaces is discussed (OBDDs). Formal requirement specifications

for reactive systems are also discussed (temporal logic), as well as a few important model

checking algorithms

The third chapter gives an overview of model transformations. As this are is less mature

than formal verification, the chapter starts with the discussion of basic concepts and ter-

minology, followed by an introduction to model transformation approaches. Relevant parts

of the UML standard are discussed next. These are central to the modeling approach for

the rest of the dissertation. A summary of graph transformations is also presented, and

the GME modeling environment and the GReAT graph transformation engine are detailed.

These are representative examples for metamodeling and model transformation frameworks

used in MDA, and the examples of this work will be prepared in GME / GReAT.

The fourth chapter covers a motivational case study in (implicit) platform modeling: the

basic concepts are introduced and the process is demonstrated on a non-trivial example.

In chapter V. the approach of explicit platform modeling is discussed in detail. The DSML

→ Platform → Analysis transformation chain is reviewed. Platform Modeling Language

(PML) a new language for explicit platform models is introduced. An implementation for

PML is also discussed. Finally, the case study of chapter IV. is revisited, and the advantages

of explicit platform modeling are demonstrated.

8

CHAPTER II

BACKGROUND: FORMAL VERIFICATION

In order to assign semantics to design models for requirement verification, first we need

to know what can be verified, and how the model transformation could be done. To this end,

the following two chapters provide overviews of the state-of-the-art in formal verification and

model transformation.

In our context, formal verification is the act of proving or disproving the correctness of

a system with respect to a certain formal specification or property, using formal methods 1,

where formal means “mathematically precise”.

This chapter focuses on formal verification, where the traditional order is modeling →
specification (formalizing requirements in terms of the model / language)→verification. In

design, the first step is specification (requirements and architecture). Subsequently, design

models refine the basic architecture specification. When discussing formal verification in this

chapter, it is assumed that this basic specification already exists.“Modeling” in this context

means formalizing the design model in a language suitable for verification.

Formal verification of an (embedded) system consists of three major tasks:

Modeling Provide an abstract representation of the design, and establish our understanding

about the system. The model should faithfully represent the decomposition, known

properties, behavior, relations to its environment etc. of the design. Models are also

used to reduce complexity and aid human understanding. Therefore the above goals

are usually achieved by using hierarchical, multi-aspect models. Multi-aspect models

decompose the system into different ”views” (aspects). An aspect groups a subset of

associated model elements.

1this definition is due to Wikipedia, http://en.wikipedia.org/wiki/Formal verification

9

Specification Formalize the desirable properties of the system. The specification estab-

lishes the goals and requirements the design should satisfy. Requirements are specified

in each aspect of the design: physical, functional, temporal etc., and each aspect has

its own way of formally specifying those. Safety properties are usually formulated as

”bounds” on the system’s state trajectory. Thus, state reachability analysis is impor-

tant in verifying safety properties, formulated either using sequences of state changes

or state sets (regions) reachable through trajectories.

Verification Check if the system satisfies the specification: Depending on the modeling

and specification, many methods can be employed for verification. All of them have

to cope with representation of the system’s states, and group them into subsets which

either satisfy or do not satisfy the specifications. The methods we are going to examine

are formal, i.e. based on mathematical foundations.

Modeling

During modeling, we provide an abstract, simplified view of the system on some level

of abstraction. In this context, a model is a mathematical abstraction, which explains

and/or predicts the behavior of a physical artifact (in our context, this is often a computer

executing the software being modeled). A design model is a formal specification of the

function, structure, and/or behavior of a system. Formal (vs. informal) means that every

modeling element has a well-defined, unambiguous meaning associated with it.

It is important to observe that not all models are suitable for formal verification. The

discussed methods have strong restrictions on their inputs, and therefore the verification

model is usually an aspect of the comprehensive design model. This aspect or view is derived

through model transformation.

10

Modeling approaches

In this section, the modeling approaches suitable for formal verification are discussed —

it is a different problem to transform a design model represented in a different formalism

into one of these.

For concurrent, reactive systems, the following modeling approaches are used:

discrete untimed the system has a finite number of discrete states and time is not modeled.

discrete with sparse (quantized) time representation the system has a finite number

of discrete states and time is divided into slices indexed by natural numbers, i.e. clocks

can be represented by integer variables.

discrete with dense time (Timed Automata) the system has a finite number of discrete

states extended with a set of real-valued variables modeling clocks. Time is represented

as a continuous (”dense”) quantity, i.e. there are (infinite) time points between any

two (different) points in time.

hybrid systems have both discrete and continuous variables. Time is continuous and most

models in this area use the subclass linear hybrid systems.

In the next secions, an introduction of the mathematical foundations of the modeling

approaches discussed will be given, followed by a short introduction to each.

Kripke structures and first-order logic representations

Embedded systems interact with their environment frequently, change their state based

on these interactions (or internal events), and typically do not terminate. Therefore, they

cannot be sufficiently modeled only by their input-output behavior. Typically, we do want

to model the system’s (internal) state and its evolution over time, and this timespan is often

unbounded.

11

4 2

3 p,q

q

p
1

• S = {1, 2, 3, 4}
• S0 = {1}
• R = {(1, 2), (2, 3), (3, 4), (4, 2), (4, 3)}
• AP = {p, q,¬p,¬q}

• L =

{
(1, {p,¬q}), (2, {¬p, q}),
(3, {p, q}), (4, {¬p,¬q})

}

Figure 1: Example of a Kripke structure

Such systems are modeled by Kripke structures (KS) [23], which describe a class of

finite-state automata extended with first-order logic propositions. A state of the automaton

is defined by a unique subset of these logic propositions. More precisely a state is a valuation

which associates each system variable with a value within its domain. The state transition

relation then can be defined by (present states, next states) pairs, denoted as R(s, s′). Fig-

ure 1 demonstrates a simple Kripke structure. As a further property, since the number

of states is finite, a KS also constitutes a finite transition system, and can be used in the

analysis of hybrid systems.

Formally: Let AP be a set of atomic propositions defining possible system conditions. A

Kripke structure M over AP is a four tuple M = (S, S0, R, L) where

1. S is a finite set of states.

2. S0 ⊆ S is the set of initial states.

3. R ⊆ S × S is a total transition relation

4. L : S → 2AP is a function that labels each state with the set of atomic propositions

which are true in that state.

AP , the global set of atomic propositions is usually understood from the context — if

not, it may be included with the definition of the KS e.g. M = (S, S0, R, L, AP).

A path in structure M is defined as an infinite sequence of states π = s0s1s2 . . . such that

s0 = s and R(si, si+1) holds for all i ≥ 0.

12

A state s is reachable if there is a path from the initial states to s.

Reactive systems are sometimes described by a first order formula-pair (S0, R), where

S0 describes the initial states and R describes the translation relation in the following way:

A valuation for V = {v1, . . . , vn} is a function which associates each system variable with

a value in its domain D. For example, if V is defined as V = {v1, v2, v3} and the domain

is N , one valuation is 〈v1 ← 5, v2 ← 6, v3 ← 9〉, then the subset of propositions describing

this particular state is (v1 = 5) ∧ (v2 = 6) ∧ (v3 = 9). In this manner a formula can be

constructed for S0 which evaluates True iff the system variables evaluate according to the

initial conditions.

For transitions, we introduce the formula (V, V ′) to represent (current state, next state)

pairs. R evaluates True for every (V, V ′) pairs representing a valid transition in the system.

The above two representations for reactive systems, a KS or a (S0,R) pair are equivalent,

and can be derived from each other as shown in [23].

Composing Kripke structures

Complex Kripke structures are usually presented by a structured language, where the

global system is given as a composition of smaller modules. In this case AP is usually global

and models are given as M = (S, S0, R, L).

In synchronous parallel composition, all FSMs execute a transition at the same time (akin

to being driven by the same hardware clock signal). At each clock pulse every component

performs a transition. Thus components evolve in parallel.

Formally, the synchronous composition of two Kripke structures is defined as follows:

let K1 = (S1, S1
0 , R

1, L1, AP 1) and K2 = (S2, S2
0 , R

2, L2, AP 2) represent two Kripke struc-

tures. Their synchronous composition K = (S, S0, R, L, AP) is defined as:

• S = S1 × S2

• S0 = {(s1, s2) : s1 ∈ S1
0 and s2 ∈ S2

0}

13

• R = {((s1
i , s

2
i), (s

1
i+1, s

2
i+1)) : (s1

i , s
1
i+1) ∈ R1 and (s2

i , s
2
i+1) ∈ R2}

• AP = AP 1 ∪ AP 2

• L = {((s1, s2), a) : (s1, a) ∈ L1 or (s2, a) ∈ L2}

In asynchronous composition, the member automata’s transitions are independent of each

other: the system evolves by interleaving the evolution of its components. At each execution

cycle one component is selected and performs a transition. The interleaving semantics are

a simplification for parallel execution: since transitions can follow each other arbitrarily

rapidly, parallel execution can be assumed.

Formally, the asynchronous composition of two Kripke structures is defined as follows:

let K1 = (S1, S1
0 , R

1, L1, AP 1) and K2 = (S2, S2
0 , R

2, L2, AP 2) two Kripke structures. Their

asynchronous composition K = (S, S0, R, L, AP) is defined as:

• S = S1 × S2

• S0 = {(s1, s2) : s1 ∈ S1
0 and s2 ∈ S2

0}

• R =

((s1
i , s

2
i), (s

1
i+1, s

2
i+1)) :

(s1
i , s

1
i+1) ∈ R1 ∧ s2

i = s2
i+1

or

s1
i = s1

i+1 ∧ (s2
i , s

2
i+1) ∈ R2

• AP = AP 1 ∪ AP 2

• L = {((s1, s2), a) : (s1, a) ∈ L1 or (s2, a) ∈ L2}

This composition results in a larger total state space, since the full cross product of

the automata’s states need to be considered in the global automaton at each step, while

in the synchronous case the state set for the nth transition is the union of each individual

automata’s states for their nth transition.

14

Fairness

Asynchronously composed models are usually augmented by fairness constraints to pre-

vent situations in which only one automaton executes transitions while the others wait

forever. These conditions can enforce a fair execution environment by specifying predi-

cates which have to evaluate infinitely often during the infinite execution of the automaton.

The most common example is the running fairness condition: the automata has to execute

transitions infinitely often. In other words, the running condition must be true infinitely

often.

Formally, a fair Kripke structure is a 4-tuple M = (S,R, L, F) where F ⊆ 2S, F =

{P1, . . . , Pk} is a set of fairness constraints (also known as generalized Büchi acceptance

conditions).

If π = s0, s1, . . . is a path in M , we define inf(π) = {s|s = si for infinitely many i}. Then

π is fair iff for every Pj ∈ F , inf(π) ∩ Pj 6= ∅.

Discrete untimed models

These models are explicit finite state machine specifications, where the system variables

are interpreted over a finite domain.

Discrete untimed models can efficiently represent hardware designs and communications

protocols. A complex design contains several FSMs, and the total state space can be repre-

sented by the parallel composition of these FSMs.

With asynchronous composition, the language has to provide a synchronization mecha-

nism. For this, all languages studied have shared (global) variables, and some offer CSP-style

(rendezvous channel) synchronization primitives as well.

The state space of the composed global automaton is still finite, but often huge, especially

if asynchronous composition is used. As a consequence, exhaustive state-space exploration

15

is (theoretically) possible, and the model checking (state space search) algorithms are guar-

anteed to finish. The practical size of the system is limited by the number of states, and

effective state space representation has become a major problem in this area.

Discrete models with sparse (quantized) time

A logical extension of the previous modeling language is to associate the state transitions

with unform delays in real time as computer hardware works on uniformly timed clock pulses.

There are two possible approaches here, the first one assumes that as in computer hard-

ware, every transition happens on a clock tick. In this manner, we can describe real-time

behaviors, and we can create models that states ”it takes n time units to reach state A from

startup”. This approach is taken with the real-time extensions of the NuSMV [8] language.

The other approach, taken by the simply timed systems [39], extends Kripke structures

into Timed Kripke structures, where transitions carry durations, which can be arbitrary

natural numbers (i.e. even zero, which is not possible with the previous approach).

Time representation is very simple in these systems, but even this simple introduction of

time makes composition difficult [33], unless all the participating automata are synchronized

by a global clock.

It is worth observing here, that these models can have a global counter representing time

units only if the system is periodic, or if we are interested in the system’s behavior up to

a limited amount of time, since all variables of the system have to be finite, including this

global clock.

Timed Automata mapped onto clock regions

Finite-state models are useful for verifying a large class of systems, especially — as we’ve

seen — hardware and other systems where transitions are governed by clock ticks, and time

is represented as a discrete counter.

16

In order to model real-time systems more faithfully, representation of continuous time

must be supported. One such extension of the FSM is the Timed Automata [11] formalism,

where the FSM is extended with real-valued clock variables (with certain restrictions on

them). These restrictions are:

• Clock constraints may contain only the ≤ and < operators and only against (bounded)

nonnegative rational numbers

• The only two operations allowed on clocks are read, and reset to zero

As Alur and Dill have shown in their fundamental paper cited above, the infinite state

space of the Timed Automata (TA) can mapped onto a FSM using the region automaton

whose states correspond to clock value regions in the TA.

Parallel composition is naturally asynchronous for these systems, as transitions can hap-

pen with arbitrary density in real time.

The number of clock regions in the resulting region automata is bounded by

|X|! · 2|X| · ∏

x∈X

(2cx + 2)

where X is the set of clock variables, and cx is the largest constant clock x is compared to.

In order to compose the region automaton, these clock regions have to be combined with the

discrete states of the original system.The system’s size grows exponentially with the number

of clocks, so efficient state space representation is a major problem here as well.

An extension of the above formalism is the work of Fersman, Peterson and Wang Yi

in [24] in which they show that the set of allowed clock operations can be extended with

subtraction of constants without losing the ability to map the automaton onto a region

automaton. In certain key areas such as schedulability analysis, this significantly enhances

the usefulness of the timed automata [31].

17

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x2

x3

1

x1

0

x3x3x3 x3

0 1

x2 x2

x1

Figure 2: Truth table, full and reduced decision tree for a boolean function

Symbolic state space representation in finite-state systems

As we had seen earlier, overcoming state space explosion is a problem in the representation

and analysis of system models.

Kripke structures over the finite domain D can be encoded as logical functions: first we

create an encoding φ : {0, 1}m → D to represent D with a set of binary vectors of length

m. Then, a state can be represented by a binary function f(x1, . . . , xm) which evaluates to

1 if the given state’s encoding is given, and the set of states is simply the conjunction of the

corresponding functions. A single transition is a binary function of f(x1, . . . , xm, x′1, . . . , x
′
m)

accepting (present state, next state) pairs, and the transition relation R is the conjunction

of all transition functions.

The labeling function L of the Kripke structure can be represented as well: we encode

each predicate as a set of states where it holds.

Here, the crucial point is that how compactly and efficiently binary functions can be

represented. Truth tables have exponential storage (and computation) requirements with

the number of variables, so they quickly become inefficient. Conjunctive and disjunctive

normal form representations are not much better, since they are closely related to truth

tables.

Ordered Binary Decision Diagrams (OBDDs) [17] are a canonical representation of boolean

formulas, effective both in space and operations for a large class of functions and have been

successfully used in the context of modeling and verification.

18

OBDDs were first used for representing large FSM state spaces by McMillan in 1987 [19],

and this lead to the development of the SMV tool [40]. Since then, OBDDs and their various

extensions have been in mainstream use in practically every area of model checking : in timed

and untimed systems, probabilistic and hybrid models using various state and transition

representation schemes. Model checking, as it will be discussed later in this chapter, is an

automated approach for property verification for models.

OBDDs are directed acyclic graphs with a root node, internal nodes and exactly two

terminal nodes (representing 0 and 1). This structure is also known as binary decision tree.

Each nonterminal node is labeled with a variable of the function, and has two outgoing edges

(for 0 and 1, respectively). Evaluation starts from the root node, and one of the edges is

taken according to the valuation of the associated variable. The evaluation finishes when

a terminal node is reached, and the resulting value is the value of the terminal node. This

tree is usually constructed by drawing the full binary decision tree for the function and

performing OBDD reduce operations on it to decrease the number of nonterminal nodes.

Figure 2 shows a simple boolean function with it’s full and reduced decision tree (dotted

edges denote 0 valuation and solid ones stand for 1).

OBDDs are ordered because the order of variables (the sequence they are encountered

starting from the root) is important regarding their size, as illustrated by Figure 3.

Finding the optimal ordering is an NP-complete problem [15], so implementations resort

to heuristics to improve efficiency, or use simple dynamic reordering rules which iteratively

reduce the number of nodes for certain graph configurations by changing the variable or-

dering while an operation is being performed on the graph [46]. One such method is sifting

which swaps the order of adjacent variables. Such local reordering techniques usually lead

to sub-optimal ordering. For better gains (at the cost of more complex algorithms) some

implementations offer global reordering using global heuristics resulting in a completely new

variable ordering [41].

19

x1

y1

y2

y3

0 1

x2

x3

x1

x2 x2

x3 x3 x3 x3

y1 y1 y1 y1

y3

10

y2 y2

Figure 3: OBDDs for function f = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3) with different ordering

There are known functions where OBDD representation results in a very large tree (e.g

binary multiplication-like and XOR-like functions), but for the average case OBDDs yield a

significant reduction in representation cost.

It has also been shown that all 16 two-argument logical operators can be efficiently

implemented over OBDDs. The complexity is linear in the product of the argument graphs’

sizes [18].

A straightforward extension of the OBDD idea is the use of MTBDDs (multi-terminal

binary decision diagrams) [21] which are used to represent functions whose arguments are

boolean but their domain is integer. The BDD idea can also be generalized into using any

discrete-domain variables instead of booleans.

Tool Example: The UPPAAL Model Checker

A good, comprehensive modeling framework based on the TA formalism can be found in

the UPPAAL [34] [35] [5] toolset. UPPAAL supports the visual description of TA as a net-

work of FSM processes. An FSM consists of states with invariants and execution attributes

(urgent or comitted) and transitions with guards, synchronization labels and assignments.

An urgent state is left immediately after any outgoing transition guard becomes true (a

20

idle entering

critical

exiting clk < 10

clk > 5
sema:=1-sema

sema == me
clk:=0

(a) Timed Automaton for Proc

int[0,1] semaphore := 0;

(b) Global Declarations

clock clk;

(c) Local Declarations for
Proc

Proc1 :=Proc(semaphore , 0);

Proc2 :=Proc(semaphore , 1);

(d) Process assignments

system Proc1 ,Proc2;

(e) System definition

Figure 4: UPPAAL model for the mutex example

transition is taken as soon as possible). No time can be spent in a comitted state: once

entered, it must be left immediately. Committed states can be used to ensure atomicity by

preventing interleaving.

Variables can be global or local, and a variable can be either a clock or a bounded integer.

Arrays of integer variables are also implemented. Supported operations on clock variables

are reset (to zero) or comparison to an integer constant. For synchronization, rendezvous

channels are provided.

Figure 4 demonstrates the mutual exclusion process in UPPAAL’s visual Timed Au-

tomata language with the necessary declarations. The model was extended for the sake of

the example with clock constraints saying that a process stays in state critical for no less

than 5 units and no more than 10 time units.

Based on the software developed for UPPAAL, the DARTS team at Uppsala University

has developed the Times Tool [24]. This is a less general-purpose tool than UPPAAL, and

it is mainly geared towards schedulability analysis of embedded systems. It incorporates

novel results for schedulability checking with timed automata, and contains algorithms for

checking TA with constant subtractions on clock variables.

21

Specification

Specification describes properties of the system to be verified. In this area, we are mostly

concerned about safety properties, and those are described using conditions on the system’s

trajectory.

Generally, we are asking questions such as: ”Starting from state s0, can the system

ever reach state q ?”, or ”Does the system always arrive to state set Q in finite number of

transitions ?” To ask these questions, we need to provide universal and existential quantifiers

(always or ever), we need ways to specify state trajectories and we need logical predicates

to designate states and state sets.

For systems modeled as finite-state systems and Timed Automata, Temporal Logic is

used, and for hybrid systems the safety properties are specified as state set reachability

statements based on state and trajectory operators like Post. The Post family of operators

describe the set of “next” (successor) states (for a given state set) along possible trajectories

of the system. The closure of Post gives the set of all the states reachable from the current

state (regardless of the time or number of transitions required).

In the following sections, temporal logics formalisms CTL, LTL and CTL*, are going to

be discussed, along with their various extensions into sparse and dense time representation

and probabilistic modeling. tate set reachability specifications for hybrid systems are also

introduced briefly.

Computational Tree Logic CTL*

CTL* is a branching tree logic describing properties of computation trees [23]. The tree

has an initial state as its root, and then unwinds infinitely representing the possible state

trajectories.

Formulas are composed of path quantifiers and temporal operators. Path quantifiers are

to describe the branching structure of the tree and temporal operators describe properties

of a path.

22

CTL* has two path quantifiers:

A for all paths — the following property is true for all paths from the given state

E there exists a path — for which the following property is true

In addition, there are five basic temporal operators:

X next state — the property is true for the next state

F eventually in the future — the property will be hold eventually along this path

G always, globally — the property holds for all states on the path

U until — this operator has two properties as arguments: the first one holds at a given path

until eventually the second one will hold

R release — the dual of until : the second property holds until a state in which the first one

will hold

CTL* statements are combined of state formulas (predicates being true in a given state),

their negations, conjunctions and disjucntions, and path formulas which are CTL* operators

applied to state formulas.

Temporal logics can also be extended with fairness. In this case, fairness constraints

are interpreted as a set of states, and only those paths which contain elements of this set

infinitely often are considered.

The formalism for stating that state formula p holds at state s in the Kripke structure

is M, s |= p (which implies that p ∈ L(s) if p is an atomic predicate). For path formulas, we

write M, π |= Op1 f1 or M,π |= f1 Op2 f2 to indicate that the given path formula holds for

π (Op1 and Op2 are unary and binary CTL* path operators).

For Kripke structures with fairness, the operator |=F is used, and it always indicates the

existence of fair paths, i.e. if applied to a state (for example M, s |=F p, p ∈ L(s)) it means

that there exists a fair path starting from s.

23

It is worth noting that operators ∨, ¬, X, U, and E are sufficient to express any other

CTL* formula.

Unrestricted CTL* is very general and hard to analyze. Thus, in practice usually a subset

is used, for example CTL and LTL as we’ll see in the following section. Historically, CTL

and LTL were developed independent of each other and CTL* was developed later to unify

the two.

About notation: there are two styles for denoting temporal operators throughout the

literature. The one used in this document denotes temporal operators with capital Latin-

letter mnemonics. The other style uses a mathematical symbol for each operator: ∀ for A,

∃ for E, © for X, 3 for F and 2 for G. For U, some kind of U symbol is used.

CTL and LTL

CTL and LTL (Linear Time Logic) are two sub-languages of CTL*. CTL is a restricted

subset of CTL* where a temporal operator must be immediately proceeded by a path qual-

ifier, or more precisely, where the path formulas can only be constructed by the following

rule:

• If f and g are state formulas, then Xf , Ff ,Gf ,fUg, and fRg are path formulas.

There are ten basic CTL operators (AF, EF, AX, EX, AG, EG, AU, EU, AR, ER),

and similarly to CTL*, they can be expressed with EX, EG, EU, and ¬, ∨.

Figure 5 illustrates the four most common CTL operators.

Some examples for CTL specifications:

• from each reachable state, there is always a path back to s0: AG(EF(s0))

• any path will eventually reach s0: AG(AF(s0))

• mutual exclusion: AG¬(critical1 ∧ critical2)

24

φ

(a) EFφ

φ φ

φ

(b) AFφ

φ

φ

φ

(c) EGφ

φ

φ

φφ

φ

φ

φ

(d) AGφ

Figure 5: Basic CTL Operators

In LTL, Linear Temporal Logic, formulas have meanings on individual computation

paths. LTL formulas are restricted to the form Af where f is a path formula over atomic

propositions of the system. More formally:

• If p ∈ AP then p is a path formula

• If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, Xf , Ff ,Gf ,fUg, and fRg are

path formulas.

Examples for LTL formulas:

• mutual exclusion: G¬(critical1 ∧ critical2)

• a request is always eventually acknowledged: G(req → Fack)

• try holds as long as critical does not hold: G(try → (criticalRtry))

• eventually it will be allright and it will stay so: A(FG(allright))

LTL and CTL have different expressive powers: CTL allows branching but does not allow

combining temporal operators, whereas in LTL path formulas can be combined using logic

operators (such as ¬, ∨), but branching cannot be expressed. They are both sublogics of

25

CTL*: there are formulas in CTL that cannot be expressed in LTL and vice versa, and there

are formulas in CTL* that are not in either CTL or LTL. For example, the LTL formula

A(FGp) cannot be expressed in CTL, and the CTL formula AG(EFp) has no equivalent in

LTL. Obviously, the conjunction or disjunction of the two formulas exists in CTL* but does

not exist in LTL or CTL.

Verification

For verification, the following methods are used:

Theorem proving The model M and specification Φ are expressed as a set of formulae,

andM |= Φ is checked through symbolic proof construction using inference rules.

Model Checking through exhaustive state space search Explicitly enumerate the state

space and verify the specification using brute force.

Symbolic Model Checking Enumerates or iteratively discovers the state space using sym-

bolic methods such as OBDDs (finite state systems) or polyhedral state set represen-

tation (linear hybrid systems). Finite-state tools support CTL and/or LTL, as there

are no efficient algorithms for full CTL* implementation.

Theorem Proving

In theorem proving, the system and the specification are provided as a set of mathematical

statements, and verification proceeds by iteratively proving theorems about the system based

on the model formulae. The proof must show that the specification statements can be

formally derived from the model formulae [23].

Automatic theorem provers are available, but in most cases an expert user has to provide

guidance during the proof — the process is semi-automatic at best. The task of translating

the system description into logical statements and axioms is also difficult to automate and is

26

generally done by a human logic expert. Because of the amount of both expertise and human

interaction are required theorem provers are very expensive to use and success (termination)

is not guaranteed. On the other hand, with the necessary expertise any kind of system model

can be translated into logic statements, and the approach is not limited by the state space.

Therefore, abstractions resulting in a loss of important detail can be avoided.

In our context (integrating formal verification techniques into the MDA framework) the-

orem proving is a less useful approach, because here models primarily reflect designer knowl-

edge, and do not take the form of logical axioms. Automating the model translation process

as much as possible is also an important goal of MDA and semi-automated proof systems

requiring extensive external domain expertise (i.e. not from the design domain) do not really

fit into the framework.

Model Checking for finite-state systems

Model checking is a method to algorithmically verify formal systems (systems specified

in a mathematically precise formalism such as the modeling methodologies discussed above).

Model checking results either verifying the given properties with certainty, or generating

counterexamples by exploring the state space. For finite-state systems, the two main ap-

proaches are either full state space representation and exhaustive search, or symbolic state

space representation and discovery. Both methods are fully automated, deterministic and

guaranteed to terminate.

Exhaustive state space search

In the first, exhaustive case, the states are encoded as bit-vectors or enumerated through

a recursive search. With this method, good estimates can be made on resource requirements

of the verification process. A good example for this method can be found in the SPIN [29]

modelchecker: Promela models can be translated into C programs which enumerate each

state and verify the given properties.

27

This approach is severely limited by the state space explosion problem: adding variables

or (parallel) composing additional automata to a system will increase the global state space

exponentially. For example, adding a boolean variable will double the state space (each state

will split into two). As we have seen earlier, composing two Kripke structures results in a

KS with a state set which is the cross product of the two original sets. Composing several

automata leads to huge state spaces quickly.

SPIN has yet another interesting feature to overcome this problem: It provides bit-state

hashing which is a probabilistic state space representation technique. Instead of the full

encoding of a state, only a hash value is stored in order to decrease memory and processing

requirements. Of course, this method does not guarantee the full state space representation.

SPIN provides a probabilistic indicator on how close the state space search is to a full one.

Symbolic state space representation

This approach uses symbolic methods like OBDDs to encode large state sets, and provides

efficient verification methods which operate on sets of states. The model checking problem

can be formalized for state sets of Kripke structures and temporal logic formulas the following

way [23]:

Given a Kripke structure M = (S, R, L) that represents a finite-state concurrent system

and a temporal logic formula f expressing a specification, find the set of all states in S that

satisfy f :

{s ∈ S|M, s |= f}.

The system satisfies the specification if all of its initial states are in the set.

CTL Model checking

Let M = (S,R, L) be a Kripke structure, and f a CTL formula. First, we parse f

hierarchically by nested CTL operators, so that the bottom of the parse tree will contain

atomic propositions only. We assign these to states according to L.

28

Next we iterate through the parse tree until the root is reached: during the ith stage

subformulas with i−1 nested CTL operators are processed. When a subformula is processed,

it is added to the labeling of each state where it is true. Once the algorithm terminates, we

will have the set of states labeled with f .

Since all CTL formula can be expressed in terms of ¬, ∨, EX, EU, EG, we need to

provide the labeling algorithm with the following forms: ¬f1, f1 ∨ f2, EXf1, E[f1Uf2],

EGf1. f1 and f2 are either atomic, or have been processed in the previous stage.

Algorithm 1 CheckEU(f1, f2): labeling states satisfying E[f1Uf2]

T := {s|f2 ∈ label(s)};
for all s ∈ T do

label(s) := label(s) ∪ {E[f1Uf2]};
end for
while T 6= ∅ do

choose s ∈ T ;
T := T\{s};
for all t such that R(t, s) do

if E[f1Uf2] /∈ label(t) and f1 ∈ label(t) then
label(t) := label(t) ∪ {E[f1Uf2]};
T := T ∪ {t};

end if
end for

end while

Labeling states for ¬f1, f1 ∨ f2 or EXf1 is trivial: for EX we need to consider the

successor states for f1. To label states for E[f1Uf2] first we find states where f2 holds, then

progress backwards using the converse of the transition relation and find all states labeled

with f1. Algorithm 1 shows the pseudocode for CheckEU .

Checking for EGf1 is slightly more complicated and requires the decomposition of the

transition graph into strongly connected components where f1 holds. The basic idea is that

once we are ”inside” such a subgraph, f1 will globally hold, so we need to find those states

which have paths into such subgraphs. The exact algorithm can be found in [23].

The entire CTL model checking procedure can be performed in O(|S|+ |R|).

29

CTL Model Checking with fairness

A Kripke structure extended with fairness constraints is given as M = (S,R, L, F) where

F = {P1, . . . , Pk} is the set of fairness constraints.

The base of the model checking algorithm extended with fairness is a modified version

of the CheckEG algorithm (briefly discussed in the previous section). Here, we decompose

the transition graph again into strongly connected components, and mark them for fairness:

We say that a strongly connected component C is fair with respect to F iff for each Pi ∈ F

there is a state ti ∈ (C ∩ Pi), i.e. each fairness condition is true for at least one state in

C. The procedure is then identical to CheckEG, except we will only consider fair strongly

connected components. The complexity of the computation is O(|S| + |R|) · |F | since we

have to decide which strongly connected components are fair.

In order to check other CTL formulas with fairness, we extend the Kripke structure with

an additional atomic formula fair which is true for a state iff there is a fair path starting from

the state, i.e. fair = EG(true) for each state. We use the procedure discussed above to label

each state with the new proposition. Then, we use the ordinary (non-fair) model-checking

procedure on formulas updated with fair according to the following rules:

1. M, s |=F p⇔M, s |= p ∧ fair

2. M, s |=F EXf1 ⇔M, s |= EX(f1 ∧ fair)

3. M, s |=F E[f1Uf2]⇔M, s |= E[f1U(f2 ∧ fair)]

The complexity of the analysis is O(|f |·(|S|+|R|)·|F |) if f has |f | nested CTL expressions.

LTL Model Checking

In this section a brief and informal summary on the LTL checking algorithm will be

given. As we have seen, LTL formulas are restricted of the form Af where f is a restricted

path formula consisting of atomic propositions. Since M, s |= Af ⇔ M, s |= ¬E¬f , it is

sufficient to check for the formulas of the form Ef .

30

The algorithm is based on constructing a tableau T for the path formula f , where T is

a Kripke structure and contains every path that satisfies f . Then, T and the system model

M are composed. A state in M will satisfy Ef iff it is the start of a path in the composition

that satisfies f .

The tableau construction algorithm is exponential with the length of formula f , and the

CTL model checking algorithms discussed earlier can be used to find the states satisfying f

in the composition automaton.

A detailed description of the algorithm along with a method to represent the tableau

using OBDDs can be found in [23].

Conclusions

Modeling

In this chapter, we have surveyed various modeling methods and their formal foundations.

As we can see, there are a multitude of formal, well-established modeling approaches

available. Most of these methods are geared towards describing physical systems rather than

design models: they are excellent tools for simulation or to study the system’s behavior.

Physical systems are inherently parallel and non-deterministic, and all the discussed modeling

approaches handle this problem at different levels.

An important question is the represenation of time: in general, the more accurate is the

time representation in the model, the more difficult it is to implement such models in a CBS.

In their pure form, most of these models lack one or more important features desirable

for modeling engineering systems: modularity, reusability, hierarchical / logical grouping of

components. Using syntactic extensions, these problems can be overcome, the question is

whether or not this is worth the effort ? The prevalent direction (which is also pursued

31

in this thesis) seems to be using a more traditional, engineering-oriented DSML in for the

design model, and to convert the model into a analysis model using one of the modeling

approaches discussed here by matching the semantics of the design and verification models.

Specification

For modeling, we have seen many, conceptually different approaches to describe systems.

For specification, we can conclude that there are only two different approaches being used:

one using some kind of temporal logic from the CTL* family. The other approach (reachabil-

ity statements on hybrid systems) is not discussed in this work. For the sake of completeness

it needs to be mentioned, as it is a very important research topic today. Actually, these two

approaches may even overlap if transition systems are being used.

For us, probably the most interesting question is how these specification statements can

be formulated based on the design model. Fortunately, this does not seem to be an impossible

task, since Kripke structures allow labeling their states with logical predicates, and in this

manner it is possible to carry over references to the system’s state.

In general, these specifications express global statements on the system. In a component-

based system, extending a local statement into a global one or establishing the local effects

of a global statement could be problematic.

For example composition is a crucial question: how specifications formulated for individ-

ual components can be carried over to the whole system, or how global requirements can be

broken down to component levels. In connection to this, scalability and complexity issues

are also important. Because of the limitations of the verification algorithms avaliable, the

form of the specification can influence the feasibility of verification.

Verification and Model Checking

Finally, an overview of the most frequently used formal verification implementation al-

gorithms has been given. These approaches can be categorized into two broad areas:

32

1. Finite-state model checking based on temporal logic

2. Hybrid system reachability analysis (mentioned but not discussed here)

For the former, there are efficient algorithms (at least for sub-classes of temporal logic

languages). The algorithms themselves are efficient, but the system to be analyzed can grow

very large (especially with parallel composition), therefore scalability is still a problem.

Good reachability algorithms for hybrid systems are still being extensively researched,

and several important questions are still open (decidability [27] [10], convergence, approxi-

mation problems [13], [20] etc.)

33

CHAPTER III

BACKGROUND: MODEL TRANSFORMATIONS

Models and model transformations are the cornerstones of MDA/MDD’s design and syn-

thesis process, with the ultimate model transformation being the synthesis of the executable.

No less important is to ensure that the resulting final product will work correctly, in other

words, verifying that it satisfies its specifications formulated during the design process. (We

treat the specifications as parts of the design model.)

In this work, we are concentrating on the verification process. So far we have seen an

overview of the tools available for verification, and the next step is to examine how these

tools will fit into the MDA/MDD framework.

In order to use these tools, an analysis model needs to be created based on the design

model. This is done through model transformation, and in the following sections, a discussion

of model transformation methodologies relevant in our context will be given.

Unlike the area of formal verification, the theory of model transformations is much less

covered by comprehensive literature. The multitude of books on modeling in (software)

engineering and design are of limited use here, and the best resources are recent papers and

standardization efforts by industry groups, most notably the Object Management Group’s

Model Driven Architecture (MDA) framework [1]. For the lack of any better (and more

standard) notation, we are going to follow OMG’s terminology and basic definitions, marking

the differences as necessary.

Basic concepts

In the previous section, we defined a design model as a formal specification of the function,

structure, and/or behavior of the system, expressed in a well-defined modeling language

34

(metamodel). In the following section, fundamental definitions for transformations of such

models will be summarized.

Terminology

In a recent standardization effort [43], OMG structured the terminology for model-to-

model transformations the following way:

Query A query is an expression evaluated over a model. The result is one or more instances

of types defined in the model or in the query language.

The Object Constraint Language (OCL [57]) is the prominent query language in this

area.

View A view is a model which is completely based on the source model. It is often read-only,

or the changes to it result in direct changes to the base model. Views are typically used

to hide irrelevant information, or to present a particular aspect of the system. A query

is a restricted kind of view, and views are usually generated via model transformation.

Transformation A transformation generates a target model from a source model. Transfor-

mations can be dependent when the two models retain their coupling after the transfor-

mation, or independent when no further relationship is maintained. A transformation

can be unidirectional when changes can be propagated only from the source towards

the target, or bidirectional otherwise. In the latter case, source and target models are

often referred to as the left-hand model and the right-hand model, respectively.

The reason for this structure is that these operations build upon each other (each can be

considered a restricted version of the following one), and queries are often used as elemental

building blocks of views and transformations.

The following terms are used in the definition of transformations:

35

Rule Rules are units in which the transformation is defined. A rule describes the transfor-

mation for a particular selection from the source model into the corresponding subset

of the target model. A transformation is specified as a set of rules. Composition

mechanisms for rules may be defined.

Declaration A declaration is a specification of a relation between elements in the LHS and

RHS models. A declaration may specify uni- or bidirectional transformation, or may

only serve as a selector for the associated implementation procedure.

Implementation An implementation is an imperative specification on how to generate the

target model elements from the source model elements. Implementations are typically

unidirectional, although bidirectional ones are also possible.

Match A match occurs when elements from the source model satisfy a declaration specifi-

cation. A match may trigger the application of a rule.

Incremental transformation If individual changes in the source model lead to the exe-

cution of only the rules matching the modified elements, the transformation is said to

be incremental.

The basic building blocks are rules. Generally, the following methods are used in their

specification:

Declarative Using a relational or functional language to specify the relationships between

elements in the source and target models in terms of functions or inference rules.

Imperative Using a traditional programming language based approach to describe an ex-

plicit algorithm manipulating the models.

Hybrid A combination of the above two — typically a declarative approach is used to select

subsets of models and an imperative procedure specifies the relevant transformation.

36

Model Transformation Approaches

In the following classification, we roughly adhere to the categories outlined by Czarneczki

and Helsen [22], who give a classification based on domain analysis.

Transformation Rules and Representations

A transformation is usually given as a collection of rules, as a pair of a left-hand side for

the source model (LHS) and right-hand side (RHS) for target model. LHS and RHS can be

represented as:

• Variables: can be associated with instances from the source or target models. They

are also referred to as meta-variables to avoid confusion with variables being modeled.

• Patterns: Patterns are model fragments to be matched against the source or target

models. They can be textual (string), term (like a logic expression) or graph patterns

depending on model represenation.

• Logic expressions: computations and constraints on model elements. Non-executable

logic can specify a relationship between models and executable logic can have a declar-

ative or imperative form.

Both variables and patterns can be untyped, syntactically typed (associated with a meta-

model element) or semantically typed (e.g. the result of the specifying expression is an

integer).

Other characterizing aspects of transformation rules are:

• Syntactic separation between LHS and RHS. In a graph pattern, the two sides are

syntactically separated, but in procedural rewriting code they are not.

• Bidirectionality: A rule (and a transformation as a whole) may be executable uni- or

bidirecionally

37

• Rule parametrization for additional rule configuration

• Intermediate structures: Some approaches may allow or require the construction of

intermediate structures during rule invocation.

Rule Scoping and Organization

Scoping allows the transformation to control where in the model rules can be applied.

This is usually related to the organization of the ruleset. Rules can be grouped according to

several criteria:

• Modularity and reuse mechanisms: rules may be grouped into packages and libraries,

and inheritance and composition rules may be defined to aid organization and reuse.

• Organizational structure: rules may be organized by the structure of the source lan-

guage (i.e. attribute grammars), by the target structure or by some other logical or

practical separation

Rule scoping and organization may be influenced by source and target relationship, namely

what kind of targets the rules support: existing, newly created, in-place (within the source),

separated (source and target models can relate only though the transformation).

Rule Application Strategy and Schedule

Scheduling mechanisms determine the order in which the rules are applied. Four main

categories are recognized:

• Form: implicitly determined by the form of rules (e.g. dependency). Alternatively,

the user may be allowed to explicitly define scheduling (external scheduling).

• Rule selection: By built-in or user-specified rule selection (match) conditions. Interac-

tive selection may also be supported.

38

• Iteration mechanisms: Rules may be organized to form recursion, looping or fixpoint

iteration and this organization determines scheduling.

• Phasing: The transformation process may be organized into several phases achieving

distinct goals. A frequent example is first create/manipulate target model hierarchy

and then ”fill it in” with attributes generated in the second phase.

Application strategy is needed if there is more than one match for a rule. It can be

deterministic or non-deterministic, or even interactive. The target location for a rule is

usually deterministic.

Properties of Transformations

There are a number of theoretical properties of model transformations worth examining.

The transformation approach being used might guarantee some of them, or make them easy

to check at a general level. With imperative, algorithmic approaches, establishing these can

be a tedious, even impossible task on the level of the individual transformation specification.

The most frequently referred properties are:

Termination Does the translation always terminate? Are there cyclic dependencies, or can

a fixpoint always be reached?

Confluence Does the order of transformation steps matter? Can the operations be per-

formed in parallel? Formally, confluence means that a source graph can be rewritten in

more than one way under a given transformation system yielding the same end result.

As a consequence, in confuent systems the application order of rewriting operations is

irrelevant. Confluence can be decided for the kind graph-rewriting systems this work

is concerned with, as shown in [26].

Invertability and In-Place Transformations (e.g. updates on a model) Can the trans-

formation be reversed (undone)? Can it be performed on the model in place?

39

Directionality Can it be applied both (many) ways without loss of information?

Composition Can multiple transformations be composed, and if so, what are the side

effects?

Correctness and Consistency Can it be proved that the transformation results in a cor-

rect model? Can it be proved that all derived models preserve certain consistency

conditions?

Complexity How expensive is it to perform the transformation on a general-purpose com-

puter?

As mentioned earlier, the difficulty of verifying these properties depends on the transfor-

mation approach chosen. For example, relational and graph transformation approaches are

usually naturally bidirectional, but on the other hand, without having information about the

implementation, it is hard to estimate their complexity (computation requirement). Graph

transformation-based model updates are usually invertible, but specifying an in-place trans-

formation might require the notion of state, and not all approaches support this notion.

The Unified Modeling Language with OCL

The Unified Modeling Language [2], as part of OMG’s Model Driven Architecture frame-

work is the unification of a number of object-oriented notations and an emerging standard in

modeling software design. The current UML standard is UML 1.5. The notations I am using

in this paper are from UML 1.x, although they are quite general, so not much is expected

to change.

Since OMG is the major standardization body in this area [43], much of their terminology

and notation is widely used for the lack of anything better-defined and more universally ac-

cepted. Several research efforts, like MIC, have accepted parts of UML and use the elements

of its notation sometimes in a wider role than for what it was originally intended.

40

The following chapter gives a short overview about the parts of UML notation relevant

here, and about a particularly important UML component, the OCL language.

UML Class Diagrams

UML is essentially a collection of connected notations intended to describe the design of

a software system. There are several different languages defined within the UML standard,

and many of them uses visual diagrams.

The most important of those for us is the class diagram, which visualizes the static

structure of the object collection. Again, what is important for us here is the visual notation

chosen to express various relations (containment, generalization, association etc.) not the

actual, strict UML meaning of those notations.

Class diagrams have the following elements:

Packages are structuring components used to group other related components into a single

unit. Packages can be nested, and related by a dependency relationship.

Classes are representations of an entity or concept within the system being modeled. In

UML, class defines the attributes, operations and behavior of the objects is represents.

Relationships between classes are also visualized on the same diagram. In our concept,

it is important as the atomic building block of a model. The visual representation is a

rectangle, optionally horizontally divided into sections. The topmost section contains

the name, the one below that has the attributes listed, and the rectangle on the bottom

displays the operations of the class. The topmost rectangle may also optionally contain

the containing package’s name and the stereotype of the class.

UML defines two types of relationship between classes:

• Generalization or inheritance which defines a super- or sub-type relationship be-

tween two classes

41

• Associations which define an arbitrary relationship between any number of classes.

Adornments can be added to the association to tighten the relationship’s specifi-

cation.

Figure 6 shows UML class and relationship representations. A solid line with an

empty triangle arrowhead shows generalization (A generalizes B and C; F generalize

E). Binary relationships are shown as solid lines (A,F), and N-Ary relationships use

an empty diamond as a central junction for solid lines (B,C,D,E).

Associations : UML provides a number of adornments to add semantic meaning to asso-

ciations defined between entities.

• Rolename on any or all ends to give a reference name to the object within the

association

• Cardinality indicates the number of object that must or may form part of an

association instance on the corresponding end. Further constraints like ordered

or unique can be added to association ends if necessary

• Navigability assigns a direction to the association

• Aggregation indicates that one object is aggregate, and the others are parts of

this aggregation. The exact semantics of aggregation are widely disputed in the

community In aggregations, a black (filled) diamond is used to denote compo-

sitional aggregation or ”ownership aggregation” vs. ”by reference aggregation”.

The exact semantics of aggregation depends on the modeling language being used.

The OCL language

The Object Constraint Language [57] is a declarative language used in object-oriented

software modeling, analysis and design. It is a subset of the industry standard Unified

Modeling Language (UML) [2] that allows the specification of constraints and queries over

42

B

A

C

F

E
D

Class1

attribute1
attribute2
...

operation1
operation2
...

Figure 6: UML Class representation and relations

object models. These constraints are particularly useful, as they allow the creation of a

highly specific set of rules to govern the aspects of an individual object. OCL has become

quite successful, and it is extensively used within and outside of UML models and modeling

environments.

The final version of the OCL 2.0 proposal was approved by OMG in November 2003 and

— as of the time of writing this document — it is being finalized for standardization as

part of the UML 2.0 specification. The official version can be found in the MGA standards

& specifications repository [2]. Warmer and Kleppe wrote a good, comprehensive book on

OCL [57], and introductory material can also be found in [7].

The language has a set-based semantics that is very similar to Object-Z [49], though the

quantifiers and operations are represented by an OO programming language-like notation.

The entire language is based on an ASCII textual representation, making it friendlier to

software engineers than other formal methods of this kind. For example, the following two

specifications are equivalent:

• Object-Z : ∀c1, c2 ∈ SetofClasses · c1 6= c2⇒ c1.name 6= c2.name

• OCL: SetofClasses->forAll(c1,c2 | c1 <> c2 implies c1.name <> c2.name)

43

Of course, there are deeper, semantic differences as well, but the above illustration is just

an example showing that practical specification languages sometimes are quite close to their

formal foundations.

Expressions and constraints

An OCL expression is an indication or specification of a value. A constraint is a restriction

on one or more values of a (object-oriented) model or system.

In UML models, OCL expressions are used to:

• specify the initial value of an attribute or association end.

• specify the derivation rule for an attribute or association end.

• specify the body of an operation.

• indicate an instance in a dynamic diagram.

• indicate a condition in a dynamic diagram.

• indicate actual parameter values in a dynamic diagram.

OCL specifies four types of constraints:

invariants are constraints stating a condition that must always be met by all instances

of the class, type, or interface. An invariant is described using an expression that

evaluates to true if the invariant is met.

preconditions to operations are restrictions that must be true at the moment that the

operation is going to be executed.

postconditions to operations are restrictions that must be true at the moment that the

operation has just ended its execution.

guard are constraints that must be true before a state transition fires.

44

Context and language features

An OCL expression is defined for a given context, which is a model element, usually a

class, interface, datatype or component. This is called a Classifier by the UML standard.

The contextual type of an OCL expression is the type of its context or its container; OCL

expressions are always evaluated for a single object which is an instance of the contextual

type (the latter is called the contextual instance, which is not the same as the instance to

which the expression belongs or for which it is defined). The keyword self refers to the

contextual instance.

If an expression being evaluated can be resolved into multiple instances, a collection is

returned. Constraints can be put on the size of the collection as well as the elements it

contains, using iterators.

Models often contain attributes and associations which are derived, or determined from

other model elements. To be complete, the model or the metamodel must not omit the way

to derive such elements. OCL provides the derive construct to express this relation.

Attributes (or even associations) usually have initial values, and OCL specifies them

using the init concept.

Class diagram models can specify query operations : these have no side effects (do not

change the model’s or any instances’ state), and execution of a query operation results in a

value usable (for example) in other OCL expressions or as statements of a stand-alone query

language.

Evaluating a constraint does not change any values in the system, because OCL is totally

side-effect free. A constraint merely states ”this should be so”, and if it is not, then the model

is incorrect, but does not specify what to do about it. It is up to the user of the modeling

tool to decide whether this is a fatal error or a minor mistake, and also what course to take

in order to correct the model: this information is not expressed in OCL.

45

Conclusions

In this chapter, two important UML notations were introduced. As mentioned, the nota-

tions based on UML visual languages are widely used in the modeling and model translation

community, as well as the OCL language.

The graph-based diagram language includes many high-level concepts (hierarchy and

containment, interfaces, OO concepts etc.) to be a good vehicle for today’s designs. The no-

tations are intuitive, yet formal enough, and OMG as a standardizing body has the necessary

gravitas to promote their usage. We can witness the increasing popularity of UML-based

notations in the engineering community.

OCL, on the other hand is formal but less intuitive. It is widely used for the lack of a

better standard, and it is quite good as a declarative language, but its steeper learning curve

limits its general acceptance. In this respect it is similar to the logic-based specifications

discussed in the previous section. Nevertheless, it fits well into our context where formality

and strictness is more important than user-friendliness.

Graph Transformations

All modeling approaches discussed in this work use graphs to represent system structure

in one way or another. For this reason, formulating the model transformation problem as

a graph transformation task seems a natural choice. Graphs are well known, well under-

stood mathematical concepts, and graph transformation has been a highly formal, and well

researched area since the 1970’s [12].

In particular, the methods with which we are concerned operate on typed, attributed,

labeled graphs (or more precisely, multigraphs), like a UML class diagram. Generally speak-

ing, graph transformation rules consist of a LHS graph pattern and a RHS graph pattern.

The LHS is matched in the source model and replaced by the RHS pattern using particular

embedding rules to integrate the different elements with the existing graph.

46

2 2 2

4

1 1 33

1=3

4

HLG

Figure 7: Graph Concepts: L is a subgraph of G and has an occurrence in H

In the following, a very general definition of graph transformation and related concepts

will be given based on [12], followed by a case study featuring a graph transformation tool.

Graphs

For the purposes of the definition, we choose node- and edge-labeled, directed graphs:

Graph A (labelled, directed) graph G = (NODES, EDGES, source, target, label) consists

of a finite set NODES of nodes, a finite set EDGES of edges, two mappings source and

target assigning a source and target node to each edge, and a mapping label assigning

a labelling symbol from a given alphabet to each node and edge. An edge e goes from

node source(e) to node target(e). If a graph contains multiple edges between the same

node pair, then it is called a multigraph.

A graph L is a subgraph of G (L ⊆ G) if the node and edge sets of L are subsets of those

in G and the source, target and label mappings coincide with the respective mappings in G.

L has an occurrence in G (L→ G) if there is a mapping occ which maps the nodes and

edges of L to G, respectively, and preserves sources, targets and labelings (i.e. for each edge,

the source in L coincides with the image of that source in G, and the same is true for the

target and label mappings, respectively).

Figure 7 illustrates the above concepts.

There are further extensions to this concept: undirected graphs can be represented by

running two edges between a pair of nodes in the opposite direction, hypergraphs allow edges

47

to have several source and target nodes, and hierarchical graphs are graphs where a subgraph

can be collapsed to one node, and all nodes of the subgraph have edges to the nodes having

edges to the collapsed node.

In attributed graphs nodes and edges can be annotated with attributes, and a particular

case of these is typed graphs.

Transformations on graphs

Graph transformation is the process of (iteratively) applying a transformation rule to a

graph. Each rule application transforms the graph by replacing a part of it: rules contain a

left-hand side (LHS) L graph and a right-hand side (RHS) R graph, and the occurrence of

L is replaced by R according to the following definition [12]:

Graph transformation rule r = (L,R, K, glue, emb, appl) consists of the LHS graph L,

RHS graph R, the K ⊆ L interface graph, an occurrence glue of K in R relating the

interface graph with the RHS, and an embedding relation emb relating the nodes of L

to the nodes of R. appl is a set of application conditions governing the applicability of

the rule.

Note that this and the following definitions are very general. In practice, transformation

systems support only a restricted subset of transformations.

Application of rules An application of rule r = (L,R,K, glue, appl) to graph G yields a

resulting graph H in the following steps:

1. CHOOSE an occurrence of L in G

2. CHECK the application conditions appl

3. REMOVE the occurrence of L up to the occurrence of the interface graph K from

G as well as the dangling edges, i.e. all edges adjacent to nodes being removed.

This yields the context graph D of L which still contains an occurrence of K.

48

L

K

G

glue
R

CHOOSE & CHECK

REMOVE

GLUE

EMBED

H

ED

Figure 8: Illustration of a graph transform step G⇒ H

4. GLUE the context graph D into the RHS graph R according to the occurrences

of K in D and R: for every item in K identify the corresponding item in R and

construct the disjoint union of D and R. This process yields to gluing graph E.

5. EMBED the RHS graph R into the context graph D by the embedding relation

emb: insert the edges corresponding to the dangling edges removed in step 3. For

each dangling edge incident with a node v in D and its image v′ in G, and each

node v′′ in R a new edge (with the same label) between v′ and v′′ is established

in E provided that (v′, v′′) belongs to emb.

The application of r to G yielding H is called a direct derivation from G to H and denoted

by G⇒r H or G⇒ H. Figure 8 illustrates the definition given above.

Properties of graph transformation

Amongst the general transformation properties mentioned previously, several have im-

portance in the context of graph transformation. In the following list, these are detailed

along with a few specific properties:

49

Locality The change induced by a transformation step is ”local” to the occurrence sub-

graph: the changes can be limited and the bounds of the changes can be established

by analyzing the rule specification.

Invertability undo operations can be performed by inverted rule applications. The follow-

ing conditions guarantee invertability:

1. no dangling edges will arise during REMOVE (contact condition): if the image

of a node in L contacts an edge not in the image of L, the node must be in K

2. the occurrence of L in G only identifies elements in the interface graph K (iden-

tification condition)

3. the morphism glue is injective

4. the emb embedding relation is empty

5. LHS application conditions are convertible to equivalent RHS conditions

Independence Two direct derivations G ⇒r1 G1 and G ⇒r2 G2 commute if there is a

graph H such that G1 ⇒r2 H and G2 ⇒r1 H.

Confluence A graph transformation is confluent if for each two derivations G ⇒∗ G1 and

G ⇒∗ G2 there is a graph H such that G1 ⇒∗ H and G2 ⇒∗ H. Confluence implies

that every graph can be transformed into at most one irreducible graph.

Termination A graph transformation is terminating if infinite derivations G1 ⇒ G2 ⇒
G3 ⇒ . . . are impossible. In general this question is undecidable [44], but there are a

number of simple sufficient conditions for termination (e.g. each rule reduces the size

of a graph).

Complexity Efficient matching of the LHS or checking the application conditions are cen-

tral problems in graph transformation. Well-known techniques from constraint logic

programming are used, but there is no efficient or generally accepted solution.

50

Graph Transformation Systems and Grammars

The simplest form of a graph transformation system is a P set of rules. The set P of

rules together with an initial graph S and a set of T terminal rules forms a graph grammar.

A sequence of direct derivations G0 ⇒ G1 ⇒ · · · ⇒ Gn is a derivation and Gn is said to be

derived from G0 by the rules of P . The set of graphs with symbols of T that can be derived

from S by rules in P is the language defined by P, T, S.

Graph transformation systems are usually non-deterministic since multiple rules may

match at multiple locations.

The Generic Modeling Environment (GME)

GME is the modeling framework for implementing the examples related to this research.

In the following section, an introduction to its concepts and architecture will be given.

The Generic Modeling Environment [37] [6] is a configurable framework for creating

domain-specific modeling and model transformation (synthesis) environments. Configura-

tion is accomplished through UML metamodels specifying the modeling paradigm (modeling

language) of the domain. The modeling paradigm contains all the syntactic and semantic

information of the domain, and also contains basic presentation (visualization) information.

The syntactic and semantic information entails the main domain concepts, their relation-

ships and organization as well as model construction rules. The modeling paradigm defines

the family of models that can be created using the domain(or paradigm)-specific modeling

environment.

The metamodeling language is based on UML class diagrams with OCL constraints.

GME automatically generates (configures) a domain-specific modeling environment (visual

editor and API) based on the modeling paradigm. This environment is then used to build

and process domain models that are stored in GME’s model database format or exported

into XML.

51

GME is open-source, and has a modular, extensible architecture based on Microsoft COM

technology. GME is easily extensible; external components can be written in any language

that supports COM (C++, Visual Basic, C#, Python, Java etc.). GME’s advanced features

include:

• Built-in constraint manager enforcing domain well-formedness rules in the visual model

editor

• Metamodel composition and reuse facilities

• Model libraries within a family of models

• Sophisticated type inheritance within the framework

• “Decorator” API for custom model visualization

The GME Metamodeling Environment

GME relies on a set of abstract modeling concepts that are generic enough to describe a

wide range of domains. These concepts include:

• containment (e.g. composition, aggregation, hierarchy)

• associations and interconnections

• multi-aspect (multi-view) modeling

• numerical/textual value-storing attributes

These concepts can be “instantiated” (customized) for each domain to express domain

concepts directly. The key idea is the consistent application of the meta-level concepts

through the modeling layers.

GME supports the four-layer metamodeling architecture advocated by the UML specifi-

cation, as illustrated in Figure 9.

52

Figure 9: Four-layer modeling architecture with GME

The metamodel describes the family of FSM models with structure, consistency and

visualization rules (omitted from the Figure). Then, the GME model API can be used to

process (e.g. analyze, generate code based on it etc.) the models designed in the visual editor.

The GME API supports several different kind of add-ons (software components working on

the in-memory image of the model being edited). Such add-ons include decorators to aid

visulatization, and most importantly model interpreters. Interpreters are paradigm-specific

programs to process models (e.g. code generators).

The GReAT Graph Rewriting and Transformation System

Graph Rewriting and Transformation (GReAT) [30] [25] is an UML-based approach for

model transformations. It enables the specification of explicitly sequenced graph rewrite

transformations which are represented by visual UML diagrams.

GReAT is implemented within the GME [37] modeling framework, and provides seamless

integration with any DSML implemented with GME. GReAT is realized on top of the Uni-

versal Data Model (UDM [14]) toolkit, which is a reflective, meta-programmable software

package for developing modeling tools.

53

The GReAT package contains various GME interpreters to perform its functions (e.g

importing GME meta-models to build class libraries to be used in the transformations, a

GReAT interpreter, a GUI debugger and a C++ code generator for transformations).

GReAT aims to solve a number of shortcomings found with other graph/model transfor-

mation implementations:

1. Specification of different graph domains: by importing well-defined UML metamodels

from GME. In GReAT, a UML metamodel (with its OCL constraints) serves as a

”graph grammar” describing all valid configurations.

2. n-to-m independent transformations across different domains: by building a unified

class library from the imported metamodels.

3. cross-references between various domains: by automatically specifying a temporary

”inter-domain” that contains the information about cross-links, and showing them in

the visual transformation model editor

4. efficient control flow: by providing several high-level control structures to organize

rules

5. aid programmer productivity: by providing means to organize the rules into hierarchical

transformation libraries; a visual editor and debugger; supporting the OO concepts of

the GME toolset

The GReAT language consists of 2 major parts. In the following sections, these will be

introduced:

1. Graph Transformation language

2. High-Level Control flow language

54

Graph Transformation Language

In GReAT, a transformation is built from elementary rewriting rules. Each rule contains a

pattern graph. Each element in the pattern graph explicitly refers to the unified metamodel,

which is generated from the source and target metamodels and the crosslink definitions.

Rules violating the unified metamodel are not allowed. This, and removing termporary

elements such as crosslinks at the end of the transformation ensures that the generated

output model conforms the output metamodel as well.

The transformation itself is specified as a set of partially ordered transformation rules. A

transformation rule contains a pattern graph with vertices and edges. These pattern objects

refer to specific types from the unified metamodel. When working with (source and target)

model instances, the GReAT engine maps the patterns formulated on the unified metamodel

onto the souce and target models. Thus, the transformation writer is presented an unified

view of the source and target models, making the specification of patterns much simpler.

Each pattern object has an attribute called Action specifying the object’s role in the pattern.

Action can have three different values:

1. Bind: Match object(s) in the graph.

2. Delete: Match object(s) in the graph, then remove the matched objects designated

with the delete action.

3. CreateNew: These objects are created anew, provided that the rest of the pattern

matched sucessfully.

A rule is executed by first matching every object with bind or delete actions. If the

pattern matching was successful, then each object with the delete flag is removed, and

then the objects marked with CreateNew are created. GReAT avoids the possible conflicts

stemming from the delete operation by restricting the number of matches: an object is

deleted only if it is matched exactly once (it cannot be deleted while a subsequent, not yet

processed match holds a binding for it).

55

(a) GReAT Pattern

string room1 , room2 , order;

room1 = Room1.name ();

room2 = Room2.name ();

order = room1 + "_to_" + room2;

OrderItem.name() = "order";

OrderItem.Entity () = "Door";

(b) C++ code in the AttributeMap-
ping box

return AdjacentTo.HasDoor ();

(c) C++ code in guard HasDoor

Figure 10: Example GReAT rule

Rules may also contain procedural (C++) code blocks using the GME API as Guard

conditions or AttributeMapping blocks. Guards are boolean-valued functions on the values

of pattern elements’ attributes. All guards have to evaluate true in order for a pattern to

match. AttributeMapping blocks can be used to set the attribute values of newly created

objects, and/or modify attribute values of matched (bound) objects.

Realization of the graph transform language

GReAT is used to transform models conforming to one metamodel into different model(s),

where the metamodel for the target(s) are also given. Therefore, it is important to allow only

patterns (in both directions) which conform to their respective metamodels. This is achieved

by importing the source and target metamodels into GReAT (into the transformation model

to be precise), and having the user specify the metamodel for any temporary elements needed

for the transformation.

Figure 10 shows a typical GReAT rule. The pattern matches a House object with two

adjacent Rooms, and adds a corresponding new OrderItem to an OrderList. Rectangles

with a small arrow in the lower left corner refer to metamodel elements from the UML

56

class diagram. GReAT operation is indicated in the lower right corner of the rectangle. A

small checkmark indicates create, a small ’x’ stands for delete. Elements with no designated

operation are for matching (or bound in GReAT terminology). The input (a.k.a. LHS) side

of the patterns in the set of elements to match (no designation in the lower right corner).

The output (RHS) of the pattern is the set of elements marked with a “change” operation

(create or delete).

Association role names are written next to the edges, and the small rectangles with the

triangle inside represent ports. Ports are used to pass object references from rule to rule.

They have two roles in GReAT:

1. to provide initial binding for rules in order to speed up computation of the matching

set. The rule gets references from one or more previous pattern’s matches (House and

OrderItem). This way pattern repetition can be avoided and pattern matching can

be sped up significantly.

2. to provide for implicit rule sequencing and decomposition of complex rules into simpler

parts.

The code setting model attributes via the attribute mapping box illustrates the C++ API

provided by GReAT. Matching objects are instantiated automatically and can be referenced

by their pattern name. Similarly, the rule has a guard box, containing C++ code. The

guard has to evaluate (return) true for the pattern to match.

Rules operate on packets, which are (port, bound data object) pairs, and there is extensive

(implicit and explicit) support for the routing of these packets to streamline processing. This

enables the nesting of rules and the building of high-level control structures, as discussed in

the next section:

Control flow language

GReAT supports the following control flow constructs:

57

Sequencing Rules are chained by their in/out ports and pass packets to enable the firing

of each other. For startup, initial binding is provided for the root folder of the models

being processed. A rule sequence is terminated if the last rule has no output ports or

generates no output packets (matches).

Hierarchy Rules can be grouped into rule blocks which have the same input/output port

interface as individual rules, and different strategies are available to define internal

packet propagation (and subsequently rule activation) within rule blocks: a simple

Block will push each incoming packet through its first internal rule. A ForBlock will

process the first incoming packet and keep executing its internal rules until a (ForBlock-

level) output is generated, at which time the ForBlock begins processing the next input

packet.

Recursion A high-level rule (rule block) can call itself: a reference to any block (including

itself) can be placed inside and packets routed into its input ports.

Conditional branching Rules with special semantics are defined for branching: a Test

block usually has a few inputs, and several output ports. Inside, it contains Case

rules, which can perform matching only. The packets matched by a Case rule are

forwarded to selected output port(s) of the Test block. Therefore, a Test block will

usually emit output only on a few of its output ports, so only a few of the connected

rule blocks will fire.

Non-determinism When a rule is connected to more than one follow-up rule or there is

a test with multiple successful cases, the execution becomes non-deterministic. The

execution engine chooses a path arbitrarily, and executes it completely before a next

path is chosen and executed. All execution paths are eventually executed, but the

order is arbitrary.

58

CHAPTER IV

IMPLICIT PLATFORM MODELING: CASE STUDY

This chapter defines and explains platform modeling. After introducing the concepts, a

detailed, end-to-end case study is presented. The case study illustrates implicit platform

modeling and also motivates the research described in chapter V.

In the case study, an embedded system design language specifies components and in-

teractions. SMOLES [53] is a high-level DSML, implementing a variant of the dataflow

MoC.

SMOLES systems are realized using the DFK [51] dataflow engine, which is a “third-

party” software library written in C++. DFK can be configured into either single- or multi-

thread mode: in single-thread mode parallel execution is emulated by a scheduler evaluating

dataflow trigger conditions.

The case study demonstrates the construction of an analysis model using model trans-

formation. A Timed Automata (TA) analysis model is built, corresponding to a SMOLES

system, as realized over the DFK platform in single-thread mode.

The analysis model captures key properties and behavior of the DFK engine. (actor

scheduler, internal resource constraints etc.). The analysis model is generated in the UP-

PAAL [34] model checker tool’s concrete syntax.

Thus, the verification of the resulting analysis model can answer questions regarding the

properties of the end system as implemented over a particular platform, DFK.

This case study was prepared using the GME framework (for modeling the languages

involved), and GReAT was used to specify and execute the SMOLES → UPPAAL model

transformation. The results of the case study were published in [53].

59

Figure 11: Component-based system implemented over a platform

The Platform concept

Design models are abstractions of the system, as they describe complex systems and ab-

straction is the human way to conquer complexity. In component-based systems, design is

constructed from components that have well-defined behavior and interfaces for interaction

with each other. Components interact with each other through precisely defined interac-

tion patterns, called Models Computation (MoC). In traditional software systems, the main

(sometimes the only) method of component interaction is the procedure call, with the usual

call-return semantics. For many systems this is not sufficient, and complex interactions pat-

terns are needed. The hardware typically gives direct support for the call-return interactions

via the subroutine call/return instructions, but very rarely gives direct support for more

complex concurrency patterns. These concurrency patterns are implemented using some

underlying computational framework or infrastructure that is a very good example for the

platform concept. As mentioned in Chapter I, in the context of this work platform is defined

as the

Collection of hardware, software or middleware services and resources the
system is implemented over.

The platform provides an abstraction layer above the raw hardware (which may include

multiple processors with communication, etc.), and defines the interaction patterns among

60

components. We make the assumption here that all component interactions happen via the

platform, and no other component interactions are allowed. Thus, component based systems

are constructed as shown on Figure 11. In the figure, broad arrows indicate the physical

interactions (between the component and the platform), while thin dashed arrows indicate

the logical interactions (between components). Obviously, the latter are implemented by the

former. Note that this platform-oriented view is compliance with the principles of platform-

based design, as defined by Sangiovanni-Vincentelli and Martin in [47]:

In general, a platform is an abstraction that covers several possible lower-level
refinements.

In the embedded design process we often need to perform analysis on the design. Such

analysis answers questions about real-time properties, resource limitations and so on. Obvi-

ously, the precise (and ultimately satisfying) answers to these questions could be given only

after analyzing the code of the entire system, but this is technically not feasible. Instead,

designers typically analyze the model of the system and draw conclusions about the final

system based on the models. This approach accepts the fact that models are abstractions

(and somewhere it needs to validated that the abstractions are valid), and proof obtained is

valid only if the models are valid.

Note that (at least) two kinds of models are needed: models for the components and

a model for the platform. Note that the component models are not necessarily the same

as the models designers have created. The designer can work on a higher level, and lower-

level models could be necessary for analysis. In terms of the language of the MDA: while

the designer could work with Platform-Independent Models (PIM), for analysis one needs

Platform-Specific Models (PSM) for the components.

For the platform, one needs a model that unambiguously captures the platform’s be-

havior and describes how the components interact with each other via the platform. Note

that the overall system is a composition: C1‖C2‖ . . . ‖Cn‖P (that is the components are

61

composed with the platform). The objective of the analysis is to compute the properties of

the composed system consisting of the components and the platform (models).

Note that the platform model is abstract (in the general sense), but it must be made

concrete to the configuration of specific applications. The abstract platform model captures

how components interact in general, without referring to any specific component configura-

tions. However, we are always interested in concrete, specific systems, where components

are “wired” in a specific way. Therefore the platform model must always be concretized for

the application one wants to analyze.

To summarize, analysis of component-based embedded system designs necessitates that

platforms are modeled (in addition to components). The MoC defines the rules how the

components interact with each other, but the platform assigns concrete (observable) behavior

to this interaction, as every operation of the system is manifested through the platform.

In summary, we can say that

For the analysis of specific designs it is necessary to have the concrete model
of the platform, which includes the models for specific component interactions.

The requirement for concretizing the platform models can be solved using a transforma-

tional approach, as illustrated in the following case study.

Design-time model analysis

During the design process, we often need to perform analysis on the design. This analysis

can be used to answer important questions about the system: Does it meet all required

deadlines ? Does it deadlock ? What is the maximum latency between the arrival of an

event and generating a response to that ?

Some of these questions can be answered by performing analysis on the DSML PIM model,

such as finding deadlocks in a dataflow network. Most of these questions can be answered

though only knowing key properties about the implementation platform. For deadline and

62

latency analysis, we need to know about inherent platform delays, such as token propagation

delays. It is also necessary to know how the platform scheduler works.

Thus, the analysis needs to be performed on the PSM of the design. Analysis methods

capable of answering the above questions, such as model checkers work with mathematically

precise abstractions, such as Timed Automata [11]. The input languages accepted by model

checkers (and simulators) are intended to capture the behavior of physical artifacts. There-

fore, they are much different from the design languages intended to describe structure. As a

consequence, the structures described by the design need to be modeled in terms of analysis

languages, capturing their physical behavior (semantics).

This modeling is accomplished by a model transformation: the design model is mapped

onto an analysis model, capturing the intended behavior of the implementation. In other

words, it can be said that this transformation assigns a certain semantics to the design. This

semantics is described in terms of the analysis language, and it is an abstraction of the phys-

ical semantics (behavior) of the implementation. Thus, the correctness of this abstraction is

crucial to the validity of the analysis results obtained by verifying this analysis model.

The SMOLES design and synthesis environment in GME

The following section introduces the SMOLES modeling language and the DFK dataflow

platform.

The SMOLES Language

The Simple Modeling Language for Embedded Systems is used for the construction of

small, component-based embedded systems. The formal definition of SMOLES, along with a

formal definition of its execution semantics, is given in [53]. SMOLES has two main structural

concepts: components and assemblies. Components are functional objects that perform

computations, while assemblies act as hierarchical containers that encapsulate components

and describe the dataflow between them.

63

The major concepts of the language are as follows.

Components represent concurrently executing objects and contain the following ingredi-

ents:

• Input and output ports, which are used to pass data tokens between components.

• Attributes, which are data members of the components.

• Methods, which are operations the component implements.

• Triggers, which describe how arriving data will trigger methods.

Within components, input ports feed into triggers that activate a single method. The

triggers specify firing conditions for methods: If multiple ports are fed into a single

trigger, then ALL of the ports have to have data available to activate the trigger.

If multiple triggers are connected to a method, then the method executes if ANY of

these triggers becomes active. When the condition is satisfied, the activated method

executes. Methods can also be connected to output ports, on which they can send data

tokens to downstream components. The number of tokens produced by a single method

execution could be specified as a range of integers. (Figure 12(b) shows a SMOLES

component with multiple trigger conditions. Token emission is also indicated.) One

of the methods can be marked as initial, which will be executed when the component

is instantiated for the first time. The methods’ worst- and best-case execution times

are also modeled as WCET, BCET attributes, respectively. Components also contain

attributes, which can be implemented as instance data members. Methods access the

attributes as instance variables of their owner (the component object). Input and

output ports are realized as member variables of the component object, accessible

through an implementation-specific API.

64

(a) A simple SMOLES system in GME (b) SMOLES component with multiple triggers

Figure 12: Sample SMOLES systems in GME

Assemblies contain components, other assemblies, and connections representing dataflows

between components. Like components, assemblies can have their own input and out-

put ports. Assemblies may also contain three additional atomic elements:

• Timers that produce data tokens with a fixed frequency.

• Queue objects, which are multi-writer multi-reader data structures and ensure

that each incoming token is passed on through each outgoing connection.

• Queue references which provide access to data flows in foreign assemblies.

Within Assemblies, a port can be connected to precisely one other port. If data

produced by one port should be sent to multiple other ports, or if multiple data streams

should be merged into a single port a Queue has to be inserted. Component input ports

in an assembly can also be connected to Timers. If there is a need for accessing a non-

local data flows in a specific assembly, one can place a queue reference object into the

assembly that acts as a pointer to the remotely declared queue object.

Figure 12(a) shows a very simple SMOLES system as modeled in GME. It consists of a

single assembly, System, (on the left). The assembly has a Timer, Clock which is connected

to component processing’s Input port via a dataflow link (straight arrow).

65

The internal structure of the component is shown on the right. There is one Method,

Dispay, triggered by a trigger condition NewData, connected to the Input port. In other

words, the arrival of a data token into Input will trigger Display to execute.

The visual model editor’s focus is on Display, (light frame with four dots), thus the

editor shows Display’s attributes at the bottom: It has a WCET of 5000ms and BCET of

100ms, and it is not an initial method.

If executed, Clock will generate a data token every time its period (a model parameter)

expires. This will trigger the execution of Display. Thus the above example describes a

very simple time-triggered system.

The DFK platform

The DataFlow Kernel (DFK, [51]) is a runtime environment and software library for the

DataFlow model of execution. DFK allows creating and executing parallel and distributed

data-driven dataflow networks. The first version of DFK was implemented in C++, lever-

aging on advanced object-oriented concepts. DFK compiles and runs on Microsoft Windows

and UNIX.

A lightweight version of DFK was also implemented for a family of Hitachi industrial

microcontrollers, running the µC [32] operating system in a severely resource-constrained

environment [56]. DFK was also ported to the restricted Java environment offered by RCX

bricks [36], which are the “brains” of LEGO Mindstorms robots, also using a microcontroller

as CPU [45].

DFK supports asynchronous dataflows with a high level of dynamism. Dataflow connec-

tions and actors can be created, registered and removed from the network runtime.

DFK provides abstract base classes for user-provided functionality (actors, or nodes in

DFK). The execution of the dataflow network is coordinated by the Kernel class. The

user parameterizes and instantiates the Kernel, then instantiates the actor sub-classes and

registers them with the Kernel. The dataflow connections are established through Kernel

66

API calls, and finally the execution begins by invoking the Kernel’s run() method. DFK

also provides a base template class for data tokens, with operators similar to those of typed

arrays. Dataflow links are implemented as finite-capacity FIFO buffers between Output and

Input ports (see below).

Nodes implement the dataflow actor concept. Nodes contain Input and Output ports

(dataflow endpoints). Input and Output port classes provide an API for the user for data

token read and insertion.

Each node has a pair of (InputTrigger, OutputTrigger) conditions associated. Trigger

conditions can have the following values:

• TM_ALL all ports are ready

• TM_ANY at least one port is ready

• TM_NONE always true (the trigger always evaluates true)

An Input port is ready if it has data token(s) available for reading. Output ports are ready

if the associated dataflow link is not full (i.e. a token.can be inserted).

A node is ready to fire if both trigger conditions (Input,Output) evaluate true. When a

node fires, the node classes run() method is executed. run() is an abstract method of the

actor base class, i.e. the user has to provide an implementation when subclassing.

DFK can be configured for single-threaded and multi-threaded execution. In single-

threaded mode, the Kernel takes care of actor scheduling by evaluating nodes’ trigger condi-

tions and serializing calls to their run() methods accordingly. In multi-threaded mode each

node has its own OS thread. Input and Output read and write calls block if tokens cannot be

read / written. Thus there’s no need for explicit actor scheduling. (In single-thread mode,

read / write calls to ports not ready return with an error).

67

Implementing SMOLES over DFK

SMOLES is a high-level language with its semantics defined in abstract terms. When

realizing SMOLES systems, this semantics needs to be implemented over particular run-time

platforms. In Model-Based Development, this realization takes the form of program synthesis.

During synthesis, source code corresponding to the actual design is generated. The user-

specified functionality is also included as source code or object code. The generated code

leverages on further software libraries and OS (and platform) API.

DFK is a software library providing the implemention of a dataflow MoC variant. Using

DFK as the implementation platform offers two advantages:

1. Reduced development effort, since a number of concepts required for SMOLES is avail-

able in DFK (e.g. data token, dataflows, actors for SMOLES components etc.)

2. Portability: if the user-specified functionality in the design is not OS-specific, the

generated code will compile and run on any OS DFK has support for.

It is important to note that SMOLES models specify functionality as user-supplied source

/ object code for component methods. SMOLES defines no explicit API for token passing /

manipulation. Thus, implementation over DFK is possible only if the method code uses the

DFK API to access data tokens. Had SMOLES have an API defined, it would have to be

implemented using DFK services.

Some of the functionality DFK offers is not required for SMOLES, such as dynamic

dataflow creation / deletion or the ability to connect multiple dataflows to a port. (SMOLES

systems are static and the language allows one-to-one port connections only).

Some concepts required by SMOLES are not available directly in DFK. For these con-

cepts, either glue code needs to be developed, or the design model modified (preserving the

end system’s properties).

Problems to be addressed are as follows:

68

Assembly hierarchy SMOLES supports the hierarchy of assemblies (and components within).

The DFK network is a flat network of nodes. The problem is solved by mapping the

SMOLES design onto an equivalent flat network of Components, Timers and Queues.

Queues Code for a DFK node implementing the Queue functionality needs to be developed.

This is very simple: read from any port, copy the token to all output ports. In the

actual implementation, a Queue is first transformed into a special component, with the

necessary number of input and output ports. It has a single method, copy method,

triggered by any of the input ports. and emitting a token to each of the outputs on

invocation.

Timers In single-thread mode, implementing a node with Timer functionality is challenging.

The node cannot sleep, since this would block the execution of any other nodes ready

to run. There are two possible solutions:

1. Set the timer nodes’ input trigger to TM NONE, thus the node fires whenever

possible, and during firing, check the expiration of the timer. This solution is

correct, however terribly inefficient.

2. Having the possibility to modify the DFK source code, a special timer node with

Kernel support could be created. The expiration of the period is checked inside

the Kernel’s dataflow scheduler and a token is inserted periodically. This solution

is efficient, but requires modification of the DFK. In the case study, this second

choice was modeled: Timers have explicit Kernel support.

In multi-threaded mode this problem is not a problem, since Timer nodes can sleep

and block their thread.

Method trigger conditions SMOLES supports multiple Methods within a component,

with a rich input trigger condition language. This is mapped onto DFK as follows.

Node input triggers are set to TM ANY. The node’s run() method contains dispatch

69

code synthetized by the code generator. It is composed of if instructions with con-

ditions built of Inport.ready() queries matching the SMOLES trigger condition.

SMOLES component Methods are mapped onto node methods, and these are invoked

when the corresponding if condition evaluates true.

Using platforms with abstractions higher than OS level can be quite helpful in reducing

development effort. Yet, there is still a gap between the platform abstraction and the ab-

straction of the DSML. A platform is a generalization, intended to be used for a family of

DSMLs. While implementing the DSML over a particular platform, the implementor has

to be mindful of these differences in abstraction, i.e. that the available platform concepts

might not match directly the DSML’s requirements.

Modeling and synthesis environment

For the SMOLES language, a visual modeling and program synthesis environment was

specified in GME. SMOLES was metamodeled in MetaGME, the UML variant GME uses

for metamodels.

Metamodeling captures the key domain concepts and their relations, and maps them onto

MetaGME language concepts, such as model objects, attributes, inheritance, containment

etc. Visualization rules (icons, colors) are assigned. The metamodel is annotated with OCL

constraints and cardinality rules enforcing well-formedness rules, such as “an output port

must be connected to exactly one input port” or “each component must have a unique

name”.

Figure 13 shows a portion of the SMOLES metamodel in the GME model editor.

Using the metamodel, GME synthesizes a visual modeling environment. This consists

of a model editor (shown in Figure 12(a)), and metamodel-specific APIs for writing model

interpreters, programs to process models.

Modeling SMOLES was straightforward: as shown in Figure 13, the main concepts

of the language and their relations were captured, and mapped onto MetaGME entities.

70

(a) GME metamodel for Assemblies

(b) Part of GME metamodel for Components

Figure 13: Parts of the SMOLES metamodel in GME

Models (container objects) represent Assemblies and Components. Atoms (atomic objects)

model Methods, Attributes, Ports, Triggers, Timers, Queues etc. A Reference was used

to model QueueRef. Port-to-Port typed Connections represent dataflow links, as well as

Input→Trigger and Trigger→Trigger or Method directed connections.

For the SMOLES paradigm, a model interpreter (code generator) was written to produce

implementations for SMOLES systems. Implementations consist of source code (using the

DFK platform API), with compiler and linker rules. The user-provided component method

implementations are also composed into the resulting project. After compiling and linking,

the user obtains a software implementation of the SMOLES design, ready to be executed.

Mapping SMOLES models onto UPPAAL Timed Automata

In the case study, the UPPAAL model checker is used for PSM analysis. UPPAAL

implements model checking over Timed Automata [11].

71

The TA model is another abstraction of the system. Here, the assumed (real-time) prop-

erties of the components and the desired (real-time) properties of the system are captured.

Note that we assume that the timing properties of components are known (and captured in

the models), the system composition is known, and the analysis will be used to determine if

the desired properties hold for the system. Since this work focuses on building the analysis

model, questions regarding requirements modeling are only briefly discussed at the end of

this chapter. Still, mapping requirements onto model checker queries is a very important

part of the validation effort.

In SMOLES , timing properties of component methods are abstracted into BCET and

WCET attributes. During the TA modeling of the DFK platform, the following significant

abstractions were made:

• The data content of data-flow tokens is not considered, and only the number of tokens is

represented. Therefore, transmission delays depending on token size are not modeled.

The models demonstrated do not model token passing delays, although they could be

trivially extended to do so.

• Each processing step (method invocation) delay is represented by a [BCET, WCET]

interval. Data-dependent execution delay (a realistic, but hard to model consideration)

is not captured.

• A generalized data token production/consumption scheme is used. Methods are as-

sumed to consume data tokens available on their Input ports when they are started,

and produce output data tokens when they finish. The number of data tokens produced

is represented by a [min,max] interval.

The transformation applied to the model of the application results in a network of con-

current, strictly synchronized timed automata. There is one automaton for each component.

72

In addition, there is one automaton for the platform model that coordinates component in-

teractions (the Kernel). Global variable declarations facilitate component-kernel interaction

and synchronize the network of TA.

The component TA models are prepared by customizing a template or “skeleton” TA, as

discussed below. Component models are reusable for different kernel models, as they contain

no direct references to parts of the Kernel TA. This is due to the component – Kernel TA

interface taking advantage of certain UPPAAL features (also discussed below in detail).

The Kernel is also generated by customizing a “skeleton”, but it is unique for each

system as it contains direct references to the components of the actual system. The runtime

semantics including the behaviors for process scheduling, resource handling, concurrency and

communication etc. are encoded in the Kernel TA. The Kernel TA is constructed similarly

to the component models: the same quantities (e.g. time) are considered, and expressed in

a similar manner. Modeling certain properties (delays, the runtime system’s own resource

requirements) becomes straightforward, since we use the same apparatus to express those as

we used in the component modeling. This way, the Kernel becomes a “super-component”,

lending itself to the same verification techniques as those applied to the component model.

The kernel and component templates and construction rules (platform semantics) are

encoded in the translation algorithm, i.e. they are implicit. For each platform to be modeled,

a different translation algorithm has to be devised. The general scheme for constructing TA

for platform components is as follows.

• The translation algorithm starts from a TA “skeleton” containing default states (e.g.

Start, Idle, etc.).

• Then component and platform-specific states are added to the skeleton, for example,

to represent each method invocation.

73

• Finally, state transitions are generated, implementing the fine details of the platform.

The exact formulation of transition guards, synchronizers and reset functions is re-

sponsible for establishing the platform-specific behavior for the resulting network of

timed automata.

Modeling component-kernel interaction

Construction of the analysis model TA begins with the declaration of system-wide con-

stants and variables. These will be composed later into state transition guards in member

TA. Component–Kernel interaction is also facilitated through these global entities.

For example, the following listing shows the global declarations for the TA modeling the

simple system shown in Figure 12(a).

1 // Kernel parameters

2 const nProcs 1; // number of processes in the system

3 const IdleTick 10; // Kernel idle sleep

4 const DefChanSize 1; // default dataflow buffer size

5

6 int [-1,nProcs -1] running :=-1; // active process

7 int [0,nProcs] nInitializedProcs :=0; // number of procs. past init

8

9 // Timer ’Clock ’

10 const ClockPeriod 10; // Clock period

11 clock ClockClk;

12 // Node ’processing ’

13 const processingPID 0; // PID for the processing process

14 chan processingRun; // synchronizing context switches

15

16 // dataflows

17 int [0, DefChanSize] ClockOut_processingInput :=0;

The declarations are constructed as follows.

2 In the UPPAAL model, a Process (concurrent TA) corresponds to each DFK node

(plus one to the Kernel). Thus in the example system, nProcs is one (for the single

node processing).

74

3 IdleTick is a kernel parameter, capturing a property of the single-threaded scheduler:

the Kernel will sleep for 10 time units if no actor is available to run.

4 The next constant sets the default dataflow capacity (DefChanSize) to 1.

6 Integer variable running contains the PID of the process (node) currently executing on

the CPU. This variable has an important role in implementing the component–kernel

interface for the the single-thread scheduler model. Modeling of context switching will

be discussed in detail below.

7 nInitializedProcs counts the number of nodes (processes) which have finished ini-

tialization (see the section about the Kernel TA for further discussion).

10-11 For each Timer, a clock variable is constructed, along with a const carrying its period.

13-14 Each SMOLES component (DFK node) is modeled by an UPPAAL TA (process), dis-

cussed in detail below. The scheduler model maintains a PID for each

(e.g. const processingPID for component processing). An UPPAAL synchroniza-

tion channel is used to synchronize each component TA with the Kernel’s scheduler

automaton during context switches.

17 The last section of global declarations models dataflows as shared integer variables. In

SMOLES / DFK, components interact through dataflows. Thus, both the source and

destination components (as well as the Kernel) have to access the variable representing

the dataflow. As mentioned earlier, dataflows are modeled as (bounded) integers de-

scribing the number of data tokens on the particular dataflow link. For each dataflow

there is a corresponding a global integer in the UPPAAL model. The naming conven-

tion is: SrcComponent.name + SrcOutputPort.name + ’_’ +

DstComponent.name + DstIntputPort.name The range of the integer is the capacity

of the dataflow link’s buffer.

75

(a) TA Template for Components

(b) TA Template for Kernels

Figure 14: TA Templates for platform modeling

Component TA models

Component models are created by customizing a “skeleton” TA model describing the

basic behavior. Figure 14(a) illustrates the concept (component initialization omitted). In

UPPAAL , each transition is annotated with three attributes:

guard (g:) boolean function on local and global variables and constants. The guard has to

be satisfied for the transition is to take place.

synchronizer (s:) the transition can be synchronized with transitions in concurrent TA

through UPPAAL channels.

update (u:) atomic variable updates performed when the transition takes place.

76

Also, UPPAAL offers a feature called local variable renaming. When an UPPAAL process

is instantiated (from a TA definition called template), a list of local variables gets assigned

to globals. In the case study, component models have the following parameter list:

Componenti(me, run, Input0 . . . Inputn, Output0 . . .Outputm)

me refers to the global const holding the component’s PID. The second parameter is the

kernel-component synchronization channel (called run locally, Componenti.name + "Run"

globally). The rest of the parameter list maps the Input and Output ports within the

component to global integers representing incoming and outgoing dataflows, respectively.

For example, the TA modeling component processing has the following parameter list :

(me, run, Input), and is instantiated as follows:

processing:=Processing(processingPID, processingRun, ClockOut_processingInput);

Thus, the condition (running == me) evaluates true in the local context of the com-

ponent TA which is currently scheduled to run. (The scheduler sets variable running to

the PID of the active component). The expression evaluates false in any other component’s

context, as me refers to their respective PID constant. Similarly, Input-- means ‘read a

data token from dataflow ClockOut_processingInput’ in the context of the processing

TA instance ClockOut_processingInput is connected to Input port within processing,

thus when the component process is instantiated, parameter Input gets assigned to global

variable ClockOut_processingInput.

Using the run synchronization channel and the running variable in a component model is

redundant. They are shown for the sake of completeness, since not all model checkers support

both ways. If the model checker supports the rendezvous primitive (chan in UPPAAL) it

should be preferred for synchronization (smaller global state space for the TA). In this

case, the modeler still might keep and update the running variable, as it comes handy in

formulating verification queries and analyzing simulator output.

The component automaton has a state representing the invocation of each SMOLES

method. When no method is being invoked, the TA is in state Idle, as shown in Fig. 14(a).

77

(a) SMOLES (b) UPPAAL TA

const InitWCET 1;

const InitBCET 1;

const DisplayWCET 5000;

const DisplayBCET 100;

int[0,1] Initialized :=0;

clock clk;

(c) Declarations for the TA

Figure 15: SMOLES model and Timed Automata for component Processing

The TA transitions to state Methodi if the node is released by the scheduler (running == me),

and Methodi’s trigger condition is satisfied. In SMOLES, trigger conditions are com-

posed of Input ports, Triggers and Triggers connections connected to a Method (as seen

in Fig. 13(b)). These elements visually represent a boolean condition on Input ports using

OR and AND operators. This boolean condition is composed into the guard of transi-

tion Idle → Methodi. In the guard, a port’s “readyness” (i.e. whether there is a data

token available on the port) is represented by the expression Input > 0, where Input is

the local reference to the integer variable modeling the dataflow connected to the port. In

the example (component processing), the trigger expression is as simple as Input > 0.

(Input refers to ClockOut_processingInput). OR trigger conditions are modeled by mul-

tiple Idle → Methodi transitions. AND conditions are mapped into conjunctive guard

expressions. In Fig. 14(a), updates “input--” and “output_token_cnt++” illustrate token

consumption and emission. In the generated TA, a method is assumed to read one token

from the port(s) triggering it. (i.e. the same port(s) present in the guard condition of

the particular transition). Thus, an one-decrement update expression is generated for each.

Token emission updates are generated based on the method→ Output port connections.

Figure 15 shows the component model in SMOLES and the corresponding UPPAAL TA.

The component TA has two private variables: clock clk, and integer[0..1] Initialized.

In this model, synchronization with the scheduler model is done through chan run and

running is not used.

The lifecycle of the component is as follows:

78

1. starts in state Start

2. goes to state Idle if clk>=InitBCET, synchronized with the corresponding transition

in the scheduler model (run!). If this does not happen while clk<=InitWCET, an

UPPAAL invariant, the model checker signals deadlock. On the transition, clk is reset

and the Initialized flag is set.

3. from Idle, the automaton transitions to Display, if the SMOLES trigger assigned to

Display is satisfied (as simple as Input>0, there’s a data token on Input). On the

transition, clk is reset and the token is removed from the buffer (Input--).

4. from Display, the automaton returns to Idle no sooner than DisplayBCET, synchro-

nized with a transition in the scheduler model (run!).State Display also has an UP-

PAAL invariant clk<=DisplayWCET: the TA deadlocks unless the transition happens

on time.

Analysis model for the Kernel

Figure 14(b) shows the template for DFK Kernel models (parts implementing compo-

nent initialization not shown). This template models the single-threaded scheduler with

the Timers implemented in-kernel. The central state is schedule It is implemented as an

committed state in UPPAAL, i.e. the TA must immediately take a transition from here.

All outgoing transitions from schedule are guarded by condition running == kernel, i.e.

the scheduler executes concurrently with no component. In the following text, Out(Timeri)

stands for the dataflow originating in Timeri and In(Compj.Inputk) is the dataflow termi-

nating in Inputk of Componentj.

From schedule, three kinds of transitions are possible:

Fire Timer schedule→ runT imeri when Timeri has expired:

TimeriClk > TimeriPeriod and Out(Timeri) is available (Out(Timeri) < Capacityi)

79

Upon returning to schedule, TimeriClk is reset and the variable representing Out(Timeri)

is incremented.

Execute Component schedule → runComponentj when the node implementing Compj

is triggered:

∨
k=0..m Compj.Inputk > 0 where m is the number of Inputs in Compj (i.e. the

TM ANY DFK input trigger)

The transition is synchronized with Compj’s TA via runCompj and running is updated.

Idle schedule→ Idle if none of the above conditions is satisfied. In this case the scheduler

will idle (wait) for IdlePeriod time units and re-evaluates the guards afterwards.

Note two important properties of the scheduler model:

a) If multiple transitions are enabled, the scheduler chooses one non-determistically. There

is no priority in this model. The analysis model accurately captures this very important

property. A SMOLES designer might have a (false) intuition that since Timers are

implemented in kernel, they have priority over component executions.

b) The guard in runComp transition describes how much the platform scheduler “knows”

about the components’ internals. Here, DFK’s TM ANY node trigger is modeled. The

platform scheduler does not know about the internal trigger condition implemented by

the dispatch code in the node’s run() method. The accurate modeling of such details

of the DSML implementation over the platform is crucial for the validity of the analysis

model.

Having chosen a “better” platform or a “better” technique for the DSML→Platform map-

ping (i.e. the platform and DSML abstraction levels being closer to each other) might

result in a more efficient implementation. For example, if Methodm in Componentj has

trigger Input1 ∧ Input2, a data token on either Input1 or Input2 will trigger the exe-

cution of Componentj.run() continuously, hogging the CPU. Even worse, if the method

80

Figure 16: Kernel TA model for the system in Fig 12(a)

dispatch structure is not formulated carefully and reading from an Input with no token

is attempted, the component execution might fail.

It is the very purpose of this work to provide means to identify such issues. The abstraction

gap between DSML intentions and platform capabilities might be the source of many hard

to identify problems. Platform modeling enables the formal study of this abstraction gap.

Figure 16 shows the TA generated for the Kernel, designed to work with the processing

component TA in Fig. 15. In this example, upon finishing a component method execution

the the Kernel TA updates running by resetting it to −1 (Kernel PID). In the generalized

scheme shown in Fig. 14(b) this is done by the component TA. These two transitions are

synchronized, thus the difference is irrelevant.

Implementing the transformation with GReAT

The following sections discuss the model transformation mapping SMOLES models onto

UPPAAL TA analysis models. GReAT, the model transformation tool operates on GME

81

models, hence the output it produces is also a GME model. Thus, the first, step is extending

the modeling environment with the UPPAAL metamodel.

Metamodeling UPPAAL

Modeling the UPPAAL language in GME consists of two steps:

a) Capture the concepts of the language and their relations (the UPPAAL realization of the

TA concept).

b) Provide a GME export tool (interpreter) to save models in UPPAAL’s native XML format

(textual concrete syntax).

Both steps are routine tasks and each takes about a day or two’s work for an experienced

GME modeler. Figure 17 shows the metamodel, divided onto three paradigm sheets to avoid

visual clutter. The following conceps are captured and modeled:

NTA Network of Timed Automata the top-level UPPAAL object, containing declarations,

TA templates, their instantiations and the list of active TA in this particular System.

Declaration (both system-wide and local to TA templates) contains Clock, Const, Int and

Chan variable declarations.

TA Template describes a TA with its Locations (states with invariants), Transitions be-

tween them with guard, synchronizer and update attributes. The template also contains

local declarations and the instantiation Parameter list. Parameters are macro-like

names, which get expanded into global variable names upon the template’s instantia-

tion.

Instantiations create TA instances based on templates by assigning global symbols to

elements of the template’s parameter list.

System contains the NTA’s name and the list of TA instances active in the NTA

82

(a) NTA (b) TA Template

(c) Declarations

Figure 17: The UPPAAL metamodel in GME

The model interpreter traverses an UPPAAL model and prints it into XML format rec-

ognized by the model checker. Since the structure of the GME model matches exactly the

native XML structure, this conversion is trivial.

Transformation setup and phases

GReAT is a model transformation tool, integrated with the GME framework. It operates

on GME models, and internally uses the GME API to read the source model(s) and read-

/write the target(s). As explained in Chapterr̃efp:Background, a GReAT transformation is

specified as follows:

a) Transformation rules are specified in terms of source and destination metamodel entities.

Thus, the first step is importing the source (SMOLES) and destination (UPPAAL) GME

metamodels.

b) Define crosslinks, additional elements for the “unified” metamodel.

c) Using the visual language defined by the first two steps, specify the transformation rules

and organize them into control flow structures.

83

d) Configuring the transformation by designating input and output files, adjusting options

and designating the startup rule. In this case, the input is the model of a SMOLES

system, and the output is an UPPAAL model.

This transformation reads a SMOLES model. During the transformation, temporary

modifications are made to the memory copy of the source model. The source’s permanent

storage (model file) is not modified. A new, empty model (using the UPPAAL paradigm) is

created at the beginning, modified and saved when the transformation finishes. Subsequently,

an auxiliary model interpreter is used to export the resulting UPPAAL model into UPPAAL’s

native XML file format.

The actual SMOLES → UPPAAL transformation consists of three major phases:

1. Establishing the context by locating the top-level assembly in the model and creating

the corresponding (yet empty) UPPAAL NTA.

2. The next step corresponds to a phase in the SMOLES → DFK code generator. The

system is translated into an equivalent SMOLES system without assembly hierarchy.

As DFK supports no hierarchy, the components within sub-assemblies need to be

“projected” onto a “flat” component network.

3. Finally, this “flat” SMOLES system is translated into the analysis model. A TA is

constructed for each component, and the Kernel model is built.

Figure 18 shows the top-level view of the SMOLES → UPPAAL transformation. The

first rule to be executed is TopLevelNTA. As shown in the top left, it receives the two (input

and output) model’s top-level objects as inputs. For the very first rule, context is specified by

the transformation configuration. Top-level objects in GME models are always Root Folders,

and even empty models contain one.

The rule (expanded in left center) matches the two Root Folders, then matches all

Assemblies folders within SMOLESRootFolder, finally matches all assemblies within (Top).

Well-formed input models contain only one.

84

Figure 18: Top-level blocks of the SMOLES → UPPAAL transformation

For Top an NTA object is created into UPPAALRootFolder. (NTA - Network of Timed

Automata, the top-level container of an UPPAAL system). Create operation is indicated by

the checkmark in the bottom right of the NTA object. In addition, a srcAssembly → dstNta

crosslink is created. Using the crosslink, it becomes easier to specify context for subsequent

rules: only Top is passed along via ports, and the corresponding NTA can be found by

matching the crosslink.

The rule also features an AttributeMapping box: these contain C++ code fragments

(using the GME API) to manipulate model attributes. The code is executed for each match

of the input pattern. In this case, the name of the newly created NTA will be set to match

the corresponding assembly’s name. Finally, the rule passes along SMOLES object Top for

subsequent rules.

Flattening the assembly hierarchy

The next rule-block (FlattenSMOLESHierarchy) performs the second step listed above.

It maps the SMOLES system onto an equivalent one containing components, atomic elements

(e.g. Timers, Queues) and dataflows only.

85

The steps of this “projection” of the SMOLES system onto a “flat” one is shown on the

right in the expanded rule-block (in Fig. 18). First, in rule-block copyAssembliesToTop, the

assembly hierarchy is traversed recursively, and the contents of each assembly is “projected”

into the top-level assembly (Top). Crosslinks are used to link the objects in hierarchy and

their corresponding “images”.

Then, the next rule block (copyConnectionsToTop) traverses the hierarchy again. It

matches dataflow connections within non-toplevel assemblies and “projects” them into Top.

Corresponding connection endpoints in Top are identified by the crosslinks created previously.

Finally, all sub-assemblies (with their connections and contained objects) are deleted from

Top (rule delNonTopLevelAssys). The rule is shown in the lower right section of Fig. 18.

It receives its context (Top) via the input port, and matches (and deletes) all contained

assemblies. The delete operation is denoted by the small ’x’ in the lower right corner of the

icon. The transformation configures GReAT to work with a memory copy of the SMOLES

input model, so the original model is not modified.

Rule blocks copyAssembliesToTop and copyConnectionsToTop are further expanded at

the bottom of Fig. 18. Their context consists of 2 assemblies One is Top, the other one is

used for traversal. At the start of the recursive rule block, both points to Top.

In copyAssembliesToTop (on the left) a select block checks whether Assy contains sub-

assemblies. If not, the rest of the rule block is ignored. If yes, they are matched and

“projected” to the top (CopyAssemblyToTop), and the rule-block contains a reference to

itself (rightmost block), implementing recursion. Rule block icons with a circular arrow in

the lower right corner indicate references (to other rule blocks). In this example, all references

point “back” to the rule block containing them. This is how a recursive rule block can be

specified in GReAT.

Rule block copyConnectionsToTop works similarly: “projects” all dataflows and time

triggers (dataflows originating in Timers), and passes all sub-assemblies to itself recursively.

86

(a) “Projecting” assemblies to toplevel (b) “Projecting” dataflows to toplevel

Figure 19: Rule blocks flattening the SMOLES hierarchy

Figure IV shows the recursive rule blocks “projecting” sub-assemblies and their dataflow

connections into Top. Again, the rule block contains a self-reference (CopyConnsToTop)

for recursion. After matching sub-assemblies, the operation is decomposed into “copying”

components and the “rest” (atomic objects such as Timers, Queues etc.). CopyComponents

first checks whether the sub-assembly has components at all.If it has, the “image” component

is created in createCopyComponents, and its contents are copied in CopyInternals. For

each element copied onto toplevel, a srcOrig → dstTop crosslink is created, as seen in

createCopyComponents (expanded rule on the right in Fig. 19(a)).

Figure 19(b) shows how the dataflow connections are projected into Top. Dataflows

and TimeTriggers (dataflows originating in Timers) are matched in the “current” assembly.

The dataflow needs to be copied if at least one of its endpoints had been projected into

Top. This decision is implemented by the Test block shouldWeCopy, containing three test

cases. One of the test cases is expanded in the lower left. Its context is the Dataflow

object matched earlier. It matches the connection’s two endpoints, with the destination

having a srcOrig → dstTop crosslink (i.e. it was projected in copyAssemblyToTop, seen

in Fig. 19(a)). If any of the three test cases matches, the dataflow connection is copied

into Top. Rule copy implementing this is exploded on the right: it creates a new Dataflow

connection instance in Top, with the two endpoints matched by one of the Test cases. In a

Test structure, only one of the cases matches. This pattern will propagate its context (the

87

Figure 20: Rule blocks creating UPPAAL TA

matched objects) through GReAT ports to the next rule (copy). Traditionally, output ports

(propagate the context of matched objects) is drawn on the right side in GReAT. Input

ports bind matches of earlies rules to pattern elements. These ports are usually drawn on

the left. Output → Input connections between rules and rule-blocks are also illustrated in

Fig. 19(a)).

Creating the TA templates

Figure 20 shows the overview of the third phase, mapping the “flat” SMOLES network

onto UPPAAL TA. First, GlobalDecls creates global variable and constant declarations for

the UPPAAL model, such as nProcs and running. As explained earlier, the Component–

Kernel interface relies on these. Sub-sections of the UPPAAL NTA are also created here

(e.g. yet empty System and Instantiation declarations).

Next, Templates is responsible for the followings:

Queues Create a specific TA for each Queue. Queues allow multiple incoming and outgoing

dataflow connections, and copy each incoming token onto each outgoing dataflow. The

mapping consists of two steps. First, modeling the operation of the SMOLES → DFK

88

code generator, the Queue is mapped onto a SMOLES component with the necessary

number of Input and Output ports, and a “library” method copyToken. Arrivals on

each Input trigger the method, and in response it emits a token on each of the Outputs.

An UPPAAL TA modeling the component is created according to the rules described

earlier by Fig. 14(a).

Channels For each SMOLES Dataflow an UPPAAL global integer variable is created, as

illustrated at the bottom in Fig. 20. All Dataflows are matched within the top-level

assembly Top, along with their endpoint ports and components. Then, an Int variable is

created in the UPPAAL TA. The AttributeMapping box names the variable according

to the naming convention described earlier. (SrcComponent.name

+ SrcOutputPort.name +’_’+ DstComponent.name + DstIntputPort.name)

Components creates a TA template (definition) for each component, as seen on the bottom

right.

DeclarationsAndParams creates local variable and const declarations (e.g. clock clk).

DefaultStates creates the TA “skeleton” by adding Start and Idle states. Then,

Activities generates states modeling method invocations, and rule blocks Triggers

maps trigger conditions onto transition guards as follows:

1. An Idle→ Methodi transition is created for each Triggerj → Methodi connec-

tion.

2. For each Inputk → Triggerj, Inputk > 0 is ANDed to this transition’s guard.

This implements the ”ANY incoming Triggers may trigger a Methodi, and ALL Inputs

connected to a Trigger have to have token(s) in order for the Trigger evaluate true”

semantics of SMOLES .

Rule block Outputs models token emission by appending Output_port++ update state-

ments to Methodi → Idle transitions, derived from the SMOLES model.

89

Figure 21: Creating the Kernel TA

Figure 21 shows the construction of the Kernel TA. First, the TA itself is created

(create). Then, for each Timeri a RunTimeri state is added with the appropriate tran-

sitions in Timers. (In single-threaded DFK, Timers are implemented in kernel). For each

Componentc, a state RunComponentc is added as well, as shown in the bottom and left

of the figure. The guard conditions for RunComponentc are composed in a separate rule.

This rule (RunGuards) matches all Inputsjs and composes
∨

Inputsj > 0 for transition

schedule → RunComponentc as described earlier in the section about the component TA

“skeleton”, and shown in Fig. 14.

Verification via model checking Timed Automata

Having the system model converted to a TA network enables using a model checker to

verify properties of the system. First and foremost, TA can be used to verify timing (and

real-time) properties. Since the verifications possible depend both on the platform model

and the model checker’s capabilities, no general recipe can be given for formulating the

verification queries.

90

In general, this is certainly an area of further research, namely how to express those

properties and requirements in the high-level modeling apparatus, and how to propagate

these expressions through the different abstractions of the system. The focus of this research

is capturing end system properties due to platform characteristics, which is a hard enough

problem in itself. Thus, this work provides only a few generic examples to show how to

formulate verification queries, without providing a general recipe.

Model checkers typically verify Boolean queries only. The designer is often interested in

numerical answer. One typical example is: “What is the fastest timer-rate the system can

safely operate at ?” Model checkers can usually verify questions like: “Is the system safe

with a clock of 5 Hz ?” so deducing the actual highest clock-rate is not straightforward.

Parametic analysis ([28]) is an interesting attempt to solve such problems, although very

limited in scope. Alternatively, the designer might iterate through a sequence of verification

queries to approximate the answer.

In the following examples,.typical properties will be highlighted designers might be in-

terested in. Basic ideas for expressing and verifying these properties are presented. These

ideas could be used in the context of models similar to the ones used in the case study.

Checking for latency A typical verification question: “Is the delay between invocations

of a certain method larger than n time units ?” To answer this question, we have to

extend the generated TA trivially by adding a dedicated clock (myclock) and reset it

at each invocation. Then, a model checker query can be formulated such as (in CTL)

“E♦(myClock > 5)”, meaning does it ever happen that the clock value exceeds 5 ?

Checking for resource usage and conflicts In the case study, each activity (method)

was annotated by its WCET and BCET. Similarly, they could be annotated by resource

requirements other than CPU time. The Kernel TA could be extended with accounting

for that resource through a shared variable across the TA network. Dynamic memory

allocation is a good example: each component TA increments/decrements the size of

91

the dynamic memory pool upon entering/leaving states corresponding to method invo-

cation. With the model checker, the designer is able to verify the system’s maximum

memory consumption.

Bounding the number of tokens on dataflow links The case study uses a dataflow

oriented runtime platform. Many system properties (such as deadlock) can be ver-

ified by formulating queries on the number of tokens per buffers. For example, if the

number of tokens ever exceeds one on a link coming from a periodic clock, it means

that the destination component was not able to process the clock token on time and

the system missed a clock tick.

Checking schedulability Although the definition of schedulability is general, non-schedulability

can manifest itself on different platforms and systems different ways. Fortunately the

question (since it is Boolean) usually can be formulated within the model checker. In

the context of TA, it can be usually formulated as a deadline-violation statement. In

systems such as the ones presented by the case study, the maximum number of to-

kens on certain dataflows carries information on schedulability. If this number ever

gets greater than a significantly large constant, it can be concluded that the system

produces more tokens than it consumes. Thus, it will eventually it deadlock.

Conclusions

In this chapter, derivation of a platform-level analysis model for a high-level DSML was

presented. The analysis model captures the behavior of the system described by the DSML,

as implemented over a particular platform. The demonstrated technique enables accurate

modeling of platform properties / limitations influencing key properties of the end system.

Using the platform concept narrows abstraction gaps during the implementation and

helps separating concerns. Platforms define a set of well-defined services and resources

for the DSML implementor. Platforms also facilitate reuse and accelerate development by

92

implementing commonly required services over a wide range of hardware / OS / middleware.

By choosing the appropriate platfrom abstraction, the designer can leverage on the availablity

of competing platform implementations.

This work focuses on using platform models for analysis. For analysis models, designers

choose the appropriate level of abstraction, which might cross technology boundaries for bet-

ter accuracy / focus. Designers are able to incorporate key features into the analysis model,

such as the way multithreading / multitasking is emulated on uni-CPU systems. Modeling

resource allocation schemes and limitations imposed by the OS also becomes straightforward

using this approach.

It is also important to emphasize that this approach automates the construction of anal-

ysis models. Thus, the outlined approach enables the automated, design-time verification of

computer-based systems as implemented over given platforms. By choosing the appropriate

level of abstraction, platform modelers excercise control over the complexity of the resulting

analysis model.

This chapter demonstrated implicit platform modeling: the analysis model of the plat-

form was embedded in the transformation specification. For the implementation, a general-

purpose graph transformation language was used. The result was a large, hard to manage

monolithic transformation, spanning from the DSML to the analysis level, containing the

platform information implicitly.

There are several ways to make this transformation more feasible.

1. Breaking up the DSML→Analysis transformation into a DSML→Platform→Analysis

chain. This way, the first transformation becomes reusable for different platform map-

pings.

2. Using a explicit platform models, which can be “plugged into” (i.e. input to) the

transformation, instead of being a part of it.

93

3. Instead of a general-purpose model transformation language, specify the mappings in

a more abstract formalism (platform modeling language), thus making them simpler.

The next chapter explores these possibilities and introduces a language for explicit plat-

form modeling.

94

CHAPTER V

EXPLICIT PLATFORM MODELING

The DSML→Platform→Analysis transformation chain

The previous chapter presented the idea of platform modeling. The platform concept

was introduced, and the benefits of having a PSM analysis model argued for. A case study

was also presented to show how this PSM analysis model can be generated, using model

transformation on the design model. In the demonstrated approach, the platform knowledge

was implicitly encoded into the transformation. If the design has to be evaluated over

different platforms, a transformation needs to be devised for each. In other words, the

previous chapter defined a transformation TPi
for a specific platform Pi:

A(Pi,j) = TPi
(〈PIM〉j)

〈PIM〉j is a specific design, Pi is a given platform, and A(Pi,j) is the corresponding, platform-

specific analysis model (i.e. it models the design as implemented over platform Pi). In order

to verify the design as implemented over a different platform Pk, a different TPk
needs to be

specified. As we had seen in the previous chapter, such transformations are rather complex.

Verifying TPi
is difficult, as it would be for TPk

.

One of the reasons behind the complexity of TPi
is that it implicitly contains the “imple-

mentation transformation” Pi:

〈PiSM〉j = Pi(〈PIM〉j)

This can be observed on case study as well: the SMOLES → UPPAAL transformation

had two, well separated phase. In the first one, the SMOLES model was implicitly mapped

to a DFK-level model. The second phase mapped this model onto UPPAAL TA templates.

95

Thus, formally separating TPi
into “platform” and “analysis” parts could actually be

quite useful:

A(Pi,j) = TPi
(〈PIM〉j) = APi

(Pi(〈PIM〉j)), where

(〈PiSM〉j = Pi(〈PIM〉j),

A(Pi,j) = APi
(〈PiSM〉j)

Pi(〈PIM〉j) is the “implementation” transformation, generating 〈PiSM〉j (a PSM specific

to Pi) for 〈PIM〉j as implemented over Pi. APi
is the analysis mapping: it assigns semantics

to platform-level elements of 〈PiSM〉j by mapping them into the analysis domain, such as

constructing a corresponding Timed Automata.

This approach relies on the fact that 〈PiSM〉j refines 〈PIM〉j and no information is lost

by the translation.

The DSML → Platform mapping

Decomposing TPi
into Pi and APi

offers sevaral advantages. First, Pi might be already

available, since in the context of MDA, Pi is actually the model transformation used to

implement the system!

A good analogy for this transformation is a compiler. Similar to a C++ compiler mapping

object-oriented C++ code onto CPU-specific machine code instructions, Pi maps a PIM

onto a 〈PiSM〉, a platform-specific refinement of the design model. The difference in the

level of abstraction (C++ objects vs. assembly instructions) illustrates the typical DSML–

Platform abstraction gap. Just like a C++ compiler, this transformation is often rather

complex and hard to verify.

Using this approach has one more crucial advantage. Using the very same transformation

in both the synthesis (implementation) toolchain and in the analysis chain further guarantees

96

the validity of the analysis model. This way, the analysis model can be used to analyze

(debug) even the DSML → Platform “compiler” transformation. Compilation errors will be

reflected in the analysis model, and can can be traced back.

For example, the SMOLES → DFK transformation mentioned in the case study was

implemented in code, as a GME model interpreter. The interpreter generated C++ source

code, implementing the SMOLES system using the DFK API. In a different project [9],

SMOLES was used to program LEGO Mindstorm robots. For this project, DFK was ported

to the Java-based lejos operating system running on the robots.

Thus, the code-generating interpreter was rewritten to produce Java code. The basic

structure / class hierarchy of the generated code remained the same, but the differences

between the C++ and Java versions still required careful re-engineering of the interpreter,

going through the develop-test-debug-fix cycle again.

Having had a common DFK platform layer in the modeling framework would have elim-

inated this problem. In this case, a SMOLES → DFK model transformation produces a

platform-level model of the system. “Printing” program code (C++ or Java) based on a

DFK-level model (whose structure follows the structure of the code to be generated) is a

much easier task than doing it so based on the SMOLES system, defined at a different

level of abstraction. Figure 22 compares the two approaches. Rounded rectangles represent

model transformations, and their size in the figure is indicative to the particular transfor-

mation’s complexity. As we can see, having an explicit platform layer (and a corresponding

PIM→PSM transformation) has two advantages:

1. The analysis model is generated from the same PSM as the implementation (code).

Thus, its relevance to the implementation is further ensured.

2. The code generation step becomes much simpler, as the structure of the platfrom-level

model usually mirrors the structrure of the code.

97

(a) Model synthesis with no platform abstraction (b) Model synthesis with explicit platform abstrac-
tion

Figure 22: Advantages of having an explicit platform abstraction in MIC

The Platform→Analysis mapping

As we had seen earier, in many projects using MDA, the Pi “compiler” transformation

is ready and available, and it delivers the 〈PiSM〉j = Pi(〈PIM〉j) mapping.

Next, the analysis transformation APi
needs to be provided. In general, we seek a trans-

formation T such that

A(Pi,j) = T (〈PIM〉j,Pi,APi
)

where APi
is the PiSM → Analysis transformation and A(Pi,j) is the analysis model (of

design j over platform Pi).

Let us make two observations here: First, generally the analysis APi
transformation is

less complex than Pi, since the abstraction gap it needs to bridge is less wide. Basically, APi

has two tasks:

1. Map each platform-level entity onto an analysis language structure (such as the DFK

dataflow → UPPAAL variable mapping, or DFK node →“component” UPPAAL TA

template mapping)

98

2. Define composition rules for the analysis language structures produced in the previous

step. Composition will “configure” the set of analysis-language structures according to

the “wiring” (component interconnections) of the specific DSM. In the case study, the

corresponding step is the instantiation of the component TA templates using global

variables to facilitate interaction.

Pi is specified using a general-purpose model transformation formalism, since it might

be very complex. Capturing the analysis mapping can be done using a more specific formal-

ism. This formalism should provide native support for the above patterns (e.g. instantiating

“skeleton” analysis language structures, extending and composing them). By having a plat-

form modeling language at higher level of abstraction (than a general-purpose GT language)

the platform modeler’s task is made easier. Additionally, using a stricter, special-purpose

mapping formalism helps studying (and proving) properties of the transformation.

Thus, instead of transformation T let us seek T ′:

APi
= T ′(〈PIM〉j,Pi,MPi

)

whereMPi
is referred as the explicit platform model, and T ′ produces the analysis trans-

formation APi
. Technically, T ′ maps the platform model MPi

onto the general-purpose

model transformation formalism used for Pi and integrates the two.

Transformation T ′ has to be specified (and verified) only once. This is quite important,

as the validity of analysis results obtained by A(Pi,j) depends on the correctness of T ′.
For TPk

, both the validity of the encoded platform model and the correctness of the

DSML→Analysis domain mapping have to be verified. An explicit platform model MPi

provides a clean separation for these concerns, and ultimately reduces the effort involved.

This approach enables the specification of explicit platform models (MPi
) separately. Thus,

platform experts can compose platform model libraries, which in turn enable designers to

evaluate their designs over different platforms in an automated manner.

99

This chapter introduces explicit platform modeling, and describes the generic transfor-

mation T ′, and introduces a framework for building explicit platform models.

Platform metamodeling for synthesis

The first step towards providing both Pi and MPi
in the design→synthesis chain is to

metamodel the platform within the modeling framework. Metamodels define the “model-

ing language”, thus enable the construction and use of platform-specific models within the

framework. Metamodeling captures the concepts of a domain (the platform in this case) and

their relations, and assigns abstract and concrete syntax to the model elements.

Establishing the appropriate level of abstraction becomes very important here, as the

designer / modeler faces a tradeoff:

a) Either the metamodel captures the platform concepts very precisely, working exactly at

the level of the platform provider’s abstraction. This results in a “generic” platform meta-

model. This metamodel can be used for different DSMLs, if they are to be implemented

over this platform.

In this case, writing the code generator / system synthesis tool becomes trivial.The DSML

→ Platform transformation has to bridge a wider abstraction gap thus it becomes more

difficult.

b) Alternatively, the metamodel may reflect the particular needs of this particular DSML

→ Platform transformation, and omit certain platform concepts or model them at an

abstraction level closer to the DSML. Thus, the platform metamodel becomes specific for

this plarticular DSML → Platform transformation.

In this case the DSML → Platform transformation becomes simpler, and the code gen-

erator has to map these concepts down to platform level.

This problem arises because for implementing a certain DSML, the platform services are

used in a certain configuration (e.g. in the SMOLES→ DFK implementation, a component’s

100

run() method always contains a dispatch structure matching the SMOLES trigger). Either

this particular structure / configuration is modeled at the level of platform primitives and

repeated for every system, or the platform metamodel implicitly assumes the presence of

this structure, and does not model it in depth.

For example, a C→Assembly compiler developer may choose to work with a “generic”

assembly metamodel, capturing each individual instruction. Alternatively, knowing that

certain C language entities (such as function entry / exit) map onto certain well-defined

assembly instruction sequences, one may choose to model these concepts explicitly in the

assembly metamodel. In the first case (“generic” assembly metamodel), the C→Assembly

compiler has to generate these sequences, thus it becomes more complex. In the second

case, the compiler is simpler, and the assembly model “export” tool expands these elements

into instruction sequences. Also, in this case the assembly metamodel might become“C-

specific”. The decision which case to take is made after considering the advantages of having

a simpler “compiler” transformation over being generic. It might also be possible to achieve

both objectives at the cost of considerable extra work (e.g. providing a macro assembly

language).

Let us examine this tradeoff in detail for the case study: In SMOLES components,

elaborate trigger conditions select one method for invocation. In DFK, the node triggers are

much simpler (TM NONE, TM ANY , TM ALL), and there is only one method (run())

that gets invoked. The implementation bridges this gap by using TM ANY and synthetizing

dispatch code structure into run(), invoking the appropriate method. This is one possible

implementation of the SMOLES trigger condition over the DFK platform.

If the DFK metamodeler chooses the first option and prepares a DFK metamodel exactly

matching DFK concepts, he / she models the three simple DFK triggers. All DFK models

produced through the SMOLES → DFK transformation use TM ANY , and the other two

will never be used. Additional means have to be provided to model the “internals” of method

run(), in order to model the dispatch structure, as it is a very important part of the system

101

Figure 23: The DFK metamodel in the case study

under construction. For a general DFK metamodel, this means modeling the internal if

instructions at some level of abstraction. For ultimate precision, the C++ language has to

be modeled.

Figure 23 shows the DFK metamodel prepared for the case study. This metamodel was

prepared to fit for the SMOLES→ DFK translation, rather than being a generic DFK model.

One more reason for this decision was the need to model a special Timer node. This is not a

native concept of DFK but important for implementing SMOLES . In order to implement an

efficient Timer, it is necessary to modify the DFK kernel anyway. A generic DFK metamodel

does not describe this property.

As shown in the figure, this metamodel uses trigger conditions similar to those used

in the SMOLES metamodel. The run() method is not modeled explicitly. Using this

metamodel, the model interpreter generating the implementation source code has to process

the trigger conditions, and synthesize the corresponding dispatch structure for run(). Also,

as mentioned earlier, this metamodel cannot describe every DFK system, since it captures

102

(a) Queue and Timer in a
SMOLES assembly

(b) DFK node configuration

(c) Queue as mapped to a DFK
node

Figure 24: Illustrations for the SMOLES → DFK transformation: Queue and Timer

one particular configuration. For example, this metamodel cannot capture negative trigger

conditions, such as “fire Method1 if there is data on Input1 but no data on Input2”. The

native DFK API allows constructing such conditions.

Example: The SMOLES → DFK transformation

Using the “specific” DFK model, mapping SMOLES onto DFK is an easy task, consisting

of the following steps:

1. Flattening the assembly hierarchy. This problem has been solved in the previous

chapter, and the rule block can be re-used here.

2. Mapping Timers and Queues. As seen in Fig. 24, both Timers and Queues are mapped

onto DFK nodes. Timers are simply mapped into DFK timer nodes, and no internal

structure is modeled (apart from the presence of an Output dataflow port). For Queues,

a “regular” DFK node is created, with the necessary number of Inputs and Outputs,

103

and a library method Copy within. This method is triggered by token on any of the

input ports, and it will emit one token on each Output in response.

3. Mapping components. This step is rather simple: SMOLES Inputs, Outputs and

Methods map onto DFK Inputs, Outputs and Methods, respectively. Trigger mapping

is also straightforward, as shown in Fig. 25. In SMOLES , a Trigger evaluates true

if all connected Inputs have a token present, and a Method gets triggered if any of

the connected Triggers evaluates true. Thus, a SMOLES Trigger is mapped onto a

DFK AND Trigger, with the respective Input→Trigger Triggers connections. For each

SMOLES Method, a DFK OR Trigger→Method sequence is created, and incoming

trigger connections attached to the OR trigger.

The GReAT rules shown in Fig. 25(c) implement this mapping:

a) First, for each SMOLES Method within a Component, a DFK Method (with the

attached OR triggger) is created into the corresponding Node. The two Methods

are associated using a SMOLES → DFK crosslink.

b) Then, for each SMOLES Trigger→Method connections a DFK AND trigger is cre-

ated and connected to the OR trigger attached to the corresponding DFK Method.

The corresponding DFK Method is found by following the crosslink.

c) Finally, for each SMOLES Input→Trigger connections, the corresponding DFK

Input is created, and connected to the appropriate DFK Trigger.

As explained earlier, this mapping is easy because the language chosen to model DFK is

very specific for the SMOLES→ DFK implementation. In this case, it is the task of the code

generator to produce blocks of code for entities not explicitly represented in the PSM. Such

entities include nodes’ run() method and the code within implementing method triggers.

During the course of this research, PIM→PSM transformations have also been prepared

for case studies where the platform metamodel reflects the native structure of the platform.

104

(a) A SMOLES component with trig-
gers

(b) Corresponding DFK component
with triggers

(c) GReAT rules implementing the mapping

Figure 25: SMOLES → DFK trigger mapping

In these cases, the transformation implementing the DSML→Platform mapping may become

rather complex, as illustrated by the papers published about such transformations: [52], [55].

105

The Platform → Analysis transformation

This chapter introduces explicit platform modeling, and an important part of this effort

is to provide a formalism for capturing the Platform → Analysis mappingMPi
in transfor-

mation T ′:
APi

= T ′(〈PIM〉j,Pi,MPi
)

MPi
captures the information necessary to map 〈PIM〉j ontoAPi

(the analysis model specific

to platform Pi).

A platform model specifies a mapping from platform-level primitives (e.g. instruction

sequences or platform-level component descriptions) to analysis model structures (such as

timed automata fragments), which model the behavior of the design implemented over the

particular platform. According to the above formalism, platform models define the second

transformation in the DSML→Platform→Analysis chain.

As we have seen earlier, the DSML→ Platform transformation (the “compiler”) might be

very complex, as shown in the case study published in [52] and [55]. Due to this complexity,

this transformation is specified using a general-purpose model transformation language, such

as GReAT.

However, the Platform→ Analysis transformation is typically simpler. As demonstrated

in the previous chapter, this transformation takes a “template” analysis model for the kernel

or for the components, and “expands” it with design-specific details (e.g. additional states

and transitions). For this simpler transformation a more specific, more abstract formalism

— resulting in a simpler, higher-order transformation language — could be used. Using a

more specific formalism offers the following advantages:

1. Higher level of abstraction makes the resulting platform models simpler and smaller.

2. Operations or structures common in this area can be captured and supported explicitly.

This leads to a simpler, more concise language.

106

(a) The Kernel skeleton in
UPPAAL

(b) Creating the Kernel skeleton in a GReAT rule

Figure 26: Creating an analysis model fragment in GReAT

For example, GReAT supports different control structures for the explicit specification

of rule sequencing. This enables the use of GReAT in many different graph transformation

scenarios. The price we pay is the sophisticated (and in many situations awkward) way bound

objects are passed between rules. If matched objects from a rule are being used by more

than one subsequent rule, the same set of objects have to be propagated to all “downstream”

rules, regardless of which objects are actually used. This leads to either overly complex rule

interfaces (and rules with many unused pattern elements), or the proliferation of “filter”

rules whose only purpose is to streamline the interfaces of other rules.

Furthermore, creating / attaching complex analysis model fragments (“skeletons”) is

difficult in GReAT, because in GReAT one always works at the metamodel level.

Figure 26 illustrates this problem: Fig. 26(a) shows an UPPAAL model fragment (the

skeleton for the Kernel automaton), and Fig. 26(b) shows the GReAT rule creating this

structure.

In GReAT, each (new) object has to be captured at the metamodel level, along its parent

and containment relation. For specifying a simple connection, 8 objects have to be present

(parent, source and destination, connection object, connector symbol and 3 associations).

Looking at the rule in Fig. 26(b), it is hard to visualize the resulting structure. Unfortunately,

in GReAT it is very difficult to include model fragments at the modeling (i.e. not the

metamodel) level, such as the structure shown in Fig. 26(a).

107

Finally, in a platform modeling scenario a the high-level structure of the transformation

is fixed:

1. Create the Kernel “skeleton”, forming the backbone of the analysis model

2. Add and customize (instantiate) component skeletons

3. Integrate the resulting model structures

This structure can be made implicit in the platform modeling language, thus mak-

ing both the language definition, both the models specified in the language simpler. Of

course, it is still possible to map (compile) this higher-level language onto a general-purpose

graph transformation language (such as GReAT). Thus, the resulting “low-level” trans-

formation can be integrated seamlessly with the PSM→PIM transformation within the

DSML→Platform→Analysis chain.

The following section introduces PML, the Platform Modeling Language, developed to

address the above issues.

108

The Platform Modeling Language (PML)

PML is a simple, declarative formalism to specify the Platform→Analysis model map-

ping outlined above. The language supports the building of analysis (target) models by

inserting, customizing and composing target model fragments (called “skeletons”) into the

model being built. These skeletons model platform-level components. PML uses graph

patterns to identify, locate and insert these skeletons in the source and target models. Fur-

thermore, PML includes a simple declarative graph transformation (“mappings”) language

for the composition and customization of these template structures.

The pattern language tries to keep (and leverage on) the most useful features of GReAT,

such as constructing the pattern language over the metamodels and the UML-inspired visual

language. At the same time, PML tries to be as “clean” and simple as possible. In patterns,

LHS and RHS are syntactically separated, the execution semantics is much simpler (no

control flow structures), as well as the (implicit) rule sequencing. Complex (LHS) patterns

can be broken up into simpler parts, and the passing of the pattern context among these

parts is simpler and easier to use than that of GReAT.

Unlike in GReAT (e.g. as shown in Fig. 26(b)), the output model fragments corresponding

to platform components can be given at the model level, as shown in Fig. 26(a). Thus, these

partial models can be created and edited using the visual modeling environment created for

the analysis language. This makes the platform modeling process much more user-friendly

and less error-prone.

The output is still generated as a GME model, conforming to the analysis language meta-

model. Using this approach, the resulting analysis model can generated in a tool-independent

format, and simple “export” tools could be provided within the modeling framework to gen-

erate tool-specific concrete syntaxes. For example, the resulting “generic” timed automata

could be exported into text files conforming to the input format of different tools (UP-

PAAL [34], HyTech [28], IF [16] etc.).

109

A PML model consists of 4 basic parts, corresponding to the three tasks outlined above,

plus one to establish the pattern language:

1. The UML metamodels for the source (platform) and target (analysis) models. PML

provides an import tool to include GME metamodels into platform models. Addition-

ally, PML models may contain optional crosslinks definitions, to be used later during

the mapping. Unlike in GReAT, it is not mandatory to define crosslinks in advance:

they can be introduced “on the fly” in the mapping rules.

2. The construction of the output model starts with the instantiation of the Kernel (given

as a partial analysis model).

3. Next, components are identified in the source (platform) model via pattern matching.

A target model fragment is associated with each component in the output model, and

customized (instantiated) based on the source component. The destination within the

target model for the copy operation is also designated by a pattern. Crosslinks are

automatically generated to link the source component with the corresponding target

model structure copied.

4. Finally, a simple GT language (mappings) is provided to further customize and extend

the target model.

Appendix A details the PML implementation (metamodel and framework) created in GME.

The following sections introduce the above 4 basic parts of PML. Appendix B provides

detailed examples for the concepts below from the DFK → UPPAAL PML model.

Metamodels, Crosslinks and the Kernel skeleton

Metamodels

Similar to GReAT, PML also assumes that the target model (the platform-level model)

is specified as a UML object diagram, conforming to a platform metamodel MP . Similarly,

110

the resulting analysis model Ai is an object diagram as well, conforming to the analysis

metamodel MA. The visual pattern language is established over these metamodels.

Thus, the PML model has to contain the UML metamodels of the source and target

metamodels, just like with a GReAT transformation. The PML environment provides an

import tool (ImportMeta) which performs this task for GME metamodels.

Crosslinks

Crosslinks are used (and defined) the same way as in GReAT, in a separate folder.

Forward declaration of crosslinks is necessary only if either endpoint is an abstract class.

Crosslinks between non-abstract classes can be used “on the fly” in mappings.

Kernel skeleton

Each platform model contains a filename (KernelSkeleton) designating a target model

file, containing the skeleton of the Kernel model. Building of the target model starts by

copying this model into the (empty) analysis model, and all subsequent operations commence

from this model.

Component Skeletons

The concept of a component is central to PML. Components are a related group of

elements in the source model, identifiable by a pattern. The pattern designates a single

element to represent the component. This element is typically a container in the modeling

language, such as the Node element in DFK. Components are mapped to a corresponding

structure in the target model. For example, in the UPPAAL model a TA (Template) models

each Node, along with a few associated global variables and declarations (e.g. the PID of

the component process).

This concept is modeled through ComponentModel structures in PML. ComponentMod-

els contain:

111

Figure 27: Visualization of the ComponentModel concept

• The name of an analysis (e.g. UPPAAL) model file, containing the skeleton

• A pattern to locate the component within the source model (IdentifyComponent)

• Definitions of one or more target model fragments, to which the component is mapped

in the analysis model.

The idea of a ComponentModel is visualized in Figure 27.

Identifying Components

Components in the source (platform) model are identified by an IdentifyComponent pat-

tern. This pattern defines “what is a component” in terms of source metamodel elements.

The pattern also designates a “representative” element for the component. This is done via a

specific pattern element, LocatorElement. The transformation creates associations between

this representative element and the corresponding analysis fragments. Thus, the source

component for each analysis fragment can be traced back at a later stage.

112

Component Parts

A single component might have corresponding elements / structures at multiple locations

in the analysis model (e.g. the TA template and the PID global constant). In order to facil-

itate this, ComponentModels may contain one or more ComponentParts. ComponentParts

define the following:

• The location of the fragment within the component skeleton model (ObjectPath)

• The destination of the fragment in the analysis model being built.

ObjectPath is given as a string attribute (see Appendix B for details). The destination

within the target model is defined by a pattern, contained by the ComponentPart model. The

pattern is formulated over target model elements, and designates a single element (Locator).

During the mapping process, this element is created within the target model, and the skeleton

is copied into it. The ComponentPart pattern might also contain a procedural code fragment

(Instantiation box). This code sets the attributes of the inserted fragments using the GME

API. The code can access both the source and target model elements.

Using this approach, the “skeletons” forming the backbone of the analysis model can be

comfortably edited and reviewed using the modeling framework.

Mappings

In addition to the skeleton instantiation language, PML also features a simple graph

transformation language (Mappings). The main purpose of this language is to facilitate fine-

grained customization of the analysis model.. The mappings blocks are evaluated after the

component skeleton instantiations had taken place.

It is important to emphasize that although the mappings language is auxialary to skeleton

instantiation in PML, it is still a capable graph transformation formalism. All the mappings

performed through component skeleton instantiations could be performed using only the

113

mappings language, at the expense of sufficiently complex mappings rules, as it will be

demonstrated by the following examples.

The language uses rewriting rules based on graph patterns. The patterns are formulated

similarly to those in GReAT. The main design intention was to come up with a simpler

(easier to learn and understand) language. For somebody with a background in GReAT, the

differences can be summarized as follows. In PML,

• LHS and RHS of graph patterns are syntactically separated into filter conditions and

actions.

• Rule context propagation is simpler, subsequent rules can simply reference to elements

matched earlier (MatchReference).

• There are no (explicit) control flow structures.

• The rule execution semantics is much simpler.

• There is no delete operation.

In the following sections, the basic concepts of PML Mappings will be introduced through

a simple example. The example shows mapping rules from DFK (the metamodel in Fig. 23 is

used) to UPPAAL (Fig. 17). Appendix B contains additional, more sophisticated examples.

A PML mapping identifies MP patterns through filter conditions (LHS), and maps them

onto MA structures as specified by action patterns (RHS). Both the actions and conditions

are expressed as graph patterns over MP and MA elements. Filter patterns can be annotated

by C++ code snippets as boolean-valued guard functions over pattern elements’ attribute

values.

A filter condition is satisfied if the pattern matches a sub-graph of the input model and

the optional guard expression evaluates true. Filter conditions are assumed to be side-effect

free.

114

With the associated filter(s) satisfied, an action could get executed, creating the elements

specified in the action pattern and setting attribute values as specified in optional SetAt-

tribute C++ code fragments. (The precise execution semantics is discussed later in this

chapter.)

Filters and actions contain two kinds of pattern elements:

a) MetaClasses are metamodel elements to be matched (in filters) or created (in actions).

b) MatchReferences refer to elements matched by previous filters (more about filter hierarchy

in the next section).

Similar to MetaClasses, associations between elements in filters are to be matched, and

to be created in actions. The dual role of MetaClasses and associations reflects the LHS

nature of filters and RHS nature of actions.

In patterns, elements may refer to instances from both MP and MA. For all patterns,

matching always starts from the two top-level objects (RootFolders from both models). In

other words, in a pattern any element (except RootFolders) has to be associated with an

other element.

A mapping block has one filter condition, and zero or more actions.

The next section explains context (bound object) passing between patterns and pattern

hierachy in PML.

PML block hierarchy

Mapping blocks can be organized into hierarchy to simplify filter patterns. Figure 28

illustrates this (filters are named fi, actions aj and blocks bk):

The topmost filter f1 (in block b1) matches the DFK System. Sub-block b2’s filter

f2 refers to the System matched using a MatchReference object, and matches all Nodes

within the system, along with their associated UPPAAL TA Template. (SrcComponent→
DstComponent associations are made by component skeleton instantiations).

115

Figure 28: PML Block hierarchy to map Nodes and Methods

Inside b2, sub-block b3’s filter (f3) matches the TA template’s Declarations block and all

Methods within. f4 matches all such Methods with no TA Location associated, and action

a1 creates the Location and maps the Method’s BCET and WCET values onto constant

declarations within the TA template.

Filter conditions in sub-blocks may refer (indicated by dashed frame) to elements matched

by the immediate parent block’s filter (MatchReferences). This enables breaking up filter

patterns into simpler ones by eliminating the necessity to always derive each elements from

RootFolder(s). (Some – not all – MatchReferences are visualized by dashed arrows in Fig. 28).

Note that the hierarchy does not imply scheduling for action execution, it is only to aid

logical organization. Action execution order is discussed in the following section.

116

Mappings semantics

Global Filter Condition

For each action ai, a Global Filter Condition(GFCi) can be constructed by composing

associated filter conditions along the block hierarchy:

Definition Let fi be the filter of the block containing ai. Let fi−1 be the filter of the

immediate parent block (i.e. one level up in the hierarchy). Comp(fi, fi−1) is a filter obtained

by joining fi and fi−1 together as follows:

1. the glue graph, Glue(fi, fi−1) is the set of elements of fi−1 referenced in fi (dotted frame

in the diagrams) along with the associations internal to the set. Start the composition

with the glue graph, c0 = Glue(fi, fi−1).

2. construct c1 = Attach(c0, fi \Glue(fi, fi−1)): add the rest of fi and attach the associ-

ations between fi and the glue graph.

3. c2 = Attach(c1, fi−1 \ Glue(fi, fi−1)): add the rest of fi−1 and attach the dangling

associations between c2 and the rest of fi−1.

4. Comp(fi, fi−1) = c2.

Then, let us define the composition of filters along the block hierarchy as:

Comp(fi, fi−1, . . . , f0) = Comp(Comp(Comp(fi, fi−1), fi−2), . . .), f0)

and the global filter condition for action ai as

GFCi = Comp(fi, fi−1, . . . , f0)

where fi is the filter associated with action ai.

For example, GFC1 = Comp(f4, f3, f2, f1) = Comp(Comp(Comp(f4, f3), f2), f1) in Fig-

ure 28 for action a1.

117

Figure 29: The simplified IF metamodel

Execution semantics for actions

The execution semantics for actions is shown on Algorithm 2:

Algorithm 2 Action execution semantics

while ∃i such that (GFCi) is true do
Execute actioni

end while

If there are multiple actions eligible for execution, one is selected non-deterministically.

There is no explicit ordering. Implicit ordering can be established by referring to elements

to be created by “previous” actions.

A detailed example: mapping triggers for IF

In this section, a detailed, non-trivial example will be discussed to illustrate the PML

mappings language. The example shows mapping rules from DFK (the metamodel in Fig. 23

is used) to a simplified model of the IF analysis language. IF [16], just like UPPAAL has its

own Timed Automata implementation. The simplified IF metamodel is shown in Figure 29

(many details omitted for simplicity). IF systems consist of automata (processes) with states,

transitions, and variables. For transition guards, a simple expression language featuring

binary AND, OR operators and variable references (semantics: var 6= 0) is modeled. The

118

(a) A DFK trigger (b) UML model for the trigger condition

Figure 30: Trigger condition (a ∨ b ∨ c) ∧ d in DFK

expression language models a simple parsing tree: expressions always have a “left” side

(Expr), which might have a “right” side (ExprR), or contain a sub-expression in parenthesis.

The trigger mapping example discussed later explains the expression model in detail. In

the IF metamodel, operations on dataflows, variable updates and complex expressions are

omitted for simplicity.

Mapping DFK trigger conditions onto IF guard expressions is a good example to illus-

trate the capabilities of the PML mappings language. It is especially educative for readers

with background in GReAT, as it emphasizes the differences between the GReAT and PML

approaches. (In GReAT, a recursive rule block would have been used.) In the following

section, this transformation, which builds an expression parse tree based a DFK trigger

structure will be discussed in detail.

Figure 30 shows a DFK trigger condition ({a, b, c, d} are Ports) and its UML model, using

the metamodel from Figure 23. Such a condition may trigger a Method or be a part of a

larger trigger condition. Figure 31 shows the corresponding expression parse tree and the

UML diagram, according to the IF metamodel in Figure 29, where {a, b, c, d} are variables.

Note the difference between the expressions: since in IF, the logic operators are binary, the

parse tree is 3 levels “deep” (not counting the () operators), whereas in DFK it has only 2

levels.

The PML mapping is shown in Figures 33-35. It implements Algorithm 3, and can be

summarized as follows:

119

(a) Parse tree (b) UML model for the parse tree in IF

Figure 31: Trigger expression ((a ∨ b) ∨ c) ∧ d in IF

Algorithm 3 Mapping trigger conditions

1: find a Triggers→Expr pair (Ti, Ei)
2: if Src(Ti) = Pi is a Port then
3: create the expression into Ei meaning “data available on Pi” (Fig. 33).
4: else if Src(Ti) = Ts (it is a Trigger itself) then
5: if the “left” branch is empty for Ei then
6: create a (yet empty) Es[ht!] into the left branch, associate (Ts, Es) (Fig. 34).
7: else if the “left” branch is not empty for Ei then
8: create RExprop(Es) with op from Src(Ei) (AND or OR) (Fig. 35).
9: end if

10: end if

120

Figure 32: Progress of the trigger mapping process

Figure 33: Block mapping a Port trigger source (steps 2-3))

First, find the top-level Triggers connection (i.e. the one connected to a Method) and

create and assign a Expr to it through a Triggers→Expr crosslink (this preliminary step is

not shown). Then, for each Triggers connection, create a “left” branch in the parse tree

and associate it with its source Trigger’s first argument. For each subsequent argument

(incoming Triggers), create a “right” branch, and add a level to the right side of the parse

tree. The progress of the algorithm is illustrated in Figure 32.

Figure 33 shows the PML block implementing steps 2-3: the filter pattern describes the

input port with a Dataflow connection and the associated IF variable, and the corresponding

empty Expr. The action creates a var ref.

Figure 34 shows the block corresponding to steps 5-6: Src(Ti) is a Trigger (Src), Ti

has an empty Expr associated, and SrcTrigger has not been visited yet. In the action,

a parenthesized Expr is created in the left branch of TriggerExpr and associated with Ts.

Also, it is designated as the new “rightmost” node (Next) for Ti.

Figure 35 illustrates steps 7-8.

121

Figure 34: Block mapping an upstream trigger onto an Expr (steps 5-6)

Figure 35: Mapping a subsequent trigger argument onto an ExprR (steps 7-8)

Comparing the DFK → UPPAAL mapping in PML and GReAT

The following table gives a rough complexity comparison of the DFK → UPPAAL map-

ping in PML and in GReAT. The columns give the counts of GME modeling elements in the

models containing the mapping specifications.

In this example, the difference is small because the example itself is small. In general,

the more complex the component skeletons are, the more compact the PML model is (versus

a pure GReAT solution).

As for mapping blocks, the same mapping problem can usually be solved easier in GReAT.

The reason for this is the availability of sophisticated control flow constructs. PML mappings

as a language is much simpler and less efficient in terms of compactness.

122

Figure 36: High-level overview of the PML → GReAT transformation

Transformation Atoms Models Connections Total

Hand-optimized GReAT 162 43 936 1142

PML 77 59 642 778

PML compiled into GReAT 567 86 2760 3413

Implementing PML over GReAT

PML shares several key concepts with GReAT , such as pattern matching on metamodel-

conformant UML model instances. Hence, implementing PML over GReAT is a straightfor-

ward idea. The implementation is done by mapping (translating) a PML specification into

an equivalent GReAT transformation — by a “compiler” GReAT transformation.

Figure 36 provides a high-level overview: Each component in the figure is a model,

and the corresponding metamodel’s name is written above the model in a rectangle. The

“compiler” takes a PML model and a GReAT Platform→ Analysis transformation template,

and extends it with rules generated based on the PML model.

The PML model contains the UML metamodels (using an encoding suitable for PML) of

the source and target models (platform, analysis), and optional crosslinks. Most importantly,

123

it also contains the Platform → Analysis mapping definition, with references to external

analysis model fragments (skeletons), which are used in Kernel and Component mappings.

The “compiler” transformation (implemented also in GReAT) takes the PML modelMi

and a GReAT template. This template contains the appropriate metamodels (imported into

GReAT format), and skeletal configuration and transformation specifications (rule-blocks).

The “compiler” works by extending these configuration and rule-block skeletons to implement

the mapping given in the PML model. This creates a GReAT transformation, A(Pi,j), which is

the Platform→ Analysis transformation at the bottom of the Figure 36. This transformation

inputs the platform-level model 〈PiSM〉j (and the analysis model skeletons, as specified in

Mi), and creates A(Pi,j), the analysis model.

In this approach, the GReAT transformation template has to be provided by the user

for each (platform,analysis) pairs. The template’s structure is fixed, and contains about 20

elements plus the metamodels. Building the template (or modifying an existing one) takes

a few minutes by hand. Since the structure is fixed, a GReAT transformation could also be

developed to modify an existing template for a new (platform,analysis) pair.

The rest of this section will discuss these (the “compiler” and its output, A(Pi,j)) trans-

formations.

The PML → GReAT “compiler” transformation has the following major phases:

1. Mapping metamodels and crosslinks. Ultimately, the transformation maps PML pat-

terns onto GReAT patterns. Both PML and GReAT models import the appropriate

metamodels in order to establish their pattern languages. The GReAT transformation

template already contains the metamodels, and the “compiler” associates the meta-

model elements in the PML models with these. These associations will be used later

when the patterns are mapped onto GReAT ones.

2. Extending the template transformation’s configuration so that the appropriate compo-

nent skeletons are read and input by the main transformation block. The attributes of

the output model are also set so that it reads the kernel skeleton and copies it into the

124

Figure 37: Configuration of a generated GReAT transformation

output model first. This way, the basic structure of the analysis model.is established

at the earliest stage.

3. The template rule block Components (on the right side of Fig. 36, within block “GReAT

Transformation”) is extended to implement the mapping of components captured in

the PML model.

4. The template rule block Mappings (block next to is Components extended to implement

the mappings defined in the PML model.

Extending the transformation configuration

The template GReAT transformation contains a default configuration. During PML →
GReAT mapping, this has to be concretized and extended according to the actual PML

model.

This involves two steps:

1. Add the kernel skeleton model to the output file specification (so that it gets copied

into the target model)

125

Figure 38: Schematics of the rules implementing component skeleton instantiation

2. Input the component skeleton models into the transformation.

The first step is straightforward, it involves rewriting the corresponding filename at-

tribute. The second step is more involved, and consists of the following:

a) For each ComponentMode, create a (File,FileType) pair, pointing to the skeleton model

file

b) For each ComponentPart, create a FileObject into the corresponding FileType object.

Figure 37 shows the configuration for a platform model with one ComponentModel and

two ComponentParts. The GReAT configuration can be seen in the center. The figure also

shows how the models defined by the configuration are interfaced with the transformation

(on the right side).

Generating rules for component skeleton instantiation

After extending the configuration, the next phase creates rules to instantate component

skeletons. This happens by extending rule-block Components (shown on the right in Fig. 37).

126

The configuration model passes all objects representing analysis model fragments (Com-

ponentParts) into this rule-block. For each of them, a pair of rules is created. The first rule

selects the template object and both (source and target) RootFolders.

The second rule performs the instantiation. It is the composition of:

a) The ComponentIdentifier pattern, matching the component in the platform-level model.

b) The template object from the componet skeleton model

c) The ComponentPart locator pattern, matching its location within the analysis model

d) AttributeMapping code performing the instantiation.

The instantiation takes place if both – a) and c) – patterns matched. The AttributeMap-

ping code performs a “deep copy” of the template object into the location identified by

pattern c). (Schematics shown in Fig. 38).

The “deep copy” operation is currently not supported by GReAT. Fortunately, the oper-

ation is available in the underlying library (UDM [14]) used to implement GReAT. Thus, a

C++ code fragment using the CopyUdmHierarchy call of the UDM API is generated into the

AttributeMapping code performing the deep copy. Additionally, this code box also contains

the Instantiation code supplied with the ComponentPart in the PML model.

Appendix C contains two detailed examples from the DFK → UPPAAL mapping. The

examples show and explain the generated rules corresponding to component skeleton defini-

tions in the PML model.

Implementing PML Mappings in GReAT

The final task of the compiler is the translation of the Mappings block into GReAT. This

involves two steps:

1. Mapping of PML filter conditions and actions into GReAT rules

127

Figure 39: Schematics of PML Mappings implementation

2. Constructing a control flow structure to implement PML Mappings semantics (as

shown in Algorithm 2): select actioni whose filter conditions are satisfied, execute

it and repeat this as long as possible.

The schematics of the GReAT rule-block implementing this is shown in Fig. 39. The

iterative PML action execution is realized using a recursive rule-block (SelectAction, in

the center).

Mapping filter and action patterns is straightforward. Each filter is mapped into a GReAT

Test/Case (pattern matching with no side effect). Context propagation paths for MatchRef-

erences betweeen GReAT patterns are generated by the compiler. Each action is represented

by a rule. In rules, each pattern object is either bound by the previous filter pattern, or has

its Action attribute set to CreateNew.

The GReAT transformation has a global object (Changed, defined in the Crosslinks folder),

with a boolean flag. At the beginning, this flag is set to false by rule SetChanged.

SelectAction evaluates the Global Filter Condition (GFC) for each action by evaluating

corresponding GReAT Test/Case chains. In each chain, the last element is a GReAT rule,

corresponding to an action. If all the preceeding test cases (corresponding to filter conditions)

128

Figure 40: Mapping a zero-cardinality pattern

matched, the rule executes, carrying out the action. Whenever an action executes, Changed

flag is set to true.

Each rule (both filter and action rules) in SelectAction has a guard condition returning

Changed.flag. Thus, if one action has already executed, no other pattern (filter or action)

will match, and a SelectAction cycle finishes.

Next, as shown in Fig. 39 in test block Changed, if Changed.flag was true (if any action

rules had executed), rule-block SelectAction is invoked again using a GReAT self-reference

(Self). If Changed.flag is false, no rule could execute in this cycle, so the transformation

terminates.

Appendix C provides more detailed examples for actual PML → GReAT mappings.

Zero-cardinality patterns

PML also supports zero-cardinality patterns : patterns which express the lack of some-

thing. Patterns with zero cardinality match if the pattern object is not present. Figure 40

129

shows the mapping of a pattern containing an association with zero-cardinality. The filter

(on the top left) matches UPPAAL Templates in the Nta with no associated DFK Node

through (SrcComponent, DstComponent).

The filter is mapped onto the Test block shown below. It contains two Case patterns,

one with the zero-cardinality associations’ (GReAT) cardinality set to 1, and one with the

original zero cardinality. The GReAT pattern matcher evaluates this block as follows: If

the model does contain the association in question, the top pattern (Nope) evaluates true,

and the bottom one is ignored. Since the top pattern has no output binding(s), the Test

block itself generates no matches for subsequent blocks. Thus, the evaluation of the GFC

(represented by this Test block chain) fails. On the other hand, if the given association is not

present, the above pattern fails to match (as it has the association with nonzero cardinality).

Then, the pattern matcher evaluates the bottom Case (MatchSystem) which succeeds. The

output bindings pass the matches down to the next block, and the evaluation of the GFC

chain continues.

The compiler transformation

The schematics of the PML→GReAT compiler transformation was shown on the right

side of Fig. 36. The transformation takes a PML model and a skeleton GReAT transforma-

tion, and proceeds by extending the skeleton according to the PML model.

The skeleton transformation contains the following:

1. The source and target metamodels imported using the appropriate GReAT tools.

2. A Configuration model, with references to the input (platform-level) and output (anal-

ysis) model files.

3. An empty Components block and a Mappings rule-block with an empty SelectAction

loop. (Review Figure 37).

130

Figure 41: Major phases of the compiler transformation

The compiler itself is specified in as a GReAT transformation, and its high-level schema

can be seen in Fig. 41. The transformation has four major phases:

1. Associate metamodel elements The source PML and the target GReAT models both

contain the (platform, analysis) metamodel pairs. In order to construct GReAT pat-

terns corresponding to PML patterns later on, the compiler needs to know the corre-

sponding GReAT metamodel element for each PML object. In both languages, pattern

elements reference to metamodel elements. Thus, they can be associated through their

respective meta-elements.

2. Map crosslinks Using the PML→GReAT element-wise mapping established in the first

step, crosslink definitions is the PML model are mapped onto GReAT crosslink defi-

nitions.

3. Instantiate component skeletons The next step is processing ComponentModel el-

ements. In this step, the resulting transformation’s Configuration model is extended

with input models. These models contain component skeleton definitions according to

the PML model. Additionally, the models are propagated into the transformation, and

rules instantiating template skeletons are generated (as shown in Figures 37).

4. Generate Mappings rules Finally, GReAT rules implementing PML mappings blocks

are generated, as illustrated in Figures 39.

The following sections discuss each step in detail.

131

Figure 42: AssociateClasses rule-block from the compiler

Associating metamodel elements

In this step, metamodel elements in the PML model are associated with their counter-

parts in the GReAT transformation. The compiler creates (fromPML,toGReAT) crosslinks

between the corresponding elements. These crosslinks will be used later in mapping patterns

from PML to GReAT.

Figure 42 shows the overview and representative rules of this phase. The initial rules

descend into the UML Package folders containing the metamodels in both the PML and

GReAT models. There are three kinds of classes to associate:

• RootFolders (which are special classes both languages)

• PML BaseClasses to GReAT MgaObjects (all other classes derive from these special

abstract classes in the metamodels).

• “regular” class definitions in metamodels.

Rules performing the last task are shown in detail in Fig. 42. The rules traverse the PML

and GReAT metamodels in parallel. All PML metamodel elements are matched, and the

132

Figure 43: MapCrosslinks rule-block in the compiler

corresponding GReAT object located in the appropriate folder (ClassDiagram). Once the

object pair is identified, a (fromPML,toGReAT) association is created.

Mapping crosslinks

The next step maps crosslink definitions in the PML model onto GReAT crosslink defi-

nitions. For the mapping, the crosslinks created in the previous step are used.

First, the folder containing crosslink definitions in the PML model is located. Then, each

crosslink definition is matched within, along with the source and destination meta-objects.

Following the (fromPML,toGReAT) crosslinks created previously, the corresponding GReAT

meta-objects are determined. Finally, a crosslink definition involving these objects and an

association using the rolenames from the PML model is created in the GReAT model.

The rule-blocks involved are illustrated in Figure 43. The most important rule is ex-

panded on the right.

Generating component instantiation rules

This phase processes the ComponentModels defined in the PML model. The result is

an updated transformation configuration, including the skeleton models. Additionally, rule

133

Figure 44: Rule-block Components with sub-block InputSkeleton

block Components is also extended with rules implementing component skeleton instantia-

tion.

The two phases are executed by rule-blocks InputSkeleton and BuildRules, respec-

tively. InputSkeleton extends the configuration models (illustrated in Fig. 44). BuildRules

(Fig. 45) composes the instantiation rule patterns. (In the figures, the newly created objects

are marked with a small circle).

InputRules creates a (File,FileType) pair for each component skeleton file into the con-

figuration. For each ComponentPart within, a FileObject is created. The FileObject repre-

sents the top-level skeleton object within the model. It is propagated into the transformation

via GReAT port objects and Sequencing connections. Thus, each skeleton object is made

available for rule-block Components.

In BuildRules, the rule pair shown in Fig. 38 is created, and their patterns composed,

according to the patterns in the ComponentModels and ComponentParts.

134

Figure 45: Rule-block BuildRules

Generating rules for mappings implementation

The final (and most complex) step for the compiler is to generate the rule sequence

implementing PML mappings. The structure of the implementation was shown in Fig. 39.

The compiler traverses the mappings block hierarchy, and generates a Test block for each

filter, and a rule for each action. Following MatchReferences, GReAT context passing paths

are also generated.

The heart of the transformation is rule-block CopyPattern, shown in Figure 46. This

block maps PML filter or action patterns onto GReAT test cases or rules. The block maps

patterns following this sequence: works as follows:

1. First, all pattern objects (classes) are mapped, using the cross-metamodel associations

established earlier.

2. Next, connections and associations are mapped. If necessary, this step also prepares a

GReAT crosslink declaration

3. Finally, (for filters) GReAT output ports are created for MatchReferences.

135

Figure 46: Rule-block CopyPattern within MapMappings

Conclusions

This chapter introduced, and argued for explicit platform modeling. After discussing

the DSML → Platform → Analysis chain, the advantages of this approach were demon-

strated (increased accuracy of the analysis models, and seamless integration into the MDA

transformation chain).

Platform metamodeling was discussed, and an example presented, fitting to the case study

introduced in the previous chapter. Taking arguments from the example, the two choices for

platform metamodeling was presented (“generic” vs. “DSML-oriented”).

Next, the Platform → Analysis transformation was discussed in general, and a modeling

language (PML) for capturing explicit platform models proposed. The language provides

concepts very useful for platform modeling applications, but not present in GReAT, such as

“skeleton” insertion.

For the PML language, a modeling framework was developed in GME. The framework

contains the modeling language definition (paradigm), a few auxiliary tools (metamodel

import tool, a model decorator for visualization). Most importantly, the framework also

136

contains a PML compiler, implemented in GReAT. This compiler creates a GReAT trans-

formation based on the Platform → Analysis mapping captured in a PML model.

The rest of the chapter discussed the implementation of PML over GReAT, and the

compiler performing the implementation.

137

CHAPTER VI

RESULTS AND FUTURE WORK

Platform Modeling

The most important result of this work is the introduction and discussion of platform

modeling. As we had seen (e.g. in [47]), the platform concept has been conceptualized

earlier. With the proliferation of cheap hardware and ubiquitous embedded computing, the

need for platform-level analysis and verification is stronger than ever. Embedded system

manufacturers, such as cell phone developers want to re-use their software components over

evolving instances of hardware platforms, operating systems and middleware. They also

push for standard- and model-based development efforts, in order to increase productivity

and portability.

With the increase of the number of abstraction layers between application and computer,

there is a demand to better understand systems. The formal modeling of interactions between

layers and components, advocated by this work is definitely a solution for this problem.

The increased activity in the middleware community in this area (formal modeling of

component interaction, such as the research presented in [50] and in related publications)

also reinforces the view that undertaking this research was a step to the right direction.

The increasing complexity of computer-based systems also drives the need to study /

model the systems from multiple aspects. The approach proposed in this work provides a

very flexible component and platform concept. Using multiple platform models, analysis

models exposing the system to multiple analysis aspects and methods can be constructed.

This work also provides an automated way for the construction of such analysis models.

This construction is based on pre-configured templates captured within the platform model.

Design engineers can automatically generate and check analysis models during the evolution

of the design. Furthermore, using the proposed approach, the generation of analysis models

138

is integrated into the model-driven development flow, leveraging on many existing artifacts

(such as metamodels, translators), and enhancing it with new ones (such as platform-level

modeling). These new artifacts fit well into the development process, and might provide to

be useful even beyond platform-level model analysis.

Explicit platform models

A major contribution presented here was the formalization of explicit platform models.

These models assign formal semantics to platform-level structures. Using the demonstrated

approach, platform-level structures can be handled at the component level, which is a natural

abstraction. The demonstrated modeling language supports:

• The concept of a component, and the analysis mapping is centered around this concept.

• The specification and composition of analysis-model fragments (“skeletons”) at the

analysis model’s abstraction level. This is important, since previous efforts captured

these structures at the meta-level. Working at the modeling level makes studying these

analysis model fragments (“component skeletons”) allows analysis experts to work on

these models. Analysis experts typically do not have metamodeling background, thus

they are not comfortable working at the metamodeling level.

Specifying the Platform→ Analysis mapping by the means of an explicit platform model

(PML model) also makes the transformation simpler. Platform modelers do not have to

cope with the sophisticated control flow mechanism supported by GReAT. PML is simple

and clean.

In practice, developers could use PML to build platform model libraries, and validate

designs over different platforms. With PML, quite often it is sufficient to modify the skeleton

files only in order to capture a slightly different platform. This way, it becomes easy to

customize platform models for different platform parameters, such as initalization delays or

139

resource limits. PML enables the investigation of the effects of such parameters without

editing the analysis models.

Graph Transformation

Defining an UML-based graph transformation language on top of an existing one (and

using the existing one to specify the compiler) was a novel work. The achievement is similar

to defining a programming language, devising its implementation to assembly, and writing

a compiler using the same assembly. The resulting system will not have “greater expressing

power”, and will not be more efficient than assembly. Developers still prefer these higher-

level languages over assembly, because they deliver useful abstractions and concepts users

can leverage on.

This applies to the PML language and compiler demonstrated in this work as well. The

demonstrated examples might have been too simple to drive the point through, but it should

be clear that – for example – using UPPAAL fragments editable by the UPPAAL model

editor is superior to using the meta-patterns of these structures in complex GReAT rules.

This work also contributed to the search of a practical GT language for MDA/MIC. It has

been shown, that approaches and tools (such as GReAT) are mature enough to overtake such

complex tasks as “writing a GReAT transformation that writes a GReAT transformation”. I

hope that (beyond the numerous bug reports) I was able to contribute with useful feedback,

ideas and feature requests for the developers of GReAT and GT approaches in general.

140

Future Work

Platform Modeling

Platform modeling (in the way proposed in this work) is a novel approach, and as such,

the handful of examples and case studies presented here consitute the full body of experiences

gained so far. The approach is promising and was able to deliver results even in this limited

scope, but it is far from being solid.

The next step is to subject the approach (and the toolset) to real-life projects and perfect

it using the experience gained. Medium-term plans include platform modeling experiments

with time-triggered systems (the continuation of work started in [52] and [55]).

The extension for distributed systems with multiple kernel instances interacting through

communication networks is also a direction worth pursuing.

So far, the only larger-scale experiments were conducted using timed automata analysis

models, UPPAAL and IF ([16]. Platform models using different analysis languages should

be specified and studied, such as discrete-time systems or hybid systems languages. A

particularly interesting question here is how the complexity of the resulting plaform model

could be controlled through the platform models used for generating it.

Improvements to the PML framework

The framework is also a prototype, and is of experimental nature. In order to make

further case studies easier, several improvements could be made:

• Enhance the metamodel with constraints. This would help model editors by enforcing

well-formedness rules, such as the prevention of “dangling” objects in patterns (objects

not connected to anywhere).

141

• Provide means for metamodel evolution for UML diagrams embedded in PML models.

For this, the GME library concept could be used.

• Debugging PML mapping rules is not easy, primarily because of the 2-layer abstraction

(PML→ GReAT→DSML). The PML language could be extended with “tracing” and

“watch” primitives to show the progress of the mapping and spotlight attribute values.

Graph Transformation

One theoretically (and also practically) important question concerns with the verification

of model transformations. In this area – generating analysis models – this is particularly

important. The direction set out in [42] (checking bisimulation between the source and target

models) seems very much relevant for platform modeling.

The presented PML compiler is a prototype implementation, and demonstrates how a

transformation language with different semantics can be implemented over GReAT. As we

could see, the implementation is simple and straightforward. The major drawback of this

approach is low efficiency. It is mainly caused by the way non-deterministic PML action

selection was implemented. In the demonstrated implementation, GReAT tries to evaluate

the GFCs (Global Filter Conditions) for each PML action in parallel, which maps to a

non-deterministic sequential order with the current GReAT implamentation.

There are several ways to improve this, the most promising one being to map the PML

specification onto instructions for the GR language, which is the implementation platform

for GReAT itself. This would be a straightforward but technically involved task.

As mentioned earlier, using GReAT at such an advanced level, this work has provided

many insights to the application of GT in general. On the conceptual level, GReAT could be

enhanced with additional idioms, such as “deep copy” I had to implement using the rather

complex C++ API. A related concept, I found lacking was polymorphic or templatized

rules. While working with GReAT, one often comes across recurring tasks such as hierarchy-

flattening, polymorphic copy, or operations not dependent on the structure of the current

142

metamodel. Rule templates instantiated for concrete metamodels could save the recurring

implementation of such tasks.

As a practical tool for programming, GReAT has been proved very capable. Still, for a

language / framework to be fully accepted as a mature development tool it is necessary to

have certain usability extensions, such as user-friendly editors or a debugger. GReAT has

both, but both of them could use significant improvements. Many simple syntactic errors

could be avoided by enhancing the GReAT metamodel with constraints. Also, the debugger

should expose to some extent the internal workings of the pattern matcher. Currently, if a

complex pattern does not match when it is expected to be, the only way to pinpoint the

problem is to recode the pattern and split it up into parts which is rather time-consuming.

143

APPENDIX A

THE GME MODELING FRAMEWORK FOR PML

In order to study and demonstrate the feasibilty of the approach proposed in this work, a

modeling environment was created for PML. The environment was specified in the GME [37]

framework, with the following major parts:

• A GME metamodel for PML models

• A tool (ImportMeta) for importing GME metamodels (defining platform and analysis

models) into PML models.

• A template (skeleton) GReAT transformation for PML→GReAT mappings

• A compiler transformation (implemented in GReAT). This compiler creates a GReAT

transformation based on the mapping captured in the PML model. This transformation

is discussed in detail in Chapter V.

The modeling language (metamodel)

PML models contain metamodels, crosslink definitions, component definitions with in-

stantiation instructions, and mappings rules.

UML fundamentals

The higher-level concepts rely on UML patterns, using metamodel elements. Thus, a

significant part of the metamodel is responsible for providing UML primitives. The PML

metamodel uses the UML meta-library, available in the GME distribution, as a package of

GME paradigm sheets, modeling UML. The same package is used internally by the GME

meta-metamodel, and GReAT also uses this library.

144

Figure 47: PML concepts in the metamodel

Figure 48: Hierachy of patterns in the PML metamodel

PML concepts

Figure 47 shows how the high-level concepts of PML are captured in the metamodel. A

PlatformModel contains one or more ComponentModels and at most one Mappings blocks.

ComponentModels have a Locator pattern to identify the component in the source model,

and 1..∗ ComponentParts. ComponentParts are also Locator patterns (they designate one

elements by a pattern), and may also contain an Instantiation block with C++ code.

145

Figure 49: Patterns metamodel for PML

Pattern hierarchy

Figure 48 shows the different pattern objects employed by PML. From right to left:

Each mapping block has exactly one Filter (with an optional Guard), and 0..∗ Actions

(with optional SetAttr boxes). Filters and Actions are BlockPatterns, which may contain

MetaClasses and MatchReferences. The main workhorse of the pattern language is the

MetaClass: it refers to a class defined in the UML metamodel (ClassBase, on the top).

Additionally, Locator patterns (such as ComponentIdentifiers and ComponentParts) have

exactly one distinguished LocatorElement.

Pattern basics

In addition to the MetaClass and MatchReference elements, patterns also have elements

to express their relation (associations). These are grouped into a different paradigmsheet,

shown in Figure 49. Similar to the pattern language supported by GReAT, this language

defines composition and association relations between pattern classes. These relations are

derived from their respective class in the UML meta-package (Composition and Association)..

146

Auxiliary software in the PML framework

In order to make the PML framework easier to use, two additional software was developed.

The ImportMeta tool

The first one is ImportMeta, which is a tool to import a GME metamodel into a PML

model. This tool was used to import the DFK and UPPAAL metamodels into the example

models demonstrated in Chapter V. The tool was inspired by the tool with similar function-

ality in the GReAT framework, and it was implemented as a GReAT transformation.

The transformation reads a GME metamodel (source). It also opens the target PML

model in read-write mode and creates a UML Package folder within, named by the meta-

model. Within the package, a ClassDiagram is created for each GME ParadigmSheet, and

the class and association definitions imported (copied). The tool also creates an abstract

base class (BaseClass), and derives each class within the metamodel from it. Thus, the class

is similar to MgaObject in GReAT transformations.

Decorator

A simple GME model decorator was also developed for improved model visualization.

Decorators govern the visual appearance of models in the GME editor. The PML decorator

specifies two non-default behavior:

1. MatchReference objects in patterns are shown with a dashed-frame rectange

2. LocatorElements in Locator patterns (such as ComponentIdentifier and Component-

Part) are shown with a shaded (grayed) rectange.

These visualization rules help understading PML patterns easier. Most of the PML

patterns presented in figures in Chapter V are actual screenshots of the GME editor with

PML models.

147

APPENDIX B

DETAILED PML EXAMPLES FROM THE DFK → UPPAAL MAPPING

Figure 50: The DFK Kernel Skeleton for UPPAAL in GME

Kernel Skeleton

Figure 50 shows the kernel skeleton for the DFK → UPPAAL mapping:

1. The skeleton contains an UPPAAL Nta (Network of TA, top-level object).

2. This Nta contains one TA template definition (DFK) and a Declarations section for

global variable declarations.

3. Declarations contains integer variable running, constant nProcs (initialized to 0),

and a global clock (WallClock).

4. The DFK template contains the 3 kernel states (start, schedule and idle and their

transitions), the declaration of a local clock variable (clk).

148

Figure 51: Component Skeleton for a Node in PML

During the subsequent mapping operations, the Nta will be extended with TA corre-

sponding to the nodes of the DFK system, and the Kernel TA will be extended with states.

Global and local variables will be also added, as described in the following sections.

Component skeletons

The ComponentModel responsible for instantiating a TA template for each DFK Node

is shown in Figure 51. This ComponentModel has an associated filename,

(ComponentSkeleton.mga). This file contains the UPPAAL component skeleton, shown on

the far right.

• IdentifyNode on the top left contains the input pattern identifying a Node compo-

nent (the ComponentIdentifier). The Node is designated (shaded rectangle) as the

representative element of this component.

• Template, on the right from IdentifyNode is a ComponentPart, containing the def-

inition of the target model fragment corresponding to Node. Template contains the

following:

149

1. An ObjectPath identifier, to designate the object corresponding to Node within

ComponentSkeleton.mga. The the skeleton model is a syntactically correct UP-

PAAL model (so it can be edited within the UPPAAL modeling environment),

and only a part of it is used as the component skeleton. This part is designated

by the ObjectPath attribute. In this example the ObjectPath is

"RootFolder;Nta;Template;" which navigates to the single UPPAAL TA de-

fined in this model. Note that the global Declaration in the file is not part of

this component skeleton designation, as it is not contained by the TA template.

2. A ComponentLocator pattern (Template), which specifies the location of the skele-

ton within the analysis model being composed. (Template is shown in the center

of Fig. 51).

The TA skeleton will be copied into this container. In the figure, the meta-pattern

and the actual skeleton is associated by a thick dashed arrow on the right.

3. Instantiation is a procedural code fragment which is executed after the skeleton

is copied into the target model. In the example it customizes the skeleton by

renaming it.

Fig. 52 shows an additional part of the component model from Fig. 51. This definition

locates the PID constant from the same skeleton model (ComponentSkeleton.mga), using

the ObjectPath

"RootFolder;Nta;Declarations;Const;". This “skeleton” (which is actually a single

model element) is mapped it into the global declarations section of the output model us-

ing the pattern in the center of Fig. 52. The pattern also locates nProcs (using a Guard

condition), a global constant maintaining the number of components in the system, and

increments it for each component. The instantiation code is shown in the center top of the

figure.

150

Figure 52: Component Skeleton part for a PID constant in PML

Figure 53: Dataflow→variable PML mapping block

Filter and action patterns

Figure 53 shows a typical mapping block. The block contains one filter (left, dashed

frame) and one action (right, solid frame). It maps DFK dataflows onto UPPAAL integer

variables, representing token count. The filter matches Dataflows (within a System) with

no DF → DF var associations only (zero-cardinality match).

The action pattern refers to instances identified by the filter using MatchReferences (indi-

cated by dashed frame). Some of the MathReferences are visualized by dashed arrows. (Not

all in order to avoid visual clutter). The patterns (with the dashed arrows and comments

added) are actual screenshots form the GME implementation of PML.

151

For each match of the filter (each Dataflow with zero associated Int objects) the action

is executed, creating a new Int instance and creating the Dataflow → Int crosslink. In the

filter objects with solid frame are MetaClasses (i.e. to be matched). In the action pattern,

objects with dashed frame are MatchReferences to objects in the associated filter. Objects

with solid frame (and associations) are created new on each action execution. Note that the

Int object in the action is not a reference to the Int object from the filter (it as solid frame),

since this object has to be created. Furthermore, no instance for the Int object in the filter

can be matched, since it is only associated to bound objects with a zero-cardinality pattern,

meaning that “no such instance exists”.

Also, the pattern uses a SetAttribute box (expanded) to initialize the attributes of the

new object (code partially shown).

The filter condition in this example is not a top-level pattern: It does not contain refer-

ences to any of the RootFolders, thus it receives its context from a higher-level filter.

152

APPENDIX C

DETAILED EXAMPLES FOR THE PML → GReAT TRANSFORMATION

Component Skeleton instantiation examples

Figure 54 shows the overview of the rule-block implementing DFK Node →UPPAAL

template component skeleton instantiation.

In the lower left corner, icons of the PML ComponentModel can be seen (three rounded

rectanges arranged vertically). IdentifyNode contains the pattern identifying a “compo-

nent” in the DFK model (shown expaned to the right). This pattern captures “what is a

component” (how to recognise one) in the input model. In this example, it identifies each

Node within a System, where the System is a top-level object in the DFK model (contained

by the RootFolder).

For each ComponentPart model (Template, PID), a pair of rules are generated within

rule-block Components. This rule-block is shown in the bottom right in the figure. It is

also shown and related to the configuration in Figure 37 (within the block labeled “GReAT

Transformation”).

Each block receives four inputs (from top to bottom):

1. A reference to the RootFolder of the platform-level model (DFK).

2. References to the top-level objects of each component skeleton, as designated by their

respective ObjectsPaths within the skeleton model(s). In this example, there are two

of them:

(a) A skeleton for the TA structure modeling a DFK node (Template).

(b) A “skeleton” (a single object) for the PID constant (PID).

153

Figure 54: Component skeleton instantiation overview

3. A reference to the RootFolder of the analysis model (UPPAAL) being constructed.

This model already contains the Kernel skeleton.

Within Components, the first rule of the pair simply selects one of the component skeletons

for further processing (the details will be shown in Fig. 55, later in this section). The top-level

objects of all skeletons (identified by the ObjectPaths in the skeleton model) are matched.

One of them is propagated on, along with the RootFolders of the input and output models.

The next rule of the pair (expanded in the right top) shows how the instantiation is done:

• The ComponentIdentifier pattern is mapped into the GReAT rule to be matched

against the input (DFK) model (top part of the rule shown on the top right in Fig. 54

in a dashed rectangle).

• The top-level object of the skeleton is propagated into the rule (TemplateTemplate)

from the skeleton model.

154

• The ComponentPart pattern is also mapped into the GReAT rule (bottom part of

the pattern, on top right in Fig. 54, in designated by a dashed, rounded rectangle)

and matched against the output (analysis) model being built. The PML guard is

mapped onto a GReAT guard, and the Instantiation becomes a part of the GReAT

AttributeMapping box.

Thus, the above rule performs the following:

1. Locates and matches each “component” in the input model.

2. For each match, creates a corresponding new object within the output model (Template

in the example), at the location designated by the ComponentPart pattern (within Nta

in the example)..

3. Associates the new object with the “representative” object (Node) of the source com-

ponent by creating a (SrcComponent, DstComponent) crosslink.

4. Copies the contents of the component skeleton object (TemplateTemplate) into the

newly created output model object.

Rule End (in rule-block Components, bottom right in 54) passes the context (the input

and output RootFolders) on for the next rule-block implementing the Mappings rules. The

rule also serves as a template for the compiler during constructing the above explained rules

(i.e. references to both RootFolders are derived from this rule).

Figure 55 shows another example: the rule-blocks generated for the PID ComponentPart.

This rule group creates a global PID constant for each TA Template (UPPAAL process),

associated with a DFK Node. The most important rule is on the top right. It matches

the ComponentIdentifier pattern (finds all the components in the DFK model). For each of

them, it creates a PID constant, at the location determined by the ComponentPart pattern

(bottom center). It also finds the global nProcs constant and increases it for each match.

The figure also shows (top and center) how the skeleton object(s) are propagated from the

155

Figure 55: Generated rule-blocks for the PID skeleton

skeleton models via the configuration. On the bottom right, guard and instantiation C++

code fragments are shown. In the center, the expanded view of the “selector pattern”. These

patterns (one for each ComponentPart) select the template object for the instantiation rules

(shown here on the top right). The relation of these selector patterns to the rest of the rules

was shown in Fig. 54.

156

Figure 56: Example for GReAT rules generated for PML mapping patterns

Examples for the SelectAction rule-block

Figure 56 shows how the PML block hiearchy is mapped onto GReAT control flow.

Test cases implement filter conditions, and these are chained in order to implement GFCs

(Global Filter Conditions) along the block hierarchy. Each sub-block’s filter is mapped onto

a subsequent Test in the chain. Top-level rules match both RootFolders propagated from

the previous rule-block (Components). For each PML MatchReference (elements referring to

matches in the previous filter pattern) a GReAT context propagation path is generated.

The patterns in filter conditions are mapped onto GReAT Case patterns, as shown in

Fig. 56. This is done by looking up the metamodel elements referred in the PML patterns,

and finding the corresponding metamodels elements in the GReAT transformation. Then,

GReAT patterns using PatternClasses and PatternAssociations are generated, referring to

157

Figure 57: Details of GReAT Test cases and rules

the appropriate metamodel objects. Each element in a filter pattern is mapped onto a

GReAT pattern object with the Action attributre set to Bound (i.e. to be matched within

the context of the rule).

Rule(s) generated for action(s) terminate the rule chains. Action patterns are also

mapped onto corresponding GReAT patterns. In action patterns, each element which is

not a MatchReference is an element to be created in the output model. Thus, corresponding

GReAT PatternClasses are generated with their Action attributre set to CreateNew. The

same applies to all associations connected to them.

Figure 57 shows the details of the GReAT patterns generated by the compiler. The source

PML patterns are shown on the top (a filter, left, and an action, on the right). The location

158

of the generated patterns within SelectAction is shown in the center. At the bottom, the

GReAT patterns can be seen. The input bindings generated for MatchReference elements can

be seen on the left. Filter patterns (test cases) also contain output bindings for downstream

MatchReferences, these are shown on the right side of the pattern. The Guard conditions

testing for the Changed flag are also shown (bottom). The C++ API call setting the flag

is shown in the action rule (right side).For each action rule, an AttributeMapping box is

generated, which contains the code from the PML SetAttr box, and the flag set operator is

appended to this.

The example filter pattern (top left) also shows a (SrcComponent,DstComponent)

crosslink, generated by the component skeleton instantiation. The source (Node) is the

representative element of the component in the input model, and the target (Template) is

the top-level object of the skeleton inserted.

159

REFERENCES

[1] The MDA Website by OMG. Available online at http://www.omg.org/mda.

[2] OMG Model Driver Architecture Standards & Specifications

Website: http://www.omg.org/mda/specs .

[3] OMG The Meta Object Facility Homepage Website: http://www.omg.org/mof/.

[4] OMG XMI Specification Website: http://www.omg.org/technology/documents/

formal/xmi.htm.

[5] The UPPAAL Website: http://www.uppaal.com.

[6] The GME Project’s Website: http://www.isis.vanderbilt.edu/Projects/gme/.

[7] The Klasse OCL website. Available online at http://www.klasse.nl/ocl.

[8] NuSMV: a new symbolic model checker. Available online at http://nusmv.irst.itc.

it.

[9] The sipher 2003 website. Online at http://fountain.isis.vanderbilt.edu/

teaching/2003.

[10] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid au-

tomata: An algorithmic approach to the specification and verification of hybrid systems.

In Hybrid Systems, pages 209–229, 1992.

[11] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, 1994.

[12] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jörg Kre-

owski, Sabine Kuske, Detlef Plump, Andy Schürr, and Gabriele Taentzer. Graph trans-

formation for specification and programming. Sci. Comput. Program., 34(1):1–54, 1999.

160

[13] Eugene Asarin, Thao Dang, Oded Maler, and Olivier Bournez. Approximate reachability

analysis of piecewise-linear dynamical systems. In HSCC, pages 20–31, 2000.

[14] Á. Bakay and E. Magyari. The UDM framework. Available online at http://www.

isis.vanderbilt.edu/Projects/mobies.

[15] Beate Bollig and Ingo Wegener. Improving the variable ordering of obdds is np-complete.

IEEE Trans. Computers, 45(9):993–1002, 1996.

[16] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. Tools and applications: the if

toolset. In M. Bernanrdo and F. Corradini, editors, Proceedings of the 4th International

School on Formal Methods for the Design of Computer, Communication and Software

Systems: Real Time, SFM-04:RT, volume 3185 of LNCS. Springer, 2004.

[17] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.

[18] Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys, 24(3):293–318, 1992.

[19] J. R. Burch, E. M.Clarke, K. L. McMillian, and J. Hwang. Symbolic model checking:

1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

[20] Alongkrit Chutinan and Bruce H. Krogh. Verification of polyhedral-invariant hybrid

automata using polygonal flow pipe approximations. In HSCC ’99: Proceedings of the

Second International Workshop on Hybrid Systems, pages 76–90, London, UK, 1999.

Springer-Verlag.

[21] Edmund Clarke, Masahiro Fujita, and Xudong Zhao. Applications of multi-terminal

binary decision diagrams. Technical report, Carnegie Mellon University, Pittsburgh,

PA, USA, 1995.

161

[22] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-

proaches. In 2nd OOPSLA Workshop on Generative Techniques in the Context of the

Model Driven Architecture, Anaheim, CA, December 2003.

[23] D. Peled E. Clarke, O. Grumberg. Model Checking. MIT Press, 1999.

[24] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asynchronous

processes: Schedulability and decidability. In TACAS ’02: Proceedings of the 8th In-

ternational Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 67–82, London, UK, 2002. Springer-Verlag.

[25] Agrawal A.and Karsai G., Kalmar Z., Neema S., Shi F., and Vizhanyo A. The design of

a language for model transformations. Journal of Software and System Modeling, 2005.

[26] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of typed at-

tributed graph transformation systems. In ICGT, pages 161–176, 2002.

[27] Thomas Henzinger. The theory of hybrid automata. In Proceedings of the 11th An-

nual IEEE Symposium on Logic in Computer Science (LICS ’96), pages 278–292, New

Brunswick, New Jersey, 1996.

[28] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model checker

for hybrid systems. International Journal on Software Tools for Technology Transfer,

1(1–2):110–122, 1997.

[29] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–295,

1997.

[30] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the use of graph transformation in

the formal specification of model interpreters. Journal of Universal Computer Science,

9(11):1296–1321, 2003. http://www.jucs.org/jucs 9 11/on the use of.

162

[31] Pavel Krčál and Wang Yi. Decidable and undecidable problems in schedulability anal-

ysis using timed automata. In Kurt Jensen and Andreas Podelski, editors, Proc. of

TACAS’04, Barcelona, Spain., volume 2988 of Lecture Notes in Computer Science,

pages 236–250. Springer–Verlag, 2004.

[32] Jean J. Labrosse. MicroC/OS-II: The Real-Time Kernel. CMP Books, 1998.

[33] F. Laroussinie, N. Markey, and Ph. Schnoebelen. On model checking durational Kripke

structures (extended abstract). In Proc. 5th Int. Conf. Foundations of Software Science

and Computation Structures (FOSSACS’2002), Grenoble, France, Apr. 2002, volume

2303. Springer, 2002.

[34] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Model-checking for real-time

systems. In FCT ’95: Proceedings of the 10th International Symposium on Fundamentals

of Computation Theory, pages 62–88, London, UK, 1995. Springer-Verlag.

[35] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Inter-

national Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[36] Dario Laverde, Giulio Ferrari, and Jurgen Stuber. Programming Lego Mindstorms with

Java. Syngress, 2002.

[37] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg Nordstrom, Jonathan

Sprinkle, and Gabor Karsai. Composing domain-specific design environments. Com-

puter, 34(11):44–51, 2001.

[38] Edward A. Lee and Alberto Sangiovanni-Vincentelli. A framework for comparing models

of computation. IEEE Transactions on CAD, 17(12), December 1998.

[39] Nicolas Markey and Ph. Schnoebelen. Symbolic model checking for simply-timed sys-

tems. In FORMATS/FTRTFT, pages 102–117, 2004.

163

[40] Kenneth Lauchlin McMillan. Symbolic model checking: an approach to the state explo-

sion problem. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

[41] Christoph Meinel and Anna Slobodová. Speeding up variable reordering of OBDDs. In

International Conference on Computer Design, pages 338–343, 1997.

[42] Anantha Narayanan and Gábor Karsai. Towards verifying model transformations. In

Proceedings for the Graph Transformation and Visual Modeling Techniques (GT-VMT),

Vienna, Austria, pages 185–194, 2006.

[43] Object ManagementGroup (OMG). Omg/rfp/qvt mof 2.0 query/views/transformations

rfp. Misc, 2003.

[44] Detlef Plump. Termination of graph rewriting is undecidable. Fundamenta Informaticae,

33(2):201–209, 1998.

[45] Kekoa Proudfoot. Rcx internals. Technical report, Stanford University, 1998-99. Avail-

able online at http://graphics.stanford.edu/∼kekoa/rcx.

[46] Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams. In

ICCAD ’93: Proceedings of the 1993 IEEE/ACM international conference on Computer-

aided design, pages 42–47, Los Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[47] Alberto L. Sangiovanni-Vincentelli and Grant Martin. Platform-based design and soft-

ware design methodology for embedded systems. IEEE Design & Test of Computers,

18(6):23–33, 2001.

[48] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, Feb 2006.

[49] G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers, 2000.

[50] Venkita Subramonian, Christopher Gill, Cesar Sanchez, and Henny Sipma. Composable

time automata models for real-time embedded systems middleware. Technical report,

Washington University, St. Louis, MO, USA, 2005.

164

[51] T. Szemethy. Implementing a mutithreaded, object-oriented multiplatform dataflow

kernel. Technical report, Vanderbilt University, 2003.

[52] T. Szemethy. Model transformations for time-triggered languages. In International

Workshop on Graph and Model Transformation (GRaMoT 2005), Tallinn, Estonia,

September 2005.

[53] T. Szemethy and G. Karsai. Platform Modeling and Model Transformations for

Analysis. Journal of Universal Computer Science, 10(10):1383–1407, October 2004.

http://www.jucs.org/jucs 10 10/platform modeling and model.

[54] Janos Sztipanovits and Gabor Karsai. Model-integrated computing. Computer,

30(4):110–111, 1997.

[55] D. Balasubramanian T. Szemethy, G. Karsai. Model transformations in the model-based

development of real-time systems. In 13th Annual IEEE International Conference and

Workshop on the Engineering of Computer Based Systems (ECBS 2006), Potsdam,

Germany, March 2006.

[56] Ryan Thibodeaux. Exposing vanderbilt engineers to embedded systems modeling and

analysis. Technical report, Institute for Software Integrated Systems, Vanderbilt Uni-

versity, 2005.

[57] Jos Warmer and Anneke Kleppe. The object constraint language: precise modeling with

UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

165

